WorldWideScience

Sample records for marine bacteria isolated

  1. Isolation and identification of marine fish tumour (odontoma associated bacteria

    Directory of Open Access Journals (Sweden)

    Ramalingam Vijayakumar

    2015-09-01

    Full Text Available Objective: To identify fish tumour associated bacteria. Methods: The marine fish Sphyraena jello with odontoma was collected from in Tamil Nadu (Southeast India, and tumour associated bacteria were isolated. Then the isolated bacteria were identified based on molecular characters. Results: A total of 4 different bacterial species were isolated from tumour tissue. The bacterial species were Bacillus sp., Pontibacter sp., Burkholderia sp. and Macrococcus sp., and the sequences were submitted in DNA Data Bank of Japan with accession numbers of AB859240, AB859241, AB859242 and AB859243 respectively. Conclusions: Four different bacterial species were isolated from Sphyraena jello, but the role of bacteria within tumour needs to be further investigated.

  2. Isolation of naphthalene-degrading bacteria from tropical marine sediments

    International Nuclear Information System (INIS)

    Zhuang, W.-Q.; Tay, J.-H.; Maszenan, A.M.; Tay, S.T.-L.

    2003-01-01

    Oil pollution is a major environmental concern in many countries, and this has led to a concerted effort in studying the feasibility of using oil-degrading bacteria for bioremediation. Although many oil-degrading bacteria have been isolated from different environments, environmental conditions can impose a selection pressure on the types of bacteria that can reside in a particular environment. This study reports the successful isolation of two indigenous naphthalene-degrading bacteria from oil-contaminated tropical marine sediments by enrichment culture. Strains MN-005 and MN-006 were characterized using an extensive range of biochemical tests. The 16S ribosomal deoxyribonucleic acid (rDNA) sequence analysis was also performed for the two strains. Their naphthalene degradation capabilities were determined using gas chromatography and DAPI counting of bacterial cells. Strains MN-005 and MN-006 are phenotypically and phylogenetically different from each other, and belong to the genera Staphylococcus and Micrococcus, respectively. Strains MN-005 and MN-006 has maximal specific growth rates (μ max ) of 0.082±0.008 and 0.30±0.02 per hour, respectively, and half-saturation constants (K s ) of 0.79±0.10 and 2.52±0.32 mg per litre, respectively. These physiological and growth studies are useful in assessing the potential of these indigenous isolates for in situ or ex situ naphthalene pollutant bioremediation in tropical marine environments. (author)

  3. Gram-positive bacteria of marine origin: a numerical taxonomic study on Mediterranean isolates.

    Science.gov (United States)

    Ortigosa, M; Garay, E; Pujalte, M J

    1997-12-01

    A numerical taxonomic study was performed on 65 Gram-positive wild strains of heterotrophic, aerobic, marine bacteria, and 9 reference strains. The isolates were obtained from oysters and seawater sampled monthly over one year, by direct plating on Marine Agar. The strains were characterized by 96 morphological, biochemical, physiological and nutritional tests. Clustering yielded 13 phena at 0.62 similarity level (Sl coefficient). Only one of the seven phena containing wild isolates could be identified (Bacillus marinus). A pronounced salt requirement was found in most isolates.

  4. Isolation and characterization of pigmented bacteria showing antimicrobial activity from Malaysian marine environment

    Directory of Open Access Journals (Sweden)

    Ahmad, A.

    2013-01-01

    Full Text Available Aims: Natural products play a prominent role in the discovery of leads for the development of drugs in the treatment ofhuman diseases. Much of nature remains to be explored, especially marine and microbial environments.Methodology and results: Fifty-five pigmented marine bacteria were isolated from sponges, seawater, mangrovesediment, sea cucumber and mussel from different coastal area of Malaysia. The antimicrobial activities of thesebacteria were investigated by disk diffusion method against pathogenic bacteria. Out of 55 isolates, 18 isolates exhibitedantimicrobial activity, which based on morphological characterization, 53% of them were Gram positive and 47% wereGram negative. All active isolates were able to tolerate more than 4% NaCl in the nutrient agar medium that indicatedthey were autochthonous to marine environment and moderate salt tolerant in nature. Molecular identification of isolatesby the strong antimicrobial activities indicates that isolates WPRA3 (JX020764 and SM11-3j belong to genus Serratiaand isolate SDPM1 (JQ083392 belongs to genus Zooshikella.Conclusion, significance and impact of study: The results of present study revealed that the active isolates arepotential producer of antimicrobial secondary metabolites and might be utilized as drug candidate.

  5. Preliminary study on swarming marine bacteria isolated from Pulau Tinggi's sponges

    Science.gov (United States)

    Sairi, Fareed; Idris, Hamidah; Zakaria, Nur Syuhana; Usup, Gires; Ahmad, Asmat

    2015-09-01

    Marine sponges were known to produce novel bioactive compounds that have anti-bacterial, anti-viral, anti-cancer and anti-fungal activities. Most of the bioactive compounds were secreted from the bacteria that lives on the sponges. The bacterial communities also produced biofilm, toxin or biosurfactant that protect the sponges from disease or in-coming predator. In this study, twenty nine marine bacteria with swarming motility characteristic was isolated from 2 different sponge samples collected in Pulau Tinggi These isolates were grown and their genome were extracted for molecular identification using the 16S rRNA approach. Sequence comparison using BLASTn and multiple alignments using MEGA4 was performed to produce a phylogenetic tree. The phylogenetic tree revealed that 20 of the isolates were grouped under α-Proteobacteria that comprised of 19 isolates in the Vibrionaceae family and one belongs to Aeromonadaceae family. Furthermore, six isolates from Actinobacteria family and three isolates from Firmicutes were also detected. The swarming characteristic indicates the possible production of biosurfactant.

  6. Biomineralization processes of calcite induced by bacteria isolated from marine sediments.

    Science.gov (United States)

    Wei, Shiping; Cui, Hongpeng; Jiang, Zhenglong; Liu, Hao; He, Hao; Fang, Nianqiao

    2015-06-01

    Biomineralization is a known natural phenomenon associated with a wide range of bacterial species. Bacterial-induced calcium carbonate precipitation by marine isolates was investigated in this study. Three genera of ureolytic bacteria, Sporosarcina sp., Bacillus sp. and Brevundimonas sp. were observed to precipitate calcium carbonate minerals. Of these species, Sporosarcina sp. dominated the cultured isolates. B. lentus CP28 generated higher urease activity and facilitated more efficient precipitation of calcium carbonate at 3.24 ± 0.25 × 10(-4) mg/cell. X-ray diffraction indicated that the dominant calcium carbonate phase was calcite. Scanning electron microscopy showed that morphologies of the minerals were dominated by cubic, rhombic and polygonal plate-like crystals. The dynamic process of microbial calcium carbonate precipitation revealed that B. lentus CP28 precipitated calcite crystals through the enzymatic hydrolysis of urea, and that when ammonium ion concentrations reached 746 mM and the pH reached 9.6, that favored calcite precipitation at a higher level of 96 mg/L. The results of this research provide evidence that a variety of marine bacteria can induce calcium carbonate precipitation, and may influence the marine carbonate cycle in natural environments.

  7. Isolation of biosurfactant-producing marine bacteria and characteristics of selected biosurfactant

    Directory of Open Access Journals (Sweden)

    Kulnaree Phetrong

    2007-05-01

    Full Text Available Biosurfactant-producing marine bacteria were isolated from oil-spilled seawater collected from harbors and docks in Songkhla Province, Thailand. Haemolytic activity, emulsification activity toward nhexadecane,emulsion of weathered crude oil, drop collapsing test as well as oil displacement test were used to determine biosurfactant producing activity of marine bacteria. Among two-hundred different strains, 40strains exhibited clear zone on blood agar plates. Only eight strains had haemolytic activity and were able to emulsify weathered crude oil in marine broth during cultivation. Eight strains named SM1-SM8 wereidentified by 16S rRNA as Myroides sp. (SM1; Vibrio paraheamolyticus (SM2; Bacillus subtilis (SM3; Micrococcus luteus (SM4; Acinetobacter anitratus (SM6; Vibrio paraheamolyticus (SM7 and Bacilluspumilus (SM8. However, SM5 could not be identified. Strain SM1 showed the highest emulsification activity against weathered crude oil, by which the oil was emulsified within 24 h of cultivation. In addition, strainSM1 exhibited the highest activity for oil displacement test and emulsification test toward n-hexadecane. The emulsification activity against n-hexadecane of crude extract of strain SM1 was stable over a broadrange of temperature (30-121oC, pH (5-12 and salt concentration (0-9% NaCl, whereas CaCl2 showed an adverse effect on emulsifying activity.

  8. Biodegradation of polyether algal toxins–Isolation of potential marine bacteria

    Science.gov (United States)

    SHETTY, KATEEL G.; HUNTZICKER, JACQUELINE V.; REIN, KATHLEEN S.; JAYACHANDRAN, KRISH

    2012-01-01

    Marine algal toxins such as brevetoxins, okadaic acid, yessotoxin, and ciguatoxin are polyether compounds. The fate of polyether toxins in the aqueous phase, particularly bacterial biotransformation of the toxins, is poorly understood. An inexpensive and easily available polyether structural analog salinomycin was used for enrichment and isolation of potential polyether toxin degrading aquatic marine bacteria from Florida bay area, and from red tide endemic sites in the South Florida Gulf coast. Bacterial growth on salinomycin was observed in most of the enrichment cultures from both regions with colony forming units ranging from 0 to 6 × 107 per mL. The salinomycin biodegradation efficiency of bacterial isolates determined using LC-MS ranged from 22% to 94%. Selected bacterial isolates were grown in media with brevetoxin as the sole carbon source to screen for brevetoxin biodegradation capability using ELISA. Out of the two efficient salinomycin biodegrading isolates MB-2 and MB-4, maximum brevetoxin biodegradation efficiency of 45% was observed with MB-4, while MB-2 was unable to biodegrade brevetoxin. Based on 16S rRNA sequence similarity MB-4 was found have a match with Chromohalobacter sp. PMID:20954040

  9. Biodegradation of polyether algal toxins--isolation of potential marine bacteria.

    Science.gov (United States)

    Shetty, Kateel G; Huntzicker, Jacqueline V; Rein, Kathleen S; Jayachandran, Krish

    2010-12-01

    Marine algal toxins such as brevetoxins, okadaic acid, yessotoxin, and ciguatoxin are polyether compounds. The fate of polyether toxins in the aqueous phase, particularly bacterial biotransformation of the toxins, is poorly understood. An inexpensive and easily available polyether structural analog salinomycin was used for enrichment and isolation of potential polyether toxin degrading aquatic marine bacteria from Florida bay area, and from red tide endemic sites in the South Florida Gulf coast. Bacterial growth on salinomycin was observed in most of the enrichment cultures from both regions with colony forming units ranging from 0 to 6×10(7) per mL. The salinomycin biodegradation efficiency of bacterial isolates determined using LC-MS ranged from 22% to 94%. Selected bacterial isolates were grown in media with brevetoxin as the sole carbon source to screen for brevetoxin biodegradation capability using ELISA. Out of the two efficient salinomycin biodegrading isolates MB-2 and MB-4, maximum brevetoxin biodegradation efficiency of 45% was observed with MB-4, while MB-2 was unable to biodegrade brevetoxin. Based on 16S rRNA sequence similarity MB-4 was found have a match with Chromohalobacter sp.

  10. Marine Bacteria with antimicrobials capacity isolated from cultures of bivalve mollusks

    Directory of Open Access Journals (Sweden)

    Fabiola Pellon

    2014-06-01

    Full Text Available Microorganisms have commonly been studied as producers of antibacterial substances; yet they are also considered producers of antifungic, antiviral, antiparasitic, citotoxics and inhibitory of other forms of cellular growth substances. This paper describes the isolation, inhibitory potential and phenotipic characterization of native bacterial strains associated to bivalve mollusks such as Argopecten purpuratus “concha de abanico” and Crassostrea gigas “ostra” in cultivation systems. From 345 marine strains collected, 20 strains were recovered that had the ability of inhibiting a wide spectrum of fish, mollusks and shellfish pathogenic bacteria; being the most sensitive pathogens Aeromonas sobria P-281, Aeromonas hydrophila ATCC 7966, Vibrio vulnificus ATCC 27562 and Vibrio parahaemolyticus ATCC 17803. The phenotipic characterization of this strains with inhibitory capacity allowed the identification of the following genera: Vibrio (40%, Aeromonas (15%, Flavobacterium (10%, Pseudomonas (5%, Moraxella (5%, Flexibacter (5%. A 20% could not be identified. The results suggest that the isolated bacteria could be used as probiotics agents for the biological control of pathogens from marine organisms of interest in mariculture.

  11. The Effectiveness of Heterotrophic Bacteria Isolated from Dumai Marine Waters of Riau, Used as Antibacterial against Pathogens in Fish Culture

    Science.gov (United States)

    Feliatra, F.; Nursyirwani; Tanjung, A.; Adithiya, DS; Susanna, M.; Lukystyowati, I.

    2018-02-01

    Heterotrophic bacteria have an important role as decomposer of organic compounds (mineralization) derived from industrial waste, decomposition of unconsumed feed, faecal, excretion of fish, and have the ability to inhibit the growth of pathogenic bacteria. We investigated the role of heterotrophic bacteria used as antibacterial against pathogens in fish culture.This research was conducted from January until March 2017. The phylogenitic of the isolated bacterial was determined by 16S rDNA sequences analysis. Antagonism test showed that the bacteria had the ability to inhibit the growth of pathogenic bacteria (Vibrio alginolyticus, Aeromonas hydrophila and Pseudomonas sp.) Three isolates (Dm5, Dm6 and Dm4) indicated high inhibition zones which were classified into strong category with the average from 10.5 to 11.8 mm toward V. alginolitycus. Other isolates were classified into medium and weak category. Based on DNA analysis of heterotrophic bacteria isolated from marine waters of industrial area and low salinity of estuarine waters twelve strains of bacteria were identified, and all had highest level of homology to Bacillus sp.,one isolates has similarity to Enterobacter cloacae, other isolates to Clostridium cetobutylicum. Most of isolated bacteria obtained from the waters of industrial area due to it received much of nutrients that very influenced the growth of bacteria.

  12. Oil field and freshwater isolates of Shewanella putrefaciens have lipopolysaccharide polyacrylamide gel profiles characteristic of marine bacteria

    International Nuclear Information System (INIS)

    Pickard, C.; Foght, J.M.; Pickard, M.A.; Westlake, D.W.S.

    1993-01-01

    The lipopolysaccharide structure of oil field and freshwater isolates of bacteria that reduce ferric iron, recently classified as strains of Shewanella putrefaciens, was analyzed using polyacrylamide gel electrophoresis and a lipopolysaccharide-specific silver-staining procedure. The results demonstrate that all the oil field and freshwater isolates examined exhibited the more hydrophobic R-type lipopolysaccharide, which has been found to be characteristic of Gram-negative marine bacteria. This hydrophobic lipopolysaccharide would confer an advantage on bacteria involved in hydrocarbon degradation by assisting their association with the surface of oil droplets. 15 refs., 1 fig

  13. Salinity effect on the maximal growth temperature of some bacteria isolated from marine enviroments.

    Science.gov (United States)

    Stanley, S O; Morita, R Y

    1968-01-01

    Salinity of the growth medium was found to have a marked effect on the maximal growth temperature of four bacteria isolated from marine sources. Vibrio marinus MP-1 had a maximal growth temperature of 21.2 C at a salinity of 35% and a maximal growth temperature of 10.5 C at a salinity of 7%, the lowest salinity at which it would grow. This effect was shown to be due to the presence of various cations in the medium. The order of effectiveness of cations in restoring the normal maximal growth temperature, when added to dilute seawater, was Na(+) > Li(+) > Mg(++) > K(+) > Rb(+) > NH(4) (+). The anions tested, with the exception of SO(4)=, had no marked effect on the maximal growth temperature response. In a completely defined medium, the highest maximal growth temperature was 20.0 C at 0.40 m NaCl. A decrease in the maximal growth temperature was observed at both low and high concentrations of NaCl.

  14. Response to UVB radiation and oxidative stress of marine bacteria isolated from South Pacific Ocean and Mediterranean Sea.

    Science.gov (United States)

    Matallana-Surget, S; Villette, C; Intertaglia, L; Joux, F; Bourrain, M; Lebaron, P

    2012-12-05

    Marine bacterial strains isolated from South Pacific and Mediterranean Sea were studied for their resistance to UVB radiation, their repair capacity under photoreactivating light, as well as their oxidative stress response using concentrated hydrogen peroxide (H(2)O(2)), as an oxidizer. A total of 30 marine bacteria were isolated from the hyper-oligotrophic waters of the South Pacific Gyre to the eutrophic waters of the Chilean coast during the BIOSOPE cruise (2004), and 10 strains from surface Mediterranean coastal waters. One third of bacteria presented a high resistance to UVB and almost all isolates presented an efficient post-irradiation recovery. Only few strains showed cell survival to high concentration of H(2)O(2). No correlation between the sampling sites and the bacterial UVB resistance was observed. Two marine bacteria, Erythrobacter flavus and Ruegeria mobilis, were of particular interest, presenting a good response to the three parameters (UVB and H(2)O(2) resistance/efficient repair). Unexpectedly, two resistant strains were again identified as Ruegeria species underlining that this geographically widespread genus, resist to UVB regardless the environment from which the isolates originate. Copyright © 2012 Elsevier B.V. All rights reserved.

  15. ISOLATION OF TYPICAL MARINE-BACTERIA BY DILUTION CULTURE - GROWTH, MAINTENANCE, AND CHARACTERISTICS OF ISOLATES UNDER LABORATORY CONDITIONS

    NARCIS (Netherlands)

    SCHUT, F; DEVRIES, EJ; GOTTSCHAL, JC; ROBERTSON, BR; HARDER, W; PRINS, R A; BUTTON, DK

    Marine bacteria in Resurrection Bay near Seward, Alaska, and in the central North Sea off the Dutch coast were cultured in filtered autoclaved seawater following dilution to extinction. The populations present before dilution varied from 0.11 x 10(9) to 1.07 x 10(9) cells per liter. The mean cell

  16. Antimicrobial activity screening of marine bacteria isolated from Port Klang and Port Tanjung Pelepas

    Science.gov (United States)

    Ibrahim, Nik Nuraznida Nik; Usup, Gires; Ahmad, Asmat

    2018-04-01

    Over the past ten years, marine natural product researchers have expanded the scope of their studies from macroorganisms such as algae to marine microorganisms. The marine environment is believed to be able to provide novel lead against pathogenic microbes that are evolving and developing resistance to existing pharmaceutical agents. In this study, a total of 150 bacterial isolates isolated from Port Klang and Port Tanjung Pelepas were screened for antimicrobial activity against Staphylococcus aureus, Escherichia coli, Vibrio parahaemolyticus, Entrococcus, faecalis, Pseudomonas aeruginosa and Methicillin-Resistance Staphylococcus aureus (MRSA). Only 10 isolates: PW01, PW02, PB03, and PS (04, 05, 06, 07, 08, 09, and 10) showed strong antibacterial activity. Based on the strongest activity, isolates PW01 and PW02 were selected for secondary screening using well diffusion assay. The dichloromethane extract of Pseudomonas sp. PW01 showed activity against S. aureus (15±0 mm), V. parahaemolyticus (25±1.63 mm) and MRSA (18±0.81 mm). Meanwhile, the diethyl ether extract of Pseudomonas sp. PW02 showed active activity against S. aureus (10±0 mm), V. parahaemolyticus (30±0.94 mm), MRSA (30±0.94 mm), E. coli (22±1.25 mm) and E. faecalis (26±0 mm). Through this study, it was suggested that marine microorganisms may represent an untapped reservoir of biodiversity capable of synthesizing antimicrobial molecules.

  17. Bioleaching of electronic waste using bacteria isolated from the marine sponge Hymeniacidon heliophila (Porifera).

    Science.gov (United States)

    Rozas, Enrique E; Mendes, Maria A; Nascimento, Claudio A O; Espinosa, Denise C R; Oliveira, Renato; Oliveira, Guilherme; Custodio, Marcio R

    2017-05-05

    The bacteria isolated from Hymeniacidon heliophila sponge cells showed bioleaching activity. The most active strain, Hyhel-1, identified as Bacillus sp., was selected for bioleaching tests under two different temperatures, 30°C and 40°C, showing rod-shaped cells and filamentous growth, respectively. At 30°C, the bacteria secreted substances which linked to the leached copper, and at 40°C metallic nanoparticles were produced inside the cells. In addition, infrared analysis detected COOH groups and linear peptides in the tested bacteria at both temperatures. The Hyhel-1 strain in presence of electronic waste (e-waste) induced the formation of crust, which could be observed due to bacteria growing on the e-waste fragment. SEM-EDS measurements showed that the bacterial net surface was composed mostly of iron (16.1% w/w), while a higher concentration of copper was observed in the supernatant (1.7% w/w) and in the precipitated (49.8% w/w). The substances linked to copper in the supernatant were sequenced by MALDI-TOF-ms/ms and identified as macrocyclic surfactin-like peptides, similar to the basic sequence of Iturin, a lipopeptide from Bacillus subtilis. Finally, the results showed that Hyhel-1 is a bioleaching bacteria and cooper nanoparticles producer and that this bacteria could be used as a copper recovery tool from electronic waste. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Isolation and analysis of bacteria with antimicrobial activities from the marine sponge Haliclona simulans collected from Irish waters.

    Science.gov (United States)

    Kennedy, Jonathan; Baker, Paul; Piper, Clare; Cotter, Paul D; Walsh, Marcella; Mooij, Marlies J; Bourke, Marie B; Rea, Mary C; O'Connor, Paula M; Ross, R Paul; Hill, Colin; O'Gara, Fergal; Marchesi, Julian R; Dobson, Alan D W

    2009-01-01

    Samples of the marine sponge Haliclona simulans were collected from Irish coastal waters, and bacteria were isolated from these samples. Phylogenetic analyses of the cultured isolates showed that four different bacterial phyla were represented; Bacteriodetes, Actinobacteria, Proteobacteria, and Firmicutes. The sponge bacterial isolates were assayed for the production of antimicrobial substances, and biological activities against Gram-positive and Gram-negative bacteria and fungi were demonstrated, with 50% of isolates showing antimicrobial activity against at least one of the test strains. Further testing showed that the antimicrobial activities extended to the important pathogens Pseudomonas aeruginosa, Clostridium difficile, multi-drug-resistant Staphylococcus aureus, and pathogenic yeast strains. The Actinomycetes were numerically the most abundant producers of antimicrobial activities, although activities were also noted from Bacilli and Pseudovibrio isolates. Surveys for the presence of potential antibiotic encoding polyketide synthase and nonribosomal peptide synthetase genes also revealed that genes for the biosynthesis of these secondary metabolites were present in most bacterial phyla but were particularly prevalent among the Actinobacteria and Proteobacteria. This study demonstrates that the culturable fraction of bacteria from the sponge H. simulans is diverse and appears to possess much potential as a source for the discovery of new medically relevant biological active agents.

  19. Isolation, screening, and characterization of surface-active agent-producing, oil-degrading marine bacteria of Mumbai Harbor.

    Science.gov (United States)

    Mohanram, Rajamani; Jagtap, Chandrakant; Kumar, Pradeep

    2016-04-15

    Diverse marine bacterial species predominantly found in oil-polluted seawater produce diverse surface-active agents. Surface-active agents produced by bacteria are classified into two groups based on their molecular weights, namely biosurfactants and bioemulsifiers. In this study, surface-active agent-producing, oil-degrading marine bacteria were isolated using a modified Bushnell-Haas medium with high-speed diesel as a carbon source from three oil-polluted sites of Mumbai Harbor. Surface-active agent-producing bacterial strains were screened using nine widely used methods. The nineteen bacterial strains showed positive results for more than four surface-active agent screening methods; further, these strains were characterized using biochemical and nucleic acid sequencing methods. Based on the results, the organisms belonged to the genera Acinetobacter, Alcanivorax, Bacillus, Comamonas, Chryseomicrobium, Halomonas, Marinobacter, Nesterenkonia, Pseudomonas, and Serratia. The present study confirmed the prevalence of surface-active agent-producing bacteria in the oil-polluted waters of Mumbai Harbor. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Isolation and characterization of marine bacteria from macroalgae Gracilaria salicornia and Gelidium latifolium on agarolitic activity for bioethanol production

    Science.gov (United States)

    Kawaroe, M.; Pratiwi, I.; Sunudin, A.

    2017-05-01

    Gracilaria salicornia and Gelidium latifolium have high content of agar and potential to be use as raw material for bioethanol. In bioethanol production, one of the processes level is enzyme hydrolysis. Various microorganisms, one of which is bacteria, can carry out the enzyme hydrolysis. Bacteria that degrade the cell walls of macroalgae and produce an agarase enzyme called agarolytic bacteria. The purpose of this study was to isolate bacteria from macroalgae G. salicornia and G. latifolium, which has the highest agarase enzyme activities, and to obtain agarase enzyme characteristic for bioethanol production. There are two isolates bacteria resulted from G. salicornia that are N1 and N3 and there are two isolates from G. latifolium that are BSUC2 and BSUC4. The result of agarase enzyme qualitative test showed that isolates bacteria from G. latifolium were greater than G. salicornia. The highest agarolitic index of bacteria from G. salicornia produced by isolate N3 was 2.32 mm and isolate N3 was 2.27 mm. Bacteria from G. latifolium produced by isolate BSUC4 was 4.28 mm and isolate BSUC2 was 4.18 mm, respectively. Agarase enzyme activities from isolates N1 and N3 were optimum working at pH 7 and temperature 30 °C, while from isolates BSUC4 was optimum at pH 7 and temperature 50 °C. This is indicated that the four bacteria are appropriate to hydrolyze macro alga for bioethanol production.

  1. Mimicking Seawater For Culturing Marine Bacteria

    DEFF Research Database (Denmark)

    Rygaard, Anita Mac; Sonnenschein, Eva; Gram, Lone

    2015-01-01

    Only about 1% of marine bacteria have been brought into culture using traditional techniques. The purpose of this study was to investigate if mimicking the natural bacterial environment can increase culturability.We used marine substrates containing defined algal polymers or gellan gum as solidif......Only about 1% of marine bacteria have been brought into culture using traditional techniques. The purpose of this study was to investigate if mimicking the natural bacterial environment can increase culturability.We used marine substrates containing defined algal polymers or gellan gum...... as solidifying agents, and enumerated bacteria from seawater and algal exudates. We tested if culturability could be influenced by addition of quorum sensing signals (AHLs). All plates were incubated at 15°C. Bacterial counts (CFU/g) from algal exudates from brown algae were highest on media containing algal...... polymers. In general, bacteria isolated from algal exudates preferred more rich media than bacteria isolated from seawater. Overall, culturability ranged from 0.01 to 0.8% as compared to total cell count. Substitution of agar with gellan gum increased the culturability of seawater bacteria approximately...

  2. Chitin Degradation In Marine Bacteria

    DEFF Research Database (Denmark)

    Paulsen, Sara; Machado, Henrique; Gram, Lone

    2015-01-01

    Introduction: Chitin is the most abundant polymer in the marine environment and the second most abundant in nature. Chitin does not accumulate on the ocean floor, because of microbial breakdown. Chitin degrading bacteria could have potential in the utilization of chitin as a renewable carbon...... and nitrogen source in the fermentation industry.Methods: Here, whole genome sequenced marine bacteria were screened for chitin degradation using phenotypic and in silico analyses.Results: The in silico analyses revealed the presence of three to nine chitinases in each strain, however the number of chitinases...... chitin regulatory system.Conclusions: This study has provided insight into the ecology of chitin degradation in marine bacteria. It also served as a basis for choosing a more efficient chitin degrading production strain e.g. for the use of chitin waste for large-scale fermentations....

  3. Metabolism of polychlorinated biphenyls by marine bacteria

    International Nuclear Information System (INIS)

    Carey, A.E.; Harvey, G.R.

    1978-01-01

    There have been no reports of laboratory studies of PCB metabolism by marine organisms. A few workers have analyzed marine animals for products of PCB metabolism. A search for hydroxylated PCBs in marine fish proved inconclusive. Phenolic metabolites of PCBs have been identified in seals and guillemot. PCBs that had been hydroxylated and excreted by marine organisms would most likely be found in the sediments, so in our laboratory we conducted a search for these compounds in marine sediments. Two kilograms of organic-rich surface sediment from Buzzards Bay, Massachusetts, were extracted. The phenolic fraction was isolated and analyzed by gas chromatography-mass spectrometry (GC-MS). Neither wide mass scans nor selected mass searches produced any evidence of hydroxylated PCB derivatives. It was felt that if any marine organisms were capable of metabolism of PCBs, some marine bacteria should have that capability. Thus a series of laboratory experiments was conducted to test this possibility. Reported here is the finding of PCB metabolism by marine bacteria in batch culture

  4. Production of L-Asparaginase by the marine luminous bacteria

    Digital Repository Service at National Institute of Oceanography (India)

    Ramaiah, N.; Chandramohan, D.

    Fortythree strains of luminous bacteria, belonging to 4 species, (Vibrio harveyi, V. fischeri, Photobacterium leiognathi and P. phosphoreum) isolated from different marine samples, were examined for the production of L-asparaginase. Presence...

  5. Bacteria and plutonium in marine environments

    International Nuclear Information System (INIS)

    Carey, A.E.; Bowen, V.T.

    1978-01-01

    Microbes are important in geochemical cycling of many elements. Recent reports emphasize biogenous particulates and bacterial exometabolites as controlling oceanic distribution of plutonium. Bacteria perform oxidation/reduction reactions on metals such as mercury, nickel, lead, copper, and cadmium. Redox transformations or uptake of Pu by marine bacteria may well proceed by similar mechanisms. Profiles of water samples and sediment cores were obtained along the continental shelf off Nova Scotia and in the Gulf of St. Lawrence. Profiles of water samples, and sediment cores were obtained. Epifluorescent microscopy was used to view bacteria (from water or sediment) after concentration on membrane filters and staining with acridine orange. Radiochemical analyses measured Pu in sediments and water samples. Studies of 237 Pu uptake used a strain of Leucothrix mucor isolated from a macroalga. Enumeration shows bacteria to range 10 4 to 10 5 cells/ml in seawater or 10 7 to 10 8 cells/gram of sediment. These numbers are related to the levels and distrbution of Pu in the samples. In cultures of L. mucor amended with Pu atom concentrations approximating those present in open ocean environments, bacterial cells concentrated 237 Pu slower and to lower levels than did clay minerals, glass beads, or phytoplankton. These data further clarify the role of marine bacteria in Pu biogeochemistry

  6. Isolation of bioactive compound from marine seaweeds against fish pathogenic bacteria Vibrio alginolyticus (VA09 and characterisation by FTIR

    Directory of Open Access Journals (Sweden)

    Rajasekar Thirunavukkarasu

    2013-08-01

    Full Text Available Objective: Fresh marine seaweeds Gracilaria edulis, Gracillaria verrcosa, Acanthospora spicifera, Ulva facita, Ulva lacta (U. lacta, Kappaphycus spicifera, Sargassum ilicifolium, Sargassum wightii (S. wightii, Padina tetramatica and Padina gymonospora were collected from Mandapam (Rameshwaram, Tamil Nadu of South East coast of India and were screened for antibacterial activity. Methods: All the collected seaweeds were extracted by using five different solvent (methanol, isopropanol, acetone, chloroform, diethyl ether to study their extracts against fish pathogenic bacteria V. alginolyticus (VA09 purchased from MTCC. And minimum inhibition carried out by using Resazurin micro-titre assay. Crude extract of S. wightii analysied by FTIR. Results: The methanolic extract of S. wightii produced a maximum zone of inhibition (1.95±0.11 cm, isopropanol extract maximum inhibition was produced by S. wightii (1.93±0.78 cm, Acetone extract of Gracilaria verrcosa showed maximum zone of inhibition (1.36±0.05 cm, chloroform extract of S. wightii produced a maximum zone (1.56±0.25 cm and diethyl ether extract of S. wightii produced maximum zone of inhibition(1.86±0.11 cm. Based on the antibacterial activity S. wightii, U. lacta and Padina tetramatica showed best antibacterial activity against Vibrio harveyi. In this three seaweeds were taken for MIC study. The S. wightii methanolic extract, U. lacta diethyl ether extract and Padina tetramatica methanolic extract showed a higher MIC values, and despectively were 25 mg/mL, 50 mg/mL and 50 mg/mL. FTIR result showed that mostly phenolic compounds were present in the S. wightii. Conclusions: Based on the FTIR result S. wightii have high amount of phenolic compound. Phenolic compound have the good antimicrobial activity. The results clearly show that seaweed S. wightii is an interesting source for biologically active compounds that may be applied for prophylaxis and therapy of bacterial fish diseases and it should

  7. Relationship between luminous fish and symbiosis. I. Comparative studies of lipopolysaccharides isolated from symbiotic luminous bacteria of the luminous marine fish, Physiculus japonicus.

    Science.gov (United States)

    Kuwae, T; Andoh, M; Fukasawa, S; Kurata, M

    1983-01-01

    In order to investigate the relationship between host and symbiosis in the luminous marine fish, Physiculus japonicus, the bacterial lipopolysaccharides (LPS) of symbiotic luminous bacteria were compared serologically and electrophoretically. Five symbiotic luminous bacteria (PJ strains) were separately isolated from five individuals of this fish species caught at three points, off the coasts of Chiba, Nakaminato, and Oharai. LPS preparations were made from these bacteria by Westphal's phenol-water method and highly purified by repeated ultracentrifugation. These LPSs contained little or no 2-keto-3-deoxyoctonate and had powerful mitogenic activity. In sodium dodecylsulfate polyacrylamide gel electrophoresis, these PJ-1 to -5 LPSs were separated by their electrophoretic patterns into three groups; the first group included PJ-1 and PJ-4, the second group PJ-2 and PJ-3, and the third group PJ-5 alone. The results agreed with those of the double immunodiffusion test; precipitin lines completely coalesced within each group but not with other groups. In immunoelectrophoresis, one precipitin line was observed between anti PJ-2 LPS serum and PJ-5 LPS but the electrophoretic mobility of PJ-5 LPS was clearly different from that of the PJ-2 LPS group. Furthermore, in a 50% inhibition test with PJ-2 LPS by the passive hemolysis system, the doses of PJ-2 LPS, PJ-3 LPS, and PJ-5 LPS required for 50% inhibition (ID50) in this system were 0.25, 0.25, and 21.6 micrograms/ml for each alkali-treated LPS, respectively, and the ID50's of both PJ-1 LPS and PJ-4 LPS were above 1,000 micrograms/ml. These results indicate that PJ-5 LPS has an antigenic determinant partially in common with LPS from the PJ-2 group but not with LPS from the PJ-1 group and that the symbiotic luminous bacterium PJ-5 is more closely related to the PJ-2 group than to the PJ-1 group. These results show that the species Physiculus japonicus is symbiotically associated with at least three immunologically different

  8. Cytotoxic and apoptotic evaluations of marine bacteria isolated from brine-seawater interface of the Red Sea.

    KAUST Repository

    Sagar, Sunil

    2013-02-06

    High salinity and temperature combined with presence of heavy metals and low oxygen renders deep-sea anoxic brines of the Red Sea as one of the most extreme environments on Earth. The ability to adapt and survive in these extreme environments makes inhabiting bacteria interesting candidates for the search of novel bioactive molecules.

  9. Bioactive Pigments from Marine Bacteria: Applications and Physiological Roles

    Directory of Open Access Journals (Sweden)

    Azamjon B. Soliev

    2011-01-01

    Full Text Available Research into natural products from the marine environment, including microorganisms, has rapidly increased over the past two decades. Despite the enormous difficulty in isolating and harvesting marine bacteria, microbial metabolites are increasingly attractive to science because of their broad-ranging pharmacological activities, especially those with unique color pigments. This current review paper gives an overview of the pigmented natural compounds isolated from bacteria of marine origin, based on accumulated data in the literature. We review the biological activities of marine compounds, including recent advances in the study of pharmacological effects and other commercial applications, in addition to the biosynthesis and physiological roles of associated pigments. Chemical structures of the bioactive compounds discussed are also presented.

  10. Biomedical and pharmacological potential of tetrodotoxin-producing bacteria isolated from marine pufferfish Arothron hispidus (Muller, 1841

    Directory of Open Access Journals (Sweden)

    S Bragadeeswaran

    2010-01-01

    Full Text Available Specimens of the pufferfish Arothron hispidus collected at Parangipettai, on the southeast coast of India, were subjected to bacterial isolation and identification. Three species were identified, namely Bacillus sp., Kytococcus sedentarius and Cellulomonas fimi. Partially-purified microbial filtrates exhibited hemolytic activity on chicken and human erythrocytes of O, B and AB blood groups, with maximum activity of 32 HU. The microbial filtrates also presented ATPase, Mg2+-ATPase, Na+K+-ATPase and AchE enzymatic activities of positive neuromodulation in Kytococcus sedentarius with 1300, 300.1, 1549.98 and 140.55%, in Cellulomonas fimi with 620, 300, 10 and 128.42%, and in Bacillus species with 40, 200, 849.98 and 158.69%, respectively. Toxicity symptoms were observed when the bacterial filtrate was intraperitoneally injected into mice. The bacterial filtrate caused adverse effects on viability of the mouse muscle cell line (L929 and leukemia cell line (P388. Maximum level of inhibition was observed on the growth of L929 cell line. Bacillus lentimorbus inhibited the cell line from 84.03 to 94.43% whereas Bacillus species inhibited the growth in a range between 77.25 and 86.16% at the lowest dilution.

  11. Isolation and characterization of pigmented algicidal bacteria from seawater

    Science.gov (United States)

    Shaima, A.; Gires, U.; Asmat, A.

    2014-09-01

    Some dinoflagellate species are toxic and widely distributed in Malaysian marines ecosystems. They can cause many problems to aquatic life due to the production of various potential and natural toxins that accumulate in filter feeding shellfish and cause food poisoning to human. In recent decades, bacteria have been widely used as a biological control against these harmful algae. In the present study, pigmented bacteria isolated from marine water of Port Dickson beach was studied for their anti-algal activity towards toxic dinoflagellate Alexandrium minutum. Four isolates were studied and only one was capable of inhibiting algal growth when treated with bacterial culture. The algilytic effect on dinoflagellate was evaluated based on direct cell count under the microscope. Results showed that only isolate Sdpd-310 with orange colour has an inhibitory effect on A. minutum growth. This study demonstrated the rapid algicidal activity of a marine pigmented bacteria against the toxic dinoflagellate A. minutum.

  12. Oligotrophic bacteria isolated from clinical materials.

    OpenAIRE

    Tada, Y; Ihmori, M; Yamaguchi, J

    1995-01-01

    Oligotrophic bacteria (oligotrophs) are microorganisms that grow in extremely nutritionally deficient conditions in which the concentrations of organic substances are low. Many oligotrophic bacteria were isolated from clinical materials including urine, sputum, swabbings of the throat, vaginal discharges, and others. Seventy-seven strains of oligotrophic bacteria from 871 samples of clinical material were isolated. A relatively higher frequency of isolation of oligotrophic bacteria was shown ...

  13. Conspicuous veils formed by vibrioid bacteria on sulfidic marine sediment

    DEFF Research Database (Denmark)

    Thar, Roland Matthias; Kühl, Michael

    2002-01-01

    , but the bacteria have so far not been isolated in pure culture, and a detailed characterization of their metabolism is still lacking. The bacteria are colorless, gram-negative, and vibrioid-shaped (1.3- to 2.5- by 4- to 10-µm) cells that multiply by binary division and contain several spherical inclusions of poly......We describe the morphology and behavior of a hitherto unknown bacterial species that forms conspicuous veils (typical dimensions, 30 by 30 mm) on sulfidic marine sediment. The new bacteria were enriched on complex sulfidic medium within a benthic gradient chamber in oxygen-sulfide countergradients......, forming a cohesive whitish veil at the oxic-anoxic interface. Bacteria attached to the veil kept rotating and adapted their stalk lengths dynamically to changing oxygen concentrations. The joint action of rotating bacteria on the veil induced a homogeneous water flow from the oxic water region toward...

  14. The Microworld of Marine-Bacteria

    DEFF Research Database (Denmark)

    JØRGENSEN, BB

    1995-01-01

    Microsensor studies show that the marine environment in the size scale of bacteria is physically and chemically very different from the macroenvironment. The microbial world of the sediment-water interface is thus dominated by water viscosity and steep diffusion gradients. Because of the diverse...... metabolism types, bacteria in the mostly anoxic sea floor play an important role in the major element cycles of the ocean. The communities of giant, filamentous sulfur bacteria that live in the deep-sea hydrothermal vents or along the Pacific coast of South America are presented here as examples....

  15. Physiological characteristics of bacteria isolated from water brines within permafrost

    Science.gov (United States)

    Shcherbakova, V.; Rivkina, E.; Laurinavichuis, K.; Pecheritsina, S.; Gilichinsky, D.

    2004-01-01

    In the Arctic there are lenses of overcooled water brines (cryopegs) sandwiched within permafrost marine sediments 100 120 thousand years old. We have investigated the physiological properties of the pure cultures of anaerobic Clostridium sp. strain 14D1 and two strains of aerobic bacteria Psychrobacter sp. isolated from these cryopegs. The structural and physiological characteristics of new bacteria from water brines have shown their ability to survive and develop under harsh conditions, such as subzero temperatures and high salinity.

  16. Geobiology of Marine Magnetotactic Bacteria

    Science.gov (United States)

    2006-06-01

    prokaryotic cells of diverse phylogeny when grown in media containing 45 1mM iron, suggesting some kind of detoxification function . The inclusions were...salt marsh productivity. FISH also showed that aggregates consist of genetically identical cells. QPCR data indicated that populations are finely...my advisor Katrina Edwards for taking a chance on someone who initially knew nothing about magnetotactic bacteria, microbial ecology , or microbiology

  17. Biological Potential of Chitinolytic Marine Bacteria

    DEFF Research Database (Denmark)

    Paulsen, Sara Skøtt; Andersen, Birgitte; Gram, Lone

    2016-01-01

    Chitinolytic microorganisms secrete a range of chitin modifying enzymes, which can be exploited for production of chitin derived products or as fungal or pest control agents. Here, we explored the potential of 11 marine bacteria (Pseudoalteromonadaceae, Vibrionaceae) for chitin degradation using...

  18. Autolysis of psychrophilic bacteria from marine fish.

    OpenAIRE

    Makarios-Laham, I; Levin, R E

    1985-01-01

    Two psychrophillic bacterial isolates of marine fish origin unable to grow at 20 degrees C or above were found to be distinguishable on the basis of autolysis at elevated temperature in various buffer systems. Isolate OP2 exhibited autolysis at 30 degrees C and above, while isolate OP7 underwent autolysis only at 35 degrees C and above. Tris buffer at pH 7.0 and 8.0 and at 35 degrees C significantly protected isolate OP2 from autolysis and failed to do so with isolate OP7. At pH 5.0, suspensi...

  19. Isolation and characterization of methanogenic bacteria from ...

    African Journals Online (AJOL)

    Isolation and characterization of methanogenic bacteria from brewery wastewater in Kenya. Sylvia Injete Murunga, Duncan Onyango Mbuge, Ayub Njoroge Gitau, Urbanus Ndungwa Mutwiwa, Ingrid Namae Wekesa ...

  20. Isolation and characterization of novel chitinolytic bacteria

    Science.gov (United States)

    Gürkök, Sümeyra; Görmez, Arzu

    2016-04-01

    Chitin, a linear polymer of β-1,4-N-acetylglucosamine units, is one of the most abundant biopolymers widely distributed in the marine and terrestrial environments. It is found as a structural component of insects, crustaceans and the cell walls of fungi. Chitinases, the enzymes degrading chitin by cleaving the β-(1-4) bond, have gained increased attention due to their wide range of biotechnological applications, especially for biocontrol of harmful insects and phytopathogenic fungi in agriculture. In the present study, 200 bacterial isolates from Western Anatolia Region of Turkey were screened for chitinolytic activity on agar media amended with colloidal chitin. Based on the chitin hydrolysis zone, 13 isolates were selected for further study. Bacterial isolates with the highest chitinase activity were identified as Acinetobacter calcoaceticus, Arthrobacter oxydans, Bacillus cereus, Bacillus megaterium, Brevibacillus reuszeri, Kocuria erythromyxa, Kocuria rosea, Novosphingobium capsulatum, Rhodococcus bratislaviensis, Rhodococcus fascians and Staphylococcus cohnii by MIS and BIOLOG systems. The next aims of the study are to compare the productivity of these bacteria quantitatively, to purify the enzyme from the most potent producer and to apply the pure enzyme for the fight against the phytopathogenic fungi and harmful insects.

  1. Marine Bacteria from Eastern Indonesia Waters and Their Potential Use in Biotechnology

    Directory of Open Access Journals (Sweden)

    Yosmina H Tapilatu

    2016-05-01

    Full Text Available Indonesian vast marine waters, which constitute 81% of the country’s total area, have a great potential in terms of marine bacteria biodiversity. However, marine bacteria are still under-explored in Indonesia, especially in its eastern area. Known as one of the biodiversity hotspots worldwide, this area surely harbors various marine bacteria of particular interest. Despite the growing number of oceanic expeditions carried out in this area, only little attention has been attributed to marine bacteria. Limited literatures exist on the isolation of marine bacteria producing compounds with potential biotechnological applications from the aforementioned waters. There are two main causes of this problem, namely lack of infrastructures and limited competent human resources. In this paper, I will highlight the preliminary results of isolation and bioprospecting attempts on this group of bacteria during the last fifteen years. These results indicate that research activities on marine bacteria in this area need to be intensified, to uncover their potential applications in various biotechnological fields. Keywords: marine bacteria, eastern Indonesian waters, biotechnological application

  2. Marine echinoderms as reservoirs of antimicrobial resistant bacteria

    Directory of Open Access Journals (Sweden)

    Catarina Marinho

    2014-06-01

    Full Text Available Echinoderms are benthic animals that play an important ecological role in marine communities occupying diverse trophic levels in the marine food chains. The majority of echinoderms feed on small particles of edible matter, although they can eat many kinds of food (Clark, 1968. Although, some echinoderms species has been facing an emerging demand for human consumption, particularly in Asian and Mediterranean cuisine, where these animals can be eaten raw (Kelly, 2005; Micael et al., 2009. Echinoderms own an innate immune mechanism that allows them to defend themselves from high concentrations of bacteria, viruses and fungus they are often exposed, on marine sediment (Janeway and Medzhitov, 1998, Cooper, 2003. The most frequent genera of gut bacteria in echinoderms are Vibrio, Pseudomonas, Flavobacterium, and Aeromonas; nevertheless Enterococcus spp. and Escherichia coli are also present (Harris, 1993; Marinho et al., 2013. Moreover, fecal resistant bacteria found in the aquatic environment might represent an index of marine pollution (Foti et al., 2009, Kummerer, 2009. Several studies had been lead in order to identify environmental reservoirs for antibiotic-resistant bacteria in populations of fish, echinoderms and marine mammals, and they all support the thesis that these animals may serve as reservoirs since they had acquired resistant microbial species (Johnson et al., 1998, Marinho et al., 2013, Miranda and Zemelman, 2001. However, to our knowledge, there are only available in bibliography one study of antimicrobial resistant bacteria isolated from marine echinoderms (Marinho et al., 2013, which stats that their provenience in this environment is still unclear. Antimicrobial resistance outcomes from the intensive use of antimicrobial drugs in human activities associated with various mechanisms for bacteria genetic transfer (Barbosa and Levy, 2000, Coque et al., 2008. Antibiotic-resistant bacteria enter into water environments where they are

  3. Discovery of novel algae-degrading enzymes from marine bacteria

    DEFF Research Database (Denmark)

    Schultz-Johansen, Mikkel; Bech, Pernille Kjersgaard; Hennessy, Rosanna Catherine

    Algal cell wall polysaccharides, and their derived oligosaccharides, display a range of health beneficial bioactive properties. Enzymes capable of degrading algal polysaccharides into oligosaccharides may be used to produce biomolecules with new functionalities for the food and pharma industry....... Some marine bacteria are specialized in degrading algal biomass and secrete enzymes that can decompose the complex algal cell wall polysaccharides. In order to identify such bacteria and enzymatic activities, we have used a combination of traditional cultivation and isolation methods, bioinformatics...... and functional screening. This resulted in the discovery of a novel marine bacterium which displays a large enzymatic potential for degradation of red algal polysaccharides e.g. agar and carrageenan. In addition, we searched metagenome sequence data and identified new enzyme candidates for degradation...

  4. Autolysis of psychrophilic bacteria from marine fish.

    Science.gov (United States)

    Makarios-Laham, I; Levin, R E

    1985-01-01

    Two psychrophillic bacterial isolates of marine fish origin unable to grow at 20 degrees C or above were found to be distinguishable on the basis of autolysis at elevated temperature in various buffer systems. Isolate OP2 exhibited autolysis at 30 degrees C and above, while isolate OP7 underwent autolysis only at 35 degrees C and above. Tris buffer at pH 7.0 and 8.0 and at 35 degrees C significantly protected isolate OP2 from autolysis and failed to do so with isolate OP7. At pH 5.0, suspension phosphate buffer resulted in significantly greater autolysis of both isolates than did suspension in succinate buffer. PMID:4004228

  5. Identification of marine methanol-utilizing bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, M; Iwaki, H; Kouno, K; Inui, T

    1980-01-01

    A taxonomical study of 65 marine methanol-utilizing bacteria is described. They were Gram-negative, non-spore-forming rods with a polar flagellum and had marine bacterial properties and required vitamin B/sub 12/ for growth. All of them assimilated fructose in addition to C/sub 1/-compounds and produced acid oxidatively from fructose. Twenty-four strains assimilated only C/sub 1/-compounds. They were resistant to penicillin, oxytetracycline and 0/129 substance (Vibrio stat), and tolerant to 12% NaCl. Guanine-cytosine contents of deoxyribonucleic acid in typical strains fell in the range of 43.8 to 47.6%. Other morphological and physiological properties were almost the same as those of terrestrial methanol-utilizers. Bacteria in the first group (41 strains) were facultative methylotrophs and were divided into three subgroups by the assimilation of methylated amines, that is, subgroup I (30 strains) assimilated mono-, di- and tri-methylamine, subgroup II (9 strains) assimilated only mono-methylamine, the bacteria of subgroups I and II were named Alteromonas thalassomethanolica sp. nov. and subgroup III (2 strains) did not assimilate methylated amines, and was tentatively assigned as Alteromonas sp. The second group of bacteria (24 strains) was obligate methylotrophs, named Methylomonas thalassica sp. nov. and was divided into subgroup IV (15 strains) which assimilated mono-, di and tri-methylamine and subgroup V (9 strains) which assimilated mono-methylamine.

  6. hydroxyalkanoate (PHAs) producing bacteria isolated

    African Journals Online (AJOL)

    SERVER

    2007-07-04

    Jul 4, 2007 ... ium (MSM), having inhibitors for Gram positive bacteria and fungi and a mixed ... Two techniques were used for detecting the presence of polymer: staining ... was saline solution at 600 nm wavelength on VARIAN DSM 100.

  7. Role of bacteria in marine barite precipitation : A case study using Mediterranean seawater

    NARCIS (Netherlands)

    Torres-Crespo, N.; Martínez-Ruiz, F.; González-Muñoz, M. T.; Bedmar, E. J.; De Lange, G. J.; Jroundi, F.

    2015-01-01

    Marine bacteria isolated from natural seawater were used to test their capacity to promote barite precipitation under laboratory conditions. Seawater samples were collected in the western and eastern Mediterranean at 250. m and 200. m depths, respectively, since marine barite formation is thought to

  8. Biodiversity of Bacteria Isolated from Different Soils

    Directory of Open Access Journals (Sweden)

    Fatma YAMAN

    2017-01-01

    Full Text Available The aim of this study was to determine the biodiversity of PHB producing bacteria isolated from soils where fruit and vegetable are cultivated (onion, grape, olive, mulberry and plum in Aydın providence. Morphological, cultural, biochemical, and molecular methods were used for bacteria identification. These isolated bacteria were identified by 16S rRNA sequencing and using BLAST. The following bacteria Bacillus thuringiensis (6, Bacillus cereus (8, Bacillus anthrachis (1, Bacillus circulans (1, Bacillus weihenstephanensis (1, Pseudomonas putida (1, Azotobacter chroococcum (1, Brevibacterium frigoritolerans (1, Burkholderia sp. (1, Staphylococcus epidermidis (1, Streptomyces exfoliatus (1, Variovorax paradoxus (1 were found. The Maximum Likelihood method was used to produce a molecular phylogenetic analysis and a phylogenetic tree was constructed. These bacteria can produce polyhydroxybutyrate (PHB which is an organic polymer with commercial potential as a biodegradable thermoplastic. PHB can be used instead of petrol derivated non-degradable plastics. For this reason, PHB producing microorganisms are substantial in industry.

  9. Characterization of Eight Kinds of Marine Magnetotactic Bacteria

    Science.gov (United States)

    Du, H.; Pan, H.; Zhang, W.; Wu, L. F.; Xiao, T.

    2017-12-01

    Eight marine magnetotactic bacteria were isolated from intertidal sediments. Six of them are magnetococci (RO-1, RO-2, RO-3, RO-4, SC-1 and SC-2), and two of them are manetospirilla (SH-1 and HH-1). Strain RO-1, RO-2, RO-3, and RO-4 were from Lake Yuehu, Rongcheng (the Yellow Sea). Strain SC-1, SC-2 and SH-1 were from Sanya (the South China Sea). Strain HH-1 was from Huiquan Bay, Qingdao (the Yellow Sea). Magnetosomes arranged in a disorganized cluster in RO-1 and RO-4, two chains in SC-2, and in one chain in others. All the magnetosome crystals were prismatic magnetites. Phylogenetic analysis revealed that they all belonged to the Alphaproteobacteria. Strain RO-1, RO-2, RO-3, RO-4, SC-2 and SH-1 are novel cultured magnetotactic bacteria.

  10. A direct pre-screen for marine bacteria producing compounds inhibiting quorum sensing reveals diverse planktonic bacteria that are bioactive.

    Science.gov (United States)

    Linthorne, Jamie S; Chang, Barbara J; Flematti, Gavin R; Ghisalberti, Emilio L; Sutton, David C

    2015-02-01

    A promising new strategy in antibacterial research is inhibition of the bacterial communication system termed quorum sensing. In this study, a novel and rapid pre-screening method was developed to detect the production of chemical inhibitors of this system (quorum-quenching compounds) by bacteria isolated from marine and estuarine waters. This method involves direct screening of mixed populations on an agar plate, facilitating specific isolation of bioactive colonies. The assay showed that between 4 and 46 % of culturable bacteria from various samples were bioactive, and of the 95 selectively isolated bacteria, 93.7 % inhibited Vibrio harveyi bioluminescence without inhibiting growth, indicating potential production of quorum-quenching compounds. Of the active isolates, 21 % showed further activity against quorum-sensing-regulated pigment production by Serratia marcescens. The majority of bioactive isolates were identified by 16S ribosomal DNA (rDNA) amplification and sequencing as belonging to the genera Vibrio and Pseudoalteromonas. Extracts of two strongly bioactive Pseudoalteromonas isolates (K1 and B2) were quantitatively assessed for inhibition of growth and quorum-sensing-regulated processes in V. harveyi, S. marcescens and Chromobacterium violaceum. Extracts of the isolates reduced V. harveyi bioluminescence by as much as 98 % and C. violaceum pigment production by 36 % at concentrations which had no adverse effect on growth. The activity found in the extracts indicated that the isolates may produce quorum-quenching compounds. This study further supports the suggestion that quorum quenching may be a common attribute among culturable planktonic marine and estuarine bacteria.

  11. Marine Protists Are Not Just Big Bacteria.

    Science.gov (United States)

    Keeling, Patrick J; Campo, Javier Del

    2017-06-05

    The study of marine microbial ecology has been completely transformed by molecular and genomic data: after centuries of relative neglect, genomics has revealed the surprising extent of microbial diversity and how microbial processes transform ocean and global ecosystems. But the revolution is not complete: major gaps in our understanding remain, and one obvious example is that microbial eukaryotes, or protists, are still largely neglected. Here we examine various ways in which protists might be better integrated into models of marine microbial ecology, what challenges this will present, and why understanding the limitations of our tools is a significant concern. In part this is a technical challenge - eukaryotic genomes are more difficult to characterize - but eukaryotic adaptations are also more dependent on morphology and behaviour than they are on the metabolic diversity that typifies bacteria, and these cannot be inferred from genomic data as readily as metabolism can be. We therefore cannot simply follow in the methodological footsteps of bacterial ecology and hope for similar success. Understanding microbial eukaryotes will require different approaches, including greater emphasis on taxonomically and trophically diverse model systems. Molecular sequencing will continue to play a role, and advances in environmental sequence tag studies and single-cell methods for genomic and transcriptomics offer particular promise. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Bacteria Isolated from Post-Partum Infections

    Directory of Open Access Journals (Sweden)

    Nahid Arianpour

    2009-06-01

    Full Text Available Objective: This study was undertaken with an aim to determine bacterial species involved in post partum infections and also their abundance in patients admitted to at Khanevadeh hospital. In this study out of three different kinds of postpartum infections (i.e. genital, breast and urinary tract, only genital infection is considered.Materials and Methods: Post partum infection among 6077 patients (inpatients and re-admitted patients of Khanevadeh hospital from 2003 till 2008 was studied in this descriptive study. Samples were collected from patients for laboratory diagnosis to find out the causative organisms.Results: Follow up of mothers after delivery revealed 7.59% (461 patients had post partum infection, out of which 1.03% (63 patients were re-hospitalized. Infection was more often among younger mothers. Bacteria isolated and identified were both aerobic and anaerobic cocci and bacilli, majority of which were normal flora of the site of infection. Though, some pathogenic bacteria like Staphylococcus aureus, Neisseria gonorrhea, Chlamydia trachomatis,were also the causative agents. The commonest infection was infection at the site of episiotomy. Conclusion: Puerperal infection was detected in of 7.59% mothers. Bacteria isolated were both aerobic and anaerobic cocci and bacilli, majority of which were normal flora. However; some pathogenic bacteria were isolated.

  13. Hydrocarbon-degrading sulfate-reducing bacteria in marine hydrocarbon seep sediments

    OpenAIRE

    Kleindienst, Sara

    2012-01-01

    Microorganisms are key players in our biosphere because of their ability to degrade various organic compounds including a wide range of hydrocarbons. At marine hydrocarbon seeps, more than 90% of sulfate reduction (SR) is potentially coupled to non-methane hydrocarbon oxidation. Several hydrocarbon-degrading sulfate-reducing bacteria (SRB) were enriched or isolated from marine sediments. However, in situ active SRB remained largely unknown. In the present thesis, the global distribution and a...

  14. Isolation and identification of bacteria from marine market fish Scomberomorus guttatus (Bloch and Schneider, 1801) from Madurai district, Tamil Nadu, India.

    Science.gov (United States)

    Karthiga Rani, M; Chelladurai, G; Jayanthi, G

    2016-09-01

    The present study was conducted to evaluate the hygienic quality and freshness of fish Indo-pacific King Mackerel "Scomberomorus guttatus" through the investigation of the occurrence of bacteria which is an indicator for fish quality. Fishes were collected every fortnight from Madurai fish market on monthly twice of January 2014 to March 2014. Skin surface of the fish was examined. Escherichia coli, Proteus vulgaris, Bacillus subtilis, Klebsiella pneumonia, Pseudomonas aeruginosa and Staphylococcus aureus were identified by Biochemical tests (IMViC Tests). Among the six bacterial species E. coli and K. pneumonia were found in all the collected samples where as other bacterial species were not found. The result of this study revealed that raw fish sold in Madurai fish market has high contamination so the presence of the bacterial species has strongly suggested the urgent need to improve the quality control systems in Madurai fish market.

  15. Prospective Source of Antimicrobial Compounds From Pigment Produced by Bacteria associated with Brown Alga ( Phaeophyceae ) Isolated from Karimunjawa island, Indonesia

    Science.gov (United States)

    Lunggani, A. T.; Darmanto, Y. S.; Radjasa, O. K.; Sabdono, A.

    2018-02-01

    Brown algae or Phaeophyceae characterized by their natural pigments that differ from other important algal classes. Several publications proves that brown algae - associated bacteria have great potential in developing marine pharmaceutical industry since they are capable to synthesized numerous bioactive metabolite compounds. However the potency of marine pigmented microbes associated with brown alga to produce natural pigments and antimicrobials has been less studied. Marine pigmented bacteria associated with brown algae collected from Karimunjawa Island were successfully isolated and screened for antimicrobial activity. The aim of this research was evaluated of the antimicrobial activity of pigments extracted from culturable marine pigmented bacteria on some pathogenic bacteria and yeast. The results showed that all isolates had antimicrobial activity and could be prospectively developed as antimicrobial agent producing pigments. The 6 marine pigmented bacteria was identified to genus level as Pseudoalteromonas, Sphingomonas, Serratia, Paracoccus, Vibrio.

  16. Exopolysaccharides from Marine and Marine Extremophilic Bacteria: Structures, Properties, Ecological Roles and Applications

    Directory of Open Access Journals (Sweden)

    Angela Casillo

    2018-02-01

    Full Text Available The marine environment is the largest aquatic ecosystem on Earth and it harbours microorganisms responsible for more than 50% of total biomass of prokaryotes in the world. All these microorganisms produce extracellular polymers that constitute a substantial part of the dissolved organic carbon, often in the form of exopolysaccharides (EPS. In addition, the production of these polymers is often correlated to the establishment of the biofilm growth mode, during which they are important matrix components. Their functions include adhesion and colonization of surfaces, protection of the bacterial cells and support for biochemical interactions between the bacteria and the surrounding environment. The aim of this review is to present a summary of the status of the research about the structures of exopolysaccharides from marine bacteria, including capsular, medium released and biofilm embedded polysaccharides. Moreover, ecological roles of these polymers, especially for those isolated from extreme ecological niches (deep-sea hydrothermal vents, polar regions, hypersaline ponds, etc., are reported. Finally, relationships between the structure and the function of the exopolysaccharides are discussed.

  17. HEAVY METAL AND ANTIBIOTIC RESISTANCE BACTERIA IN MARINE SEDIMENT OF PAHANG COASTAL WATER

    Directory of Open Access Journals (Sweden)

    Zaima Azira

    2018-01-01

    Full Text Available The presence of heavy metal and antibiotic resistance bacteria in the marine sediment may indicate heavy metal pollution and antibiotic abuse present in the environment. In this study, a total of 89 bacteria isolated from sediment collected in Teluk Chempedak and Pantai Batu Hitam of Pahang coastal water underwent heavy metal resistance test against Chromium, Cadmium, Nickel, Copper and Cobalt. Previously, these isolates were found to exhibit antibiotic resistance capabilities to at least 5 antibiotics tested. Heavy metal resistance pattern for isolates from Teluk Chempedak was in the form of Cr > Ni >Co >Cd = Cu while for isolates from Pantai Batu Hitam showed a pattern of Cr = Ni >Co >Cu >Cd. Further investigation on the identity of selected isolates that exhibited both antibiotic and heavy metals resistance capabilities using 16S rRNA gene sequences revealed isolates with closest similarities to Staphylococcus saprophyticus and Brevundimonas vesicularis..

  18. Isolation and biochemical characterizations of the bacteria ...

    African Journals Online (AJOL)

    These isolates yielded off white convex colonies on potato dextrose agar (PDA) media at 29°C with 1.7 to 1.9 mm diameter and were yellow on yeast extract dextrose chalk agar (YDC) media at 27°C with 1.8 to 2.0 mm diameter. The bacteria were rod shape measuring 0.5 to 0.6 × 1.4 to 1.6 μm on PDA and 0.6 to 0.7 × 1.5 to ...

  19. Roseobacter-clade bacteria as probiotics in marine larvaeculture

    DEFF Research Database (Denmark)

    Grotkjær, Torben

    Disease caused by fish pathogenic bacteria can cause large scale crashes in marine fish larval rearing units. One of the biggest challenges for aquaculture is the management of these bacterial outbreaks. Vaccines can be admitted to fish but only the juvenile and the adult fish because they need...... to have a mature immune system. This means that the larvae of the fish, until they are 2-3 weeks old are more prone to bacterial infections. A short term solution is antibiotics but this leaves way for the selection for antibiotic resistance among the pathogenic bacteria, which again can be transferred...... to human pathogens. Alternatives are therefore needed and one could be the use of probiotic bacteria. Marine bacteria from the Roseobacter clade (Phaeobacter inhibens) have shown great potential as probiotic bacteria, and we have hypothesized that they could be used to antagonize pathogenic fish...

  20. Bacteria From Marine Sponges: A Source of New Drugs.

    Science.gov (United States)

    Bibi, Fehmida; Faheem, Muhammad; Azhar, Esam I; Yasir, Muhammad; Alvi, Sana A; Kamal, Mohammad A; Ullah, Ikram; Naseer, Muhammad I

    2017-01-01

    Sponges are rich source of bioactive natural products synthesized by the symbiotic bacteria belonging to different phyla. Due to a competition for space and nutrients the marine bacteria associated with sponges could produce more antibiotic substances. To explore the proactive potential of marine microbes extensive research has been done. These bioactive metabolites have some unique properties that are pharmaceutically important. For this review, we have performed a non-systematic search of the available literature though various online search engines. This review provides an insight that how majority of active metabolites have been identified from marine invertebrates of which sponges predominate. Sponges harbor abundant and diverse microorganisms, which are the sources of a range of marine bioactive metabolites. From sponges and their associated microorganisms, approximately 5,300 different natural compounds are known. Current research on sponge-microbe interaction and their active metabolites has become a focal point for many researchers. Various active metabolites derived from sponges are now known to be produced by their symbiotic microflora. In this review, we attempt to report the latest studies regarding capability of bacteria from sponges as producers of bioactive metabolite. Moreover, these sponge associated bacteria are an important source of different enzymes of industrial significance. In present review, we will address some novel approaches for discovering marine metabolites from bacteria that have the greatest potential to be used in clinical treatments. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  1. Diversity and antimicrobial potential of culturable heterotrophic bacteria associated with the endemic marine sponge Arenosclera brasiliensis

    Directory of Open Access Journals (Sweden)

    Cintia P.J. Rua

    2014-06-01

    Full Text Available Marine sponges are the oldest Metazoa, very often presenting a complex microbial consortium. Such is the case of the marine sponge Arenosclera brasiliensis, endemic to Rio de Janeiro State, Brazil. In this investigation we characterized the diversity of some of the culturable heterotrophic bacteria living in association with A. brasiliensis and determined their antimicrobial activity. The genera Endozoicomonas (N = 32, Bacillus (N = 26, Shewanella (N = 17, Pseudovibrio (N = 12, and Ruegeria (N = 8 were dominant among the recovered isolates, corresponding to 97% of all isolates. Approximately one third of the isolates living in association with A. brasiliensis produced antibiotics that inhibited the growth of Bacillus subtilis, suggesting that bacteria associated with this sponge play a role in its health.

  2. Interactions between phototrophic bacteria in marine sediments

    NARCIS (Netherlands)

    de Wit, Rutger

    1989-01-01

    Phototrophic bacteria are the most consicious organisms occuring in laminated microbial sediment ecosystems (microbial mats). In the Waddensea area ecosystems consisting of a toplayer of the cyanobacterium Microleus chthonoplastes overlying a red layer of the purple sulfur bacterium Thiocapsa

  3. Isolation and characterization of feather degrading bacteria from ...

    African Journals Online (AJOL)

    This study is aimed at isolating and characterizing new culturable feather degrading bacteria from soils of the University of Mauritius Farm. Bacteria that were isolated were tested for their capability to grow on feather meal agar (FMA). Proteolytic bacteria were tested for feather degradation and were further identified ...

  4. Ecology: Electrical Cable Bacteria Save Marine Life

    DEFF Research Database (Denmark)

    Nielsen, Lars Peter

    2016-01-01

    Animals at the bottom of the sea survive oxygen depletion surprisingly often, and a new study identifies cable bacteria in the sediment as the saviors. The bacterial electrical activity creates an iron 'carpet', trapping toxic hydrogen sulfide.......Animals at the bottom of the sea survive oxygen depletion surprisingly often, and a new study identifies cable bacteria in the sediment as the saviors. The bacterial electrical activity creates an iron 'carpet', trapping toxic hydrogen sulfide....

  5. Isolation of biosurfactant-producing marine bacteria

    African Journals Online (AJOL)

    user

    2012-06-06

    Jun 6, 2012 ... of mixtures of oils, drop collapsing test as well as oil displacement test were used to determine ... catalase test, oxidase test, litmus milk reaction, starch hydrolysis .... suggested that the single screening method is unsuitable.

  6. Isolation and characterization of biosurfactant producing bacteria from Persian Gulf (Bushehr provenance).

    Science.gov (United States)

    Hassanshahian, Mehdi

    2014-09-15

    Biosurfactants are surface active materials that are produced by some microorganisms. These molecules increase biodegradation of insoluble pollutants. In this study sediments and seawater samples were collected from the coastline of Bushehr provenance in the Persian Gulf and their biosurfactant producing bacteria were isolated. Biosurfactant producing bacteria were isolated by using an enrichment method in Bushnell-Hass medium with diesel oil as the sole carbon source. Five screening tests were used for selection of Biosurfactant producing bacteria: hemolysis in blood agar, oil spreading, drop collapse, emulsification activity and Bacterial Adhesion to Hydrocarbon test (BATH). These bacteria were identified using biochemical and molecular methods. Eighty different colonies were isolated from the collected samples. The most biosurfactant producing isolates related to petrochemical plants of Khark Island. Fourteen biosurfactant producing bacteria were selected between these isolates and 7 isolates were screened as these were predominant producers that belong to Shewanella alga, Shewanella upenei, Vibrio furnissii, Gallaecimonas pentaromativorans, Brevibacterium epidermidis, Psychrobacter namhaensis and Pseudomonas fluorescens. The largest clear zone diameters in oil spreading were observed for G. pentaromativorans strain O15. Also, this strain has the best emulsification activity and reduction of surface tension, suggesting it is the best of thee isolated strains. The results of this study confirmed that there is high diversity of biosurfactant producing bacteria in marine ecosystem of Iran and by application of these bacteria in petrochemical waste water environmental problems can be assisted. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Characterization of Bacteria Isolation of Bacteria from Pinyon Rhizosphere,

    Science.gov (United States)

    2016-01-01

    Two hundred and fifty bacterial strains were isolated from pinyon rhizosphere and screened for biosurfactants production. Among them, six bacterial strains were selected for their potential to produce biosurfactants using two low cost wastes, crude glycerol and lactoserum, as raw material. Both wastes were useful for producing biosurfactants because of their high content in fat and carbohydrates. The six strains were identified by 16S rDNA with an identity percentage higher than 95%, three strains belonged to Enterobacter sp., Pseudomonas aeruginosa, Bacillus pumilus and Rhizobium sp. All strains assayed were able to grow and showed halos around the colonies as evidence of biosurfactants production on Cetyl Trimethyl Ammonium Bromide agar with crude glycerol and lactoserum as substrate. In a mineral salt liquid medium enriched with both wastes, the biosurfactants were produced and collected from free cell medium after 72 h incubation. The biosurfactants produced reduced the surface tension from 69 to 30 mN/m with an emulsification index of diesel at approximately 60%. The results suggest that biosurfactants produced by rhizosphere bacteria from pinyon have promising environmental applications.

  8. Biosynthesis of polybrominated aromatic organic compounds by marine bacteria

    Science.gov (United States)

    Agarwal, Vinayak; El Gamal, Abrahim A.; Yamanaka, Kazuya; Poth, Dennis; Kersten, Roland D.; Schorn, Michelle; Allen, Eric E.; Moore, Bradley S.

    2014-01-01

    Polybrominated diphenyl ethers (PBDEs) and polybrominated bipyrroles are natural products that bioaccumulate in the marine food chain. PBDEs have attracted widespread attention due to their persistence in the environment and potential toxicity to humans. However, the natural origins of PBDE biosynthesis are not known. Here we report marine bacteria as producers of PBDEs and establish a genetic and molecular foundation for their production that unifies paradigms for the elaboration of bromophenols and bromopyrroles abundant in marine biota. We provide biochemical evidence of marine brominase enzymes revealing decarboxylative-halogenation enzymology previously unknown among halogenating enzymes. Biosynthetic motifs discovered in our study were used to mine sequence databases to discover unrealized marine bacterial producers of organobromine compounds. PMID:24974229

  9. Isolation and characterization of biosurfactant producing bacteria from Persian Gulf (Bushehr provenance)

    International Nuclear Information System (INIS)

    Hassanshahian, Mehdi

    2014-01-01

    Highlights: • Biosurfactant producing bacteria were isolated from Persian Gulf. • There is high diversity of biosurfactant producing bacteria in the Persian Gulf. • These bacteria are very useful for management of oil pollution in the sea. - Abstract: Biosurfactants are surface active materials that are produced by some microorganisms. These molecules increase biodegradation of insoluble pollutants. In this study sediments and seawater samples were collected from the coastline of Bushehr provenance in the Persian Gulf and their biosurfactant producing bacteria were isolated. Biosurfactant producing bacteria were isolated by using an enrichment method in Bushnell-Hass medium with diesel oil as the sole carbon source. Five screening tests were used for selection of Biosurfactant producing bacteria: hemolysis in blood agar, oil spreading, drop collapse, emulsification activity and Bacterial Adhesion to Hydrocarbon test (BATH). These bacteria were identified using biochemical and molecular methods. Eighty different colonies were isolated from the collected samples. The most biosurfactant producing isolates related to petrochemical plants of Khark Island. Fourteen biosurfactant producing bacteria were selected between these isolates and 7 isolates were screened as these were predominant producers that belong to Shewanella alga, Shewanella upenei, Vibrio furnissii, Gallaecimonas pentaromativorans, Brevibacterium epidermidis, Psychrobacter namhaensis and Pseudomonas fluorescens. The largest clear zone diameters in oil spreading were observed for G. pentaromativorans strain O15. Also, this strain has the best emulsification activity and reduction of surface tension, suggesting it is the best of thee isolated strains. The results of this study confirmed that there is high diversity of biosurfactant producing bacteria in marine ecosystem of Iran and by application of these bacteria in petrochemical waste water environmental problems can be assisted

  10. Oligotrophy and pelagic marine bacteria : Facts and fiction

    NARCIS (Netherlands)

    Schut, F; Prins, R.A; Gottschal, J.C

    1997-01-01

    Oligotrophy, or the inability of bacterial cells to propagate at elevated nutrient concentrations, is a controversial phenomenon in microbiology. The exact cause of the unculturability of many indigenous marine bacteria on standard laboratory media has still not been resolved. Unfortunately the

  11. Characterization of hydrocarbon utilizing bacteria in tropical marine ...

    African Journals Online (AJOL)

    Hydrocarbon utilizing bacteria present in Nembe waterside sediments, a marine habitat in Port Harcourt, Nigeria, were characterized using standard culture dependent techniques. The sediment samples were collected along the navigational route with an Eckman sediment grab (Wild Life Supply Co., NY). The samples had ...

  12. Study and isolation of aerobic hydrocarbon-degrading bacteria from Cuban shorelines

    OpenAIRE

    Barrios-San Martín, Yaima; Acosta, Silvia; Sánchez, Ayixon; Toledo, Antonio; González, Francisca; García, Regla M

    2012-01-01

    The isolation of aerobic marine bacteria able to degrade hydrocarbons represents a promising alternative for the decontamination of oceanic and coastal environments. In the present work, twelve water and sediment samples from the Felton coastline in the Province of Holguín were collected and screened with Bushnell-Haas medium supplemented with light crude oil or with seawater supplemented with yeast extract and crude oil as a carbon source, obtaining twenty seven and six bacterial isolates re...

  13. Screening and identification of lactic acid bacteria isolated from ...

    African Journals Online (AJOL)

    The lactic acid bacteria (LAB) isolated from sorghum (Sorghum bicolor. L.) silage were identified during different periods of evolution of sorghum silage in west Algeria. Morphological, physiological, biochemical and technological techniques were used to characterize lactic acid bacteria isolates. A total number of 27 ...

  14. Marine Pseudomonas putida: a potential source of antimicrobial substances against antibiotic-resistant bacteria

    Directory of Open Access Journals (Sweden)

    Palloma Rodrigues Marinho

    2009-08-01

    Full Text Available Bacteria isolated from marine sponges found off the coast of Rio de Janeiro, Brazil, were screened for the production of antimicrobial substances. We report a new Pseudomonas putida strain (designated P. putida Mm3 isolated from the sponge Mycale microsigmatosa that produces a powerful antimicrobial substance active against multidrug-resistant bacteria. P. putida Mm3 was identified on the basis of 16S rRNA gene sequencing and phenotypic tests. Molecular typing for Mm3 was performed by RAPD-PCR and comparison of the results to other Pseudomonas strains. Our results contribute to the search for new antimicrobial agents, an important strategy for developing alternative therapies to treat infections caused by multidrug-resistant bacteria.

  15. Marine Pseudomonas putida: a potential source of antimicrobial substances against antibiotic-resistant bacteria.

    Science.gov (United States)

    Marinho, Palloma Rodrigues; Moreira, Ana Paula Barbosa; Pellegrino, Flávia Lúcia Piffano Costa; Muricy, Guilherme; Bastos, Maria do Carmo de Freire; Santos, Kátia Regina Netto dos; Giambiagi-deMarval, Marcia; Laport, Marinella Silva

    2009-08-01

    Bacteria isolated from marine sponges found off the coast of Rio de Janeiro, Brazil, were screened for the production of antimicrobial substances. We report a new Pseudomonas putida strain (designated P. putida Mm3) isolated from the sponge Mycale microsigmatosa that produces a powerful antimicrobial substance active against multidrug-resistant bacteria. P. putida Mm3 was identified on the basis of 16S rRNA gene sequencing and phenotypic tests. Molecular typing for Mm3 was performed by RAPD-PCR and comparison of the results to other Pseudomonas strains. Our results contribute to the search for new antimicrobial agents, an important strategy for developing alternative therapies to treat infections caused by multidrug-resistant bacteria.

  16. Diversity of pigmented Gram-positive bacteria associated with marine macroalgae from Antarctica.

    Science.gov (United States)

    Leiva, Sergio; Alvarado, Pamela; Huang, Ying; Wang, Jian; Garrido, Ignacio

    2015-12-01

    Little is known about the diversity and roles of Gram-positive and pigmented bacteria in Antarctic environments, especially those associated with marine macroorganisms. This work is the first study about the diversity and antimicrobial activity of culturable pigmented Gram-positive bacteria associated with marine Antarctic macroalgae. A total of 31 pigmented Gram-positive strains were isolated from the surface of six species of macroalgae collected in the King George Island, South Shetland Islands. On the basis of 16S rRNA gene sequence similarities ≥99%, 18 phylotypes were defined, which were clustered into 11 genera of Actinobacteria (Agrococcus, Arthrobacter, Brachybacterium, Citricoccus, Kocuria, Labedella, Microbacterium, Micrococcus, Rhodococcus, Salinibacterium and Sanguibacter) and one genus of the Firmicutes (Staphylococcus). It was found that five isolates displayed antimicrobial activity against a set of macroalgae-associated bacteria. The active isolates were phylogenetically related to Agrococcus baldri, Brachybacterium rhamnosum, Citricoccus zhacaiensis and Kocuria palustris. The results indicate that a diverse community of pigmented Gram-positive bacteria is associated with Antartic macroalgae and suggest its potential as a promising source of antimicrobial and pigmented natural compounds. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  17. Piezophilic Bacteria Isolated from Sediment of the Shimokita Coalbed, Japan

    Science.gov (United States)

    Fang, J.; Kato, C.; Hori, T.; Morono, Y.; Inagaki, F.

    2013-12-01

    The Earth is a cold planet as well as pressured planet, hosting both the surface biosphere and the deep biosphere. Pressure ranges over four-orders of magnitude in the surface biosphere and probably more in the deep biosphere. Pressure is an important thermodynamic property of the deep biosphere that affects microbial physiology and biochemistry. Bacteria that require high-pressure conditions for optimal growth are called piezophilic bacteria. Subseafloor marine sediments are one of the most extensive microbial habitats on Earth. Marine sediments cover more than two-thirds of the Earth's surface, and represent a major part of the deep biosphere. Owing to its vast size and intimate connection with the surface biosphere, particularly the oceans, the deep biosphere has enormous potential for influencing global-scale biogeochemical processes, including energy, climate, carbon and nutrient cycles. Therefore, studying piezophilic bacteria of the deep biosphere has important implications in increasing our understanding of global biogeochemical cycles, the interactions between the biosphere and the geosphere, and the evolution of life. Sediment samples were obtained during IODP Expedition 337, from 1498 meters below sea floor (mbsf) (Sample 6R-3), 1951~1999 mbsf (19R-1~25R-3; coalbed mix), and 2406 mbsf (29R-7). The samples were mixed with MB2216 growth medium and cultivated under anaerobic conditions at 35 MPa (megapascal) pressure. Growth temperatures were adjusted to in situ environmental conditions, 35°C for 6R-3, 45°C for 19R-1~25R-3, and 55°C for 29R-7. The cultivation was performed three times, for 30 days each time. Microbial cells were obtained and the total DNA was extracted. At the same time, isolation of microbes was also performed under anaerobic conditions. Microbial communities in the coalbed sediment were analyzed by cloning, sequencing, and terminal restriction fragment length polymorphism (t-RFLP) of 16S ribosomal RNA genes. From the partial 16S r

  18. Thermophilic Sulfate-Reducing Bacteria in Cold Marine Sediment

    DEFF Research Database (Denmark)

    ISAKSEN, MF; BAK, F.; JØRGENSEN, BB

    1994-01-01

    sulfate-reducing bacteria was detected. Time course experiments showed constant sulfate reduction rates at 4 degrees C and 30 degrees C, whereas the activity at 60 degrees C increased exponentially after a lag period of one day. Thermophilic, endospore-forming sulfate-reducing bacteria, designated strain...... C to search for presence of psychrophilic, mesophilic and thermophilic sulfate-reducing bacteria. Detectable activity was initially only in the mesophilic range, but after a lag phase sulfate reduction by thermophilic sulfate-reducing bacteria were observed. No distinct activity of psychrophilic...... P60, were isolated and characterized as Desulfotomaculum kuznetsovii. The temperature response of growth and respiration of strain P60 agreed well with the measured sulfate reduction at 50 degrees-70 degrees C. Bacteria similar to strain P60 could thus be responsible for the measured thermophilic...

  19. Thermophilic Sulfate-Reducing Bacteria in Cold Marine Sediment

    DEFF Research Database (Denmark)

    ISAKSEN, MF; BAK, F.; JØRGENSEN, BB

    1994-01-01

    C to search for presence of psychrophilic, mesophilic and thermophilic sulfate-reducing bacteria. Detectable activity was initially only in the mesophilic range, but after a lag phase sulfate reduction by thermophilic sulfate-reducing bacteria were observed. No distinct activity of psychrophilic...... sulfate-reducing bacteria was detected. Time course experiments showed constant sulfate reduction rates at 4 degrees C and 30 degrees C, whereas the activity at 60 degrees C increased exponentially after a lag period of one day. Thermophilic, endospore-forming sulfate-reducing bacteria, designated strain...... P60, were isolated and characterized as Desulfotomaculum kuznetsovii. The temperature response of growth and respiration of strain P60 agreed well with the measured sulfate reduction at 50 degrees-70 degrees C. Bacteria similar to strain P60 could thus be responsible for the measured thermophilic...

  20. Isolation of Biosurfactant Producing Bacteria from Oil Reservoirs

    OpenAIRE

    A Tabatabaee, M Mazaheri Assadi, AA Noohi,VA Sajadian

    2005-01-01

    Biosurfactants or surface-active compounds are produced by microoaganisms. These molecules reduce surface tension both aqueous solutions and hydrocarbon mixtures. In this study, isolation and identification of biosurfactant producing bacteria were assessed. The potential application of these bacteria in petroleum industry was investigated. Samples (crude oil) were collected from oil wells and 45 strains were isolated. To confirm the ability of isolates in biosurfactant production, haemolysis ...

  1. Anaerobic degradation of benzene by marine sulfate-reducing bacteria

    Science.gov (United States)

    Musat, Florin; Wilkes, Heinz; Musat, Niculina; Kuypers, Marcel; Widdel, Friedrich

    2010-05-01

    Benzene, the archetypal aromatic hydrocarbon is a common constituent of crude oil and oil-refined products. As such, it can enter the biosphere through natural oil seeps or as a consequence of exploitation of fossil fuel reservoirs. Benzene is chemically very stable, due to the stabilizing aromatic electron system and to the lack of functional groups. Although the anaerobic degradation of benzene has been reported under denitrifying, sulfate-reducing and methanogenic conditions, the microorganisms involved and the initial biochemical steps of degradation remain insufficiently understood. Using marine sediment from a Mediterranean lagoon a sulfate-reducing enrichment culture with benzene as the sole organic substrate was obtained. Application of 16S rRNA gene-based methods showed that the enrichment was dominated (more than 85% of total cells) by a distinct phylotype affiliated with a clade of Deltaproteobacteria that include degraders of other aromatic hydrocarbons, such as naphthalene, ethylbenzene and m-xylene. Using benzoate as a soluble substrate in agar dilution series, several pure cultures closely related to Desulfotignum spp. and Desulfosarcina spp. were isolated. None of these strains was able to utilize benzene as a substrate and hybridizations with specific oligonucleotide probes showed that they accounted for as much as 6% of the total cells. Incubations with 13C-labeled benzene followed by Halogen in situ Hybridization - Secondary Ion Mass Spectroscopy (HISH-SIMS) analysis showed that cells of the dominant phylotype were highly enriched in 13C, while the accompanying bacteria had little or no 13C incorporation. These results demonstrate that the dominant phylotype was indeed the apparent benzene degrader. Dense-cell suspensions of the enrichment culture did not show metabolic activity toward added phenol or toluene, suggesting that benzene degradation did not proceed through anaerobic hydroxylation or methylation. Instead, benzoate was identified in

  2. Isolation of heterotrophic diazotrophic bacteria from estuarine surface waters.

    Science.gov (United States)

    Farnelid, Hanna; Harder, Jens; Bentzon-Tilia, Mikkel; Riemann, Lasse

    2014-10-01

    The wide distribution of diverse nitrogenase (nifH) genes affiliated with those of heterotrophic bacteria in marine and estuarine waters indicates ubiquity and an ecologically relevant role for heterotrophic N2 -fixers (diazotrophs) in aquatic nitrogen (N) cycling. However, the lack of cultivated representatives currently precludes an evaluation of their N2 -fixing capacity. In this study, microoxic or anoxic N-free media were inoculated with estuarine Baltic Sea surface water to select for N2 -fixers. After visible growth and isolation of single colonies on oxic plates or in anoxic agar tubes, nifH gene amplicons were obtained from 64 strains and nitrogenase activity, applying the acetylene reduction assay, was confirmed for 40 strains. Two strains, one Gammaproteobacterium affiliated with Pseudomonas and one Alphaproteobacterium affiliated with Rhodopseudomonas were shown to represent established members of the indigenous diazotrophic community in the Baltic Sea, with abundances of up to 7.9 × 10(4) and 4.7 × 10(4)  nifH copies l(-1) respectively. This study reports media for successful isolation of heterotrophic diazotrophs. The applied methodology and the obtained strains will facilitate future identification of factors controlling heterotrophic diazotrophic activity in aquatic environments, which is a prerequisite for understanding and evaluating their ecology and contribution to N cycling at local and regional scales. © 2013 Society for Applied Microbiology and John Wiley & Sons Ltd.

  3. Type VI Secretion System Toxins Horizontally Shared between Marine Bacteria.

    Directory of Open Access Journals (Sweden)

    Dor Salomon

    2015-08-01

    Full Text Available The type VI secretion system (T6SS is a widespread protein secretion apparatus used by Gram-negative bacteria to deliver toxic effector proteins into adjacent bacterial or host cells. Here, we uncovered a role in interbacterial competition for the two T6SSs encoded by the marine pathogen Vibrio alginolyticus. Using comparative proteomics and genetics, we identified their effector repertoires. In addition to the previously described effector V12G01_02265, we identified three new effectors secreted by T6SS1, indicating that the T6SS1 secretes at least four antibacterial effectors, of which three are members of the MIX-effector class. We also showed that the T6SS2 secretes at least three antibacterial effectors. Our findings revealed that many MIX-effectors belonging to clan V are "orphan" effectors that neighbor mobile elements and are shared between marine bacteria via horizontal gene transfer. We demonstrated that a MIX V-effector from V. alginolyticus is a functional T6SS effector when ectopically expressed in another Vibrio species. We propose that mobile MIX V-effectors serve as an environmental reservoir of T6SS effectors that are shared and used to diversify antibacterial toxin repertoires in marine bacteria, resulting in enhanced competitive fitness.

  4. Evaluation of the probiotic potential of lactic acid bacteria isolated ...

    African Journals Online (AJOL)

    The probiotic-related characteristics of 55 strains of lactic acid bacteria isolated from the faeces of 3 - 6 months old breast-fed infants were determined. The API 50 CH and SDS-PAGE techniques were employed to ascertain the identity of the isolated strains. The predominant species among the isolated strains were ...

  5. Plasmid mediated resistance in multidrug resistant bacteria isolated ...

    African Journals Online (AJOL)

    The antibiotic susceptibility testing of isolated bacteria associated with septicaemia in children were carried out using standard microbiological protocol. The MAR index for the test bacterial isolates was determined and the bacterial isolates that displayed multiple antibiotic resistance were investigated for the presence of ...

  6. Antibacterial Activity of Marine and Black Band Disease Cyanobacteria against Coral-Associated Bacteria

    Science.gov (United States)

    Gantar, Miroslav; Kaczmarsky, Longin T.; Stanić, Dina; Miller, Aaron W.; Richardson, Laurie L.

    2011-01-01

    Black band disease (BBD) of corals is a cyanobacteria-dominated polymicrobial disease that contains diverse populations of heterotrophic bacteria. It is one of the most destructive of coral diseases and is found globally on tropical and sub-tropical reefs. We assessed ten strains of BBD cyanobacteria, and ten strains of cyanobacteria isolated from other marine sources, for their antibacterial effect on growth of heterotrophic bacteria isolated from BBD, from the surface mucopolysaccharide layer (SML) of healthy corals, and three known bacterial coral pathogens. Assays were conducted using two methods: co-cultivation of cyanobacterial and bacterial isolates, and exposure of test bacteria to (hydrophilic and lipophilic) cyanobacterial cell extracts. During co-cultivation, 15 of the 20 cyanobacterial strains tested had antibacterial activity against at least one of the test bacterial strains. Inhibition was significantly higher for BBD cyanobacteria when compared to other marine cyanobacteria. Lipophilic extracts were more active than co-cultivation (extracts of 18 of the 20 strains were active) while hydrophilic extracts had very limited activity. In some cases co-cultivation resulted in stimulation of BBD and SML bacterial growth. Our results suggest that BBD cyanobacteria are involved in structuring the complex polymicrobial BBD microbial community by production of antimicrobial compounds. PMID:22073011

  7. Isolation and Characterization of Lactic Acid Bacteria from Inasua

    Directory of Open Access Journals (Sweden)

    Ferymon Mahulette

    2017-04-01

    Full Text Available Inasua is a traditionally product of wet salt fish fermentation produced by Teon, Nila and Serua (TNS Communities in Central Maluku, Indonesia. The community made this fermented fish to anticipate the lean time when fisherman could not go to sea.  The  fish that used as inasua raw material is demersal fishes that live around coral reefs, such as Samandar fish (Siganatus guttatus, Gala-gala fish (Lutjanus sp. and Sikuda fish (Lethrinus ornatus. The objective of the research was to isolate and characterize of bacterial indigenous in  Inasua from three producers in Seram Island. The measurement of pH from inasua samples were 5.9, 5.0 and 5.8, respectively. The highest number of lactic acid bacteria was found from  Gala – gala inasua was 2,5x107 cfu/g sample. Isolation of all isolates bacteria from inasua showed that a total of 7 isolates of bacteria was obtained  from Samadar inasua, 9 isolates from  Gala-gala inasua, and 7 isolates from  Sikuda inasua.  From a total of 23 isolates, only 6 isolates had characteristic as lactic acid bacteria that were Gram  positive, negative catalase, and cocci shape. The microscopic characteristics  of the isolates are coccid in pairs or uniforms which combine to form tetrads. Carbohydrate utilization test  of selected isolate by using API 50 CHB kit indicated that 13 carbohydrates are fermented by these isolates  after incubation for 48 hours. The research  was concluded that the dominant bacteria in inasua sample  is  cocci-lactic acid bacteria. Keywords : fermented fish, inasua, lactic acid bacteria, MRSA medium

  8. Soft tissue infections from fish spike wounds: normal commensal bacteria are more common than marine pathogens.

    Science.gov (United States)

    Collins, Hannah; Lee, Kin Mun; Cheng, Paul T-Y; Hulme, Sarah

    2018-01-01

    A fish spike injury can be sustained by anyone handling fish; during fishing, meal preparation or in retail. Case reports of fish spikes inoculating victims with virulent marine-specific pathogens and causing systemic illness led us to question whether empirical treatment of these injuries with amoxicillin and clavulanic acid is adequate. This 2-year prospective observational study was conducted at Middlemore Hospital, Auckland, New Zealand. Wound swabs and tissue samples belonging to patients presenting to the Department of Plastic and Reconstructive Surgery with an upper limb fish spike injury were sent to the laboratory (n = 60). A series of stains and cultures were performed to look specifically for marine bacteria not typically isolated in other soft tissue injuries. Patient demographic data and injury details were collected. Of the patients with adequate microbiology samples, 12% (6/50) grew clinically relevant bacteria resistant to amoxicillin and clavulanic acid. These included methicillin-resistant Staphylococcus aureus (8%, 4/50), Enterobacter cloacae (2%, 1/50) and an anaerobic sporing bacillus (2%, 1/50). Only one patient grew a true marine-specific bacteria, Photobacterium damselae, which was susceptible to amoxicillin and clavulanic acid. The authors concluded that amoxicillin and clavulanic acid is an adequate first-line antibiotic for fish spike injuries but that flucloxacillin may be more appropriate given most bacteria were from patients' own skin flora. The authors suggest that clinicians consider the presence of resistant marine-specific bacteria in cases where there is sepsis or inadequate response to initial therapy. © 2017 Royal Australasian College of Surgeons.

  9. Screening and characterization of phosphate solubilizing bacteria from isolate of thermophilic bacteria

    Science.gov (United States)

    Yulianti, Evy; Rakhmawati, Anna

    2017-08-01

    The aims of this study were to select bacteria that has the ability to dissolve phosphate from thermophilic bacteria isolates after the Merapi eruption. Five isolates of selected bacteria was characterized and continued with identification. Selection was done by using a pikovskaya selective medium. Bacterial isolates were grown in selective medium and incubated for 48 hours at temperature of 55 ° C. Characterization was done by looking at the cell and colony morphology, physiological and biochemical properties. Identification was done with the Profile Matching method based on the reference genus Oscillospira traced through Bergey's Manual of Determinative Bacteriology. Dendogram was created based on similarity index SSM. The results showed there were 14 isolates of bacteria that were able to dissolve phosphate indicated by a clear zone surrounding the bacterial colony on selective media. Five isolates were selected with the largest clear zone. Isolates D79, D92, D110a, D135 and D75 have different characters. The result of phenotypic characters identification with Genus Oscillospira profile has a percentage of 100% similarity to isolate D92 and D110a; 92.31% for isolates D79, and 84.6% for isolates D75 and D135. Dendogram generated from average linkage algorithm / UPGMA using the Simple Matching Coefficient (SSM) algorithms showed, isolate thermophilic bacteria D75 and D135 are combined together to form cluster 1. D110a and D92 form a sub cluster A. Sub cluster A and D79 form cluster 2

  10. Screening of potential biosurfactant-producing bacteria isolated from ...

    African Journals Online (AJOL)

    Seawater represents a specific environment harboring complex bacterial community which is adapted to harsh conditions. Hence, biosurfactant produced by these bacteria under these conditions have interesting proprieties. The screening of biosurfactant producing strains isolated from seawater biofilm was investigated.

  11. Enumeration, isolation and identification of bacteria and fungi from ...

    African Journals Online (AJOL)

    Enumeration, isolation and identification of bacteria and fungi from soil contaminated with petroleum products ... dropping can be useful in the bioremediation of soil contaminated with petroleum products and possibly other oil polluted sites.

  12. Characterization of lactic acid bacteria isolated from indigenous dahi ...

    African Journals Online (AJOL)

    Diversity and density of lactic acid bacteria from indigenous dahi were studied by the determination of morphological, cultural, physiological and biochemical characteristics. A total of 143 isolates were identified phenotypically and divided into three genera: Lactobacillus, Lactococcus and Streptococcus.

  13. CHARACTERIZATION OF LACTIC ACID BACTERIA ISOLATED FROM SUMBAWA MARE MILK

    Directory of Open Access Journals (Sweden)

    Nengah Sujaya

    2008-06-01

    Full Text Available A study was carried out to isolate and characterize lactic acid bacteria (LAB from the Sumbawa mares milk The Isolation of LAB was conducted in Man Rogosa Sharpe (MRS agar. The isolates were characterized by standard methods, such as Gram staining, cell morphology study and fermentation activities. The ability of the isolates to inhibit some pathogenic bacteria was studied by dual culture assay. Isolates showing the widest spectrum of inhibiting pathogenic bacteria were further identified using API 50 CHL. The results showed that Sumbawa mare milk was dominated by lactobacilli and weisella/leuconostoc. As many as 26 out 36 isolates belong to homofermentative lactobacilli and another 10 isolates belong to both heterofermentative lactobacilli and weissella or leuconostoc. Twenty four isolates inhibited the growth of Escherichia coli 25922, Shigela flexneri, Salmonella typhimurium, and Staphylococcus aureus 29213. Two promising isolates with the widest spectrum of inhibiting pathogenic bacteria, Lactobacillus sp. SKG34 and Lactobacillus sp. SKG49, were identified respectively as Lactobacillus rhamnosus SKG34 and Lactobacillus ramnosus SKG49. These two isolates were specific strains of the sumbawa mare milk and are very potential to be developed as probiotic for human.

  14. Hydrocarbon degradation potentials of bacteria isolated from spent ...

    African Journals Online (AJOL)

    Hydrocarbon degradation potentials of bacteria isolated from spent lubricating oil contaminated soil. ... This study has shown that resident bacteria strains in lubricating oil contaminated soils have potential application in the bioremediation of oil polluted sites and enhance the possibility of developing models and strategies ...

  15. Hydrocarbon-degrading Capability of Bacteria isolated from a Maize ...

    African Journals Online (AJOL)

    Hydrocarbon-degrading Capability of Bacteria isolated from a Maize-Planted, Kerosene-contaminated Ilorin Alfisol. ... also revealed that some bacteria survive and even thrive in kerosene contaminated soil and hence have the potential to be used in biodegradation and/or bioremediation of oil contaminated soils and water.

  16. Bacteria isolated from the airways of paediatric patients with ...

    African Journals Online (AJOL)

    Knowledge of which bacteria are found in the airways of paediatric patients with bronchiectasis unrelated to cystic fibrosis. (CF) is important in defining empirical antibiotic guidelines for the treatment of acute infective exacerbations. Objective. To describe the bacteria isolated from the airways of children with non-CF ...

  17. Isolation and characterization of heavy metal tolerant bacteria from ...

    African Journals Online (AJOL)

    Panteka stream is a flowing stream polluted with wastes from the activities of mechanics. Water samples collected at different points of the stream were analysed in order to determine the level of heavy metal contamination and bacteria diversity with the view to elucidating the bioremediating potentials of the bacteria isolates ...

  18. Screening of endophytic plant growth-promoting bacteria isolated ...

    African Journals Online (AJOL)

    Probiotic bacteria, inhabiting the endosphere of plants, presents a major opportunity to develop cheap and eco-friendly alternatives to synthetic agrochemicals. Using standard microbiological procedures, culturable bacteria were isolated from the endosphere (root, stem and leaf) of two Nigerian rice varieties (Ofada and ITA ...

  19. Antibacterial Activities of Lactic Acid Bacteria Isolated from Selected ...

    African Journals Online (AJOL)

    Members of lactic acid bacteria (LAB) are known probiotics and have been reported to have antimicrobial properties. Although various researchers have documented the isolation of these bacteria from fruits and vegetables, studies on LAB associated with lettuce, cucumber and cabbage are limited and non-existing in ...

  20. Utilization of Cypermethrin by bacteria isolated from irrigated soils ...

    African Journals Online (AJOL)

    Soil bacteria capable of utilizing Cypermethrin as a source of carbon were isolated using enrichment technique. The bacteria were Psuedomonas aeruginosa, Serratia spp Micrococcus sp, Staphylococci and Streptococcus sp. Growth of P. aeruginosa was determined in the presence of 1:106 and 1:105 Cypermethrin in ...

  1. Marine biofilm bacteria evade eukaryotic predation by targeted chemical defense.

    Directory of Open Access Journals (Sweden)

    Carsten Matz

    Full Text Available Many plants and animals are defended from predation or herbivory by inhibitory secondary metabolites, which in the marine environment are very common among sessile organisms. Among bacteria, where there is the greatest metabolic potential, little is known about chemical defenses against bacterivorous consumers. An emerging hypothesis is that sessile bacterial communities organized as biofilms serve as bacterial refuge from predation. By testing growth and survival of two common bacterivorous nanoflagellates, we find evidence that chemically mediated resistance against protozoan predators is common among biofilm populations in a diverse set of marine bacteria. Using bioassay-guided chemical and genetic analysis, we identified one of the most effective antiprotozoal compounds as violacein, an alkaloid that we demonstrate is produced predominately within biofilm cells. Nanomolar concentrations of violacein inhibit protozoan feeding by inducing a conserved eukaryotic cell death program. Such biofilm-specific chemical defenses could contribute to the successful persistence of biofilm bacteria in various environments and provide the ecological and evolutionary context for a number of eukaryote-targeting bacterial metabolites.

  2. Isolation and Identification of the Chitinolytic Bacteria from Rumen Ecosystem

    Directory of Open Access Journals (Sweden)

    Sri Rahayu

    2003-05-01

    Full Text Available Rumen is an interesting ecosystem for microbial exploration and their products. Isolation of the chitinolytic bacteria from the rumen ecosystem found 109 colonies that produced clear zone, 84 colonies (86% anaerobic and 17 colonies (14% aerobic. Clear zone appeared in the third and fourth days incubation. Four potential isolates were chosen for identification purposes. Results showed that the bacteria were sticky, gram-positive, motile, endospore-forming, mesophilic and aerobic. It was supposed to Bacillus spp. the optimal pH and temperature to produce chitinase from isolate 18 are pH 6.0 and temperature of 35-40ºC. Divalent cations Mg, Ca, Zn, and Mn increase chitinase activity, while Cu and Co inhibit enzyme activity. When isolate 18 was grown on shrimp waste meal, it showed aptimal activity on the fifth days incubation. (Animal Production 5(2: 73-78 (2003   Key Words : Isolation, Identification, Chitinolytic Bacteria, Rumen

  3. Comparison of cell-specific activity between free-living and attached bacteria using isolates and natural assemblages

    DEFF Research Database (Denmark)

    Grossart, H.P.; Tang, K.W.; Kiørboe, Thomas

    2007-01-01

    Marine snow aggregates are microbial hotspots that support high bacterial abundance and activities. We conducted laboratory experiments to compare cell-specific bacterial protein production (BPP) and protease activity between free-living and attached bacteria. Natural bacterial assemblages attached...... bacteria increasing their metabolism upon attachment to surfaces. In subsequent experiments, we used four strains of marine snow bacteria isolates to test the hypothesis that bacteria could up- and down-regulate their metabolism while on and off an aggregate. The protease activity of attached bacteria...... to model aggregates (agar spheres) had threefold higher BPP and two orders of magnitude higher protease activity than their free-living counterpart. These observations could be explained by preferential colonization of the agar spheres by bacteria with inherently higher metabolic activity and/or individual...

  4. A screening method for the isolation of polyhydroxyalkanoate-producing purple non-sulfur photosynthetic bacteria from natural seawater

    Directory of Open Access Journals (Sweden)

    Mieko Higuchi-Takeuchi

    2016-09-01

    Full Text Available Polyhydroxyalkanoates (PHAs are a family of biopolyesters accumulated by a variety of microorganisms as carbon and energy storage under starvation conditions. We focused on marine purple non-sulfur photosynthetic bacteria as host microorganisms for PHA production and developed a method for their isolation from natural seawater. To identify novel PHA-producing marine purple non-sulfur photosynthetic bacteria, natural seawaters were cultured in nutrient-rich medium for purple non-sulfur photosynthetic bacteria, and twelve pink- or red-pigmented colonies were picked up. Gas chromatography mass spectrometry analysis revealed that four isolates synthesized PHA at levels ranging from 0.5 to 24.4 wt% of cell dry weight. The 16S ribosomal RNA sequence analysis revealed that one isolate (HM2 showed 100% identity to marine purple non-sulfur photosynthetic bacteria. In conclusion, we have demonstrated in this study that PHA-producing marine purple non-sulfur photosynthetic bacteria can be isolated from natural seawater under nutrient-rich conditions.

  5. Amylase activity of a starch degrading bacteria isolated from soil ...

    African Journals Online (AJOL)

    Starch degrading bacteria are most important for industries such as food, fermentation, textile and paper. Thus isolating and manipulating pure culture from various waste materials has manifold importance for various biotechnology industries. In the present investigation a bacterial strain was isolated from soil sample ...

  6. Frequency and antimicrobial resistance of aerobic bacteria isolated ...

    African Journals Online (AJOL)

    This study was carried out to evaluate the frequency of occurrence and antimicrobial resistance of aerobic bacteria isolated from surgical sites in human and animal patients in Nsukka, southeast Nigeria. Wound swabs from 132 patients (96 humans and 36 animals) were cultured for bacterial isolation. Antimicrobial ...

  7. Differentiation studies of predominant lactic acid bacteria isolated ...

    African Journals Online (AJOL)

    Twelve isolates known as weakly amylolytic lactic acid bacteria were isolated from different time during growol fermentation, a cassava based product from Indonesia. Differentiation tests of these strains were performed using molecular and phenotypic characterization. 16S subunit of the ribosomal RNA and phenylalanyl ...

  8. NDM 1 Gene Carrying Gram negative Bacteria Isolated from Rats ...

    African Journals Online (AJOL)

    In this study, we screened 56 Gram negative bacteria comprising: 3 isolates of Enterobacter ludwigii, 30 Pseudomonas aeruginosa, 22 Proteus mirabilis, and 1 Aeromonas caviae isolated from oral cavity and rectum of rats captured from commercial poultry houses in Ibadan, Oyo State, Nigeria that were resistant to at least ...

  9. Characterization of lactic acid bacteria isolated from Algerian arid ...

    African Journals Online (AJOL)

    Diversity and density of lactic acid bacteria isolated from Algerian raw goats\\' milk in arid zones were studied by determination of morphological, cultural, physiological and biochemical characteristics. 206 lactic acid bacterial strains were isolated, with 115 of them belonging to lactic acid cocci and others to the genus, ...

  10. Root-nodule bacteria isolated from native Amphithalea ericifolia and ...

    African Journals Online (AJOL)

    Indigenous root-nodule bacteria isolated from the acid sands of the Cape using Aspalathus linearis, Aspalathus hispida, Aspalathus carnosa, Aspalathus capensis and Amphithalea ericifolia as trap hosts showed considerable tolerance to low pH. Isolates from A. ericifolia and A. carnosa could even grow in YMB medium at ...

  11. Community size and metabolic rates of psychrophilic sulfate-reducing bacteria in Arctic marine sediments

    DEFF Research Database (Denmark)

    Knoblauch, C.; Jørgensen, BB; Harder, J.

    1999-01-01

    The numbers of sulfate reducers in two Arctic sediments within situ temperatures of 2.6 and -1.7 degrees C were determined. Most-probable-number counts were higher at 10 degrees C than at 20 degrees C, indicating the predominance of a psychrophilic community. Mean specific sulfate reduction rates...... of 19 isolated psychrophiles were compared to corresponding rates of 9 marine, mesophilic sulfate-reducing bacteria. The results indicate that, as a physiological adaptation to the permanently cold Arctic environment, psychrophilic sulfate reducers have considerably higher specific metabolic rates than...... their mesophilic counterparts at similarly low temperatures....

  12. Antimicrobial resistance genes in marine bacteria and human uropathogenic Escherichia coli from a region of intensive aquaculture.

    Science.gov (United States)

    Tomova, Alexandra; Ivanova, Larisa; Buschmann, Alejandro H; Rioseco, Maria Luisa; Kalsi, Rajinder K; Godfrey, Henry P; Cabello, Felipe C

    2015-10-01

    Antimicrobials are heavily used in Chilean salmon aquaculture. We previously found significant differences in antimicrobial-resistant bacteria between sediments from an aquaculture and a non-aquaculture site. We now show that levels of antimicrobial resistance genes (ARG) are significantly higher in antimicrobial-selected marine bacteria than in unselected bacteria from these sites. While ARG in tetracycline- and florfenicol-selected bacteria from aquaculture and non-aquaculture sites were equally frequent, there were significantly more plasmid-mediated quinolone resistance genes per bacterium and significantly higher numbers of qnrB genes in quinolone-selected bacteria from the aquaculture site. Quinolone-resistant urinary Escherichia coli from patients in the Chilean aquacultural region were significantly enriched for qnrB (including a novel qnrB gene), qnrS, qnrA and aac(6')-1b, compared with isolates from New York City. Sequences of qnrA1, qnrB1 and qnrS1 in quinolone-resistant Chilean E. coli and Chilean marine bacteria were identical, suggesting horizontal gene transfer between antimicrobial-resistant marine bacteria and human pathogens. © 2015 Society for Applied Microbiology and John Wiley & Sons Ltd.

  13. Antimicrobial substances produced by bacteria isolated from ...

    African Journals Online (AJOL)

    SERVER

    2007-08-06

    Aug 6, 2007 ... We report here the preliminary antimicrobial activity of substances produced by Bacillus subtilis NB-6. (air flora isolate) ... Key words: Antimicrobial activity, Bacillus, Burkholderia, Corynebacterium, methicillin-resistant Staphylococcus aureus. .... products contaminated with animal MRSA is very plausible ...

  14. dichlorophenoxyacetic acid by bacteria species isolated from ...

    African Journals Online (AJOL)

    SERVER

    2007-06-18

    Jun 18, 2007 ... released/mg protein)-1 h-1] in actively growing cell cultures ranged from 0.010 – 0.055 (SERU 2) and .... concentration of the extracts was estimated by the Biuret method. (Gornall et al., 1949) using bovine serum albumin as the standard ... free culture extract of the isolates against 2,4-D were determined by.

  15. Isolation and characterization of methanogenic bacteria from ...

    African Journals Online (AJOL)

    Eliud Wafula

    2016-11-23

    Nov 23, 2016 ... concentration of methane for most isolates was recorded at temperatures of 35 and 37°C for all the pH ranges. ... consumption reflects the state of development of a ... and CO2. (Bayer et al., 2004). The environmental and internal factors usually control the ... fermentation samples of the biogas plants are still.

  16. Compositional Similarities and Differences between Transparent Exopolymer Particles (TEP) from two Marine Bacteria and two Marine Algae: Significance to Surface Biofouling

    KAUST Repository

    Li, Sheng

    2015-06-12

    Transparent-exopolymer-particles (TEP) have been recently identified as a significant contributor to surface biofouling, such as on reverse osmosis (RO) membranes. TEP research has mainly focused on algal TEP/TEP precursors while limited investigations have been conducted on those released by bacteria. In this study, TEP/TEP precursors derived from both algae and bacteria were isolated and then characterized to investigate their similarities and/or differences using various advanced analytical techniques, thus providing a better understanding of their potential effect on biofouling. Bacterial TEP/TEP precursors were isolated from two species of marine bacteria (Pseudidiomarina homiensis and Pseudoalteromonas atlantica) while algal TEP/TEP precursors were isolated from two marine algae species (Alexandrium tamarense and Chaetoceros affinis). Results indicated that both isolated bacterial and algal TEP/TEP precursors were associated with protein-like materials, and most TEP precursors were high-molecular-weight biopolymers. Furthermore all investigated algal and bacterial TEP/TEP precursors showed a lectin-like property, which can enable them to act as a chemical conditioning layer and to agglutinate bacteria. This property may enhance surface biofouling. However, both proton nuclear magnetic resonance (NMR) spectra and the nitrogen/carbon (N/C) ratios suggested that the algal TEP/TEP precursors contained much less protein content than the bacterial TEP/TEP precursors. This difference may influence their initial deposition and further development of surface biofouling.

  17. Desulfuromonas svalbardensis sp. nov. and Desulfuromusa ferrireducens sp. nov., psychrophilic, Fe(III)-reducing bacteria isolated from Arctic sediments, Svalbard

    DEFF Research Database (Denmark)

    Vandieken, Verona; Mussmann, Marc; Niemann, Helge

    2006-01-01

    Two psychrophilic, Gram-negative, rod-shaped, motile bacteria (strains 112T and 102T) that conserved energy from dissimilatory Fe(III) reduction concomitant with acetate oxidation were isolated from permanently cold Arctic marine sediments. Both strains grew at temperatures down to -2 degrees C...

  18. Desulfuromonas svalbardensis sp nov and Desulfuromusa ferrireducens sp nov., psychrophilic, Fe(III)-reducing bacteria isolated from Arctic sediments, Svalbard

    DEFF Research Database (Denmark)

    Vandieken, V.; Mussmann, M.; Niemann, Hans Henrik

    2006-01-01

    Two psychrophilic, Gram-negative, rod-shaped, motile bacteria (strains 112(T) and 102(T)) that conserved energy from dissimilatory Fe(III) reduction concomitant with acetate oxidation were isolated from permanently cold Arctic marine sediments. Both strains grew at temperatures down to -2 degrees C...

  19. Isolation and identification of Profenofos degrading bacteria

    Directory of Open Access Journals (Sweden)

    Saadatullah Malghani

    2009-12-01

    Full Text Available An enrichment culture technique was used to isolate bacterial strains responsible for the biodegradation of profenofos in a soil from Hubei province of central China. Two pure bacterial cultures, named W and Y, were isolated and subsequently characterized by sequencing of 16S rRNA genes and biochemical tests. Isolate W showed 96% similarity to the 16S rRNA gene of a Pseudomonas putida unlike Y which showed 99% similarity to the 16S rRNA gene of Burkholderia gladioli. Both strains grew well at pH 5.5-7.2 with a broad temperature profile ranging from 28º to 36 ºC. Bioremediation of profenofos-contaminated soil was examined using soil treated with 200 ug g-1; profenofos resulted in a higher degradation rate than control soils without inoculation. In a mineral salt medium (FTW reduction in profenofos concentration was 90% within 96 hours of incubation. A literature survey revealed that no data is available regarding the role of Burkholderia gladioli on pesticide biodegradation as well as on profenofos.

  20. Isolation of radiation-resistant bacteria without exposure to irradiation

    International Nuclear Information System (INIS)

    Sanders, S.W.; Maxcy, R.B.

    1979-01-01

    Resistance to desiccation was utilized in the selection of highly radiation-resistant asporogenous bacteria from nonirradiated sources. A bacterial suspension in phosphate buffer was dried in a thin film at 25 0 C and 33% relative humidity. Storage under these conditions for 15 days or more reduced the number of radiation-sensitive bacteria. Further selection for radiation-resistant bacteria was obtained by irradiation of bacteria on velveteen in the replication process, therby avoiding the toxic effect of irradiated media. The similarity of radiation resistance and identifying characteristics in irradiated and non-irradiated isolates should allay some concerns that highly radiation-resistance bacteria have been permanently altered by radiation selection

  1. Exopolysaccharides produced by marine bacteria and their applications as glycosaminoglycan-like molecules.

    Directory of Open Access Journals (Sweden)

    Christine eDELBARRE-LADRAT

    2014-10-01

    Full Text Available Although polysaccharides are ubiquitous and the most abundant renewable bio-components, their studies, covered by the glycochemistry and glycobiology fields, remain a challenge due to their high molecular diversity and complexity.Polysaccharides are industrially used in food products; human therapeutics fall into a more recent research field and pharmaceutical industry is looking for more and more molecules with enhanced activities. Glycosaminoglycans (GAGs found in animal tissues play a critical role in cellular physiological and pathological processes as they bind many cellular components. Therefore, they present a great potential for the design and preparation of therapeutic drugs.On the other hand, microorganisms producing exopolysaccharides (EPS are renewable resources meeting well the actual industrial demand. In particular, the diversity of marine microorganisms is still largely unexplored offering great opportunities to discover high value products such as new molecules and biocatalysts.EPS-producing bacteria from the marine environment will be reviewed with a focus on marine-derived EPS from bacteria isolated from deep-sea hydrothermal vents. Information on chemical and structural features, putative pathways of biosynthesis, novel strategies for chemical and enzymatic modifications and potentialities in the biomedical field will be provided. An integrated approach should be used to increase the basic knowledge on these compounds and their applications; new clean environmentally friendly processes for the production of carbohydrate bio-active compounds should also be proposed for a sustainable industry.

  2. Exopolysaccharides produced by marine bacteria and their applications as glycosaminoglycan-like molecules.

    Science.gov (United States)

    Delbarre-Ladrat, Christine; Sinquin, Corinne; Lebellenger, Lou; Zykwinska, Agata; Colliec-Jouault, Sylvia

    2014-10-01

    Although polysaccharides are ubiquitous and the most abundant renewable bio-components, their studies, covered by the glycochemistry and glycobiology fields, remain a challenge due to their high molecular diversity and complexity. Polysaccharides are industrially used in food products; human therapeutics fall into a more recent research field and pharmaceutical industry is looking for more and more molecules with enhanced activities. Glycosaminoglycans (GAGs) found in animal tissues play a critical role in cellular physiological and pathological processes as they bind many cellular components. Therefore, they present a great potential for the design and preparation of therapeutic drugs. On the other hand, microorganisms producing exopolysaccharides (EPS) are renewable resources meeting well the actual industrial demand. In particular, the diversity of marine microorganisms is still largely unexplored offering great opportunities to discover high value products such as new molecules and biocatalysts. EPS-producing bacteria from the marine environment will be reviewed with a focus on marine-derived EPS from bacteria isolated from deep-sea hydrothermal vents. Information on chemical and structural features, putative pathways of biosynthesis, novel strategies for chemical and enzymatic modifications and potentialities in the biomedical field will be provided. An integrated approach should be used to increase the basic knowledge on these compounds and their applications; new clean environmentally friendly processes for the production of carbohydrate bio-active compounds should also be proposed for a sustainable industry.

  3. Biodiversity analysis by polyphasic study of marine bacteria associated with biocorrosion phenomena.

    Science.gov (United States)

    Boudaud, N; Coton, M; Coton, E; Pineau, S; Travert, J; Amiel, C

    2010-07-01

    A polyphasic approach was used to study the biodiversity bacteria associated with biocorrosion processes, in particular sulfate-reducing bacteria (SRB) and thiosulfate-reducing bacteria (TRB) which are described to be particularly aggressive towards metallic materials, notably via hydrogen sulfide release. To study this particular flora, an infrared spectra library of 22 SRB and TRB collection strains were created using a Common Minimum Medium (CMM) developed during this study and standardized culture conditions. The CMM proved its ability to allow for growth of both SRB and TRB strains. These sulfurogen collection strains were clearly discriminated and differentiated at the genus level by fourier transform infrared (FT-IR) spectroscopy. In a second step, infrared spectra of isolates, recovered from biofilms formed on carbon steel coupons immersed for 1 year in three different French harbour areas, were compared to the infrared reference spectra library. In parallel, molecular methods (M13-PCR and 16S rRNA gene sequencing) were used to qualitatively evaluate the intra- and inter-species genetic diversity of biofilm isolates. The biodiversity study indicated that strains belonging to the Vibrio genus were the dominant population; strains belonging to the Desulfovibrio genus (SRB) and Peptostreptococcaceae were also identified. Overall, the combination of the FT-IR spectroscopy and molecular approaches allowed for the taxonomic and ecological study of a bacterial flora, cultivated on CMM, associated with microbiology-induced corrosion (MIC) processes. Via the use of the CMM medium, the culture of marine bacteria (including both SRB and TRB bacteria) was allowed, and the implication of nonsulforogen bacteria in MIC was observed. Their involvement in the biocorrosion phenomena will have to be studied and taken into account in the future. © 2009 The Authors. Journal compilation © 2009 The Society for Applied Microbiology.

  4. Isolation and characterization of potential probiotic bacteria from pustulose ark (Anadara tuberculosa suitable for shrimp farming

    Directory of Open Access Journals (Sweden)

    Ana Claudia Sánchez-Ortiz

    2015-03-01

    Full Text Available In aquaculture, probiotics have been tested for enhancing the immune system and promoting growth and survival rate of many marine species like shrimp and mollusks. In order to isolate bacteria with a high probiotic potential for marine shellfish aquaculture, homogenates of the gastrointestinal tract from adult mangrove cockle, Anadara tuberculosa, were obtained to perform in vitro and in vivo assays. Isolates were tested in vitro for hemolytic activity, hydrophobicity, tolerance to ammonia nitrogen, salinity and pH as well as for growth kinetics, extracellular enzymatic activity, autoaggregation, coaggregation and molecular identification. Three bacteria with high degree of hydrophobicity (>60% adherence to p-xylene and four bacteria with medium hydrophobicity, which showed different patterns of attachment to monopolar solvents (chloroform and ethyl acetate and a high tolerance to ammonia nitrogen (200 mg L-1, were selected. Six different treatments: T1 (without addition of cultured bacteria; T2 (MAt29, Enterococcus casseliflavus; T3 (MAt35, Citrobacter koseri; T4 (GAtBl, Bacillus subtilis subtilis; T5 (GAt7, Staphylococcus sp.; and T6 (1:1:1:1 mix of strains T2, T3, T4 and T5, were used to evaluate the specific growth rate, and cellular immune response of the shrimp Litopenaeus vannamei. The best specific growth rate was observed for T6 and T4 treatments related to Bacillus subtilis subtilis. A significant difference in total hemocytes count (P < 0.05 was found for T4 treatment with respect to control group. Strains isolated from A. tuberculosa had a beneficial effect on the growth and immune response of L. vannamei, so they have potential use as probiotics in aquaculture of marine shellfish.

  5. In vitro selection of bacteria with potential for use as probiotics in marine shrimp culture

    Directory of Open Access Journals (Sweden)

    Felipe do Nascimento Vieira

    2013-08-01

    Full Text Available The objective of this work was to isolate strains of lactic acid bacteria with probiotic potential from the digestive tract of marine shrimp (Litopenaeus vannamei, and to carry out in vitro selection based on multiple characters. The ideotype (ideal proposed strain was defined by the highest averages for the traits maximum growth velocity, final count of viable cells, and inhibition halo against nine freshwater and marine pathogens, and by the lowest averages for the traits duplication time and resistance of strains to NaCl (1.5 and 3%, pH (6, 8, and 9, and biliary salts (5%. Mahalanobis distance (D² was estimated among the evaluated strains, and the best ones were those with the shortest distances to the ideotype. Ten bacterial strains were isolated and biochemically identified as Lactobacillus plantarum (3, L. brevis (3, Weissella confusa (2, Lactococcus lactis (1, and L. delbrueckii (1. Lactobacillus plantarum strains showed a wide spectrum of action and the largest inhibition halos against pathogens, both Gram-positive and negative, high growth rate, and tolerance to all evaluated parameters. In relation to ideotype, L. plantarum showed the lowest Mahalanobis (D² distance, followed by the strains of W. confusa, L. brevis, L. lactis, and L. delbrueckii. Among the analyzed bacterial strains, those of Lactobacillus plantarum have the greatest potential for use as a probiotic for marine shrimp.

  6. Comparative Analysis of Glycoside Hydrolases Activities from Phylogenetically Diverse Marine Bacteria of the Genus Arenibacter

    Directory of Open Access Journals (Sweden)

    Valery Mikhailov

    2013-06-01

    Full Text Available A total of 16 marine strains belonging to the genus Arenibacter, recovered from diverse microbial communities associated with various marine habitats and collected from different locations, were evaluated in degradation of natural polysaccharides and chromogenic glycosides. Most strains were affiliated with five recognized species, and some presented three new species within the genus Arenibacter. No strains contained enzymes depolymerizing polysaccharides, but synthesized a wide spectrum of glycosidases. Highly active β-N-acetylglucosaminidases and α-N-acetylgalactosaminidases were the main glycosidases for all Arenibacter. The genes, encoding two new members of glycoside hydrolyses (GH families, 20 and 109, were isolated and characterized from the genomes of Arenibacter latericius. Molecular genetic analysis using glycosidase-specific primers shows the absence of GH27 and GH36 genes. A sequence comparison with functionally-characterized GH20 and GH109 enzymes shows that both sequences are closest to the enzymes of chitinolytic bacteria Vibrio furnissii and Cellulomonas fimi of marine and terrestrial origin, as well as human pathogen Elisabethkingia meningoseptica and simbionts Akkermansia muciniphila, gut and non-gut Bacteroides, respectively. These results revealed that the genus Arenibacter is a highly taxonomic diverse group of microorganisms, which can participate in degradation of natural polymers in marine environments depending on their niche and habitat adaptations. They are new prospective candidates for biotechnological applications due to their production of unique glycosidases.

  7. Isolation and characterization of biosurfactant/bioemulsifier-producing bacteria from petroleum contaminated sites.

    Science.gov (United States)

    Batista, S B; Mounteer, A H; Amorim, F R; Tótola, M R

    2006-04-01

    Biosurfactant-producing bacteria were isolated from terrestrial and marine samples collected in areas contaminated with crude oil or its byproducts. Isolates were screened for biosurfactant/bioemulsifier production in different carbon sources (glucose, fructose, sucrose and kerosene) using the qualitative drop-collapse test. Glucose produced the highest number of positive results (17 of 185 isolates). All 17 isolates produced emulsions with kerosene and 12 exhibited high emulsion-stabilizing capacity, maintaining 50% of the original emulsion volume for 48 h. Eight of the 17 isolates reduced the growth medium surface tension below 40 mN m(-1) with 5 exhibiting this capacity in cell-free filtrates. Onset of biosurfactant production differed among the isolates, with some initiating synthesis during the exponential growth phase and others after the stationary phase was reached. Increasing temperature from 25 to 35 degrees C accelerated onset of biosurfactant production in only two isolates while pH (6.5-7.6) had no effect in any isolate tested. Isolation from petroleum contaminated sites using the screening protocol presented proved to be a rapid and effective manner to identify bacterial isolates with potential industrial applications.

  8. Plant growth promoting potential of endophytic bacteria isolated ...

    African Journals Online (AJOL)

    Endophytic microorganisms are able to promote plant growth through various mechanisms, such as production of plant hormones and antimicrobial substances, as well as to provide the soil with nutrients, for instance, inorganic phosphate. This study aimed to evaluate the potential of endophytic bacteria isolated from ...

  9. Isolation of bacteria from mechanic workshops' soil environment ...

    African Journals Online (AJOL)

    isolation of Bacillus Stearothermophilus (8.3%) and Cyanobacteria (1.7%) from the sites sampled. The number of viable bacterial growth of B. Stearothermophilus and Cyanobacteria were enumerated and expressed in colony forming units. Agbani had bacteria densities of 5 x 104, 1.25 x 104 and 6.25 x 105 from the three ...

  10. Psychrotrophic bacteria isolated from -20°C freezer | Ahmad ...

    African Journals Online (AJOL)

    Three psychrotrophic bacteria, morpho-physiologically, identified as Bacillus subtilis MRLBA7, Bacillus licheniformis MRLBA8 and Bacillus megaterium MRLBA9 were isolated from -20°C freezer of the Microbiology Research Laboratory (MRL), Quaid-i-Azam University, Islamabad, Pakistan. These strains were able to grow ...

  11. Antimicrobial resistance in aerobic bacteria isolated from oral ...

    African Journals Online (AJOL)

    This study reinforces the need for dog bite wound microbial culture and antimicrobial sensitivity test as isolates showed varied antimicrobial susceptibility patterns. The oral cavities of hunting dogs are laden with multi-drug resistant bacteria of significant public health importance that could be transferred to humans through ...

  12. plasmid mediated resistance in multidrug resistant bacteria isolated

    African Journals Online (AJOL)

    User

    PLASMID MEDIATED RESISTANCE IN MULTIDRUG RESISTANT BACTERIA. ISOLATED FROM CHILDREN WITH SUSPECTED SEPTICAEMIA IN ZARIA,. NIGERIA. AbdulAziz, Z. A.,1* Ehinmidu, J. O.,1 Adeshina, G. O.,1 Pala, Y. Y2., Yusuf, S. S2. and. Bugaje, M. A.3. 1Department of Pharmaceutics and Pharmaceutical ...

  13. Susceptibility of clinical isolates of uropathogenic bacteria from ...

    African Journals Online (AJOL)

    Resistance of uropathogens to antibiotics has been on increase and responsible for increased mortality and morbidity among patients. Clinical isolates (22) of uropathogenic bacteria comprising Escherichia coli, Klebsiella Pneumoniae, Proteus mirabilis and Staphylococcus aureus were tested for susceptibility to standard ...

  14. Isolation and characterization of bacteria flora from dumpsites in ...

    African Journals Online (AJOL)

    The bacterial load count for the various dumpsites and the adjacent control sites was counted using mise and misra serial dilution method. Aerobic and facultative anaerobic bacteria were isolated from dump site samples using five different culture media. Phenotypic test was assayed using double disk method to check for ...

  15. Isolation and Characterization of Hydrocarbon-Degrading Bacteria ...

    African Journals Online (AJOL)

    ADOWIE PERE

    June 2017. Vol. 21 (4) 641-645. Full-text Available Online at www.ajol.info and ... ABSTRACT: The isolation of hydrocarbon-degrading bacteria in topsoil and subsoil samples of ... This process whereby microorganisms break down ..... Page 5 ...

  16. Isolation and Characterization of Hydrocarbon-utilizing Bacteria from ...

    African Journals Online (AJOL)

    Isolation and Characterization of Hydrocarbon-utilizing Bacteria from Petroleum Sludge Samples obtained from Crude Oil Processing Facility in Nigeria. ... Journal Home > Vol 21, No 2 (2017) > ... Algeria (5); Benin (2); Botswana (3); Burkina Faso (3); Cameroon (8); Congo, Republic (1); Côte d'Ivoire (4); Egypt, Arab Rep.

  17. Isolation and Characterization of Seed-Borne Pathogenic Bacteria

    African Journals Online (AJOL)

    76 L.K. Ashura et aI. Table 4: Selected morphological and biochemical characteristics of bacteria isolates from rice seed as de- tected by the Liquid Assay on mXOS. Ace. No.1. Fluorescentl. Kovac's. OIF. NR. GL. SH. LS. HR. Pstho. Diolog Identification lsolale(s). Colour of·. Oxidase. TIP g on. (Similarity). I. Pigment. Rice.

  18. Antifungal Capacity of Lactic Acid Bacteria Isolated From Salad ...

    African Journals Online (AJOL)

    This study explores the use of lactic acid bacteria from fresh salad vegetables to inhibit fungal growth. The antifungal assay was done using the agar well diffusion method as reported by Schillinger and Lucke (1989). The largest zone of inhibition (25mm) was recorded by the antagonistic activity of the isolate identified to ...

  19. Bacteriocin and cellulose production by lactic acid bacteria isolated ...

    African Journals Online (AJOL)

    Sixteen colonies of lactic acid bacteria (LAB) were selected and screened for their ability to produce bacteriocin by agar well diffusion method using the supernatant of centrifuged test cultures. Four isolates inhibited the growth of Listeria monocytogenes and Escherichia coli. Lactobacillus plantarum (6) and Lactobacillus ...

  20. Radiosensitivity of some bacteria isolated from broiler chicken carcasses

    International Nuclear Information System (INIS)

    Fiszer, W.; Mroz, J.; Zabielski, J.

    1981-01-01

    Two groups of bacteria of Pseudomonas sp. and Bacillus sp. were isolated from poultry carcasses. The samples of a ground meat were poisoned by suspensions of these bacteria and on the next day they were irradiated. Quantitative estimation of surviving cells after irradiation was done according to TPC method. The surviving curve and dose D 10 (23 Gy) for Pseudomonas sp. group 1 is typical for this kind of bacterium. D 10 value = 2,3 kGy for Bacillus sp. is consistent with data of literature. Exceptionally high D 10 value of Pseudomonas sp. group 2 (170 Gy) seems to indicate the fact that the isolated bacteria could be the mixture often defined as Pseudomonas-Achromobacter group. Nevertheless, some scientific data show that D 10 value for Pseudomonas can reach even 120 Gy. (author)

  1. Isolation of antifungal bacteria from Japanese fermented soybeans, natto.

    Science.gov (United States)

    Murata, Daichi; Sawano, Sayaka; Ohike, Tatsuya; Okanami, Masahiro; Ano, Takashi

    2013-12-01

    An inhibitory effect of a traditional Japanese fermented food, natto, was found against plant pathogens such as Rhizoctonia solani and Fusarium oxysporum, and the bacteria which showed inhibition were isolated from the natto. Among isolated bacteria, BC-1 and GAc exhibited a strong antagonistic effect in vitro against plant pathogens on an agar medium. The supernatant of bacterial culture also showed strong activity against R. solani, which meant the antimicrobial substances were produced and secreted into the medium. Both of the bacteria were estimated as Bacillus amyloliquefaciens from a partial sequence of the 16s rRNA gene. High performance liquid chromatography analysis clearly showed the production of the lipopeptide antibiotic iturin A by BC-1 and GAc. Copyright © 2013 The Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences. Published by Elsevier B.V. All rights reserved.

  2. Multiresistant Bacteria Isolated from Chicken Meat in Austria

    Directory of Open Access Journals (Sweden)

    Gernot Zarfel

    2014-12-01

    Full Text Available Multidrug resistant bacteria (MDR bacteria, such as extended spectrum beta-lactamase (ESBL Enterobacteriaceae, methicillin resistant Staphylococcus aureus (MRSA, and vancomycin-resistant Enterococci (VRE, pose a challenge to the human health care system. In recent years, these MDR bacteria have been detected increasingly outside the hospital environment. Also the contamination of food with MDR bacteria, particularly of meat and meat products, is a concern. The aim of the study was to evaluate the occurrence of MDR bacteria in chicken meat on the Austrian market. For this study, 50 chicken meat samples were analysed. All samples originated from chickens slaughtered in Austrian slaughterhouses and were marked as produced in Austria. Samples were analysed for the presence of ESBL Enterobacteriaceae, methicillin resistant Staphylococci and VRE. Resistance genes of the isolated bacteria were characterised by PCR and sequencing. In the present study 26 ESBL producing E. coli, five mecA gene harbouring Staphylococci (but no MRSA, and four VRE were detected in chicken meat samples of Austrian origin. In 24 (48% of the samples no ESBL Enterobacteriaceae, MRSA, methicillin resistant coagulase negative Staphylococcus (MRCNS or VRE could be detected. None of the samples contained all three types of investigated multiresistant bacteria. In concordance to previous studies, CTX-M-1 and SHV-12 were the dominant ESBL genes.

  3. Marine microbiology. Final report. [Role of marine bacteria in the nitrogen cycle in oceans

    Energy Technology Data Exchange (ETDEWEB)

    Watson, S.W.

    1977-01-01

    Progress is reported on microbial investigations in the marine environment with emphasis on the role of bacteria in the nitrogen cycle, specifically concentrating on the organisms responsible for microbiological oxidation of ammonia to nitrite and nitrite to nitrate. The distribution rates of in situ reactions, fine structure and biochemical properties of these organisms were detailed. Rates of urea, acetate, and glucose decomposition in both inshore and offshore waters were determined using labelled compounds and the significance of these degradations in the hydrosphere was examined. A new test for the determination of bacterial biomass was developed and using this test in conjunction with more standard techniques it was demonstrated that bacteria comprised up to 50 percent of the total biomass in the oceans.

  4. Dilution-to-extinction culturing of SAR11 members and other marine bacteria from the Red Sea

    KAUST Repository

    Mohamed, Roslinda B.

    2013-12-01

    Life in oceans originated about 3.5 billion years ago where microbes were the only life form for two thirds of the planet’s existence. Apart from being abundant and diverse, marine microbes are involved in nearly all biogeochemical processes and are vital to sustain all life forms. With the overgrowing number of data arising from culture-independent studies, it became necessary to improve culturing techniques in order to obtain pure cultures of the environmentally significant bacteria to back up the findings and test hypotheses. Particularly in the ultra-oligotrophic Red Sea, the ubiquitous SAR11 bacteria has been reported to account for more than half of the surface bacterioplankton community. It is therefore highly likely that SAR11, and other microbial life that exists have developed special adaptations that enabled them to thrive successfully. Advances in conventional culturing have made it possible for abundant, unculturable marine bacteria to be grown in the lab. In this study, we analyzed the effectiveness of the media LNHM and AMS1 in isolating marine bacteria from the Red Sea, particularly members of the SAR11 clade. SAR11 strains obtained from this study AMS1, and belonged to subgroup 1a and phylotype 1a.3. We also obtained other interesting strains which should be followed up with in the future. In the long run, results from this study will enhance our knowledge of the pelagic ecosystem and allow the impacts of rising temperatures on marine life to be understood.

  5. Isolation of Asphaltene-Degrading Bacteria from Sludge Oil

    Directory of Open Access Journals (Sweden)

    Pingkan Aditiawati

    2015-03-01

    Full Text Available Sludge oil contains 30%–50% hydrocarbon fractions that comprise saturated fractions, aromatics, resins, and asphaltene. Asphaltene fraction is the most persistent fraction. In this research, the indigenous bacteria that can degrade asphaltene fractions from a sludge oil sample from Balikpapan that was isolated using BHMS medium (Bushnell-Hass Mineral Salt with 0.01% (w/v yeast extract, 2% (w/v asphaltene extract, and 2% (w/v sludge oil. The ability of the four isolates to degrade asphaltene fractions was conducted by the biodegradation asphaltene fractions test using liquid cultures in a BHMS medium with 0.01% (w/v yeast extract and 2% (w/v asphaltene extract as a carbon source. The parameters measured during the process of biodegradation of asphaltene fractions include the quantification of Total Petroleum Hydrocarbon (g, log total number of bacteria (CFU/ml, and pH. There are four bacteria (isolates 1, 2, 3, and 4 that have been characterized to degrade asphaltic fraction and have been identified as Bacillus sp. Lysinibacillus fusiformes, Acinetobacter sp., and Mycobacterium sp., respectively. The results showed that the highest ability to degrade asphaltene fractions is that of Bacillus sp. (isolate 1 and Lysinibacillus fusiformes (Isolate 2, with biodegradation percentages of asphaltene fractions being 50% and 55%, respectively, and growth rate at the exponential phase is 7.17x107 CFU/mL.days and 4.21x107 CFU/mL.days, respectively.

  6. Isolation of oxalotrophic bacteria associated with Varroa destructor mites.

    Science.gov (United States)

    Maddaloni, M; Pascual, D W

    2015-11-01

    Bacteria associated with varroa mites were cultivated and genotyped by 16S RNA. Under our experimental conditions, the cultivable bacteria were few in number, and most of them proved to be fastidious to grow. Cultivation with seven different media under O2 /CO2 conditions and selection for colony morphology yielded a panel of species belonging to 13 different genera grouped in two different phyla, proteobacteria and actinobacteria. This study identified one species of actinobacteria that is a known commensal of the honey bee. Some isolates are oxalotrophic, a finding that may carry ramifications into the use of oxalic acid to control the number of phoretic mites in the managed colonies of honey bees. Oxalic acid, legally or brevi manu, is widely used to control phoretic Varroa destructor mites, a major drive of current honey bees' colony losses. Unsubstantiated by sanctioned research are rumours that in certain instances oxalic acid is losing efficacy, forcing beekeepers to increase the frequency of treatments. This investigation fathoms the hypothesis that V. destructor associates with bacteria capable of degrading oxalic acid. The data show that indeed oxalotrophy, a rare trait among bacteria, is common in bacteria that we isolated from V. destructor mites. This finding may have ramifications in the use of oxalic acid as a control agent. © 2015 The Society for Applied Microbiology.

  7. Isolation and identification of aerobic polychlorinated biphenyls degrading bacteria

    Directory of Open Access Journals (Sweden)

    Bibi Fatemeh Nabavi

    2013-01-01

    Full Text Available Aims: The purpose of this study was to isolate and identify aerobic polychlorinated biphenyls (PCBs degrading bacteria. Materials and Methods: This study was performed in lab scale aerobic sequencing batch biofilm reactor. Polyurethane foams were used as bio-carrier and synthetic wastewater was prepared with PCBs in transformer oil as the main substrate (20-700 μg/l and acetone as a solvent for PCBs as well as microelements. After achieving to adequate microbial population and acclimation of microorganisms to PCB compounds with high efficiency of PCB removal, identification of degrading microbial species was performed by 16s rRNA gene sequencing of isolated bacteria. Results: Gene sequencing results of the isolated bacteria showed that Rhodococcus spp., Pseudomonas spp., Pseudoxanthomonas spp., Agromyces spp., and Brevibacillus spp. were dominant PCB-degrading bacteria. Conclusion: PCB compounds can be degraded by some microorganisms under aerobic or anaerobic conditions or at least be reduced to low chlorinated congeners, despite their chemical stability and toxicity. Based on the results of the study, five bacterial species capable of degrading PCBs in transformer oil have been identified.

  8. Isolation and Presumptive Identification of Adherent Epithelial Bacteria (“Epimural” Bacteria) from the Ovine Rumen Wall

    OpenAIRE

    Mead, Lorna J.; Jones, G. A.

    1981-01-01

    One hundred sixty-one strains of adherent bacteria were isolated under anaerobic conditions from four sites on the rumen epithelial surface of sheep fed hay or a hay-grain ration. Before isolation of bacteria, rumen tissue was washed six times in an anaerobic dilution solution, and viable bacteria suspended in the washings were counted. Calculation indicated that unattached bacteria would have been removed from the tissue by this procedure, but a slow and progressive release of attached bacte...

  9. BACTERIOLOGICAL PROPERTIES OF MARINE WATER IN ADRIATIC FISH FARMS: ENUMERATION OF HETEROTROPHIC BACTERIA

    Directory of Open Access Journals (Sweden)

    Emin Teskeredžić

    2012-12-01

    Full Text Available Aquaculture is currently one of the fastest growing food production sectors in the world. Increase in nutrients and organic wastes lead to general deterioration of water quality. The problem of water quality is associated with both physical and chemical factors, as well as microbiological water quality. Heterotrophic bacteria play an important role in the process of decomposition of organic matter in water environment and indicate eutrophication process. Here we present our experience and knowledge on bacterial properties of marine water in the Adriatic fish farms with European sea bass (Dicentrarchus labrax L., 1758, with an emphasis on enumeration of heterotrophic bacteria in marine water. We applied two temperatures of incubation, as well as two methods for enumeration of heterotrophic bacteria: substrate SimPlate® test and spread plate method on conventional artificial media (Marine agar and Tryptic Soy agar with added NaCl. The results of analysis of bacteriological properties of marine water in the Adriatic fish farms showed that enumeration of heterotrophic bacteria in marine water depends on the applied incubation temperature and media for enumeration. At the same time, the incubation temperature of 22C favours more intense growth of marine heterotrophic bacteria, whereas a SimPlate test gives higher values of heterotrophic bacteria. Volatile values of heterotrophic bacteria during this research indicate a possible deterioration of microbiological water quality in the Adriatic fish farms and a need for regular monitoring of marine water quality.

  10. Screening and isolation of halophilic bacteria producing industrially important enzymes.

    Science.gov (United States)

    Kumar, Sumit; Karan, Ram; Kapoor, Sanjay; S P, Singh; S K, Khare

    2012-10-01

    Halophiles are excellent sources of enzymes that are not only salt stable but also can withstand and carry out reactions efficiently under extreme conditions. The aim of the study was to isolate and study the diversity among halophilic bacteria producing enzymes of industrial value. Screening of halophiles from various saline habitats of India led to isolation of 108 halophilic bacteria producing industrially important hydrolases (amylases, lipases and proteases). Characterization of 21 potential isolates by morphological, biochemical and 16S rRNA gene analysis found them related to Marinobacter, Virgibacillus, Halobacillus, Geomicrobium, Chromohalobacter, Oceanobacillus, Bacillus, Halomonas and Staphylococcus genera. They belonged to moderately halophilic group of bacteria exhibiting salt requirement in the range of 3-20%. There is significant diversity among halophiles from saline habitats of India. Preliminary characterization of crude hydrolases established them to be active and stable under more than one extreme condition of high salt, pH, temperature and presence of organic solvents. It is concluded that these halophilic isolates are not only diverse in phylogeny but also in their enzyme characteristics. Their enzymes may be potentially useful for catalysis under harsh operational conditions encountered in industrial processes. The solvent stability among halophilic enzymes seems a generic novel feature making them potentially useful in non-aqueous enzymology.

  11. MOLECULAR APPROACHES FOR IN SITU IDENTIFCIATION OF NITRATE UTILIZATION BY MARINE BACTERIA AND PHYTOPLANKTON

    Energy Technology Data Exchange (ETDEWEB)

    Frischer, Marc E. [Skidaway Institute of Oceanography; Verity, Peter G.; Gilligan, Mathew R.; Bronk, Deborah A.; Zehr, Jonathan P.; Booth, Melissa G.

    2013-09-12

    Traditionally, the importance of inorganic nitrogen (N) for the nutrition and growth of marine phytoplankton has been recognized, while inorganic N utilization by bacteria has received less attention. Likewise, organic N has been thought to be important for heterotrophic organisms but not for phytoplankton. However, accumulating evidence suggests that bacteria compete with phytoplankton for nitrate (NO3-) and other N species. The consequences of this competition may have a profound effect on the flux of N, and therefore carbon (C), in ocean margins. Because it has been difficult to differentiate between N uptake by heterotrophic bacterioplankton versus autotrophic phytoplankton, the processes that control N utilization, and the consequences of these competitive interactions, have traditionally been difficult to study. Significant bacterial utilization of DIN may have a profound effect on the flux of N and C in the water column because sinks for dissolved N that do not incorporate inorganic C represent mechanisms that reduce the atmospheric CO2 drawdown via the ?biological pump? and limit the flux of POC from the euphotic zone. This project was active over the period of 1998-2007 with support from the DOE Biotechnology Investigations ? Ocean Margins Program (BI-OMP). Over this period we developed a tool kit of molecular methods (PCR, RT-PCR, Q-PCR, QRT-PCR, and TRFLP) and combined isotope mass spectrometry and flow-cytometric approaches that allow selective isolation, characterization, and study of the diversity and genetic expression (mRNA) of the structural gene responsible for the assimilation of NO3- by heterotrophic bacteria (nasA). As a result of these studies we discovered that bacteria capable of assimilating NO3- are ubiquitous in marine waters, that the nasA gene is expressed in these environments, that heterotrophic bacteria can account for a significant fraction of total DIN uptake in different ocean margin systems, that the expression of nasA is

  12. Isolation of Crude Oil from Polluted Waters Using Biosurfactants Pseudomonas Bacteria: Assessment of Bacteria Concentration Effects

    Directory of Open Access Journals (Sweden)

    A. Khalifeh

    2013-04-01

    Full Text Available Biological decomposition techniques and isolation of environmental pollutions using biosurfactants bacteria are effective methods of environmental protection. Surfactants are amphiphilic compounds that are produced by local microorganisms and are able to reduce the surface and the stresses between surfaces. As a result, they will increase solubility, biological activity, and environmental decomposition of organic compounds. This study analyzes the effects of biosurfactants on crude oil recovery and its isolation using pseudomonas sea bacteria species. Preparation of biosurfactants was done in glass flasks and laboratory conditions. Experiments were carried out to obtain the best concentration of biosurfactants for isolating oil from water and destroying oil-in-water or water-in-oil emulsions in two pH ranges and four saline solutions of different concentrations. The most effective results were gained when a concentration of 0.1% biosurfactants was applied.

  13. Occurrence and distribution of nitrogen-scavenging bacteria in marine environment

    OpenAIRE

    Sugahara, Isao; Kimura, Toshio; Hayashi, Koichiro

    1987-01-01

    The occurrence and distribution nitrogen-scavenging bacteria in the water of coastal and oceanic of Japan were studied during the Seisui-Maru cruises from 1986 to 1987. Nitroben-scavenging bacteria in the water usually occurred at the level of 10-104 cfu/ml.This value was almost comparable to that of aerobic heterotrophic bacteria. It seems that nitrogen-scavenging bacteria play an important role in the efficient uptake of low levels of nitrogenous compounds in marine enviroment.

  14. Both sulfate-reducing bacteria and Enterobacteriaceae take part in marine biocorrosion of carbon steel.

    Science.gov (United States)

    Bermont-Bouis, D; Janvier, M; Grimont, P A D; Dupont, I; Vallaeys, T

    2007-01-01

    In order to evaluate the part played in biocorrosion by microbial groups other than sulfate-reducing bacteria (SRB), we characterized the phylogenetic diversity of a corrosive marine biofilm attached to a harbour pile structure as well as to carbon steel surfaces (coupons) immersed in seawater for increasing time periods (1 and 8 months). We thus experimentally checked corroding abilities of defined species mixtures. Microbial community analysis was performed using both traditional cultivation techniques and polymerase chain reaction cloning-sequencing of 16S rRNA genes. Community structure of biofilms developing with time on immersed coupons tended to reach after 8 months, a steady state similar to the one observed on a harbour pile structure. Phylogenetic affiliations of isolates and cloned 16S rRNA genes (rrs) indicated that native biofilms (developing after 1-month immersion) were mainly colonized by gamma-proteobacteria. Among these, Vibrio species were detected in majority with molecular methods while cultivation techniques revealed dominance of Enterobacteriaceae such as Citrobacter, Klebsiella and Proteus species. Conversely, in mature biofilms (8-month immersion and pile structure), SRB, and to a lesser extent, spirochaetes were dominant. Corroding activity detection assays confirmed that Enterobacteriaceae (members of the gamma-proteobacteria) were involved in biocorrosion of metallic material in marine conditions. In marine biofilms, metal corrosion may be initiated by Enterobacteriaceae.

  15. Isolation and characterization of chromium, mercury and cadmium resistant bacteria

    International Nuclear Information System (INIS)

    Bhatti, K.P.; Noor, A.R.

    2009-01-01

    Ten heavy metal resistant strains were isolated from samples of soil, water and rhizosphere of plant Cynadon Dectylon of Kasur sector. Among these bacteria, four strains Cr-l, Cr- 2, Cr-3 and Cr-4 were showed the resistant to chromium up to 300 mg/L, two strains Cd-1 and Cd-2 resisted cadmium up to 100 mg/L, two strains Cd-3 and Cd-4 resisted cadmium up to 50 mg/L and two strains (Hg-l, Hg-2) were observed resistant to mercury up to 100 mg/L. Their morphological and colonial characteristics were investigated. The families of isolated bacteria are reported i.e. Azotobacteriaceae(C r-l), Enterobacteriacea(eC r-2, Cr-3, Cr-4, Hg-2) and Neisseriaceae(Cd-I, Cd-2, Cd-3, Cd-4, Hg-2). (author)

  16. Isolation of imidacloprid degrading bacteria from industrial sites

    International Nuclear Information System (INIS)

    Shahid, M.N.; Jabeen, F.

    2009-01-01

    Immidacloprid is a cyclodiene organochlorine used as an insecticide all over the world and possessing a serous environmental threat. It is mostly used for cotton insects (bollworm, aphid and white fly). For isolation of imidacloprid degrading bacteria, two soil samples were collected from industrial contaminated sites of Kala Shah Kahu district sheikupura, having ten year history of use. Soil samples were analyzed by measuring pH and electric conductivity. The isolation of imidacroprid degrading bacteria was performed by enrichment technique. Eight bacterial strains, S/sub 1-a/ S/2-2-b/ S/2-c/ S/2-d/ S/2-e/ S/sub 2-f/ and S/sub 2-g/ and S/sub e-a/ were isolated on the basis of their colony morphologies. The purified colonies were characterized morphologically, physiologically and biochemically. Gram staining was done and Gram negative strain were confirmed on MacConkey agar and Eosin Methylene Blue. Bacterial strains were also checked for different minimal media in which only carbon source was the imidcloprid. For this purpose. FTW, FTW without N/sub 2/ NSM, M/sub 9/ and MM/sub 2/ media were used and their optical densities were taken on spectrophotometer isolates were checked for resistance to antibiotics and heavy metals. On these characteristics, S/sub 2-d/ and S/sub c-a/ were assigned to Enterobacteriaceae, S/sub 2-b/ to Pseudomonad and rest of the bacterial isolates were affiliated to bacillaceae. (author)

  17. Biofilm Formation by Bacteria Isolated from Intravenous Catheters

    Directory of Open Access Journals (Sweden)

    Sina Hedayati

    2015-10-01

    Full Text Available Background: Reports on the association of nosocomial bacterial infections with indwelling medical devices such as intravenous catheters (IVC has increased in recent years. The potential to form biofilm on these devices seems to be the main reason for establishment of such infections. The aim of this study was to measure the potential of biofilm formation by bacterialisolates from IVCs.Methods: Seventy-one IVCs were collected from hospitalized patients in ICU, NICU, hematology and oncology wards at Taleghani Hospital from Jan 2010 to Jan 2011. The bacterial isolates were identified using the standard biochemical tests and the potential to form biofilms was determined by the microtiter plate assay method (MTP and colony morphology using Congo red agar plates (CRA.Results: Overall, 54 (71% IVCs were colonized and 76 bacteria were isolated among which, 64 (84.2% were coagulase negative staphylococci (CoNS, 3 (3.9% S. aureus, 3 (3.9% Enterococcus spp., 2 (2.6% E. coli and 4 (5.3% were miscellaneous isolates not further identified. Among the CoNS, biofilm formation was observed in 68.7% and 82.8% of bacteriausing MTP and CRA methods, respectively. S. aureus and E. coli isolates also were biofilm producers but Enterococcus and other unknown isolates were biofilm negative.Conclusions: Our results confirm that the prevalent biofilm forming bacteria on IVCs were CoNS and that was the reason for high rates of nosocomial infections.

  18. "DRUG RESISTANCE PATTERN IN ISOLATED BACTERIA FROM BLOOD CULTURES"

    Directory of Open Access Journals (Sweden)

    A. Sobhani

    2004-05-01

    Full Text Available Bacteremia is an important infectious disease which may lead to death. Common bacteria and pattern of antibiotic resistance in different communities are different and understanding these differences is important. In the present study, relative frequency and pattern of drug resistance have been examined in bacteria isolated from blood cultures in Razi Hospital laboratory. The method of the study was descriptive. Data collection was carried out retrospectively. Total sample consisted of 311 positive blood cultures from 1999 to 2001. Variables under study were bacterial strains, antibiotics examined in antibiogram, microbial resistance, and patients' age and sex. The most common isolated bacteria were Salmonella typhi (22.2% and the least common ones were Citrobacter (1.6%. The highest antibiotic resistance was seen against amoxicillin (88.4%. The proportion of males to females was1: 1/1 and the most common age group was 15-44 (47.3%. Common bacteria and pattern of antibiotic resistance were different in some areas and this subject requires further studies in the future.

  19. Identification of lead-resistant endophytic bacteria isolated from rice

    International Nuclear Information System (INIS)

    Perez-Cordero, Alexander; Barraza-Roman, Zafiro; Martinez-Pacheco, Dalila

    2015-01-01

    Resistance of endophytic bacteria in vitro was evaluated at different lead concentrations. The tissue samples of commercial rice varieties at tillering stage were collected during the first half of 2013, in Monteria, Cordoba, Colombia. Each tissue was subjected to surface cleaning. Endophytic bacteria were isolated in agar R_2A medium. The population density (CFU/g tissue) was determined from each tissue by direct counting of R_2A medium surface. Morphotypes were classified by shape, color, size and appearance. A total of 168 morphotypes were isolated from root, tillers and leaf of different commercial varieties of rice. The lead resistance test is performed in vitro, The lead resistance test was performed in vitro, by the suspensions of endophytic bacteria in log phase and inoculation in minimal medium with five concentrations of lead as Pb (NO_3)_2. The experiment was incubated at 32 degrees celsius and agitated at 150 rpm for five days. The measure of turbidimetry at 600 nm was conduced every hour afterstarting the test. Endophytic bacteria showed the ability to grow at concentrations of 100% of Pb as Pb (NO_3) _2. The presence of Burkholderia cepacia and Pseudomonas putida, which showed resistance to differents lead concentration was confirmed as result of the identification with kit API20E. (author) [es

  20. Identification of lead- resistant endophytic bacteria isolated from rice.

    Directory of Open Access Journals (Sweden)

    Alexander Pérez-Cordero

    2015-06-01

    Full Text Available   The objective of this study was to evaluate in vitro the endophytic bacteria resistance to different lead concentrations. The sampling was undertaken in the first half of 2013, when tissue samples of commercial varieties of rice at tillering stage were collected in Montería, Cordoba, Colombia. Each tissue was subjected to surface cleaning. Endophytic bacteria in agar R2A medium were isolated. Population density (CFU/g tissue was determined from each tissue, by direct counting of R2A medium surface. morphotypes were classified by shape, color, size, and appearance. A total of 168 morphotypes were isolated from root, tillers, and leaf of different commercial varieties of rice. The lead resistance test was performed in vitro, to do that, suspensions of endophytic bacteria in log phase were prepared and inoculated in minimal medium with five concentrations of lead as Pb(NO32. The experiment was incubated at 32 °C and agitated at 150 rpm, for five days. Every hour afterstarting the test, turbidimetry measuring at 600 nm was conducted. Results showed the ability of endophytic bacteria to grow at concentrations of 100% of Pb as Pb(NO32. The results of the identification with kit API20E confirmed the presence of Burkholderia cepacia and Pseudomonas putida, which showed resistance to different lead concentrations.

  1. Antibacterial Activities of Endophytic Bacteria Isolated from Taxus brevifolia Against Foodborne Pathogenic Bacteria.

    Science.gov (United States)

    Islam, Nurul; Choi, Jaehyuk; Baek, Kwang-Hyun

    2018-05-01

    Endophytes are a potential source of novel bioactive compounds with medicinal properties. In this study, 41 endophytic bacteria (EB) were isolated from tissues of a medicinally important plant Taxus brevifolia (Pacific yew). The objective was to screen all the EB isolates for their antibacterial effects against five foodborne pathogenic bacteria: Bacillus cereus ATCC10876, Staphylococcus aureus ATCC12600, Listeria monocytogenes ATCC19115, Escherichia coli ATCC43890, and Salmonella Typhimurium ATCC19585. Among the EB isolates, T. brevifolia seed (TbS)-8, T. brevifolia fleshy part of fruit (TbFl)-10, T. brevifolia leaf (TbL)-22, TbS-29, and TbL-34 exerted significant antibacterial activity against the tested foodborne pathogens. Especially TbFl-10 showed the highest antibacterial activity against all the tested bacteria and was identified as Paenibacillus kribbensis (Pk). Furthermore, an ethyl acetate extract of Pk-TbFl-10 possessed antibacterial activities against the tested five foodborne pathogenic bacteria, with zones of inhibition from 15.71 ± 2.85 to 13.01 ± 2.12 mm. Scanning electron microscopy analysis revealed ruptured, lysed, shrunk, and swollen cells of all the tested foodborne pathogens treated with the ethyl acetate extract of Pk-TbFl-10, suggesting that a metabolite(s) of Pk-TbFl-10 penetrates the cell membrane and causes cell lysis leading to cell death. Our results indicate that Pk-TbFl-10 isolated from T. brevifolia can serve as a novel source of natural antibacterial agents against foodborne pathogenic bacteria, with potential applications in the pharmaceutical industry.

  2. Isolation of endophyic bacteria from purwoceng (Pimpinella alpina Kds.

    Directory of Open Access Journals (Sweden)

    Tri Widayat

    2012-09-01

    andits derivatives has wide biological activity spectrum as antifungal, anticoagulation, anti infl amation and it can be an additive in certain food or cosmetic additive. This study aimed to isolate endophytic bacteria frompurwoceng, to assess the growth of endophytic bacteria within coumarin containing medium and to reveal the affect of endophytic bacteria to the coumarin content of the medium.Methods: Endophytic bacteria were isolated from purwoceng roots and leaves. Pure culture of endophytic bacteria was selected by growing the bacteria in the ammonium salt sugar medium containing purwoceng herbalinfusion. The effect of the bacteria to coumarin content in the medium was assessed through the cultivation of chosen bacteria in medium that was similar with the medium used in the selection step. Coumarin content inthe medium was detected by using thin layer chromatography (TLC.Results: Nine isolates obtained from purwoceng roots and leaves could be alive in the basic medium containing purwoceng herbal infusion and had generation time (g 2.7-5.7 hours and specifi c growth rate (μ 0,14-0,26/hour. Cultivation of chosen isolate showed that BAP5 could grow in the medium containing 1072 arbitrary unit (AU of coumarin. The TLC exhibited Rf 0.27 of the compound that was assumed as coumarin.Conclusion: Endophytic bacteria were successfully isolated from purwoceng and prevented the coumarin loss from the medium. (Health Science Indones 2012;1:31-6 

  3. Molecular Structure of Endotoxins from Gram-negative Marine Bacteria: An Update

    Directory of Open Access Journals (Sweden)

    Antonio Molinaro

    2007-09-01

    Full Text Available Marine bacteria are microrganisms that have adapted, through millions of years, to survival in environments often characterized by one or more extreme physical or chemical parameters, namely pressure, temperature and salinity. The main interest in the research on marine bacteria is due to their ability to produce several biologically active molecules, such as antibiotics, toxins and antitoxins, antitumor and antimicrobial agents. Nonetheless, lipopolysaccharides (LPSs, or their portions, from Gram-negative marine bacteria, have often shown low virulence, and represent potential candidates in the development of drugs to prevent septic shock. Besides, the molecular architecture of such molecules is related to the possibility of thriving in marine habitats, shielding the cell from the disrupting action of natural stress factors. Over the last few years, the depiction of a variety of structures of lipids A, core oligosaccharides and O-specific polysaccharides from LPSs of marine microrganisms has been given. In particular, here we will examine the most recently encountered structures for bacteria belonging to the genera Shewanella, Pseudoalteromonas and Alteromonas, of the γ-Proteobacteria phylum, and to the genera Flavobacterium, Cellulophaga, Arenibacter and Chryseobacterium, of the Cytophaga- Flavobacterium-Bacteroides phylum. Particular attention will be paid to the chemical features expressed by these structures (characteristic monosaccharides, non-glycidic appendages, phosphate groups, to the typifying traits of LPSs from marine bacteria and to the possible correlation existing between such features and the adaptation, over years, of bacteria to marine environments.

  4. Assessment of the Bacteriocinogenic Potential of Marine Bacteria Reveals Lichenicidin Production by Seaweed-Derived Bacillus spp.

    Directory of Open Access Journals (Sweden)

    Gillian E. Gardiner

    2012-10-01

    Full Text Available The objectives of this study were (1 to assess the bacteriocinogenic potential of bacteria derived mainly from seaweed, but also sand and seawater, (2 to identify at least some of the bacteriocins produced, if any and (3 to determine if they are unique to the marine environment and/or novel. Fifteen Bacillus licheniformis or pumilus isolates with antimicrobial activity against at least one of the indicator bacteria used were recovered. Some, at least, of the antimicrobials produced were bacteriocins, as they were proteinaceous and the producers displayed immunity. Screening with PCR primers for known Bacillus bacteriocins revealed that three seaweed-derived Bacillus licheniformis harbored the bli04127 gene which encodes one of the peptides of the two-peptide lantibiotic lichenicidin. Production of both lichenicidin peptides was then confirmed by mass spectrometry. This is the first definitive proof of bacteriocin production by seaweed-derived bacteria. The authors acknowledge that the bacteriocin produced has previously been discovered and is not unique to the marine environment. However, the other marine isolates likely produce novel bacteriocins, as none harboured genes for known Bacillus bacteriocins.

  5. Antimicrobial Potential of Bacteria Associated with Marine Sea Slugs from North Sulawesi, Indonesia

    Directory of Open Access Journals (Sweden)

    Nils Böhringer

    2017-06-01

    Full Text Available Nudibranchia, marine soft-bodied organisms, developed, due to the absence of a protective shell, different strategies to protect themselves against putative predators and fouling organisms. One strategy is to use chemical weapons to distract predators, as well as pathogenic microorganisms. Hence, these gastropods take advantage of the incorporation of chemical molecules. Thereby the original source of these natural products varies; it might be the food source, de novo synthesis from the sea slug, or biosynthesis by associated bacteria. These bioactive molecules applied by the slugs can become important drug leads for future medicinal drugs. To test the potential of the associated bacteria, the latter were isolated from their hosts, brought into culture and extracts were prepared and tested for antimicrobial activities. From 49 isolated bacterial strains 35 showed antibiotic activity. The most promising extracts were chosen for further testing against relevant pathogens. In that way three strains showing activity against methicillin resistant Staphylococcus aureus and one strain with activity against enterohemorrhagic Escherichia coli, respectively, were identified. The obtained results indicate that the sea slug associated microbiome is a promising source for bacterial strains, which hold the potential for the biotechnological production of antibiotics.

  6. Open Circuit Potential Study of Stainless Steel in Environment Containing Marine Sulphate-Reducing Bacteria

    International Nuclear Information System (INIS)

    Fathul Karim Sahrani; Madzlan Abd. Aziz; Zaharah Ibrahim; Adibah Yahya

    2008-01-01

    The corrosion potential of AISI 304 stainless steel coupons influenced by sulphate-reducing bacteria (SRB) has been studied. Pure colony of SRB was isolated from the Malaysia Marine and Heavy Engineering, Pasir Gudang, Johor. Open circuit potential measurements were carried out in variable types of culturing solutions with SRB1, SRB2, combination of SRB1 and SRB2 and without SRBs inoculated. Results showed that the corrosion potential, E oc increased in the presence of SRBs (in pure and mixed culture) compared to that of control. EDS analysis showed the strong peak of sulphur in coupon containing SRB cultures compared to the control. ESEM data showed that the high density cell of SRBs were associated with corroding sections of surface steel comparing with non-corroding sections for coupons immersed in VMNI medium containing SRBs. (author)

  7. Recent Advances in Marine Algae Polysaccharides: Isolation, Structure, and Activities.

    Science.gov (United States)

    Xu, Shu-Ying; Huang, Xuesong; Cheong, Kit-Leong

    2017-12-13

    Marine algae have attracted a great deal of interest as excellent sources of nutrients. Polysaccharides are the main components in marine algae, hence a great deal of attention has been directed at isolation and characterization of marine algae polysaccharides because of their numerous health benefits. In this review, extraction and purification approaches and chemico-physical properties of marine algae polysaccharides (MAPs) are summarized. The biological activities, which include immunomodulatory, antitumor, antiviral, antioxidant, and hypolipidemic, are also discussed. Additionally, structure-function relationships are analyzed and summarized. MAPs' biological activities are closely correlated with their monosaccharide composition, molecular weights, linkage types, and chain conformation. In order to promote further exploitation and utilization of polysaccharides from marine algae for functional food and pharmaceutical areas, high efficiency, and low-cost polysaccharide extraction and purification methods, quality control, structure-function activity relationships, and specific mechanisms of MAPs activation need to be extensively investigated.

  8. Thymidine uptake, thymidine incorporation, and thymidine kinase activity in marine bacterium isolates

    International Nuclear Information System (INIS)

    Jeffrey, W.H.; Paul, J.H.

    1990-01-01

    One assumption made in bacterial production estimates from [ 3 H]thymidine incorporation is that all heterotrophic bacteria can incorporate exogenous thymidine into DNA. Heterotrophic marine bacterium isolates from Tampa Bay, Fla., Chesapeake Bay, Md., and a coral surface microlayer were examined for thymidine uptake (transport), thymidine incorporation, the presence of thymidine kinase genes, and thymidine kinase enzyme activity. Of the 41 isolates tested, 37 were capable of thymidine incorporation into DNA. The four organisms that could not incorporate thymidine also transported the thymidine poorly and lacked thymidine kinase activity. Attempts to detect thymidine kinase genes in the marine isolates by molecular probing with gene probes made from Escherichia coli and herpes simplex virus thymidine kinase genes proved unsuccessful. To determine if the inability to incorporate thymidine was due to the lack of thymidine kinase, one organism, Vibro sp. strain DI9, was transformed with a plasmid (pGQ3) that contained an E. coli thymidine kinase gene. Although enzyme assays indicated high levels of thymidine kinase activity in transformants, these cells still failed to incorporate exogenous thymidine into DNA or to transport thymidine into cells. These results indicate that the inability of certain marine bacteria to incorporate thymidine may not be solely due to the lack of thymidine kinase activity but may also be due to the absence of thymidine transport systems

  9. NODC Standard Format Marine Bacteria (F009) Data (1975-1979) (NODC Accession 0014148)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Marine Bacteria (F009) data set contains data from bacteriological studies of the water column and ocean bottom. Data include the density (number per unit...

  10. Isolation of Biosurfactant Producing Bacteria from Oil Reservoirs

    Directory of Open Access Journals (Sweden)

    A Tabatabaee, M Mazaheri Assadi, AA Noohi,VA Sajadian

    2005-01-01

    Full Text Available Biosurfactants or surface-active compounds are produced by microoaganisms. These molecules reduce surface tension both aqueous solutions and hydrocarbon mixtures. In this study, isolation and identification of biosurfactant producing bacteria were assessed. The potential application of these bacteria in petroleum industry was investigated. Samples (crude oil were collected from oil wells and 45 strains were isolated. To confirm the ability of isolates in biosurfactant production, haemolysis test, emulsification test and measurement of surface tension were conducted. We also evaluated the effect of different pH, salinity concentrations, and temperatures on biosurfactant production. Among importance features of the isolated strains, one of the strains (NO.4: Bacillus.sp showed high salt tolerance and their successful production of biosurfactant in a vast pH and temperature domain and reduced surface tension to value below 40 mN/m. This strain is potential candidate for microbial enhanced oil recovery. The strain4 biosurfactant component was mainly glycolipid in nature.

  11. Azoreductase activity of anaerobic bacteria isolated from human intestinal microflora.

    Science.gov (United States)

    Rafii, F; Franklin, W; Cerniglia, C E

    1990-01-01

    A plate assay was developed for the detection of anaerobic bacteria that produce azoreductases. With this plate assay, 10 strains of anaerobic bacteria capable of reducing azo dyes were isolated from human feces and identified as Eubacterium hadrum (2 strains), Eubacterium spp. (2 species), Clostridium clostridiiforme, a Butyrivibrio sp., a Bacteroides sp., Clostridium paraputrificum, Clostridium nexile, and a Clostridium sp. The average rate of reduction of Direct Blue 15 dye (a dimethoxybenzidine-based dye) in these strains ranged from 16 to 135 nmol of dye per min per mg of protein. The enzymes were inactivated by oxygen. In seven isolates, a flavin compound (riboflavin, flavin adenine dinucleotide, or flavin mononucleotide) was required for azoreductase activity. In the other three isolates and in Clostridium perfringens, no added flavin was required for activity. Nondenaturing polyacrylamide gel electrophoresis showed that each bacterium expressed only one azoreductase isozyme. At least three types of azoreductase enzyme were produced by the different isolates. All of the azoreductases were produced constitutively and released extracellularly. Images PMID:2202258

  12. Azoreductase activity of anaerobic bacteria isolated from human intestinal microflora.

    Science.gov (United States)

    Rafii, F; Franklin, W; Cerniglia, C E

    1990-07-01

    A plate assay was developed for the detection of anaerobic bacteria that produce azoreductases. With this plate assay, 10 strains of anaerobic bacteria capable of reducing azo dyes were isolated from human feces and identified as Eubacterium hadrum (2 strains), Eubacterium spp. (2 species), Clostridium clostridiiforme, a Butyrivibrio sp., a Bacteroides sp., Clostridium paraputrificum, Clostridium nexile, and a Clostridium sp. The average rate of reduction of Direct Blue 15 dye (a dimethoxybenzidine-based dye) in these strains ranged from 16 to 135 nmol of dye per min per mg of protein. The enzymes were inactivated by oxygen. In seven isolates, a flavin compound (riboflavin, flavin adenine dinucleotide, or flavin mononucleotide) was required for azoreductase activity. In the other three isolates and in Clostridium perfringens, no added flavin was required for activity. Nondenaturing polyacrylamide gel electrophoresis showed that each bacterium expressed only one azoreductase isozyme. At least three types of azoreductase enzyme were produced by the different isolates. All of the azoreductases were produced constitutively and released extracellularly.

  13. Evaluating Antimutagenic Activity of Probiotic Bacteria Isolated from Probiotic Products

    Directory of Open Access Journals (Sweden)

    R Kazemi Darsanki

    2012-07-01

    Full Text Available

    Background and Objectives: Probiotic bacteria are microbial nutrition supplements which have useful effects on human health by maintaining of bowel microbial balance. There are many studies that have been suggested the use of probiotic products as cancer risk reducer. The aim of this study, is isolation and detection of probiotic agents from yoghurt and probiotical tablet and evaluation of their abilities to decrease some effects of mutagenic and carcinogenic agents.

     

    Methods: In this study, probiotic bacteria were isolated from yogurt and probiotic tablet by using MRS in anaerobic condition (5% Co2 and gas peck and temperature of 37°c. Then, they were detected by using biochemical tests. Their anti mutagenic effects of supernatant culture were evaluated against mutagenic agents of azid Sodium and Potassium Permanganate by ames test (Salmonella typhimurium TA100 in presence and absence of S9.

     

    Results: Six probiotic bacteria were isolated from yogurt and probiotic tablet. Their anti mutagenic activity results based on ames test showed they can inhibit mutagenic agents more than 40% in some species, which is considered as a good result.

     

    Conclusion: The results of this study show that the use of probiotic bacteria found in different products such as yogurt and probiotic tablets, have proper anti mutagenic and anti carcinogenic effects. They change the micro flora of bowel and, as a result, reduce absorption of mutagenic and carcinogenic agents and help to maintain human health.

     

  14. Isolation and Physiological Characterization of Psychrophilic Denitrifying Bacteria from Permanently Cold Arctic Fjord Sediments (Svalbard, Norway)

    Science.gov (United States)

    Canion, Andy; Prakash, Om; Green, Stefan J.; Jahnke, Linda; Kuypers, Marcel M. M.; Kostka, Joel E.

    2013-01-01

    A large proportion of reactive nitrogen loss from polar sediments is mediated by denitrification, but microorganisms mediating denitrification in polar environments remain poorly characterized. A combined approach of most-probable-number (MPN) enumeration, cultivation and physiological characterization was used to describe psychrophilic denitrifying bacterial communities in sediments of three Arctic fjords in Svalbard (Norway). A MPN assay showed the presence of 10(sup 3)-10(sup 6) cells of psychrophilic nitrate-respiring bacteria g(sup -1) of sediment. Fifteen strains within the Proteobacteria were isolated using a systematic enrichment approach with organic acids as electron donors and nitrate as an electron acceptor. Isolates belonged to five genera, including Shewanella, Pseudomonas, Psychromonas (Gammaproteobacteria), Arcobacter (Epsilonproteobacteria) and Herminiimonas (Betaproteobacteria). All isolates were denitrifiers, except Shewanella, which exhibited the capacity for dissimilatory nitrate reduction to ammonium (DNRA). Growth from 0 to 40 degC demonstrated that all genera except Shewanella were psychrophiles with optimal growth below 15 degC, and adaptation to low temperature was demonstrated as a shift from primarily C16:0 saturated fatty acids to C16:1 monounsaturated fatty acids at lower temperatures. This study provides the first targeted enrichment and characterization of psychrophilic denitrifying bacteria from polar sediments, and two genera, Arcobacter and Herminiimonas, are isolated for the first time from permanently cold marine sediments.

  15. Cross-species induction of antimicrobial compounds, biosurfactants and quorum-sensing inhibitors in tropical marine epibiotic bacteria by pathogens and biofouling microorganisms.

    Science.gov (United States)

    Dusane, Devendra H; Matkar, Pratiek; Venugopalan, Valayam P; Kumar, Ameeta Ravi; Zinjarde, Smita S

    2011-03-01

    Enhancement or induction of antimicrobial, biosurfactant, and quorum-sensing inhibition property in marine bacteria due to cross-species and cross-genera interactions was investigated. Four marine epibiotic bacteria (Bacillus sp. S3, B. pumilus S8, B. licheniformis D1, and Serratia marcescens V1) displaying antimicrobial activity against pathogenic or biofouling fungi (Candida albicans CA and Yarrowia lipolytica YL), and bacteria (Pseudomonas aeruginosa PA and Bacillus pumilus BP) were chosen for this study. The marine epibiotic bacteria when co-cultivated with the aforementioned fungi or bacteria showed induction or enhancement in antimicrobial activity, biosurfactant production, and quorum-sensing inhibition. Antifungal activity against Y. lipolytica YL was induced by co-cultivation of the pathogens or biofouling strains with the marine Bacillus sp. S3, B. pumilus S8, or B. licheniformis D1. Antibacterial activity against Ps. aeruginosa PA or B. pumilus BP was enhanced in most of the marine isolates after co-cultivation. Biosurfactant activity was significantly increased when cells of B. pumilus BP were co-cultivated with S. marcescens V1, B. pumilus S8, or B. licheniformis D1. Pigment reduction in the quorum-sensing inhibition indicator strain Chromobacterium violaceum 12472 was evident when the marine strain of Bacillus sp. S3 was grown in the presence of the inducer strain Ps. aeruginosa PA, suggesting quorum-sensing inhibition. The study has important ecological and biotechnological implications in terms of microbial competition in natural environments and enhancement of secondary metabolite production.

  16. Isolation, screening and characterization of bio surfactant producing bacteria

    International Nuclear Information System (INIS)

    Kokub, D.; Shafeeq, M.; Khalid, Z.M.; Malik, K.A.

    1991-01-01

    Bio surfactant producing bacteria were enriched from oil, oil contaminated soil and formation water collected from some local oil wells; Balkassar, Joyamair, Dullian, Meyal and Khore, and oil-riched soils from Karachi coastal area and Petroleum Refinery Limited (PRL) Karachi, by rowing them on different growth media with various carbon sources. These enriched cultures were analysed qualitatively and quantitatively for various types of bacteria. Morphologically different colonies present in these enriched cultures were quantified and different bacterial strains were isolated by single colony isolation method. Sixty two isolates were screened out by growing them individually on Khaskheli crude oil and comparing for the above parameters. Two bacterial strains which did not fulfill this criteria were also used for comparison in further studies. The selected strains were grown on n-hexadecane/glucose and the spent culture broth were tested for reduction in surface tension (ST) and interfacial tension (IFT). The surface tension was checked after every 24 hours and the minimum time required for the reduction in surface tension 33 mN/m was noted. On the basis of these observation, six groups of bacteria were made. These cultures were also grown on blood agar plates to test for hemolysis. Sixty six percent of these selected cultures were found to reduce surface tension lesser than 33 mN/m and IFT lesser than 3 mN/m whereas 85% of them showed hemolytic activity. IFT of these culture broths was found to be positively correlated to surface tension. Among the isolates from different localities Pseudomonas spp. was found to be most prevalent while some Micrococcus and Acinetobacter were also found. (author)

  17. Biosynthetic multitasking facilitates thalassospiramide structural diversity in marine bacteria

    KAUST Repository

    Ross, Avena C.

    2013-01-23

    Thalassospiramides A and B are immunosuppressant cyclic lipopeptides first reported from the marine α-proteobacterium Thalassospira sp. CNJ-328. We describe here the discovery and characterization of an extended family of 14 new analogues from four Tistrella and Thalassospira isolates. These potent calpain 1 protease inhibitors belong to six structure classes in which the length and composition of the acylpeptide side chain varies extensively. Genomic sequence analysis of the thalassospiramide-producing microbes revealed related, genus-specific biosynthetic loci encoding hybrid nonribosomal peptide synthetase/polyketide synthases consistent with thalassospiramide assembly. The bioinformatics analysis of the gene clusters suggests that structural diversity, which ranges from the 803.4 Da thalassospiramide C to the 1291.7 Da thalassospiramide F, results from a complex sequence of reactions involving amino acid substrate channeling and enzymatic multimodule skipping and iteration. Preliminary biochemical analysis of the N-terminal nonribosomal peptide synthetase module from the Thalassospira TtcA megasynthase supports a biosynthetic model in which in cis amino acid activation competes with in trans activation to increase the range of amino acid substrates incorporated at the N terminus. © 2012 American Chemical Society.

  18. Biosynthetic multitasking facilitates thalassospiramide structural diversity in marine bacteria

    KAUST Repository

    Ross, Avena C.; Xü , Ying; Lu, Liang; Kersten, Roland D.; Shao, Zongze; Al-Suwailem, Abdulaziz M.; Dorrestein, Pieter C.; Qian, Peiyuan; Moore, Bradley S.

    2013-01-01

    Thalassospiramides A and B are immunosuppressant cyclic lipopeptides first reported from the marine α-proteobacterium Thalassospira sp. CNJ-328. We describe here the discovery and characterization of an extended family of 14 new analogues from four Tistrella and Thalassospira isolates. These potent calpain 1 protease inhibitors belong to six structure classes in which the length and composition of the acylpeptide side chain varies extensively. Genomic sequence analysis of the thalassospiramide-producing microbes revealed related, genus-specific biosynthetic loci encoding hybrid nonribosomal peptide synthetase/polyketide synthases consistent with thalassospiramide assembly. The bioinformatics analysis of the gene clusters suggests that structural diversity, which ranges from the 803.4 Da thalassospiramide C to the 1291.7 Da thalassospiramide F, results from a complex sequence of reactions involving amino acid substrate channeling and enzymatic multimodule skipping and iteration. Preliminary biochemical analysis of the N-terminal nonribosomal peptide synthetase module from the Thalassospira TtcA megasynthase supports a biosynthetic model in which in cis amino acid activation competes with in trans activation to increase the range of amino acid substrates incorporated at the N terminus. © 2012 American Chemical Society.

  19. Diverse bacteria isolated from microtherm oil-production water.

    Science.gov (United States)

    Sun, Ji-Quan; Xu, Lian; Zhang, Zhao; Li, Yan; Tang, Yue-Qin; Wu, Xiao-Lei

    2014-02-01

    In total, 435 pure bacterial strains were isolated from microtherm oil-production water from the Karamay Oilfield, Xinjiang, China, by using four media: oil-production water medium (Cai medium), oil-production water supplemented with mineral salt medium (CW medium), oil-production water supplemented with yeast extract medium (CY medium), and blood agar medium (X medium). The bacterial isolates were affiliated with 61 phylogenetic groups that belong to 32 genera in the phyla Actinobacteria, Firmicutes, and Proteobacteria. Except for the Rhizobium, Dietzia, and Pseudomonas strains that were isolated using all the four media, using different media led to the isolation of bacteria with different functions. Similarly, nonheme diiron alkane monooxygenase genes (alkB/alkM) also clustered according to the isolation medium. Among the bacterial strains, more than 24 % of the isolates could use n-hexadecane as the sole carbon source for growth. For the first time, the alkane-degrading ability and alkB/alkM were detected in Rhizobium, Rhodobacter, Trichococcus, Micrococcus, Enterococcus, and Bavariicoccus strains, and the alkM gene was detected in Firmicutes strains.

  20. Characterisation of North American Brucella isolates from marine mammals.

    Directory of Open Access Journals (Sweden)

    Adrian M Whatmore

    Full Text Available Extension of known ecological niches of Brucella has included the description of two novel species from marine mammals. Brucella pinnipedialis is associated predominantly with seals, while two major Brucella ceti clades, most commonly associated with porpoises or dolphins respectively, have been identified. To date there has been limited characterisation of Brucella isolates obtained from marine mammals outside Northern European waters, including North American waters. To address this gap, and extend knowledge of the global population structure and host associations of these Brucella species, 61 isolates from marine mammals inhabiting North American waters were subject to molecular and phenotypic characterisation enabling comparison with existing European isolates. The majority of isolates represent genotypes previously described in Europe although novel genotypes were identified in both B. ceti clades. Harp seals were found to carry B. pinnipedialis genotypes previously confined to hooded seals among a diverse repertoire of sequence types (STs associated with this species. For the first time Brucella isolates were characterised from beluga whales and found to represent a number of distinct B. pinnipedialis genotypes. In addition the known host range of ST27 was extended with the identification of this ST from California sea lion samples. Finally the performance of the frequently used diagnostic tool Bruce-ladder, in differentiating B. ceti and B. pinnipedialis, was critically assessed based on improved knowledge of the global population structure of Brucella associated with marine mammals.

  1. Characterisation of North American Brucella isolates from marine mammals.

    Science.gov (United States)

    Whatmore, Adrian M; Dawson, Claire; Muchowski, Jakub; Perrett, Lorraine L; Stubberfield, Emma; Koylass, Mark; Foster, Geoffrey; Davison, Nicholas J; Quance, Christine; Sidor, Inga F; Field, Cara L; St Leger, Judy

    2017-01-01

    Extension of known ecological niches of Brucella has included the description of two novel species from marine mammals. Brucella pinnipedialis is associated predominantly with seals, while two major Brucella ceti clades, most commonly associated with porpoises or dolphins respectively, have been identified. To date there has been limited characterisation of Brucella isolates obtained from marine mammals outside Northern European waters, including North American waters. To address this gap, and extend knowledge of the global population structure and host associations of these Brucella species, 61 isolates from marine mammals inhabiting North American waters were subject to molecular and phenotypic characterisation enabling comparison with existing European isolates. The majority of isolates represent genotypes previously described in Europe although novel genotypes were identified in both B. ceti clades. Harp seals were found to carry B. pinnipedialis genotypes previously confined to hooded seals among a diverse repertoire of sequence types (STs) associated with this species. For the first time Brucella isolates were characterised from beluga whales and found to represent a number of distinct B. pinnipedialis genotypes. In addition the known host range of ST27 was extended with the identification of this ST from California sea lion samples. Finally the performance of the frequently used diagnostic tool Bruce-ladder, in differentiating B. ceti and B. pinnipedialis, was critically assessed based on improved knowledge of the global population structure of Brucella associated with marine mammals.

  2. Isolation and characterization of oxalotrophic bacteria from tropical soils.

    Science.gov (United States)

    Bravo, Daniel; Braissant, Olivier; Cailleau, Guillaume; Verrecchia, Eric; Junier, Pilar

    2015-01-01

    The oxalate-carbonate pathway (OCP) is a biogeochemical set of reactions that involves the conversion of atmospheric CO2 fixed by plants into biomass and, after the biological recycling of calcium oxalate by fungi and bacteria, into calcium carbonate in terrestrial environments. Oxalotrophic bacteria are a key element of this process because of their ability to oxidize calcium oxalate. However, the diversity and alternative carbon sources of oxalotrophs participating to this pathway are unknown. Therefore, the aim of this study was to characterize oxalotrophic bacteria in tropical OCP systems from Bolivia, India, and Cameroon. Ninety-five oxalotrophic strains were isolated and identified by sequencing of the 16S rRNA gene. Four genera corresponded to newly reported oxalotrophs (Afipia, Polaromonas, Humihabitans, and Psychrobacillus). Ten strains were selected to perform a more detailed characterization. Kinetic curves and microcalorimetry analyses showed that Variovorax soli C18 has the highest oxalate consumption rate with 0.240 µM h(-1). Moreover, Streptomyces achromogenes A9 displays the highest metabolic plasticity. This study highlights the phylogenetic and physiological diversity of oxalotrophic bacteria in tropical soils under the influence of the oxalate-carbonate pathway.

  3. [Isolation and identification of rumen bacteria for cellulolytic enzyme production].

    Science.gov (United States)

    Aihemaiti, Maierhaba; Zhen, Fan; Li, Yuezhong; Aibaidoula, Gulisimayi; Yimit, Wusiman

    2013-05-04

    We screened aerobic bacteria with cellulolytic activity from ruminal fluid of sheep, cattle and camel in Xinjiang. Fresh ruminal fluid was inoculated on sterilized sodium carboxymethylcellulose agar plates. Highly cellulolytic aerobic bacteria were screened out by using Congo red staining and liquid secondary screening culture media. The combination of morphological and biochemical test with 16SrDNA sequence analysis were used to classify the strains. Enzymatic activities of four strains with strong cellulose-decomposing abilities were studied under different culture conditions. Out 84 isolated cellulolytic strains, 40 exhibited strong abilities in decomposing cellulose. They are including 37 Gram-negative isolates and 3 Gram-positive strains. Identification of these 40 strains shows that they belong to 11 species of 6 genera, 16 strains in Stenotrophomonas maltophilia, 10 Ochrobactrum, 5 Sphingobacterium, 3 Microbacterium, 3 Paracoccus and 2 Pseudomonas. The results of the enzymatic studies of four strains with strong cellulolytic abilities indicates that the strains have the best enzyme producing property when straw powder was chosen as the carbon source; the pH at 5.5 -6.0 and temperature at 37 degrees C. The strains with highly cellulolytic abilities isolated from ruminal fluid show strong abilities in cellulose decomposition.

  4. Isolation of imidacloprid degrading bacteria from cotton fields

    International Nuclear Information System (INIS)

    Shahid, M.N.; Jabeen, F.; Hassan, S.W.

    2008-01-01

    Imidacloprid is cyclodiene organochlorine, used as an insecticide all over the world an possess a serious environmental threat. It is mostly used for cotton insects (bollworm, aphid and white fly). For isolation of imidacloprid degrading bacteria three soil samples were collected from cotton fields of district Layyah having five years history of use. Soil samples were analyzed by measuring pH and electric conductivity. The isolation of imidacroprid degrading bacteria was performed by enrichment technique. Fourteen bacterial strains: S/sub i-a/, S/sub i-b/, S/sub i-c/, S/sub i-d/, S/sub i-e/, S/sub a-a/, S/a-b/, S/a-c/, S/a-d/, S/sub b-a/, S/sub b-b/, S/sub b-c/, S/sub b-d/ and S/b-e/ were isolated on the basis of their colony morphologies. The purified colonies were characterized morphologically physiologically and biochemically. Gram staining was done and Gram staining was done and Gram negative strains were confirmed on macConkey agar and Eosin methylene blue. Bacterial strains were also checked for different minimal media in which only carbon source was the imidacloprid. For this purpose FTW, FTW without N/sun 2/, NSM, M/sub 9/ and MM/sub 2/ media were used and their optical densities were taken on spectrophotometer, isolates were checked for resistance to antibiotics and heavy metals. On the basis of these characteristics. S/sub a-c/ and S/sub l-d/ were assigned to Enterobacteriaceae, S/sub a-b/ to Pseudomonadaceae and rest of the bacterial isolates were affiliated. (author)

  5. isolation and characterization of keratinase producing marine ...

    African Journals Online (AJOL)

    Dr.NGPASC

    Department of Biotechnology, Dr. N.G.P. Arts and Science College, Coimbatore – 48, Tamilnadu, India. Accepted 2 October, 2012. A unique standard starch casein medium has been implemented for the isolation of actinobacteria from the south Indian ... INTRODUCTION. Keratin is an insoluble protein which is resistant to.

  6. Isolation and identification of two marine-derived Streptomyces from ...

    African Journals Online (AJOL)

    Administrator

    2011-09-26

    Sep 26, 2011 ... isolated from marine actinomycetes in the 21th century is more than twice of the last century. Research ... South China Sea is a huge natural biological treasure. 11856 Afr. J. Biotechnol. trove with an abundant ... Phylogenetic and molecular evolutionary analyses were conducted using MEGA version 4.0 ...

  7. Antibacterial compounds from marine Vibrionaceae isolated on a global expedition

    DEFF Research Database (Denmark)

    Wietz, Matthias; Månsson, Maria; Gotfredsen, Charlotte Held

    2010-01-01

    known antibiotics as being responsible for the antibacterial activity; andrimid (from V. coralliilyticus) and holomycin (from P. halotolerans). Despite the isolation of already known antibiotics, our findings show that marine Vibrionaceae are a resource of antibacterial compounds and may have potential...

  8. Marinicella sediminis sp. nov., isolated from marine sediment

    Science.gov (United States)

    A novel heterotrophic, Gram-stain-negative, aerobic, rod-shaped, pale yellow, non-motile and non-spore-forming bacterium, designated as strain F2**T, was isolated from the marine sediment collected from Weihai coastal, Shandong Province, PR China. Optimal growth occurred at 33 °C (range 10–37 °C), w...

  9. Isolation of acetogenic bacteria that induce biocorrosion by utilizing metallic iron as the sole electron donor.

    Science.gov (United States)

    Kato, Souichiro; Yumoto, Isao; Kamagata, Yoichi

    2015-01-01

    Corrosion of iron occurring under anoxic conditions, which is termed microbiologically influenced corrosion (MIC) or biocorrosion, is mostly caused by microbial activities. Microbial activity that enhances corrosion via uptake of electrons from metallic iron [Fe(0)] has been regarded as one of the major causative factors. In addition to sulfate-reducing bacteria and methanogenic archaea in marine environments, acetogenic bacteria in freshwater environments have recently been suggested to cause MIC under anoxic conditions. However, no microorganisms that perform acetogenesis-dependent MIC have been isolated or had their MIC-inducing mechanisms characterized. Here, we enriched and isolated acetogenic bacteria that induce iron corrosion by utilizing Fe(0) as the sole electron donor under freshwater, sulfate-free, and anoxic conditions. The enriched communities produced significantly larger amounts of Fe(II) than the abiotic controls and produced acetate coupled with Fe(0) oxidation prior to CH4 production. Microbial community analysis revealed that Sporomusa sp. and Desulfovibrio sp. dominated in the enrichments. Strain GT1, which is closely related to the acetogen Sporomusa sphaeroides, was eventually isolated from the enrichment. Strain GT1 grew acetogenetically with Fe(0) as the sole electron donor and enhanced iron corrosion, which is the first demonstration of MIC mediated by a pure culture of an acetogen. Other well-known acetogenic bacteria, including Sporomusa ovata and Acetobacterium spp., did not grow well on Fe(0). These results indicate that very few species of acetogens have specific mechanisms to efficiently utilize cathodic electrons derived from Fe(0) oxidation and induce iron corrosion. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  10. Isolation of Cellulolytic Bacteria and Characterization of the Enzyme

    OpenAIRE

    Nisa Rachmania; Titi Candra Sunarti; Besty Maranatha; Wahyu Widosari; Anja Meryandini; Hasrul Satria

    2009-01-01

    Four of cellulolitic bacteria isolates had beencharacterized. The determination of cellulase activity was conducted at the highest production time, using crudeenzymes with the modification of Miller methods (1959) on pure cellulose substrates such as CMC (Carboxymethylcellulose), Avicel and Filter paper Whatman No. 1 as well as agriculture waste such as rice straw, corn cob and bananapeel. Cellulase from C4-4, C5-1, C5-3 and C11-1 showed optimum activity at pH 5, 70°C, pH 3.5, 90°C, pH 5, 80°...

  11. Isolation, Phylogenetic Analysis and Anti-infective Activity Screening of Marine Sponge-Associated Actinomycetes

    Directory of Open Access Journals (Sweden)

    Safwat Ahmed

    2010-02-01

    Full Text Available Terrestrial actinomycetes are noteworthy producers of a multitude of antibiotics, however the marine representatives are much less studied in this regard. In this study, 90 actinomycetes were isolated from 11 different species of marine sponges that had been collected from offshore Ras Mohamed (Egypt and from Rovinj (Croatia. Phylogenetic characterization of the isolates based on 16S rRNA gene sequencing supported their assignment to 18 different actinomycete genera representing seven different suborders. Fourteen putatively novel species were identified based on sequence similarity values below 98.2% to other strains in the NCBI database. A putative new genus related to Rubrobacter was isolated on M1 agar that had been amended with sponge extract, thus highlighting the need for innovative cultivation protocols. Testing for anti-infective activities was performed against clinically relevant, Gram-positive (Enterococcus faecalis, Staphylococcus aureus and Gram-negative (Escherichia coli, Pseudomonas aeruginosa bacteria, fungi (Candida albicans and human parasites (Leishmania major, Trypanosoma brucei. Bioactivities against these pathogens were documented for 10 actinomycete isolates. These results show a high diversity of actinomycetes associated with marine sponges as well as highlight their potential to produce anti-infective agents.

  12. Isolation and Identification of cellulolytic bacteria from mangrove sediment in Bangka Island

    Science.gov (United States)

    Kurniawan, A.; Prihanto, A. A.; Sari, S. P.; Febriyanti, D.; Kurniawan, A.; Sambah, A. B.; Asriani, E.

    2018-04-01

    Cellulolytic bacteria is bacteria which hydrolyze cellulose to reducing sugars. This research aims to obtain cellulolytic bacteria from the sediment of mangroves in Bangka island. Reasearch was conducted from March to August 2017. Sampling was conducted at Sungailiat, and Tukak Sadai, South of Bangka. Bacteria was isolated using 1% Carboxymetyl Cellulosa (CMC). The isolation resulted in four isolates from Sungailiat and nine isolates from Tukak Sadai. Total five isolates, namely Bacillus pumilus, Pseudomonas sp., Bacillus amyloliquefacien, Bacillus alvei, Bacillus coagulant were identified. The best isolates that produced cellulose was Pseudomonas aeruginosa.

  13. Effects of gelling agent and extracellular signaling molecules on the culturability of marine bacteria

    DEFF Research Database (Denmark)

    Rygaard, Anita Mac; Schmidt Thøgersen, Mariane; Nielsen, Kristian Fog

    2017-01-01

    Only 1 % of marine bacteria are currently culturable using standard laboratory procedures and this is a major obstacle for our understanding of the biology of marine microorganisms and for the discovery of novel microbial natural products. Therefore, the purpose of the present study was to invest......Only 1 % of marine bacteria are currently culturable using standard laboratory procedures and this is a major obstacle for our understanding of the biology of marine microorganisms and for the discovery of novel microbial natural products. Therefore, the purpose of the present study...... was to investigate if improved cultivation conditions, including the use of an alternative gelling agent, and supplementation with signaling molecules, could improve the culturability of bacteria from seawater. Substituting agar with gellan gum improved viable counts 3 – 40-fold, depending on medium composition...

  14. Selective isolation and characterization of agriculturally beneficial endopytic bacteria from wild hemp using canola

    International Nuclear Information System (INIS)

    Afzal, I.; Iqrar, I.

    2015-01-01

    Endophytic bacteria can provide a useful alternative to synthetic fertilizers to improve plant growth. Wild plants are little investigated as a source of growth promoting endophytic bacteria for commercial application to crops. In present study, endophytic bacteria were isolated from Cannabis sativa L. (hemp) using two different methods to examine their ability to promote canola growth. Besides direct isolation from the roots, endophytic bacteria were also selectively isolated from the rhizosphere of C. sativa using canola. Under gnotobiotic conditions, six bacteria from the selective isolation significantly improved canola root growth, as compared to the two bacteria isolated from direct method. Overall, three isolates performed distinctly well, namely, Pantoea vagans MOSEL-t13, Pseudomonas geniculata MOSEL-tnc1, and Serratia marcescens MOSEL-w2. These bacteria tolerated high salt concentrations and promoted canola growth under salt stress. Further, the isolated bacteria possessed plant growth promoting traits like IAA production, phosphate solubilization, and siderophore production. Most isolates produced plant cell-wall degrading enzymes, cellulase and pectinase. Some isolates were also effective in hindering the growth of two phytopathogenic fungi in dual culture assay, and displayed chitinase and protease activity. Paenibacillus sp. MOSEL-w13 displayed the greatest antifungal activity among all the isolates. Present findings conclude that wild plants can be a good source for isolating beneficial microbes, and validates the employed selective isolation for improved isolation of plant-beneficial endophytic bacteria. (author)

  15. Isolation, diversity, and biotechnological potential of rhizo- and endophytic bacteria associated with mangrove plants from Saudi Arabia.

    Science.gov (United States)

    Bibi, F; Ullah, I; Alvi, S A; Bakhsh, S A; Yasir, M; Al-Ghamdi, A A K; Azhar, E I

    2017-06-20

    Marine bacteria have been exceptional sources of halotolerant enzymes since decades. The aim of the present study was to isolate bacteria producing hydrolytic enzymes from seven different mangroves collected from the coastal area of Thuwal, Jeddah, Saudi Arabia, and to further screen them for other enzymatic and antifungal activities. We have isolated 46 different rhizo- and endophytic bacteria from the soil, roots, and leaves of the mangroves using different enzymatic media. These bacterial strains were capable of producing industrially important enzymes (cellulase, protease, lipase, and amylase). The bacteria were screened further for antagonistic activity against fungal pathogens. Finally, these bacterial strains were identified on the basis of the16S rDNA sequence. Taxonomic and phylogenetic analysis revealed 95.9-100% sequence identity to type strains of related species. The dominant phylum was Gammaproteobacteria (γ-Proteobacteria), which comprised 10 different genera - Erwinia, Vibrio, Psychrobacter, Aidingimonas, Marinobacter, Chromohalobacter, Halomonas, Microbulbifer, and Alteromonas. Firmicutes was the second dominant phylum, which contained only the genus Bacillus. Similarly, only Isoptericola belonged to Actinobacteria. Further these enzyme-producing bacteria were tested for the production of other enzymes. Most of the active strains showed cellulytic and lipolytic activities. Several were also active against fungal pathogens. Our results demonstrated that the mangroves represent an important source of potentially active bacteria producing enzymes and antifungal metabolites (bioactive products). These bacteria are a source of novel halophilic enzymes and antibiotics that can find industrial and medicinal use.

  16. Antioxidant activity of probiotic lactic acid bacteria isolated from Mongolian airag

    OpenAIRE

    E Uugantsetseg; B Batjargal

    2014-01-01

    This research aimed to determine the antioxidant activity of probiotic lactic acid bacteria isolated from airag. In this study, 42 lactic acid bacteria were isolated from Mongolian airag. All isolates were identified by using morphological, biochemical and physiological methods. The isolated bacteria were studied for antagonistic effects on Enterococcus faecalis, Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus, 22 strains showed antibacterial activity. When we examined thei...

  17. Alternative methodology for isolation of biosurfactant-producing bacteria

    Directory of Open Access Journals (Sweden)

    N. Krepsky

    Full Text Available Wide biosurfactant application on biorremediation is limited by its high production cost. The search for cheaper biossurfactant production alternatives has guided our study. The use of selective media containing sucrose (10 g.L-1 and Arabian Light oil (2 g.L-1 as carbon sources showed to be effective to screen and maintain biosurfactant-producing consortia isolated from mangrove hydrocarbon-contaminated sediment. The biosurfactant production was assayed by kerosene, gasoline and Arabian Light Emulsification activity and the bacterial growth curve was determined by bacterial quantification. The parameters analyzed for biosurfactant production were the growth curve, salinity concentration, flask shape and oxygenation. All bacteria consortia screened were able to emulsify the petroleum derivatives tested. Biosurfactant production increased according to the incubation time; however the type of emulsification (non-aqueous phase or aqueous phase did not change with time but with the compound tested. The methodology was able to isolate biosurfactant-producing consortia from superficial mangrove sediment contaminated by petroleum hydrocarbons and was recommended for selection of biosurfactant producing bacteria in tropical countries with low financial resources.

  18. Alternative methodology for isolation of biosurfactant-producing bacteria.

    Science.gov (United States)

    Krepsky, N; Da Silva, F S; Fontana, L F; Crapez, M A C

    2007-02-01

    Wide biosurfactant application on biorremediation is limited by its high production cost. The search for cheaper biossurfactant production alternatives has guided our study. The use of selective media containing sucrose (10 g x L(-1)) and Arabian Light oil (2 g x L(-1)) as carbon sources showed to be effective to screen and maintain biosurfactant-producing consortia isolated from mangrove hydrocarbon-contaminated sediment. The biosurfactant production was assayed by kerosene, gasoline and Arabian Light Emulsification activity and the bacterial growth curve was determined by bacterial quantification. The parameters analyzed for biosurfactant production were the growth curve, salinity concentration, flask shape and oxygenation. All bacteria consortia screened were able to emulsify the petroleum derivatives tested. Biosurfactant production increased according to the incubation time; however the type of emulsification (non-aqueous phase or aqueous phase) did not change with time but with the compound tested. The methodology was able to isolate biosurfactant-producing consortia from superficial mangrove sediment contaminated by petroleum hydrocarbons and was recommended for selection of biosurfactant producing bacteria in tropical countries with low financial resources.

  19. Characterization of sulfate reducing bacteria isolated from urban soil

    Science.gov (United States)

    Zhang, Mingliang; Wang, Haixia

    2017-05-01

    Sulfate reducing bacteria (SRB) was isolated from urban soil and applied for the remediation of heavy metals pollution from acid mine drainage. The morphology and physiological characteristics (e.g. pH and heavy metals tolerance) of SRB was investigated. The SRB was gram-negative bacteria, long rod with slight curve, cell size 0.5× (1.5-2.0) μm. The pH of medium had significant effect on SRB growth and the efficiency of sulfate reduction, and it showed that the suitable pH range was 5-9 and SRB could not survive at pH less than 4. The maximum tolerance of Fe (II), Zn (II), Cd (II), and Cu (II) under acidic condition (pH 5.0) was about 600 mg/L, 150 mg/L, 25 mg/L and 25 mg/L, respectively. The result indicated that SRB isolated in this study could be used for the bioremediation of acid mine drainage (pH>4) within the heavy metals concentrations tolerance.

  20. Interactions between marine snow and heterotrophic bacteria: aggregate formation and microbial dynamics

    DEFF Research Database (Denmark)

    Grossart, H.P.; Kiørboe, Thomas; Tang, K.W.

    2006-01-01

    as well as abundance, colonization behaviour, and community composition of bacteria during the growth of 2 marine diatoms (Thalassiosira weissflogii and Navicula sp.) under axenic and non-axenic conditions. Community composition of free-living and attached bacteria during phytoplankton growth...... and aggregation was studied by amplification of 16S rRNA gene fragments and denaturing gradient gel electrophoresis (DGGE). Our results show that the presence of bacteria was a prerequisite for aggregation of T. weissflogii but not of Navicula sp. Occurrences of distinct populations of free-living and attached...... bacteria depended on phytoplankton growth and aggregation dynamics. The community composition of especially attached bacteria significantly differed between the 2 algal cultures. Our study suggests that phytoplankton aggregation and vertical fluxes are closely linked to interactions between the marine...

  1. Isolation, enumeration, molecular identification and probiotic potential evaluation of lactic acid bacteria isolated from sheep milk

    OpenAIRE

    Acurcio, L.B.; Souza, M.R.; Nunes, A.C.; Oliveira, D.L.S.; Sandes, S.H.C.; Alvim, L.B.

    2014-01-01

    Lactic acid bacteria species were molecularly identified in milk from Lacaune, Santa Inês and crossbred sheep breeds and their in vitro probiotic potential was evaluated. The species identified were Enterococcus faecium (56.25%), E. durans (31.25%) and E. casseliflavus (12.5%). No other lactic acid bacteria species, such as lactobacilli, was identified. Most of the isolated enterococci were resistant to gastric pH (2.0) and to 0.3% oxgall. All tested enterococci were resistant to ceftazidime,...

  2. Cadmium resistance of endophytic bacteria and rizosféricas bacteria isolated from Oriza sativa in Colombia

    Directory of Open Access Journals (Sweden)

    Nataly Ayubb T

    2017-12-01

    Full Text Available The present study had as objective to evaluate in vitro the resistance of endophytic bacteria and rizospheric bacteria to different concentrations of Cadmium.This bacteria were isolated fron different tissues of commercial rice varieties and from bacteria isolated from the rhizosphere in rice plantations of the Nechí (Antioquía and Achí (Bolivar.  Plant growth promotion was evaluated in vitro by nitrogen fixation, phosphate solubilization and siderophores production of endophytic bacteria. Of each tissue isolated from rice plants was carried out isolation in culture medium for endophytic bacteria, and the soil samples were serially diluted in peptone water. Each sample was determined the population density by counting in CFU / g of tissue and morphotypes were separated by shape, color, size and appearance in culture media. Significant differences were observed for density population of bacteria with respect to tissue, with higher values in root (4x1011 g/root, followed of the stem (3x1010g/etem, leaf (5x109 g/ leaf, flag leaf (3x109 g/ flag leaf and with less density in panicle (4x108 g/panicle. The results of the identification with kit API were confirmed the presence of endophytic bacteria Burkholderia cepaceae and rizospheric bacteria Pseudomona fluorescens With the ability to tolerate different concentrations of Cd, fix nitrogen, solubilize phosphates and produce siderophores.

  3. Marine sponge-associated bacteria as a potential source for polyhydroxyalkanoates.

    Science.gov (United States)

    Sathiyanarayanan, Ganesan; Saibaba, Ganesan; Kiran, George Seghal; Yang, Yung-Hun; Selvin, Joseph

    2017-05-01

    Marine sponges are filter feeding porous animals and usually harbor a remarkable array of microorganisms in their mesohyl tissues as transient and resident endosymbionts. The marine sponge-microbial interactions are highly complex and, in some cases, the relationships are thought to be truly symbiotic or mutualistic rather than temporary associations resulting from sponge filter-feeding activity. The marine sponge-associated bacteria are fascinating source for various biomolecules that are of potential interest to several biotechnological industries. In recent times, a particular attention has been devoted to bacterial biopolymer (polyesters) such as intracellular polyhydroxyalkanoates (PHAs) produced by sponge-associated bacteria. Bacterial PHAs act as an internal reserve for carbon and energy and also are a tremendous alternative for fossil fuel-based polymers mainly due to their eco-friendliness. In addition, PHAs are produced when the microorganisms are under stressful conditions and this biopolymer synthesis might be exhibited as one of the survival mechanisms of sponge-associated or endosymbiotic bacteria which exist in a highly competitive and stressful sponge-mesohyl microenvironment. In this review, we have emphasized the industrial prospects of marine bacteria for the commercial production of PHAs and special importance has been given to marine sponge-associated bacteria as a potential resource for PHAs.

  4. Molecular identification of marine symbiont bacteria of gastropods from the waters of the Krakal coast Yogyakarta and its potential as a Multi-Drug Resistant (MDR) antibacterial agent

    Science.gov (United States)

    Bahry, Muhammad Syaifudien; Pringgenies, Delianis; Trianto, Agus

    2017-01-01

    The resistance of pathogenic bacteria may occur to many types of antibiotics, especially in cases of non-compliance use of antibiotics, which likely to allow the evolution of Multi-Drug Resistant (MDR) bacteria. Gastropods seas are marine invertebrates informed capable of production of secondary metabolites as antibacterial MDR. The purpose of the study was the isolation and identification of gastropod symbiont bacteria found in the waters of Krakal, Gunung Kidul, Yogyakarta, which has the ability to produce antibacterial compounds against MDR(Escherichia coli, Enterobacter cloacae, Klebsiella pneumoniae, MRSA (methicillin-Resistant Staphylococcus aureus), Staphylococcus aureus, and Staphylococcus homunis) molecular. Stages of this research began with the isolation of bacteria, bacteria screening for anti-MDR compound, mass culture, and extraction, antibacterial activity test, DNA extraction, amplification by PCR 16S rDNA and sequencing. The results of the study showed that 19 isolates of bacteria were isolated from three species of gastropods namely Littorina scabra, Cypraea moneta and Conus ebraeus. Among them, 4 isolates showed activity against MDR test bacteria (E. coli, E. cloacae, K. pneumoniae, S. aureus and S. homunis). The highest activity was displayed by code LS.G1.8 isolate with the largest inhibition zone 15.47±0.45mm on S. humonis at 250 µg/disk concentration. Isolate CM.G2.1 showed largest inhibition zone, with 21.5±0.07mm on MRSA at 1000 µg/disk concentration and isolate the largest inhibition zone CM.G2.5 14.37±0.81mm on MRSA 14.37±0.81mm at concentrations 1000 µg/disk. The molecular identification of isolates LS.G1.8 has 99% homology with Bacillus subtilis and isolates CM.G2.1 has 99% homology with Bacillus pumillus.

  5. Multidrug resistant bacteria isolated from septic arthritis in horses

    Directory of Open Access Journals (Sweden)

    Rodrigo G. Motta

    Full Text Available ABSTRACT: Septic arthritis is a debilitating joint infectious disease of equines that requires early diagnosis and immediate therapeutic intervention to prevent degenerative effects on the articular cartilage, as well as loss of athletic ability and work performance of the animals. Few studies have investigated the etiological complexity of this disease, as well as multidrug resistance of isolates. In this study, 60 horses with arthritis had synovial fluid samples aseptically collected, and tested by microbiological culture and in vitro susceptibility test (disk diffusion using nine antimicrobials belonging to six different pharmacological groups. Bacteria were isolated in 45 (75.0% samples, as follows: Streptococcus equi subsp. equi (11=18.3%, Escherichia coli (9=15.0%, Staphylococcus aureus (6=10.0%, Streptococcus equi subsp. zooepidemicus (5=8.3%, Staphylococcus intermedius (2=3.3%, Proteus vulgaris (2=3.3%, Trueperella pyogenes (2=3.3%, Pseudomonas aeruginosa (2=3.3%, Klebsiella pneumoniae (1=1.7%, Rhodococcus equi (1=1.7%, Staphylococcus epidermidis (1=1.7%, Klebsiella oxytoca (1=1.7%, Nocardia asteroides (1=1.7%, and Enterobacter cloacae (1=1.7%. Ceftiofur was the most effective drug (>70% efficacy against the pathogens in the disk diffusion test. In contrast, high resistance rate (>70% resistance was observed to penicillin (42.2%, enrofloxacin (33.3%, and amikacin (31.2%. Eleven (24.4% isolates were resistant to three or more different pharmacological groups and were considered multidrug resistant strains. The present study emphasizes the etiological complexity of equine septic arthritis, and highlights the need to institute treatment based on the in vitro susceptibility pattern, due to the multidrug resistance of isolates. According to the available literature, this is the first report in Brazil on the investigation of the etiology. of the septic arthritis in a great number of horses associated with multidrug resistance of the isolates.

  6. [Anaerobic bacteria isolated from patients with suspected anaerobic infections].

    Science.gov (United States)

    Ercis, Serpil; Tunçkanat, Ferda; Hasçelik, Gülşen

    2005-10-01

    The study involved 394 clinical samples sent to the Clinical Microbiology Laboratory of Hacettepe University Adult Hospital between January 1997 and May 2004 for anaerobic cultivation. Since multiple cultures from the same clinical samples of the same patient were excluded, the study was carried on 367 samples. The anaerobic cultures were performed in anaerobic jar using AnaeroGen kits (Oxoid, Basingstoke, U.K.) or GENbox (bioMérieux, Lyon, France). The isolates were identified by both classical methods and "BBL Crystal System" (Becton Dickinson, U.S.A.). While no growth was detected in 120 (32.7%) of the clinical samples studied, in 144 samples (39.2%) only aerobes, in 28 (7.6%) only anaerobes and in 75 (20.5%) of the samples both aerobes and anaerobes were isolated. The number of the anaerobic isolates was 217 from 103 samples with anaerobic growth. Of these 103 samples 15 showed single bacterial growth whereas in 88 samples multiple bacterial isolates were detected. Anaerobic isolates consisted of 92 Gram negative bacilli (Bacteroides spp. 50, Prevotella spp. 14, Porphyromonas spp. 10, Fusobacterium spp. 7, Tisierella spp. 2, unidentified 9), 57 Gram positive bacilli (Clostridium spp.17, Propionibacterium spp. 16, Lactobacillus spp. 8, Actinomyces spp. 5, Eubacterium spp. 2, Bifidobacterium adolescentis 1, Mobiluncus mulieris 1, unidentified nonspore forming rods 7), 61 Gram positive cocci (anaerobic cocci 44, microaerophilic cocci 17), and 7 Gram negative cocci (Veillonella spp.). In conclusion, in the samples studied with prediagnosis of anaerobic infection, Bacteroides spp. (23%) were the most common bacteria followed by anaerobic Gram positive cocci (20.3%) and Clostridium spp (7.8%).

  7. NC10 bacteria in marine oxygen minimum zones

    DEFF Research Database (Denmark)

    Padilla, Cory C; Bristow, Laura A; Sarode, Neha

    2016-01-01

    Bacteria of the NC10 phylum link anaerobic methane oxidation to nitrite denitrification through a unique O2-producing intra-aerobic methanotrophy pathway. A niche for NC10 in the pelagic ocean has not been confirmed. We show that NC10 bacteria are present and transcriptionally active in oceanic....... rRNA and mRNA transcripts assignable to NC10 peaked within the OMZ and included genes of the putative nitrite-dependent intra-aerobic pathway, with high representation of transcripts containing the unique motif structure of the nitric oxide (NO) reductase of NC10 bacteria, hypothesized...

  8. Proteorhodopsin lateral gene transfer between marine planktonic Bacteria and Archaea

    DEFF Research Database (Denmark)

    Frigaard, Niels-Ulrik; Martinez, Asuncion; Mincer, Tracy J

    2006-01-01

    Planktonic Bacteria, Archaea and Eukarya reside and compete in the ocean's photic zone under the pervasive influence of light. Bacteria in this environment were recently shown to contain photoproteins called proteorhodopsins, thought to contribute to cellular energy metabolism by catalysing light...... phylogenetic distribution of proteorhodopsins reflects their significant light-dependent fitness contributions, which drive the photoprotein's lateral acquisition and retention, but constrain its dispersal to the photic zone....

  9. The Structural Diversity of Carbohydrate Antigens of Selected Gram-Negative Marine Bacteria

    Directory of Open Access Journals (Sweden)

    Elena P. Ivanova

    2011-10-01

    Full Text Available Marine microorganisms have evolved for millions of years to survive in the environments characterized by one or more extreme physical or chemical parameters, e.g., high pressure, low temperature or high salinity. Marine bacteria have the ability to produce a range of biologically active molecules, such as antibiotics, toxins and antitoxins, antitumor and antimicrobial agents, and as a result, they have been a topic of research interest for many years. Among these biologically active molecules, the carbohydrate antigens, lipopolysaccharides (LPSs, O-antigens found in cell walls of Gram-negative marine bacteria, show great potential as candidates in the development of drugs to prevent septic shock due to their low virulence. The structural diversity of LPSs is thought to be a reflection of the ability for these bacteria to adapt to an array of habitats, protecting the cell from being compromised by exposure to harsh environmental stress factors. Over the last few years, the variety of structures of core oligosaccharides and O-specific polysaccharides from LPSs of marine microrganisms has been discovered. In this review, we discuss the most recently encountered structures that have been identified from bacteria belonging to the genera Aeromonas, Alteromonas, Idiomarina, Microbulbifer, Pseudoalteromonas, Plesiomonas and Shewanella of the Gammaproteobacteria phylum; Sulfitobacter and Loktanella of the Alphaproteobactera phylum and to the genera Arenibacter, Cellulophaga, Chryseobacterium, Flavobacterium, Flexibacter of the Cytophaga-Flavobacterium-Bacteroides phylum. Particular attention is paid to the particular chemical features of the LPSs, such as the monosaccharide type, non-sugar substituents and phosphate groups, together with some of the typifying traits of LPSs obtained from marine bacteria. A possible correlation is then made between such features and the environmental adaptations undertaken by marine bacteria.

  10. Marine fungi isolated from Chilean fjord sediments can degrade oxytetracycline.

    Science.gov (United States)

    Ahumada-Rudolph, R; Novoa, V; Sáez, K; Martínez, M; Rudolph, A; Torres-Diaz, C; Becerra, J

    2016-08-01

    Salmon farming is the main economic activity in the fjords area of Southern Chile. This activity requires the use of antibiotics, such as oxytetracycline, for the control and prevention of diseases, which have a negative impact on the environment. We analyzed the abilities of endemic marine fungi to biodegrade oxytetracycline, an antibiotic used extensively in fish farming. We isolated marine fungi strains from sediment samples obtained from an area of fish farming activity. The five isolated strains showed an activity on oxytetracycline and were identified as Trichoderma harzianum, Trichoderma deliquescens, Penicillium crustosum, Rhodotorula mucilaginosa, and Talaromyces atroroseus by a scanning electron microscopy and characterized by molecular techniques. Results showed significant degradation in the concentration of oxytetracycline at the first 2 days of treatment for all strains analyzed. At 21 days of treatment, the concentration of oxytetracycline was decreased 92 % by T. harzianum, 85 % by T. deliquescens, 83 % by P. crustosum, 73 % by R. mucilaginosa, and 72 % by T. atroroseus, all of which were significantly higher than the controls. Given these results, we propose that fungal strains isolated from marine sediments may be useful tools for biodegradation of antibiotics, such as oxytetracycline, in the salmon industry.

  11. Dynamic transition of chemolithotrophic sulfur-oxidizing bacteria in response to amendment with nitrate in deposited marine sediments

    Directory of Open Access Journals (Sweden)

    Tomo eAoyagi

    2015-05-01

    Full Text Available Although environmental stimuli are known to affect the structure and function of microbial communities, their impact on the metabolic network of microorganisms has not been well investigated. Here, geochemical analyses, high-throughput sequencing of 16S rRNA genes and transcripts, and isolation of potentially relevant bacteria were carried out to elucidate the anaerobic respiration processes stimulated by nitrate (20 mM amendment of marine sediments. Marine sediments deposited by the Great East Japan Earthquake in 2011 were incubated anaerobically in the dark at 25°C for 5 days. Nitrate in slurry water decreased gradually for 2 days, then more rapidly until its complete depletion at day 5; production of N2O followed the same pattern. From day 2 to 5, the sulfate concentration increased and the sulfur content in solid-phase sediments significantly decreased. These results indicated that denitrification and sulfur oxidation occurred simultaneously. Illumina sequencing revealed the proliferation of known sulfur oxidizers, i.e., Sulfurimonas spp. and Chromatiales bacteria, which accounted for approximately 43.5% and 14.8% of the total population at day 5, respectively. They also expressed 16S rRNA to a considerable extent, whereas the other microorganisms, e.g., iron(III reducers and methanogens, became metabolically active at the end of the incubation. Extinction dilution culture in a basal-salts medium supplemented with sulfur compounds and nitrate successfully isolated the predominant sulfur oxidizers: Sulfurimonas sp. strain HDS01 and Thioalkalispira sp. strain HDS22. Their 16S rRNA genes showed 95.2−96.7% sequence similarity to the closest cultured relatives and they grew chemolithotrophically on nitrate and sulfur. Novel sulfur-oxidizing bacteria were thus directly involved in carbon fixation under nitrate-reducing conditions, activating anaerobic respiration processes and the reorganization of microbial communities in the deposited marine

  12. High-density polyethylene (HDPE)-degrading potential bacteria from marine ecosystem of Gulf of Mannar, India.

    Science.gov (United States)

    Balasubramanian, V; Natarajan, K; Hemambika, B; Ramesh, N; Sumathi, C S; Kottaimuthu, R; Rajesh Kannan, V

    2010-08-01

    Assessment of high-density polyethylene (HDPE)-degrading bacteria isolated from plastic waste dumpsites of Gulf of Mannar. Rationally, 15 bacteria (GMB1-GMB15) were isolated by enrichment technique. GMB5 and GMB7 were selected for further studies based on their efficiency to degrade the HDPE and identified as Arthrobacter sp. and Pseudomonas sp., respectively. Assessed weight loss of HDPE after 30 days of incubation was nearly 12% for Arthrobacter sp. and 15% for Pseudomonas sp. The bacterial adhesion to hydrocarbon (BATH) assay showed that the cell surface hydrophobicity of Pseudomonas sp. was higher than Arthrobacter sp. Both fluorescein diacetate hydrolysis and protein content of the biofilm were used to test the viability and protein density of the biomass. Acute peak elevation was observed between 2 and 5 days of inoculation for both bacteria. Fourier transform infrared (FT-IR) spectrum showed that keto carbonyl bond index (KCBI), Ester carbonyl bond index (ECBI) and Vinyl bond index (VBI) were increased indicating changes in functional group(s) and/or side chain modification confirming the biodegradation. The results pose us to suggest that both Pseudomonas sp. and Arthrobacter sp. were proven efficient to degrade HDPE, albeit the former was more efficacious, yet the ability of latter cannot be neglected. Recent alarm on ecological threats to marine system is dumping plastic waste in the marine ecosystem and coastal arena by anthropogenic activity. In maintenance phase of the plastic-derived polyethylene waste, the microbial degradation plays a major role; the information accomplished in this work will be the initiating point for the degradation of polyethylene by indigenous bacterial population in the marine ecosystem and provides a novel eco-friendly solution in eco-management.

  13. Production of heterotrophic bacteria inhabiting macroscopic organic aggregates (marine snow) from surface waters

    International Nuclear Information System (INIS)

    Alldredge, A.L.; Cole, J.J.; Caron, D.A.

    1986-01-01

    Macroscopic detrital aggregates, known as marine snow, are a ubiquitous and abundant component of the marine pelagic zone. Descriptions of microbial communities occurring at densities 2-5 orders of magnitude higher on these particles than in the surrounding seawater have led to the suggestion that marine snow may be a site of intense heterotrophic activity. The authors tested this hypothesis using incorporation of [ 3 H]thymidine into macromolecules as a measure of bacterial growth occurring on marine snow from oceanic waters in the North Atlantic and from neritic waters off southern California. Abundances of marine snow ranged from 0.1 to 4.3 aggregates per liter. However, only 0.1-4% ration per cell on aggregates was generally equal to or lower than that of bacteria found free-living in the surrounding seawater, indicating that attached bacteria were not growing more rapidly than free-living bacteria. Bacteria inhabiting aggregates were up to 25 times larger than free-living forms

  14. Screening of marine sponge-associated bacteria from ...

    African Journals Online (AJOL)

    Ramakrishna

    2012-11-01

    Nov 1, 2012 ... It was then confirmed by means of basic local alignment search tool (BLAST). From these results, it is confirmed that the ... using the effective compounds from marine sources has increased. Bioactive compounds from .... Methanol was used as the control, the plates were incubated for 24 h at 37°C (Li et al., ...

  15. Efficacy of a marine bacterial nuclease against biofilm forming microorganisms isolated from chronic rhinosinusitis.

    Directory of Open Access Journals (Sweden)

    Robert C Shields

    Full Text Available BACKGROUND: The persistent colonization of paranasal sinus mucosa by microbial biofilms is a major factor in the pathogenesis of chronic rhinosinusitis (CRS. Control of microorganisms within biofilms is hampered by the presence of viscous extracellular polymers of host or microbial origin, including nucleic acids. The aim of this study was to investigate the role of extracellular DNA in biofilm formation by bacteria associated with CRS. METHODS/PRINCIPAL FINDINGS: Obstructive mucin was collected from patients during functional endoscopic sinus surgery. Examination of the mucous by transmission electron microscopy revealed an acellular matrix punctuated occasionally with host cells in varying states of degradation. Bacteria were observed in biofilms on mucosal biopsies, and between two and six different species were isolated from each of 20 different patient samples. In total, 16 different bacterial genera were isolated, of which the most commonly identified organisms were coagulase-negative staphylococci, Staphylococcus aureus and α-haemolytic streptococci. Twenty-four fresh clinical isolates were selected for investigation of biofilm formation in vitro using a microplate model system. Biofilms formed by 14 strains, including all 9 extracellular nuclease-producing bacteria, were significantly disrupted by treatment with a novel bacterial deoxyribonuclease, NucB, isolated from a marine strain of Bacillus licheniformis. Extracellular biofilm matrix was observed in untreated samples but not in those treated with NucB and extracellular DNA was purified from in vitro biofilms. CONCLUSION/SIGNIFICANCE: Our data demonstrate that bacteria associated with CRS form robust biofilms which can be reduced by treatment with matrix-degrading enzymes such as NucB. The dispersal of bacterial biofilms with NucB may offer an additional therapeutic target for CRS sufferers.

  16. Isolation of Cellulolytic Bacteria and Characterization of the Enzyme

    Directory of Open Access Journals (Sweden)

    Nisa Rachmania

    2009-04-01

    Full Text Available Four of cellulolitic bacteria isolates had beencharacterized. The determination of cellulase activity was conducted at the highest production time, using crudeenzymes with the modification of Miller methods (1959 on pure cellulose substrates such as CMC (Carboxymethylcellulose, Avicel and Filter paper Whatman No. 1 as well as agriculture waste such as rice straw, corn cob and bananapeel. Cellulase from C4-4, C5-1, C5-3 and C11-1 showed optimum activity at pH 5, 70°C, pH 3.5, 90°C, pH 5, 80°Cand pH 8, 70°C, respectively. Avicel is a appropriate substrate for C4-4 cellulase whereas CMC for the other three.C11-1 cellulase has the highest cellulase enzyme activity on rice straw substrate whereas C4-4 cellulase on banana peelsubstrates. C5-1 and C5-3 cellulase have relatively low cellulase activities in degrading substrates of agriculture waste.However, isolates of C5-1 and C5-3 have high cellulase activities on banana peel substrates.

  17. Antagonistic Activity Of Endophytic Bacteria Isolated From Mentha Rotundifolia L.

    Directory of Open Access Journals (Sweden)

    Elhartiti Abla

    2015-08-01

    Full Text Available Abstract This study is implemented for the isolation purification and identification of endophytic bacteria which produces antifungal substances from the roots of Mentha rotundifolia L. The 59 obtained bacterial isolates were tested for their antagonistic activity by the dual confrontation against the phytopathogenic fungi Fusarium oxysporum Aspergillus Niger and Botrytis cinerea. Eight bacterial strains were selected for their strong antifungal activity. These are strains M21 M23 M3a M4 M14d and M3c which belong to the family Bacillaceae M12 and M3b which belongs to the family of Pseudomonadaceae. Among these three bacterial strains namely M21 M23 and M12 induce 70 of inhibition of mycelial growth of phytopathogenic fungi Fusarium oxysporum and Aspergillus Niger while the five bacterial strains M3a M3c M3b M4 and M14d have proved to be effective in inhibiting more than 60 of mycelial growth of Botrytis cinerea.

  18. Isolation and Identification of Crude Oil Degrading and Biosurfactant Producing Bacteria from the Oil-Contaminated Soils of Gachsaran

    Directory of Open Access Journals (Sweden)

    Seyyedeh Zahra Hashemi

    2016-03-01

    Full Text Available Background and Objectives: Petroleum hydrocarbons are harmful to the environment, human health, and all other living creatures. Oil and its byproducts in contact with water block sunshine to phytoplanktons and thus break the food chain and damage the marine food source. This study aims to isolate the crude oil degrading and biosurfactant producing bacteria from the oil contaminated soils of Gachsaran, Iran. Materials and Methods: Isolation was performed in peptone-water medium with yeast extract. Oil displacement area, emulsification index and bacterial phylogeny using 16S rRNA analysis were studied. Results and Conclusion: Three isolates were able to degrade the crude oil. In the first day, there were two phases in the medium; after a few days, these three bacteria degraded the crude oil until there was only one phase left in the medium. One strain was selected as a superior strain by homogenizing until the medium became clear and transparent. This method confirmed that the strain produces biosurfactant. According to the morphological and biochemical tests, the strain isolated from the oil contaminated soils is a member of Bacillus subtilis, so to study the bacterial phylogeny and taxonomy of the strain, an analysis of 16S rRNA was carried out, and the phylogenic tree confirmed them. The results verified that oil contaminated soils are good source for isolation of the biosurfactant producing bacteria.

  19. Chitin elicitation of natural product production in marine bacteria

    DEFF Research Database (Denmark)

    Månsson, Maria; Wietz, Matthias; Larsen, Thomas Ostenfeld

    -negative bacteria (mainly Pseudoalteromonas and Vibrio), we found that some strains were capable of producing antibacterial compounds when grown on chitin, an N-acetyl-D-glucosamine polymer found in the exoskeleton of zooplankton.2 A strain of Vibrio coralliilyticus solely produced the antibiotic andrimid,3...

  20. An Overview on Marine Sponge-Symbiotic Bacteria as Unexhausted Sources for Natural Product Discovery

    Directory of Open Access Journals (Sweden)

    Candice M. Brinkmann

    2017-09-01

    Full Text Available Microbial symbiotic communities of marine macro-organisms carry functional metabolic profiles different to the ones found terrestrially and within surrounding marine environments. These symbiotic bacteria have increasingly been a focus of microbiologists working in marine environments due to a wide array of reported bioactive compounds of therapeutic importance resulting in various patent registrations. Revelations of symbiont-directed host specific functions and the true nature of host-symbiont interactions, combined with metagenomic advances detecting functional gene clusters, will inevitably open new avenues for identification and discovery of novel bioactive compounds of biotechnological value from marine resources. This review article provides an overview on bioactive marine symbiotic organisms with specific emphasis placed on the sponge-associated ones and invites the international scientific community to contribute towards establishment of in-depth information of the environmental parameters defining selection and acquisition of true symbionts by the host organisms.

  1. Comparison of radiosensitivity of bacteria isolated from given radiation exposure history

    International Nuclear Information System (INIS)

    Kim, K.S.; Min, B.H.; Rhee, K.S.

    1974-01-01

    This experiment was carried out to identify and to compare the radiosensitivities of bacteria isolated from the sources of different radiation exposure histories. Among 10 strains isolated in this investigation, 4 strains of bacteria, Bacillus firmus, Bacillus brevis, Bacillus subtilis and Bacillus sphaericus were isolated from high- and low-radioactive sites simultaneously. Bacterial strains isolated from radioactive sources such as reactor and isotope production rooms were more resistant to irradiation than the microorganisms from medical products and laboratories, however, there was no significance in radiosensitivity in the same species of bacteria, even if they were isolated from different radiation exposure histories. (author)

  2. Alkaline protease production by alkaliphilic marine bacteria isolated ...

    African Journals Online (AJOL)

    The molecular mass determined using SDS-PAGE, was nearly 31.0 39 kDa. Some fundamental properties like effects of different temperatures, pH, metal ions (Ca2+, Mg2+, Cu2+, Pb3+, Mn2+ and Cd2+) and ethylene diamine tetraacetic acid (EDTA) on protease activity were also studied. Maximum activities were obtained ...

  3. Isolation and identification of indigenous lactic acid bacteria from North Sumatra river buffalo milk

    OpenAIRE

    Heni Rizqiati; Cece Sumantr; Ronny Rachman Noor; E. Damayanthi; E. I. Rianti

    2015-01-01

    Buffalo milk is a source of various lactic acid bacteria (LAB) which is potential as culture starter as well as the probiotic. This study was conducted to isolate and identify LAB from indigenous North Sumatra river buffalo milk. Lactic acid bacteria was isolated and grown in medium De Man Rogosa Sharpe Agar (MRSA). The isolation was conducted to obtain pure isolate. The identification of LAB was studied in terms of morphology, physiology, biochemistry and survival on low pH. Morphology test...

  4. The Study of Isolated Bacteria Application for Bioremediation Agent of Uranium Radionuclide in the Environment

    International Nuclear Information System (INIS)

    Yazid, Mochd

    2007-01-01

    Application of the isolated bacteria on the Low Level Uranium Waste as uranium bioremediation agent in the environment has been studied. The objective of this research is to study the possibility of isolated bacteria to be used on uranium remediation process. The isolation of uranium resistance bacteria was carried out on the selective medium SBS containing 10 mg/l uranium, incubated at 37°C until the growth was visible. Selection of binding uranium bacteria was carried out based on their ability to grow on liquid medium containing various concentration of uranium that shacked on 120 rpm speed. The isolated bacteria with the highest specific growth rate constant (μ) were selected for biochemical characterization and identification by matching profile method. The result of this research showed that three selected isolate bacteria were able to grow well on liquid SBS medium until 100 mg/l uranium concentration. The identification results showed that two of them were suspected belong to the genus Pseudomonas and one isolates belong to the genus of Bacillus. The uranium reduction studied was performed by growing up the isolated bacteria on the SBS liquid medium that containing 40 mg/l uranium. Bacterial growth were measured by weighted of bacterial biomass and uranium concentration were measured by spectrophotometer. The research result showed that the selected isolates bacteria may applicable for bioremediation agent because of their ability to grow well on liquid SBS medium and their ability on uranium concentration reduction. The efficiency of reduction by Pseudomonas in the isolated bacteria one were 78.51 % and in the isolated bacteria three were 91.47 % , and Bacillus in the isolate bacteria six were 52.73%. (author)

  5. Metal and antibiotic resistance of bacteria isolated from the Baltic Sea.

    Science.gov (United States)

    Moskot, Marta; Kotlarska, Ewa; Jakóbkiewicz-Banecka, Joanna; Gabig-Cimińska, Magdalena; Fari, Karolina; Wegrzyn, Grzegorz; Wróbel, Borys

    2012-09-01

    The resistance of 49 strains of bacteria isolated from surface Baltic Sea waters to 11 antibiotics was analyzed and the resistance of selected strains to three metal ions (Ni2+, Mn2+, Zn2+) was tested. Most isolates belonged to Gammaproteobacteria (78%), while Alphaproteobacteria (8%), Actinobacteria (10%), and Bacteroidetes (4%) were less abundant. Even though previous reports suggested relationships between resistance and the presence of plasmids or the ability to produce pigments, no compelling evidence for such relationships was obtained for the strains isolated in this work. In particular, strains resistant to multiple antibiotics did not carry plasmids more frequently than sensitive strains. A relation between resistance and the four aminoglycosides tested (gentamycin, kanamycin, neomycin, and streptomycin), but not to spectinomycin, was demonstrated. This observation is of interest given that spectinomycin is not always classified as an aminoglycoside because it lacks a traditional sugar moiety. Statistical analysis indicated relationships between resistance to some antibiotics (ampicillin and erythromycin, chloramphenicol and erythromycin, chloramphenicol and tetracycline, erythromycin and tetracycline), suggesting the linkage of resistance genes for antibiotics belonging to different classes. The effects of NiSO4, ZnCl2 and MnCl2 on various media suggested that the composition of Marine Broth might result in low concentrations of Mn2+ due to chemical interactions that potentially lead to precipitation.

  6. Interactions between Carotenoids from Marine Bacteria and Other Micronutrients: Impact on Stability and Antioxidant Activity.

    Science.gov (United States)

    Sy, Charlotte; Dangles, Olivier; Borel, Patrick; Caris-Veyrat, Catherine

    2015-11-19

    Recently isolated spore-forming pigmented marine bacteria Bacillus indicus HU36 are sources of oxygenated carotenoids with original structures (about fifteen distinct yellow and orange pigments with acylated d-glucosyl groups). In this study, we evaluated the stability (sensitivity to iron-induced autoxidation) and antioxidant activity (inhibition of iron-induced lipid peroxidation) of combinations of bacterial HU36 carotenoids with the bacterial vitamin menaquinone MQ-7 and with phenolic antioxidants (vitamin E, chlorogenic acid, rutin). Unexpectedly, MQ-7 strongly improves the ability of HU36 carotenoids to inhibit Fe(II)-induced lipid peroxidation, although MQ-7 was not consumed in the medium. We propose that their interaction modifies the carotenoid antioxidant mechanism(s), possibly by allowing carotenoids to scavenge the initiating radicals. For comparison, β-carotene and lycopene in combination were shown to exhibit a slightly higher stability toward iron-induced autoxidation, as well as an additive antioxidant activity as compared to the carotenoids, individually. HU36 carotenoids and phenolic antioxidants displayed synergistic activities in the inhibition of linoleic acid peroxidation induced by heme iron, but not by free iron. Synergism could arise from antioxidants interacting via electron transfer through the porphyrin nucleus of heme iron. Overall, combining antioxidants acting via complementary mechanisms could be the key for optimizing the activity of this bacterial carotenoid cocktail.

  7. Succession of cable bacteria and electric currents in marine sediment

    DEFF Research Database (Denmark)

    Schauer, Regina; Risgaard-Petersen, Nils; Kjeldsen, Kasper Urup

    2014-01-01

    conductivity, we followed a population for 53 days after exposing sulphidic sediment with initially no detectable filaments to oxygen. After 10 days, cable bacteria and electric currents were established throughout the top 15[thinsp]mm of the sediment, and after 21 days the filament density peaked with a total......][mu]m, with a general increase over time and depth, and yet they shared 16S rRNA sequence identity of >98%. Comparison of the increase in biovolume and electric current density suggested high cellular growth efficiency. While the vertical expansion of filaments continued over time and reached 30[thinsp]mm, the electric...... current density and biomass declined after 13 and 21 days, respectively. This might reflect a breakdown of short filaments as their solid sulphide sources became depleted in the top layers of the anoxic zone. In conclusion, cable bacteria combine rapid and efficient growth with oriented movement...

  8. Epiphytic marine pigmented bacteria : A prospective source of natural antioxidants

    Digital Repository Service at National Institute of Oceanography (India)

    Pawar, R.T.; Mohandass, C.; Sivaperumal, E.; Sabu, E.; Rajasabapathy, R.; Jagtap, T.G.

    for clinical applications. Key words: antioxidant, epiphytic, pigmented bacteria, seaweeds. Introduction Oxidants are commonly known as free radicals that are chemically reactive and unstable species which need to be controlled to avoid a chain of unwanted... reactions in the living system. The most important free radicals in the body are the reactive oxygen species (ROS). They try to react with the surrounding macromolecules like lipids, proteins, deoxyribonucleic acids (DNA) and certain carbohydrates in order...

  9. Bioremediation of toxic substances by mercury resistant marine bacteria

    Digital Repository Service at National Institute of Oceanography (India)

    De, J.; Sarkar, A.; Ramaiah, N.

    : ramaiah@nio.org Introduction: The principal goal of bioremediation is to enhance the natural biological-chemical transformations that render pollutants harmless as minerals and thus to provide a relief and, if feasible, a permanent solution...). The combination of soil bioleaching and bioprecipitation of the leached metals, by sulfate reducing bacteria, proved to be effective in removing and concentrating a range of metals, including Zn, Cu and Cd from metal-contaminated soils (White et al., 1998...

  10. Epiphytic marine pigmented bacteria: A prospective source of natural antioxidants

    Directory of Open Access Journals (Sweden)

    Ravindra Pawar

    2015-03-01

    Full Text Available Awareness on antioxidants and its significance in human healthcare has increased many folds in recent time. Increased demand requisite on welcoming newer and alternative resources for natural antioxidants. Seaweed associated pigmented bacteria screened for its antioxidant potentials reveals 55.5% of the organisms were able to synthesize antioxidant compounds. DPPH assay showed 20% of the organisms to reach a antioxidant zone of 1 cm and 8.3% of the strains more than 3 cm. Pseudomonas koreensis (JX915782 a Sargassum associated yellowish brown pigmented bacteria have better activity than known commercial antioxidant butylated hydroxytoluene (BHT against DPPH scavenging. Serratia rubidaea (JX915783, an associate of Ulva sp. and Pseudomonas argentinensis (JX915781 an epiphyte of Chaetomorpha media, were also contributed significantly towards ABTS (7.2% ± 0.03 to 15.2 ± 0.09%; 1.8% ± 0.01 to 15.7 ± 0.22% and FRAP (1.81 ± 0.01 to 9.35 ± 0.98; 7.97 ± 0.12 to 18.70 ± 1.84 μg/mL of AsA Eq. respectively. 16S rRNA gene sequence analysis revealed bacteria that have higher antioxidant activity belongs to a bacterial class Gammaproteobacteria. Statistical analysis of phenolic contents in relation with other parameters like DPPH, ABTS, reducing power and FRAP are well correlated (p < 0.05. Results obtained from the current study inferred that the seaweed associated pigmented bacteria have enormous potential on antioxidant compounds and need to be extracted in a larger way for clinical applications.

  11. Two types of endosymbiotic bacteria in the enigmatic marine worm Xenoturbella

    DEFF Research Database (Denmark)

    Kjeldsen, Kasper Urup; Obst, Matthias; Nakano, Hiroaki

    2010-01-01

    Two types of endosymbiotic bacteria were identified in the gastrodermis of the marine invertebrate Xenoturbella bocki (Xenoturbellida, Bilateria). While previously described Chlamydia-like endosymbionts were rare, Gammaproteobacteria distantly related to other endosymbionts and pathogens were...... abundant. The endosymbionts should be considered when interpreting the poorly understood ecology and evolution of Xenoturbella....

  12. Anaerobic Oxidation of Methane Coupled to Nitrite Reduction by Halophilic Marine NC10 Bacteria.

    Science.gov (United States)

    He, Zhanfei; Geng, Sha; Cai, Chaoyang; Liu, Shuai; Liu, Yan; Pan, Yawei; Lou, Liping; Zheng, Ping; Xu, Xinhua; Hu, Baolan

    2015-08-15

    Anaerobic oxidation of methane (AOM) coupled to nitrite reduction is a novel AOM process that is mediated by denitrifying methanotrophs. To date, enrichments of these denitrifying methanotrophs have been confined to freshwater systems; however, the recent findings of 16S rRNA and pmoA gene sequences in marine sediments suggest a possible occurrence of AOM coupled to nitrite reduction in marine systems. In this research, a marine denitrifying methanotrophic culture was obtained after 20 months of enrichment. Activity testing and quantitative PCR (qPCR) analysis were then conducted and showed that the methane oxidation activity and the number of NC10 bacteria increased correlatively during the enrichment period. 16S rRNA gene sequencing indicated that only bacteria in group A of the NC10 phylum were enriched and responsible for the resulting methane oxidation activity, although a diverse community of NC10 bacteria was harbored in the inoculum. Fluorescence in situ hybridization showed that NC10 bacteria were dominant in the enrichment culture after 20 months. The effect of salinity on the marine denitrifying methanotrophic culture was investigated, and the apparent optimal salinity was 20.5‰, which suggested that halophilic bacterial AOM coupled to nitrite reduction was obtained. Moreover, the apparent substrate affinity coefficients of the halophilic denitrifying methanotrophs were determined to be 9.8 ± 2.2 μM for methane and 8.7 ± 1.5 μM for nitrite. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  13. A survey of culturable aerobic and anaerobic marine bacteria in de novo biofilm formation on natural substrates in St. Andrews Bay, Scotland.

    Science.gov (United States)

    Finnegan, Lucy; Garcia-Melgares, Manuel; Gmerek, Tomasz; Huddleston, W Ryan; Palmer, Alexander; Robertson, Andrew; Shapiro, Sarah; Unkles, Shiela E

    2011-10-01

    This study reports a novel study of marine biofilm formation comprising aerobic and anaerobic bacteria. Samples of quartz and feldspar, minerals commonly found on the earth, were suspended 5 m deep in the North Sea off the east coast of St. Andrews, Scotland for 5 weeks. The assemblage of organisms attached to these stones was cultivated under aerobic and anaerobic conditions in the laboratory. Bacteria isolated on Marine Agar 2216 were all Gram-negative and identified to genus level by sequencing the gene encoding 16S rRNA. Colwellia, Maribacter, Pseudoaltermonas and Shewanella were observed in aerobically-grown cultures while Vibrio was found to be present in both aerobic and anaerobic cultures. The obligate anaerobic bacterium Psychrilyobacter atlanticus, a recently defined genus, was identified as a close relative of isolates grown anaerobically. The results provide valuable information as to the main players that attach and form de novo biofilms on common minerals in sea water.

  14. Antagonistic activity of isolated lactic acid bacteria from Pliek U against gram-negative bacteria Escherichia coli ATCC 25922

    Science.gov (United States)

    Kiti, A. A.; Jamilah, I.; Rusmarilin, H.

    2017-09-01

    Lactic acid bacteria (LAB) is one group of microbes that has many benefits, notably in food and health industries sector. LAB plays an important role in food fermentation and it has bacteriostatic effect against the growth of pathogenic microorganisms. The research related LAB continued to be done to increase the diversity of potential isolates derived from nature which is indigenous bacteria for biotechnological purposes. This study was aimed to isolate and characterize LAB derived from pliek u sample and to examine the potency to inhibits Escherichia coli ATCC 25922 bacteria growth. A total of 5 isolates were isolated and based on morphological and physiological characteristics of the fifth bacteria, they are allegedly belonging to the genus Bacillus. Result of antagonistic test showed that the five isolates could inhibits the growth of E. coli ATCC 25922. The highest inhibition zone is 8.5 mm was shown by isolates NQ2, while the lowest inhibition is 1.5 mm was shown by isolates NQ3.

  15. Patterns and architecture of genomic islands in marine bacteria

    Directory of Open Access Journals (Sweden)

    Fernández-Gómez Beatriz

    2012-07-01

    Full Text Available Abstract Background Genomic Islands (GIs have key roles since they modulate the structure and size of bacterial genomes displaying a diverse set of laterally transferred genes. Despite their importance, GIs in marine bacterial genomes have not been explored systematically to uncover possible trends and to analyze their putative ecological significance. Results We carried out a comprehensive analysis of GIs in 70 selected marine bacterial genomes detected with IslandViewer to explore the distribution, patterns and functional gene content in these genomic regions. We detected 438 GIs containing a total of 8152 genes. GI number per genome was strongly and positively correlated with the total GI size. In 50% of the genomes analyzed the GIs accounted for approximately 3% of the genome length, with a maximum of 12%. Interestingly, we found transposases particularly enriched within Alphaproteobacteria GIs, and site-specific recombinases in Gammaproteobacteria GIs. We described specific Homologous Recombination GIs (HR-GIs in several genera of marine Bacteroidetes and in Shewanella strains among others. In these HR-GIs, we recurrently found conserved genes such as the β-subunit of DNA-directed RNA polymerase, regulatory sigma factors, the elongation factor Tu and ribosomal protein genes typically associated with the core genome. Conclusions Our results indicate that horizontal gene transfer mediated by phages, plasmids and other mobile genetic elements, and HR by site-specific recombinases play important roles in the mobility of clusters of genes between taxa and within closely related genomes, modulating the flexible pool of the genome. Our findings suggest that GIs may increase bacterial fitness under environmental changing conditions by acquiring novel foreign genes and/or modifying gene transcription and/or transduction.

  16. Frequency of Resistance and Susceptible Bacteria Isolated from Houseflies

    Directory of Open Access Journals (Sweden)

    B Davari

    2010-12-01

    Conclusion: Houseflies collected from hospitals and slaughterhouse may be involved in the spread of drug resistant bacteria and may increase the potential of human exposure to drug resistant bacteria.

  17. ISOLATION AND CHARACTERIZATION OF A NOVEL MARINE BRUCELLA FROM A SOUTHERN SEA OTTER (ENHYDRA LUTRIS NEREIS), CALIFORNIA, USA.

    Science.gov (United States)

    Miller, Melissa A; Burgess, Tristan L; Dodd, Erin M; Rhyan, Jack C; Jang, Spencer S; Byrne, Barbara A; Gulland, Frances M D; Murray, Michael J; Toy-Choutka, Sharon; Conrad, Patricia A; Field, Cara L; Sidor, Inga F; Smith, Woutrina A

    2017-04-01

    We characterize Brucella infection in a wild southern sea otter ( Enhydra lutris nereis) with osteolytic lesions similar to those reported in other marine mammals and humans. This otter stranded twice along the central California coast, US over a 1-yr period and was handled extensively at two wildlife rehabilitation facilities, undergoing multiple surgeries and months of postsurgical care. Ultimately the otter was euthanized due to severe, progressive neurologic disease. Necropsy and postmortem radiographs revealed chronic, severe osteoarthritis spanning the proximal interphalangeal joint of the left hind fifth digit. Numerous coccobacilli within the joint were strongly positive on Brucella immunohistochemical labelling, and Brucella sp. was isolated in pure culture from this lesion. Sparse Brucella-immunopositive bacteria were also observed in the cytoplasm of a pulmonary vascular monocyte, and multifocal granulomas were observed in the spinal cord and liver on histopathology. Findings from biochemical characterization, 16S ribosomal DNA, and bp26 gene sequencing of the bacterial isolate were identical to those from marine-origin brucellae isolated from cetaceans and phocids. Although omp2a gene sequencing revealed 100% homology with marine Brucella spp. infecting pinnipeds, whales, and humans, omp2b gene sequences were identical only to pinniped-origin isolates. Multilocus sequence typing classified the sea otter isolate as ST26, a sequence type previously associated only with cetaceans. Our data suggest that the sea otter Brucella strain represents a novel marine lineage that is distinct from both Brucella pinnipedialis and Brucella ceti. Prior reports document the zoonotic potential of the marine brucellae. Isolation of Brucella sp. from a stranded sea otter highlights the importance of wearing personal protective equipment when handling sea otters and other marine mammals as part of wildlife conservation and rehabilitation efforts.

  18. Resistance of Bacteria Isolated from Otamiri River to Heavy Metals and Some Selected Antibiotics

    OpenAIRE

    I.C. Mgbemena; J.C. Nnokwe; L.A. Adjeroh; N.N. Onyemekara

    2012-01-01

    This study is aimed at determining the resistance of bacteria to heavy metals and some antibiotics. The ability of aquatic bacteria isolates from Otamiri River at Ihiagwa in Owerri North, Imo State to tolerate or resist the presence of certain selected heavy metals: Pb+, Zn2+ and Fe2+ and some antibiotics was investigated. Identification tests for the bacteria isolates from Otamiri River revealed them to belong to the genera Pseudomonas, Aeromonas, Bacillus, Escherichia, Micrococcus and Prote...

  19. Thermostable Bacteriocin BL8 from Bacillus licheniformis isolated from marine sediment.

    Science.gov (United States)

    Smitha, S; Bhat, S G

    2013-03-01

    To isolate and characterize bacteriocin, BL8, from the bacteria identified as Bacillus licheniformis from marine environment. One-hundred and twelve bacterial isolates from sediment and water samples collected off the coast of Cochin, India, were screened for antibacterial activity. Strain BTHT8, identified as Bacillus licheniformis, inhibited the growth of Gram-positive test organisms. The active component labelled as bacteriocin BL8 was partially purified by ammonium sulphate fractionation and was subjected to glycine SDS-PAGE. The band exhibiting antimicrobial activity was electroeluted and analysed using MALDI-TOF mass spectrometry, and the molecular mass was determined as 1.4 kDa. N-terminal amino acid sequencing of BL8 gave a 13 amino acid sequence stretch. Bacteriocin BL8 was stable even after boiling at 100 °C for 30 min and over a wide pH range of 1-12. A novel, pH-tolerant and thermostable bacteriocin BL8, active against the tested Gram-positive bacteria, was isolated from Bacillus licheniformis. This study reports a stable, low molecular weight bacteriocin from Bacillus licheniformis. This bacteriocin can be used to address two important applications: as a therapeutic agent and as a biopreservative in food processing industry. © 2012 The Society for Applied Microbiology.

  20. Viewing marine bacteria, their activity and response to environmental drivers from orbit: satellite remote sensing of bacteria.

    Science.gov (United States)

    Grimes, D Jay; Ford, Tim E; Colwell, Rita R; Baker-Austin, Craig; Martinez-Urtaza, Jaime; Subramaniam, Ajit; Capone, Douglas G

    2014-04-01

    Satellite-based remote sensing of marine microorganisms has become a useful tool in predicting human health risks associated with these microscopic targets. Early applications were focused on harmful algal blooms, but more recently methods have been developed to interrogate the ocean for bacteria. As satellite-based sensors have become more sophisticated and our ability to interpret information derived from these sensors has advanced, we have progressed from merely making fascinating pictures from space to developing process models with predictive capability. Our understanding of the role of marine microorganisms in primary production and global elemental cycles has been vastly improved as has our ability to use the combination of remote sensing data and models to provide early warning systems for disease outbreaks. This manuscript will discuss current approaches to monitoring cyanobacteria and vibrios, their activity and response to environmental drivers, and will also suggest future directions.

  1. Antibacterial susceptibility of bacteria isolated from burns and wounds of cancer patients

    Directory of Open Access Journals (Sweden)

    Sulaiman A. Alharbi

    2014-01-01

    Full Text Available In this study 540 burns and wound swabs were collected from cancer patients of some Egyptian hospitals. The single infection was detected from 210, and 70 cases among wounded and burned patients, while mixed infection was 30 and 45, respectively. We recovered where 60 isolates of Pseudomonas aeruginosa, 60 isolates of Staphylococcus aureus, 7 isolates of Staphylococcus epidermidis, 4 isolates of Streptococcus pyogenes, 25 isolates of Escherichia coli, 23 isolates of Klebsiella pneumoniae and 27 isolates of Proteus vulgaris from 355 burn and surgical wound infections . All bacterial isolates showed high resistance to the commonly used β-lactams (amoxycillin, cefaclor, ampicillin, vancomycin, amoxicillin/clavulonic, and low resistance to imepenim and ciprofloxacin. Plasmid analysis of six multidrug resistant and two susceptible bacterial isolates revealed the same plasmid pattern. This indicated that R-factor is not responsible for the resistance phenomenon among the isolated opportunistic bacteria. The effect of ultraviolet radiation on the isolated bacteria was studied.

  2. Isolation and identification of local bacteria endophyte and screening of its antimicrobial property against pathogenic bacteria and fungi

    Science.gov (United States)

    Fikri, Ahmad Syairazie Ibrahim; Rahman, Irman Abdul; Nor, Norefrina Shafinaz Md; Hamzah, Ainon

    2018-04-01

    Endophytes are organisms, often fungi and bacteria that live in living plant cells. These organisms reside in the living tissues of the host plant in a variety of relationships, ranging from symbiotic to slightly pathogenic. The endophytes may produce a plethora of substances that have potential to be used in modern medicine, agriculture and industry. The aims of this study are to isolate, identify and screening antimicrobial activity of bacterial endophytes. The endophytes were isolated using nutrient agar, incubated at 37°C for 48 hours. Identification of the isolates were done based on morphological characteristics, biochemical tests and 16S rDNA molecular analysis. Disk diffusion method was used to screen for antimicrobial activity of metabolites from endophytes against pathogenic bacteria. Screening for antifungal activity of selected endophytes was done using dual culture method againts pathogenic fungi followed by Kirby-Bauer method. Results showed endophytes designated as B2c and B7b have positive antimicrobial activity. The metabolites from isolate B2c showed antimicrobial activity against pathogenic bacteria methicillin-resistant Staphylococcus aureus (MRSA), Staphylococcus aureus and Staphylococcus epidermis, while isolate B7b have positive activities againts MRSA, S. aureus and Pseudomonas aeruginosa. Isolates B2c displayed antifungal activity against Fusarium oxysporum, Fusarium solani, Phytophthora palmivora and Colletotrichum gloeosporioides. Identification using biochemical tests and 16S rDNA sequences identified isolate B2c as Pseudomonas resinovorans with 97% homology and isolate B7b as Bacillus subtilis with 98% homology.

  3. Magnetotactic bacteria in marine sediments: clues from recent cores from Brazilian Coast

    Science.gov (United States)

    Jovane, L.; Pellizari, V. H.; Brandini, F. P.; Braga, E. D. S.; Freitas, G. R.; Benites, M.; Rodelli, D.; Giorgioni, M.; Iacoviello, F.; Ruffato, D. G.; Lins, U.

    2014-12-01

    The magnetic properties (first order reversal curves, ferromagnetic resonance and decomposition of saturation remanent magnetization acquisition) of marine magnetotactic bacteria, in conjunction with geophysical, geochemical and oceanographic data from the Brazilian Coast, provide interesting insights regarding the primary productivity distribution in oceans. This finding suggests that magnetite produced by some magnetotactic bacteria retains magnetic properties in relation to the crystallographic structure of the magnetic phase produced and thus might represent a "magnetic fingerprint" for the presence of magnetotactic bacteria. The use of those magnetic properties is a non-destructive, new technology that might allow for the identification and presence of specific species or types of magnetotactic bacteria in certain environments such as sediment. We will also show some preliminary results on the biogeochemical factors that control magnetotactic bacterial populations, documenting the environment and the preservation of bacterial magnetite, which dominates the palaeomagnetic signal throughout recent sediments from Brazilian Coast. We searched for magnetotactic bacteria in order to understand the ecosystems and environmental change related to their presence in sediments. We studied magnetotactic bacterial concentration and geophysical, geochemical and oceanographic results in marine settings measuring crucially nutrients availability in the water column and in sediments, on particulate delivery to the seafloor, to understand the environmental condition that allow the presence of magnetotactic bacteria and magnetosomes in sediments.

  4. Isolation of lactic acid bacteria with potential protective culture characteristics from fruits

    Science.gov (United States)

    Hashim, Nurul Huda; Sani, Norrakiah Abdullah

    2015-09-01

    Lactic acid bacteria are also known as beneficial microorganisms abundantly found in fermented food products. In this study, lactic acid bacteria were isolated from fresh cut fruits obtained from local markets. Throughout the isolation process from 11 samples of fruits, 225 presumptive lactic acid bacteria were isolated on MRS agar medium. After catalase and oxidase tests, 149 resulted to fit the characteristics of lactic acid bacteria. Further identification using Gram staining was conducted to identify the Gram positive bacteria. After this confirmation, the fermentation characteristics of these isolates were identified. It was found that 87 (58.4%) isolates were heterofermentative, while the rest of 62 (41.6%) are homofermentative lactic acid bacteria. Later, all these isolates were investigated for the ability to inhibit growth of Staphylococcus aureus using agar spot assay method. Seven (4.7%) isolates showed strong antagonistic capacity, while 127 (85.2%) and 8 (5.4%) isolates have medium and weak antagonistic capacity, respectively. The other 7 (4.7%) isolates indicated to have no antagonistic effect on S. aureus. Results support the potential of LAB isolated in this study which showed strong antagonistic activity against S. aureus may be manipulated to become protective cultures in food products. While the homofermentative or heterofermentative LAB can be utilized in fermentation of food and non-food products depending on the by-products required during the fermentation.

  5. Oil spill dispersants induce formation of marine snow by phytoplankton-associated bacteria.

    Science.gov (United States)

    van Eenennaam, Justine S; Wei, Yuzhu; Grolle, Katja C F; Foekema, Edwin M; Murk, AlberTinka J

    2016-03-15

    Unusually large amounts of marine snow, including Extracellular Polymeric Substances (EPS), were formed during the 2010 Deepwater Horizon oil spill. The marine snow settled with oil and clay minerals as an oily sludge layer on the deep sea floor. This study tested the hypothesis that the unprecedented amount of chemical dispersants applied during high phytoplankton densities in the Gulf of Mexico induced high EPS formation. Two marine phytoplankton species (Dunaliella tertiolecta and Phaeodactylum tricornutum) produced EPS within days when exposed to the dispersant Corexit 9500. Phytoplankton-associated bacteria were shown to be responsible for the formation. The EPS consisted of proteins and to lesser extent polysaccharides. This study reveals an unexpected consequence of the presence of phytoplankton. This emphasizes the need to test the action of dispersants under realistic field conditions, which may seriously alter the fate of oil in the environment via increased marine snow formation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. A major lineage of non-tailed dsDNA viruses as unrecognized killers of marine bacteria

    Science.gov (United States)

    Kauffman, Kathryn M.; Hussain, Fatima A.; Yang, Joy; Arevalo, Philip; Brown, Julia M.; Chang, William K.; Vaninsberghe, David; Elsherbini, Joseph; Sharma, Radhey S.; Cutler, Michael B.; Kelly, Libusha; Polz, Martin F.

    2018-02-01

    The most abundant viruses on Earth are thought to be double-stranded DNA (dsDNA) viruses that infect bacteria. However, tailed bacterial dsDNA viruses (Caudovirales), which dominate sequence and culture collections, are not representative of the environmental diversity of viruses. In fact, non-tailed viruses often dominate ocean samples numerically, raising the fundamental question of the nature of these viruses. Here we characterize a group of marine dsDNA non-tailed viruses with short 10-kb genomes isolated during a study that quantified the diversity of viruses infecting Vibrionaceae bacteria. These viruses, which we propose to name the Autolykiviridae, represent a novel family within the ancient lineage of double jelly roll (DJR) capsid viruses. Ecologically, members of the Autolykiviridae have a broad host range, killing on average 34 hosts in four Vibrio species, in contrast to tailed viruses which kill on average only two hosts in one species. Biochemical and physical characterization of autolykiviruses reveals multiple virion features that cause systematic loss of DJR viruses in sequencing and culture-based studies, and we describe simple procedural adjustments to recover them. We identify DJR viruses in the genomes of diverse major bacterial and archaeal phyla, and in marine water column and sediment metagenomes, and find that their diversity greatly exceeds the diversity that is currently captured by the three recognized families of such viruses. Overall, these data suggest that viruses of the non-tailed dsDNA DJR lineage are important but often overlooked predators of bacteria and archaea that impose fundamentally different predation and gene transfer regimes on microbial systems than on tailed viruses, which form the basis of all environmental models of bacteria-virus interactions.

  7. Ecology and Molecular Genetic Studies of Marine Bacteria

    Science.gov (United States)

    1989-06-01

    detection of the relevant genes. We have recently developed a procedure by which total cellular RNA and DNA, including plasmid DNA, can be isolated from...partially purified, DNA concentrations as high as 16 ng/ml of smoker fluid were recovered. The data suggest the presence of cellular structures in...chitin play an important role in nutrient cycling, not only among procaryotes , but throughout the entire food web. In 1986, we reported the cloning and

  8. Isolation, enumeration, molecular identification and probiotic potential evaluation of lactic acid bacteria isolated from sheep milk

    Directory of Open Access Journals (Sweden)

    L.B. Acurcio

    2014-06-01

    Full Text Available Lactic acid bacteria species were molecularly identified in milk from Lacaune, Santa Inês and crossbred sheep breeds and their in vitro probiotic potential was evaluated. The species identified were Enterococcus faecium (56.25%, E. durans (31.25% and E. casseliflavus (12.5%. No other lactic acid bacteria species, such as lactobacilli, was identified. Most of the isolated enterococci were resistant to gastric pH (2.0 and to 0.3% oxgall. All tested enterococci were resistant to ceftazidime, oxacillin and streptomycin and sensible to clindamycin, erythromycin and penicillin. The resistance to ciprofloxacin, gentamicin, tetracycline and vancomycin varied among tested species. All tested enterococci strongly inhibited (P<0.05 Escherichia coli and Listeria monocytogenes, moderately inhibited E. faecalis and Staphylococcus aureus and did not inhibit Pseudomonas aeruginosa, Salmonella enterica var. Typhimurium and also one E. durans sample isolated from sheep milk. Four samples of E. faecium, one of E. durans and one of E. casseliflavus presented the best probiotic potential.

  9. Relationship between the Intracellular Integrity and the Morphology of the Capsular Envelope in Attached and Free-Living Marine Bacteria

    OpenAIRE

    Heissenberger, A.; Leppard, G. G.; Herndl, G. J.

    1996-01-01

    The integrity of the intracellular structures and the presence and dimension of the capsular envelope were investigated in marine snow-associated and marine free-living bacteria by transmission electron microscopy and special fixation techniques. Three categories depending on the presence of internal structures were differentiated. In marine snow, 51% of the marine snow-associated bacterial community was considered intact, 26% had a partly degraded internal structure, and 23% were empty with ...

  10. Discovery of a novel iota carrageenan sulfatase isolated from the marine bacterium Pseudoalteromonas carrageenovora.

    Science.gov (United States)

    Genicot, Sabine M; Groisillier, Agnès; Rogniaux, Hélène; Meslet-Cladière, Laurence; Barbeyron, Tristan; Helbert, William

    2014-01-01

    Carrageenans are sulfated polysaccharides extracted from the cell wall of some marine red algae. These polysaccharides are widely used as gelling, stabilizing, and viscosifying agents in the food and pharmaceutical industries. Since the rheological properties of these polysaccharides depend on their sulfate content, we screened several isolated marine bacteria for carrageenan specific sulfatase activity, in the aim of developing enzymatic bioconversion of carrageenans. As a result of the screening, an iota-carrageenan sulfatase was detected in the cell-free lysate of the marine bacterium Pseudoalteromonas carrageenovora strain Psc(T). It was purified through Phenyl Sepharose and Diethylaminoethyl Sepharose chromatography. The pure enzyme, Psc ι-CgsA, was characterized. It had a molecular weight of 115.9 kDaltons and exhibited an optimal activity/stability at pH ~8.3 and at 40 ± 5°C. It was inactivated by phenylmethylsulfonyl fluoride but not by ethylene diamine tetraacetic acid. Psc ι-CgsA specifically catalyzes the hydrolysis of the 4-S sulfate of iota-carrageenan. The purified enzyme could transform iota-carrageenan into hybrid iota-/alpha- or pure alpha-carrageenan under controlled conditions. The gene encoding Psc ι-CgsA, a protein of 1038 amino acids, was cloned into Escherichia coli, and the sequence analysis revealed that Psc ι-CgsA has more than 90% sequence identity with a putative uncharacterized protein Q3IKL4 from the marine strain Pseudoalteromonas haloplanktis TAC 125, but besides this did not share any homology to characterized sulfatases. Phylogenetic studies show that P. carrageenovora sulfatase thus represents the first characterized member of a new sulfatase family, with a C-terminal domain having strong similarity with the superfamily of amidohydrolases, highlighting the still unexplored diversity of marine polysaccharide modifying enzymes.

  11. Discovery of a novel iota carrageenan sulfatase isolated from the marine bacterium Pseudoalteromonas carrageenovora

    Directory of Open Access Journals (Sweden)

    Sabine Marie Genicot

    2014-08-01

    Full Text Available Carrageenans are sulfated polysaccharides extracted from the cell wall of some marine red algae. These polysaccharides are widely used as gelling, stabilizing, and viscosifying agents in the food and pharmaceutical industries. Since the rheological properties of these polysaccharides depend on their sulfate content, we screened several isolated marine bacteria for carrageenan specific sulfatase activity, in the aim of developing enzymatic bioconversion of carrageenans. As a result of the screening, an iota-carrageenan sulfatase was detected in the cell-free lysate of the marine bacterium Pseudoalteromonas carrageenovora strain PscT. It was purified through Phenyl Sepharose and Diethylaminoethyl Sepharose chromatography. The pure enzyme, Psc -CgsA, was characterized. It had a molecular weight of 115.9 kDaltons and exhibited an optimal activity/stability at pH ~8.3 and at 40°C ± 5°C. It was inactivated by phenylmethylsulfonyl fluoride but not by ethylene diamine tetraacetic acid. Psc -CgsA specifically catalyzes the hydrolysis of the 4-S sulfate of iota-carrageenan. The purified enzyme could transform iota-carrageenan into hybrid iota-/alpha- or pure alpha-carrageenan under controlled conditions. The gene encoding Psc -CgsA, a protein of 1038 amino acids, was cloned into Escherichia coli, and the sequence analysis revealed that Psc -CgsA has more than 90% sequence identity with a putative uncharacterized protein Q3IKL4 from the marine strain Pseudoalteromonas haloplanktis TAC 125, but besides this did not share any homology to characterized sulfatases. Phylogenetic studies show that P. carrageenovora sulfatase thus represents the first characterized member of a new sulfatase family, with a C-terminal domain having strong similarity with the superfamily of amidohydrolases, highlighting the still unexplored diversity of marine polysaccharide modifying enzymes.

  12. Phylogeny of marine Bacillus isolates from the Gulf of Mexico

    Science.gov (United States)

    Siefert, J. L.; Larios-Sanz, M.; Nakamura, L. K.; Slepecky, R. A.; Paul, J. H.; Moore, E. R.; Fox, G. E.; Jurtshuk, P. Jr

    2000-01-01

    The phylogeny of 11 pigmented, aerobic, spore-forming isolates from marine sources was studied. Forty-two biochemical characteristics were examined, and a 16S rDNA sequence was obtained for each isolate. In a phylogenetic tree based on 16S sequencing, four isolates (NRRL B-14850, NRRL B-14904, NRRL B-14907, and NRRL B-14908) clustered with B. subtilis and related organisms; NRRL B-14907 was closely related to B. amyloliquefaciens. NRRL B-14907 and NRRL B-14908 were phenotypically similar to B. amyloliquefaciens and B. pumilus, respectively. Three strains (NRRL B-14906, NRRL B-14910, and NRRL B-14911) clustered in a clade that included B. firmus, B. lentus, and B. megaterium. NRRL B-14910 was closely related phenotypically and phylogenetically to B. megaterium. NRRL B-14905 clustered with the mesophilic round spore-producing species, B. fusiformis and B. sphaericus; the isolate was more closely related to B. fusiformis. NRRL B-14905 displayed characteristics typical of the B. sphaericus-like organisms. NRRL B-14909 and NRRL B-14912 clustered with the Paenibacillus species and displayed characteristics typical of the genus. Only NRRL B-14851, an unusually thin rod that forms very small spores, may represent a new Bacillus species.

  13. Isolation, Characterization, and Genetic Diversity of Ice Nucleation Active Bacteria on Various Plants

    Directory of Open Access Journals (Sweden)

    DIANA ELIZABETH WATURANGI

    2009-06-01

    Full Text Available Ice nucleation active (INA bacteria is a group of bacteria with the ability to catalyze the ice formation at temperature above -10 °C and causing frost injury in plants. Since, most of the literature on INA bacteria were from subtropical area, studies of INA bacteria from tropical area are needed. We sampled eight fruits and 36 leaves of 21 plant species, and then identified through biochemical and genetic analysis. INA bacteria were characterized for INA protein classification, pH stability, and optimization of heat endurance. We discovered 15 INA bacteria from seven plants species. Most of bacteria are oxidase and H2S negative, catalase and citrate positive, gram negative, and cocoid formed. These INA bacteria were classified in to three classes based on their freezing temperature. Most of the isolates were active in heat and pH stability assay. Some isolates were analysed for 16S rRNA gene. We observed that isolates from Morinda citrifolia shared 97% similiarity with Pseudomonas sp. Isolate from Piper betle shared 93% similarity with P. pseudoalcaligenes. Isolate from Carica papaya shared 94% similarity with Pseudomonas sp. While isolate from Fragaria vesca shared 90% similarity with Sphingomonas sp.

  14. Isolation, Characterization, and Genetic Diversity of Ice Nucleation Active Bacteria on Various Plants

    Directory of Open Access Journals (Sweden)

    DIANA ELIZABETH WATURANGI

    2009-06-01

    Full Text Available Ice nucleation active (INA bacteria is a group of bacteria with the ability to catalyze the ice formation at temperature above -10 oC and causing frost injury in plants. Since, most of the literature on INA bacteria were from subtropical area, studies of INA bacteria from tropical area are needed. We sampled eight fruits and 36 leaves of 21 plant species, and then identified through biochemical and genetic analysis. INA bacteria were characterized for INA protein classification, pH stability, and optimization of heat endurance. We discovered 15 INA bacteria from seven plants species. Most of bacteria are oxidase and H2S negative, catalase and citrate positive, gram negative, and cocoid formed. These INA bacteria were classified in to three classes based on their freezing temperature. Most of the isolates were active in heat and pH stability assay. Some isolates were analysed for 16S rRNA gene. We observed that isolates from Morinda citrifolia shared 97% similiarity with Pseudomonas sp. Isolate from Piper betle shared 93% similarity with P. pseudoalcaligenes. Isolate from Carica papaya shared 94% similarity with Pseudomonas sp. While isolate from Fragaria vesca shared 90% similarity with Sphingomonas sp.

  15. Characterization of carbofuran-degrading bacteria isolated from ...

    African Journals Online (AJOL)

    Workstation

    Key words: Pesticides, carbofuran, methomyl, biodegradation, bacteria. INTRODUCTION .... polymerase chain reaction (PCR) amplification and partial sequence analysis of ..... Beutel KK (1986). Chlorinated hydrocarbon, In W. Gerhartz (ed.),.

  16. Isolation and characterization of autotrophic, hydrogen-utilizing, perchlorate-reducing bacteria.

    Science.gov (United States)

    Shrout, Joshua D; Scheetz, Todd E; Casavant, Thomas L; Parkin, Gene F

    2005-04-01

    Recent studies have shown that perchlorate (ClO(4) (-)) can be degraded by some pure-culture and mixed-culture bacteria with the addition of hydrogen. This paper describes the isolation of two hydrogen-utilizing perchlorate-degrading bacteria capable of using inorganic carbon for growth. These autotrophic bacteria are within the genus Dechloromonas and are the first Dechloromonas species that are microaerophilic and incapable of growth at atmospheric oxygen concentrations. Dechloromonas sp. JDS5 and Dechloromonas sp. JDS6 are the first perchlorate-degrading autotrophs isolated from a perchlorate-contaminated site. Measured hydrogen thresholds were higher than for other environmentally significant, hydrogen-utilizing, anaerobic bacteria (e.g., halorespirers). The chlorite dismutase activity of these bacteria was greater for autotrophically grown cells than for cells grown heterotrophically on lactate. These bacteria used fumarate as an alternate electron acceptor, which is the first report of growth on an organic electron acceptor by perchlorate-reducing bacteria.

  17. Sorption of lead onto two gram-negative marine bacteria in seawater

    Science.gov (United States)

    Harvey, Ronald W.; Leckie, James O.

    1985-01-01

    Laboratory adsorption experiments performed at environmentally significant lead (Pb) and cell concentrations indicate that the marine bacteria examined have significant binding capacities for Pb. However, the behavior governing Pb sorption onto gram-negative bacteria in seawater may be quite complex. The sorption kinetics appear to involve two distinct phases, i.e., a rapid removal of Pb from solution within the first few minutes, followed by a slow but nearly constant removal over many hours. Also, the average binding coefficient, calculated for Pb sorption onto bacteria and a measure of binding intensity, increases with decreasing sorption density (amounts of bacteria-associated Pb per unit bacterial surface) at low cell concentrations (105 cells ml−1), but decreases with decreasing sorption density at higher cell concentrations (107 cells ml−1). The latter effect is apparently due to the production of significant amounts of extra-cellular organics at high cell concentrations that compete directly with bacterial surfaces for available lead. Lead toxicity and active uptake by marine bacteria did not appear significant at the Pb concentrations used.

  18. One carbon metabolism in SAR11 pelagic marine bacteria.

    Directory of Open Access Journals (Sweden)

    Jing Sun

    Full Text Available The SAR11 Alphaproteobacteria are the most abundant heterotrophs in the oceans and are believed to play a major role in mineralizing marine dissolved organic carbon. Their genomes are among the smallest known for free-living heterotrophic cells, raising questions about how they successfully utilize complex organic matter with a limited metabolic repertoire. Here we show that conserved genes in SAR11 subgroup Ia (Candidatus Pelagibacter ubique genomes encode pathways for the oxidation of a variety of one-carbon compounds and methyl functional groups from methylated compounds. These pathways were predicted to produce energy by tetrahydrofolate (THF-mediated oxidation, but not to support the net assimilation of biomass from C1 compounds. Measurements of cellular ATP content and the oxidation of (14C-labeled compounds to (14CO(2 indicated that methanol, formaldehyde, methylamine, and methyl groups from glycine betaine (GBT, trimethylamine (TMA, trimethylamine N-oxide (TMAO, and dimethylsulfoniopropionate (DMSP were oxidized by axenic cultures of the SAR11 strain Ca. P. ubique HTCC1062. Analyses of metagenomic data showed that genes for C1 metabolism occur at a high frequency in natural SAR11 populations. In short term incubations, natural communities of Sargasso Sea microbial plankton expressed a potential for the oxidation of (14C-labeled formate, formaldehyde, methanol and TMAO that was similar to cultured SAR11 cells and, like cultured SAR11 cells, incorporated a much larger percentage of pyruvate and glucose (27-35% than of C1 compounds (2-6% into biomass. Collectively, these genomic, cellular and environmental data show a surprising capacity for demethylation and C1 oxidation in SAR11 cultures and in natural microbial communities dominated by SAR11, and support the conclusion that C1 oxidation might be a significant conduit by which dissolved organic carbon is recycled to CO(2 in the upper ocean.

  19. Hormesis response of marine and freshwater luminescent bacteria to metal exposure

    Directory of Open Access Journals (Sweden)

    KAILI SHEN

    2009-01-01

    Full Text Available The stimulatory effect of low concentrations of toxic chemicals on organismal metabolism, referred to as hormesis, has been found to be common in the widely used luminescence bioassay. This paper aims to study the hormesis phenomenon in both marine and freshwater luminescent bacteria, named Photobacterium phosphorem and Vibrio qinghaiensis. The effects of Cu (II, Zn (II, Cd (II and Cr (VI on luminescence of these two bacteria were studied for 0 to 75 minutes exposure by establishing dose- and time-response curves. A clear hormesis phenomenon was observed in all four testing metals at low concentrations under the condition of luminescence assays.

  20. Antimicrobial resistance in aerobic bacteria isolated from oral ...

    African Journals Online (AJOL)

    ... varied antimicrobial susceptibility patterns. The oral cavities of hunting dogs are laden with multi-drug resistant bacteria of significant public health importance that could be transferred to humans through contaminated hunted games and bite wound. Keywords: Aerobic bacteria, Antimicrobial resistance, Dogs, Oral cavity, ...

  1. Effect of media composition, including gelling agents, on isolation of previously uncultured rumen bacteria.

    Science.gov (United States)

    Nyonyo, T; Shinkai, T; Tajima, A; Mitsumori, M

    2013-01-01

    The aim of this study was to develop novel anaerobic media using gellan gum for the isolation of previously uncultured rumen bacteria. Four anaerobic media, a basal liquid medium (BM) with agar (A-BM), a modified BM (MBM) with agar (A-MBM), an MBM with phytagel (P-MBM) and an MBM with gelrite (G-MBM) were used for the isolation of rumen bacteria and evaluated for the growth of previously uncultured rumen bacteria. Of the 214 isolates composed of 144 OTUs, 103 isolates (83 OTUs) were previously uncultured rumen bacteria. Most of the previously uncultured strains were obtained from A-MBM, G-MBM and P-MBM, but the predominant cultural members, isolated from each medium, differed. A-MBM and G-MBM showed significantly higher numbers of different OTUs derived from isolates than A-BM (P rumen bacteria were isolated from all media used, the ratio of previously uncultured bacteria to total isolates was increased in A-MBM, P-MBM and G-MBM. © 2012 The Society for Applied Microbiology.

  2. Antimicrobial properties of lactic acid bacteria isolated from uruguayan artisan cheese

    Directory of Open Access Journals (Sweden)

    Martín Fraga Cotelo

    2013-12-01

    Full Text Available Uruguayan artisan cheese is elaborated with raw milk and non-commercial starters. The associated native microbiota may include lactic acid bacteria and also potentially pathogenic bacteria. Lactic acid bacteria were isolated from artisan cheese, raw milk, and non-commercial starter cultures, and their potential bacteriocin production was assessed. A culture collection of 509 isolates was obtained, and five isolates were bacteriocin-producers and were identified as Enterococcus durans,Lactobacillus casei, and Lactococcus lactis. No evidence of potential virulence factors were found in E. durans strains. These are promising results in terms of using these native strains for cheese manufacture and to obtain safe products.

  3. Matrix Production, Pigment Synthesis, and Sporulation in a Marine Isolated Strain of Bacillus pumilus.

    Science.gov (United States)

    Di Luccia, Blanda; Riccio, Antonio; Vanacore, Adele; Baccigalupi, Loredana; Molinaro, Antonio; Ricca, Ezio

    2015-10-21

    The ability to produce an extracellular matrix and form multicellular communities is an adaptive behavior shared by many bacteria. In Bacillus subtilis, the model system for spore-forming bacteria, matrix production is one of the possible differentiation pathways that a cell can follow when vegetative growth is no longer feasible. While in B. subtilis the genetic system controlling matrix production has been studied in detail, it is still unclear whether other spore formers utilize similar mechanisms. We report that SF214, a pigmented strain of Bacillus pumilus isolated from the marine environment, can produce an extracellular matrix relying on orthologs of many of the genes known to be important for matrix synthesis in B. subtilis. We also report a characterization of the carbohydrates forming the extracellular matrix of strain SF214. The isolation and characterization of mutants altered in matrix synthesis, pigmentation, and spore formation suggest that in strain SF214 the three processes are strictly interconnected and regulated by a common molecular mechanism.

  4. Ecodynamics of oil-degrading bacteria and significance of marine mixed populations in the degradation of petroleum compounds

    International Nuclear Information System (INIS)

    Venkateswaran, Kasthuri; Tanaka, Hiroki; Komukai, Shyoko

    1993-01-01

    Ecological studies, screening of hydrocarbon-degrading bacteria, and studies of the potentials of various single and mixed bacterial populations in the utilization of petroleum compounds were carried out to understand the microbial hydrocarbon degradation process in marine ecosystems. Populations of hydrocarbon utilizers were larger in coastal regions than in pelagic environments. Ecological observations indicated that oil-degrading bacteria were ubiquitously distributed in both temperate and tropical environments, irrespective of oil-polluted and unpolluted ecosystem. Bacteria were grown with n-tet-radecane, pristane, propylbenzene, phenanthrene, and crude oil as the sole carbon source; and substrate specificities of the purified strains were characterized. Based on the assimilation characteristics of the isolated strains, an artificial mixed-culture system was constructed. Biodegradation of crude oil by the natural mixed population was found to be higher than by the artificial mixed population. However, when some of the substrate-specific degraders were artificially mixed with natural microflora, the degradation of hard-to-degrade aromatic hydrocarbon fractions of crude oil was enhanced

  5. Diversity and population structure of Marine Group A bacteria in the Northeast subarctic Pacific Ocean

    OpenAIRE

    Allers, Elke; Wright, Jody J; Konwar, Kishori M; Howes, Charles G; Beneze, Erica; Hallam, Steven J; Sullivan, Matthew B

    2012-01-01

    Marine Group A (MGA) is a candidate phylum of Bacteria that is ubiquitous and abundant in the ocean. Despite being prevalent, the structural and functional properties of MGA populations remain poorly constrained. Here, we quantified MGA diversity and population structure in relation to nutrients and O2 concentrations in the oxygen minimum zone (OMZ) of the Northeast subarctic Pacific Ocean using a combination of catalyzed reporter deposition fluorescence in situ hybridization (CARD-FISH) and ...

  6. Enhanced biodegradation of Pina Cuban crude oil by a culture of mixed marine bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Joseph, I.N.; Perigo, E. [Ministry of Science. Inst. of Oceanography, La Habana (Cuba); Bergueiro, J.R.; Pita, A.; Mayol, M.A. [Balearic Island Univ., Palma de Mallorca, Islas Baleares (Spain); Navarro, A. [Ministry of Industry, Oil Research Center, La Habana (Cuba)

    1998-09-01

    The ability of a mixed marine bacteria culture to degrade Pina Cuban crude oil in the presence of nutrients and sea water was studied. Laboratory experiments were conducted in flasks with 100 ml of saline liquid containing 1 per cent crude. The flasks were inoculated with marine bacteria (IDO-225, IDO-226, and IDO-229) at a final concentration of 10{sup 6} cell/ml. The cultures were grown at 29 degrees C for 21 days. Bacterial growth, and surface and interfacial tension were measured after 5, 13 and 21 days. Results showed that the marine bacteria were effective in accelerating the biodegradation process of Pina Cuban oil. The efficiency of the process increased when nutrients were added to the system. This biopreparation also accelerated emulsification of the oil without any negative effects to the natural microbiota. The biological oxygen demand at five days and at the end of the experiment was determined. The biodegradation constant and the biochemical stabilization constant were also measured. 14 refs., 5 tabs., 4 figs.

  7. Effect of low-dose ionizing radiation on luminous marine bacteria: radiation hormesis and toxicity

    International Nuclear Information System (INIS)

    Kudryasheva, N.S.; Rozhko, T.V.

    2015-01-01

    The paper summarizes studies of effects of alpha- and beta-emitting radionuclides (americium-241, uranium-235+238, and tritium) on marine microorganisms under conditions of chronic low-dose irradiation in aqueous media. Luminous marine bacteria were chosen as an example of these microorganisms; bioluminescent intensity was used as a tested physiological parameter. Non-linear dose-effect dependence was demonstrated. Three successive stages in the bioluminescent response to americium-241 and tritium were found: 1 – absence of effects (stress recognition), 2 – activation (adaptive response), and 3 – inhibition (suppression of physiological function, i.e. radiation toxicity). The effects were attributed to radiation hormesis phenomenon. Biological role of reactive oxygen species, secondary products of the radioactive decay, is discussed. The study suggests an approach to evaluation of non-toxic and toxic stages under conditions of chronic radioactive exposure. - Highlights: • Luminous bacteria demonstrate nonlinear dose-effect relation in radioactive solutions. • Response to low-dose radiation includes 3 stages: threshold, activation, inhibition. • ROS are responsible for low-dose effects of alpha-emitting radionuclides. • Luminous marine bacteria are a convenient tool to study radiation hormesis

  8. Enhanced biodegradation of Pina Cuban crude oil by a culture of mixed marine bacteria

    International Nuclear Information System (INIS)

    Joseph, I.N.; Perigo, E.; Bergueiro, J.R.; Pita, A.; Mayol, M.A.; Navarro, A.

    1998-01-01

    The ability of a mixed marine bacteria culture to degrade Pina Cuban crude oil in the presence of nutrients and sea water was studied. Laboratory experiments were conducted in flasks with 100 ml of saline liquid containing 1 per cent crude. The flasks were inoculated with marine bacteria (IDO-225, IDO-226, and IDO-229) at a final concentration of 10 6 cell/ml. The cultures were grown at 29 degrees C for 21 days. Bacterial growth, and surface and interfacial tension were measured after 5, 13 and 21 days. Results showed that the marine bacteria were effective in accelerating the biodegradation process of Pina Cuban oil. The efficiency of the process increased when nutrients were added to the system. This biopreparation also accelerated emulsification of the oil without any negative effects to the natural microbiota. The biological oxygen demand at five days and at the end of the experiment was determined. The biodegradation constant and the biochemical stabilization constant were also measured. 14 refs., 5 tabs., 4 figs

  9. Antimicrobial activities of lactic acid bacteria isolated from akamu ...

    African Journals Online (AJOL)

    The partially purified inhibitory compounds were screened by agar spot assay method for antagonistic ... The partially purified compounds exhibited strong activity against ... Keywords: Bacteriocins, lactic acid bacteria (LAB), target organisms, ...

  10. Antibacterial Activity of Lactic Acid Bacteria Isolated from Salad ...

    African Journals Online (AJOL)

    To determine the inhibitory capacity of lactic acid bacteria (LAB) due to the action of antagonistic substances, 8 members of the LAB group namely, Lactobacillus brevis, Lactobacillus casei, Lactobacillus cellebiosuis, Lactobacillus delbruesckii, Lactobacillus fermentum, Lactobacillus plantarum, Leuconostoc mesenteroides ...

  11. degrading bacteria isolated from South African waste water

    African Journals Online (AJOL)

    Al

    2011-09-21

    Sep 21, 2011 ... biodiversity in which microorganisms co-exist as a dyna- mic community with ... elemental chlorine or chlorine oxide making this industry a major source of ... This two stage procedure ensured the selection of bacteria only ...

  12. Hydrocarbon Degradation Potentials of Bacteria Isolated from Spent ...

    African Journals Online (AJOL)

    ADOWIE PERE

    chemical nature of the compounds within the petroleum mixture and ... are toxic, mutagenic, and carcinogenic (Clemente et al., 2001). ... Hydrocarbon utilizing bacteria in the soil sample ... paper (Whatman No.1) saturated with sterile spent oil.

  13. Potential for luxS related signalling in marine bacteria and production of autoinducer-2 in the genus Shewanella

    Directory of Open Access Journals (Sweden)

    Wagner-Döbler Irene

    2008-01-01

    Full Text Available Abstract Background The autoinducer-2 (AI-2 group of signalling molecules are produced by both Gram positive and Gram negative bacteria as the by-product of a metabolic transformation carried out by the LuxS enzyme. They are the only non species-specific quorum sensing compounds presently known in bacteria. The luxS gene coding for the AI-2 synthase enzyme was found in many important pathogens. Here, we surveyed its occurrence in a collection of 165 marine isolates belonging to abundant marine phyla using conserved degenerated PCR primers and sequencing of selected positive bands to determine if the presence of the luxS gene is phylogenetically conserved or dependent on the habitat. Results The luxS gene was not present in any of the Alphaproteobacteria (n = 71 and Bacteroidetes strains (n = 29 tested; by contrast, these bacteria harboured the sahH gene, coding for an alternative enzyme for the detoxification of S-adenosylhomocysteine (SAH in the activated methyl cycle. Within the Gammaproteobacteria (n = 76, luxS was found in all Shewanella, Vibrio and Alteromonas isolates and some Pseudoalteromonas and Halomonas species, while sahH was detected in Psychrobacter strains. A number of Gammaproteobacteria (n = 27 appeared to have neither the luxS nor the sahH gene. We then studied the production of AI-2 in the genus Shewanella using the Vibrio harveyi bioassay. All ten species of Shewanella tested produced a pronounced peak of AI-2 towards the end of the exponential growth phase in several media investigated. The maximum of AI-2 activity was different in each Shewanella species, ranging from 4% to 46% of the positive control. Conclusion The data are consistent with those of fully sequenced bacterial genomes and show that the potential for luxS related signalling is dependent on phylogenetic affiliation rather than ecological niche and is largest in certain groups of Gammaproteobacteria in the marine environment. This is the first report on AI-2

  14. Effects of DNP on the cell surface properties of marine bacteria and its implication for adhesion to surfaces

    Digital Repository Service at National Institute of Oceanography (India)

    Jain, A.; Nishad, K.K.; Bhosle, N.B.

    The effect of 2, 4-dinitrophenol (DNP) on extracelluar polysaccharides (EPS), cell surface charge, and hydrophobicity of six marine bacterial cultures was studied, and its influence on attachment of these bacteria to glass and polystyrene...

  15. Ferric Iron Reduction by Bacteria Associated with the Roots of Freshwater and Marine Macrophytes†

    Science.gov (United States)

    King, G. M.; Garey, Meredith A.

    1999-01-01

    In vitro assays of washed, excised roots revealed maximum potential ferric iron reduction rates of >100 μmol g (dry weight)−1 day−1 for three freshwater macrophytes and rates between 15 and 83 μmol (dry weight)−1 day−1 for two marine species. The rates varied with root morphology but not consistently (fine root activity exceeded smooth root activity in some but not all cases). Sodium molybdate added at final concentrations of 0.2 to 20 mM did not inhibit iron reduction by roots of marine macrophytes (Spartina alterniflora and Zostera marina). Roots of a freshwater macrophyte, Sparganium eurycarpum, that were incubated with an analog of humic acid precursors, anthroquinone disulfate (AQDS), reduced freshly precipitated iron oxyhydroxide contained in dialysis bags that excluded solutes with molecular weights of >1,000; no reduction occurred in the absence of AQDS. Bacterial enrichment cultures and isolates from freshwater and marine roots used a variety of carbon and energy sources (e.g., acetate, ethanol, succinate, toluene, and yeast extract) and ferric oxyhydroxide, ferric citrate, uranate, and AQDS as terminal electron acceptors. The temperature optima for a freshwater isolate and a marine isolate were equivalent (approximately 32°C). However, iron reduction by the freshwater isolate decreased with increasing salinity, while reduction by the marine isolate displayed a relatively broad optimum salinity between 20 and 35 ppt. Our results suggest that by participating in an active iron cycle and perhaps by reducing humic acids, iron reducers in the rhizoplane of aquatic macrophytes limit organic availability to other heterotrophs (including methanogens) in the rhizosphere and bulk sediments. PMID:10508065

  16. Antibiotic Susceptibility Pattern of Aerobic and Anaerobic Bacteria Isolated From Surgical Site Infection of Hospitalized Patients.

    Science.gov (United States)

    Akhi, Mohammad Taghi; Ghotaslou, Reza; Beheshtirouy, Samad; Asgharzadeh, Mohammad; Pirzadeh, Tahereh; Asghari, Babak; Alizadeh, Naser; Toloue Ostadgavahi, Ali; Sorayaei Somesaraei, Vida; Memar, Mohammad Yousef

    2015-07-01

    Surgical Site Infections (SSIs) are infections of incision or deep tissue at operation sites. These infections prolong hospitalization, delay wound healing, and increase the overall cost and morbidity. This study aimed to investigate anaerobic and aerobic bacteria prevalence in surgical site infections and determinate antibiotic susceptibility pattern in these isolates. One hundred SSIs specimens were obtained by needle aspiration from purulent material in depth of infected site. These specimens were cultured and incubated in both aerobic and anaerobic condition. For detection of antibiotic susceptibility pattern in aerobic and anaerobic bacteria, we used disk diffusion, agar dilution, and E-test methods. A total of 194 bacterial strains were isolated from 100 samples of surgical sites. Predominant aerobic and facultative anaerobic bacteria isolated from these specimens were the members of Enterobacteriaceae family (66, 34.03%) followed by Pseudomonas aeruginosa (26, 13.4%), Staphylococcus aureus (24, 12.37%), Acinetobacter spp. (18, 9.28%), Enterococcus spp. (16, 8.24%), coagulase negative Staphylococcus spp. (14, 7.22%) and nonhemolytic streptococci (2, 1.03%). Bacteroides fragilis (26, 13.4%), and Clostridium perfringens (2, 1.03%) were isolated as anaerobic bacteria. The most resistant bacteria among anaerobic isolates were B. fragilis. All Gram-positive isolates were susceptible to vancomycin and linezolid while most of Enterobacteriaceae showed sensitivity to imipenem. Most SSIs specimens were polymicrobial and predominant anaerobic isolate was B. fragilis. Isolated aerobic and anaerobic strains showed high level of resistance to antibiotics.

  17. Marine Bacteria from Danish Coastal Waters Show Antifouling Activity against the Marine Fouling Bacterium Pseudoalteromonas sp. Strain S91 and Zoospores of the Green Alga Ulva australis Independent of Bacteriocidal Activity▿†

    Science.gov (United States)

    Bernbom, Nete; Ng, Yoke Yin; Kjelleberg, Staffan; Harder, Tilmann; Gram, Lone

    2011-01-01

    The aims of this study were to determine if marine bacteria from Danish coastal waters produce antifouling compounds and if antifouling bacteria could be ascribed to specific niches or seasons. We further assess if antibacterial effect is a good proxy for antifouling activity. We isolated 110 bacteria with anti-Vibrio activity from different sample types and locations during a 1-year sampling from Danish coastal waters. The strains were identified as Pseudoalteromonas, Phaeobacter, and Vibrionaceae based on phenotypic tests and partial 16S rRNA gene sequence similarity. The numbers of bioactive bacteria were significantly higher in warmer than in colder months. While some species were isolated at all sampling locations, others were niche specific. We repeatedly isolated Phaeobacter gallaeciensis at surfaces from one site and Pseudoalteromonas tunicata at two others. Twenty-two strains, representing the major taxonomic groups, different seasons, and isolation strategies, were tested for antiadhesive effect against the marine biofilm-forming bacterium Pseudoalteromonas sp. strain S91 and zoospores of the green alga Ulva australis. The antiadhesive effects were assessed by quantifying the number of strain S91 or Ulva spores attaching to a preformed biofilm of each of the 22 strains. The strongest antifouling activity was found in Pseudoalteromonas strains. Biofilms of Pseudoalteromonas piscicida, Pseudoalteromonas tunicata, and Pseudoalteromonas ulvae prevented Pseudoalteromonas S91 from attaching to steel surfaces. P. piscicida killed S91 bacteria in the suspension cultures, whereas P. tunicata and P. ulvae did not; however, they did prevent adhesion by nonbactericidal mechanism(s). Seven Pseudoalteromonas species, including P. piscicida and P. tunicata, reduced the number of settling Ulva zoospores to less than 10% of the number settling on control surfaces. The antifouling alpP gene was detected only in P. tunicata strains (with purple and yellow pigmentation), so

  18. Isolation of a nitrate-reducing bacteria strain from oil field brine and ...

    African Journals Online (AJOL)

    A nitrate-reducing bacteria (NRB) strain with vigorous growth, strong nitrate reduction ability, strain B9 2-1, was isolated from Suizhong36-1 oilfield, its routine identification and analysis of 16S rRNA and also the competitive inhibition experiments with the enrichment of sulfate-reducing bacteria (SRB) were carried out.

  19. Isolation and some characteristics of anaerobic oxalate-degrading bacteria from the rumen.

    OpenAIRE

    Dawson, K A; Allison, M J; Hartman, P A

    1980-01-01

    Obligately anaerobic oxalate-degrading bacteria were isolated from an enriched population of rumen bacteria in an oxalate-containing medium that had been depleted of other readily metabolized substrates. These organisms, which are the first reported anaerobic oxalate degraders isolated from the rumen, were gram negative, nonmotile rods. They grew in a medium containing sodium oxalate, yeast extract, cysteine, and minerals. The only substrate that supported growth was oxalate. Growth was direc...

  20. Isolation and genome sequencing of four Arctic marine Psychrobacter strains exhibiting multicopper oxidase activity.

    Science.gov (United States)

    Moghadam, Morteza Shojaei; Albersmeier, Andreas; Winkler, Anika; Cimmino, Lorenzo; Rise, Kjersti; Hohmann-Marriott, Martin Frank; Kalinowski, Jörn; Rückert, Christian; Wentzel, Alexander; Lale, Rahmi

    2016-02-16

    Marine cold-temperature environments are an invaluable source of psychrophilic microbial life for new biodiscoveries. An Arctic marine bacterial strain collection was established consisting of 1448 individual isolates originating from biota, water and sediment samples taken at a various depth in the Barents Sea, North of mainland Norway, with an all year round seawater temperature of 4 °C. The entire collection was subjected to high-throughput screening for detection of extracellular laccase activity with guaiacol as a substrate. In total, 13 laccase-positive isolates were identified, all belonging to the Psychrobacter genus. From the most diverse four strains, based on 16S rRNA gene sequence analysis, all originating from the same Botryllus sp. colonial ascidian tunicate sample, genomic DNA was isolated and genome sequenced using a combined approach of whole genome shotgun and 8 kb mate-pair library sequencing on an Illumina MiSeq platform. The genomes were assembled and revealed genome sizes between 3.29 and 3.52 Mbp with an average G + C content of around 42%, with one to seven plasmids present in the four strains. Bioinformatics based genome mining was performed to describe the metabolic potential of these four strains and to identify gene candidates potentially responsible for the observed laccase-positive phenotype. Up to two different laccase-like multicopper oxidase (LMCO) encoding gene candidates were identified in each of the four strains. Heterologous expression of P11F6-LMCO and P11G5-LMCO2 in Escherichia coli BL21 (DE3) resulted in recombinant proteins exhibiting 2,2'-azino-bis-3-ethylbenzothiazoline-6-sulphonic acid (ABTS) and guaiacol oxidizing activity. Thirteen Psychrobacter species with laccase-positive phenotype were isolated from a collection of Arctic marine bacteria. Four of the isolates were genome sequenced. The overall genome features were similar to other publicly available Psychrobacter genome sequences except for P11G5 harboring seven

  1. Genomics and ecophysiology of heterotrophic nitrogen fixing bacteria isolated from estuarine surface water

    DEFF Research Database (Denmark)

    Bentzon-Tilia, Mikkel; Severin, Ina; Hansen, Lars H.

    2015-01-01

    The ability to reduce atmospheric nitrogen (N2) to ammonia, known as N2 fixation, is a widely distributed trait among prokaryotes that accounts for an essential input of new N to a multitude of environments. Nitrogenase reductase gene (nifH) composition suggests that putative N2-fixing heterotrop......The ability to reduce atmospheric nitrogen (N2) to ammonia, known as N2 fixation, is a widely distributed trait among prokaryotes that accounts for an essential input of new N to a multitude of environments. Nitrogenase reductase gene (nifH) composition suggests that putative N2-fixing...... heterotrophic organisms are widespread in marine bacterioplankton, but their autecology and ecological significance are unknown. Here, we report genomic and ecophysiology data in relation to N2 fixation by three environmentally relevant heterotrophic bacteria isolated from Baltic Sea surface water: Pseudomonas...... liter-1, presumably accommodated through aggregate formation. Glucose stimulated N2 fixation in general, and reactive N repressed N2 fixation, except that ammonium (NH4 ) stimulated N2 fixation in R. palustris BAL398, indicating the use of nitrogenase as an electron sink. The lack of correlations...

  2. Performance and dye-degrading bacteria isolation of a hybrid membrane process

    Energy Technology Data Exchange (ETDEWEB)

    You, Sheng-Jie, E-mail: sjyou@cycu.edu.tw [Department of Bioenvironmental Engineering and R and D Center for Membrane Technology, Chung Yuan Christian University, No. 200, Rd. Chung-Pei, Chungli 320, Taiwan (China); Teng, Jun-Yu, E-mail: nickprometheus@yahoo.com.tw [Department of Civil Engineering, Chung Yuan Christian University, Chungli 320, Taiwan (China)

    2009-12-15

    Textile dyeing wastewater contains harmful compounds, which are toxic to both marine organisms and human beings if it discharged into an aquatic environmental without suitable treatment. In this study, the wastewater containing the azo dye, Reactive Black 5 (RB5), was partially treated in an anaerobic sequencing batch reactor which was further treated either in an aerobic membrane bioreactors (AOMBR) or in combined aerobic membrane bioreactor/reverse osmosis (AOMBR/RO) process. The results showed that in the anaerobic sequencing batch reactor the RB5 dye was degraded to form aromatic amine intermediate metabolites, which were further mineralized in the AOMBR. It was also observed that although all effluents from the AOMBR and AOMBR/RO processes met the Taiwan EPA's effluent criteria, irrespective of which membranes were used in the aerobic tank, the effluent from the AOMBR/RO process met the criteria for reuse for toilet flushing, landscaping, irrigation, and cooling water purposes, where as the AOMBR effluent only met the criteria for cooling water due to incomplete color removal. Five anaerobic high dye-degrading bacteria were isolated, which were identified to be the same species of Lactococcus lactis by 16S rRNA sequencing. The L. lactis showed complete degradation of RB5 and further studies showed that it can also able to degrade Reactive Red 120 and Reactive Yellow 84 efficiently within 6 h.

  3. Performance and dye-degrading bacteria isolation of a hybrid membrane process

    International Nuclear Information System (INIS)

    You, Sheng-Jie; Teng, Jun-Yu

    2009-01-01

    Textile dyeing wastewater contains harmful compounds, which are toxic to both marine organisms and human beings if it discharged into an aquatic environmental without suitable treatment. In this study, the wastewater containing the azo dye, Reactive Black 5 (RB5), was partially treated in an anaerobic sequencing batch reactor which was further treated either in an aerobic membrane bioreactors (AOMBR) or in combined aerobic membrane bioreactor/reverse osmosis (AOMBR/RO) process. The results showed that in the anaerobic sequencing batch reactor the RB5 dye was degraded to form aromatic amine intermediate metabolites, which were further mineralized in the AOMBR. It was also observed that although all effluents from the AOMBR and AOMBR/RO processes met the Taiwan EPA's effluent criteria, irrespective of which membranes were used in the aerobic tank, the effluent from the AOMBR/RO process met the criteria for reuse for toilet flushing, landscaping, irrigation, and cooling water purposes, where as the AOMBR effluent only met the criteria for cooling water due to incomplete color removal. Five anaerobic high dye-degrading bacteria were isolated, which were identified to be the same species of Lactococcus lactis by 16S rRNA sequencing. The L. lactis showed complete degradation of RB5 and further studies showed that it can also able to degrade Reactive Red 120 and Reactive Yellow 84 efficiently within 6 h.

  4. The isolation, enumeration, and characterization of Rhizobium bacteria of the soil in Wamena Biological Garden

    Directory of Open Access Journals (Sweden)

    SRI PURWANINGSIH

    2005-04-01

    Full Text Available The eleven soil samples have been isolated and characterized. The aims of the study were to get the pure culture and some data which described about enumeration and especially their characters in relation to the acids and bases reaction in their growth. The isolation of the bacteria use Yeast Extract Mannitol Agar medium (YEMA while the characterization by using YEMA medium mixed with Brom Thymol Blue and Congo Red indicators respectively. The results showed that eighteen isolates have been isolated which consisted of three low growing and fifteen fast growing bacteria. Two isolates were not indicated Rhizobium and sixteen were Rhizobium. Density of Rhizobium enumeration was varied which related to soil organic matter content. The enumeration bacteria in YEMA medium were in the range of 0.6 x 105 and 11.6 x 105 CFU /g soil. The highest population was found in soil sample of Wieb vegetation.

  5. Biodegradation Capability of Some Bacteria Isolates to Use Lubricant Oil in Vitro

    Science.gov (United States)

    Ahda, Y.; Azhar, M.; Fitri, L.; Afnida, A.; Adha, G. S.; Alifa, W. N.; Handayani, D.; Putri, D. H.; Irdawati, I.; Chatri, M.

    2018-04-01

    Our previous study identified three species of bacteria, i.e. Alcaligenes sp., Bacillus spl, and Bacillus sp2 isolated from using lubricant oil-contaminated soil in a Padang’s workshop. However, its ability to degrade hydrocarbon were not known yet. In this extension study, we explore a wider area to find more hydrocarbonoclastic bacteria and examined its capability to degrade hydrocarbon in vitro. Seventeen isolates were characterized its capability using NA + used lubricant oil + tween + neutral red medium. Isolates A1, B2, D1 and D4 shows the high degradation index, whereas isolates A2, A3, A5, D2, B1, B3 and isolates A4, B4, D3 have medium and low degradation index, respectively. These potential hydrocarbonoclastic bacteria need in situ characterization to know their actual activities for bioremediation.

  6. Biotechnological Applications of Marine Enzymes From Algae, Bacteria, Fungi, and Sponges.

    Science.gov (United States)

    Parte, S; Sirisha, V L; D'Souza, J S

    Diversity is the hallmark of all life forms that inhabit the soil, air, water, and land. All these habitats pose their unique inherent challenges so as to breed the "fittest" creatures. Similarly, the biodiversity from the marine ecosystem has evolved unique properties due to challenging environment. These challenges include permafrost regions to hydrothermal vents, oceanic trenches to abyssal plains, fluctuating saline conditions, pH, temperature, light, atmospheric pressure, and the availability of nutrients. Oceans occupy 75% of the earth's surface and harbor most ancient and diverse forms of organisms (algae, bacteria, fungi, sponges, etc.), serving as an excellent source of natural bioactive molecules, novel therapeutic compounds, and enzymes. In this chapter, we introduce enzyme technology, its current state of the art, unique enzyme properties, and the biocatalytic potential of marine algal, bacterial, fungal, and sponge enzymes that have indeed boosted the Marine Biotechnology Industry. Researchers began exploring marine enzymes, and today they are preferred over the chemical catalysts for biotechnological applications and functions, encompassing various sectors, namely, domestic, industrial, commercial, and healthcare. Next, we summarize the plausible pros and cons: the challenges encountered in the process of discovery of the potent compounds and bioactive metabolites such as biocatalysts/enzymes of biomedical, therapeutic, biotechnological, and industrial significance. The field of Marine Enzyme Technology has recently assumed importance, and if it receives further boost, it could successfully substitute other chemical sources of enzymes useful for industrial and commercial purposes and may prove as a beneficial and ecofriendly option. With appropriate directions and encouragement, marine enzyme technology can sustain the rising demand for enzyme production while maintaining the ecological balance, provided any undesired exploitation of the marine

  7. Enzyme activity screening of thermophilic bacteria isolated from Dusun Tua Hot Spring, Malaysia

    Science.gov (United States)

    Msarah, Marwan; Ibrahim, Izyanti; Aqma, Wan Syaidatul

    2018-04-01

    Thermophilic bacteria have biotechnological importance due to the availability of unique enzymes which are stable in extreme circumstances. The aim of this study includes to isolate thermophilic bacteria from hot spring and screen for important enzyme activities. Water samples from the Dusun Tua Hot Spring were collected and the physiochemical characterisation of water was measured. Eight thermophilic bacteria were isolated and determined to have at least three strong enzyme activity including protease, lipase, amylase, cellulase, pectinase and xylanase. The results showed that HuluC2 displayed all the enzyme activities and can be further studied.

  8. Simultaneous isolation of anaerobic bacteria from udder abscesses and mastitic milk in lactating dairy cows.

    Science.gov (United States)

    Greeff, A S; du Preez, J H

    1985-12-01

    A variety of non-sporulating anaerobic bacterial species were isolated from udder abscesses in 10 lactating dairy cows. Fifty percent of the abscesses yielded multiple anaerobic species and the other 50% only 1 species. The anaerobic bacteria, however, were always accompanied by classical facultative anaerobic mastitogenic bacteria. In four of the five cows also afflicted with mastitis in the quarters with abscesses, the anaerobic and facultative anaerobic bacteria were identical. Peptococcus indolicus was the most commonly isolated organism followed by Eubacterium and Bacteroides spp. Bacteroides fragilis was resistant to penicillin, ampicillin and tetracycline.

  9. Marinagarivorans algicola gen. nov., sp. nov., isolated from marine algae.

    Science.gov (United States)

    Guo, Ling-Yun; Li, Dong-Qi; Sang, Jin; Chen, Guan-Jun; Du, Zong-Jun

    2016-03-01

    Two novel agar-degrading, Gram-stain-negative, motile, heterotrophic, facultatively anaerobic and pale yellow-pigmented bacterial strains, designated Z1 T and JL1, were isolated from marine algae Gelidium amansii (Lamouroux) and Gracilaria verrucosa , respectively. Growth of the isolates was optimal at 28-30 °C, pH 7.0-7.5 and with 2-3 % (w/v) NaCl. Both strains contained Q-8 as the sole respiratory quinone. The major cellular fatty acids in strain Z1 T were C 18 : 1 ω7 c , C 16 : 0 and summed feature 3 (C 16 : 1 ω7 c and/or iso-C 15 : 0 2-OH). The predominant polar lipids in strain Z1 T were phosphatidylethanolamine, phosphatidylglycerol and an aminolipid. The genomic DNA G+C content of both strains was 45.1 mol%. Strains Z1 T and JL1 were closely related, with 99.9 % 16S rRNA gene sequence similarity. The average nucleotide identity (ANI) value between strains Z1 T and JL1 was 99.3 %. Phylogenetic analysis based on 16S rRNA gene sequences revealed that strains Z1 T and JL1 form a distinct phyletic line within the class Gammaproteobacteria , with less than 92.3 % similarity to their closest relatives. Based on data from the current polyphasic study, the isolates are proposed to belong to a novel species of a new genus designated Marinagarivorans algicola gen. nov., sp. nov. The type strain of the type species is Z1 T ( = ATCC BAA-2617 T  = CICC 10859 T ).

  10. Molecular characterization of bacteria isolated from the Kingdom of ...

    African Journals Online (AJOL)

    ola

    2012-11-06

    Nov 6, 2012 ... Esherichia coli strains isolated from different habitats in relation to their antimicrobial activity against pathogenic fungi causing dermatological diseases. MATERIALS AND METHODS. Microbial strains, media and culture conditions. Bacterial isolates from soil samples were collected from different localities ...

  11. Characterization of lactic acid bacteria isolated from poultry farms in ...

    African Journals Online (AJOL)

    The Lactobacilli strains, both isolated from faeces, produced higher amounts of cells and lactic acid from soils as compared to the lactococci strain isolated from feathers. L (+)-lactic acid is the only optical isomer for use in pharmaceutical and food industries because is only adapted to assimilate this form. The optical isomers ...

  12. Enrichment of marine anammox bacteria from seawater-related samples and bacterial community study.

    Science.gov (United States)

    Kawagoshi, Y; Nakamura, Y; Kawashima, H; Fujisaki, K; Furukawa, K; Fujimoto, A

    2010-01-01

    Anaerobic ammonium oxidation (anammox) is a novel nitrogen pathway catalyzed by anammox bacteria which are obligate anaerobic chemoautotrophs. In this study, enrichment culture of marine anammox bacteria (MAAOB) from the samples related to seawater was conducted. Simultaneous removal of ammonium and nitrite was confirmed in continuous culture inoculated with sediment of a sea-based waste disposal site within 50 days. However, no simultaneous nitrogen removal was observed in cultures inoculated with seawater-acclimated denitrifying sludge or with muddy sediment of tideland even during 200 days. Nitrogen removal rate of 0.13 kg/m(3)/day was achieved at nitrogen loading rate of 0.16 kg/m(3)/day after 320th days in the culture inoculated with the sediment of waste disposal site. The nitrogen removal ratio between ammonium nitrogen and nitrite nitrogen was 1:1.07. Denaturing gradient gel electrophoresis (DGGE) analysis indicated that an abundance of the bacteria close to MAAOB and coexistence of ammonium oxidizing bacteria and denitrifying bacteria in the culture.

  13. High prevalence of antibiotic resistance among bacteria isolated ...

    African Journals Online (AJOL)

    Mid-stream urine was collected and subjected to rapid dipstick and urine culture media. Antibacterial susceptibility tests were conducted against the bacteria. Risk factors for AUTI and demographic data were obtained using pretested questionnaire. Data were analyzed using SPSS Vs. 20 software package. Results: Of the ...

  14. Isolation and screening of lactic acid bacteria, Lactococcus lactis ...

    African Journals Online (AJOL)

    In aquaculture probiotic feeding could play a crucial role in developing microbial control strategies, since disease outbreaks are recognized as important constraints to aquaculture production and the fear of antibiotic resistance. In this study, lactic acid bacteria (LAB) strains from the intestinal tissue of African catfish Clarias ...

  15. Isolation and characterization of rabbit caecal pectinolytic bacteria

    Czech Academy of Sciences Publication Activity Database

    Sirotek, Kamil; Marounek, Milan; Rada, V.; Benda, V.

    2001-01-01

    Roč. 46, č. 1 (2001), s. 79-82 ISSN 0015-5632 R&D Projects: GA MZe QD0211; GA AV ČR KSK5020115 Keywords : pectinolytic bacteria * rabbit Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 0.776, year: 2001

  16. Antibiotic profiles of bacteria isolated on selective campylobacter media

    Science.gov (United States)

    The objective of this study was to determine antibiotic profiles of non-Campylobacter bacteria recovered on selective Campylobacter media. Broiler carcasses were obtained from a processing facility, and whole-carcass rinses were performed by shaking carcasses in plastic bags with 200 mL of distilled...

  17. Potency of fibrolytic bacteria isolated from Indonesian sheep's colon ...

    African Journals Online (AJOL)

    then used both in pure and mixed culture with cattle cellulolytic bacteria (a) from the ... biogas and methane production was obtained from a-c-d co-culture addition. ... vitro feces fermentation could increase gas production 56.36% and methane ...

  18. Effect of Neem Extracts (Azadirachta indica) on Bacteria Isolated ...

    African Journals Online (AJOL)

    Nigerian Journal of Basic and Applied Science (March, 2012), 20(1): 64-67. ISSN 0794- ... extracts showed antibacterial activity against all the test bacteria used. The zone of ... is due to regular gum massage or preventing plaque building or ...

  19. Antibacterial Activity of Lactic Acid Bacteria Isolated from Healthy ...

    African Journals Online (AJOL)

    Abstract. Lactic acid bacteria (LAB), namely, Lactobacillus acidophilus 1, Lactobacillus acidophilus 2, Lactobacillus brevis 1, Lactobacillus rhamnosus 1, Lactococcus lactis subsp. lactis 1, Lactococcus lactis subsp. lactis 2, Lactococcus raffinolactis 1, Pediococcus acidilactici 1, Pediococcus pentosaceus 1, and Pediococcus ...

  20. Isolation and characterization of phosphate-solubilizing bacteria ...

    African Journals Online (AJOL)

    ... in nitrogen, free semi-solid medium and able to produce siderophore. PSB inoculants with their beneficial traits would be considered as potential biofertilizer for the sustainable aerobic rice cultivation system. Key words: Aerobic rice, antagonistic effect, indoleacetic acid, organic acids, phosphorus solubilizing bacteria.

  1. Antibiogram of enteric bacteria isolated from rats cohabiting with ...

    African Journals Online (AJOL)

    A total of 228 gram-negative bacteria comprising 211 Enterobacteria from 10 genera, 16 Pseudomonas species, and one Aeromonas hydrophila were subjected to the susceptibility testing with antibiotic discs of 10 commonly used antibiotics. Nineteen of the 21 species were multidrug-resistant with 50%-100% of the ...

  2. Isolation of chromium resistant bacteria from a former bauxite mine ...

    African Journals Online (AJOL)

    The Cr (VI) reducing capacity of bacteria has been investigated in many different soils and waters but little or no information is available from soils originating from bauxite mine areas. From soil, mud and rhizospheres of the floating aquatic plant Potamogeton natans L. and the terrestrial plant Carduus acanthoides L., the Cr ...

  3. THE TOXIC DINOFLAGELLATE GYMNODINIUM CATENATUM (DINOPHYCEAE) REQUIRES MARINE BACTERIA FOR GROWTH(1).

    Science.gov (United States)

    Bolch, Christopher J S; Subramanian, Thaila A; Green, David H

    2011-10-01

    Interactions with the bacterial community are increasingly considered to have a significant influence on marine phytoplankton populations. Here we used a simplified dinoflagellate-bacterium experimental culture model to conclusively demonstrate that the toxic dinoflagellate Gymnodinium catenatum H. W. Graham requires growth-stimulatory marine bacteria for postgermination survival and growth, from the point of resting cyst germination through to vegetative growth at bloom concentrations (10(3)  cells · mL(-1) ). Cysts of G. catenatum were germinated and grown in unibacterial coculture with antibiotic-resistant or antibiotic-sensitive Marinobacter sp. DG879 or Brachybacterium sp., and with mixtures of these two bacteria. Addition of antibiotics to cultures grown with antibiotic-sensitive strains of bacteria resulted in death of the dinoflagellate culture, whereas cultures grown with antibiotic-resistant bacteria survived antibiotic addition and continued to grow beyond the 21 d experiment. Removal of either bacterial type from mixed-bacterial dinoflagellate cultures (using an antibiotic) resulted in cessation of dinoflagellate growth until bacterial concentration recovered to preaddition concentrations, suggesting that the bacterial growth factors are used for dinoflagellate growth or are labile. Examination of published reports of axenic dinoflagellate culture indicate that a requirement for bacteria is not universal among dinoflagellates, but rather that species may vary in their relative reliance on, and relationship with, the bacterial community. The experimental model approach described here solves a number of inherent and logical problems plaguing studies of algal-bacterium interactions and provides a flexible and tractable tool that can be extended to examine bacterial interactions with other phytoplankton species. © 2011 Phycological Society of America.

  4. Anti-biofilm activities from marine cold adapted bacteria against staphylococci and Pseudomonas aeruginosa

    Directory of Open Access Journals (Sweden)

    Rosanna ePapa

    2015-12-01

    Full Text Available Microbial biofilms have great negative impacts on the world’s economy and pose serious problems to industry, public health and medicine. The interest in the development of new approaches for the prevention and treatment of bacterial adhesion and biofilm formation has increased. Since, bacterial pathogens living in biofilm induce persistent chronic infections due to the resistance to antibiotics and host immune system. A viable approach should target adhesive properties without affecting bacterial vitality in order to avoid the appearance of resistant mutants. Many bacteria secrete anti-biofilm molecules that function in regulating biofilm architecture or mediating the release of cells from it during the dispersal stage of biofilm life cycle. Cold-adapted marine bacteria represent an untapped reservoir of biodiversity able to synthesize a broad range of bioactive compounds, including anti-biofilm molecules.The anti-biofilm activity of cell-free supernatants derived from sessile and planktonic cultures of cold-adapted bacteria belonging to Pseudoalteromonas, Psychrobacter and Psychromonas species were tested against Staphylococcus aureus, Staphylococcus epidermidis and Pseudomonas aeruginosa strains. Reported results demonstrate that we have selected supernatants, from cold-adapted marine bacteria, containing non-biocidal agents able to destabilize biofilm matrix of all tested pathogens without killing cells. A preliminary physico-chemical characterization of supernatants was also performed, and these analyses highlighted the presence of molecules of different nature that act by inhibiting biofilm formation. Some of them are also able to impair the initial attachment of the bacterial cells to the surface, thus likely containing molecules acting as anti-biofilm surfactant molecules.The described ability of cold-adapted bacteria to produce effective anti-biofilm molecules paves the way to further characterization of the most promising molecules

  5. Multidrug-Resistance and Toxic Metal Tolerance of Medically Important Bacteria Isolated from an Aquaculture System

    Science.gov (United States)

    Resende, Juliana Alves; Silva, Vânia L.; Fontes, Cláudia Oliveira; Souza-Filho, Job Alves; de Oliveira, Tamara Lopes Rocha; Coelho, Cíntia Marques; César, Dionéia Evangelista; Diniz, Cláudio Galuppo

    2012-01-01

    The use of antimicrobials and toxic metals should be considered carefully in aquaculture and surrounding environments. We aimed to evaluate medically relevant bacteria in an aquaculture system and their susceptibility to antimicrobials and toxic metals. Selective cultures for enterobacteria (ENT), non-fermenting Gram-negative rods (NFR) and Gram-positive cocci (GPC) were obtained from water samples collected in two different year seasons. The isolated bacteria were biochemically identified and antimicrobial and toxic metal susceptibility patterns were determined. Overall, 407 representative strains were recovered. In general, bacteria isolated from fish ponds showed higher multiple antibiotic resistance indices when compared to those isolated from a water-fed canal. Resistance to penicillin and azithromycin was observed more frequently in the GPC group, whereas resistance to ampicillin and ampicillin/sulbactam or gentamicin was observed more frequently in the ENT and NFR groups, respectively. All the isolated bacteria were tolerant to nickel, zinc, chromium and copper at high levels (≥1,024 μg mL−1), whereas tolerance to cadmium and mercury varied among the isolated bacteria (2–1,024 μg mL−1). Multidrug-resistant bacteria were more frequent and diverse in fish ponds than in the water-fed canal. A positive correlation was observed between antimicrobial resistance and metal tolerance. The data point out the need for water treatment associated with the aquaculture system. PMID:22972388

  6. Isolation and study of Biodegradiation Potential of Phenanthrene degrading bacteria

    Directory of Open Access Journals (Sweden)

    nafise Nourieh

    2009-11-01

    Full Text Available Polycyclic Aromatic Hydrocarbons (PAHs are among of potentially hazardous chemicals for environment and cause health concern. These compounds exhibit carcinogenic and/or mutagenic properties and are listed by the United States Environmental Protection Agency (USEPA as priority pollutants. Polycyclic Aromatic Hydrocarbons are hardly degraded and therefore bioremediation is often considered as a desirable and cost effective remediation technique for soil. contaminated with them. Materials and Methods: In this research Phenanthrene (C14H10, a three-benzene ring PAHs, was selected as a PAH representative compound and two different concentrations of Phenanthrene (100mg/kg and 500mg/kg were studied. First, PAH-degrading microorganisms were separated and after adaptation and enrichment PAH-degrading bacteria were identified. Results: The results showed that removal efficiency of Phenanthrene in the samples containing pseudomonas was more than other specified bacteria. Also the most removal efficiency of Phenanthrene occurred in first 45 days of biotreatment and then decreasing trend slowed down. Other finding was that the bioremediation of the lower concentration of Phenanthrene takes shorter time compared with the higher concentration and also the comparison of Phenanthrene bioremediation by pure bacteria and Consertium indicated that, at the beginning of the process, the pace of eliminating Phenanthrene by Consertium is more than other bacteria. Conclusion: Microbial analysis, based on cinfirmation tests and analytical profile index (api 20E kit tests, showed that Pseudomonas. SPP, Bacillus, Pseudomonas aeruginosa and Acinetobacter were the bacteria, responsible for Phenanthrene degradation. Extraction was conducted by ultra sonic method and Phenanthrene concentration was measured by (HPLC.

  7. Stimulation of Lactic Acid Bacteria by a Micrococcus Isolate: Evidence for Multiple Effects

    Science.gov (United States)

    Nath, K. R.; Wagner, B. J.

    1973-01-01

    Growth of, and rate of acid production by, six cultures of lactic acid bacteria were increased in the presence of Micrococcus isolate F4 or a preparation of its capsular material. Concentrations of hydrogen peroxide found in pure cultures of the lactic acid bacteria were not detectable, or were greatly reduced, in mixed culture with Micrococcus isolate F4. The capsular material was not as effective as whole cells in preventing accumulation of H2O2. Catalase stimulated growth of, and the rate of acid production by, the lactic acid bacteria, but not to the same extent as Micrococcus isolate F4 in some cultures. The existence of two mechanisms for micrococcal stimulation of the lactic acid bacteria is postulated. One mechanism involves removal of H2O2; the other has not been characterized. PMID:4199337

  8. Isolation and characterization of biosurfactant production under extreme environmental conditions by alkali-halo-thermophilic bacteria from Saudi Arabia.

    Science.gov (United States)

    Elazzazy, Ahmed M; Abdelmoneim, T S; Almaghrabi, O A

    2015-07-01

    Twenty three morphologically distinct microbial colonies were isolated from soil and sea water samples, which were collected from Jeddah region, Saudi Arabia for screening of the most potent biosurfactant strains. The isolated bacteria were selected by using different methods as drop collapse test, oil displacement test, blue agar test, blood hemolysis test, emulsification activity and surface tension. The results showed that the ability of Virgibacillus salarius to grow and reduce surface tension under a wide range of pH, salinities and temperatures gives bacteria isolate an advantage in many applications such as pharmaceutical, cosmetics, food industries and bioremediation in marine environment. The biosurfactant production by V. salarius decreased surface tension and emulsifying activity (30 mN/m and 80%, respectively). In addition to reducing the production cost of biosurfactants by tested several plant-derived oils such as jatropha oil, castor oils, jojoba oil, canola oil and cottonseed oil. In this respect the feasibility to reusing old frying oil of sunflower for production rhamnolipids and sophorolipids, their use that lead to solve many ecological and industrial problems.

  9. Isolation and characterization of biosurfactant production under extreme environmental conditions by alkali-halo-thermophilic bacteria from Saudi Arabia

    Science.gov (United States)

    Elazzazy, Ahmed M.; Abdelmoneim, T.S.; Almaghrabi, O.A.

    2014-01-01

    Twenty three morphologically distinct microbial colonies were isolated from soil and sea water samples, which were collected from Jeddah region, Saudi Arabia for screening of the most potent biosurfactant strains. The isolated bacteria were selected by using different methods as drop collapse test, oil displacement test, blue agar test, blood hemolysis test, emulsification activity and surface tension. The results showed that the ability of Virgibacillus salarius to grow and reduce surface tension under a wide range of pH, salinities and temperatures gives bacteria isolate an advantage in many applications such as pharmaceutical, cosmetics, food industries and bioremediation in marine environment. The biosurfactant production by V. salarius decreased surface tension and emulsifying activity (30 mN/m and 80%, respectively). In addition to reducing the production cost of biosurfactants by tested several plant-derived oils such as jatropha oil, castor oils, jojoba oil, canola oil and cottonseed oil. In this respect the feasibility to reusing old frying oil of sunflower for production rhamnolipids and sophorolipids, their use that lead to solve many ecological and industrial problems. PMID:26150754

  10. Carbon Capture and Storage (CCS): Risk assessment focused on marine bacteria.

    Science.gov (United States)

    Borrero-Santiago, A R; DelValls, T A; Riba, I

    2016-09-01

    Carbon capture and storage (CCS) is one of the options to mitigate the negative effects of the climate change. However, this strategy may have associated some risks such as CO2 leakages due to an escape from the reservoir. In this context, marine bacteria have been underestimated. In order to figure out the gaps and the lack of knowledge, this work summarizes different studies related to the potential effects on the marine bacteria associated with an acidification caused by a CO2 leak from CSS. An improved integrated model for risk assessment is suggested as a tool based on the rapid responses of bacterial community. Moreover, this contribution proposes a strategy for laboratory protocols using Pseudomona stanieri (CECT7202) as a case of study and analyzes the response of the strain under different CO2 conditions. Results showed significant differences (p≤0.05) under six diluted enriched medium and differences about the days in the exponential growth phase. Dilution 1:10 (Marine Broth 2216 with seawater) was selected as an appropriate growth medium for CO2 toxicity test in batch cultures. This work provide an essential and a complete tool to understand and develop a management strategy to improve future works related to possible effects produced by potential CO2 leaks. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. A High-Resolution LC-MS-Based Secondary Metabolite Fingerprint Database of Marine Bacteria

    KAUST Repository

    Lu, Liang

    2014-10-09

    © 2014 Macmillan Publishers Limited. All rights reserved. Marine bacteria are the most widely distributed organisms in the ocean environment and produce a wide variety of secondary metabolites. However, traditional screening for bioactive natural compounds is greatly hindered by the lack of a systematic way of cataloguing the chemical profiles of bacterial strains found in nature. Here we present a chemical fingerprint database of marine bacteria based on their secondary metabolite profiles, acquired by high-resolution LC-MS. Till now, 1,430 bacterial strains spanning 168 known species collected from different marine environments were cultured and profiled. Using this database, we demonstrated that secondary metabolite profile similarity is approximately, but not always, correlated with taxonomical similarity. We also validated the ability of this database to find species-specific metabolites, as well as to discover known bioactive compounds from previously unknown sources. An online interface to this database, as well as the accompanying software, is provided freely for the community to use.

  12. A High-Resolution LC-MS-Based Secondary Metabolite Fingerprint Database of Marine Bacteria

    KAUST Repository

    Lu, Liang; Wang, Jijie; Xu, Ying; Wang, Kailing; Hu, Yingwei; Tian, Renmao; Yang, Bo; Lai, Qiliang; Li, Yongxin; Zhang, Weipeng; Shao, Zongze; Lam, Henry; Qian, Pei-Yuan

    2014-01-01

    © 2014 Macmillan Publishers Limited. All rights reserved. Marine bacteria are the most widely distributed organisms in the ocean environment and produce a wide variety of secondary metabolites. However, traditional screening for bioactive natural compounds is greatly hindered by the lack of a systematic way of cataloguing the chemical profiles of bacterial strains found in nature. Here we present a chemical fingerprint database of marine bacteria based on their secondary metabolite profiles, acquired by high-resolution LC-MS. Till now, 1,430 bacterial strains spanning 168 known species collected from different marine environments were cultured and profiled. Using this database, we demonstrated that secondary metabolite profile similarity is approximately, but not always, correlated with taxonomical similarity. We also validated the ability of this database to find species-specific metabolites, as well as to discover known bioactive compounds from previously unknown sources. An online interface to this database, as well as the accompanying software, is provided freely for the community to use.

  13. Algoriphagus resistens sp. nov., isolated from marine sediment.

    Science.gov (United States)

    Han, Ji-Ru; Zhao, Jin-Xin; Wang, Zong-Jie; Chen, Guan-Jun; Du, Zong-Jun

    2017-05-01

    Strain NH1T, a pink-pigmented, facultatively anaerobic, heterotrophic, catalase-positive and oxidase-negative, Gram-stain-negative marine bacterium, was isolated from marine sediment on the coast of Weihai, China. Cells of strain NH1T were rod-shaped, 0.8-2.0 µm in length and 0.5-1.0 µm in width. The strain was able to grow at 13-37 °C, pH 5.5-8.5, in the presence of 0.0-8.0 % (w/v) NaCl. Optimal growth was observed at 28 °C, with 3.0 % (w/v) NaCl and pH 6.5-7.0. Nitrate was reduced. The G+C content of the DNA was 41.9 mol%. The major isoprenoid quinone was MK-7 and the main cellular fatty acids (>10 %) were summed feature 3 (33.6 %) comprising iso-C15 : 0 2-OH and/or C16 : 1ω7c, and iso-C15:0 (19.2%). The major polar lipids in strain NH1T were phosphatidylethanolamine, unidentified lipids, phospholipid and aminolipids. Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain NH1T was highly related to the type strains of Algoriphagus antarcticus (97.87 % 16SrRNA gene sequence similarity) and Algoriphagus ratkowskyi (97.56 %). On basis of the phenotypic and phylogenetic data, strain NH1T should be classified as representing a novel species of the genus Algoriphagus, for which the name Algoriphagus resistens sp. nov. is proposed. The type strain is NH1T (=MCCC 1H00140T=KCTC 52228T).

  14. Isolation and identification of indigenous lactic acid bacteria from North Sumatra river buffalo milk

    Directory of Open Access Journals (Sweden)

    Heni Rizqiati

    2015-06-01

    Full Text Available Buffalo milk is a source of various lactic acid bacteria (LAB which is potential as culture starter as well as the probiotic. This study was conducted to isolate and identify LAB from indigenous North Sumatra river buffalo milk. Lactic acid bacteria was isolated and grown in medium De Man Rogosa Sharpe Agar (MRSA. The isolation was conducted to obtain pure isolate. The identification of LAB was studied in terms of morphology, physiology, biochemistry and survival on low pH. Morphology tests were conducted by Gram staining and cell forming; physiology tests were conducted for growing viability at pH 4.5 and temperature at 45oC; whereas biochemistry tests were conducted for CO2, dextran and NH3 productions. Determination of LAB species was conducted using Analytical Profile Index (API test CHL 50. Results of identification showed that 41 isolates were identified as LAB with Gram-positive, catalase-negative, rod and round shaped characteristics. Resistance test done to low pH (pH 2 for the lactic acid bacteria showed decrease of bacteria viability up to1.24±0.68 log cfu/ml. The resistant isolates at low pH were L12, L16, L17, L19, L20, M10, P8, S3, S19 and S20. Identification with API test CHL 50 for 10 isolates showed that four isolates were identified as Lactobacillus plantarum, L. brevis, L. pentosus and Lactococuslactis.

  15. Nitrous oxide production in soil isolates of nitrate-ammonifying bacteria

    NARCIS (Netherlands)

    Streminska, M.A.; Felgate, H.; Rowley, G.; Richardson, D.J.; Baggs, E.M.

    2012-01-01

    Here we provide the first demonstration of the potential for N2O production by soil-isolated nitrate-ammonifying bacteria under different C and N availabilities, building on characterizations informed from model strains. The potential for soil-isolated Bacillus sp. and Citrobacter sp. to reduce

  16. European multicenter study on antimicrobial resistance in bacteria isolated from companion animal urinary tract infections

    DEFF Research Database (Denmark)

    Marques, Cátia; Gama, Luís Telo; Belas, Adriana

    2016-01-01

    for fluoroquinolone-resistant Proteus spp. isolated from companion animals from Belgium. CONCLUSIONS: This work brings new insights into the current status of antimicrobial resistance in bacteria isolated from companion animals with UTI in Europe and reinforces the need for strategies aiming to reduce resistance....

  17. Frequency and antibiotic resistance patterns of isolated bacteria from positive blood culture of hospitalized patients

    Directory of Open Access Journals (Sweden)

    Azadeh Vahedi

    2018-03-01

    Conclusion: The most prevalent bacterial isolate among the blood cultures of patients was Pseudomonas. The patients more than 50 years were more susceptible to blood stream infections. The most bacteria were isolated from the internal medicine department of hospital. The antibiotic resistance was also increasing especially in Acinetobacter, Staphylococcus coagulase negative, Escherichia coil and Klebsiella

  18. Isolation of Lactic Acid Bacteria with High Biological Activity from Local Fermented Dairy Products

    OpenAIRE

    B. Munkhtsetseg; M. Margad-Erdene; B. Batjargal

    2009-01-01

    The thirty-two strains of lactic acid bacteria were isolated from the Mongolian traditional fermented dairy products, among them 25 strains show antimicrobial activity against test microorganisms including Escherichia coli , Staphylococcus aureus , Enterococcus faecalis , Pseudom о nas aeruginosa . Protease sensitivity assay demonstrated that the antimicrobial substances produced by isolates А 23, Т 2 are bacterio...

  19. Transcriptional analysis of disk abalone (Haliotis discus discus) antioxidant enzymes against marine bacteria and virus challenge.

    Science.gov (United States)

    De Zoysa, Mahanama; Whang, Ilson; Nikapitiya, Chamilani; Oh, Chulhong; Choi, Cheol Young; Lee, Jehee

    2011-07-01

    Diverse antioxidant enzymes are essential for marine organisms to overcome oxidative stress as well as for the fine-tuning of immune reactions through activating different signal transduction pathways. This study describes the transcriptional analysis of antioxidant enzymes of disk abalone by challenging with bacteria (Vibrio alginolyticus, Vibrio parahemolyticus, and Listeria monocytogenes) and viral hemorrhagic septicemia virus (VHSV). Upon bacteria and VHSV challenge, Manganese superoxide dismutase (MnSOD), Copper, Zinc superoxide dismutase (CuZnSOD), catalase, thioredoxin peroxidase (TPx), Selenium-dependent glutathione peroxidase (SeGPx), and thioredoxin-2 (TRx-2) expression levels were altered in gills, and hemocytes at different magnitudes. In gills, only MnSOD, catalase, and SeGPx genes were completely upregulated by post-challenge of bacterial and VHSV. Among them, SeGPx demonstrated strong upregulation by 16-fold (bacteria) and 2-fold (VHSV) in gills, and 5-fold (bacteria) and 3.0-fold (VHSV) in hemocytes. None of the genes examined were downregulated (in gills and hemocytes) by bacteria challenge even though CuZnSOD and TPx showed downregulation (completely) in hemocytes by VHSV. In general, abalone hemocytes had lower potential to induce antioxidant enzyme transcripts upon bacteria and VHSV challenge than gills. Based upon these results, we suggest that abalones induce oxidative stress in tissues during the bacteria and VHSV challenge, and the identified response of antioxidant enzymes could be supported for maintaining a low-level of reactive oxygen species (ROS) that may serve as a signal for activating immune reactions against pathogenic conditions. Copyright © 2011 Elsevier Ltd. All rights reserved.

  20. Antioxidant and Antimicrobial Potential of the Bifurcaria bifurcata Epiphytic Bacteria

    OpenAIRE

    Horta, André; Pinteus, Susete; Alves, Celso; Fino, Nádia; Silva, Joana; Fernandez, Sara; Rodrigues, Américo; Pedrosa, Rui

    2014-01-01

    This article belongs to the Special Issue Selected Papers from the 14th International Symposium on Marine Natural Products Surface-associated marine bacteria are an interesting source of new secondary metabolites. The aim of this study was the isolation and identification of epiphytic bacteria from the marine brown alga, Bifurcaria bifurcata, and the evaluation of the antioxidant and antimicrobial activity of bacteria extracts. The identification of epiphytic bacteria was determined by 16S...

  1. Isolation of lipolytic bacteria from Colombian Andean soils

    DEFF Research Database (Denmark)

    Jaramillo, Paola Andrea Palacios; Borda-Molina, Daniel; Montaña, José Salvador

    2017-01-01

    soils under low temperatures were sampled: paramo and glacier soils from "Los Nevados" National Natural Park. Both soils were enriched through a fed-batch fermentation using olive oil as the inductor substrate. Forty-three lipolytic isolates were obtained and their taxonomic assignments were performed...... on the basis of 16S rDNA gene sequencing. In both cases, the phylum Proteobacteria represented the majority of the isolates. Qualitative assays to measure the lipolytic activity were performed by using tributyrin, triolein or olive oil (1%). Two isolates identified as Pseudomonas psychrophila...

  2. Use of mycelia as paths for the isolation of contaminant‐degrading bacteria from soil

    Science.gov (United States)

    Furuno, Shoko; Remer, Rita; Chatzinotas, Antonis; Harms, Hauke; Wick, Lukas Y.

    2012-01-01

    Summary Mycelia of fungi and soil oomycetes have recently been found to act as effective paths boosting bacterial mobility and bioaccessibility of contaminants in vadose environments. In this study, we demonstrate that mycelia can be used for targeted separation and isolation of contaminant‐degrading bacteria from soil. In a ‘proof of concept’ study we developed a novel approach to isolate bacteria from contaminated soil using mycelia of the soil oomycete Pythium ultimum as translocation networks for bacteria and the polycyclic aromatic hydrocarbon naphthalene (NAPH) as selective carbon source. NAPH‐degrading bacterial isolates were affiliated with the genera Xanthomonas, Rhodococcus and Pseudomonas. Except for Rhodococcus the NAPH‐degrading isolates exhibited significant motility as observed in standard swarming and swimming motility assays. All steps of the isolation procedures were followed by cultivation‐independent terminal 16S rRNA gene terminal fragment length polymorphism (T‐RFLP) analysis. Interestingly, a high similarity (63%) between both the cultivable NAPH‐degrading migrant and the cultivable parent soil bacterial community profiles was observed. This suggests that mycelial networks generally confer mobility to native, contaminant‐degrading soil bacteria. Targeted, mycelia‐based dispersal hence may have high potential for the isolation of bacteria with biotechnologically useful properties. PMID:22014110

  3. Identification of chitinolytic bacteria isolated from shrimp pond sediment and characterization of their chitinase encoding gene

    Science.gov (United States)

    Triwijayani, A. U.; Puspita, I. D.; Murwantoko; Ustadi

    2018-03-01

    Chitinolytic bacteria are a group of bacteria owning enzymes that able to hydrolyze chitin. Previously, we isolated chitinolytic bacteria from shrimp pond sediment in Bantul, Yogyakarta, and obtained five isolates showing high chitinolytic index named as isolate PT1, PT2, PT5, PT6 and PB2. The aims of this study were to identify chitinolytic bacteria isolated from shrimp pond sediment and to characterize the chitinase encoding gene from each isolate. The molecular technique was performed by amplification of 16S rDNA, amplification of chitinase encoding gene and sequence analysis. Two chitinolytic bacteria of PT1 and PT2 were similar to Aeromonas bivalvium strain D15, PT5 to Pseudomonas stutzeri strain BD-2.2.1, PT6 to Serratia marcescens strain FZSF02 and PB2 to Streptomyces misionensis strain OsiRt-1. The comparison of chitinase encoding gene between three isolates with those in Gen Bank shows that PT1 had similar sequences with the chi1 gene in Aeromonas sp. 17m, PT2 with chi1 gene in A. caviae (CB101) and PT6 with chiB gene in S. Marcescens (BJL200).

  4. Screening of marine seaweeds for bioactive compound against fish pathogenic bacteria and active fraction analysed by gas chromatography– mass spectrometry

    Directory of Open Access Journals (Sweden)

    Rajasekar Thirunavukkarasu

    2014-05-01

    Full Text Available Objective: To isolate bioactive molecules from marine seaweeds and check the antimicrobial activity against the fish pathogenic bacteria. Methods: Fresh marine seaweeds Gracilaria edulis, Kappaphycus spicifera, Sargassum wightii (S. wightii were collected. Each seaweed was extracted with different solvents. In the study, test pathogens were collected from microbial type culture collection. Antibacterial activity was carried out by using disc diffusion method and minimum inhibition concentration (MIC was calculated. Best seaweed was analysed by fourier transform infrared spectroscopy. The cured extract was separated by thin layer chromatography (TLC. Fraction was collected from TLC to check the antimicrobial activity. Best fraction was analysed by gas chromatography mass spectrometer (GCMS. Results: Based on the disc diffusion method, S. wightii showed a better antimicrobial activity than other seaweed extracts. Based on the MIC, methanol extract of S. wightii showed lower MIC than other solvents. S. wightii were separated by TLC. In this TLC, plate showed a two fraction. These two fractions were separated in preparative TLC and checked for their antimicrobial activity. Fraction 2 showed best MIC value against the tested pathogen. Fraction 2 was analysed by GCMS. Based on the GCMS, fraction 2 contains n-hexadecanoic acid (59.44%. Conclusions: From this present study, it can be concluded that S. wightii was potential sources of bioactive compounds.

  5. Glyphosate Utilization as the Source of Carbon: Isolation and Identification of new Bacteria

    Directory of Open Access Journals (Sweden)

    M. Mohsen Nourouzi

    2011-01-01

    Full Text Available Mixed bacteria from oil palm plantation soil (OPS were isolated to investigate their ability to utilize glyphosate as carbon source. Results showed that approximately all of the glyphosate was converted to aminomethyl-phosphonic acid (AMPA (99.5%. It is worthy to note that mixed bacteria were able to degrade only 2% of AMPA to further metabolites. Two bacterial strains i.e. Stenotrophomonas maltophilia and Providencia alcalifaciens were obtained from enrichment culture. Bacterial isolates were cultured individually on glyphosate as a sole carbon source. It was observed that both isolates were able to convert glyphosate to AMPA.

  6. Pseudomonas mesophilica and an unnamed taxon, clinical isolates of pink-pigmented oxidative bacteria.

    Science.gov (United States)

    Gilardi, G L; Faur, Y C

    1984-10-01

    Twenty-one strains of pink-pigmented bacteria, isolated from human clinical specimens and an environmental source, were compared with Pseudomonas mesophilica ATCC 29983 and Protaminobacter ruber ATCC 8457. These isolates were gram-negative, oxidative rods which were motile by means of a single polar flagellum; gave positive catalase, indophenol oxidase, urease, and amylase reactions; and grew slowly at 30 degrees C. Fourteen isolates conformed to the designated type strains Pseudomonas mesophilica ATCC 29983 and Protaminobacter ruber ATCC 8457. The remaining seven strains represented an undescribed taxon. These pink bacteria appear to be invaders of debilitated patients with an underlying chronic disease.

  7. Amylase activity of a starch degrading bacteria isolated from soil ...

    African Journals Online (AJOL)

    STORAGESEVER

    2008-09-17

    Sep 17, 2008 ... was maximum in the temperature range of 50 - 70oC, whereas this temperature range was deleterious for this ... The starch nutrient medium was inoculated with a single isolated .... (1983) high temperature may inactivate the.

  8. Isolation of aerobic bacteria from ticks infested sheep in Iraq

    Directory of Open Access Journals (Sweden)

    Waleed Ibrahem Jalil

    2016-01-01

    Conclusions: The high isolation rate of aerobic pathogens from ticks might reflect the active contribution of this arthropod in environmental contamination and increase the probability of transmitting bacterial pathogens to their hosts.

  9. Antibacterial activities of lactic acid bacteria isolated from cow ...

    African Journals Online (AJOL)

    Method: Escherichia coli, Klebsiella species (spp) and LAB were isolated from thirty different cow faecal samples and the .... The PCR products were purified and sequenced for the ... their ability to produce bacteriocin-like inhibitory sub-.

  10. Comparative evaluation of the bacteria isolated from decomposing ...

    African Journals Online (AJOL)

    Six (6) bacterial species Bacillus circulans, Bacillus pumilus, Bacillus subtilis, Micrococcus luteus, Streptococcus faecalis and Streptococcus lactis were isolated from decomposing cow milk, while four (4) bacterial species namely Bacillus brevis, Bacillus licheniformis, Lactobacillus casei and Staphylococcus epidermidis ...

  11. Isolation of hydrolase producing bacteria from Sua pan solar ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-10-19

    Oct 19, 2009 ... sp. Sua-BAC020 were studied further. Isolate Sua-BAC005 affiliated with Bacillus amyloliquefaciens secreted ... halotolerant eubacteria from Sua pan evaporator ponds in ... PCR fragments were ligated into pGEM-T Easy.

  12. Isolation of thermotolerant, halotolerant, facultative biosurfactant-producing bacteria.

    Science.gov (United States)

    Ghojavand, H; Vahabzadeh, F; Mehranian, M; Radmehr, M; Shahraki, Kh A; Zolfagharian, F; Emadi, M A; Roayaei, E

    2008-10-01

    Several facultative bacterial strains tolerant to high temperature and salinity were isolated from the oil reservoir brines of an Iranian oil field (Masjed-I Soleyman). Some of these isolates were able to grow up to 60 degrees C and at high concentration of NaCl (15% w/v). One of the isolates grew at 40 degrees C, while it was able to grow at 15% w/v NaCl. Tolerances to NaCl levels decreased as the growth temperatures were increased. Surfactant production ability was detected in some of these isolates. The use of biosurfactant is considered as an effective mechanism in microbial-enhanced oil recovery processes detected in some of these isolates. The surfactant producers were able to grow at high temperatures and salinities to about 55 degrees C and 10% w/v, respectively. These isolates exhibited morphological and physiological characteristics of the Bacillus genus. The partial sequencing of the 16S ribosomal deoxyribonucleic acid gene of the selected isolates was assigned them to Bacillus subtilis group. The biosurfactant produced by these isolates caused a substantial decrease in the surface tension of the culture media to 26.7 mN/m. By the use of thin-layer chromatography technique, the presence of the three compounds was detected in the tested biosurfactant. Infrared spectroscopy and (1)H nuclear magnetic resonance analysis were used, and the partial structural characterization of the biosurfactant mixture of the three compounds was found to be lipopeptidic in nature. The possibility of use of the selected bacterial strains reported, in the present study, in different sectors of the petroleum industry has been addressed.

  13. The isolation and identification of endophytic bacteria from mangrove (Sonneratia alba) that produces gelatinase

    Science.gov (United States)

    Nursyam, H.; Prihanto, A. A.; Warasari, N. I.; Saadah, M.; Masrifa, R. E.; Nabila, N. A.; Istiqfarin, N.; Siddiq, I. J.

    2018-04-01

    Gelatinase is an enzyme that hydrolyze gelatin into gelatin hydrolyzate. The purpose of this study was to isolate and to identify endophytic bacteria from Sonneratia alba mangrove which able to produce gelatinase enzyme. Sonneratia alba mangroves was obtained from Bajul Mati Beach, Malang Regency. The samples in this study were, stems, and leaves. Pure cultured bacteria were investigated for its capability for producing gelatinase enzyme by using gelatin media. Best producer would further be analyzed its species using microbact system. Screening process resulted in 3 positive isolates, namely code isolate of R, B, and L. R which was isolate from root of S. alba was the best producer for gelatinase. Identification process with morphology and microbact system revelaed that A. SBM is a Gram-negative bacterium that has a basil cell shape, with a diameter colony of 2.19 mm. Based on the microbact system test carried out, the bacteria is Pseudomonas aeruginosa.

  14. Isolation of Fecal Coliform Bacteria from the Diamondback Terrapin (Malaclemys terrapin centrata)

    OpenAIRE

    Harwood, Valerie J.; Butler, Joseph; Parrish, Danny; Wagner, Victoria

    1999-01-01

    Total and fecal coliform bacteria were isolated from the cloaca and feces of the estuarine diamondback terrapin. The majority of samples contained fecal coliforms. Escherichia coli was the predominant fecal coliform species isolated, and members of the genus Salmonella were isolated from 2 of 39 terrapins. Fecal coliform numbers are used to regulate shellfish harvests, and diamondback terrapins inhabit the brackish-water habitats where oyster beds are found; therefore, these findings have imp...

  15. Pseudomonas mesophilica and an unnamed taxon, clinical isolates of pink-pigmented oxidative bacteria.

    OpenAIRE

    Gilardi, G L; Faur, Y C

    1984-01-01

    Twenty-one strains of pink-pigmented bacteria, isolated from human clinical specimens and an environmental source, were compared with Pseudomonas mesophilica ATCC 29983 and Protaminobacter ruber ATCC 8457. These isolates were gram-negative, oxidative rods which were motile by means of a single polar flagellum; gave positive catalase, indophenol oxidase, urease, and amylase reactions; and grew slowly at 30 degrees C. Fourteen isolates conformed to the designated type strains Pseudomonas mesoph...

  16. Inhibitory effect of bacteriocin-producing lactic acid bacteria against histamine-forming bacteria isolated from Myeolchi-jeot

    Directory of Open Access Journals (Sweden)

    Eun-Seo Lim

    2016-12-01

    Full Text Available Abstract The objectives of this study were to identify the histamine-forming bacteria and bacteriocin- producing lactic acid bacteria (LAB isolated from Myeolchi-jeot according to sequence analysis of the 16S rRNA gene, to evaluate the inhibitory effects of the bacteriocin on the growth and histamine accumulation of histamine-forming bacteria, and to assess the physico-chemical properties of the bacteriocin. Based on 16S rRNA gene sequences, histamine-forming bacteria were identified as Bacillus licheniformis MCH01, Serratia marcescens MCH02, Staphylococcus xylosus MCH03, Aeromonas hydrophila MCH04, and Morganella morganii MCH05. The five LAB strains identified as Pediococcus acidilactici MCL11, Leuconostoc mesenteroides MCL12, Enterococcus faecium MCL13, Lactobacillus sakei MCL14, and Lactobacillus acidophilus MCL15 were found to produce an antibacterial compound with inhibitory activity against the tested histamine-producing bacteria. The inhibitory activity of these bacteriocins obtained from the five LAB remained stable after incubation at pH 4.0–8.0 and heating for 10 min at 80 °C; however, the bacteriocin activity was destroyed after treatment with papain, pepsin, proteinase K, α-chymotrypsin, or trypsin. Meanwhile, these bacteriocins produced by the tested LAB strains also exhibited histamine-degradation ability. Therefore, these antimicrobial substances may play a role in inhibiting histamine formation in the fermented fish products and preventing seafood-related food-borne disease caused by bacterially generated histamine.

  17. Anti-bacteria effect of active ingredients of siraitia grosvenorii on the spoilage bacteria isolated from sauced pork head meat

    Science.gov (United States)

    Li, X.; Xu, L. Y.; Cui, Y. Q.; Pang, M. X.; Wang, F.; Qi, J. H.

    2018-01-01

    Extraction and anti-bacteria effect of active ingredients of Siraitia grosvenorii were studied in this paper. Extraction combined with ultrasonic was adopted. The optimum extraction condition was determined by single factor test; the anti-bacteria effect of active ingredients and minimum inhibitory concentration (MIC) were valued by Oxford-cup method. The results indicated that optimum extraction condition of active ingredients extracted from Siraitia grosvenorii were described as follows: ethanol concentrations of sixty-five percent and twenty minutes with ultrasonic assisted extraction; the active ingredients of Siraitia grosvenorii had anti-bacteria effect on Staphylococcus epidermidis, Proteus vulgaris, Bacillus sp, Serratia sp and MIC was 0.125g/mL, 0.0625g/mL, 0.125g/mL and 0.125g/mL. The active constituent of Siraitia grosvenorii has obvious anti-bacteria effect on the spoilage bacteria isolated from Sauced pork head meat and can be used as a new natural food preservation to prolong the shelf-life of Low-temperature meat products.

  18. Effect of low-dose ionizing radiation on luminous marine bacteria: radiation hormesis and toxicity.

    Science.gov (United States)

    Kudryasheva, N S; Rozhko, T V

    2015-04-01

    The paper summarizes studies of effects of alpha- and beta-emitting radionuclides (americium-241, uranium-235+238, and tritium) on marine microorganisms under conditions of chronic low-dose irradiation in aqueous media. Luminous marine bacteria were chosen as an example of these microorganisms; bioluminescent intensity was used as a tested physiological parameter. Non-linear dose-effect dependence was demonstrated. Three successive stages in the bioluminescent response to americium-241 and tritium were found: 1--absence of effects (stress recognition), 2--activation (adaptive response), and 3--inhibition (suppression of physiological function, i.e. radiation toxicity). The effects were attributed to radiation hormesis phenomenon. Biological role of reactive oxygen species, secondary products of the radioactive decay, is discussed. The study suggests an approach to evaluation of non-toxic and toxic stages under conditions of chronic radioactive exposure. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Streptomyces verrucosisporus sp. nov., isolated from marine sediments.

    Science.gov (United States)

    Phongsopitanun, Wongsakorn; Kudo, Takuji; Ohkuma, Moriya; Pittayakhajonwut, Pattama; Suwanborirux, Khanit; Tanasupawat, Somboon

    2016-09-01

    Five actinomycete isolates, CPB1-1T, CPB2-10, BM1-4, CPB3-1 and CPB1-18, belonging to the genus Streptomyces were isolated from marine sediments collected from Chumphon Province, Thailand. They produced open loops of warty spore chains on aerial mycelia. ll-Diaminopimelic acid, glucose and ribose were found in their whole-cell hydrolysates. Polar lipids found were diphosphatidylglycerol, phosphatidylethanolamine, lysophosphatidylethanolamine, phosphatidylglycerol, phosphatidylinositol and phosphatidylinositol mannoside. Menaquinones were MK-9(H6), MK-9(H8), MK-10(H6) and MK-10(H8). Major cellular fatty acids were anteiso-C15 : 0, anteiso-C17 : 0 and iso-C16 : 0. The taxonomic position of the strains was described using a polyphasic approach. blastn analysis of the 16S rRNA gene sequence revealed that these five strains exhibited the highest similarities with 'Streptomyces mangrovicola' GY1 (99.0 %), Streptomyces fenghuangensisGIMN4.003T (98.6 %), Streptomyces barkulensisRC 1831T (98.5 %) and Streptomyces radiopugnans R97T (98.3 %). However, their phenotypic characteristics and 16S rRNA gene sequences as well as DNA-DNA relatedness differentiated these five strains from the other species of the genus Streptomyces. Here, we propose the novel actinomycetes all being representatives of the same novel species, Streptomyces verrucosisporus, with type strain CPB1-1T (=JCM 18519T=PCU 343T=TISTR 2344T).

  20. Streptomyces ovatisporus sp. nov., isolated from deep marine sediment.

    Science.gov (United States)

    Veyisoglu, Aysel; Cetin, Demet; Inan Bektas, Kadriye; Guven, Kiymet; Sahin, Nevzat

    2016-11-01

    The taxonomic position of a Gram-staining-positive strain, designated strain S4702T was isolated from a marine sediment collected from the southern Black Sea coast, Turkey, determined using a polyphasic approach. The isolate was found to have chemotaxonomic, morphological and phylogenetic properties consistent with its classification as representing a member of the genus Streptomyces and formed a distinct phyletic line in the 16S rRNA gene tree. S4702T was found to be most closely related to the type strains of Streptomyces marinus(DSM 41968T; 97.8 % sequence similarity) and Streptomyces abyssalis (YIM M 10400T; 97.6 %). 16S rRNA gene sequence similarities with other members of the genus Streptomyces were lower than 97.5 %. DNA-DNA relatedness of S4702T and the most closely related strain S. marinus DSM 41968T was 21.0 %. The G+C content of the genomic DNA was 72.5 mol%. The cell wall of the strain contained l,l-diaminopimelic acid and the cell-wall sugars were glucose and ribose. The major cellular fatty acids were identified as anteiso-C15 : 0, iso-C16 : 0, anteiso-C17 : 0 and iso-C15 : 0. The predominant menaquinone was MK-9(H8). The polar lipid profile of S4702T consisted of diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol, phosphatidylinositol and phosphatidylinositol mannoside. S4702T could be distinguished from its closest phylogenetic neighbours using a combination of chemotaxonomic, morphological and physiological properties. Consequently, it is proposed that S4702T represents a novel species of the genus Streptomyces, for which the name Streptomyces ovatisporus sp. nov. is proposed. The type strain is S4702T (DSM 42103T=KCTC 29206T=CGMCC 4.7357T).

  1. Isolation, Identification And Screening Antibacterial Activity from Marine Sponge-Associated Fungi Against Multidrug-Resistant (MDR) Escherichia coli

    Science.gov (United States)

    Triandala Sibero, Mada; Sabdaningsih, Aninditia; Cristianawati, Olvi; Nuryadi, Handung; Karna Radjasa, Ocky; Sabdono, Agus; Trianto, Agus

    2017-02-01

    Irrational used of antibiotic in several decades ago causing resistant in bacteria and decreasing the cure rate of infectious diseases. Multidrug-resistant (MDR) Escherichia coli is known to cause various of infectious diseases such as urinary tract infection, nosocomial bloodstream infection, meningitis, bacteraemia, and gastrointestinal disease. Marine sponge-associated fungi have potential as source of new compound to combat MDR E. coli. The aims of this research were to isolate marine sponge-assosiated fungi, to screen potential fungi against MDR E. coli, to identify the potential fungi and its host sponge. There were 29 marine sponge-associated fungi successfully isolated from 9 sponges. Among 29 sponge-associated fungi screened, there were 7 isolates showed antibacterial activity against MDR E. coli. The best inhibition zone produced by MPS 14.1/MT 02 and MPS 14.3/MT 04 from sponge PP.SP.16.14. According to fungi identification result fungus MPS 14.1/MT 02 was identified as Trichoderma asperellum while MPS 14.3/MT 04 was identified as Trichoderma reesei. Sponge identification leaded the PP.SP.16.14 as Cinachyrella sp.

  2. Thermostable 𝜶-Amylase Activity from Thermophilic Bacteria Isolated from Bora Hot Spring, Central Sulawesi

    Science.gov (United States)

    Gazali, F. M.; Suwastika, I. N.

    2018-03-01

    α-Amylase is one of the most important enzyme in biotechnology field, especially in industrial application. Thermostability of α-Amylase produced by thermophilic bacteria improves industrial process of starch degradation in starch industry. The present study were concerned to the characterization of α-Amylase activity from indigenous thermophilic bacteria isolated from Bora hot spring, Central Sulawesi. There were 18 isolates which had successfully isolated from 90°C sediment samples of Bora hot spring and 13 of them showed amylolytic activity. The α-Amylase activity was measured qualitatively at starch agar and quantitatively based on DNS (3,5-Dinitrosalicylic acid) methods, using maltose as standard solution. Two isolates (out of 13 amylolytic bacteria), BR 002 and BR 015 showed amylolytic index of 0.8 mm and 0.5 mm respectively, after being incubated at 55°C in the 0.002% Starch Agar Medium. The α-Amylase activity was further characterized quantitatively which includes the optimum condition of pH and temperature of α-Amylase crude enzyme from each isolate. To our knowledge, this is the first report on isolation and characterization of a thermostable α-Amylase from thermophilic bacteria isolated from Central Sulawesi particularly from Bora hot spring.

  3. Isolation and identification of cellulolytic bacteria from termites gut (Cryptotermes sp.)

    Science.gov (United States)

    Peristiwati; Natamihardja, Y. S.; Herlini, H.

    2018-05-01

    The energy and environmental crises developed due to a huge amount of cellulosic materials are disposed of as “waste.” Cellulose is the most abundant biopolymer on Earth. The hydrolysis of cellulose to glucose and soluble sugars has thus become a subject of intense research. Termites are one of the most important soil insects that efficiently decompose lignocelluloses with the aid of their associated microbial symbionts to a simpler form of sugars. The steps of this study consisted of cellulose isolation, cellulolytic bacteria isolation and identification. Cellulose degrading bacteria from termite (Cryptotermes sp.) gut flora were isolated, screened and their identification was studied which showed halo zones due to CMC agar. Among 12 isolates of bacteria, six isolates were cellulolytic. MLC-A isolate had shown a maximum in a cellulolytic index (1.32). Each isolate was identified based on standard physical and biochemical tests. Three isolates were identified in the genus of Clostridium, one isolate be placed in the group of Mycobacteriaceae, Lactobacillaceae or Coryneform and the last one in the genus Proteus.

  4. Heavy metal and antibiotic resistance in bacteria isolated from the environment of swine farms

    International Nuclear Information System (INIS)

    Fan, Y.; Ping, C.; Mei, L.S.

    2014-01-01

    The aim of the present study was to determine the level of heavy metal resistance and antibiotic resistance patterns of bacterial isolates from environment of swine farms in China. A total of 284 bacteria were isolated, 158 from manure, 62 from soil and 64 from wastewater in different swine farm samples. All the isolates were tested for resistant against eight heavy metals. From the total of 284 isolates, maximum bacterial isolates were found to be resistant to Zn/sup 2+/ (98.6%) followed by Cu/sup 2+/ (97.5%), Cd/sup 2+/ (68.3%), Mn/sup 2+/ (60.2%), Pb/sup 2+/(51.4%), Ni/sup 2+/(41.5%) and Cr/sup 2+/(45.1%). However, most of the isolates were sensitive to Co/sup 2+/. Meanwhile,all the isolates were tested for sensitively to nine antibiotics. The results shows that most isolates were sensitive to cefoxitin and oxacillin, but resistance to tetracycline, ampicillin, gentamicin, amikacin, erythromycin, clindamycin were widespread. Multiple resistant to metals and antibiotics were also observed in this study. Most isolates were tolerant to different concentrations of various heavy metals and antibiotics. Our results confirmed that environment of swine farms in China has a significant proportion of heavy metal and antibiotic resistant bacteria, and these bacteria constitute a potential risk for swine health and public health. (author)

  5. Seawater mesocosm experiments in the Arctic uncover differential transfer of marine bacteria to aerosols.

    Science.gov (United States)

    Fahlgren, Camilla; Gómez-Consarnau, Laura; Zábori, Julia; Lindh, Markus V; Krejci, Radovan; Mårtensson, E Monica; Nilsson, Douglas; Pinhassi, Jarone

    2015-06-01

    Biogenic aerosols critically control atmospheric processes. However, although bacteria constitute major portions of living matter in seawater, bacterial aerosolization from oceanic surface layers remains poorly understood. We analysed bacterial diversity in seawater and experimentally generated aerosols from three Kongsfjorden sites, Svalbard. Construction of 16S rRNA gene clone libraries from paired seawater and aerosol samples resulted in 1294 sequences clustering into 149 bacterial and 34 phytoplankton operational taxonomic units (OTUs). Bacterial communities in aerosols differed greatly from corresponding seawater communities in three out of four experiments. Dominant populations of both seawater and aerosols were Flavobacteriia, Alphaproteobacteria and Gammaproteobacteria. Across the entire dataset, most OTUs from seawater could also be found in aerosols; in each experiment, however, several OTUs were either selectively enriched in aerosols or little aerosolized. Notably, a SAR11 clade OTU was consistently abundant in the seawater, but was recorded in significantly lower proportions in aerosols. A strikingly high proportion of colony-forming bacteria were pigmented in aerosols compared with seawater, suggesting that selection during aerosolization contributes to explaining elevated proportions of pigmented bacteria frequently observed in atmospheric samples. Our findings imply that atmospheric processes could be considerably influenced by spatiotemporal variations in the aerosolization efficiency of different marine bacteria. © 2015 Society for Applied Microbiology and John Wiley & Sons Ltd.

  6. Genomic differentiation among two strains of the PS1 clade isolated from geographically separated marine habitats

    KAUST Repository

    Jimenez Infante, Francy M.; Ngugi, David; Alam, Intikhab; Rashid, Mamoon; Ba Alawi, Wail; Kamau, Allan; Bajic, Vladimir B.; Stingl, Ulrich

    2014-01-01

    Using dilution-to-extinction cultivation, we isolated a strain affiliated with the PS1 clade from surface waters of the Red Sea. Strain RS24 represents the second isolate of this group of marine Alphaproteobacteria after IMCC14465 that was isolated

  7. Frequency of resistance in obligate anaerobic bacteria isolated from dogs, cats, and horses to antimicrobial agents.

    Science.gov (United States)

    Lawhon, S D; Taylor, A; Fajt, V R

    2013-11-01

    Clinical specimens from dogs, cats, and horses were examined for the presence of obligate anaerobic bacteria. Of 4,018 specimens cultured, 368 yielded 606 isolates of obligate anaerobic bacteria (248 from dogs, 50 from cats, and 308 from horses). There were 100 specimens from 94 animals from which only anaerobes were isolated (25 dogs, 8 cats, and 61 horses). The most common sites tested were abdominal fluid (dogs and cats) and intestinal contents (horses). The most common microorganism isolated from dogs, cats, and horses was Clostridium perfringens (75, 13, and101 isolates, respectively). The MICs of amoxicillin with clavulanate, ampicillin, chloramphenicol, metronidazole, and penicillin were determined using a gradient endpoint method for anaerobes. Isolates collected at necropsy were not tested for antimicrobial susceptibility unless so requested by the clinician. There were 1/145 isolates tested that were resistant to amoxicillin-clavulanate (resistance breakpoint ≥ 16/8 μg/ml), 7/77 isolates tested were resistant to ampicillin (resistance breakpoint ≥ 2 μg/ml), 4/242 isolates tested were resistant to chloramphenicol (resistance breakpoint ≥ 32 μg/ml), 12/158 isolates tested were resistant to clindamycin (resistance breakpoint ≥ 8 μg/ml), 10/247 isolates tested were resistant to metronidazole (resistance breakpoint ≥ 32 μg/ml), and 54/243 isolates tested were resistant to penicillin (resistance breakpoint ≥ 2 μg/ml). These data suggest that anaerobes are generally susceptible to antimicrobial drugs in vitro.

  8. Multiresistant Bacteria Isolated from Activated Sludge in Austria

    Directory of Open Access Journals (Sweden)

    Herbert Galler

    2018-03-01

    Full Text Available Wastewater contains different kinds of contaminants, including antibiotics and bacterial isolates with human-generated antibiotic resistances. In industrialized countries most of the wastewater is processed in wastewater treatment plants which do not only include commercial wastewater, but also wastewater from hospitals. Three multiresistant pathogens—extended spectrum β-lactamase (ESBL-harbouring Enterobacteriaceae (Gram negative bacilli, methicillin resistant Staphylococcus aureus (MRSA and vancomycin resistant Enterococci (VRE—were chosen for screening in a state of the art wastewater treatment plant in Austria. Over an investigation period of six months all three multiresistant pathogens could be isolated from activated sludge. ESBL was the most common resistance mechanism, which was found in different species of Enterobacteriaceae, and in one Aeromonas spp. Sequencing of ESBL genes revealed the dominance of genes encoding members of CTX-M β-lactamases family and a gene encoding for PER-1 ESBL was detected for the first time in Austria. MRSA and VRE could be isolated sporadically, including one EMRSA-15 isolate. Whereas ESBL is well documented as a surface water contaminant, reports of MRSA and VRE are rare. The results of this study show that these three multiresistant phenotypes were present in activated sludge, as well as species and genes which were not reported before in the region. The ESBL-harbouring Gram negative bacilli were most common.

  9. Isolation and identification of phenol degrading bacteria from Lake ...

    African Journals Online (AJOL)

    Phenol and its components are extremely toxic and can easily be isolated from different industrial sewage such as oil refinery, petrochemical industry and mines, especially collier and chemical factories. Hence the presence of these compounds in the environment could cause environmental pollution, especially in water ...

  10. Antimicrobial activities of lactic acid bacteria isolated from akamu ...

    African Journals Online (AJOL)

    SAM

    2014-07-16

    Jul 16, 2014 ... culturing on slants of appropriate media and stored at 4°C. Before each experiment ... as frozen culture in MRS broth supplemented with 25% sterile glycerol .... isolates was heated at different temperatures ranging from 40 to. 80°C for .... following treatment at pH 4.0, while complete inactivation occurred at ...

  11. Isolation of hydrogen-producing bacteria from biodigesters

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, S.V.; Servulo, E.F.C.; Da Silva, I.M.; Martelli, H.L.

    1984-01-01

    Two H2-producing strains belonging to the Enterobacteriaceae were isolated from biodigesters, fed sugarcane distillation slops, from acetone-butanol fermentation, under anaerobic conditions. H2 and CO2 were the only gases produced from glucose. H2 was 40.87% of the total gas produced by Citrobacter freundii, and 57.74% when Enterobacter agglomerans was assayed.

  12. Hydrocarbon-degrading bacteria isolation and surfactant influence ...

    African Journals Online (AJOL)

    Hydrocarbons are substantially insoluble in water, often remaining partitioned in the non-aqueous phase liquid (NAPL). However, there had been little or no attempts to advance the bioavailability of hydrocarbons through the use of surfactants. This study was conducted based on the need to isolate hydrocarbon degrading ...

  13. Multiresistant Bacteria Isolated from Activated Sludge in Austria

    Science.gov (United States)

    Feierl, Gebhard; Petternel, Christian; Reinthaler, Franz F.; Haas, Doris; Habib, Juliana; Kittinger, Clemens; Luxner, Josefa

    2018-01-01

    Wastewater contains different kinds of contaminants, including antibiotics and bacterial isolates with human-generated antibiotic resistances. In industrialized countries most of the wastewater is processed in wastewater treatment plants which do not only include commercial wastewater, but also wastewater from hospitals. Three multiresistant pathogens—extended spectrum β-lactamase (ESBL)-harbouring Enterobacteriaceae (Gram negative bacilli), methicillin resistant Staphylococcus aureus (MRSA) and vancomycin resistant Enterococci (VRE)—were chosen for screening in a state of the art wastewater treatment plant in Austria. Over an investigation period of six months all three multiresistant pathogens could be isolated from activated sludge. ESBL was the most common resistance mechanism, which was found in different species of Enterobacteriaceae, and in one Aeromonas spp. Sequencing of ESBL genes revealed the dominance of genes encoding members of CTX-M β-lactamases family and a gene encoding for PER-1 ESBL was detected for the first time in Austria. MRSA and VRE could be isolated sporadically, including one EMRSA-15 isolate. Whereas ESBL is well documented as a surface water contaminant, reports of MRSA and VRE are rare. The results of this study show that these three multiresistant phenotypes were present in activated sludge, as well as species and genes which were not reported before in the region. The ESBL-harbouring Gram negative bacilli were most common. PMID:29522474

  14. Antimicrobial Resistance Trend of Bacteria from Clinical Isolates: An ...

    African Journals Online (AJOL)

    For decades, antimicrobials have proven useful for the treatment of bacterial infections. However, the immergence of antimicrobial resistance has become a major challenge to public health in many countries. The aim of this study was to investigate the antimicrobial susceptibility of bacterial isolates from clinical sources.

  15. Isolation and characterisation of obligately anaerobic, lipolytic bacteria from the rumen of red deer.

    Science.gov (United States)

    Jarvis, G N; Strömpl, C; Moore, E R; Thiele, J H

    1998-03-01

    Two Gram-positive, obligately anaerobic, lipolytic bacteria, isolates LIP4 and LIP5, were obtained from the rumen contents of juvenile red deer. These mesophilic bacterial strains were capable of hydrolysing the neutral lipids, tallow, tripalmitin and oliver oil, into their constituent free long-chain fatty acid and glycerol moieties. The latter compound was dissimilated by both isolates, with isolate LIP4 producing propionate as the predominant product, while isolate LIP5 produced acetate, ethanol and succinate. The lactate-utilising isolate LIP4 grew on a limited range of saccharide substrates including glucose, fructose and ribose, and exhibited an unusual cell wall structure and morphology. The isolate LIP5 grew upon a wider range of saccharides, but was unable to use lactate as a substrate. Based upon phenotypic and 16S rRNA gene sequence analyses, isolate LIP4 clusters with species in the genus Propionibacterium, while isolate LIP5 is a member of clostridial cluster XIVa.

  16. Isolation of Lactic Acid Bacteria with High Biological Activity from Local Fermented Dairy Products

    Directory of Open Access Journals (Sweden)

    B. Munkhtsetseg

    2009-12-01

    Full Text Available The thirty-two strains of lactic acid bacteria were isolated from the Mongolian traditional fermented dairy products, among them 25 strains show antimicrobial activity against test microorganisms including Escherichia coli , Staphylococcus aureus , Enterococcus faecalis , Pseudom о nas aeruginosa . Protease sensitivity assay demonstrated that the antimicrobial substances produced by isolates А 23, Т 2 are bacteriocins as their antibacterial activities were eliminated completely after treatment with protease. Identi fi cation of bacteria is being carried out. Among the isolates 22 strains show protease enzyme producing activity. The selected strains isolated from mare’s fermented milk (airag or kumis and yoghurt (tarag show the speci fi c protease activity from 7.9 μ g/ml to 11.9 μ g/ml. The strain T2, isolated from yoghurt exhibited the highest proteolytic activity.

  17. Isolation and characterization of osmotolerant bacteria from Thar Desert of Western Rajasthan (India

    Directory of Open Access Journals (Sweden)

    Ramavtar Sharma

    2013-12-01

    Full Text Available The Thar Desert harsher environment harbors a limited diversity of life forms due to extreme conditions like low moisture of sandy soils and high soil temperature. In the present study, osmotolerant bacteria from the Thar soils were isolated and characterized. Bacteria were isolated from 20 soil samples (100g, collected from sand dunes, suspended in water and absolute alcohol. A total of 11 biochemical and morphological tests were carried out for generic identification of bacteria. Osmotic tolerance capacity of isolates was examined on glycerol, NaCl and alcohol; and sequencing of 16S rRNA gene was also performed for bacterial identification. 16S to 23S rRNA internal transcribed spacer analysis (RISA was done for phylogenetic analysis of isolates. The soil suspended in water contained 2.5×10(6 bacteria/g of soil while alcohol suspended soil had 4.4×10(4 bacteria/g. The 24 bacterial isolates were found tolerant to 26% glycerol, 14% NaCl and 10% of alcohol, and 22 out of 24 isolates were found Gram positive. The results showed that 45.83% and 41.67% bacteria belong to Bacillus spp. and Corynebacterium spp., respectively, while Acinetobacter spp., Aeromonas spp. and Staphylococcus spp. were in equal proportion (4.16% each. Six isolates were selected for 16S rRNA gene sequencing and five were found 95% similar with Bacillus licheniformis whereas one isolate was identified as B. subtilis. All the isolates showed good growth up to 50°C with gradual reduction on subsequent increment of temperature. Out of 24 isolates, six could survive at 65°C while one isolate could grow at 63°C. Growth kinetic studies revealed that the reduction in generation time in solute(s and temperature stress was more as compared to generation time in plain medium. This study suggests that virgin sand dunes may be a rich source of bacteria, tolerant to osmotrophic solutes, and can be examined for plant growth promotion activity in agriculture. Moreover, study might help to

  18. Antibacterial Activity of Some Lactic Acid Bacteria Isolated from an Algerian Dairy Product

    Directory of Open Access Journals (Sweden)

    Abdelkader Mezaini

    2009-01-01

    Full Text Available In the present study, the antibacterial effect of 20 lactic acid bacteria isolates from a traditional cheese was investigated. 6 isolates showed antibacterial effect against Gram positive bacteria. Streptococcus thermophilus T2 strain showed the wide inhibitory spectrum against the Gram positive bacteria. Growth and bacteriocin production profiles showed that the maximal bacteriocin production, by S. thermophilus T2 cells, was measured by the end of the late-log phase (90 AU ml−1 with a bacteriocine production rate of 9.3 (AU ml−1 h−1. In addition, our findings showed that the bacteriocin, produced by S. thermophilus T2, was stable over a wide pH range (4–8; this indicates that such bacteriocin may be useful in acidic as well as nonacidic food. This preliminarily work shows the potential application of autochthonous lactic acid bacteria to improve safety of traditional fermented food.

  19. Antibacterial Activity of Some Lactic Acid Bacteria Isolated from an Algerian Dairy Product

    International Nuclear Information System (INIS)

    Mezaini, A.; Bouras, A.D.; Mezaini, A.; Chihib, N.; Nedjar-Arroume, N.; Hornez, J.P.

    2010-01-01

    In the present study, the antibacterial effect of 20 lactic acid bacteria isolates from a traditional cheese was investigated. 6 isolates showed antibacterial effect against Gram positive bacteria. Streptococcus thermophilus T2 strain showed the wide inhibitory spectrum against the Gram positive bacteria. Growth and bacitracin production profiles showed that the maximal bacitracin production, by S. thermophilus T2 cells, was measured by the end of the late-log phase (90 AU ml -1 ) with a bacterio cine production rate of 9.3 (AU ml -1 ) h -1 . In addition, our findings showed that the bacitracin, produced by S. thermophilus T2, was stable over a wide ph range (4-8); this indicates that such bacitracin may be useful in acidic as well as non acidic food. This preliminarily work shows the potential application of autochthonous lactic acid bacteria to improve safety of traditional fermented food.

  20. Antibiotic resistance and biofilm formation of some bacteria isolated from sediment, water and fish farms in Malaysia

    Science.gov (United States)

    Faja, Orooba Meteab; Usup, Gires; Ahmad, Asmat

    2018-04-01

    A total of 90 isolates of bacteria were isolated, from sediment (10) samples, water (10) samples and fish (12) samples (Sea bass, Snapper, Grouper and Tilapia). These include 22 isolates of bacteria from sediment, 28 isolates from water and 40 isolates from fish. All the isolates were tested for sensitivity to 13 antibiotics using disc diffusion method. The isolates showed high resistance to some antibiotics based on samples source. Isolates from sediment showed highest resistance toward novobiocin, kanamycin, ampicillin and streptomycin while isolates from water showed highest resistance against vancomycin, penicillin, streptomycin and tetracycline, in contrast, in fish sample showed highest resistance toward vancomycin, ampicillin, streptomycin and tetracycline. Most of the isolates showed biofilm formation ability with different degrees. Out of 22 bacteria isolates from water, two isolates were weak biofilm formers, six isolates moderate biofilm formers and fourteen isolates strong biofilm formers. While, out of 28 bacteria isolates from water one isolate was weak biofilm former, five isolates moderate biofilm formers and 22 strong biofilm formers Fish isolate showed three isolates (8%) moderate biofilm formers and 27 isolates strong biofilm formers. Biofilm formation was one of the factors that lead to antibiotic resistance of the bacterial isolates from these samples.

  1. Bioremediation of Phenanthrene by Monocultures and Mixed Culture Bacteria Isolated from Contaminated Soil

    OpenAIRE

    A. Fazilah; I. Darah; I. Noraznawati

    2016-01-01

    Three different bacteria capable of degrading phenanthrene were isolated from hydrocarbon contaminated site. In this study, the phenanthrene-degrading activity by defined monoculture was determined and mixed culture was identified as Acinetobacter sp. P3d, Bacillus sp. P4a and Pseudomonas sp. P6. All bacteria were able to grow in a minimal salt medium saturated with phenanthrene as the sole source of carbon and energy. Phenanthrene degradation efficiencies by different combinations (consortia...

  2. Molecular diversity of thermophilic bacteria isolated from Pasinler hot spring (Erzurum, Turkey)

    OpenAIRE

    ADIGÜZEL, Ahmet; İNAN, Kadriye; ŞAHİN, Fikrettin; ARASOĞLU, Tulin; GÜLLÜCE, Medine

    2011-01-01

    The present study was conducted to determine the phenotypic and genotypic characterization of thermophilic bacteria isolated from Pasinler hot spring, Erzurum, Turkey. Fatty acid profiles, BOX PCR fingerprints, and 16S rDNA sequence data were used for the phenotypic and genotypic characterization of thermophilic bacteria. Totally 9 different bacterial strains were selected based on morphological, physiological, and biochemical tests. These strains were characterized by molecular tests includi...

  3. Isolation and Cloning of mercuric reductase gene (merA from mercury-resistant bacteria

    Directory of Open Access Journals (Sweden)

    Parisa Khoshniyat

    2018-03-01

    Full Text Available Introduction: Some of the bacteria having merA gene coding mineral mercury reducing enzyme, has genetic potential of Hg removing via reduction of mineral mercury and transformation of that to gas form and finally bioremediation of polluted area. The aim of this study is the isolation of merA gene from resistance bacteria and cloning of that into suitable expression vector and then the environmental bioremediation by the transformation of bacteria with this vector. Materials and methods: A number of bacteria were collected in contaminated areas with mercury in order to isolate merA genes. Polymerase chain reaction had done on the four bacterial genomes including Klebsiella pneumoniae, Pseudomonas aeruginosa, Serratia marcescens and Escherichia coli using the specific primers in order to detect merA gene. For cloning, the primers containing restriction enzyme sites are used, merA gene was isolated and amplified. The amplified fragments were cloned in the expression vector pET21a+ and via heat shock method were transformed into E. coli TOP10 competent cell. For clustering of genes, Mega software version 4 was used and bioanformatic studies were achieved for predicted enzyme. Results: merA gene with 1686 bp in length was isolated from K pneumoniae and E. coli. Recombinant vectors in transgenic bacteria were confirmed by various methods and finally were confirmed by sequencing. The result of clustering these genes with existence genes in NCBI showed high similarity. Discussion and conclusion: The existence of merA gene in bacteria that adapted to Hg pollution area is because of resistance, so with cloning this gene into suitable expression vector and transformation of susceptible bacteria with this vector ability of resistance to Hg in bacteria for bioremediation could be given.

  4. Isolation and Partial Characterization of Bacteria in an Anaerobic Consortium That Mineralizes 3-Chlorobenzoic Acid †

    OpenAIRE

    Shelton, Daniel R.; Tiedje, James M.

    1984-01-01

    A methanogenic consortium able to use 3-chlorobenzoic acid as its sole energy and carbon source was enriched from anaerobic sewage sludge. Seven bacteria were isolated from the consortium in mono- or coculture. They included: one dechlorinating bacterium (strain DCB-1), one benzoate-oxidizing bacterium (strain BZ-2), two butyrate-oxidizing bacteria (strains SF-1 and NSF-2), two H2-consuming methanogens (Methanospirillum hungatei PM-1 and Methanobacterium sp. strain PM-2), and a sulfate-reduci...

  5. Association of metal tolerance with multiple antibiotic resistance of bacteria isolated from drinking water.

    Science.gov (United States)

    Calomiris, J J; Armstrong, J L; Seidler, R J

    1984-06-01

    Bacterial isolates from the drinking water system of an Oregon coastal community were examined to assess the association of metal tolerance with multiple antibiotic resistance. Positive correlations between tolerance to high levels of Cu2+, Pb2+, and Zn2+ and multiple antibiotic resistance were noted among bacteria from distribution waters but not among bacteria from raw waters. Tolerances to higher levels of Al3+ and Sn2+ were demonstrated more often by raw water isolates which were not typically multiple antibiotic resistant. A similar incidence of tolerance to Cd2+ was demonstrated by isolates of both water types and was not associated with multiple antibiotic resistance. These results suggest that simultaneous selection phenomena occurred in distribution water for bacteria which exhibited unique patterns of tolerance to Cu2+, Pb2+, and Zn2+ and antibiotic resistance.

  6. Alternative methodology for isolation of biosurfactant-producing bacteria

    OpenAIRE

    Krepsky, N.; Da Silva, FS.; Fontana, LF.; Crapez, MAC.

    2007-01-01

    Wide biosurfactant application on biorremediation is limited by its high production cost. The search for cheaper biossurfactant production alternatives has guided our study. The use of selective media containing sucrose (10 g.L-1) and Arabian Light oil (2 g.L-1) as carbon sources showed to be effective to screen and maintain biosurfactant-producing consortia isolated from mangrove hydrocarbon-contaminated sediment. The biosurfactant production was assayed by kerosene, gasoline and Arabian Lig...

  7. Isolation of Capsulate Bacteria from Acute Dentoalveolar Abscesses

    OpenAIRE

    Lewis, M. A. O.; Milligan, S. G.; MacFarlane, T. W.; Carmichael, F. A.

    2011-01-01

    The presence of a capsule was determined for 198 bacterial strains (57 facultative anaerobes, 141 strict anaerobes) isobdted from pus samples aspirated from 40 acute dentoalveolar abscesses. A total of 133 (67 per cent) of the isolates (42 facultative anaerobes, 91 strict anaerobes) were found to have a capsule. Possession ofa capsule may in part explain the apparent pathogenicity of the bacterial species encountered in acute dentoalveolar abscess.Keywords - Bacterial capsule; Acute dentoalve...

  8. Enrichment of anammox bacteria fro marine environment for the construction of a bioremediation reactor

    Energy Technology Data Exchange (ETDEWEB)

    Nakajima, Jun; Sakka, Makiko; Kimura, Tetsuya; Sakka, Kazuo [Mie Univ., Tsu (Japan). Graduate School of Bioresources; Furukawa, Kenji [Kumamoto Univ. (Japan). Dept. of Civil Engineering and Architecture

    2008-01-15

    In the global ocean nitrogen cycle, the anaerobic ammonium-oxidizing (anammox) process is recognized as important. In this study, we established an enrichment culture of marine anammox bacteria (MAB) in a column-type reactor. The reactor, which included a porous polyester non-woven fabric that had been placed at the sea floor in advance for enrichment, was continuously fed with NH{sub 4}Cl and NaNO{sub 2} for more than 1 year. Anammox activity in the MAB reactor was confirmed by {sup 15}N tracer analysis using {sup 15}NH{sub 4}Cl and Na{sup 14}NO{sub 2}. We identified two 16S rRNA genes in the amplified DNA fragments derived from MAB, which were highly homologous with those from Candidatus ''Scalindua wagneri'' and an uncultured planctomycete clone. Fluorescence in situ hybridization analysis using an anammox-specific probe also confirmed that MAB predominated in the reactor. To our knowledge, this is the first report on the establishment of an enrichment culture of anammox bacteria from the marine environment using a continuous culture system. (orig.)

  9. LACTIC ACID AND ACETIC ACID BACTERIA ISOLATED FROM RED WINE

    Directory of Open Access Journals (Sweden)

    Attila Kántor

    2013-02-01

    Full Text Available The aim of our study was the identification of red wine microbiota during the fermentation process using a classical microbiological method and real-time PCR. The changes in different groups of microorganisms were monitored in total counts of bacteria, Lactobacillus cells and Acetobacter cells. Microbiological parameters were observed during the current collection and processing of wine in 2012. Samples were taken during the fermentation process in wine enterprises and were storaged with different conditions. During this period were examined 4 bottles of wine berween Cabernet Sauvignon and Frankovka modra. The total counts of bacteria ranged from 4.98±0.08 in the wine Cabernet Sauvignon at 4 °C of storage to 5.63±0.13 log CFU.ml-1 in the wine Cabernet Sauvignon at 25 °C of storage. The number of lactobacilli ranged from 2.18±0.10 in the Cabernet Sauvignon at 4 °C to 2.49±0.04 log CFU.ml-1 in the Frankovka modra wine at 25 °C of storage and the number of Acetobacter cells ranged from 4.21±0.04 in the Cabernet Sauvignon at 4 °C of storage to 4.52±0.15 log CFU.ml-1 in Cabernet Sauvignon at 25 °C of storage. The presence and sensitivity of Gram-positive and Gram-negative bacterial species Lactobacillus acidophilus, Lactobacillus crispatus, Lactobacillus salivarius, Acetobacter aceti, Acetobacter pasteurianus and Acetobacter orleaniensis were detected using Real time PCR.

  10. A novel halotolerant xylanase from marine isolate Bacillus subtilis cho40: gene cloning and sequencing

    Digital Repository Service at National Institute of Oceanography (India)

    Khandeparker, R.; Verma, P.; Deobagkar, D.

    A novel halotolerant xylanase from marine bacterium Bacillus subtilis cho40 isolated from Chorao island of Mandovi estuary Goa, India has been reported. Extracellular xylanase was produced by using agricultural residue such as wheat bran as carbon...

  11. Isolation and Structure Elucidation of a Novel Yellow Pigment from the Marine Bacterium Pseudoalteromonas tunicata

    Directory of Open Access Journals (Sweden)

    N. Kumar

    2005-10-01

    Full Text Available The marine environment is a major source for many novel natural compounds. A new yellow pigment has been isolated from the marine bacterium P. tunicata and identified as a new member of the tambjamine class of compounds. The structural identification was achieved by a combination of 1D and 2D-NMR spectroscopy and high resolution mass spectrometry data.

  12. The rapid isolation of mutants of some Gram-positive bacteria

    International Nuclear Information System (INIS)

    Dijkhuizen, L.; Keijer, L.

    1981-01-01

    In this communication the authors describe a method for isolating at high frequency independent mutants of a number of Gram-positive bacteria. The method was originally developed for use with an Arthrobacter sp. and appears to work best with this and other coryneform bacteria. All the bacteria used were from the culture collections maintained at the University of Warwick or the Centre for Applied Microbiological Research. For mutagenesis using UV light, cells were grown in complex media and used while still in the logarithmic phase of growth. Details of the irradiation procedure are given in the text. (Auth.)

  13. Isolation of previously uncultured rumen bacteria by dilution to extinction using a new liquid culture medium.

    Science.gov (United States)

    Kenters, Nikki; Henderson, Gemma; Jeyanathan, Jeyamalar; Kittelmann, Sandra; Janssen, Peter H

    2011-01-01

    A new anaerobic medium that mimics the salts composition of rumen fluid was used in conjunction with a dilution method of liquid culture to isolate fermentative bacteria from the rumen of a grass-fed sheep. The aim was to inoculate a large number of culture tubes each with a mean of 97% sequence identity to genes of uncultured bacteria detected in various gastrointestinal environments. This strategy has therefore allowed us to cultivate many novel rumen bacteria, opening the way to overcoming the lack of cultures of many of the groups detected using cultivation-independent methods. Copyright © 2010 Elsevier B.V. All rights reserved.

  14. Isolation and Characterization of Pb Resistant Bacteria from Cilalay Lake, Indonesia

    Directory of Open Access Journals (Sweden)

    Kesi Kurnia

    2015-12-01

    Full Text Available Pollution of water environment with heavy metals is becoming one of the most severe environmental and human health hazards. Lead (Pb is a major pollutant and highly toxic to human, animals, plants, and microbes. Toxic metals are difficult to remove from the environment, since they cannot be chemically or biologically degraded and are ultimately indestructible. Biological approaches based on metal-resistant microorganisms have received a great deal of attention as alternative remediation processes. This study aim to isolate and characterize Pb resistant of heterotrophic bacteria in Cilalay Lake, West Java, Indonesia. The water samples were collected along three points around Cilalay Lake. Water physical and chemical determination was performed using the Water Quality Checker. The bacterial isolates were screened on Triptone Glucose Yeast (TGY agar plates. Afterwards selected isolates were grown on Nutrient Agar media 50% with supplemented Pb 100 ppm by the standard disk. Population of resistant bacteria was counted. The result from metal resistant bacteria indicated that all isolates were resistant. The most abundant type of resistant bacteria to lead was Gram negative more than Gram positive. Identified have metal resistant bacteria could be useful for the bioremediation of heavy metal contaminated sewage and waste water

  15. Screening, Isolation and Identification of Lactic Acid Bacteria From a Traditional Dairy Product of Sabzevar, Iran

    Directory of Open Access Journals (Sweden)

    Sara Rashid

    2014-11-01

    Full Text Available Background: Lactic acid bacteria (LAB are a major group of probiotics. Isolation of these bacteria is difficult, because they have a complex ecosystem in fermented dairy products. Objectives: The aim of this study was to detect Lactobacillus and Lactococcus in a conventional dairy product (Khameh and study their probiotic characteristics. Materials and Methods: To isolateLAB, samples were collected from four different villages. Afterwards, screening was performed in pH = 2.5. The selected strains were examined for their tolerance to acidic pH (3 and 0.3% bile salt. Moreover, the antimicrobial activity of the isolated strains against two pathogenic bacteria, Salmonella typhimurium and Staphylococcus aureus, was assessed using the disc plate method. Finally, the selected strains were identified by polymerase chain reaction (PCR screening and sequencing. Results: Among the isolated samples, two strains (Lactobacillus and Lactococcus were highly resistant to unfavorable conditions and the L1 strain showed the highest antimicrobial activity. Conclusions: This study showed that the conventional dairy product (Khameh contained probiotic bacteria, which are capable of fighting against pathogenic bacteria and living in the digestive tract.

  16. A Comparative biochemical study on two marine endophytes, Bacterium SRCnm and Bacillus sp. JS, Isolated from red sea algae.

    Science.gov (United States)

    Ahmed, Eman Fadl; Hassan, Hossam Mokhtar; Rateb, Mostafa Ezzat; Abdel-Wahab, Noha; Sameer, Somayah; Aly Taie, Hanan Anwar; Abdel-Hameed, Mohammed Sayed; Hammouda, Ola

    2016-01-01

    Two marine endophytic bacteria were isolated from the Red Sea algae; a red alga; Acanthophora dendroides and the brown alga Sargassum sabrepandum. The isolates were identified based on their 16SrRNA sequences as Bacterium SRCnm and Bacillus sp. JS. The objective of this study was to investigate the potential anti-microbial and antioxidant activities of the extracts of the isolated bacteria grown in different nutrient conditions. Compared to amoxicillin (25μg/disk) and erythromycin (15μg/disk), the extracts of Bacterium SRCn min media II, III, IV and V were potent inhibitors of the gram-positive bacterium Sarcina maxima even at low concentrations. Also, the multidrug resistant Staphylococcus aureus(MRSA) was more sensitive to the metabolites produced in medium (II) of the same endophyte than erythromycin (15μg/disk). A moderate activity of the Bacillus sp. JS extracts of media I and II was obtained against the same pathogen. The total compounds (500ug/ml) of both isolated endophytes showed moderate antioxidant activities (48.9% and 46.1%, respectively). LC/MS analysis of the bacterial extracts was carried out to investigate the likely natural products produced. Cyclo(D-cis-Hyp-L-Leu), dihydrosphingosine and 2-Amino-1,3-hexadecanediol were identified in the fermentation medium of Bacterium SRCnm, whereas cyclo (D-Pro-L-Tyr) and cyclo (L-Leu-L-Pro) were the suggested compounds of Bacillus sp. JS.

  17. Isolation, Characterization, and Molecular Identification of Phosphate Solubilizing Bacteria from Several Tropical Soils

    Directory of Open Access Journals (Sweden)

    Fahrizal Hazra

    2013-03-01

    Full Text Available The objectives of the research were: (i to isolate and characterize of phosphate solubilizing bacteria (PSB and (ii to identify PSB based on molecular amplification of 16S rRNA gene. Soil samples were collected from rhizosphere in Bogor, West Nusa Tenggara, and East Nusa Tenggara. Several stages in this research were: (i isolation PSB in Pikovskaya agar, (ii morphological and biochemical characterization of PSB, (iii measurement of phosphatase enzymes, and (iv measurement of secreting indole acetic acid phytohormone. As many as 29 isolates of PSB have been collected and three isolates of them, namely: P 3.5 (East Nusa Tenggara, P 6.2 (West Nusa Tenggara, and P 10.1 (Citeureup, West Java were chosen for further study. There were many characteristics of isolate P 10.1: (i it had capable to solubilize P with the value of highest solubilization index (1.80, (ii it had the highest phosphatase enzyme (120.40 mg kg-1, and (iii it had the highest pH decrease at each observation for six days. Isolates P 3.5 and P 10.1 were the Gram-negative bacteria with coccus shapes and isolate P 6.2 was a Gram-negative bacteria with bacillus shape. Deoxiribonucleat Acid (DNA amplification of these bacteria employing 16S rRNA primers generated the 1,300bp-PCR product. The results of the analysis of 16S rRNA gene sequences showed that isolates P 3.5 and P 10.1 has 98% similarity with Gluconacetobacter sp. strains Rg1-MS-CO and isolate P 6.2 has 97% similarity with Enterobacter sp. pp9c strains.

  18. Isolation of hydrocarbon utilizing bacteria from different ecological sources

    International Nuclear Information System (INIS)

    Iqbal, M.J.; Choudri, S.F.; Hameed, A.

    1991-01-01

    Among the various samples from different ecological sources oil contaminated soil samples and waste from sugar processing industry were found to have bacterial populations with ability of utilizing oil. In addition to oil, molasses base medium was also used to study the utilizing ability. Selection was made on the basis on the high gas production, decrease in pH, percentage of oil consumed and bacterial counts. Fermented scum and oil contaminated soil from Sehala (Islamabad) were found to contain microbes having maximum oil degrading ability. The bacterial isolates belong to the genera of Bacillus, Pseudomonas, Enterobacter and Escherichia. (author)

  19. [Isolation, identification and characterization of ACC deaminase-containing endophytic bacteria from halophyte Suaeda salsa].

    Science.gov (United States)

    Teng, Songshan; Liu, Yanping; Zhao, Lei

    2010-11-01

    We Isolated and characterized 1-aminocyclopropane-1-carboxylate (ACC) deaminase-containing endophytic bacteria from halophyte Suaeda salsa to understand the interactions between endophytes and halophyte. ACC deaminase-containing endophytic bacteria were isolated from root, stalk and leaf of Suaeda salsa and were identified based on morphological, physiological-biochemical properties, API and 16S rRNA sequence analysis. Isolates were evaluated for their ACC deaminase, antifungal, protease activity, siderophores and phytohormones, such as indole-3-acetic acid, gibberellic acid and abscisic acid production, as well as atmospheric nitrogen fixation and phosphate solubilization. Four ACC deaminase-containing endophytic bacteria strains named as LP11, SS12, TW1 and TW2 were isolated and identified as Pseudomonas oryzihabitans, Pseudomonas sp., Pantoea agglomerans and Pseudomonas putida respectively. All the strains possessed the phosphate-solubilizing ability and could produce siderophores and phytohormones more or less. None of them could fix atmospheric nitrogen or produce protease. Only strain SS12 showed antagonism against two phytopathogenic fungi viz Fusarium oxysporum f. sp. conglutinans and F. oxysporum f. sp. cucumerinum. ACC deaminase-containing endophytic bacteria of Pseudomonas sp. and Pantoea sp. isolated from halophyte Suaeda salsa have abundant biological characteristics related to plant growth promotion, stress homeostasis regulation and biocontrol activity.

  20. Isolation of acetic, propionic and butyric acid-forming bacteria from biogas plants.

    Science.gov (United States)

    Cibis, Katharina Gabriela; Gneipel, Armin; König, Helmut

    2016-02-20

    In this study, acetic, propionic and butyric acid-forming bacteria were isolated from thermophilic and mesophilic biogas plants (BGP) located in Germany. The fermenters were fed with maize silage and cattle or swine manure. Furthermore, pressurized laboratory fermenters digesting maize silage were sampled. Enrichment cultures for the isolation of acid-forming bacteria were grown in minimal medium supplemented with one of the following carbon sources: Na(+)-dl-lactate, succinate, ethanol, glycerol, glucose or a mixture of amino acids. These substrates could be converted by the isolates to acetic, propionic or butyric acid. In total, 49 isolates were obtained, which belonged to the phyla Firmicutes, Tenericutes or Thermotogae. According to 16S rRNA gene sequences, most isolates were related to Clostridium sporosphaeroides, Defluviitoga tunisiensis and Dendrosporobacter quercicolus. Acetic, propionic or butyric acid were produced in cultures of isolates affiliated to Bacillus thermoamylovorans, Clostridium aminovalericum, Clostridium cochlearium/Clostridium tetani, C. sporosphaeroides, D. quercicolus, Proteiniborus ethanoligenes, Selenomonas bovis and Tepidanaerobacter sp. Isolates related to Thermoanaerobacterium thermosaccharolyticum produced acetic, butyric and lactic acid, and isolates related to D. tunisiensis formed acetic acid. Specific primer sets targeting 16S rRNA gene sequences were designed and used for real-time quantitative PCR (qPCR). The isolates were physiologically characterized and their role in BGP discussed. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Characterization of Lactic Acid Bacteria Isolated from Sauce-type Kimchi.

    Science.gov (United States)

    Jung, Suk Hee; Park, Joung Whan; Cho, Il Jae; Lee, Nam Keun; Yeo, In-Cheol; Kim, Byung Yong; Kim, Hye Kyung; Hahm, Young Tae

    2012-09-01

    This study was carried out to investigate the isolation and characterization of lactic acid bacteria (LAB) from naturally fermented sauce-type kimchi. Sauce-type kimchi was prepared with fresh, chopped ingredients (Korean cabbage, radish, garlic, ginger, green onion, and red pepper). The two isolated bacteria from sauce-type kimchi were identified as Pediococcus pentosaceus and Lactobacillus brevis by 16S rDNA sequencing and tentatively named Pediococcus sp. IJ-K1 and Lactobacillus sp. IJ-K2, respectively. Pediococcus sp. IJ-K1 was isolated from the early and middle fermentation stages of sauce-type kimchi whereas Lactobacillus sp. IJ-K2 was isolated from the late fermentation stage. The resistance of Pediococcus sp. IJ-K1 and Lactobacillus sp. IJ-K2 to artificial gastric and bile acids led to bacterial survival rates that were 100% and 84.21%, respectively.

  2. Isolation of Brucella inopinata-Like Bacteria from White's and Denny's Tree Frogs.

    Science.gov (United States)

    Kimura, Masanobu; Une, Yumi; Suzuki, Michio; Park, Eun-Sil; Imaoka, Koichi; Morikawa, Shigeru

    2017-05-01

    Brucella inopinata strain BO1 and B. sp. strain BO2 isolated from human patients, respectively, are genetically different from classical Brucella species. We isolated bacteria of the genus Brucella from two species of wild-caught tropical frogs kept in the facilities in Japan: White's tree frog, which inhabits Oceania, and Denny's tree frog, which inhabits Southeast Asia. Phylogenetic analyses based on 16S rRNA and recA gene sequences and multilocus sequence analysis showed that two isolates of Brucella spp. showed significant similarity to BO1, BO2, and the isolates from other wild-caught frogs. These results suggest that a variety of frog species are susceptible to a novel clade of Brucella bacteria, including B. inopinata.

  3. Isolation and Identification of Phenol Degrader Bacteria from Sirjan Golgohar Mine Effluent

    Directory of Open Access Journals (Sweden)

    Mehdi Hassanshhian

    2016-03-01

    Full Text Available Phenol and phenolic compounds are highly toxic substances that are found as monoaromatic compounds in various industrial effluents from oil refineries, petrochemical plants, (coal mines, and phenol resin plants. Their discharge into the environment, especially in water resources, causes serious toxicity. Traditionally, physicochemical methods have been used for the removal of phenol and phenolic compounds. Nowadays, bioremediation is known to be the best method for phenol removal from wastewater. The objective of the present study was twofold: isolation and identification of phenol degrading bacteria in the effluent from Golgohar Mine in Sirjan. For this purpose, samples were collected from different sections at Golgohar Mine and its effluent. Phenol degrading bacteria were isolated via enrichment of the samples in the Bushnell Hass medium with phenol used as the only source of carbon and energy. The predominant phenol degrader bacteria were selected by measuring turbidity at 600 nm. The bacteria were subsequently identified by amplification of 16S rRNA with specific primers and PCR sequencing. In this study, 17 strains of phenol degrader bacteria were isolated in soil and wastewater samples collected from different zones of the mine. Screening methods confirmed that 4 strains exhibit a better capability for phenol degradation as evidenced by their capability to degrade 0.4 g/l of phenol. Molecular identification showed that these bacteria belong to the species Pesudomonas sp, Nitrratireductor sp., and Salegentibacter sp. The results also show that the effluent from Golgohar Mine in Sirjan contains many phenol degrading bacteria. The use of these bacteria in the treatment process may lead to a significant reduction in phenol pollution in the mineral effluent.

  4. DEGRADATION OF WEATHERED OIL BY MIXED MARINE BACTERIA AND THE TOXICITY OF ACCUMULATED WATER-SOLUBLE MATERIAL TO TWO MARINE CRUSTACEA

    Science.gov (United States)

    Artificially weathered crude oil was degraded by four diverse cultures of mixed marine bacteria under optimized conditions for 7 and 14 days. Loss in total weight of starting oil (30 g) ranged from 6.8-17.3% in biologically active incubations compared with only 0.9-1.1% in steril...

  5. Isolation and extraction of antimicrobial substances against oral bacteria from lemon peel

    OpenAIRE

    Miyake, Yoshiaki; Hiramitsu, Masanori

    2011-01-01

    We have isolated 4 antibacterial substances that were active against the oral bacteria that cause dental caries and periodontitis, such as Streptococcus mutans, Prevotella intermedia, and Porphyromonas gingivalis, from lemon peel, a waste product in the citrus industry. The isolated substances were identified as 8-geranyloxypsolaren, 5-geranyloxypsolaren, 5-geranyloxy-7-methoxycoumarin, and phloroglucinol 1-β-D-glucopyranoside (phlorin) upon structural analyses. Among these, 8-Geranyloxypsola...

  6. Detection and Isolation of Novel Rhizopine-Catabolizing Bacteria from the Environment

    OpenAIRE

    Gardener, Brian B. McSpadden; de Bruijn, Frans J.

    1998-01-01

    Microbial rhizopine-catabolizing (Moc) activity was detected in serial dilutions of soil and rhizosphere washes. The activity observed generally ranged between 106 and 107 catabolic units per g, and the numbers of nonspecific culture-forming units were found to be approximately 10 times higher. A diverse set of 37 isolates was obtained by enrichment on scyllo-inosamine-containing media. However, none of the bacteria that were isolated were found to contain DNA sequences homologous to the know...

  7. Isolation and characterization of new strains of cholesterol-reducing bacteria from baboons.

    OpenAIRE

    Brinkley, A W; Gottesman, A R; Mott, G E

    1982-01-01

    We isolated and characterized nine new strains of cholesterol-reducing bacteria from feces and intestinal contents of baboons. Cholesterol-brain agar was used for the primary isolation, and subsequent biochemical tests were done in a lecithin-cholesterol broth containing plasmenylethanolamine and various substrates. All strains had similar colony and cell morphology, hydrolyzed the beta-glucosides esculin and amygdalin, metabolized pyruvate, and produced acetate and acetoin. Unlike previously...

  8. Production of biosurfactant by indigenous isolated bacteria in fermentation system

    Science.gov (United States)

    Fooladi, Tayebeh; Hamid, Aidil Bin Abd; Yusoff, Wan Mohtar Wan; Moazami, Nasrin; Shafiee, Zahra

    2013-11-01

    Bacillus pumilus 2IR is a soil isolate bacterium from an Iranian oil field that produces promising yield of biosurfactant in medium E. The production of biosurfactant by strain 2IR has been investigated using different carbon and nitrogen sources. The strain was able to grow and to produce surfactant, reducing the surface tension of the medium from 60mN/m to 31mN/m on glucose after 72 h of cultivation. The strain was able to produce the maximum amount of biosurfactant (0.72 g/l) when potassium nitrate and glucose used as a nitrogen and carbon sources respectively. Production of biosurfactant reaches to highest amount at a C/N ratio of 12.

  9. Accumulation of Dissolved DMSP by Marine Bacteria and its Degradation Via Bacterivory

    Science.gov (United States)

    Wolfe, Gordon V.

    1996-01-01

    Several bacterial isolates enriched from seawater using complex media were able to accumulate dimethylsulfoniopropionate (DMSP) from media into cells over several hours without degrading it. Uptake only occurred in metabolically active cells, and was repressed in some strains by the presence of additional carbon sources. Accumulation was also more rapid in osmotically-stressed cells, suggesting DMSP is used as an osmotic solute. Uptake could be blocked by inhibitors of active transport systems (2,4-dinitrophenol, azide, arsenate) and of protein synthesis (chloramphenicol). Some structural analogs such as glycine betaine and S-methyl methionine also blocked DMSP uptake, suggesting that the availability of alternate organic osmolytes may influence DMSP uptake. Stresses such as freezing, heating, or osmotic down shock resulted in partial release of DMSP back to the medium. One strain which contained a DMSP-lyase was also able to accumulate DMSP, and DMS was only produced in the absence of alternate carbon sources. Bacteria containing DMSP were prepared as prey for bacterivorous ciliates and flagellates, to examine the fate of the DMSP during grazing. In all cases, predators metabolized the DMSP in bacteria. In some cases, DMS was produced, but it is not clear if this was due to the predators or to associated bacteria in the non-axenic grazer cultures. Bacterivores may influence DMSP cycling by either modulating populations of DMSP-metabolizing bacteria, or by metabolizing DMSP accumulated by bacterial prey.

  10. An experimental study of the attachment of bacteria to submerged surfaces in marine environment

    International Nuclear Information System (INIS)

    Fera, Ph.

    1985-09-01

    The seasonal variations of the bacterial settling of three materials (stainless steel, aluminium, polycarbonate filters) have been studied inside an open system of circulating seawater (0.7 m.s -1 ). The fixed bacteria counting have been carried out by scanning electron microscopy and epi-fluorescence microscopy. From the results of the first part of this work, it appears that the growth kinetics of the microbial bio-film, and the densities of the bacteria fixed after 15 days of immersion are higher during summer. Qualitatively, the composition of the number of fixed bacteria evolve with immersion time and with the season. The continuous injection of 0.1 ppm of chlorine in the seawater feeding the experimental system, seems not to be sufficient to prevent, for a long time, the settling of a great number of bacteria. The second part of this work deals with the experimental study of the settling of an aluminium surface by a pseudomonas, isolated of the seawater and submitted or not to conditions of preliminary fast. (O.M.)

  11. Isolation and selection of plant growth-promoting bacteria associated with sugarcane

    Directory of Open Access Journals (Sweden)

    Ariana Alves Rodrigues

    2016-06-01

    Full Text Available Microorganisms play a vital role in maintaining soil fertility and plant health. They can act as biofertilizers and increase the resistance to biotic and abiotic stress. This study aimed at isolating and characterizing plant growth-promoting bacteria associated with sugarcane, as well as assessing their ability to promote plant growth. Endophytic bacteria from leaf, stem, root and rhizosphere were isolated from the RB 867515 commercial sugarcane variety and screened for indole acetic acid (IAA production, ability to solubilize phosphate, fix nitrogen and produce hydrogen cyanide (HCN, ammonia and the enzymes pectinase, cellulase and chitinase. A total of 136 bacteria were isolated, with 83 of them presenting some plant growth mechanism: 47 % phosphate solubilizers, 26 % nitrogen fixers and 57 % producing IAA, 0.7 % HCN and chitinase, 45 % ammonia, 30 % cellulose and 8 % pectinase. The seven best isolates were tested for their ability to promote plant growth in maize. The isolates tested for plant growth promotion belong to the Enterobacteriaceae family and the Klebsiella, Enterobacter and Pantoea genera. Five isolates promoted plant growth in greenhouse experiments, showing potential as biofertilizers.

  12. The antagonistic activity of lactic acid bacteria isolated from peda, an Indonesian traditional fermented fish

    Science.gov (United States)

    Putra, T. F.; Suprapto, H.; Tjahjaningsih, W.; Pramono, H.

    2018-04-01

    Peda is an Indonesian traditional fermented whole fish prepared by addition of salt prior to fermentation and drying process. Salt used to control the growth of the lactic acid bacteria for the fermentation process. The objectives of this study were isolating and characterize the potential lactic acid bacteria (LAB) from peda as culture starter candidate, particularly its activity against pathogenic bacteria. A total of five samples from five regions of East Java Province was collected and subjected to LAB isolation. Fifty-seven of 108 colonies that show clear zone in de Man, Rogosa and Sharpe (MRS) agar supplemented with 0.5% CaCO3 were identified as LAB. Twenty-seven of the LAB isolates were exhibit inhibition against Staphylococcus aureus ATCC 6538 and Pseudomonas aeruginosa ATCC 27853. Isolate Aerococcus NJ-20 was exhibited strong inhibition against S. aureus ATCC 6538 (7.6 ± 1.35 mm inhibition zone) but was not produce bacteriocin. This finding suggests that the isolate Aerococcus NJ-20 can be applied as biopreservative culture starter on peda production. Further analysis on technological properties of isolates will be needed prior to application.

  13. Naturally fermented Jijelian black olives: microbiological characteristics and isolation of lactic acid bacteria

    Directory of Open Access Journals (Sweden)

    Karam, Nour-Eddine

    2009-12-01

    Full Text Available A study of the microflora of traditionally fermented black olives in Eastern Algeria is presented. A count of the following microbial groups was carried out: mesophilic bacteria, enterobacteria, lactic acid bacteria (LAB, staphylococci and yeast. In a second phase, the identification and assessment of the technological traits of LAB was performed. Seventeen lactic acid bacteria were isolated and identified. These isolates were represented by two genera: Lactobacillus and Leuconostoc. The results showed that Lactobacillus plantarum was the predominant species in this traditional product.Un estudio sobre la microflora de aceitunas negras fermentada por métodos tradicionales en el Este de Argelia es presentado. Se realizo el siguiente recuento de grupos de microorganismos: bacterias mesófilas, enterobacterias, bacterias ácido lácticas (LAB, staphylococcus y levaduras. En una segunda fase, la identificación y evaluación de aspectos tecnológicos de LAB fue realizada. Setenta bacterias ácido lácticas fueron aisladas e identificadas. Estos aislados contenían principalmente dos géneros: Lactobacillus y Leuconostoc. Los resultados mostraron que Lactobacillus plantarum fue la especie predominante en este producto tradicional.

  14. Diazotrophic bacteria isolated from wild rice Oryza glumaepatula (Poaceae in the Brazilian Amazon

    Directory of Open Access Journals (Sweden)

    Paulo Ivan Fernandes Júnior

    2013-06-01

    Full Text Available The association of wild grasses with diazotrophic bacteria in Brazilian biomes is poorly understood. The isolation and characterization of bacteria associated with wild grasses can contribute to understand the diazotrophic ecology as well as to identify bacteria with biotechnological applications. In this study, we isolated and characterized diazotrophic bacterial isolates from Oryza glumaepatula collected in Cerrado and Forest areas of the Amazon in Roraima State, Brazil. Healthy O. glumepatula plants were collected at five sampling sites at Forest and seven at Cerrado, respectively. The plants were collected at the Cerrado areas in September 2008 while the Forest plants were collected in June/2008 and April/2009. The plants and the soil adhering to the roots were transferred to pots and grown for 35 days in greenhouse conditions. During the harvest, the shoots and the roots were crushed separately in a saline solution; the suspension was diluted serially and inoculated in Petri dishes containing Dyg’s medium. All distinct bacterial colonies were purified in the same medium. The diazotrophic capacity of each bacterium in microaerophilic conditions was assessed in semisolid BMGM medium. In addition, the pellicles forming bacterial isolates were also evaluated by PCR amplification for nifH gene. The diversity of nifH+ bacteria was analyzed by Box-PCR fingerprinting. For selected strains, the growth promoting capacity of O. sativa as a model plant was also evaluated. A total of 992 bacterial isolates were obtained. Fifty- one bacteria were able to form pellicles in the semisolid medium and 38 also positively amplified the 360bp nifH gene fragment. Among the 38 nifH+ isolates, 24 were obtained from the shoots, while 14 originated from the roots. The Box-PCR profiles showed that the bacterial isolates obtained in this study presented a low similarity with the reference strains belonging to the Herbaspirillum, Azospirillum and Burkholderia genus

  15. Diazotrophic bacteria isolated from wild rice Oryza glumaepatula (Poaceae) in the Brazilian Amazon.

    Science.gov (United States)

    Júnior, Paulo Ivan Fernandes; Pereira, Gilmara Maria Duarte; Perin, Liamara; da Silva, Luana Mesquita; Baraúna, Alexandre Cardoso; Alvess, Francilene Muniz; Passos, Samuel Ribeiro; Zilli, Jerri Edson

    2013-06-01

    The association of wild grasses with diazotrophic bacteria in Brazilian biomes is poorly understood. The isolation and characterization of bacteria associated with wild grasses can contribute to understand the diazotrophic ecology as well as to identify bacteria with biotechnological applications. In this study, we isolated and characterized diazotrophic bacterial isolates from Oryza glumaepatula collected in Cerrado and Forest areas of the Amazon in Roraima State, Brazil. Healthy O. glumepatula plants were collected at five sampling sites at Forest and seven at Cerrado, respectively. The plants were collected at the Cerrado areas in September 2008 while the Forest plants were collected in June/2008 and April/2009. The plants and the soil adhering to the roots were transferred to pots and grown for 35 days in greenhouse conditions. During the harvest, the shoots and the roots were crushed separately in a saline solution; the suspension was diluted serially and inoculated in Petri dishes containing Dyg's medium. All distinct bacterial colonies were purified in the same medium. The diazotrophic capacity of each bacterium in microaerophilic conditions was assessed in semisolid BMGM medium. In addition, the pellicles forming bacterial isolates were also evaluated by PCR amplification for nifH gene. The diversity of nifH bacteria was analyzed by Box-PCR fingerprinting. For selected strains, the growth promoting capacity of O. sativa as a model plant was also evaluated. A total of 992 bacterial isolates were obtained. Fifty-one bacteria were able to form pellicles in the semisolid medium and 38 also positively amplified the 360 bp nifH gene fragment. Among the 38 nifH+ isolates, 24 were obtained from the shoots, while 14 originated from the roots. The Box-PCR profiles showed that the bacterial isolates obtained in this study presented a low similarity with the reference strains belonging to the Herbaspirillum, Azospirillum and Burkholderia genus. The growth

  16. Antimicrobial resistance determinants among anaerobic bacteria isolated from footrot.

    Science.gov (United States)

    Lorenzo, María; García, Nuria; Ayala, Juan Alfonso; Vadillo, Santiago; Píriz, Segundo; Quesada, Alberto

    2012-05-25

    Antibiotic resistance has been evaluated among 36 Gram negative and anaerobic bacilli (10 Bacteroides, 11 Prevotella, 7 Porphyromonas and 8 Fusobacterium strains) isolated from clinical cases of caprine and ovine footrot (necrotic pododermatitis). The initial analysis on this bacterial consortium evaluates the relationships existing among antimicrobial resistance determinants, phenotype expression and mobilization potential. The Bacteroides strains were generally resistant to penicillins, first-generation cephalosporins, tetracycline and erythromycin, and expressed low level of β-lactamase activity. The main determinants found among the Bacteroides strains were cepA and tetQ genes, conferring resistance to β-lactams and tetracycline, respectively. A general susceptibility to β-lactams was shown for most Prevotella, Porphyromonas and Fusobacterium strains, where none of the β-lactamase genes described in Bacteroides was detected. Resistance to tetracycline and/or erythromycin was found among the three bacterial groups. Although tetQ genes were detected for several Prevotella and Porphyromonas strains, a unique ermF positive was revealed among Prevotella strains. The expression of resistance markers was not related with the polymorphism of their coding sequences. However, the finding of sequence signatures for conjugative transposons in the vicinities of tetQ and ermF suggests a mobilization potential that might have contributed to the spread of antimicrobial resistance genes. Copyright © 2011 Elsevier B.V. All rights reserved.

  17. Isolation and Identification of Phenanthrene-degrading Bacteria and Increasing the Biodegrading Ability by Synergistic Relationship

    Directory of Open Access Journals (Sweden)

    Zahra Fathi

    2017-05-01

    Conclusion: Results showed that isolated co-culture bacteria have high potential to degrade phenanthrene with the best results achieved when the enriched consortium was used and this mixture was shown to be an appropriate candidate for bioremediation purposes.

  18. Characterization of sulfur-oxidizing bacteria isolated from acid mine drainage and black shale samples

    International Nuclear Information System (INIS)

    Sajjad, W.; Bhatti, T. M.; Hasan, F.; Khan, S.; Badshah, M.

    2016-01-01

    Acid mine drainage (AMD) and black shale (BS) are the main habitats of sulfur-oxidizing bacteria. The aim of this study was to isolate and characterize sulfur-oxidizing bacteria from extreme acidic habitats (AMD and BS). Concentration of metals in samples from AMD and BS varied significantly from the reference samples and exceeded the acceptable limits set by the Environmental Protection Agency (EPA) and the World Health Organization (WHO). A total of 24 bacteria were isolated from these samples that were characterized both morphologically as well as through biochemical tests. All the bacteria were gram-negative rods that could efficiently oxidize sulfur into sulfate ions (SO/sub 4/-2), resulted into decrease in pH up to 1.0 when grown in thiosulfate medium with initial pH 4.0. Out of 24, only 06 isolates were selected for phylogenetic analysis through 16S rRNA sequencing, on the basis of maximum sulfur-oxidizing efficiency. The isolates were identified as the species from different genera such as Alcaligenes, Pseudomonas, Bordetella, and Stenotrophomonas on the basis of maximum similarity index. The concentration of sulfate ions produced was estimated in the range of 179-272 mg/L. These acidophiles might have various potential applications such as biological leaching of metals from low-grade ores, alkali soil reclamation and to minimize the use of chemical S-fertilizers and minimize environmental pollution. (author)

  19. Activity of autoinducer two (AI-2) in bacteria isolated from surface ripened cheeses

    DEFF Research Database (Denmark)

    Gori, Klaus; Jespersen, Lene

    2007-01-01

    ). Corynebacterium casei, Microbacterium barkeri, Microbacterium gubbeenense and S. equorum subsp. linens (all isolated from the smear of surface ripened cheeses) using the AI-2 bioluminescence assay. This indicates that AI-2 signaling could take place between bacteria found in the smear of surface ripened cheeses....

  20. Phenotypic and genotypic characterization of some lactic Acid bacteria isolated from bee pollen: a preliminary study.

    Science.gov (United States)

    Belhadj, Hani; Harzallah, Daoud; Bouamra, Dalila; Khennouf, Seddik; Dahamna, Saliha; Ghadbane, Mouloud

    2014-01-01

    In the present work, five hundred and sixty-seven isolates of lactic acid bacteria were recovered from raw bee pollen grains. All isolates were screened for their antagonistic activity against both Gram-positive and Gram-negative pathogenic bacteria. Neutralized supernatants of 54 lactic acid bacteria (LAB) cultures from 216 active isolates inhibited the growth of indicator bacteria. They were phenotypically characterized, based on the fermentation of 39 carbohydrates. Using the simple matching coefficient and unweighted pair group algorithm with arithmetic averages (UPGMA), seven clusters with other two members were defined at the 79% similarity level. The following species were characterized: Lactobacillus plantarum, Lactobacillus fermentum, Lactococcus lactis, Pediococcus acidilactici, Pediococcus pentosaceus, and unidentified lactobacilli. Phenotypic characteristics of major and minor clusters were also identified. Partial sequencing of the 16S rRNA gene of representative isolates from each cluster was performed, and ten strains were assigned to seven species: Lactobacillus plantarum, Lactobacillus fermentum, Lactococcus lactis, Lactobacillus ingluviei, Pediococcus pentosaceus, Lactobacillus acidipiscis and Weissella cibaria. The molecular method used failed to determine the exact taxonomic status of BH0900 and AH3133.

  1. Isolation and characterization of plant growth promoting endophytic diazotrophic bacteria from Korean rice cultivars.

    Science.gov (United States)

    Ji, Sang Hye; Gururani, Mayank Anand; Chun, Se-Chul

    2014-01-20

    We have isolated 576 endophytic bacteria from the leaves, stems, and roots of 10 rice cultivars and identified 12 of them as diazotrophic bacteria using a specific primer set of nif gene. Through 16S rDNA sequence analysis, nifH genes were confirmed in the two species of Penibacillus, three species of Microbacterium, three Bacillus species, and four species of Klebsiella. Rice seeds treated with these plant growth-promoting bacteria (PGPB) showed improved plant growth, increased height and dry weight and antagonistic effects against fungal pathogens. In addition, auxin and siderophore producing ability, and phosphate solubilizing activity were studied for the possible mechanisms of plant growth promotion. Among 12 isolates tested, 10 strains have shown higher auxin producing activity, 6 isolates were confirmed as strains with high siderophore producing activity while 4 isolates turned out to have high phosphate-solubilizing activity. These results strongly suggest that the endophytic diazotrophic bacteria characterized in this study could be successfully used to promote plant growth and inducing fungal resistance in plants. Copyright © 2013 Elsevier GmbH. All rights reserved.

  2. Isolation of obligate anaerobic bacteria from ulcerative keratitis in domestic animals.

    Science.gov (United States)

    Ledbetter, Eric C; Scarlett, Janet M

    2008-01-01

    To determine the frequency of obligate anaerobic bacterial isolation from corneal samples of domestic animals with ulcerative keratitis and to characterize the historical, clinical, cytological, and microbiological features of culture-positive cases. Three hundred and thirty domestic animals with ulcerative keratitis. Anaerobic bacteriologic culture and Gram stain were performed on corneal samples from consecutive animals examined with suspect septic ulcerative keratitis. Additional corneal diagnostics included: aerobic bacteriologic culture for all species; fungal culture for ungulates; Mycoplasma culture and virus isolation or feline herpesvirus-1 (FHV-1) polymerase chain reaction (PCR) for cats. Historical, clinical, and cytological findings were correlated with microbiologic data. Anaerobic bacteria were isolated from 13.0% of corneal samples (dogs: 14.0%; horses: 12.9%; cats: 7.9%; alpacas: 18.8%). The most frequent isolates were Clostridium, Peptostreptococcus, Actinomyces, Fusobacterium, and Bacteroides species. The majority of these infections were mixed anaerobic and aerobic bacteria, unless antimicrobial therapy had been administered prior to presentation. The clinical appearance of anaerobic bacterial culture-positive cases was highly variable. Ocular trauma, pre-existing corneal disease, previous corneal surgery, and chronic dermatological disease were significantly (P anaerobic cultures in one or more species. The results of the present study demonstrate that obligate anaerobic bacteria are present within the intralesional flora of ulcerative keratitis in domestic animals. In most species evaluated, these bacteria were identified infrequently. Anaerobic bacterial infection of the cornea most frequently occurs in association with other ocular pathogens and previous corneal abnormalities.

  3. Characterization of airag collected in Ulaanbaatar, Mongolia with emphasis on isolated lactic acid bacteria

    OpenAIRE

    Suk-Ho Choi

    2016-01-01

    Abstract Background Airag, alcoholic sour-tasting beverage, has been traditionally prepared by Mongolian nomads who naturally ferment fresh mares’ milk. Biochemical and microbiological compositions of airag samples collected in Ulaanbaatar, Mongolia and physiological characteristics of isolated lactic acid bacteria were investigated. Methods Protein composition and biochemical composition were determined using sodium dodecyl sulfate-gel electrophoresis and high performance liquid chromatograp...

  4. In vitro activity of daptomycin against clinical isolates of Gram-positive bacteria.

    Science.gov (United States)

    Piper, Kerryl E; Steckelberg, James M; Patel, Robin

    2005-08-01

    We determined the activity of daptomycin, a recently FDA-approved antimicrobial agent, against clinical isolates of Gram-positive bacteria, including viridans group streptococci (16 Streptococcus mitis species group, 12 S. mutans species group, 9 S. anginosus species group, 8 S. sanguinis species group, 5 S. salivarius species group) from patients with infective endocarditis, 32 methicillin-resistant Staphylococcus aureus, 32 high-level penicillin-resistant Streptococcus pneumoniae, 38 vancomycin-resistant enterococci (including 1 linezolid-resistant isolate), and the following unusual Gram-positive bacteria: 3 Listeria monocytogenes, 4 Erysipelothrix rhusiopathiae, 9 Corynebacterium species, 10 Abiotrophia/Granulicatella species, 2 Rothia (Stomatococcus) mucilaginosus, and 4 Gemella morbillorum. Daptomycin minimum inhibitory concentration (MIC)(90) values for the viridans group streptococci, methicillin-resistant S. aureus, penicillin-resistant S. pneumoniae, and Enterococcus species were 0.5, 0.5, endocarditis as well as against several types of unusual Gram-positive bacteria that can cause endocarditis.

  5. Vibrio parahaemolyticus type VI secretion system 1 is activated in marine conditions to target bacteria, and is differentially regulated from system 2.

    Directory of Open Access Journals (Sweden)

    Dor Salomon

    Full Text Available Vibrio parahaemolyticus is a marine bacterium that thrives in warm climates. It is a leading cause of gastroenteritis resulting from consumption of contaminated uncooked shellfish. This bacterium harbors two putative type VI secretion systems (T6SS. T6SSs are widespread protein secretion systems found in many Gram-negative bacteria, and are often tightly regulated. For many T6SSs studied to date, the conditions and cues, as well as the regulatory mechanisms that control T6SS activity are unknown. In this study, we characterized the environmental conditions and cues that activate both V. parahaemolyticus T6SSs, and identified regulatory mechanisms that control T6SS gene expression and activity. We monitored the expression and secretion of the signature T6SS secreted proteins Hcp1 and Hcp2, and found that both T6SSs are differentially regulated by quorum sensing and surface sensing. We also showed that T6SS1 and T6SS2 require different temperature and salinity conditions to be active. Interestingly, T6SS1, which is found predominantly in clinical isolates, was most active under warm marine-like conditions. Moreover, we found that T6SS1 has anti-bacterial activity under these conditions. In addition, we identified two transcription regulators in the T6SS1 gene cluster that regulate Hcp1 expression, but are not required for immunity against self-intoxication. Further examination of environmental isolates revealed a correlation between the presence of T6SS1 and virulence of V. parahaemolyticus against other bacteria, and we also showed that different V. parahaemolyticus isolates can outcompete each other. We propose that T6SS1 and T6SS2 play different roles in the V. parahaemolyticus lifestyles, and suggest a role for T6SS1 in enhancing environmental fitness of V. parahaemolyticus in marine environments when competing for a niche in the presence of other bacterial populations.

  6. Characterization and bioremediation potential of phosphate solubilizing bacteria isolated from tunisian phosphogypsum

    International Nuclear Information System (INIS)

    Trifi, Houda

    2011-01-01

    Phosphorus bioavailability is often limited in agricultural soils. In this work, two bacteria were isolated from Tunisian phosphogypsum (PG). These ones have the capacity to dissolve inorganic phosphate (CaHPO 4 and Ca 3 (PO 4 ) 2 ). This capacity is determined by the clear halo formation around colonies in NBRIP agar medium. To confirm the solubilization phenotype, the concentration of solubilized phosphate by isolates cultivated in NBRIP broth containing PG was measured. These two bacteria noted BRM17 and BRM18 are identified as Pantoea sp. and Pseudomonas sp, respectively. The results show that BRM17 solubilizes about 2 times more phosphate in broth NBRIP medium after 48 hours of incubation than BRM18. Tunisian phosphogypsum contains 1100 ppm of strontium (Sr). Sr toxicity on bacteria was determined by concentration that gives half-maximal inhibition of bacteria (IC 50 ). Compared with Cupriavidus metallidurans (bacteria tolerant to most of heavy metals), BRM17 and BRM18 cultivated in broth medium containing increasing concentrations of Sr were found tolerant to Sr. The potential of bioremediation is tested by the rate evaluation of Sr adsorption by these bacteria. The results show the high ability of BRM18 to adsorb Sr. The resistance of isolates to ionizing radiation is also determined by the exposure of bacterial cultures to various doses of gamma radiation. BRM17 is considered radioresistant while BRM18 is radiosensitive. The effect on seed germination of wheat and pea inoculated with bacteria was tested. No positive effect was detected. This study is considered with the use of BRM17 and BRM18 in a bioremediation process and the improvement of phosphate uptake by plants cultivated in polluted environments.

  7. Colwellia agarivorans sp. nov., an agar-digesting marine bacterium isolated from coastal seawater

    Science.gov (United States)

    A novel Gram-stain-negative, facultatively anaerobic, yellowish and agar-digesting marine bacterium, designated strain QM50**T, was isolated from coastal seawater in an aquaculture site near Qingdao, China. Phylogenetic analysis based on 16S rDNA sequences revealed that the novel isolate represented...

  8. Isolation of fecal coliform bacteria from the diamondback terrapin (Malaclemys terrapin centrata).

    Science.gov (United States)

    Harwood, V J; Butler, J; Parrish, D; Wagner, V

    1999-02-01

    Total and fecal coliform bacteria were isolated from the cloaca and feces of the estuarine diamondback terrapin. The majority of samples contained fecal coliforms. Escherichia coli was the predominant fecal coliform species isolated, and members of the genus Salmonella were isolated from 2 of 39 terrapins. Fecal coliform numbers are used to regulate shellfish harvests, and diamondback terrapins inhabit the brackish-water habitats where oyster beds are found; therefore, these findings have implications for the efficacy of current regulatory parameters in shellfishing waters.

  9. Selection of oleuropein-degrading lactic acid bacteria strains isolated from fermenting Moroccan green olives

    Energy Technology Data Exchange (ETDEWEB)

    Ghabbour, N.; Lamzira, Z.; Thonart, P.; Cidalia, P.; Markaouid, M.; Asehraoua, A.

    2011-07-01

    A total of 177 strains of lactic acid bacteria (LAB) were isolated from early-stage Moroccan Picholine green olive fermentation, including Lactobacillus plantarum (44.63%), Lactobacillus pentosus (25.99%), Lactobacillus brevis (9.61%) and Pediococcus pentosaceus (19.77%). All the isolates were screened for their tolerance to olive leaf extract and oleuropein. Most of the isolates (85.3%) were found able to degrade oleuropein, when evaluated by either oleuropein or 5-Bromo-4-chloro-3-indolyl {beta}-D-glucuronide (X-Gluc) as substrates. The biodegradation capacity of the selected strains of each species was confirmed by HPLC analysis. (Author).

  10. Identification and characterization of the dominant lactic acid bacteria isolated from traditional fermented milk in Mongolia.

    Science.gov (United States)

    Sun, Z H; Liu, W J; Zhang, J C; Yu, J; Gao, W; Jiri, M; Menghe, B; Sun, T S; Zhang, H P

    2010-05-01

    Five samples of Airag and 20 of Tarag (both in Mongolia) were collected from scattered households. One hundred strains of lactic acid bacteria (LAB) were isolated and identified from these samples according to phenotypic characterization and 16S rRNA gene sequence analysis. Eighty-five isolates belonged to the genus Lactobacillus, 15 being classified as coccoid LAB. All isolates belonged to 5 genera and 11 to different species and subspecies. Lactobacillus (Lb.) helveticus was predominant population in Airag samples, Lb. fermentum and Lb. helveticus were the major LAB microflora in Tarag.

  11. Adaptation of psychrophilic and psychrotrophic sulfate-reducing bacteria to permanently cold marine environments

    DEFF Research Database (Denmark)

    Isaksen, MF; Jørgensen, BB

    1996-01-01

    degrees C. The rates of sulfate reduction were measured by the (SO42-)-S-35 tracer technique at different experimental temperatures in sediment slurries, In sediment slurries from Mariager Fjord, sulfate reduction showed a mesophilic temperature response which was comparable to that of other temperate...... environments, In sediment slurries from Antarctica, the metabolic activity of psychrotrophic bacteria was observed with a respiration optimum at 18 to 19 degrees C during short-term incubations, However, over a 1-week incubation, the highest respiration rate was observed at 12.5 degrees C. Growth......The potential for sulfate reduction at low temperatures was examined in two different cold marine sediments, Mariager Fjord (Denmark), which is permanently cold (3 to 6 degrees C) but surrounded by seasonally warmer environments, and the Weddell Sea (Antarctica), which is permanently below 0...

  12. Identification and characterization of probiotic lactic acid bacteria isolated from traditional persian pickled vegetables

    Directory of Open Access Journals (Sweden)

    Soltan Dallal, M.M.

    2017-09-01

    Full Text Available Background: The pickle, a traditional fermented product, is popular among Iranians. Much research has been conducted worldwide on this food group. Due to a lack of related data in Iran, this study was conducted to isolate and identify dominant lactic acid bacteria (LAB in pickles and salted pickles.Materials and methods: Seventy samples were collected from different regions of Iran. The isolated bacteria were identified as LAB by Gram staining and catalase by using MRS agar. Then, those strains were identified at the species level by physiological tests (e.g., gas production from glucose, arginine hydrolysis, CO production from glucose in MRS broth, carbohydrate fermentation and growth at temperatures of 15°C, 30°C, and 45°C in MRS broth for 3 days. The probiotic characteristics of these bacteria were studied using acid and bile tolerance. The corresponding results were verified using PCR analyses of the 16S rDNA region. Results: 114 presumptive lactic acid bacteria (LAB with Gram-positive and catalase-negative properties were obtained from the samples. The results revealed that all isolated bacteria were identfied as ,, , , and. The predominant LAB in these pickles was which was isolated from most of the samples. Among the 114 LAB, 7 isolated species have probiotic potential. Six out of seven were recognized as and one remained unidentifiable by biochemical testing. PCR analysis and sequencing of the 16S rDNA region using 27f and 1522r primers showed that all of the probiotic strains were .Conclusion: The results of this study showed that the dominant LAB in traditional Persian pickled vegetables are , , , and . Moreover, was recognized as a probiotic species in pickled vegetables. The raw data obtained from this study can be used in the pickling industry to improve the nutritional value of products.

  13. Gum arabic modified Fe3O4 nanoparticles cross linked with collagen for isolation of bacteria

    Directory of Open Access Journals (Sweden)

    Chittor Raghuraman

    2010-12-01

    Full Text Available Abstract Background Multifunctional magnetic nanoparticles are important class of materials in the field of nanobiotechnology, as it is an emerging area of research for material science and molecular biology researchers. One of the various methods to obtain multifunctional nanomaterials, molecular functionalization by attaching organic functional groups to nanomagnetic materials is an important technique. Recently, functionalized magnetic nanoparticles have been demonstrated to be useful in isolation/detection of dangerous pathogens (bacteria/viruses for human life. Iron (Fe based material especially FePt is used in the isolation of ultralow concentrations (2 cfu/ml of bacteria in less time and it has been demonstrated that van-FePt may be used as an alternative fast detection technique with respect to conventional polymerase chain reaction (PCR method. However, still further improved demonstrations are necessary with interest to biocompatibility and green chemistry. Herein, we report the synthesis of Fe3O4 nanoparticles by template medication and its application for the detection/isolation of S. aureus bacteria. Results The reduction of anhydrous Iron chloride (FeCl3 in presence of sodium borohydride and water soluble polyelectrolyte (polydiallyldimethyl ammonium chloride, PDADMAC produces black precipitates. The X-ray diffraction (XRD, XPS and TEM analysis of the precipitates dried at 373 K demonstrated the formation of nanocrystalline Fe3O4. Moreover, scanning electron microscopy (SEM showed isolated staphylococcous aureus (S. aureus bacteria at ultralow concentrations using collagen coated gum arabic modified iron oxide nanoparticles (CCGAMION. Conclusion We are able to synthesize nanocrystalline Fe3O4 and CCGAMION was able to isolate S. aureus bacteria at 8-10 cfu (colony forming units/ml within ~3 minutes.

  14. Innovative Approaches Using Lichen Enriched Media to Improve Isolation and Culturability of Lichen Associated Bacteria.

    Science.gov (United States)

    Biosca, Elena G; Flores, Raquel; Santander, Ricardo D; Díez-Gil, José Luis; Barreno, Eva

    2016-01-01

    Lichens, self-supporting mutualistic associations between a fungal partner and one or more photosynthetic partners, also harbor non-photosynthetic bacteria. The diversity and contribution of these bacteria to the functioning of lichen symbiosis have recently begun to be studied, often by culture-independent techniques due to difficulties in their isolation and culture. However, culturing as yet unculturable lichenic bacteria is critical to unravel their potential functional roles in lichen symbiogenesis, to explore and exploit their biotechnological potential and for the description of new taxa. Our objective was to improve the recovery of lichen associated bacteria by developing novel isolation and culture approaches, initially using the lichen Pseudevernia furfuracea. We evaluated the effect of newly developed media enriched with novel lichen extracts, as well as the influence of thalli washing time and different disinfection and processing protocols of thalli. The developed methodology included: i) the use of lichen enriched media to mimic lichen nutrients, supplemented with the fungicide natamycin; ii) an extended washing of thalli to increase the recovery of ectolichenic bacteria, thus allowing the disinfection of thalli to be discarded, hence enhancing endolichenic bacteria recovery; and iii) the use of an antioxidant buffer to prevent or reduce oxidative stress during thalli disruption. The optimized methodology allowed significant increases in the number and diversity of culturable bacteria associated with P. furfuracea, and it was also successfully applied to the lichens Ramalina farinacea and Parmotrema pseudotinctorum. Furthermore, we provide, for the first time, data on the abundance of culturable ecto- and endolichenic bacteria that naturally colonize P. furfuracea, R. farinacea and P. pseudotinctorum, some of which were only able to grow on lichen enriched media. This innovative methodology is also applicable to other microorganisms inhabiting these

  15. Innovative Approaches Using Lichen Enriched Media to Improve Isolation and Culturability of Lichen Associated Bacteria

    Science.gov (United States)

    Biosca, Elena G.; Flores, Raquel; Santander, Ricardo D.; Díez-Gil, José Luis; Barreno, Eva

    2016-01-01

    Lichens, self-supporting mutualistic associations between a fungal partner and one or more photosynthetic partners, also harbor non-photosynthetic bacteria. The diversity and contribution of these bacteria to the functioning of lichen symbiosis have recently begun to be studied, often by culture-independent techniques due to difficulties in their isolation and culture. However, culturing as yet unculturable lichenic bacteria is critical to unravel their potential functional roles in lichen symbiogenesis, to explore and exploit their biotechnological potential and for the description of new taxa. Our objective was to improve the recovery of lichen associated bacteria by developing novel isolation and culture approaches, initially using the lichen Pseudevernia furfuracea. We evaluated the effect of newly developed media enriched with novel lichen extracts, as well as the influence of thalli washing time and different disinfection and processing protocols of thalli. The developed methodology included: i) the use of lichen enriched media to mimic lichen nutrients, supplemented with the fungicide natamycin; ii) an extended washing of thalli to increase the recovery of ectolichenic bacteria, thus allowing the disinfection of thalli to be discarded, hence enhancing endolichenic bacteria recovery; and iii) the use of an antioxidant buffer to prevent or reduce oxidative stress during thalli disruption. The optimized methodology allowed significant increases in the number and diversity of culturable bacteria associated with P. furfuracea, and it was also successfully applied to the lichens Ramalina farinacea and Parmotrema pseudotinctorum. Furthermore, we provide, for the first time, data on the abundance of culturable ecto- and endolichenic bacteria that naturally colonize P. furfuracea, R. farinacea and P. pseudotinctorum, some of which were only able to grow on lichen enriched media. This innovative methodology is also applicable to other microorganisms inhabiting these

  16. Marine Caulobacters. Isolation, Characterization and Assessing the Potential for Genetic Experimentation.

    Science.gov (United States)

    1987-01-01

    grants from the Washington SeaGrant Program, the Office of Naval Research (N00014-81-C-0570) and the California Toxic Substances Research and Teaching ...negative bacteria. Biotechnology _, 269-275. 45.ZoBell, C.E. (1946) Marine microbiology: a monograph on hydrobacteriology. Chronica Botanica Co., Waltham

  17. Biodegradation of phenol by a newly isolated marine bacterial strain ...

    African Journals Online (AJOL)

    ajl yemi

    2011-12-26

    Dec 26, 2011 ... Full Length Research Paper. Biodegradation of phenol ... screen bacteria with potential for phenol degradation from sea water, mud and sand. .... poisonous compound media, such as phenol (Santos et al., 2001). For instance ...

  18. Detection of emerging antibiotic resistance in bacteria isolated from subclinical mastitis in cattle in West Bengal

    Directory of Open Access Journals (Sweden)

    Arnab Das

    2017-05-01

    Full Text Available Aim: The aim of this work was to detect antibiotic resistance in Gram-negative bacteria isolated from subclinical mastitis in cattle in West Bengal. Materials and Methods: The milk samples were collected from the cattle suffering with subclinical mastitis in West Bengal. The milk samples were inoculated into the nutrient broth and incubated at 37°C. On the next day, the growth was transferred into nutrient agar and MacConkey agar. All the pure cultures obtained from nutrient agar slant were subjected to Gram-staining and standard biochemical tests. All the bacterial isolates were tested in vitro for their sensitivity to different antibiotics commonly used in veterinary practices. All Gram-negative isolates including positive control were subjected to polymerase chain reaction (PCR for detection of blaCTX-M, blaTEM, blaSHV, blaVIM, tetA, tetB, tetC, and tetM genes considered for extended-spectrum β-lactamase (ESBL, metallo-β-lactamase, and tetracycline resistance. Results: In total, 50 Gram-negative organisms (Escherichia coli, Proteus, Pseudomonas, Klebsiella, and Enterobacter were isolated from milk samples of subclinical mastitis infected cattle. Among these Gram-negative isolates, 48% (24/50 were found either ESBL producing or tetracycline resistant. Out of total 50 Gram-negative isolates, blaCTX-M was detected in 18 (36% isolates, and 6 (12% harbored blaTEM genes in PCR. None of the isolates carried blaSHV genes. Further, in this study, 5 (10% isolates harbored tet(A gene, and 8 (16% isolates carried tet(B gene. No tet(C gene was detected from the isolates. Conclusion: This study showed emerging trend of antibiotic-resistant Gram-negative bacteria associated with subclinical mastitis in cattle in West Bengal, India.

  19. The marine bacteria Shewanella frigidimarina NCIMB400 upregulates the type VI secretion system during early biofilm formation.

    Science.gov (United States)

    Linares, Denis; Jean, Natacha; Van Overtvelt, Perrine; Ouidir, Tassadit; Hardouin, Julie; Blache, Yves; Molmeret, Maëlle

    2016-02-01

    Shewanella sp. are facultative anaerobic Gram-negative bacteria, extensively studied for their electron transfer ability. Shewanella frigidimarina has been detected and isolated from marine environments, and in particular, from biofilms. However, its ability to adhere to surfaces and form a biofilm is poorly understood. In this study, we show that the ability to adhere and to form a biofilm of S. frigidimarina NCIMB400 is significantly higher than that of Shewanella oneidensis in our conditions. We also show that this strain forms a biofilm in artificial seawater, whereas in Luria-Bertani, this capacity is reduced. To identify proteins involved in early biofilm formation, a proteomic analysis of sessile versus planktonic membrane-enriched fractions allowed the identification of several components of the same type VI secretion system gene cluster: putative Hcp1 and ImpB proteins as well as a forkhead-associated domain-containing protein. The upregulation of Hcp1 a marker of active translocation has been confirmed using quantitative reverse transcription polymerase chain reaction. Our data demonstrated the presence of a single and complete type VI secretion system in S. frigidimarina NCIMB400 genome, upregulated in sessile compared with planktonic conditions. The fact that three proteins including the secreted protein Hcp1 have been identified may suggest that this type VI secretion system is functional. © 2015 Society for Applied Microbiology and John Wiley & Sons Ltd.

  20. Molecular and phenotypic characterization of endophytic bacteria isolated from sulla nodules.

    Science.gov (United States)

    Beghalem, Hamida; Aliliche, Khadidja; Chriki, Ali; Landoulsi, Ahmed

    2017-10-01

    In the current study, bacterial diversity was investigated in root nodules of Sulla pallida and Sulla capitata. The isolates were analyzed on the basis of their phenotypic and molecular characteristics. The phylogenetic analysis based on 16S rRNA and housekeeping genes (recA and atpD) showed that the isolated bacteria related to Sinorhizobium, Neorhizobium, Phyllobacterium, Arthrobacter, Variovorax and Pseudomonas genera. This is the first report of Neorhizobium genus associated with Hedysarum genus. Phenotypically, all strains tolerate the elevated temperature of 40 °C, and salt stress at a concentration of 2%. In addition, the isolates failed to induce nodulation on their original host; and the symbiotic genes could not be amplified, suggesting that these strains are endophytic bacteria. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Isolation and life cycle characterization of lytic viruses infecting heterotrophic bacteria and cyanobacteria

    DEFF Research Database (Denmark)

    Middelboe, Mathias; Chan, Amy; Bertelsen, Sif Koldborg

    2010-01-01

    Basic knowledge on viruses infecting heterotrophic bacteria and cyanobacteria is key to future progress in understanding the role of viruses in aquatic systems and the influence of virus–host interactions on microbial mortality, biogeochemical cycles, and genetic exchange. Such studies require......, and discusses the applications and limitations of different isolation procedures. Most work on phage isolation has been carried out with aerobic heterotrophic bacteria and cyanobacteria, culturable both on agar plates and in enriched liquid cultures. The procedures presented here are limited to lytic viruses...... infecting such hosts. In addition to the isolation procedures, methods for life cycle characterization (one-step growth experiments) of bacteriophages and cyanophages are described. Finally, limitations and drawbacks of the proposed methods are assessed and discussed...

  2. Isolation of Thermophilic Lignin Degrading Bacteria from Oil-Palm Empty Fruit Bunch (EFB) Compost

    Science.gov (United States)

    Lai, C. M. T.; Chua, H. B.; Danquah, M. K.; Saptoro, A.

    2017-06-01

    Empty Fruit Bunch (EFB) is a potential and sustainable feedstock for bioethanol production due to its high cellulosic content and availability in Malaysia. Due to high lignin content of EFB and the lack of effective delignification process, commercial bioethanol production from EFB is presently not viable. Enzymatic delignification has been identified as one of the key steps in utilising EFB as a feedstock for bioethanol conversion. To date, limited work has been reported on the isolation of lignin degrading bacteria. Hence, there is a growing interest to search for new lignin degrading bacteria with greater tolerance to temperature and high level of ligninolytic enzymes for more effective lignin degradation. This study aimed to isolate and screen thermophilic ligninolytic microorganisms from EFB compost. Ten isolates were successfully isolated from EFB compost. Although they are not capable of decolorizing Methylene Blue (MB) dye under agar plate assay method, they are able to utilize lignin mimicked compound - guaiacol as a sole carbon on the agar plate assay. This infers that there is no correlation of ligninolytic enzymes with dye decolourization for all the isolates that have been isolated. However, they are able to produce ligninolytic enzymes (Lignin peroxidase, Manganese peroxidase, Laccase) in Minimal Salt Medium with Kraft Lignin (MSM-KL) with Lignin Peroxidase (LiP) as the predominant enzyme followed by Manganese Peroxidase (MnP) and Laccase (Lac). Among all the tested isolates, CLMT 29 has the highest LiP production up to 8.7673 U/mL following 24 h of growth.

  3. Anaerobic degradation of cyclohexane by sulfate-reducing bacteria from hydrocarbon-contaminated marine sediments

    Directory of Open Access Journals (Sweden)

    Ulrike eJaekel

    2015-02-01

    Full Text Available The fate of cyclohexane, often used as a model compound for the biodegradation of cyclic alkanes due to its abundance in crude oils, in anoxic marine sediments has been poorly investigated. In the present study, we obtained an enrichment culture of cyclohexane-degrading sulfate-reducing bacteria from hydrocarbon-contaminated intertidal marine sediments. Microscopic analyses showed an apparent dominance by oval cells of 1.5×0.8 m. Analysis of a 16S rRNA gene library, followed by whole-cell hybridization with group- and sequence-specific oligonucleotide probes showed that these cells belonged to a single phylotype, and were accounting for more than 80% of the total cell number. The dominant phylotype, affiliated with the Desulfosarcina-Desulfococcus cluster of the Deltaproteobacteria, is proposed to be responsible for the degradation of cyclohexane. Quantitative growth experiments showed that cyclohexane degradation was coupled with the stoichiometric reduction of sulfate to sulfide. Substrate response tests corroborated with hybridization with a sequence-specific oligonucleotide probe suggested that the dominant phylotype apparently was able to degrade other cyclic and n-alkanes, including the gaseous alkanes propane and n-butane. Based on GC-MS analyses of culture extracts cyclohexylsuccinate was identified as a metabolite, indicating an activation of cyclohexane by addition to fumarate. Other metabolites detected were 3-cyclohexylpropionate and cyclohexanecarboxylate providing evidence that the overall degradation pathway of cyclohexane under anoxic conditions is analogous to that of n-alkanes.

  4. Isolation, structure elucidation and antibacterial activity of methyl-4,8-dimethylundecanate from the marine actinobacterium Streptomyces albogriseolus ECR64.

    Science.gov (United States)

    Thirumurugan, Durairaj; Vijayakumar, Ramasamy; Vadivalagan, Chithravel; Karthika, Pushparaj; Alam Khan, Md Khurshid

    2018-05-25

    Around 120 actinobacterial colonies were isolated from various regions of marine East coast region of Tamil Nadu, India. Among them, 33 were morphologically distinct and they were preliminarily screened for their antibacterial activity against Pseudomonas fluorescens, Vibrio cholerae, V. parahaemolyticus, V. alginolyticus, and Aeromonas hydrophila by cross-streak plate technique. Among the isolated, the isolate ECR64 exhibited maximum zone of inhibition against fish pathogenic bacteria. The crude bioactive compounds were extracted from the isolate ECR64 using different organic solvents which exhibited maximum antibacterial activity. Separation and purification of the bioactive compounds were made by column chromatography which yielded 27 fractions and were re-chromatographed to obtain the active compound. Ultra violet (UV), Fourier transform infrared (FT-IR) and nuclear magnetic resonance (NMR) spectral studies were used to predict the structure of the active compound which was identified as methyl-4,8-dimethylundecanate. The potential isolate ECR64 was identified as Streptomyces albogriseolus by phylogenetic, phenotypic and genotypic (16S rRNA gene sequence) analyses. The identified compound methyl-4,8-dimethylundecanate can be used as potential and alternative drug in disease management of aquaculture. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Surface-active biopolymers from marine bacteria for potential biotechnological applications

    Directory of Open Access Journals (Sweden)

    Karina Sałek

    2016-03-01

    Full Text Available Surface-active agents are amphiphilic chemicals that are used in almost every sector of modern industry, the bulk of which are produced by organo-chemical synthesis. Those produced from biological sources (biosurfactants and bioemulsifiers, however, have gained increasing interest in recent years due to their wide structural and functional diversity, lower toxicities and high biodegradability, compared to their chemically-synthesised counterparts. This review aims to present a general overview on surface-active agents, including their classification, where new types of these biomolecules may lay awaiting discovery, and some of the main bottlenecks for their industrial-scale production. In particular, the marine environment is highlighted as a largely untapped source for discovering new types of surface-active agents. Marine bacteria, especially those living associated with micro-algae (eukaryotic phytoplankton, are a highly promising source of polymeric surface-active agents with potential biotechnological applications. The high uronic acids content of these macromolecules has been linked to conferring them with amphiphilic qualities, and their high structural diversity and polyanionic nature endows them with the potential to exhibit a wide range of functional diversity. Production yields (e.g. by fermentation for most microbial surface-active agents have often been too low to meet the volume demands of industry, and this principally remains as the most important bottleneck for their further commercial development. However, new developments in recombinant and synthetic biology approaches can offer significant promise to alleviate this bottleneck. This review highlights a particular biotope in the marine environment that offers promise for discovering novel surface-active biomolecules, and gives a general overview on specific areas that researchers and the industry could focus work towards increasing the production yields of microbial surface

  6. Discrimination of Four Marine Biofilm-Forming Bacteria by LC-MS Metabolomics and Influence of Culture Parameters.

    Science.gov (United States)

    Favre, Laurie; Ortalo-Magné, Annick; Greff, Stéphane; Pérez, Thierry; Thomas, Olivier P; Martin, Jean-Charles; Culioli, Gérald

    2017-05-05

    Most marine bacteria can form biofilms, and they are the main components of biofilms observed on marine surfaces. Biofilms constitute a widespread life strategy, as growing in such structures offers many important biological benefits. The molecular compounds expressed in biofilms and, more generally, the metabolomes of marine bacteria remain poorly studied. In this context, a nontargeted LC-MS metabolomics approach of marine biofilm-forming bacterial strains was developed. Four marine bacteria, Persicivirga (Nonlabens) mediterranea TC4 and TC7, Pseudoalteromonas lipolytica TC8, and Shewanella sp. TC11, were used as model organisms. The main objective was to search for some strain-specific bacterial metabolites and to determine how culture parameters (culture medium, growth phase, and mode of culture) may affect the cellular metabolism of each strain and thus the global interstrain metabolic discrimination. LC-MS profiling and statistical partial least-squares discriminant analyses showed that the four strains could be differentiated at the species level whatever the medium, the growth phase, or the mode of culture (planktonic vs biofilm). A MS/MS molecular network was subsequently built and allowed the identification of putative bacterial biomarkers. TC8 was discriminated by a series of ornithine lipids, while the P. mediterranea strains produced hydroxylated ornithine and glycine lipids. Among the P. mediterranea strains, TC7 extracts were distinguished by the occurrence of diamine derivatives, such as putrescine amides.

  7. Isolation and identification of lactic acid bacteria from traditional dairy products of Kleibar, Heris and Varzaghan

    Directory of Open Access Journals (Sweden)

    T Narimani

    2013-11-01

    Full Text Available Probiotics are dietary supplements of live microorganisms which when consumed in adequate amounts, can have a beneficial effect on the host. Among all bacteria, lactic acid bacteria are the most common type that has been introduced as probiotics. These bacteria are present in dairy products and produce lactic acid during the fermentation process. The aim of this study was to isolate and identify the probiotics from microbial flora of milk and traditional yogurt in Kaleibar, Heris and Varzaghan areas. In this study, lactic acid bacteria were isolated by culture and identified based on biochemical properties and resistant to stomach acid and bile salts were evaluated. Then, for more accurate identification of the isolates, the 16S rRNA genes of Lactobacilli were amplified with specific primers and the purified PCR product was sent for sequencing. According to our results, 17 strains of Lactobacilli and 6 strains of Enterococci were reported in Kaleibar, Heris and Varzaghan areas which could be a good candidate for further investigation as probiotic.

  8. Prevalence of plant beneficial and human pathogenic bacteria isolated from salad vegetables in India.

    Science.gov (United States)

    Nithya, Angamuthu; Babu, Subramanian

    2017-03-14

    The study aimed at enumerating, identifying and categorizing the endophytic cultivable bacterial community in selected salad vegetables (carrot, cucumber, tomato and onion). Vegetable samples were collected from markets of two vegetable hot spot growing areas, during two different crop harvest seasons. Crude and diluted vegetable extracts were plated and the population of endophytic bacteria was assessed based on morphologically distinguishable colonies. The bacterial isolates were identified by growth in selective media, biochemical tests and 16S rRNA gene sequencing. The endophytic population was found to be comparably higher in cucumber and tomato in both of the sampling locations, whereas lower in carrot and onion. Bacterial isolates belonged to 5 classes covering 46 distinct species belonging to 19 genera. Human opportunistic pathogens were predominant in carrot and onion, whereas plant beneficial bacteria dominated in cucumber and tomato. Out of the 104 isolates, 16.25% are human pathogens and 26.5% are human opportunistic pathogens. Existence of a high population of plant beneficial bacteria was found to have suppressed the population of plant and human pathogens. There is a greater potential to study the native endophytic plant beneficial bacteria for developing them as biocontrol agents against human pathogens that are harboured by plants.

  9. Assessment of the toxicity of the solid coating PV1 in a marine invironment, using biotests with algae, a rotifer and a bacteria

    NARCIS (Netherlands)

    Foekema, E.M.; Sneekes, A.C.

    2007-01-01

    The toxic potential of substances that may leach from the solid coating PV1 was tested using • the marine bacteria Vibrio fisheri in the Microtox® Basic test • the marine algae Skeletonema costatum in a 72h algal growth inhibition test • the marine rotifer Brachionus plicatilis in the 24 h ROTOX®

  10. Isolation of arsenic-tolerant bacteria from arsenic-contaminated soil

    Directory of Open Access Journals (Sweden)

    Vorasan Sobhon*

    2008-04-01

    Full Text Available The disposal of toxic heavy metals such as arsenic posed high risk to the environment. Arsenite [As(III], a reduced form of arsenic, is more toxic and mobile than arsenate [As(V]. The aim of this work was to isolate arsenic-tolerant bacteria from contaminated soil collected in Ronphibun District, Nakorn Srithammarat Province, followed by screening these bacteria for their ability to adsorb arsenite. Twenty-four bacterial isolates were obtained from samples cultivated in basal salts medium plus 0.1% yeast extract and up to 40 mM sodium-arsenite at 30oC under aerobic condition. From these, isolates B-2, B-3, B-4, B-21, B-25 and B-27 produced extracellular polymeric-like substances into the culture medium, which may potentially be used in the bioremediation of arsenic and other contaminants. All isolates displayed arsenite adsorbing activities in the ranges of 36.87-96.93% adsorption from initial concentration of 40 mM sodium-arsenite, without any arsenic transforming activity. Five isolates with the highest arsenite adsorbing capacity include B-4, B-7, B-8, B-10 and B-13 which adsorbed 80.90, 86.72, 87.08, 84.36 and 96.93% arsenite, respectively. Identification of their 16S rDNA sequences showed B -7, B-8, and B-10 to have 97%, 99% and 97% identities to Microbacterium oxydans, Achromobacter sp. and Ochrobactrum anthropi, respectively. Isolates B-4 and B-13, which did not show sequence similarity to any bacterial species, may be assigned based on their morphological and biochemical characteristics to the genus Streptococcus and Xanthomonas, respectively. Thus, both isolates B-4 and B-13 appear to be novel arsenite adsorbing bacteria within these genuses.

  11. Isolation of Biosurfactant–Producing Bacteria with Antimicrobial Activity against Bacterial Pathogens

    Directory of Open Access Journals (Sweden)

    Siripun Sarin

    2011-01-01

    Full Text Available The aims of this research were to study biosurfactant producing bacteria isolated from soil and to determine their property and efficiency as biosurfactants in order to inhibit bacterial pathogens. The result showed that there were 8 bacterial isolates out of 136 isolates of the total biosurfactant producing bacteria screened that exhibited the diameter of clear zone more than 1.5 cm. in the oil spreading test. The highest potential of emulsifying activity (%EA24 of 54.4 and the maximum additive concentration, (%MAC of 24.2 was obtained from the fermentation broth of the G7 isolate which the G7 isolate was later identified as Pseudomonas fluorescens. Escherichia coli, Staphylococcus aureus and Psuedomonas aeruginosa were the tested bacterial pathogens that were most sensitive to the acid precipitated biosurfactant obtained from P. fluorescens G7 with the lowest minimum inhibitory concentration (MIC of 41.6 mg/ml and minimum bactericidal concentration (MBC of 41.6 mg/ml compared with the acid precipitated bisurfactants of the other isolates used in the antimicrobial activity test. The type of the separated crude biosurfactant produced by P. fluorescens G7 analyzed later by using the rhamose test, TLC and FT-IR techniques was rhamnolipid.

  12. Characterization of microbiota in Arapaima gigas intestine and isolation of potential probiotic bacteria.

    Science.gov (United States)

    do Vale Pereira, G; da Cunha, D G; Pedreira Mourino, J L; Rodiles, A; Jaramillo-Torres, A; Merrifield, D L

    2017-11-01

    The aim of this study was to determine the intestinal microbiota of pirarucu (Arapaima gigas) in different growth stages (adult and fingerlings) and to isolate and identify potential probiotic bacteria. High-throughput sequencing analysis of the intestinal contents revealed that the majority of sequences belonged to the Proteobacteria, Fusobacteria and Firmicutes phyla. At the genus level, the greatest number of sequences belonged to Bradyrhizobium in adult fish, while Cetobacterium was the most abundant in juvenile fish. Twenty-three lactic-acid bacteria (LABs) were isolated on MRS agar from healthy juvenile fish. The isolates were tested in vitro for probiotic properties. Two isolates (identified as strains of Lactococcus lactis subsp. lactis and Enterococcus faecium) displayed antagonism against all 10 pathogens tested, were nonhaemolytic and maintained good viability for at least 3 weeks when supplemented to fish diets. The presence of a number of antibiotic resistance genes (ARGs), conferring resistance to erythromycin, tetracycline and chloramphenicol, was investigated by PCR. The absence of ARGs investigated the potential to antagonize pathogens, and favourable growth and survival characteristics indicate that these autochthonous isolates have the potential to be considered probiotics, which will be studied in future in vivo experiments. This study has demonstrated, for the first time, the normal microbiota in the A. gigas intestine during different life stages and the presence of LAB strains. It also demonstrated LAB antibiotic resistance and antagonistic behaviour against pathogens isolated from the same fish. © 2017 The Society for Applied Microbiology.

  13. Isolation and characterization of halotolerant bacteria associated with the midgut of Culex quinquefasciatus Say (Diptera: Culicidae).

    Science.gov (United States)

    Reegan, Appadurai Daniel; Paulraj, Michael Gabriel; Ignacimuthu, Savarimuthu

    2013-11-01

    We show for the first time that the midgut of Culex quinquefasciatus (Say) mosquito larvae harbors halotolerant bacteria. The midgut from field collected Cx. quinquefasciatus larvae were dissected under aseptic conditions, homogenized and plated on LB agar medium with 2% (w/v) NaCl. Two different colonies were successfully isolated and bacterial isolates were identified by 16S rRNA sequences. The halotolerant bacterial isolates were: Halobacillus litoralis (CxH1) and Staphylococcus cohnii (CxH2). The gene sequence of these isolates has been deposited in GenBank (JN016804 and JN183986). These halotolerant bacteria grew in the absence of salt (0%) as well as in the presence of relatively high salt concentrations in culture medium (20%), and grew best in the presence of 8-10% (w/v) NaCl. H. litoralis and S. cohnii showed growth up to 18 and 20% (w/v) NaCl, respectively. Optimum growth temperatures for both the bacteria were between 30-37 degrees C. H. litoralis was resistant to the antibiotics oxacillin, penicillin, polymixin and S. cohnii was resistant to the antibiotic oxacillin.

  14. Cadmium tolerance and bioremediation potential of bacteria isolated from soils irrigated with untreated industrial effluent

    International Nuclear Information System (INIS)

    Ahmad, R.; Hassan, M.M.U.

    2015-01-01

    The present study was aimed to investigate the Cd tolerance of bacteria isolated from municipal effluent irrigated soils. Thirty bacterial strains were isolated and screened for their Cd+ tolerance by growing on nutrient agar plates amended with varying amount of Cd +. Out of them four bacteria (GS 2, GS5, GS10 and GS20) were found highly Cd tolerant (600 ppm Cd). The minimum inhibitory concentration of Cd+ was found 200 ppm. The isolates showed optimum growth at 30 degree C and pH 7.5-8.5. Growth curve study against different concentrations of Cd (0-600 ppm) revealed that GS2 was more tolerant among selected strains showing only 33% reduction in growth compared to 64% by GS5 and 77% by both GS 10 and GS20 at 600 ppm Cd. Inoculation of maize seeds with Cd tolerant bacteria for root elongation demonstrated upto 1.7 fold increase in root elongation (in the absence of Cd) and up to 1.5 fold (in the presence of 50 ppm Cd) compared to the un-inoculated plants. The results of the study revealed that the bacterial isolates exhibiting great Cd tolerance and growth promoting activity can be potential candidates for bioremediation of metal contaminated soils and wastewaters. (author)

  15. Optimization of phenol biodegradation by efficient bacteria isolated from petrochemical effluents

    Directory of Open Access Journals (Sweden)

    M. Shahriari Moghadam

    2016-05-01

    Full Text Available Phenol is an environmental pollutant present in industrial wastewaters such as refineries, coal processing and petrochemicals products. In this study three phenol degrading bacteria from Arak Petrochemical Complex effluent were isolated which consume phenol. Molecular analysis was used to identify bacteria and isolated bacteria were identified as Rhodococcus pyridinivorans (NS1, Advenella faeciporci (NS2 and Pseudomonas aeroginosa (NS3. Among the isolated strains, NS1 had the highest ability to degrade phenol. In order to observe the best yield in phenol biodegradation using NS1, optimization was performed using one factor at a time of experimental design to investigate the effect of four factors, including pH, temperature, phosphate and urea concentration. The optimal biodegradation condition through or tho pathway was pH = 8, urea = 1 g/L, temperature = 30°C and K2HPO4 = 0.5 g/L. Under the suggested condition, a biodegradation efficiency of 100% was achieved. Moreover, NS1 has shown growth and phenol degradation in concentrations between 250 to 2000 mg/L. In a nutshell, the results revealed thatphenol efficiently consumed by NS1 as the sole carbon source. Obviously, the isolate strain may be seen as an important tool in the bioremediation of wastewater effluent, petrochemical complex.

  16. Antioxidant activity of probiotic lactic acid bacteria isolated from Mongolian airag

    Directory of Open Access Journals (Sweden)

    E Uugantsetseg

    2014-12-01

    Full Text Available This research aimed to determine the antioxidant activity of probiotic lactic acid bacteria isolated from airag. In this study, 42 lactic acid bacteria were isolated from Mongolian airag. All isolates were identified by using morphological, biochemical and physiological methods. The isolated bacteria were studied for antagonistic effects on Enterococcus faecalis, Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus, 22 strains showed antibacterial activity. When we examined their probiotic properties such as bile acid tolerance and gastric acid tolerance, it is shown that only 6 bacterial strains can survive up to 3  hours in a pH 3.0 acid environment  and up to 8 hours in  0.3% bile acid environment. Selected probiotic strains were further identified to species by API 50CHL system. Antioxidant activity of  probiotic  strains were determined by 1,1-diphenyl-2 picrylhydrazyl (DPPH assay. While the antioxidant activity in cell free supernatant fluctuated between the range of 26.1-38.4%,  the antioxidant activity after 72 hours of fermentation in the whey fraction was between 17.23-55.12%. DOI: http://doi.dx.org/10.5564/mjc.v15i0.327 Mongolian Journal of Chemistry 15 (41, 2014, p73-78

  17. INHIBITION OF PATHOGENS BY SPOROGENIC BACTERIA ISOLATED FROM HONEY OF Melipona sp. (APIDAE: APINAE: MELIPONINI

    Directory of Open Access Journals (Sweden)

    KELY DAMIANA NOVAES DA SILVA

    2016-01-01

    Full Text Available The aim of this study was to isolate sporogenic bacteria from the honey of stingless bees Melipona sp., in dry forest, and to evaluate their antagonistic potential for medicinal employment purposes and animal production. The honey samples were collected in Serra Talhada - PE, where honey was taken from four different hives (in triplicate, totaling 12 samples. The samples were diluted and subjected to 80 ºC for 20 minutes to eliminate vegetative cells. The dilutions were plated onto nutrient agar and incubated at 30 ºC for 72 hours. Then the colony forming units (CFU were quantified. The samples were also plated onto malt agar and Sabouraud agar, and incubated at 30 ºC for 14 days for the growth of yeast and molds. Total and fecal coliforms were quantified by the most probable number method (MPN. Seven isolates (I of sporogenic bacteria ( Bacillus were obtained, however only four showed probiotic potential. Isolate I - 5 showed the greatest probiotic potential and inhibited the growth of Escherichia coli , Klebsiella sp., Pseudomonas aeruginosa, Salmonella sp., and Staphylococcus aureus . The growth of the Sarcina sp. was not inhibited by any isolate. No yeast, molds or coliforms were found. The Melipona sp. honey is a source of spore - forming bacteria and is antagonistic to microorganisms that contaminate honey. It has good microbiological quality.

  18. Potential of bacteria isolated from landfill soil in degrading low density polyethylene plastic

    Science.gov (United States)

    Munir, E.; Sipayung, F. C.; Priyani, N.; Suryanto, D.

    2018-03-01

    Plastic is an important material and used for many purposes. It is returned to the environment as a waste which is recently considered as the second largest solid waste. The persistency of plastic in the environment has been attracted researchers from a different point of view. The study of the degradation of plastic using bacteria isolated from local landfill soil was conducted. Low density polyethylene (LDPE) plastic was used as tested material. Potential isolates were obtained by culturing the candidates in mineral salt medium broth containing LDPE powder. Two of ten exhibited better growth response in the selection media and were used in degradation study. Results showed that isolate SP2 and SP4 reduced the weight of LDPE film significantly to a weight loss of 10.16% and 12.06%, respectively after four weeks of incubation. Scanning electron micrograph analyses showed the surface of LDPE changed compared to the untreated film. It looked rough and cracked, and bacteria cells attached to the surface was also noticed. Fourier transform infrared spectroscopy analyses confirmed the degradation of LDPE film. These results indicated that bacteria isolated from landfill might play an important role in degrading plastic material in the landfill.

  19. Characterization of culturable bacteria isolated from the cold-water coral Lophelia pertusa

    Science.gov (United States)

    Galkiewicz, Julia P.; Pratte, Zoe A.; Gray, Michael A.; Kellogg, Christina A.

    2011-01-01

    Microorganisms associated with corals are hypothesized to contribute to the function of the host animal by cycling nutrients, breaking down carbon sources, fixing nitrogen, and producing antibiotics. This is the first study to culture and characterize bacteria from Lophelia pertusa, a cold-water coral found in the deep sea, in an effort to understand the roles that the microorganisms play in the coral microbial community. Two sites in the northern Gulf of Mexico were sampled over 2 years. Bacteria were cultured from coral tissue, skeleton, and mucus, identified by 16S rRNA genes, and subjected to biochemical testing. Most isolates were members of the Gammaproteobacteria, although there was one isolate each from the Betaproteobacteria and Actinobacteria. Phylogenetic results showed that both sampling sites shared closely related isolates (e.g. Pseudoalteromonas spp.), indicating possible temporally and geographically stable bacterial-coral associations. The Kirby-Bauer antibiotic susceptibility test was used to separate bacteria to the strain level, with the results showing that isolates that were phylogenetically tightly grouped had varying responses to antibiotics. These results support the conclusion that phylogenetic placement cannot predict strain-level differences and further highlight the need for culture-based experiments to supplement culture-independent studies.

  20. Isolation and characterization of putative endophytic bacteria antagonistic to Phoma tracheiphila and Verticillium albo-atrum.

    Science.gov (United States)

    Kalai-Grami, Leila; Saidi, Sabrine; Bachkouel, Sarra; Ben Slimene, Imen; Mnari-Hattab, Monia; Hajlaoui, Mohamed Rebah; Limam, Ferid

    2014-09-01

    A collection of 200 bacterial isolates recovered from citrus plants (Citrus limon, Citrus sinensis, and Citrus reticulata), Medicago truncatula and Laurus nobilis, was established. In vitro screening indicated that 28 isolates exhibited an inhibitory activity against the vascular pathogens Phoma tracheiphila and Verticillium albo-atrum. Isolates were screened according to their hydrolytic activities, plant growth-promoting bacteria (PGPB) abilities, as well as for the presence of nonribosomal peptide synthetase (NRPS) genes responsible of the lipopeptide biosynthesis. The results were positive for 16 isolates which exhibited at least two PGPB activities and a single NRPS gene. Genetic diversity of the selected isolates was studied using random amplified polymorphic DNA (RAPD) and repetitive element PCR (REP) tools that showed clustering of strains into three major groups (I, II, and III) (i, ii, and iii), respectively. Clustering was further confirmed by the 16S rDNA sequencing that assigned nine isolates to Bacillus velezensis, four isolates to Bacillus methyltrophicus, one isolate to Bacillus amyloliquefaciens, and two isolates to Bacillus mojavensis. Organ-bacterial genotype interaction as well as positive correlation with NRPS genes are discussed.

  1. Survey of susceptibility to marbofloxacin in bacteria isolated from diseased pigs in Europe.

    Science.gov (United States)

    El Garch, F; Kroemer, S; Galland, D; Morrissey, I; Woehrle, F

    2017-06-17

    A monitoring programme of marbofloxacin susceptibility of bacteria from Europe causing respiratory tract infection and meningitis in pigs has been active since 1994 and 2002, respectively. Monitoring digestive, metritis and urinary tract infection (UTI) in pigs has been active since 2005 and susceptibility results until 2013 are presented. Minimum inhibitory concentration (MIC) was determined by broth microdilution. For MIC interpretation, Vétoquinol-evaluated breakpoints were applied. For digestive pathogens, Escherichia coli and Salmonella species (1717 and 300 isolates, respectively) exhibited 7.5 per cent resistance in E coli and no resistance in Salmonella species. Similarly, E coli from metritis (369 isolates) had 7.0 per cent resistance to marbofloxacin. However, E coli from UTI (633 isolates) had higher resistance (10.4 per cent). For Streptococcus suis causing meningitis (585 isolates), marbofloxacin susceptibility was very high with only 0.5 per cent resistance and 0.4 per cent resistance was observed with S suis causing respiratory disease (729 isolates). Other respiratory pathogens were also highly susceptible to marbofloxacin with no resistance in Actinobacillus pleuropneumoniae (647 isolates) or Bordetella bronchiseptica (504 isolates), 0.1 per cent resistance in Pasteurella multocida (1373 isolates) and 1.4 per cent resistance in Haemophilus parasuis (145 isolates). There was no apparent change in marbofloxacin MIC over time for any bacterial pathogen based on MIC 50/90 These data confirm previously published MIC results from porcine and other animal infections. British Veterinary Association.

  2. Isolation, selection and characterization of root-associated growth promoting bacteria in Brazil Pine (Araucaria angustifolia).

    Science.gov (United States)

    Ribeiro, Carlos Marcelo; Cardoso, Elke Jurandy Bran Nogueira

    2012-01-20

    Araucaria angustifolia, a unique species of this genus that occurs naturally in Brazil, has a high socio-economic and environmental value and is critically endangered of extinction, since it has been submitted to intense predatory exploitation during the last century. Root-associated bacteria from A. angustifolia were isolated, selected and characterized for their biotechnological potential of growth promotion and biocontrol of plant pathogenic fungi. Ninety-seven strains were isolated and subjected to chemical tests. All isolates presented at least one positive feature, characterizing them as potential PGPR. Eighteen isolates produced indole-3-acetic acid (IAA), 27 were able to solubilize inorganic phosphate, 21 isolates were presumable diazotrophs, with pellicle formation in nitrogen-free culture medium, 83 were phosphatases producers, 37 were positive for siderophores and 45 endospore-forming isolates were antagonistic to Fusarium oxysporum, a pathogen of conifers. We also observed the presence of bacterial strains with multiple beneficial mechanisms of action. Analyzing the fatty acid methyl ester (FAME) and partial sequencing of the 16S rRNA gene of these isolates, it was possible to characterize the most effective isolates as belonging to Bacillaceae (9 isolates), Enterobacteriaceae (11) and Pseudomonadaceae (1). As far as we know, this is the first study to include the species Ewingella americana as a PGPR. Copyright © 2011 Elsevier GmbH. All rights reserved.

  3. ISOLATION AND LIGNOCELLULOLYTIC ACTIVITIES OF FIBER-DIGESTING BACTERIA FROM DIGESTIVE TRACT OF TERMITE (Cryptothermes sp.

    Directory of Open Access Journals (Sweden)

    B.I.M. Tampoebolon

    2015-09-01

    Full Text Available The objectives of this study were to obtain the fiber-digesting bacteria isolates from termitedigestive tract and to determine the optimum conditions of growth and production of cellulase, xylanaseand ligninase enzyme of isolate. The first study was conducted to isolate and select the fiber-digestingbacteria from the digestive tract of termites based on the highest activity of cellulolytic (S, xylanolytic(X and lignolytic (L. The second study was optimation of the growth conditions of bacteria and theenzyme production due to effect of rice straw substrate and nitrogen. The material used were dry woodtermites, rice straw, and culture medium. The design used was a completely randomized factorial design,in which the first factor was rice straw substrate (1, 2, and 3% W/V, while the second factor wasnitrogen (0.1, 0.2 and 0.3% W/V. Variables measured were cellulase, xylanase and ligninase activities.Results of the first sudy showed that the isolates obtained consisted of 3 types, those were cellulolyticbacteria (S1, S2, and S3, 3 types of bacteria xylanolytic (X1, X2, and X3 and 3 types of bacteria lignolytic(L1, L2, and L3. Meanwhile, results of the second study showed that isolates of S2, X3, and L1 had thehighest activity, those were 1.894 U/mL, 1.722 U/mL and 0.314 U/mL, respectively. In conclusion, the addition of 1% level of rice straw substrate and 0.3% of nitrogen showed the highest enzyme activity oncellulase, xylanase and ligninase.

  4. Characterization of airag collected in Ulaanbaatar, Mongolia with emphasis on isolated lactic acid bacteria.

    Science.gov (United States)

    Choi, Suk-Ho

    2016-01-01

    Airag, alcoholic sour-tasting beverage, has been traditionally prepared by Mongolian nomads who naturally ferment fresh mares' milk. Biochemical and microbiological compositions of airag samples collected in Ulaanbaatar, Mongolia and physiological characteristics of isolated lactic acid bacteria were investigated. Protein composition and biochemical composition were determined using sodium dodecyl sulfate-gel electrophoresis and high performance liquid chromatography, respectively. Lactic acid bacteria were identified based on nucleotide sequence of 16S rRNA gene. Carbohydrate fermentation, acid survival, bile resistance and acid production in skim milk culture were determined. Equine whey proteins were present in airag samples more than caseins. The airag samples contained 0.10-3.36 % lactose, 1.44-2.33 % ethyl alcohol, 1.08-1.62 % lactic acid and 0.12-0.22 % acetic acid. Lactobacillus (L.) helveticus were major lactic acid bacteria consisting of 9 isolates among total 18 isolates of lactic acid bacteria. L. helveticus survived strongly in PBS, pH 3.0 but did not grow in MRS broth containing 0.1 % oxgall. A couple of L. helveticus isolates lowered pH of skim milk culture to less than 4.0 and produced acid up to more than 1.0 %. Highly variable biochemical compositions of the airag samples indicated inconsistent quality due to natural fermentation. Airag with low lactose content should be favorable for nutrition, considering that mares' milk with high lactose content has strong laxative effect. The isolates of L. helveticus which produced acid actively in skim milk culture might have a major role in production of airag.

  5. Characterization of airag collected in Ulaanbaatar, Mongolia with emphasis on isolated lactic acid bacteria

    Directory of Open Access Journals (Sweden)

    Suk-Ho Choi

    2016-03-01

    Full Text Available Abstract Background Airag, alcoholic sour-tasting beverage, has been traditionally prepared by Mongolian nomads who naturally ferment fresh mares’ milk. Biochemical and microbiological compositions of airag samples collected in Ulaanbaatar, Mongolia and physiological characteristics of isolated lactic acid bacteria were investigated. Methods Protein composition and biochemical composition were determined using sodium dodecyl sulfate-gel electrophoresis and high performance liquid chromatography, respectively. Lactic acid bacteria were identified based on nucleotide sequence of 16S rRNA gene. Carbohydrate fermentation, acid survival, bile resistance and acid production in skim milk culture were determined. Results Equine whey proteins were present in airag samples more than caseins. The airag samples contained 0.10–3.36 % lactose, 1.44–2.33 % ethyl alcohol, 1.08–1.62 % lactic acid and 0.12–0.22 % acetic acid. Lactobacillus (L. helveticus were major lactic acid bacteria consisting of 9 isolates among total 18 isolates of lactic acid bacteria. L. helveticus survived strongly in PBS, pH 3.0 but did not grow in MRS broth containing 0.1 % oxgall. A couple of L. helveticus isolates lowered pH of skim milk culture to less than 4.0 and produced acid up to more than 1.0 %. Conclusion Highly variable biochemical compositions of the airag samples indicated inconsistent quality due to natural fermentation. Airag with low lactose content should be favorable for nutrition, considering that mares’ milk with high lactose content has strong laxative effect. The isolates of L. helveticus which produced acid actively in skim milk culture might have a major role in production of airag.

  6. Antibacterial Activity of Extracellular Protease Isolated From an Algicolous Fungus Xylaria psidii KT30 Against Gram-Positive Bacteria

    Directory of Open Access Journals (Sweden)

    Taufik Indarmawan

    2016-04-01

    Full Text Available Infectious diseases became more serious problem for public health in recent years. Although existing antibacterial drugs have been relatively effective, they do not rule out the emergence of resistance to the drug. Therefore, the intensive exploration of new bioactive compounds from natural, especially peptide compounds began in recent decades in order-handling infection. This study aimed to isolate, purify and test the potential application of Xylaria psidii KT30 extracellular protease as antibacterial agent against Gram-positive bacteria. X. psidii KT30, a marine fungus isolated from red seaweed Kappaphycus alvarezii showed antibacterial activity against Bacillus subtilis and Staphylococcus aureus. Antibacterial compounds of this fungus were predicted as a group of proteases. Extracellular protease exhibited an optimum activity when potato dextrose broth was used as cultivation medium. Furthermore, the highest activity of these proteases was found on fungal extract after day 15 of cultivation with value of 2.33 ± 0.19 U/mL. The partial purification of proteases using G-75 column chromatography resulted in 2 groups of fractions and showed protease activity based on zymogram assay. The extracellular proteases obtained from those fractions have 3 patterns of molecular mass based on sodium dodecyl sulfate–polyacrylamide gel electrophoresis which are 56.62, 89.12, 162.18 kDa.

  7. Real-time PCR quantification and diversity analysis of the functional genes aprA and dsrA of sulfate-reducing bacteria in marine sediments of the Peru continental margin and the Black Sea

    OpenAIRE

    Axel eSchippers; Anna eBlazejak

    2011-01-01

    A quantitative, real-time PCR (Q-PCR) assay for the functional gene adenosine 5´-phosphosulfate reductase (aprA) of sulfate-reducing bacteria (SRB) was designed. This assay was applied together with described Q-PCR assays for dissimilatory sulfite reductase (dsrA) and the 16S rRNA gene of total Bacteria to marine sediments from the Peru margin (0 – 121 meters below seafloor (mbsf)) and the Black Sea (0 – 6 mbsf). Clone libraries of aprA show that all isolated sequences originate from SRB...

  8. Lactic Acid Bacteria Exopolysaccharides in Foods and Beverages: Isolation, Properties, Characterization, and Health Benefits.

    Science.gov (United States)

    Lynch, Kieran M; Zannini, Emanuele; Coffey, Aidan; Arendt, Elke K

    2018-03-25

    Exopolysaccharides produced by lactic acid bacteria are a diverse group of polysaccharides produced by many species. They vary widely in their molecular, compositional, and structural characteristics, including mechanisms of synthesis. The physiochemical properties of these polymers mean that they can be exploited for the sensorial and textural enhancement of a variety of food and beverage products. Traditionally, lactic acid bacteria exopolysaccharides have an important role in fermented dairy products and more recently are being applied for the improvement of bakery products. The health benefits that are continually being associated with these polysaccharides enable the development of dual function, added-value, and clean-label products. To fully exploit and understand the functionality of these exopolysaccharides, their isolation, purification, and thorough characterization are of great importance. This review considers each of the above factors and presents the current knowledge on the importance of lactic acid bacteria exopolysaccharides in the food and beverage industry.

  9. Isolation and molecular identification of planctomycete bacteria from postlarvae of the giant tiger prawn, Penaeus monodon.

    Science.gov (United States)

    Fuerst, J A; Gwilliam, H G; Lindsay, M; Lichanska, A; Belcher, C; Vickers, J E; Hugenholtz, P

    1997-01-01

    Bacteria phenotypically resembling members of the phylogenetically distinct planctomycete group of the domain Bacteria were isolated from postlarvae of the giant tiger prawn, Penaeus monodon. A selective medium designed in the light of planctomycete antibiotic resistance characteristics was used for this isolation. Planctomycetes were isolated from both healthy and monodon baculovirus-infected prawn postlarvae. The predominant colony type recovered from postlarvae regardless of viral infection status was nonpigmented. Other, less commonly observed types were pink or orange pigmented. A planctomycete-specific 16S rRNA-directed probe was designed and used to screen the isolates for their identity as planctomycetes prior to molecular phylogenetic characterization. 16S rRNA genes from nine prawn isolates together with two planctomycete reference strains (Planctomyces brasiliensis and Gemmata obscuriglobus) were sequenced and compared with reference sequences from the planctomycetes and other members of the domain Bacteria. Phylogenetic analyses and sequence signatures of the 16S rRNA genes demonstrated that the prawn isolates were members of the planctomycete group. Five representatives of the predominant nonpigmented colony type were members of the Pirellula group within the planctomycetes, as were three pink-pigmented colony type representatives. Homology values and tree topology indicated that representatives of the nonpigmented and pink-pigmented colony types formed two discrete clusters within the Pirellula group, not identical to any known Pirellula species. A sole representative of the orange colony type was a member of the Planctomyces group, virtually identical in 16S rDNA sequence to P. brasiliensis, and exhibited distinctive morphology. PMID:8979353

  10. Microbiological and biochemical studies on certain antibiotic-resistant bacteria isolated from certain clinical specimens

    International Nuclear Information System (INIS)

    Nada, H.M.AL.M.

    2008-01-01

    Infection is a dynamic process involving invasion of the body by pathogenic microorganisms and reactions of the tissues to microorganisms and their toxins. Pathogenic microorganisms isolated from clinical samples are of great threat to human health.The outcome of an infection depends on the virulence of the pathogen and the relative degree of resistance or susceptibility to antimicrobial chemotherapy. Antimicrobial agents interfere with specific processes that are essential for growth and division.Development of antibiotic resistance in bacteria is a problem of great concern. The high prevalence of resistant bacteria seems to be related to uncontrolled usage of antibiotics. B-lactamases are the most common cause of bacterial resistance to B-lactam antimicrobial agents, and it is one of the most important reason for increasing the resistance in pathogenic bacteria against some antibiotics especially those acting on inhibition of cell wall synthesis. One hundred and seven clinical samples and specimens were collected from public, private hospitals and National Cancer Institute (NCI) in Cairo, Egypt. Out of them 72 cases positive for microbial infection. Twelve cases were showed mixed infection. Eighty four isolates of pathogenic bacteria and yeast were collected from single and mixed culture. Susceptibilities of the isolates to 20 different antimicrobial agents were determined according to Kirby-Bauer method. Nine multi-drug resistant gram-negative bacterial strains were identified by (Micro Scan WalkAway 96 SI System). Six of them urine isolates, 2 wound (pus) isolates and one sputum isolate. The identified strains were exposed to in-vitro gamma irradiation at dose level of 24.4 Gy, which is biologically equivalent to the fractionated multiple therapeutic dose used in the protocol of cancer treatment of some patients. The antimicrobial susceptibility of the nine multi-drug resistant strains were carried out by disk diffusion method before and after irradiation

  11. Microbiological and biochemical studies on certain antibiotic-resistant bacteria isolated from certain clinical specimens

    Energy Technology Data Exchange (ETDEWEB)

    Nada, H M.AL.M. [National Center for Radiation Research and Technology, Atomic Energy Authority, Cairo (Egypt)

    2008-07-01

    Infection is a dynamic process involving invasion of the body by pathogenic microorganisms and reactions of the tissues to microorganisms and their toxins. Pathogenic microorganisms isolated from clinical samples are of great threat to human health.The outcome of an infection depends on the virulence of the pathogen and the relative degree of resistance or susceptibility to antimicrobial chemotherapy. Antimicrobial agents interfere with specific processes that are essential for growth and division.Development of antibiotic resistance in bacteria is a problem of great concern. The high prevalence of resistant bacteria seems to be related to uncontrolled usage of antibiotics. B-lactamases are the most common cause of bacterial resistance to B-lactam antimicrobial agents, and it is one of the most important reason for increasing the resistance in pathogenic bacteria against some antibiotics especially those acting on inhibition of cell wall synthesis. One hundred and seven clinical samples and specimens were collected from public, private hospitals and National Cancer Institute (NCI) in Cairo, Egypt. Out of them 72 cases positive for microbial infection. Twelve cases were showed mixed infection. Eighty four isolates of pathogenic bacteria and yeast were collected from single and mixed culture. Susceptibilities of the isolates to 20 different antimicrobial agents were determined according to Kirby-Bauer method. Nine multi-drug resistant gram-negative bacterial strains were identified by (Micro Scan WalkAway 96 SI System). Six of them urine isolates, 2 wound (pus) isolates and one sputum isolate. The identified strains were exposed to in-vitro gamma irradiation at dose level of 24.4 Gy, which is biologically equivalent to the fractionated multiple therapeutic dose used in the protocol of cancer treatment of some patients. The antimicrobial susceptibility of the nine multi-drug resistant strains were carried out by disk diffusion method before and after irradiation

  12. Isolation and identification of bacteria to improve the strength of concrete.

    Science.gov (United States)

    Krishnapriya, S; Venkatesh Babu, D L; G, Prince Arulraj

    2015-05-01

    The objective of this research work is to isolate and identify calcite precipitating bacteria and to check the suitability of these bacteria for use in concrete to improve its strength. Bacteria to be incorporated in concrete should be alkali resistant to endure the high pH of concrete and endospore forming to withstand the mechanical stresses induced in concrete during mixing. They must exhibit high urease activity to precipitate calcium carbonate in the form of calcite. Bacterial strains were isolated from alkaline soil samples of a cement factory and were tested for urease activity, potential to form endospores and precipitation of calcium carbonate. Based on these results, three isolates were selected and identified by 16S rRNA gene sequencing. They were identified as Bacillus megaterium BSKAU, Bacillus licheniformis BSKNAU and Bacillus flexus BSKNAU. The results were compared with B. megaterium MTCC 1684 obtained from Microbial Type Culture Collection and Gene Bank, Chandigarh, India. Experimental work was carried out to assess the influence of bacteria on the compressive strength and tests revealed that bacterial concrete specimens showed enhancement in compressive strength. The efficiency of bacteria toward crack healing was also tested. Substantial increase in strength and complete healing of cracks was observed in concrete specimens cast with B. megaterium BSKAU, B. licheniformis BSKNAU and B. megaterium MTCC 1684. This indicates the suitability of these bacterial strains for use in concrete. The enhancement of strength and healing of cracks can be attributed to the filling of cracks in concrete by calcite which was visualized by scanning electron microscope. Copyright © 2015 Elsevier GmbH. All rights reserved.

  13. Isolation of butanol- and isobutanol-tolerant bacteria and physiological characterization of their butanol tolerance.

    Science.gov (United States)

    Kanno, Manabu; Katayama, Taiki; Tamaki, Hideyuki; Mitani, Yasuo; Meng, Xian-Ying; Hori, Tomoyuki; Narihiro, Takashi; Morita, Naoki; Hoshino, Tamotsu; Yumoto, Isao; Kimura, Nobutada; Hanada, Satoshi; Kamagata, Yoichi

    2013-11-01

    Despite their importance as a biofuel production platform, only a very limited number of butanol-tolerant bacteria have been identified thus far. Here, we extensively explored butanol- and isobutanol-tolerant bacteria from various environmental samples. A total of 16 aerobic and anaerobic bacteria that could tolerate greater than 2.0% (vol/vol) butanol and isobutanol were isolated. A 16S rRNA gene sequencing analysis revealed that the isolates were phylogenetically distributed over at least nine genera: Bacillus, Lysinibacillus, Rummeliibacillus, Brevibacillus, Coprothermobacter, Caloribacterium, Enterococcus, Hydrogenoanaerobacterium, and Cellulosimicrobium, within the phyla Firmicutes and Actinobacteria. Ten of the isolates were phylogenetically distinct from previously identified butanol-tolerant bacteria. Two relatively highly butanol-tolerant strains CM4A (aerobe) and GK12 (obligate anaerobe) were characterized further. Both strains changed their membrane fatty acid composition in response to butanol exposure, i.e., CM4A and GK12 exhibited increased saturated and cyclopropane fatty acids (CFAs) and long-chain fatty acids, respectively, which may serve to maintain membrane fluidity. The gene (cfa) encoding CFA synthase was cloned from strain CM4A and expressed in Escherichia coli. The recombinant E. coli showed relatively higher butanol and isobutanol tolerance than E. coli without the cfa gene, suggesting that cfa can confer solvent tolerance. The exposure of strain GK12 to butanol by consecutive passages even enhanced the growth rate, indicating that yet-unknown mechanisms may also contribute to solvent tolerance. Taken together, the results demonstrate that a wide variety of butanol- and isobutanol-tolerant bacteria that can grow in 2.0% butanol exist in the environment and have various strategies to maintain structural integrity against detrimental solvents.

  14. Isolation of biosurfactant-producing bacteria from the Rancho La Brea Tar Pits.

    Science.gov (United States)

    Belcher, Richard W; Huynh, Kelvin V; Hoang, Timothy V; Crowley, David E

    2012-12-01

    This research was conducted to identify culturable surfactant-producing bacterial species that inhabit the 40,000-year-old natural asphalt seep at the Rancho La Brea Tar Pits in Los Angeles, CA. Using phenanthrene, monocyclic aromatic hydrocarbons, and tryptic soy broth as growth substrates, culturable bacteria from the tar pits yielded ten isolates, of which three species of gamma-proteobacteria produced biosurfactants that accumulated in spent culture medium. Partially purified biosurfactants produced by these strains lowered the surface tension of water from 70 to 35-55 mN/m and two of the biosurfactants produced 'dark halos' with the atomized oil assay, a phenomenon previously observed only with synthetic surfactants. Key findings include the isolation of culturable biosurfactant-producing bacteria that comprise a relatively small fraction of the petroleum-degrading community in the asphalt.

  15. Bacteria isolated from rock art paintings: the case of Atlanterra shelter (south Spain).

    Science.gov (United States)

    Gonzalez, I; Laiz, L; Hermosin, B; Caballero, B; Incerti, C; Saiz-Jimenez, C

    1999-05-01

    The Sierra de la Plata is an Aljibe yellow sandstone formation from the Acheulian period. There are a few shelters, some of them with rock art paintings. The most representative one, and subjected to anthropogenic pressure, is that of Atlanterra, situated in a residential area. This shelter contains some rock art paintings made with iron oxides. The bacteria present in these paintings were isolated and identified using an automatic method: fatty acid methyl esters profiling. Most of the bacteria belong to the Bacillus genus, B. megaterium being the most abundant species. The isolated strains are able to reduce hematite. This is significant due to the fact that Fe(III)-(hydr)oxides are the most abundant pigments in rock art.

  16. Isolation and characterization of diesel degrading bacteria, Sphingomonas sp. and Acinetobacter junii from petroleum contaminated soil

    Science.gov (United States)

    Zhang, Qiuzhuo; Wang, Duanchao; Li, Mengmeng; Xiang, Wei-Ning; Achal, Varenyam

    2014-03-01

    Two indigenous bacteria of petroleum contaminated soil were characterized to utilize diesel fuel as the sole carbon and energy sources in this work. 16S rRNA gene sequence analysis identified these bacteria as Sphingomonas sp. and Acinetobacter junii. The ability to degrade diesel fuel has been demonstrated for the first time by these isolates. The results of IR analyses showed that Sphingomonas sp. VA1 and A. junii VA2 degraded up to 82.6% and 75.8% of applied diesel over 15 days, respectively. In addition, Sphingomonas sp. VA1 possessed the higher cellular hydrophobicities of 94% for diesel compared to 81% by A. junii VA2. The isolates Sphingomonas sp. VA1 and A. junii VA2 exhibited 24% and 18%, respectively emulsification activity. This study reports two new diesel degrading bacterial species, which can be effectively used for bioremediation of petroleum contaminated sites.

  17. Characterization of Lactic Acid Bacteria (LAB) isolated from Indonesian shrimp paste (terasi)

    Science.gov (United States)

    Amalia, U.; Sumardianto; Agustini, T. W.

    2018-02-01

    Shrimp paste was one of fermented products, popular as a taste enhancer in many dishes. The processing of shrimp paste was natural fermentation, depends on shrimp it self and the presence of salt. The salt inhibits the growth of undesirable microorganism and allows the salt-tolerant lactic acid bacteria (LAB) to ferment the protein source to lactic acids. The objectives of this study were to characterize LAB isolated from Indonesian shrimp paste or "Terasi" with different times of fermentation (30, 60 and 90 days). Vitech analysis showed that there were four strains of the microorganism referred to as lactic acid bacteria (named: LABS1, LABS2, LABS3 and LABS4) with 95% sequence similarity. On the basis of biochemical, four isolates represented Lactobacillus, which the name Lactobacillus plantarum is proposed. L.plantarum was play role in resulting secondary metabolites, which gave umami flavor in shrimp paste.

  18. Phytase Activity of Lactic Acid Bacteria Isolated from Dairy and Pharmaceutical Probiotic Products

    Directory of Open Access Journals (Sweden)

    Zohreh Khodaii

    2013-01-01

    Full Text Available Phytate, the major storage form of phosphorus in plant seeds, can form insoluble complexes with minerals such as iron, zinc and calcium thus reducing their bioavailability. Phytase enzymes are often used to upgrade the nutritional quality of phytate-rich foods and feeds such as grains. The phytate-degrading activity of 43 lactic acid bacteria including isolates from commercial probiotic preparations, dairy products and type strains were measured. The phytate-degrading activity of bifidobacteria and lactobacillus isolates from pharmaceutical probiotics, dairy products and type strains were determined. The enzyme activity of probotic bacteria ranged between 1.1-5.4 mU and was strain not species specific. Phytase activity may thus be a useful additional attribute of probiotics to be used as food supplements.

  19. Determination of antibiotic resistance of lactic acid bacteria isolated from traditional Turkish fermented dairy products.

    Science.gov (United States)

    Erginkaya, Z; Turhan, E U; Tatlı, D

    2018-01-01

    In this study, the antibiotic resistance (AR) of lactic acid bacteria (LAB) isolated from traditional Turkish fermented dairy products was investigated. Yogurt, white cheese, tulum cheese, cokelek, camız cream and kefir as dairy products were collected from various supermarkets. Lactic acid bacteria such as Lactobacillus spp., Streptococcus spp., Bifidobacterium spp., and Enterecoccus spp. were isolated from these dairy products. Lactobacillus spp. were resistant to vancomycin (58%), erythromycin (10.8%), tetracycline (4.3%), gentamicin (28%), and ciprofloxacin (26%). Streptococcus spp. were resistant to vancomycin (40%), erythromycin (10%), chloramphenicol (10%), gentamicin (20%), and ciprofloxacin (30%). Bifidobacterium spp. were resistant to vancomycin (60%), E 15 (6.6%), gentamicin (20%), and ciprofloxacin (33%). Enterococcus spp. were resistant to vancomycin (100%), erythromycin (100%), rifampin (100%), and ciprofloxacin (100%). As a result, LAB islated from dairy products in this study showed mostly resistance to vancomycin.

  20. Antimicrobial Activity of Cell Free Supernatant of Irradiated Lactic Acid Bacteria Isolates

    International Nuclear Information System (INIS)

    Abdelaleem, M.A.; AL-Hagar, O.E.Aa.

    2015-01-01

    Attempts were made to isolate bio preservatives using food wastes with no value and low cost. Whey is the raw material achieved that value. Whey and many other food wastes are used in our study to isolate Lactic acid bacteria (LAB). Cell free supernatants (CFS) of isolates are used to evaluate their antimicrobial activity against indicator pathogenic bacterial strains. CFS-9 isolate from whey has the highest inhibitory activity compared to all other isolates. The inhibitory activity of CFS-9, Nisin (400 IU / ml) and the standard Lactococcus Lactis Subsp. Lactis ATCC 11454 (Lacto) were determined. Furthermore, isolate-9 and Lacto strains were exposed to irradiation at different doses. The inhibition zones of; control isolate-9 (non-irradiated) showed the highest values against all indicator strains, CFS of irradiated Lacto at dose 250 Gy was the highest value against Bacillus cereus and Escherichia coli compared to other irradiation treatments, CFS of irradiated Lacto at dose 100 Gy was the highest value against Staph aureus, while the inhibition zone was in the highest value in CFS of irradiated Lacto at dose 500 Gy against Salmonella typhimurium. Nisin (400 IU / ml) was significantly higher than all CFS of irradiated isolate-9 while, the inhibition zones of all CFS-Lacto (irradiated and nonirradiated) are better and higher than nisin-400

  1. Identification of lactic acid bacteria isolated from Tarhana, a traditional Turkish fermented food

    DEFF Research Database (Denmark)

    Sengun, Ilkin Yucel; Nielsen, Dennis Sandris; Karapinar, Mehmet

    2009-01-01

    Tarhana is a traditional fermented product produced from a mixture of spontaneously fermented yogurt and wheat flour in Turkey. The aims of the present study were to enumerate and identify for the first time by molecular biology-based methods predominant lactic acid bacteria (LAB) isolated during...... processing of Tarhana. Samples were collected from eight different regions of Turkey. In order to explore the relationship between raw material and the microbiology of Tarhana, yogurt and wheat flour were also analyzed. A total of 226 Gram-positive and catalase-negative isolates were obtained from MRS, M17...... and S. thermophilus was found to be the yogurt....

  2. Isolation and characterization of α-amylase from marine ...

    African Journals Online (AJOL)

    The α-amylase of marine Pseudomonas sp. K6-28-040 was purified through a series of three steps and the purity of enzymes was checked by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The results showed that, the enzyme was purified 4.7-fold with a specific activity of 134.6 U/mg protein and a yield of 44% ...

  3. Isolation of proteolytic bacteria from mealworm (Tenebrio molitor) exoskeletons to produce chitinous material.

    Science.gov (United States)

    da Silva, Fernanda Kerche Paes; Brück, Dieter W; Brück, Wolfram M

    2017-09-15

    The use of insects as a source of protein is becoming an important factor for feeding an increasing population. After protein extraction for food use, the insect exoskeleton may offer the possibility for the production of added value products. Here, the aim was to isolate bacteria from the surface of farmed mealworms (Tenebrio molitor Linnaeus, 1758) for the production of chitinous material from insect exoskeletons using microbial fermentation. Isolates were screened for proteases and acid production that may aid deproteination and demineralisation of insects through fermentation to produce chitin. Selected isolates were used single-step (isolated bacteria only) or two-step fermentations with Lactobacillus plantarum (DSM 20174). Two-step fermentations with isolates from mealworm exoskeletons resulted in a demineralisation of 97.9 and 98.5% from deproteinated mealworm fractions. Attenuated total reflectance-Fourier- transform infrared spectroscopy analysis showed that crude chitin was produced. However, further optimisation is needed before the process can be upscaled. This is, to our knowledge, the first report using microbial fermentation for the extraction of chitin from insects. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  4. Isolation and identification of acetogenic bacteria obtained from deer rumen and their potential for methanogenesis inhibitor

    Directory of Open Access Journals (Sweden)

    Amlius Thalib

    2008-10-01

    Full Text Available Methanogenesis can be inhibited by various chemicals through different mechanism reaktion. The use of acetogenic bacteria as H2 sink is assumed to be a promising approach. Isolation and identification of acetogenic bacteria obtained from deer rumen had been conducted. Two types of media used for isolation were hydrogen-carbondioxide utilizing acetogens and carbonmonoxide utilizing acetogens. Identification of species of acetogens isolates was based on descriptions of morphology, Gram type, motility, bioreaction results, and oksygen requirement. The compositions of methane and volatile fatty acids (VFA were determined on minimal media or added with sheep rumen liquid innoculated with pure isolates. The identification results showed that the isolate cultured on media of hydrogen-carbondioxide utilizing acetogens was Acetoanaerobium noterae and the ones cultured on media of carbonmonoxide utilizing acetogens was Acetobacterium woodii. Inoculumn of A. noterae and A. woodii could decreased the composition of methane resulted from substrate fermented by fresh rumen liquid of sheep (CRDF, that is culture of A. noterae added FPM and defaunator decreased methane production by 28.8% (P CH3COOH + 2H2O by which reduction of CO2 with H2 producing CH4 can be inhibited or decreased. Their function as methanogenesis inhibitor would be more significant when they are combined with microbial growth factors and defaunator.

  5. Isolation and identification of halotolerant soil bacteria from coastal Patenga area.

    Science.gov (United States)

    Rahman, Shafkat Shamim; Siddique, Romana; Tabassum, Nafisa

    2017-10-30

    Halotolerant bacteria have multiple uses viz. fermentation with lesser sterility control and industrial production of bioplastics. Moreover, it may increase the crop productivity of coastal saline lands in Bangladesh by transferring the salt tolerant genes into the plants. The study focused on the isolation and identification of the halotolerant bacteria from three soil samples, collected from coastal Patenga area. The samples were inoculated in nutrient media containing a wide range of salt concentrations. All the samples showed 2, 4 and 6% (w/v) salt tolerance. The isolates from Patenga soil (4, 6%) and beach soil (2%) showed catalase activity and all the isolates showed negative results for oxidase activity, indole production, lactose and motility. All the samples provided positive results for dextrose fermentation. Other tests provided mixed results. Based on the morphological characteristics, biochemical tests and ABIS software analysis the isolates fall within the Enterobacteriaceae, Clostridium and Corynebacterium, with a predominance of Vibrios. Overall the isolates can be considered as mild halotolerant, with the best growth observed at lower salinities and no halophilism detected. Among many possibilities, the genes responsible for the salt tolerant trait in these species can be identified, extracted and inserted into the crop plants to form a transgenic plant to result in higher yield for the rest of the year.

  6. Antimicrobial properties of lactic acid bacteria isolated from traditional yogurt and milk against Shigella strains.

    Science.gov (United States)

    Zare Mirzaei, Elnaze; Lashani, Elahe; Davoodabadi, Abolfazl

    2018-01-01

    Background: Lactic acid bacteria (LAB) are normal flora of the mouth, intestines and the female genital tract. They are also frequently found in meat, vegetables, and dairy products. Most of probiotic bacteria belong to the LAB group. Some probiotic LAB are useful in prevention and treatment of diarrheal diseases. The aim of this study was to investigate the antimicrobial properties of LAB isolated from traditional yogurt and milk against Shigella strains. Materials and methods: Forty LAB strains were isolated from traditional yogurt and milk. The antimicrobial activity of LAB against Shigella strains (eight S. flexneri , four S. sonnei ) was examined using the agar-well diffusion assay. LAB strains with antimicrobial effect against all Shigella strains were identified by 16S rRNA gene sequencing. Results: Six LAB strains inhibited the growth of all 12 Shigella strains. Lb. paracasei Y1-3, Lb. paracasei Y8-1 and Lb. fermentum Y2-2 were isolated from yogurt. Lb. paracasei M18-1, Lb. parelimentarius M4-3 and Lb. plantarum M19-1 were isolated from milk. Conclusion: This study showed that Lactobacillus strains with good inhibitory activity against S. flexneri and S. sonnei could be isolated from traditional yogurt and milk.

  7. The Biology of Heterotrophic N2-fixing Bacteria in Marine and Estuarine Waters

    DEFF Research Database (Denmark)

    Bentzon-Tilia, Mikkel

    Biological nitrogen (N)2 fixation is of paramount importance for marine N cycling and for life in the oceans in general. It represents the sole mechanism by which microorganisms can channel inert atmospheric N2 gas into biomass and hence it may fuel a significant fraction of primary production...... heterotrophic isolates, this thesis aims at addressing these unknowns. It was found that heterotrophic diazotrophs were present and active in environments previously not associated with N2 fixation e.g. suboxic basins of the Baltic Sea and estuarine surface waters. In these environments they contributed...... with significant amounts fixed N2, suggesting that a reevaluation of the significance of N fixation in suboxic waters and estuarine coastal waters is warranted. It was also documented that heterotrophic diazotrophs could be enriched in culture based on their ability to utilize N2 as the sole N source...

  8. Screening and evaluation of local bacteria isolated from shellfish as potential probiotics against pathogenic Vibrios.

    Science.gov (United States)

    Jasmin, M Y; Wagaman, Hazimah; Yin, Tan Ai; Ina-salwany, M Y; Daud, H M; Karim, Murni

    2016-07-01

    The present study was carried out to isolate, screen and evaluate potential candidates of local bacteria isolated from tiger shrimp Penaeus monodon and slipper cupped oysters Crassostrea iredalei as probiotics in shellfish aquaculture. A total of 144 of bacteria were successfully isolated from the intestine and stomach of 20 tails of healthy adult tiger shrimp P. monodon, while 136 were successfully isolated from the digestive tract, gills and inner shells of 10 healthy adult C. iredalei. The number of potential isolates was narrowed down to two from tiger shrimp, and one from slipper cupped oyster after in vitro screening assays. The three isolates, labeled as G11, I24 and S66, were identified as Virgibacillus sp., Bacillus sp. and Exiquobacterium sp., respectively, using 16S rDNA gene analysis. The antagonistic ability of the isolates towards Vibrio alginolyticus and Vibrio harveyi were conducted in stagnant and liquid modes via spot lawn and broth co-culture assay, respectively. In these assays, all the potential probionts were inhibitory to both pathogenic vibrios. In the in-vivo assay, Artemia was used as host and treated with different concentrations of potential probionts (10(4), 10(6) and 10(8) CFU ml(-1)), and challenged with V. alginolyticus and V. harveyi at 105 CFU ml(-1), respectively. Artemia treated with probiont G11 at all concentrations and challenged with V. alginolyticus had increased survival (70 ? 80 %), which was significantly higher as compared with group with only the pathogen (20 %). Meanwhile, probiont I24 increased the survival of Artemia by 70 % at a concentration of 10(8) CFU ml(-1) after being challenged with V. alginolyticus and Artemia treated with 10(6) CFU ml(-1) of probiont S66 had increased survival of 90% after being challenged with V. harveyi. Thus, the three isolates might have potential applications as probiotics in shellfish aquaculture against vibriosis. ?

  9. Petroleum residues degradation in laboratory-scale by rhizosphere bacteria isolated from the mangrove ecosystem

    Science.gov (United States)

    Rinanti, A.; Nainggolan, I. J.

    2018-01-01

    This research is about petroleum bioremediation experiment to obtain bacterial isolate from mangrove ecosystem which potentially degrade petroleum. It was conducted in an Erlenmeyer batch system filled with growth medium of Stone Mineral Salt Solution (SMSS) plus petroleum residue, placed in an incubator shaker with a rotation speed of 120 rpm, temperature 3000C, for 14 research days. Indigenous bacteria that have been isolated and identified from the roots of mangrove plants are Ochrobactrum anthropi and Bacillus sp., Ralstonia pickettii and Bacillus circulans. Those bacteriain both monoculture and consortium form (mixed culture) are incorporated into erlenmeyer as remediator agents. All bacteria can utilize hydrocarbon compounds, but Ralstonia pickettii and Bacillus circulans reached exponential phase faster with more cell count than other bacteria. Compared to single cultures, petroleum degradation by a bacterial consortium provides a higher TPH reduction efficiency, i.e. at 5%, 10%, and 15% of initial TPH of 94.4%, 72%, and 80.3%, respectively. This study proved that all bacteria could optimize hydrocarbon compounds up to 15% TPH load.

  10. The inhibitory activity of Lactic acid bacteria isolated from fresh cow cheese

    Directory of Open Access Journals (Sweden)

    Nevijo Zdolec

    2007-04-01

    Full Text Available Lactic acid bacteria are the constituent part of milk microbial flora that could influence the safety of dairy products due production of organic acids, hydrogen peroxide, carbon dioxide and bacteriocins. Taking this in consideration, the objective of this study was to investigate the composition of lactic acid bacteria population in fresh cow cheeses taken from local markets, as well as their antimicrobial capacity. Lactic acid bacteria counts were determined according to ISO 1524:1998 method, biochemical determination using API 50 CHL system, and inhibitory activity against L. monocytogenes NCTC 10527 by agar well diffusion assay. Lactic acid bacteria count in fresh cow cheeses (n=10 ranged from 5.87 to 8.38 log10 CFU g-1. Among 52 MRS isolates collected, 61.54 % were assigned to the Lactococcus lactis subsp. Lactis species, 23.07 % Lactobacillus helveticus, 11.54 % Leuconostoc mesenteroides subsp. cremoris and 3.85 % Leuconostoc mesenteroides subsp. mesenteroides. Antilisterial activity was found in 18 isolates.

  11. Antimicrobial Resistance and Resistance Genes in Aerobic Bacteria Isolated from Pork at Slaughter

    DEFF Research Database (Denmark)

    Li, Lili; Olsen, Rikke Heidemann; Ye, Lei

    2016-01-01

    The aim of this study was to investigate the phenotypic and genotypic antimicrobial resistance, integrons, and transferability of resistance markers in 243 aerobic bacteria recovered from pork at slaughter in the People's Republic of China. The organisms belonged to 22 genera of gram-negative bac......The aim of this study was to investigate the phenotypic and genotypic antimicrobial resistance, integrons, and transferability of resistance markers in 243 aerobic bacteria recovered from pork at slaughter in the People's Republic of China. The organisms belonged to 22 genera of gram......-negative bacteria (92.2%) and gram-positive bacteria (7.8%). High levels of resistance were detected to tetracycline, trimethoprim-sulfamethoxazole, and ampicillin (36.2 to 54.3%), and lower levels were detected to nitrofurantoin, cefotaxime, gentamicin, ciprofloxacin, and chloramphenicol (7.8 to 29.2%). Across.......6% of isolates contained class 1 integrons, and one isolate harbored class 2 integrons. Plasmid associated intI1 and androgen receptor– encoding genes were transferred into Escherichia coli J53 and E. coli DH5α by conjugation and transformation experiments, respectively. Our study highlights the importance...

  12. Biofilm-forming activity of bacteria isolated from toilet bowl biofilms and the bactericidal activity of disinfectants against the isolates.

    Science.gov (United States)

    Mori, Miho; Gomi, Mitsuhiro; Matsumune, Norihiko; Niizeki, Kazuma; Sakagami, Yoshikazu

    2013-01-01

    To evaluate the sanitary conditions of toilets, the bacterial counts of the toilet bowl biofilms in 5 Kansai area and 11 Kansai and Kanto area homes in Japan were measured in winter and summer seasons, respectively. Isolates (128 strains) were identified by analyzing 16S ribosomal RNA sequences. The number of colonies and bacterial species from biofilms sampled in winter tended to be higher and lower, respectively, than those in summer. Moreover, the composition of bacterial communities in summer and winter samples differed considerably. In summer samples, biofilms in Kansai and Kanto areas were dominated by Blastomonas sp. and Mycobacterium sp., respectively. Methylobacterium sp. was detected in all toilet bowl biofilms except for one sample. Methylobacterium sp. constituted the major presence in biofilms along with Brevundimonas sp., Sphingomonas sp., and/or Pseudomonas sp. The composition ratio of the sum of their genera was 88.0 from 42.9% of the total bacterial flora. The biofilm formation abilities of 128 isolates were investigated, and results suggested that Methylobacterium sp. and Sphingomonas sp. were involved in biofilm formation in toilet bowls. The biofilm formation of a mixed bacteria system that included bacteria with the highest biofilm-forming ability in a winter sample was greater than mixture without such bacteria. This result suggests that isolates possessing a high biofilm-forming activity are involved in the biofilm formation in the actual toilet bowl. A bactericidal test against 25 strains indicated that the bactericidal activities of didecyldimethylammonium chloride (DDAC) tended to be higher than those of polyhexamethylene biguanide (PHMB) and N-benzyl-N,N-dimethyldodecylammonium chloride (ADBAC). In particular, DDAC showed high bactericidal activity against approximately 90% of tested strains under the 5 h treatment.

  13. ANTIBIOTIC SUSCEPTIBILITY PATTERNS OF DIFFERENT BACTERIA ISOLATED FROM PATIENTS WITH VENTILATOR ASSOCIATED PNEUMONIA (VAP)

    OpenAIRE

    Alqurashi, Abdulrahman M.

    2005-01-01

    Objective: Ventilator associated pneumonia (VAP) is a frequent complication of mechanical ventilation (MV) and it is a leading cause of death in MV patients. The development of VAP has been demonstrated as being due to aspiration of oropharyngeal secretion, ventilator tubing condensate, or gastric contents that are colonized with pathogenic microorganisms. The aim of the present study is to isolate and identify bacteria that cause VAP and to study antibiotic susceptibility. Material and Metho...

  14. Bacteria isolated from the airways of paediatric patients with bronchiectasis according to HIV status

    Directory of Open Access Journals (Sweden)

    Charl Verwey

    2017-05-01

    Full Text Available Background. Knowledge of which bacteria are found in the airways of paediatric patients with bronchiectasis unrelated to cystic fibrosis (CF is important in defining empirical antibiotic guidelines for the treatment of acute infective exacerbations. Objective. To describe the bacteria isolated from the airways of children with non-CF bronchiectasis according to their HIV status. Methods. Records of children with non-CF bronchiectasis who attended the paediatric pulmonology clinic at Chris Hani Baragwanath Academic Hospital, Johannesburg, South Africa, from April 2011 to March 2013, or were admitted to the hospital during that period, were reviewed. Data collected included patient demographics, HIV status, and characteristics of the airway samples and types of bacteria isolated. Results. There were 66 patients with non-CF bronchiectasis over the 2-year study period. The median age was 9.1 years (interquartile range 7.2 - 12.1. The majority of patients (78.8% were HIV-infected. A total of 134 samples was collected (median 1.5 per patient, range 1 - 7, of which 81.3% were expectorated or induced sputum samples. Most bacteria were Gram negatives (72.1%. Haemophilus influenzae was the most common bacterium identified (36.0%, followed by Streptococcus pneumoniae (12.6%, Moraxella catarrhalis (11.1% and Staphylococcus aureus (10.6%. There were no differences between HIV-infected and uninfected patients in prevalence or type of pathogens isolated. Conclusion. Bacterial isolates from the airways of children with non-CF bronchiectasis were similar to those in other paediatric populations and were not affected by HIV status.

  15. Improved oil recovery using bacteria isolated from North Sea petroleum reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Davey, R.A.; Lappin-Scott, H. [Univ. of Exeter (United Kingdom)

    1995-12-31

    During secondary oil recovery, water is injected into the formation to sweep out the residual oil. The injected water, however, follows the path of least resistance through the high-permeability zones, leaving oil in the low-permeability zones. Selective plugging of these their zones would divert the waterflood to the residual oil and thus increase the life of the well. Bacteria have been suggested as an alternative plugging agent to the current method of polymer injection. Starved bacteria can penetrate deeply into rock formations where they attach to the rock surfaces, and given the right nutrients can grow and produce exo-polymer, reducing the permeability of these zones. The application of microbial enhanced oil recovery has only been applied to shallow, cool, onshore fields to date. This study has focused on the ability of bacteria to enhance oil recovery offshore in the North Sea, where the environment can be considered extreme. A screen of produced water from oil reservoirs (and other extreme subterranean environments) was undertaken, and two bacteria were chosen for further work. These two isolates were able to grow and survive in the presence of saline formation waters at a range of temperatures above 50{degrees}C as facultative anaerobes. When a solution of isolates was passed through sandpacks and nutrients were added, significant reductions in permeabilities were achieved. This was confirmed in Clashach sandstone at 255 bar, when a reduction of 88% in permeability was obtained. Both isolates can survive nutrient starvation, which may improve penetration through the reservoir. Thus, the isolates show potential for field trials in the North Sea as plugging agents.

  16. Marine sulfate-reducing bacteria cause serious corrosion of iron under electroconductive biogenic mineral crust

    Science.gov (United States)

    Enning, Dennis; Venzlaff, Hendrik; Garrelfs, Julia; Dinh, Hang T; Meyer, Volker; Mayrhofer, Karl; Hassel, Achim W; Stratmann, Martin; Widdel, Friedrich

    2012-01-01

    Iron (Fe0) corrosion in anoxic environments (e.g. inside pipelines), a process entailing considerable economic costs, is largely influenced by microorganisms, in particular sulfate-reducing bacteria (SRB). The process is characterized by formation of black crusts and metal pitting. The mechanism is usually explained by the corrosiveness of formed H2S, and scavenge of ‘cathodic’ H2 from chemical reaction of Fe0 with H2O. Here we studied peculiar marine SRB that grew lithotrophically with metallic iron as the only electron donor. They degraded up to 72% of iron coupons (10 mm × 10 mm × 1 mm) within five months, which is a technologically highly relevant corrosion rate (0.7 mm Fe0 year−1), while conventional H2-scavenging control strains were not corrosive. The black, hard mineral crust (FeS, FeCO3, Mg/CaCO3) deposited on the corroding metal exhibited electrical conductivity (50 S m−1). This was sufficient to explain the corrosion rate by electron flow from the metal (4Fe0 → 4Fe2+ + 8e−) through semiconductive sulfides to the crust-colonizing cells reducing sulfate (8e− + SO42− + 9H+ → HS− + 4H2O). Hence, anaerobic microbial iron corrosion obviously bypasses H2 rather than depends on it. SRB with such corrosive potential were revealed at naturally high numbers at a coastal marine sediment site. Iron coupons buried there were corroded and covered by the characteristic mineral crust. It is speculated that anaerobic biocorrosion is due to the promiscuous use of an ecophysiologically relevant catabolic trait for uptake of external electrons from abiotic or biotic sources in sediments. PMID:22616633

  17. Antibacterial activity of Achillea tenuifolia Lam. extract against standard bacteria and isolated strains

    Directory of Open Access Journals (Sweden)

    Sahar Omidpanah

    2016-12-01

    Full Text Available Researchers have been trying to develop new broad-spectrum antibiotics against the infectious diseases caused by bacteria, fungi, viruses, and parasites for many decades. Prolonged usage of the antibiotics has led to the emergence of drug resistance among bacteria; therefore, there is a tremendous need for novel antimicrobial agents from different sources such as plants which are used in traditional medicine. The aim of this study was to evaluate antibacterial effect of Achillea tenuifolia. The plant material was extracted by maceration method using methanol three times at room temperature. The extract was concentrated after removing the solvent by rotary evaporator and then lyophilized using freeze dryer. Inhibitory effect of the extract was examined against four standard bacteria strains and two isolated strains from diseased hen using disk diffusion method and microdilution method to evaluate their inhibition zone diameter (IZD and minimum inhibitory concentration (MIC, respectively. The results showed that the extract of the plant was active against standard strains including Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus and Enterococcus faecalis with IZDs of 10.3±0.5, 14±0.0, 12±0.0 and 11.6±0.5, respectively. However, growths of isolated strains were not inhibited in the presence of the extract. Although, the growths of isolated strains were not inhibited by the plant extract, the standard strains were moderately susceptible to the extract; among those P. aeroginosa was more sensible than other tested strains

  18. Diversity and phosphate solubilization by bacteria isolated from Laki Island coastal ecosystem

    Directory of Open Access Journals (Sweden)

    SRI WIDAWATI

    2011-01-01

    Full Text Available Widawati S (2011 Diversity and phosphate solubilization by bacteria isolated from Laki Island coastal ecosystem. Biodiversitas 12: 17-21. Soil, water, sand, and plant rhizosphere samples collected from coastal ecosystem of Laki Island-Jakarta were screened for phosphate solubilizing bacteria (PSB. While the population was dependent on the cultivation media and the sample type, the highest bacterial population was observed in the rhizosphere of Ipomea aquatica. The PSB strains isolated from the sample registered 18.59 g-1L-1, 18.31 g-1L-1, and 5.68 g-1L-1 of calcium phosphate (Ca-P, Al-P and rock phosphate solubilization after 7-days. Phosphate solubilizing capacity was the highest in the Ca-P medium. Two strains, 13 and 14, registered highest Phosphomonoesterase activities (2.01 µgNP.g-1.h-1 and 1.85NP µg.g-1.h-1 were identified as Serattia marcescens, and Pseudomonas fluorescense, respectively. Both strains were isolated from the crops of Amaranthus hybridus and I. aquatica, respectively, which are commonly observed in coastal ecosystems. The presence of phosphate solubilizing microorganisms and their ability to solubilize various types of phosphate species are indicative of the important role of both species of bacteria in the biogeochemical cycle of phosphorus and the plant growth in coastal ecosystems.

  19. Functional Characterization of Bacteria Isolated from Ancient Arctic Soil Exposes Diverse Resistance Mechanisms to Modern Antibiotics

    Science.gov (United States)

    Perron, Gabriel G.; Whyte, Lyle; Turnbaugh, Peter J.; Goordial, Jacqueline; Hanage, William P.; Dantas, Gautam; Desai, Michael M.

    2015-01-01

    Using functional metagenomics to study the resistomes of bacterial communities isolated from different layers of the Canadian high Arctic permafrost, we show that microbial communities harbored diverse resistance mechanisms at least 5,000 years ago. Among bacteria sampled from the ancient layers of a permafrost core, we isolated eight genes conferring clinical levels of resistance against aminoglycoside, β-lactam and tetracycline antibiotics that are naturally produced by microorganisms. Among these resistance genes, four also conferred resistance against amikacin, a modern semi-synthetic antibiotic that does not naturally occur in microorganisms. In bacteria sampled from the overlaying active layer, we isolated ten different genes conferring resistance to all six antibiotics tested in this study, including aminoglycoside, β-lactam and tetracycline variants that are naturally produced by microorganisms as well as semi-synthetic variants produced in the laboratory. On average, we found that resistance genes found in permafrost bacteria conferred lower levels of resistance against clinically relevant antibiotics than resistance genes sampled from the active layer. Our results demonstrate that antibiotic resistance genes were functionally diverse prior to the anthropogenic use of antibiotics, contributing to the evolution of natural reservoirs of resistance genes. PMID:25807523

  20. Diversity and population structure of Marine Group A bacteria in the Northeast subarctic Pacific Ocean.

    Science.gov (United States)

    Allers, Elke; Wright, Jody J; Konwar, Kishori M; Howes, Charles G; Beneze, Erica; Hallam, Steven J; Sullivan, Matthew B

    2013-02-01

    Marine Group A (MGA) is a candidate phylum of Bacteria that is ubiquitous and abundant in the ocean. Despite being prevalent, the structural and functional properties of MGA populations remain poorly constrained. Here, we quantified MGA diversity and population structure in relation to nutrients and O(2) concentrations in the oxygen minimum zone (OMZ) of the Northeast subarctic Pacific Ocean using a combination of catalyzed reporter deposition fluorescence in situ hybridization (CARD-FISH) and 16S small subunit ribosomal RNA (16S rRNA) gene sequencing (clone libraries and 454-pyrotags). Estimates of MGA abundance as a proportion of total bacteria were similar across all three methods although estimates based on CARD-FISH were consistently lower in the OMZ (5.6%±1.9%) than estimates based on 16S rRNA gene clone libraries (11.0%±3.9%) or pyrotags (9.9%±1.8%). Five previously defined MGA subgroups were recovered in 16S rRNA gene clone libraries and five novel subgroups were defined (HF770D10, P262000D03, P41300E03, P262000N21 and A714018). Rarefaction analysis of pyrotag data indicated that the ultimate richness of MGA was very nearly sampled. Spearman's rank analysis of MGA abundances by CARD-FISH and O(2) concentrations resulted in significant correlation. Analyzed in more detail by 16S rRNA pyrotag sequencing, MGA operational taxonomic units affiliated with subgroups Arctic95A-2 and A714018 comprised 0.3-2.4% of total bacterial sequences and displayed strong correlations with decreasing O(2) concentration. This study is the first comprehensive description of MGA diversity using complementary techniques. These results provide a phylogenetic framework for interpreting future studies on ecotype selection among MGA subgroups, and suggest a potentially important role for MGA in the ecology and biogeochemistry of OMZs.

  1. Application of immobilized synthetic anti-lipopolysaccharide peptides for the isolation and detection of bacteria.

    Science.gov (United States)

    Sandetskaya, N; Engelmann, B; Brandenburg, K; Kuhlmeier, D

    2015-08-01

    The molecular detection of microorganisms in liquid samples generally requires their enrichment or isolation. The aim of our study was to evaluate the capture and pre-concentration of bacteria by immobilized particular cationic antimicrobial peptides, called synthetic anti-lipopolysaccharide peptides (SALP). For the proof-of-concept and screening of different SALP, the peptides were covalently immobilized on glass slides, and the binding of bacteria was confirmed by microscopic examination of the slides or their scanning, in case of fluorescent bacterial cells. The most efficient SALP was further tethered to magnetic beads. SALP beads were used for the magnetic capture of Escherichia coli in liquid samples. The efficiency of this strategy was evaluated using polymerase chain reaction (PCR). Covalently immobilized SALP were capable of capturing bacteria in liquid samples. However, PCR was hampered by the unspecific binding of DNA to the positively charged peptide. We developed a method for DNA recovery by the enzymatic digestion of the peptide, which allowed for a successful PCR, though the method had its own adverse impact on the detection and, thus, did not allow for the reliable quantitative analysis of the pathogen enrichment. Immobilized SALP can be used as capture molecules for bacteria in liquid samples and can be recommended for the design of the assays or decontamination of the fluids. For the accurate subsequent detection of bacteria, DNA-independent methods should be used.

  2. [Isolation and identification of aerobic and facultative anaerobic bacteria in the oral cavity].

    Science.gov (United States)

    Lu, Wenxin; Wu, Fanzi; Zhou, Xinxuan; Wu, Lan; Li, Mingyun; Ren, Biao; Guo, Qiang; Huang, Ruijie; Li, Jiyao; Xiao, Liying; Li, Yan

    2015-12-01

    To establish a systematic method for isolation and identification of aerobic and facultative anaerobic bacteria in the oral cavity. Samples of the saliva, dental plaque and periapical granulation tissue were collected from 20 subjects with healthy oral condition and from 8 patients with different oral diseases. The bacteria in the samples were identified by morphological identification, VITEK automatic microorganism identification and 16s rRNA gene sequencing. VITEK automatic microorganism identification and 16s rRNA gene sequencing showed an agreement rate of 22.39% in identifying the bacteria in the samples. We identified altogether 63 bacterial genus (175 species), among which Streptococcus, Actinomyces and Staphylococcus were the most common bacterial genus, and Streptococcus anginosus, Actinomyces oris, Streptococcus mutans and Streptococcus mitis were the most common species. Streptococcus anginosus was commonly found in patients with chronic periapical periodontitis. Streptococcus intermedius and Staphylococcus aureus were common in patients with radiation caries, and in patients with rampant caries, Streptococcus mutans was found at considerably higher rate than other species. Aerobic and facultative anaerobic bacteria are commonly found in the oral cavity, and most of them are gram-positive. 16s rRNA gene sequencing is more accurate than VITEK automatic microorganism identification in identifying the bacteria.

  3. Extensive characterizations of bacteria isolated from catheterized urine and stone matrices in patients with nephrolithiasis.

    Science.gov (United States)

    Tavichakorntrakool, Ratree; Prasongwattana, Vitoon; Sungkeeree, Seksit; Saisud, Phitsamai; Sribenjalux, Pipat; Pimratana, Chaowat; Bovornpadungkitti, Sombat; Sriboonlue, Pote; Thongboonkerd, Visith

    2012-11-01

    Urinary tract infections are generally known to be associated with nephrolithiasis, particularly struvite stone, in which the most common microbe found is urea-splitting bacterium, i.e. Proteus mirabilis. However, our observation indicated that it might not be the case of stone formers in Thailand. We therefore extensively characterized microorganisms associated with all types of kidney stones. A total of 100 kidney stone formers (59 males and 41 females) admitted for elective percutaneous nephrolithotomy were recruited and microorganisms isolated from catheterized urine and cortex and nidus of their stones were analyzed. From 100 stone formers recruited, 36 cases had a total of 45 bacterial isolates cultivated from their catheterized urine and/or stone matrices. Among these 36 cases, chemical analysis by Fourier-transformed infrared spectroscopy revealed that 8 had the previously classified 'infection-induced stones', whereas the other 28 cases had the previously classified 'metabolic stones'. Calcium oxalate (in either pure or mixed form) was the most common and found in 64 and 75% of the stone formers with and without bacterial isolates, respectively. Escherichia coli was the most common bacterium (approximately one-third of all bacterial isolates) found in urine and stone matrices (both nidus and periphery). Linear regression analysis showed significant correlation (r = 0.860, P stone matrices. Multidrug resistance was frequently found in these isolated bacteria. Moreover, urea test revealed that only 31% were urea-splitting bacteria, whereas the majority (69%) had negative urea test. Our data indicate that microorganisms are associated with almost all chemical types of kidney stones and urea-splitting bacteria are not the major causative microorganisms found in urine and stone matrices of the stone formers in Thailand. These data may lead to rethinking and a new roadmap for future research regarding the role of microorganisms in kidney stone formation.

  4. Effect of growth condition on biofilm formation by phenoldegrading bacteria isolated from polluted and nonpolluted sources

    Directory of Open Access Journals (Sweden)

    Arifah Khusnuryani

    2015-03-01

    Full Text Available Our previous research have isolated four phenol degrading bacteria. There are ATA6, DOK135, and DL120 which isolated from polluted source (hospital wastewater, also HP3 which isolated from non polluted source (peat soil. The purpose of this research is to analyze the effect of some environmental factors on the ability of four isolates to form biofilm. The environment factors were varied, such as growth medium, incubation temperature, and medium pH. Biofilm formation was measured using microtiter plate and crystal violet method, and the absorbance was read with microtiter auto reader at wavelenght 490 nm. The result showed that ATA6 was a strong biofilm former, DOK135 and HP3 were moderate biofilm former, and DL120 was a weak biofilm former. The results indicate that there is variation in the ability of selected isolates to form biofilm on various environmental factors. Generally, the isolates formed thicker biofilm in TSB medium which is a complex medium that provide more complete nutrient and formed biofilm optimally at 30oC. ATA6 formed biofilm optimally at pH 7 and HP3 at pH 9, while pH treatment did not affect on isolates DOK135 and DL120 to form biofilm.

  5. Incidence and transferability of antibiotic resistance in the enteric bacteria isolated from hospital wastewater

    Directory of Open Access Journals (Sweden)

    Mohammad Zubair Alam

    2013-09-01

    Full Text Available This study reports the occurrence of antibiotic resistance and production of β-lactamases including extended spectrum beta-lactamases (ESβL in enteric bacteria isolated from hospital wastewater. Among sixty-nine isolates, tested for antibiotic sensitivity, 73.9% strains were resistant to ampicillin followed by nalidixic acid (72.5%, penicillin (63.8%, co-trimoxazole (55.1%, norfloxacin (53.6%, methicillin (52.7%, cefuroxime (39.1%, cefotaxime (23.2% and cefixime (20.3%. Resistance to streptomycin, chloramphenicol, nitrofurantoin, tetracycline, and doxycycline was recorded in less than 13% of the strains. The minimum inhibitory concentration (MIC showed a high level of resistance (800-1600 µg/mL to one or more antibiotics. Sixty three (91% isolates produced β-lactamases as determined by rapid iodometric test. Multiple antibiotic resistances were noted in both among ESβL and non-ESβL producers. The β-lactamases hydrolyzed multiple substrates including penicillin (78.8% isolates, ampicillin (62.3%, cefodroxil (52.2%, cefotoxime (21.7% and cefuroxime (18.8%. Fifteen isolates producing ESβLs were found multidrug resistant. Four ESβL producing isolates could transfer their R-plasmid to the recipient strain E. coli K-12 with conjugation frequency ranging from 7.0 x 10-3 to 8.8 x 10-4. The findings indicated that ESβL producing enteric bacteria are common in the waste water. Such isolates may disseminate the multiple antibiotic resistance traits among bacterial community through genetic exchange mechanisms and thus requires immediate attention.

  6. Incidence and transferability of antibiotic resistance in the enteric bacteria isolated from hospital wastewater

    Science.gov (United States)

    Alam, Mohammad Zubair; Aqil, Farrukh; Ahmad, Iqbal; Ahmad, Shamim

    2013-01-01

    This study reports the occurrence of antibiotic resistance and production of β-lactamases including extended spectrum beta-lactamases (ESβL) in enteric bacteria isolated from hospital wastewater. Among sixty-nine isolates, tested for antibiotic sensitivity, 73.9% strains were resistant to ampicillin followed by nalidixic acid (72.5%), penicillin (63.8%), co-trimoxazole (55.1%), norfloxacin (53.6%), methicillin (52.7%), cefuroxime (39.1%), cefotaxime (23.2%) and cefixime (20.3%). Resistance to streptomycin, chloramphenicol, nitrofurantoin, tetracycline, and doxycycline was recorded in less than 13% of the strains. The minimum inhibitory concentration (MIC) showed a high level of resistance (800–1600 μg/mL) to one or more antibiotics. Sixty three (91%) isolates produced β-lactamases as determined by rapid iodometric test. Multiple antibiotic resistances were noted in both among ESβL and non-ESβL producers. The β-lactamases hydrolyzed multiple substrates including penicillin (78.8% isolates), ampicillin (62.3%), cefodroxil (52.2%), cefotoxime (21.7%) and cefuroxime (18.8%). Fifteen isolates producing ESβLs were found multidrug resistant. Four ESβL producing isolates could transfer their R-plasmid to the recipient strain E. coli K-12 with conjugation frequency ranging from 7.0 × 10−3 to 8.8 × 10−4. The findings indicated that ESβL producing enteric bacteria are common in the waste water. Such isolates may disseminate the multiple antibiotic resistance traits among bacterial community through genetic exchange mechanisms and thus requires immediate attention. PMID:24516448

  7. Enrichment using an up-flow column reactor and community structure of marine anammox bacteria from coastal sediment.

    Science.gov (United States)

    Kindaichi, Tomonori; Awata, Takanori; Suzuki, Yuji; Tanabe, Katsuichiro; Hatamoto, Masashi; Ozaki, Noriatsu; Ohashi, Akiyoshi

    2011-01-01

    We established an enrichment culture of marine anaerobic ammonium oxidation (anammox) bacteria using an up-flow column reactor fed with artificial sea water supplemented with nitrogen and minerals and inoculated with coastal surface sediment collected from Hiroshima Bay. After 2 months of reactor operation, simultaneous removal of NH(4)(+) and NO(2)(-) was observed, suggesting that an anammox reaction was proceeding. A total nitrogen removal rate of 2.17 g-N L(-1) day(-1) was attained on day 594 while the nitrogen loading rate was 3.33 g-N L(-1) day(-1). Phylogenetic analysis revealed that at least two dominant "Candidatus Scalindua" species were present in this reactor. Moreover, many uncultured bacteria and archaea, including candidate division or ammonia-oxidizing archaea, were present. Fluorescence in situ hybridization (FISH) revealed that anammox bacteria accounted for 85.5 ± 4.5% of the total bacteria at day 393. We also designed two oligonucleotide probes specific to each dominant "Candidatus Scalindua" species. A simultaneous FISH analysis using both probes showed that two different "Candidatus Scalindua" species were clearly recognizable and coexisted during reactor operation, although there was some variation in their abundance. The marine anammox bacteria enriched in this study have potential applications to the treatment of industrial wastewater containing high levels of ammonium and salt.

  8. Characterization of a marine-isolated mercury-resistant Pseudomonas putida strain SP1 and its potential application in marine mercury reduction

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Weiwei; Chen, Lingxin; Liu, Dongyan [Chinese Academy of Sciences, Yantai, SD (China). Yantai Inst. of Coastal Zone Research (YICCAS); Chinese Academy of Sciences, Yantai, SD (China). Shandong Provincial Key Lab. of Coastal Zone Environmental Processes

    2012-02-15

    The Pseudomonas putida strain SP1 was isolated from marine environment and was found to be resistant to 280 {mu}M HgCl{sub 2}. SP1 was also highly resistant to other metals, including CdCl{sub 2}, CoCl{sub 2}, CrCl{sub 3}, CuCl{sub 2}, PbCl{sub 2}, and ZnSO{sub 4}, and the antibiotics ampicillin (Ap), kanamycin (Kn), chloramphenicol (Cm), and tetracycline (Tc). mer operon, possessed by most mercury-resistant bacteria, and other diverse types of resistant determinants were all located on the bacterial chromosome. Cold vapor atomic absorption spectrometry and a volatilization test indicated that the isolated P. putida SP1 was able to volatilize almost 100% of the total mercury it was exposed to and could potentially be used for bioremediation in marine environments. The optimal pH for the growth of P. putida SP1 in the presence of HgCl{sub 2} and the removal of HgCl{sub 2} by P. putida SP1 was between 8.0 and 9.0, whereas the optimal pH for the expression of merA, the mercuric reductase enzyme in mer operon that reduces reactive Hg{sup 2+} to volatile and relatively inert monoatomic Hg{sup 0} vapor, was around 5.0. LD50 of P. putida SP1 to flounder and turbot was 1.5 x 10{sup 9} CFU. Biofilm developed by P. putida SP1 was 1- to 3-fold lower than biofilm developed by an aquatic pathogen Pseudomonas fluorescens TSS. The results of this study indicate that P. putida SP1 is a low virulence strain that can potentially be applied in the bioremediation of HgCl{sub 2} contamination over a broad range of pH. (orig.)

  9. Identification and characterization of psychrotolerant coliform bacteria isolated from pasteurized fluid milk.

    Science.gov (United States)

    Masiello, S N; Martin, N H; Trmčić, A; Wiedmann, M; Boor, K J

    2016-01-01

    The presence of coliform bacteria in pasteurized fluid milk typically indicates that product contamination occurred downstream of the pasteurizer, but it may also indicate pasteurization failure. Although coliform detection is frequently used as a hygiene indicator for dairy products, our understanding of the taxonomic and phenotypic coliform diversity associated with dairy products is surprisingly limited. Therefore, using Petrifilm Coliform Count plates (3M, St. Paul, MN), we isolated coliforms from high-temperature, short-time (HTST)-pasteurized fluid milk samples from 21 fluid milk processing plants in the northeast United States. Based on source information and initial characterization using partial 16S rDNA sequencing, 240 nonredundant isolates were obtained. The majority of these isolates were identified as belonging to the genera Enterobacter (42% of isolates), Hafnia (13%), Citrobacter (12%), Serratia (10%), and Raoultella (9%); additional isolates were classified into the genera Buttiauxella, Cedecea, Kluyvera, Leclercia, Pantoea, and Rahnella. A subset of 104 representative isolates was subsequently characterized phenotypically. Cold growth analysis in skim milk broth showed that all isolates displayed at least a 2-log increase over 10 d at 6°C; the majority of isolates (n=74) displayed more than a 5-log increase. In total, 43% of the representative isolates displayed lipolysis when incubated on spirit blue agar at 6°C for 14 d, whereas 71% of isolates displayed proteolysis when incubated on skim milk agar at 6°C for 14 d. Our data indicate that a considerable diversity of coliforms is found in HTST-pasteurized fluid milk and that a considerable proportion of these coliforms have phenotypic characteristics that will allow them to cause fluid milk spoilage. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  10. Isolation, characterization and partial purification of alpha-amylase from a marine bacillus NH-25

    International Nuclear Information System (INIS)

    Ahmad, M.; Zohra, R.R.

    2012-01-01

    Total 399 marine strains were isolated from the sea water sample and screened for thermostable amylase production. Out of these 52 were to have amylogenic activity. Among them 2 isolates were able to grow and produce amylase at 55 degree C. Strain NH-25 tolerates 30% salt, a wide j-H range (4-8) and retained 64% activity at 50 degree C after 60 minutes. (author)

  11. Optimization and molecular identification of novel cellulose degrading bacteria isolated from Egyptian environment

    Directory of Open Access Journals (Sweden)

    Azhar A. Hussain

    2017-06-01

    Full Text Available Cellulase producing bacteria were isolated from both soil and ward poultry, using CMC (carboxymethylcellulose agar medium and screened by iodine method. Cellulase activity of the isolated bacteria was determined by DNS (dinitrosalicylic acid method. The highly cellulolytic isolates (BTN7A, BTN7B, BMS4 and SA5 were identified on the basis of Gram staining, morphological cultural characteristics, and biochemical tests. They were also identified with 16S rDNA analysis. The phylogenetic analysis of their 16S rDNA sequence data showed that BTN7B has 99% similarity with Anoxybacillus flavithermus, BMS4 has 99% similarity with Bacillus megaterium, SA5 has 99% homology with Bacillus amyloliquefaciens and BTN7A was 99% similar with Bacillus subtilis. Cellulase production by these strains was optimized by controlling different environmental and nutritional factors such as pH, temperature, incubation period, different volumes of media, aeration rate and carbon source. The cellulase specific activity was calculated in each case. In conclusion four highly cellulolytic bacterial strains were isolated and identified and the optimum conditions for each one for cellulase production were determined. These strains could be used for converting plant waste to more useful compounds.

  12. Biofilms and Marine Invertebrate Larvae: What Bacteria Produce That Larvae Use to Choose Settlement Sites

    Science.gov (United States)

    Hadfield, Michael G.

    2011-01-01

    Communities of microorganisms form thin coats across solid surfaces in the sea. Larvae of many marine invertebrates use biofilm components as cues to appropriate settlement sites. Research on the tube-dwelling polychaete worm Hydroides elegans, a globally common member of biofouling communities, is described to exemplify approaches to understanding biofilm bacteria as a source of settlement cues and larvae as bearers of receptors for bacterial cues. The association of species of the bacterial genus Pseudoalteromonas with larval settlement in many phyla is described, and the question of whether cues are soluble or surface-bound is reviewed, concluding that most evidence points to surface-bound cues. Seemingly contradictory data for stimulation of barnacle settlement are discussed; possibly both explanations are true. Paleontological evidence reveals a relationship between metazoans and biofilms very early in metazoan evolution, and thus the receptors for bacterial cues of invertebrate larvae are very old and possibly unique. Finally, despite more than 60 years of intense investigation, we still know very little about either the bacterial ligands that stimulate larval settlement or the cellular basis of their detection by larvae.

  13. Diversity and function of prevalent symbiotic marine bacteria in the genus Endozoicomonas

    KAUST Repository

    Neave, Matthew J.; Apprill, Amy; Ferrier-Pagè s, Christine; Voolstra, Christian R.

    2016-01-01

    Endozoicomonas bacteria are emerging as extremely diverse and flexible symbionts of numerous marine hosts inhabiting oceans worldwide. Their hosts range from simple invertebrate species, such as sponges and corals, to complex vertebrates, such as fish. Although widely distributed, the functional role of Endozoicomonas within their host microenvironment is not well understood. In this review, we provide a summary of the currently recognized hosts of Endozoicomonas and their global distribution. Next, the potential functional roles of Endozoicomonas, particularly in light of recent microscopic, genomic, and genetic analyses, are discussed. These analyses suggest that Endozoicomonas typically reside in aggregates within host tissues, have a free-living stage due to their large genome sizes, show signs of host and local adaptation, participate in host-associated protein and carbohydrate transport and cycling, and harbour a high degree of genomic plasticity due to the large proportion of transposable elements residing in their genomes. This review will finish with a discussion on the methodological tools currently employed to study Endozoicomonas and host interactions and review future avenues for studying complex host-microbial symbioses.

  14. Diversity and function of prevalent symbiotic marine bacteria in the genus Endozoicomonas

    KAUST Repository

    Neave, Matthew J.

    2016-08-24

    Endozoicomonas bacteria are emerging as extremely diverse and flexible symbionts of numerous marine hosts inhabiting oceans worldwide. Their hosts range from simple invertebrate species, such as sponges and corals, to complex vertebrates, such as fish. Although widely distributed, the functional role of Endozoicomonas within their host microenvironment is not well understood. In this review, we provide a summary of the currently recognized hosts of Endozoicomonas and their global distribution. Next, the potential functional roles of Endozoicomonas, particularly in light of recent microscopic, genomic, and genetic analyses, are discussed. These analyses suggest that Endozoicomonas typically reside in aggregates within host tissues, have a free-living stage due to their large genome sizes, show signs of host and local adaptation, participate in host-associated protein and carbohydrate transport and cycling, and harbour a high degree of genomic plasticity due to the large proportion of transposable elements residing in their genomes. This review will finish with a discussion on the methodological tools currently employed to study Endozoicomonas and host interactions and review future avenues for studying complex host-microbial symbioses.

  15. Disruption of microbial biofilms by an extracellular protein isolated from epibiotic tropical marine strain of Bacillus licheniformis.

    Directory of Open Access Journals (Sweden)

    Devendra H Dusane

    Full Text Available BACKGROUND: Marine epibiotic bacteria produce bioactive compounds effective against microbial biofilms. The study examines antibiofilm ability of a protein obtained from a tropical marine strain of Bacillus licheniformis D1. METHODOLOGY/PRINCIPAL FINDINGS: B. licheniformis strain D1 isolated from the surface of green mussel, Perna viridis showed antimicrobial activity against pathogenic Candida albicans BH, Pseudomonas aeruginosa PAO1 and biofouling Bacillus pumilus TiO1 cultures. The antimicrobial activity was lost after treatment with trypsin and proteinase K. The protein was purified by ultrafiltration and size-exclusion chromatography. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE and matrix assisted laser desorption/ionization-time of flight (MALDI-TOF analysis revealed the antimicrobial agent to be a 14 kDa protein designated as BL-DZ1. The protein was stable at 75°C for 30 min and over a pH range of 3.0 to 11.0. The sequence alignment of the MALDI-fingerprint showed homology with the NCBI entry for a hypothetical protein (BL00275 derived from B. licheniformis ATCC 14580 with the accession number gi52082584. The protein showed minimum inhibitory concentration (MIC value of 1.6 µg/ml against C. albicans. Against both P. aeruginosa and B. pumilus the MIC was 3.12 µg/ml. The protein inhibited microbial growth, decreased biofilm formation and dispersed pre-formed biofilms of the representative cultures in polystyrene microtiter plates and on glass surfaces. CONCLUSION/SIGNIFICANCE: We isolated a protein from a tropical marine strain of B. licheniformis, assigned a function to the hypothetical protein entry in the NCBI database and described its application as a potential antibiofilm agent.

  16. Disruption of Microbial Biofilms by an Extracellular Protein Isolated from Epibiotic Tropical Marine Strain of Bacillus licheniformis

    Science.gov (United States)

    Dusane, Devendra H.; Damare, Samir R.; Nancharaiah, Yarlagadda V.; Ramaiah, N.; Venugopalan, Vayalam P.; Kumar, Ameeta Ravi; Zinjarde, Smita S.

    2013-01-01

    Background Marine epibiotic bacteria produce bioactive compounds effective against microbial biofilms. The study examines antibiofilm ability of a protein obtained from a tropical marine strain of Bacillus licheniformis D1. Methodology/Principal Findings B. licheniformis strain D1 isolated from the surface of green mussel, Perna viridis showed antimicrobial activity against pathogenic Candida albicans BH, Pseudomonas aeruginosa PAO1 and biofouling Bacillus pumilus TiO1 cultures. The antimicrobial activity was lost after treatment with trypsin and proteinase K. The protein was purified by ultrafiltration and size-exclusion chromatography. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and matrix assisted laser desorption/ionization-time of flight (MALDI-TOF) analysis revealed the antimicrobial agent to be a 14 kDa protein designated as BL-DZ1. The protein was stable at 75°C for 30 min and over a pH range of 3.0 to 11.0. The sequence alignment of the MALDI-fingerprint showed homology with the NCBI entry for a hypothetical protein (BL00275) derived from B. licheniformis ATCC 14580 with the accession number gi52082584. The protein showed minimum inhibitory concentration (MIC) value of 1.6 µg/ml against C. albicans. Against both P. aeruginosa and B. pumilus the MIC was 3.12 µg/ml. The protein inhibited microbial growth, decreased biofilm formation and dispersed pre-formed biofilms of the representative cultures in polystyrene microtiter plates and on glass surfaces. Conclusion/Significance We isolated a protein from a tropical marine strain of B. licheniformis, assigned a function to the hypothetical protein entry in the NCBI database and described its application as a potential antibiofilm agent. PMID:23691235

  17. Antibacterial Effects of Citrus aurantium on Bacteria Isolated from Urinary Tract Infection

    Directory of Open Access Journals (Sweden)

    Masoud Dadashi

    2015-10-01

    Full Text Available Background :  Emerging antibacterial resistance rates and beta-lactamase producing bacteria recovered from UTI is an increasing problem in different regions, limiting therapeutic options. Therefore, this survey consider to use the extract and essence of the citrus aurantium (which have a so many rate of planting in Iran and also survey on extract on bacteria whose cause urinary tract infections, and compare this with common antibiotics. Methods and Materials: This study was experimental design.We have been isolate the E.coli,Klebsiella pneumoniae, Staphylococcus aureus, Staphylococcus epidermidis, Streptococcus agalactiae and Enterococcus faecalis from UTI and then determine of antibacterial effect of Citrus aurantium against this bacteria with subculture and put the exact diagnosis on them. Antibacterial effects of the herb extract by well diffusion assay and  nalidixic acid and Co-trimoxazol were evaluated by method of agar disc diffusion. Results:Enterococcus faecalis had 100% sensitivity against of extract,essence and Co-trimoxazole , and 80% against nalidixic acid . E.coli had 100% sensitivity against Co-trimoxazol, nalidixic acid and it was totally resistance to extract and essence.Klebsiella Pneumonie had 80% to Co-trimoxazol, 75% to nalidixic acid and resistance against extract and essence.Streptococcus agalactiae was 100% sensitivity to essence and Co-trimoxazol and 90% against nalidixic acid and shown 80% sensitivity against extract.Staphylococcus aureus MRSA shown 100% sensitivity against Co-trimoxazol and 70% sensitivity against essence, extract and nalidixic acid. Conclusion: Detection of antibiotic resistance among isolates is important in prevention and control of infections. In this study, it was shown that extracts of citrus aurantium have high antibacterial effects on gram positive bacteria compare to gram negative bacteria.

  18. Antibiogram of bacteria isolated from automated teller machines in Hamadan, West Iran

    Directory of Open Access Journals (Sweden)

    Mahmoudi, Hassan

    2017-02-01

    Full Text Available Aim: Bacteria are ubiquitous in the environment. In keeping with the continued expansion of urbanization and the growing population, an increasing number of people use automated banking, i.e. automated teller machines (ATMs. The aim of this study was to investigate the bacterial contamination and its antibiotic sensitivity on computer keyboards located at ATMs in Hamadan province, Iran. Method: Out of 360 ATMs at four locations in Hamadan, 96 were randomly selected for this study. The antibiotic susceptibility pattern of all isolates was determined by the agar disk diffusion method using gentamicin (10 µg, vancomycin (30 µg, trimethoprim/sulfamethoxazole (25 µg, amikacin (30 µg, tobramycin (10 µg, cephalotin (30 µg, norfloxacin (5 µg, and ceftizoxim (30 µg disks. Results: Melli and Saderat Banks had the most frequently contaminated ATMS, with 18 (27.7% and 12 (18.5%, respectively. The most frequently isolated bacteria were in 12 (18.5% ATMs, in in 11 (16.9%, in 6 (9.2%, spp. in 8 (12.3%, spp. in 2 (3.1%, in 6 (9.2%, in 3 (4.6%, and spp. in 5 (7.69% cases. All isolated bacteria were susceptible to gentamicin, cephalotin, tobramycin, amikacin, norfloxacin, and vancomycin. The resistance rate to trimethoprim/sulfamole was 50%. Conclusion: All tested ATM keyboards were contaminated with at least one species of bacteria. Based on these findings, it is recommendable to disinfect the hands after entering one’s own apartment, work area or a hospital, in order to hinder the spread of critical pathogens in the personal environment or in the hospital.

  19. Antibiogram of bacteria isolated from automated teller machines in Hamadan, West Iran

    Science.gov (United States)

    Mahmoudi, Hassan; Arabestani, Mohammad Reza; Alikhani, Mohammad Yousef; Sedighi, Iraj; Kohan, Hamed Farhadi; Molavi, Mohammad

    2017-01-01

    Aim: Bacteria are ubiquitous in the environment. In keeping with the continued expansion of urbanization and the growing population, an increasing number of people use automated banking, i.e. automated teller machines (ATMs). The aim of this study was to investigate the bacterial contamination and its antibiotic sensitivity on computer keyboards located at ATMs in Hamadan province, Iran. Method: Out of 360 ATMs at four locations in Hamadan, 96 were randomly selected for this study. The antibiotic susceptibility pattern of all isolates was determined by the agar disk diffusion method using gentamicin (10 µg), vancomycin (30 µg), trimethoprim/sulfamethoxazole (25 µg), amikacin (30 µg), tobramycin (10 µg), cephalotin (30 µg), norfloxacin (5 µg), and ceftizoxim (30 µg) disks. Results: Melli and Saderat Banks had the most frequently contaminated ATMS, with 18 (27.7%) and 12 (18.5%), respectively. The most frequently isolated bacteria were Staphylococcus epidermidis in 12 (18.5%) ATMs, Pseudomonas aeruginosa in 12 (18.5%), Bacillus subtilis in 11 (16.9%), Escherichia coli in 6 (9.2%), Klebsiella spp. in 8 (12.3%), Enterobacter spp. in 2 (3.1%), Bacillus cereus in 6 (9.2%), Staphylococcus aureus in 3 (4.6%), and Micrococcaceae spp. in 5 (7.69%) cases. All isolated bacteria were susceptible to gentamicin, cephalotin, tobramycin, amikacin, norfloxacin, and vancomycin. The S. aureus resistance rate to trimethoprim/sulfamethoxazole was 50%. Conclusion: All tested ATM keyboards were contaminated with at least one species of bacteria. Based on these findings, it is recommendable to disinfect the hands after entering one’s own apartment, work area or a hospital, in order to hinder the spread of critical pathogens in the personal environment or in the hospital. PMID:28197394

  20. Utilization of Vinegar for Isolation of Cellulose Producing Acetic Acid Bacteria

    International Nuclear Information System (INIS)

    Aydin, Y. Andelib; Aksoy, Nuran Deveci

    2010-01-01

    Wastes of traditionally fermented Turkish vinegar were used in the isolation of cellulose producing acetic acid bacteria. Waste material was pre-enriched in Hestrin-Schramm medium and microorganisms were isolated by plating dilution series on HS agar plates The isolated strains were subjected to elaborate biochemical and physiological tests for identification. Test results were compared to those of reference strains Gluconacetobacter xylinus DSM 46604, Gluconacetobacter hansenii DSM 5602 and Gluconacetobacter liquefaciens DSM 5603. Seventeen strains, out of which only three were found to secrete the exopolysaccharide cellulose. The highest cellulose yield was recorded as 0.263±0.02 g cellulose L -1 for the strain AS14 which resembled Gluconacetobacter hansenii in terms of biochemical tests.