WorldWideScience

Sample records for marine brown algae

  1. Potential pharmacological applications of polyphenolic derivatives from marine brown algae.

    Science.gov (United States)

    Thomas, Noel Vinay; Kim, Se-Kwon

    2011-11-01

    Recently, the isolation and characterization of the biologically active components from seaweeds have gained much attention from various research groups across the world. The marine algae have been studied for biologically active components and phlorotannins are one among them. Among marine algae, brown algal species such as Ecklonia cava, Eisenia arborea, Ecklonia stolinifera and Eisenia bicyclis have been studied for their potential biological activities. Majority of the investigations on phlorotannins derived from brown algae have exhibited their potentiality as antioxidant, anti-inflammatory, antidiabetic, antitumor, antihypertensive, anti-allergic, hyaluronidase enzyme inhibition and in matrix metalloproteinases (MMPs) inhibition activity. In this review, we have made an attempt to discuss the potential biological activities of phlorotannins from marine brown algae and their possible candidature in the pharmaceutical applications. Copyright © 2011 Elsevier B.V. All rights reserved.

  2. Boron uptake, localization, and speciation in marine brown algae.

    Science.gov (United States)

    Miller, Eric P; Wu, Youxian; Carrano, Carl J

    2016-02-01

    In contrast to the generally boron-poor terrestrial environment, the concentration of boron in the marine environment is relatively high (0.4 mM) and while there has been extensive interest in its use as a surrogate of pH in paleoclimate studies in the context of climate change-related questions, the relatively depth independent, and the generally non-nutrient-like concentration profile of this element have led to boron being neglected as a potentially biologically relevant element in the ocean. Among the marine plant-like organisms the brown algae (Phaeophyta) are one of only five lineages of photosynthetic eukaryotes to have evolved complex multicellularity. Many of unusual and often unique features of brown algae are attributable to this singular evolutionary history. These adaptations are a reflection of the marine coastal environment which brown algae dominate in terms of biomass. Consequently, brown algae are of fundamental importance to oceanic ecology, geochemistry, and coastal industry. Our results indicate that boron is taken up by a facilitated diffusion mechanism against a considerable concentration gradient. Furthermore, in both Ectocarpus and Macrocystis some boron is most likely bound to cell wall constituent alginate and the photoassimilate mannitol located in sieve cells. Herein, we describe boron uptake, speciation, localization and possible biological function in two species of brown algae, Macrocystis pyrifera and Ectocarpus siliculosus.

  3. Antimicrobial effect of phlorotannins from marine brown algae.

    Science.gov (United States)

    Eom, Sung-Hwan; Kim, Young-Mog; Kim, Se-Kwon

    2012-09-01

    Marine organisms exhibit a rich chemical content that possess unique structural features as compared to terrestrial metabolites. Among marine resources, marine algae are a rich source of chemically diverse compounds with the possibility of their potential use as a novel class of artificial food ingredients and antimicrobial agents. The objective of this brief review is to identify new candidate drugs for antimicrobial activity against food-borne pathogenic bacteria. Bioactive compounds derived from brown algae are discussed, namely phlorotannins, that have anti-microbial effects and therefore may be useful to explore as potential antimicrobial agents for the food and pharmaceutical industries. Crown Copyright © 2012. Published by Elsevier Ltd. All rights reserved.

  4. SULFOGLYCOLIPID FROM THE MARINE BROWN ALGA SARGASSUM HEMIPHYLLUM

    Institute of Scientific and Technical Information of China (English)

    ZHENG CUI; YU-SHAN LI; HONG-BING LIU; DAN YUAN; BAO-REN LU

    2001-01-01

    One kinds of glycolipid (SBI) have been isolated from the marine brown alga Sargassum hemiphyllum (Turn.) Ag. The structures of SBI have been determined as the sodium salt of 1-0-acyl-3-0-(6′-sulfo-c-D-quinovopyrannosyl) glycerol (acyl: tetradecanoyl, pentadecanoyl, 11-hexadecenoyl, hexadecanoyl, 10,13-octadecadienoyl, 9-octade cenoyl, 15-metylheptadecanoyl and 11-eicosenoyl 17:1.5:19:153:1: 19:1:2) on the basis of chemical and spectral evidence and GC-MS analysis, respectively. Four constituents of the SBI were new compounds [the sodium salt of 1-0-(ll″-hexadecenoyl)-3-0-(6′-sulfo-α-D-quinovopyrannosyl) glycerol, the sodium salt of 1-0-(10",13"-octadecadienoyl)-3-0-(6′-sulfo-α-D-quinovopyrannosyl) glycerol,and the sodium salt of 1-0-(15"-metylhexadecenoyl)-3-0-(6′-sulfo-c-D-quinovopyrannosyl)glycerol, and the sodium salt of 1-0-(ll"-eicosenoyl)-3-0-(6′-sulfo-α-D-quinovopyrannosyl)glycerol]. All compounds were isolated from marine brown alga for the first time.

  5. Fucoidan from Marine Brown Algae Inhibits Lipid Accumulation

    Directory of Open Access Journals (Sweden)

    Changhyun Roh

    2011-08-01

    Full Text Available In this study, we elucidated the inhibitory effect of fucoidan from marine brown algae on the lipid accumulation in differentiated 3T3-L1 adipocytes and its mechanism. The treatment of fucoidan in a dose-dependent manner was examined on lipid inhibition in 3T3-L1 cells by using Oil Red O staining. Fucoidan showed high lipid inhibition activity at 200 µg/mL concentration (P < 0.001. Lipolytic activity in adipocytes is highly dependent on hormone sensitive lipase (HSL, which is one of the most important targets of lipolytic regulation. Here, we examined the biological response of fucoidan on the protein level of lipolysis pathway. The expressed protein levels of total hormone sensitive lipase (HSL and its activated form, phosphorylated-HSL were significantly increased at concentration of 200 µg/mL fucoidan. Furthermore, insulin-induced 2-deoxy-D-[3H] glucose uptake was decreased up to 51% in fucoidan-treated cells as compared to control. Since increase of HSL and p-HSL expression and decrease of glucose uptake into adipocytes are known to lead to stimulation of lipolysis, our results suggest that fucoidan reduces lipid accumulation by stimulating lipolysis. Therefore, these results suggest that fucoidan can be useful for the prevention or treatment of obesity due to its stimulatory lipolysis.

  6. Anti-diabetic effects of brown algae derived phlorotannins, marine polyphenols through diverse mechanisms.

    Science.gov (United States)

    Lee, Seung-Hong; Jeon, You-Jin

    2013-04-01

    Marine algae are popular and abundant food ingredients mainly in Asian countries, and also well known for their health beneficial effects due to the presence of biologically active components. The marine algae have been studied for biologically active components and phlorotannins, marine polyphenols are among them. Among marine algae, brown algae have extensively studied for their potential anti-diabetic activities. Majority of the investigations on phlorotannins derived from brown algae have exhibited their various anti-diabetic mechanisms such as α-glucosidase and α-amylase inhibitory effect, glucose uptake effect in skeletal muscle, protein tyrosine phosphatase 1B (PTP 1B) enzyme inhibition, improvement of insulin sensitivity in type 2 diabetic db/db mice, and protective effect against diabetes complication. In this review, we have made an attempt to discuss the various anti-diabetic mechanisms associated with phlorotannins from brown algae that are confined to in vitro and in vivo. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Evaluation of marine sediments as microbial sources for methane production from brown algae under high salinity.

    Science.gov (United States)

    Miura, Toyokazu; Kita, Akihisa; Okamura, Yoshiko; Aki, Tsunehiro; Matsumura, Yukihiko; Tajima, Takahisa; Kato, Junichi; Nakashimada, Yutaka

    2014-10-01

    Various marine sediments were evaluated as promising microbial sources for methane fermentation of Saccharina japonica, a brown alga, at seawater salinity. All marine sediments tested produced mainly acetate among volatile fatty acids. One marine sediment completely converted the produced volatile fatty acids to methane in a short period. Archaeal community analysis revealed that acetoclastic methanogens belonging to the Methanosarcina genus dominated after cultivation. Measurement of the specific conversion rate at each step of methane production under saline conditions demonstrated that the marine sediments had higher conversion rates of butyrate and acetate than mesophilic methanogenic granules. These results clearly show that marine sediments can be used as microbial sources for methane production from algae under high-salt conditions without dilution. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Filamentous brown algae infected by the marine, holocarpic oomycete Eurychasma dicksonii

    Science.gov (United States)

    Tsirigoti, Amerssa; Kuepper, Frithjof C; Gachon, Claire MM; Katsaros, Christos

    2013-01-01

    The important role of the cytoskeletal scaffold is increasingly recognized in host-pathogen interactions. The cytoskeleton potentially functions as a weapon for both the plants defending themselves against fungal or oomycete parasites, and for the pathogens trying to overcome the resisting barrier of the plants. This concept, however, had not been investigated in marine algae so far. We are opening this scientific chapter with our study on the functional implications of the cytoskeleton in 3 filamentous brown algal species infected by the marine oomycete Eurychasma dicksonii. Our observations suggest that the cytoskeleton is involved in host defense responses and in fundamental developmental stages of E. dicksonii in its algal host. PMID:24025487

  9. Influence of the Brown Marine Algae on the Physicochemical and Sensory Characteristcs of the Sausages

    Directory of Open Access Journals (Sweden)

    Claudiu Dan Sălăgean

    2015-11-01

    Full Text Available  The aim of this study was to asses the influence of the brown algae on the quality in manufacturing of a certain halfsmoked sausages assortment.  Exploiting the natural plant resources as well as reducing the animal fat in the finished product by replacing it with proteins, fibers and minerals (provided by the brown marine algae were also intended. Two technological variants with different ratios of algae (V1-10% respectively V2-15% from those 25% of fat (the remaining of 75% beeing represented, in each case, by beef were experienced and compared with the control sample (VM, without algae, 75% beef and 25% fat. The finished products were analyzed in terms of organoleptic and physicochemical, in different stages of storage, at 24 hours after obtaining and seven days of storage at 10 to 12 degrees. The correlations between investigated quality parameters and the ratios of algae were also established. The physicochemical analysis highlighted the highest values regarding the protein, moisture, sodium chloride and the lowest fat content values in the case of the V2 variant compared to the V1 and VM variants. Furthermore, an increase in protein, fat, sodium chloride and a decrease of the moisture content have been found in all variants observed during the storage. The shelf life of the product was not negatively affected by the addition of algae due to their antimicrobial activity. The addition of algae in combination with beef components led to obtaining a higher quality product with functional characteristics.

  10. Complete genome sequence and transcriptomic analysis of a novel marine strain Bacillus weihaiensis reveals the mechanism of brown algae degradation.

    Science.gov (United States)

    Zhu, Yueming; Chen, Peng; Bao, Yunjuan; Men, Yan; Zeng, Yan; Yang, Jiangang; Sun, Jibin; Sun, Yuanxia

    2016-11-30

    A novel marine strain representing efficient degradation ability toward brown algae was isolated, identified, and assigned to Bacillus weihaiensis Alg07. The alga-associated marine bacteria promote the nutrient cycle and perform important functions in the marine ecosystem. The de novo sequencing of the B. weihaiensis Alg07 genome was carried out. Results of gene annotation and carbohydrate-active enzyme analysis showed that the strain harbored enzymes that can completely degrade alginate and laminarin, which are the specific polysaccharides of brown algae. We also found genes for the utilization of mannitol, the major storage monosaccharide in the cell of brown algae. To understand the process of brown algae decomposition by B. weihaiensis Alg07, RNA-seq transcriptome analysis and qRT-PCR were performed. The genes involved in alginate metabolism were all up-regulated in the initial stage of kelp degradation, suggesting that the strain Alg07 first degrades alginate to destruct the cell wall so that the laminarin and mannitol are released and subsequently decomposed. The key genes involved in alginate and laminarin degradation were expressed in Escherichia coli and characterized. Overall, the model of brown algae degradation by the marine strain Alg07 was established, and novel alginate lyases and laminarinase were discovered.

  11. Alkaloids in Marine Algae

    OpenAIRE

    Ekrem Sezik; Aline Percot; Kasım Cemal Güven

    2010-01-01

    This paper presents the alkaloids found in green, brown and red marine algae. Algal chemistry has interested many researchers in order to develop new drugs, as algae include compounds with functional groups which are characteristic from this particular source. Among these compounds, alkaloids present special interest because of their pharmacological activities. Alkaloid chemistry has been widely studied in terrestrial plants, but the number of studies in algae is insignificant. In this review...

  12. Arsenic content in certain marine brown algae and mangroves from Goa coast

    Digital Repository Service at National Institute of Oceanography (India)

    Rao, Ch.K.; Chinnaraj, S.; Inamdar, S.N.; Untawale, A

    Arsenic has been estimated in 7 species each of brown algae and mangroves, including different parts of Sargassum cinereum. Arsenic is more concentrated in brown algae [concentration /factor(CF) range 1.5 - 7 x 10 super(3)] as compared to mangroves...

  13. Semi-continuous methane production from undiluted brown algae using a halophilic marine microbial community.

    Science.gov (United States)

    Miura, Toyokazu; Kita, Akihisa; Okamura, Yoshiko; Aki, Tsunehiro; Matsumura, Yukihiko; Tajima, Takahisa; Kato, Junichi; Nakashimada, Yutaka

    2016-01-01

    Acclimated marine sediment-derived culture was used for semi-continuous methane production from materials equivalent to raw brown algae, without dilution of salinity and without nutrient supply, under 3 consecutive conditions of varying organic loading rates (OLRs) and hydraulic retention time (HRT). Methane production was stable at 2.0gVS/kg/day (39-day HRT); however, it became unstable at 2.9gVS/kg/day (28-day HRT) due to acetate and propionate accumulation. OLR subsequently decreased to 1.7gVS/kg/day (46-day HRT), stabilizing methane production beyond steady state. Methane yield was above 300mL/g VS at all OLRs. These results indicated that the acclimated marine sediment culture was able to produce methane semi-continuously from raw brown algae without dilution and nutrient supply under steady state. Microbial community analysis suggested that hydrogenotrophic methanogens predominated among archaea during unstable methane production, implying a partial shift of the methanogenic pathway from acetoclastic methanogenesis to acetate oxidation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Anticoagulant effect of marine algae.

    Science.gov (United States)

    Kim, Se-Kwon; Wijesekara, Isuru

    2011-01-01

    Recently, a great deal of interest has been developed in the nutraceutical and pharmaceutical industries to isolate natural anticoagulant compounds from marine resources. Among marine resources, marine algae are valuable sources of novel bioactive compounds with anticoagulant effect. Phlorotannins and sulfated polysaccharides such as fucoidans in brown algae, carrageenans in red algae, and ulvans in green algae have been recognized as potential anticoagulant agents. Therefore, marine algae-derived phlorotannins and SPs have great potential for developing as anticoagulant drugs in nutraceutical and pharmaceutical areas. This chapter focuses on the potential anticoagulant agents in marine algae and presents an overview of their anticoagulant effect. Copyright © 2011 Elsevier Inc. All rights reserved.

  15. New Enzyme-Inhibitory Triterpenoid from Marine Macro Brown Alga Padina boergesenii Allender & Kraft

    Science.gov (United States)

    Ali, Liaqat; Khan, Abdul Latif; Al-Broumi, Muhammad; Al-Harrasi, Rashid; Al-Kharusi, Lubna; Hussain, Javid; Al-Harrasi, Ahmed

    2017-01-01

    In continuation to our study of the chemical and biological potential of the secondary metabolites isolated from Omani seaweeds, we investigated a marine brown alga, Padina boergesenii. The phytochemical investigation resulted in the isolation of a new secondary metabolite, padinolic acid (1), along with some other semi-pure fractions and sub-fractions. The planar structure was confirmed through MS and NMR (1D and 2D) spectral data. The NOESY experiments coupled with the biogenetic consideration were helpful in assigning the stereochemistry in the molecule. Compound 1 was subjected to enzyme inhibition studies using urease, lipid peroxidase, and alpha-glucosidase enzymes. Compound 1 showed low to moderate α-glucosidase and urease enzyme inhibition, respectively, and moderate anti-lipid peroxidation activities. The current study indicates the potential of this seaweed and provides the basis for further investigation. PMID:28106757

  16. New Enzyme-Inhibitory Triterpenoid from Marine Macro Brown Alga Padina boergesenii Allender & Kraft.

    Science.gov (United States)

    Ali, Liaqat; Khan, Abdul Latif; Al-Broumi, Muhammad; Al-Harrasi, Rashid; Al-Kharusi, Lubna; Hussain, Javid; Al-Harrasi, Ahmed

    2017-01-18

    In continuation to our study of the chemical and biological potential of the secondary metabolites isolated from Omani seaweeds, we investigated a marine brown alga, Padina boergesenii. The phytochemical investigation resulted in the isolation of a new secondary metabolite, padinolic acid (1), along with some other semi-pure fractions and sub-fractions. The planar structure was confirmed through MS and NMR (1D and 2D) spectral data. The NOESY experiments coupled with the biogenetic consideration were helpful in assigning the stereochemistry in the molecule. Compound 1 was subjected to enzyme inhibition studies using urease, lipid peroxidase, and alpha-glucosidase enzymes. Compound 1 showed low to moderate α-glucosidase and urease enzyme inhibition, respectively, and moderate anti-lipid peroxidation activities. The current study indicates the potential of this seaweed and provides the basis for further investigation.

  17. New Enzyme-Inhibitory Triterpenoid from Marine Macro Brown Alga Padina boergesenii Allender & Kraft

    Directory of Open Access Journals (Sweden)

    Liaqat Ali

    2017-01-01

    Full Text Available In continuation to our study of the chemical and biological potential of the secondary metabolites isolated from Omani seaweeds, we investigated a marine brown alga, Padina boergesenii. The phytochemical investigation resulted in the isolation of a new secondary metabolite, padinolic acid (1, along with some other semi-pure fractions and sub-fractions. The planar structure was confirmed through MS and NMR (1D and 2D spectral data. The NOESY experiments coupled with the biogenetic consideration were helpful in assigning the stereochemistry in the molecule. Compound 1 was subjected to enzyme inhibition studies using urease, lipid peroxidase, and alpha-glucosidase enzymes. Compound 1 showed low to moderate α-glucosidase and urease enzyme inhibition, respectively, and moderate anti-lipid peroxidation activities. The current study indicates the potential of this seaweed and provides the basis for further investigation.

  18. Evaluation of Marine Brown Algae and Sponges from Brazil as Anticoagulant and Antiplatelet Products

    Directory of Open Access Journals (Sweden)

    Suzi Meneses Ribeiro

    2011-08-01

    Full Text Available The ischemic disorders, in which platelet aggregation and blood coagulation are involved, represent a major cause of disability and death worldwide. The antithrombotic therapy has unsatisfactory performance and may produce side effects. So, there is a need to seek molecules with antithrombotic properties. Marine organisms produce substances with different well defined ecological functions. Moreover, some of these molecules also exhibit pharmacological properties such as antiviral, anticancer, antiophidic and anticoagulant properties. The aim of this study was to evaluate, through in vitro tests, the effect of two extracts of brown algae and ten marine sponges from Brazil on platelet aggregation and blood coagulation. Our results revealed that most of the extracts were capable of inhibiting platelet aggregation and clotting measured by plasma recalcification tests, prothrombin time, activated partial thromboplastin time, and fibrinogenolytic activity. On the other hand, five of ten species of sponges induced platelet aggregation. Thus, the marine organisms studied here may have molecules with antithrombotic properties, presenting biotechnological potential to antithrombotic therapy. Further chemical investigation should be conducted on the active species to discover useful molecules for the development of new drugs to treat clotting disorders.

  19. Use of Brown Algae to Demonstrate Natural Products Techniques.

    Science.gov (United States)

    Porter, Lee A.

    1985-01-01

    Background information is provided on the natural products found in marine organisms in general and the brown algae in particular. Also provided are the procedures needed to isolate D-mannitol (a primary metabolite) and cholesterol from brown algae. (JN)

  20. The effects of preparing methods and enzyme supplementation on the utilization of brown marine algae (Sargassum dentifebium meal in the diet of laying hens

    Directory of Open Access Journals (Sweden)

    Mohammed A. Al-Harthi

    2011-10-01

    Full Text Available Brown marine algae (BMA; Sargassum dentifebium were collected from Jeddah on the shores of the Red Sea and sun dried at an average daily temperature of 40°C until constant weight was obtained. Part of the sun dried brown marine algae was subsequently processed by boiling (BBMA;boiled brown marine algae in water and by autoclaving (ABMA; autoclaved brown marine algae. The SBMA, BBMA and ABMA were included in laying hen diet during weeks 23-42 of age at concentrations of 0.0%, 3.0% and 6.0%. The diets were given with or without enzyme supplementation. This resulted in 3 (preparation methods × 2 (concentrations of supplemented BMA, i.e. 3 and 6 % × 2 (with and without enzyme supplementation diet programs plus two control groups (with and without enzyme supplementation for a total of 14 treatments. Each treatment was represented by six replicates of five hens each. Sun dried or autocalved brown marine algae at 3% without enzyme supplementation in the laying hen diet could be fed to laying hens without any adverse effect on laying performance. However, enzyme supplementation to a diet containing 6% autocalved brown marine algae improved productive performance and eggshell quality.

  1. Biological activities and potential health benefits of fucoxanthin derived from marine brown algae.

    Science.gov (United States)

    Kim, Se-Kwon; Pangestuti, Ratih

    2011-01-01

    The importance of marine algae as sources of functional ingredients has been well recognized due to their valuable health beneficial effects. Therefore, isolation and investigation of novel bioactive ingredients with biological activities from marine algae have attracted great attention. Among functional ingredients identified from marine algae, fucoxanthin has received particular interest. Fucoxanthin has been attributed with extraordinary potential for protecting the organism against a wide range of diseases and has considerable potential and promising applications in human health. Fucoxanthin has been reported to exhibit various beneficial biological activities such as antioxidant, anticancer, anti-inflammatory, antiobesity, and neuroprotective activities. In this chapter, the currently available scientific literatures regarding the most significant activities of fucoxanthin are summarized.

  2. Biosorption of copper, cobalt and nickel by marine brown alga Sargassum sp. in fixed-bed column.

    Science.gov (United States)

    Esmaeili, Akbar; Soufi, Samira; Rustaiyan, Abdolhossein; Safaiyan, Shila; Mirian, Simin; Fallahe, Gila; Moazami, Nasrin

    2007-11-01

    The biosorption of copper, cobalt and nickel by marine brown alga Sargassum sp. were investigated in a fixed-bed column (temperature = 30 degrees C; different pH). Langmuir and Freundlich sorption models were used to represent the equilibrium data. The maximum Cu2+ uptake was obtained at pH 4 and the optimum Co2+ and Ni2+ uptake were at pH 7. Different dosage of biosorbent did not have an effect on the results, but the 3.5 and 5 g of biosorbent were shown higher uptake. The metal removal rates were rapid, with about 80% of the total adsorption tacking place within 40 min.

  3. Purification and characterization of a novel alginate lyase from the marine bacterium Cobetia sp. NAP1 isolated from brown algae.

    Science.gov (United States)

    Yagi, Hisashi; Fujise, Asako; Itabashi, Narumi; Ohshiro, Takashi

    2016-12-01

    The application of marine resources, instead of fossil fuels, for biomass production is important for building a sustainable society. Seaweed is valuable as a source of marine biomass for producing biofuels such as ethanol, and can be used in various fields. Alginate is an anionic polysaccharide that forms the main component of brown algae. Various alginate lyases (e.g. exo- and endo-types and oligoalginate lyase) are generally used to degrade alginate. We herein describe a novel alginate lyase, AlgC-PL7, which belongs to the polysaccharide lyase 7 family. AlgC-PL7 was isolated from the halophilic Gram-negative bacterium Cobetia sp. NAP1 collected from the brown algae Padina arborescens Holmes. The optimal temperature and pH for AlgC-PL7 activity were 45 °C and 8, respectively. Additionally, AlgC-PL7 was thermostable and salt-tolerant, exhibited broad substrate specificity, and degraded alginate into monosaccharides. Therefore, AlgC-PL7 is a promising enzyme for the production of biofuels.

  4. Levels, spatial variation and compartmentalization of trace elements in brown algae Cystoseira from marine protected areas of Crimea (Black Sea).

    Science.gov (United States)

    Kravtsova, Alexandra V; Milchakova, Nataliya A; Frontasyeva, Marina V

    2015-08-15

    Levels of Al, Sc, V, Co, Ni, As, Br, Rb, Sr, Ag, Sb, I, Cs, Ba, Th and U that were rarely or never studied, as well as the concentrations of classically investigated Mn, Fe and Zn in brown algae Cystoseira barbata C. Ag. and Cystoseira crinita (Desf.) Bory from the coastal waters of marine protected areas (Crimea, Black Sea), were determined using neutron activation analysis. Spatial variation and compartmentalization were studied for all 19 trace elements (TE). Concentrations of most TE were higher in "branches" than in "stems". Spatial variations of V, Co, Ni and Zn can be related to anthropogenic activities while Al, Sc, Fe, Rb, Cs, Th and U varied depending on chemical peculiarities of the coastal zone rocks. TE concentrations in C. crinita from marine protected areas near Tarkhankut peninsula and Cape Fiolent, identified as the most clean water areas, are submitted as the background concentrations. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Biological importance of marine algae.

    Science.gov (United States)

    El Gamal, Ali A

    2010-01-01

    Marine organisms are potentially prolific sources of highly bioactive secondary metabolites that might represent useful leads in the development of new pharmaceutical agents. Algae can be classified into two main groups; first one is the microalgae, which includes blue green algae, dinoflagellates, bacillariophyta (diatoms)… etc., and second one is macroalgae (seaweeds) which includes green, brown and red algae. The microalgae phyla have been recognized to provide chemical and pharmacological novelty and diversity. Moreover, microalgae are considered as the actual producers of some highly bioactive compounds found in marine resources. Red algae are considered as the most important source of many biologically active metabolites in comparison to other algal classes. Seaweeds are used for great number of application by man. The principal use of seaweeds as a source of human food and as a source of gums (phycocollides). Phycocolloides like agar agar, alginic acid and carrageenan are primarily constituents of brown and red algal cell walls and are widely used in industry.

  6. Sexual maturity and performance of pullets fed different preparations and concentrations of brown marine algae (Sargassum dentifebium in pre-laying and early laying periods

    Directory of Open Access Journals (Sweden)

    Mohammed A. Al-Harthi

    2014-01-01

    Full Text Available The effect of brown marine algae (BMA; Sargassum dentifebium as alternative feed source for pullets was studied in three processed and at three concentrations in the pullets from 14-42 weeks. The processing forms were sundried brown marine algae (SBMA, sundried and boiled brown marine algae (BBMA and sundried and autoclaved brown marine algae (ABMA. The concentrations of BMA were 2%, 4% and 6% that composed 10 treatments along with control. Each treatment was replicated 6 times using 30 pullets per treatment. Different criteria on pullets and eggs, including feed intake, body weight, feed conversion efficiency, laying rate and egg mass and quality were studied. Results indicated that BMA could be used up to 6% in the pullets diets from 14 to 42 weeks without adverse effects (P≥0.05 on sexual maturity (139-142 days, laying rate (80.7-87.9%, egg mass (44.99-51.86 g/hen/day, feed conversion ratio (2.468-2.868 kg feed/kg egg and Haugh unit (82.9-90.6 and shell percentage (8.61-9.87%. Furthermore, egg yolk color and calcium content in eggshell were improved (P≤0.05 by 12.31% and 9.1%, respectively.

  7. Thraustochytrid and fungal component of marine detritus. 1. Field studies on decomposition of the brown alga Sargassum cinereum J. Ag.

    Digital Repository Service at National Institute of Oceanography (India)

    Sathe-Pathak, V.; Raghukumar, S.; Raghukumar, C.; Sharma, S.

    Thraustochytrid protists and fungi were isolated and enumerated in culture from detritus of the brown alga Sargassum cinereum. Both groups occurred epi- and endobiontically in the detritus. The thraustochytrid Labyrinthuloides minuta occurred...

  8. Seasonal variations in halides in marine brown algae from Porbandar and Okha coasts (NW coast of India)

    Digital Repository Service at National Institute of Oceanography (India)

    Rao, Ch.K.; Singbal, S.Y.S.

    Seasonal variation of halides and their ratios were estimated in three brown algae, namely Cystoseira indica, Sargassum tenerrimum) and S. johnstonii from Porbandar and Okha Coasts. Halides were found to be higher in early stages of growth. The Br...

  9. Trichocitrin, a new fusicoccane diterpene from the marine brown alga-endophytic fungus Trichoderma citrinoviride cf-27.

    Science.gov (United States)

    Liang, Xiao-Rui; Miao, Feng-Ping; Song, Yin-Ping; Guo, Zhan-Yong; Ji, Nai-Yun

    2016-07-01

    One new diterpene, trichocitrin (1), and four known secondary metabolites, nafuredin (2), 5-hydroxy-2,3-dimethyl-7-methoxychromone (3), 24-methylenecycloartanol (4) and citrostadienol (5), were isolated from the culture of marine brown alga-endophytic Trichoderma citrinoviride cf-27. Trichocitrin (1) represents the first Trichoderma-derived and furan-bearing fusicoccane diterpene, and its structure and relative configuration were identified by analysis of 1D/2D NMR and mass spectroscopic data. Compounds 1 and 2 exhibited 8.0- and 9.5-mm inhibition zones, respectively, against Escherichia coli at 20 μg/disc and 54.1 and 36.7% growth inhibition, respectively, of Prorocentrum donghaiense at 80 μg/mL.

  10. Potential antibacterial and antioxidant properties of a sulfated polysaccharide from the brown marine algae Sargassum swartzii

    Institute of Scientific and Technical Information of China (English)

    Pandian Vijayabaskar; Noormohamed Vaseela; Ganapathy Thirumaran

    2012-01-01

    AIMS:Sulfated polysaccharide extracted from the brown algae Sargassum swartzii was studied for antioxidant potential.METHODS:The extracted sulfated polysaccharide was analyzed for physico-chemical characteristics,TAC,reducing power,free radical scavenging potentials (DPPH,ABTS,H2O2 radical) and antibacterial properties.RESULTS:The extract showed a high percentage of carbohydrate (7.40 ± 0.63) %,followed by sulfate (5.3 ± 1.54) %.The highest antioxidant activity was observed in ABTS (55 ± 3.61)%,followed by H2O2 (47.23 ± 2.81)% and DPPH (25.33 ± 2.52) %; significant differences were observed at (P ≥ 0.05).Among the ten human pathogenic strains tested,E.coli was the more sensitive.The characterization and mobility of the sulfated polysaccharide was examined by the FT-IR spectrum and assayed by agarose gel electrophoresis which showed highest mobility at higher pH buffer in carbonate-bicarbonate (pH 10) buffer.The molecular weight of the sulfated polysaccharide was determined by gradient PAGE and was found to be 50 KDa.Finally,GC-MS analysis revealed the presence of peaks corresponding to dimethyl-4-nitroaniline (26.34%).CONCLUSIONS:It is suggested that the sulfated polysaccharide from Sargassum swartzii could be a better source of natural antioxidant,as well as an antibacterial agent.

  11. Rhodobacteraceae on the marine brown alga Fucus spiralis are abundant and show physiological adaptation to an epiphytic lifestyle.

    Science.gov (United States)

    Dogs, Marco; Wemheuer, Bernd; Wolter, Laura; Bergen, Nils; Daniel, Rolf; Simon, Meinhard; Brinkhoff, Thorsten

    2017-09-01

    Macroalgae harbour specific microbial communities on their surface that have functions related to host health and defence. In this study, the bacterial biofilm of the marine brown alga Fucus spiralis was investigated using 16S rRNA gene amplicon-based analysis and isolation of bacteria. Rhodobacteraceae (Alphaproteobacteria) were the predominant family constituting 23% of the epibacterial community. At the genus level, Sulfitobacter, Loktanella, Octadecabacter and a previously undescribed cluster were most abundant, and together they comprised 89% of the Rhodobacteraceae. Supported by a specific PCR approach, 23 different Rhodobacteraceae-affiliated strains were isolated from the surface of F. spiralis, which belonged to 12 established and three new genera. For seven strains, closely related sequences were detected in the 16S rRNA gene dataset. Growth experiments with substrates known to be produced by Fucus spp. showed that all of them were consumed by at least three strains, and vitamin B12 was produced by 70% of the isolates. Since growth of F. spiralis depends on B12 supplementation, bacteria may provide the alga with this vitamin. Most strains produced siderophores, which can enhance algal growth under iron-deficient conditions. Inhibiting properties against other bacteria were only observed when F. spiralis material was present in the medium. Thus, the physiological properties of the isolates indicated adaption to an epiphytic lifestyle. Copyright © 2017 Elsevier GmbH. All rights reserved.

  12. 21 CFR 184.1120 - Brown algae.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Brown algae. 184.1120 Section 184.1120 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN... Substances Affirmed as GRAS § 184.1120 Brown algae. (a) Brown algae are seaweeds of the species Analipus...

  13. Inhibitory effects against pasture weeds in Brazilian Amazonia of natural products from the marine brown alga Dictyota menstrualis.

    Science.gov (United States)

    Fonseca, Rainiomar Raimundo; Filho, Antonio Pedro Silva Souza; Villaça, Roberto Campos; Teixeira, Valéria Laneuville

    2013-12-01

    Fractions of the acetone extract and a mixture of two diterpenes from the marine brown alga Dictyota menstrualis were prepared with the aim of identifying potential effects on the germination of seeds and on elongation of the radicle and hypocotyl of the weeds Mimosa pudica and Senna obtusifolia. The bioassay on seed germination was performed in controlled conditions of 25 degreeC temperature and a 12 hour photoperiod, while the one concerning radicle and hypocotyl elongation was performed at the same temperature, though adopting a photoperiod of 24 hours. The results varied according to the receptor species, the fraction utilized, and its concentration. TLC analysis of the fractions and comparison with isolated products indicated that the diterpenes pachydictyol A and isopachydictyol A were the most abundant compounds in fraction HE, whereas the diterpene 6-hydroxy-dichotomano-2, 13-diene-16, 17-dial (3) was the most abundant compound in fractions DC and EA. Analysis of less polar fractions (in n-hexane, dichloromethane and ethyl acetate) revealed values of less than 30% inhibition. On the other hand, the ethanol/water fraction was the most active in all instances. The biological activity of these fractions must be due to the presence of known diterpenes and/or sulfated polysaccharides isolated in earlier studies.

  14. Effect of enzyme preparation from the marine mollusk Littorina kurila on fucoidan from the brown alga Fucus distichus.

    Science.gov (United States)

    Bilan, M I; Kusaykin, M I; Grachev, A A; Tsvetkova, E A; Zvyagintseva, T N; Nifantiev, N E; Usov, A I

    2005-12-01

    A fucoidanase preparation from the marine mollusk Littorina kurila cleaved some glycosidic bonds in fucoidan from the brown alga Fucus distichus, but neither fucose nor lower oligosaccharides were produced. The main product isolated from the incubation mixture was a polysaccharide built up of disaccharide repeating units -->3)-alpha-L-Fucp-(2,4-di-SO3(-))-(1-->4)-alpha-L-Fucp-(2SO3(-))-(1-->, the structure coinciding with the idealized formula proposed for the initial substance. A polymer fraction with the same carbohydrate chain but sulfated only at positions 2 and nonstoichiometrically acetylated at positions 3 and 4 of fucose residues was isolated as a minor component. It is suggested that the native polysaccharide should contain small amounts of non-sulfated and non-acetylated fucose residues, and only their glycosidic bonds are cleaved by the enzyme. The enzymatic hydrolysis showed that irregular regions of the native polysaccharide containing acetylated and partially sulfated repeating units were assembled in blocks.

  15. Vanadium in marine mussels and algae

    Energy Technology Data Exchange (ETDEWEB)

    Sperling, K.R.; Bahr, B. [Alfred-Wegener-Institut fuer Polar- und Meeresforschung, Bremerhaven (Germany); Ott, J. [Fachhochschule Hamburg (Germany). Fachbereich Naturwissenschaftliche Technik, Studiengang Biotechnologie

    2000-01-01

    A method is presented which is sensitive enough for the determination of vanadium (V) in marine organisms such as mussels and algae. It was sufficiently checked by a reference material and it was applied to V determination in blue mussels and brown algae from the German Bight. (orig.)

  16. Filamentous brown algae infected by the marine, holocarpic oomycete Eurychasma dicksonii: first results on the organization and the role of cytoskeleton in both host and parasite.

    Science.gov (United States)

    Tsirigoti, Amerssa; Kuepper, Frithjof C; Gachon, Claire Mm; Katsaros, Christos

    2013-11-01

    The important role of the cytoskeletal scaffold is increasingly recognized in host-pathogen interactions. The cytoskeleton potentially functions as a weapon for both the plants defending themselves against fungal or oomycete parasites, and for the pathogens trying to overcome the resisting barrier of the plants. This concept, however, had not been investigated in marine algae so far. We are opening this scientific chapter with our study on the functional implications of the cytoskeleton in 3 filamentous brown algal species infected by the marine oomycete Eurychasma dicksonii. Our observations suggest that the cytoskeleton is involved in host defense responses and in fundamental developmental stages of E. dicksonii in its algal host.

  17. Excess copper induced proteomic changes in the marine brown algae Sargassum fusiforme.

    Science.gov (United States)

    Zou, Hui-Xi; Pang, Qiu-Ying; Zhang, Ai-Qin; Lin, Li-Dong; Li, Nan; Yan, Xiu-Feng

    2015-01-01

    Copper (Cu) is an essential micronutrient for algal growth and development; however, it is also generally considered to be one of the most toxic metals when present at higher levels. Seaweeds are often exposed to low concentrations of metals, including Cu, for long time periods. In cases of ocean outfall, they may even be abruptly exposed to high levels of metals. The physiological processes that are active under Cu stress are largely unknown. In this study, the brown macroalga Sargassum fusiforme was cultured in fresh seawater at final Cu concentrations of 0, 4, 8, 24 and 47 μM. The Cu(2+) concentration and chlorophyll autofluorescence were measured to establish the toxic effects of Cu on this economically important seaweed. The accumulation of Cu by S. fusiforme was also dependent upon the external Cu concentration. Algal growth displayed a general decline with increasing media Cu concentrations, indicating that S. fusiforme was able to tolerate Cu stress at low concentrations, while it was negatively impacted at high concentrations. The term "acute stress" was employed to indicate exposure to high Cu concentrations for 1 day in this study. On the other hand, "chronic stress" was defined as exposure to lower sub-lethal Cu concentrations for 7 days. Proteins were extracted from control and Cu-treated S. fusiforme samples and separated by two-dimensional gel electrophoresis. Distinct patterns of protein expression in the acute and chronic stress conditions were observed. Proteins related to energy metabolism and photosynthesis were reduced significantly, whereas those related to carbohydrate metabolism, protein destination, RNA degradation and signaling regulation were induced in S. fusiforme in response to acute copper stress. Energy metabolism-related proteins were significantly induced by chronic Cu stress. Proteins from other functional groups, such as those related to membranes and transport, were present in minor quantities. These results suggest that S

  18. Marine Algae and Seagrasses of Hatay (Mediterranean, Turkey)

    OpenAIRE

    Aysel, V.; Erdugan, H.; Okudan, E. S.

    2015-01-01

    Abstract In this research, marine algae and seagrasses were investigated in the upper infralittoral zone of Hatay (Turkish Mediterranean coasts). A total of 377 algae and 5 seagrasses were determined. 30 of them belong to blue-green algae (Cyanophyceae), 201 to red algae [Rhodellophyceae (2), Compsopogonophyceae (2), Bangiophyceae (5), Florideophyceae (192)], 73 to brown algae (Fucophyceae), 73 to green algae [Chlorophyceae (5), Ulvophyceae (19), Trentepohliophyceae (1), Cladophorophyceae (24...

  19. Marine Algae and Seagrasses of Hatay (Mediterranean, Turkey)

    OpenAIRE

    Aysel, V.; Erdugan, H.; Okudan, E. S.

    2006-01-01

    Abstract In this research, marine algae and seagrasses were investigated in the upper infralittoral zone of Hatay (Turkish Mediterranean coasts). A total of 377 algae and 5 seagrasses were determined. 30 of them belong to blue-green algae (Cyanophyceae), 201 to red algae [Rhodellophyceae (2), Compsopogonophyceae (2), Bangiophyceae (5), Florideophyceae (192)], 73 to brown algae (Fucophyceae), 73 to green algae [Chlorophyceae (5), Ulvophyceae (19), Trentepohliophyceae (1), Cladophorophyceae (24...

  20. Cadmium tolerance and adsorption by the marine brown alga Fucus vesiculosus from the Irish Sea and the Bothnian Sea.

    Science.gov (United States)

    Brinza, Loredana; Nygård, Charlotta A; Dring, Matthew J; Gavrilescu, Maria; Benning, Liane G

    2009-03-01

    Cadmium (Cd) uptake capacities and Cd tolerance of the marine alga Fucus vesiculosus from the Irish Sea (salinity 35 psu) and from the Bothnian Sea (northern Baltic, 5 psu) were quantified. These data were complemented by measurements of changes in maximal photosynthetic rate (P(max)), dark respiration rate and variable fluorescence vs. maximal fluorescence (F(v):F(m)). At concentrations between 0.01 and 1 mmol Cd l(-1), F. vesiculosus from the Bothnian Sea adsorbed significantly more (about 98%) Cd compared with F. vesiculosus from the Irish Sea. The photosynthetic measurements showed that the Bothnian Sea F. vesiculosus were more sensitive to Cd exposure than the Irish Sea algae. The algae from the Irish Sea showed negative photosynthetic effects only at 1 mmol Cd l(-1), which was expressed as a decreased P(max) (-12.3%) and F(v):F(m) (-4.6%). On the contrary, the algae from the Bothnian Sea were negatively affected already at Cd concentrations as low at 0.1 mmol Cd l(-1). They exhibited increased dark respiration (+11.1%) and decreased F(v):F(m) (-13.9%). The results show that F. vesiculosus from the Bothnian Sea may be an efficient sorption substrate for Cd removal from Cd contaminated seawater and this algae type may also have applications for wastewater treatment.

  1. Influence of cactus mucilage and marine brown algae extract on the compressive strength and durability of concrete

    Directory of Open Access Journals (Sweden)

    Hernández, E. F.

    2016-03-01

    Full Text Available This paper presents the mechanical performance and durability of concrete with water/cement (w/c ratios of 0.30 and 0.60 containing cactus mucilage and brown marine seaweed extract solutions (at 0.5° Brix concentrations. Cylindrical specimens (100 mm x 200 mm were cast and moist-cured for 0 and 28 days. Compressive strength, rapid chloride permeability, and chloride diffusion tests were conducted to evaluate all of the concrete mixes at the ages of 60 and 120 days. In addition, accelerated carbonation tests were carried out on specimens at the age of 180 days by exposure to 23 °C, 60% RH and at 4.4% CO2 for 120 days. The compressive strength results showed that only one concrete mix with admixtures increased in strength compared to the control. Regarding the rapid chloride permeability, chloride diffusion and carbonation, the results indicated that the durability of concretes containing organic additions was enhanced compared to the control.Este trabajo presenta el comportamiento mecánico y de durabilidad de concretos con relaciones agua/cemento de 0.30 y 0.60, conteniendo soluciones de mucílago de nopal y extracto de algas marinas cafés (0.5 °Brix de concentración. Especímenes cilíndricos (100 mm x 200 mm fueron elaborados y curados en húmedo por 0 y 28 días. Se evaluó la resistencia a la compresión, permeabilidad rápida y difusión de cloruros a los 60 y 120 días de edad. Adicionalmente, se realizaron pruebas de carbonatación acelerada en especímenes con 180 días de edad, expuestos a 23 °C, 60% HR y 4.4% de CO2 por 120 días. Los resultados de resistencia a la compresión muestran que únicamente una mezcla de concreto con adición orgánica incrementó su resistencia con respecto al control. Con respecto a la permeabilidad rápida a cloruros, difusión de cloruros y carbonatación, los resultados indican que la durabilidad de los concretos que contenían adiciones orgánicas fue mejorada con respecto al control.

  2. Marine algae and seagrasses of Tekirdag (Black Sea,Turkey)*

    OpenAIRE

    AYSEL, Veysel; Erdugan, Hüseyin; Dural, Berrin; SükranOkudan, E.

    2015-01-01

    Abstract In this study, marine algae and seagrasses in the upper infralittoral zone of the Black Sea coast of Tekirdag (Turkey) were investigated. A total 156 taxon (153 algae and 3 seagrasses) in species or inferior to the species category were determined. 15 of them belong to blue-green bacteria (Cyanophyta), 84 to red algae (Rhodophyta), 26 to brown algae (Heterokontophyta), 28 to green algae (Chlorophyta) and 3 to marineflowering plants (Magnoliophyta).

  3. Marine algae and seagrasses of Tekirdag (Black Sea,Turkey)*

    OpenAIRE

    AYSEL, Veysel; Erdugan, Hüseyin; Dural, Berrin; SükranOkudan, E.

    2006-01-01

    Abstract In this study, marine algae and seagrasses in the upper infralittoral zone of the Black Sea coast of Tekirdag (Turkey) were investigated. A total 156 taxon (153 algae and 3 seagrasses) in species or inferior to the species category were determined. 15 of them belong to blue-green bacteria (Cyanophyta), 84 to red algae (Rhodophyta), 26 to brown algae (Heterokontophyta), 28 to green algae (Chlorophyta) and 3 to marineflowering plants (Magnoliophyta).

  4. Evolution and maintenance of haploid-diploid life cycles in natural populations: The case of the marine brown alga Ectocarpus.

    Science.gov (United States)

    Couceiro, Lucía; Le Gac, Mickael; Hunsperger, Heather M; Mauger, Stéphane; Destombe, Christophe; Cock, J Mark; Ahmed, Sophia; Coelho, Susana M; Valero, Myriam; Peters, Akira F

    2015-07-01

    The evolutionary stability of haploid-diploid life cycles is still controversial. Mathematical models indicate that niche differences between ploidy phases may be a necessary condition for the evolution and maintenance of these life cycles. Nevertheless, experimental support for this prediction remains elusive. In the present work, we explored this hypothesis in natural populations of the brown alga Ectocarpus. Consistent with the life cycle described in culture, Ectocarpus crouaniorum in NW France and E. siliculosus in SW Italy exhibited an alternation between haploid gametophytes and diploid sporophytes. Our field data invalidated, however, the long-standing view of an isomorphic alternation of generations. Gametophytes and sporophytes displayed marked differences in size and, conforming to theoretical predictions, occupied different spatiotemporal niches. Gametophytes were found almost exclusively on the alga Scytosiphon lomentaria during spring whereas sporophytes were present year-round on abiotic substrata. Paradoxically, E. siliculosus in NW France exhibited similar habitat usage despite the absence of alternation of ploidy phases. Diploid sporophytes grew both epilithically and epiphytically, and this mainly asexual population gained the same ecological advantage postulated for haploid-diploid populations. Consequently, an ecological interpretation of the niche differences between haploid and diploid individuals does not seem to satisfactorily explain the evolution of the Ectocarpus life cycle. © 2015 The Author(s). Evolution © 2015 The Society for the Study of Evolution.

  5. Neuroprotective effects of marine algae.

    Science.gov (United States)

    Pangestuti, Ratih; Kim, Se-Kwon

    2011-01-01

    The marine environment is known as a rich source of chemical structures with numerous beneficial health effects. Among marine organisms, marine algae have been identified as an under-exploited plant resource, although they have long been recognized as valuable sources of structurally diverse bioactive compounds. Presently, several lines of studies have provided insight into biological activities and neuroprotective effects of marine algae including antioxidant, anti-neuroinflammatory, cholinesterase inhibitory activity and the inhibition of neuronal death. Hence, marine algae have great potential to be used for neuroprotection as part of pharmaceuticals, nutraceuticals and functional foods. This contribution presents an overview of marine algal neuroprotective effects and their potential application in neuroprotection.

  6. Isolation of glycoproteins from brown algae

    DEFF Research Database (Denmark)

    2015-01-01

    The present invention relates to a novel process for the isolation of unique anti-oxidative glycoproteins from the pH precipitated fractions of enzymatic extracts of brown algae. Two brown seaweeds viz, Fucus serratus and Fucus vesiculosus were hydrolysed by using 3 enzymes viz, Alcalase, Viscozyme...

  7. Sulfated polysaccharides as bioactive agents from marine algae.

    Science.gov (United States)

    Ngo, Dai-Hung; Kim, Se-Kwon

    2013-11-01

    Recently, much attention has been paid by consumers toward natural bioactive compounds as functional ingredients in nutraceuticals. Marine algae are considered as valuable sources of structurally diverse bioactive compounds. Marine algae are rich in sulfated polysaccharides (SPs) such as carrageenans in red algae, fucoidans in brown algae and ulvans in green algae. These SPs exhibit many health beneficial nutraceutical effects such as antioxidant, anti-allergic, anti-human immunodeficiency virus, anticancer and anticoagulant activities. Therefore, marine algae derived SPs have great potential to be further developed as medicinal food products or nutraceuticals in the food industry. This contribution presents an overview of nutraceutical effects and potential health benefits of SPs derived from marine algae. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. Aqueous Extracts of the Marine Brown Alga Lobophora variegata Inhibit HIV-1 Infection at the Level of Virus Entry into Cells

    KAUST Repository

    Kremb, Stephan

    2014-08-21

    In recent years, marine algae have emerged as a rich and promising source of molecules with potent activities against various human pathogens. The widely distributed brown alga Lobophora variegata that is often associated with tropical coral reefs exerts strong antibacterial and antiprotozoal effects, but so far has not been associated with specific anti-viral activities. This study investigated potential HIV-1 inhibitory activity of L. variegata collected from different geographical regions, using a cell-based full replication HIV-1 reporter assay. Aqueous L. variegata extracts showed strong inhibitory effects on several HIV-1 strains, including drug-resistant and primary HIV-1 isolates, and protected even primary cells (PBMC) from HIV-1-infection. Anti-viral potency was related to ecological factors and showed clear differences depending on light exposition or epiphyte growth. Assays addressing early events of the HIV-1 replication cycle indicated that L. variegata extracts inhibited entry of HIV-1 into cells at a pre-fusion step possibly by impeding mobility of virus particles. Further characterization of the aqueous extract demonstrated that even high doses had only moderate effects on viability of cultured and primary cells (PBMCs). Imaging-based techniques revealed extract effects on the plasma membrane and actin filaments as well as induction of apoptosis at concentrations exceeding EC50 of anti-HIV-1 activity by more than 400 fold. In summary, we show for the first time that L. variegata extracts inhibit HIV-1 entry, thereby suggesting this alga as promising source for the development of novel HIV-1 inhibitors.

  9. Insoluble (1 → 3), (1 → 4)-β-D-glucan is a component of cell walls in brown algae (Phaeophyceae) and is masked by alginates in tissues

    DEFF Research Database (Denmark)

    Asunción Salmeán, Armando; Duffieux, Delphine; Harholt, Jesper

    2017-01-01

    Brown algae are photosynthetic multicellular marine organisms. They belong to the phylum of Stramenopiles, which are not closely related to land plants and green algae. Brown algae share common evolutionary features with other photosynthetic and multicellular organisms, including a carbohydrate...

  10. Neuroprotective Effects of Marine Algae

    Directory of Open Access Journals (Sweden)

    Se-Kwon Kim

    2011-05-01

    Full Text Available The marine environment is known as a rich source of chemical structures with numerous beneficial health effects. Among marine organisms, marine algae have been identified as an under-exploited plant resource, although they have long been recognized as valuable sources of structurally diverse bioactive compounds. Presently, several lines of studies have provided insight into biological activities and neuroprotective effects of marine algae including antioxidant, anti-neuroinflammatory, cholinesterase inhibitory activity and the inhibition of neuronal death. Hence, marine algae have great potential to be used for neuroprotection as part of pharmaceuticals, nutraceuticals and functional foods. This contribution presents an overview of marine algal neuroprotective effects and their potential application in neuroprotection.

  11. Sterol composition of marine algae from Karachi coast of Arabian Sea

    OpenAIRE

    Ahmad, V.U.; Perveen, S; Shaiq Ali, M.; Uddin, S; Rehman, A.; Shameel, M.

    1992-01-01

    During the course of chemical investigation of marine algae collected from Karachi coast of Arabian Sea, five sterols named as sarangosterol(1), 23-methyl cholesta-5, 25-dien-3ß-ol(2) from Endarachne binghamiae (brown alga), sargasterol(3) from Dictyota indica (brown alga), cholesterol(4) from Laurencia obtusa (red alga) and clerosterol(5) from Codium iyengarii (green alga) have been isolated. Their structures were elucidated with the help of spectroscopic means.

  12. Fucoidans - sulfated polysaccharides of brown algae

    Energy Technology Data Exchange (ETDEWEB)

    Usov, Anatolii I; Bilan, M I [N.D.Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow (Russian Federation)

    2009-08-31

    The methods of isolation of fucoidans and determination of their chemical structures are reviewed. The fucoidans represent sulfated polysaccharides of brown algae, the composition of which varies from simple fucan sulfates to complex heteropolysaccharides. The currently known structures of such biopolymers are presented. A variety of the biological activities of fucoidans is briefly summarised.

  13. Fucoidans — sulfated polysaccharides of brown algae

    Science.gov (United States)

    Usov, Anatolii I.; Bilan, M. I.

    2009-08-01

    The methods of isolation of fucoidans and determination of their chemical structures are reviewed. The fucoidans represent sulfated polysaccharides of brown algae, the composition of which varies from simple fucan sulfates to complex heteropolysaccharides. The currently known structures of such biopolymers are presented. A variety of the biological activities of fucoidans is briefly summarised.

  14. Vitamin B(12), a chlorophyll-related analog to pheophytin a from marine brown algae, promotes neurite outgrowth and stimulates differentiation in PC12 cells.

    Science.gov (United States)

    Ina, Atsutoshi; Kamei, Yuto

    2006-11-01

    We previously isolated an analog to chlorophyll-related compounds, pheophytin a, from the marine brown alga Sargassum fulvellum and demonstrated that it is a neurodifferentiation compound. In the current study, we investigated the effects of the pheophytin a analog vitamin B(12) on PC12 cell differentiation. In the presence of a low level of nerve growth factor (10 ng ml(-1)), vitamin B(12 )demonstrated neurite outgrowth-promoting activity in PC12 cells. The effect was dose-dependent in the range of 6-100 muM. In the absence of nerve growth factor, vitamin B(12) did not promote differentiation. To investigate the mechanism for this effect, we conducted differentiation assays and western blot analysis with signal transduction inhibitors and found that vitamin B(12) did not promote PC12 cell differentiation in the presence of K252a or U0126 inhibitors. These results suggest that vitamin B(12 )stimulates PC12 cell differentiation through enhancement of the mitogen-activated protein kinase signal transduction pathway, which is also induced by nerve growth factor. Thus, vitamin B(12) may be a good candidate for treatment of neurodegenerative diseases such as Alzheimer's disease.

  15. Chemical Profiling (HPLC-NMR & HPLC-MS, Isolation, and Identification of Bioactive Meroditerpenoids from the Southern Australian Marine Brown Alga Sargassum paradoxum

    Directory of Open Access Journals (Sweden)

    Robert Brkljača

    2014-12-01

    Full Text Available A phytochemical investigation of a southern Australian marine brown alga, Sargassum paradoxum, resulted in the isolation and identification of four new (5, 9, 10, and 15 and nine previously reported (1, 2, 6–8, and 11–14 bioactive meroditerpenoids. HPLC-NMR and HPLC-MS were central to the identification of a new unstable compound, sargahydroquinal (9, and pivotal in the deconvolution of eight (1, 2, 5–7, and 10–12 other meroditerpenoids. In particular, the complete characterization and identification of the two main constituents (1 and 2 in the crude dichloromethane extract was achieved using stop-flow HPLC-NMR and HPLC-MS. This study resulted in the first acquisition of gHMBCAD NMR spectra in the stop-flow HPLC-NMR mode for a system solely equipped with a 60 μL HPLC-NMR flow cell without the use of a cold probe, microcoil, or any pre-concentration.

  16. Estimates of nuclear DNA content in 98 species of brown algae (Phaeophyta)

    OpenAIRE

    Phillips, Naomi; Kapraun, Donald F.; Gómez Garreta, Amelia; Ribera Siguan, M. Antonia; Rull, Jorde L.; Salvador Soler, Noemi; Lewis, Raymond; Kawai, Hiroshi

    2011-01-01

    Background and aims Brown algae are critical components of marine ecosystems around the world. However, the genome of only one species of the class has so far been sequenced. This contrasts with numerous sequences available for model organisms such as higher plants, flies or worms. The present communication expands our coverage of DNA content information to 98 species of brown algae with a view to facilitating further genomic investigations of the class. Methodology The DNA-localizing fluoroc...

  17. Extraction, Purification, and NMR Analysis of Terpenes from Brown Algae.

    Science.gov (United States)

    Gaysinski, Marc; Ortalo-Magné, Annick; Thomas, Olivier P; Culioli, Gérald

    2015-01-01

    Algal terpenes constitute a wide and well-documented group of marine natural products with structures differing from their terrestrial plant biosynthetic analogues. Amongst macroalgae, brown seaweeds are considered as one of the richest source of biologically and ecologically relevant terpenoids. These metabolites, mostly encountered in algae of the class Phaeophyceae, are mainly diterpenes and meroditerpenes (metabolites of mixed biogenesis characterized by a toluquinol or a toluquinone nucleus linked to a diterpene moiety).In this chapter, we describe analytical processes commonly employed for the isolation and structural characterization of the main terpenoid constituents obtained from organic extracts of brown algae. The successive steps include (1) extraction of lipidic content from algal samples; (2) purification of terpenes by column chromatography and semi-preparative high-performance liquid chromatography; and (3) structure elucidation of the isolated terpenes by means of 1D and 2D nuclear magnetic resonance (NMR). More precisely, we propose a representative methodology which allows the isolation and structural determination of the monocyclic meroditerpene methoxybifurcarenone (MBFC) from the Mediterranean brown alga Cystoseira amentacea var. stricta. This methodology has a large field of applications and can then be extended to terpenes isolated from other species of the family Sargassaceae.

  18. Halogenated compounds from marine algae.

    Science.gov (United States)

    Cabrita, Maria Teresa; Vale, Carlos; Rauter, Amélia Pilar

    2010-08-09

    Marine algae produce a cocktail of halogenated metabolites with potential commercial value. Structures exhibited by these compounds go from acyclic entities with a linear chain to complex polycyclic molecules. Their medical and pharmaceutical application has been investigated for a few decades, however other properties, such as antifouling, are not to be discarded. Many compounds were discovered in the last years, although the need for new drugs keeps this field open as many algal species are poorly screened. The ecological role of marine algal halogenated metabolites has somehow been overlooked. This new research field will provide valuable and novel insight into the marine ecosystem dynamics as well as a new approach to comprehending biodiversity. Furthermore, understanding interactions between halogenated compound production by algae and the environment, including anthropogenic or global climate changes, is a challenging target for the coming years. Research of halogenated metabolites has been more focused on macroalgae than on phytoplankton. However, phytoplankton could be a very promising material since it is the base of the marine food chain with quick adaptation to environmental changes, which undoubtedly has consequences on secondary metabolism. This paper reviews recent progress on this field and presents trends on the role of marine algae as producers of halogenated compounds.

  19. Removal of Cd(II), Zn(II) and Pb(II) from aqueous solutions by brown marine macro algae: kinetic modelling

    OpenAIRE

    Freitas, Olga; Martins, Ramiro; Matos, Cristina; Boaventura, Rui

    2008-01-01

    Specific marine macro algae species abundant at the Portuguese coast (Laminaria hiperborea, Bifurcaria bifurcata, Sargassum muticum and Fucus spiralis) were shown to be effective for removing toxic metals (Cd(II), Zn(II) and Pb(II)) from aqueous solutions. The initial metal concentrations in solution were about 75-100 mg L-1. The observed biosorption capacities for cadmium, zinc and lead ions were in the ranges of 23.9-39.5 mg g-1, 18.6-32.0 mg g-1 and 32.3-50.4 mg g-1, respectively. Kinetic ...

  20. Sex pheromone of marine algae; Kaiso no sei pheromone

    Energy Technology Data Exchange (ETDEWEB)

    Kajiwara, T. [Yamaguchi University, Yamaguchi (Japan). Faculty of Agriculture

    1997-10-20

    The marine ecosystem skillfully uses various `odor materials` as chemical signals. In particular, this `odor materials` are indispensable for various organisms with no motor function or poor underdeveloped visual sensation in order to maintain or expand their species. German algae scholars found a male gamete induction active material secreted from a female gamete of primitive brown algae in 1971. Eleven kinds of sex pheromones have been found from brown algae up to the present since 1971. All of these found sex pheromones are hydrophobic `odor materials` composed of hydrocarbons containing 8 or 11 carbon atoms or epoxide (oxirane), and are compounds with singular chemical structures as physiological active material in the hydrosphere. Some sex pheromones govern not only inducement of spermatozoons but also discharge of spermatozoons from an antheridium. The sex pheromone with both functions of discharge and inducement was found from the culture solution of a certain tangle weed. 2 refs., 2 figs.

  1. Removal of Cd(II), Zn(II) and Pb(II) from aqueous solutions by brown marine macro algae: Kinetic modelling

    Energy Technology Data Exchange (ETDEWEB)

    Freitas, Olga M.M. [LRSE - Laboratory of Separation and Reaction Engineering, Faculdade de Engenharia da Universidade do Porto, Rua Dr. Roberto Frias 4200-465 Porto (Portugal); REQUIMTE, Instituto Superior de Engenharia do Porto, Rua Dr. Bernardino de Almeida 431 4200-072 Porto (Portugal); Martins, Ramiro J.E. [Departamento de Engenharia Quimica e Biologica, Escola Superior de Tecnologia, Instituto Politecnico de Braganca, Campus de Santa Apolonia, 5301-857 Braganca (Portugal); LRSE - Laboratory of Separation and Reaction Engineering, Faculdade de Engenharia da Universidade do Porto, Rua Dr. Roberto Frias 4200-465 Porto (Portugal); Delerue-Matos, Cristina M. [REQUIMTE, Instituto Superior de Engenharia do Porto, Rua Dr. Bernardino de Almeida 431 4200-072 Porto (Portugal); Boaventura, Rui A.R. [Departamento de Engenharia Quimica, Faculdade de Engenharia da Universidade do Porto, Rua Dr. Roberto Frias, 4200-465 Porto (Portugal); LRSE - Laboratory of Separation and Reaction Engineering, Faculdade de Engenharia da Universidade do Porto, Rua Dr. Roberto Frias 4200-465 Porto (Portugal)], E-mail: bventura@fe.up.pt

    2008-05-01

    Specific marine macro algae species abundant at the Portuguese coast (Laminaria hyperborea, Bifurcaria bifurcata, Sargassum muticum and Fucus spiralis) were shown to be effective for removing toxic metals (Cd(II), Zn(II) and Pb(II)) from aqueous solutions. The initial metal concentrations in solution were about 75-100 mg L{sup -1}. The observed biosorption capacities for cadmium, zinc and lead ions were in the ranges of 23.9-39.5, 18.6-32.0 and 32.3-50.4 mg g{sup -1}, respectively. Kinetic studies revealed that the metal uptake rate was rather fast, with 75% of the total amount occurring in the first 10 min for all algal species. Experimental data were well fitted by a pseudo-second order rate equation. The contribution of internal diffusion mechanism was significant only to the initial biosorption stage. Results indicate that all the studied macro algae species can provide an efficient and cost-effective technology for eliminating heavy metals from industrial effluents.

  2. Removal of Cd(II), Zn(II) and Pb(II) from aqueous solutions by brown marine macro algae: kinetic modelling.

    Science.gov (United States)

    Freitas, Olga M M; Martins, Ramiro J E; Delerue-Matos, Cristina M; Boaventura, Rui A R

    2008-05-01

    Specific marine macro algae species abundant at the Portuguese coast (Laminaria hyperborea, Bifurcaria bifurcata, Sargassum muticum and Fucus spiralis) were shown to be effective for removing toxic metals (Cd(II), Zn(II) and Pb(II)) from aqueous solutions. The initial metal concentrations in solution were about 75-100 mg L(-1). The observed biosorption capacities for cadmium, zinc and lead ions were in the ranges of 23.9-39.5, 18.6-32.0 and 32.3-50.4 mg g(-1), respectively. Kinetic studies revealed that the metal uptake rate was rather fast, with 75% of the total amount occurring in the first 10 min for all algal species. Experimental data were well fitted by a pseudo-second order rate equation. The contribution of internal diffusion mechanism was significant only to the initial biosorption stage. Results indicate that all the studied macro algae species can provide an efficient and cost-effective technology for eliminating heavy metals from industrial effluents.

  3. Advances in genetic engineering of marine algae.

    Science.gov (United States)

    Qin, Song; Lin, Hanzhi; Jiang, Peng

    2012-01-01

    Algae are a component of bait sources for animal aquaculture, and they produce abundant valuable compounds for the chemical industry and human health. With today's fast growing demand for algae biofuels and the profitable market for cosmetics and pharmaceuticals made from algal natural products, the genetic engineering of marine algae has been attracting increasing attention as a crucial systemic technology to address the challenge of the biomass feedstock supply for sustainable industrial applications and to modify the metabolic pathway for the more efficient production of high-value products. Nevertheless, to date, only a few marine algae species can be genetically manipulated. In this article, an updated account of the research progress in marine algal genomics is presented along with methods for transformation. In addition, vector construction and gene selection strategies are reviewed. Meanwhile, a review on the progress of bioreactor technologies for marine algae culture is also revisited. Copyright © 2012 Elsevier Inc. All rights reserved.

  4. Collection, Isolation and Culture of Marine Algae.

    Science.gov (United States)

    James, Daniel E.

    1984-01-01

    Methods of collecting, isolating, and culturing microscopic and macroscopic marine algae are described. Three different culture media list of chemicals needed and procedures for preparing Erdschreiber's and Provasoli's E. S. media. (BC)

  5. Role of marine algae in organic farming

    Digital Repository Service at National Institute of Oceanography (India)

    Pereira, N.; Verlecar, X.N.

    As the efforts to unearth new sources for organic farming accelerate, one needs to evaluate the options available. Marine algae popularly known as seaweeds, have served mankind from times immemorial. form. Seaweed-based fertilizer is rich in growth...

  6. Bromophenols in Marine Algae and Their Bioactivities

    DEFF Research Database (Denmark)

    Ming, Liu; Hansen, Poul Erik; Lin, Xiukun

    2011-01-01

    Marine algae contain various bromophenols that have been shown to possess a variety of biological activities, including antioxidant, antimicrobial, anticancer, anti-diabetic, and anti-thrombotic effects. Here, we briefly review the recent progress of these marine algal biomaterials, with respect...

  7. Chemical examination of the brown alga Stoechospermum marginatum (C. Agardh)

    Digital Repository Service at National Institute of Oceanography (India)

    Wahidullah, S.; DeSouza, L.; Kamat, S.Y.

    The crude methalonic extract of marine algae Stoechospermum marginatum from west coast of India was found to have spasmolytic activity. Search for the pharmacologically active compounds led to the isolation of steroids, fatty acids and an ester...

  8. Halogenated terpenoids from the brown alga Padina tetrastromatica (HAUCK)

    Digital Repository Service at National Institute of Oceanography (India)

    Parameswaran, P.S.; Bhat, K.L.; Das, B.; Kamat, S.Y.; Harnos, S.

    ranging from 14:0 to 22:0 with palmitic acid (16:0, 67.4%) and oleic acid (18:1, 17.1%) being the major constituents, have been isolated from the pet, ether soluble fraction of the methanol extract of the brown alga Padina tetrastromatica...

  9. A New Bromophenol from the Brown Alga Leathesia nana

    Institute of Scientific and Technical Information of China (English)

    Xiu Li XU; Xiao FAN; Fu Hang SONG; Jie Lu ZHAO; Li Jun HAN; Jian Gong SHI

    2004-01-01

    A novel bromophenol was isolated from ethanolic extract of the brown alga Leathesia nana S.et G. The structure was elucidated as (E)-3-(2,3-dibromo-4,5-dihydroxyphenyl)-2-methyl- propenal by spectroscopic methods including IR, HREIMS, 1D and 2D NMR techniques.

  10. Complete Plastid Genome Sequence of the Brown Alga Undaria pinnatifida.

    Directory of Open Access Journals (Sweden)

    Lei Zhang

    Full Text Available In this study, we fully sequenced the circular plastid genome of a brown alga, Undaria pinnatifida. The genome is 130,383 base pairs (bp in size; it contains a large single-copy (LSC, 76,598 bp and a small single-copy region (SSC, 42,977 bp, separated by two inverted repeats (IRa and IRb: 5,404 bp. The genome contains 139 protein-coding, 28 tRNA, and 6 rRNA genes; none of these genes contains introns. Organization and gene contents of the U. pinnatifida plastid genome were similar to those of Saccharina japonica. There is a co-linear relationship between the plastid genome of U. pinnatifida and that of three previously sequenced large brown algal species. Phylogenetic analyses of 43 taxa based on 23 plastid protein-coding genes grouped all plastids into a red or green lineage. In the large brown algae branch, U. pinnatifida and S. japonica formed a sister clade with much closer relationship to Ectocarpus siliculosus than to Fucus vesiculosus. For the first time, the start codon ATT was identified in the plastid genome of large brown algae, in the atpA gene of U. pinnatifida. In addition, we found a gene-length change induced by a 3-bp repetitive DNA in ycf35 and ilvB genes of the U. pinnatifida plastid genome.

  11. The Halogenated Metabolism of Brown Algae (Phaeophyta, Its Biological Importance and Its Environmental Significance

    Directory of Open Access Journals (Sweden)

    Stéphane La Barre

    2010-03-01

    Full Text Available Brown algae represent a major component of littoral and sublittoral zones in temperate and subtropical ecosystems. An essential adaptive feature of this independent eukaryotic lineage is the ability to couple oxidative reactions resulting from exposure to sunlight and air with the halogenations of various substrates, thereby addressing various biotic and abiotic stresses i.e., defense against predators, tissue repair, holdfast adhesion, and protection against reactive species generated by oxidative processes. Whereas marine organisms mainly make use of bromine to increase the biological activity of secondary metabolites, some orders of brown algae such as Laminariales have also developed a striking capability to accumulate and to use iodine in physiological adaptations to stress. We review selected aspects of the halogenated metabolism of macrophytic brown algae in the light of the most recent results, which point toward novel functions for iodide accumulation in kelps and the importance of bromination in cell wall modifications and adhesion properties of brown algal propagules. The importance of halogen speciation processes ranges from microbiology to biogeochemistry, through enzymology, cellular biology and ecotoxicology.

  12. Toward systems biology in brown algae to explore acclimation and adaptation to the shore environment.

    Science.gov (United States)

    Tonon, Thierry; Eveillard, Damien; Prigent, Sylvain; Bourdon, Jérémie; Potin, Philippe; Boyen, Catherine; Siegel, Anne

    2011-12-01

    Brown algae belong to a phylogenetic lineage distantly related to land plants and animals. They are almost exclusively found in the intertidal zone, a harsh and frequently changing environment where organisms are submitted to marine and terrestrial constraints. In relation with their unique evolutionary history and their habitat, they feature several peculiarities, including at the level of their primary and secondary metabolism. The establishment of Ectocarpus siliculosus as a model organism for brown algae has represented a framework in which several omics techniques have been developed, in particular, to study the response of these organisms to abiotic stresses. With the recent publication of medium to high throughput profiling data, it is now possible to envision integrating observations at the cellular scale to apply systems biology approaches. As a first step, we propose a protocol focusing on integrating heterogeneous knowledge gained on brown algal metabolism. The resulting abstraction of the system will then help understanding how brown algae cope with changes in abiotic parameters within their unique habitat, and to decipher some of the mechanisms underlying their (1) acclimation and (2) adaptation, respectively consequences of (1) the behavior or (2) the topology of the system resulting from the integrative approach.

  13. Antioxidant Activity of Hawaiian Marine Algae

    Directory of Open Access Journals (Sweden)

    Anthony D. Wright

    2012-02-01

    Full Text Available Marine algae are known to contain a wide variety of bioactive compounds, many of which have commercial applications in pharmaceutical, medical, cosmetic, nutraceutical, food and agricultural industries. Natural antioxidants, found in many algae, are important bioactive compounds that play an important role against various diseases and ageing processes through protection of cells from oxidative damage. In this respect, relatively little is known about the bioactivity of Hawaiian algae that could be a potential natural source of such antioxidants. The total antioxidant activity of organic extracts of 37 algal samples, comprising of 30 species of Hawaiian algae from 27 different genera was determined. The activity was determined by employing the FRAP (Ferric Reducing Antioxidant Power assays. Of the algae tested, the extract of Turbinaria ornata was found to be the most active. Bioassay-guided fractionation of this extract led to the isolation of a variety of different carotenoids as the active principles. The major bioactive antioxidant compound was identified as the carotenoid fucoxanthin. These results show, for the first time, that numerous Hawaiian algae exhibit significant antioxidant activity, a property that could lead to their application in one of many useful healthcare or related products as well as in chemoprevention of a variety of diseases including cancer.

  14. Antioxidant activity of Hawaiian marine algae.

    Science.gov (United States)

    Kelman, Dovi; Posner, Ellen Kromkowski; McDermid, Karla J; Tabandera, Nicole K; Wright, Patrick R; Wright, Anthony D

    2012-02-01

    Marine algae are known to contain a wide variety of bioactive compounds, many of which have commercial applications in pharmaceutical, medical, cosmetic, nutraceutical, food and agricultural industries. Natural antioxidants, found in many algae, are important bioactive compounds that play an important role against various diseases and ageing processes through protection of cells from oxidative damage. In this respect, relatively little is known about the bioactivity of Hawaiian algae that could be a potential natural source of such antioxidants. The total antioxidant activity of organic extracts of 37 algal samples, comprising of 30 species of Hawaiian algae from 27 different genera was determined. The activity was determined by employing the FRAP (Ferric Reducing Antioxidant Power) assays. Of the algae tested, the extract of Turbinaria ornata was found to be the most active. Bioassay-guided fractionation of this extract led to the isolation of a variety of different carotenoids as the active principles. The major bioactive antioxidant compound was identified as the carotenoid fucoxanthin. These results show, for the first time, that numerous Hawaiian algae exhibit significant antioxidant activity, a property that could lead to their application in one of many useful healthcare or related products as well as in chemoprevention of a variety of diseases including cancer.

  15. Monoclonal antibodies directed to fucoidan preparations from brown algae.

    Science.gov (United States)

    Torode, Thomas A; Marcus, Susan E; Jam, Murielle; Tonon, Thierry; Blackburn, Richard S; Hervé, Cécile; Knox, J Paul

    2015-01-01

    Cell walls of the brown algae contain a diverse range of polysaccharides with useful bioactivities. The precise structures of the sulfated fucan/fucoidan group of polysaccharides and their roles in generating cell wall architectures and cell properties are not known in detail. Four rat monoclonal antibodies, BAM1 to BAM4, directed to sulfated fucan preparations, have been generated and used to dissect the heterogeneity of brown algal cell wall polysaccharides. BAM1 and BAM4, respectively, bind to a non-sulfated epitope and a sulfated epitope present in the sulfated fucan preparations. BAM2 and BAM3 identified additional distinct epitopes present in the fucoidan preparations. All four epitopes, not yet fully characterised, occur widely within the major brown algal taxonomic groups and show divergent distribution patterns in tissues. The analysis of cell wall extractions and fluorescence imaging reveal differences in the occurrence of the BAM1 to BAM4 epitopes in various tissues of Fucus vesiculosus. In Ectocarpus subulatus, a species closely related to the brown algal model Ectocarpus siliculosus, the BAM4 sulfated epitope was modulated in relation to salinity levels. This new set of monoclonal antibodies will be useful for the dissection of the highly complex and yet poorly resolved sulfated polysaccharides in the brown algae in relation to their ecological and economic significance.

  16. Monoclonal antibodies directed to fucoidan preparations from brown algae.

    Directory of Open Access Journals (Sweden)

    Thomas A Torode

    Full Text Available Cell walls of the brown algae contain a diverse range of polysaccharides with useful bioactivities. The precise structures of the sulfated fucan/fucoidan group of polysaccharides and their roles in generating cell wall architectures and cell properties are not known in detail. Four rat monoclonal antibodies, BAM1 to BAM4, directed to sulfated fucan preparations, have been generated and used to dissect the heterogeneity of brown algal cell wall polysaccharides. BAM1 and BAM4, respectively, bind to a non-sulfated epitope and a sulfated epitope present in the sulfated fucan preparations. BAM2 and BAM3 identified additional distinct epitopes present in the fucoidan preparations. All four epitopes, not yet fully characterised, occur widely within the major brown algal taxonomic groups and show divergent distribution patterns in tissues. The analysis of cell wall extractions and fluorescence imaging reveal differences in the occurrence of the BAM1 to BAM4 epitopes in various tissues of Fucus vesiculosus. In Ectocarpus subulatus, a species closely related to the brown algal model Ectocarpus siliculosus, the BAM4 sulfated epitope was modulated in relation to salinity levels. This new set of monoclonal antibodies will be useful for the dissection of the highly complex and yet poorly resolved sulfated polysaccharides in the brown algae in relation to their ecological and economic significance.

  17. Cultivation of macroscopic marine algae

    Energy Technology Data Exchange (ETDEWEB)

    Ryther, J.H.

    1982-11-01

    The red alga Gracilaria tikvahiae may be grown outdoors year-round in central Florida with yields averaging 35.5 g dry wt/m/sup 2/.day, greater than the most productive terrestrial plants. This occurs only when the plants are in a suspended culture, with vigorous aeration and an exchange of 25 or more culture volumes of enriched seawater per day, which is not cost-effective. A culture system was designed in which Gracilaria, stocked at a density of 2 kg wet wt/m/sup 2/, grows to double its biomass in one to two weeks; it is then harvested to its starting density, and anaerobically digested to methane. The biomass is soaked for 6 hours in the digester residue, storing enough nutrients for two weeks' growth in unenriched seawater. The methane is combusted for energy and the waste gas is fed to the culture to provide mixing and CO/sub 2/, eliminating the need for aeration and seawater exchange. The green alga Ulva lactuca, unlike Gracilaria, uses bicarbonate as a photosynthesis carbon source, and can grow at high pH, with little or no free CO/sub 2/. It can therefore produce higher yields than Gracilaria in low water exchange conditions. It is also more efficiently converted to methane than is Gracilaria, but cannot tolerate Florida's summer temperatures so cannot be grown year-round. Attempts are being made to locate or produce a high-temperature tolerant strain.

  18. Effect of different dietary concentrations of brown marine algae (Sargassum dentifebium prepared by different methods on plasma and yolk lipid profiles, yolk total carotene and lutein plus zeaxanthin of laying hens

    Directory of Open Access Journals (Sweden)

    Ahmed A. El-Deek

    2012-10-01

    Full Text Available The effect of different concentrations (0%, 3% and 6% of brown marine algae (BMA, Sargassum dentifebium prepared according to different methods (sun-dried, SBMA; boiled, BBMA; autoclaved, ABMA on plasma and yolk lipid profiles, carotene, and lutein plus zeaxanthin in egg yolks was studied in hens aged from 23 to 42 weeks (30 hens per treatment. We determined the fatty acid profiles in BMA and in the egg yolk of hens fed different levels of BMA prepared according to different methods. In addition, plasma and yolk lipid profiles, yolk total carotene, and lutein plus zeaxanthin were determined at week 42 of age. Plasma and yolk cholesterol were significantly lower in groups fed diets containing either 3% or 6% BMA than in the control group, but high-density lipoprotein (HDL significantly decreased as BMA concentration increased. There was a significant similar decline in yolk triglycerides with inclusion of either 3% or 6% BMA in the laying hen diet. Palmitic acid was the main saturated fatty acid (SFA found in BMA and oleic acid (omega-9 and linoleic acid (omega-6 were the main unsaturated fatty acids (UFA, while there was a significant increase in palmitic acid in egg yolk when BMA was included at 6%. There was a significant increase in oleic acid (omega-9 when feed containing 3% BMA was given compared to the control group, but this decreased with a further increase in BMA. Linoleic acid (omega-6 also significantly decreased with inclusion of either 3% or 6% BMA. There was a significant increase in total carotene and lutein plus zeaxanthin in the laying hen eggs as a result of feeding diets containing 3% and 6% BMA.

  19. Marine benthic algae of Namibia

    Directory of Open Access Journals (Sweden)

    Jordi Rull Lluch

    2002-12-01

    Full Text Available The first comprehensive study of the marine algal flora of Namibia including descriptions and illustrations of most species is presented. The main objective of this work is to report a flora that, until now, has scarcely been studied. The work compiles all the available information on the marine benthic flora of Namibia and provides new data about it composition and biogeography, as well as detailed descriptions and remarks of most of its species. The samples on which this study is based were collected between 1986 and 1989 in the eulittoral and the upper sublittoral zones of the north half of the Namibian coast. According to the present data, the marine benthic flora of Namibia comprises 196 taxa (147 Rhodophyceae, 20 Phaeophyceae, 15 Ulvophyceae, 6 Cladophorophyceae and 8 Bryopsidophyceae, 21 of which has not been recorded from this coasts. This temperate flora is mainly characterized by a low number of species, a low proportion of Phaeophyceae and a high degree of endemism. Concerning the species number, the flora is quite poor due to both the scarce availability of colonizable substratum and the low diversity of habitats. On the other hand, the low proportion of Phaeophyceae is the reason for which the R/P and (R+C/P ratios take disproportionately high values and so they are not useful in this geographical area. As regards the degree of endemism, the marine benthic flora of Namibia includes quite a high number of taxa endemic to southern Africa (55 taxa; 28.1% of the flora; 25 of these 55 taxa (12.8% of the flora are endemic to the biogeographic Benguela Marine Province and only Acrosorium cincinnatum is endemic to the Namibian coasts.

  20. OPTIMIZATION OF SOME HEAVY METALS BIOSORPTION BY REPRESENTATIVE EGYPTIAN MARINE ALGAE(1).

    Science.gov (United States)

    Elrefaii, Abdelmonem H; Sallam, Lotfy A; Hamdy, Abdelhamid A; Ahmed, Eman F

    2012-04-01

    Marine algae-as inexpensive and renewable natural biomass-have attracted the attention of many investigators to be used to preconcentrate and biosorb many heavy metal ions. Impressed by this concept, the metal uptake capacity of Egyptian marine algae was examined using representatives of green and brown algae, namely, Ulva lactuca L. and Sargassum latifolium (Turner) C. Agardh, respectively. The biosorption efficiencies of Cu(2+) , Co(2+) , Ni(2+) , Cd(2+) , Hg(2+) , Ag(2+) , and Pb(2+) ions seem to depend on the type of the algae used as well as the conditions under which the uptake processes were conducted. It was demonstrated that a pH range of 7.5-8.8 was optimum for the removal of the tested metals. Similarly, the uptake process was markedly accelerated during the first 2 h using relatively low metal level and sufficient amounts of the dried powdered tested algae. © 2012 Phycological Society of America.

  1. Selenium Uptake and Volatilization by Marine Algae

    Science.gov (United States)

    Luxem, Katja E.; Vriens, Bas; Wagner, Bettina; Behra, Renata; Winkel, Lenny H. E.

    2015-04-01

    Selenium (Se) is an essential trace nutrient for humans. An estimated one half to one billion people worldwide suffer from Se deficiency, which is due to low concentrations and bioavailability of Se in soils where crops are grown. It has been hypothesized that more than half of the atmospheric Se deposition to soils is derived from the marine system, where microorganisms methylate and volatilize Se. Based on model results from the late 1980s, the atmospheric flux of these biogenic volatile Se compounds is around 9 Gt/year, with two thirds coming from the marine biosphere. Algae, fungi, and bacteria are known to methylate Se. Although algal Se uptake, metabolism, and methylation influence the speciation and bioavailability of Se in the oceans, these processes have not been quantified under environmentally relevant conditions and are likely to differ among organisms. Therefore, we are investigating the uptake and methylation of the two main inorganic Se species (selenate and selenite) by three globally relevant microalgae: Phaeocystis globosa, the coccolithophorid Emiliania huxleyi, and the diatom Thalassiosira oceanica. Selenium uptake and methylation were quantified in a batch experiment, where parallel gas-tight microcosms in a climate chamber were coupled to a gas-trapping system. For E. huxleyi, selenite uptake was strongly dependent on aqueous phosphate concentrations, which agrees with prior evidence that selenite uptake by phosphate transporters is a significant Se source for marine algae. Selenate uptake was much lower than selenite uptake. The most important volatile Se compounds produced were dimethyl selenide, dimethyl diselenide, and dimethyl selenyl sulfide. Production rates of volatile Se species were larger with increasing intracellular Se concentration and in the decline phase of the alga. Similar experiments are being carried out with P. globosa and T. oceanica. Our results indicate that marine algae are important for the global cycling of Se

  2. Pheromones in marine algae: A technical approach

    Science.gov (United States)

    Gassmann, G.; Müller, D. G.; Fritz, P.

    1995-03-01

    It is now well known that many marine organisms use low-molecular volatile substances as signals, in order to coordinate activities between different individuals. The study of such pheromones requires the isolation and enrichment of the secretions from undisturbed living cells or organisms over extended periods of time. The Grob-Hersch extraction device, which we describe here, avoids adverse factors for the biological materials such as strong water currents, rising gas bubbles or chemical solvents. Furthermore, the formation of sea-water spray is greatly reduced. The application of this technique for the isolation of pheromones of marine algae and animals is described.

  3. Association of thraustochytrids and fungi with living marine algae

    Digital Repository Service at National Institute of Oceanography (India)

    Raghukumar, C.; Nagarkar, S.; Raghukumar, S.

    Occurrence of thraustochytrids, yeasts and mycelial fungi in six marine algae was studied. Thraustochytrids and mycelial fungi were recovered from non-surface-sterilized as well as surface-sterilized pieces of algae, whereas yeasts were isolated...

  4. Physical characteristic of brown algae (Phaeophyta) from madura strait as irreversible hydrocolloid impression material

    OpenAIRE

    Prihartini Widiyanti; Siswanto Siswanto

    2012-01-01

    Background: Brown algae is a raw material for producing natrium alginates. One type of brown algae is Sargassum sp, a member of Phaeophyta division. Sargassum sp could be found in Madura strait Indonesia. Natrium alginate can be extracted from Sargassum sp. The demand of alginate in Indonesia is mainly fulfilled from abroad, meanwhile Sargassum sp is abundantly available. Purpose: The purpose of study were to explore the potency of brown alga Sargassum sp from Madura strait as hydrocolloid im...

  5. Bromophenols from Marine Algae with Potential Anti-Diabetic Activities

    Institute of Scientific and Technical Information of China (English)

    LIN Xiukun; LIU Ming

    2012-01-01

    Marine algae contain various bromophenols with a variety of biological activities,including antimicrobial,anticancer,and anti-diabetic effects.Here,we briefly review the recent progress in researches on the biomaterials from marine algae,emphasizing the relationship between the structure and the potential anti-diabetic applications.Bromophenols from marine algae display their hyperglycemic effects by inhibiting the activities of protein tyrosine phosphatase 1B,α-glucosidase,as well as other mechanisms.

  6. Antibiofilm Activity of the Brown Alga Halidrys siliquosa against Clinically Relevant Human Pathogens

    Directory of Open Access Journals (Sweden)

    Alessandro Busetti

    2015-06-01

    Full Text Available The marine brown alga Halidrys siliquosa is known to produce compounds with antifouling activity against several marine bacteria. The aim of this study was to evaluate the antimicrobial and antibiofilm activity of organic extracts obtained from the marine brown alga H. siliquosa against a focused panel of clinically relevant human pathogens commonly associated with biofilm-related infections. The partially fractionated methanolic extract obtained from H. siliquosa collected along the shores of Co. Donegal; Ireland; displayed antimicrobial activity against bacteria of the genus Staphylococcus; Streptococcus; Enterococcus; Pseudomonas; Stenotrophomonas; and Chromobacterium with MIC and MBC values ranging from 0.0391 to 5 mg/mL. Biofilms of S. aureus MRSA were found to be susceptible to the algal methanolic extract with MBEC values ranging from 1.25 mg/mL to 5 mg/mL respectively. Confocal laser scanning microscopy using LIVE/DEAD staining confirmed the antimicrobial nature of the antibiofilm activity observed using the MBEC assay. A bioassay-guided fractionation method was developed yielding 10 active fractions from which to perform purification and structural elucidation of clinically-relevant antibiofilm compounds.

  7. Study on sterols from brown algae (Sargassum muticum)

    Institute of Scientific and Technical Information of China (English)

    WANG Peirong; XU Guanjun; BIAN Lizeng; ZHANG Shuichang; SONG Fuqing

    2006-01-01

    Various △5-3β-sterenols, whose carbon numbers range from C19-C23 to C26-C30and some compounds have many stereomers maximal up to six,have been detected out from the extract of brown algae (Sargassum muticum), which means that steranes with lower carbon numbers are likely different in the origin, and some corresponding sterol stereoisomers may have already existed in their precursor organisms. This provides some experimental evidence for supplementing and amending the traditional interpretation of the sterol stereoisomer transformation during the deposition and diagenesis of organic matter.

  8. Marine algae as a prospective source for antidiabetic compounds - A brief review.

    Science.gov (United States)

    Unnikrishnan, S P; Jayasri, A M

    2016-12-29

    Diabetes mellitus (DM) is a metabolic disorder characterized by chronic hyperglycaemia, which is attributed by several life threatening complications including atherosclerosis, nephropathy, and retinopathy. The current therapies available for the management of DM mainly include oral antidiabetic drugs and insulin injections. However, continuous use of synthetic drugs provides lower healing with many side effects. Therefore, there is an urge for safe and efficient antidiabetic drugs for the management of DM. In the continuing search for effective antidiabetic drugs, marine algae (seaweeds) remains as a promising source with potent bioactivity. It is anticipated that the isolation, characterization, and pharmacological study of unexplored marine algae can be useful in the discovery of novel antidiabetic compounds with high biomedical value. Among marine algae, brown and red algae are reported to exhibit antidiabetic activity. Majority of the investigations on algal derived compounds controls the blood glucose levels through the inhbition of carbohydrate hydroloyzing enzymes and protein tyrosine phosphatase 1B enzymes, insulin sensitization, glucose uptake effect and other protective effects against diabetic complications. Based on the above perspective this review provides; profiles for various marine algae posessing antidiabetic activity. This study also highlights the therapeutic potential of compounds isolated from marine algae for the effective management of diabetes and its associated complications.

  9. Interactions between arsenic species and marine algae

    Energy Technology Data Exchange (ETDEWEB)

    Sanders, J.G.

    1978-01-01

    The arsenic concentration and speciation of marine algae varies widely, from 0.4 to 23 ng.mg/sup -1/, with significant differences in both total arsenic content and arsenic speciation occurring between algal classes. The Phaeophyceae contain more arsenic than other algal classes, and a greater proportion of the arsenic is organic. The concentration of inorganic arsenic is fairly constant in macro-algae, and may indicate a maximum level, with the excess being reduced and methylated. Phytoplankton take up As(V) readily, and incorporate a small percentage of it into the cell. The majority of the As(V) is reduced, methylated, and released to the surrounding media. The arsenic speciation in phytoplankton and Valonia also changes when As(V) is added to cultures. Arsenate and phosphate compete for uptake by algal cells. Arsenate inhibits primary production at concentrations as low as 5 ..mu..g.1/sup -1/ when the phosphate concentration is low. The inhibition is competitive. A phosphate enrichment of > 0.3 ..mu..M alleviates this inhibition; however, the As(V) stress causes an increase in the cell's phosphorus requirement. Arsenite is also toxic to phytoplankton at similar concentrations. Methylated arsenic species did not affect cell productivity, even at concentrations of 25 ..mu..g.1/sup -1/. Thus, the methylation of As(V) by the cell produces a stable, non-reactive compound which is nontoxic. The uptake and subsequent reduction and methylation of As(V) is a significant factor in determining the arsenic biogeochemistry of productive systems, and also the effect that the arsenic may have on algal productivity. Therefore, the role of marine algae in determining the arsenic speciation of marine systems cannot be ignored. (ERB)

  10. Preliminary observations on the benthic marine algae of the Gorringe seabank (northeast Atlantic Ocean)

    Science.gov (United States)

    Tittley, Ian; da Silva Vaz Álvaro, Nuno Miguel; de Melo Azevedo Neto, Ana Isabel

    2014-06-01

    Examination of marine samples collected in 2006 from the Gettysburg and Ormonde seamounts on the Gorringe seabank southwest of Portugal has revealed 29 benthic Chlorophyta, Phaeophyceae (Ochrophyta), and Rhodophyta that were identified provisionally to genus and to species. Combining lists for the present and a previous expedition brings the total of algae thus far recorded to 48. The brown alga Zonaria tournefourtii and the red alga Cryptopleura ramosa were the most abundant species in the present collections. The kelp Laminaria ochroleuca was present only in the Gettysburg samples while Saccorhiza polyschides was observed only on the Ormonde seamount. Comparisons with the benthic marine algae recorded on seamounts in the mid-Atlantic Azores archipelago show features in common, notably kelp forests of L. ochroleuca at depths below 30 m and Z. tournefortii dominance in shallower waters.

  11. Floristic account of the marine benthic algae from Jarvis Island and Kingman Reef, Line Islands, Central Pacific

    Directory of Open Access Journals (Sweden)

    Vroom, P.S.

    2012-05-01

    Full Text Available The marine benthic algae from Jarvis Island and Kingman Reef were identified from collections obtained from the Whippoorwill Expedition in 1924, the Itasca Expedition in 1935, the U.S. Coast Guard Cutter Taney in 1938, the Smithsonian Institution’s Pacific Ocean Biological Survey Program in 1964 and the U.S. National Oceanic and Atmospheric Administration’s Reef Assessment and Monitoring Program (RAMP in 2000, 2001, 2002, 2004 and 2006. A total of 124 species, representing 8 Cyanobacteria (blue-green algae, 82 Rhodophyta (red algae, 6 Heterokontophyta (brown algae and 28 Chlorophyta (green algae, are reported from both islands. Seventy-nine and 95 species of marine benthic algae are recorded from Jarvis Island and Kingman Reef, respectively. Of the 124 species, 77 species or 62% (4 blue-green algae, 57 red algae, 2 brown algae and 14 green algae have never before been reported from the 11 remote reefs, atolls and low islands comprising the Line Islands in the Central Pacific.

  12. A novel ether-linked phytol-containing digalactosylglycerolipid in the marine green alga, Ulva pertusa

    Energy Technology Data Exchange (ETDEWEB)

    Ishibashi, Yohei; Nagamatsu, Yusuke [Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581 (Japan); Miyamoto, Tomofumi [Graduate School of Pharmaceutical Sciences, Kyushu University, Maidashi 3-1-1, Higashi-ku, Fukuoka 812-8582 (Japan); Matsunaga, Naoyuki; Okino, Nozomu; Yamaguchi, Kuniko [Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581 (Japan); Ito, Makoto, E-mail: makotoi@agr.kyushu-u.ac.jp [Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581 (Japan)

    2014-10-03

    Highlights: • Alkaline-resistant galactolipid, AEGL, was found in marine algae. • The sugar moiety of AEGL is identical to that of digalactosyldiacylglycerol. • AEGL is the first identified glycolipid that possesses an ether-linked phytol. • AEGL is ubiquitously distributed in green, red and brown marine algae. - Abstract: Galactosylglycerolipids (GGLs) and chlorophyll are characteristic components of chloroplast in photosynthetic organisms. Although chlorophyll is anchored to the thylakoid membrane by phytol (tetramethylhexadecenol), this isoprenoid alcohol has never been found as a constituent of GGLs. We here described a novel GGL, in which phytol was linked to the glycerol backbone via an ether linkage. This unique GGL was identified as an Alkaline-resistant and Endogalactosylceramidase (EGALC)-sensitive GlycoLipid (AEGL) in the marine green alga, Ulva pertusa. EGALC is an enzyme that is specific to the R-Galα/β1-6Galβ1-structure of galactolipids. The structure of U. pertusa AEGL was determined following its purification to 1-O-phytyl-3-O-Galα1-6Galβ1-sn-glycerol by mass spectrometric and nuclear magnetic resonance analyses. AEGLs were ubiquitously distributed in not only green, but also red and brown marine algae; however, they were rarely detected in terrestrial plants, eukaryotic phytoplankton, or cyanobacteria.

  13. Fucoidans from brown alga Fucus evanescens: structure and biological activity

    Directory of Open Access Journals (Sweden)

    Roza Menshova

    2016-08-01

    Full Text Available Brown alga Fucus evanescens, widespread in the Far Eastern seas of Russia, is valuable source of sulfated polysaccharides – fucoidans with beneficial biological activities. The most homogenous fraction of fucoidan from F. evanescens was shown to be molecule containing linear main chain of alternating 2-sulfated 1,3- and 1,4-linked α-L-fucose residues. Few sulfate groups were found in position 4 of some 1,3-linked fucose residues. Acetyl groups occupied free C-3 of 1,4-linked residues and/or the C-4 of 1,3-linked fucose residues. Enzymatic hydrolysis, mild acid hydrolysis and autohydrolysis of native fucoidan were used for elucidation of the fine structural characteristics of fucoidan from F. evanescens. The aim of this review to summarize published data on biological activities of fucoidan from F. evanescens: antiviral, anticoagulant, thrombolytic, hepatoprotective, immunomodulatory, anticancer, and their practical application.

  14. Early Embryogenesis of Brown Alga Fucus vesiculosus L. is Characterized by Significant Changes in Carbon and Energy Metabolism.

    Science.gov (United States)

    Tarakhovskaya, Elena; Lemesheva, Valeriya; Bilova, Tatiana; Birkemeyer, Claudia

    2017-09-09

    Brown algae have an important role in marine environments. With respect to their broad distribution and importance for the environment and human use, brown algae of the order Fucales in particular became a model system for physiological and ecological studies. Thus, several fucoids have been extensively studied for their composition on the molecular level. However, research of fucoid physiology and biochemistry so far mostly focused on the adult algae, so a holistic view on the development of these organisms, including the crucial first life stages, is still missing. Therefore, we employed non-targeted metabolite profiling by gas chromatography coupled to mass spectrometry to create a non-biased picture of the early development of the fucoid alga Fucus vesiculosus. We found that embryogenic physiology was mainly dominated by a tight regulation of carbon and energy metabolism. The first dramatic changes of zygote metabolism started within 1 h after fertilization, while metabolism of 6-9 days old embryos appeared already close to that of an adult alga, indicated by the intensive production of secondary metabolites and accumulation of mannitol and citric acid. Given the comprehensive description and analysis we obtained in our experiments, our results exhibit an invaluable resource for the design of further experiments related to physiology of early algal development.

  15. Marine algae: natural product source for gastrointestinal cancer treatment.

    Science.gov (United States)

    Kim, Se-Kwon; Karagozlu, Mustafa Zafer

    2011-01-01

    Among marine organisms, marine algae are rich sources of structurally diverse bioactive compounds with various biological activities. In order to survive in a highly competitive environment, freshwater or marine algae have to develop defense strategies that result in a tremendous diversity of compounds from different metabolic pathways. Recently, their importance as a source of novel bioactive substances is growing rapidly and many reports have been published about isolated compounds from algae with biological activities. Many researchers reported anticancer activity of the compounds isolated from marine algae. Gastrointestinal tract cancer is one of the most frequent death causes of cancer in men and women. Especially stomach cancer and colon cancer are the second and third common cancer type in the world after lung cancer. Hence investigation of bioactive compounds against gastrointestinal cancer cells has recently become an important field for researchers. Copyright © 2011 Elsevier Inc. All rights reserved.

  16. Direct quantification of brown algae-derived fucoidans in human plasma by a fluorescent probe assay

    CERN Document Server

    Warttinger, Ulrich; Harenberg, Job; Krämer, Roland

    2016-01-01

    Fucoidan is a generic term for a class of fucose rich, structurally diverse sulfated polysaccharides that are found in brown algae and other marine organisms. Depending on the species from which the fucoidan is extracted, a wide variety of biological activities including antitumor, antiinflammatory, immune-modulating, antiviral, antibacterial and pro- and anticoagulant activities has been described. Fucoidans have the advantage of low toxicity and oral bioavailibiity and are viable drug candidates, preclinical and pilot clinical trials show promising results. The availability of robust assays, in particular for analysing the blood levels of fucoidan, is a fundamental requirement for pharmacokinetic analysis in drug development projects. This contribution describes the application of a commercially availbale, protein-free fluorescent probe assay (Heparin Red) for the direct quantification of several fucoidans (from Fucus vesiculosus, Macrocystis pyrifera, and Undaria pinnatifida) in human plasma. By only minor...

  17. Nodularin induces oxidative stress in the Baltic Sea brown alga Fucus vesiculosus (Phaeophyceae).

    Science.gov (United States)

    Pflugmacher, Stephan; Olin, Miikka; Kankaanpää, Harri

    2007-08-01

    In the Baltic Sea regular, intensive cyanobacterial blooms rich in the cyanobacterium Nodularia spumigena occur during the summer season. N. spumigena is known to produce the cyclic pentapeptide nodularin (NOD) in high concentrations. Marine macroalgae, together with sea-grass meadows, are an extremely important habitat for life in the sea. In addition to this, the decaying macroalgae substantially contribute to the substrate for the microbial loop in coastal food webs. Uptake of nodularin into the brown macroalga Fucus vesiculosus was assessed using an ELISA technique resulting in an uptake of up to 45.1 microg kg(-1) fresh weight (fw). Nodularin was also detected in the reproductive part of the algae (receptacle) at 14.1 microg kg(-1) fw. The induction of oxidative stress in F. vesiculosus, after exposure to NOD, was also shown by monitoring cellular damage as changes in lipid peroxidation and the activation of antioxidative defence systems (antioxidative capacity, superoxide dismutase and soluble glutathione S-transferase).

  18. Improved methane production from brown algae under high salinity by fed-batch acclimation.

    Science.gov (United States)

    Miura, Toyokazu; Kita, Akihisa; Okamura, Yoshiko; Aki, Tsunehiro; Matsumura, Yukihiko; Tajima, Takahisa; Kato, Junichi; Nakashimada, Yutaka

    2015-01-01

    Here, a methanogenic microbial community was developed from marine sediments to have improved methane productivity from brown algae under high salinity. Fed-batch cultivation was conducted by adding dry seaweed at 1wt% total solid (TS) based on the liquid weight of the NaCl-containing sediment per round of cultivation. The methane production rate and level of salinity increased 8-fold and 1.6-fold, respectively, at the 10th round of cultivation. Moreover, the rate of methane production remained high, even at the 10th round of cultivation, with accumulation of salts derived from 10wt% TS of seaweed. The salinity of the 10th-round culture was equivalent to 5% NaCl. The improved methane production was attributed to enhanced acetoclastic methanogenesis because acetate became rapidly converted to methane during cultivation. The family Fusobacteriaceae and the genus Methanosaeta, the acetoclastic methanogen, predominated in bacteria and archaea, respectively, after the cultivation.

  19. Plasticity predicts evolution in a marine alga.

    Science.gov (United States)

    Schaum, C Elisa; Collins, Sinéad

    2014-10-22

    Under global change, populations have four possible responses: 'migrate, acclimate, adapt or die' (Gienapp et al. 2008 Climate change and evolution: disentangling environmental and genetic response. Mol. Ecol. 17, 167-178. (doi:10.1111/j.1365-294X.2007.03413.x)). The challenge is to predict how much migration, acclimatization or adaptation populations are capable of. We have previously shown that populations from more variable environments are more plastic (Schaum et al. 2013 Variation in plastic responses of a globally distributed picoplankton species to ocean acidification. Nature 3, 298-230. (doi:10.1038/nclimate1774)), and here we use experimental evolution with a marine microbe to learn that plastic responses predict the extent of adaptation in the face of elevated partial pressure of CO2 (pCO2). Specifically, plastic populations evolve more, and plastic responses in traits other than growth can predict changes in growth in a marine microbe. The relationship between plasticity and evolution is strongest when populations evolve in fluctuating environments, which favour the evolution and maintenance of plasticity. Strikingly, plasticity predicts the extent, but not direction of phenotypic evolution. The plastic response to elevated pCO2 in green algae is to increase cell division rates, but the evolutionary response here is to decrease cell division rates over 400 generations until cells are dividing at the same rate their ancestors did in ambient CO2. Slow-growing cells have higher mitochondrial potential and withstand further environmental change better than faster growing cells. Based on this, we hypothesize that slow growth is adaptive under CO2 enrichment when associated with the production of higher quality daughter cells.

  20. Biosynthetic Pathway and Health Benefits of Fucoxanthin, an Algae-Specific Xanthophyll in Brown Seaweeds

    Directory of Open Access Journals (Sweden)

    Masashi Hosokawa

    2013-07-01

    Full Text Available Fucoxanthin is the main carotenoid produced in brown algae as a component of the light-harvesting complex for photosynthesis and photoprotection. In contrast to the complete elucidation of the carotenoid biosynthetic pathways in red and green algae, the biosynthetic pathway of fucoxanthin in brown algae is not fully understood. Recently, two models for the fucoxanthin biosynthetic pathway have been proposed in unicellular diatoms; however, there is no such information for the pathway in brown seaweeds to date. Here, we propose a biosynthetic pathway for fucoxanthin in the brown seaweed, Ectocarpus siliculosus, derived from comparison of carotenogenic genes in its sequenced genome with those in the genomes of two diatoms, Thalassiosira pseudonana and Phaeodactylum tricornutum. Currently, fucoxanthin is receiving attention, due to its potential benefits for human health. Therefore, new knowledge regarding the medical and nutraceutical properties of fucoxanthin from brown seaweeds is also summarized here.

  1. Bioactive Chemical Constituents from the Brown Alga Homoeostrichus formosana

    Science.gov (United States)

    Fang, Hui-Yu; Chokkalingam, Uvarani; Chiou, Shu-Fen; Hwang, Tsong-Long; Chen, Shu-Li; Wang, Wei-Lung; Sheu, Jyh-Horng

    2014-01-01

    A new chromene derivative, 2-(4',8'-dimethylnona-3'E,7'-dienyl)-8-hydroxy-2,6-dimethyl-2H-chromene (1) together with four known natural products, methylfarnesylquinone (2), isololiolide (3), pheophytin a (4), and β-carotene (5) were isolated from the brown alga Homoeostrichus formosana. The structure of 1 was determined by extensive 1D and 2D spectroscopic analyses. Acetylation of 1 yielded the monoacetylated derivative 2-(4',8'-dimethylnona-3'E,7'-dienyl)-8-acetyl-2,6-dimethyl-2H-chromene (6). Compounds 1–6 exhibited various levels of cytotoxic, antibacterial, and anti-inflammatory activities. Compound 2 was found to display potent in vitro anti-inflammatory activity by inhibiting the generation of superoxide anion (IC50 0.22 ± 0.03 μg/mL) and elastase release (IC50 0.48 ± 0.11 μg/mL) in FMLP/CB-induced human neutrophils. PMID:25561228

  2. Evaluation of Marine Algae Wakame (Undaria pinnatifida and Kombu (Laminaria digitata japonica as Food Supplements

    Directory of Open Access Journals (Sweden)

    Luciana Vallorani

    2004-01-01

    Full Text Available Crude proteins and their amino acid composition, -carotene, vitamins B1, B2, B6, niacin and minerals were determined in two edible brown marine algae (Phaeophyceae, Wakame (Undaria pinnatifida and Kombu (Laminaria digitata japonica. The amino acid scores for five key essential amino acids, frequently deficient in mixed human diet, and essential amino acid index were calculated. The results have shown the presence of all essential amino acids. The values of essential amino acid ratios of analysed algae exceed the ratios of reference proteins suggested by FAO/WHO/UNU, except for tryptophan, the first limiting amino acid in both analysed algae. Iodine, the most important component of sea vegetables is present in high amounts as well as the vitamins B1, B2, B6, niacin and β-carotene. The content of minerals was found high, while the presence of heavy metals was negligible.

  3. A sweet new wave: structures and mechanisms of enzymes that digest polysaccharides from marine algae.

    Science.gov (United States)

    Hehemann, Jan-Hendrik; Boraston, Alisdair B; Czjzek, Mirjam

    2014-10-01

    Marine algae contribute approximately half of the global primary production. The large amounts of polysaccharides synthesized by these algae are degraded and consumed by microbes that utilize carbohydrate-active enzymes (CAZymes), thus creating one of the largest and most dynamic components of the Earth's carbon cycle. Over the last decade, structural and functional characterizations of marine CAZymes have revealed a diverse set of scaffolds and mechanisms that are used to degrade agars, carrageenan, alginate and ulvan-polysaccharides from red, brown and green seaweeds, respectively. The analysis of these CAZymes is not only expanding our understanding of their functions but is enabling the enhanced annotation of (meta)-genomic data sets, thus promoting an improved understanding of microbes that drive this marine component of the carbon cycle. Furthermore, this information is setting a foundation that will enable marine algae to be harnessed as a novel resource for biorefineries. In this review, we cover the most recent structural and functional analyses of marine CAZymes that are specialized in the digestion of macro-algal polysaccharides. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Potential biomedical applications of marine algae.

    Science.gov (United States)

    Wang, Hui-Min David; Li, Xiao-Chun; Lee, Duu-Jong; Chang, Jo-Shu

    2017-06-03

    Functional components extracted from algal biomass are widely used as dietary and health supplements with a variety of applications in food science and technology. In contrast, the applications of algae in dermal-related products have received much less attention, despite that algae also possess high potential for the uses in anti-infection, anti-aging, skin-whitening, and skin tumor treatments. This review, therefore, focuses on integrating studies on algae pertinent to human skin care, health and therapy. The active compounds in algae related to human skin treatments are mentioned and the possible mechanisms involved are described. The main purpose of this review is to identify serviceable algae functions in skin treatments to facilitate practical applications in this high-potential area. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Transcriptome-wide evolutionary analysis on essential brown algae (Phaeophyceae) in China

    Institute of Scientific and Technical Information of China (English)

    SUN Jing; LIU Tao; YU Jun; WANG Liang; WU Shuangxiu; WANG Xumin; XIAO Jingfa; CHI Shan; LIU Cui; REN Lufeng; ZHAO Yuhui

    2014-01-01

    Brown algae (Chromista, Ochrophyta, Phaeophyceae) are a large group of multicellular algae that play im-portant roles in the ocean's ecosystem and biodiversity. However, poor molecular bases for studying their phylogenetic evolutions and novel metabolic characteristics have hampered progress in the field. In this study, we sequenced the de novo transcriptome of 18 major species of brown algae in China, covering six orders and seven families, using the high-throughput sequencing platform Illumina HiSeq 2000. From the transcriptome data of these 18 species and publicly available genome data of Ectocarpus siliculosus and Phaeodactylum tricornutum, we identified 108 nuclear-generated orthologous genes and clarified the phy-logenetic relationships among these brown algae based on a multigene method. These brown algae could be separated into two clades:Clade Ishigeales-Dictyotales and Clade Ectocarpales-Laminariales-Desmares-tiale-Fucales. The former was at the base of the phylogenetic tree, indicating its early divergence, while the latter was divided into two branches, with Order Fucales diverging from Orders Ectocarpales, Laminariales, and Desmarestiale. In our analysis of taxonomy-contentious species, Sargassum fusiforme and Saccharina sculpera were found to be closely related to genera Sargassum and Saccharina, respectively, while Petalonia fascia showed possible relation to genus Scytosiphon. The study provided molecular evidence for the phylo-genetic taxonomy of brown algae.

  6. Rapid Evolution of microRNA Loci in the Brown Algae

    Science.gov (United States)

    Liu, Fuli; Duan, Delin; Bourdareau, Simon; Lipinska, Agnieszka P.; Coelho, Susana M.; Tarver, James E.

    2017-01-01

    Stringent searches for microRNAs (miRNAs) have so far only identified these molecules in animals, land plants, chlorophyte green algae, slime molds and brown algae. The identification of miRNAs in brown algae was based on the analysis of a single species, the filamentous brown alga Ectocarpus sp. Here, we have used deep sequencing of small RNAs and a recently published genome sequence to identify miRNAs in a second brown alga, the kelp Saccharina japonica. S. japonica possesses a large number of miRNAs (117) and these miRNAs are highly diverse, falling into 98 different families. Surprisingly, none of the S. japonica miRNAs share significant sequence similarity with the Ectocarpus sp. miRNAs. However, the miRNA repertoires of the two species share a number of structural and genomic features indicating that they were generated by similar evolutionary processes and therefore probably evolved within the context of a common, ancestral miRNA system. This lack of sequence similarity suggests that miRNAs evolve rapidly in the brown algae (the two species are separated by ∼95 Myr of evolution). The sets of predicted targets of miRNAs in the two species were also very different suggesting that the divergence of the miRNAs may have had significant consequences for miRNA function. PMID:28338896

  7. Laser capture microdissection in Ectocarpus siliculosus: the pathway to cell-specific transcriptomics in brown algae

    Directory of Open Access Journals (Sweden)

    Denis eSaint-Marcoux

    2015-02-01

    Full Text Available Laser capture microdissection (LCM facilitates the isolation of individual cells from tissue sections, and when combined with RNA amplification techniques, it is an extremely powerful tool for examining genome-wide expression profiles in specific cell-types. LCM has been widely used to address various biological questions in both animal and plant systems, however, no attempt has been made so far to transfer LCM technology to macroalgae. Macroalgae are a collection of widespread eukaryotes living in fresh and marine water. In line with the collective effort to promote molecular investigations of macroalgal biology, here we demonstrate the feasibility of using LCM and cell-specific transcriptomics to study development of the brown alga, Ectocarpus siliculosus. We describe a workflow comprising cultivation and fixation of algae on glass slides, laser microdissection, and RNA amplification. To illustrate the effectiveness of the procedure, we show qPCR data and metrics obtained from cell-specific transcriptomes generated from both upright and prostrate filaments of Ectocarpus.

  8. Antioxidant response of the brown algae Dictyota dichotoma epiphytized by the invasive red macroalgae Lophocladia lallemandii

    Directory of Open Access Journals (Sweden)

    Silvia Tejada

    2014-05-01

    Full Text Available Objective: To evaluate the response of the brown alga Dictyota dichotoma (D. dichotoma epiphytized by the red alga Lophocladia lallemandii in Mallorca coastal waters (Balearic Islands by means of biomarker measures. Methods: Samples of epiphytized and non-epiphytized D. dichotoma were collected in Cala Morlanda (East Mallorca, Balearic Islands. Markers of lipid peroxidation and activities of antioxidant enzymes were measured in D. dichotoma. Results: Lipid peroxidation measured as malondialdehyde and all the antioxidant activities measured were significantly higher in the epiphytized brown algae when compared with the control algae. Conclusions: In conclusion, the invasive algae Lophocladia lallemandii seems to produce a more oxidized status in the epiphytized D. dichotoma and cellular damage that could induce increased mortality.

  9. Antioxidant response of the brown algae Dictyota dichotoma epiphytized by the invasive red macroalgae Lophocladia lallemandii

    Institute of Scientific and Technical Information of China (English)

    Silvia Tejada; Antoni Sureda

    2014-01-01

    Objective: To evaluate the response of the brown alga Dictyota dichotoma (D. dichotoma) epiphytized by the red alga Lophocladia lallemandii in Mallorca coastal waters (Balearic Islands) by means of biomarker measures. Methods: Samples of epiphytized and non-epiphytized D. dichotoma were collected in Cala Morlanda (East Mallorca, Balearic Islands). Markers of lipid peroxidation and activities of antioxidant enzymes were measured in D. dichotoma. Results: Lipid peroxidation measured as malondialdehyde and all the antioxidant activities measured were significantly higher in the epiphytized brown algae when compared with the control algae. Conclusions:In conclusion, the invasive algae Lophocladia lallemandii seems to produce a more oxidized status in the epiphytized D. dichotoma and cellular damage that could induce increased mortality.

  10. Sulfated Galactofucan from the Brown Alga Saccharina latissima—Variability of Yield, Structural Composition and Bioactivity

    Directory of Open Access Journals (Sweden)

    Karina Ehrig

    2014-12-01

    Full Text Available The fucose-containing sulfated polysaccharides (SP from brown algae exhibit a wide range of bioactivities and are, therefore, considered promising candidates for health-supporting and medicinal applications. A critical issue is their availability in high, reproducible quality. The aim of the present study was to fractionate and characterize the SP extracted from Saccharina latissima (S.l.-SP harvested from two marine habitats, the Baltic Sea and North Atlantic Ocean, in May, June and September. The fractionation of crude S.l.-SP by anion exchange chromatography including analytical investigations revealed that S.l.-SP is composed of a homogeneous fraction of sulfated galactofucan (SGF and a mixture of low-sulfated, uronic acid and protein containing heteropolysaccharides. Furthermore, the results indicated that S.l. growing at an intertidal zone with high salinity harvested at the end of the growing period delivered the highest yield of S.l.-SP with SGF as the main fraction (67%. Its SGF had the highest degree of sulfation (0.81, fucose content (86.1% and fucose/galactose ratio (7.8 and was most active (e.g., elastase inhibition: IC50 0.21 μg/mL. Thus, S.l. from the North Atlantic harvested in autumn proved to be more appropriate for the isolation of S.l.-SP than S.l. from the Baltic Sea and S.l. harvested in spring, respectively. In conclusion, this study demonstrated that habitat and harvest time of brown algae should be considered as factors influencing the yield as well as the composition and thus also the bioactivity of their SP.

  11. Thraustochytrid fungi associated with marine algae

    Digital Repository Service at National Institute of Oceanography (India)

    Raghukumar, C.

    of these diatoms but grew only on senescent moribund cultures. Some of the macroalgae collected from Kavarathi atoll of Lakshadweep islands also harboured thraustochytrid fungi. Contrary to other reports these thraustochytrids were found on living healthy algae...

  12. Detection and activity of iodine-131 in brown algae collected in the Japanese coastal areas

    Energy Technology Data Exchange (ETDEWEB)

    Morita, Takami, E-mail: takam@affrc.go.jp [Fisheries Research Agency, 15F Queen' s Tower B, Minato Mirai Nishi-ku, Yokohama, Kanagawa 220-6115 (Japan); Niwa, Kentaro; Fujimoto, Ken; Kasai, Hiromi; Yamada, Haruya; Nishiutch, Kou [Fisheries Research Agency, 15F Queen' s Tower B, Minato Mirai Nishi-ku, Yokohama, Kanagawa 220-6115 (Japan); Sakamoto, Tatsuya; Godo, Waichiro [Ushimado Marine Laboratory, Okayama University, 130-17, Kashino 130-17, Ushimado, Setouchi, Okayama 701-43 (Japan); Taino, Seiya; Hayashi, Yoshihiro [Kochi Prefectural Fisheries Experimental Station, Uranoutchhaigata 1153-23, Susaki, Kouch, 785-0167 Japan (Japan); Takeno, Koji; Nishigaki, Tomokazu; Fujiwara, Kunihiro [Kyoto Prefectural Agriculture, Forestry and Fisheries Technology Research Center, Odashukuno, Miyazu, Kyoto, 626-0052 Japan (Japan); Aratake, Hisamichi [Miyazaki Prefectural Fisheries Experimental Station, Aoshima 6-16-3, Miyazaki, Miyazaki 889-2162 Japan (Japan); Kamonoshita, Shingo [Ibaragi Prefectural Fisheries Experimental Station, Mitsuzuka3551-8, Hiraiso, Hitachnaka, Ibaragi, 311-1203 Japan (Japan); Hashimoto, Hiroshi [Fukui Prefectural Fisheries Experimental Station, Urasoko 23-1, Tsuruga, Fukui, 914-0843 Japan (Japan); Kobayashi, Takuya; Otosaka, Sigeyoshi [Japan Atomic Energy Agency, Shirakata Shirane 2-4, Tokai, Ibaraki, 319-1195 Japan (Japan); Imanaka, Tetsuji [Research Reactor Institute, Kyoto University, Kumatori-cho, Osaka, 590-0494 Japan (Japan)

    2010-07-15

    Iodine-131 (physical half-life: 8.04 days) was detected in brown algae collected off the Japanese coast. Brown algae have been extensively used as bioindicators for radioiodine because of their ability to accumulate radionuclides in high concentration factors. The maximum measured specific activity of {sup 131}I in brown algae was 0.37 {+-} 0.010 Bq/kg-wet. Cesium-137 was also detected in all brown algal samples used in this study. There was no correlation between specific activities of {sup 131}I and {sup 137}Cs in these seaweeds. The specific activity of {sup 137}Cs ranged from 0.0034 {+-} 0.00075 to 0.090 {+-} 0.014 Bq/kg-wet. Low specific activity and minimal variability of {sup 137}Cs in brown algae indicated that past nuclear weapon tests were the source of {sup 137}Cs. Although nuclear power stations and nuclear fuel reprocessing plants are known to be pollution sources of {sup 131}I, there was no relationship between the sites where {sup 131}I was detected and the locations of nuclear power facilities. Most of the sites where {sup 131}I was detected were near big cities with large populations. Iodine-131 is frequently used in diagnostic and therapeutic nuclear medicine. On the basis of the results, we suggest that the likely pollution source of {sup 131}I, detected in brown seaweeds, is not nuclear power facilities, but nuclear medicine procedures.

  13. Antibacterial substances from marine algae isolated from Jeddah coast of Red sea, Saudi Arabia.

    Science.gov (United States)

    Al-Saif, Sarah Saleh Abdu-Llah; Abdel-Raouf, Nevein; El-Wazanani, Hend A; Aref, Ibrahim A

    2014-01-01

    Marine algae are known to produce a wide variety of bioactive secondary metabolites and several compounds have been derived from them for prospective development of novel drugs by the pharmaceutical industries. However algae of the Red sea have not been adequately explored for their potential as a source of bioactive substances. In this context Ulva reticulata, Caulerpa occidentalis, Cladophora socialis, Dictyota ciliolata, and Gracilaria dendroides isolated from Red sea coastal waters of Jeddah, Saudi Arabia, were evaluated for their potential for bioactivity. Extracts of the algae selected for the study were prepared using ethanol, chloroform, petroleum ether and water, and assayed for antibacterial activity against Escherichia coli ATCC 25322, Pseudomonas aeruginosa ATCC 27853, Stapylococcus aureus ATCC 29213, and Enterococcus faecalis ATCC 29212. It was found that chloroform was most effective followed by ethanol, petroleum ether and water for the preparation of algal extract with significant antibacterial activities, respectively. Results also indicated that the extracts of red alga G. dendroides were more efficient against the tested bacterial strains followed by green alga U. reticulata, and brown algae D. ciliolata. Chemical analyses showed that G. dendroides recorded the highest percentages of the total fats and total proteins, followed by U. reticulata, and D. ciliolate. Among the bioflavonoids determined Rutin, Quercetin and Kaempherol were present in high percentages in G. dendroides, U. reticulata, and D. ciliolate. Estimation of saturated and unsaturated fatty acids revealed that palmitic acid was present in highest percentage in all the algal species analyzed. Amino acid analyses indicated the presence of free amino acids in moderate contents in all the species of algae. The results indicated scope for utilizing these algae as a source of antibacterial substances.

  14. Laser-fluorescence measurement of marine algae

    Science.gov (United States)

    Browell, E. V.

    1980-01-01

    Progress in remote sensing of algae by laser-induced fluorescence is subject of comprehensive report. Existing single-wavelength and four-wavelength systems are reviewed, and new expression for power received by airborne sensor is derived. Result differs by as much as factor of 10 from those previously reported. Detailed error analysis evluates factors affecting accuracy of laser-fluorosensor systems.

  15. Cycloartane triterpenes from marine green alga Cladophora fascicularis

    Institute of Scientific and Technical Information of China (English)

    HUANG Xinping; ZHU Xiaobin; DENG Liping; DENG Zhiwei; LIN Wenhan

    2006-01-01

    Six cycloartanes were isolated from ethanol extract of marine green alga Cladophora fascicularis by column chromatography. Procedure of isolation and description of these compounds are given in this paper. The structures were elucidated as (1). 24-hydroperoxycycloart-25- en-3β-ol; (2).cycloart-25-en-3β 24-diol; (3). 25-hydroperoxycycloart-23-en-3β-ol; (4). cycloart-23-en-3β, 25-diol; (5).cycloart-23, 25-dien-3β-ol; and (6). cycloart-24-en-3β-ol by spectroscopic (MS, 1D and 2D NMR) data analysis. Cycloartane derivatives are widely distributed in terrestrial plants, but only few were obtained in the alga. All these compounds that have been isolated from terrestrial plants, were found in the marine alga for the first time.

  16. Cycloartane triterpenes from marine green alga Cladophora fascicularis

    Science.gov (United States)

    Huang, Xinping; Zhu, Xiaobin; Deng, Liping; Deng, Zhiwei; Lin, Wenhan

    2006-12-01

    Six cycloartanes were isolated from ethanol extract of marine green alga Cladophora fascicularis by column chromatography. Procedure of isolation and description of these compounds are given in this paper. The structures were elucidated as (1). 24-hydroperoxycycloart-25- en-3β-ol; (2). cycloart-25-en-3β 24-diol; (3). 25-hydroperoxycycloart-23-en-3β-ol; (4). cycloart-23-en-3β, 25-diol; (5). cycloart-23, 25-dien-3β-ol; and (6). cycloart-24-en-3β-ol by spectroscopic (MS, ID and 2D NMR) data analysis. Cycloartane derivatives are widely distributed in terrestrial plants, but only few were obtained in the alga. All these compounds that have been isolated from terrestrial plants, were found in the marine alga for the first time.

  17. Bioactivity of marine organisms. Part 3. Screening of marine algae of Indian coast for biological activity

    Digital Repository Service at National Institute of Oceanography (India)

    Kamat, S.Y.; Wahidullah, S.; Naik, C.G.; DeSouza, L.; Jayasree, V.; Ambiye, V.; Bhakuni, D.S.; Goel, A.K.; Garg, H.S.; Srimal, R.C.

    Ethanolic extracts from Indian marine algae have been tested for anti-viral, anti-bacterial, anti-fungal, anti-fertility, hypoglycaemic and a wide range of pharmacological activities. Of 34 species investigated 17 appeared biologically active. Six...

  18. Bioactivity of marine organisms. Part 3. Screening of marine algae of Indian coast for biological activity

    Digital Repository Service at National Institute of Oceanography (India)

    Kamat, S.Y.; Wahidullah, S.; Naik, C.G.; DeSouza, L.; Jayasree, V.; Ambiye, V.; Bhakuni, D.S.; Goel, A.K.; Garg, H.S.; Srimal, R.C.

    Ethanolic extracts from Indian marine algae have been tested for anti-viral, anti-bacterial, anti-fungal, anti-fertility, hypoglycaemic and a wide range of pharmacological activities. Of 34 species investigated 17 appeared biologically active. Six...

  19. Using the marine unicellular algae in biological monitoring

    Directory of Open Access Journals (Sweden)

    Kapkov V. I.

    2017-06-01

    Full Text Available The possibility of using marine unicellular algae from natural plankton community in biomonitoring of pollution by heavy metals has been investigated. Algae of different taxa from the Mediterranean Sea have been allocated to culture. In the laboratory the culture conditions – i. e. growth medium, temperature, photoperiod, level of artificial light and initial density – have been selected for every species. The impact of heavy metals (Hg, Cd, Cu, Pb in the form of chloride salts on the growth of axenic algae culture has been studied in the modelling experiments. The unicellular marine algae have a very short life cycle, therefore it is possible to use them in the experiments of studying the effect of anthropogenic factors at cellular and population levels on the test-object. With biomonitoring pollution of marine environment by heavy metals and others dangerous toxicants, the major indicators of algae community condition are the cellular cycle and the condition of the photosynthetic apparatus of the cell. The subsequent lysis of cells under the influence of heavy metals leads to the excretion of secondary metabolites which can essentially affect the metal toxicity. The established scales of threshold and lethal concentration of heavy metals for algae of different taxon make it possible to use the ratio of sensitive and resistant species to heavy metals as biological markers when forecasting ecological consequences of pollution of the marine environment by heavy metals. Distinctions in the resistance of different taxon to heavy metals can result in implementing the strategy of selection of test-objects depending on the purposes of the research.

  20. Marine polysaccharides from algae with potential biomedical applications.

    Science.gov (United States)

    de Jesus Raposo, Maria Filomena; de Morais, Alcina Maria Bernardo; de Morais, Rui Manuel Santos Costa

    2015-05-15

    There is a current tendency towards bioactive natural products with applications in various industries, such as pharmaceutical, biomedical, cosmetics and food. This has put some emphasis in research on marine organisms, including macroalgae and microalgae, among others. Polysaccharides with marine origin constitute one type of these biochemical compounds that have already proved to have several important properties, such as anticoagulant and/or antithrombotic, immunomodulatory ability, antitumor and cancer preventive, antilipidaemic and hypoglycaemic, antibiotics and anti-inflammatory and antioxidant, making them promising bioactive products and biomaterials with a wide range of applications. Their properties are mainly due to their structure and physicochemical characteristics, which depend on the organism they are produced by. In the biomedical field, the polysaccharides from algae can be used in controlled drug delivery, wound management, and regenerative medicine. This review will focus on the biomedical applications of marine polysaccharides from algae.

  1. Marine Polysaccharides from Algae with Potential Biomedical Applications

    Directory of Open Access Journals (Sweden)

    Maria Filomena de Jesus Raposo

    2015-05-01

    Full Text Available There is a current tendency towards bioactive natural products with applications in various industries, such as pharmaceutical, biomedical, cosmetics and food. This has put some emphasis in research on marine organisms, including macroalgae and microalgae, among others. Polysaccharides with marine origin constitute one type of these biochemical compounds that have already proved to have several important properties, such as anticoagulant and/or antithrombotic, immunomodulatory ability, antitumor and cancer preventive, antilipidaemic and hypoglycaemic, antibiotics and anti-inflammatory and antioxidant, making them promising bioactive products and biomaterials with a wide range of applications. Their properties are mainly due to their structure and physicochemical characteristics, which depend on the organism they are produced by. In the biomedical field, the polysaccharides from algae can be used in controlled drug delivery, wound management, and regenerative medicine. This review will focus on the biomedical applications of marine polysaccharides from algae.

  2. Identification of chemical structure and free radical scavenging activity of diphlorethohydroxycarmalol isolated from a brown alga, Ishige okamurae.

    Science.gov (United States)

    Heo, Soo-Jin; Kim, Jong-Pyung; Jung, Won-Kyo; Lee, Nam-Ho; Kang, Hahk-Soo; Jun, Eun-Mi; Park, Soon-Hye; Kang, Sung-Myung; Lee, Young-Jae; Park, Pyo-Jam; Jeon, You-Jin

    2008-04-01

    To obtain a natural antioxidant from a marine biomass, this study investigated the antioxidative activity of methanolic extracts from the marine brown alga, Ishige okamurae collected off Jeju Island. A potent free radical scavenging activity was detected in the ethyl acetate fraction containing polyphenolic compounds, and the potent antioxidant elucidated as a kind of phlorotannin, diphlorethohydroxycarmalol, by NMR and mass spectroscopic data. The free radical scavenging activities of the diphlorethohydroxycarmalol were investigated in relation to 1,1-diphenyl-2-picrylhydrazyl (DPPH), alkyl, and hydroxyl radicals using an electron spin resonance (ESR) system. The diphlorethohydroxycarmalol was found to scavenge DPPH (IC50=3.41 microM) and alkyl (IC50=4.92 microM) radicals more effectively than the commercial antioxidant, ascorbic acid. Therefore, these results present diphlorethohydroxycarmalol as a new phlorotannin with a potent antioxidative activity that could be useful in cosmetics, foods, and pharmaceuticals.

  3. Growth and grazing on the 'Texas brown tide' alga Aureoumbra lagunensis by the tintinnid Amphorides quadrilineata

    DEFF Research Database (Denmark)

    Jakobsen, Hans Henrik; Hyatt, C.; Buskey, E.J.

    2001-01-01

    Growth and ingestion by the loricate ciliate Amphorides quadrilineata exposed to increasing dietary doses of the Texas brown tide alga Aureoumbra lagunensis were investigated. The ciliate grew at a maximum rate of 0.38 d(-1), ingesting 0.032 ppm (similar to6.4 x 10(2) cells) prey d(-1) on a diet...

  4. Development and characterization of 35 single nucleotide polymorphism markers for the brown alga Fucus vesiculosus

    NARCIS (Netherlands)

    Canovas, Fernando; Mota, Catarina; Ferreira-Costa, Joana; Serrao, Ester; Coyer, Jim; Olsen, Jeanine; Pearson, Gareth

    2011-01-01

    We characterized 35 single nucleotide polymorphism (SNP) markers for the brown alga Fucus vesiculosus. Based on existing Fucus Expressed Sequence Tag libraries for heat and desiccation-stressed tissue, SNPs were developed and confirmed by re-sequencing cDNA from a diverse panel of individuals. SNP l

  5. Development and characterization of 35 single nucleotide polymorphism markers for the brown alga Fucus vesiculosus

    NARCIS (Netherlands)

    Canovas, Fernando; Mota, Catarina; Ferreira-Costa, Joana; Serrao, Ester; Coyer, Jim; Olsen, Jeanine; Pearson, Gareth

    2011-01-01

    We characterized 35 single nucleotide polymorphism (SNP) markers for the brown alga Fucus vesiculosus. Based on existing Fucus Expressed Sequence Tag libraries for heat and desiccation-stressed tissue, SNPs were developed and confirmed by re-sequencing cDNA from a diverse panel of individuals. SNP

  6. Development and characterization of 35 single nucleotide polymorphism markers for the brown alga Fucus vesiculosus

    NARCIS (Netherlands)

    Canovas, Fernando; Mota, Catarina; Ferreira-Costa, Joana; Serrao, Ester; Coyer, Jim; Olsen, Jeanine; Pearson, Gareth

    2011-01-01

    We characterized 35 single nucleotide polymorphism (SNP) markers for the brown alga Fucus vesiculosus. Based on existing Fucus Expressed Sequence Tag libraries for heat and desiccation-stressed tissue, SNPs were developed and confirmed by re-sequencing cDNA from a diverse panel of individuals. SNP l

  7. Extraction and Identification of Phlorotannins from the Brown Alga, Sargassum fusiforme (Harvey) Setchell

    Science.gov (United States)

    Li, Yajing; Fu, Xiaoting; Duan, Delin; Liu, Xiaoyong; Xu, Jiachao; Gao, Xin

    2017-01-01

    Phlorotannins are a group of complex polymers of phloroglucinol (1,3,5-trihydroxybenzene), which are unique compounds from marine brown algae. In our present study, a procedure for extraction and enrichment of phlorotannins from S. fusiforme with highly antioxidant potentials was established. After comparison of different extraction methods, the optimal extraction conditions were established as follows. The freeze-dried seaweed powder was extracted with 30% ethanol-water solvent with a solid/liquid ratio of 1:5 at temperature of 25 °C for 30 min. After extraction, the phlorotannins were fractioned by different solvents, among which the ethyl acetate fraction exhibited both the highest total phlorotannin content (88.48 ± 0.30 mg PGE/100 mg extract) and the highest antioxidant activities. The extracts obtained from these locations were further purified and characterized using a modified UHPLC-QQQ-MS method. Compounds with 42 different molecular weights were detected and tentatively identified, among which the fuhalol-type phlorotannins were the dominant compounds, followed by phlorethols and fucophlorethols with diverse degree of polymerization. Eckol-type phlorotannins including some newly discovered carmalol derivatives were detected in Sargassum species for the first time. Our study not only described the complex phlorotannins composition in S. fusiforme, but also highlighted the challenges involved in structural elucidation of these compounds. PMID:28230766

  8. Dolabelladienols A–C, New Diterpenes Isolated from Brazilian Brown Alga Dictyota pfaffii

    Directory of Open Access Journals (Sweden)

    Alonso Pardo-Vargas

    2014-07-01

    Full Text Available The marine brown alga Dictyota pfaffii from Atol das Rocas, in Northeast Brazil is a rich source of dolabellane diterpene, which has the potential to be used in future antiviral drugs by inhibiting reverse transcriptase (RT of HIV-1. Reexamination of the minor diterpene constituents yielded three new dolabellane diterpenes, (1R*,2E,4R*,7S,10S*,11S*,12R*10,18-diacetoxy-7-hydroxy-2,8(17-dolabelladiene (1, (1R*,2E,4R*,7R*,10S*,11S*,12R*10,18-diacetoxy-7-hydroxy-2,8(17-dolabelladiene (2, (1R*,2E,4R*,8E,10S*,11S,12R*10,18-diacetoxy-7-hydroxy-2,8-dolabelladiene (3, termed dolabelladienols A–C (1–3 respectively, in addition to the known dolabellane diterpenes (4–6. The elucidation of the compounds 1–3 was assigned by 1D and 2D NMR, MS, optical rotation and molecular modeling, along with the relative configuration of compound 4 and the absolute configuration of 5 by X-ray diffraction. The potent anti-HIV-1 activities displayed by compounds 1 and 2 (IC50 = 2.9 and 4.1 μM, which were more active than even the known dolabelladienetriol 4, and the low cytotoxic activity against MT-2 lymphocyte tumor cells indicated that these compounds are promising anti-HIV-1 agents.

  9. Dolabelladienols A–C, New Diterpenes Isolated from Brazilian Brown Alga Dictyota pfaffii

    Science.gov (United States)

    Pardo-Vargas, Alonso; Oliveira, Ingrid de Barcelos; Stephens, Paulo Roberto Soares; Cirne-Santos, Claudio Cesar; Paixão, Izabel Christina Nunes de Palmer; Ramos, Freddy Alejandro; Jiménez, Carlos; Rodríguez, Jaime; Resende, Jackson Antonio Lamounier Camargos; Teixeira, Valeria Laneuville; Castellanos, Leonardo

    2014-01-01

    The marine brown alga Dictyota pfaffii from Atol das Rocas, in Northeast Brazil is a rich source of dolabellane diterpene, which has the potential to be used in future antiviral drugs by inhibiting reverse transcriptase (RT) of HIV-1. Reexamination of the minor diterpene constituents yielded three new dolabellane diterpenes, (1R*,2E,4R*,7S,10S*,11S*,12R*)10,18-diacetoxy-7-hydroxy-2,8(17)-dolabelladiene (1), (1R*,2E,4R*,7R*,10S*,11S*,12R*)10,18-diacetoxy-7-hydroxy-2,8(17)-dolabelladiene (2), (1R*,2E,4R*,8E,10S*,11S,12R*)10,18-diacetoxy-7-hydroxy-2,8-dolabelladiene (3), termed dolabelladienols A–C (1–3) respectively, in addition to the known dolabellane diterpenes (4–6). The elucidation of the compounds 1–3 was assigned by 1D and 2D NMR, MS, optical rotation and molecular modeling, along with the relative configuration of compound 4 and the absolute configuration of 5 by X-ray diffraction. The potent anti-HIV-1 activities displayed by compounds 1 and 2 (IC50 = 2.9 and 4.1 μM), which were more active than even the known dolabelladienetriol 4, and the low cytotoxic activity against MT-2 lymphocyte tumor cells indicated that these compounds are promising anti-HIV-1 agents. PMID:25056631

  10. Dolabelladienols A-C, new diterpenes isolated from Brazilian brown alga Dictyota pfaffii.

    Science.gov (United States)

    Pardo-Vargas, Alonso; de Barcelos Oliveira, Ingrid; Stephens, Paulo Roberto Soares; Cirne-Santos, Claudio Cesar; de Palmer Paixão, Izabel Christina Nunes; Ramos, Freddy Alejandro; Jiménez, Carlos; Rodríguez, Jaime; Resende, Jackson Antonio Lamounier Camargos; Teixeira, Valeria Laneuville; Castellanos, Leonardo

    2014-07-23

    The marine brown alga Dictyota pfaffii from Atol das Rocas, in Northeast Brazil is a rich source of dolabellane diterpene, which has the potential to be used in future antiviral drugs by inhibiting reverse transcriptase (RT) of HIV-1. Reexamination of the minor diterpene constituents yielded three new dolabellane diterpenes, (1R*,2E,4R*,7S,10S*,11S*,12R*)10,18-diacetoxy-7-hydroxy-2,8(17)-dolabelladiene (1), (1R*,2E,4R*,7R*,10S*,11S*,12R*)10,18-diacetoxy-7-hydroxy-2,8(17)-dolabelladiene (2), (1R*,2E,4R*,8E,10S*,11S,12R*)10,18-diacetoxy-7-hydroxy-2,8-dolabelladiene (3), termed dolabelladienols A-C (1-3) respectively, in addition to the known dolabellane diterpenes (4-6). The elucidation of the compounds 1-3 was assigned by 1D and 2D NMR, MS, optical rotation and molecular modeling, along with the relative configuration of compound 4 and the absolute configuration of 5 by X-ray diffraction. The potent anti-HIV-1 activities displayed by compounds 1 and 2 (IC50 = 2.9 and 4.1 μM), which were more active than even the known dolabelladienetriol 4, and the low cytotoxic activity against MT-2 lymphocyte tumor cells indicated that these compounds are promising anti-HIV-1 agents.

  11. 4-Acetoxydolastane Diterpene from the Brazilian Brown Alga Canistrocarpus cervicornis as Antileishmanial Agent

    Directory of Open Access Journals (Sweden)

    Elizandra Aparecida Britta

    2011-11-01

    Full Text Available Natural marine products have shown an interesting array of diverse and novel chemical structures with potent biological activities. Our study reports the antiproliferative assays of crude extracts, fraction and pure compound (4R,9S,14S-4α-acetoxy-9β,14α-dihydroxydolast-1(15,7-diene (1 obtained from brown alga Canistrocarpus cervicornis showing the antileishmanial activity. We showed that 1 had a dose-dependent activity during 72 h of treatment, exhibiting IC50 of 2.0 µg/mL, 12.0 µg/mL, and 4.0 µg/mL for promastigote, axenic amastigote and intracellular amastigote forms of Leishmania amazonensis, respectively. A cytotoxicity assay showed that the action of the isolated compound 1 was 93.0 times less toxic to the macrophage than to the protozoan. Additionally, compound 1 induced ultrastructural changes, including extensive mitochondrial damage; decrease in Rh123 fluorescence, suggesting interference with the mitochondrial membrane potential; and lipid peroxidation in parasite cells. The use of 1 from C. cervicornis against L. amazonensis parasites might be of great interest as a future alternative to the development of new antileishmanial drugs.

  12. 4-Acetoxydolastane Diterpene from the Brazilian Brown Alga Canistrocarpus cervicornis as Antileishmanial Agent

    Science.gov (United States)

    dos Santos, Adriana Oliveira; Britta, Elizandra Aparecida; Bianco, Everson Miguel; Ueda-Nakamura, Tania; Filho, Benedito Prado Dias; Pereira, Renato Crespo; Nakamura, Celso Vataru

    2011-01-01

    Natural marine products have shown an interesting array of diverse and novel chemical structures with potent biological activities. Our study reports the antiproliferative assays of crude extracts, fraction and pure compound (4R,9S,14S)-4α-acetoxy-9β,14α-dihydroxydolast-1(15),7-diene (1) obtained from brown alga Canistrocarpus cervicornis showing the antileishmanial activity. We showed that 1 had a dose-dependent activity during 72 h of treatment, exhibiting IC50 of 2.0 μg/mL, 12.0 μg/mL, and 4.0 μg/mL for promastigote, axenic amastigote and intracellular amastigote forms of Leishmania amazonensis, respectively. A cytotoxicity assay showed that the action of the isolated compound 1 was 93.0 times less toxic to the macrophage than to the protozoan. Additionally, compound 1 induced ultrastructural changes, including extensive mitochondrial damage; decrease in Rh123 fluorescence, suggesting interference with the mitochondrial membrane potential; and lipid peroxidation in parasite cells. The use of 1 from C. cervicornis against L. amazonensis parasites might be of great interest as a future alternative to the development of new antileishmanial drugs. PMID:22163190

  13. Phycobiliproteins: A Novel Green Tool from Marine Origin Blue-Green Algae and Red Algae.

    Science.gov (United States)

    Chandra, Rashmi; Parra, Roberto; Iqbal, Hafiz M N

    2017-01-01

    Marine species are comprising about a half of the whole global biodiversity; the sea offers an enormous resource for novel bioactive compounds. Several of the marine origin species show multifunctional bioactivities and characteristics that are useful for a discovery and/or reinvention of biologically active compounds. For millennia, marine species that includes cyanobacteria (blue-green algae) and red algae have been targeted to explore their enormous potential candidature status along with a wider spectrum of novel applications in bio- and non-bio sectors of the modern world. Among them, cyanobacteria are photosynthetic prokaryotes, phylogenetically a primitive group of Gramnegative prokaryotes, ranging from Arctic to Antarctic regions, capable of carrying out photosynthesis and nitrogen fixation. In the recent decade, a great deal of research attention has been paid on the pronouncement of bio-functional proteins along with novel peptides, vitamins, fine chemicals, renewable fuel and bioactive compounds, e.g., phycobiliproteins from marine species, cyanobacteria and red algae. Interestingly, they are extensively commercialized for natural colorants in food and cosmetics, antimicrobial, antioxidant, anti-inflammatory, neuroprotective, hepatoprotective agents and fluorescent neo-glycoproteins as probes for single particle fluorescence imaging fluorescent applications in clinical and immunological analysis. However, a comprehensive knowledge and technological base for augmenting their commercial utilities are lacking. Therefore, this paper will provide an overview of the phycobiliproteins-based research literature from marine cyanobacteria and red algae. This review is also focused towards analyzing global and commercial activities with application oriented-based research. Towards the end, the information is also given on the potential biotechnological and biomedical applications of phycobiliproteins. Copyright© Bentham Science Publishers; For any queries, please

  14. Study on the concentration and seasonal variation of inorganic elements in 35 species of marine algae

    DEFF Research Database (Denmark)

    Hou, Xiaolin; Yan, X.J.

    1998-01-01

    The concentrations of five major and 28 trace elements in 35 marine algae collected along the coast of China were determined by instrumental neutron activation analysis. The concentrations of halogens, rare earth elements and many transition metal elements in marine algae are remarkably higher than...... those in terrestrial plants. The concentration factors for 31 elements in all collected algae were calculated, those for tri- and tetra-valent elements were higher than those of the mono- and di-valent elements in marine algae. The biogeochemical characteristics of inorganic elements in marine algae...

  15. Characterization of GDP-mannose dehydrogenase from the brown alga Ectocarpus siliculosus providing the precursor for the alginate polymer.

    Science.gov (United States)

    Tenhaken, Raimund; Voglas, Elena; Cock, J Mark; Neu, Volker; Huber, Christian G

    2011-05-13

    Alginate is a major cell wall polymer of brown algae. The precursor for the polymer is GDP-mannuronic acid, which is believed to be derived from a four-electron oxidation of GDP-mannose through the enzyme GDP-mannose dehydrogenase (GMD). So far no eukaryotic GMD has been biochemically characterized. We have identified a candidate gene in the Ectocarpus siliculosus genome and expressed it as a recombinant protein in Escherichia coli. The GMD from Ectocarpus differs strongly from related enzymes in bacteria and is as distant to the bacterial proteins as it is to the group of UDP-glucose dehydrogenases. It lacks the C-terminal ∼120 amino acid domain present in bacterial GMDs, which is believed to be involved in catalysis. The GMD from brown algae is highly active at alkaline pH and contains a catalytic Cys residue, sensitive to heavy metals. The product GDP-mannuronic acid was analyzed by HPLC and mass spectroscopy. The K(m) for GDP-mannose was 95 μM, and 86 μM for NAD(+). No substrate other than GDP-mannose was oxidized by the enzyme. In gel filtration experiments the enzyme behaved as a dimer. The Ectocarpus GMD is stimulated by salts even at low molar concentrations as a possible adaptation to marine life. It is rapidly inactivated at temperatures above 30 °C.

  16. Potential anti-inflammatory natural products from marine algae.

    Science.gov (United States)

    Fernando, I P Shanura; Nah, Jae-Woon; Jeon, You-Jin

    2016-12-01

    Inflammatory diseases have become one of the leading causes of health issue throughout the world, having a considerable influence on healthcare costs. With the emerging developments in natural product, synthetic and combinatorial chemistry, a notable success has been achieved in discovering natural products and their synthetic structural analogs with anti-inflammatory activity. However, many of these therapeutics have indicated detrimental side effects upon prolonged usage. Marine algae have been identified as an underexplored reservoir of unique anti-inflammatory compounds. These include polyphenols, sulfated polysaccharides, terpenes, fatty acids, proteins and several other bioactives. Consumption of these marine algae could provide defense against the pathophysiology of many chronic inflammatory diseases. With further investigation, algal anti-inflammatory phytochemicals have the potential to be used as therapeutics or in the synthesis of structural analogs with profound anti-inflammatory activity with reduced side effects. The current review summarizes the latest knowledge about the potential anti-inflammatory compounds discovered from marine algae. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Characterization of Phlorotannins from Brown Algae by LC-HRMS.

    Science.gov (United States)

    Melanson, Jeremy E; MacKinnon, Shawna L

    2015-01-01

    Phlorotannins are a class of polyphenols found in brown seaweeds that have significant potential for use as therapeutics, owing to their wide range of bioactivities. Molecular characterization of phlorotannin-enriched extracts is challenging due to the extreme sample complexity and the wide range of molecular weights observed. Herein, we describe a method for characterizing phlorotannins employing ultrahigh-pressure liquid chromatography (UHPLC) operating in hydrophilic interaction liquid chromatography (HILIC) mode combined with high-resolution mass spectrometry (HRMS).

  18. Physical characteristic of brown algae (Phaeophyta from madura strait as irreversible hydrocolloid impression material

    Directory of Open Access Journals (Sweden)

    Prihartini Widiyanti

    2012-09-01

    Full Text Available Background: Brown algae is a raw material for producing natrium alginates. One type of brown algae is Sargassum sp, a member of Phaeophyta division. Sargassum sp could be found in Madura strait Indonesia. Natrium alginate can be extracted from Sargassum sp. The demand of alginate in Indonesia is mainly fulfilled from abroad, meanwhile Sargassum sp is abundantly available. Purpose: The purpose of study were to explore the potency of brown alga Sargassum sp from Madura strait as hydrocolloid impression material and to examine its physical characteristic. Methods: The methods of research including extraction natrium alginate from Sargassum sp, synthesis of dental impression material and the test of porosity, density, viscosity, and water content of impression material which fulfilled the standard of material used in clinical application in dentistry. Results: Extraction result of Sargassum sp was natrium alginate powder with cream colour, odorless, and water soluble. The water content of natrium alginate was 21.64% and the viscosity was 0.7 cPs. The best porosity result in the sample with the addition of trinatrium phosphate 4% was 3.61%. Density value of impression material was 3 gr/cm3. Conclusion: The research suggested that brown algae Sargassum sp from Madura strait is potential as hydrocolloid impression material, due to its physical properties which close to dental impression material, but still need further research to optimize the physical characteristic.Latar belakang: Alga coklat adalah sumber bahan baku material natrium alginat. Salah satu jenis alga coklat adalah Sargassum sp yang merupakan anggota divisi Phaeophyta. Sargassum sp dapat ditemukan di Selat Madura Indonesia. Natrium alginat dapat diekstraksi dari Sargassum sp. Kebutuhan akan bahan ini di Indonesia sebagian besar dipenuhi dari impor, padahal ketersediaan Sargassum sp di Indonesia sangat melimpah. Tujuan: Penelitian ini bertujuan untuk mengeksplorasi potensi alga coklat

  19. New data about optic properties of biominerals from some brown algae Undaria pinnatifida and Laminaria japonica

    Science.gov (United States)

    Pamirsky, I. E.; Chung, G.; Gutnikov, S. A.; Golokhvast, K. S.

    2016-11-01

    For the first time we made an attempt to study morphological types of phytoliths in the same species of multicellular brown algae (Undaria pinnatifida, Laminaria japonica) growing in different locations. However, in all samples only shapeless silicon dioxide particles were found. Some of them had rough edges, the other had smooth edges. We assume that the rough-edged shapeless phytolithes were formed within cells and smooth-edged - in the intercellular space. Verification of this assumption needs confirmation by detection of similar structures in the tissues of live algae.

  20. Complete mitochondrial genomes of the three brown algae (Heterokonta : Phaeophyceae) Dictyota dichotoma, Fucus vesiculosus and Desmarestia viridis

    NARCIS (Netherlands)

    Secq, MPO; Goer, SL; Stam, WT; Olsen, JL; Oudot-LeSecq, M.-P.

    2006-01-01

    We report the complete mitochondrial sequences of three brown algae (Dictyota dichotoma, Fucus vesiculosus and Desmarestia viridis) belonging to three phaeophycean lineages. They have circular mapping organization and contain almost the same set of mitochondrial genes, despite their size differences

  1. Complete mitochondrial genomes of the three brown algae (Heterokonta : Phaeophyceae) Dictyota dichotoma, Fucus vesiculosus and Desmarestia viridis

    NARCIS (Netherlands)

    Secq, MPO; Goer, SL; Stam, WT; Olsen, JL; Oudot-LeSecq, M.-P.

    We report the complete mitochondrial sequences of three brown algae (Dictyota dichotoma, Fucus vesiculosus and Desmarestia viridis) belonging to three phaeophycean lineages. They have circular mapping organization and contain almost the same set of mitochondrial genes, despite their size differences

  2. Anticoagulant and antithrombotic activities of modified xylofucan sulfate from the brown alga Punctaria plantaginea.

    Science.gov (United States)

    Ustyuzhanina, Nadezhda E; Bilan, Maria I; Gerbst, Alexey G; Ushakova, Natalia A; Tsvetkova, Eugenia A; Dmitrenok, Andrey S; Usov, Anatolii I; Nifantiev, Nikolay E

    2016-01-20

    Selectively and totally sulfated (1 → 3)-linked linear homofucans bearing ∼ 20 monosaccharide residues on average have been prepared from the branched xylofucan sulfate isolated from the brown alga Punctaria plantaginea. Anticoagulant and antithrombotic properties of the parent biopolymer and its derivatives were assessed in vitro. Highly sulfated linear fucan derivatives were shown to inhibit clot formation in APTT assay and ristocetin induced platelets aggregation, while the partially sulfated analogs were inactive. In the experiments with purified proteins, fucan derivatives with degree of sulfation of ∼ 2.0 were found to enhance thrombin and factor Xa inhibition by antithrombin III. The effect of sulfated fucans on thrombin inhibition, which was similar to those of heparinoid Clexane(®) (enoxaparin) and of a fucoidan from the brown alga Saccharina latissima studied previously, can be explained by the multicenter interaction and formation of a ternary complex thrombin-antithrombin III-polysaccharide. The possibility of such complexation was confirmed by computer docking study.

  3. Potential role of marine algae on female health, beauty, and longevity.

    Science.gov (United States)

    Kim, Se-Kwon; Pangestuti, Ratih

    2011-01-01

    Marine environment has been known as a rich source of chemical structures with numerous health benefit effects. Among marine organisms, marine algae have been identified as an underexploited plant resource although they have long been recognized as valuable sources of structurally diverse bioactive compounds. Presently, several lines of studies have provided insight into biological activities of marine algae in promoting female health, beauty, and longevity. Hence, marine algae have a great potential to be used as a part of pharmaceuticals, nutraceuticals, and functional foods. This contribution presents an overview of marine algal potential effect in promoting female health, beauty, and longevity. Copyright © 2011 Elsevier Inc. All rights reserved.

  4. Evaluation of the Genotoxicity and Cytotoxicity of Semipurified Fractions from the Mediterranean Brown Algae, Dictyopteris membranacea

    OpenAIRE

    2016-01-01

    Dictyopteris membranacea, a species of Mediterranean brown algae, is believed to have potential pharmacological and nutritional applications. However, such potentials only make sense when devoid of any adverse health consequences. The present study should be seen in this context. It aimed at evaluating the genotoxicity and cytoxicity of its organic extract (F0) and semi purified fractions (F4, F5, and F6). Extracts were tested using the bacterial Vitotox® test and micronucleus assay in differ...

  5. Biosorption of uranium(VI) from aqueous solution by biomass of brown algae Laminaria japonica.

    Science.gov (United States)

    Lee, K Y; Kim, K W; Baek, Y J; Chung, D Y; Lee, E H; Lee, S Y; Moon, J K

    2014-01-01

    The uranium(VI) adsorption efficiency of non-living biomass of brown algae was evaluated in various adsorption experimental conditions. Several different sizes of biomass were prepared using pretreatment and surface-modification steps. The kinetics of uranium uptake were mainly dependent on the particle size of the prepared Laminaria japonica biosorbent. The optimal particle size, contact time, and injection amount for the stable operation of the wastewater treatment process were determined. Spectroscopic analyses showed that uranium was adsorbed in the porous inside structure of the biosorbent. The ionic diffusivity in the biomass was the dominant rate-limiting factor; therefore, the adsorption rate was significantly increased with decrease of particle size. From the results of comparative experiments using the biosorbents and other chemical adsorbents/precipitants, such as activated carbons, zeolites, and limes, it was demonstrated that the brown algae biosorbent could replace the conventional chemicals for uranium removal. As a post-treatment for the final solid waste reduction, the ignition treatment could significantly reduce the weight of waste biosorbents. In conclusion, the brown algae biosorbent is shown to be a favorable adsorbent for uranium(VI) removal from radioactive wastewater.

  6. The auxin concentration in sixteen Chinese marine algae

    Science.gov (United States)

    Han, Lijun

    2006-09-01

    The author determined the occurrence of indole-3-acetic acid in sixteen Chinese marine algae collected from the east coast of China with fluorescence spectrophotometry (FS) and wheat coleoptile bioanalysis methods (WCB). The concentration of indole-3-acetic acid (IAA) presented was from 1.1 46.9 ng/g Fw (fresh weight) with FS and 5.3 110.2 ng/g Fw with WCB. The results by the two methods were in the orders of 10-3 103 ng/g Fw reported previously from multiple references.

  7. The auxin concentration in sixteen Chinese marine algae

    Institute of Scientific and Technical Information of China (English)

    HAN Lijun

    2006-01-01

    The author determined the occurrence of indole-3-acetic acid in sixteen Chinese marine algae collected from the east coast of China with fluorescence spectrophotometry (FS) and wheat coleoptile bioanalysis methods (WCB). The concentration of indole-3-acetic acid (IAA) presented was from 1.1-46.9 ng/g Fw (fresh weight) with FS and 5.3-110.2 ng/g Fw with WCB. The results by the two methods were in the orders of 10-3-103 ng/g Fw reported previously from multiple references.

  8. [Ecological effect of No.0 diesel water accommodated fraction on marine algae].

    Science.gov (United States)

    Li, Ke-Qiang; Wang, Xiu-Lin; Zhu, Chen-Jian; Shi, Xiao-Yong; Hu, Hai-Yan; Li, Rui-Xiang; Sun, Sheng-Yu

    2007-02-01

    With batch culture experiments in field and laboratory, the ecological effect of No. 0 diesel water accommodated fraction on marine algae was studied. A growth model of marine algae under grazing pressure and a model of growth effect on marine algae with different doses No.0 diesel water accommodated fraction were proposed. Based on the model and experiments, the growth effect of No.0 diesel water accommodated fraction on marine algae was studied. The results show that, the growth model of marine algae under grazing pressure is more suited for the marine ecological system than Logistic model. And the final biomass (B(f)) of marine algae with different doses No.0 diesel water accommodated fraction was calculated by the model with none-linear fitting software. The results also show that, under the field and laboratory conditions, lower doses No.0 diesel water accommodated fraction promotes the growth of marine algae, and the most promoting ratio are 180% and 120% respectively, however, higher doses hardly promotes but bates the growth of marine algae.

  9. Effects of ocean acidification on the brown alga Padina pavonica: decalcification due to acute and chronic events.

    Science.gov (United States)

    Gil-Díaz, Teba; Haroun, Ricardo; Tuya, Fernando; Betancor, Séfora; Viera-Rodríguez, María A

    2014-01-01

    Since the industrial revolution, anthropogenic CO₂ emissions have caused ocean acidification, which particularly affects calcified organisms. Given the fan-like calcified fronds of the brown alga Padina pavonica, we evaluated the acute (short-term) effects of a sudden pH drop due to a submarine volcanic eruption (October 2011-early March 2012) affecting offshore waters around El Hierro Island (Canary Islands, Spain). We further studied the chronic (long-term) effects of the continuous decrease in pH in the last decades around the Canarian waters. In both the observational and retrospective studies (using herbarium collections of P. pavonica thalli from the overall Canarian Archipelago), the percent of surface calcium carbonate coverage of P. pavonica thalli were contrasted with oceanographic data collected either in situ (volcanic eruption event) or from the ESTOC marine observatory data series (herbarium study). Results showed that this calcified alga is sensitive to acute and chronic environmental pH changes. In both cases, pH changes predicted surface thallus calcification, including a progressive decalcification over the last three decades. This result concurs with previous studies where calcareous organisms decalcify under more acidic conditions. Hence, Padina pavonica can be implemented as a bio-indicator of ocean acidification (at short and long time scales) for monitoring purposes over wide geographic ranges, as this macroalga is affected and thrives (unlike strict calcifiers) under more acidic conditions.

  10. Effects of ocean acidification on the brown alga Padina pavonica: decalcification due to acute and chronic events.

    Directory of Open Access Journals (Sweden)

    Teba Gil-Díaz

    Full Text Available Since the industrial revolution, anthropogenic CO₂ emissions have caused ocean acidification, which particularly affects calcified organisms. Given the fan-like calcified fronds of the brown alga Padina pavonica, we evaluated the acute (short-term effects of a sudden pH drop due to a submarine volcanic eruption (October 2011-early March 2012 affecting offshore waters around El Hierro Island (Canary Islands, Spain. We further studied the chronic (long-term effects of the continuous decrease in pH in the last decades around the Canarian waters. In both the observational and retrospective studies (using herbarium collections of P. pavonica thalli from the overall Canarian Archipelago, the percent of surface calcium carbonate coverage of P. pavonica thalli were contrasted with oceanographic data collected either in situ (volcanic eruption event or from the ESTOC marine observatory data series (herbarium study. Results showed that this calcified alga is sensitive to acute and chronic environmental pH changes. In both cases, pH changes predicted surface thallus calcification, including a progressive decalcification over the last three decades. This result concurs with previous studies where calcareous organisms decalcify under more acidic conditions. Hence, Padina pavonica can be implemented as a bio-indicator of ocean acidification (at short and long time scales for monitoring purposes over wide geographic ranges, as this macroalga is affected and thrives (unlike strict calcifiers under more acidic conditions.

  11. Contribution of arsenic species in unicellular algae to the cycling of arsenic in marine ecosystems.

    Science.gov (United States)

    Duncan, Elliott G; Maher, William A; Foster, Simon D

    2015-01-06

    This review investigates the arsenic species produced by and found in marine unicellular algae to determine if unicellular algae contribute to the formation of arsenobetaine (AB) in higher marine organisms. A wide variety of arsenic species have been found in marine unicellular algae including inorganic species (mainly arsenate--As(V)), methylated species (mainly dimethylarsenate (DMA)), arsenoribosides (glycerol, phosphate, and sulfate) and metabolites (dimethylarsenoethanol (DMAE)). Subtle differences in arsenic species distributions exist between chlorophyte and heterokontophyte species with As(V) commonly found in water-soluble cell fractions of chlorophyte species, while DMA is more common in heterokontophyte species. Additionally, different arsenoriboside species are found in each phyla with glycerol and phosphate arsenoribosides produced by chlorophytes, whereas glycerol, phosphate, and sulfate arsenoribosides are produced by heterokontophytes, which is similar to existing data for marine macro-algae. Although arsenoribosides are the major arsenic species in many marine unicellular algal species, AB has not been detected in unicellular algae which supports the hypothesis that AB is formed in marine animals via the ingestion and further metabolism of arsenoribosides. The observation of significant DMAE concentrations in some unicellular algal cultures suggests that unicellular algae-based detritus contains arsenic species that can be further metabolized to form AB in higher marine organisms. Future research establishing how environmental variability influences the production of arsenic species by marine unicellular algae and what effect this has on arsenic cycling within marine food webs is essential to clarify the role of these organisms in marine arsenic cycling.

  12. Recomendations concerning technical research and development with the purpose to industrially exploit marine algae

    Energy Technology Data Exchange (ETDEWEB)

    Hahn-Haegerdal, B.

    1980-10-01

    This report formulates a proposal for a program for technical research and development concerning use of Marine algae.The report is based on a retrospective literature search, an inquiry to potential algae users and producers in Sweden, visits to and correspondence with scientists and industries in Sweden and abroad. Technical research and development concerning marine algae is needed within the following fields: -Development of new sorts of algae offering resistance to parasite and disease adoptation to cultivation and har- vesting systems,and high-yielding concerning technically interesting components. -Development of suitable cultivation systems for Swedish conditions. -Co-cultivation of fish, mussels, oysters and crustaceans with algae. -Development of harvesting systems. -Methane rotting. -Fatty acid/hydrocarbon production as an alternative to methane rotting. -Physical-chemical properties of marine polysaccharides in relation to their technical properties. -Marine algae as fodder supplement.

  13. Marine algae as attractive source to skin care.

    Science.gov (United States)

    Berthon, Jean-Yves; Nachat-Kappes, Rachida; Bey, Mathieu; Cadoret, Jean-Paul; Renimel, Isabelle; Filaire, Edith

    2017-06-01

    As the largest organ in the human body, the skin has multiple functions of which one of the most important is the protection against various harmful stressors. The keratinised stratified epidermis and an underlying thick layer of collagen-rich dermal connective tissues are important components of the skin. The environmental stressors such as ultraviolet radiation (UVR) and pollution increase the levels of reactive oxygen species (ROS), contributing to clinical manifestations such as wrinkle formation and skin aging. Skin aging is related to the reduction of collagen production and decrease of several enzymatic activities including matrix metalloproteinases (MMPs), which degrade collagen structure in the dermis; and tissue inhibitor of metalloproteinases (TIMPs), which inhibit the action of MMPs. In addition to alterations of DNA, signal transduction pathways, immunology, UVR, and pollution activate cell surface receptors of keratinocytes and fibroblasts in the skin. This action leads to a breakdown of collagen in the extracellular matrix and a shutdown of new collagen synthesis. Therefore, an efficient antioxidants strategy is of major importance in dermis and epidermis layers. Marine resources have been recognised for their biologically active substances. Among these, marine algae are rich-sources of metabolites, which can be used to fight against oxidative stress and hence skin aging. These metabolites include, among others, mycosporine-like amino acids (MAAs), polysaccharides, sulphated polysaccharides, glucosyl glycerols, pigments, and polyphenols. This paper reviews the role of oxidative processes in skin damage and the action of the compounds from algae on the physiological processes to maintain skin health.

  14. A novel antihypertension agent, sargachromenol D from marine brown algae, Sargassum siliquastrum, exerts dual action as an L-type Ca(2+) channel blocker and endothelin A/B2 receptor antagonist.

    Science.gov (United States)

    Park, Byong-Gon; Shin, Woon-Seob; Oh, Sangtae; Park, Gab-Man; Kim, Nam Ik; Lee, Seokjoon

    2017-09-01

    We isolated the novel vasoactive marine natural products, (5E,10E)-14-hydroxy-2,6,10-trimethylpentadeca-5,10-dien-4-one (4) and sargachromenol D (5), from Sargassum siliquastrum collected from the coast of the East Sea in South Korea by using activity-guided HPLC purification. The compounds effectively dilated depolarization (50mMK(+))-induced basilar artery contraction with EC50 values of 3.52±0.42 and 1.62±0.63μM, respectively, but only sargachromenol D (5) showed a vasodilatory effect on endothelin-1 (ET-1)-induced basilar artery contraction (EC50=9.8±0.6μM). These results indicated that sargachromenol D (5) could act as a dual antagonist of l-type Ca(2+) channel and endothelin A/B2 receptors. Moreover, sargachromenol D (5) lowered blood pressure in spontaneous hypertensive rats (SHRs) 2h after oral treatment at a dose of 80mg/kg dose and the effect was maintained for 24h. Based on our ex vivo and in vivo experiments, we propose that sargachromenol D (5) is a strong candidate for the treatment of hypertension that is not controlled by conventional drugs, in particular, severe-, type II diabetes-, salt-sensitive, and metabolic disease-induced hypertension. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Evidence for methane production by the marine algae Emiliania huxleyi

    Science.gov (United States)

    Lenhart, Katharina; Klintzsch, Thomas; Langer, Gerald; Nehrke, Gernot; Bunge, Michael; Schnell, Sylvia; Keppler, Frank

    2016-06-01

    Methane (CH4), an important greenhouse gas that affects radiation balance and consequently the earth's climate, still has uncertainties in its sinks and sources. The world's oceans are considered to be a source of CH4 to the atmosphere, although the biogeochemical processes involved in its formation are not fully understood. Several recent studies provided strong evidence of CH4 production in oxic marine and freshwaters, but its source is still a topic of debate. Studies of CH4 dynamics in surface waters of oceans and large lakes have concluded that pelagic CH4 supersaturation cannot be sustained either by lateral inputs from littoral or benthic inputs alone. However, regional and temporal oversaturation of surface waters occurs frequently. This comprises the observation of a CH4 oversaturating state within the surface mixed layer, sometimes also termed the "oceanic methane paradox". In this study we considered marine algae as a possible direct source of CH4. Therefore, the coccolithophore Emiliania huxleyi was grown under controlled laboratory conditions and supplemented with two 13C-labeled carbon substrates, namely bicarbonate and a position-specific 13C-labeled methionine (R-S-13CH3). The CH4 production was 0.7 µg particular organic carbon (POC) g-1 d-1, or 30 ng g-1 POC h-1. After supplementation of the cultures with the 13C-labeled substrate, the isotope label was observed in headspace CH4. Moreover, the absence of methanogenic archaea within the algal culture and the oxic conditions during CH4 formation suggest that the widespread marine algae Emiliania huxleyi might contribute to the observed spatially and temporally restricted CH4 oversaturation in ocean surface waters.

  16. Ultrastructure of acidic polysaccharides from the cell walls of brown algae.

    Science.gov (United States)

    Andrade, Leonardo R; Salgado, Leonardo T; Farina, Marcos; Pereira, Mariana S; Mourão, Paulo A S; Amado Filho, Gilberto M

    2004-03-01

    We have studied the ultrastructure of acidic polysaccharides from the cell walls of brown algae using a variety of electron microscopy techniques. Polysaccharides from Padina gymnospora present self assembled structures, forming trabecular patterns. Purified fractions constituted by alginic acid and sulfated fucan also form well-organized ultrastructures, but the pattern of organization varies depending on the polysaccharide species. Alginic acid presents sponge-like structures. Sulfated fucan exhibits particles with polygonal forms with a polycrystalline structure. These particles are in fact constituted by sulfated fucan molecules since they are recognized by a lectin specific for alpha-l-fucosyl residues. X-ray microanalysis reveal that S is a constituent element, as expected for sulfated groups. Finally, an exhaustive purified sulfated fucan shows the same ultrastructure formed by polygonal forms. Furthermore, elemental analyses of acidic polysaccharides indicate that they retain Zn, when algae were collected from a contaminated area. This observation is supported by direct quantification of heavy metal in the biomass and also in the solubilized polysaccharides compared with the algae from a non-contaminated site. We conclude that these molecules have specific ultrastructure and elemental composition; and act as metal binder for the nucleation and precipitation of heavy metals when the algae are exposed to a metal contaminated environment.

  17. Phylogenomic analysis of transcriptomic sequences of mitochondria and chloroplasts of essential brown algae (Phaeophyceae) in China

    Institute of Scientific and Technical Information of China (English)

    JIA Shangang; LIU Tao; WU Shuangxiu; WANG Xumin; LI Tianyong; QIAN Hao; SUN Jing; WANG Liang; YU Jun; REN Lufeng; YIN Jinlong

    2014-01-01

    The chloroplast and mitochondrion of brown algae (Class Phaeophyceae of Phylum Ochrophyta) may have originated from different endosymbiosis. In this study, we carried out phylogenomic analysis to distinguish their evolutionary lineages by using algal RNA-seq datasets of the 1 000 Plants (1KP) Project and publicly available complete genomes of mitochondria and chloroplasts of Kingdom Chromista. We have found that there is a split between Class Phaeophyceae of Phylum Ochrophyta and the others (Phylum Cryptophyta and Haptophyta) in Kingdom Chromista, and identified more diversity in chloroplast genes than mitochondrial ones in their phylogenetic trees. Taxonomy resolution for Class Phaeophyceae showed that it was divided into Laminariales-Ectocarpales clade and Fucales clade, and phylogenetic positions of Kjellmaniella crassi-folia, Hizikia fusifrome and Ishige okamurai were confirmed. Our analysis provided the basic phylogenetic relationships of Chromista algae, and demonstrated their potential ability to study endosymbiotic events.

  18. Evaluation of the genotoxicity and cytotoxicity of semipurified fractions from the Mediterranean brown algae, Dictyopteris membranacea

    Directory of Open Access Journals (Sweden)

    Najoua Akremi

    2016-01-01

    Full Text Available Dictyopteris membranacea, a species of Mediterranean brown algae,is believed to have potential pharmacological and nutritional applications. However, such potentials only make sense when devoid of any adverse health consequences. The present study should be seen in this context. It aimed at evaluating the genotoxicity and cytoxicity of its organic extract (F0 and semi purified fractions (F 4, F 5, and F 6.Extracts were tested using the bacterial Vitotox® test and micronucleus assay in different concentrations (from 1.25 μg/mL up to 100 μg/mL, depending on the test and the extract. Applied concentrations were based on a preliminary dose-finding test with the neutral red uptake assay. The results show that all extracts were not genotoxic in the presence or absence of a rat metabolic enzyme fraction (S9. This is encouraging and justifies further investigations on the therapeutic and other values of this algae.

  19. Transitions between marine and freshwater environments provide new clues about the origins of multicellular plants and algae.

    Science.gov (United States)

    Dittami, Simon M; Heesch, Svenja; Olsen, Jeanine L; Collén, Jonas

    2017-08-01

    Marine-freshwater and freshwater-marine transitions have been key events in the evolution of life, and most major groups of organisms have independently undergone such events at least once in their history. Here, we first compile an inventory of bidirectional freshwater and marine transitions in multicellular photosynthetic eukaryotes. While green and red algae have mastered multiple transitions in both directions, brown algae have colonized freshwater on a maximum of six known occasions, and angiosperms have made the transition to marine environments only two or three times. Next, we review the early evolutionary events leading to the colonization of current habitats. It is commonly assumed that the conquest of land proceeded in a sequence from marine to freshwater habitats. However, recent evidence suggests that early photosynthetic eukaryotes may have arisen in subaerial or freshwater environments and only later colonized marine environments as hypersaline oceans were diluted to the contemporary level. Although this hypothesis remains speculative, it is important to keep these alternative scenarios in mind when interpreting the current habitat distribution of plants and algae. Finally, we discuss the roles of structural and functional adaptations of the cell wall, reactive oxygen species scavengers, osmoregulation, and reproduction. These are central for acclimatization to freshwater or to marine environments. We observe that successful transitions appear to have occurred more frequently in morphologically simple forms and conclude that, in addition to physiological studies of euryhaline species, comparative studies of closely related species fully adapted to one or the other environment are necessary to better understand the adaptive processes. © 2017 Phycological Society of America.

  20. Potentiating effect of ecofriendly synthesis of copper oxide nanoparticles using brown alga: antimicrobial and anticancer activities

    Indian Academy of Sciences (India)

    SRI VISHNU PRIYA RAMASWAMY; S NARENDHRAN; RAJESHWARI SIVARAJ

    2016-04-01

    This study reports the in vitro antimicrobial and anticancer activities of biologically synthesized copper nanoparticles. The antimicrobial activity of green synthesized copper oxide nanoparticles was assessed by well diffusion method. The anticancer activity of brown algae-mediated copper oxide nanoparticles was determined by MTT assay against the cell line (MCF-7). Maximum activity was observed with Pseudomonas aeruginosa and Aspergillus niger. Effective growth inhibition of cells was observed to be more than 93% in antibacterial activity. Thus, the results of the present study indicates that biologically synthesized copper nanoparticles can be used for several diseases, however, it necessitates clinical studies to ascertain their potential as antimicrobial and anticancer agents.

  1. 4α-Acetoxyamijidictyol - A New Antifeeding Dolastane Diterpene from the Brazilian Brown Alga Canistrocarpus cervicornis.

    Science.gov (United States)

    Miguel Bianco, Éverson; Martins Francisco, Thiago; Basílio Pinheiro, Carlos; Bagueira de Vasconcellos Azeredo, Rodrigo; Laneuville Teixeira, Valéria; Crespo Pereira, Renato

    2015-11-01

    Chemical investigation of the CH2 Cl2 crude extract from the brown alga Canistrocarpus cervicornis (Dictyotaceae) led to isolation of one new (1) and four previously reported dolastane diterpenes (2-5). Their structures were characterized by 1D- and 2D-NMR spectroscopic techniques, including a full single crystal X-ray diffraction analysis for 1, 2, and 4. In addition, the new structure 1 was assayed as chemical defense inhibiting the feeding by the sea urchin Lytechinus variegatus. This study constitutes an additional report broadening the known spectrum of action and defensive roles of secondary metabolites of the C. cervicornis and Dictyotales species.

  2. Marine Algae: a Source of Biomass for Biotechnological Applications.

    Science.gov (United States)

    Stengel, Dagmar B; Connan, Solène

    2015-01-01

    Biomass derived from marine microalgae and macroalgae is globally recognized as a source of valuable chemical constituents with applications in the agri-horticultural sector (including animal feeds and health and plant stimulants), as human food and food ingredients as well as in the nutraceutical, cosmeceutical, and pharmaceutical industries. Algal biomass supply of sufficient quality and quantity however remains a concern with increasing environmental pressures conflicting with the growing demand. Recent attempts in supplying consistent, safe and environmentally acceptable biomass through cultivation of (macro- and micro-) algal biomass have concentrated on characterizing natural variability in bioactives, and optimizing cultivated materials through strain selection and hybridization, as well as breeding and, more recently, genetic improvements of biomass. Biotechnological tools including metabolomics, transcriptomics, and genomics have recently been extended to algae but, in comparison to microbial or plant biomass, still remain underdeveloped. Current progress in algal biotechnology is driven by an increased demand for new sources of biomass due to several global challenges, new discoveries and technologies available as well as an increased global awareness of the many applications of algae. Algal diversity and complexity provides significant potential provided that shortages in suitable and safe biomass can be met, and consumer demands are matched by commercial investment in product development.

  3. Health benefit of fucosterol from marine algae: a review.

    Science.gov (United States)

    Abdul, Qudeer Ahmed; Choi, Ran Joo; Jung, Hyun Ah; Choi, Jae Sue

    2016-04-01

    Seaweeds belong to a group of marine plants known as algae, which are consumed as sea vegetables in several Asian countries. Recent studies have focused on the biological and pharmacological activities of seaweeds and their highly bioactive secondary metabolites because of their potential in the development of new pharmaceutical agents. Although several varieties of bioactive novel compounds such as phlorotannins, diterpenes and polysaccharides from seaweeds have already been well scrutinized, fucosterol as a phytosterol still needs to reinvent itself. Fucosterol (24-ethylidene cholesterol) is a sterol that can be isolated from algae, seaweed and diatoms. Fucosterol exhibits various biological therapeutics, including anticancer, antidiabetic, antioxidant, hepatoprotective, antihyperlipidemic, antifungal, antihistaminic, anticholinergic, antiadipogenic, antiphotodamaging, anti-osteoporotic, blood cholesterol reducing, blood vessel thrombosis preventive and butyrylcholinesterase inhibitory activities. In this review, we address some potential approaches for arbitrating novel fucosterol biologics in the medical field, focusing on the selection of personalized drug candidates and highlighting the challenges and opportunities regarding medical breakthroughs. We also highlight recent advances made in the design of this novel compound, as the significant health benefits from using these optimized applications apply to the nutraceutical and pharmaceutical fields. © 2015 Society of Chemical Industry.

  4. Marine algae and land plants share conserved phytochrome signaling systems.

    Science.gov (United States)

    Duanmu, Deqiang; Bachy, Charles; Sudek, Sebastian; Wong, Chee-Hong; Jiménez, Valeria; Rockwell, Nathan C; Martin, Shelley S; Ngan, Chew Yee; Reistetter, Emily N; van Baren, Marijke J; Price, Dana C; Wei, Chia-Lin; Reyes-Prieto, Adrian; Lagarias, J Clark; Worden, Alexandra Z

    2014-11-04

    Phytochrome photosensors control a vast gene network in streptophyte plants, acting as master regulators of diverse growth and developmental processes throughout the life cycle. In contrast with their absence in known chlorophyte algal genomes and most sequenced prasinophyte algal genomes, a phytochrome is found in Micromonas pusilla, a widely distributed marine picoprasinophyte (algae and land plants. These analyses reveal a monophyletic clade containing streptophyte, prasinophyte, cryptophyte, and glaucophyte phytochromes implying an origin in the eukaryotic ancestor of the Archaeplastida. Transcriptomic measurements reveal diurnal regulation of phytochrome and bilin chromophore biosynthetic genes in Micromonas. Expression of these genes precedes both light-mediated phytochrome redistribution from the cytoplasm to the nucleus and increased expression of photosynthesis-associated genes. Prasinophyte phytochromes perceive wavelengths of light transmitted farther through seawater than the red/far-red light sensed by land plant phytochromes. Prasinophyte phytochromes also retain light-regulated histidine kinase activity lost in the streptophyte phytochrome lineage. Our studies demonstrate that light-mediated nuclear translocation of phytochrome predates the emergence of land plants and likely represents a widespread signaling mechanism in unicellular algae.

  5. Variation in natural selection for growth and phlorotannins in the brown alga Fucus vesiculosus.

    Science.gov (United States)

    Jormalainen, V; Honkanen, T

    2004-07-01

    Directional selection for plant traits associated with resistance to herbivory tends to eliminate genetic variation in such traits. On the other hand, balancing selection arising from trade-offs between resistance and growth or spatially variable selection acts against the elimination of genetic variation. We explore both the amount of genetic variation and variability of natural selection for growth and concentration of phenolic secondary compounds, phlorotannins, in the brown alga Fucus vesiculosus. We measured variation in selection at two growing depths and two levels of nutrient availability in algae that had faced two kinds of past growing environments. Genetic variation was low for growth but high for phlorotannins. The form and strength of selection for both focal traits depended on the past growing environment of the algae. We found strong directional selection for growth rate in algae previously subjected to higher ultraviolet radiation, but not in algae previously subjected to higher nutrient availability. Stabilizing selection for growth occurred especially in the deep growing environment. Selection for phlorotannins was generally weak, but in some past-environment-current-environment combinations we detected either directional selection against phlorotannins or stabilizing selection. Thus, phlorotannins are not selectively neutral but affect the fitness of F. vesiculosus. In particular, there may be a fitness cost of producing phlorotannins, but the realization of such a cost varies from one environment to another. Genetic correlations between selective environments were high for growth but nonexistent for phlorotannins, emphasizing the high phenotypic plasticity of phlorotannin production. The highly heterogeneous selection, including directional, stabilizing, and spatially variable selection as well as temporal change in selection due to responses to past environmental conditions, probably maintains a high amount of genetic variation in phlorotannins

  6. Brown algae (Phaeophyta) for monitoring heavy metals at the Sudanese Red Sea coast

    Science.gov (United States)

    Ali, Abuagla Y. A.; Idris, Abubakr M.; Ebrahim, Ammar M.; Eltayeb, Mohmaed A. H.

    2017-02-01

    This study aimed at monitoring some heavy metals at the Sudanese Red Sea coast using Brown algae (Phaeophyta) as biomonitor. The total contents of heavy metals in four species (Turbinaria sp., Sargassum sp., Cystoseira sp. and Padina sp.) as well as seawater were examined. Twenty-six algae samples were collected from seven locations. The ranges of concentrations (µg/g, dry wt.) of heavy metals in algae were 4.95-16.95 for Cr, 2.93-257.32 for Mn, 1.35-7.43 for Ni, 0.83-14.10 for Cu, 4.13-19.13 for Zn, 0.03-0.15 for Cd and 0.45-2.18 for Pb. The ranges of the pH and the salinity of seawater from the same locations were 8.11-8.82 and 38.00-41.00 PSU, respectively. The ranges of concentrations (µg/L) of heavy metals in seawater were 7.00-11.00 for Cr, 2.90-10.20 for Mn, 6.70-10.10 for Ni, 1.70-5.00 for Cu, 0.94-5.70 for Zn, 0.09-0.14 for Cd and 0.93-1.80 for Pb. No significant correlations between metal concentrations in algae and seawater were observed. Some locations in the study area recorded relatively high levels of heavy metals in algae indicating possible contribution from manmade activities. Cr recorded higher levels in the study area than those in other coastal areas in the word. Padina sp. and Cystoseira sp. were better bioindicator than Turbinaria sp., Sargassum sp. for their high metal uptake.

  7. Active ingredients fatty acids as antibacterial agent from the brown algae Padina pavonica and Hormophysa triquetra

    Institute of Scientific and Technical Information of China (English)

    Gihan Ahmed El Shoubaky; Essam Abd El Rahman Salem

    2014-01-01

    Objective: To estimate the fatty acids content in the brown algae Padina pavonica (P. pavonica) and Hormophysa triquetra (H. triquetra) and evaluate their potential antimicrobial activity as bioactive compounds.Methods:The fatty acid compositions of the examined species were analyzed using gas chromatography-mass spectrometry. The antimicrobial activity of crude and fatty acids was assessed using the agar plug technique.Results:The fatty acids profile ranged from C8:0 to C20:4. Concentration of saturated fatty acids in P. pavonica was in the order palmitic>myristic>stearic whereas concentration of the unsaturated fatty acids was oleic acid>palmitoleic>9-cis-hexadecenoic>linoleic acid>α-linolenic>arachidonic> elaidic acid. H. triquetra contained high concentration of saturated fatty acids than those of P. pavonica which was in the order as follows: palmitic>margaric>myristic>nonadecyclic>stearic>caprylic>tridecylic>pentadecylic>lauric while the unsaturated fatty acids consisted of oleic>nonadecenoic>non adecadienoate>margaroleic. The crude and fatty acid extracts of H. triquetra and P. pavonica were biologically active on the tested pathogens. H.triquetra exhibited a larger inhibitory zone than P. pavonica. Conclusions: The brown algae P. pavonica and H. triquetra have high efficient amount of fatty acids and showed strong antibacterial activity, especially H. triquetra.

  8. Fouling mediates grazing: intertwining of resistances to multiple enemies in the brown alga Fucus vesiculosus.

    Science.gov (United States)

    Jormalainen, Veijo; Wikström, Sofia A; Honkanen, Tuija

    2008-03-01

    Macroalgae have to cope with multiple natural enemies, such as herbivores and epibionts. As these are harmful for the host, the host is expected to show resistance to them. Evolution of resistance is complicated by the interactions among the enemies and the genetic correlations among resistances to different enemies. Here, we explored genetic variation in resistance to epibiosis and herbivory in the brown alga Fucus vesiculosus, both under conditions where the enemies coexisted and where they were isolated. F. vesiculosus showed substantial genetic variation in the resistance to both epibiosis and grazing. Grazing pressure on the alga was generally lower in the presence than in the absence of epibiota. Furthermore, epibiosis modified the susceptibility of different algal genotypes to grazing. Resistances to epibiosis and grazing were independent when measured separately for both enemies but positively correlated when both these enemies coexisted. Thus, when the enemies coexisted, the fate of genotypes with respect to these enemies was intertwined. Genotypic correlation between phlorotannins, brown-algal phenolic secondary metabolites, and the amount of epibiota was negative, indicating that these compounds contribute to resistance to epibiosis. In addition, phlorotannins correlated also with the resistance to grazing, but this correlation disappeared when grazing occurred in the absence of epibiota. This indicates that the patterns of selection for the type of the resistance as well as for the resistance traits vary with the occurrence patterns of the enemies.

  9. Characterization and properties of sodium alginate from brown algae used as an ecofriendly superabsorbent

    Science.gov (United States)

    Helmiyati; Aprilliza, M.

    2017-04-01

    Sodium alginate obtained from the extraction of brown algae is used as the backbone for the synthesis of superabsorbent nanocomposite copolymerization. The first stage of extraction is the demineralization process using 0.1 M HCl solution and then 2% Na2CO3 solution for 2 hours at 60°C. The rendement of sodium alginate obtained was 44.32% with molecular weight of 40680 g/mol with measurement of the intrinsic viscosity. FTIR spectra of sodium alginate showed mannuronic acid functional group at wavenumber 884 cm-1 and the uronic acid at wavenumber 939 cm-1, OH functional group at wavenumber 3200-3400 cm-1, and CH2 stretching at wavenumber 2928 cm-1. The diffraction pattern of isolated sodium alginate has specific 2θ at 13.068 and 21.096, amorphous intensity found specific 2θ at 18.058, and the obtained crystallinity degree of the sodium alginate is equal to 29.292% from the XRD analysis. The morphological analysis by SEM shows fibrils of isolated sodium alginate. The success isolation of sodium alginate from brown algae is supported by DSC which shows the decomposition temperature of pure sodium alginate and isolated alginate have close values, namely 251.12°C for pure sodium alginate and 229.90°C for isolated sodium alginate.

  10. Marine algae-derived bioactive peptides for human nutrition and health.

    Science.gov (United States)

    Fan, Xiaodan; Bai, Lu; Zhu, Liang; Yang, Li; Zhang, Xuewu

    2014-09-24

    Within the parent protein molecule, most peptides are inactive, and they are released with biofunctionalities after enzymatic hydrolysis. Marine algae have high protein content, up to 47% of the dry weight, depending on the season and the species. Recently, there is an increasing interest in using marine algae protein as a source of bioactive peptides due to their health promotion and disease therapy potentials. This review presents an overview of marine algae-derived bioactive peptides and especially highlights some key issues, such as in silico proteolysis and quantitative structure-activity relationship studies, in vivo fate of bioactive peptides, and novel technologies in bioactive peptides studies and production.

  11. Study on the Adsorption of Metal Ions by Immobilized Marine Algae with the Existence of Clay

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    The process of adsorption of metal ions by immobilized marine algae with the existence of clay was investigated. It can be noted from the results that, after mixing with clay,the adsorption rate increases rapidly with the increasing amount of the marine algae. When pH=5, the best ratio between the clay and the marine algae is 1:4 for Pb2+. The result of in situ handling of the waste water containing heavy metals shows that the average adsorption rates of heavy metal irons Cu2+, Cd2+, Pb2+ and Ni2+ are all over 70 %.

  12. Effect of Brown Algae Cystoseira trinodis Methanolic Extract on Renal Tissue

    Directory of Open Access Journals (Sweden)

    Rouhollah Gazor, Ardalan Pasdaran Lashgari, Shabnam Almasi, Saeed Ghasemi

    2016-03-01

    Full Text Available Background: C.trinodisis brown algae of Oman Sea coast is used traditionally as a diuretic in Chabahar, Sistan and Baluchestan province of Iran. But no researches have been conducted on the distractive effects of this alga on the renal tissues until now. Methods: Forty-two adult male mice were divided into 6 groups. Control group received normal saline (E0, group (E1 treated with 5mg/kg methanolic extract (ME and group (E2 to (E5 received 10, 15, 25 and 50 mg/kg of ME of alga respectively. All animals in 6 groups were treated for 2 weeks (once every other day. Finally, histopathological evaluations were made especially by morphology and photometric method. Results: ME of C.trinodis induced histological damage in kidney. Administration of ME in all experimental groups induced severe glomerular congestion, hyaline cast and severe interstitial inflammatory centers in treated groups. All distractive parameter in test groups increased with increasing dose of extract (p<0.05. Conclusion: Results showed that ME of the C.trinodis has a nephrotoxic effect on the renal tissues.

  13. Cytotoxicity of fucosterol containing fraction of marine algae against breast and colon carcinoma cell line.

    Science.gov (United States)

    Khanavi, Mahnaz; Gheidarloo, Razieh; Sadati, Nargess; Ardekani, Mohammad Reza Shams; Nabavi, Seyed Mohammad Bagher; Tavajohi, Shohreh; Ostad, Seyed Nasser

    2012-01-01

    Marine algae produce different secondary metabolites with a wide range of biological activities. Many studies have been achieved on the screening of biological effects of marine organisms and a lot of active compounds were isolated and characterized. In an attempt to find cytotoxic compound of hexane fraction, isolation, identification, and cytotoxicity of active compound of this fraction were performed. In this study, total methanolic (70%) extract and partition fractions of hexane, chloroform (CHCl(3)), ethyl acetate (EtOAc), and MeOH-H(2)O of Sargassum angustifolium, Chondria dasyphylla, and Ulva flexuosa, collected from coastlines of the Persian Gulf in south of Iran, were studied against colon carcinoma (HT-29), colorectal adenocarcinoma (Caco-2), breast ductal carcinoma (T47D), and Swiss mouse embryo fibroblast (NIH 3T3) cell lines by MTT assay. IC(50) (median growth inhibitory concentration) values were calculated by Sigmaplot (10) software. Hexane fraction of Chondria dasyphylla (IC(50) 82.26 ± 4.09 μg/ml) and MeOH-H(2)O fraction of Ulva flexuosa (IC(50) 116.92 ± 8.58 μg/ml) showed cytotoxic activity against proliferation of T47D cells. Hexane fraction of Sargassum angustifolium was also observed for cytotoxicity against T47D and HT-29 cell lines (IC(50) 166.42 ± 26.7 and 190.24 ± 52.8 μg/ml), respectively. An investigation of a component from the hexane fraction of Sargassum angustifolium yielded a steroidal metabolite, fucosterol, with cytotoxicity in T47D and HT29 (IC(50) 27.94 ± 9.3 and 70.41 ± 7.5 μg/ml). These results indicated that fucosterol, the most abundant phytosterol in brown algae, is responsible for cytotoxic effect of this extract against breast and colon carcinoma cell lines.

  14. Cytotoxicity of fucosterol containing fraction of marine algae against breast and colon carcinoma cell line

    Science.gov (United States)

    Khanavi, Mahnaz; Gheidarloo, Razieh; Sadati, Nargess; Ardekani, Mohammad Reza Shams; Nabavi, Seyed Mohammad Bagher; Tavajohi, Shohreh; Ostad, Seyed Nasser

    2012-01-01

    Context: Marine algae produce different secondary metabolites with a wide range of biological activities. Many studies have been achieved on the screening of biological effects of marine organisms and a lot of active compounds were isolated and characterized. Aims: In an attempt to find cytotoxic compound of hexane fraction, isolation, identification, and cytotoxicity of active compound of this fraction were performed. Materials and Methods: In this study, total methanolic (70%) extract and partition fractions of hexane, chloroform (CHCl3), ethyl acetate (EtOAc), and MeOH–H2O of Sargassum angustifolium, Chondria dasyphylla, and Ulva flexuosa, collected from coastlines of the Persian Gulf in south of Iran, were studied against colon carcinoma (HT-29), colorectal adenocarcinoma (Caco-2), breast ductal carcinoma (T47D), and Swiss mouse embryo fibroblast (NIH 3T3) cell lines by MTT assay. Statistical Analysis Used: IC50 (median growth inhibitory concentration) values were calculated by Sigmaplot (10) software. Results: Hexane fraction of Chondria dasyphylla (IC50 82.26 ± 4.09 μg/ml) and MeOH-H2O fraction of Ulva flexuosa (IC50 116.92 ± 8.58 μg/ml) showed cytotoxic activity against proliferation of T47D cells. Hexane fraction of Sargassum angustifolium was also observed for cytotoxicity against T47D and HT-29 cell lines (IC50 166.42 ± 26.7 and 190.24 ± 52.8 μg/ml), respectively. An investigation of a component from the hexane fraction of Sargassum angustifolium yielded a steroidal metabolite, fucosterol, with cytotoxicity in T47D and HT29 (IC50 27.94 ± 9.3 and 70.41 ± 7.5 μg/ml). Conclusions: These results indicated that fucosterol, the most abundant phytosterol in brown algae, is responsible for cytotoxic effect of this extract against breast and colon carcinoma cell lines. PMID:22438665

  15. Cytotoxicity of fucosterol containing fraction of marine algae against breast and colon carcinoma cell line

    Directory of Open Access Journals (Sweden)

    Mahnaz Khanavi

    2012-01-01

    Full Text Available Context: Marine algae produce different secondary metabolites with a wide range of biological activities. Many studies have been achieved on the screening of biological effects of marine organisms and a lot of active compounds were isolated and characterized. Aims: In an attempt to find cytotoxic compound of hexane fraction, isolation, identification, and cytotoxicity of active compound of this fraction were performed. Materials and Methods: In this study, total methanolic (70% extract and partition fractions of hexane, chloroform (CHCl 3 , ethyl acetate (EtOAc, and MeOH-H 2 O of Sargassum angustifolium, Chondria dasyphylla, and Ulva flexuosa, collected from coastlines of the Persian Gulf in south of Iran, were studied against colon carcinoma (HT-29, colorectal adenocarcinoma (Caco-2, breast ductal carcinoma (T47D, and Swiss mouse embryo fibroblast (NIH 3T3 cell lines by MTT assay. Statistical Analysis Used: IC 50 (median growth inhibitory concentration values were calculated by Sigmaplot (10 software. Results: Hexane fraction of Chondria dasyphylla (IC 50 82.26 ± 4.09 μg/ml and MeOH-H 2 O fraction of Ulva flexuosa (IC 50 116.92 ± 8.58 μg/ml showed cytotoxic activity against proliferation of T47D cells. Hexane fraction of Sargassum angustifolium was also observed for cytotoxicity against T47D and HT-29 cell lines (IC 50 166.42 ± 26.7 and 190.24 ± 52.8 μg/ml, respectively. An investigation of a component from the hexane fraction of Sargassum angustifolium yielded a steroidal metabolite, fucosterol, with cytotoxicity in T47D and HT29 (IC 50 27.94 ± 9.3 and 70.41 ± 7.5 μg/ml. Conclusions: These results indicated that fucosterol, the most abundant phytosterol in brown algae, is responsible for cytotoxic effect of this extract against breast and colon carcinoma cell lines.

  16. Normalisation genes for expression analyses in the brown alga model Ectocarpus siliculosus

    Directory of Open Access Journals (Sweden)

    Rousvoal Sylvie

    2008-08-01

    Full Text Available Abstract Background Brown algae are plant multi-cellular organisms occupying most of the world coasts and are essential actors in the constitution of ecological niches at the shoreline. Ectocarpus siliculosus is an emerging model for brown algal research. Its genome has been sequenced, and several tools are being developed to perform analyses at different levels of cell organization, including transcriptomic expression analyses. Several topics, including physiological responses to osmotic stress and to exposure to contaminants and solvents are being studied in order to better understand the adaptive capacity of brown algae to pollution and environmental changes. A series of genes that can be used to normalise expression analyses is required for these studies. Results We monitored the expression of 13 genes under 21 different culture conditions. These included genes encoding proteins and factors involved in protein translation (ribosomal protein 26S, EF1alpha, IF2A, IF4E and protein degradation (ubiquitin, ubiquitin conjugating enzyme or folding (cyclophilin, and proteins involved in both the structure of the cytoskeleton (tubulin alpha, actin, actin-related proteins and its trafficking function (dynein, as well as a protein implicated in carbon metabolism (glucose 6-phosphate dehydrogenase. The stability of their expression level was assessed using the Ct range, and by applying both the geNorm and the Normfinder principles of calculation. Conclusion Comparisons of the data obtained with the three methods of calculation indicated that EF1alpha (EF1a was the best reference gene for normalisation. The normalisation factor should be calculated with at least two genes, alpha tubulin, ubiquitin-conjugating enzyme or actin-related proteins being good partners of EF1a. Our results exclude actin as a good normalisation gene, and, in this, are in agreement with previous studies in other organisms.

  17. Extraction of alginate biopolymer present in marine alga sargassum filipendula and bioadsorption of metallic ions

    Directory of Open Access Journals (Sweden)

    Sirlei Jaiana Kleinübing

    2013-04-01

    Full Text Available This paper studies the bioadsorption of Pb2+, Cu2+, Cd2+ and Zn2+ ions by marine alga Sargassum filipendula and by the alginate biopolymer extracted from this alga. The objective is to evaluate the importance of this biopolymer in removing different metallic ions by the marine alga S. filipendula. In the equilibrium study, the same affinity order was observed for both bioadsorbents: Pb2+ > Cu2+ > Zn2+ > Cd2+. For Pb2+ and Cu2+ ions when the alginate is isolated and acting as bioadsorbents, adsorption capacities greater than those found for the alga were observed, indicating that it is the main component responsible for the removal of metallic ions. For Zn2+ and Cd2+ ions, greater bioadsorption capacities were observed for the alga, indicating that other functional groups of the alga, such as sulfates and amino, are also important in the bioadsorption of these ions.

  18. Ecotoxicological evaluation of marine sediments using free and immobilized phytoplanktonic algae

    Directory of Open Access Journals (Sweden)

    E. Giacco

    2011-01-01

    Full Text Available Marine sediments play an important role in the accumulation-storage and/or release of contaminants in seawaters; sedimets bioassays provide for general information on pollutant bioavailability. This work points out the importance to utilize free and immobilised (Na-alginate marine algae for the ecotoxicological evaluation of metals (Cd, Zn, Cu as well as of elutriates and whole sediment samples collected in harbour sites. The bioassay was carried out with the marine microalga Tetraselmis suecica; algal growth inhibition was determined after 24 and 48 hours as percent growth in comparison to controls. After 24 hours a lower toxicity of metals for the immobilised algae than for free algae was observed; this trend decreased in time. Algae exposed to whole sediment ahowed a greater reduction of growth than algae exposed to the relative elutriate. This result emphasizes that the whole sediments seem to be suitable to detect the toxicity of such complex environmental matrix.

  19. Extraction, characterization and application of antioxidants from the Nordic brown alga Fucus vesiculosus

    DEFF Research Database (Denmark)

    Hermund, Ditte Baun

    Marine algae are a huge underutilized resource in the Nordic countries with a potential to be used in the development of new natural ingredients for the food, cosmetics and pharmaceutical industry. Such ingredients can act as natural preservatives and prevent product deterioration during storage......, in particular in the form of rancidity due to oxidation of unsaturated fatty acids in the products. A characteristic feature of Fucus vesiculosus, also known as bladder wrack, is a high content of phlorotannins – a particular type of polyphenol group. Previous studies have shown positive correlations between...... makes this alga particularly attractive for the development of new natural antioxidants. While the in vitro antioxidant properties of F. vesiculosus extracts are widely studied, studies evaluating the antioxidant efficacy of such extracts in food and skin care products are scarce. This PhD study...

  20. Detection of Differential Host Susceptibility to the Marine Oomycete Pathogen Eurychasma dicksonii by Real-Time PCR: Not All Algae Are Equal▿ †

    Science.gov (United States)

    Gachon, Claire M. M.; Strittmatter, Martina; Müller, Dieter G.; Kleinteich, Julia; Küpper, Frithjof C.

    2009-01-01

    In the marine environment, a growing body of evidence points to parasites as key players in the control of population dynamics and overall ecosystem structure. However, their prevalence and impact on marine macroalgal communities remain virtually unknown. Indeed, infectious diseases of seaweeds are largely underdocumented, partly because of the expertise required to diagnose them with a microscope. Over the last few years, however, real-time quantitative PCR (qPCR) has emerged as a rapid and reliable alternative to visual symptom scoring for monitoring pathogens. Thus, we present here a qPCR assay suitable for the detection and quantification of the intracellular oomycete pathogen Eurychasma dicksonii in its ectocarpalean and laminarialean brown algal hosts. qPCR and microscopic observations made of laboratory-controlled cultures revealed that clonal brown algal strains exhibit different levels of resistance against Eurychasma, ranging from high susceptibility to complete absence of symptoms. This observation strongly argues for the existence of a genetic determinism for disease resistance in brown algae, which would have broad implications for the dynamics and genetic structure of natural populations. We also used qPCR for the rapid detection of Eurychasma in filamentous brown algae collected in Northern Europe and South America and found that the assay is specific, robust, and widely applicable to field samples. Hence, this study opens the perspective of combining large-scale disease monitoring in the field with laboratory-controlled experiments on the genome model seaweed Ectocarpus siliculosus to improve our understanding of brown algal diseases. PMID:19011072

  1. Brown Algae Polyphenol, a Prolyl Isomerase Pin1 Inhibitor, Prevents Obesity by Inhibiting the Differentiation of Stem Cells into Adipocytes

    Science.gov (United States)

    Suzuki, Atsuko; Saeki, Toshiyuki; Ikuji, Hiroko; Uchida, Chiyoko; Uchida, Takafumi

    2016-01-01

    Background While screening for an inhibitor of the peptidyl prolyl cis/trans isomerase, Pin1, we came across a brown algae polyphenol that blocks the differentiation of fibroblasts into adipocytes. However, its effectiveness on the accumulation of fat in the body has never been studied. Methodology/Principal Findings Oral administration of brown algae polyphenol to mice fed with a high fat diet, suppressed the increase in fat volume to a level observed in mice fed with a normal diet. We speculate that Pin1 might be required for the differentiation of stem cell to adipocytes. We established wild type (WT) and Pin1-/- (Pin1-KO) adipose-derived mesenchymal stem cell (ASC) lines and found that WT ASCs differentiate to adipocytes but Pin1-KO ASCs do not. Conclusion and Significance Oral administration of brown algae polyphenol, a Pin1 inhibitor, reduced fat buildup in mice. We showed that Pin1 is required for the differentiation of stem cells into adipocytes. We propose that oral intake of brown algae polyphenol is useful for the treatment of obesity. PMID:28036348

  2. Differential shuffling of native genetic diversity across introduced regions in a brown alga: aquaculture vs. maritime traffic effects.

    Science.gov (United States)

    Voisin, Marie; Engel, Carolyn R; Viard, Frédérique

    2005-04-12

    Worldwide marine invaders, such as the brown alga Undaria pinnatifida, offer challenging models for unraveling the apparent paradox of sustainable settlement of exotic species over a large spectrum of environments. Two intergenic noncoding mitochondrial loci were found to be highly informative at the within-species level. Twenty-five haplotypes were found over the whole dataset (333 base pairs, 524 individuals, and 24 populations). The native range showed striking population genetic structure stemming from low diversity within and high differentiation among populations, a pattern not observed in the introduced range of this seaweed. Contrary to classical expectations of founding effects associated with accidental introduction of exotic species, most of the introduced populations showed high genetic diversity. At the regional scale, genetic diversity and sequence divergence showed contrasting patterns in the two main areas of introduction (Europe and Australasia), suggesting different processes of introduction in the two regions. Gene genealogy analyses point to aquaculture as a major vector of introduction and spread in Europe but implicate maritime traffic in promoting recurrent migration events from the native range to Australasia. The multiplicity of processes and genetic signatures associated with the successful invasion confirms that multiple facets of global change, e.g., aquaculture practices, alteration of habitats, and increased traffic, act in synergy at the worldwide level, facilitating successful pandemic introductions.

  3. Cytotoxic activity of marine algae against cancerous cells

    Directory of Open Access Journals (Sweden)

    Élica A. C. Guedes

    2013-08-01

    Full Text Available This paper presents an investigation on the cytotoxic activity in human tumor cell from dichloromethane, chloroform, methanol, ethanol, water extracts, and hexane and chloroform fractions from green, brown and red algae collected at Riacho Doce Beach, north coast of Alagoas, Brazil, against the cancer cells K562 (chronic myelocytic leukemia, HEp-2 (laryngeal epidermoid carcinoma and NCI-H292 (human lung mucoepidermoid carcinoma through the MTT colorimetric method. The dichloromethane extract and chloroform fraction of Hypnea musciformis showed the best cytotoxic activity against K562 (3.8±0.2 µg.mL-1 and 6.4±0.4 µg.mL-1, respectively. Dichloromethane extracts of Dictyota dichotoma (16.3±0.3 µg.mL-1 and the chloroform fraction of H. musciformis (6.0±0.03 µg.mL-1 and chloroform fraction of P. gymnospora (8.2±0.4 were more active against HEp-2 as well as ethanol extracts of P. gymnospora (15.9±2.8 µg.mL-1 and chloroform fraction of H. musciformis (15.0±1.3 µg.mL-1 against the cell NCI-H292. The constituents with higher anticancer action are present in the extracts of dichloromethane and chloroform and in the chloroform fraction of H. musciformis, Digenea simplex, P. gymnospora, and D.dichotoma. In the case of the seaweed S. vulgare, the anticancer constituents are present in the aqueous extract.

  4. Biosorption of nickel(II) from aqueous solution by brown algae: Equilibrium, dynamic and thermodynamic studies

    Energy Technology Data Exchange (ETDEWEB)

    Pahlavanzadeh, H., E-mail: pahlavzh@modares.ac.ir [Department of Chemical Engineering, Faculty of Engineering, Tarbiat Modares University, P.O. Box 14115-111, Tehran (Iran, Islamic Republic of); Keshtkar, A.R.; Safdari, J. [Atomic Energy Organization of Iran, Nuclear Science and Technology Research Institute, P.O. Box 11365, 8486 Tehran (Iran, Islamic Republic of); Abadi, Z. [Department of Chemical Engineering, Faculty of Engineering, Tarbiat Modares University, P.O. Box 14115-111, Tehran (Iran, Islamic Republic of)

    2010-03-15

    The biosorption characteristics of nickel(II) ions using the brown algae (Cystoseria indica, Nizmuddinia zanardini, Sargassum glaucescens and Padina australis) were investigated. Experimental parameters affecting the biosorption process such as pH level, contact time, initial metal concentration and temperature were studied. The equilibrium data fitted very well to the Langmuir adsorption model in the concentration range of nickel(II) ions and at all the temperatures studied. Evaluation of the experimental data in terms of biosorption dynamics showed that the biosorption of nickel(II) onto algal biomass followed the pseudo-second-order dynamics well. The calculated thermodynamic parameters ({Delta}G{sup o}, {Delta}H{sup o} and {Delta}S{sup o}) showed that the biosorption of nickel(II) ions were feasible, spontaneous and endothermic at the temperature ranges of 293-313 K.

  5. Characterization of the biosorption of cadmium, lead and copper with the brown alga Fucus vesiculosus

    Energy Technology Data Exchange (ETDEWEB)

    Mata, Y.N. [Departamento de Ciencia de los Materiales e Ingenieria Metalurgica, Facultad de Ciencias Quimicas, Universidad Complutense de Madrid s/n, Madrid 28040 (Spain); Blazquez, M.L. [Departamento de Ciencia de los Materiales e Ingenieria Metalurgica, Facultad de Ciencias Quimicas, Universidad Complutense de Madrid s/n, Madrid 28040 (Spain)], E-mail: mlblazquez@quim.ucm.es; Ballester, A.; Gonzalez, F.; Munoz, J.A. [Departamento de Ciencia de los Materiales e Ingenieria Metalurgica, Facultad de Ciencias Quimicas, Universidad Complutense de Madrid s/n, Madrid 28040 (Spain)

    2008-10-30

    The recovery of cadmium, lead and copper with the brown alga Fucus vesiculosus was characterized and quantified. The biosorption data fitted the pseudo-second order and Langmuir isotherm models, but did not adjust to the intraparticle diffusion model. The metal uptakes deduced from the pseudo-second order kinetic model and the Langmuir isotherm model followed a similar sequence: Cu > Cd {approx} Pb. The Langmuir maximum metal uptakes were: 0.9626 mmol/g, Pb 1.02 mmol/g, and Cu 1.66 mmol/g. According to the equilibrium constants of this isotherm model, the affinity of metals for the biomass followed this order: Pb > Cu > Cd. Biosorption was accomplished by ion exchange between metals in solution and algal protons, calcium and other light metals, and by complexation of the adsorbed metals with algal carboxyl groups. FTIR spectra showed a shift in the bands of carboxyl, hydroxyl and sulfonate groups.

  6. Characterization of the biosorption of cadmium, lead and copper with the brown alga Fucus vesiculosus.

    Science.gov (United States)

    Mata, Y N; Blázquez, M L; Ballester, A; González, F; Muñoz, J A

    2008-10-30

    The recovery of cadmium, lead and copper with the brown alga Fucus vesiculosus was characterized and quantified. The biosorption data fitted the pseudo-second order and Langmuir isotherm models, but did not adjust to the intraparticle diffusion model. The metal uptakes deduced from the pseudo-second order kinetic model and the Langmuir isotherm model followed a similar sequence: Cu>Cd approximately Pb. The Langmuir maximum metal uptakes were: 0.9626 mmol/g, Pb 1.02 mmol/g, and Cu 1.66 mmol/g. According to the equilibrium constants of this isotherm model, the affinity of metals for the biomass followed this order: Pb>Cu>Cd. Biosorption was accomplished by ion exchange between metals in solution and algal protons, calcium and other light metals, and by complexation of the adsorbed metals with algal carboxyl groups. FTIR spectra showed a shift in the bands of carboxyl, hydroxyl and sulfonate groups.

  7. An Improved Method for Karyotype Analyses of Marine Algae

    Institute of Scientific and Technical Information of China (English)

    WANG Juan; DAI Jixun

    2008-01-01

    Modified carbol fuchsin staining method was successfully introduced into the karyotype analyses of marine algae, in-cluding Porphyra, Undaria pinnatifida and Laminaria japonica. Haploid chromosomes were numbered clearly in the vegetative, spermatangial and conchosporangial cells of P. haitanensis and P. yezoensis. Diploid chromosomes were observed and numbered in immature conchosporangial cells of P. haitanensis and P. yezoensis. Pit-connections of Porphyra were also clearly demonstrated. Prophase chromosomes of conchocelis cells were also clearly stained with modified carbol fuchsin. One molar per liter hydrochloric hydrolysis at 60℃ for 7-8min is necessary for getting transparent cytoplasm for conchosporangial karyotype analysis of Porphyra. Staining effects of the three methods using iron alum acetocarmine, aceto-iron-haematoxylin-chloral hydrate and modified carbol fuchsin were compared on the vegetative, sperrnatangial and conchosporangial cells of Porphyra and the gametophytes of U. pinnati-fida and L. japonica. Among the three methods, the modified carbol fuchsin method gave the best result of deep staining and good contrast between nucleus and cytoplasm.

  8. Fitness Effects of Spontaneous Mutations in Picoeukaryotic Marine Green Algae.

    Science.gov (United States)

    Krasovec, Marc; Eyre-Walker, Adam; Grimsley, Nigel; Salmeron, Christophe; Pecqueur, David; Piganeau, Gwenael; Sanchez-Ferandin, Sophie

    2016-07-07

    Estimates of the fitness effects of spontaneous mutations are important for understanding the adaptive potential of species. Here, we present the results of mutation accumulation experiments over 265-512 sequential generations in four species of marine unicellular green algae, Ostreococcus tauri RCC4221, Ostreococcus mediterraneus RCC2590, Micromonas pusilla RCC299, and Bathycoccus prasinos RCC1105. Cell division rates, taken as a proxy for fitness, systematically decline over the course of the experiment in O. tauri, but not in the three other species where the MA experiments were carried out over a smaller number of generations. However, evidence of mutation accumulation in 24 MA lines arises when they are exposed to stressful conditions, such as changes in osmolarity or exposure to herbicides. The selection coefficients, estimated from the number of cell divisions/day, varies significantly between the different environmental conditions tested in MA lines, providing evidence for advantageous and deleterious effects of spontaneous mutations. This suggests a common environmental dependence of the fitness effects of mutations and allows the minimum mutation/genome/generation rates to be inferred at 0.0037 in these species. Copyright © 2016 Krasovec et al.

  9. Equal Sex Ratios of a Marine Green Alga, Bryopsis plumosa

    Institute of Scientific and Technical Information of China (English)

    Tatsuya Togashi; Paul Alan Cox

    2008-01-01

    By finding some important culture conditions as below, we succeeded in experimentally controlling the whole life history of a dioecious marine green alga, Bryopsis plumosa (Hudson) C. Agardh. In this study, we focused on the primary and secondary sex ratios (i.e. at inception and maturity) using these culture techniques. Gametogenesis was induced by culturing haploid gametophytes with Provasoli's enriched seawater (PES) medium under a 14:10 h light: dark cycle at 14 ℃. Formed zygotes grew into diploid sporophytes, which were cultured for 3 months with PES medium under a 14:10 h light: nbsp;dark cycle at 18℃. Then they were transferred into Schreiber medium and cultured under a 10:14 h light: dark cycle at 22℃. Within 1 week, zoosporogenesis was observed. Zoospores were released within a couple of days. Each zoospore soon germinated and grew into a unisexual gametophyte. The primary sex ratio was examined in gametophytes that originated from a single sporophyte. The secondary sex ratio was studied in the field. Both were estimated as 1:1.Synchronized meiotic cell divisions might occur during zoosporogenesis dividing each sex-determining factor evenly among zoospores. Given the equal sex ratio at maturity, there seems to be no environmental factor that differentially affects the survival of male or female gametophytes in nature.

  10. Natural Abundance 14C Content of Dibutyl Phthalate (DBP from Three Marine Algae

    Directory of Open Access Journals (Sweden)

    Kazuyo Ukai

    2006-11-01

    Full Text Available Abstract: Analysis of the natural abundance 14C content of dibutyl phthalate (DBP from two edible brown algae, Undaria pinnatifida and Laminaria japonica, and a green alga, Ulva sp., revealed that the DBP was naturally produced. The natural abundance 14C content of di-(2-ethylhexyl phthalate (DEHP obtained from the same algae was about 50-80% of the standard sample and the 14C content of the petrochemical (industrial products of DBP and DEHP were below the detection limit.

  11. Sex-biased gene expression in the brown alga Fucus vesiculosus.

    Science.gov (United States)

    Martins, Maria João F; Mota, Catarina F; Pearson, Gareth A

    2013-05-01

    The fucoid brown algae (Heterokontophyta, Phaeophyceae) are increasingly the focus of ecological genetics, biodiversity, biogeography and speciation research. The molecular genetics underlying mating system variation, where repeated dioecious - hermaphrodite switches during evolution are recognized, and the molecular evolution of sex-related genes are key questions currently hampered by a lack of genomic information. We therefore undertook a comparative analysis of male and female reproductive tissue transcriptomes against a vegetative background during natural reproductive cycles in Fucus vesiculosus. Over 300 k reads were assembled and annotated against public protein databases including a brown alga. Compared with the vegetative tissue, photosynthetic and carbohydrate metabolism pathways were under-expressed, particularly in male tissue, while several pathways involved in genetic information processing and replication were over-expressed. Estimates of sex-biased gene (SBG) expression were higher for male (14% of annotated orthologues) than female tissue (9%) relative to the vegetative background. Mean expression levels and variance were also greater in male- than female-biased genes. Major female-biased genes were carbohydrate-modifying enzymes with likely roles in zygote cell wall biogenesis and/or modification. Male-biased genes reflected distinct sperm development and function, and orthologues for signal perception (a phototropin), transduction (several kinases), and putatively flagella-localized proteins (including candidate gamete-recognition proteins) were uniquely expressed in males. Overall, the results suggest constraint on female-biased genes (possible pleiotropy), and less constrained male-biased genes, mostly associated with sperm-specific functions. Our results support the growing contention that males possess a large array of genes regulating male fitness, broadly supporting findings in evolutionarily distant heterogametic animal models. This work

  12. Extraction of alginate biopolymer present in marine alga sargassum filipendula and bioadsorption of metallic ions

    OpenAIRE

    Sirlei Jaiana Kleinübing; Frederico Gai; Caroline Bertagnolli; Meuris Gurgel Carlos da Silva

    2013-01-01

    This paper studies the bioadsorption of Pb2+, Cu2+, Cd2+ and Zn2+ ions by marine alga Sargassum filipendula and by the alginate biopolymer extracted from this alga. The objective is to evaluate the importance of this biopolymer in removing different metallic ions by the marine alga S. filipendula. In the equilibrium study, the same affinity order was observed for both bioadsorbents: Pb2+ > Cu2+ > Zn2+ > Cd2+. For Pb2+ and Cu2+ ions when the alginate is isolated and acting as bioadsorbents, ad...

  13. Morphoelasticity in the development of brown alga Ectocarpus siliculosus: from cell rounding to branching

    Science.gov (United States)

    Jia, Fei; Billoud, Bernard; Charrier, Bénédicte

    2017-01-01

    A biomechanical model is proposed for the growth of the brown alga Ectocarpus siliculosus. Featuring ramified uniseriate filaments, this alga has two modes of growth: apical growth and intercalary growth with branching. Apical growth occurs upon the mitosis of a young cell at one extremity and leads to a new tip cell followed by a cylindrical cell, whereas branching mainly occurs when a cylindrical cell becomes rounded and swells, forming a spherical cell. Given the continuous interplay between cell growth and swelling, a poroelastic model combining osmotic pressure and volumetric growth is considered for the whole cell, cytoplasm and cell wall. The model recovers the morphogenetic transformations of mature cells: transformation of a cylindrical shape into spherical shape with a volumetric increase, and then lateral branching. Our simulations show that the poro-elastic model, including the Mooney–Rivlin approach for hyper-elastic materials, can correctly reproduce the observations. In particular, branching appears to be a plasticity effect due to the high level of tension created after the increase in volume of mature cells. PMID:28228537

  14. Isolation and characterization of fucoidans from five brown algae and evaluation of their antioxidant activity

    Science.gov (United States)

    Qu, Guiyan; Liu, Xu; Wang, Dongfeng; Yuan, Yi; Han, Lijun

    2014-10-01

    In this study, we evaluated the chemical property and antioxidant activity of fucoidans isolated from brown algae, Laminaria japonica (LJF), Lessonia nigrescens (LNF), Lessonia trabeculata (LTF), Ascophyllum mackaii (AMF), and Ecklonia maxima (EMF). LJF was less in sulfate content (14.16%) and more in galactose and mannose content (1.08 and 0.68) than the documented early. EMF contained 20%-30% of sulfate and fucose, 0.97 in molar ratio which was lower than that of sulfate to other four fucoidans (1.21-1.41). AMF (162 kDa) and EMF (150 kDa) were the first two largest in molecular weight, which were followed by LJP (126 kDa), LNF (113 kDa) and LTF (105 kDa). The fucoidans isolated these algae showed a wide range of antioxidant activity in vitro. It was found that the reducing power of the isolated fucoidans was positively correlated with their sulfate content and molecular weight. In addition, LNF and LTF at low concentrations exhibited high superoxide and hydroxyl radical scavenging activity. This demonstrated that low molecular weight fucoidans may perform a high antioxidant activity.

  15. Genotypic variation in tolerance and resistance to fouling in the brown alga Fucus vesiculosus.

    Science.gov (United States)

    Honkanen, Tuija; Jormalainen, Veijo

    2005-06-01

    In this study, we examined genetic variation in resistance and tolerance to fouling organisms in the brown alga Fucus vesiculosus. We first grew 30 algal genotypes in the field, where we allowed fouling organisms to colonise the genotypes at natural levels. We then conducted a manipulative experiment, where we grew 20 genotypes of algae in aquaria with or without fouling organisms. We measured host resistance as the load of fouling organisms and tolerance as the slope of the regression of algal performance on fouling level. Fouling organisms decreased host growth and contents of phlorotannins and thus have the potential to act as selective agents on algal defenses. We found significant among-genotype variation in both resistance and tolerance to fouling. We did not find a trade-off between resistance and tolerance. We found a marginally significant cost of resistance, but no cost of tolerance. Our results thus indicate that both the tolerance and resistance of F. vesiculosus can evolve as a response to fouling and that the costs of resistance may maintain genetic variation in resistance.

  16. Dimethylsulphopropionate (DMSP) and proline from the surface of the brown alga Fucus vesiculosus inhibit bacterial attachment.

    Science.gov (United States)

    Saha, M; Rempt, M; Gebser, B; Grueneberg, J; Pohnert, G; Weinberger, F

    2012-01-01

    It was demonstrated previously that polar and non-polar surface extracts of the brown alga Fucus vesiculosus collected during winter from the Kiel Bight (Germany) inhibited bacterial attachment at natural concentrations. The present study describes the bioassay-guided identification of the active metabolites from the polar fraction. Chromatographic separation on a size-exclusion liquid chromatography column and bioassays identified an active fraction that was further investigated using nuclear magnetic resonance spectroscopy and mass spectrometry. This fraction contained the metabolites dimethylsulphopropionate (DMSP), proline and alanine. DMSP and proline caused the anti-attachment activity. The metabolites were further quantified on the algal surface together with its associated boundary layer. DMSP and proline were detected in the range 0.12-1.08 ng cm(-2) and 0.09-0.59 ng cm(-2), respectively. These metabolites were tested in the concentration range from 0.1 to 1000 ng cm(-2) against the attachment of five bacterial strains isolated from algae and sediment co-occurring with F. vesiculosus. The surface concentrations for 50% inhibition of attachment of these strains were always vesiculosus were also tested, but proved to be the least sensitive. This study shows that DMSP and proline have an ecologically relevant role as surface inhibitors against bacterial attachment on F. vesiculosus.

  17. Evaluation of the Genotoxicity and Cytotoxicity of Semipurified Fractions from the Mediterranean Brown Algae, Dictyopteris membranacea

    Science.gov (United States)

    Akremi, Najoua; Cappoen, Davie; Anthonissen, Roel; Bouraoui, Abderrahman; Verschaeve, Luc

    2016-01-01

    Dictyopteris membranacea, a species of Mediterranean brown algae, is believed to have potential pharmacological and nutritional applications. However, such potentials only make sense when devoid of any adverse health consequences. The present study should be seen in this context. It aimed at evaluating the genotoxicity and cytoxicity of its organic extract (F0) and semi purified fractions (F4, F5, and F6). Extracts were tested using the bacterial Vitotox® test and micronucleus assay in different concentrations (from 1.25 μg/mL up to 100 μg/mL, depending on the test and the extract). Applied concentrations were based on a preliminary dose-finding test with the neutral red uptake assay. The results show that all extracts were not genotoxic in the presence or absence of a rat metabolic enzyme fraction (S9). This is encouraging and justifies further investigations on the therapeutic and other values of this algae. SUMMARY Dictyopteris membranacea extracts and some of their semi purified fractions have important antibacterial properties.The organic extract (F0) and semi purified fractions (F4, F5, and F6) were not genotoxic according to the bacterial Vitotox test.They were also not genotoxic according to the micronucleus test in human C3A cells.Applied concentrations were based on the in-vitro neutral red uptake (NRU) test. PMID:27761065

  18. Inhibition of reverse transcriptase activity of HIV by polysaccharides of brown algae.

    Science.gov (United States)

    Queiroz, K C S; Medeiros, V P; Queiroz, L S; Abreu, L R D; Rocha, H A O; Ferreira, C V; Jucá, M B; Aoyama, H; Leite, E L

    2008-06-01

    Brown algae have two kinds of acid polysaccharides present in the extracellular matrix: sulfated fucan and alginic acid. We have previously isolated and characterized fucans from several species of brown seaweed. The characterized fucans from Dictyotaceae are heterofucans containing mainly fucose, galactose, glucose, xylose, and/or uronic acid. The fucan from Fucus vesiculosus is a homofucan containing only sulfated fucose. We assessed the activity of these fucans as inhibitors of HIV from reverse transcriptase (RT). Using activated DNA and template primers poly(rA)-oligo(dT), we found that fucans at a concentration of 0.5-1.0 microg/mL had a pronounced inhibitory effect in vitro on the avian reverse transcriptase, with the exception of xylogalactofucan isolated from Spatoglossum schröederi, which had no inhibitory activity. The alginic acid (1.0 microg/mL) inhibited the reverse transcriptase activity by 51.1% using activated DNA. The inhibitory effect of fucans was eliminated by their desulfation. Furthermore, only xylofucoglucuronan from S. schröederi lost its activity after carboxyreduction. We suggest that fucan activity is not only dependent on the ionic changes but also on the sugar rings that act to spatially orientate the charges in a configuration that recognizes the enzyme, thus determining the specificity of the binding.

  19. Hidden diversity in marine algae : Some examples of genetic variation below the species

    NARCIS (Netherlands)

    vanOppen, MJH; Klerk, H; Olsen, JL; Stam, WT

    1996-01-01

    An important aspect of marine biodiversity studies is identification of species and subspecies complexes. Here we present a number of examples from marine algae in which allozymes, DNA sequences and RAPDs are used to identify cryptic species and explore phylogenetic-population level relationships ov

  20. Extraction and Analysis of Mycosporine-Like Amino Acids in Marine Algae.

    Science.gov (United States)

    Rosic, Nedeljka N; Braun, Christoph; Kvaskoff, David

    2015-01-01

    Marine organisms use mycosporine-like amino acids (MAAs) as biological sunscreens for the protection from damaging ultraviolet (UV) radiation and the prevention of oxidative stress. MAAs have been discovered in many different marine and freshwater species including cyanobacteria, fungi, and algae, but also in animals like cnidarian and fishes. Here, we describe a general method for the isolation and characterization of MAA compounds from red algae and symbiotic dinoflagellates isolated from coral hosts. This method is also suitable for the extraction and analyses of MAAs from a range of other algal and marine biota.

  1. Different speciation for bromine in brown and red algae, revealed by in vivo X-ray absorption spectroscopic studies.

    Science.gov (United States)

    Küpper, Frithjof C; Leblanc, Catherine; Meyer-Klaucke, Wolfram; Potin, Philippe; Feiters, Martin C

    2014-08-01

    Members of various algal lineages are known to be strong producers of atmospherically relevant halogen emissions, that is a consequence of their capability to store and metabolize halogens. This study uses a noninvasive, synchrotron-based technique, X-ray absorption spectroscopy, for addressing in vivo bromine speciation in the brown algae Ectocarpus siliculosus, Ascophyllum nodosum, and Fucus serratus, the red algae Gracilaria dura, G. gracilis, Chondrus crispus, Osmundea pinnatifida, Asparagopsis armata, Polysiphonia elongata, and Corallina officinalis, the diatom Thalassiosira rotula, the dinoflagellate Lingulodinium polyedrum and a natural phytoplankton sample. The results highlight a diversity of fundamentally different bromine storage modes: while most of the stramenopile representatives and the dinoflagellate store mostly bromide, there is evidence for Br incorporated in nonaromatic hydrocarbons in Thalassiosira. Red algae operate various organic bromine stores - including a possible precursor (by the haloform reaction) for bromoform in Asparagopsis and aromatically bound Br in Polysiphonia and Corallina. Large fractions of the bromine in the red algae G. dura and C. crispus and the brown alga F. serratus are present as Br(-) defects in solid KCl, similar to what was reported earlier for Laminaria parts. These results are discussed according to different defensive strategies that are used within algal taxa to cope with biotic or abiotic stresses. © 2014 Phycological Society of America.

  2. High iron content and bioavailability in humans from four species of marine algae.

    Science.gov (United States)

    García-Casal, Maria N; Pereira, Ana C; Leets, Irene; Ramírez, José; Quiroga, Maria F

    2007-12-01

    Searching for economical, nonconventional sources of iron is important in underdeveloped countries to combat iron deficiency and anemia. Our objective was to study iron, vitamin C, and phytic acid composition and also iron bioavailability from 4 species of marine algae included in a rice-based meal. Marine algae (Ulva sp, Sargassum sp, Porphyra sp, and Gracilariopsis sp) were analyzed for monthly variations in iron and for ascorbic acid and phytic acid concentrations. A total of 96 subjects received rice-based meals containing the 4 species of marine algae in different proportions, raw or cooked. All meals contained radioactive iron. Absorption was evaluated by calculating the radioactive iron incorporation in subjects' blood. Iron concentrations in algae were high and varied widely, depending on the species and time of year. The highest iron concentrations were found in Sargassum (157 mg/100 g) and Gracilariopsis (196 mg/100 g). Phytates were not detected in the algae and ascorbic acid concentration fluctuated between 38 microg/g dry weight (Ulva) and 362 microg/g dry weight (Sargassum). Algae significantly increased iron absorption in rice-based meals. Cooking did not affect iron absorption compared with raw algae. Results indicate that Ulva sp, Sargassum sp, Porphyra sp, and Gracilariopsis sp are good sources of ascorbic acid and bioavailable iron. The percentage of iron absorption was similar among all algae tested, although Sargassum sp resulted in the highest iron intake. Based on these results, and on the high reproduction rates of algae during certain seasons, promoting algae consumption in some countries could help to improve iron nutrition.

  3. In vitro cancer chemopreventive properties of polysaccharide extract from the brown alga, Sargassum latifolium.

    Science.gov (United States)

    Gamal-Eldeen, Amira M; Ahmed, Eman F; Abo-Zeid, Mona A

    2009-06-01

    Polysaccharides of edible algae attracted extensive interest due to their numerous biological activities. Sargassum latifolium (Turner) C. Agardh, belongs to Sargassaceae, is a brown algae in red sea shores in Egypt. This work is a novel attempt to explore the cancer chemopreventive activity of different fractions of water-soluble polysaccharide extract derived from S. latifolium. Estimation of cancer chemopreventive activity, specifically anti-initiation, including the modulation of carcinogen metabolism and the antioxidant capacity, revealed that E1 and E4 were potent anti-initiators, where they lead not only to an inhibition in the carcinogen activator cytochrome P450 1A (IC50 2.54 and 10.30 microg/ml, respectively), but also to an induction in the carcinogen detoxification enzymes glutathione-S-transferases (144% and 225% of the control, respectively). E1 and E4 inhibited 59% and 63% of the induced-DNA damage, as measured by comet assay. Similarly both E1 and E4 possessed potential anti-promoting properties as indicated by their anti-inflammatory activity. E1 and E4 enhanced the macrophage proliferation; however they dramatically inhibited the stimulated NO (30.7% and 59.3%), TNF-alpha (38.2% and 54.9) and COX-2 (20% and 18%), respectively. E3 showed a selective cytotoxicity against lymphoblastic leukemia (1301 cells), while other fraction extracts had no cytotoxic effect against all tested cell lines. E3 led to a major disturbance in cell cycle including arrest in both S-phases in 1301 cells. This disturbance was associated with an induced-cell death due to apoptosis, but not necrosis. In conclusion, E1 and E4 are promising cancer chemopreventive fractions, since they had tumor anti- initiating activity via their protective modulation of carcinogen metabolism, and tumor anti-promoting activity via their anti-inflammatory activity, while E3 can be considered as a promising anti-cancer agent against leukemia.

  4. Mechanisms of browning development in aggregates of marine organic matter formed under anoxic conditions: A study by mid-infrared and near-infrared spectroscopy

    Science.gov (United States)

    Mecozzi, Mauro; Acquistucci, Rita; Nisini, Laura; Conti, Marcelo Enrique

    2014-03-01

    In this paper we analyze some chemical aspects concerning the browning development associated to the aggregation of marine organic matter (MOM) occurring in anoxic conditions. Organic matter samples obtained by the degradation of different algal samples were daily taken to follow the evolution of the aggregation process and the associated browning process. These samples were examined by Fourier transform mid infrared (FTIR) and Fourier transform near infrared (FTNIR) spectroscopy and the colour changes occurring during the above mentioned aggregation process were measured by means of Colour Indices (CIs). Spectral Cross Correlation Analysis (SCCA) was applied to correlate changes in CI values to the structural changes of MOM observed by FTIR and FTNIR spectra which were also submitted to Two-Dimensional Hetero Correlation Analysis (2HDCORR). SCCA results showed that all biomolecules present in MOM aggregates such as carbohydrates, proteins and lipids are involved in the browning development. In particular, SCCA results of algal mixtures suggest that the observed yellow-brown colour can be linked to the development of non enzymatic (i.e. Maillard) browning reactions. SCCA results for MOM furthermore suggest that aggregates coming from brown algae also showed evidence of browning related to enzymatic reactions. In the end 2HDCORR results indicate that hydrogen bond interactions among different molecules of MOM can play a significant role in the browning development.

  5. Structural and hemostatic activities of a sulfated galactofucan from the brown alga Spatoglossum schroederi - An ideal antithrombotic agent?

    OpenAIRE

    Rocha, Hugo Alexandre Oliveira; Moraes, Fabio A. [UNIFESP; Trindade, Edvaldo da Silva [UNIFESP; Franco, CRC; Torquato, Ricardo José Soares; Veiga, Silvio Sanches; Valente, A. P.; Mourao, PAS; E.L. Leite; Nader, Helena Bonciani; Dietrich, Carl Peter [UNIFESP

    2005-01-01

    The brown alga Spatoglossum schroederi contains three fractions of sulfated polysaccharides. One of them was purified by acetone fractionation, ion exchange, and molecular sieving chromatography. It has a molecular size of 21.5 kDa and contains fucose, xylose, galactose, and sulfate in a molar ratio of 1.0:0.5:2.0:2.0 and contains trace amounts of glucuronic acid. Chemical analyses, methylation studies, and NMR spectroscopy showed that the polysaccharide has a unique structure, composed of a ...

  6. Identification of anti-inflammatory effects of extract of brown algae Padina sp. in mice (Mus musculus: A pilot study

    Directory of Open Access Journals (Sweden)

    Dwi Fitrah Ariani Bahar

    2016-06-01

    Full Text Available Infection, tissue damage, or interference immune response are factors that cause inflasmmatory reactions of teeth and surrounding tissues. To reduce the side effects of pharmaceutical drugs, it is necessary to research which uses the principle of back to nature as a source of medicines. One of the natural ingredients that have anti-inflammatory activity is brown algae Padina sp. containing polysaccharides, PUFA, and fucoxanthin. The purpose of this research is to determine antiinflammatory effects of extract brown algae Padina sp. in mice. The research design is pretest and post test with control group design. Sample were 15 male mice weighing 14-35g. Mice were divided into three treatment groups (n=5. G1 (negative control NaCMC 1%, G2 (positive control sodium diclofenac 0.35mg/35g B/V, and G3 was extracted with methanol and Padina sp. dose 7mg/35g B/V. After 30 minutes of testing material was injected, peptone 1% (0.05ml is injected at subplantar area of mice left paw. Measurements were taken using plethysmometer. Data was analysis using repeated ANOVA test. The results showed that volume inflammation of the extract brown algae Padina sp. on V0=0.170ml, V1=0.164 ml, V2=0.120ml, V3=0.108ml, V4=0.138ml, respectively. Repeated ANOVA test obtained P value (<.05 in the Padina sp. group. In conclusion, extract brown algae Padina sp. has anti-inflammatory effects in mice.

  7. The fucoidans from brown algae of Far-Eastern seas: anti-tumor activity and structure-function relationship.

    Science.gov (United States)

    Vishchuk, Olesya S; Ermakova, Svetlana P; Zvyagintseva, Tatyana N

    2013-11-15

    The sulfated polysaccharides from brown algae - the fucoidans - are known to be a topic of numerous studies, due to their beneficial biological activities including anti-tumour activity. In this study the effect of fucoidans isolated from brown algae Saccharina cichorioides, Fucus evanescens, and Undaria pinnatifida on the proliferation, neoplastic transformation, and colony formation of mouse epidermal cells JB6 Cl41, human colon cancer DLD-1, breast cancer T-47D, and melanoma RPMI-7951 cell lines was investigated. The algal fucoidans specifically and markedly suppressed the proliferation of human cancer cells with less cytotoxic effects against normal mouse epidermal cells. The highly sulfated (1→3)-α-l-fucan from S. cichorioides was found to be vitally important in the inhibition of EGF-induced neoplastic transformation of JB6 Cl41 cells. In colony formation assay the fucoidans from different species of brown algae showed selective anti-tumour activity against different types of cancer, which depended on unique structures of the investigated polysaccharides. These results provide evidence for further exploring the use of the fucoidans from S. cichorioides, F. evanescens, and U. pinnatifida as novel chemotherapeutics against different types of cancer.

  8. Origin and evolution of alginate-c5-mannuronan-epimerase gene based on transcriptomic analysis of brown algae

    Institute of Scientific and Technical Information of China (English)

    WANG Ren; WANG Xumin; ZHANG Yalan; YU Jun; LIU Tao; CHEN Shengping; CHI Shan

    2014-01-01

    The coding product of alginate-c5-mannuronan-epimerase gene (algG gene) can catalyze the conversion of mannuronate to guluronate and determine the M/G ratio of alginate. Most of the current knowledge about genes involved in the alginate biosynthesis comes from bacterial systems. In this article, based on some algal and bacterial algG genes registered on GenBank and EMBL databases, we predicted 94 algG genes open reading frame (ORF) sequences of brown algae from the 1 000 Plant Transcriptome Sequencing Project (OneKP). By method of transcriptomic sequence analysis, gene structure and gene localization analysis, multiple sequence alignment and phylogenetic tree construction, we studied the algal algG gene family characteristics, the structure modeling and conserved motifs of AlgG protein, the origin of alginate biosyn-thesis and the variation incidents that might have happened during evolution in algae. Although there are different members in the algal algG gene family, almost all of them harbor the conserved epimerase region. Based on the phylogenetic analysis of algG genes, we proposed that brown algae acquired the alginate bio-synthesis pathway from an ancient bacterium by horizontal gene transfer (HGT). Afterwards, followed by duplications, chromosome disorder, mutation or recombination during evolution, brown algal algG genes were divided into different types.

  9. Diffusion or advection? Mass transfer and complex boundary layer landscapes of the brown alga Fucus vesiculosus.

    Science.gov (United States)

    Lichtenberg, Mads; Nørregaard, Rasmus Dyrmose; Kühl, Michael

    2017-03-01

    The role of hyaline hairs on the thallus of brown algae in the genus Fucus is long debated and several functions have been proposed. We used a novel motorized set-up for two-dimensional and three-dimensional mapping with O2 microsensors to investigate the spatial heterogeneity of the diffusive boundary layer (DBL) and O2 flux around single and multiple tufts of hyaline hairs on the thallus of Fucus vesiculosus. Flow was a major determinant of DBL thickness, where higher flow decreased DBL thickness and increased O2 flux between the algal thallus and the surrounding seawater. However, the topography of the DBL varied and did not directly follow the contour of the underlying thallus. Areas around single tufts of hyaline hairs exhibited a more complex mass-transfer boundary layer, showing both increased and decreased thickness when compared with areas over smooth thallus surfaces. Over thallus areas with several hyaline hair tufts, the overall effect was an apparent increase in the boundary layer thickness. We also found indications for advective O2 transport driven by pressure gradients or vortex shedding downstream from dense tufts of hyaline hairs that could alleviate local mass-transfer resistances. Mass-transfer dynamics around hyaline hair tufts are thus more complex than hitherto assumed and may have important implications for algal physiology and plant-microbe interactions.

  10. Gold(III) biosorption and bioreduction with the brown alga Fucus vesiculosus.

    Science.gov (United States)

    Mata, Y N; Torres, E; Blázquez, M L; Ballester, A; González, F; Muñoz, J A

    2009-07-30

    In this paper, the bioreduction of Au(III) to Au(0) using biomass of the brown alga Fucus vesiculosus was investigated. The recovery and reduction process took place in two stages with an optimum pH range of 4-9 with a maximum uptake obtained at pH 7. In the first stage, an induction period previous to gold reduction, the variation of pH, redox potential and gold concentration in solution was practically negligible and no color change was observed. In the second stage, the gold reduction was followed by a sharp decrease of gold concentration, pH and redox potential of solution and a color change from yellow to reddish purple. Hydroxyl groups present in the algal polysaccharides were involved in the gold bioreduction. Metallic gold was detected as microprecipitates on the biomass surface and in colloidal form as nanoparticles in the solution. Bioreduction with F. vesiculosus could be an alternative and environmentally friendly process that can be used for recovering gold from dilute hydrometallurgical solutions and leachates of electronic scraps, and for the synthesis of gold nanoparticles of different size and shape.

  11. Gold(III) biosorption and bioreduction with the brown alga Fucus vesiculosus

    Energy Technology Data Exchange (ETDEWEB)

    Mata, Y.N.; Torres, E. [Departamento de Ciencia de los Materiales e Ingenieria Metalurgica, Facultad de Ciencias Quimicas, Universidad Complutense de Madrid s/n, Madrid 28040 (Spain); Blazquez, M.L., E-mail: mlblazquez@quim.ucm.es [Departamento de Ciencia de los Materiales e Ingenieria Metalurgica, Facultad de Ciencias Quimicas, Universidad Complutense de Madrid s/n, Madrid 28040 (Spain); Ballester, A.; Gonzalez, F.; Munoz, J.A. [Departamento de Ciencia de los Materiales e Ingenieria Metalurgica, Facultad de Ciencias Quimicas, Universidad Complutense de Madrid s/n, Madrid 28040 (Spain)

    2009-07-30

    In this paper, the bioreduction of Au(III) to Au(0) using biomass of the brown alga Fucus vesiculosus was investigated. The recovery and reduction process took place in two stages with an optimum pH range of 4-9 with a maximum uptake obtained at pH 7. In the first stage, an induction period previous to gold reduction, the variation of pH, redox potential and gold concentration in solution was practically negligible and no color change was observed. In the second stage, the gold reduction was followed by a sharp decrease of gold concentration, pH and redox potential of solution and a color change from yellow to reddish purple. Hydroxyl groups present in the algal polysaccharides were involved in the gold bioreduction. Metallic gold was detected as microprecipitates on the biomass surface and in colloidal form as nanoparticles in the solution. Bioreduction with F. vesiculosus could be an alternative and environmentally friendly process that can be used for recovering gold from dilute hydrometallurgical solutions and leachates of electronic scraps, and for the synthesis of gold nanoparticles of different size and shape.

  12. The Brown Alga Stypopodium zonale (Dictyotaceae: A Potential Source of Anti-Leishmania Drugs

    Directory of Open Access Journals (Sweden)

    Deivid Costa Soares

    2016-09-01

    Full Text Available This study evaluated the anti-Leishmania amazonensis activity of a lipophilic extract from the brown alga Stypopodium zonale and atomaric acid, its major compound. Our initial results revealed high inhibitory activity for intracellular amastigotes in a dose-dependent manner and an IC50 of 0.27 μg/mL. Due to its high anti-Leishmania activity and low toxicity toward host cells, we fractionated the lipophilic extract. A major meroditerpene in this extract, atomaric acid, and its methyl ester derivative, which was obtained by a methylation procedure, were identified by nuclear magnetic resonance (NMR spectroscopy. Both compounds inhibited intracellular amastigotes, with IC50 values of 20.2 μM (9 μg/mL and 22.9 μM (10 μg/mL, and selectivity indexes of 8.4 μM and 11.5 μM. The leishmanicidal activity of both meroditerpenes was independent of nitric oxide (NO production, but the generation of reactive oxygen species (ROS may be at least partially responsible for the amastigote killing. Our results suggest that the lipophilic extract of S. zonale may represent an important source of compounds for the development of anti-Leishmania drugs.

  13. The Brown Alga Stypopodium zonale (Dictyotaceae): A Potential Source of Anti-Leishmania Drugs.

    Science.gov (United States)

    Soares, Deivid Costa; Szlachta, Marcella Macedo; Teixeira, Valéria Laneuville; Soares, Angelica Ribeiro; Saraiva, Elvira Maria

    2016-09-08

    This study evaluated the anti-Leishmania amazonensis activity of a lipophilic extract from the brown alga Stypopodium zonale and atomaric acid, its major compound. Our initial results revealed high inhibitory activity for intracellular amastigotes in a dose-dependent manner and an IC50 of 0.27 μg/mL. Due to its high anti-Leishmania activity and low toxicity toward host cells, we fractionated the lipophilic extract. A major meroditerpene in this extract, atomaric acid, and its methyl ester derivative, which was obtained by a methylation procedure, were identified by nuclear magnetic resonance (NMR) spectroscopy. Both compounds inhibited intracellular amastigotes, with IC50 values of 20.2 μM (9 μg/mL) and 22.9 μM (10 μg/mL), and selectivity indexes of 8.4 μM and 11.5 μM. The leishmanicidal activity of both meroditerpenes was independent of nitric oxide (NO) production, but the generation of reactive oxygen species (ROS) may be at least partially responsible for the amastigote killing. Our results suggest that the lipophilic extract of S. zonale may represent an important source of compounds for the development of anti-Leishmania drugs.

  14. The Brown Alga Stypopodium zonale (Dictyotaceae): A Potential Source of Anti-Leishmania Drugs

    Science.gov (United States)

    Soares, Deivid Costa; Szlachta, Marcella Macedo; Teixeira, Valéria Laneuville; Soares, Angelica Ribeiro; Saraiva, Elvira Maria

    2016-01-01

    This study evaluated the anti-Leishmania amazonensis activity of a lipophilic extract from the brown alga Stypopodium zonale and atomaric acid, its major compound. Our initial results revealed high inhibitory activity for intracellular amastigotes in a dose-dependent manner and an IC50 of 0.27 μg/mL. Due to its high anti-Leishmania activity and low toxicity toward host cells, we fractionated the lipophilic extract. A major meroditerpene in this extract, atomaric acid, and its methyl ester derivative, which was obtained by a methylation procedure, were identified by nuclear magnetic resonance (NMR) spectroscopy. Both compounds inhibited intracellular amastigotes, with IC50 values of 20.2 μM (9 μg/mL) and 22.9 μM (10 μg/mL), and selectivity indexes of 8.4 μM and 11.5 μM. The leishmanicidal activity of both meroditerpenes was independent of nitric oxide (NO) production, but the generation of reactive oxygen species (ROS) may be at least partially responsible for the amastigote killing. Our results suggest that the lipophilic extract of S. zonale may represent an important source of compounds for the development of anti-Leishmania drugs. PMID:27618071

  15. The influence of brown algae alginates on phenolic compounds capability of ultraviolet radiation absorption in vitro

    Directory of Open Access Journals (Sweden)

    Leonardo Tavares Salgado

    2007-06-01

    Full Text Available Brown algae phenolic compounds (PC are secondary metabolites that participate in many biological processes, such as ultraviolet radiation (UV protection, polyspermy blocking and trace metals bounding. Recently, PC has also been studied due to possible interactions with cell wall polysaccharides. However, there are few evidences of these interactions and their influence in physiological processes. The interactions between PC from the brown alga Padina gymnospora and alginates and the influence of these interactions on the UV absorption properties of PC were investigated in this work. Chromatography and spectrophotometry techniques were used to isolate, characterize and determine UV absorption capacity of studied compounds. Even after the P. gymnospora polysaccharide extraction and isolating methods, the PC was maintained linked to the alginate. The interaction of alginates with PC did not cause modifications on absorbance pattern of electromagnetic spectrum (UV-VIS-IR. The UV absorbance capability of PC linked to alginate was maintained for a longer period of time if compared with the purified PC. The obtained results reveal the strong linkage between PC and alginates and that these linkages preserve the UV absorption capability of PC along time.Os compostos fenólicos (PC de algas pardas são metab��litos secundários que participam de diversos processos biológicos, como proteção contra radiação ultravioleta (UV, bloqueio de poliespermia e ligação de metais. Recentemente, os PC têm sido estudados devido a possíveis interações com polissacarídeos da parede celular. Entretanto, existem poucas evidências sobre estas interações e sua influência em processos fisiológicos. Neste trabalho, foram investigadas as interações entre os PC de Padina gymnospora e os alginatos e a influência destas interações na capacidade de absorção de UV pelos PC. Foram utilizadas técnicas cromatográficas e espectrofotométricas para o

  16. Extraction and Purification of R-phycoerythrin from Marine Red Algae.

    Science.gov (United States)

    Dumay, Justine; Morançais, Michèle; Nguyen, Huu Phuo Trang; Fleurence, Joël

    2015-01-01

    This chapter focuses on the recovery of an R-Phycoerythrin (R-PE)-enriched fraction from marine algae. Since R-PE is a proteinaceous pigment, we have developed a simple and rapid two-step method devoted to the extraction and purification of R-PE from marine red algae. Here we describe a phosphate buffer extraction followed by anion exchange chromatography carried on a DEAE Sepharose Fast Flow column. To ensure the quality and quantity of R-PE recovery, we also indicate different methods to monitor each fraction obtained, such as spectrophotometric indicators, gel filtration, and SDS-PAGE analysis.

  17. Biosynthesis of Silver Nanoparticles Using Brown Marine Macroalga, Sargassum Muticum Aqueous Extract

    Directory of Open Access Journals (Sweden)

    Susan Azizi

    2013-12-01

    Full Text Available Biological synthesis of nanoparticles is a relatively new emerging field of nanotechnology which has economic and eco-friendly benefits over chemical and physical processes of synthesis. In the present work, for the first time, the brown marine algae Sargassum muticum (S. muticum aqueous extract was used as a reducing agent for the synthesis of nanostructure silver particles (Ag-NPs. Structural, morphological and optical properties of the synthesized nanoparticles have been characterized systematically by using FTIR, XRD, TEM and UV–Vis spectroscopy. The formation of Ag-NPs was confirmed through the presence of an intense absorption peak at 420 nm using a UV–visible spectrophotometer. A TEM image showed that the particles are spherical in shape with size ranging from 5 to 15 nm. The nanoparticles were crystalline in nature. This was confirmed by the XRD pattern. From the FTIR results, it can be seen that the reduction has mostly been carried out by sulphated polysaccharides present in S. muticum.

  18. A review of heavy metal adsorption by marine algae

    Science.gov (United States)

    Pan, Jin-Fen; Lin, Rong-Gen; Ma, Li

    2000-09-01

    Accumulation of heavy metals by algae had been studied extensively for biomonitoring or bioremediation purposes. Having the advantages of low cost raw material, big adsorbing capacity, no secondary pollution, etc., algae may be used to treat industrial water containing heavy metals. The adsorption processes were carried out in two steps: rapid physical adsorption first, and then slow chemical adsorption. pH is the major factor influencing the adsorption. The Freundlich equation fitted very well the adsorption isotherms. The uptake decreased with increasing ionic strength. The principal mechanism of metallic cation sequestration involves the formation of complexes between a metal ion and functional groups on the surface or inside the porous structure of the biological material. The carboxyl groups of alginate play a major role in the complexation. Different species of algae and the algae of the same species may have different adsorption capacity. Their selection affinity for heavy metals was the major criterion for the screening of a biologic adsorbent to be used in water treatment. The surface complex formation model (SCFM) can solve the equilibrium and kinetic problems in the biosorption.

  19. A REVIEW OF HEAVY METAL ADSORPTION BY MARINE ALGAE

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Accumulation of heavy metals by algae had been studied extensively for biomonitoring or bioremediation purposes. Having the advantages of low cost raw material, big adsorbing capacity, no secondary pollution, etc., algae may be used to treat industrial water containing heavy metals. The adsorption processes were carried out in two steps: rapid physical adsorption first, and then slow chemical adsorption. pH is the major factor influencing the adsorption. The Freundlich equation fitted very well the adsorption isotherms. The uptake decreased with increasing ionic strength. The principal mechanism of metallic cation sequestration involves the formation of complexes between a metal ion and functional groups on the surface or inside the porous structure of the biological material. The carboxyl groups of alginate play a major role in the complexation. Different species of algae and the algae of the same species may have different adsorption capacity. Their selection affinity for heavy metals was the major criterion for the screening of a biologic adsorbent to be used in water treatment. The surface complex formation model (SCFM) can solve the equilibrium and kinetic problems in the biosorption.

  20. Photo-producing Hydrogen with Marine Green Algae

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    @@ Hydrogen is often hailed as a potential source of unlimited clean power.It can be produced with green algae from water and solar energy through a process called "photobiological hydrogen production."Although its efficiency is rather low at present, scientists believe,an increase to 10% would make this process economically feasible.

  1. [Presence of lectins, tannins and protease inhibitors in venezuelan marine algae].

    Science.gov (United States)

    Perez-Lorenzo, S; Levy-Benshimol, A; Gomez-Acevedo, S

    1998-01-01

    The presence of lectins, tannins and protease inhibitors was studied in 27 algae species collected at four Venezuelan coral rift sites. Among the species studied, only six had hemagglutinating activity, apparently due to their lectin content. Higher hemagglutinating titers were obtained when the extracts were tested on pronase-treated erythrocytes. Hemagglutination was inhibited by simple sugars and by bovine submaxillary gland mucine. GaINAc was the only inhibitor of the hemagglutination caused by Grateulopia filicina extracts. None of the compounds tested inhibited the hemagglutination caused by Halimeda opuntia. The polyvinylpolypirrolidone treatment abolished the hemagglutinating activity of both brown and red algae. However, in Grateulopia filicina and Hypnea cervicornis (Rhodophyta) hemagglutinating activity persisted after the polyvinylpolypirrolidone treatment, presumably due to the presence of true lectins in those algae. Tannin content (presumably phlorotannins) was higher in the Phaeophyta as compared to the Rhodophyta. The brown alga Padina gymnospora had the higher content of these polyphenols. Trypsin inhibitors were detected, in minute ammounts, only in Padina gymnospora (Phaeophyta) and Acantophora spicifera (Rhodophyta). No subtilisin inhibition was observed whatsoever.

  2. Coralline algae as a globally significant pool of marine dimethylated sulfur

    Science.gov (United States)

    Burdett, Heidi L.; Hatton, Angela D.; Kamenos, Nicholas A.

    2015-10-01

    Marine algae are key sources of the biogenic sulfur compound dimethylsulphoniopropionate (DMSP), a vital component of the marine sulfur cycle. Autotrophic ecosystem engineers such as red coralline algae support highly diverse and biogeochemically active ecosystems and are known to be high DMSP producers, but their importance in the global marine sulfur cycle has not yet been appreciated. Using a global sampling approach, we show that red coralline algae are a globally significant pool of DMSP in the oceans, estimated to be ~110 × 1012 moles worldwide during the summer months. Latitude was a major driver of observed regional-scale variations, with peaks in polar and tropical climate regimes, reflecting the varied cellular functions for DMSP (e.g., as a cryoprotectant and antioxidant). A temperate coralline algal bed was investigated in more detail to also identify local-scale temporal variations. Here, water column DMSP was driven by water temperature, and to a lesser extent, cloud cover; two factors which are also vital in controlling coralline algal growth. This study demonstrates that coralline algae harbor a large pool of dimethylated sulfur, thereby playing a significant role in both the sulfur and carbon marine biogeochemical cycles. However, coralline algal habitats are severely threatened by projected climate change; a loss of this habitat may thus detrimentally impact oceanic sulfur and carbon biogeochemical cycling.

  3. Acetic acid production from marine algae. Progress report No. 2, September 30--December 31, 1977

    Energy Technology Data Exchange (ETDEWEB)

    1977-01-01

    Preliminary results on the production of acetic acid from marine algae by anaerobic fermentation indicate that the rate is quite fast. First order rate constants of 0.77 day/sup -1/ were observed. This rate constant gives a half-life of less than one day. In other words, with a properly designed product removal system a five day retention time would yield 98% of theoretical conversion. Determination of the theoretical conversion of marine algae to acetic acid is the subject of much experimentation. The production of one acetic acid molecule (or equivalent in higher organic acids) for each three carbon atoms in the substrate has been achieved; but it is possible that with a mixed culture more than one acetic acid molecule may be produced for each three carbons in the substrate. Work is continuing to improve the yield of acetic acid from marine algae. Marine algae have been found to be rather low in carbon, but the carbon appears to be readily available for fermentation. It, therefore, lends itself to the production of higher value chemicals in relatively expensive equipment, where the rapid conversion rate is particularly cost effective. Fixed packed bed fermenters appear to be desirable for the production of liquid products which are inhibitory to the fermentation from coarse substrates. The inhibitory products may be removed from the fermentation by extraction during recirculation. This technique lends itself to either conventional processing or low capital processing of substrates which require long retention times.

  4. New antitumour natural products from marine red algae: covering the period from 2003 to 2012.

    Science.gov (United States)

    Pejin, Boris; Jovanovic, Katarina K; Savic, Aleksandar G

    2015-01-01

    This review covers the 2003-2012 literature data published for natural products originating from marine red algae. The focus is on new antitumour substances, together with details related to the organism sourced. It emphasises 14 promising compounds (isolated from 13 species) whose chemical structures are briefly discussed.

  5. Rapid Mass Spectrometric Analysis of a Novel Fucoidan, Extracted from the Brown Alga Coccophora langsdorfii

    Directory of Open Access Journals (Sweden)

    Stanislav D. Anastyuk

    2014-01-01

    Full Text Available The novel highly sulfated (35% fucoidan fraction Cf2 , which contained, along with fucose, galactose and traces of xylose and uronic acids was purified from the brown alga Coccophora langsdorfii. Its structural features were predominantly determined (in comparison with fragments of known structure by a rapid mass spectrometric investigation of the low-molecular-weight fragments, obtained by “mild” (5 mg/mL and “exhaustive” (maximal concentration autohydrolysis. Tandem matrix-assisted laser desorption/ionization mass spectra (MALDI-TOF/TOFMS of fucooligosaccharides with even degree of polymerization (DP, obtained by “mild” autohydrolysis, were the same as that observed for fucoidan from Fucus evanescens, which have a backbone of alternating (1 → 3- and (1 → 4 linked sulfated at C-2 and sometimes at C-4 of 3-linked α-L-Fucp residues. Fragmentation patterns of oligosaccharides with odd DP indicated sulfation at C-2 and at C-4 of (1 → 3 linked α-L-Fucp residues on the reducing terminus. Minor sulfation at C-3 was also suggested. The “exhaustive” autohydrolysis allowed us to observe the “mixed” oligosaccharides, built up of fucose/xylose and fucose/galactose. Xylose residues were found to occupy both the reducing and nonreducing termini of FucXyl disaccharides. Nonreducing galactose residues as part of GalFuc disaccharides were found to be linked, possibly, by 2-type of linkage to fucose residues and were found to be sulfated, most likely, at position C-2.

  6. Structural Characteristics and Anticancer Activity of Fucoidan from the Brown Alga Sargassum mcclurei

    Directory of Open Access Journals (Sweden)

    Tatiana N. Zvyagintseva

    2013-05-01

    Full Text Available Three different fucoidan fractions were isolated and purified from the brown alga, Sargassum mcclurei. The SmF1 and SmF2 fucoidans are sulfated heteropolysaccharides that contain fucose, galactose, mannose, xylose and glucose. The SmF3 fucoidan is highly sulfated (35% galactofucan, and the main chain of the polysaccharide contains a →3-α-l-Fucp(2,4SO3−-(1→3-α-l-Fucp(2,4SO3−-(1→ motif with 1,4-linked 3-sulfated α-l-Fucp inserts and 6-linked galactose on reducing end. Possible branching points include the 1,2,6- or 1,3,6-linked galactose and/or 1,3,4-linked fucose residues that could be glycosylated with terminal β-d-Galp residues or chains of alternating sulfated 1,3-linked α-l-Fucp and 1,4-linked β-d-Galp residues, which have been identified in galactofucans for the first time. Both α-l-Fucp and β-d-Galp residues are sulfated at C-2 and/or C-4 (and some C-6 of β-d-Galp and potentially the C-3 of terminal β-d-Galp, 1,4-linked β-d-Galp and 1,4-linked α-l-Fucp residues. All fucoidans fractions were less cytotoxic and displayed colony formation inhibition in colon cancer DLD-1 cells. Therefore, these fucoidan fractions are potential antitumor agents.

  7. Complete Plastid Genome of the Brown Alga Costaria costata (Laminariales, Phaeophyceae.

    Directory of Open Access Journals (Sweden)

    Lei Zhang

    Full Text Available Costaria costata is a commercially and industrially important brown alga. In this study, we used next-generation sequencing to determine the complete plastid genome of C. costata. The genome consists of a 129,947 bp circular DNA molecule with an A+T content of 69.13% encoding a standard set of six ribosomal RNA genes, 27 transfer RNA genes, and 137 protein-coding genes with two conserved open reading frames (ORFs. The overall genome structure of C. costata is nearly the same as those of Saccharina japonica and Undaria pinnatifida. The plastid genomes of these three algal species retain a strong conservation of the GTG start codon while infrequently using TGA as a stop codon. In this regard, they differ substantially from the plastid genomes of Ectocarpus siliculosus and Fucus vesiculosus. Analysis of the nucleic acid substitution rates of the Laminariales plastid genes revealed that the petF gene has the highest substitution rate and the petN gene contains no substitution over its complete length. The variation in plastid genes between C. costata and S. japonica is lower than that between C. costata and U. pinnatifida as well as that between U. pinnatifida and S. japonica. Phylogenetic analyses demonstrated that C. costata and U. pinnatifida have a closer genetic relationship. We also identified two gene length mutations caused by the insertion or deletion of repeated sequences, which suggest a mechanism of gene length mutation that may be one of the key explanations for the genetic variation in plastid genomes.

  8. Comparative proteomic analysis provides insight into cadmium stress responses in brown algae Sargassum fusiforme

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Aiqin; Xu, Tao [Alkali Soil Natural Environmental Science Center, Northeast Forestry University, Key Laboratory of Saline–alkali Vegetation Ecology Restoration in Oil Field, Ministry of Education, Harbin 150040 (China); Zou, Huixi [Zhejiang Provincial Key Laboratory for Subtropical Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035 (China); Pang, Qiuying, E-mail: qiuying@nefu.edu.cn [Alkali Soil Natural Environmental Science Center, Northeast Forestry University, Key Laboratory of Saline–alkali Vegetation Ecology Restoration in Oil Field, Ministry of Education, Harbin 150040 (China)

    2015-06-15

    Highlights: • Proteomic analysis of brown algae response different level Cd stress was performed. • Proteins involved in carbohydrate metabolism were reduced under 1 day Cd stress. • 5 days Cd stress induced glycolysis and citrate cycle related proteins. • Graphic depiction of different metabolic pathways response to Cd stress was framed. - Abstract: Sargassum fusiforme is one of the most widely consumed seaweeds in China, Korea and Japan. In this work, we performed growth analysis and comparative proteomics to investigate the molecular mechanisms of the response to 1 day and 5 days Cd stress in S. fusiforme. Our results showed a significant decrease in growth rate and an increase in Cd ion content in S. fusiforme in response to Cd treatment. Comparative proteomic analysis revealed 25 and 51 differentially expressed protein spots in S. fusiforme under 1 day and 5 days Cd stress, respectively. A great number of these proteins was metabolic enzymes involved in carbohydrate metabolism and energy metabolism. Many proteins involved in the processing of genetic information showed a decrease in abundance under 1 day Cd stress. In contrast, 9 of the identified protein spots primarily involved in genetic information processing and carbohydrate metabolism were greatly enriched under 5 days Cd stress. Overall, our investigation indicated that Cd stress negatively affects the metabolic activity of S. fusiforme through the down-regulation of key metabolic enzymes. In addition, S. fusiforme may adapt to 5 days Cd stress by promoting consumption of photoassimilates through the up-regulation of glycolysis and the citrate cycle to supply energy for survival.

  9. Bioactivities from Marine Algae of the Genus Gracilaria

    OpenAIRE

    José M. Barbosa-Filho; Maria de Fátima V. de Souza; Rodrigues, Luis C.; Athayde-Filho, Petrônio F.; Lira, Narlize S.; Camila De A. Montenegro; Gedson R. De M. Lima; Batista,Leônia M.; Heloina de S. Falcão; Cynthia Layse F. De Almeida

    2011-01-01

    Seaweeds are an important source of bioactive metabolites for the pharmaceutical industry in drug development. Many of these compounds are used to treat diseases like cancer, acquired immune-deficiency syndrome (AIDS), inflammation, pain, arthritis, as well as viral, bacterial, and fungal infections. This paper offers a survey of the literature for Gracilaria algae extracts with biological activity, and identifies avenues for future research. Nineteen species of this genus that were tested fo...

  10. C-15 ACETOGENINS FROM THE MARINE ALGA Chondria

    Directory of Open Access Journals (Sweden)

    Antonius R.B. Ola

    2010-06-01

    Full Text Available (- Z-Pinnatifidenyne, a novel C-15 acetogenin has been isolated along with the known compound (+-3Z,6R,7R-obtusenyne and (+ (3Z-laurenyne from the Australian red alga Chondria armata. The structures of the compounds were elucidated based on spectral data analysis including 2D NMR spectroscopic experiment.   Keywords: Chondria armata, C-15 acetogenin, 2D NMR

  11. A quantitative polymerase chain reaction assay for the enumeration of brown tide algae Aureococcusanophagefferens in coastal waters of Qinhuangdao

    Institute of Scientific and Technical Information of China (English)

    GUO Hao; LIU Yongjian; ZHANG Qi; YUAN Xiutang; ZHANG Weiwei; ZHANG Zhifeng

    2015-01-01

    Aureococcus anophagefferens, a small pelagophyte algae, has caused brown tide blooms in coastal waters of Qinhua-ngdao in recent years, presenting significant negative impacts on the shellfish mariculture industry. Under standard light microscopy, it is visually indistinguishable from other small algae in field samples due to its extremely small size. In this study, quantitative polymerase chain reaction (qPCR) based on 18S rDNA sequences was developed and used to detect and enumerate A. anophagefferens. A linear regression (R2=0.91) was generated based on cycle thr-esholds value (Ct) versus known concentrations of A. anophagefferens. Twenty-two field samples collected in coastal waters of Qinhuangdao were subjected to DNA extraction and then analyzed using qPCR. Results showed that A. anophagefferens had a wide distribution in coastal waters along Qinhuangdao. Elevated A. anophagefferens abun-dance, category 3 brown tide blooms (>200 000 cells/mL) occurred at Dongshan Beach and Tiger-stone Beach in August in 2013. In shellfish mariculture areas along coastal waters of Qinhuangdao, 4 stations had category 3 blooms, and 6 stations had category 2 blooms (35 000–200 000 cells/mL) in August and all stations had category 1 blooms (>0 to ≤35 000 cells/mL) in October. Quantitative PCR allows for detection of A. anophagefferens cells at low levels in filed samples, which is essential to effective management and prediction of brown tide blooms.

  12. Antibacterial screening of silver nanoparticles synthesized by marine micro algae

    Institute of Scientific and Technical Information of China (English)

    D Devina Merin; S Prakash; B Valentine Bhimba

    2010-01-01

    Objective:To explore the biosynthesis of silver nanoparticles synthesized by marine microalgae. Methods: Marine microalgae was collected from Central Marine Fisheries Research Institute (CMFRI, tuticorin) and cultured in the lab. Silver nanoparticles synthesis were observed in normal and microwave irradiated microalgae and screened against human pathogens for the presence of antimicrobials.Results: The presence of silver nanoparticle was confirmed by UV-Visible spectroscopy at420 nm by the presence of plasmon peak. Further confirmation was done by scanning electron microscope(SEM).Conclusions: These results not only provide a base for further research but are useful for drug development in the present and future.

  13. Marine algae sulfated polysaccharides for tissue engineering and drug delivery approaches.

    Science.gov (United States)

    Silva, Tiago H; Alves, Anabela; Popa, Elena G; Reys, Lara L; Gomes, Manuela E; Sousa, Rui A; Silva, Simone S; Mano, João F; Reis, Rui L

    2012-01-01

    Biomedical field is constantly requesting for new biomaterials, with innovative properties. Natural polymers appear as materials of election for this goal due to their biocompatibility and biodegradability. In particular, materials found in marine environment are of great interest since the chemical and biological diversity found in this environment is almost uncountable and continuously growing with the research in deeper waters. Moreover, there is also a slower risk of these materials to pose illnesses to humans.   In particular, sulfated polysaccharides can be found in marine environment, in different algae species. These polysaccharides don't have equivalent in the terrestrial plants and resembles the chemical and biological properties of mammalian glycosaminoglycans. In this perspective, are receiving growing interest for application on health-related fields. On this review, we will focus on the biomedical applications of marine algae sulfated polymers, in particular on the development of innovative systems for tissue engineering and drug delivery approaches.

  14. Mutual effects of nitric oxide and iron on the growth of marine algae

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    Experiments on the effects of nitric oxide (NO) and iron on the growth of marine microalgae Skeletonema costatum were conducted.The results are as follows: exogenous NO could increase the growth rate of marine algae and raise the biomass remarkably under iron-deficient conditions. But it was a complicated process that the phytoplankton growth was influenced by NO and iron, which was controlled by the NO concentration, the nutrition level of the culture medium and the iron concentration, etc. Meanwhile, the iron concentration in the medium also has a direct influence on the growth and NO release capacity of the algae. Therefore, the effects of NO and iron on the growth of marine phytoplankton were mutual.

  15. Seasonal variation in the antifouling defence of the temperate brown alga Fucus vesiculosus.

    Science.gov (United States)

    Saha, Mahasweta; Wahl, Martin

    2013-01-01

    The important role of marine epibiotic biofilms in the interactions of the host with its environment has been acknowledged recently. Previous studies with the temperate brown macroalga Fucus vesiculosus have identified polar and non-polar compounds recovered from the algal surface that have the potential to control such biofilms. Furthermore, both the fouling pressure and the composition of the epibiotic bacterial communities on this macroalga varied seasonally. The extent to which this reflects a seasonal fluctuation of the fouling control mechanisms of the host is, however, unexplored in an ecological context. The present study investigated seasonal variation in the anti-settlement activity of surface extracts of F. vesiculosus against eight biofilm-forming bacteria isolated from rockweed-dominated habitats, including replication of two populations from two geographically distant sites. The anti-settlement activity at both sites was found to vary temporally, reaching a peak in summer/autumn. Anti-settlement activity also showed a consistent and strong difference between sites throughout the year. This study is the first to report temporal variation of antifouling defence originating from ecologically relevant surface-associated compounds.

  16. Oxidative stress and antioxidant indices of marine alga Porphyra vietnamensis

    Digital Repository Service at National Institute of Oceanography (India)

    Pise, N.M.; Gaikwad, D.K.; Jagtap, T.G.

    . 2005), reduction in photosynthesis and impairment of CO2 assimi- lation (VAN ASSCHE and CLIJSTERS 1990, GOUIA et al. 2003), which may produce ROS and resulting LPX. Similar results were reported in brown seaweed Padina tetrastromatica at polluted... of reactive oxygen (PFLUGMACHER 2004). In addition, photosynthetic orga- nisms continuously produce reactive oxygen during photosynthesis and other metabolic processes (FOYER and NOCTOR 2000). The defence system against reactive oxygen in plants includes...

  17. Cytokine production induced by marine algae lectins in BALB/c mice splenocytes.

    Science.gov (United States)

    Monteiro Abreu, Ticiana; Castelo Melo Silva, Luana Maria; Vanderlei, Edfranck Sousa Oliveira; de Melo, Cristiane Moutinho Lagos; Pereira, Valeria Rego Alves; Barros Benevides, Norma Maria

    2012-09-01

    Marine algae can serve as sources of bioactive compounds and currently have been shown their potential biological and pharmaceutical applications. Marine algae lectins have been shown to be effective at controlling inflammatory processes. This work aimed to analyze the immunostimulatory properties of lectins from the marine algae Solieria filiformis (SfL), Pterocladiella capillacea (PcL) and Caulerpa cupressoides (CcL). This analysis was performed on BALB/c mouse splenocytes by measuring cytokine and nitric oxide production and cellular damage using tests of cytotoxicity and cell viability. These lectins were not cytotoxic (1-100 μg/mL), and were not able to induce IFN-γ and IL-2 production. IL- 10 production was induced at high levels by all lectins tested. Treatment with SfL induced IL-6 production at higher levels at all experimental times, whereas treatment with PcL and CcL induced higher levels only in 24 and 72 h. Treatment with SfL did not result in nitrite oxide production, whereas treatment with PcL or CcL was able to induce nitrite release at high levels (after 24, 48 and 72 h). Lesser cellular damage (5%) was observed in splenocytes treated with these lectins (10 μg/mL). Thus, the lectins from these algae were not cytotoxic, promoted increased in cell viability and induced Th2 immune responses in mouse splenocytes, indicating that they have anti-inflammatory effects.

  18. Anti-cancer mechanism and possibility of nano-suspension formulations for a marine algae product fucoxanthin.

    Science.gov (United States)

    Muthuirulappan, Srinivasan; Francis, Steffi Pulikodan

    2013-01-01

    Recently, use of natural products available from marine sources, and especially algae products, are receiving more attention. Scientific evidence for claimed nutraceutical and therapeutical effects of one such marine algae product, fucoxanthin, is discussed in this paper with a summary of the currently available literature regarding its antioxidant, anti-obesity and anticancer activities. It is safe for use in humans, but as it has poor solubility a nano-suspension mode of delivery may be adopted to improve efficacy of supplements. We conclude from our literature review that the marine algae product fucoxanthin has significant antioxidant, anti-obesity and anticancer activity with established mechanisms of action.

  19. Crystallization and preliminary X-ray diffraction analysis of HML, a lectin from the red marine alga Hypnea musciformis

    Energy Technology Data Exchange (ETDEWEB)

    Nagano, Celso S.; Gallego del Sol, Francisca [Instituto de Biomedicina de Valencia, CSIC, Valencia (Spain); Cavada, Benildo S.; Nascimento, Kyria Santiago Do [Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Fortaleza, CE 60451-970 (Brazil); Nunes, Eudismar Vale; Sampaio, Alexandre H. [Laboratorio de Bioquímica Marinha, Departamento de Engenharia de Pesca, Universidade Federal do Ceará, Fortaleza, CE 60451-970 (Brazil); Calvete, Juan J., E-mail: jcalvete@ibv.csic.es [Instituto de Biomedicina de Valencia, CSIC, Valencia (Spain)

    2005-11-01

    The crystallization and preliminary X-ray diffraction analysis of a red marine alga lectin isolated from H. musciformis is reported. HML, a lectin from the red marine alga Hypnea musciformis, defines a novel lectin family. Orthorhombic crystals of HML belonging to space group P2{sub 1}2{sub 1}2{sub 1} grew within three weeks at 293 K using the hanging-drop vapour-diffusion method. A complete data set was collected at 2.4 Å resolution. HML is the first marine alga lectin to be crystallized.

  20. Bioactivities from Marine Algae of the Genus Gracilaria

    Directory of Open Access Journals (Sweden)

    José M. Barbosa-Filho

    2011-07-01

    Full Text Available Seaweeds are an important source of bioactive metabolites for the pharmaceutical industry in drug development. Many of these compounds are used to treat diseases like cancer, acquired immune-deficiency syndrome (AIDS, inflammation, pain, arthritis, as well as viral, bacterial, and fungal infections. This paper offers a survey of the literature for Gracilaria algae extracts with biological activity, and identifies avenues for future research. Nineteen species of this genus that were tested for antibacterial, antiviral, antifungal, antihypertensive, cytotoxic, spermicidal, embriotoxic, and anti-inflammatory activities are cited from the 121 references consulted.

  1. Bioactivities from Marine Algae of the Genus Gracilaria

    Science.gov (United States)

    de Almeida, Cynthia Layse F.; Falcão, Heloina de S.; Lima, Gedson R. de M.; Montenegro, Camila de A.; Lira, Narlize S.; de Athayde-Filho, Petrônio F.; Rodrigues, Luis C.; de Souza, Maria de Fátima V.; Barbosa-Filho, José M.; Batista, Leônia M.

    2011-01-01

    Seaweeds are an important source of bioactive metabolites for the pharmaceutical industry in drug development. Many of these compounds are used to treat diseases like cancer, acquired immune-deficiency syndrome (AIDS), inflammation, pain, arthritis, as well as viral, bacterial, and fungal infections. This paper offers a survey of the literature for Gracilaria algae extracts with biological activity, and identifies avenues for future research. Nineteen species of this genus that were tested for antibacterial, antiviral, antifungal, antihypertensive, cytotoxic, spermicidal, embriotoxic, and anti-inflammatory activities are cited from the 121 references consulted. PMID:21845096

  2. A sulfated fucan from the brown alga Laminaria cichorioides has mainly heparin cofactor II-dependent anticoagulant activity.

    Science.gov (United States)

    Yoon, Seon-Joo; Pyun, Yu-Ryang; Hwang, Jae-Kwan; Mourão, Paulo A S

    2007-11-05

    The major acidic polysaccharide from the brown alga Laminaria cichorioides is a complex and heterogeneous sulfated fucan. Its preponderant structure is a 2,3-disulfated, 4-linked alpha-fucose unit. The purified polysaccharide has a potent anticoagulant activity, as estimated by APTT assay ( approximately 40 IU/mg), which is mainly mediated by thrombin inhibition by heparin cofactor II. It also accelerates thrombin and factor Xa inhibition by antithrombin but at a lower potency. Sulfated fucan from L. cichorioides is a promising anticoagulant polysaccharide and a possible alternative for an antithrombotic compound due to its preferential heparin cofactor II-dependent activity.

  3. Effect of selenium on the lipids of two unicellular marine algae

    Energy Technology Data Exchange (ETDEWEB)

    Gennity, J.M.

    1983-01-01

    The incorporation of selenium into the lipids of two unicellar marine algae has been investigated. Axenic cultures of the green algae Dunaliella primolecta and the red algae Porphyridium cruentum were grown in the presence of sublethal quantities of selenium (10 ppm) as selenite. Both algae were found to contain selenium bound to all purified lipids, except for saturated hydrocarbons. Of the lipids which contain selenium, carotenoid pigments show the greatest selenium concentration (..beta..-carotene: 1.3..mu..gSe/mg lipid; zeaxanthin: 1.1..mu..gSe/mg lipid) in both algae. P. cruentum contains about ten times as much lipid-associated selenium as D. primolecta, even though the lipids of both algae were very similar. This selenium has been shown to be incorporated non-metabolically into the lipid molecule. The lipid-associated selenium is probably non-covalently bound to the lipid molecule and may interact with double bonds. Selenite does not affect the lipid composition of D. primolecta, as compared with algae grown in the absence of added selenium. A selenium-induced 40% decrease in the cell content of eicosapentaenoic acid (20:5omega3) and 20% decrease in arachidonic acid (20:4omega6) in polar lipids (glycolipids plus phospholipids) was observed in P. cruentum. A 25% decrease in the chlorophyll a content of this red algae also occurred. The cell content of other fatty acids, phospholipids and glycolipids was unaltered by selenium. These results are consistent with a selenite-induced oxidation of P. cruentum lipids. Selenium is able to increase the antioxidant potential of algal cells. However, no in vivo selenium-induced protection of algal lipids from oxidation was apparent.

  4. Coral reef grazer-benthos dynamics complicated by invasive algae in a small marine reserve.

    Science.gov (United States)

    Stamoulis, Kostantinos A; Friedlander, Alan M; Meyer, Carl G; Fernandez-Silva, Iria; Toonen, Robert J

    2017-03-09

    Blooms of alien invasive marine algae have become common, greatly altering the health and stability of nearshore marine ecosystems. Concurrently, herbivorous fishes have been severely overfished in many locations worldwide, contributing to increases in macroalgal cover. We used a multi-pronged, interdisciplinary approach to test if higher biomass of herbivorous fishes inside a no-take marine reserve makes this area more resistant to invasive algal overgrowth. Over a two year time period, we (1) compared fish biomass and algal cover between two fished and one unfished patch reef in Hawai'i, (2) used acoustic telemetry to determine fidelity of herbivorous fishes to the unfished reef, and (3) used metabarcoding and next-generation sequencing to determine diet composition of herbivorous fishes. Herbivore fish biomass was significantly higher in the marine reserve compared to adjacent fished reefs, whereas invasive algal cover differed by species. Herbivorous fish movements were largely confined to the unfished patch reef where they were captured. Diet analysis indicated that the consumption of invasive algae varied among fish species, with a high prevalence of comparatively rare native algal species. Together these findings demonstrate that the contribution of herbivores to coral reef resilience, via resistance to invasive algae invasion, is complex and species-specific.

  5. Coral reef grazer-benthos dynamics complicated by invasive algae in a small marine reserve

    Science.gov (United States)

    Stamoulis, Kostantinos A.; Friedlander, Alan M.; Meyer, Carl G.; Fernandez-Silva, Iria; Toonen, Robert J.

    2017-01-01

    Blooms of alien invasive marine algae have become common, greatly altering the health and stability of nearshore marine ecosystems. Concurrently, herbivorous fishes have been severely overfished in many locations worldwide, contributing to increases in macroalgal cover. We used a multi-pronged, interdisciplinary approach to test if higher biomass of herbivorous fishes inside a no-take marine reserve makes this area more resistant to invasive algal overgrowth. Over a two year time period, we (1) compared fish biomass and algal cover between two fished and one unfished patch reef in Hawai’i, (2) used acoustic telemetry to determine fidelity of herbivorous fishes to the unfished reef, and (3) used metabarcoding and next-generation sequencing to determine diet composition of herbivorous fishes. Herbivore fish biomass was significantly higher in the marine reserve compared to adjacent fished reefs, whereas invasive algal cover differed by species. Herbivorous fish movements were largely confined to the unfished patch reef where they were captured. Diet analysis indicated that the consumption of invasive algae varied among fish species, with a high prevalence of comparatively rare native algal species. Together these findings demonstrate that the contribution of herbivores to coral reef resilience, via resistance to invasive algae invasion, is complex and species-specific. PMID:28276458

  6. Chemical Structures and Bioactivities of Sulfated Polysaccharides from Marine Algae

    Directory of Open Access Journals (Sweden)

    H. Stephen Ewart

    2011-02-01

    Full Text Available Sulfated polysaccharides and their lower molecular weight oligosaccharide derivatives from marine macroalgae have been shown to possess a variety of biological activities. The present paper will review the recent progress in research on the structural chemistry and the bioactivities of these marine algal biomaterials. In particular, it will provide an update on the structural chemistry of the major sulfated polysaccharides synthesized by seaweeds including the galactans (e.g., agarans and carrageenans, ulvans, and fucans. It will then review the recent findings on the anticoagulant/antithrombotic, antiviral, immuno-inflammatory, antilipidemic and antioxidant activities of sulfated polysaccharides and their potential for therapeutic application.

  7. Iron utilization in marine cyanobacteria and eukaryotic algae

    Directory of Open Access Journals (Sweden)

    Joe eMorrissey

    2012-03-01

    Full Text Available Iron is essential for aerobic organisms. Additionally, photosynthetic organisms must maintain the iron-rich photosynthetic electron transport chain, which likely evolved in the iron-replete Proterozoic ocean. The subsequent rise in oxygen since those times has drastically decreased the levels of bioavailable iron, indicating that adaptations have been made to maintain sufficient cellular iron levels in the midst of scarcity. In combination with physiological studies, the recent sequencing of marine microorganism genomes and transcriptomes has begun to reveal the mechanisms of iron acquisition and utilization that allow marine microalgae to persist in iron-limited environments.

  8. Iron utilization in marine cyanobacteria and eukaryotic algae.

    Science.gov (United States)

    Morrissey, Joe; Bowler, Chris

    2012-01-01

    Iron is essential for aerobic organisms. Additionally, photosynthetic organisms must maintain the iron-rich photosynthetic electron transport chain, which likely evolved in the iron-replete Proterozoic ocean. The subsequent rise in oxygen since those times has drastically decreased the levels of bioavailable iron, indicating that adaptations have been made to maintain sufficient cellular iron levels in the midst of scarcity. In combination with physiological studies, the recent sequencing of marine microorganism genomes and transcriptomes has begun to reveal the mechanisms of iron acquisition and utilization that allow marine microalgae to persist in iron limited environments.

  9. Subtidal marine algae of the Dwaraka Coast (Gujarat)

    Digital Repository Service at National Institute of Oceanography (India)

    Dhargalkar, V.K.; Deshmukhe, G.V.

    A total of 35 marine algal species were recorded during a survey of the subtidal flora of Dwaraka, Gujrat, India. Maximum number of species were found at 5-8 m depth. Red algal species were dominant (20), followed by green (8) and brwon (7...

  10. Discovery of novel algae-degrading enzymes from marine bacteria

    DEFF Research Database (Denmark)

    Schultz-Johansen, Mikkel; Bech, Pernille Kjersgaard; Hennessy, Rosanna Catherine

    and functional screening. This resulted in the discovery of a novel marine bacterium which displays a large enzymatic potential for degradation of red algal polysaccharides e.g. agar and carrageenan. In addition, we searched metagenome sequence data and identified new enzyme candidates for degradation...

  11. Heavy metal concentrations in marine green, brown, and red seaweeds from coastal waters of Yemen, the Gulf of Aden

    Science.gov (United States)

    Al-Shwafi, Nabil A.; Rushdi, Ahmed I.

    2008-08-01

    The purpose of this study was to investigate the concentration levels of heavy metals in different species of the main three marine algal divisions from the Gulf of Aden coastal waters, Yemen. The divisions included Chlorophyta—green plants ( Halimeda tuna, Rhizoclonium kochiamum, Caldophora koiei, Enteromorpha compressa, and Caulerpa racemosa species), Phaeophyta—brown seaweeds ( Padina boryana, Turbinaria elatensis, Sargassum binderi, Cystoseira myrica, and Sargassum boveanum species), and Rhodophyta—red seaweeds ( Hypnea cornuta, Champia parvula, Galaxaura marginate, Laurencia paniculata, Gracilaria foliifere, and species). The heavy metals, which included cadmium (Cd), cobalt (Co), copper (Cu), chromium (Cr), Iron (Fe), manganese (Mn), nickel (Ni), lead (Pb), zinc (Zn), and vanadium (V) were measured by Atomic Absorption Spectrophotometer (AAs). The concentrations of heavy metals in all algal species are in the order of Fe >> Cu > Mn > Cr > Zn > Ni > Pb > Cd > V > Co. The results also showed that the uptake of heavy metals by different marine algal divisions was in the order of Chlorophyta > Phaeophyta > Rhodophyta. These heavy metals were several order of magnitude higher than the concentrations of the same metals in seawater. This indicates that marine alga progressively uptake heavy metals from seawater.

  12. A draft genome of the brown alga, Cladosiphon okamuranus, S-strain: a platform for future studies of 'mozuku' biology.

    Science.gov (United States)

    Nishitsuji, Koki; Arimoto, Asuka; Iwai, Kenji; Sudo, Yusuke; Hisata, Kanako; Fujie, Manabu; Arakaki, Nana; Kushiro, Tetsuo; Konishi, Teruko; Shinzato, Chuya; Satoh, Noriyuki; Shoguchi, Eiichi

    2016-12-01

    The brown alga, Cladosiphon okamuranus (Okinawa mozuku), is economically one of the most important edible seaweeds, and is cultivated for market primarily in Okinawa, Japan. C. okamuranus constitutes a significant source of fucoidan, which has various physiological and biological activities. To facilitate studies of seaweed biology, we decoded the draft genome of C. okamuranus S-strain. The genome size of C. okamuranus was estimated as ∼140 Mbp, smaller than genomes of two other brown algae, Ectocarpus siliculosus and Saccharina japonica Sequencing with ∼100× coverage yielded an assembly of 541 scaffolds with N50 = 416 kbp. Together with transcriptomic data, we estimated that the C. okamuranus genome contains 13,640 protein-coding genes, approximately 94% of which have been confirmed with corresponding mRNAs. Comparisons with the E. siliculosus genome identified a set of C. okamuranus genes that encode enzymes involved in biosynthetic pathways for sulfated fucans and alginate biosynthesis. In addition, we identified C. okamuranus genes for enzymes involved in phlorotannin biosynthesis. The present decoding of the Cladosiphon okamuranus genome provides a platform for future studies of mozuku biology. © The Author 2016. Published by Oxford University Press on behalf of Kazusa DNA Research Institute.

  13. Homogeneous Population of the Brown Alga Sargassum polycystum in Southeast Asia: Possible Role of Recent Expansion and Asexual Propagation

    OpenAIRE

    Sze Wai Chan; Chi Chiu Cheang; Anong Chirapart; Grevo Gerung; Chea Tharith; Put Ang

    2013-01-01

    Southeast Asia has been known as one of the biodiversity hotspots in the world. Repeated glacial cycles during Pleistocene were believed to cause isolation of marine taxa in refugia, resulting in diversification among lineages. Recently, ocean current was also found to be another factor affecting gene flow by restricting larval dispersal in animals. Macroalgae are unique in having mode of reproduction that differs from that of animals. Our study on the phylogeographical pattern of the brown m...

  14. Kinetics and equilibrium studies on biosorption of cadmium, lead, and nickel ions from aqueous solutions by intact and chemically modified brown algae

    Energy Technology Data Exchange (ETDEWEB)

    Montazer-Rahmati, Mohammad Mehdi, E-mail: mrahmati@ut.ac.ir [School of Chemical Engineering, College of Engineering, University of Tehran, P.O. Box: 11155-4563, Tehran 4563 (Iran, Islamic Republic of); Rabbani, Parisa; Abdolali, Atefeh [School of Chemical Engineering, College of Engineering, University of Tehran, P.O. Box: 11155-4563, Tehran 4563 (Iran, Islamic Republic of); Keshtkar, Ali Reza [Nuclear Science and Technology Research Institute, Atomic Energy Organization of Iran, P.O. Box: 11365-8486, Tehran (Iran, Islamic Republic of)

    2011-01-15

    Research highlights: {yields} The present study deals with the evaluation of biosorptive removal of Cd (II), Ni (II) and Pb (II) ions by both intact and pre-treated brown marine algae: Cystoseira indica, Sargassum glaucescens, Nizimuddinia zanardini and Padina australis treated with formaldehyde (FA), glutaraldehyde (GA), polyethylene imine (PEI), calcium chloride (CaCl{sub 2}) and hydrochloric acid (HCl). From the results obtained, chemically modification leads to higher capacity of biosorption. {yields} The equilibrium experimental data were tested using the most common isotherms. The results are best fitted by the Freundlich model among two-parameter models and the Toth, Khan and Radke-Prausnitz models among three-parameter isotherm models for Cd (II), Ni (II) and Pb (II), respectively. {yields} One-way ANOVA and one sample t-tests were performed on experimental data to evaluate the statistical significance of biosorption capacities after five cycles of sorption and desorption. {yields} The kinetic data were fitted by models including pseudo-first-order and pseudo-second-order. From the results obtained, the pseudo-second-order kinetic model describes best the biosorption of cadmium, nickel and lead ions. - Abstract: The present study deals with the evaluation of biosorptive removal of Cd (II), Ni (II) and Pb (II) ions by both intact and pre-treated brown marine algae: Cystoseira indica, Sargassum glaucescens, Nizimuddinia zanardini and Padina australis treated with formaldehyde (FA), glutaraldehyde (GA), polyethylene imine (PEI), calcium chloride (CaCl{sub 2}) and hydrochloric acid (HCl). Batch shaking adsorption experiments were performed in order to examine the effects of pH, contact time, biomass concentration, biomass treatment and initial metal concentration on the removal process. The optimum sorption conditions for each heavy metal are presented. One-way ANOVA and one sample t-tests were performed on experimental data to evaluate the statistical

  15. Acetic acid production from marine algae. Progress report No. 2, September 30 to December 31, 1977

    Energy Technology Data Exchange (ETDEWEB)

    Sanderson, J E; Wise, D L

    1978-03-10

    Preliminary results on the production of acetic acid from marine algae by anaerobic fermentation indicates that the rate is quite fast. First order rate constants of 0.77 day/sup -1/ have been observed. This rate constant gives a half-life of less than one day. In other words, with a properly designed product removal system a five day retention time would yield 98% of theoretical conversion. Determination of the theoretical conversion of marine algae to acetic acid is the subject of much experimentation. The production of one acetic acid molecule (or equivalent in higher organic acids) for each three carbon atoms in the substrate has been achieved; but it is possible that with a mixed culture more than one acetic acid molecule may be produced for each three carbons in the substrate.

  16. Antibacterial Derivatives of Marine Algae: An Overview of Pharmacological Mechanisms and Applications.

    Science.gov (United States)

    Shannon, Emer; Abu-Ghannam, Nissreen

    2016-04-22

    The marine environment is home to a taxonomically diverse ecosystem. Organisms such as algae, molluscs, sponges, corals, and tunicates have evolved to survive the high concentrations of infectious and surface-fouling bacteria that are indigenous to ocean waters. Both macroalgae (seaweeds) and microalgae (diatoms) contain pharmacologically active compounds such as phlorotannins, fatty acids, polysaccharides, peptides, and terpenes which combat bacterial invasion. The resistance of pathogenic bacteria to existing antibiotics has become a global epidemic. Marine algae derivatives have shown promise as candidates in novel, antibacterial drug discovery. The efficacy of these compounds, their mechanism of action, applications as antibiotics, disinfectants, and inhibitors of foodborne pathogenic and spoilage bacteria are reviewed in this article.

  17. Antioxidant marine algae phlorotannins and radioprotection: a review of experimental evidence.

    Science.gov (United States)

    Shin, Taekyun; Ahn, Meejung; Hyun, Jin Won; Kim, Sung Ho; Moon, Changjong

    2014-06-01

    Radiation has been widely used for cancer therapy in human medicine. However, the side effects of radiation are problematic and can limit its application. Radiation generates reactive oxygen species, leading to cell death via multiple signaling pathways. The blocking of certain signaling cascades using antioxidants represents a compensatory therapy of radiation-induced tissue injury. Although synthetic chemicals have been investigated in recent decades, anti-oxidants from natural resources have been searched for continuously. Among them, phlorotannins from marine algae, including Ecklonia cava, have been shown to protect cells from radiation-induced injury as well as oxidative stress. In the present review, the radioprotective capacity of phlorotannins derived from marine algae and the mechanisms involved are discussed. Copyright © 2014 Elsevier GmbH. All rights reserved.

  18. Trace element content in marine algae species from the Black Sea, Turkey.

    Science.gov (United States)

    Tuzen, Mustafa; Verep, Bulent; Ogretmen, A Omur; Soylak, Mustafa

    2009-04-01

    Trace element content of marine algae species collected from the Black Sea coasts were determined by atomic absorption spectroscopy after microwave digestion. Trace element content in marine algae species were 1.70-17.1 microg/g for copper, 3.64-64.8 microg/g for zinc, 9.98-285 microg/g for manganese, 99-3,949 microg/g for iron, 0.50-11.6 microg/g for chromium, 0.27-36.2 microg/g for nickel, 11-694 microg/kg for selenium, 0.50-44.6 microg/kg for cadmium, 1.54-3,969 microg/kg for lead, 1.56-81.9 microg/kg for cobalt. While iron was the highest trace element concentration, cadmium was the lowest in samples. Most of the analyzed samples were edible. The samples are consumed for human diet in several countries.

  19. Antibacterial Derivatives of Marine Algae: An Overview of Pharmacological Mechanisms and Applications

    Directory of Open Access Journals (Sweden)

    Emer Shannon

    2016-04-01

    Full Text Available The marine environment is home to a taxonomically diverse ecosystem. Organisms such as algae, molluscs, sponges, corals, and tunicates have evolved to survive the high concentrations of infectious and surface-fouling bacteria that are indigenous to ocean waters. Both macroalgae (seaweeds and microalgae (diatoms contain pharmacologically active compounds such as phlorotannins, fatty acids, polysaccharides, peptides, and terpenes which combat bacterial invasion. The resistance of pathogenic bacteria to existing antibiotics has become a global epidemic. Marine algae derivatives have shown promise as candidates in novel, antibacterial drug discovery. The efficacy of these compounds, their mechanism of action, applications as antibiotics, disinfectants, and inhibitors of foodborne pathogenic and spoilage bacteria are reviewed in this article.

  20. Potential matrix metalloproteinase inhibitors from edible marine algae: a review.

    Science.gov (United States)

    Thomas, Noel Vinay; Manivasagan, Panchanathan; Kim, Se-Kwon

    2014-05-01

    Matrix metalloproteinases are endopeptidases which belong to the group of metalloproteinases that contribute for the extra-cellular matrix degradation, and several tissue remodeling processes. An imbalance in the regulation of these endopeptidases eventually leads to several severe pathological complications like cancers, cardiac, cartilage, and neurological related diseases. Hence inhibitory substances of metalloproteinases (MMPIs) could prove beneficial in the management of above specified pathological conditions. The available synthetic MMPIs that have been reported until now have few shortcomings and thus many of them could not make to the final clinical trials. Hence a growing interest among researchers on screening of MMPIs from different natural resources is evident and especially natural products from marine origin. As there has been an unparalleled contribution of several biologically active compounds from marine resources that have shown profound applications in nutraceuticals, cosmeceuticals, and pharmaceuticals, we have attempted to discuss the various MMPIs from edible sea-weeds. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Fucoidans from marine algae as potential matrix metalloproteinase inhibitors.

    Science.gov (United States)

    Thomas, Noel Vinay; Kim, Se-Kwon

    2014-01-01

    Matrix metalloproteinases are endopeptidases which belong to the group of metalloproteinases that contribute for the extracellular matrix degradation and several tissue remodeling processes. An imbalance in the regulation of these endopeptidases eventually leads to several severe pathological complications like cancers, cardiac, cartilage, and neurological-related diseases. Hence, inhibitory substances of metalloproteinases (MMPIs) could prove beneficial in the management of above specified pathological conditions. The available synthetic MMPIs that have been reported until now have few shortcomings, and thus many of them could not make to the final clinical trials. Hence, a growing interest among researchers on screening of MMPIs from different natural resources is evident and especially natural products from marine origin. As there has been an unparalleled contribution of several biologically active compounds from marine resources that have shown a profound applications in nutraceuticals, cosmeceuticals, and pharmaceuticals, we have attempted to discuss the various MMPIs from edible seaweeds. © 2014 Elsevier Inc. All rights reserved.

  2. Biochemical biomarkers in algae and marine pollution: a review.

    Science.gov (United States)

    Torres, Moacir A; Barros, Marcelo P; Campos, Sara C G; Pinto, Ernani; Rajamani, Satish; Sayre, Richard T; Colepicolo, Pio

    2008-09-01

    Environmental pollution by organic compounds and metals became extensive as mining and industrial activities increased in the 19th century and have intensified since then. Environmental pollutants originating from diverse anthropogenic sources have been known to possess adverse values capable of degrading the ecological integrity of marine environment. The consequences of anthropogenic contamination of marine environments have been ignored or poorly characterized with the possible exception of coastal and estuarine waters close to sewage outlets. Monitoring the impact of pollutants on aquatic life forms is challenging due to the differential sensitivities of organisms to a given pollutant, and the inability to assess the long-term effects of persistent pollutants on the ecosystem as they are bio-accumulated at higher trophic levels. Marine microalgae are particularly promising indicator species for organic and inorganic pollutants since they are typically the most abundant life forms in aquatic environments and occupy the base of the food chain. We review the effects of pollutants on the cellular biochemistry of microalgae and the biochemical mechanisms that microalgae use to detoxify or modify pollutants. In addition, we evaluate the potential uses of microalgae as bioindicator species as an early sentinel in polluted sites.

  3. Marine algae of the island of Flores, Azores : ecology and floristics

    OpenAIRE

    Tittley, Ian; Neto, Ana I.; Farnham, William F.

    1998-01-01

    Proceedings of the 2nd Symposium of Fauna & Flora of the Atlantic Islands, Las Palmas, Fevereiro 1996. Preliminary results of an extensive field survey of the marine algal flora of Flores are presented. Intertidal and subtidal algal zonation and community structure were investigated by sampling quadrats along transect lines. Intertidal areas were characterised by successive zones of barnacles, algal turf (Gelidium spp., Centroceras clavulatum, Laurencia spp. and other algae), and Corallina...

  4. ANALYSIS OF BIOACTIVE COMPOUNDS AND ANTIMICROBIAL ACTIVITY OF MARINE ALGAE KAPPAPHYCUS ALVAREZII USING THREE SOLVENT EXTRACTS

    Directory of Open Access Journals (Sweden)

    V. Prabha*, D.J. Prakash and P.N. Sudha

    2013-01-01

    Full Text Available The seaweeds are economically valuable resources, used as food, fodder, fertilizer and medicine and thus useful to mankind in many ways. In the present study, Kappaphycus alvarezii, a marine alga, has been analysed for the presence of bioactive products using three solvent extracts. Antimicrobial activity was also done using the same extracts of seaweed. The results revealed that the selected seaweed has active secondary metabolites and also exhibited antimicrobial activity, mainly in the methanolic extract of Kappaphycus alvarezii.

  5. The marine algae Sargassum spp. (Sargassaceae as feed for sheep in tropical and subtropical regions

    Directory of Open Access Journals (Sweden)

    Alejandro Marín

    2009-12-01

    Full Text Available The objective of this study was to evaluate Sargassum meal as feed for sheep through the measures of in vivo digestibility, dry matter degradability, pH, ammonia and volatile fatty acids in rumen. The Sargassum algae used in this experiment were collected at the end of spring, when they are more abundant, bigger, and have completed their reproductive cycle. Four tons (wet weigth were collected manually from the intertidal zone of La Paz bay, Baja California Sur, Mexico. These algae were sun-dried and ground in a hammer mill to obtain the Sargassum meal. Four fistulated Pelibuey sheep, were fed daily with diets containing the marine algae (MA at different levels (0, 10, 20 and 30 %, using a 4 x 4 Latin-square design experiment. Feed intake was not affected (p>0.05. Water consumption and urine excretion increased with MA (p0.05 by MA. Ruminal volatile fatty acids decreased in all MA groups (pEl objetivo de este estudio fue evaluar la harina del alga marina Sargassum como alimento para ovejas, midiendo la digestibilidad in vivo, la degradabilidad de la materia seca, así como el pH y los ácidos grasos volátiles en rumen. El alga Sargassum utilizada en este experimento, fue recolectada a finales de la primavera, cuando esta alga es más abundante, alcanza su mayor talla y ha completado su ciclo reproductivo. Se recolectaron manualmente, cuatro toneladas (peso húmedo de la zona intermareal en la Bahía de La Paz, Baja California Sur, México. Estas algas fueron secadas directamente al sol y molidas en un molino de martillos, para obtener la harina. Se utilizaron cuatro borregos Pelibuey fistulados, distribuidos en un arreglo factorial de 4 x 4. Los animales fueron alimentados diariamente con dietas que contenían el alga marina (AM Sargassum a diferentes niveles (0, 10, 20 y 30%. El consumo de alimento no se vio afectado con la inclusión del alga (p> 0.05. El consumo de agua y la excreción de orina se incrementaron conforme aumentó la

  6. Conventional and unconventional antimicrobials from fish, marine invertebrates and micro-algae.

    Science.gov (United States)

    Smith, Valerie J; Desbois, Andrew P; Dyrynda, Elisabeth A

    2010-04-14

    All eukaryotic organisms, single-celled or multi-cellular, produce a diverse array of natural anti-infective agents that, in addition to conventional antimicrobial peptides, also include proteins and other molecules often not regarded as part of the innate defences. Examples range from histones, fatty acids, and other structural components of cells to pigments and regulatory proteins. These probably represent very ancient defence factors that have been re-used in new ways during evolution. This review discusses the nature, biological role in host protection and potential biotechnological uses of some of these compounds, focusing on those from fish, marine invertebrates and marine micro-algae.

  7. Conventional and Unconventional Antimicrobials from Fish, Marine Invertebrates and Micro-algae

    Directory of Open Access Journals (Sweden)

    Valerie J. Smith

    2010-04-01

    Full Text Available All eukaryotic organisms, single-celled or multi-cellular, produce a diverse array of natural anti-infective agents that, in addition to conventional antimicrobial peptides, also include proteins and other molecules often not regarded as part of the innate defences. Examples range from histones, fatty acids, and other structural components of cells to pigments and regulatory proteins. These probably represent very ancient defence factors that have been re-used in new ways during evolution. This review discusses the nature, biological role in host protection and potential biotechnological uses of some of these compounds, focusing on those from fish, marine invertebrates and marine micro-algae.

  8. Agrobacterium-mediated transformation of promising oil-bearing marine algae Parachlorella kessleri.

    Science.gov (United States)

    Rathod, Jayant Pralhad; Prakash, Gunjan; Pandit, Reena; Lali, Arvind M

    2013-11-01

    Parachlorella kessleri is a unicellular alga which grows in fresh as well as marine water and is commercially important as biomass/lipid feedstock and in bioremediation. The present study describes the successful transformation of marine P. kessleri with the help of Agrobacterium tumefaciens. Transformed marine P. kessleri was able to tolerate more than 10 mg l(-1) hygromycin concentration. Co-cultivation conditions were modulated to allow the simultaneous growth of both marine P. kessleri and A. tumefaciens. For co-cultivation, P. kessleri was shifted from Walne's to tris acetate phosphate medium to reduce the antibiotic requirement during selection. In the present study, the transfer of T-DNA was successful without using acetosyringone. Biochemical and genetic analyses were performed for expression of transgenes by GUS assay and PCR in transformants. Establishment of this protocol would be useful in further genetic modification of oil-bearing Parachlorella species.

  9. Evolutionary trajectories explain the diversified evolution of isogamy and anisogamy in marine green algae.

    Science.gov (United States)

    Togashi, Tatsuya; Bartelt, John L; Yoshimura, Jin; Tainaka, Kei-ichi; Cox, Paul Alan

    2012-08-21

    The evolution of anisogamy (the production of gametes of different size) is the first step in the establishment of sexual dimorphism, and it is a fundamental phenomenon underlying sexual selection. It is believed that anisogamy originated from isogamy (production of gametes of equal size), which is considered by most theorists to be the ancestral condition. Although nearly all plant and animal species are anisogamous, extant species of marine green algae exhibit a diversity of mating systems including both isogamy and anisogamy. Isogamy in marine green algae is of two forms: isogamy with extremely small gametes and isogamy with larger gametes. Based on disruptive selection for fertilization success and zygote survival (theory of Parker, Baker, and Smith), we explored how environmental changes can contribute to the evolution of such complex mating systems by analyzing the stochastic process in the invasion simulations of populations of differing gamete sizes. We find that both forms of isogamy can evolve from other isogamous ancestors through anisogamy. The resulting dimensionless analysis accounts for the evolutionary stability of all types of mating systems in marine green algae, even in the same environment. These results imply that evolutionary trajectories as well as the optimality of gametes/zygotes played an important role in the evolution of gamete size.

  10. Potential targets for anti-inflammatory and anti-allergic activities of marine algae: an overview.

    Science.gov (United States)

    Vo, Thanh-Sang; Ngo, Dai-Hung; Kim, Se-Kwon

    2012-04-01

    The inflammatory and allergic diseases are among the most common diseases all over the world. The prevalence, severity, and complexity of these diseases are rapidly rising and considerably adding to the burden of healthcare costs. Although the synthetic and combinatorial chemistry have given rise to notable successes in the development of novel anti-inflammatory and anti-allergic drugs, but the extensive clinical use has led to the diverse and undesirable side effects. Meanwhile, the perceived value of natural products in the treatment of these diseases has yet to be fully explored. Thus, the extensive studies of alternative anti-inflammatory and anti-allergic drugs from natural products are essential. Notably, marine algae have been utilized in food products as well as in pharmaceutical products due to their biological activities and health benefit effects. Recently, marine algae have attracted a special interest as great sources of antiinflammatory and anti-allergic agents. This review presents an overview of potential anti-inflammatory and anti-allergic agents derived from marine algae and their promising applications in inflammation and allergy therapy.

  11. Contrasting geographical distributions as a result of thermal tolerance and long-distance dispersal in two allegedly widespread tropical brown algae.

    Directory of Open Access Journals (Sweden)

    Ana Tronholm

    Full Text Available BACKGROUND: Many tropical marine macroalgae are reported from all three ocean basins, though these very wide distributions may simply be an artifact resulting from inadequate taxonomy that fails to take into account cryptic diversity. Alternatively, pantropical distributions challenge the belief of limited intrinsic dispersal capacity of marine seaweeds and the effectiveness of the north-south oriented continents as dispersal barriers. We aimed to re-assess the distribution of two allegedly circumtropical brown algae, Dictyota ciliolata and D. crenulata, and interpret the realized geographical range of the respective species in relation to their thermal tolerance and major tectonic and climatic events during the Cenozoic. METHODOLOGY/PRINCIPAL FINDINGS: Species delimitation was based on 184 chloroplast encoded psbA sequences, using a Generalized Mixed Yule Coalescent method. Phylogenetic relationships were inferred by analyzing a six-gene dataset. Divergence times were estimated using relaxed molecular clock methods and published calibration data. Distribution ranges of the species were inferred from DNA-confirmed records, complemented with credible literature data and herbarium vouchers. Temperature tolerances of the species were determined by correlating distribution records with local SST values. We found considerable conflict between traditional and DNA-based species definitions. Dictyota crenulata consists of several pseudocryptic species, which have restricted distributions in the Atlantic Ocean and Pacific Central America. In contrast, the pantropical distribution of D. ciliolata is confirmed and linked to its significantly wider temperature tolerance. CONCLUSIONS/SIGNIFICANCE: Tectonically driven rearrangements of physical barriers left an unequivocal imprint on the current diversity patterns of marine macroalgae, as witnessed by the D. crenulata-complex. The nearly circumglobal tropical distribution of D. ciliolata, however

  12. An antioxidant function for DMSP and DMS in marine algae.

    Science.gov (United States)

    Sunda, W; Kieber, D J; Kiene, R P; Huntsman, S

    2002-07-18

    The algal osmolyte dimethylsulphoniopropionate (DMSP) and its enzymatic cleavage product dimethylsulphide (DMS) contribute significantly to the global sulphur cycle, yet their physiological functions are uncertain. Here we report results that, together with those in the literature, show that DMSP and its breakdown products (DMS, acrylate, dimethylsulphoxide, and methane sulphinic acid) readily scavenge hydroxyl radicals and other reactive oxygen species, and thus may serve as an antioxidant system, regulated in part by enzymatic cleavage of DMSP. In support of this hypothesis, we found that oxidative stressors, solar ultraviolet radiation, CO(2) limitation, Fe limitation, high Cu(2+) (ref. 9) and H(2)O(2) substantially increased cellular DMSP and/or its lysis to DMS in marine algal cultures. Our results indicate direct links between such stressors and the dynamics of DMSP and DMS in marine phytoplankton, which probably influence the production of DMS and its release to the atmosphere. As oxidation of DMS to sulphuric acid in the atmosphere provides a major source of sulphate aerosols and cloud condensation nuclei, oxidative stressors--including solar radiation and Fe limitation--may be involved in complex ocean atmosphere feedback loops that influence global climate and hydrological cycles.

  13. Cryptic sex in the smallest eukaryotic marine green alga.

    Science.gov (United States)

    Grimsley, Nigel; Péquin, Bérangère; Bachy, Charles; Moreau, Hervé; Piganeau, Gwenaël

    2010-01-01

    Ostreococcus spp. are common worldwide oceanic picoeukaryotic pelagic algae. The complete genomes of three strains from different ecological niches revealed them to represent biologically distinct species despite their identical cellular morphologies (cryptic species). Their tiny genomes (13 Mb), with approximately 20 chromosomes, are colinear and densely packed with coding sequences, but no sexual life cycle has been described. Seventeen new strains of one of these species, Ostreococcus tauri, were isolated from 98 seawater samplings from the NW Mediterranean by filtering, culturing, cloning, and plating for single colonies and identification by sequencing their ribosomal 18S gene. In order to find the genetic markers for detection of polymorphisms and sexual recombination, we used an in silico approach to screen available genomic data. Intergenic regions of DNA likely to evolve neutrally were analyzed following polymerase chain reaction amplification of sequences using flanking primers from adjacent conserved coding sequences that were present as syntenic pairs in two different species of Ostreococcus. Analyses of such DNA regions from eight marker loci on two chromosomes from each strain revealed that the isolated O. tauri clones were haploid and that the overall level of polymorphism was approximately 0.01. Four different genetic tests for recombination showed that sexual exchanges must be inferred to account for the between-locus and between-chromosome marker combinations observed. However, our data suggest that sexual encounters are infrequent because we estimate the frequency of meioses/mitoses among the sampled strains to be 10(-6). Ostreococcus tauri and related species encode and express core genes for mitosis and meiosis, but their mechanisms of cell division and recombination, nevertheless, remain enigmatic because a classical eukaryotic spindle with 40 canonical microtubules would be much too large for the available approximately 0.9-microm(3) cellular

  14. The first symbiont-free genome sequence of marine red alga, Susabi-nori (Pyropia yezoensis.

    Directory of Open Access Journals (Sweden)

    Yoji Nakamura

    Full Text Available Nori, a marine red alga, is one of the most profitable mariculture crops in the world. However, the biological properties of this macroalga are poorly understood at the molecular level. In this study, we determined the draft genome sequence of susabi-nori (Pyropia yezoensis using next-generation sequencing platforms. For sequencing, thalli of P. yezoensis were washed to remove bacteria attached on the cell surface and enzymatically prepared as purified protoplasts. The assembled contig size of the P. yezoensis nuclear genome was approximately 43 megabases (Mb, which is an order of magnitude smaller than the previously estimated genome size. A total of 10,327 gene models were predicted and about 60% of the genes validated lack introns and the other genes have shorter introns compared to large-genome algae, which is consistent with the compact size of the P. yezoensis genome. A sequence homology search showed that 3,611 genes (35% are functionally unknown and only 2,069 gene groups are in common with those of the unicellular red alga, Cyanidioschyzon merolae. As color trait determinants of red algae, light-harvesting genes involved in the phycobilisome were predicted from the P. yezoensis nuclear genome. In particular, we found a second homolog of phycobilisome-degradation gene, which is usually chloroplast-encoded, possibly providing a novel target for color fading of susabi-nori in aquaculture. These findings shed light on unexplained features of macroalgal genes and genomes, and suggest that the genome of P. yezoensis is a promising model genome of marine red algae.

  15. The first symbiont-free genome sequence of marine red alga, Susabi-nori (Pyropia yezoensis).

    Science.gov (United States)

    Nakamura, Yoji; Sasaki, Naobumi; Kobayashi, Masahiro; Ojima, Nobuhiko; Yasuike, Motoshige; Shigenobu, Yuya; Satomi, Masataka; Fukuma, Yoshiya; Shiwaku, Koji; Tsujimoto, Atsumi; Kobayashi, Takanori; Nakayama, Ichiro; Ito, Fuminari; Nakajima, Kazuhiro; Sano, Motohiko; Wada, Tokio; Kuhara, Satoru; Inouye, Kiyoshi; Gojobori, Takashi; Ikeo, Kazuho

    2013-01-01

    Nori, a marine red alga, is one of the most profitable mariculture crops in the world. However, the biological properties of this macroalga are poorly understood at the molecular level. In this study, we determined the draft genome sequence of susabi-nori (Pyropia yezoensis) using next-generation sequencing platforms. For sequencing, thalli of P. yezoensis were washed to remove bacteria attached on the cell surface and enzymatically prepared as purified protoplasts. The assembled contig size of the P. yezoensis nuclear genome was approximately 43 megabases (Mb), which is an order of magnitude smaller than the previously estimated genome size. A total of 10,327 gene models were predicted and about 60% of the genes validated lack introns and the other genes have shorter introns compared to large-genome algae, which is consistent with the compact size of the P. yezoensis genome. A sequence homology search showed that 3,611 genes (35%) are functionally unknown and only 2,069 gene groups are in common with those of the unicellular red alga, Cyanidioschyzon merolae. As color trait determinants of red algae, light-harvesting genes involved in the phycobilisome were predicted from the P. yezoensis nuclear genome. In particular, we found a second homolog of phycobilisome-degradation gene, which is usually chloroplast-encoded, possibly providing a novel target for color fading of susabi-nori in aquaculture. These findings shed light on unexplained features of macroalgal genes and genomes, and suggest that the genome of P. yezoensis is a promising model genome of marine red algae.

  16. Occurrence of four species of algae in the marine water of Hong Kong.

    Science.gov (United States)

    Chai, Yemao; Deng, Wen-Jing; Qin, Xing; Xu, Xiangrong

    2017-01-05

    Harmful algal blooms (HABs) have broken out frequently throughout the world in recent decades; they are caused by the rapid multiplication of algal cells in near-coastal waters polluted with nitrogen and phosphorus and greatly affect the quality of marine water and human health. Over the past several decades, climate change and increasing environmental degradation have provided favourable growth conditions for certain phytoplankton species. Therefore, it is essential to rapidly identify and enumerate harmful marine algae to control these species. In this study, quantitative PCR (qPCR) was used to detect four representative species of HABs that are widespread in the marine water of Hong Kong, namely, Alexandrium catenella, Pseudo-nitzschia spp., Karenia mikimotoi and Heterosigma akashiwo. We applied qPCR with the dye SYBR Green to detect Alexandrium spp. and Pseudo-nitzschia spp. and used TaqMan probe for the enumeration of Karenia mikimotoi and Heterosigma akashiwo. The total genomic DNA of these algae from Hong Kong marine water was extracted successfully using the CTAB method, and for each kind of alga, we constructed a ten-fold series of recombinant plasmid solutions containing certain gene fragments of 18S rDNA and ITS1-5.8S-ITS2 as standard samples. Ten-fold dilutions of the DNA of known numbers of the extracted algal cells were also used to create an additional standard curve. In this way, the relationship between the cell number and the related plasmid copy number was established. The qPCR assay displayed high sensitivity in monitoring marine water samples in which the low concentrations of harmful algae were not detected accurately by traditional methods. The results showed that the cell numbers of the four species were all in low abundance. For Alexandrium catenella, the cell abundances at 12 sites ranged from 3.8×10(2) to 4.3×10(3)cellsL(-1), while H. akashiwo, K. mikimotoi and Pseudo-nitzschia ranged from 1.1×10(2) to 1.3×10(3), from 23 to 6.5×10

  17. Characteristics and phylogeny of light-harvesting complex gene encoded proteins from marine red alga Griffithsia japonica

    Institute of Scientific and Technical Information of China (English)

    LIU Chenlin; HUANG Xiaohang; LEE Yookyung; LEE Hongkum; LI Guangyou

    2005-01-01

    Six genes encoding light-harvesting complex (LHC) protein have been characterized in the multicellular red alga Griffithsia japonica EST analysis. Three of them were full sequences while others were partial sequences with 3'-UTRs. The cleavage sites between signal peptide and mature LHC protein were analyzed on these three full sequences. The sequence characteristics, calculated molecular weights and isoelectric point (pI) values and hydrophobieity of the mature proteins were deduced and analyzed. Comparing the LHC sequences of G. japonica with higher plant, Chlorophyta, chromophytes and other red algae, the high conservation of the chlorophyll (Chl) binding site among chromophytes and red algae were revealed. Phylogenetic analysis on LHC proteins from higher plant, green algae, euglena, brown algae, diatom, cryptomonad, Raphidophyte and red algae reveals that (1) there are two distinct groups of Chl a/b and Chl a/c -binding LHC; (2) Chl a binding proteins of red algae share greater similarities with the Chl a/c-binding proteins of the chromophytes and dinoflagellate than with the Chl a/b - binding proteins of the green algae and higher plants; (3) chromophyte' s LHC is supposed to be evolved from red algae LHC.

  18. Screening of marine algae (Padina sp.) from the Lengeh Port, Persian Gulf for antibacterial and antifungal activities

    Institute of Scientific and Technical Information of China (English)

    Azadeh Taherpour; Bita Archangi; Sadraddin Ghaemmaghami; Hossein Zolgharnein; Kamal Ghanemi

    2016-01-01

    Objective:To evaluate the antibacterial efficacy of different solvent extracts ofPadinasp. against selected human pathogenic bacteria and fungi species such asEscherichia coli,Shigella sp.,Staphylococcus aureus(S. aureus),Pseudomonas aeruginosa,Aspergillus flavus and Candida albicans. Methods:Various solvents including methanol, ethyl acetate, chloroform and hexane were used to acquire crude extracts from marine algaePadinasp. After crude preparation, antibacterial and antifungal activities were screened against clinically important human pathogenic bacteria using disc and well diffusion methods. For all the bacterial species used in this research, minimum inhibitory concentration was undertaken considering various solvent extracts of Padinasp. To ensure the accuracy of experiments, a positive control was also included. Results:Confirmed that hexane is the best solvent to extract antimicrobial agents fromPadina sp. Among selected bacteria,S. aureus was the most sensitive test microorganism. While, all other microorganisms showed resistance against methanol, ethyl acetate, chloroform extracts. In fact, by increasing concentration of hexane extract, inhibition ofS. aureus growth or antimicrobial activity was increased. Growth inhibition zone in well method showed better results compared to disc diffusion method. The minimum inhibitory concentration and minimum bactericidal concentration of hexane extract were 15 and 30 mg/mL against S. aureus, respectively. AllPadinasp. extracts did not reveal any antifungal activities against fungi species in this study. Conclusions: Brown algae extracts showed sufficient antibacterial properties againstS. aureus. Therefore,Padinasp. in this research can be a good candidate to design and manufacture novel antibacterial agents used in pharmaceutical industries.

  19. Screening of marine algae (Padina sp. from the Lengeh Port, Persian Gulf for antibacterial and antifungal activities

    Directory of Open Access Journals (Sweden)

    Azadeh Taherpour

    2016-09-01

    Full Text Available Objective: To evaluate the antibacterial efficacy of different solvent extracts of Padina sp. against selected human pathogenic bacteria and fungi species such as Escherichia coli, Shigella sp., Staphylococcus aureus (S. aureus, Pseudomonas aeruginosa, Aspergillus flavus and Candida albicans. Methods: Various solvents including methanol, ethyl acetate, chloroform and hexane were used to acquire crude extracts from marine algae Padina sp. After crude preparation, antibacterial and antifungal activities were screened against clinically important human pathogenic bacteria using disc and well diffusion methods. For all the bacterial species used in this research, minimum inhibitory concentration was undertaken considering various solvent extracts of Padina sp. To ensure the accuracy of experiments, a positive control was also included. Results: Confirmed that hexane is the best solvent to extract antimicrobial agents from Padina sp. Among selected bacteria, S. aureus was the most sensitive test microorganism. While, all other microorganisms showed resistance against methanol, ethyl acetate, chloroform extracts. In fact, by increasing concentration of hexane extract, inhibition of S. aureus growth or antimicrobial activity was increased. Growth inhibition zone in well method showed better results compared to disc diffusion method. The minimum inhibitory concentration and minimum bactericidal concentration of hexane extract were 15 and 30 mg/mL against S. aureus, respectively. All Padina sp. extracts did not reveal any antifungal activities against fungi species in this study. Conclusions: Brown algae extracts showed sufficient antibacterial properties against S. aureus. Therefore, Padina sp. in this research can be a good candidate to design and manufacture novel antibacterial agents used in pharmaceutical industries.

  20. High-density genetic map and identification of QTLs for responses to temperature and salinity stresses in the model brown alga Ectocarpus

    Science.gov (United States)

    Avia, Komlan; Coelho, Susana M.; Montecinos, Gabriel J.; Cormier, Alexandre; Lerck, Fiona; Mauger, Stéphane; Faugeron, Sylvain; Valero, Myriam; Cock, J. Mark; Boudry, Pierre

    2017-01-01

    Deciphering the genetic architecture of adaptation of brown algae to environmental stresses such as temperature and salinity is of evolutionary as well as of practical interest. The filamentous brown alga Ectocarpus sp. is a model for the brown algae and its genome has been sequenced. As sessile organisms, brown algae need to be capable of resisting the various abiotic stressors that act in the intertidal zone (e.g. osmotic pressure, temperature, salinity, UV radiation) and previous studies have shown that an important proportion of the expressed genes is regulated in response to hyposaline, hypersaline or oxidative stress conditions. Using the double digest RAD sequencing method, we constructed a dense genetic map with 3,588 SNP markers and identified 39 QTLs for growth-related traits and their plasticity under different temperature and salinity conditions (tolerance to high temperature and low salinity). GO enrichment tests within QTL intervals highlighted membrane transport processes such as ion transporters. Our study represents a significant step towards deciphering the genetic basis of adaptation of Ectocarpus sp. to stress conditions and provides a substantial resource to the increasing list of tools generated for the species. PMID:28256542

  1. Juvenile life stages of the brown alga Fucus serratus L. are more sensitive to combined stress from high copper concentration and temperature than adults

    DEFF Research Database (Denmark)

    Nielsen, Søren Laurentius; Nielsen, Hanne Dalsgaard; Pedersen, Morten Foldager

    2014-01-01

    The combined effects of exposure to copper and temperature were investigated in adult specimens and germlings of the canopy-forming brown alga Fucus serratus. A matrix of four temperatures, 6, 12, 17 and 22 °C, and three concentrations of copper, 0, 100 and 1,000 nM total copper were used. Measured...

  2. Kinetics and equilibrium studies on biosorption of cadmium, lead, and nickel ions from aqueous solutions by intact and chemically modified brown algae.

    Science.gov (United States)

    Montazer-Rahmati, Mohammad Mehdi; Rabbani, Parisa; Abdolali, Atefeh; Keshtkar, Ali Reza

    2011-01-15

    The present study deals with the evaluation of biosorptive removal of Cd (II), Ni (II) and Pb (II) ions by both intact and pre-treated brown marine algae: Cystoseira indica, Sargassum glaucescens, Nizimuddinia zanardini and Padina australis treated with formaldehyde (FA), glutaraldehyde (GA), polyethylene imine (PEI), calcium chloride (CaCl(2)) and hydrochloric acid (HCl). Batch shaking adsorption experiments were performed in order to examine the effects of pH, contact time, biomass concentration, biomass treatment and initial metal concentration on the removal process. The optimum sorption conditions for each heavy metal are presented. One-way ANOVA and one sample t-tests were performed on experimental data to evaluate the statistical significance of biosorption capacities after five cycles of sorption and desorption. The equilibrium experimental data were tested using the most common isotherms. The results are best fitted by the Freundlich model among two-parameter models and the Toth, Khan and Radke-Prausnitz models among three-parameter isotherm models for Cd (II), Ni (II) and Pb (II), respectively. The kinetic data were fitted by models including pseudo-first-order and pseudo-second-order. From the results obtained, the pseudo-second-order kinetic model best describes the biosorption of cadmium, nickel and lead ions.

  3. Evaluation of the acute toxicity of dolabelladienotriol, a potential antiviral from the brown alga Dictyota pfaffii, in BALB/c mice

    Directory of Open Access Journals (Sweden)

    Valéria Garrido

    2011-04-01

    Full Text Available Dolabelladienotriol is a product extracted from the brown marine alga Dictyota pfaffii from Brazil that has been shown to have antiviral activity and low cytotoxicity. Our studies have evaluated the acute toxicity of dolabelladienotriol in BALB/c mice for ten days after administration of a single dose. Among the parameters considered were behavior, weight, biochemical and histological analyses of blood samples taken at three different times (Bs.0, Bs.1 and Bs.2 and optical microscopic examination of organs like liver, kidney, stomach and small intestine. Mice deaths were not observed at any dose during the ten day period. There were some changes in the biochemical analysis results for urea nitrogen (BUN and alanine aminotransferase (ALT, but the changes were not significantly different from the reference levels of the animals before administration of the substance. Histological analyses of tissues were very similar for all animals. The alterations in liver and kidney tissues did not affect the animals´ behavior at any concentration, not even at 50 mg/kg, where the most significant changes in tissues were seen. This study indicates that dolabelladienotriol has low toxicity in administered dose range.

  4. Lead (Pb heavy metal impacts in the green Ulva lactuca (Chlorophyceae marine algae

    Directory of Open Access Journals (Sweden)

    B. Saleh

    2016-05-01

    Full Text Available Toxicity of different lead (Pb (0, 2, 4 and 8 mg/L concentrations in the green Ulva lactuca (Chlorophyta marine algae at physiological level has been investigated 48 h after Pb treatment under laboratory conditions. Thalus algae damages followed Pb treatment as revealed by microscopy test showed that the 4 and 8 mg/L Pb caused morphological changes in cells viability; whereas, no effect observed at the lowest Pb applied concentration (2 mg/L. Data revealed that Pb stress caused reduction in most investigated physiological parameters i.e. Pigments content, osmotic potential and membrane stability index values. This decline in osmotic potential was significantly (p ≤ 0.001 different. Whereas, estimated electric conductivity (EC values increased significantly (p ≤ 0.001 as applied Pb concentration increased. The current study allowed somewhat to highlight and better understanding Pb impacts in U. lactuca algae. Thereby, the studied algae could be used as a useful bioindicator in Pb polluted ecosystems.

  5. Alpha-amylase inhibitory activity and sterol composition of the marine algae, Sargassum glaucescens.

    Science.gov (United States)

    Payghami, Nasrin; Jamili, Shahla; Rustaiyan, Abdolhossein; Saeidnia, Soodabeh; Nikan, Marjan; Gohari, Ahmad Reza

    2014-01-01

    Sargassum species (phaeophyceae) are economically important brown algae in southern parts of Iran. Sargassum is mainly harvested as a row material in alginate production industries and is a source of plant foods or plant bio-stimulants even a component of animal foods. In this study, Sargassum glaucescens, collected from the seashore of Chabahar, was employed for phytochemical and biological evaluations. For that purpose, the dried algae was extracted by methanol and subjected to different chromatographic separation methods. Six sterols, fucosterol (1), 24(S)-hydroxy-24-vinylcholesterol (2), 24(R)-hydroxy-24-vinylcholesterol (3), stigmasterol (4), β-sitosterol (5) and cholesterol (6) were identified by spectroscopic methods including (1)H-NMR, (13)C-NMR and mass spectroscopy. In vitro alpha-amylase inhibitory test was performed on the methanolic extract and the results revealed a potent inhibition (IC50 = 8.9 ± 2.4 mg/mL) of the enzyme compared to acarbose as a positive control. Various biological activities and distribution of sterols in Sargassum genus have been critically reviewed here. The results concluded that these algae are a good candidate for further anti-diabetic investigations in animals and human.

  6. Exotic harmful algae in marine ecosystems : an integrated biological-economic-legal analysis of impacts and policies

    NARCIS (Netherlands)

    van den Bergh, JCJM; Nunes, PALD; Dotinga, HM; Kooistra, WHCF; Vrieling, EG; Peperzak, L

    Harmful algal blooms (HABs) are the cause of important damages to marine living resources and human beings. HABs are generated by micro-algae. These marine species are primarily introduced through ballast water of ships and, to a lesser extent, through import of living fish, in particular shellfish.

  7. Digitizing mass spectrometry data to explore the chemical diversity and distribution of marine cyanobacteria and algae.

    Science.gov (United States)

    Luzzatto-Knaan, Tal; Garg, Neha; Wang, Mingxun; Glukhov, Evgenia; Peng, Yao; Ackermann, Gail; Amir, Amnon; Duggan, Brendan M; Ryazanov, Sergey; Gerwick, Lena; Knight, Rob; Alexandrov, Theodore; Bandeira, Nuno; Gerwick, William H; Dorrestein, Pieter C

    2017-05-11

    Natural product screening programs have uncovered molecules from diverse natural sources with various biological activities and unique structures. However, much is yet underexplored and additional information is hidden in these exceptional collections. We applied untargeted mass spectrometry approaches to capture the chemical space and dispersal patterns of metabolites from an in-house library of marine cyanobacterial and algal collections. Remarkably, 86% of the metabolomics signals detected were not found in other available datasets of similar nature, supporting the hypothesis that marine cyanobacteria and algae possess distinctive metabolomes. The data were plotted onto a world map representing eight major sampling sites, and revealed potential geographic locations with high chemical diversity. We demonstrate the use of these inventories as a tool to explore the diversity and distribution of natural products. Finally, we utilized this tool to guide the isolation of a new cyclic lipopeptide, yuvalamide A, from a marine cyanobacterium.

  8. A sulfated polysaccharide, fucans, isolated from brown algae Sargassum vulgare with anticoagulant, antithrombotic, antioxidant and anti-inflammatory effects.

    Science.gov (United States)

    Dore, Celina Maria P Guerra; das C Faustino Alves, Monique Gabriela; Will, Luiza Sheyla E Pofírio; Costa, Thiago G; Sabry, Diego A; de Souza Rêgo, Leonardo Augusto R; Accardo, Camila M; Rocha, Hugo Alexandre O; Filgueira, Luciana Guimarães A; Leite, Edda Lisboa

    2013-01-02

    Fucan (SV1) sulfated polysaccharides from the brown algae Sargassum vulgare were extracted, fractionated in acetone and examined with respect to chemical composition, anticoagulant, anti-inflammatory, antithrombotic effects and cellular proliferation. These polysaccharides contain low levels of protein, high level of carbohydrate and sulfate. Monosaccharides analysis revealed that SV1 was composed of fucose, galactose, xylose, glucuronic acid and mannose. SV1 polysaccharide prolonged activated partial thromboplastin time (aPTT) and exhibited high antithrombotic action in vivo, with a concentration ten times higher than heparin activity. PSV1, a purified form in gel filtration showed very low biological activities. SV1 stimulated the enzymatic activity of FXa. Its action on DPPH radical scavenging activity was 22%. This polymer has no cytotoxic action (hemolytic) on ABO and Rh blood types in different erythrocyte groups. It displays strong anti-inflammatory action at all concentrations tested in the carrageenan-induced paw edema model, demonstrated by reduced edema and cellular infiltration.

  9. Biosynthesis, characterization and antimicrobial activity of copper oxide nanoparticles (CONPs) produced using brown alga extract ( Bifurcaria bifurcata)

    Science.gov (United States)

    Abboud, Y.; Saffaj, T.; Chagraoui, A.; El Bouari, A.; Brouzi, K.; Tanane, O.; Ihssane, B.

    2014-06-01

    Recently, biosynthesis of nanoparticles has attracted scientists' attention because of the necessity to develop new clean, cost-effective and efficient synthesis techniques. In particular, metal oxide nanoparticles are receiving increasing attention in a large variety of applications. However, up to now, the reports on the biopreparation and characterization of nanocrystalline copper oxide are relatively few compared to some other metal oxides. In this paper, we report for the first time the use of brown alga ( Bifurcaria bifurcata) in the biosynthesis of copper oxide nanoparticles of dimensions 5-45 nm. The synthesized nanomaterial is characterized by UV-visible absorption spectroscopy and Fourier transform infrared spectrum analysis. X-ray diffraction confirms the formation and the crystalline nature of copper oxide nanomaterial. Further, these nanoparticles were found to exhibit high antibacterial activity against two different strains of bacteria Enterobacter aerogenes (Gram negative) and Staphylococcus aureus (Gram positive).

  10. AN IN VITRO STUDY OF THE STRUCTURE-ACTIVITY RELATIONSHIPS OF SULFATED POLYSACCHARIDE FROM BROWN ALGAE TO ITS ANTIOXIDANT EFFECT

    Institute of Scientific and Technical Information of China (English)

    JIN FENG HU; MEI YU GENG; JUN TIAN ZHANG; HAN DONG JIANG

    2001-01-01

    In this paper, the structure-activity relationships of chemically modified uronic acid polymer fragments from brown algae with regard to their antioxidant effects on H2O2-damaged lymphocyte were studied. The results indicated that the most potent antioxidant activity was obtained from the sulfated polysaccharide with ratio of mannuronate blocks (M-blocks) to guluronate blocks (G-blocks) of 3 to 1 and carboxyl residue unesterified. The sulfated G-blocks with esterified carboxyl residue also prevented lymphocyte from injury. However, the sulfated G-blocks bearing unesterified carboxyl residue hardly exerted antioxidant activity. These findings suggested that both M-blocks and esterified carboxyl residue were determinant structures in preventing lymphocyte from being oxidized by H2O2, indicating that the existence of M-blocks was more important in scavenging free radicals.

  11. Cytotoxicity and antimicrobial activity of marine macro algae (Dictyotaceae and Ulvaceae) from the Persian Gulf.

    Science.gov (United States)

    Mashjoor, Sakineh; Yousefzadi, Morteza; Esmaeili, Mohamad Ali; Rafiee, Roya

    2016-10-01

    Pharmaceutical industry now accept the worlds ocean which contains a vast array of organisms with unique biological properties, as a major frontier for medical investigation. Bioactive compounds with different modes of action, such as, antiproliferative, antioxidant, antimicrotubule, have been isolated from marine sources, specifically macro and micro algae, and cyanobacteria. The aim of this work was to investigate antimicrobial and cytotoxic activities of the extracts of marine macro algae Ulva flexuosa, Padina antillarum and Padina boergeseni from the northern coasts of the Persian Gulf, Qeshm Island, Iran, against three cell lines including MCF7, HeLa and Vero, as well as their inhibitory effects against a wide array (i.e. n = 11) of pathogenic bacteria and fungi. Antimicrobial activity of the marine macro algal extracts was assessed using a disc diffusion method; an MTT cytotoxicity assay was employed to test the effects of the extracts on each cancer cell line. The algal extracts showed considerable antimicrobial activity against the majority of the tested bacteria and fungi. Both ethyl acetate and methanol extracts at the highest concentration (100 µg/ml) caused cell death, with the IC50 values calculated for each cell type and each algal extracts. Results are exhibited a higher decrease in the viability of the cells treated at the highest concentration of marine macro algal ethyl acetate extracts compared to the methanol extracts (78.9 % death in Vero cells by ethyl acetate extracts from U. flexuosa). Despite, the ethyl acetate extracts with lower dose- response of cells, exhibited better cytotoxic activity than methanol extracts (IC50: 55.26 μg/ml in Vero cells by ethyl acetate extracts from U. flexuosa). Based on the findings, it is concluded that the marine macro algal extracts from the Persian Gulf possess antibacterial and cytotoxic potential, which could be considered for future applications in medicine and identifying novel drugs from the

  12. Structural elucidation of polysaccharide fractions from the brown alga Coccophora langsdorfii and in vitro investigation of their anticancer activity.

    Science.gov (United States)

    Imbs, Tatiana I; Ermakova, Svetlana P; Malyarenko Vishchuk, Olesya S; Isakov, Vladimir V; Zvyagintseva, Tatiana N

    2016-01-01

    Laminaran, fucoidan, and alginate were isolated from the brown alga Coccophora langsdorfii collected in the Japan Sea. The structural characteristics of polysaccharides were investigated by NMR spectroscopy. The laminaran was determined as β-d-glucan, which consisted of 80% of 1,3- and 20% of 1,6-linked residues and was terminated with mannitol. The alginate was a guluronic acid-rich polysaccharide (M/G=0.85). Fucoidan, sulfated α-l-fucan, contained a linear backbone of alternating (1→3)- and (1→4)- linked α-l-fucopyranose residues with sulfate at C2 and C4 of (1→3)-α-l-fucopyranose residues. Anticancer activity of this fucoidan was investigated in comparison with activity of fucoidan having similar linear backbone from the brown alga Fucus evanescens. The fucoidan from C. langsdorfii significantly inhibited colony formation of SK-MEL-5 and SK-MEL-28 melanoma cells (the percentage of inhibition was 28 and 76, respectively) and weakly inhibited colony formation of breast adenocarcinoma cells MDA-MB-231 (the percentage of inhibition was about 5). Similar results were obtained for fucoidan from F. evanescens; the percentage of inhibition of colony formation of SK-MEL-5 and SK-MEL-28 melanoma cells was 54 and 56, respectively. The inhibition of colony formation of breast adenocarcinoma cells MDA-MB-231 was weak. We suppose that other sulfated and partially acetylated fucoidans consisting of (1→3)- and (1→4)-linked α-l-fucopyranose residues may suppress progression of melanoma cell colony formation similar to fucoidans of C. langsdorfii and F. evanescens.

  13. Responses of marine unicellular algae to brominated organic compounds in six growth media

    Energy Technology Data Exchange (ETDEWEB)

    Walsh, G.E.; Yoder, M.J.; McLaughlin, L.L.; Lores, E.M.

    1987-12-01

    Marine unicellular algae, Skeletonema costatum, Thalassiosira pseudonana, and Chlorella sp. were exposed to the industrial brominated compounds tetrabromobisphenol A, decabromobiphenyloxide (DBBO), hexabromocyclododecane (HBCD), pentabromomethylbenzene (PBMB), pentabromoethylbenzene (PBEB), and the herbicide bromoxynil (BROM), in six algal growth media. High concentrations of DBBO (1 mg liter-1), PBMB (1 mg liter-1), and PBEB (0.5 mg liter-1) reduced growth by less than 50%. EC50s of the other compounds varied with growth medium, with high EC50/low EC50 ratios between 1.3 and 9.9. Lowest EC50s, 9.3 to 12.0 micrograms liter-1, were obtained with S. costatum and HBCD. It is concluded that responses to toxicants in different media are the results of interactions among algae, growth medium, toxicant, and solvent carrier.

  14. Protective effect of edible marine algae, Laminaria japonica and Porphyra haitanensis, on subchronic toxicity in rats induced by inorganic arsenic.

    Science.gov (United States)

    Jiang, Yanhua; Wang, Lianzhu; Yao, Lin; Liu, Zhantao; Gao, Hua

    2013-09-01

    Arsenic, a potent environmental toxic agent, causes various hazardous effects on human health. This study was performed to evaluate the protective effects of edible marine algae, Laminaria japonica and Porphyra haitanensis, on subchronic stress of rats induced by arsenic trioxide (As2O3). The co-treatment of marine algae could slightly increase the growth rates of body weights compared to the As2O3-treated group. The marine algae application restored liver and renal function by preventing the increment in the activities of alanine transaminase and alkaline phosphatase, and the levels of total protein, blood urea nitrogen, and creatinine. The increase in the contents of total cholesterol, triglyceride, and low density lipoprotein cholesterol, and decrease in the contents of high density lipoprotein cholesterol were observed in algae co-treated groups which indicated that marine algae could reverse the abnormal lipid metabolisms induced by arsenic. Moreover, these algae could protect the rats from lipid peroxidation by restoring the depletion of superoxide dismutase and glutathione peroxidase activities and sulfhydryl group contents, and lowering the enhanced malondialdehyde contents. Therefore, evidences indicate that L. japonica and P. haitanensis can serve as an effective regimen for treating arsenic poisoning.

  15. Anti-Proliferative Activity of Meroditerpenoids Isolated from the Brown Alga Stypopodium flabelliforme against Several Cancer Cell Lines

    Directory of Open Access Journals (Sweden)

    Patricia Valentao

    2011-05-01

    Full Text Available The sea constitutes one of the most promising sources of novel compounds with potential application in human therapeutics. In particular, algae have proved to be an interesting source of new bioactive compounds. In this work, six meroditerpenoids (epitaondiol, epitaondiol diacetate, epitaondiol monoacetate, stypotriol triacetate, 14-ketostypodiol diacetate and stypodiol isolated from the brown alga Stypopodium flabelliforme were tested for their cell proliferation inhibitory activity in five cell lines. Cell lines tested included human colon adenocarcinoma (Caco-2, human neuroblastoma (SH-SY5Y, rat basophilic leukemia (RBL-2H3, murine macrophages (RAW.267 and Chinese hamster fibroblasts (V79. Antimicrobial activity of the compounds was also evaluated against Staphylococcus aureus, Salmonella typhimurium, Proteus mirabilis, Bacillus cereus, Enterococcus faecalis and Micrococcus luteus. Overall, the compounds showed good activity against all cell lines, with SH-SY5Y and RAW.267 being the most susceptible. Antimicrobial capacity was observed for epitaondiol monoacetate, stypotriol triacetate and stypodiol, with the first being the most active. The results suggest that these molecules deserve further studies in order to evaluate their potential as therapeutic agents.

  16. Future warming and acidification effects on anti-fouling and anti-herbivory traits of the brown alga Fucus vesiculosus (Phaeophyceae).

    Science.gov (United States)

    Raddatz, Stefanie; Guy-Haim, Tamar; Rilov, Gil; Wahl, Martin

    2017-02-01

    Human-induced ocean warming and acidification have received increasing attention over the past decade and are considered to have substantial consequences for a broad range of marine species and their interactions. Understanding how these interactions shift in response to climate change is particularly important with regard to foundation species, such as the brown alga Fucus vesiculosus. This macroalga represents the dominant habitat former on coastal rocky substrata of the Baltic Sea, fulfilling functions essential for the entire benthic community. Its ability to withstand extensive fouling and herbivory regulates the associated community and ecosystem dynamics. This study tested the interactive effects of future warming, acidification, and seasonality on the interactions of a marine macroalga with potential foulers and consumers. F. vesiculosus rockweeds were exposed to different combinations of conditions predicted regionally for the year 2100 (+∆5°C, +∆700 μatm CO2 ) using multifactorial long-term experiments in novel outdoor benthic mesocosms ("Benthocosms") over 9-12-week periods in four seasons. Possible shifts in the macroalgal susceptibility to fouling and consumption were tested using consecutive bioassays. Algal susceptibility to fouling and grazing varied substantially among seasons and between treatments. In all seasons, warming predominantly affected anti-fouling and anti-herbivory interactions while acidification had a subtle nonsignificant influence. Interestingly, anti-microfouling activity was highest during winter under warming, while anti-macrofouling and anti-herbivory activities were highest in the summer under warming. These contrasting findings indicate that seasonal changes in anti-fouling and anti-herbivory traits may interact with ocean warming in altering F. vesiculosus community composition in the future.

  17. Chukchia pedicellata gen. et sp. nov. and C. endophytica nov. comb., arctic endemic brown algae (Phaeophyceae)

    DEFF Research Database (Denmark)

    Wilce, Robert; Pedersen, Poul Møller; Sekida, S.

    2009-01-01

    Study of the north Alaskan brown algal epiphyte Chukchia pedicellata sp. nov. suggests an apparently close relationship to Phaeostroma. Phaeostroma endophyticum S. Lund from east Greenland, Bylot Island, Nunavut, Canada, shows generic identity with Chukchia and specific differences from C. pedice...

  18. Bioactive substances from marine fishes, shrimps, and algae and their functions: present and future.

    Science.gov (United States)

    Yu, Ping; Gu, Huifen

    2015-01-01

    Marine fishes, shrimps, and algae have many important bioactive substances, such as peptides, unsaturated fatty acids, polysaccharides, trace elements, and natural pigments. The introduction of these substances contributes to a significant improvement in developing them in final processed products. In fact, the knowledge of these bioactive substances has experienced a rapid increase in the past 20 years and prompted the relevant technological revolution with a decisive contribution to the final application. The purpose of this review was to introduce critically and comprehensively the present knowledge of these bioactive substances and pointed out their future developmental situation.

  19. De-eutrophication of effluent wastewater from fish aquaculture by using marine green alga Ulva pertusa

    Institute of Scientific and Technical Information of China (English)

    刘建国; 王增福; 林伟

    2010-01-01

    The de-eutrophication abilities and characteristics of Ulva pertusa, a marine green alga, were investigated in Qingdao Yihai Hatchery Center from spring to summer in 2005 by analyzing the dynamic changes in NH+4, NOˉ3, NO2ˉ as well as the total dissolved inorganic nitrogen (DIN). The results show that the effluent wastewater produced by fish aquaculture had typical eutrophication levels with an average of 34.3 μmol L-1 DIN. This level far exceeded the level IV quality of the national seawater standard and c...

  20. Fibonacci spirals in a brown alga [Sargassum muticum (Yendo Fensholt] and in a land plant [Arabidopsis thaliana (L. Heynh.]: a case of morphogenetic convergence

    Directory of Open Access Journals (Sweden)

    Alexis Peaucelle

    2016-12-01

    Full Text Available In this article, the morphology of a brown alga is revisited and compared to the phyllotaxis of land plants. The alga, Sargassum muticum (Yendo Fensholt has a highly organized thallus with a stipe, the stem-like main axis, and hierarchically organized lateral branches of successive orders. Around each of these axes, the lateral organs: blades, side-branches, and receptacles grow in a spiral disposition. As in land plants, this organization is related to an apical mode of growth. Measurements performed along the mature differentiated axes as well as in their meristematic regions confirm the similarity of the large-scale organization of this brown alga with that of the land plants. In particular, the divergence angle between successive elements has similar values and it results from the existence around the meristem of parastichies having the same Fibonacci ordering. This is remarkable in view of the fact that brown algae (Phaeophyceae and land plants (Embryophyta are two clades that diverged approximately 1800 million years ago when they were both unicellular organisms. We argue that the observed similarity results from a morphogenetic convergence. This is in strong support of the genericity and robustness of self-organization models in which similar structures, here Fibonacci related spirals, can be obtained in various situations in which the genetic and physiological implementation of development can be of a different nature.

  1. Eukaryotic Life Inhabits Rhodolith-forming Coralline Algae (Hapalidiales, Rhodophyta), Remarkable Marine Benthic Microhabitats

    Science.gov (United States)

    Krayesky-Self, Sherry; Schmidt, William E.; Phung, Delena; Henry, Caroline; Sauvage, Thomas; Camacho, Olga; Felgenhauer, Bruce E.; Fredericq, Suzanne

    2017-04-01

    Rhodoliths are benthic calcium carbonate nodules accreted by crustose coralline red algae which recently have been identified as useful indicators of biomineral changes resulting from global climate change and ocean acidification. This study highlights the discovery that the interior of rhodoliths are marine biodiversity hotspots that function as seedbanks and temporary reservoirs of previously unknown stages in the life history of ecologically important dinoflagellate and haptophyte microalgae. Whereas the studied rhodoliths originated from offshore deep bank pinnacles in the northwestern Gulf of Mexico, the present study opens the door to assess the universality of endolithic stages among bloom-forming microalgae spanning different phyla, some of public health concerns (Prorocentrum) in marine ecosystems worldwide.

  2. Marine algae inform past calving rates of a tide water glacier in western Greenland.

    Science.gov (United States)

    Schoenrock, Kathryn; Kamenos, Nicholas; Mair, Douglas; Lea, James; Rea, Brice; Schofield, James; Pearce, Danni

    2017-04-01

    Coralline algae are ubiquitous in marine environments worldwide acting as ecosystem engineers by cementing reefs together and providing habitat for local communities. The calcified thallus also makes coralline algae repository for past environmental conditions, providing information on the scale of 10s-100s of years. Free living coralline algae, or maerl, can dominate local habitats along the coasts and in fjord systems of western Greenland. Using the long lived maerl species, Lithothamnion glaciale, we present multi-proxy data sets for the large fjord system adjacent to the Kangiata Nunâta Sermia (KNS) glacier. This information provides a record of glacial movement (advance and retreat) and calving for the past 70+ years which can be correlated to records of glacial calving. The KNS glacier is one of the largest tidewater glaciers in western Greenland and contributes to the mass transfer of glaciers and ice sheets into the world oceans. The present data combined with terrestrial proxies within the CALVE research project will help inform policy and models focusing on future climate conditions.

  3. Larvicidal activity of marine algae, Sargassum swartzii and Chondria dasyphylla, against malaria vector Anopheles stephensi

    Directory of Open Access Journals (Sweden)

    Mahnaz Khanavi , Pouyan Bagheri Toulabi , Mohammad Reza Abai , Nargess Sadati , Farzaneh Hadjiakhoondi , Abbas Hadjiakhoondi & Hassan Vatandoost

    2011-12-01

    Full Text Available Objectives: The objective of this study was to evaluate larvicidal activity of native marine algae against mainmalaria vector Anopheles stephensi.Study design: The total 70% methanol (MeOH extract and partition fractions of chloroform (CHCl3, ethylacetate(EtOAc, and MeOH from two algae, Sargassum swartzii and Chondria dasyphylla were investigated for larvicidalactivities against late III and early IV instar larvae of malaria vector An. stephensi.Results: Among all the fractions tested against larvae, EtOAc fraction of S. swartzii and C. dasyphylla, showedmortality rate of 96 and 95%, respectively. Probit analysis of logarithmic concentration from regression lineexhibited the LC50 and LC90 values of 11.75 and 53.47 ppm respectively for S. swartzii and 10.62 and 56.39 ppmrespectively for C. dasyphylla.Conclusion: This is the first report of larvicidal activities of two native algae against An. stephensi. We proposethat the larvicidal activity of EtOAc fraction is related to the presence of semi-polar compounds. Further isolationand purification could lead to identify more potent compounds.

  4. Biotechnological Applications of Marine Enzymes From Algae, Bacteria, Fungi, and Sponges.

    Science.gov (United States)

    Parte, S; Sirisha, V L; D'Souza, J S

    Diversity is the hallmark of all life forms that inhabit the soil, air, water, and land. All these habitats pose their unique inherent challenges so as to breed the "fittest" creatures. Similarly, the biodiversity from the marine ecosystem has evolved unique properties due to challenging environment. These challenges include permafrost regions to hydrothermal vents, oceanic trenches to abyssal plains, fluctuating saline conditions, pH, temperature, light, atmospheric pressure, and the availability of nutrients. Oceans occupy 75% of the earth's surface and harbor most ancient and diverse forms of organisms (algae, bacteria, fungi, sponges, etc.), serving as an excellent source of natural bioactive molecules, novel therapeutic compounds, and enzymes. In this chapter, we introduce enzyme technology, its current state of the art, unique enzyme properties, and the biocatalytic potential of marine algal, bacterial, fungal, and sponge enzymes that have indeed boosted the Marine Biotechnology Industry. Researchers began exploring marine enzymes, and today they are preferred over the chemical catalysts for biotechnological applications and functions, encompassing various sectors, namely, domestic, industrial, commercial, and healthcare. Next, we summarize the plausible pros and cons: the challenges encountered in the process of discovery of the potent compounds and bioactive metabolites such as biocatalysts/enzymes of biomedical, therapeutic, biotechnological, and industrial significance. The field of Marine Enzyme Technology has recently assumed importance, and if it receives further boost, it could successfully substitute other chemical sources of enzymes useful for industrial and commercial purposes and may prove as a beneficial and ecofriendly option. With appropriate directions and encouragement, marine enzyme technology can sustain the rising demand for enzyme production while maintaining the ecological balance, provided any undesired exploitation of the marine

  5. Hydrolysis of Fucoidan by Fucoidanase Isolated from the Marine Bacterium, Formosa algae

    Directory of Open Access Journals (Sweden)

    Artem S. Silchenko

    2013-07-01

    Full Text Available Intracellular fucoidanase was isolated from the marine bacterium, Formosa algae strain KMM 3553. The first appearance of fucoidan enzymatic hydrolysis products in a cell-free extract was detected after 4 h of bacterial growth, and maximal fucoidanase activity was observed after 12 h of growth. The fucoidanase displayed maximal activity in a wide range of pH values, from 6.5 to 9.1. The presence of Mg2+, Ca2+ and Ba2+ cations strongly activated the enzyme; however, Cu2+ and Zn2+ cations had inhibitory effects on the enzymatic activity. The enzymatic activity of fucoidanase was considerably reduced after prolonged (about 60 min incubation of the enzyme solution at 45 °C. The fucoidanase catalyzed the hydrolysis of fucoidans from Fucus evanescens and Fucus vesiculosus, but not from Saccharina cichorioides. The fucoidanase also did not hydrolyze carrageenan. Desulfated fucoidan from F. evanescens was hydrolysed very weakly in contrast to deacetylated fucoidan, which was hydrolysed more actively compared to the native fucoidan from F. evanescens. Analysis of the structure of the enzymatic products showed that the marine bacteria, F. algae, synthesized an α-l-fucanase with an endo-type action that is specific for 1→4-bonds in a polysaccharide molecule built up of alternating three- and four-linked α-l-fucopyranose residues sulfated mainly at position 2.

  6. Toxic effects of microplastic on marine microalgae Skeletonema costatum: Interactions between microplastic and algae.

    Science.gov (United States)

    Zhang, Cai; Chen, Xiaohua; Wang, Jiangtao; Tan, Liju

    2017-01-01

    To investigate toxic effects of microplastic on marine microalgae Skeletonema costatum, both algal growth inhibition test and non-contact shading test were carried out, and algal photosynthesis parameters were also determined. The SEM images were used to observe interactions between microplastic and algae. It was found that microplastic (mPVC, average diameter 1 μm) had obvious inhibition on growth of microalgae and the maximum growth inhibition ratio (IR) reached up to 39.7% after 96 h exposure. However, plastic debris (bPVC, average diameter 1 mm) had no effects on growth of microalgae. High concentration (50 mg/L) mPVC also had negative effects on algal photosynthesis since both chlorophyll content and photosynthetic efficiency (ΦPSⅡ) decreased under mPVC treatments. Shading effect was not one reason for toxicity of microplastic on algae in this study. Compared with non-contact shading effect, interactions between microplastic and microalage such as adsorption and aggregation were more reasonable explanations for toxic effects of microplastic on marine microalgae. The SEM images provided a more direct and reasonable method to observe the behaviors of microplastic.

  7. Improvement of cytocompatibility of polylactide by filling with marine algae powder

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Tung-Yi [Department of Materials Science and Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan (China); Yang, Ming-Chien, E-mail: myang@mail.ntust.edu.tw [Department of Materials Science and Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan (China); Hsu, Yi-Chiang [Graduate Institute of Medical Science, College of Health Sciences, Chang Jung Christian University, Tainan 71101, Taiwan (China); Innovative Research Center of Medicine, College of Health Sciences, Chang Jung Christian University, Tainan 71101, Taiwan (China)

    2015-05-01

    This work evaluated the cytocompatibility, thermal and mechanical properties of composites of polylactide (PLA) and marine algae powder (MAP). To improve the thermal and mechanical properties of PLA–MAP composites, glycidyl methacrylate (GMA) was used as the compatibilizer for the blending of PLA and MAP. The PLA-g-GMA/MAP composites exhibited superior mechanical properties, attributing to higher compatibility between the polymer and MAP, comparing to PLA/MAP composites. The dispersion of MAP in the PLA-g-GMA matrix was highly homogeneous as a result of etherification. The lower melt torque of the PLA-g-GMA/MAP composites also made them more processable than PLA/MAP. To assess the cytocompatibility, normal human foreskin fibroblasts (FBs) were seeded onto each type of the composites. Results of FB proliferation, collagen production, and cytotoxicity assays indicated greater cytocompatibility for the PLA/MAP composites than for the PLA-g-GMA/MAP composites. Furthermore, both PLA/MAP and PLA-g-GMA/MAP composites were more cytocompatible than pure PLA. - Highlights: • PLA was grafted with GMA to form ether bond with marine algae powder (MAP). • Composites of PLA-g-GMA and MAP exhibited cytocompatibility with fibroblasts. • PLA-g-GMA/MAP composites exhibited mechanical properties superior to PLA/MAP. • PLA-g-GMA/MAP composites were more processable than PLA/MAP.

  8. Annual variation of stable iodine in brown sea algae (hijiki, Hizikia fusiforme)

    Science.gov (United States)

    Ishikawa, M.; Kitao, K.; Izawa, G.; Omori, T.; Yoshihara, K.

    1987-03-01

    The amount of radioecologically significant iodine in sea algae was determined during the period from June 1982 to May 1983, applying the PIXE method. Parallel analyses were carried out on aliquot samples by two PIXE systems one at Tohoku University and one at NIRS. The results of the two systems for the corresponding samples were reasonably analogous. The annual mean value was 190 ppm in dry matter. The pattern suggested that the content of stable iodine changed periodically, showing three maxima: in September, March and May. The highest value was found in March (430 ppm in dry matter), whereas the lowest was found in December (95 ppm), the variation factor being nearly 4.5 in magnitude. This variation was not caused by the change of tide and currents in the environment nor by the physiological activities of the algae under natural conditions, but rather by the effect of harvestings for commercial foods. This detailed information on stable iodine can possibly provide the amount of its radioisotopes. which, as is currently expected in the field of radioecology, is necessary for a more precise evaluation of radiation doses.

  9. Late Miocene threshold response of marine algae to carbon dioxide limitation.

    Science.gov (United States)

    Bolton, Clara T; Stoll, Heather M

    2013-08-29

    Coccolithophores are marine algae that use carbon for calcification and photosynthesis. The long-term adaptation of these and other marine algae to decreasing carbon dioxide levels during the Cenozoic era has resulted in modern algae capable of actively enhancing carbon dioxide at the site of photosynthesis. This enhancement occurs through the transport of dissolved bicarbonate (HCO3(-)) and with the help of enzymes whose expression can be modulated by variable aqueous carbon dioxide concentration, [CO2], in laboratory cultures. Coccolithophores preserve the geological history of this adaptation because the stable carbon and oxygen isotopic compositions of their calcite plates (coccoliths), which are preserved in the fossil record, are sensitive to active carbon uptake and transport by the cell. Here we use a model of cellular carbon fluxes and show that at low [CO2] the increased demand for HCO3(-) at the site of photosynthesis results in a diminished allocation of HCO3(-) to calcification, which is most pronounced in larger cells. This results in a large divergence between the carbon isotopic compositions of small versus large coccoliths only at low [CO2]. Our evaluation of the oxygen and carbon isotope record of size-separated fossil coccoliths reveals that this isotopic divergence first arose during the late Miocene to the earliest Pliocene epoch (about 7-5 million years ago). We interpret this to be a threshold response of the cells' carbon acquisition strategies to decreasing [CO2]. The documented coccolithophore response is synchronous with a global shift in terrestrial vegetation distribution between 8 and 5 Myr ago, which has been interpreted by some studies as a floral response to decreasing partial pressures of carbon dioxide () in the atmosphere. We infer a global decrease in carbon dioxide levels for this time interval that has not yet been identified in the sparse proxy record but is synchronous with global cooling and progressive glaciations.

  10. Subtidal benthic marine algae of the Marine State Park of Laje de Santos (São Paulo, Brazil

    Directory of Open Access Journals (Sweden)

    Gilberto M. Amado Filho

    2006-12-01

    Full Text Available Laje de Santos Marine State Park has been pointed out as a site of high marine diversity. In spite of its importance to conservation of marine biota no results of investigations about its marine biodiversity have been published. The aim of this work was to characterize the subtidal seaweed flora of this Marine Park. Samplings were performed by scuba diving: a qualitative one that included the subtidal zone down to 26 m depth and other quantitative at two pre-determined depths, 10 and 20 m. Among the 129 taxa identified, 5 species were identified for the first time for the São Paulo State, 3 for the Brazilian coast and 1 for the South Atlantic Ocean. The most abundant algae were Sargassum vulgare and turf composed by geniculate coralline and filamentous groups. The frequency of occurrence of taxa revealed that most of species are restricted to frequencies less than 20 % in all samples. The analyses of the subtidal marine benthic algal flora indicate the Marine State Park of Laje de Santos as a site of elevated species richness and that its floristic composition is related to a benthic community structure dominated by turf-forming groups and population of S. vulgare.O Parque Estadual Marinho da Laje de Santos tem sido apontado como local de elevada diversidade marinha. Apesar de sua importância para a conservação da biota marinha não existem resultados efetivamente publicados. O objetivo deste trabalho é o de caracterizar a flora marinha bentônica desse Parque Marinho. Amostragens foram realizadas por mergulho autônomo: uma qualitativa que incluiu a zona do sublitoral até a profundidade de 26 m e outra quantitativa em duas profundidades pré-determinadas, 10 e 20 m.. Dentre os 129 táxons encontrados, foram identificadas pela primeira vez, 5 espécies para o Estado de São Paulo, 3 espécies para o litoral brasileiro e 1 espécie para o Atlântico sul. As algas mais abundantes foram Sargasum vulgare e tufos compostos de coralin

  11. Overview on biological activities and molecular characteristics of sulfated polysaccharides from marine green algae in recent years.

    Science.gov (United States)

    Wang, Lingchong; Wang, Xiangyu; Wu, Hao; Liu, Rui

    2014-09-25

    Among the three main divisions of marine macroalgae (Chlorophyta, Phaeophyta and Rhodophyta), marine green algae are valuable sources of structurally diverse bioactive compounds and remain largely unexploited in nutraceutical and pharmaceutical areas. Recently, a great deal of interest has been developed to isolate novel sulfated polysaccharides (SPs) from marine green algae because of their numerous health beneficial effects. Green seaweeds are known to synthesize large quantities of SPs and are well established sources of these particularly interesting molecules such as ulvans from Ulva and Enteromorpha, sulfated rhamnans from Monostroma, sulfated arabinogalactans from Codium, sulfated galacotans from Caulerpa, and some special sulfated mannans from different species. These SPs exhibit many beneficial biological activities such as anticoagulant, antiviral, antioxidative, antitumor, immunomodulating, antihyperlipidemic and antihepatotoxic activities. Therefore, marine algae derived SPs have great potential for further development as healthy food and medical products. The present review focuses on SPs derived from marine green algae and presents an overview of the recent progress of determinations of their structural types and biological activities, especially their potential health benefits.

  12. Investigation of lipid oxidation and non-enzymatic browning reactions in marine PL emulsions

    DEFF Research Database (Denmark)

    Lu, Henna Fung Sieng; Nielsen, Nina Skall; Baron, Caroline P.

    from PE or amino acids affected the oxidative stability of purified marine PL emulsions. The secondary objective was to study the non-enzymatic browning reactions in the emulsions which included both Strecker degradation (SD) and pyrroles formation. Emulsions were prepared with and without addition...... of amino acids (leucine, methionine and lysine) from 2 authentic standards (PC and PE) and 2 purified marine PL (LC and MPL) through sonication method. Emulsions were incubated at 60 ºC for 0, 2, 4 and 6 days. Non-enzymatic browning reactions were investigated through measurement of i) Strecker aldehydes......, ii) yellowness index (YI), iii) hydrophobic and hydrophilic pyrroles content. On the other hand, the oxidative stability of emulsion was measured through secondary lipid derived volatiles. The result showed that the presence of PE and amino acids caused the formation of pyrroles, generated...

  13. Potential Use of Polysaccharides from the Brown Alga Undaria pinnatifida as Anticoagulants

    Directory of Open Access Journals (Sweden)

    Caterina Faggio

    2015-10-01

    Full Text Available Undaria pinnatifida (U. pinnatifida is a highly invasive species and has caused concern all over the world because it has invaded coastal environments, has the potential to displace native species, significantly alters habitat for associated fauna, and disturbs navigation. Any attempt to eradicate it would be futile, owing to the elusive, microscopic gametophyte, and because the alga thrives in sites rich in anthropic activities. Venice Lagoon is the largest Mediterranean transitional environment and the spot of the highest introduction of non-indigenous species, including U. pinnatifida, which is removed as a waste. We demonstrated that polysaccharide extracts from U. pinnatifida have an anticoagulant effect on human blood in vitro and are not cytotoxic. The results obtained by PT (normal values 70-120% and APTT (normal values 28-40s assays were significantly prolonged by the polysaccharide extracts of U. pinnatifida, therefore algal extracts are ideal candidates as antithrombotic agents.

  14. Impacts of ambient salinity and copper on brown algae: 1. Interactive effects on photosynthesis, growth, and copper accumulation.

    Science.gov (United States)

    Connan, Solène; Stengel, Dagmar B

    2011-07-01

    The effect of copper enrichment and salinity on growth, photosynthesis and copper accumulation of two temperate brown seaweeds, Ascophyllum nodosum and Fucus vesiculosus, was investigated in laboratory experiments. A significant negative impact of reduced salinity on photosynthetic activity and growth was observed for both species. After 15 days at a salinity of 5, photosynthesis of A. nodosum was entirely inhibited and growth ceased at a salinity of 15. Increased copper concentration negatively affected photosynthetic activity of A. nodosum and F. vesiculosus resulting in chlorosis and reduced seaweed growth; 5 mg L⁻¹ copper caused an inhibition of the photosynthesis and the degradation of seaweed tips. Under reduced salinity, copper toxicity was enhanced and caused an earlier impact on the physiology of seaweed tips. After exposure to copper and different salinities for 15 days, copper contents of seaweeds were closely related to copper concentration in the water; seaweed copper contents reached their maximum after 1 day of exposure; contents only increased again when additional, free copper was added to the water. At high water copper concentrations or low salinity, or a combination of both, copper content of A. nodosum decreased. By contrast, copper content of F. vesiculosus increased, suggesting that different binding sites or uptake mechanisms exist in the two species. The results suggest that when using brown seaweeds in biomonitoring in situ, any change in the environment will directly and significantly affect algal physiology and thus their metal binding capacity; the assessment of the physiological status of the algae in combination with the analysis of thallus metal content will enhance the reliability of the biomonitoring process. Copyright © 2011 Elsevier B.V. All rights reserved.

  15. Triclosan causes toxic effects to algae in marine biofilms, but does not inhibit the metabolic activity of marine biofilm bacteria.

    Science.gov (United States)

    Johansson, C Henrik; Janmar, Lisa; Backhaus, Thomas

    2014-07-15

    Effects of the antimicrobial agent triclosan to natural periphyton communities (biofilms, comprising primarily microalgae and bacteria) were assessed in two independent experiments during spring and summer. For that purpose a semi-static test system was used in which periphyton was exposed to a concentration range of 5-9054 nmol/L triclosan. Effects on algae were analyzed as content and composition of photosynthetic pigments. The corresponding EC50 values were 39.25 and 302.45 nmol/L for the spring and summer experiment, respectively. Effects on periphytic bacteria were assessed as effects on carbon utilization patterns, using Biolog Ecoplates. No inhibition of either total carbon utilization or functional diversity was observed, indicating a pronounced triclosan tolerance of the marine bacteria. In contrast, a small stimulation of the total carbon utilization was observed at triclosan concentrations exceeding 100 nmol/L. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. The Effect of Sulfated (1→3)-α-l-Fucan from the Brown Alga Saccharina cichorioides Miyabe on Resveratrol-Induced Apoptosis in Colon Carcinoma Cells

    OpenAIRE

    Vishchuk, Olesia S.; Ermakova, Svetlana P.; Tatyana N. Zvyagintseva

    2013-01-01

    Accumulating data clearly indicate that the induction of apoptosis by nontoxic natural compounds is a potent defense against the development and progression of many malignancies, including colon cancer. Resveratrol and the fucoidans have been shown to possess potent anti-tumor activity in vitro and in vivo. The aim of the present study was to examine whether the combination of a fucoidan from the brown alga Saccharina cichorioides Miyabe and resveratrol would be an effective preventive and/or...

  17. Evaluation of marine algae as a source of biogas in a two-stage anaerobic reactor system

    Energy Technology Data Exchange (ETDEWEB)

    Vergara-Fernandez, Alberto; Vargas, Gisela [Escuela de Ingenieria Ambiental, Facultad de Ingenieria, Universidad Catolica de Temuco, Manuel Montt 56, Casilla 15-D, Temuco (Chile); Alarcon, Nelson [Departamento de Ingenieria Quimica, Facultad de Ingenieria y Ciencias Geologicas, Universidad Catolica del Norte (Chile); Velasco, Antonio [Centro Nacional de Investigacion y Capacitacion Ambiental del Instituto Nacional de Ecologia (CENICA-INE), Av. San Rafael Atlixco 186, Col. Vicentina, Del. Iztapalapa, 09340, Mexico, DF (Mexico)

    2008-04-15

    The marine algae are considered an important biomass source; however, their utilization as energy source is still low around the world. The technical feasibility of marine algae utilization as a source of renewable energy was studied to laboratory scale. The anaerobic digestion of Macrocystis pyrifera, Durvillea antarctica and their blend 1:1 (w/w) was evaluated in a two-phase anaerobic digestion system, which consisted of an anaerobic sequencing batch reactor (ASBR) and an upflow anaerobic filter (UAF). The results show that 70% of the total biogas produced in the system was generated in the UAF, and both algae species have similar biogas productions of 180.4({+-}1.5) mL g{sup -1} dry algae d{sup -1}, with a methane concentration around 65%. The same methane content was observed in biogas yield of algae blend; however, a lower biogas yield was obtained. In conclusion, either algae species or their blend can be utilized to produce methane gas in a two-phase digestion system. (author)

  18. Harvesting fresh water and marine algae by magnetic separation: screening of separation parameters and high gradient magnetic filtration.

    Science.gov (United States)

    Cerff, Martin; Morweiser, Michael; Dillschneider, Robert; Michel, Aymeé; Menzel, Katharina; Posten, Clemens

    2012-08-01

    In this study, the focus is on magnetic separation of fresh water algae Chlamydomonas reinhardtii and Chlorella vulgaris as well as marine algae Phaeodactylum tricornutum and Nannochloropsis salina by means of silica-coated magnetic particles. Due to their small size and low biomass concentrations, harvesting algae by conventional methods is often inefficient and cost-consuming. Magnetic separation is a powerful tool to capture algae by adsorption to submicron-sized magnetic particles. Hereby, separation efficiency depends on parameters such as particle concentration, pH and medium composition. Separation efficiencies of >95% were obtained for all algae while maximum particle loads of 30 and 77 g/g were measured for C. reinhardtii and P. tricornutum at pH 8 and 12, respectively. This study highlights the potential of silica-coated magnetic particles for the removal of fresh water and marine algae by high gradient magnetic filtration and provides critical discussion on future improvements. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. Multiple-response optimization of the acidic treatment of the brown alga Ecklonia radiata for the sequential extraction of fucoidan and alginate.

    Science.gov (United States)

    Lorbeer, Andrew John; Lahnstein, Jelle; Bulone, Vincent; Nguyen, Trung; Zhang, Wei

    2015-12-01

    The aim of this study was to optimize the acidic treatment of the brown alga Ecklonia radiata in order to extract fucoidan and facilitate the efficient sequential extraction of alginates. Response surface methodology was used to determine the effects of the temperature, pH, and duration of the acidic treatment on fucoidan yield, alginate extractability, and the molecular weight of sequentially extracted alginates. Desirability functions were then used to predict the best overall combinations of responses. The most desirable compromise allowed for the recovery of a fucoidan-rich fraction with a yield of 3.75% (w/w of alga) and the sequential extraction of alginates having an average molecular weight of 730kDa at a yield of 44% (w/w of alga), with low cross-contamination between the products. The optimized acidic treatment could form the basis of an industrial biorefinery process for the production of both fucoidan and alginate.

  20. Structure and anticoagulant activity of sulfated fucans. Comparison between the regular, repetitive, and linear fucans from echinoderms with the more heterogeneous and branched polymers from brown algae.

    Science.gov (United States)

    Pereira, M S; Mulloy, B; Mourão, P A

    1999-03-19

    Sulfated fucans are among the most widely studied of all the sulfated polysaccharides of non-mammalian origin that exhibit biological activities in mammalian systems. Examples of these polysaccharides extracted from echinoderms have simple structures, composed of oligosaccharide repeating units within which the residues differ by specific patterns of sulfation among different species. In contrast the algal fucans may have some regular repeating structure but are clearly more heterogeneous when compared with the echinoderm fucans. The structures of the sulfated fucans from brown algae also vary from species to species. We compared the anticoagulant activity of the regular and repetitive fucans from echinoderms with that of the more heterogeneous fucans from three species of brown algae. Our results indicate that different structural features determine not only the anticoagulant potency of the sulfated fucans but also the mechanism by which they exert this activity. Thus, the branched fucans from brown algae are direct inhibitors of thrombin, whereas the linear fucans from echinoderms require the presence of antithrombin or heparin cofactor II for inhibition of thrombin, as reported for mammalian glycosaminoglycans. The linear sulfated fucans from echinoderms have an anticoagulant action resembling that of mammalian dermatan sulfate and a modest action through antithrombin. A single difference of one sulfate ester per tetrasaccharide repeating unit modifies the anticoagulant activity of the polysaccharide markedly. Possibly the spatial arrangements of sulfate esters in the repeating tetrasaccharide unit of the echinoderm fucan mimics the site in dermatan sulfate with high affinity for heparin cofactor II.

  1. Magnetic graphene oxide modified by imidazole-based ionic liquids for the magnetic-based solid-phase extraction of polysaccharides from brown alga.

    Science.gov (United States)

    Wang, Xiaoqin; Li, Guizhen; Row, Kyung Ho

    2017-08-01

    Magnetic graphene oxide was modified by four imidazole-based ionic liquids to synthesize materials for the extraction of polysaccharides by magnetic solid-phase extraction. Fucoidan and laminarin were chosen as the representative polysaccharides owing to their excellent pharmaceutical value and availability. Fourier transform infrared spectroscopy, field-emission scanning electron microscopy, and thermogravimetric analysis were applied to characterize the synthesized materials. Single-factor experiments showed that the extraction efficiency of polysaccharides was affected by the amount of ionic liquids for modification, solid-liquid ratio of brown alga and ethanol, the stirring time of brown alga and ionic liquid-modified magnetic graphene oxide materials, and amount of 1-(3-aminopropyl)imidazole chloride modified magnetic graphene oxide materials added to the brown alga sample solution. The results indicated that 1-(3-aminopropyl)imidazole chloride modified magnetic graphene oxide possessed better extraction ability than graphene oxide, magnetic graphene oxide, and other three ionic-liquid-modified magnetic graphene oxide materials. The highest extraction recoveries of fucoidan and laminarin extracted by 1-(3-aminopropyl)imidazole chloride modified magnetic graphene oxide were 93.3 and 87.2%, respectively. In addition, solid materials could be separated and reused easily owing to their magnetic properties. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Do You Know Our Marine Algae? A Marine Education Infusion Unit.

    Science.gov (United States)

    Butzow, John W.; Gregory, Charles J.

    Designed to provide teaching materials for middle school and junior high school teachers in northern New England, this marine education unit presents teacher-tested ideas and activities for use in the classroom and in field trips to the shore. Each unit includes ideas and activities drawn from a variety of content areas so that teachers of many…

  3. The brown algae Pl.LSU/2 group II intron-encoded protein has functional reverse transcriptase and maturase activities.

    Directory of Open Access Journals (Sweden)

    Madeleine Zerbato

    Full Text Available Group II introns are self-splicing mobile elements found in prokaryotes and eukaryotic organelles. These introns propagate by homing into precise genomic locations, following assembly of a ribonucleoprotein complex containing the intron-encoded protein (IEP and the spliced intron RNA. Engineered group II introns are now commonly used tools for targeted genomic modifications in prokaryotes but not in eukaryotes. We speculate that the catalytic activation of currently known group II introns is limited in eukaryotic cells. The brown algae Pylaiella littoralis Pl.LSU/2 group II intron is uniquely capable of in vitro ribozyme activity at physiological level of magnesium but this intron remains poorly characterized. We purified and characterized recombinant Pl.LSU/2 IEP. Unlike most IEPs, Pl.LSU/2 IEP displayed a reverse transcriptase activity without intronic RNA. The Pl.LSU/2 intron could be engineered to splice accurately in Saccharomyces cerevisiae and splicing efficiency was increased by the maturase activity of the IEP. However, spliced transcripts were not expressed. Furthermore, intron splicing was not detected in human cells. While further tool development is needed, these data provide the first functional characterization of the PI.LSU/2 IEP and the first evidence that the Pl.LSU/2 group II intron splicing occurs in vivo in eukaryotes in an IEP-dependent manner.

  4. Structural analysis of a highly sulfated fucan from the brown alga Laminaria cichorioides by tandem MALDI and ESI mass spectrometry.

    Science.gov (United States)

    Anastyuk, Stanislav D; Shevchenko, Natalia M; Nazarenko, Eugene L; Imbs, Tatyana I; Gorbach, Vladimir I; Dmitrenok, Pavel S; Zvyagintseva, Tatyana N

    2010-10-13

    Water-soluble polysaccharide fractions were extracted from the brown alga Laminaria cichorioides. Samples were collected monthly from May to October in Troitsa Bay (Japan Sea, Russia). Analysis showed that the content and monosaccharide composition of the fractions changed with the collection season. Fucoidan was isolated and purified from the most fucose-rich fraction, collected in July, and subjected to autohydrolysis to obtain fucooligosaccharides, suitable for mass-spectrometric analysis. Both ESIMS and MALDI-TOFMS analyses show that multisulfated (up to 3) fucooligosaccharides with polymerization degree n from 2 to 5, including mono- and disulfated-fucose residues, were the major products of autohydrolysis. The structural features of the fucooligosaccharides and their alditol derivatives were elucidated by tandem MALDI-TOFMS and ESIMS. The results obtained allowed us to conclude that fragments of the fucoidan, collected in July, were predominantly linked with a (1→3)-type of linkage and that sulfate groups occupied mostly C-2 or C-2/C-4 of the α-l-fucose residues.

  5. Phlorotannins from brown algae (Fucus vesiculosus) inhibited the formation of advanced glycation endproducts by scavenging reactive carbonyls.

    Science.gov (United States)

    Liu, Haiyan; Gu, Liwei

    2012-02-08

    Accumulation of advanced glycation end products (AGEs) in vivo is associated with aging, diabetes, Alzheimer's disease, renal failure, etc. The objective of this study was to investigate the inhibitory effects of brown algae Fucus vesiculosus phlorotannins on the formation of AGEs. F. vesiculosus phlorotannins were extracted using 70% acetone. The resultant extract was fractionated into dichloromethane, ethyl acetate, butanol, and water fractions. The ethyl acetate fraction was further fractionated into four subfractions (Ethyl-F1 to -F4) using a Sephadex LH-20 column. F. vesiculosus acetone extract or fractions significantly inhibited the formation of AGEs mediated by glucose and methylglyoxal in a concentration-dependent manner. The concentrations of F. vesiculosus extracts required to inhibit 50% of albumin glycation (EC(50)) in the bovine serum albumin (BSA)-methylglyoxal assay were lower than those of aminoguanidine (a drug candidate for diabetic complication), except for F. vesiculosus acetone extract and dichloromethane fraction. In the BSA-glucose assay, F. vesiculosus extracts inhibited BSA glycation more than or as effectively as aminoguanidine, except for Ethyl-F3 and -F4. The ethyl acetate fraction and its four subfractions scavenged more than 50% of methylglyoxal in two hours. The hypothesis whether F. vesiculosus phlorotannins scavenged reactive carbonyls by forming adducts was tested. Phloroglucinol, the constituent unit of phlorotannins, reacted with glyoxal and methylglyoxal. Five phloroglucinol-carbonyl adducts were detected and tentatively identified using HPLC-ESI-MS(n).

  6. Circadian rhythms in the growth and reproduction of the brown alga Undaria pinnatifida and gametogenesis under different photoperiods

    Institute of Scientific and Technical Information of China (English)

    ZHANG Zhihuai; PANG Shaojun

    2007-01-01

    Circadian growth rhythm of the juvenile sporophyte of the brown alga Undaria pinnatifida was measured with the computer-aided image analysis system in constant florescent white light under constant temperature ( 10 ℃ ). The growth rhythm persisted for 4 d in constant light with a free-running period of 25.6 h. Egg release from filamentous gametophytes pre-cultured in the light - dark regime was evaluated for six consecutive days at fixed time intervals in constant white light and 12 h light per day. Egg release rhythm persisted for 3 d in both regimes, indicating the endogenous nature. Temporal scale of egg release and gametogenesis in 18, 16, 12 and 8 h light per day were evaluated respectively using vegetatively propagated filamentous gametophytes. Egg release occurred 2 h after the onset of dark phase and peaked at midnight. Evaluation of the rates of oogonium formation, egg release or fertilization revealed no significant differences in four light-dark regimes, indicating the great plasticity of sexual reproduction. No photoperiodic effect in gametogenesis in terms of oogonium formation and egg release was found, but fertilization in short days was significantly higher than in long days. Results of this investigation further confirmed the general occurrence of circadian rhythms in intertidal seaweed species.

  7. The brown algae Pl.LSU/2 group II intron-encoded protein has functional reverse transcriptase and maturase activities.

    Science.gov (United States)

    Zerbato, Madeleine; Holic, Nathalie; Moniot-Frin, Sophie; Ingrao, Dina; Galy, Anne; Perea, Javier

    2013-01-01

    Group II introns are self-splicing mobile elements found in prokaryotes and eukaryotic organelles. These introns propagate by homing into precise genomic locations, following assembly of a ribonucleoprotein complex containing the intron-encoded protein (IEP) and the spliced intron RNA. Engineered group II introns are now commonly used tools for targeted genomic modifications in prokaryotes but not in eukaryotes. We speculate that the catalytic activation of currently known group II introns is limited in eukaryotic cells. The brown algae Pylaiella littoralis Pl.LSU/2 group II intron is uniquely capable of in vitro ribozyme activity at physiological level of magnesium but this intron remains poorly characterized. We purified and characterized recombinant Pl.LSU/2 IEP. Unlike most IEPs, Pl.LSU/2 IEP displayed a reverse transcriptase activity without intronic RNA. The Pl.LSU/2 intron could be engineered to splice accurately in Saccharomyces cerevisiae and splicing efficiency was increased by the maturase activity of the IEP. However, spliced transcripts were not expressed. Furthermore, intron splicing was not detected in human cells. While further tool development is needed, these data provide the first functional characterization of the PI.LSU/2 IEP and the first evidence that the Pl.LSU/2 group II intron splicing occurs in vivo in eukaryotes in an IEP-dependent manner.

  8. Dieckol, a SARS-CoV 3CL(pro) inhibitor, isolated from the edible brown algae Ecklonia cava.

    Science.gov (United States)

    Park, Ji-Young; Kim, Jang Hoon; Kwon, Jung Min; Kwon, Hyung-Jun; Jeong, Hyung Jae; Kim, Young Min; Kim, Doman; Lee, Woo Song; Ryu, Young Bae

    2013-07-01

    SARS-CoV 3CL(pro) plays an important role in viral replication. In this study, we performed a biological evaluation on nine phlorotannins isolated from the edible brown algae Ecklonia cava. The nine isolated phlorotannins (1-9), except phloroglucinol (1), possessed SARS-CoV 3CL(pro) inhibitory activities in a dose-dependently and competitive manner. Of these phlorotannins (1-9), two eckol groups with a diphenyl ether linked dieckol (8) showed the most potent SARS-CoV 3CL(pro) trans/cis-cleavage inhibitory effects (IC(50)s = 2.7 and 68.1 μM, respectively). This is the first report of a (8) phlorotannin chemotype significantly blocking the cleavage of SARS-CoV 3CL(pro) in a cell-based assay with no toxicity. Furthermore, dieckol (8) exhibited a high association rate in the SPR sensorgram and formed extremely strong hydrogen bonds to the catalytic dyad (Cys145 and His41) of the SARS-CoV 3CL(pro).

  9. High-cell-density fed-batch cultivation of the docosahexaenoic acid producing marine alga Crypthecodinium cohnii

    NARCIS (Netherlands)

    Swaaf, de M.E.; Sijtsma, L.; Pronk, J.T.

    2003-01-01

    The heterotrophic marine alga Crypthecodinium cohnii is known to produce docosahexaenoic acid (DHA), a polyunsaturated fatty acid with food and pharmaceutical applications, during batch cultivation on complex media containing sea salt, yeast extract, and glucose. In the present study, fed-batch cult

  10. High-cell-density fed-batch cultivation of the docosahexaenoic acid producing marine alga Crypthecodinium cohnii

    NARCIS (Netherlands)

    Swaaf, de M.E.; Sijtsma, L.; Pronk, J.T.

    2003-01-01

    The heterotrophic marine alga Crypthecodinium cohnii is known to produce docosahexaenoic acid (DHA), a polyunsaturated fatty acid with food and pharmaceutical applications, during batch cultivation on complex media containing sea salt, yeast extract, and glucose. In the present study, fed-batch cult

  11. Coralline alga reveals first marine record of subarctic North Pacific climate change

    Science.gov (United States)

    Halfar, J.; Steneck, R.; Schone, B.; Moore, G.W.K.; Joachimski, M.; Kronz, A.; Fietzke, J.; Estes, James

    2007-01-01

    While recent changes in subarctic North Pacific climate had dramatic effects on ecosystems and fishery yields, past climate dynamics and teleconnection patterns are poorly understood due to the absence of century-long high-resolution marine records. We present the first 117-year long annually resolved marine climate history from the western Bering Sea/Aleutian Island region using information contained in the calcitic skeleton of the long-lived crustose coralline red alga Clathromorphum nereostratum, a previously unused climate archive. The skeletal ??18O-time series indicates significant warming and/or freshening of surface waters after the middle of the 20th century. Furthermore, the time series is spatiotemporally correlated with Pacific Decadal Oscillation (PDO) and tropical El Nio??-Southern Oscillation (ENSO) indices. Even though the western Bering Sea/Aleutian Island region is believed to be outside the area of significant marine response to ENSO, we propose that an ENSO signal is transmitted via the Alaskan Stream from the Eastern North Pacific, a region of known ENSO teleconnections. Copyright 2007 by the American Geophysical Union.

  12. Heavy metal sorption by marine algae and algal by-products

    Energy Technology Data Exchange (ETDEWEB)

    Sandau, E. [IGV - Inst. fuer Getreideverarbeitung GmbH, Bergholz-Rehbruecke (Germany); Sandau, P. [IGV - Inst. fuer Getreideverarbeitung GmbH, Bergholz-Rehbruecke (Germany); Pulz, O. [IGV - Inst. fuer Getreideverarbeitung GmbH, Bergholz-Rehbruecke (Germany); Zimmermann, M. [Technische Hochschule Berlin (Germany). Fachbereich Chemie und Biotechnik

    1996-12-31

    All the oceans are plentiful with marine algae. Non-viable marine macroalgae are able to adsorb heavy metal ions. Compared with other biosorbents, such as fungi, bacteria, yeasts and microalgae, they have the advantage of being easily available, cheap and having high heavy metal sorption capacities. The by-products of marine phaeophyceae are even more cost-effective heavy metal biosorbers. Experiments of heavy metal sorption using non-viable Fucus vesiculosus, Ascophyllum nodosum and algal by-products were carried out to investigate the factors influencing and optimizing the heavy metal biosorption. The pH value, biomass concentration, heavy metal concentration, heavy metal species, competing ions, algal varieties and time were the most decisive parameters. The sorption isotherms showed increasing sorption capacities and decreasing sorption efficiencies with an increase in the initial heavy metal concentration. Sorption kinetics of different metals were established. Biomass concentration influenced the sorption efficiencies very much, but reduced the sorption capacity per g biomass. The pH value controlled the sorption (pH 3-7) and desorption (pH 1-2) decisively. Beside heavy metal contaminated model waters, actual industrial effluents were treated successfully by algal sorbents in batch experiments and continuous column tests. Transmission electron micrographs of different contaminated and untreated algal specimens are available. (orig.)

  13. Production of DMS and DMSP in different physiological stages and salinity conditions in two marine algae

    Institute of Scientific and Technical Information of China (English)

    ZHUANG Guangchao; YANG Guipeng; YU Juan; GAO Yuan

    2011-01-01

    Dimethylsulfide (DMS) and dimethylsulfoniopropionate (DMSP) production by Scrippsiella trochoidea and Prorocentrum minimum was investigated to characterize the effects of physiological stage and salinity on DMS and DMSP pools of these two marine phytoplankton species. Axenic laboratory cultures of the two marine algae were tested for DMSP production and its conversion into DMS. The results demonstrated that both algal species could produce DMS, but the average concentration of DMS per cell in S. trochoidea (12.63 fmol/L) was about six times that in P. minimum (2.01 fmol/L). DMS and DMSP concentrations in algal cultures varied significantly at different growth stages, with high release during the late stationary growth phase and the senescent phase. DMS production induced by three salinities (22, 28, 34) showed that the DMS concentrations per cell in the two algal cultures increased with increasing salinity, which might result from intra-cellular DMSP up-regulation with the change of osmotic stress. Our study specifies the distinctive contributions of different physiological stages of marine phytoplankton on DMSP and DMS production, and clarifies the influence of salinity conditions on the release of DMS and DMSP.As S. trochoidea and P. minimum are harmful algal bloom species with high DMS production, they might play an additional significant role in the sulfur cycle when a red tide occurs.

  14. Effect of Diterpenes Isolated of the Marine Alga Canistrocarpus cervicornis against Some Toxic Effects of the Venom of the Bothrops jararaca Snake

    Directory of Open Access Journals (Sweden)

    Thaisa Francielle Souza Domingos

    2015-02-01

    Full Text Available Snake venoms are composed of a complex mixture of active proteins and peptides which induce a wide range of toxic effects. Envenomation by Bothrops jararaca venom results in hemorrhage, edema, pain, tissue necrosis and hemolysis. In this work, the effect of a mixture of two secodolastane diterpenes (linearol/isolinearol, previously isolated from the Brazilian marine brown alga, Canistrocarpus cervicornis, was evaluated against some of the toxic effects induced by B. jararaca venom. The mixture of diterpenes was dissolved in dimethylsulfoxide and incubated with venom for 30 min at room temperature, and then several in vivo (hemorrhage, edema and lethality and in vitro (hemolysis, plasma clotting and proteolysis assays were performed. The diterpenes inhibited hemolysis, proteolysis and hemorrhage, but failed to inhibit clotting and edema induced by B. jararaca venom. Moreover, diterpenes partially protected mice from lethality caused by B. jararaca venom. The search for natural inhibitors of B. jararaca venom in C. cervicornis algae is a relevant subject, since seaweeds are a rich and powerful source of active molecules which are as yet but poorly explored. Our results suggest that these diterpenes have the potential to be used against Bothropic envenomation accidents or to improve traditional treatments for snake bites.

  15. Structural characterization and Biological Activity of Sulfolipids from selected Marine Algae

    Directory of Open Access Journals (Sweden)

    El Baz, F. K.

    2013-12-01

    Full Text Available The sulfolipid classes (SLs in the total lipids of five species of marine algae, two species of Rhodophyta (Laurencia popillose, Galaxoura cylindriea, one species of Chlorophyta (Ulva fasciata, and two species of Phaeophyta (Dilophys fasciola, Taonia atomaria were separated and purified on DEAE-cellulose column chromatography. The SLs component was identified by IR, gas chromatography MS/MS and liquid chromatography MS/MS. The level of SLs contents va ried from 1.25% (in L. papillose to 11.82% (in D. fasciola of the total lipid contents. However, no significant differences in sulfate content (0.13 – 0.21% were observed among all these algae species. All SLs were characterized by high contents of palmitic acid (C 16:0, which ranged from 30.91% in G. cylindriea to 63.11% in T. atomatia. The main constitutes of algal sulfolipids were identified as sulfoquinovosyl-di-acylglycerol and sulfoquinovosyl acylglycerol. The sulfolipids of different algal species exhibited remarkable antiviral activity against herps simplex virus type 1 (HSV-1 with an IC50 ranging from 18.75 to 70. 2 μg mL–1. Moreover, algal sulfolipid inhibited the growth of the tumor cells of breast and liver human cancer cells with IC50 values ranging from 0.40 to 0.67 μg mL–1 for human breast adenocarcinoma cells (MCF7.Se separaron diferentes clases sulfolípidos (SL a partir de los lípidos totales de cinco especies de algas marinas: una especie de Chlorophyta (Ulva fasciata, dos especies de Phaeophyta (Dilophys fasciola, Taonia atomaria y dos especies de Rhodophyta (Laurencia popillose, Galaxoura cylindriea que se purificaron mediante cromatografía en columna de DEAE-celulosa. Los components de SLs fueron identificados por IR, cromatografía de gases MS/MS y cromatografía líquida MS/ MS. Los contenidos de SL en relación al total de lípidos varió de 1,25% (en L. papilosa al 11,82% (en D. fasciola. Sin embargo, no hay diferencias significativas en el contenido de sulfato

  16. Production of new cellulose nanomaterial from red algae marine biomass Gelidium elegans.

    Science.gov (United States)

    Chen, You Wei; Lee, Hwei Voon; Juan, Joon Ching; Phang, Siew-Moi

    2016-10-20

    Nanocellulose was successfully isolated from Gelidium elegans red algae marine biomass. The red algae fiber was treated in three stages namely alkalization, bleaching treatment and acid hydrolysis treatment. Morphological analysis was performed by field emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM). TEM results revealed that the isolated nanocellulose had the average diameter and length of 21.8±11.1nm and of 547.3±23.7nm, respectively. Fourier transform infrared (FTIR) spectroscopy proved that the non-cellulosic polysaccharides components were progressively removed during the chemically treatment, and the final derived materials composed of cellulose parent molecular structure. X-ray diffraction (XRD) study showed that the crystallinity of yielded product had been improved after each successive treatments subjected to the treated fiber. The prepared nano-dimensional cellulose demonstrated a network-like structure with higher crystallinity (73%) than that of untreated fiber (33%), and possessed of good thermal stability which is suitable for nanocomposite material.

  17. Sulfated polysaccharide from the marine algae Hypnea musciformis inhibits TNBS-induced intestinal damage in rats.

    Science.gov (United States)

    V Brito, Tarcisio; Barros, Francisco C N; Silva, Renan O; Dias Júnior, Genilson J; C Júnior, José Simião; Franco, Álvaro X; Soares, Pedro M G; Chaves, Luciano S; Abreu, Clara M W S; de Paula, Regina C M; Souza, Marcellus H L P; Freitas, Ana Lúcia P; R Barbosa, André Luiz

    2016-10-20

    Sulfated polysaccharides extracted from seaweed have important pharmacological properties. Thus, the aim of this study was to characterize the sulfated polysaccharide (PLS) from the algae Hypnea musciformis and evaluate its protective effect in colitis induced by trinitrobenzene sulfonic acid in rats. The sulfated polysaccharide possess a high molecular mass (1.24×10(5)gmol(-1)) and is composed of a κ-carrageenan, as depicted by FT-IR and NMR spectroscopic data. PLS was administered orally (10, 30, and 60mg/kg, p.o.) for three days, starting before TNBS (trinitrobenzene sulfonic acid) instillation (day 1). The rats were killed on day three, the portion of distal colon (5cm) was excised and evaluated macroscopic scores and wet weight. Then, samples of the intestinal were used for histological evaluation and quantification of glutathione, malonyldialdehyde acid, myeloperoxidase, nitrate/nitrite and cytokines. Our results demonstrate that PLS reduced the colitis and all analyzed biochemical parameters. Thus, we concluded that the PLS extracted from the marine algae H. musciformis reduced the colitis in animal model and may have an important promising application in the inflammatory bowel diseases.

  18. Biosorption of copper by marine algae Gelidium and algal composite material in a packed bed column.

    Science.gov (United States)

    Vilar, Vítor J P; Botelho, Cidália M S; Loureiro, José M; Boaventura, Rui A R

    2008-09-01

    Marine algae Gelidium and algal composite material were investigated for the continuous removal of Cu(II) from aqueous solution in a packed bed column. The biosorption behaviour was studied during one sorption-desorption cycle of Cu(II) in the flow through column fed with 50 and 25 mg l(-1) of Cu(II) in aqueous solution, at pH 5.3, leading to a maximum uptake capacity of approximately 13 and 3 mg g(-1), respectively, for algae Gelidium and composite material. The breakthrough time decreases as the inlet copper concentration increases, for the same flow rate. The pH of the effluent decreases over the breakthrough time of copper ions, which indicates that ion exchange is one of the mechanisms involved in the biosorption process. Temperature has little influence on the metal uptake capacity and the increase of the ionic strength reduces the sorption capacity, decreasing the breakthrough time. Desorption using 0.1M HNO(3) solution was 100% effective. After two consecutive sorption-desorption cycles no changes in the uptake capacity of the composite material were observed. A mass transfer model including film and intraparticle resistances, and the equilibrium relationship, for adsorption and desorption, was successfully applied for the simulation of the biosorption column performance.

  19. Larvicidal Activity against Aedes aegypti and Molluscicidal Activity against Biomphalaria glabrata of Brazilian Marine Algae

    Science.gov (United States)

    Guedes, Elíca Amara Cecília; de Carvalho, Cenira M.; Ribeiro Junior, Karlos Antonio Lisboa; Lisboa Ribeiro, Thyago Fernando; de Barros, Lurdiana Dayse; de Lima, Maria Raquel Ferreira; Prado Moura, Flávia de Barros; Goulart Sant'Ana, Antônio Euzebio

    2014-01-01

    This study investigated the biological activities of five benthic marine algae collected from Northeastern Region of Brazil. The tested activities included larvicidal activity against Aedes aegypti, molluscicidal activity against Biomphalaria glabrata, and toxicity against Artemia salina. Extracts of Ulva lactuca (Chlorophyta), Padina gymnospora, Sargassum vulgare (Phaeophyta), Hypnea musciformis, and Digenea simplex (Rhodophyta) were prepared using different solvents of increasing polarity, including dichloromethane, methanol, ethanol, and water. Of the extracts screened, the dichloromethane extracts of H. musciformis and P. gymnospora exhibited the highest activities and were subjected to bioassay-guided fractionation in hexane and chloroform. The chloroform fractions of the P. gymnospora and H. musciformis extracts showed molluscicidal activity at values below 40 μg·mL−1 (11.1460 μg·mL−1 and 25.8689 μg·mL−1, resp.), and the chloroform and hexane fractions of P. gymnospora showed larvicidal activity at values below 40 μg·mL−1 (29.018 μg·mL−1 and 17.230 μg·mL−1, resp.). The crude extracts were not toxic to A. salina, whereas the chloroform and hexane fractions of P. gymnospora (788.277 μg·mL−1 and 706.990 μg·mL−1) showed moderate toxicity, indicating that the toxic compounds present in these algae are nonpolar. PMID:24688787

  20. A serine hydroxymethyltransferase from marine bacterium Shewanella algae: Isolation, purification, characterization and l-serine production.

    Science.gov (United States)

    Jiang, Wei; Xia, Bingzhao; Liu, Ziduo

    2013-10-01

    Currently, l-serine is mainly produced by enzymatic conversion, in which serine hydroxymethyltransferase (SHMT) is the key enzyme, suggesting the importance of searching for a SHMT with high activity. Shewanella algae, a methanol-utilizing marine bacterium showing high SHMT activity, was selected based on screening bacterial strains and comparison of the activities of SHMTs. A glyA was isolated from the S. algae through thermal asymmetric interlaced PCR (TAIL-PCR) and it encoded a 417 amino acid polypeptide. The SaSHMT, encoded by the glyA, showed the optimal activity at 50°C and pH 7.0, and retained over 45% of its maximal activity after incubation at 40°C for 3h. The enzyme showed better stability under alkaline environment (pH 6.5-9.0) than Hyphomicrobium methylovorum GM2's SHMT (pH 6.0-7.5). The SaSHMT can produce 77.76mM of l-serine by enzymatic conversion, with the molecular conversion rate in catalyzing glycine to l-serine being 1.41-fold higher than that of Escherichia coli. Therefore, the SaSHMT has the potential for industrial applications due to its tolerance of alkaline environment and a relatively high enzymatic conversion rate. Copyright © 2013 Elsevier GmbH. All rights reserved.

  1. Acetic acid production from marine algae. Progress report No. 3, January 1, 1978--March 31, 1978

    Energy Technology Data Exchange (ETDEWEB)

    Sanderson, J.E.; Wise, D.L.

    1978-06-01

    The program for acetic acid production from marine algae has made significant progress in the current quarter. Some of the significant developments during this period are: (1) conversion of the available reducing equivalents in Chondrus crispus to organic acids has been carried to better than 80% completion; (2) thermophilic fermentations produce higher ratios of acetic acid to total acid than is the case for mesophilic fermentations (80% vs. 50%); (3) a membrane extraction process for removing organic acid products has been developed which has potential for commercial use; (4) a large scale fermentation was shown to convert over 50% of the available carbon in five days; (5) a reducing equivalents balance on the large scale fermentation was closed to with 96% of theoretical.

  2. Molecular phylogeny of Ascotricha, including two new marine algae-associated species.

    Science.gov (United States)

    Cheng, Xiaoli; Li, Wei; Cai, Lei

    2015-01-01

    Phylogenetic analyses based on a broad taxonomic sampling of Ascotricha were conducted using the sequences of nuc rDNA region encompassing the internal transcribed spacers 1 and 2, along with the 5.8S rDNA (ITS), partial nuc 18S rDNA (18S) and partial β-tubulin gene (TUB2). Hypoxyloid Xylariaceae and xylarioid Xylariaceae were inferred as two distinct lineages in the Xylariaceae in the combined ITS-TUB2 phylogeny. Within xylarioid Xylariaceae species of Ascotricha form a monophyletic group. Two new marine algae-associated fungi, Ascotricha longipila and A. parvispora, are described on the basis of morphological and molecular characters and the combination, A. sinuosa, is proposed. A synopsis of the morphological characters and a dichotomous key to Ascotricha species are provided. © 2015 by The Mycological Society of America.

  3. Hydrogen production from salt water by Marine blue green algae and solar radiation

    Science.gov (United States)

    Mitsui, A.; Rosner, D.; Kumazawa, S.; Barciela, S.; Phlips, E.

    1985-01-01

    Two marine bluegreen algae, Oscillatoria sp. Miami BG 7 and Synechococcus sp Miami 041511 have been selected as the result of over 10 years continuous and intensive effort of isolation, growth examination, and the screening of hydrogen photoproduction capability in this laboratory. Both strains photoproduced hydrogen for several days at high rates and a quantity of hydrogen was accumulated in a closed vessel. Overall hydrogen donor substance of the hydrogen photoproduction was found to be salt water. Using strain Miami BG 7, a two step method of hydrogen photoproduction from salt water was successfully developed and this was recycled several times over a one month period using both free cells and immobilized cells in both indoor and outdoor under natural sunlight. According to these experiments, a prototype floating hydrogen production system was designed for further development of the biosolar hydrogen production system.

  4. Sesquiterpene and Acetogenin Derivatives from the Marine Red Alga Laurencia okamurai

    Directory of Open Access Journals (Sweden)

    Bin-Gui Wang

    2012-12-01

    Full Text Available In addition to 13 known compounds, four new bisabolane sesquiterpenes, okamurenes A–D (1–4, a new chamigrane derivative, okamurene E (5, and a new C12-acetogenin, okamuragenin (6, were isolated from the marine red alga Laurencia okamurai. The structures of these compounds were determined through detailed spectroscopic analyses. Of these, okamurenes A and B (1 and 2 are the first examples of bromobisabolane sesquiterpenes possessing a phenyl moiety among Laurencia-derived sesquiterpenes, while okamuragenin (6 was the first acetogenin aldehyde possessing a C12-carbon skeleton. Each of the isolated compounds was evaluated for the brine shrimp (Artemia salina lethal assay and 7-hydroxylaurene displayed potent lethality with LD50 1.8 μM.

  5. Hydrogen production from salt water by Marine blue green algae and solar radiation

    Science.gov (United States)

    Mitsui, A.; Rosner, D.; Kumazawa, S.; Barciela, S.; Phlips, E.

    1985-01-01

    Two marine bluegreen algae, Oscillatoria sp. Miami BG 7 and Synechococcus sp Miami 041511 have been selected as the result of over 10 years continuous and intensive effort of isolation, growth examination, and the screening of hydrogen photoproduction capability in this laboratory. Both strains photoproduced hydrogen for several days at high rates and a quantity of hydrogen was accumulated in a closed vessel. Overall hydrogen donor substance of the hydrogen photoproduction was found to be salt water. Using strain Miami BG 7, a two step method of hydrogen photoproduction from salt water was successfully developed and this was recycled several times over a one month period using both free cells and immobilized cells in both indoor and outdoor under natural sunlight. According to these experiments, a prototype floating hydrogen production system was designed for further development of the biosolar hydrogen production system.

  6. The research on the adsorption effect on metal ions by immobilized marine algae

    Institute of Scientific and Technical Information of China (English)

    WANG Xian; QIU Haiyuan; CAI Zhenzhen; CHEN Lidan; ZHENG Shenghua; HUANG Zhiwei

    2006-01-01

    The process of adsorption of Cu2+, Cd2+ by immobilized marine algae was investigated. It can be noted from the results that, the process for biosorption of heavy metals (copper, cadmium) by immobilized Laminaria japonica can be described by the Banerm model.According to the model, the adsorption rate constant calculated was 0.107 8 and 0.030 28 min-1 for Cu2+ and Cd2+ respectively. The experimental biosorption equilibrium data for Cu2+ and Cd2+ were in good agreement with those calculated by the Langmuir model. The maximum uptake capacity calculated was 83.3 and 112.4 mg/g for Cu2+ and Cd2+ according to the Langmuir model, respectively. The appetency of Laminaria japonica to Cu2+was better than Cd2+.

  7. Halogenated Terpenes and a C15-Acetogenin from the Marine Red Alga Laurencia saitoi

    Directory of Open Access Journals (Sweden)

    Xiao-Ming Li

    2008-11-01

    Full Text Available Seven parguerane diterpenes: 15-bromo-2,7,19-triacetoxyparguer-9(11-en-16-ol (1, 15-bromo-2,7,16,19-tetraacetoxyparguer-9(11-ene (2, 15-bromo-2,19-diacetoxyparguer-9(11-en-7,16-diol (3, 15-bromo-2,16,19-triacetoxyparguer-9(11-en-7-ol (4, 15-bromo-2,16-diacetoxyparguer-9(11-en-7-ol (5, 15-bromoparguer-9(11-en-16-ol (6, 15-bromoparguer-7-en-16-ol (7, two polyether triterpenes: thyrsiferol (8 and thyrsiferyl 23-acetate (9, and one C15-acetogenin, neolaurallene (10, were isolated from a sample of marine red alga Laurencia saitoi collected off the coast of Yantai. Their structures were established by detailed NMR spectroscopic analysis and comparison with literature data.

  8. Cultivation of macroscopic marine algae and freshwater aquatic weeds. Progress report, May 1--December 31, 1976

    Energy Technology Data Exchange (ETDEWEB)

    Ryther, J. H.

    1977-01-01

    Research was divided between basic physiological studies of the growth and nutrient-uptake kinetics of macroscopic marine algae and the more applied problems involved in the selection of species and the development of inexpensive, non-energy intensive culture methods for growing seaweeds and freshwater plants as a biomass source for conversion to energy. Best growth of the seaweeds occurs at low (0.1 to 1.0 ..mu..molar) concentration of major nutrients, with ammonia as a nitrogen source, with rapid exchange of the culture medium (residence time of 0.05 days or less). Of 43 species of seaweeds evaluated, representatives of the large red alga genus Gracilaria appear most promising with potential yields, in a highly intensive culture system under optimal conditions, of some 129 metric dry tons per hectare per year (about half of which is organic). Non-intensive culture methods have yielded one-third to one-half that figure. Unexplained periodicity of growth and overgrowth by epiphytes remain the most critical constraint to large-scale seaweed culture. Freshwater weed species in culture include water hyacinth (Eichhornia crassipes), duckweed (Lemna minor), and Hydrilla vertecillata, with yields to date averaging 15, 4, and 8 g dry wt/m/sup 2//day, respectively. However, these plants have not yet been grown through the winter, so average annual yields are expected to be lower. In contrast to the seaweeds, the freshwater plants grow well at high nutrient concentrations and slow culture volume exchange rates (residence time ca. 20 days or more). Experiments were initiated on the recycling of digester residues from the fermentation of the freshwater and marine plants as a possible nutrient source for growth of the same species.

  9. Effects of different strategies of mineral supplementation (marine algae alone or combined with rumen boluses) in organic dairy systems.

    Science.gov (United States)

    López-Alonso, M; Rey-Crespo, F; Orjales, I; Rodríguez-Bermúdez, R; Miranda, M

    2016-10-01

    This study was designed to evaluate the effect of marine algae supplementation alone or in combination with a regular mineral supplement (rumen boluses) to improve the mineral status in organic dairy cattle and their effect on the milk mineral composition, milk production, composition (% of fat and protein) and quality (SCC). Thirty-two Holstein Friesian lactating cows were randomly selected and assigned to the algae (A), boluses (B), algae+boluses (AB) and control group (C). For the algae groups (A, AB), a supplement composed of Sea Lettuce (80%), Japanese Wireweed (17.5%) and Furbelows (2.5%) was formulated to be given to the cows at the rate of 100 g/animal per day (A1) for the length of 4 weeks. In the second half of the experiment (weeks 5-8), the algae mixture was reformulated and the proportion of Furbelows was increased from 2.5% to 5.0% with a subsequent decrease of Lettuce to 77.5% (A2). In the boluses group (B), each cow received 2 boluses after calving. Blood (serum) and milk samples were collected at 2 and 4 week intervals, respectively, and analysed for trace element concentrations by ICP-MS. Information related to the milk composition and SCC during a 305-day lactation for each animal were obtained from the Dairy Records Management System. The supplementation with algae, boluses or the combination of both treatments showed a statistically significant effect on the iodine (algae), selenium (boluses) and cobalt (algae+boluses) status of the animals. In milk, treatments had a statistical significant increase on iodine, and a tendency to increase selenium concentrations. The assayed algae mixture combined with another source of selenium could be an effective tool to improve the mineral status in serum and milk. Journal of Animal Physiology and Animal Nutrition © 2016 Blackwell Verlag GmbH.

  10. Constitutive or Inducible Protective Mechanisms against UV-B Radiation in the Brown Alga Fucus vesiculosus? A Study of Gene Expression and Phlorotannin Content Responses.

    Directory of Open Access Journals (Sweden)

    Emeline Creis

    Full Text Available A role as UV sunscreens has been suggested for phlorotannins, the phenolic compounds that accumulate in brown algae in response to a number of external stimuli and take part in cell wall structure. After exposure of the intertidal brown alga Fucus vesiculosus to artificial UV-B radiation, we examined its physiological responses by following the transcript level of the pksIII gene encoding a phloroglucinol synthase, likely to be involved in the first step of phlorotannins biosynthesis. We also monitored the expression of three targeted genes, encoding a heat shock protein (hsp70, which is involved in global stress responses, an aryl sulfotransferase (ast, which could be involved in the sulfation of phlorotannins, and a vanadium bromoperoxidase (vbpo, which can potentially participate in the scavenging of Reactive Oxygen Species (ROS and in the cross-linking and condensation of phlorotannins. We investigated whether transcriptional regulation of these genes is correlated with an induction of phlorotannin accumulation by establishing metabolite profiling of purified fractions of low molecular weight phlorotannins. Our findings demonstrated that a high dose of UV-B radiation induced a significant overexpression of hsp70 after 12 and 24 hours following the exposure to the UV-B treatment, compared to control treatment. The physiological performance of algae quantified by the photosynthetic efficiency (Fv/Fm was slightly reduced. However UV-B treatment did not induce the accumulation of soluble phlorotannins in F. vesiculosus during the kinetics of four weeks, a result that may be related to the lack of induction of the pksIII gene expression. Taken together these results suggest a constitutive accumulation of phlorotannins occurring during the development of F.vesiculosus, rather than inducible processes. Gene expression studies and phlorotannin profiling provide here complementary approaches to global quantifications currently used in studies of

  11. Constitutive or Inducible Protective Mechanisms against UV-B Radiation in the Brown Alga Fucus vesiculosus? A Study of Gene Expression and Phlorotannin Content Responses.

    Science.gov (United States)

    Creis, Emeline; Delage, Ludovic; Charton, Sophie; Goulitquer, Sophie; Leblanc, Catherine; Potin, Philippe; Ar Gall, Erwan

    2015-01-01

    A role as UV sunscreens has been suggested for phlorotannins, the phenolic compounds that accumulate in brown algae in response to a number of external stimuli and take part in cell wall structure. After exposure of the intertidal brown alga Fucus vesiculosus to artificial UV-B radiation, we examined its physiological responses by following the transcript level of the pksIII gene encoding a phloroglucinol synthase, likely to be involved in the first step of phlorotannins biosynthesis. We also monitored the expression of three targeted genes, encoding a heat shock protein (hsp70), which is involved in global stress responses, an aryl sulfotransferase (ast), which could be involved in the sulfation of phlorotannins, and a vanadium bromoperoxidase (vbpo), which can potentially participate in the scavenging of Reactive Oxygen Species (ROS) and in the cross-linking and condensation of phlorotannins. We investigated whether transcriptional regulation of these genes is correlated with an induction of phlorotannin accumulation by establishing metabolite profiling of purified fractions of low molecular weight phlorotannins. Our findings demonstrated that a high dose of UV-B radiation induced a significant overexpression of hsp70 after 12 and 24 hours following the exposure to the UV-B treatment, compared to control treatment. The physiological performance of algae quantified by the photosynthetic efficiency (Fv/Fm) was slightly reduced. However UV-B treatment did not induce the accumulation of soluble phlorotannins in F. vesiculosus during the kinetics of four weeks, a result that may be related to the lack of induction of the pksIII gene expression. Taken together these results suggest a constitutive accumulation of phlorotannins occurring during the development of F.vesiculosus, rather than inducible processes. Gene expression studies and phlorotannin profiling provide here complementary approaches to global quantifications currently used in studies of phenolic compounds

  12. Ultrasound assisted methods for enhanced extraction of phycobiliproteins from marine macro-algae, Gelidium pusillum (Rhodophyta).

    Science.gov (United States)

    Mittal, Rochak; Tavanandi, Hrishikesh A; Mantri, Vaibhav A; Raghavarao, K S M S

    2017-09-01

    Extraction of phycobiliproteins (R-phycoerythrin, R-PE and R-phycocyanin, R-PC) from macro-algae is difficult due to the presence of large polysaccharides (agar, cellulose etc.) present in the cell wall which offer major hindrance for cell disruption. The present study is aimed at developing most suitable methodology for the primary extraction of R-PE and R-PC from marine macro-algae, Gelidium pusillum(Stackhouse) Le Jolis. Such extraction of phycobiliproteins by using ultrasonication and other conventional methods such as maceration, maceration in presence of liquid nitrogen, homogenization, and freezing and thawing (alone and in combinations) is reported for the first time. Standardization of ultrasonication for different parameters such as ultrasonication amplitude (60, 90 and 120µm) and ultrasonication time (1, 2, 4, 6, 8 and 10mins) at different temperatures (30, 35 and 40°C) was carried out. Kinetic parameters were estimated for extraction of phycobiliproteins by ultrasonication based on second order mass transfer kinetics. Based on calorimetric measurements, power, ultrasound intensity and acoustic power density were estimated to be 41.97W, 14.81W/cm(2) and 0.419W/cm(3), respectively. Synergistic effect of ultrasonication was observed when employed in combination with other conventional primary extraction methods. Homogenization in combination with ultrasonication resulted in an enhancement in efficiency by 9.3% over homogenization alone. Similarly, maceration in combination with ultrasonication resulted in an enhancement in efficiency by 31% over maceration alone. Among all the methods employed, maceration in combination with ultrasonication resulted in the highest extraction efficiency of 77 and 93% for R-PE and R-PC, respectively followed by homogenization in combination with ultrasonication (69.6% for R-PE and 74.1% for R-PC). HPLC analysis was carried out in order to ensure that R-PE was present in the extract and remained intact even after processing

  13. Antibacterial, antifungal and cytotoxic activities exhibited by endophytic fungi from the Brazilian marine red alga Bostrychia tenella (Ceramiales

    Directory of Open Access Journals (Sweden)

    Rafael de Felício

    2015-12-01

    Full Text Available Abstract Marine environment is one of the most important sources regarding natural products research. Besides, marine microorganisms have been denominated as a talented natural source for discovery of new leads. Although the association of macroalgae and fungi has been described regarding ecological issues, there is a lack of studies about marine seaweed endophytic fungi. In this context, the goal of this study was to evaluate cytotoxic, antifungal and antibacterial activities of endophytic fungi isolated from the Brazilian marine seaweed Bostrychia tenella (J.V. Lamouroux J. Agardh (Ceramiales, Rhodophyta. Forty-five endophytic microorganism strains were isolated from B. tenella. Crude extracts and organic fractions of ten selected strains were obtained after growth in rice medium. Samples were evaluated for cytotoxicity, antifungal and antibacterial assays. Penicillium strains showed positive results in a diversity of assays, and other five strains were active in at least one test. In addition, cytochalasin D was isolated from Xylaria sp. This alga is composed of a microbiological potential, since its endophytic strains exhibited remarkable biological properties. Moreover, cytochalasin D isolation has confirmed chemical potential of marine endophytic strains. This is the first study in which cultured fungi isolates from the Brazilian macroalga B. tenella were evaluated concerning biological properties. Results corroborated that this species could be a pharmaceutical source from marine environment. Furthermore, Acremonium implicatum is being firstly described as marine endophyte and Xylaria sp., Trichoderma atroviride and Nigrospora oryzae as marine seaweed endophytes. Thus, this work reports the first study relating detailed isolation, cultivation and biological evaluation (cytotoxic, antifungal and antibacterial of endophytes Penicillium decaturense and P. waksmanii from the Brazilian marine red alga B. tenella. We are also reporting the

  14. Adsorption behavior of Cu(II) and Co(II) using chemically modified marine algae.

    Science.gov (United States)

    Foroutan, Rauf; Esmaeili, Hossein; Abbasi, Mohsen; Rezakazemi, Mashallah; Mesbah, Mohammad

    2017-08-28

    In this study, brown algae-modified biomass Padina sanctae crucis was used for copper (Cu(II)) and cobalt (Co(II)) heavy metal ions adsorption in synthetic wastewater. The effects of solution pH and adsorption efficiency for Cu(II) and Co(II) removal from aqueous solutions were studied. In order to study the kinetic behavior of adsorption, pseudo-first-order, pseudo-second-order kinetic models, liquid film penetration, and Ritchie second-order models were used. The results showed that the pseudo-second-order kinetic model was able to describe adsorbent behavior in comparison to the other models. Moreover, in order to study adsorbent equilibrium behavior, Langmuir and Freundlich isothermal models were used. Based on the Langmuir model, the adsorption capacity of Co(II) and Cu(II) was determined and their values were 13.73 and 13.996 mg/g, respectively. It was shown that both metal ions adsorption process is favorable and adsorption is physical. In this research, thermodynamic parameters were also studied in order to determine Gibbs free energy for both metal ions which were negative, indicating that metal ions adsorption process is spontaneous and the degree of self-adsorption increases as temperature increases.

  15. Effects of marine actinomycete on the removal of a toxicity alga Phaeocystis globose in eutrophication waters

    Directory of Open Access Journals (Sweden)

    Huajun eZhang

    2015-05-01

    Full Text Available Phaeocystis globosa blooms in eutrophication waters can cause severely damage in marine ecosystem and consequently influence human activities. This study investigated the effect and role of an algicidal actinomycete (Streptomyces sp. JS01 on the elimination process of P. globosa. JS01 supernatant could alter algal cell membrane permeability in 4 h when analyzed with flow cytometry. Reactive oxygen species (ROS levels were 7.2 times higher than that at 0 h following exposure to JS01 supernatant for 8 h, which indicated that algal cells suffered from oxidative damage. The Fv/Fm value which could reflect photosystem II (PS II electron flow status also decreased. Real-time PCR showed that the expression of the photosynthesis related genes psbA and rbcS were suppressed by JS01 supernatant, which might induce damage to PS II. Our results demonstrated that JS01 supernatant can change algal membrane permeability in a short time and then affect photosynthesis process, which might block the PS II electron transport chain to produce excessive ROS. This experiment demonstrated that Streptomyces sp. JS01 could eliminate harmful algae in marine waters efficiently and may be function as a harmful algal bloom controller material.

  16. Antiplatelet and Anticoagulant Effects of Diterpenes Isolated from the Marine Alga, Dictyota menstrualis

    Directory of Open Access Journals (Sweden)

    Laura de Andrade Moura

    2014-04-01

    Full Text Available Cardiovascular diseases represent a major cause of disability and death worldwide. Therapeutics are available, but they often have unsatisfactory results and may produce side effects. Alternative treatments based on the use of natural products have been extensively investigated, because of their low toxicity and side effects. Marine organisms are prime candidates for such products, as they are sources of numerous and complex substances with ecological and pharmacological effects. In this work, we investigated, through in vitro experiments, the effects of three diterpenes (pachydictyol A, isopachydictyol A and dichotomanol from the Brazilian marine alga, Dictyota menstrualis, on platelet aggregation and plasma coagulation. Results showed that dichotomanol inhibited ADP- or collagen-induced aggregation of platelet-rich plasma (PRP, but failed to inhibit washed platelets (WP. In contrast, pachydictyol A and isopachydictyol A failed to inhibit the aggregation of PRP, but inhibited WP aggregation induced by collagen or thrombin. These diterpenes also inhibited coagulation analyzed by the prothrombin time and activated partial thromboplastin time and on commercial fibrinogen. Moreover, diterpenes inhibited the catalytic activity of thrombin. Theoretical studies using the Osiris Property Explorer software showed that diterpenes have low theoretical toxicity profiles and a drug-score similar to commercial anticoagulant drugs. In conclusion, these diterpenes are promising candidates for use in anticoagulant therapy, and this study also highlights the biotechnological potential of oceans and the importance of bioprospecting to develop medicines.

  17. Toluhydroquinone, the secondary metabolite of marine algae symbiotic microorganism, inhibits angiogenesis in HUVECs.

    Science.gov (United States)

    Kim, Nan-Hee; Jung, Hyun-Il; Choi, Woo-Suk; Son, Byeng-Wha; Seo, Yong-Bae; Choi, Jae Sue; Kim, Gun-Do

    2015-03-01

    Angiogenesis, the growth of new blood vessels from the existing ones, occurs during embryo development and wound healing. However, most malignant tumors require angiogenesis for their growth and metastasis as well. Therefore, inhibition of angiogenesis has been focused as a new strategy of cancer therapies. To treat cancer, there are marine microorganism-derived secondary metabolites developed as chemotherapeutic agents. In this study, we used toluhydroquinone (2-methyl-1,4-hydroquinone), one of the secondary metabolites isolated from marine algae symbiotic fungus, Aspergillus sp. We examined the effects of toluhydroquinone on angiogenesis using HUVECs. We identified that toluhydroquinone inhibited the activity of β-catenin and down-regulated Ras/Raf/MEK/ERK signaling which are crucial components during angiogenesis. In addition, the expression and activity of MMPs are reduced by the treatment of toluhydroquinone. In conclusion, we confirmed that toluhydroquinone has inhibitory effects on angiogenic behaviors of human endothelial cells, HUVECs. Our findings suggest that toluhydroquinone can be proposed as a potent anti-angiogenesis drug candidate to treat cancers.

  18. Further studies on the composition and structure of a fucoidan preparation from the brown alga Saccharina latissima.

    Science.gov (United States)

    Bilan, Maria I; Grachev, Alexey A; Shashkov, Alexander S; Kelly, Maeve; Sanderson, Craig J; Nifantiev, Nikolay E; Usov, Anatolii I

    2010-09-23

    The polysaccharide composition of a fucoidan preparation isolated from the brown alga Saccharina latissima (formerly Laminaria saccharina) was reinvestigated. The preparation was fractionated by anion-exchange chromatography, and the fractions obtained were analyzed by chemical methods combined with NMR spectroscopy. Several 2D procedures, including HSQC, HMQC-TOCSY, and HMQC-NOESY, were used to obtain reliable structural information from the complex spectra, and the signal assignments were additionally confirmed by comparison with the literature spectra of the related polysaccharides and synthetic oligosaccharides. In accordance with the previous data, the main polysaccharide component was shown to be a fucan sulfate containing a backbone of 3-linked alpha-l-fucopyranose residues sulfated at C-4 and/or at C-2 and branched at C-2 by single sulfated alpha-l-fucopyranose residues. In addition, three other types of sulfated polysaccharide molecules were detected in the total fucoidan preparation: (i) a fucogalactan having a backbone of 6-linked beta-d-galactopyranose residues branched mainly at C-4 and containing both terminal galactose and fucose residues; (ii) a fucoglucuronomannan having a backbone of alternating 4-linked beta-d-glucopyranosyluronic acid and 2-linked alpha-d-mannopyranose residues with alpha-l-fucopyranose residues as single branches at C-3 of alpha-d-Manp; and (iii) a fucoglucuronan having a backbone of 3-linked beta-d-glucopyranosyluronic acid residues with alpha-l-fucopyranose residues as single branches at C-4. Hence, even a single algal species may contain, at least in minor amounts, several sulfated polysaccharides differing in molecular structure. Partial resolution of these polysaccharides has been accomplished, but unambiguous evidence on their presence as separate entities was not obtained.

  19. Ecological and biochemical analyses of the brown alga Turbinaria ornata (Turner J. Agardh from Red Sea coast, Egypt

    Directory of Open Access Journals (Sweden)

    Mohamed Ali Deyab

    2016-03-01

    Full Text Available Objective: To study ecological parameters and biochemical composition of brown seaweed, Turbinaria ornata (T. ornata collected from Hurghada shores, Red Sea coast of Egypt during September, October and November, 2015. Methods: T. ornata and its associated seaweeds were collected, identified and their abundances were estimated. Water of collection site was analyzed physicochemically as well as qualitative and quantitative analyses of phytoplankton. T. ornata was analyzed for protein, total carbohydrate, lipids, alginic acid, agar, pigments, minerals and heavy metals. Results: The results showed that macroalgal species recorded along Hurghada shores belong to Phaeophyta, Rhodophyta and Chlorophyta. At collection site, the moderate temperature, slight alkaline pH, low turbidity, high dissolved oxygen and valuable nutrient content of saline water exerted the massive growth of T. ornata with maximum abundance (24% during October. The phytoplankton community was quite diverse with a maximum numbers of taxa (104.2 × 108 cell/L recorded during October. Analysis of T. ornata alga powder showed that high soluble carbohydrate (2.80 ± 0.10 mg/g dry/weight and chlorophyll c (0.001 7 ± 0.000 1 mg/g fresh weight contents were recorded during September; while high contents of protein (37.70 ± 0.60 mg/g dry weight, lipids (3.10 ± 0.06 mg/g dry weight, polysaccharides (agar and alginates, carotenoids (0.016 0 ± 0.000 4 mg/g fresh weight, minerals and heavy metals were recorded during November. Conclusions: The study revealed that physicochemical analyses of water were varied slightly during the three months and suitable for the growth of T. ornata. It contains high amount of most biochemical constituents during October.

  20. Biosorption of chromium(III) by two Brown algae macrocystis pyrifera and undaria pinnatifida: equilibrium and kinetic study

    Energy Technology Data Exchange (ETDEWEB)

    Cazon, Josefina Plaza H.; Benitez, Leonardo; Donati, Edgardo; Viera, Marisa [Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Calle 47 y 115 (1900) La Plata (Argentina)

    2012-02-15

    Two brown algae, Macrocystis pyrifera and Undaria pinnatifida, were employed to remove Cr(III) from aqueous solutions. Both seaweeds were characterized in terms of alginate yields. The alginate contents were 20 and 30% of the dry weight for M. pyrifera and U. pinnatifida, respectively. Kinetics experiments were carried out at different initial pH values. Cr(III) biosorption was affected by the solution pH. The highest metal uptake was found at pH 4 for both biosorbents. Different models were applied to elucidate the rate-controlling mechanism: pseudo-first-order, pseudo-second-order, external mass transfer and intra-particle diffusion. The application of Langmuir, Freundlich and Dubinin-Radushkevich models to the equilibrium data showed a better fitting to the first model. The maximum Cr(III) sorption capacity (q{sub m}) and the affinity coefficient (b) were very similar for both biosorbents: 0.77 mmol/g and 1.20 L/mmol for M. pyrifera and 0.74 mmol/g and 1.06 L/mmol for U. pinnatifida. The free energy of the sorption process was estimated using the Dubinin-Radushkevich isotherm. The values indicate that the processes are chemical sorptions. To evaluate the significance of the ion-exchange mechanism, the light metals (Ca{sup 2+}, Na{sup +}, Mg{sup 2+} and K{sup +}) and pH were measured during the experiments. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  1. Variability in δ{sup 15}N of intertidal brown algae along a salinity gradient: Differential impact of nitrogen sources

    Energy Technology Data Exchange (ETDEWEB)

    Viana, Inés G., E-mail: inesgviana@gmail.com; Bode, Antonio

    2015-04-15

    While it is generally agreed that δ{sup 15}N of brown macroalgae can discriminate between anthropogenic and natural sources of nitrogen, this study provides new insights on net fractionation processes occurring in some of these species. The contribution of continental and marine sources of nitrogen to benthic macroalgae in the estuary-ria system of A Coruña (NW Spain) was investigated by analyzing the temporal (at a monthly and annual basis) and spatial (up to 10 km) variability of δ{sup 15}N in the macroalgae Ascophyllum nodosum and three species of the genus Fucus (F. serratus, F. spiralis and F. vesiculosus). Total nitrate and ammonium concentrations and δ{sup 15}N-DIN, along with salinity and temperature in seawater were also studied to address the sources of such variability. Macroalgal δ{sup 15}N and nutrient concentrations decreased from estuarine to marine waters, suggesting larger dominance of anthropogenic nitrogen sources in the estuary. However, δ{sup 15}N values of macroalgae were generally higher than those of ambient nitrogen at all temporal and spatial scales considered. This suggests that the isotopic composition of these macroalgae is strongly affected by fractionation during uptake, assimilation or release of nitrogen. The absence of correlation between macroalgal and water samples suggests that the δ{sup 15}N of the species considered cannot be used for monitoring short-term changes. But their long lifespan and slow turnover rates make them suitable to determine the impact of the different nitrogen sources integrated over long-time periods. - Highlights: • Variability of Fucacean δ{sup 15}N indicates N sources along a salinity gradient. • δ{sup 15}N of Fucaceae and seawater are not correlated at short time scales. • Isotopic fractionation in macroalgal tissue varies at seasonal and at local scale. • Fucacean species are suitable for monitoring chronic N loadings.

  2. Vulnerability of marine habitats to the invasive green alga Caulerpa racemosa var. cylindracea within a marine protected area.

    Science.gov (United States)

    Katsanevakis, Stelios; Issaris, Yiannis; Poursanidis, Dimitris; Thessalou-Legaki, Maria

    2010-08-01

    The relative vulnerability of various habitat types to Caulerpa racemosa var. cylindracea invasion was investigated in the National Marine Park of Zakynthos (Ionian Sea, Greece). The density of C. racemosa fronds was modelled with generalized additive models for location, scale and shape (GAMLSS), based on an information theory approach. The species was present in as much as 33% of 748 randomly placed quadrats, which documents its aggressive establishment in the area. The probability of presence of the alga within randomly placed 20 x 20 cm quadrats was 83% on 'matte morte' (zones of fibrous remnants of a former Posidonia oceanica bed), 69% on rocky bottoms, 86% along the margins of P. oceanica meadows, 10% on sandy/muddy substrates, and 6% within P. oceanica meadows. The high frond density on 'matte morte' and rocky bottoms indicates their high vulnerability. The lowest frond density was observed within P. oceanica meadows. However, on the margins of P. oceanica meadows and within gaps in fragmented meadows relative high C. racemosa densities were observed. Such gaps within meadows represent spots of high vulnerability to C. racemosa invasion.

  3. Cytotoxic and potent CYP1 inhibitors from the marine algae Cymopolia barbata.

    Science.gov (United States)

    Badal, Simone; Gallimore, Winklet; Huang, George; Tzeng, Tzuen-Rong Jeremy; Delgoda, Rupika

    2012-06-11

    Extracts from the marine algae Cymopolia barbata have previously shown promising pharmacological activity including antifungal, antitumor, antimicrobial, and antimutagenic properties. Even though extracts have demonstrated such bioactivity, isolated ingredients responsible for such bioactivity remain unspecified. In this study, we describe chemical characterization and evaluations of biological activity of prenylated bromohydroquinones (PBQ) isolated from the marine algae C. barbata for their cytotoxic and chemopreventive potential. The impact of PBQs on the viability of cell lines (MCF-7, HT29, HepG, and CCD18 Co) was evaluated using the MTS assay. In addition, their inhibitory impact on the activities of heterologously expressed cytochrome P450 (CYP) enzymes (CYP1A1, CYP1A2, CYP1B1, CYP2C19, CYP2D6, and CYP3A4) was evaluated using a fluorescent assay. 7-Hydroxycymopochromanone (PBQ1) and 7-hydroxycymopolone (PBQ2) were isolated using liquid and column chromatography, identified using 1 H and 13 C NMR spectra and compared with the spectra of previously isolated PBQs. PBQ2 selectively impacted the viability of HT29, colon cancer cells with similar potency to the known chemotherapeutic drug, fluorouracil (IC50, 19.82 ± 0.46 μM compared to 23.50 ± 1.12 μM, respectively) with impact toward normal colon cells also being comparable (55.65 ± 3.28 compared to 55.51 ± 3.71 μM, respectively), while PBQ1 had no impact on these cells. Both PBQs had potent inhibition against the activities of CYP1A1 and CYP1B1, the latter which is known to be a universal marker for cancer and a target for drug discovery. Inhibitors of CYP1 enzymes by virtue of the prevention of activation of carcinogens such as benzo-a-pyrene have drawn attention as potential chemopreventors. PBQ2 potently inhibited the activity of CYP1B1 (IC50 0.14 ± 0.04 μM), while both PBQ1 and PBQ2 potently inhibited the activity of CYP1A1 (IC50s of 0.39 ± 0.05 μM and 0.93 ± 0

  4. Homogeneous population of the brown alga Sargassum polycystum in Southeast Asia: possible role of recent expansion and asexual propagation.

    Directory of Open Access Journals (Sweden)

    Sze Wai Chan

    Full Text Available Southeast Asia has been known as one of the biodiversity hotspots in the world. Repeated glacial cycles during Pleistocene were believed to cause isolation of marine taxa in refugia, resulting in diversification among lineages. Recently, ocean current was also found to be another factor affecting gene flow by restricting larval dispersal in animals. Macroalgae are unique in having mode of reproduction that differs from that of animals. Our study on the phylogeographical pattern of the brown macroalga Sargassum polycystum using nuclear Internal Transcribed Spacer 2 (ITS2, plastidal RuBisCO spacer (Rub spacer and mitochondrial cytochrome oxidase subunit-III (Cox3 as molecular markers revealed genetic homogeneity across 27 sites in Southeast Asia and western Pacific, in sharp contrast to that revealed from most animal studies. Our data suggested that S. polycystum persisted in single refugium during Pleistocene in a panmixia pattern. Expansion occurred more recently after the Last Glacial Maximum and recolonization of the newly flooded Sunda Shelf could have involved asexual propagation of the species. High dispersal ability through floating fronds carrying developing germlings may also contribute to the low genetic diversity of the species.

  5. Homogeneous population of the brown alga Sargassum polycystum in Southeast Asia: possible role of recent expansion and asexual propagation.

    Science.gov (United States)

    Chan, Sze Wai; Cheang, Chi Chiu; Chirapart, Anong; Gerung, Grevo; Tharith, Chea; Ang, Put

    2013-01-01

    Southeast Asia has been known as one of the biodiversity hotspots in the world. Repeated glacial cycles during Pleistocene were believed to cause isolation of marine taxa in refugia, resulting in diversification among lineages. Recently, ocean current was also found to be another factor affecting gene flow by restricting larval dispersal in animals. Macroalgae are unique in having mode of reproduction that differs from that of animals. Our study on the phylogeographical pattern of the brown macroalga Sargassum polycystum using nuclear Internal Transcribed Spacer 2 (ITS2), plastidal RuBisCO spacer (Rub spacer) and mitochondrial cytochrome oxidase subunit-III (Cox3) as molecular markers revealed genetic homogeneity across 27 sites in Southeast Asia and western Pacific, in sharp contrast to that revealed from most animal studies. Our data suggested that S. polycystum persisted in single refugium during Pleistocene in a panmixia pattern. Expansion occurred more recently after the Last Glacial Maximum and recolonization of the newly flooded Sunda Shelf could have involved asexual propagation of the species. High dispersal ability through floating fronds carrying developing germlings may also contribute to the low genetic diversity of the species.

  6. Photographic Images of Benthic Coral, Algae, and Invertebrate Species in Marine Habitats and Subhabitats around Offshore Islets in the Main Hawaiian Islands 2007 (NODC Accession 0043046)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The marine algae, invertebrate and fish communities were surveyed at ten islet or offshore island sites in the Main Hawaiian Islands in the vicinity of Lanai, (Puu...

  7. Inhibitory effects of brown algae extracts on histamine production in mackerel muscle via inhibition of growth and histidine decarboxylase activity of Morganella morganii.

    Science.gov (United States)

    Kim, Dong Hyun; Kim, Koth Bong Woo Ri; Cho, Ji Young; Ahn, Dong Hyun

    2014-04-01

    This study was performed to investigate the inhibitory effects of brown algae extracts on histamine production in mackerel muscle. First, antimicrobial activities of brown algae extracts against Morganella morganii were investigated using a disk diffusion method. An ethanol extract of Ecklonia cava (ECEE) exhibited strong antimicrobial activity. The minimum inhibitory concentration (MIC) of ECEE was 2 mg/ml. Furthermore, the brown algae extracts were examined for their ability to inhibit crude histidine decarboxylase (HDC) of M. morganii. The ethanol extract of Eisenia bicyclis (EBEE) and ECEE exhibited significant inhibitory activities (19.82% and 33.79%, respectively) at a concentration of 1 mg/ml. To obtain the phlorotannin dieckol, ECEE and EBEE were subjected to liquid-liquid extraction, silica gel column chromatography, and HPLC. Dieckol exhibited substantial inhibitory activity with an IC50 value of 0.61 mg/ml, and exhibited competitive inhibition. These extracts were also tested on mackerel muscle. The viable cell counts and histamine production in mackerel muscle inoculated with M. morganii treated with ≥2.5 MIC of ECEE (weight basis) were highly inhibited compared with the untreated sample. Furthermore, treatment of crude HDC-inoculated mackerel muscle with 0.5% ECEE and 0.5% EBEE (weight basis), which exhibited excellent inhibitory activities against crude HDC, reduced the overall histamine production by 46.29% and 56.89%, respectively, compared with the untreated sample. Thus, these inhibitory effects of ECEE and EBEE should be helpful in enhancing the safety of mackerel by suppressing histamine production in this fish species.

  8. Characterization of an Eukaryotic PL-7 Alginate Lyase in the Marine Red Alga Pyropia yezoensis.

    Science.gov (United States)

    Inoue, Akira; Mashino, Chieco; Uji, Toshiki; Saga, Naotsune; Mikami, Koji; Ojima, Takao

    2015-08-01

    Alginate lyases belonging to polysaccharide lyase family-7 (PL-7) are the most well studied on their structures and functions among whole alginate lyases. However, all characterized PL-7 alginate lyases are from prokaryotic bacteria cells. Here we report the first identification of eukaryotic PL-7 alginate lyase from marine red alga Pyropia yezoensis. The cDNA encoding an alginate lyase PyAly was cloned and was used for the construction of recombinant PyAly (rPyAly) expression system in Escherichia coli. Purified rPyAly was assayed to identify its enzymatic properties. Its expression pattern in P. yessoensis was also investigated. PyAly is likely a secreted protein consisting of an N-terminal signal peptide of 25 residues and a catalytic domain of 216 residues. The amino-acid sequence of the catalytic domain showed 19-29% identities to those of bacterial characterized alginate lyases classified into family PL-7. Recombinant PyAly protein, rPyAly, which was produced with E. coli BL21(DE3) by cold-inducible expression system, drastically decreased the viscosity of alginate solution in the early stage of reaction. The most preferable substrate for rPyAly was the poly(M) of alginate with an optimal temperature and pH at 35(o)C and 8.0, respectively. After reaction, unsaturated tri- and tetra-saccharides were produced from poly(M) as major end products. These enzymatic properties indicated that PyAly is an endolytic alginate lyase belonging to PL-7. Moreover, we found that the PyAly gene is split into 4 exons with 3 introns. PyAly was also specifically expressed in the gametophytic haplopid stage. This study demonstrates that PyAly in marine red alga P. yezoensis is a novel PL-7 alginate lyase with an endolytic manner. PyAly is a gametophyte-specifically expressed protein and its structural gene is composed of four exons and three introns. Thus, PyAly is the first enzymatically characterized eukaryotic PL-7 alginate lyase.

  9. Sulfated fucan from marine alga inhibits HeLa cells infection by HTLV-1 free particles: semi-quantitative analysis

    Directory of Open Access Journals (Sweden)

    Maria T. V. Romanos

    2011-04-01

    Full Text Available A sulfated fucan from Laminaria abyssalis marine alga prevented the interaction of HTLV-1 particles, purified from the MT-2 cell line, with HeLa cells. The infection obtained using a concentrated virus suspension was detected only by amplification of the newly synthesized HTLV-1 proviral cDNA by the nested-polymerase chain reaction (PCR. The sulfated polysaccharide was not toxic to the cells at a concentration of 100 µg/mL and prevented infection by the viral particles when added to the cell monolayers. The proviral cDNA was only detected when the sulfated polysaccharide was added to the cells three hours post-infection, indicating that the inhibitory activity occurred in the initial stages of virus-cell interaction. Our results demonstrate, for the first time, the ability of a sulfated fucan from marine algae to inhibit virus transmission through free virus particles.

  10. Application of solid-acid catalyst and marine macro-algae Gracilaria verrucosa to production of fermentable sugars.

    Science.gov (United States)

    Jeong, Gwi-Taek; Kim, Sung-Koo; Park, Don-Hee

    2015-04-01

    In this study, the hydrolysis of marine macro-algae Gracilaria verrucosa with a solid-acid catalyst was investigated. To optimize the hydrolysis, four reaction factors, including liquid-to-solid ratio, catalyst loading, reaction temperature, and reaction time, were investigated. In the results, the highest total reducing sugar (TRS) yield, 61 g/L (51.9%), was obtained under the following conditions: 1:7.5 solid-to-liquid ratio, 15% (w/v) catalyst loading, 140 °C reaction temperature, and 150 min reaction time. Under these conditions, 10.7 g/L of 5-HMF and 2.5 g/L of levulinic acid (LA) were generated. The application of solid-acid catalyst and marine macro-algae resources shows a very high potential for production of fermentable sugars. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. SCREENING FOR ANTIBACTERIAL AND ANTIFUNGAL ACTIVITIES IN SOME MARINE ALGAE FROM THE FUJIAN COAST OF CHINA WITH THREE DIFFERENT SOLVENTS

    Institute of Scientific and Technical Information of China (English)

    郑怡; 陈寅山; 卢海声

    2001-01-01

    Three different solvents viz ethanol, acetone and methanol-toluene (3:1) were used to extract antibiotics from 23 species of marine algae belonging to the Chlorophyta, Phaeophyta and Rhodophyta. Their crude extracts were tested for antibacterial and antifungal activities. Among them, the ethanol extract showed the strongest activity against the bacteria and fungi tested. Four species of the Rhodophyta (Laurencia okamurai, Dasya scoparia, Grateloupia filicina and plocamium telfairiae ) showed a wide spectrum of antibacterial activity. Every solvent extract from the four species was active against all the bacteria tested. The test bacterium Pseudomonas solancearum and the fungus Penicilium citrinum were most sensitive to the extracts of marine algae. In general, the extracts of seaweeds inhibited bacteria more strongly than fungi and species of the Rhodophyta showed the greatest activity against the bacteria and fungi tested.

  12. SCREENING FOR ANTIBACTERIAL AND ANTIFUNGAL ACTIVITIES IN SOME MARINE ALGAE FROM THE FUJIAN COAST OF CHINA WITH THREE DIFFERENT SOLVENTS

    Institute of Scientific and Technical Information of China (English)

    郑怡; 陈寅山; 卢海声

    2001-01-01

    Three different solvents viz ethanol, acetone and methanol-toluene (3:1) were used to extract antibiotics from 23 species of marine algae belonging to the Chlomphyta, Phaeophyta and Rhodophyta. Their crude extracts were tested for antibacterial and antifungal activities. Among them, the ethanol extract showed the strongest activity against the bacteria and fungi tested. Four species of the Rhodophyta (Laurenc/a okamurai, Dasya scoparia, Grateloupia filicina and plocamium telfairiae ) showed a wide spectrum of antibacterial activity. Every solvent extract from the four species was active against all the bacteria tested. The test bacterium Pseudomonas solancearum and the fungus Penicilium citrinum were most sensitive to the extracts of marine algae. In general, the extracts of seaweeds inhibited bacteria more strongly than fungi and species of the Rhodophyta showed the greatest activity against the bacteria and fungi tested.

  13. Isolation and purification of the major photosynthetic antenna, fucoxanthin-Chl a/c protein, from cultured discoid germilings of the brown Alga, Cladosiphon okamuranus TOKIDA (Okinawa Mozuku).

    Science.gov (United States)

    Fujii, Ritsuko; Kita, Mamiko; Iinuma, Yoshiro; Oka, Naohiro; Takaesu, Yuki; Taira, Tomonori; Iha, Masahiko; Cogdell, Richard J; Hashimoto, Hideki

    2012-03-01

    A chlorophyll c binding membrane intrinsic light-harvesting complex, the fucoxanthin-chlorophyll a/c protein (FCP), was isolated from cultured discoid germilings of an edible Japanese brown alga, Cladosiphon (C.) okamuranus TOKIDA (Okinawa Mozuku in Japanese). The discoid germiling is an ideal source of brown algal photosynthetic pigment-protein complexes in terms of its size and easiness of cultivation on a large scale. Ion-exchange chromatography was crucial for the purification of FCP from solubilized thylakoid proteins. The molecular weight of the purified FCP assembly was estimated to be ~56 kDa using blue native-PAGE. Further subunit analyses using 2D-PAGE revealed that the FCP assembled as a trimer consisting of two distinguishable subunits having molecular weights of 18.2 (H) and 17.5 (L) kDa. Fluorescence and fluorescence-excitation spectra confirmed that the purified FCP assembly was functionally intact.

  14. Antibacterial activity of selected marine macro algae against vancomycin resistant Enterococcus faecalis

    Directory of Open Access Journals (Sweden)

    Manivachagam Chandrasekaran

    2014-12-01

    Full Text Available Objective: To evaluate the antibacterial activity of different extracts of Caulerpa chemnitzia (Epser J.V. Lamououx, Caulerpa racemosa (Frosk. Weber-van-Bosse (C. racemosa, Caulerpa scalpelliformis (R.Br. Weber-van-Bosse, Ulva lactuca Lin, Ulva fasciata Dellie, Ulva reticulata Forsk, Stoechospermum marginatum (Ag. Kutz (S. marginatum, Sargassum wightii Grev, Gracilaria verrucosa (Huds. Papenfuss and Gracilaria edulis (S.G. Gemelin P.C. Silva against Enterococcus faecalis (MTCC 439 (E. faecalis and one clinical isolate of vancomycin resistant E. faecalis. Methods: The selected marine macro algae were extracted with different solvents viz., hexane, chloroform, ethyl acetate, acetone and methanol. Antibacterial assay was carried out by using disc diffusion method, determination of minimum inhibitory concentration and minimum bactericidal concentration. Results: The maximum antibacterial activity was recorded in the ethyl acetate extracts of S. marginatum and C. racemosa than the other extracts. The mean zone of inhibition produced by the extracts in agar diffusion assays against the tested bacterial strains ranged from 7.1 to 14.5 mm. The minimum inhibitory concentration was between 250 and 500 µg/mL, while the minimum bactericidal concentration was from 500 to 1 000 µg/mL. The ethyl acetate extracts of the seaweeds showed the presence of strong terpenoids, tannins and phenolic compounds compared with the other solvent extracts. Conclusions: These findings suggest that ethyl acetate extracts of S. marginatum and C. racemosa can be used as an antibacterial substance for the treatment of infection caused by E. faecalis.

  15. The isolation of prophyra-334 from marine algae and its UV-absorption behavior

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    Prophyra-334 was prepared by methanol extraction and HPLC methods from marine algae (dried laver). It is a sunscreen compound that has good absorption of ultraviolet radiations in the wavelength ranges of 200-400 nm. The absorption maximum wavelength of prophyra-334 is at 334 nm, so defined the name. The molar extinction coefficient (ε) of prophyra-334 in aqueous solution at 334 nm wavelength is 4.23 × 104. The absorption of prophyra-334 in organic solvents differs in aqueous solutions. In polar organic solvents, the absorption maximum wavelength of prophyra-334 has a slight shift toward longer wavelength compared with that in pure water. On the contrary, in inert non-polar organic solvents, the absorption maximum wavelength and the shape of absorption spectra of prophyra-334 are changed. The effects of organic solvents on prophyra-334 stability suggested that: (1) the absorbance of prophyra-334 in water is generally constant at temperature of 60℃ in 24 h,meaning that prophyra-334 is quite stable in water; (2) the absorbance of prophyra-334 in ethanol and hexane decreases at the same condition. The stability of prophyra-334 in organic solvents is less than that in aqueous solution. In benzene, the prophyra-334 is very instable.

  16. Marine Algae as a Potential Source for Anti-Obesity Agents

    Science.gov (United States)

    Wan-Loy, Chu; Siew-Moi, Phang

    2016-01-01

    Obesity is a major epidemic that poses a worldwide threat to human health, as it is also associated with metabolic syndrome, type 2 diabetes and cardiovascular disease. Therapeutic intervention through weight loss drugs, accompanied by diet and exercise, is one of the options for the treatment and management of obesity. However, the only approved anti-obesity drug currently available in the market is orlistat, a synthetic inhibitor of pancreatic lipase. Other anti-obesity drugs are still being evaluated at different stages of clinical trials, while some have been withdrawn due to their severe adverse effects. Thus, there is a need to look for new anti-obesity agents, especially from biological sources. Marine algae, especially seaweeds are a promising source of anti-obesity agents. Four major bioactive compounds from seaweeds which have the potential as anti-obesity agents are fucoxanthin, alginates, fucoidans and phlorotannins. The anti-obesity effects of such compounds are due to several mechanisms, which include the inhibition of lipid absorption and metabolism (e.g., fucoxanthin and fucoidans), effect on satiety feeling (e.g., alginates), and inhibition of adipocyte differentiation (e.g., fucoxanthin). Further studies, especially testing bioactive compounds in long-term human trials are required before any new anti-obesity drugs based on algal products can be developed. PMID:27941599

  17. The Structure-Activity Relationship between Marine Algae Polysaccharides and Anti-Complement Activity.

    Science.gov (United States)

    Jin, Weihua; Zhang, Wenjing; Liang, Hongze; Zhang, Quanbin

    2015-12-25

    In this study, 33 different polysaccharides were prepared to investigate the structure-activity relationships between the polysaccharides, mainly from marine algae, and anti-complement activity in the classical pathway. Factors considered included extraction methods, fractionations, molecular weight, molar ratio of galactose to fucose, sulfate, uronic acid (UA) content, linkage, branching, and the type of monosaccharide. It was shown that the larger the molecular weights, the better the activities. The molar ratio of galactose (Gal) to fucose (Fuc) was a positive factor at a concentration lower than 10 µg/mL, while it had no effect at a concentration more than 10 µg/mL. In addition, sulfate was necessary; however, the sulfate content, the sulfate pattern, linkage and branching had no effect at a concentration of more than 10 µg/mL. Moreover, the type of monosaccharide had no effect. Laminaran and UA fractions had no activity; however, they could reduce the activity by decreasing the effective concentration of the active composition when they were mixed with the active compositions. The effect of the extraction methods could not be determined. Finally, it was observed that sulfated galactofucan showed good anti-complement activity after separation.

  18. Sulfated polysaccharide fraction from marine algae Solieria filiformis: Structural characterization, gastroprotective and antioxidant effects.

    Science.gov (United States)

    Sousa, Willer M; Silva, Renan O; Bezerra, Francisco F; Bingana, Rudy D; Barros, Francisco Clark N; Costa, Luís E C; Sombra, Venicios G; Soares, Pedro M G; Feitosa, Judith P A; de Paula, Regina C M; Souza, Marcellus H L P; Barbosa, André Luiz R; Freitas, Ana Lúcia P

    2016-11-05

    A sulfated polysaccharide (SFP) fraction from the marine alga Solieria filiformis was extracted and submitted to microanalysis, molar mass estimation and spectroscopic analysis. We evaluated its gastroprotective potential in vivo in an ethanol-induced gastric damage model and its in vitro antioxidant properties (DPPH, chelating ferrous ability and total antioxidant capacity). Its chemical composition revealed to be essentially an iota-carrageenan with a molar mass of 210.9kDa and high degree of substitution for sulfate groups (1.08). In vivo, SFP significantly (P<0.05) reduced, in a dose dependent manner, the ethanol-induced gastric damage. SFP prevents glutathione consume and increase of malondialdehyde and hemoglobin levels. SFP presented an IC50 of 1.77mg/mL in scavenging DPPH. The chelating ferrous ability was 38.98%, and the total antioxidant capacity was 2.01mg/mL. Thus, SFP prevents the development of ethanol-induced gastric damage by reducing oxidative stress in vivo and possesses relevant antioxidant activity in vitro. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Marine Algae as a Potential Source for Anti-Obesity Agents.

    Science.gov (United States)

    Wan-Loy, Chu; Siew-Moi, Phang

    2016-12-07

    Obesity is a major epidemic that poses a worldwide threat to human health, as it is also associated with metabolic syndrome, type 2 diabetes and cardiovascular disease. Therapeutic intervention through weight loss drugs, accompanied by diet and exercise, is one of the options for the treatment and management of obesity. However, the only approved anti-obesity drug currently available in the market is orlistat, a synthetic inhibitor of pancreatic lipase. Other anti-obesity drugs are still being evaluated at different stages of clinical trials, while some have been withdrawn due to their severe adverse effects. Thus, there is a need to look for new anti-obesity agents, especially from biological sources. Marine algae, especially seaweeds are a promising source of anti-obesity agents. Four major bioactive compounds from seaweeds which have the potential as anti-obesity agents are fucoxanthin, alginates, fucoidans and phlorotannins. The anti-obesity effects of such compounds are due to several mechanisms, which include the inhibition of lipid absorption and metabolism (e.g., fucoxanthin and fucoidans), effect on satiety feeling (e.g., alginates), and inhibition of adipocyte differentiation (e.g., fucoxanthin). Further studies, especially testing bioactive compounds in long-term human trials are required before any new anti-obesity drugs based on algal products can be developed.

  20. Antibacterial activity of selected marine macro algae against vancomycin resistant Enterococcus faecalis

    Institute of Scientific and Technical Information of China (English)

    Manivachagam Chandrasekaran; Venugopalan Venkatesalu; Gnanaprakasam Adaikala Raj

    2014-01-01

    Objective: To evaluate the antibacterial activity of different extracts of Caulerpa chemnitzia (Epser) J.V. Lamououx, Caulerpa racemosa (Frosk.) Weber-van-Bosse (C. racemosa), Caulerpascalpelliformis Forsk, Stoechospermum marginatum (Ag.) Kutz (S. marginatum), Sargassum wightii Grev,Gracilaria verrucosa (R.Br.) Weber-van-Bosse, Ulva lactuca Lin, Ulva fasciata Dellie, Ulva reticulata Enterococcus faecalis (MTCC 439) (E. faecalis) and one clinical isolate of vancomycin resistant E.faecalis. Methods: The selected marine macro algae were extracted with different solvents viz., hexane, chloroform, ethyl acetate, acetone and methanol. Antibacterial assay was carried out by using disc diffusion method, determination of minimum inhibitory concentration and minimum bactericidal concentration.Results:(Huds.) Papenfuss and Gracilaria edulis (S.G. Gemelin) P.C. Silva against marginatum and C. racemosa than the other extracts. The mean zone of inhibition produced by the extracts in agar diffusion assays against the tested bacterial strains ranged from 7.1 to 14.5 mm. The minimum inhibitory concentration was between 250 and 500 µg/mL, while the minimum bactericidal concentration was from 500 to 1000 µg/mL. The ethyl acetate extracts of the seaweeds showed the presence of strong terpenoids, tannins and phenolic compounds compared with the other solvent extracts.Conclusions:The maximum antibacterial activity was recorded in the ethyl acetate extracts of S. racemosa can be used as an antibacterial substance for the treatment of infection caused by E. faecalis. These findings suggest that ethyl acetate extracts of S. marginatum and C.

  1. Advanced characterization of dissolved organic matter released by bloom-forming marine algae

    KAUST Repository

    Rehman, Zahid Ur

    2017-06-01

    Algal organic matter (AOM), produced by marine phytoplankton during bloom periods, may adversely affect the performance of membrane processes in seawater desalination. The polysaccharide fraction of AOM has been related to (bio)fouling in micro-filtration and ultrafiltration, and reverse osmosis membranes. However, so far, the chemical structure of the polysaccharides released by bloom-forming algae is not well understood. In this study, dissolved fraction of AOM produced by three algal species (Chaetoceros affinis, Nitzschia epithemoides and Hymenomonas spp.) was characterized using liquid chromatography–organic carbon detection (LC-OCD) and fluorescence spectroscopy. Chemical structure of polysaccharides isolated from the AOM solutions at stationary phase was analyzed using proton nuclear magnetic resonance (H-NMR). The results showed that production and composition of dissolved AOM varied depending on algal species and their growth stage. AOM was mainly composed of biopolymers (BP; i.e., polysaccharides and proteins [PN]), but some refractory substances were also present.H-NMR spectra confirmed the predominance of carbohydrates in all samples. Furthermore, similar fingerprints were observed for polysaccharides of two diatom species, which differed considerably from that of coccolithophores. Based on the findings of this study,H-NMR could be used as a method for analyzing chemical profiles of algal polysaccharides to enhance the understanding of their impact on membrane fouling.

  2. Marine Algae as a Potential Source for Anti-Obesity Agents

    Directory of Open Access Journals (Sweden)

    Chu Wan-Loy

    2016-12-01

    Full Text Available Obesity is a major epidemic that poses a worldwide threat to human health, as it is also associated with metabolic syndrome, type 2 diabetes and cardiovascular disease. Therapeutic intervention through weight loss drugs, accompanied by diet and exercise, is one of the options for the treatment and management of obesity. However, the only approved anti-obesity drug currently available in the market is orlistat, a synthetic inhibitor of pancreatic lipase. Other anti-obesity drugs are still being evaluated at different stages of clinical trials, while some have been withdrawn due to their severe adverse effects. Thus, there is a need to look for new anti-obesity agents, especially from biological sources. Marine algae, especially seaweeds are a promising source of anti-obesity agents. Four major bioactive compounds from seaweeds which have the potential as anti-obesity agents are fucoxanthin, alginates, fucoidans and phlorotannins. The anti-obesity effects of such compounds are due to several mechanisms, which include the inhibition of lipid absorption and metabolism (e.g., fucoxanthin and fucoidans, effect on satiety feeling (e.g., alginates, and inhibition of adipocyte differentiation (e.g., fucoxanthin. Further studies, especially testing bioactive compounds in long-term human trials are required before any new anti-obesity drugs based on algal products can be developed.

  3. Antinociceptive and Anti-inflammatory Activities of the Lectin from Marine Red Alga Solieria filiformis.

    Science.gov (United States)

    Abreu, Ticiana Monteiro; Ribeiro, Natássia Albuquerque; Chaves, Hellíada Vasconcelos; Jorge, Roberta Jeane Bezerra; Bezerra, Mirna Marques; Monteiro, Helena Serra Azul; Vasconcelos, Ilka Maria; Mota, Érika Freitas; Benevides, Norma Maria Barros

    2016-05-01

    Lectins are proteins that bind to specific mono- or oligosaccharides. This study aimed to evaluate the antinociceptive and anti-inflammatory effects of the lectin from the red marine alga Solieria filiformis. The animals (n = 6) were pretreated with S. filiformis lectin 30 min before they were given the nociceptive or inflammatory stimulus. The antinociceptive activity was evaluated in Swiss mice using the abdominal writhing, formalin, and hot plate tests. The anti-inflammatory properties were evaluated in Wistar rats using carrageenan-induced peritonitis and paw edema induced by different phlogistic agents. The S. filiformis lectin toxicity was assayed through its application in mice (7 days). S. filiformis lectin significantly reduced the number of abdominal writhings and reduced the paw licking time in the second phase of the formalin test (p  0.05). Furthermore, S. filiformis lectin reduced neutrophil migration in a peritonitis model and reduced paw edema induced by carrageenan, dextran, and serotonin (p < 0.05). Additionally, the administration of S. filiformis lectin resulted in no signs of systemic damage. Thus, S. filiformis lectin appears to have important antinociceptive and anti-inflammatory activities and could represent a potential therapeutic agent for future studies. Georg Thieme Verlag KG Stuttgart · New York.

  4. Improvement of cytocompatibility of polylactide by filling with marine algae powder.

    Science.gov (United States)

    Wu, Tung-Yi; Yang, Ming-Chien; Hsu, Yi-Chiang

    2015-05-01

    This work evaluated the cytocompatibility, thermal and mechanical properties of composites of polylactide (PLA) and marine algae powder (MAP). To improve the thermal and mechanical properties of PLA-MAP composites, glycidyl methacrylate (GMA) was used as the compatibilizer for the blending of PLA and MAP. The PLA-g-GMA/MAP composites exhibited superior mechanical properties, attributing to higher compatibility between the polymer and MAP, comparing to PLA/MAP composites. The dispersion of MAP in the PLA-g-GMA matrix was highly homogeneous as a result of etherification. The lower melt torque of the PLA-g-GMA/MAP composites also made them more processable than PLA/MAP. To assess the cytocompatibility, normal human foreskin fibroblasts (FBs) were seeded onto each type of the composites. Results of FB proliferation, collagen production, and cytotoxicity assays indicated greater cytocompatibility for the PLA/MAP composites than for the PLA-g-GMA/MAP composites. Furthermore, both PLA/MAP and PLA-g-GMA/MAP composites were more cytocompatible than pure PLA. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. SCREENING OF AGGLUTININS IN MARINE ALGAE FROM FUJIAN COAST OF CHINA

    Institute of Scientific and Technical Information of China (English)

    郑怡; 卢海声

    2002-01-01

    Thirty-three species of marine algae belonging to Rhodophyta, Phaeophyta and Chlorophyta from the Fujian coast were examined for agglutinins with different animal and human erythrocytes. Protein extracts from 26 species were active against at least one type of the erythrocytes tested. There were 3 species (Grateloupia imbricata, lshigefoliacea and Entermorpha prolifera) whose extracts could agglutinate all the erythrocytes used. The lowest protein concentration required to produce erythrocyte agglutination varied remarkably, from 3.1μg/ml to 500μg/ml . The strongest activity was found in the agglutina-tion of rabbit erythrocytes by Gloiopeltis furcata extract. Inhibition assays performed with nine mono- and bisaccharides indicated that agglutinations of rabbit erythrocytes by extracts of 7 species were inhibited by one or more types of the sugars assayed. The agglutinating activity shown by extracts of most species wasnot affected when the test solution was heated to 90℃, but was lost at 95℃ - 100℃. A few extracts losttheir activity at 60 RS, 65 RS and 75 RS, respectively.

  6. SCREENING OF AGGLUTININS IN MARINE ALGAE FROM FUJIAN COAST OF CHINA

    Institute of Scientific and Technical Information of China (English)

    郑怡; 卢海声

    2002-01-01

    Thirty-three species of marine algae belonging to Rhodophyta, Phaeop hyta and Chlorophyta from the Fujian coast were examined for agglutinins with differe nt animal and human erythrocytes. Protein extracts from 26 species were active against at least one type of the erythrocytes tested. There were 3 species (Grateloupia imbricata, Ishig e foliacea and Entermorpha prolifera) whose extracts could agglutinate all the erythrocytes used. The lowest protein concentration required to produce erythrocyte agglutination varied rema rkably, from 3.1 μg/ml to 500 μg/ml . The strongest activity was found in the agglutinatio n of rabbit erythrocytes by Gloiopeltis furcata extract. Inhibition assays performed wit h nine mono- and bisaccharides indicated that agglutinations of rabbit erythrocytes by extracts o f 7 species were inhibited by one or more types of the sugars assayed. The agglutinating act ivity shown by extracts of most species was not affected when the test solution was heated t o 90℃, but was lost at 95℃-100℃. A few extracts lost their activity at 60℃, 65℃ and 75 ℃, respectively.

  7. 四种绿藻和四种褐藻脂肪酸组成的比较研究%Comparison of fatty acid compositions of four green algae and four brown algae

    Institute of Scientific and Technical Information of China (English)

    彭全材; 宋金明; 张全斌; 林强

    2014-01-01

    对绿藻门和褐藻门8种大型海藻的脂肪酸组成进行了研究,发现两类海藻都有其特征脂肪酸或有几种特征脂肪酸组合做为其化学分类的标记。4种绿藻的主要脂肪酸是16:0、16:1ω7、18:4ω3、18:1ω7、18:2ω6、18:3ω3、18:1ω9,其中18:1ω7和18:3ω3的含量相对较高;4种褐藻中16:0、18:1ω9、18:2ω6、18:3ω3、18:4ω3、20:5ω3、20:4ω6的含量占绝对优势,十八碳和二十碳多不饱和脂肪酸是褐藻门脂肪酸的典型特征。另外,褐藻中含有较高含量的 EPA,海带和裙带菜尤为明显。对2门类5属8株海藻所含脂肪酸进行聚类分析的结果显示海藻各门及种间的亲缘关系,表明利用静态条件下海藻脂肪酸的聚类分析结果,可在一定程度上判别海藻在分类上亲缘关系的远近,海藻脂肪酸组成的差异可以作为海藻分类的一个辅助技术手段。%The fatty acid compositions of eight seaweeds from green algae and brown algae were analyzed. Some specific fatty acid profiles of the seaweeds as chemotaxonomy markers were found. The characteristic fatty acids of the four green algae are 16:0, 16:1ω7, 18:4ω3, 18:1ω7, 18:2ω6, 18:3ω3 and 18:1ω9, and the dominative ones are 18:1ω7 and 18:3ω3. The dominative fatty acid profiles of the four brown algaes were 16:0, 18:1ω9, 18:2ω6, 18:3ω3, 18:4ω3, 20:5ω3 and 20:4ω6. And the representative feature of the brown algae was the higher contents of octadeca-carbon unsaturated fatty acid and twenty-carbon unsaturated fatty acid. In addition, the brown algae contained higher levels of EPA which was more obvious in Laminaria japonica Aresch and Undaria pinnatifida Sur. The analysis result of 8 seaweeds from 5 genus of 2 phylums by carrying out a cluster analysis of fatty acids showed , there is a good truly relationship among these lines to some extent. This study provides evidence that fatty acid compositions of seaweeds may be a good

  8. A draft genome of the brown alga, Cladosiphon okamuranus, S-strain: a platform for future studies of ‘mozuku’ biology

    Science.gov (United States)

    Nishitsuji, Koki; Arimoto, Asuka; Iwai, Kenji; Sudo, Yusuke; Hisata, Kanako; Fujie, Manabu; Arakaki, Nana; Kushiro, Tetsuo; Konishi, Teruko; Shinzato, Chuya; Satoh, Noriyuki; Shoguchi, Eiichi

    2016-01-01

    The brown alga, Cladosiphon okamuranus (Okinawa mozuku), is economically one of the most important edible seaweeds, and is cultivated for market primarily in Okinawa, Japan. C. okamuranus constitutes a significant source of fucoidan, which has various physiological and biological activities. To facilitate studies of seaweed biology, we decoded the draft genome of C. okamuranus S-strain. The genome size of C. okamuranus was estimated as ∼140 Mbp, smaller than genomes of two other brown algae, Ectocarpus siliculosus and Saccharina japonica. Sequencing with ∼100× coverage yielded an assembly of 541 scaffolds with N50 = 416 kbp. Together with transcriptomic data, we estimated that the C. okamuranus genome contains 13,640 protein-coding genes, approximately 94% of which have been confirmed with corresponding mRNAs. Comparisons with the E. siliculosus genome identified a set of C. okamuranus genes that encode enzymes involved in biosynthetic pathways for sulfated fucans and alginate biosynthesis. In addition, we identified C. okamuranus genes for enzymes involved in phlorotannin biosynthesis. The present decoding of the Cladosiphon okamuranus genome provides a platform for future studies of mozuku biology. PMID:27501718

  9. Contents of soluble, cell-wall-bound and exuded phlorotannins in the brown alga Fucus vesiculosus, with implications on their ecological functions.

    Science.gov (United States)

    Koivikko, Riitta; Loponen, Jyrki; Honkanen, Tuija; Jormalainen, Veijo

    2005-01-01

    Phlorotannins are ubiquitous secondary metabolites in brown algae that are phenotypically plastic and suggested to have multiple ecological roles. Traditionally, phlorotannins have been quantified as total soluble phlorotannins. Here, we modify a quantification procedure to measure, for the first time, the amount of cell-wall-bound phlorotannins. We also optimize the quantification of soluble phlorotannins. We use these methods to study the responses of soluble and cell-wall-bound phlorotannin to nutrient enrichment in growing and nongrowing parts of the brown alga Fucus vesiculosus. We also examine the effects of nutrient shortage and herbivory on the rate of phlorotannin exudation. Concentrations of cell-wall-bound phlorotannins were much lower than concentrations of soluble phlorotannins; we also found that nutrient treatment over a period of 41 days affected only soluble phlorotannins. Concentrations of each phlorotannin type correlated positively between growing and nongrowing parts of individual seaweeds. However, within nongrowing thalli, soluble and cell-wall-bound phlorotannins were negatively correlated, whereas within growing thalli there was no correlation. Phlorotannins were exuded from the thallus in all treatments. Herbivory increased exudation, while a lack of nutrients had no effect on exudation. Because the amount of cell-wall-bound phlorotannins is much smaller than the amount of soluble phlorotannins, the major function of phlorotannins appears to be a secondary one.

  10. Checklist of the benthic marine and brackish Galician algae (NW Spain

    Directory of Open Access Journals (Sweden)

    Bárbara, Ignacio

    2005-06-01

    Full Text Available We present an annotated checklist of the benthic marine and brackish algae of the Galician coasts (Spain based on literature records and new collections. This checklist includes 618 species: 118 Cyanophyta, 296 Rhodophyta, 127 Ochrophyta, and 77 Chlorophyta. The number of specific, infraspecific taxa, and stages is 643: 121 Cyanophyta, 309 Rhodophyta, 135 Ochrophyta, and 79 Chlorophyta. Hyella caespitosa var. nitida, Calothrix fasciculata, Gracilariopsis longissima, Compsonema minutum, and Sphacelaria tribuloides are new records for Galicia, and there are also some new provincial records. We state the presence of each species for Lugo (Lu, A Coruña (Co, and Pontevedra (Po provinces. The number of species found in Galicia is high, since 85% of the species recorded for the warm-temperate NE Atlantic Ocean grow in Galicia. Biogeographical comments comparing the Galician data with the neighboring areas of Britain and Ireland, Basque coast, Portugal, southern Iberian Peninsula, Canary Islands and Atlantic coast of Morocco are given. Finally, we present lists of cold-temperate, warm-temperate, Lusitanic Province endemics, and alien species growing in Galicia.Se presenta una lista comentada de las especies de algas bentónicas marinas y salobres de la costa de Galicia (España basada en citas bibliográficas y nuevos datos de los autores. La lista contiene 618 especies: 118 Cyanophyta, 296 Rhodophyta, 127 Ochrophyta y 77 Chlorophyta. El número de taxa específicos e infraespecíficos asciende a 643: 121 Cyanophyta, 309 Rhodophyta, 135 Ochrophyta y 79 Chlorophyta. Hyella caespitosa var. nitida, Calothrix fasciculata, Gracilariopsis longissima, Compsonema minutum y Sphacelaria tribuloides son nuevas citas para Galicia, y algunas nuevas citas provinciales. Para cada especie se especifica su presencia en las provincias de Lugo (Lu, A Coruña (Co y Pontevedra (Po. El número de especies encontradas en Galicia es elevado, ya que se conocen el 85% de las

  11. Red coralline algae assessed as marine pH proxies using 11B MAS NMR

    OpenAIRE

    M. Cusack; Kamenos, N. A.; Rollion-Bard, C.; Tricot, G

    2015-01-01

    Reconstructing pH from biogenic carbonates using boron isotopic compositions relies on the assumption that only borate, and no boric acid, is present. Red coralline algae are frequently used in palaeoenvironmental reconstruction due to their widespread distribution and regular banding frequency. Prior to undertaking pH reconstructions using red coralline algae we tested the boron composition of the red coralline alga Lithothamnion glaciale using high field NMR. In bulk analysed samples, thirt...

  12. The Macroalgae Biorefinery for Production of Bioethanol and Fish Feed from the Two Brown Algae: Laminaria Digitata and Saccharina Latissima

    DEFF Research Database (Denmark)

    Hou, Xiaoru; Bjerre, Anne-Belinda; Hansen, Jonas Høeg

    Laminaria digtata (harvested during the summer 2012 from Limfjorden in Denmark), including cultivation, pretreatment and bioethanol set-up and trials will be presented in this presentation. The macroalgae substrates were screw-pressed to dewater and the algae biomass were fractionated before storage...... by ensiling (with lactic acid bacteria) or simple drying. Pretreatment was carried out using wet-milling and enzymatic hydrolysis in accordance with 1G bioethanol technology from corn. Different commercial enzyme mixtures for fully or partly hydrolysis of algae sugar polymers into monomers were tested...... will be presented for this innovative process of biorefining of value-added algae proteins derived directly through fermentation processes of algae sugars to bioenergy carriers....

  13. Inhibition of the expression on MMP-2, 9 and morphological changes via human fibrosarcoma cell line by 6,6'-bieckol from marine alga Ecklonia cava.

    Science.gov (United States)

    Zhang, Chen; Li, Yong; Shi, Xiujuan; Kim, Se-kwon

    2010-01-01

    Matrix Metalloproteinases (MMPs) are a family of zinc-endopeptidases which can degrade extracellular matrix (ECM) components and play important roles in a variety of biological and pathological processes. 6,6'-bieckol isolated and characterized from an edible marine brown alga Ecklonia cava (EC), according to the comprehensive spectral analysis of MS and NMR data. Here the influence of 6,6'-bieckol on expressions of MMPs was examined by zymography and western blot analysis via human fibrosarcoma cell line (HT1080). It is shown that 6,6'-bieckol significantly down regulated the expressions of MMP-2 and -9 in dose-dependent manner. The influence of 6,6'-bieckol on the cell viability and cell behavior of HT1080 cells were also investigated, our dates shown that it suppressed the migration and 3D culture in HT1080 cells. Meanwhile, we explored several signal pathways which may contribute to this process, and found the suppressing of MMPs expressions in HT1080 cells might be due to the suppression of NF-kappaB signal pathway. [BMB reports 2010; 43(1): 62-68].

  14. Facile green synthesis of variable metallic gold nanoparticle using Padina gymnospora, a brown marine macroalga

    Science.gov (United States)

    Singh, M.; Kalaivani, R.; Manikandan, S.; Sangeetha, N.; Kumaraguru, A. K.

    2013-04-01

    The process of development of reliable and eco-friendly metallic nanoparticles is an important step in the field of nanotechnology. To achieve this, use of natural sources like biological systems becomes essential. In the present work, extracellular biosynthesis of gold nanoparticles using Padina gymnospora has been attempted and achieved rapid formation of gold nanoparticles in a short duration. The UV-vis spectrum of the aqueous medium containing gold ion showed peak at 527 nm corresponding to the plasmon absorbance of gold nanoparticles. Scanning electron microscopy showed the formation of well-dispersed gold nanoparticles. FTIR spectra of brown alga confirmed that hydroxyl groups present in the algal polysaccharides were involved in the gold bioreduction. AFM analysis showed the results of particle sizes (53-67 nm) and average height of the particle roughness (60.0 nm). X-ray diffraction (XRD) spectrum of the gold nanoparticles exhibited Bragg reflections corresponding to gold nanoparticles. This environment-friendly method of biological gold nanoparticle synthesis can be applied potentially in various products that directly come in contact with the human body, such as cosmetics, and foods and consumer goods, besides medical applications.

  15. Antimicrobial, Antioxidant, and Anticancer Activities of Biosynthesized Silver Nanoparticles Using Marine Algae Ecklonia cava.

    Science.gov (United States)

    Venkatesan, Jayachandran; Kim, Se-Kwon; Shim, Min Suk

    2016-12-06

    Green synthesis of silver nanoparticles (AgNPs) has gained great interest as a simple and eco-friendly alternative to conventional chemical methods. In this study, AgNPs were synthesized by using extracts of marine algae Ecklonia cava as reducing and capping agents. The formation of AgNPs using aqueous extract of Ecklonia cava was confirmed visually by color change and their surface plasmon resonance peak at 418 nm, measured by UV-visible spectroscopy. The size, shape, and morphology of the biosynthesized AgNPs were observed by transmission electron microscopy and dynamic light scattering analysis. The biosynthesized AgNPs were nearly spherical in shape with an average size around 43 nm. Fourier transform-infrared spectroscopy (FTIR) analysis confirmed the presence of phenolic compounds in the aqueous extract of Ecklonia cava as reducing and capping agents. X-ray diffraction (XRD) analysis was also carried out to demonstrate the crystalline nature of the biosynthesized AgNPs. Antimicrobial results determined by an agar well diffusion assay demonstrated a significant antibacterial activity of the AgNPs against Escherichia coli and Staphylococcus aureus. Antioxidant results determined by 1,1-diphenyl-2-picrylhydrazyl (DPPH) scavenging assay revealed an efficient antioxidant activity of the biosynthesized AgNPs. The biosynthesized AgNPs also exhibited a strong apoptotic anticancer activity against human cervical cancer cells. Our findings demonstrate that aqueous extract of Ecklonia cava is an effective reducing agent for green synthesis of AgNPs with efficient antimicrobial, antioxidant, and anticancer activities.

  16. Biosorption of copper, cobalt and nickel by marine green alga Ulva reticulata in a packed column.

    Science.gov (United States)

    Vijayaraghavan, K; Jegan, J; Palanivelu, K; Velan, M

    2005-07-01

    Biosorption of copper, cobalt and nickel by marine green alga Ulva reticulata were investigated in a packed bed up-flow column. The experiments were conducted to study the effect of important design parameters such as bed height and flow rate. At a bed height of 25 cm, the metal-uptake capacity of U. reticulata for copper, cobalt and nickel was found to be 56.3+/-0.24, 46.1+/-0.07 and 46.5+/-0.08 mgg(-1), respectively. The Bed Depth Service Time (BDST) model was used to analyze the experimental data. The computed sorption capacity per unit bed volume (N0) was 2580, 2245 and 1911 mgl(-1) for copper, cobalt and nickel, respectively. The rate constant (K(a)) was recorded as 0.063, 0.081 and 0.275 lmg(-1)h(-1) for copper, cobalt and nickel, respectively. In flow rate experiments, the results confirmed that the metal uptake capacity and the metal removal efficiency of U. reticulata decreased with increasing flow rate. The Thomas model was used to fit the column biosorption data at different flow rates and model constants were evaluated. The column regeneration studies were carried out for three sorption-desorption cycles. The elutant used for the regeneration of the biosorbent was 0.1 M CaCl2 at pH 3 adjusted using HCl. For all the metal ions, a decreased breakthrough time and an increased exhaustion time were observed as the regeneration cycles progressed, which also resulted in a broadened mass transfer zone. The pH variations during both sorption and desorption process have been reported.

  17. Extraction and PTP1B inhibitory activity of bromophenols from the marine red alga Symphyocladia latiuscula

    Science.gov (United States)

    Liu, Xu; Li, Xiaoming; Gao, Lixin; Cui, Chuanming; Li, Chunshun; Li, Jia; Wang, Bingui

    2011-05-01

    Previously, we had characterized several structurally interesting brominated phenols from the marine red alga Symphyocladia latiuscula collected from various sites. However, Phytochemical investigations on this species collected from the Weihai coastline of Shandong Province remains blank. Therefore, we characterized the chemical constituents of individuals of this species collected from the region. Eight bromophenols were isolated and identified. Using detailed spectroscopic techniques and comparisons with published data, these compounds were identified as 2,3-dibromo-4,5-dihydroxybenzyl methyl ether ( 1), 3,5-dibromo-4-hydroxybenzoic acid ( 2), 2,3,6-tribromo-4,5-dihydroxymethylbenzene ( 3), 2,3,6-tribromo-4,5-dihydroxybenzaldehyde ( 4), 2,3,6-tribromo-4,5-dihydroxybenzyl methyl ether ( 5), bis(2,3,6-tribromo-4,5-dihydroxyphenyl)methane ( 6), 1,2-bis(2,3,6-tribromo-4,5-dihydroxyphenyl)-ethane ( 7), and 1-(2,3,6-tribromo-4,5-dihydroxybenzyl)-pyrrolidin-2-one ( 8). Among these compounds, 1 and 2 were isolated for the first time from S. latiuscula. Each compound was evaluated on the ability to inhibit protein tyrosine phosphatase 1B (PTP1B), which is a potential therapeutic target in the treatment of type 2 diabetes. Bromophenols 5, 6, and 7 showed strong activities with IC50 values of 3.9, 4.3, and 3.5 μmol/L, respectively. This study provides further evidence that bromophenols are predominant among the chemical constituents of Symphyocladia, and that some of these compounds may be candidates for the development of anti-diabetes drugs.

  18. Marinicauda algicola sp. nov., isolated from a marine red alga Rhodosorus marinus.

    Science.gov (United States)

    Jeong, Sang Eun; Jeon, Seung Heon; Chun, Byung Hee; Kim, Dong-Woon; Jeon, Che Ok

    2017-09-01

    An aerobic Gram-stain-negative prosthecate bacterium, designated RMAR8-3T, was isolated from a marine red alga Rhodosorus marinus in the Republic of Korea. Cells were dimorphic rods with a single polar prostheca (non-motile) or flagellum (motile) showing catalase- and oxidase-positive reactions. Growth of strain RMAR8-3T was observed at 15-45 °C (optimum, 40 °C), at pH 6.0-9.0 (optimum, pH 7.0) and in the presence of 0-10 % (w/v) NaCl (optimum, 2 %). Ubiquinone-10 was detected as the sole isoprenoid quinone and C18 : 0, summed feature 8 (comprising C18 : 1 ω7c and/or C18 : 1ω6c), C17 : 0, C12 : 0 3-OH and C16 : 0 were identified as the major cellular fatty acids. The major polar lipids were sulfo-quinovosyldiacylglycerol, glucuronopyranosyldiglyceride and monoglycosyldiglyceride. The G+C content of the genomic DNA was 66.3 mol%. Strain RMAR8-3T was most closely related to Marinicauda pacifica P-1 km-3T with a 97.6 % 16S rRNA gene sequence similarity. Phylogenetic analyses based on 16S rRNA gene sequences showed that strain RMAR8-3T formed a tight phylogenic lineage with M. pacifica P-1 km-3T within the family Hyphomonadaceae. On the basis of phenotypic, chemotaxonomic and molecular features, strain RMAR8-3T clearly represents a novel species of the genus Marinicauda, for which the name Marinicauda algicola sp. nov. is proposed. The type strain is RMAR8-3T (=KACC 18990T=JCM 31718T).

  19. Copper-induced synthesis of ascorbate, glutathione and phytochelatins in the marine alga Ulva compressa (Chlorophyta).

    Science.gov (United States)

    Mellado, Macarena; Contreras, Rodrigo A; González, Alberto; Dennett, Geraldine; Moenne, Alejandra

    2012-02-01

    In order to analyze the synthesis of antioxidant and heavy metal-chelating compounds in response to copper stress, the marine alga Ulva compressa (Chlorophyta) was exposed to 10 μM copper for 7 days and treated with inhibitors of ASC synthesis, lycorine, and GSH synthesis, buthionine sulfoximine (BSO). The levels of ascorbate, in its reduced (ASC) and oxidized (DHA) forms, glutathione, in its reduced (GSH) and oxidized (GSSG) forms, and phytochelatins (PCs) were determined as well as activities of enzymes involved in ASC synthesis, L-galactose dehydrogenase (GDH) and L-galactono 1,4 lactone dehydrogenase (GLDH), and in GSH synthesis, γ-glutamylcysteine synthase (γ-GCS) and glutathione synthase (GS). The level of ASC rapidly decreased to reach a minimum at day 1 that remained low until day 7, DHA decreased until day 1 but slowly increased up to day 7 and its accumulation was inhibited by lycorine. In addition, GSH level increased to reach a maximal level at day 5 and GSSG increased up to day 7 and their accumulation was inhibited by BSO. Activities of GDH and GLDH increased until day 7 and GLDH was inhibited by lycorine. Moreover, activities of γ-GCS and GS increased until day 7 and γ-GCS was inhibited by BSO. Furthermore, PC2, PC3 and PC4, increased until day 7 and their accumulation was inhibited by BSO. Thus, copper induced the synthesis of ascorbate, glutathione and PCs in U. compressa suggesting that these compounds are involved in copper tolerance. Interestingly, U. compressa is, until now, the only ulvophyte showing ASC, GSH and PCs synthesis in response to copper excess.

  20. Chemical Characterization and Determination of the Anti-Oxidant Capacity of Two Brown Algae with Respect to Sampling Season and Morphological Structures Using Infrared Spectroscopy and Multivariate Analyses.

    Science.gov (United States)

    Beratto, Angelo; Agurto, Cristian; Freer, Juanita; Peña-Farfal, Carlos; Troncoso, Nicolás; Agurto, Andrés; Castillo, Rosario Del P

    2017-01-01

    Brown algae biomass has been shown to be a highly important industrial source for the production of alginates and different nutraceutical products. The characterization of this biomass is necessary in order to allocate its use to specific applications according to the chemical and biological characteristics of this highly variable resource. The methods commonly used for algae characterization require a long time for the analysis and rigorous pretreatments of samples. In this work, nondestructive and fast analyses of different morphological structures from Lessonia spicata and Macrocystis pyrifera, which were collected during different seasons, were performed using Fourier transform infrared (FT-IR) techniques in combination with chemometric methods. Mid-infrared (IR) and near-infrared (NIR) spectral ranges were tested to evaluate the spectral differences between the species, seasons, and morphological structures of algae using a principal component analysis (PCA). Quantitative analyses of the polyphenol and alginate contents and the anti-oxidant capacity of the samples were performed using partial least squares (PLS) with both spectral ranges in order to build a predictive model for the rapid quantification of these parameters with industrial purposes. The PCA mainly showed differences in the samples based on seasonal sampling, where changes were observed in the bands corresponding to polysaccharides, proteins, and lipids. The obtained PLS models had high correlation coefficients (r) for the polyphenol content and anti-oxidant capacity (r > 0.9) and lower values for the alginate determination (0.7 infrared-based techniques were suitable tools for the rapid characterization of algae biomass, in which high variability in the samples was incorporated for the qualitative and quantitative analyses, and have the potential to be used on an industrial scale.

  1. Red coralline algae assessed as marine pH proxies using 11B MAS NMR

    Science.gov (United States)

    Cusack, M.; Kamenos, N. A.; Rollion-Bard, C.; Tricot, G.

    2015-02-01

    Reconstructing pH from biogenic carbonates using boron isotopic compositions relies on the assumption that only borate, and no boric acid, is present. Red coralline algae are frequently used in palaeoenvironmental reconstruction due to their widespread distribution and regular banding frequency. Prior to undertaking pH reconstructions using red coralline algae we tested the boron composition of the red coralline alga Lithothamnion glaciale using high field NMR. In bulk analysed samples, thirty percent of boron was present as boric acid. We suggest that prior to reconstructing pH using coralline algae 1) species-specific boron compositions and 2) within-skeleton special distributions of boron are determined for multiple species. This will enable site selective boron analyses to be conducted validating coralline algae as palaeo-pH proxies based on boron isotopic compositions.

  2. Red coralline algae assessed as marine pH proxies using 11B MAS NMR.

    Science.gov (United States)

    Cusack, M; Kamenos, N A; Rollion-Bard, C; Tricot, G

    2015-02-02

    Reconstructing pH from biogenic carbonates using boron isotopic compositions relies on the assumption that only borate, and no boric acid, is present. Red coralline algae are frequently used in palaeoenvironmental reconstruction due to their widespread distribution and regular banding frequency. Prior to undertaking pH reconstructions using red coralline algae we tested the boron composition of the red coralline alga Lithothamnion glaciale using high field NMR. In bulk analysed samples, thirty percent of boron was present as boric acid. We suggest that prior to reconstructing pH using coralline algae 1) species-specific boron compositions and 2) within-skeleton special distributions of boron are determined for multiple species. This will enable site selective boron analyses to be conducted validating coralline algae as palaeo-pH proxies based on boron isotopic compositions.

  3. Physico-chemical properties, oxidative stability and non-enzymatic browning reactions in marine phospholipids emulsions and their applications for food enrichment

    DEFF Research Database (Denmark)

    Lu, Henna Fung Sieng; Nielsen, Nina Skall; Baron, Caroline P.;

    stability of marine PL emulsions was significantly influenced by the chemical composition of marine PL used. Emulsions with a high oxidative stability could be obtained when using marine PL of high purity with a high content of PL, cholesterol and α-tocopherol. Non-enzymatic browning reactions (Strecker...... provided new insights into the oxidative stability of marine PL and preliminary knowledge on the quality of marine PL fortified foods....

  4. Homogeneous population of the brown alga Sargassum polycystum in Southeast Asia: possible role of recent expansion and asexual propagation

    National Research Council Canada - National Science Library

    Chan, Sze Wai; Cheang, Chi Chiu; Chirapart, Anong; Gerung, Grevo; Tharith, Chea; Ang, Put

    2013-01-01

    .... Macroalgae are unique in having mode of reproduction that differs from that of animals. Our study on the phylogeographical pattern of the brown macroalga Sargassum polycystum using nuclear Internal Transcribed Spacer 2 (ITS2...

  5. Comparative toxicity of nano ZnO and bulk ZnO towards marine algae Tetraselmis suecica and Phaeodactylum tricornutum.

    Science.gov (United States)

    Li, Jiji; Schiavo, Simona; Rametta, Gabriella; Miglietta, Maria Lucia; La Ferrara, Vera; Wu, Changwen; Manzo, Sonia

    2017-03-01

    The wide use of ZnO nanoparticles in a number of products implies an increasing release into the marine environment, resulting in the need to evaluate the potential effects upon organisms, and particularly phytoplankton, being at the base of the throphic chain. To this aim, dose-response curves for the green alga Tetraselmis suecica and the diatom Phaeodactylum tricornutum derived from the exposure to nano ZnO (100 nm) were evaluated and compared with those obtained for bulk ZnO (200 nm) and ionic zinc. The toxic effects to both algae species were reported as no observable effect concentration (NOEC) of growth inhibition and as 1, 10, and 50% effect concentrations (EC1, EC10, and EC50). The toxicity decreased in the order nano ZnO > Zn(2+) > bulk ZnO. EC50 values for nano ZnO were 3.91 [3.66-4.14] mg Zn/L towards the green microalgae and 1.09 [0.96-1.57] mg Zn/L towards the diatom, indicating a higher sensitivity of P. tricornutum. The observed diverse effects can be ascribed to the interaction occurring between different algae and ZnO particles. Due to algae motility, ZnO particles were intercepted in different phases of aggregation and sedimentation processes, while algae morphology and size can influence the level of entrapment by NP aggregates.This underlines the need to take into account the peculiarity of the biological system in the assessment of NP toxicity.

  6. Diversity of thraustochytrid protists isolated from brown alga, Sargassum cinereum using 18S rDNA sequencing and their morphological response to heavy metals

    Digital Repository Service at National Institute of Oceanography (India)

    Damare, V.S.

    . and Hall M.D. (2005) Manganese transport and trafficking: lessons learned from Saccharomyces cerevisiae. Eukaryotic Cell 4, 1159–1165. Damare V. S., Damare S., Ramanujam P., Meena R. M. & Raghukumar S. (2013) Preliminary studies on the association....G. and Sánchez N.E.A. (2012) Bioactive Compounds from Bacteria Associated to Marine Algae. In Sammour R.H. (ed) Biotechnology – Molecular Studies and Novel Applications for Improved Quality of Human Life. InTech Europe. pp. 25-43. Tamura K., Dudley J., Nei M...

  7. Response of marine and freshwater algae to nitric acid and elevated carbon dioxide levels simulating environmental effects of bolide impact

    Science.gov (United States)

    Boston, P. J.

    1988-01-01

    One of the intriguing facets of the Cretaceous-Tertiary extinction is the apparently selective pattern of mortality amongst taxa. Some groups of organisms were severely affected and some remained relatively unscathed as they went through the K/T boundary. While there is argument concerning the exact interpretation of the fossil record, one of the best documented extinctions at the Cretaceous-Tertiary boundary is that of the calcareous nannoplankton. These organisms include coccolithic algae and foraminiferans. Attempts to explain their decline at the K/T boundary center around chemistry which could affect their calcium carbonate shells while leaving their silica-shelled cousins less affected or unaffected. Two environmental consequences of an extraterrestrial body impact which were suggested are the production of large quantities of nitrogen oxides generated by the shock heating of the atmosphere and the possible rise in CO2 from the dissolution of CaCO3 shells. Both of these phenomena would acidify the upper layers of the oceans and bodies of freshwater not otherwise buffered. The effects of nitric acid, carbon dioxide, or both factors on the growth and reproduction of calcareous marine coccoliths and non-calcareous marine and freshwater species of algae were considered. These experiments demonstrate that nitric acid and carbon dioxide have significant effects on important aspects of the physiology and reproduction of modern algae representative of extinct taxa thought to have suffered significant declines at the Cretaceous-Tertiary boundary. Furthermore, calcareous species showed more marked effects than siliceous species and marine species tested were more sensitive than freshwater species.

  8. Sulfated fucan from marine alga inhibits HeLa cells infection by HTLV-1 free particles: semi-quantitative analysis

    OpenAIRE

    Romanos,Maria T. V.; Maria J. Andrada-Serpa; Mourão, Paulo A. S.; Yocie Yoneshigue-Valentin; Pereira,Mariana S.; Norma Santos; Marcia D. Wigg

    2011-01-01

    A sulfated fucan from Laminaria abyssalis marine alga prevented the interaction of HTLV-1 particles, purified from the MT-2 cell line, with HeLa cells. The infection obtained using a concentrated virus suspension was detected only by amplification of the newly synthesized HTLV-1 proviral cDNA by the nested-polymerase chain reaction (PCR). The sulfated polysaccharide was not toxic to the cells at a concentration of 100 µg/mL and prevented infection by the viral particles when added to the cell...

  9. Biosorption of lead (II and copper (II by biomass of some marine algae

    Directory of Open Access Journals (Sweden)

    Chaisuksant, Y.

    2004-09-01

    Full Text Available Biosorption of heavy metal ions by algae is a potential technology for treating wastewater contaminated with heavy metals. Adsorption of lead (II and copper (II in aqueous solutions by some marine algae available in large quantities in Pattani Bay including Gracilaria fisheri, Ulva reticulata and Chaetomorpha sp. were investigated. The effect of pH on metal sorption of the algal biomass and the metal uptake capacity of the algal biomass comparing to that of synthetic adsorbents including activated carbon and siliga gel were studied by using batch equilibrium experiments. Each dried adsorbent was stirred in metal ions solutions with different pH or different concentration at room temperature for 24 hours and the residual metal ions were analysed using atomic absorption spectrophotometer. The initial concentrations of lead and copper ionswere 70 µg/l and 20 mg/l, respectively. It was found that the effect of pH on metal sorption was similar in each algal biomass. The metal uptake capacity increased as pH of the solution increased from 2.0 to 4.0 and reached a plateau at pH 5.0-7.0. The metal uptake capacities of each algal biomass were similar. At low concentrations of metal ions, the metal adsorption occurred rapidly while at higher metal concentration less metal adsorption by each algal biomass was observed. The metal adsorption of activated carbon and silica gel occurred gradually and was less than those of algal biomass. The equilibrium data of copper and lead ions fitted well to the Langmuir and Freundlich isotherm models. The maximum sorption capacity (Qm values (mean±SD of Chaetomorpha sp., U. reticulata, G. fisheri, activated carbon and silica gel for lead ions were 1.26±0.14, 1.19±0.14, 1.18±0.15, 1.14±0.11 and 1.15±0.12 mg/g, respectively. For copper adsorption, the Qm values for G. fisheri, U. reticulata and Chaetomorpha biomass were 15.87±1.03, 14.71±1.02 and 12.35± 1.03 mg/g, respectively. While those of activated carbon and

  10. Growth-inhibitory effects of a mineralized extract from the red marine algae, Lithothamnion calcareum, on Ca2+-sensitive and Ca2+-resistant human colon carcinoma cells

    OpenAIRE

    Nadeem Aslam, Muhammad; Bhagavathula, Narasimharao; Paruchuri, Tejaswi; Hu, Xin; Chakrabarty, Subhas; Varani, James

    2009-01-01

    Proliferation and differentiation were assessed in a series of human colon carcinoma cell lines in response to a mineral-rich extract derived from the red marine algae, Lithothamnion calcareum. The extract contains 12% Ca2+, 1% Mg2+, and detectable amounts of 72 trace elements, but essentially no organic material. The red algae extract was as effective as inorganic Ca2+ alone in suppressing growth and inducing differentiation of colon carcinoma cells that are responsive to a physiological lev...

  11. Chlorophyll fluorimetry as a method for studying light absorption by photosynthetic pigments in marine algae

    Directory of Open Access Journals (Sweden)

    Dmitrii N. Matorin

    2004-12-01

    Full Text Available Using laboratory cultures of algae and natural phytoplankton populations from Nhatrang Bay (South China Sea, the relationship between the chlorophyll fluorescence F0, the chlorophyll a concentration Ca and light absorption capacities of algae cells was studied. It is shown that the ratio F0/Ca depends mainly on the species composition of the algae population; hence, the concentration Ca can be measured with the fluorescence method with acceptable accuracy only when the species composition of algae populations varies over a rather narrow range. The fluorescence F0 can, however, be a good index of the total absorption capacities of different phytoplankton species, because the intensity of F0 depends on the sum total of light absorbed by all photosynthetic pigments in a plant cell. Thus, the fluorescence F0 measures not only the concentration of chlorophyll a, but that of all photosynthetic pigment concentrations.

  12. Changes in the marine green alga @iChaetomorpha media@@ on infection by a fungal pathogen

    Digital Repository Service at National Institute of Oceanography (India)

    Raghukumar, C.; Chandramohan, D.

    Biochemical changes in the green filamentous alga @iChaetomorpha media@@ Kutzing infected with a holocarpic endobiotic fungus@@ Pontisma lagenidioides@@ Petersen were studied. Healthy plants of @iC. media@@ were inoculated with the infected material...

  13. Potassium 4-(hydroxymethyl)-benzenosulfonate: a novel metabolite isolated from the marine red alga Bostrychia tenella (Rhodomelaceae, ceramiales); 4-(Hidroximetil)-Benzenossulfonato de potassio: metabolito inedito isolado da alga marinha Bostrychia tenella (Rhodomelaceae, ceramiales)

    Energy Technology Data Exchange (ETDEWEB)

    Felicio, Rafael de; Debonsi, Hosana Maria [Universidade de Sao Paulo (USP), Ribeirao Preto, SP (Brazil). Faculdade de Ciencias Farmaceuticas. Dept. de Fisica e Quimica]. E-mail: hosana@fcfrp.usp.br; Yokoya, Nair Sumie [Instituto de Botanica de Sao Paulo, SP (Brazil). Secao de Ficologia

    2008-07-01

    Chemical investigation of the dichloromethane/methanol extract of the marine alga Bostrychia tenella has led to the isolation of two aromatic compounds, the new sulfate metabolite potassium 4-(hydroxymethyl)-benzenosulfonate (1) and the compound 1-methoxyphenethyl alcohol (2), described previously as a synthetic product. Their structures were determined by spectroscopic methods including NMR, MS, IR and by comparison with literature data. (author)

  14. The Suez Canal as a habitat and pathway for marine algae and seagrasses

    Science.gov (United States)

    Aleem, A. A.

    The Suez Canal supports a diversified benthic algal flora; 133 species of benthic algae are now known from the Canal, as compared with only 24 in 1924. The vertical and horizontal distribution of algae is considered in relation to hydrographic factors. The algae display zonation and 3-4 algal belts are distinguished on the Canal banks on buoys and pier supports. Associated fauna include Balanus amphitrite and Brachidontes variabilis, together with various hydroids, sponges, ascidians, asteroids, ophiuroids and crustaceans. Merceriella enigmatica thrives well in brackish water habitats. The algal flora in the Bitter Lakes resembles that in the Red Sea. The number of Red Sea species decreases from Suez to Port Said in the littoral zone. On the other hand, bottom algae predominantly belong to Red Sea flora. Thirty of the species of algae found belong to the Indo-Pacific flora; half of these are new records to the Canal. Several of these Indo-Pacific algae have recently become established in the Eastern Mediterranean, whereas only two of the Mediterranean macro-algal flora (viz. Caulerpa prolifera and Halopteris scoparia) have been found in the Gulf of Suez. Two seagrasses, Halopia ovalis and Thalassia hemprichii, are recorded for the first time in the Canal. Only Halophila stipulacea has found its way into the Mediterranean via the Suez Canal, but none of the Mediterranean seagrasses is found either in the Canal or in the Red Sea.

  15. Kordia ulvae sp. nov., a bacterium isolated from the surface of green marine algae Ulva sp.

    Science.gov (United States)

    Qi, Feng; Huang, Zhaobin; Lai, Qiliang; Li, Dengfeng; Shao, Zongze

    2016-04-20

    A novel bacterial strain SC2T was isolated from Ulva sp. a green marine algae. Strain SC2T was Gram-negative, aerobic, rod-shaped and had no flagellum. Oxidase and catalase were positive. Strain SC2T can degrade skim milk, agar, soluble starch, Tween 20 and Tween 80. The optimal salinity and temperature of strain SC2T were 2% and 30 °C, respectively. Phylogenetic analysis based on the 16S rRNA gene indicated that strain SC2T was affiliated to the genus Kordia, with highest sequence similarity to Kordia algicida OT-1T (97.23%), Kordia antarctica IMCC3317T (97.23%) and Kordia jejudonensis SSK3-3T (97.02%); other species of the genus Kordia shared 93.98%-95.78% sequence similarity. The ANI value and the DNA-DNA hybridization estimated value between strain SC2T and three type strains (K. algicida OT-1T, K. antarctica IMCC3317T and K. jejudonensis SSK3-3T) were found to be 79.4%-82.4% and 24.2%-27.0%, respectively. The predominant fatty acids (>5.0%) were C16:0, iso-C15:0, iso-C15:0 3-OH, iso-C17:0 3-OH, summed feature 3 (comprised C16:1 ω7c/C16:1 ω6c), summed feature 8 (comprised C18:1 ω7c/C18:1 ω6c) and summed feature 9 (comprised iso-C17:1 ω9c/C16:0 10-methyl). The respiratory quinone was Menaquinone-6 (MK-6). The polar lipid profile consisted of four unknown lipids, three unidentified phospholipids, one unidentified aminolipid and one phosphatidylethanolamine. The G+C content of the genomic DNA was 34.5 mol%. The combined genotypic and phenotypic data showed that strain SC2T represents a novel species within the genus Kordia, for which the name Kordia ulvae sp. nov. is proposed, with the type strain SC2T (= KCTC 42872T = MCCC 1A01772T = LMG 29123T).

  16. De-eutrophication of effluent wastewater from fish aquaculture by using marine green alga Ulva pertusa

    Science.gov (United States)

    Liu, Jianguo; Wang, Zengfu; Lin, Wei

    2010-03-01

    The de-eutrophication abilities and characteristics of Ulva pertusa, a marine green alga, were investigated in Qingdao Yihai Hatchery Center from spring to summer in 2005 by analyzing the dynamic changes in NH{4/+}, NO{3/-}, NO{2/-} as well as the total dissolved inorganic nitrogen (DIN). The results show that the effluent wastewater produced by fish aquaculture had typical eutrophication levels with an average of 34.3 μmol L-1 DIN. This level far exceeded the level IV quality of the national seawater standard and could easily lead to phytoplankton blooms in nature if discarded with no treatment. The de-eutrophication abilities of U. pertusa varied greatly and depended mainly on the original eutrophic level the U. pertusa material was derived from. U. pertusa used to living in low DIN conditions had poor DIN removal abilities, while materials cultured in DIN-enriched seawater showed strong de-eutrophication abilities. In other words, the de-eutrophication ability of U. pertusa was evidently induced by high DIN levels. The de-eutrophication capacity of U. pertusa seemed to also be light dependent, because it was weaker in darkness than under illumination. However, no further improvement in the de-eutrophication capacity of U. pertusa was observed once the light intensity exceeded 300 μmol M2 S-1. Results of semi-continuous wastewater replacement experiments showed that U. pertusa permanently absorbed nutrients from eutrophicated wastewater at a mean rate of 299 mg/kg fresh weight per day (126 mg/kg DIN during the night, 173 mg/kg in daytime). Based on the above results, engineered de-eutrophication of wastewater by using a U. pertusa filter system seems feasible. The algal quantity required to purify all the eutrophicated outflow wastewater from the Qingdao Yihai Hatchery Center into oligotrophic level I clean seawater was also estimated using the daily discharged wastewater, the average DIN concentration released and the de-eutrophication capacity of U. pertusa.

  17. Algas marinas bentónicas de la costa noroccidental de Guerrero, México Benthic marine algae of the west coast of Guerrero, Mexico

    Directory of Open Access Journals (Sweden)

    Luz Elena Mateo-Cid

    2012-12-01

    Full Text Available Se presentan los resultados de un estudio sobre algas marinas bentónicas en 7 localidades de la costa noroccidental de Guerrero, México. Se determinó la presencia de 163 especies de algas marinas. Se identificaron 17 especies de Cyanobacteria, 93 Rhodophyta, 28 Chlorophyta y 25 de Heterokontophyta. Se citan 54 registros nuevos para el litoral de Guerrero, 2 también nuevos, Myrionema strangulans Greville y Acrochaete ramosa (N.L.Gardner O'Kelly para la costa del Pacífico. Cada especie se acompaña de datos sobre su distribución en el área de estudio, su estado reproductivo, nivel de marea, hábitat, observaciones, epifitismo y número de herbario o de recolección. Se comparó la riqueza específica entre la estación climática de lluvias y la de secas. La división Rhodophyta dominó en términos de diversidad en relación con las 3 divisiones restantes. La ficoflora de la costa noroccidental de Guerrero es de afinidad tropical y más diversa en la época de secas.We present results on the study on benthic marine algae in 7 localities from the west coast of Guerrero, Mexico. We report 163 species: 17 Cyanobacteria, 93 Rhodophyta, 28 Chlorophyta and 25 Heterokontophyta. Fifty four are new records for Guerrero; while Myrionema strangulans Greville and Acrochaete ramosa (N.L.Gardner O'Kelly are new to the Pacific coast of Mexico. Each species includes data on its distribution, reproductive stages, tidal level, facies, epiphytism and herbarium's number. Species diversity was compared for 2 different climatic seasons. The Rhodophyta are dominant in terms of diversity in relation to the other groups. The algal flora of the northwest coast of Guerrero is tropical and the greatest diversity was found during dry seasons.

  18. Case Report: Disseminated Shewanella algae Infection with Meningoencephalitis in a Traveler Secondary to Marine Injury in Madagascar.

    Science.gov (United States)

    Brulliard, Caroline; Traversier, Nicolas; Allyn, Jérôme; Schaeffer, Christopher; Bouchet, Bruno; Allou, Nicolas

    2017-06-12

    Marine microorganisms such as Shewanella spp., Vibrio spp., and Aeromonas spp. can cause sepsis secondary to a wound infection in the context of swimming. These microorganisms are most often susceptible to fluoroquinolones. Here, we report a unique case of Shewanella algae bacteremia associated with meningoencephalitis and disseminated via hematogenous spread secondary to a skin injury. The patient suffered the injury while swimming in saline water during a cruise holiday in Madagascar, and she was initially treated with amoxicillin. The neurological evolution was unsatisfactory. Better knowledge of such infections (and especially of the context in which they occur), as well as greater familiarity with the susceptibility profile of different marine microorganisms would have allowed health professionals to provide presumptive microbiological diagnosis and effective treatment earlier.

  19. Development and application of a monoclonal-antibody technique for counting Aureococcus anophagefferens, an alga causing recurrent brown tides in the Mid-Atlantic United States.

    Science.gov (United States)

    Caron, David A; Dennett, Mark R; Moran, Dawn M; Schaffner, Rebecca A; Lonsdale, Darcy J; Gobler, Christopher J; Nuzzi, Robert; McLean, Tim I

    2003-09-01

    A method was developed for the rapid detection and enumeration of Aureococcus anophagefferens, the cause of harmful algal blooms called "brown tides" in estuaries of the Mid-Atlantic United States. The method employs a monoclonal antibody (MAb) and a colorimetric, enzyme-linked immunosorbent assay format. The MAb obtained exhibits high reactivity with A. anophagefferens and very low cross-reactivities with a phylogenetically diverse array of other protists and bacteria. Standard curves are constructed for each 96-well microtiter plate by using known amounts of a preserved culture of A. anophagefferens. This approach allows estimation of the abundance of the alga in natural samples. The MAb method was compared to an existing method that employs polyclonal antibodies and epifluorescence microscopy and to direct microscopic counts of A. anophagefferens in samples with high abundances of the alga. The MAb method provided increased quantitative accuracy and greatly reduced sample processing time. A spatial survey of several Long Island estuaries in May 2000 using this new approach documented a range of abundances of A. anophagefferens in these bays spanning nearly 3 orders of magnitude.

  20. TiO2 nanoparticles in the marine environment: Physical effects responsible for the toxicity on algae Phaeodactylum tricornutum.

    Science.gov (United States)

    Wang, Yixiang; Zhu, Xiaoshan; Lao, Yongmin; Lv, Xiaohui; Tao, Yi; Huang, Boming; Wang, Jiangxin; Zhou, Jin; Cai, Zhonghua

    2016-09-15

    Nanoscale titanium dioxide (nTiO2) has been widely used in cosmetics, catalysts, varnishes, etc., which is raising concerns about its potential hazards to the ecosystem, including the marine environment. In this study, the toxicological effect of nTiO2 on the marine phytoplankton Phaeodactylum tricornutum was carefully investigated. The results showed that nTiO2 at concentrations ≥20mg/L could significantly inhibit P. tricornutum growth. The 5-day EC50 of nTiO2 to P. tricornutum growth is 167.71mg/L. Interestingly, nTiO2 was found to exert its most severe inhibition effects on the first day of exposure, at a lower EC50 of 12.65mg/L. During the experiment, nTiO2 aggregates were found to entrap algae cells, which is likely responsible for the observed toxic effects. Direct physical effects such as cell wall damage from the algae entrapment were confirmed by flow cytometry and TEM imaging. Moreover, low indirect effects such as shading and oxidative stress were observed, which supported the idea that direct physical effects could be the dominant factor that causes nTiO2 toxicity in P. tricornutum. Our research provides direct evidence for the toxicological impact of nTiO2 on marine microalgae, which will help us to build a good understanding of the ecological risks of nanoparticles in the marine environment. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. In vitro Mosquito Larvicidal Activity of Marine Algae Against the Human Vectors, Culex quinquefasciatus (Say and Aedes aegypti (Linnaeus (Diptera: Culicidae

    Directory of Open Access Journals (Sweden)

    Akbar Idhayadhulla

    2011-01-01

    Full Text Available A total of twenty marine algae were collected from the rocky intertidal and subtidal regions of the southwest coast of India and extracted in methanol. The extracts were evaluated for larvicidal activity against the second and third instar larvae of the human vector mosquito Culex quinquefasciatus and Aedes aegypti (Diptera: Culicidae. Analysis on the activity profile of the above marine algae indicated that the early stage larvae were very sensitive to seven seaweed extracts that had been tested. Among the seven marine algae, Lobophora variegata was highly potential, showing LD50 value of 70.38 and 79.43 g mL-1 on the 2nd instar larvae of A. aegypti and C. quinquefasciatus respectively. The rank of larvicidal potency in highly active algae in the descending order is as follows: Lobophora variegata (Dictyotaceae>Spatoglossum asperum (Dictyotaceae>Stoechospermum marginatum (Dictyotaceae>Sargassum wightii (Sargassaceae >Acrosiphonia orientalis (Acrosiphoniaceae>Centroceras clavulatum (Ceramiacea>Padina tetrastromatica (Dictyotaceae. This is the first report that envisaged the mosquito larvicidal efficacy of L. variegata from the Indian coast. Therefore, this marine alga could be recognized as a potential resource of natural insecticide and can be developed to replace synthetic insecticides in future.

  2. Flavobacterium ahnfeltiae sp. nov., a new marine polysaccharide-degrading bacterium isolated from a Pacific red alga.

    Science.gov (United States)

    Nedashkovskaya, Olga I; Balabanova, Larissa A; Zhukova, Natalia V; Kim, So-Jeong; Bakunina, Irina Y; Rhee, Sung-Keun

    2014-10-01

    A Gram-negative, aerobic, rod-shaped, motile by gliding and yellow-pigmented bacterium, designated strain 10Alg 130(T), that displayed the ability to destroy polysaccharides of red and brown algae, was isolated from the red alga Ahnfeltia tobuchiensis. The phylogenetic analysis based on 16S rRNA gene sequence placed the novel strain within the genus Flavobacterium, the type genus of the family Flavobacteriaceae, the phylum Bacteroidetes, with sequence similarities of 96.2 and 95.7 % to Flavobacterium jumunjiense KCTC 23618(T) and Flavobacterium ponti CCUG 58402(T), and 95.3-92.5 % to other recognized Flavobacterium species. The prevalent fatty acids of strain 10Alg 130(T) were iso-C15:0, iso-C15:0 3-OH, iso-C17:0 3-OH, C15:0 and iso-C17:1ω9c. The polar lipid profile consisted of phosphatidylethanolamine, two unknown aminolipids and three unknown lipids. The DNA G+C content of the type strain was 34.3 mol%. The new isolate and the type strains of recognized species of the genus Flavobacterium could strongly be distinguished by a number of phenotypic characteristics. A combination of the genotypic and phenotypic data showed that the algal isolate represents a novel species of the genus Flavobacterium, for which the name Flavobacterium ahnfeltiae sp. nov. is proposed. The type strain is 10Alg 130(T) (=KCTC 32467(T) = KMM 6686(T)).

  3. Polyclonal antibodies to light-harvesting CHL-protein of PSII (LHC II) in marine green algae Bryopsis corticulans

    Science.gov (United States)

    Wu, Xiaonan; Zhou, Baicheng; Tseng, C. K.

    1992-06-01

    Polyc·lonal antibodies raised against LHC II isolated from SDS-solubilized Bryopsis corticulans thylakiod membranes by SDS-PAGE, were characterised by double immunodiffusion, Rocket immunoelectrophoresis and antigen-antibody crossed immunoelectro-phoresis assays showed the antibodies had strong cross-reaction with all B. corticulans LHC II components (even with those which were incubated in boiling water) and showed immunological cross-reactivity with LHC II polypeptides of spinach and the marine green alga Codium fragile. The results suggested that LHC II of different species had similar antigenic determinants and also conservation of amino acid sequences of the polypeptides during evolution, and that the antibodies could cross react with apoproteins of D2 proteins (which contain P680) from B. corticulans, spinach and C. fragile, but not with apoproteins of P700 Chl-proteins. Our results indicated some similarities in primary structure between LHC II of different species, and between LHC II and D2 proteins of marine green algae and spinach. Our finding that D2 and P700 Chl-proteins are not immunologically related suggested that P700 Chl-proteins and D2 proteins pass through independent evolutionary pathways.

  4. Flavonoid compounds from the red marine alga Alsidium corallinum protect against potassium bromate-induced nephrotoxicity in adult mice.

    Science.gov (United States)

    Ben Saad, Hajer; Gargouri, Manel; Kallel, Fatma; Chaabene, Rim; Boudawara, Tahia; Jamoussi, Kamel; Magné, Christian; Mounir Zeghal, Khaled; Hakim, Ahmed; Ben Amara, Ibtissem

    2017-05-01

    Potassium bromate (KBrO3 ), an environmental pollutant, is a well-known human carcinogen and a potent nephrotoxic agent. Currently, natural products have built a well-recognized role in the management of many diseases induced by pollutants. As potent natural sources of bioactive compounds, marine algae have been demonstrated to be rich in novel secondary metabolites with a broad range of biological functions. In this study, adults male mice were orally treated for 15 days with KBrO3 (0.5 g/L) associated or not with extract of Alsidium corallinum, a red Mediterranean alga. In vitro study demonstrated that algal extract has antioxidant efficacy attributable to the presence of flavonoids and polyphenols. Among these, Liquid chromatography-mass spectrometry analysis showed A. corallinum is rich in kaempferol, apigenin, catechin, and quercetin flavonoids. In vivo study showed that supplementation with the alga significantly prevented KBrO3 -induced nephrotoxicity as indicated by plasma biomarkers (urea, uric acid, and creatinin levels) and oxidative stress related parameters (malondialdehyde, superoxide dismutase, catalase, glutathione peroxidase, reduced glutathione, vitamin C, hydrogen peroxide, protein oxidation products) in kidney tissue. The corrective effect of A. corallinum on KBrO3 -induced kidney injury was also supported by molecular and histopathological observations. In conclusion, it was established that the red alga, thanks to its bioactive compounds, effectively counteracts toxic effects of KBrO3 and could be a useful coadjuvant agent for treatment of this pollutant poisonings. © 2016 Wiley Periodicals, Inc. Environ Toxicol 32: 1475-1486, 2017. © 2016 Wiley Periodicals, Inc.

  5. Compositional Similarities and Differences between Transparent Exopolymer Particles (TEP) from two Marine Bacteria and two Marine Algae: Significance to Surface Biofouling

    KAUST Repository

    Li, Sheng

    2015-06-12

    Transparent-exopolymer-particles (TEP) have been recently identified as a significant contributor to surface biofouling, such as on reverse osmosis (RO) membranes. TEP research has mainly focused on algal TEP/TEP precursors while limited investigations have been conducted on those released by bacteria. In this study, TEP/TEP precursors derived from both algae and bacteria were isolated and then characterized to investigate their similarities and/or differences using various advanced analytical techniques, thus providing a better understanding of their potential effect on biofouling. Bacterial TEP/TEP precursors were isolated from two species of marine bacteria (Pseudidiomarina homiensis and Pseudoalteromonas atlantica) while algal TEP/TEP precursors were isolated from two marine algae species (Alexandrium tamarense and Chaetoceros affinis). Results indicated that both isolated bacterial and algal TEP/TEP precursors were associated with protein-like materials, and most TEP precursors were high-molecular-weight biopolymers. Furthermore all investigated algal and bacterial TEP/TEP precursors showed a lectin-like property, which can enable them to act as a chemical conditioning layer and to agglutinate bacteria. This property may enhance surface biofouling. However, both proton nuclear magnetic resonance (NMR) spectra and the nitrogen/carbon (N/C) ratios suggested that the algal TEP/TEP precursors contained much less protein content than the bacterial TEP/TEP precursors. This difference may influence their initial deposition and further development of surface biofouling.

  6. A Simple and Effective Method for High Quality Co-Extraction of Genomic DNA and Total RNA from Low Biomass Ectocarpus siliculosus, the Model Brown Alga

    Science.gov (United States)

    Greco, Maria; Sáez, Claudio A.; Brown, Murray T.; Bitonti, Maria Beatrice

    2014-01-01

    The brown seaweed Ectocarpus siliculosus is an emerging model species distributed worldwide in temperate coastal ecosystems. Over 1500 strains of E. siliculosus are available in culture from a broad range of geographic locations and ecological niches. To elucidate the molecular mechanisms underlying its capacity to cope with different environmental and biotic stressors, genomic and transcriptomic studies are necessary; this requires the co-isolation of genomic DNA and total RNA. In brown algae, extraction of nucleic acids is hindered by high concentrations of secondary metabolites that co-precipitate with nucleic acids. Here, we propose a reliable, rapid and cost-effective procedure for the co-isolation of high-quality nucleic acids using small quantities of biomass (25-, 50- and 100 mg) from strains of E. siliculosus (RHO12; LIA4A; EC524 and REP10–11) isolated from sites with different environmental conditions. The procedure employs a high pH extraction buffer (pH 9.5) which contains 100 mM Tris-HCl and 150 mM NaCl, with the addition of 5 mM DTT and 1% sarkosyl to ensure maximum solubility of nucleic acids, effective inhibition of nuclease activity and removal of interfering contaminants (e.g. polysaccharides, polyphenols). The use of sodium acetate together with isopropanol shortened precipitation time and enhanced the yields of DNA/RNA. A phenol:chlorophorm:isoamyl alcohol step was subsequently used to purify the nucleic acids. The present protocol produces high yields of nucleic acids from only 25 mg of fresh algal biomass (0.195 and 0.284 µg mg−1 fresh weigh of RNA and DNA, respectively) and the high quality of the extracted nucleic acids was confirmed through spectrophotometric and electrophoretic analyses. The isolated RNA can be used directly in downstream applications such as RT-PCR and the genomic DNA was suitable for PCR, producing reliable restriction enzyme digestion patterns. Co-isolation of DNA/RNA from different strains indicates that this

  7. A simple and effective method for high quality co-extraction of genomic DNA and total RNA from low biomass Ectocarpus siliculosus, the model brown alga.

    Science.gov (United States)

    Greco, Maria; Sáez, Claudio A; Brown, Murray T; Bitonti, Maria Beatrice

    2014-01-01

    The brown seaweed Ectocarpus siliculosus is an emerging model species distributed worldwide in temperate coastal ecosystems. Over 1500 strains of E. siliculosus are available in culture from a broad range of geographic locations and ecological niches. To elucidate the molecular mechanisms underlying its capacity to cope with different environmental and biotic stressors, genomic and transcriptomic studies are necessary; this requires the co-isolation of genomic DNA and total RNA. In brown algae, extraction of nucleic acids is hindered by high concentrations of secondary metabolites that co-precipitate with nucleic acids. Here, we propose a reliable, rapid and cost-effective procedure for the co-isolation of high-quality nucleic acids using small quantities of biomass (25-, 50- and 100 mg) from strains of E. siliculosus (RHO12; LIA4A; EC524 and REP10-11) isolated from sites with different environmental conditions. The procedure employs a high pH extraction buffer (pH 9.5) which contains 100 mM Tris-HCl and 150 mM NaCl, with the addition of 5 mM DTT and 1% sarkosyl to ensure maximum solubility of nucleic acids, effective inhibition of nuclease activity and removal of interfering contaminants (e.g. polysaccharides, polyphenols). The use of sodium acetate together with isopropanol shortened precipitation time and enhanced the yields of DNA/RNA. A phenol:chlorophorm:isoamyl alcohol step was subsequently used to purify the nucleic acids. The present protocol produces high yields of nucleic acids from only 25 mg of fresh algal biomass (0.195 and 0.284 µg mg(-1) fresh weigh of RNA and DNA, respectively) and the high quality of the extracted nucleic acids was confirmed through spectrophotometric and electrophoretic analyses. The isolated RNA can be used directly in downstream applications such as RT-PCR and the genomic DNA was suitable for PCR, producing reliable restriction enzyme digestion patterns. Co-isolation of DNA/RNA from different strains indicates that this method

  8. Antiviral Potential of Algae Polysaccharides Isolated from Marine Sources: A Review

    Directory of Open Access Journals (Sweden)

    Azin Ahmadi

    2015-01-01

    Full Text Available From food to fertilizer, algal derived products are largely employed in assorted industries, including agricultural, biomedical, food, and pharmaceutical industries. Among different chemical compositions isolated from algae, polysaccharides are the most well-established compounds, which were subjected to a variety of studies due to extensive bioactivities. Over the past few decades, the promising results for antiviral potential of algae-derived polysaccharides have advocated them as inordinate candidates for pharmaceutical research. Numerous studies have isolated various algal polysaccharides possessing antiviral activities, including carrageenan, alginate, fucan, laminaran, and naviculan. In addition, different mechanisms of action have been reported for these polysaccharides, such as inhibiting the binding or internalization of virus into the host cells or suppressing DNA replication and protein synthesis. This review strives for compiling previous antiviral studies of algae-derived polysaccharides and their mechanism of action towards their development as natural antiviral agents for future investigations.

  9. Antiviral Potential of Algae Polysaccharides Isolated from Marine Sources: A Review.

    Science.gov (United States)

    Ahmadi, Azin; Zorofchian Moghadamtousi, Soheil; Abubakar, Sazaly; Zandi, Keivan

    2015-01-01

    From food to fertilizer, algal derived products are largely employed in assorted industries, including agricultural, biomedical, food, and pharmaceutical industries. Among different chemical compositions isolated from algae, polysaccharides are the most well-established compounds, which were subjected to a variety of studies due to extensive bioactivities. Over the past few decades, the promising results for antiviral potential of algae-derived polysaccharides have advocated them as inordinate candidates for pharmaceutical research. Numerous studies have isolated various algal polysaccharides possessing antiviral activities, including carrageenan, alginate, fucan, laminaran, and naviculan. In addition, different mechanisms of action have been reported for these polysaccharides, such as inhibiting the binding or internalization of virus into the host cells or suppressing DNA replication and protein synthesis. This review strives for compiling previous antiviral studies of algae-derived polysaccharides and their mechanism of action towards their development as natural antiviral agents for future investigations.

  10. Evidence for methane production by marine algae (Emiliana huxleyi) and its implication for the methane paradox in oxic waters

    Science.gov (United States)

    Lenhart, K.; Klintzsch, T.; Langer, G.; Nehrke, G.; Bunge, M.; Schnell, S.; Keppler, F.

    2015-12-01

    Methane (CH4), an important greenhouse gas that affects radiation balance and consequently the earth's climate, still has uncertainties in its sinks and sources. The world's oceans are considered to be a source of CH4 to the atmosphere, although the biogeochemical processes involved in its formation are not fully understood. Several recent studies provided strong evidence of CH4 production in oxic marine and freshwaters but its source is still a topic of debate. Studies of CH4 dynamics in surface waters of oceans and large lakes have concluded that pelagic CH4 supersaturation cannot be sustained either by lateral inputs from littoral or benthic inputs alone. However, frequently regional and temporal oversaturation of surface waters occurs. This comprises the observation of a CH4 oversaturating state within the surface mixed layer, sometimes also termed the "oceanic methane paradox". In this study we considered marine algae as a possible direct source of CH4. Therefore, the coccolithophore Emiliania huxleyi was grown under controlled laboratory conditions and supplemented with two 13C-labelled carbon substrates, namely bicarbonate and a position-specific 13C-labelled methionine (R-S-13CH3). The CH4 production was 0.7 μg POC g-1 d-1, or 30 ng g-1 POC h-1. After supplementation of the cultures with the 13C labelled substrate, the isotope label was observed in headspace-CH4. Moreover, the absence of methanogenic archaea within the algal culture and the oxic conditions during CH4 formation suggest that marine algae such as Emiliania huxleyi contribute to the observed spatial and temporal restricted CH4 oversaturation in ocean surface waters.

  11. Antibacterial activities of bioactive compounds extracted from Marine algae Gracilaria salicornia against Aeromonas hydrophila

    Directory of Open Access Journals (Sweden)

    Somayeh Rasooli

    2015-04-01

    Full Text Available Herbal medicinal products have attracted significant research interest in recent years. Considering the efficiency of algae products in controlling pathogenic bacteria and also easy access to large resources of algae, this study was conducted to evaluate the effects of methanolic, chloroformic and aqueous extracts of Gracilaria salicornia against Aeromonas hydrophila, a heterotrophic, Gram-negative, rod-shaped bacterium found mainly in warm climate. Algae samples were collected from Qeshm Island coastlines and transferred to the laboratory. Standard methods were used to obtain the algae extract. Antibacterial activities of various extracts were tested against the bacterium using well diffusion assay method. Significant differences were observed in antibacterial activities of different extracts (P<0.05. The diameter of zone of growth inhibition varied in correlation with concentration of the extracts (50, 100, 200 and 300 mg.ml-1. The best inhibition zone was observed at 100, 200 and 300 mg.ml-1 methanolic and 300 mg.ml-1 aqueous extracts.

  12. OBS ervations on the vegetative propagation of the marine alga, Gelidiella acerosa (Forssk) Feldmann and Hamel

    Digital Repository Service at National Institute of Oceanography (India)

    Rao, P.P.S.; Tarwadi, S.J.; Chauhan, V.D.

    of this the present work on the vegetative propagation of the alga was planned. The cultures of the vegetative cut pieces of a frond of the species were grown in different culture media. The culture media were of sea water enriched with inorganic nutrient...

  13. Alpha-amylase Inhibition and Antioxidant Activity of Marine Green Algae and its Possible Role in Diabetes Management.

    Science.gov (United States)

    Unnikrishnan, P S; Suthindhiran, K; Jayasri, M A

    2015-10-01

    In the continuing search for safe and efficient antidiabetic drug, marine algae become important source which provide several compounds of immense therapeutic potential. Alpha-amylase, alpha-glucosidase inhibitors, and antioxidant compounds are known to manage diabetes and have received much attention recently. In the present study, four green algae (Chaetomorpha aerea, Enteromorpha intestinalis, Chlorodesmis, and Cladophora rupestris) were chosen to evaluate alpha-amylase, alpha-glucosidase inhibitory, and antioxidant activity in vitro. The phytochemical constituents of all the extracts were qualitatively determined. Antidiabetic activity was evaluated by inhibitory potential of extracts against alpha-amylase and alpha-glucosidase by spectrophotometric assays. Antioxidant activity was determined by 2,2-diphenyl-1-picrylhydrazyl, hydrogen peroxide (H2O2), and nitric oxide scavenging assay. Gas chromatography-mass spectrometry (GC-MS) analysis was carried out to determine the major compound responsible for its antidiabetic action. Among the various extracts screened, chloroform extract of C. aerea (IC50 - 408.9 μg/ml) and methanol extract of Chlorodesmis (IC50 - 147.6 μg/ml) showed effective inhibition against alpha-amylase. The extracts were also evaluated for alpha-glucosidase inhibition, and no observed activity was found. Methanol extract of C. rupestris showed notable free radical scavenging activity (IC50 - 666.3 μg/ml), followed by H2O2 (34%) and nitric oxide (49%). Further, chemical profiling by GC-MS revealed the presence of major bioactive compounds. Phenol, 2,4-bis (1,1-dimethylethyl) and z, z-6,28-heptatriactontadien-2-one were predominantly found in the methanol extract of C. rupestris and chloroform extract of C. aerea. Our results demonstrate that the selected algae exhibit notable alpha-amylase inhibition and antioxidant activity. Therefore, characterization of active compounds and its in vivo assays will be noteworthy. Four green algae were

  14. The Macroalgae Biorefinery for Production of Bioethanol and Fish Feed from the Two Brown Algae: Laminaria Digitata and Saccharina Latissima

    DEFF Research Database (Denmark)

    Hou, Xiaoru; Bjerre, Anne-Belinda; Hansen, Jonas Høeg

    by ensiling (with lactic acid bacteria) or simple drying. Pretreatment was carried out using wet-milling and enzymatic hydrolysis in accordance with 1G bioethanol technology from corn. Different commercial enzyme mixtures for fully or partly hydrolysis of algae sugar polymers into monomers were tested...... and conversion of the differently pretreated macroalgae biomass into ethanol by fermentation were compared. The protein contents and nutrient salts in residues from ethanol fermentation trials were characterized for potential fish feed. A first-step scenario for sustainability and feasibility assessment...

  15. Effect of in vitro docosahexaenoic acid supplementation to marine algae-adapted and unadapted rumen inoculum on the biohydrogenation of unsaturated fatty acids infreeze-dried grass

    NARCIS (Netherlands)

    Vlaeminck, B.; Mengistu, G.; Fievez, V.; Jonge, de L.H.; Dijkstra, J.

    2008-01-01

    The objective of this study was to examine the ruminal biohydrogenation of linoleic (18:2n-6) and linolenic (18:3n-3) acid during in vitro incubations with rumen inoculum from dairy cattle adapted or not to marine algae and with or without additional in vitro docosahexaenoic acid (DHA, 22:6n-3) supp

  16. Impact of primary amine group from aminophospholipids and amino acids on marine phospholipids stability: Non-enzymatic browning and lipid oxidation

    DEFF Research Database (Denmark)

    Lu, Henna Fung Sieng; Nielsen, Nina Skall; Baron, Caroline P.

    2013-01-01

    The main objective of this study was to investigate the oxidative stability and non-enzymatic browning reactions of marine PL in the presence or in the absence of primary amine group from aminophospholipids and amino acids. Marine phospholipids liposomal dispersions were prepared from two authentic...

  17. Contributions to the study of the marine algae inhabiting Umluj Seashore, Red Sea

    Directory of Open Access Journals (Sweden)

    Ibraheem Borie Mohammad Ibraheem

    2014-12-01

    Full Text Available The marine algal flora of the Umluj city received no attention about the marine macroalgae. In this paper a total of 19 species are reported for the first time as occurring in the Umluj coast of Saudi Arabia. These species related to Chlorophyta (1, Phaeophyceae (6 and Rhodophyceae (12.

  18. Antioxidant Activity and Gas Chromatographic-Mass Spectrometric Analysis of Extracts of the Marine Algae, Caulerpa peltata and Padina Gymnospora.

    Science.gov (United States)

    Murugan, Kavitha; Iyer, Vidhya V

    2014-01-01

    The results of our previous investigations on extracts of selected marine algae showed that Caulerpa peltata and Padina gymnospora had more promising antiproliferative and antioxidant activities than Gelidiella acerosa and Sargassum wightii. Based on these results, the more active chloroform extract of C. peltata and ethyl acetate extract of P. gymnospora were further analyzed for their constituents by using gas chromatography in tandem with mass spectrometry. The GC-MS analysis (GC % peak area given in parentheses) showed that fucosterol (12.45%) and L-(+)-ascorbic acid 2, 6-dihexadecanoate (8.13%) were the major compounds present in P. gymnospora ethyl acetate extract. On the other hand, C. peltata chloroform extract had 1-heptacosanol (10.52%), hexacosanol acetate (9.28%), tetradecyl ester of chloroacetic acid (7.22%), Z,Z-6, 28-heptatriactontadien-2-one (6.77%) and 10, 13-dimethyl-methyl ester of tetradecanoic acid (5.34%) as major compounds. Also described in the report are the beta-carotene bleaching inhibitory and total reducing activities of the chloroform and ethyl acetate extracts of C. peltata and P. gymnospora, respectively, relative to the other three extracts (aqueous, methanol, chloroform or ethyl acetate) of the two algae.

  19. Antioxidant activity and gas chromatographic-mass spectrometric analysis of extracts of the marine algae, caulerpa peltata and padina gymnospora

    Directory of Open Access Journals (Sweden)

    Kavitha Murugan

    2014-01-01

    Full Text Available The results of our previous investigations on extracts of selected marine algae showed that Caulerpa peltata and Padina gymnospora had more promising antiproliferative and antioxidant activities than Gelidiella acerosa and Sargassum wightii. Based on these results, the more active chloroform extract of C. peltata and ethyl acetate extract of P. gymnospora were further analyzed for their constituents by using gas chromatography in tandem with mass spectrometry. The GC-MS analysis (GC % peak area given in parentheses showed that fucosterol (12.45% and L-(+-ascorbic acid 2,6-dihexadecanoate (8.13% were the major compounds present in P. gymnospora ethyl acetate extract. On the other hand, C. peltata chloroform extract had 1-heptacosanol (10.52%, hexacosanol acetate (9.28%, tetradecyl ester of chloroacetic acid (7.22%, Z,Z-6,28-heptatriactontadien-2-one (6.77% and 10,13-dimethyl-methyl ester of tetradecanoic acid (5.34% as major compounds. Also described in the report are the beta-carotene bleaching inhibitory and total reducing activities of the chloroform and ethyl acetate extracts of C. peltata and P. gymnospora, respectively, relative to the other three extracts (aqueous, methanol, chloroform or ethyl acetate of the two algae.

  20. Plastid genomes of two brown algae, Ectocarpus siliculosus and Fucus vesiculosus: further insights on the evolution of red-algal derived plastids

    Directory of Open Access Journals (Sweden)

    Corre Erwan

    2009-10-01

    Full Text Available Abstract Background Heterokont algae, together with cryptophytes, haptophytes and some alveolates, possess red-algal derived plastids. The chromalveolate hypothesis proposes that the red-algal derived plastids of all four groups have a monophyletic origin resulting from a single secondary endosymbiotic event. However, due to incongruence between nuclear and plastid phylogenies, this controversial hypothesis remains under debate. Large-scale genomic analyses have shown to be a powerful tool for phylogenetic reconstruction but insufficient sequence data have been available for red-algal derived plastid genomes. Results The chloroplast genomes of two brown algae, Ectocarpus siliculosus and Fucus vesiculosus, have been fully sequenced. These species represent two distinct orders of the Phaeophyceae, which is a major group within the heterokont lineage. The sizes of the circular plastid genomes are 139,954 and 124,986 base pairs, respectively, the size difference being due principally to the presence of longer inverted repeat and intergenic regions in E. siliculosus. Gene contents of the two plastids are similar with 139-148 protein-coding genes, 28-31 tRNA genes, and 3 ribosomal RNA genes. The two genomes also exhibit very similar rearrangements compared to other sequenced plastid genomes. The tRNA-Leu gene of E. siliculosus lacks an intron, in contrast to the F. vesiculosus and other heterokont plastid homologues, suggesting its recent loss in the Ectocarpales. Most of the brown algal plastid genes are shared with other red-algal derived plastid genomes, but a few are absent from raphidophyte or diatom plastid genomes. One of these regions is most similar to an apicomplexan nuclear sequence. The phylogenetic relationship between heterokonts, cryptophytes and haptophytes (collectively referred to as chromists plastids was investigated using several datasets of concatenated proteins from two cyanobacterial genomes and 18 plastid genomes, including

  1. Plastid genomes of two brown algae, Ectocarpus siliculosus and Fucus vesiculosus: further insights on the evolution of red-algal derived plastids.

    Science.gov (United States)

    Le Corguillé, Gildas; Pearson, Gareth; Valente, Marta; Viegas, Carla; Gschloessl, Bernhard; Corre, Erwan; Bailly, Xavier; Peters, Akira F; Jubin, Claire; Vacherie, Benoit; Cock, J Mark; Leblanc, Catherine

    2009-10-16

    Heterokont algae, together with cryptophytes, haptophytes and some alveolates, possess red-algal derived plastids. The chromalveolate hypothesis proposes that the red-algal derived plastids of all four groups have a monophyletic origin resulting from a single secondary endosymbiotic event. However, due to incongruence between nuclear and plastid phylogenies, this controversial hypothesis remains under debate. Large-scale genomic analyses have shown to be a powerful tool for phylogenetic reconstruction but insufficient sequence data have been available for red-algal derived plastid genomes. The chloroplast genomes of two brown algae, Ectocarpus siliculosus and Fucus vesiculosus, have been fully sequenced. These species represent two distinct orders of the Phaeophyceae, which is a major group within the heterokont lineage. The sizes of the circular plastid genomes are 139,954 and 124,986 base pairs, respectively, the size difference being due principally to the presence of longer inverted repeat and intergenic regions in E. siliculosus. Gene contents of the two plastids are similar with 139-148 protein-coding genes, 28-31 tRNA genes, and 3 ribosomal RNA genes. The two genomes also exhibit very similar rearrangements compared to other sequenced plastid genomes. The tRNA-Leu gene of E. siliculosus lacks an intron, in contrast to the F. vesiculosus and other heterokont plastid homologues, suggesting its recent loss in the Ectocarpales. Most of the brown algal plastid genes are shared with other red-algal derived plastid genomes, but a few are absent from raphidophyte or diatom plastid genomes. One of these regions is most similar to an apicomplexan nuclear sequence. The phylogenetic relationship between heterokonts, cryptophytes and haptophytes (collectively referred to as chromists) plastids was investigated using several datasets of concatenated proteins from two cyanobacterial genomes and 18 plastid genomes, including most of the available red algal and chromist

  2. Indolediketopiperazine Alkaloids from Eurotium cristatum EN-220, an Endophytic Fungus Isolated from the Marine Alga Sargassum thunbergii

    Science.gov (United States)

    Du, Feng-Yu; Li, Xin; Li, Xiao-Ming; Zhu, Li-Wei; Wang, Bin-Gui

    2017-01-01

    Four new indolediketopiperazine derivatives (1–4), along with nine known congeners (5–13), were isolated and identified from the culture extract of Eurotium cristatum EN-220, an endophytic fungus obtained from the marine alga Sargassum thunbergii. The structures of thesecompounds were elucidated on the basis of extensive spectroscopic analysis and the absolute configurations of compounds 1–4 were established by NOESY experiments and by chiral HPLC analyses of their acid hydrolysates. The absolute configuration of C-8 (a quaternary carbon substituted with a hydroxyl group) in 5 of preechinulin class was firstly determined by electronic circular dichroism (ECD) calculations. All these compounds were evaluatedfor brine shrimp (Artemia salina) lethality and nematicidal activity as well as antioxidativeand antimicrobial potency. PMID:28125012

  3. Application of HPLC-NMR in the Identification of Plocamenone and Isoplocamenone from the Marine Red Alga Plocamium angustum

    Science.gov (United States)

    Timmers, Michael Anthony; Dias, Daniel Anthony; Urban, Sylvia

    2012-01-01

    A combination of on-line HPLC-NMR and off-line chemical investigations has resulted in the identification of the previously reported polyhalogenated monoterpene plocamenone, together with the new structural analogue isoplocamenone from the crude extract of the marine alga Plocamium angustum. On-flow and stop-flow HPLC-NMR analyses (including the acquisition of WET 2D NMR spectra) rapidly assisted in the identification of the major component plocamenone and in the partial identification of its unstable double bond isomer isoplocamenone. Conventional off-line isolation and structural characterization techniques were employed to unequivocally confirm both structures, leading to a structural revision for plocamenone, as well as to obtain sufficient quantities for biological testing. PMID:23118723

  4. Degradation of Marine Algae-Derived Carbohydrates by Bacteroidetes Isolated from Human Gut Microbiota

    OpenAIRE

    Li, Miaomiao; Shang, Qingsen; Li, Guangsheng; Wang, Xin; Yu, Guangli

    2017-01-01

    Carrageenan, agarose, and alginate are algae-derived undigested polysaccharides that have been used as food additives for hundreds of years. Fermentation of dietary carbohydrates of our food in the lower gut of humans is a critical process for the function and integrity of both the bacterial community and host cells. However, little is known about the fermentation of these three kinds of seaweed carbohydrates by human gut microbiota. Here, the degradation characteristics of carrageenan, agaro...

  5. Temperature and light tolerance of representative brown,green and red algae in tumble culture revealed by chlorophyll fluorescence measurements

    Institute of Scientific and Technical Information of China (English)

    PANG Shaojun; SHAN Tifeng

    2008-01-01

    Laminaria japonica,Undaria pinnatifida,Ulva lactuca,Grateloupia turuturu and Palmaria palmata are suitable species that fit the requirements of a seaweed-animal integrated aquaculture system in terms of their viable biomass,rapid growth and promising nutrient uptake rates. In this investigation,the responses of the optimal chlorophyll fluolescence yield of the five algal species in tumble culture were assessed at a temperature range of 10~30℃.The results revealed that Ulva lactuca was the most resistant species to high temperature,withstanding 30℃ for 4 h without apparent decline in the optimal chlorophyll fluorescence yield. While the arctic alga Palmaria palmata was the most vulnerable one,showing significant decline in the optimal chlorophyll fluorescence yield at 25℃ for 2 h.The cold-water species Laminaria japonica,however,demonstrated strong ability to cope with higher temperature(24~26℃)for shorter time(within 24 h)without significant decline in the optimal chlorophyll fluorescence yield.Grateloupia turuturu showed a general decrease in the optimal chiorophyll fluores-cence yield with the rising temperature from 23 to 30℃,similar to the temperate kelp Undaria pinnatifida.Changes of chio-rophyll fluorescence yields of these algae were characterized differently indicating the existence of species-unique strategy to cope with high light.Measurements of the optimal chlorophyll fluorescence yield after short exposure to direct solar irradiance revealed how long these exposures could be without significant photoinhibition or with promising recovery in photosynthetic activities. Seasonal pattern of alternation of algal species in tank culture in the Northern Hemisphere at the latitude of 36°Nwas proposed according to these basic measurements.

  6. The Effect of Sulfated (1→3-α-l-Fucan from the Brown Alga Saccharina cichorioides Miyabe on Resveratrol-Induced Apoptosis in Colon Carcinoma Cells

    Directory of Open Access Journals (Sweden)

    Olesia S. Vishchuk

    2013-01-01

    Full Text Available Accumulating data clearly indicate that the induction of apoptosis by nontoxic natural compounds is a potent defense against the development and progression of many malignancies, including colon cancer. Resveratrol and the fucoidans have been shown to possess potent anti-tumor activity in vitro and in vivo. The aim of the present study was to examine whether the combination of a fucoidan from the brown alga Saccharina cichorioides Miyabe and resveratrol would be an effective preventive and/or therapeutic strategy against colon cancer. Based on NMR spectroscopy and MALDI-TOF analysis, the fucoidan isolated and purified from Saccharina cichorioides Miyabe was (1→3-α-l-fucan with sulfate groups at C2 and C4 of the α-l-fucopyranose residues. The fucoidan enhanced the antiproliferative activity of resveratrol at nontoxic doses and facilitated resveratrol-induced apoptosis in the HCT 116 human colon cancer cell line. Apoptosis was realized by the activation of initiator caspase-9 and effector caspase-7 and -3, followed by the cleavage of PARP. Furthermore, significant inhibition of HCT 116 colony formation was associated with the sensitization of cells to resveratrol by the fucoidan. Taken together, these results demonstrate that the combination of the algal fucoidan with resveratrol may provide a potential therapy against human colon cancer.

  7. Effects of sulfated fucan, ascophyllan, from the brown Alga Ascophyllum nodosum on various cell lines: a comparative study on ascophyllan and fucoidan.

    Science.gov (United States)

    Jiang, Zedong; Okimura, Takasi; Yokose, Takeshi; Yamasaki, Yasuhiro; Yamaguchi, Kenichi; Oda, Tatsuya

    2010-07-01

    The effects of fucose-containing sulfated polysaccharides, ascophyllan and fucoidan, isolated from the brown alga Ascophyllum nodosum, on the growth of various cell lines (MDCK, Vero, PtK(1), CHO, HeLa, and XC) were investigated. In a colony formation assay, ascophyllan and fucoidan showed potent cytotoxic effects on Vero and XC cells, while other cell lines were relatively resistant to these polysaccharides. Almost no significant effects of these polysaccharides were observed in the cell lines tested using the Alamar blue cytotoxicity assay over 48 h with varying initial cell densities (2500-20,000 cells/well) in growth medium. Interestingly, a significant growth promoting effect of ascophyllan on MDCK cells was observed, whereas treatment with fucoidan showed growth suppressive effects on this cell line under the same experimental conditions. These results suggest that ascophyllan is distinguishable from fucoidan in terms of their bioactivities. This is the first report of the growth promoting effects of a sulfated fucan on a mammalian cell line under normal growth conditions.

  8. The effect of sulfated (1→3)-α-l-fucan from the brown alga Saccharina cichorioides Miyabe on resveratrol-induced apoptosis in colon carcinoma Cells.

    Science.gov (United States)

    Vishchuk, Olesia S; Ermakova, Svetlana P; Zvyagintseva, Tatyana N

    2013-01-21

    Accumulating data clearly indicate that the induction of apoptosis by nontoxic natural compounds is a potent defense against the development and progression of many malignancies, including colon cancer. Resveratrol and the fucoidans have been shown to possess potent anti-tumor activity in vitro and in vivo. The aim of the present study was to examine whether the combination of a fucoidan from the brown alga Saccharina cichorioides Miyabe and resveratrol would be an effective preventive and/or therapeutic strategy against colon cancer. Based on NMR spectroscopy and MALDI-TOF analysis, the fucoidan isolated and purified from Saccharina cichorioides Miyabe was (1→3)-α-l-fucan with sulfate groups at C2 and C4 of the α-l-fucopyranose residues. The fucoidan enhanced the antiproliferative activity of resveratrol at nontoxic doses and facilitated resveratrol-induced apoptosis in the HCT 116 human colon cancer cell line. Apoptosis was realized by the activation of initiator caspase-9 and effector caspase-7 and -3, followed by the cleavage of PARP. Furthermore, significant inhibition of HCT 116 colony formation was associated with the sensitization of cells to resveratrol by the fucoidan. Taken together, these results demonstrate that the combination of the algal fucoidan with resveratrol may provide a potential therapy against human colon cancer.

  9. Molecular characterization and antibacterial effect of endophytic actinomycetes Nocardiopsis sp. GRG1 (KT235640 from brown algae against MDR strains of uropathogens

    Directory of Open Access Journals (Sweden)

    Govindan Rajivgandhi

    2016-12-01

    Full Text Available Our study is to evaluate the potential bioactive compound of Nocardiopsis sp. GRG1 (KT235640 and its antibacterial activity against multi drug resistant strains (MDRS on urinary tract infections (UTIs. Two brown algae samples were collected and were subjected to isolation of endophytic actinomycetes. 100 strains of actinomycetes were isolated from algal samples based on observation of morphology and physiological characters. 40 strains were active in antagonistic activity against various clinical pathogens. Among the strains, 10 showed better antimicrobial activity against MDRS on UTIs. The secondary metabolite of Nocardiopsis sp. GRG1 (KT235640 has showed tremendous antibacterial activity against UTI pathogens compared to other strains. Influence of various growth parameters were used for synthesis of secondary metabolites, such as optimum pH 7, incubation time 5–7 days, temperature (30 °C, salinity (5%, fructose and mannitol as the suitable carbon and nitrogen sources. At 100 μg/ml concentration MIC of Nocardiopsis sp. GRG1 (KT235640 showed highest percentage of inhibition against Proteus mirabilis (85%, and E.coli, Staphylococcus auerues, Psuedomonas aeroginasa, Enterobactor sp and Coagulinase negative staphylococci 78–85% respectively.

  10. The production of sulfonated chitosan-sodium alginate found in brown algae (Sargassum sp.) composite membrane as proton exchange membrane fuel cell (PEMFC)

    Science.gov (United States)

    Wafiroh, Siti; Pudjiastuti, Pratiwi; Sari, Ilma Indana

    2016-03-01

    The majority of energy was used in this period is from fossil fuel, which getting decreased in the future. The objective of this research is production and characterization of sulfonated chitosan-sodium alginate found in brown algae (Sargassum sp.) composite membrane as Proton Exchange Membrane Fuel Cell (PEMFC) for alternative energy. PEMFC was produced with 4 variations (w/w) ratio between chitosan and sodium alginate, 8 : 0, 8 : 1, 8 : 2, 8 : 4 (w/w). The production of membrane was mixed sodium alginate solution into chitosan solution and sulfonated with H2SO4 0.72 N. The characterization of the PEM was uses Modulus Young analysis, water swelling, ion exchange capacity, FTIR, SEM, DTA, methanol permeability and proton conductivity. The result of the research, showed that the optimum membrane was with ratio 8 : 2 (w/w) that the Modulus Young 8564 kN/m2, water swelling 31.86%, ion exchange capacity 1.020 meq/g, proton conductivity 8,8 × 10-6 S/cm, methanol permeability 1.90 × 10-8 g/cm2s and glass transition temperature (Tg) 100.9 °C, crystalline temperature (Tc) 227.6 °C, and the melting temperature (Tm) 267.9 °C.

  11. Genome and metabolic network of Candidatus Phaeomarinobacter ectocarpi Ec32, a new candidate genus of Alphaproteobacteria frequently associated with brown algae

    Directory of Open Access Journals (Sweden)

    Simon M Dittami

    2014-07-01

    Full Text Available Rhizobiales and related orders of Alphaproteobacteria comprise several genera of nodule-inducing symbiotic bacteria associated with plant roots. Here we describe the genome and the metabolic network of Candidatus Phaeomarinobacter ectocarpi Ec32, a member of a new candidate genus closely related to Rhizobiales and found in association with cultures of the filamentous brown algal model Ectocarpus. The Ca. P. ectocarpi genome encodes numerous metabolic pathways that may be relevant for this bacterium to interact with algae. Notably, it possesses a large set of glycoside hydrolases and transporters, which may serve to process and assimilate algal metabolites. It also harbors several proteins likely to be involved in the synthesis of algal hormones such as auxins and cytokinins, as well as the vitamins pyridoxine, biotin, and thiamine. As of today, Ca. P. ectocarpi has not been successfully cultured, and identical 16S rDNA sequences have been found exclusively associated with Ectocarpus. However, related sequences (≥ 97% identity have also been detected free-living and in a Fucus vesiculosus microbiome barcoding project, indicating that the candidate genus Phaeomarinobacter may comprise several species, which may colonize different niches.

  12. In vitro chemopreventive potential of fucophlorethols from the brown alga Fucus vesiculosus L. by anti-oxidant activity and inhibition of selected cytochrome P450 enzymes.

    Science.gov (United States)

    Parys, Sabine; Kehraus, Stefan; Krick, Anja; Glombitza, Karl-Werner; Carmeli, Shmuel; Klimo, Karin; Gerhäuser, Clarissa; König, Gabriele M

    2010-02-01

    Within a project focusing on the chemopreventive potential of algal phenols, two phloroglucinol derivatives, belonging to the class of fucophlorethols, and the known fucotriphlorethol A were obtained from the ethanolic extract of the brown alga Fucus vesiculosus L. The compounds trifucodiphlorethol A and trifucotriphlorethol A are composed of six and seven units of phloroglucinol, respectively. The compounds were examined for their cancer chemopreventive potential, in comparison with the monomer phloroglucinol. Trifucodiphlorethol A, trifucotriphlorethol A as well as fucotriphlorethol A were identified as strong radical scavengers, with IC(50) values for scavenging of 1,1-diphenyl-2 picrylhydrazyl radicals (DPPH) in the range of 10.0-14.4 microg/ml. All three compounds potently scavenged peroxyl radicals in the oxygen radical absorbance capacity (ORAC) assay. In addition, the compounds were shown to inhibit cytochrome P450 1A activity with IC(50) values in the range of 17.9-33 microg/ml, and aromatase (Cyp19) activity with IC(50) values in the range of 1.2-5.6 microg/ml.

  13. Travelling in time with networks: Revealing present day hybridization versus ancestral polymorphism between two species of brown algae, Fucus vesiculosus and F. spiralis

    Directory of Open Access Journals (Sweden)

    Pearson Gareth A

    2011-01-01

    Full Text Available Abstract Background Hybridization or divergence between sympatric sister species provides a natural laboratory to study speciation processes. The shared polymorphism in sister species may either be ancestral or derive from hybridization, and the accuracy of analytic methods used thus far to derive convincing evidence for the occurrence of present day hybridization is largely debated. Results Here we propose the application of network analysis to test for the occurrence of present day hybridization between the two species of brown algae Fucus spiralis and F. vesiculosus. Individual-centered networks were analyzed on the basis of microsatellite genotypes from North Africa to the Pacific American coast, through the North Atlantic. Two genetic distances integrating different time steps were used, the Rozenfeld (RD; based on alleles divergence and the Shared Allele (SAD; based on alleles identity distances. A diagnostic level of genotype divergence and clustering of individuals from each species was obtained through RD while screening for exchanges through putative hybridization was facilitated using SAD. Intermediate individuals linking both clusters on the RD network were those sampled at the limits of the sympatric zone in Northwest Iberia. Conclusion These results suggesting rare hybridization were confirmed by simulation of hybrids and F2 with directed backcrosses. Comparison with the Bayesian method STRUCTURE confirmed the usefulness of both approaches and emphasized the reliability of network analysis to unravel and study hybridization

  14. Travelling in time with networks: Revealing present day hybridization versus ancestral polymorphism between two species of brown algae, Fucus vesiculosus and F. spiralis.

    Science.gov (United States)

    Moalic, Yann; Arnaud-Haond, Sophie; Perrin, Cécile; Pearson, Gareth A; Serrao, Ester A

    2011-01-31

    Hybridization or divergence between sympatric sister species provides a natural laboratory to study speciation processes. The shared polymorphism in sister species may either be ancestral or derive from hybridization, and the accuracy of analytic methods used thus far to derive convincing evidence for the occurrence of present day hybridization is largely debated. Here we propose the application of network analysis to test for the occurrence of present day hybridization between the two species of brown algae Fucus spiralis and F. vesiculosus. Individual-centered networks were analyzed on the basis of microsatellite genotypes from North Africa to the Pacific American coast, through the North Atlantic. Two genetic distances integrating different time steps were used, the Rozenfeld (RD; based on alleles divergence) and the Shared Allele (SAD; based on alleles identity) distances. A diagnostic level of genotype divergence and clustering of individuals from each species was obtained through RD while screening for exchanges through putative hybridization was facilitated using SAD. Intermediate individuals linking both clusters on the RD network were those sampled at the limits of the sympatric zone in Northwest Iberia. These results suggesting rare hybridization were confirmed by simulation of hybrids and F2 with directed backcrosses. Comparison with the Bayesian method STRUCTURE confirmed the usefulness of both approaches and emphasized the reliability of network analysis to unravel and study hybridization.

  15. Effect of Ocean acidification on growth, calcification and recruitment of calcifying and non-calcifying epibionts of brown algae

    Directory of Open Access Journals (Sweden)

    V. Saderne

    2012-03-01

    Full Text Available Anthropogenic emissions of CO2 are leading to an acidification of the oceans by 0.4 pH units in the course of this century according to the more severe model scenarios. The excess of CO2 could notably affect the benthic communities of calcifiers and macrophytes in different aspects (photosynthesis, respiration and calcification. Seaweeds are key species of nearshore benthic ecosystems of the Baltic Sea. They frequently are the substratum of fouling epibionts like bryozoans and tubeworms. Most of those species secrete calcified structures and could therefore be impacted by the seawater pCO2. On the other hand, the biological activity of the host may substantially modulate the pH and pCO2 conditions in the thallus boundary layer where the epibionts live. The aim of the present study was to test the sensitivity of seaweed macrofouling communities to higher pCO2 concentrations. Fragments of the macroalga Fucus serratus bearing the calcifiers Spirorbis spirorbis (Annelida and Electra pilosa (Bryozoa and the non-calcifier Alcyonidium gelatinosum (Bryozoa were maintained for 30 days under three pCO2 conditions: natural 460 ± 59 μatm and enriched 1193 ± 166 μatm and 3150 ± 446 μatm. Our study showed a significant reduction of growth rates and recruitment of Spirorbis individuals only at the highest pCO2. At a finer temporal resolution, the tubeworm recruits exhibited enhanced calcification of 40% during irradiation hours compared to dark hours, presumably due to the effect of photosynthetic and respiratory activities of the host alga on the carbonate system. Electra colonies showed significantly increased growth rates at 1193 μatm. No effect on Alcyonidium colonies growth rates was observed. Those results suggest a remarkable resistance of the algal macro-epibiontic communities to the

  16. Efficient enzymatic degradation process for hydrolysis activity of the Carrageenan from red algae in marine biomass.

    Science.gov (United States)

    Kang, Dae Hee; Hyeon, Jeong Eun; You, Seung Kyou; Kim, Seung Wook; Han, Sung Ok

    2014-12-20

    Carrageenan is a generic name for a family of polysaccharides obtained from certain species of red algae. New methods to produce useful cost-efficiently materials from red algae are needed to convert enzymatic processes into fermentable sugars. In this study, we constructed chimeric genes cCgkA and cCglA containing the catalytic domain of κ-carrageenase CgkA and λ-carrageenase CglA from Pseudoalteromonas carrageenovora fused with a dockerin domain. Recombinant strains expressing the chimeric carrageenase resulted in a halo formation on the carrageenan plate by alcian blue staining. The recombinant cCgkA and cCglA were assembled with scaffoldin miniCbpA via cohesin and dockerin interaction. Carbohydrate binding module (CBM) in scaffoldin was used as a tag for cellulose affinity purification using cellulose as a support. The hydrolysis process was monitored by the amount of reducing sugar released from carrageenan. Interestingly, these results indicated that miniCbpA, cCgkA and cCglA assembled into a complex and that the dockerin-fused enzymes on the scaffoldin had synergistic activity in the degradation of carrageenan. The observed enhancement of activity by carrageenolytic complex was 3.1-fold-higher compared with the corresponding enzymes alone. Thus, the assemblies of advancement of active enzyme complexes will facilitate the commercial production of useful products from red algae biomass which represents inexpensive and sustainable feed-stocks. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Degradation of Marine Algae-Derived Carbohydrates by Bacteroidetes Isolated from Human Gut Microbiota.

    Science.gov (United States)

    Li, Miaomiao; Shang, Qingsen; Li, Guangsheng; Wang, Xin; Yu, Guangli

    2017-03-24

    Carrageenan, agarose, and alginate are algae-derived undigested polysaccharides that have been used as food additives for hundreds of years. Fermentation of dietary carbohydrates of our food in the lower gut of humans is a critical process for the function and integrity of both the bacterial community and host cells. However, little is known about the fermentation of these three kinds of seaweed carbohydrates by human gut microbiota. Here, the degradation characteristics of carrageenan, agarose, alginate, and their oligosaccharides, by Bacteroides xylanisolvens, Bacteroides ovatus, and Bacteroides uniforms, isolated from human gut microbiota, are studied.

  18. How algae influence sessile marine organisms: The tube worms case of study

    Science.gov (United States)

    Casoli, Edoardo; Bonifazi, Andrea; Ardizzone, Giandomenico; Gravina, Maria Flavia

    2016-09-01

    Tube worms and phytobenthic assemblages in three infralittoral and shallow circalittoral Mediterranean benthic communities developed between 5 and 35 m depth at Punta del Lazzaretto (Giglio Island, Central Thyrrenian sea) were investigated. Despite being three algae-dominated habitats, these displayed different covering both in terms of algal layers and algal morphologies, reflecting different structural organizations. Twenty-eight serpulid taxa have been reported, increasing both diversity and density values from most photophilic to most sciaphilous habitats. Multivariate analyses showed how algal thalli and tube worm assemblages were strongly correlated; substrata are influenced both physically and biologically, providing different conditions for tube worm settlement.

  19. Application of Plackett–Burman design for the high production of some valuable metabolites in marine alga Nannochloropsis oculata

    Directory of Open Access Journals (Sweden)

    Mostafa M. El-Sheekh

    2016-03-01

    Full Text Available Microalgae have efficient nutritional influence to obtain high survival growth and quality of fish larvae and to promote the growth of brine shrimp. In this work the Plackett–Burman statistical design was applied to specify which nutrient factor(s optimize the nutritional contents [protein, carbohydrate, β-carotene, ascorbic acid and free radical scavenging activity (DPPH] in the marine alga Nannochloropsis oculata used in aquaculture to maximize marine hatchery production. N. oculata was cultured on F/2 medium (as control to reach its maximum growth. The obtained results showed that the maximum growth, chlorophyll-a,b and carotenoid contents were attained after 10 days. The contents of all studied parameters in N. oculata grown on the optimized medium after10 days increased significantly (P ⩽ 0.1 than those on control with low concentration of PO4 (2.5 g l−1 and with high concentration of NO3 (112.5 g l−1 except for cell numbers and DPPH. Significant increases in the protein, carbohydrate, ascorbic acid, β-carotene and DPPH in Artemia franciscana enriched with N. oculata cultured on the newly optimized medium were observed.

  20. A light-harvesting siphonaxanthin-chlorophyll a/b-protein complex of marine green alga,Bryopsis corticulans

    Institute of Scientific and Technical Information of China (English)

    CHEN Hui; SHEN Shihua; HE Junfang; LENG Jing; LI Liangbi; KUANG Tingyun

    2004-01-01

    A light-harvesting chlorophyll a/b-protein complex (LHCP) was isolated directly from thylakoid membranes of marine green alga, Bryopsis corticulans, by two consecutive runs of liquid chromatography. The trimeric form of the light-harvesting complex has been obtained by sucrose gradient ultracentrifugation. The result of SDSPAGE shows that the light-harvesting complex is composed of at least five apoproteins in which a protein with apparent molecular weight of about 31 kD was never found in the major light-harvesting complex (LHC Ⅱ) from higher plants.The isolated Bryopsis corticulans light-harvesting complex contains a specific carotenoid, siphonaxanthin, as well as chlorophyll (Chl) a, Chl b, neoxanthin and violaxanthin. Siphonaxanthin which is present in the light-harvesting siphonaxanthin-chlorophyll a/b-protein complex of Bryopsis corticulans is responsible for enhanced absorption in the blue-green region (530 nm). Efficient energy transfer from both siphonaxanthin and Chl b to Chl a in Bryopsis corticulans LHCP, which has similar absorption and fluorescence emission spectra to those of the lutein-chlorophyll a/b-protein of higher plants, proved that molecular arrangement of the light-harvesting pigments was highly ordered in the Bryopsis corticulans LHCP. The siphonaxanthin-chlorophyll a/b-proteins allow enhanced absorption of blue-green light, the predominant light available in deep ocean waters or shaded subtidal marine habitats.

  1. Genomes and virulence factors of novel bacterial pathogens causing bleaching disease in the marine red alga Delisea pulchra.

    Directory of Open Access Journals (Sweden)

    Neil Fernandes

    Full Text Available Nautella sp. R11, a member of the marine Roseobacter clade, causes a bleaching disease in the temperate-marine red macroalga, Delisea pulchra. To begin to elucidate the molecular mechanisms underpinning the ability of Nautella sp. R11 to colonize, invade and induce bleaching of D. pulchra, we sequenced and analyzed its genome. The genome encodes several factors such as adhesion mechanisms, systems for the transport of algal metabolites, enzymes that confer resistance to oxidative stress, cytolysins, and global regulatory mechanisms that may allow for the switch of Nautella sp. R11 to a pathogenic lifestyle. Many virulence effectors common in phytopathogenic bacteria are also found in the R11 genome, such as the plant hormone indole acetic acid, cellulose fibrils, succinoglycan and nodulation protein L. Comparative genomics with non-pathogenic Roseobacter strains and a newly identified pathogen, Phaeobacter sp. LSS9, revealed a patchy distribution of putative virulence factors in all genomes, but also led to the identification of a quorum sensing (QS dependent transcriptional regulator that was unique to pathogenic Roseobacter strains. This observation supports the model that a combination of virulence factors and QS-dependent regulatory mechanisms enables indigenous members of the host alga's epiphytic microbial community to switch to a pathogenic lifestyle, especially under environmental conditions when innate host defence mechanisms are compromised.

  2. Quorum Sensing Inhibition by Asparagopsis taxiformis, a Marine Macro Alga: Separation of the Compound that Interrupts Bacterial Communication

    Directory of Open Access Journals (Sweden)

    Anton Hartmann

    2013-01-01

    Full Text Available The majority of the marine algal species, though completing their life cycle in seawater, are rarely susceptible to fouling, making them an important source of quorum sensing (QS inhibitory substances. The separation and characterization of QS inhibitors are crucial for any potential application. Thirty marine macroalgae were tested for QS inhibition activity by using Chromobacterium violaceum CV026 as the reporter strain, and among them, Asparagopsis taxiformis showed antibacterial, as well as antiquorum, sensing activities. Cinnamaldehyde (75 mM and methanol were used as positive and negative controls, respectively. The antiquorum sensing activity of A. taxiformis was further confirmed using the sensor strain, Serratia liquefaciens MG44, having green fluorescent protein (gfp. Methanolic extract of the alga was fractionated by solid phase extraction (SPE, and each fraction was tested for QS inhibition. Two types of activities were observed—zone of clearance (antibacterial activity and zone of inhibition with or without finger-like projections (QS inhibition. Out of five SPE cartridges, Bond Elut PH showed clear separation of these two fractions. The Ion Cyclotron Resonance Fourier Transformation Mass Spectrometer (ICR-FT/MS analysis of the fractions further supported the bioassay results. The presence of strong QS inhibitory compound in A. taxiformis indicates its potential use in antifouling preparations.

  3. Identifying the interacting roles of stressors in driving the global loss of canopy-forming to mat-forming algae in marine ecosystems.

    Science.gov (United States)

    Strain, Elisabeth M A; Thomson, Russell J; Micheli, Fiorenza; Mancuso, Francesco P; Airoldi, Laura

    2014-11-01

    Identifying the type and strength of interactions between local anthropogenic and other stressors can help to set achievable management targets for degraded marine ecosystems and support their resilience by identifying local actions. We undertook a meta-analysis, using data from 118 studies to test the hypothesis that ongoing global declines in the dominant habitat along temperate rocky coastlines, forests of canopy-forming algae and/or their replacement by mat-forming algae are driven by the nonadditive interactions between local anthropogenic stressors that can be addressed through management actions (fishing, heavy metal pollution, nutrient enrichment and high sediment loads) and other stressors (presence of competitors or grazers, removal of canopy algae, limiting or excessive light, low or high salinity, increasing temperature, high wave exposure and high UV or CO2 ), not as easily amenable to management actions. In general, the cumulative effects of local anthropogenic and other stressors had negative effects on the growth and survival of canopy-forming algae. Conversely, the growth or survival of mat-forming algae was either unaffected or significantly enhanced by the same pairs of stressors. Contrary to our predictions, the majority of interactions between stressors were additive. There were however synergistic interactions between nutrient enrichment and heavy metals, the presence of competitors, low light and increasing temperature, leading to amplified negative effects on canopy-forming algae. There were also synergistic interactions between nutrient enrichment and increasing CO2 and temperature leading to amplified positive effects on mat-forming algae. Our review of the current literature shows that management of nutrient levels, rather than fishing, heavy metal pollution or high sediment loads, would provide the greatest opportunity for preventing the shift from canopy to mat-forming algae, particularly in enclosed bays or estuaries because of the

  4. Vulnerability of marine habitats to the invasive green alga Caulerpa racemosa var. cylindracea within a marine protected area

    OpenAIRE

    2010-01-01

    Abstract The relative vulnerability of various habitat types to Caulerpa racemosa var. cylindracea invasion was investigated in the National Marine Park of Zakynthos (Ionian Sea, Greece). The density of C. racemosa fronds was modelled with generalized additive models for location, scale and shape (GAMLSS), based on an information theory approach. The species was present in as much as 33% of 748 randomly placed quadrats, which documents its aggressive establishment in the area. The ...

  5. Isolation of fucoidan from Sargassum polycystum brown algae: Structural characterization, in vitro antioxidant and anticancer activity.

    Science.gov (United States)

    Palanisamy, Subramanian; Vinosha, Manoharan; Marudhupandi, Thangapandi; Rajasekar, Periyannan; Prabhu, Narayanan Marimuthu

    2017-04-08

    In this study antioxidant and anticancer effect of fucoidan isolated from brown seaweed Sargassum polycystum was investigated. The total yield of fucoidan was 4.51±0.24%, of these, 46.8% of fucose and 22.35±0.23% of sulphate respectively. The structural characteristic of fucoidan was analyzed by fourier transform infrared spectroscopy and nuclear magnatic resonance. The antioxidant properties were determined by DPPH scavenging, reducing power and total antioxidant assays. The maximum DPPH scavenging activity (61.2±0.33%), reducing ability (67.56±0.26%) and total antioxidant activity (65.3± 0.66%) were obtained at 1000μg/ml of fucoidan. The cytotoxicity effect of fucoidan showed a higher percentage (90.4±0.25%) of inhibition against the MCF-7cell line at 150μg/ml with an estimated IC50 at 50μg/ml. Further, cytomorphological and apoptosis changes of fucoidan treated cells were observed under inverted light microscope and confocal laser scanning microscope (CLSM). The results demonstrated that the isolated fucoidan from S. polycystum possessed potent antioxidant and anticancer properties.

  6. Influence of the extraction-purification conditions on final properties of alginates obtained from brown algae (Macrocystis pyrifera).

    Science.gov (United States)

    Gomez, César G; Pérez Lambrecht, María V; Lozano, Jorge E; Rinaudo, Marguerite; Villar, Marcelo A

    2009-05-01

    In this work, three methods (ethanol, HCl, and CaCl(2) routes) of sodium alginate extraction-purification from brown seaweeds (Macrocystis pyrifera) were used in order to study the influence of process conditions on final properties of the polymer. In the CaCl(2) route, was found that the precipitation step in presence of calcium ions followed by proton-exchange in acid medium clearly gives alginates with the lowest molecular weight and poor mechanical properties. It is well known that the acid treatment degrade the ether bonds on the polymeric chain. Ethanol route displayed the best performance, where the highest yield and rheological properties were attained with the lowest number of steps. Although the polymer I.1 showed a molar mass and polydispersity index (M(w)/M(n)) similar to those of commercial sample, its mechanical properties were lower. This performance is related to the higher content of guluronic acid in the commercial alginate, which promotes a more successful calcium chelation. Moreover, the employment of pH 4 in the acid pre-treatment improved the yield of the ethanol route, avoiding the ether linkage hydrolysis. Therefore, samples I.2 and I.3 displayed a higher M(w) and a narrower distribution of molecular weights than commercial sample, which gave a higher viscosity and better viscoelastic properties.

  7. Fed-batch cultivation of the docosahexaenoic-acid-producing marine alga Crypthecodinium cohnii on ethanol

    NARCIS (Netherlands)

    Swaaf, de M.E.; Pronk, J.T.; Sijtsma, L.

    2003-01-01

    The heterotrophic marine microalga Crypthecodinium cohnii produces docosahexaenoic acid (DHA), a polyunsaturated fatty acid with food and pharmaceutical applications. So far, DHA production has been studied with glucose and acetic acid as carbon sources. This study investigates the potential of etha

  8. Isolation of porphyran-degrading marine microorganisms from the surface of red alga, Porphyra yezoensis.

    Science.gov (United States)

    Yoshimura, Takashi; Tsuge, Keisuke; Sumi, Toshihisa; Yoshiki, Masahiro; Tsuruta, Yumi; Abe, Shin-ichi; Nishino, Shiduo; Sanematsu, Seigo; Koganemaru, Kazuyoshi

    2006-04-01

    Marine microorganisms degrading porphyran (POR) were found on the surface of thalli of Porphyra yezoensis. Fifteen crude microorganism groups softened and liquefied the surface of agar-rich plate medium. Among these, 11 microorganism groups degraded porphyran that consisted of sulfated polysaccharide in Porphyra yezoensis. Following isolation, 7 POR-degradable microorganisms were isolated from the 11 POR-degradable microorganism groups.

  9. Preparation and Evaluation of the Chelating Nanocomposite Fabricated with Marine Algae Schizochytrium sp. Protein Hydrolysate and Calcium.

    Science.gov (United States)

    Lin, Jiaping; Cai, Xixi; Tang, Mengru; Wang, Shaoyun

    2015-11-11

    Marine algae have been becoming a popular research topic because of their biological implication. The algae peptide-based metal-chelating complex was investigated in this study. Schizochytrium sp. protein hydrolysate (SPH) possessing high Ca-binding capacity was prepared through stepwise enzymatic hydrolysis to a degree of hydrolysis of 22.46%. The nanocomposites of SPH chelated with calcium ions were fabricated in aqueous solution at pH 6 and 30 °C for 20 min, with the ratio of SPH to calcium 3:1 (w/w). The size distribution showed that the nanocomposite had compact structure with a radius of 68.16 ± 0.50 nm. SPH was rich in acidic amino acids, accounting for 33.55%, which are liable to bind with calcium ions. The molecular mass distribution demonstrated that the molecular mass of SPH was principally concentrated at 180-2000 Da. UV scanning spectroscopy and Fourier transform infrared spectroscopy suggested that the primary sites of calcium-binding corresponded to the carboxyl groups, carbonyl groups, and amino groups of SPH. The results of fluorescent spectroscopy, size distribution, atomic force microscope, and (1)H nuclear magnetic resonance spectroscopy suggested that calcium ions chelated with SPH would cause intramolecular and intermolecular folding and aggregating. The SPH-calcium chelate exerted remarkable stability and absorbability under either acidic or basic conditions, which was in favor of calcium absorption in the gastrointestinal tracts of humans. The investigation suggests that SPH-calcium chelate has the potential prospect to be utilized as a nutraceutical supplement to improve bone health in the human body.

  10. Analysis of expressed sequence tags of a marine red alga,Gracilaria lemaneiformis

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The expressed sequence tags (EST) has been proved to be a useful tool for discovering and identifying functional genes, especially in some species whose genetic information is unavailable. A total of 180 ESTs have been generated from a cDNA library of gametophytic Gracilaria lemaneiformis in this study. These clones are clustered into 151 groups, among which 8 groups are highly homologous to chloroplast genes and are abundant in the library. After searching for matches in the EST database of red alga, 22 groups are found to match with the registered ESTs of Rhodophyta and 6 with Gracilaria. Searching in the protein database reveal that 73 non-redundant clones have significant similarity to some known sequences, the majority of which are involved in photosynthesis, DNA transcription or translation, and 6, 4 and 3 clones are associated with growth or development, signal transduction and stress or defense response, respectively.

  11. Phylogenetic relationship and antifouling activity of bacterial epiphytes from the marine alga Ulva lactuca.

    Science.gov (United States)

    Egan, S; Thomas, T; Holmström, C; Kjelleberg, S

    2000-06-01

    It is widely accepted that bacterial epiphytes can inhibit the colonization of surfaces by common fouling organisms. However, little information is available regarding the diversity and properties of these antifouling bacteria. This study assessed the antifouling traits of five epiphytes of the common green alga, Ulva lactuca. All isolates were capable of preventing the settlement of invertebrate larvae and germination of algal spores. Three of the isolates also inhibited the growth of a variety of bacteria and fungi. Their phylogenetic positions were determined by 16S ribosomal subunit DNA sequencing. All isolates showed a close affiliation with the genus Pseudoalteromonas and, in particular, with the species P. tunicata. Strains of this bacterial species also display a variety of antifouling activities, suggesting that antifouling ability may be an important trait for members of this genus to be highly successful colonizers of animate surfaces and for such species to protect their host against fouling.

  12. Screening and isolation of the algicidal compounds from marine green alga Ulva intestinalis

    Science.gov (United States)

    Sun, Xue; Jin, Haoliang; Zhang, Lin; Hu, Wei; Li, Yahe; Xu, Nianjun

    2016-07-01

    Twenty species of seaweed were collected from the coast of Zhejiang, China, extracted with ethanol, and screened for algicidal activity against red tide microalgae Heterosigma akashiwo and Prorocentrum micans. Inhibitory effects of fresh and dried tißsues of green alga Ulva intestinalis were assessed and the main algicidal compounds were isolated, purified, and identified. Five seaweed species, U. intestinalis, U. fasciata, Grateloupia romosissima, Chondria crassicaulis, and Gracilariopsis lemaneiformis, were investigated for their algicidal activities. Fresh tissues of 8.0 and 16.0 mg/mL of U. intestinalis dissolved in media significantly inhibited growth of H. akashiwo and P. micans, respectively. Dried tissue and ethyl acetate (EtOAc) extracts of U. intestinalis at greater than 1.2 and 0.04 mg/mL, respectively, were fatal to H. akashiwo, while its water and EtOAc extracts in excess of 0.96 and 0.32 mg/mL, respectively, were lethal to P. micans. Three algicidal compounds in the EtOAc extracts were identified as 15-ethoxy-(6z,9z,12z)-hexadecatrienoic acid (I), (6E,9E,12E)-(2-acetoxy- β-D-glucose)-octadecatrienoic acid ester (II) and hexadecanoic acid (III). Of these, compound II displayed the most potent algicidal activity with IC50 values of 4.9 and 14.1 µg/mL for H. akashiwo and P. micans, respectively. Compound I showed moderate algicidal activity with IC50 values of 13.4 and 24.7 µg/mL for H. akashiwo and P. micans, respectively. These findings suggested that certain macroalgae or products therefrom could be used as effective biological control agents against red tide algae.

  13. The anti-allergic activity of polyphenol extracted from five marine algae

    Science.gov (United States)

    Chen, Yu; Lin, Hong; Li, Zhenxing; Mou, Quangui

    2015-08-01

    Natural polyphenol has been widely believed to be effective in allergy remission. Currently, most of the natural polyphenol products come from terrestrial sources such as tea, grape seeds among others, and few polyphenols have been developed from algae for their anti-allergic activity. The aim of the study was to screen some commercial seaweed for natural extracts with anti-allergic activity. Five algae including Laminaria japonica, Porphyra sp., Spirulina platensis, Chlorella pyrenoidosa and Scytosiphon sp. were extracted with ethanol, and the extracts were evaluated for total polyphenol contents and anti-allergic activity with the hyaluronidase inhibition assay. Results showed that the total polyphenol contents in the ethanol extracts ranged from 1.67% to 8.47%, while the highest was found in the extract from Scytosiphon sp. Hyaluronidase inhibition assay showed that the extracts from Scytosiphon sp. had the lowest IC50, 0.67 mg mL-1, while Chlorella pyrenoidosa extract had the highest IC50, 15.07 mg mL-1. The anti-allergic activity of Scytosiphon sp. extract was even higher than the typical anti-allergic drug Disodium Cromoglycate (DSCG) (IC50 = 1.13 mg mL-1), and was similar with natural polyphenol from Epigallocatechin gallate (EGCG) (IC50 = 0.56 mg mL-1). These results indicated that the ethanol extract of Scytosiphon sp. contains a high concentration of polyphenol with high anti-allergic activity. Potentially Scytosiphon sp. can be developed to a natural anti-allergic compound for allergy remission.

  14. Photographic images of benthic coral, algae and invertebrate species in marine habitats and subhabitats around offshore islets in the main Hawaiian Islands, April 2 - September 20, 2007 (NODC Accession 0043046)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The marine algae, invertebrate and fish communities were surveyed at ten islet or offshore island sites in the Main Hawaiian Islands in the vicinity of Lanai, (Puu...

  15. ANTIBACTERIAL ACTIVITY OF BENTHIC MARINE ALGAE EXTRACTS FROM THE MEDITERRANEAN COAST OF MOROCCO

    Directory of Open Access Journals (Sweden)

    Hanaâ Zbakh

    2012-08-01

    Full Text Available Marine organisms are potentially prolific sources of highly bioactive secondary metabolites that might represent useful leads in the development of new pharmaceutical agents. The Moroccan marine biodiversity including macroalgae remains partially unexplored in term of their potential bioactivities. Antibacterial activity of methanolic extracts from 20 species of macroalgae (9 Chlorophyta, 3 Phaeophyta and 8 Rhodophyta collected from Moroccan Mediterranean coasts was evaluated against Escherichia coli, Staphylococcus aureus and Enterococcus faecalis. The extracts of the studied Rhodophyceae inhibited considerably the growth of the three tested bacterial strains and gave inhibition zones between 20 and 24 mm. The results indicate that these species of seaweed present a significant capacity of antibacterial activities, which makes them interesting for screening for natural products.

  16. Statistical significance of biomonitoring of marine algae for trace metal levels in a coral environment

    Digital Repository Service at National Institute of Oceanography (India)

    Gopinath, A.; Muraleedharan, N.S.; Chandramohanakumar, N.; Jayalakshmy, K.V.

    , which may limit algal growth (Lobban et al., 1985). It is found that tropical seaweeds tend to accumulate more Fe than Mn, Zn and Cu (Ganesan, et al., 1991). In temperate regions, uptake of Zn is less because of reduction of photosynthesis due to short..., UK Clijsters, H., and van Assche, F. 1985. Inhibition of photosynthesis by heavy metals. Photosynthetic Research 7: 31-40. Eisler, R. 1981. Trace Metal Concentration in Marine Organisms. Pergamon Press: New York. FAO, 1983. Compilation of legal...

  17. New α-Glucosidase Inhibitory Triterpenic Acid from Marine Macro Green Alga Codium dwarkense Boergs

    Directory of Open Access Journals (Sweden)

    Liaqat Ali

    2015-07-01

    Full Text Available The marine ecosystem has been a key resource for secondary metabolites with promising biological roles. In the current study, bioassay-guided phytochemical investigations were carried out to assess the presence of enzyme inhibitory chemical constituents from the methanolic extract of marine green alga—Codium dwarkense. The bioactive fractions were further subjected to chromatographic separations, which resulted in the isolation of a new triterpenic acid; dwarkenoic acid (1 and the known sterols; androst-5-en-3β-ol (2, stigmasta-5,25-dien-3β,7α-diol (3, ergosta-5,25-dien-3β-ol (4, 7-hydroxystigmasta-4,25-dien-3-one-7-O-β-d-fucopyranoside (5, 7-hydroxystigmasta-4,25-dien-3-one (6, and stigmasta-5,25-dien-3β-ol (7. The structure elucidation of the new compound was carried out by combined mass spectrometry and 1D (1H and 13C and 2D (HSQC, HMBC, COSY, and NOESY NMR spectroscopic data. The sub-fractions and pure constituents were assayed for enzymatic inhibition of alpha-glucosidase. Compound 1 showed significant inhibition at all concentrations. Compounds 2, 3, 5, and 7 exhibited a dose-dependent response, whereas compounds 4–6 showed moderate inhibition. Utilizing such marine-derived biological resources could lead to drug discoveries related to anti-diabetics.

  18. Molecular Characterization of a New Lectin from the Marine Alga Ulva pertusa

    Institute of Scientific and Technical Information of China (English)

    Sheng WANG; Fu-Di ZHONG; Yong-Jiang ZHANG; Zu-Jian WU; Qi-Ying LIN; Lian-Hui XIE

    2004-01-01

    A new lectin, named UPL1, was purified from a green alga Ulvapertusa by an affinitychromatography on the bovine-thyroglobulin-Sepharose 4B column. The molecular mass of the algal lectinwas about 23 kD by SDS-PAGE, and it specifically agglutinated rabbit erythrocytes. The hemagglutinatingactivity for rabbit erythrocytes could be inhibited by bovine thyroglobulin and N-acetyl-D-glucosamine. Thelectin UPL1 required divalent cations for maintenance of its biological activity, and was heat-stable, and hadhigher activity within pH 6-8. The N-terminal amino acid sequence of the purified lectin was determined(P83209) and a set of degenerate primers were designed. The full-length cDNA of the lectin was cloned byrapid amplification of cDNA ends (RACE) method (AY433960). Sequence analysis of upl1 indicated it was1084 bp long, and encoded a premature protein of 203 amino acids. The N-terminal sequence of the matureUPL1 polypeptide started at amino acid 54 of the deduced sequence from the cDNA, indicating 53 aminoacids lost due to posttranslational modification. The primary structure of the Ulvapertusa lectin did not showamino acid sequence similarity with known plant and animal lectins. Hence, this protein may be the paradigmof a novel lectin family.

  19. Molecular Characterization of a New Lectin from the Marine Alga Ulva pertusa

    Institute of Scientific and Technical Information of China (English)

    ShengWANG; Fu-DiZHONG; Yong-JiangZHANG; Zu-JianWU; Qi-YingLIN; Lian-HuiXIE

    2004-01-01

    A new lectin, named UPL1, was purified from a green alga Ulvapertusa by an affinitychromatography on the bovine-thyroglobulin-Sepharose 4B column. The molecular mass of the algal lectinwas about 23 kD by SDS-PAGE, and it specifically agglutinated rabbit erythrocytes. The hemagglutinatingactivity for rabbit erythrocytes could be inhibited by bovine thyroglobulin and N-acetyl-D-glucosamine. Thelectin UPL1 required divalent cations for maintenance of its biological activity, and was heat-stable, and hadhigher activity within pH 6-8. The N-terminal amino acid sequence of the purified lectin was determined(P83209) and a set of degenerate primers were designed. The full-length cDNA of the lectin was cloned byrapid amplification ofcDNA ends (RACE) method (AY433960). Sequence analysis of upll indicated it was! 084 bp long, and encoded a premature protein of 203 amino acids. The N-terminal sequence of the matureUPL1 polypeptide started at amino acid 54 of the deduced sequence from the cDNA, indicating 53 aminoacids lost due to posttranslational modification. The primary structure of the Ulva pertusa lectin did not showamino acid sequence similarity with known plant and animal lectins. Hence, this protein may be the paradigmof a novel lectin family.

  20. Detection of Genetic Variations in Marine Algae Ulva lactuca (Chlorophyta Induced by Heavy Metal Pollutants

    Directory of Open Access Journals (Sweden)

    Basel Saleh

    2015-09-01

    Full Text Available Ulva lactuca (Chlorophyta green macroalgae has been successfully used as bioindicator for heavy metals pollution in ecosystems. Random amplified microsatellite polymorphism (RAMP marker was employed to investigate genetic DNA pattern variability in green U. lactuca 5 days after exposure to Cu, Pb, Cd and Zn heavy metals stress. Genomic template stability (GTS% value was employed as a qualitative DNA changes measurement based on RAMP technique. In this respect, estimated GTS% value was recorded to be 65.215, 64.630, 59.835 and 59.250% for Pb, Cu, Cd and Zn treatment, respectively. Moreover, genetic similarity (GS induced by the above heavy metals was also evaluated to measure genetic distance between algae treated plants and their respective control. In this respect, estimated GS values generated by RAMP marker ranged between 0.576 (between control and Zn treatment - 0.969 (for both case; between Pb and Cu and between Cd and Zn treatment with an average of 0.842. Based upon data presented herein based on variant bands number (VB, GTS% and GS values; the present study could be suggested that Pb and Cu followed similar tendency at genomic DNA changes. Similar finding was also observed with Cd and Zn ions. Thereby, RAMP marker successfully highlighted DNA change patterns induced by heavy metals stress.

  1. Transcriptome Profiling Reveals the Antitumor Mechanism of Polysaccharide from Marine Algae Gracilariopsis lemaneiformis.

    Directory of Open Access Journals (Sweden)

    Yani Kang

    Full Text Available Seaweed is one of the important biomass producers and possesses active metabolites with potential therapeutic effects against tumors. The red alga Gracilariopsis lemaneiformis (Gp. lemaneiformis possesses antitumor activity, and the polysaccharide of Gp. lemaneiformis (PGL has been demonstrated to be an ingredient with marked anticancer activity. However, the anticancer mechanism of PGL remains to be elucidated. In this study, we analyzed the inhibitory effect of PGL on the cell growth of 3 human cancer cell lines and found that PGL inhibited cell proliferation, reduced cell viability, and altered cell morphology in a time- and concentration-dependent manner. Our transcriptome analysis indicates that PGL can regulate the expression of 758 genes, which are involved in apoptosis, the cell cycle, nuclear division, and cell death. Furthermore, we demonstrated that PGL induced apoptosis and cell cycle arrest and modulated the expression of related genes in the A549 cell line. Our work provides a framework to understand the effects of PGL on cancer cells, and can serve as a resource for delineating the antitumor mechanisms of Gp. lemaneiformis.

  2. Identification of novel oxidized levuglandin D2 in marine red alga and mouse tissue[S

    Science.gov (United States)

    Kanai, Yoshikazu; Hiroki, Sadahiko; Koshino, Hiroyuki; Konoki, Keiichi; Cho, Yuko; Cayme, Mirriam; Fukuyo, Yasuo; Yotsu-Yamashita, Mari

    2011-01-01

    In animals, the product of cyclooxygenase reacting with arachidonic acid, prostaglandin(PG)H2, can undergo spontaneous rearrangement and nonenzymatic ring cleavage to form levuglandin(LG)E2 and LGD2. These LGs and their isomers are highly reactive γ-ketoaldehydes that form covalent adducts with proteins, DNA, and phosphatidylethanolamine in cells. Here, we isolated a novel oxidized LGD2 (ox-LGD2) from the red alga Gracilaria edulis and determined its planar structure. Additionally, ox-LGD2 was identified in some tissues of mice and in the lysate of phorbol-12-myristate-13-acetate (PMA)-treated THP-1 cells incubated with arachidonic acid using LC-MS/MS. These results suggest that ox-LGD2 is a common oxidized metabolite of LGD2. In the planar structure of ox-LGD2, H8 and H12 of LGD2 were dehydrogenated and the C9 aldehyde was oxidized to a carboxylic acid, which formed a lactone ring with the hydrated ketone at C11. These structural differences imply that ox-LGD2 is less reactive with amines than LGs. Therefore, ox-LGD2 might be considered a detoxification metabolite of LGD2. PMID:21893678

  3. Interactions of marine mammals and birds with offshore membrane enclosures for growing algae (OMEGA).

    Science.gov (United States)

    Hughes, Stephanie N; Tozzi, Sasha; Harris, Linden; Harmsen, Shawn; Young, Colleen; Rask, Jon; Toy-Choutka, Sharon; Clark, Kit; Cruickshank, Marilyn; Fennie, Hamilton; Kuo, Julie; Trent, Jonathan D

    2014-01-01

    OMEGA is an integrated aquatic system to produce biofuels, treat and recycle wastewater, capture CO2, and expand aquaculture production. This system includes floating photobioreactors (PBRs) that will cover hundreds of hectares in marine bays. To assess the interactions of marine mammals and birds with PBRs, 9 × 1.3 m flat panel and 9.5 × 0.2 m tubular PBRs were deployed in a harbor and monitored day and night from October 10, 2011 to Janurary 22, 2012 using infrared video. To observe interactions with pinnipeds, two trained sea lions (Zalophus californianus) and one trained harbor seal (Phoca vitulina richardii) were observed and directed to interact with PBRs in tanks. To determine the forces required to puncture PBR plastic and the effects of weathering, Instron measurements were made with a sea otter (Enhydra lutris) tooth and bird beaks. A total of 1,445 interactions of marine mammals and birds with PBRs were observed in the 2,424 hours of video recorded. The 95 marine mammal interactions, 94 by sea otters and one by a sea lion had average durations of three minutes (max 44 min) and represented about 1% of total recording time. The 1,350 bird interactions, primarily coots (Fulica americana) and gulls (Larus occidentalis and L. californicus) had average durations of six minutes (max. 170) and represented 5% of recording time. Interactive behaviors were characterized as passive (feeding, walking, resting, grooming, and social activity) or proactive (biting, pecking, investigating, and unspecified manipulating). Mammal interactions were predominantly proactive, whereas birds were passive. All interactions occurred primarily during the day. Ninety-six percent of otter interactions occurred in winter, whereas 73% of bird interactions in fall, correlating to their abundance in the harbor. Trained pinnipeds followed most commands to bite, drag, and haul-out onto PBRs, made no overt undirected interactions with the PBRs, but showed avoidance behavior to PBR

  4. MF/UF rejection and fouling potential of algal organic matter from bloom-forming marine and freshwater algae

    KAUST Repository

    Villacorte, Loreen O.

    2015-07-01

    Pretreatment with microfiltration (MF) or ultrafiltration (UF) membranes has been proposed for seawater reverse osmosis (SWRO) plants to address operational issues associated with algal blooms. Here, we investigated the MF/UF rejection and fouling potential of algal organic matter (AOM) released by common species of bloom-forming marine (Alexandrium tamarense and Chaetoceros affinis) and freshwater (Microcystis sp.) algae. Batch culture monitoring of the three algal species illustrated varying growth pattern, cell concentration, AOM released and membrane fouling potential. The high membrane fouling potential of the cultures can be directly associated (R2>0.85) with AOM such as transparent exopolymer particle (TEP) while no apparent relationship with algal cell concentration was observed. The AOM comprised mainly biopolymers (e.g., polysaccharides and proteins) and low molecular weight organic compounds (e.g., humic-like substances). The former were largely rejected by MF/UF membranes while the latter were poorly rejected. MF (0.4μm and 0.1μm pore size) rejected 14%-56% of biopolymers while conventional UF (100kDa) and tight UF (10kDa) rejected up to 83% and 97%, respectively. The retention of AOM resulted in a rapid increase in trans-membrane pressure (δP) over time, characterised by pore blocking followed by cake filtration with enhanced compression as illustrated by an exponential progression of δP. © 2015 Elsevier B.V.

  5. Human sperm motility stimulating activity of a sulfono glycolipid isolated from Sri Lankan marine red alga Gelidiella acerosa

    Institute of Scientific and Technical Information of China (English)

    G. A.S. Premakumara; W.D. Ratnasooriya; L.M.V. Tillekeratne; A. S. Amarasekare; Atta-Ur-Rahman

    2001-01-01

    To evaluate the sperm motility stimulating activity of a sulfono glycolipid (S-ACT-l) isolated from Gelidiella acerosa, a Sri Lankan marine red algae. Methods: S-ACT-l, a white amorphous powder was separated from more polar fractions of the hexane soluble of 1:1 CH2Cl2/MeOH extract and subjected to 1H, 1 3C NMR and IR Spectroscopy after reverse phase HPLC for identification. Effects of S-ACT-1 on human sperm motility was assessed in vitro at 10,100 and 1000μg/Ml concentrations at 37℃ for 0, 5, 15, 30 and 60 min. Results: S-ACT-1 was identified as a glycolipid sulfate. The lower dose increased the sperm motility slightly, whilst the medium dose significantly increased the motility ( P < 0.05) from 5 min of incubation reaching a peak at 15 min and the stimulant effect was sustained throughout the experimental period. Furthermore, the medium dose rendered 80% of the immotile viable sperm motile.In contrast, the highest dose impaired the sperm motility. The sperm stimulating activity of S-ACT-1 was dose-depen dent and had a bell-shaped dose response curve for all the 5 incubation periods. Conclusion: S-ACT-1 of Gelidiella acerosa is a Sulfono glycolipid. S-ACT-1 has a potent sperm motility stimulating activity in vitro and has the potential to be developed into a sperm stimulant.

  6. Preparation and certification of hijiki reference material, NMIJ CRM 7405-a, from the edible marine algae hijiki (Hizikia fusiforme).

    Science.gov (United States)

    Narukawa, Tomohiro; Inagaki, Kazumi; Zhu, Yanbei; Kuroiwa, Takayoshi; Narushima, Izumi; Chiba, Koichi; Hioki, Akiharu

    2012-02-01

    A certified reference material, NMIJ CRM 7405-a, for the determination of trace elements and As(V) in algae was developed from the edible marine hijiki (Hizikia fusiforme) and certified by the National Metrology Institute of Japan (NMIJ), the National Institute of Advanced Industrial Science and Technology (AIST). Hijiki was collected from the Pacific coast in the Kanto area of Japan, and was washed, dried, powdered, and homogenized. The hijiki powder was placed in 400 bottles (ca. 20 g each). The concentrations of 18 trace elements and As(V) were determined by two to four independent analytical techniques, including (ID)ICP-(HR)MS, ICP-OES, GFAAS, and HPLC-ICP-MS using calibration solutions prepared from the elemental standard solution of Japan calibration service system (JCSS) and the NMIJ CRM As(V) solution, and whose concentrations are certified and SI traceable. The uncertainties of all the measurements and preparation procedures were evaluated. The values of 18 trace elements and As(V) in the CRM were certified with uncertainty (k = 2).

  7. Evaluation of the Marine Algae Gracilaria and its Activated Carbon for the Adsorption of Ni(II from Wastewater

    Directory of Open Access Journals (Sweden)

    A. Esmaeili

    2011-01-01

    Full Text Available The batch removal of Ni2+ from aqueous solution and wastewater using marine dried (MD red algae Gracilaria and its activated carbon (AC was studied. For these experiments, adsorption of Ni2+ was used to form two biomasses of AC and MD. Both methods used different pH values, biomass and initial concentration of Ni2+. Subsequently adsorption models and kinetic studies were carried out. The maximum efficiencies of Ni2+ removal were 83.55% and 99.04% for MD and AC respectively developed from it. The experimental adsorption data were fitted to the Langmuir adsorption model. The nickel(II uptake by the biosorbents was best described by pseudo-second order rate model. The kinetic studies showed that the heavy metal uptake was observed more rapidly by the AC with compared to MD. AC method developed from MD biomass exhibited higher biosorption capacity. Adsorption capacity is related to the pH of solution, pH 5.0 is optimal for nickel. The maximum efficiencies of Ni2+ removal were for AC method. The capacity is related to the pH of solution, pH 5.0 is optimal for nickel. The equilibrium adsorption data are correlated by Langmuir isotherm equation. The adsorption kinetic data can be described by the second order kinetic models

  8. Integrative Monitoring of Marine and Freshwater Harmful Algae in Washington State for Public Health Protection

    Directory of Open Access Journals (Sweden)

    Vera L. Trainer

    2015-04-01

    Full Text Available The more frequent occurrence of both marine and freshwater toxic algal blooms and recent problems with new toxic events have increased the risk for illness and negatively impacted sustainable public access to safe shellfish and recreational waters in Washington State. Marine toxins that affect safe shellfish harvest in the state are the saxitoxins that cause paralytic shellfish poisoning (PSP, domoic acid that causes amnesic shellfish poisoning (ASP and the first ever US closure in 2011 due to diarrhetic shellfish toxins that cause diarrhetic shellfish poisoning (DSP. Likewise, the freshwater toxins microcystins, anatoxin-a, cylindrospermopsins, and saxitoxins have been measured in state lakes, although cylindrospermopsins have not yet been measured above state regulatory guidance levels. This increased incidence of harmful algal blooms (HABs has necessitated the partnering of state regulatory programs with citizen and user-fee sponsored monitoring efforts such as SoundToxins, the Olympic Region Harmful Algal Bloom (ORHAB partnership and the state’s freshwater harmful algal bloom passive (opportunistic surveillance program that allow citizens to share their observations with scientists. Through such integrated programs that provide an effective interface between formalized state and federal programs and observations by the general public, county staff and trained citizen volunteers, the best possible early warning systems can be instituted for surveillance of known HABs, as well as for the reporting and diagnosis of unusual events that may impact the future health of oceans, lakes, wildlife, and humans.

  9. Effect of Morphology of ZnO Nanostructures on Their Toxicity to Marine Algae

    Energy Technology Data Exchange (ETDEWEB)

    Peng, X.; Wong, S.; Palma, S.; Fisher, N.S.

    2011-04-01

    The influence of ZnO nanoparticle morphology on its toxicity for marine diatoms was evaluated. Four ZnO nanoparticle motifs, possessing distinctive sizes and shapes, were synthesized without adding surfactants. Diameters of ZnO spheres ranged from 6.3 nm to 15.7 nm, and lengths of rod-shaped particles were 242 nm to 862 nm. Their effects on the growth of the marine diatoms, Thalassiosira pseudonana, Chaetoceros gracilis, and Phaeodactylum tricornutum, were determined in laboratory cultures. Between 4.1 and 4.9% of the Zn from all types of nanoparticles dissolved within 72 h and was neither concentration dependent nor morphology dependent. Addition of all nanoparticles at all concentrations tested stopped growth of T. pseudonana and C. gracilis, whereas P. tricornutum was the least sensitive, with its growth rate inversely proportional to nanoparticle concentration. Bioaccumulation of Zn released from nanoparticles in T. pseudonana was sufficient to kill this diatom. The toxicity of rod-shaped particles to P. triocornutum was noted to be greater than that of the spheres. The overall results suggest that toxicity studies assessing the effects of nanoparticles on aquatic organisms need to consider both the dissolution of these particles and the cellular interaction of nanoparticle aggregates.

  10. Cultivation of macroscopic marine algae and freshwater aquatic weeds. Progress report, May 1-December 31, 1978

    Energy Technology Data Exchange (ETDEWEB)

    Ryther, J. H.

    1979-01-01

    Studies were continued during 1977 to 1978 on the growth and yields in culture of the red seaweed Gracilaria tikvahiae. Partial control of epiphytes was achieved by nutrient removal, shading, and/or biological agents. For the first time, a single clone of the alga was grown continuously throughout the year without replacement. Yields in large (2600 1) aluminum tanks averaged 21.4 g dry weight/m/sup 2/.day, equivalent to 31 tons/acre.year (15.5 ash-free dry wt tons/acre.year). Growth of Gracilaria and other seaweeds in Vexar-mesh baskets in natural habitats and in the oceanic waters of a power plant cooling water intake canal were unsuccessful. Productivity of the freshwater macrophytes Lemna minor (common duckweed), Eichhornia crassipes (water hyacinth), and Hydrilla verticillata have now been measured throughout the year with mean yields of 3.7, 24.2 and 4.2 g dry weight/m/sup 2/.day (5.4, 35.3, and 6.1 dry tons/acre.year) respectively. Yields of duckweed and water hyacinths in the Harbor Branch Foundation culture units have averaged roughly three times those of the same species growing in highly-eutrophic natural environments. The yields of several other species of freshwater plants were investigated. Only the pennywort (Hydrocotyle umbellata) appears to approach the productivity of water hyacinth on the basis of preliminary measurements. Chopped water hyacinths and unprocessed Gracilaria have both been successfully fermented to methane in anaerobic digesters and the liquid digester residues recycled to produce more of the same plants.

  11. Characterisation of algal organic matter produced by bloom-forming marine and freshwater algae

    KAUST Repository

    Villacorte, Loreen O.

    2015-04-01

    Algal blooms can seriously affect the operation of water treatment processes including low pressure (micro- and ultra-filtration) and high pressure (nanofiltration and reverse osmosis) membranes mainly due to accumulation of algal-derived organic matter (AOM). In this study, the different components of AOM extracted from three common species of bloom-forming algae (Alexandrium tamarense, Chaetoceros affinis and Microcystis sp.) were characterised employing various analytical techniques, such as liquid chromatography - organic carbon detection, fluorescence spectroscopy, fourier transform infrared spectroscopy, alcian blue staining and lectin staining coupled with laser scanning microscopy to indentify its composition and force measurement using atomic force microscopy to measure its stickiness. Batch culture monitoring of the three algal species illustrated varying characteristics in terms of growth pattern, cell concentration and AOM release. The AOM produced by the three algal species comprised mainly biopolymers (e.g., polysaccharides and proteins) but some refractory compounds (e.g., humic-like substances) and other low molecular weight acid and neutral compounds were also found. Biopolymers containing fucose and sulphated functional groups were found in all AOM samples while the presence of other functional groups varied between different species. A large majority (>80%) of the acidic polysaccharide components (in terms of transparent exopolymer particles) were found in the colloidal size range (<0.4μm). The relative stickiness of AOM substantially varied between algal species and that the cohesion between AOM-coated surfaces was much stronger than the adhesion of AOM on AOM-free surfaces. Overall, the composition as well as the physico-chemical characteristics (e.g., stickiness) of AOM will likely dictate the severity of fouling in membrane systems during algal blooms.

  12. Variability in δ¹⁵N of intertidal brown algae along a salinity gradient: differential impact of nitrogen sources.

    Science.gov (United States)

    Viana, Inés G; Bode, Antonio

    2015-04-15

    While it is generally agreed that δ(15)N of brown macroalgae can discriminate between anthropogenic and natural sources of nitrogen, this study provides new insights on net fractionation processes occurring in some of these species. The contribution of continental and marine sources of nitrogen to benthic macroalgae in the estuary-ria system of A Coruña (NW Spain) was investigated by analyzing the temporal (at a monthly and annual basis) and spatial (up to 10 km) variability of δ(15)N in the macroalgae Ascophyllum nodosum and three species of the genus Fucus (F. serratus, F. spiralis and F. vesiculosus). Total nitrate and ammonium concentrations and δ(15)N-DIN, along with salinity and temperature in seawater were also studied to address the sources of such variability. Macroalgal δ(15)N and nutrient concentrations decreased from estuarine to marine waters, suggesting larger dominance of anthropogenic nitrogen sources in the estuary. However, δ(15)N values of macroalgae were generally higher than those of ambient nitrogen at all temporal and spatial scales considered. This suggests that the isotopic composition of these macroalgae is strongly affected by fractionation during uptake, assimilation or release of nitrogen. The absence of correlation between macroalgal and water samples suggests that the δ(15)N of the species considered cannot be used for monitoring short-term changes. But their long lifespan and slow turnover rates make them suitable to determine the impact of the different nitrogen sources integrated over long-time periods. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Retrospective analysis of diversity and species composition of marine macroalgae of Hainan Island (China)

    Science.gov (United States)

    Titlyanov, Eduard A.; Titlyanova, Tamara V.; Xia, Bangmei; Bartsch, Inka

    2016-09-01

    Retrospective analysis of diversity and species composition of marine macroalgae of Hainan Island in the period 1933-1992 is presented in this paper. There are two extensive sample collection periods of benthic macroalgae: the early collection (EC) covers a period between the early 1930s and the 1980s before considerable urbanization and reef degradation took place and a late collection (LC) was performed in 1990/1992 during a phase of rapid urbanization. Analysis of data also including an earlier published inventory of green algae covering the same collection sites (Titlyanov et al. 2011a) revealed that the marine flora of the island comprises 426 taxa in total, with 59% red algae, 18% brown algae and 23% green algae. In total 59 species of red algae, 11 species of brown algae and 37 species of green algae sampled during the LC are new records for Hainan Island. Considerable floristic changes between EC and LC became evident. In the LC there were significantly more filamentous, tubular or fine blade-like, and often epiphytic, green and red algae with a high surface-to-volume ratio. Additionally a reduction of green, brown and red algal species with larger fleshy or foliose thalli and a low surface-to-volume ratio was observed. It is assumed that the changes reflect the degradation of the coral reef ecosystem around Hainan, which was damaged by human activities especially in the 1950s-1970s.

  14. Profile of polychlorinated biphenyls in the brown alga Padina sanctae-crucis along the Orote dump coastline, Orote Peninsula, Western Guam.

    Science.gov (United States)

    Schaible, Brian Christopher

    2010-01-01

    The purpose of this study was to determine whether the brown seaweed Padina sanctae-crucis might be used as a biomonitor organism to determine the location, distribution, and type of polychlorinated biphenyls (PCB) present along a contaminated tropical coastline. Polychlorinated biphenyls were detected in P. sanctae-crucis collected from near-shore waters along a 4-km stretch of coastline. The profile of PCB levels from samples obtained at 13 sites along the coastline demonstrated a positive concentration gradient as sample locations progressed toward the dump site. Sample locations nearest the dump site revealed PCB levels twofold higher than background levels for P. sanctae-crucis. Chromatograms of samples obtained nearest the dump site indicated a similarity to the Aroclor 1260 fingerprint. The P. sanctae-crucis frond trimmings used for laboratory analysis were approximately 3-5 wk old. This study was conducted 8 mo following the completion of the removal actions at the dump site. Data suggest a release of Aroclor 1260 into the marine environment approximately 7 mo following the completion of removal actions at the dump site.

  15. Comparison of passive and standard dosing of polycyclic aromatic hydrocarbons to the marine algae Phaeodactylum tricornutum

    DEFF Research Database (Denmark)

    Witt, G.; Niehus, N. C.; Konopka, K.

    2015-01-01

    to speed up the release from the O-rings. The toxicity of the individual PAHs was investigated at controlled concentrations up to their aqueous solubility in artificial seawater. The concentration-dependent growth inhibition of Phaeodactylum tricornutum was then compared for passive dosing and standard...... concentrations and eliminates spiking with cosolvents. Passive dosing using silicone Orings as donor and PAHs as test substances (fluoranthene, naphthalene, phenanthrene, acenaphthene, fluorene, benzo[a]pyrene, anthracene and pyrene) were applied in the marine algal growth inhibition test with Phaeodactylum...... tricornutum (based on ISO EN 10253) in 24-well microtiter plates. The O-rings were loaded by partitioning from methanol solutions or suspensions of the respective PAHs (1), and these loaded O-rings were added to the wells in test media before the beginning of the test. Agitation of the plates was used...

  16. Physico-chemical properties, oxidative stability and non-enzymatic browning in marine phospholipid emulsions and their use in food applications

    DEFF Research Database (Denmark)

    Lu, Henna Fung Sieng

    better bioavailability and ability to form liposomes. All these unique properties of marine PL make them an attractive choice as ingredients for food fortification. Nowadays, a wide range of food products fortified with n-3 triglycerides (TAG) are available worldwide. However, the feasibility of using...... marine PL for food fortification has not been explored. The main objective of the present Ph.D. study was to explore the feasibility of using marine PL for food fortification. The secondary objective was to study the physical and oxidative stability of marine PL emulsions while identifying the important...... marine PL emulsions was greatly improved by the addition of α-tocopherol. Non-enzymatic browning reactions were observed in marine PL emulsions through the a) measurements of Strecker degradation (SD) products of amino acid residues, and b) measurements of hydrophobic and hydrophilic pyrroles (which...

  17. Marine debris is selected as nesting material by the brown booby (Sula leucogaster) within the Swain Reefs, Great Barrier Reef, Australia.

    Science.gov (United States)

    Verlis, K M; Campbell, M L; Wilson, S P

    2014-10-15

    Many seabirds are impacted by marine debris through its presence in foraging and nesting areas. To determine the extent of this problem, marine debris use in nest material of the brown booby (Sula leucogaster) in the Great Barrier Reef, Australia, was investigated. Nine cays were examined using beach and nest surveys. On average, four marine debris items were found per nest (n=96) with 58.3% of surveyed nests containing marine debris. The source of marine debris in nests and transects were primarily oceanic. Hard plastic items dominated both nest (56.8%) and surveyed beaches (72.8%), however only two item types were significantly correlated between these surveys. Nest surveys indicated higher levels of black and green items compared to beach transects. This selectivity for colours and items suggest these nests are not good indicators of environmental loads. This is the first study to examine S. leucogaster nests for marine debris in this location.

  18. Toxicity of ciprofloxacin and sulfamethoxazole to marine periphytic algae and bacteria.

    Science.gov (United States)

    Johansson, C Henrik; Janmar, Lisa; Backhaus, Thomas

    2014-11-01

    Ciprofloxacin and sulfamethoxazole are two antibiotics commonly detected in the aquatic environment, but information on their toxicity towards natural microbial communities is largely absent. In particular no data are available for marine microorganisms. The aim of the current study was therefore to evaluate the chronic toxicity of ciprofloxacin and sulfamethoxazole to natural marine biofilms (periphyton), a complex ecological community comprising a variety of bacterial and algal species. The biofilms were sampled along the Swedish west coast and subsequently exposed over 4 days in a semi-static system to a concentration series of each antibiotic. Effects on the bacterial part of the periphyton community were assessed using Biolog Ecoplates, reflecting total respiration and functional diversity of the bacterial community. Exposure to either antibiotic resulted in a clear concentration-response relationship with EC10 and EC50 values for the inhibition of total carbon source utilization of 46.1nmol/L and 490.7nmol/L for ciprofloxacin, and 56nmol/L and 1073nmol/L for sulfamethoxazole. The NOEC for ciprofloxacin was 26nmol/L, with a minimum significant difference of 19.24%, for sulfamethoxazole it was 140nmol/L with a minimum significant difference of 14%. Multivariate data exploration of the whole carbon source utilization pattern confirmed these results. The data indicate that sulfamethoxazole leads to a general decrease in carbon source utilization, while ciprofloxacin exposure leads to a re-arrangement of the carbon-utilization pattern in the region of 20- 50% effect. This corresponds with the higher specificity of ciprofloxacin for certain bacterial species. Effects on the algal part of the communities were evaluated by analyzing the amount and composition of photosynthetic pigments, and neither ciprofloxacin nor sulfamethoxazole caused any inhibitory effects up to the maximum tested concentration of 9000nmol/L. However, sulfamethoxazole exposure did lead to a

  19. Trace elements in feathers and eggshells of brown booby Sula leucogaster in the Marine National Park of Currais Islands, Brazil.

    Science.gov (United States)

    Dolci, Natiely Natalyane; Sá, Fabian; da Costa Machado, Eunice; Krul, Ricardo; Rodrigues Neto, Renato

    2017-09-10

    Levels of trace elements were investigated in feathers of 51 adults and 47 eggshells of brown boobies Sula leucogaster from one bird colony in the Marine National Park of Currais Islands, Brazil, between December 2013 and October 2014. Average concentrations (μg g(-1), dry weight) in feathers and eggshells, respectively, were Al 50.62-9.58, As 0.35-2.37, Cd 0.05-0.03, Co 0.38-2.1, Cu 15.12-0.99, Fe 47.47-22.92, Mg 815.71-1116.92, Ni 0.29-11.85, and Zn 94.16-1.98. In both arrays, the average concentration of Mg was the highest among all the elements analyzed, while the lowest was recorded for Cd. As and Ni presented levels at which biological impacts might occur. Zn concentrations were higher than those considered normal in other organs. Levels of Al, Fe, Cu, Zn, and Cd were higher in feathers, whereas higher contents of Mg, Co, Ni, and As occurred in eggshells. The comparison between the elements in eggshells collected at different seasons showed no significant difference (p > 0.05) due, probably, to the lack of temporal variation on foraging behavior and/or on bioavailability of trace elements. Metals and arsenic in feathers and eggshells were mostly not correlated. Future studies on Paraná coast should focus on the speciation of the elements, especially As, Ni, and Zn, which proved to be a possible problem for the environment and biota. It is necessary to investigate both matrices, shell and internal contents of the eggs, in order to verify if the differences previously reported in other studies also occur in eggs of brown boobies in the Marine National Park of Currais Islands.

  20. Acetic acid production from marine algae. Progress report No. 4, April 1-June 30, 1978

    Energy Technology Data Exchange (ETDEWEB)

    Sanderson, J. E.; Wise, D. L.

    1978-08-28

    To date fermentations of marine algal species run at a controlled pH of 5.5 to 6.0 have exhibited essentially complete conversion to organic acids in as little as 16 days. (By complete conversion is meant conversion of each hexose unit to three acetic acid molecules or higher organic acids on a reducing equivalent basis.) As a result of these rapid rates and high conversions economic calculations have shown that processing costs are sufficiently low to encourage commercial development of this process. In the course of this work a diffusion membrane extraction system has been developed for removing organic acids from the fermentation broth. In addition, a fixed packed bed fermenter with a capacity of approximately 300 liters has been constructed and operated for a six month period. Another significant result is that fermentation at thermophilic temperatures (55/sup 0/C) gives higher ratios of acetic acid to total acid product than at mesophilic temperatures (37/sup 0/C). Manuscripts of two technical presentations based on this work are attached.