WorldWideScience

Sample records for manufacturing thick functionally

  1. Potential of direct metal deposition technology for manufacturing thick functionally graded coatings and parts for reactors components

    International Nuclear Information System (INIS)

    Thivillon, L.; Bertrand, Ph.; Laget, B.; Smurov, I.

    2009-01-01

    Direct metal deposition (DMD) is an automated 3D deposition process arising from laser cladding technology with co-axial powder injection to refine or refurbish parts. Recently DMD has been extended to manufacture large-size near-net-shape components. When applied for manufacturing new parts (or their refinement), DMD can provide tailored thermal properties, high corrosion resistance, tailored tribology, multifunctional performance and cost savings due to smart material combinations. In repair (refurbishment) operations, DMD can be applied for parts with a wide variety of geometries and sizes. In contrast to the current tool repair techniques such as tungsten inert gas (TIG), metal inert gas (MIG) and plasma welding, laser cladding technology by DMD offers a well-controlled heat-treated zone due to the high energy density of the laser beam. In addition, this technology may be used for preventative maintenance and design changes/up-grading. One of the advantages of DMD is the possibility to build functionally graded coatings (from 1 mm thickness and higher) and 3D multi-material objects (for example, 100 mm-sized monolithic rectangular) in a single-step manufacturing cycle by using up to 4-channel powder feeder. Approved materials are: Fe (including stainless steel), Ni and Co alloys, (Cu,Ni 10%), WC compounds, TiC compounds. The developed coatings/parts are characterized by low porosity (<1%), fine microstructure, and their microhardness is close to the benchmark value of wrought alloys after thermal treatment (Co-based alloy Stellite, Inox 316L, stainless steel 17-4PH). The intended applications concern cooling elements with complex geometry, friction joints under high temperature and load, light-weight mechanical support structures, hermetic joints, tubes with complex geometry, and tailored inside and outside surface properties, etc

  2. Potential of direct metal deposition technology for manufacturing thick functionally graded coatings and parts for reactors components

    Energy Technology Data Exchange (ETDEWEB)

    Thivillon, L.; Bertrand, Ph.; Laget, B. [Ecole Nationale d' Ingenieurs de Saint-Etienne (ENISE), DIPI Laboratory, 58 rue Jean Parot, 42023 Saint-Etienne cedex 2 (France); Smurov, I. [Ecole Nationale d' Ingenieurs de Saint-Etienne (ENISE), DIPI Laboratory, 58 rue Jean Parot, 42023 Saint-Etienne cedex 2 (France)], E-mail: smurov@enise.fr

    2009-03-31

    Direct metal deposition (DMD) is an automated 3D deposition process arising from laser cladding technology with co-axial powder injection to refine or refurbish parts. Recently DMD has been extended to manufacture large-size near-net-shape components. When applied for manufacturing new parts (or their refinement), DMD can provide tailored thermal properties, high corrosion resistance, tailored tribology, multifunctional performance and cost savings due to smart material combinations. In repair (refurbishment) operations, DMD can be applied for parts with a wide variety of geometries and sizes. In contrast to the current tool repair techniques such as tungsten inert gas (TIG), metal inert gas (MIG) and plasma welding, laser cladding technology by DMD offers a well-controlled heat-treated zone due to the high energy density of the laser beam. In addition, this technology may be used for preventative maintenance and design changes/up-grading. One of the advantages of DMD is the possibility to build functionally graded coatings (from 1 mm thickness and higher) and 3D multi-material objects (for example, 100 mm-sized monolithic rectangular) in a single-step manufacturing cycle by using up to 4-channel powder feeder. Approved materials are: Fe (including stainless steel), Ni and Co alloys, (Cu,Ni 10%), WC compounds, TiC compounds. The developed coatings/parts are characterized by low porosity (<1%), fine microstructure, and their microhardness is close to the benchmark value of wrought alloys after thermal treatment (Co-based alloy Stellite, Inox 316L, stainless steel 17-4PH). The intended applications concern cooling elements with complex geometry, friction joints under high temperature and load, light-weight mechanical support structures, hermetic joints, tubes with complex geometry, and tailored inside and outside surface properties, etc.

  3. Potential of direct metal deposition technology for manufacturing thick functionally graded coatings and parts for reactors components

    Science.gov (United States)

    Thivillon, L.; Bertrand, Ph.; Laget, B.; Smurov, I.

    2009-03-01

    Direct metal deposition (DMD) is an automated 3D deposition process arising from laser cladding technology with co-axial powder injection to refine or refurbish parts. Recently DMD has been extended to manufacture large-size near-net-shape components. When applied for manufacturing new parts (or their refinement), DMD can provide tailored thermal properties, high corrosion resistance, tailored tribology, multifunctional performance and cost savings due to smart material combinations. In repair (refurbishment) operations, DMD can be applied for parts with a wide variety of geometries and sizes. In contrast to the current tool repair techniques such as tungsten inert gas (TIG), metal inert gas (MIG) and plasma welding, laser cladding technology by DMD offers a well-controlled heat-treated zone due to the high energy density of the laser beam. In addition, this technology may be used for preventative maintenance and design changes/up-grading. One of the advantages of DMD is the possibility to build functionally graded coatings (from 1 mm thickness and higher) and 3D multi-material objects (for example, 100 mm-sized monolithic rectangular) in a single-step manufacturing cycle by using up to 4-channel powder feeder. Approved materials are: Fe (including stainless steel), Ni and Co alloys, (Cu,Ni 10%), WC compounds, TiC compounds. The developed coatings/parts are characterized by low porosity (<1%), fine microstructure, and their microhardness is close to the benchmark value of wrought alloys after thermal treatment (Co-based alloy Stellite, Inox 316L, stainless steel 17-4PH). The intended applications concern cooling elements with complex geometry, friction joints under high temperature and load, light-weight mechanical support structures, hermetic joints, tubes with complex geometry, and tailored inside and outside surface properties, etc.

  4. Mechanical Properties of Additively Manufactured Thick Honeycombs

    Directory of Open Access Journals (Sweden)

    Reza Hedayati

    2016-07-01

    Full Text Available Honeycombs resemble the structure of a number of natural and biological materials such as cancellous bone, wood, and cork. Thick honeycomb could be also used for energy absorption applications. Moreover, studying the mechanical behavior of honeycombs under in-plane loading could help understanding the mechanical behavior of more complex 3D tessellated structures such as porous biomaterials. In this paper, we study the mechanical behavior of thick honeycombs made using additive manufacturing techniques that allow for fabrication of honeycombs with arbitrary and precisely controlled thickness. Thick honeycombs with different wall thicknesses were produced from polylactic acid (PLA using fused deposition modelling, i.e., an additive manufacturing technique. The samples were mechanically tested in-plane under compression to determine their mechanical properties. We also obtained exact analytical solutions for the stiffness matrix of thick hexagonal honeycombs using both Euler-Bernoulli and Timoshenko beam theories. The stiffness matrix was then used to derive analytical relationships that describe the elastic modulus, yield stress, and Poisson’s ratio of thick honeycombs. Finite element models were also built for computational analysis of the mechanical behavior of thick honeycombs under compression. The mechanical properties obtained using our analytical relationships were compared with experimental observations and computational results as well as with analytical solutions available in the literature. It was found that the analytical solutions presented here are in good agreement with experimental and computational results even for very thick honeycombs, whereas the analytical solutions available in the literature show a large deviation from experimental observation, computational results, and our analytical solutions.

  5. Process simulations for manufacturing of thick composites

    Science.gov (United States)

    Kempner, Evan A.

    The availability of manufacturing simulations for composites can significantly reduce the costs associated with process development. Simulations provide a tool for evaluating the effect of processing conditions on the quality of parts produced without requiring numerous experiments. This is especially significant in parts that have troublesome features such as large thickness. The development of simulations for thick walled composites has been approached by examining the mechanics of resin flow and fiber deformation during processing, applying these evaluations to develop simulations, and evaluating the simulation with experimental results. A unified analysis is developed to describe the three-dimensional resin flow and fiber preform deformation during processing regardless of the manufacturing process used. It is shown how the generic governing evaluations in the unified analysis can be applied to autoclave molding, compression molding, pultrusion, filament winding, and resin transfer molding. A comparison is provided with earlier models derived individually for these processes. The evaluations described for autoclave curing were used to produce a one-dimensional cure simulation for autoclave curing of thick composites. The simulation consists of an analysis for heat transfer and resin flow in the composite as well as bleeder plies used to absorb resin removed from the part. Experiments were performed in a hot press to approximate curing in an autoclave. Graphite/epoxy laminates of 3 cm and 5 cm thickness were cured while monitoring temperatures at several points inside the laminate and thickness. The simulation predicted temperatures fairly closely, but difficulties were encountered in correlation of thickness results. This simulation was also used to study the effects of prepreg aging on processing of thick composites. An investigation was also performed on filament winding with prepreg tow. Cylinders were wound of approximately 12 mm thickness with pressure

  6. Mechanical properties of additively manufactured thick honeycombs

    NARCIS (Netherlands)

    Hedayati, R.; Sadighi, M.; Mohammadi-Aghdam, M; Zadpoor, A.A.

    2016-01-01

    Honeycombs resemble the structure of a number of natural and biological materials such as cancellous bone, wood, and cork. Thick honeycomb could be also used for energy absorption applications. Moreover, studying the mechanical behavior of honeycombs under in-plane loading could help understanding

  7. Manufacturing of composite parts reinforced through-thickness by tufting

    OpenAIRE

    Dell'Anno, G.; Treiber, J. W G; Partridge, Ivana K

    2016-01-01

    The paper aims at providing practical guidelines for the manufacture of composite parts reinforced by tufting. The need for through-thickness reinforcement of high performance carbon fibre composite structures is reviewed and various options are presented. The tufting process is described in detail and relevant aspects of the technology are analysed such as: equipment configuration and setup, latest advances in tooling, thread selection, preform supporting systems and choice of ancillary mate...

  8. Thick film magnetic nanoparticulate composites and method of manufacture thereof

    Science.gov (United States)

    Ma, Xinqing (Inventor); Zhang, Yide (Inventor); Ge, Shihui (Inventor); Zhang, Zongtao (Inventor); Yan, Dajing (Inventor); Xiao, Danny T. (Inventor)

    2009-01-01

    Thick film magnetic/insulating nanocomposite materials, with significantly reduced core loss, and their manufacture are described. The insulator coated magnetic nanocomposite comprises one or more magnetic components, and an insulating component. The magnetic component comprises nanometer scale particles (about 1 to about 100 nanometers) coated by a thin-layered insulating phase. While the intergrain interaction between the immediate neighboring magnetic nanoparticles separated by the insulating phase provides the desired soft magnetic properties, the insulating material provides high resistivity, which reduces eddy current loss.

  9. Vibration of Elastic Functionally Graded Thick Rings

    Directory of Open Access Journals (Sweden)

    Guang-Hui Xu

    2017-01-01

    Full Text Available The free vibration behaviors of functionally graded rings were investigated theoretically. The material graded in the thickness direction according to the power law rule and the rings were assumed to be in plane stress and plane strain states. Based on the first-order shear deformation theory and the kinetic relation of von Kárman type, the frequency equation for free vibration of functionally graded ring was derived. The derived results were verified by those in literatures which reveals that the present theory can be appropriate to predict the free vibration characteristics for quite thick rings with the radius-to-thickness ratio from 60 down to 2.09. Comparison between the plane stress case and the plane strain case indicates a slight difference. Meanwhile, the effects of the structural dimensional parameters and the material inhomogeneous parameter are examined. It is interesting that the value of the logarithmic form of vibration frequency is inversely proportional to the logarithmic form of the radius-to-thickness ratio or the mean radius.

  10. Buckling Response of Thick Functionally Graded Plates

    Directory of Open Access Journals (Sweden)

    BOUAZZA MOKHTAR

    2014-11-01

    Full Text Available In this paper, the buckling of a functionally graded plate is studied by using first order shear deformation theory (FSDT. The material properties of the plate are assumed to be graded continuously in the direction of thickness. The variation of the material properties follows a simple power-law distribution in terms of the volume fractions of constituents. The von Karman strains are used to construct the equilibrium equations of the plates subjected to two types of thermal loading, linear temperature rise and gradient through the thickness are considered. The governing equations are reduced to linear differential equation with boundary conditions yielding a simple solution procedure. In addition, the effects of temperature field, volume fraction distributions, and system geometric parameters are investigated. The results are compared with the results of the no shear deformation theory (classic plate theory, CPT.

  11. Sensing and controlling resin-layer thickness in additive manufacturing processes

    NARCIS (Netherlands)

    Kozhevnikov, A.

    2017-01-01

    This AM-TKI project in collaboration with TNO focusses on the sensing and control of resin-layer thickness in AM applications. Industrial Additive Manufacturing is considered to be a potential breakthrough production technology for many applications. A specific AM implementation is VAT photo

  12. Effect of layered manufacturing techniques, alloy powders, and layer thickness on metal-ceramic bond strength.

    Science.gov (United States)

    Ekren, Orhun; Ozkomur, Ahmet; Ucar, Yurdanur

    2018-03-01

    Direct metal laser sintering (DMLS) and direct metal laser melting (DMLM) have become popular for fabricating the metal frameworks of metal-ceramic restorations. How the type of layered manufacturing device, layer thickness, and alloy powder may affect the bond strength of ceramic to metal substructure is unclear. The purpose of this in vitro study was to evaluate the bond strength of dental porcelain to metal frameworks fabricated using different layered manufacturing techniques (DMLS and DMLM), Co-Cr alloy powders, and layer thicknesses and to evaluate whether a correlation exists between the bond strength and the number of ceramic remnants on the metal surface. A total of 75 bar-shaped metal specimens (n=15) were fabricated using either DMLS or DMLM. The powder alloys used were Keramit NP-S and EOS-Cobalt-Chrome SP-2 with layer thicknesses of 20 μm and 30 μm. After ceramic application, the metal-ceramic bond strength was evaluated with a 3-point-bend test. Three-way ANOVA followed by the Tukey honest significance difference test were used for statistical analysis (α=.05). De-bonding surface microstructure was observed with scanning electron microscopy. Energy dispersive spectroscopy analysis was conducted to evaluate the correlation between ceramic remnants on the metal surface and bond strength values. The mean bond strength value of DMLS was significantly higher than that of DMLM. While no statistically significant difference was found between layer thicknesses, alloy powders closely affected bond strength. Statistical comparisons revealed that the highest bond strength could be achieved with DMLS-Cobalt-Chrome SP2-20μm, and the lowest bond strength was observed in DMLS-Keramit NP-S-20μm (P≤.05). No correlation was found between porcelain remnants on the metal surface and bond strength values. The layered manufacturing device and the alloy powders evaluated in the current study closely affected the bond strength of dental porcelain to a metal framework

  13. Manufacturing and maintenance technologies developed for a thick-wall structure of the ITER vacuum vessel

    International Nuclear Information System (INIS)

    Onozuka, M.; Alfile, J.P.; Aubert, Ph.; Dagenais, J.-F.; Grebennikov, D.; Ioki, K.; Jones, L.; Koizumi, K.; Krylov, V.; Maslakowski, J.; Nakahira, M.; Nelson, B.; Punshon, C.; Roy, O.; Schreck, G.

    2001-01-01

    Development of welding, cutting and non-destructive testing (NDT) techniques, and development of remotized systems have been carried out for on-site manufacturing and maintenance of the thick-wall structure of the International Thermonuclear Experimental Reactor (ITER) vacuum vessel (VV). Conventional techniques, including tungsten inert gas welding, plasma cutting, and ultrasonic inspection, have been improved and optimized for the application to thick austenitic stainless steel plates. In addition, advanced methods have been investigated, including reduced-pressure electron-beam and multi-pass neodymium-doped yttrium aluminum garnet (NdYAG) laser welding, NdYAG laser cutting, and electro-magnetic acoustic transducer inspection, to improve cost and technical performance. Two types of remotized systems with different payloads have been investigated and one of them has been fabricated and demonstrated in field joint welding, cutting, and NDT tests on test mockups and full-scale ITER VV sector models. The progress and results of this development to date provide a high level of confidence that the manufacturing and maintenance of the ITER VV is feasible

  14. Manufacturing and maintenance technologies developed for a thick-wall structure of the ITER vacuum vessel

    Energy Technology Data Exchange (ETDEWEB)

    Onozuka, M. E-mail: onozukm@itereu.de; Alfile, J.P.; Aubert, Ph.; Dagenais, J.-F.; Grebennikov, D.; Ioki, K.; Jones, L.; Koizumi, K.; Krylov, V.; Maslakowski, J.; Nakahira, M.; Nelson, B.; Punshon, C.; Roy, O.; Schreck, G

    2001-09-01

    Development of welding, cutting and non-destructive testing (NDT) techniques, and development of remotized systems have been carried out for on-site manufacturing and maintenance of the thick-wall structure of the International Thermonuclear Experimental Reactor (ITER) vacuum vessel (VV). Conventional techniques, including tungsten inert gas welding, plasma cutting, and ultrasonic inspection, have been improved and optimized for the application to thick austenitic stainless steel plates. In addition, advanced methods have been investigated, including reduced-pressure electron-beam and multi-pass neodymium-doped yttrium aluminum garnet (NdYAG) laser welding, NdYAG laser cutting, and electro-magnetic acoustic transducer inspection, to improve cost and technical performance. Two types of remotized systems with different payloads have been investigated and one of them has been fabricated and demonstrated in field joint welding, cutting, and NDT tests on test mockups and full-scale ITER VV sector models. The progress and results of this development to date provide a high level of confidence that the manufacturing and maintenance of the ITER VV is feasible.

  15. Application of generalized function to dynamic analysis of thick plates

    International Nuclear Information System (INIS)

    Zheng, D.; Weng, Z.

    1987-01-01

    The structures with thick plates have been used extensively in national defence, mechanical engineering, chemical engineering, nuclear engineering, civil engineering, etc.. Various theories have been established to deal with the problems of elastic plates, which include the classical theory of thin plates, the improved theory of thick plates, three-dimensional elastical theory. In this paper, the derivative of δ-function is handled by using the generalized function. The dynamic analysis of thick plates subjected the concentrated load is presented. The improved Donnell's equation of thick plates is deduced and employed as the basic equation. The generalized coordinates are solved by using the method of MWR. The general expressions for the dynamic response of elastic thick plates subjected the concentrated load are given. The numerical results for rectangular plates are given herein. The results are compared with those obtained from the improved theory and the classical theory of plates. (orig./GL)

  16. Effects of fluorine contamination on spin-on dielectric thickness in semiconductor manufacturing

    Science.gov (United States)

    Kim, Hyoung-ryeun; Hong, Soonsang; Kim, Samyoung; Oh, Changyeol; Hwang, Sung Min

    2018-03-01

    In the recent semiconductor industry, as the device shrinks, spin-on dielectric (SOD) has been adopted as a widely used material because of its excellent gap-fill, efficient throughput on mass production. SOD film must be uniformly thin, homogeneous and free of particle defects because it has been perfectly perserved after chemical-mechanical polishing (CMP) and etching process. Spin coating is one of the most common techniques for applying SOD thin films to substrates. In spin coating process, the film thickness and uniformity are strong function of the solution viscosity, the final spin speed and the surface properties. Especially, airborne molecular contaminants (AMCs), such as HF, HCl and NH3, are known to change to surface wetting characteristics. In this work, we study the SOD film thickness as a function of fluorine contamination on the wafer surface. To examine the effects of airborne molecular contamination, the wafers are directly exposed to HF fume followed by SOD coating. It appears that the film thickness decreases by higher contact angle on the wafer surface due to fluorine contamination. The thickness of the SOD film decreased with increasing fluorine contamination on the wafer surface. It means that the wafer surface with more hydrophobic property generates less hydrogen bonding with the functional group of Si-NH in polysilazane(PSZ)-SOD film. Therefore, the wetting properties of silicon wafer surfaces can be degraded by inorganic contamination in SOD coating process.

  17. Thick Filament Protein Network, Functions, and Disease Association.

    Science.gov (United States)

    Wang, Li; Geist, Janelle; Grogan, Alyssa; Hu, Li-Yen R; Kontrogianni-Konstantopoulos, Aikaterini

    2018-03-13

    Sarcomeres consist of highly ordered arrays of thick myosin and thin actin filaments along with accessory proteins. Thick filaments occupy the center of sarcomeres where they partially overlap with thin filaments. The sliding of thick filaments past thin filaments is a highly regulated process that occurs in an ATP-dependent manner driving muscle contraction. In addition to myosin that makes up the backbone of the thick filament, four other proteins which are intimately bound to the thick filament, myosin binding protein-C, titin, myomesin, and obscurin play important structural and regulatory roles. Consistent with this, mutations in the respective genes have been associated with idiopathic and congenital forms of skeletal and cardiac myopathies. In this review, we aim to summarize our current knowledge on the molecular structure, subcellular localization, interacting partners, function, modulation via posttranslational modifications, and disease involvement of these five major proteins that comprise the thick filament of striated muscle cells. © 2018 American Physiological Society. Compr Physiol 8:631-709, 2018. Copyright © 2018 American Physiological Society. All rights reserved.

  18. Thermal and mechanical stresses in a functionally graded thick sphere

    International Nuclear Information System (INIS)

    Eslami, M.R.; Babaei, M.H.; Poultangari, R.

    2005-01-01

    In this paper, a general solution for the one-dimensional steady-state thermal and mechanical stresses in a hollow thick sphere made of functionally graded material is presented. The temperature distribution is assumed to be a function of radius, with general thermal and mechanical boundary conditions on the inside and outside surfaces of the sphere. The material properties, except Poisson's ratio, are assumed to vary along the radius r according to a power law function. The analytical solution of the heat conduction equation and the Navier equation lead to the temperature profile, radial displacement, radial stress, and hoop stress as a function of radial direction

  19. EXPLORING LINKAGES BETWEEN MANUFACTURING FUNCTIONS, OPERATIONS PRIORITIES AND PLANT PERFORMANCE IN MANUFACTURING SMES IN MUMBAI

    Directory of Open Access Journals (Sweden)

    B.E. Narkhede

    2012-03-01

    Full Text Available Nowadays, in order for small and medium scale enterprises to excel in performance, it is necessary to have congruency among the manufacturing functions and the operational priorities. In this paper a model is presented to know the relationship between the manufacturing functions, operation priorities and manufacturing performance. Using data collected from small and medium scale manufacturing enterprises in Mumbai and suburban region, this study examines the seven hypothesis based on the relationship between manufacturing functions, priorities and perfomance. The structural equation model is tested using Amos7 software to test the hypothesis. The results show that there exists a positive relation between manufacturing functions and operation priorities as four out of six the dimensions measured such as Process control and implementation, Management of resources, Management of people, and Partnership with supplier are positively related, while two dimensions Training and developing and Teamwork are not positively related. Findings also support strong impact of operation priorities with growth in productivity as a measure of performance.

  20. A Correlation of Thin Lens Approximation to Thick Lens Design by Using Coddington Factors in Lens Design and Manufacturing

    OpenAIRE

    FARSAKOĞLU, Ö. Faruk

    2014-01-01

    The effect of Coddington factors on aberration functions has been analysed using thin lens approximation. Minimizing spherical aberrations of singlet lenses using Coddington factors in lens design depending on lens manufacturing is discussed. Notation of lens test plate pairs used in lens manufacturing is also presented in terms of Coddington shape factors.

  1. Application of non-destructive liner thickness measurement technique for manufacturing and inspection process of zirconium lined cladding tube

    International Nuclear Information System (INIS)

    Nakazawa, Norio; Fukuda, Akihiro; Fujii, Noritsugu; Inoue, Koichi

    1986-01-01

    Recently, in order to meet the difference of electric power demand owing to electric power situation, large scale load following operation has become necessary. Therefore, the development of the cladding tubes which withstand power variation has been carried out, as the result, zirconium-lined zircaloy 2 cladding tubes have been developed. In order to reduce the sensitivity to stress corrosion cracking, these zirconium-lined cladding tubes require uniform liner thickness over the whole surface and whole length. Kobe Steel Ltd. developed the nondestructive liner thickness measuring technique based on ultrasonic flaw detection technique and eddy current flaw detection technique. These equipments were applied to the manufacturing and inspection processes of the zirconium-lined cladding tubes, and have demonstrated superiority in the control and assurance of the liner thickness of products. Zirconium-lined cladding tubes, the development of the measuring technique for guaranteeing the uniform liner thickness and the liner thickness control in the manufacturing and inspection processes are described. (Kako, I.)

  2. CT Artefact Reduction by Signal to Thickness Calibration Function Shaping

    Czech Academy of Sciences Publication Activity Database

    Vavřík, Daniel

    2011-01-01

    Roč. 633, č. 1 (2011), s. 177-180 ISSN 0168-9002. [International workshop on radiation imaging detectors /11./. Praha, 26.06.2009-02.07.2009] R&D Projects: GA ČR(CZ) GA103/09/2101 Grant - others:GA MŠk(CZ) LC06041 Program:LC Institutional research plan: CEZ:AV0Z20710524 Keywords : flat field correction * digital radiography * signal to thickness function * beam hardnening correction Subject RIV: JB - Sensors, Measurment, Regulation Impact factor: 1.207, year: 2011 http://dx.doi.org/10.1016/j.nima.2010.06.160

  3. Homogeneity Analysis of a MEMS-based PZT Thick Film Vibration Energy Harvester Manufacturing Process

    DEFF Research Database (Denmark)

    Lei, Anders; Xu, Ruichao; Borregaard, Louise M.

    2012-01-01

    This paper presents a homogeneity analysis of a high yield wafer scale fabrication of MEMS-based unimorph silicon/PZT thick film vibration energy harvesters aimed towards vibration sources with peak vibrations in the range of around 300Hz. A wafer with a yield of 91% (41/45 devices) has been...

  4. An investigation into the relationship between thickness variations and manufacturing techniques of mouthguards.

    Science.gov (United States)

    Farrington, Timothy; Coward, Trevor; Onambele-Pearson, Gladys; Taylor, Rebecca L; Earl, Philip; Winwood, Keith

    2016-02-01

    The aim of this study was to measure the finished thickness of a single identical 4-mm EVA mouthguard model from a large fabricated sample group and to evaluate the degree of material thinning and variations during the fabrication process. Twenty boxes were distributed to dental technician participants, each containing five duplicated dental models (n = 100), alongside 5 × 4 mm mouthguard blanks and a questionnaire. The mouthguards were measured using electronic callipers (resolution: ±0.01 mm) at three specific points. The five thickest and thinnest mouthguards were examined using a CT scanner to describe the surface typography unique to each mouthguard, highlighting dimensional thinning patterns during the fabrication process. Of the three measurement points, the anterior sulcus point of the mouthguard showed a significant degree of variation (up to 34% coefficient of variation), in finished mouthguard thickness between individuals. The mean thickness of the mouthguards in the anterior region was 1.62 ± 0.38 mm with a range of 0.77-2.80 mm. This variation was also evident in the occlusion and posterior lingual regions but to a lesser extent (up to 12.2% and 9.8% variations, respectively). This study highlights variability in the finished thickness of the mouthguards especially in the anterior sulcus region measurement point, both within and between individuals. At the anterior region measurement point of the mouthguard, the mean thickness was 1.62 mm, equating to an overall material thinning of 59.5% when using a single 4-mm EVA blank. This degree of thinning is comparative to previous single operator research studies. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  5. Doses of personnel employed in the manufacture of radioisotope thickness gages

    International Nuclear Information System (INIS)

    Kostenetskij, M.I.

    1981-01-01

    Doses of the personnel of one of the plants manifacturing radioisotope thickness gages of different types are determined. Annual doses to the body protected by shielding screens are low and according to the data of individual dosimetry constitute 5x10 -3 -6x10 -3 J/kg (0.5-0.6 rem). A table of radiation doses to hands obtained during all kind of operations, is given. Measures for the further reduction of radiation doses of the personnel are suggested [ru

  6. Reverse engineering of B-pillar with 3D optical scanning for manufacturing of non-uniform thickness part

    Directory of Open Access Journals (Sweden)

    Islam Md. Tasbirul

    2017-01-01

    Full Text Available This paper presents reverse engineering (RE of a complex automobile structural part, B-pillar. As a major part of the automobile body-in white (BiW, B-pillar has substantial opportunity for weight reduction by introducing variable thickness across its sections. To leverage such potential, an existing B-pillar was reverse engineered with a 3D optical scanner and computer aided design (CAD application. First, digital data (i.e. in meshes of exiting B-pillar was obtained by the scanner, and subsequently, this information was utilized in developing a complete 3D CAD model. CATIA V5 was used in the modeling where some of the essential work benches were “Digitized Shape Editor”, “Quick Surface Reconstruction”, “Wireframe and Surface Design”, “Freestyle”, “Generation Shape Design” and “Part design”. In the final CAD design, five different thicknesses were incorporated successfully in order to get a B-pillar with non-uniform sections. This research opened opportunities for thickness optimization and mold tooling design in real time manufacturing.

  7. Design, Manufacturing and Characterization of Functionally Graded Flextensional Piezoelectric Actuators

    International Nuclear Information System (INIS)

    Amigo, R C R; Vatanabe, S L; Silva, E C N

    2013-01-01

    Previous works have been shown several advantages in using Functionally Graded Materials (FGMs) for the performance of flextensional devices, such as reduction of stress concentrations and gains in reliability. In this work, the FGM concept is explored in the design of graded devices by using the Topology Optimization Method (TOM), in order to determine optimal topologies and gradations of the coupled structures of piezoactuators. The graded pieces are manufactured by using the Spark Plasma Sintering (SPS) technique and are bonded to piezoelectric ceramics. The graded actuators are then tested by using a modular vibrometer system for measuring output displacements, in order to validate the numerical simulations. The technological path developed here represents the initial step toward the manufacturing of an integral piezoelectric device, constituted by piezoelectric and non-piezoelectric materials without bonding layers.

  8. Review on Advances of Functional Material for Additive Manufacturing

    Science.gov (United States)

    Zulkifli, Nur Amalina Binti; Akmal Johar, Muhammad; Faizan Marwah, Omar Mohd; Irwan Ibrahim, Mohd Halim

    2017-08-01

    The attempt of finding and making new materials in improving products that are already in the market are widely done by researchers nowadays. This project is focusing on making new materials for functional material through additive manufacturing application. The idea of this project came from the ability limitation of capacitor in market nowadays in storing higher charges but smaller in size. Powder glass is the new material that could to be used as a dielectric material for capacitor with the help of palm kernel oil as the binder. This paper reviews on applications done through additive manufacturing method and also types of functional materials used in this method previously. Structure of a capacitor, dielectric properties and measurement techniques that are trying to be carried out are also explains in this paper. Last part of this paper brief on the material proposal and reasons those materials are chosen. New dielectric material for capacitor which are able to store more charges but still small in size are expected to be produced as the outcome of this research.

  9. Eddy current measurement of the thickness of top Cu film of the multilayer interconnects in the integrated circuit (IC) manufacturing process

    Science.gov (United States)

    Qu, Zilian; Meng, Yonggang; Zhao, Qian

    2015-03-01

    This paper proposes a new eddy current method, named equivalent unit method (EUM), for the thickness measurement of the top copper film of multilayer interconnects in the chemical mechanical polishing (CMP) process, which is an important step in the integrated circuit (IC) manufacturing. The influence of the underneath circuit layers on the eddy current is modeled and treated as an equivalent film thickness. By subtracting this equivalent film component, the accuracy of the thickness measurement of the top copper layer with an eddy current sensor is improved and the absolute error is 3 nm for sampler measurement.

  10. Vacuum Die Casting Process and Simulation for Manufacturing 0.8 mm-Thick Aluminum Plate with Four Maze Shapes

    Directory of Open Access Journals (Sweden)

    Chul Kyu Jin

    2015-02-01

    Full Text Available Using vacuum die casting, 0.8 mm-thick plates in complicated shapes are manufactured with the highly castable aluminum alloy Silafont-36 (AlSi9MgMn. The sizes and shapes of the cavities, made of thin plates, feature four different mazes. To investigate formability and mechanical properties by shot condition, a total of six parameters (melt temperatures of 730 °C and 710 °C; plunger speeds of 3.0 m/s and 2.5 m/s; vacuum pressure of 250 mbar and no vacuum are varied in experiments, and corresponding simulations are performed. Simulation results obtained through MAGMA software show similar tendencies to those of the experiments. When the melt pouring temperature is set to 730 °C rather than 710 °C, formability and mechanical properties are superior, and when the plunger speed is set to 3.0 m/s rather than to 2.5 m/s, a fine, even structure is obtained with better mechanical properties. The non-vacuumed sample is half unfilled. The tensile strength and elongation of the sample fabricated under a melt temperature of 730 °C, plunger speed of 3.0 m/s, and vacuum pressure of 250 mbar are 265 MPa and 8.5%, respectively.

  11. Testing functional and morphological interpretations of enamel thickness along the deciduous tooth row in human children.

    OpenAIRE

    Mahoney, Patrick

    2013-01-01

    The significance of a gradient in enamel thickness along the human permanent molar row has been debated in the literature. Some attribute increased enamel thickness from first to third molars to greater bite force during chewing. Others argue that thicker third molar enamel relates to a smaller crown size facilitated by a reduced dentin component. Thus, differences in morphology, not function, explains enamel thickness. This study draws on these different interpretive models to assess enamel ...

  12. Endothelial function predicts progression of carotid intima-media thickness

    DEFF Research Database (Denmark)

    Halcox, J.P.; Donald, A.E.; Ellins, E.

    2009-01-01

    significant after adjustment for risk factors whether entered as separate variables or as Framingham Risk Score. Further adjustment for waist circumference, triglycerides, and employment grade had no significant effect. CONCLUSIONS: Systemic endothelial function was associated with progression of preclinical...... to its impact on the evolution of the atherosclerotic substrate. Flow-mediated dilatation testing provides an integrated vascular measure that may aid the prediction of structural disease evolution and represents a potential short- to intermediate-term outcome measure for evaluation of preventive...

  13. Relationship between renal cortex and parenchyma thickness and renal function: study with CT measurement

    International Nuclear Information System (INIS)

    Xu Yufeng; Tang Guangjian; Jiang Xuexiang

    2006-01-01

    Objective: To study the relationship between renal morphology and renal function, and to assess the value of CT as a criterion to grade renal function. Methods: Enhancement CT were performed in 89 patients with no local renal disease whose split renal glomerular filtration rates (GFR) were measured by renal dynamic imaging with 99 Tc m -DTPA. The 178 kidneys were divided into normal renal function, mild and severe renal impairment groups according to renal function. Differences between three groups respect to the mean thickness of renal cortex and parenchyma were assessed by ANOVA. Using Pearson's correlation test, the correlation between the renal cortex, parenchyma thicknesses and renal GFR were examined. The value of CT in predicting renal function was assessed by using ROC analysis. Results: The renal cortex thicknesses of normal renal function, mild and severe renal impairment groups were (5.9±1.1), (4.6± 1.1), and (3.3±1.0) mm respectively, and the renal parenchyma thicknesses were (26.3±4.2), (21.3±4.6), (16.2±4.6) mm. There were significant differences of renal cortex, parenchyma thicknesses between 3 groups (cortex F=54.78, P<0.01; parenehyma F=43.90, P<0.01). The thicknesses of renal cortex (r=0.752, P<0.01), parenchyma (r=0.738, P<0.01) had positive linear correlation with renal function. ROC analysis of the renal cortex thicknesses measured by CT in predicting mild and severe renal impairment showed that the Az was 0.860 and 0.905 respectively, whereas that of parenchyma was 0.868 and 0.884. Conclusion: The thicknesses of renal cortex, parenchyma measured by CT can reflect renal function. CT was a supplementary method to assess renal function. (authors)

  14. Renal parenchyma thickness: a rapid estimation of renal function on computed tomography

    International Nuclear Information System (INIS)

    Kaplon, Daniel M.; Lasser, Michael S.; Sigman, Mark; Haleblian, George E.; Pareek, Gyan

    2009-01-01

    Purpose: To define the relationship between renal parenchyma thickness (RPT) on computed tomography and renal function on nuclear renography in chronically obstructed renal units (ORUs) and to define a minimal thickness ratio associated with adequate function. Materials and Methods: Twenty-eight consecutive patients undergoing both nuclear renography and CT during a six-month period between 2004 and 2006 were included. All patients that had a diagnosis of unilateral obstruction were included for analysis. RPT was measured in the following manner: The parenchyma thickness at three discrete levels of each kidney was measured using calipers on a CT workstation. The mean of these three measurements was defined as RPT. The renal parenchyma thickness ratio of the ORUs and non-obstructed renal unit (NORUs) was calculated and this was compared to the observed function on Mag-3 lasix Renogram. Results: A total of 28 patients were evaluated. Mean parenchyma thickness was 1.82 cm and 2.25 cm in the ORUs and NORUs, respectively. The mean relative renal function of ORUs was 39%. Linear regression analysis comparing renogram function to RPT ratio revealed a correlation coefficient of 0.48 (p * RPT ratio. A thickness ratio of 0.68 correlated with 20% renal function. Conclusion: RPT on computed tomography appears to be a powerful predictor of relative renal function in ORUs. Assessment of RPT is a useful and readily available clinical tool for surgical decision making (renal salvage therapy versus nephrectomy) in patients with ORUs. (author)

  15. Application of generalized function to dynamic analysis of elasto-plastic thick plates

    International Nuclear Information System (INIS)

    Zheng, D.; Weng, Z.

    1987-01-01

    The elasto-plastic dynamic analysis of thick plates is of great significance to the research and the design on an anti-seismic structure and an anti-explosive structure. In this paper, the derivative of δ-function is handled by using the generalized function. The dynamic influence coefficient of thick plates in deduced. A dynamic response of elasto-plastic thick plates its material has hardening behaviour considered, is analysed by using known elastic solutions. The general expressions for the dynamic response of elasto-plastic rectangular thick plates subjected arbitrary loads are given. Detailed computations are performed for the square plates of various height-span ratios. The results are compared with those obtained from the improved theory and the classical theory of plates. The modification of the classical deflection theory for plates is employed. The increment analysis is used for calculations. The yield function is considered as a function of inplane and transverse shear stresses. (orig./GL)

  16. Resonant frequency function of thickness-shear vibrations of rectangular crystal plates.

    Science.gov (United States)

    Wang, Ji; Yang, Lijun; Pan, Qiaoqiao; Chao, Min-Chiang; Du, Jianke

    2011-05-01

    The resonant frequencies of thickness-shear vibrations of quartz crystal plates in rectangular and circular shapes are always required in the design and manufacturing of quartz crystal resonators. As the size of quartz crystal resonators shrinks, for rectangular plates we must consider effects of both length and width for the precise calculation of resonant frequency. Starting from the three-dimensional equations of wave propagation in finite crystal plates and the general expression of vibration modes, we obtained the relations between frequency and wavenumbers. By satisfying the major boundary conditions of the dominant thickness-shear mode, three wavenumber solutions are obtained and the frequency equation is constructed. It is shown the resonant frequency of thickness-shear mode is a second-order polynomial of aspect ratios. This conforms to known results in the simplest form and is applicable to further analytical and experimental studies of the frequency equation of quartz crystal resonators.

  17. An exploration of the integrative function of dialogue in manufacturing

    NARCIS (Netherlands)

    Eijnatten, van F.M.; Putnik, G.D.

    2010-01-01

    This paper is about the roles of dialogue as a generative mechanism in manufacturing system integration. It advocates the integrative power of dialogue in the design and operation of manufacturing systems. Dialogical conversation is a powerful tool to create a learning organisation: it might be a

  18. Manufacture of functional surfaces through combined application of tool manufacturing processes and Robot Assisted Polishing

    DEFF Research Database (Denmark)

    Eriksen, Rasmus Solmer; Arentoft, Mogens; Grønbæk, J.

    2012-01-01

    The tool surface topography is often a key parameter in the tribological performance of modern metal forming tools. A new generation of multifunctional surfaces is achieved by combination of conventional tool manufacturing processes with a novel Robot Assisted Polishing process. This novel surface...

  19. Elastic Stress Analysis of Rotating Functionally Graded Annular Disk of Variable Thickness Using Finite Difference Method

    Directory of Open Access Journals (Sweden)

    Mohammad Hadi Jalali

    2018-01-01

    Full Text Available Elastic stress analysis of rotating variable thickness annular disk made of functionally graded material (FGM is presented. Elasticity modulus, density, and thickness of the disk are assumed to vary radially according to a power-law function. Radial stress, circumferential stress, and radial deformation of the rotating FG annular disk of variable thickness with clamped-clamped (C-C, clamped-free (C-F, and free-free (F-F boundary conditions are obtained using the numerical finite difference method, and the effects of the graded index, thickness variation, and rotating speed on the stresses and deformation are evaluated. It is shown that using FG material could decrease the value of radial stress and increase the radial displacement in a rotating thin disk. It is also demonstrated that increasing the rotating speed can strongly increase the stress in the FG annular disk.

  20. The relationship between neuropsychological tests of visuospatial function and lobar cortical thickness.

    Science.gov (United States)

    Zink, Davor N; Miller, Justin B; Caldwell, Jessica Z K; Bird, Christopher; Banks, Sarah J

    2018-06-01

    Tests of visuospatial function are often administered in comprehensive neuropsychological evaluations. These tests are generally considered assays of parietal lobe function; however, the neural correlates of these tests, using modern imaging techniques, are not well understood. In the current study we investigated the relationship between three commonly used tests of visuospatial function and lobar cortical thickness in each hemisphere. Data from 374 patients who underwent a neuropsychological evaluation and MRI scans in an outpatient dementia clinic were included in the analysis. We examined the relationships between cortical thickness, as assessed with Freesurfer, and performance on three tests: Judgment of Line Orientation (JoLO), Block Design (BD) from the Fourth edition of the Wechsler Adult Intelligence Scale, and Brief Visuospatial Memory Test-Revised Copy Trial (BVMT-R-C) in patients who showed overall average performance on these tasks. Using a series of multiple regression models, we assessed which lobe's overall cortical thickness best predicted test performance. Among the individual lobes, JoLO performance was best predicted by cortical thickness in the right temporal lobe. BD performance was best predicted by cortical thickness in the right parietal lobe, and BVMT-R-C performance was best predicted by cortical thickness in the left parietal lobe. Performance on constructional tests of visuospatial function appears to correspond best with underlying cortical thickness of the parietal lobes, while performance on visuospatial judgment tests appears to correspond best to temporal lobe thickness. Future research using voxel-wise and connectivity techniques and including more diverse samples will help further understanding of the regions and networks involved in visuospatial tests.

  1. Antarctic ice sheet thickness estimation based on P-receiver function and waveform inversion

    Science.gov (United States)

    Yan, P.; Li, F.; LI, Z.; Li, J.; Yang, Y.; Hao, W.

    2016-12-01

    Antarctic ice sheet thickness is key parameter and boundary condition for ice sheet model construction, which has great significance for glacial isostatic adjustment, ice sheet mass balance and global change study. Ice thickness acquired utilizing seismological receiver function method can complement and verify with results obtained by radar echo sounding method. In this paper, P-receiver functions(PRFs) are extracted for stations deployed on Antarctic ice sheet, then Vp/Vs ratio and ice thickness are obtained using H-Kappa stacking. Comparisons are made between Bedmap2 dataset and the ice thickness from PRFs, most of the absolute value of the differences are less than 200 meters, only a few reach 600 meters. Taking into account of the intensity of Bedmap2 dataset survey lines and the uncertainty of radio echo sounding, as well as the inherit complexity of the internal ice structure beneath some stations, the ice thickness obtained from receiver function method is reliable. However limitation exists when using H-Kappa stacking method for stations where sediment squeezed between the ice and the bed rock layer. For better verifying the PRF result, a global optimizing method-Neighbourhood algotithm(NA) and spline interpolation are used to modeling PRFs assuming an isotropic layered ice sheet with depth varied densities and velocities beneath the stations. Then the velocity structure and ice sheet thickness are obtained through nonlinear searching by optimally fitting the real and the theoretical PRFs. The obtained ice sheet thickness beneath the stations agree well with the former H-Kappa method, but further detailed study are needed to constrain the inner ice velocity structure.

  2. Planar Zeolite Film-Based Potentiometric Gas Sensors Manufactured by a Combined Thick-Film and Electroplating Technique

    Science.gov (United States)

    Marr, Isabella; Reiß, Sebastian; Hagen, Gunter; Moos, Ralf

    2011-01-01

    Zeolites are promising materials in the field of gas sensors. In this technology-oriented paper, a planar setup for potentiometric hydrocarbon and hydrogen gas sensors using zeolites as ionic sodium conductors is presented, in which the Pt-loaded Na-ZSM-5 zeolite is applied using a thick-film technique between two interdigitated gold electrodes and one of them is selectively covered for the first time by an electroplated chromium oxide film. The influence of the sensor temperature, the type of hydrocarbons, the zeolite film thickness, and the chromium oxide film thickness is investigated. The influence of the zeolite on the sensor response is briefly discussed in the light of studies dealing with zeolites as selectivity-enhancing cover layers. PMID:22164042

  3. Planar Zeolite Film-Based Potentiometric Gas Sensors Manufactured by a Combined Thick-Film and Electroplating Technique

    Directory of Open Access Journals (Sweden)

    Gunter Hagen

    2011-08-01

    Full Text Available Zeolites are promising materials in the field of gas sensors. In this technology-oriented paper, a planar setup for potentiometric hydrocarbon and hydrogen gas sensors using zeolites as ionic sodium conductors is presented, in which the Pt-loaded Na-ZSM-5 zeolite is applied using a thick-film technique between two interdigitated gold electrodes and one of them is selectively covered for the first time by an electroplated chromium oxide film. The influence of the sensor temperature, the type of hydrocarbons, the zeolite film thickness, and the chromium oxide film thickness is investigated. The influence of the zeolite on the sensor response is briefly discussed in the light of studies dealing with zeolites as selectivity-enhancing cover layers.

  4. Homogeneity analysis of high yield manufacturing process of mems-based pzt thick film vibrational energy harvesters

    DEFF Research Database (Denmark)

    Lei, Anders; Xu, Ruichao; Pedersen, C.M.

    2011-01-01

    This work presents a high yield wafer scale fabrication of MEMS-based unimorph silicon/PZT thick film vibrational energy harvesters aimed towards vibration sources with peak frequencies in the range of a few hundred Hz. By combining KOH etching with mechanical front side protection, SOI wafer...... to accurately define the thickness of the silicon part of the harvester and a silicon compatible PZT thick film screen-printing technique, we are able to fabricate energy harvesters on wafer scale with a yield higher than 90%. The characterization of the fabricated harvesters is focused towards the full wafer....../mass-production aspect; hence the analysis of uniformity in harvested power and resonant frequency....

  5. Study of ion beam sputtered Fe/Si interfaces as a function of Si layer thickness

    Science.gov (United States)

    Kumar, Anil; Brajpuriya, Ranjeet; Singh, Priti

    2018-01-01

    The exchange interaction in metal/semiconductor interfaces is far from being completely understood. Therefore, in this paper, we have investigated the nature of silicon on the Fe interface in the ion beam deposited Fe/Si/Fe trilayers keeping the thickness of the Fe layers fixed at 3 nm and varying the thickness of the silicon sandwich layer from 1.5 nm to 4 nm. Grazing incidence x-ray diffraction and atomic force microscopy techniques were used, respectively, to study the structural and morphological changes in the deposited films as a function of layer thickness. The structural studies show silicide formation at the interfaces during deposition and better crystalline structure of Fe layers at a lower spacer layer thickness. The magnetization behavior was investigated using magneto-optical Kerr effect, which clearly shows that coupling between the ferromagnetic layers is highly influenced by the semiconductor spacer layer thickness. A strong antiferromagnetic coupling was observed for a value of tSi = 2.5 nm but above this value an unexpected behavior of hysteresis loop (step like) with two coercivity values is recorded. For spacer layer thickness greater than 2.5 nm, an elemental amorphous Si layer starts to appear in the spacer layer in addition to the silicide layer at the interfaces. It is observed that in the trilayer structure, Fe layers consist of various stacks, viz., Si doped Fe layers, ferromagnetic silicide layer, and nonmagnetic silicide layer at the interfaces. The two phase hysteresis loop is explained on the basis of magnetization reversal of two ferromagnetic layers, independent of each other, with different coercivities. X-ray photo electron spectroscopy technique was also used to study interfaces characteristics as a function of tSi.

  6. Increased Executive Functioning, Attention, and Cortical Thickness in White-Collar Criminals

    Science.gov (United States)

    Raine, Adrian; Laufer, William S.; Yang, Yaling; Narr, Katherine L.; Thompson, Paul; Toga, Arthur W.

    2011-01-01

    Very little is known on white collar crime and how it differs to other forms of offending. This study tests the hypothesis that white collar criminals have better executive functioning, enhanced information processing, and structural brain superiorities compared to offender controls. Using a case-control design, executive functioning, orienting, and cortical thickness was assessed in 21 white collar criminals matched with 21 controls on age, gender, ethnicity, and general level of criminal offending. White collar criminals had significantly better executive functioning, increased electrodermal orienting, increased arousal, and increased cortical gray matter thickness in the ventromedial prefrontal cortex, inferior frontal gyrus, somatosensory cortex, and the temporal-parietal junction compared to controls. Results, while initial, constitute the first findings on neurobiological characteristics of white-collar criminals It is hypothesized that white collar criminals have information-processing and brain superiorities that give them an advantage in perpetrating criminal offenses in occupational settings. PMID:22002326

  7. Surface functionalization by fine ultraviolet-patterning of nanometer-thick liquid lubricant films

    International Nuclear Information System (INIS)

    Lu, Renguo; Zhang, Hedong; Komada, Suguru; Mitsuya, Yasunaga; Fukuzawa, Kenji; Itoh, Shintaro

    2014-01-01

    Highlights: • We present fine UV-patterning of nm-thick liquid films for surface functionalization. • The patterned films exhibit both a morphological pattern and a functional pattern of different surface properties. • The finest pattern linewidth was 0.5 μm. • Fine patterning is crucial for improving surface and tribological properties. - Abstract: For micro/nanoscale devices, surface functionalization is essential to achieve function and performance superior to those that originate from the inherent bulk material properties. As a method of surface functionalization, we dip-coated nanometer-thick liquid lubricant films onto solid surfaces and then patterned the lubricant films with ultraviolet (UV) irradiation through a photomask. Surface topography, adhesion, and friction measurements demonstrated that the patterned films feature a concave–convex thickness distribution with thicker lubricant in the irradiated regions and a functional distribution with lower adhesion and friction in the irradiated convex regions. The pattern linewidth ranged from 100 to as fine as 0.5 μm. The surface functionalization effect of UV-patterning was investigated by measuring the water contact angles, surface energies, friction forces, and depletion of the patterned, as-dipped, and full UV-irradiated lubricant films. The full UV-irradiated lubricant film was hydrophobic with a water contact angle of 102.1°, and had lower surface energy, friction, and depletion than the as-dipped film, which was hydrophilic with a water contact angle of 80.7°. This demonstrates that UV irradiation substantially improves the surface and tribological properties of the nanometer-thick liquid lubricant films. The UV-patterned lubricant films exhibited superior surface and tribological properties than the as-dipped film. The water contact angle increased and the surface energy, friction, and depletion decreased as the pattern linewidth decreased. In particular, the 0.5-μm patterned lubricant

  8. The Use of Additive Manufacturing for Fabrication of Multi-Function Small Satellite Structures

    OpenAIRE

    Horais, Brian; Love, Lonnie; Dehoff, Ryan

    2013-01-01

    The use of small satellites in constellations is limited only by the growing functionality of smallsats themselves. Additive manufacturing provides exciting new design opportunities for development of multifunction CubeSat structures that integrate such functions as propulsion and thermal control into the satellite structures themselves. Manufacturing of these complex multifunction structures is now possible in lightweight, high strength, materials such as titanium by using existing electron ...

  9. Reverse engineering of B-pillar with 3D optical scanning for manufacturing of non-uniform thickness part

    OpenAIRE

    Islam Md. Tasbirul; Abdullah A.B.; Mahmud Mohamad Zihad

    2017-01-01

    This paper presents reverse engineering (RE) of a complex automobile structural part, B-pillar. As a major part of the automobile body-in white (BiW), B-pillar has substantial opportunity for weight reduction by introducing variable thickness across its sections. To leverage such potential, an existing B-pillar was reverse engineered with a 3D optical scanner and computer aided design (CAD) application. First, digital data (i.e. in meshes) of exiting B-pillar was obtained by the scanner, and ...

  10. Tunneling density of states as a function of thickness in superconductor/ strong ferromagnet bilayers

    Energy Technology Data Exchange (ETDEWEB)

    Reymond, S.

    2010-04-29

    We have made an experimental study of the tunneling density of states (DOS) in strong ferromagnetic thin films (CoFe) in proximity with a thick superconducting film (Nb) as a function of d{sub F}, the ferromagnetic thickness. Remarkably, we find that as d{sub F} increases, the superconducting DOS exhibits a scaling behavior in which the deviations from the normal-state conductance have a universal shape that decreases exponentially in amplitude with characteristic length d* {approx} 0.4 nm. We do not see oscillations in the DOS as a function of d{sub F}, as expected from predictions based on the Usadel equations, although an oscillation in T{sub c}(d{sub F}) has been seen in the same materials.

  11. Evaluation of the fracture resistance of computer-aided design/computer-aided manufacturing monolithic crowns prepared in different cement thicknesses.

    Science.gov (United States)

    Sagsoz, N Polat; Yanıkoglu, N

    2018-04-01

    The purpose of this study was to evaluate the fracture resistance of monolithic computer-aided design/computer-aided manufacturing (CAD/CAM) crowns that are prepared with different cement thickness. For this investigation, a human maxillary premolar tooth was selected. Master model preparation was performed with a demand bur under water spray. Master die was taken to fabricate 105 epoxy resin replicas. The crowns were milled using a CEREC 4 CAD/CAM system (Software Version, 4.2.0.57192). CAD/CAM crowns were made using resin nanoceramic, feldspathic glass ceramic, lithium disilicate, and leucite-reinforced ceramics. Each group was subdivided into three groups in accordance with three different cement thicknesses (30, 90, and 150 μm). Crowns milled out. Then RelyX ™ U200 was used as a luting agent to bond the crowns to the prepared samples. After one hour cementations, the specimens were stored in water bath at 37°C for 1 week before testing. Seven unprepared and unrestored teeth were kept and tested as a control group. A universal test machine was used to assume the fracture resistance of all specimens. The compressive load (N) that caused fracture was recorded for each specimen. Fracture resistance data were statistically analyzed by one-way ANOVA and two-factor interaction modeling test (α = 0.001). There are statistically significant differences between fracture resistances of CAD/CAM monolithic crown materials (P cement thickness is not statistically significant for fracture resistance of CAD/CAM monolithic crowns (P > 0.001). CAD/CAM monolithic crown materials affected fracture resistance. Cement thickness (30, 90, and 150 μm) was not effective on fracture resistance of CAD/CAM monolithic crowns.

  12. Bipolar disorder type I and II show distinct relationships between cortical thickness and executive function.

    Science.gov (United States)

    Abé, C; Rolstad, S; Petrovic, P; Ekman, C-J; Sparding, T; Ingvar, M; Landén, M

    2018-06-15

    Frontal cortical abnormalities and executive function impairment co-occur in bipolar disorder. Recent studies have shown that bipolar subtypes differ in the degree of structural and functional impairments. The relationships between cognitive performance and cortical integrity have not been clarified and might differ across patients with bipolar disorder type I, II, and healthy subjects. Using a vertex-wise whole-brain analysis, we investigated how cortical integrity, as measured by cortical thickness, correlates with executive performance in patients with bipolar disorder type I, II, and controls (N = 160). We found focal associations between executive function and cortical thickness in the medial prefrontal cortex in bipolar II patients and controls, but not in bipolar I disorder. In bipolar II patients, we observed additional correlations in lateral prefrontal and occipital regions. Our findings suggest that bipolar disorder patients show altered structure-function relationships, and importantly that those relationships may differ between bipolar subtypes. The findings are line with studies suggesting subtype-specific neurobiological and cognitive profiles. This study contributes to a better understanding of brain structure-function relationships in bipolar disorder and gives important insights into the neuropathophysiology of diagnostic subtypes. © 2018 The Authors Acta Psychiatrica Scandinavica Published by John Wiley & Sons Ltd.

  13. The profit potential in reverse supply chain functions for catalyst manufacturers

    DEFF Research Database (Denmark)

    Larsen, Samuel; Sorth-Olsen, Rasmus; Honoré, Aske Lykke

    The reverse supply chain (RSC) contains inherent uncertainties, e.g. the quality level and return volume of used products. By contrast, the catalyst manufacturing industry is characterized by Certainty (manifested in e.g. well-defined and highly controlled production – processes and widespread...... standardization). This paper’s purpose is to examine whether RSC – processes can be profitably applied in this industry. Using case study research the paper examines which RSC - functions that are generally available to manufacturers are profitable for a selected catalyst manufacturer. Results show three...

  14. Facial dimensions, bite force and masticatory muscle thickness in preschool children with functional posterior crossbite

    Directory of Open Access Journals (Sweden)

    Paula Midori Castelo

    2008-03-01

    Full Text Available Posterior crossbite may affect craniofacial growth and development. Thus, this study aimed to associate facial dimensions (by standardized frontal photographs to masseter and anterior portion of the temporal muscle thickness (by ultrasonography and maximal bilateral bite force in 49 children with deciduous and early mixed dentitions. They were distributed in four groups: deciduous-normal occlusion (DNO, n = 15, deciduous-crossbite (DCB, n = 10, mixed-normal occlusion (MNO, n = 13 and mixed-crossbite (MCB, n = 11. Anterior facial height (AFH, bizygomatic width (FWB, and intergonial width (FWI were determined and associated with muscle thickness and bite force, applying Pearson’s coefficients and multiple logistic regression, with age, gender, body weight and height as the covariates. FWB and FWI were correlated positively with the masseter thickness, whereas AFH/FWB and AFH/FWI ratios had negative correlation, except in the DNO group. The correlation between AFH/FWB and bite force in the MCB group was significantly negative. A higher AFH/FWB in MNO and MCB led to a significantly higher probability for functional crossbite development. In the studied sample, it was observed that children in the early mixed dentition with a long-face trend showed lower bite force and higher probability to present functional posterior crossbite, without significant influence of the covariates.

  15. A study on the evolution of dielectric function of ZnO thin films with decreasing film thickness

    International Nuclear Information System (INIS)

    Li, X. D.; Chen, T. P.; Liu, P.; Liu, Y.; Liu, Z.; Leong, K. C.

    2014-01-01

    Dielectric function, band gap, and exciton binding energies of ultrathin ZnO films as a function of film thickness have been obtained with spectroscopic ellipsometry. As the film thickness decreases, both real (ε 1 ) and imaginary (ε 2 ) parts of the dielectric function decrease significantly, and ε 2 shows a blue shift. The film thickness dependence of the dielectric function is shown related to the changes in the interband absorption, discrete-exciton absorption, and continuum-exciton absorption, which can be attributed to the quantum confinement effect on both the band gap and exciton binding energies

  16. Functionalized Thick Film Impedance Sensors for Use in In Vitro Cell Culture.

    Science.gov (United States)

    Bartsch, Heike; Baca, Martin; Fernekorn, Uta; Müller, Jens; Schober, Andreas; Witte, Hartmut

    2018-04-05

    Multi-electrode arrays find application in electrophysiological recordings. The quality of the captured signals depends on the interfacial contact between electrogenic cells and the electronic system. Therefore, it requires reliable low-impedance electrodes. Low-temperature cofired ceramic technology offers a suitable platform for rapid prototyping of biological reactors and can provide both stable fluid supply and integrated bio-hardware interfaces for recordings in electrogenic cell cultures. The 3D assembly of thick film gold electrodes in in vitro bio-reactors has been demonstrated for neuronal recordings. However, especially when dimensions become small, their performance varies strongly. This work investigates the influence of different coatings on thick film gold electrodes with regard to their influence on impedance behavior. PSS layer, titanium oxynitride and laminin coatings are deposited on LTCC gold electrodes using different 2D and 3D MEA chip designs. Their impedance characteristics are compared and discussed. Titanium oxynitride layers emerged as suitable functionalization. Small 86-µm-electrodes have a serial resistance R s of 32 kOhm and serial capacitance C s of 4.1 pF at 1 kHz. Thick film gold electrodes with such coatings are thus qualified for signal recording in 3-dimensional in vitro cell cultures.

  17. Functionalized Thick Film Impedance Sensors for Use in In Vitro Cell Culture

    Directory of Open Access Journals (Sweden)

    Heike Bartsch

    2018-04-01

    Full Text Available Multi-electrode arrays find application in electrophysiological recordings. The quality of the captured signals depends on the interfacial contact between electrogenic cells and the electronic system. Therefore, it requires reliable low-impedance electrodes. Low-temperature cofired ceramic technology offers a suitable platform for rapid prototyping of biological reactors and can provide both stable fluid supply and integrated bio-hardware interfaces for recordings in electrogenic cell cultures. The 3D assembly of thick film gold electrodes in in vitro bio-reactors has been demonstrated for neuronal recordings. However, especially when dimensions become small, their performance varies strongly. This work investigates the influence of different coatings on thick film gold electrodes with regard to their influence on impedance behavior. PEDOT:PSS layer, titanium oxynitride and laminin coatings are deposited on LTCC gold electrodes using different 2D and 3D MEA chip designs. Their impedance characteristics are compared and discussed. Titanium oxynitride layers emerged as suitable functionalization. Small 86-µm-electrodes have a serial resistance Rs of 32 kOhm and serial capacitance Cs of 4.1 pF at 1 kHz. Thick film gold electrodes with such coatings are thus qualified for signal recording in 3-dimensional in vitro cell cultures.

  18. Mechanical and thermal stresses in a functionally graded rotating disk with variable thickness due to radially symmetry loads

    International Nuclear Information System (INIS)

    Bayat, Mehdi; Saleem, M.; Sahari, B.B.; Hamouda, A.M.S.; Mahdi, E.

    2009-01-01

    Rotating disks have many applications in the aerospace industry such as gas turbines and gears. These disks normally work under thermo mechanical loads. Minimizing the weight of such components can help reduce the overall payload in aerospace industry. For this purpose, a rotating functionally graded (FG) disk with variable thickness under a steady temperature field is considered in this paper. Thermo elastic solutions and the weight of the disk are related to the material grading index and the geometry of the disk. It is found that a disk with parabolic or hyperbolic convergent thickness profile has smaller stresses and displacements compared to a uniform thickness disk. Maximum radial stress due to centrifugal load in the solid disk with parabolic thickness profile may not be at the center unlike uniform thickness disk. Functionally graded disk with variable thickness has smaller stresses due to thermal load compared to those with uniform thickness. It is seen that for a given value of grading index, the FG disk having concave thickness profile is the lightest in weight whereas the FG disk with uniform thickness profile is the heaviest. Also for any given thickness profile, the weight of the FG disk lies in between the weights of the all-metal and the all-ceramic disks.

  19. Donkey Milk for Manufacture of Novel Functional Fermented Beverages.

    Science.gov (United States)

    Perna, Annamaria; Intaglietta, Immacolata; Simonetti, Amalia; Gambacorta, Emilio

    2015-06-01

    The aim of this work was to investigate on the functional features of a donkey milk probiotic berevage as a novel food. Particularly, it was to study the decrease of lactose content and the antioxidant activity of standard yogurt (YC) and probiotic yogurt (YP; Lactobacillus acidophilus, Lactobacillus casei) from donkey milk during the storage up to 30 d at 4 ºC. The evolution of lactose content using enzymatic-spectrophotometric kits was analyzed. Antioxidant activity of yogurt was measured using 2,2'-azino-bis-3-ethylbenzothiazoline-6-sulfonic acid (ABTS), ferric reducing antioxidant power (FRAP), and thiol assays. Parallel consumer sensory studies were carried out as consumer test in order to gain information about the impact of these novel fermented beverages on sensory perceptions. The statistical analysis has shown significant effect of studied factors. The results showed that the lactose content gradually decreased during storage in both yogurts, reaching values of 2.36% and 2.10% in YC and YP, respectively, at 30 d (P yogurt types, the antioxidant activity increased, but YP showed a higher antioxidant activity than YC. The results suggest that the antioxidant activity of yogurt samples was affected by cultures of lactic acid bacteria (LAB). We conclude that the fermented donkey milk could be configured as health and nutraceutical food, which aims to meet nutritional requirements of certain consumers groups with lactose or cow milk protein intolerance. © 2015 Institute of Food Technologists®

  20. Crustal thickness and Vp/Vs beneath the southeastern United States: Constraints from receiver function stacking

    Science.gov (United States)

    Yang, Q.; Gao, S. S.; Liu, K. H.

    2017-12-01

    To provide new constraints on crustal structure and evolution models beneath a collage of tectonic provinces in the southeastern United States, a total of 10,753 teleseismic receiver functions recorded by 125 USArray and other seismic stations are used to compute crustal thickness and Vp/Vs values. The resulting crustal thicknesses range from 25 km at the coast to 51 km beneath the peak of the southern Appalachians with an average of 36.2 km ± 5.5 km. The resulting crustal thicknesses correlate well with surface elevation and Bouguer gravity anomalies. Beneath the Atlantic Coastal Plain, the crustal thicknesses show a clear eastward thinning with a magnitude of 10 km, from about 40 km beneath the western margin to 30 km beneath the coast. The Vp/Vs values for the entire study area range from 1.71 to 1.90 with a mean value of 1.80 ± 0.04. The mean Vp/Vs value is 1.82±0.035 in the southern Appalachian Mountain. The slightly larger than normal crustal Vp/Vs for this area might be the result of significant erosion of the felsic upper crust over the past 300 million years. Alternatively, it could also suggest the existence of pervasive magmatic intrusion into the Appalachian crust. The Vp/Vs measurements in the Atlantic Coastal Plain increase toward the east, ranging from 1.75 to 1.82, probably indicating a gradual increase of mafic magmatic intrusion into thinner crust during the development of the passive continental margin.

  1. Performance Evaluation of an Oxygen Sensor as a Function of the Samaria Doped Ceria Film Thickness

    International Nuclear Information System (INIS)

    Sanghavi, Rahul P.; Nandasiri, Manjula I.; Kuchibhatla, Satyanarayana; Nachimuthu, Ponnusamy; Engelhard, Mark H.; Shutthanandan, V.; Jiang, Weilin; Thevuthasan, Suntharampillai; Kayani, Asghar N.; Prasad, Shalini

    2010-01-01

    The current demand in the automobile industry is in the control of air-fuel mixture in the combustion engine of automobiles. Oxygen partial pressure can be used as an input parameter for regulating or controlling systems in order to optimize the combustion process. Our goal is to identify and optimize the material system that would potentially function as the active sensing material for such a device that monitors oxygen partial pressure in these systems. We have used thin film samaria doped ceria (SDC) as the sensing material for the sensor operation, exploiting the fact that at high temperatures, oxygen vacancies generated due to samarium doping act as conducting medium for oxygen ions which hop through the vacancies from one side to the other contributing to an electrical signal. We have recently established that 6 atom% Sm doping in ceria films has optimum conductivity. Based on this observation, we have studied the variation in the overall conductivity of 6 atom% samaria doped ceria thin films as a function of thickness in the range of 50 nm to 300 nm at a fixed bias voltage of 2 volts. A direct proportionality in the increase in the overall conductivity is observed with the increase in sensing film thickness. For a range of oxygen pressure values from 1 mTorr to 100 Torr, a tolerable hysteresis error, good dynamic response and a response time of less than 10 seconds was observed

  2. Industry 4.0 implies lean manufacturing: research activities in industry 4.0 function as enablers for lean manufacturing

    OpenAIRE

    Sanders, Adam; Elangeswaran, Chola; Wulfsberg, Jens

    2016-01-01

    Purpose: Lean Manufacturing is widely regarded as a potential methodology to improve productivity and decrease costs in manufacturing organisations. The success of lean manufacturing demands consistent and conscious efforts from the organisation, and has to overcome several hindrances. Industry 4.0 makes a factory smart by applying advanced information and communication systems and future-oriented technologies. This paper analyses the incompletely perceived link between Industr...

  3. The relationship among customer demand, competitive strategy and manufacturing system functional objectives

    Directory of Open Access Journals (Sweden)

    Wei Xu

    2013-09-01

    Full Text Available Purpose: To ascertain the relationship between the operation system function goal decision making and customer demand and competition strategy, can better discover and integrate all available resources (including important capital resources to achieve business opportunities, the establishment of sustainable competitive ability. Because, to achieve business development lead policymakers take great uncertainty, which led to the investment behavior required for the operational activities of resources also bear the enormous risks. Design/methodology/approach: Through principal component analysis on the data collected by questionnaires, the manuscript obtains dominant factors for customer demand, competitive strategy and manufacturing system functional objectives respectively. By these factors, it tests its three hypotheses with the data from northeast of China and draws some conclusions. Findings: The results show that customer demand have a significant positive effect on competitive strategy; competitive strategy have positive influence on manufacturing system functional objectives; customer demand affect the functional objectives, by competitive strategy. Research limitations/implications: In this research, competitive strategy and manufacturing system functional objectives are influenced by customer demand. The conclusion of the research can provide theoretical guidance for Chinese enterprises which carry out manufacturing system functional objectives. Originality/value: In this research, a new measure questionnaire of competition strategy, customer satisfaction and operating system function goal was used, analyzed the influence factors of time, quality, cost, efficiency, service and environment, on the operation of the system. The study shows that the effect of competition strategy and customer demand has a direct impact on the operating system functions, customer demand through competitive strategy of indirect effects operating system functions.

  4. Basic visual function and cortical thickness patterns in posterior cortical atrophy.

    Science.gov (United States)

    Lehmann, Manja; Barnes, Josephine; Ridgway, Gerard R; Wattam-Bell, John; Warrington, Elizabeth K; Fox, Nick C; Crutch, Sebastian J

    2011-09-01

    Posterior cortical atrophy (PCA) is characterized by a progressive decline in higher-visual object and space processing, but the extent to which these deficits are underpinned by basic visual impairments is unknown. This study aimed to assess basic and higher-order visual deficits in 21 PCA patients. Basic visual skills including form detection and discrimination, color discrimination, motion coherence, and point localization were measured, and associations and dissociations between specific basic visual functions and measures of higher-order object and space perception were identified. All participants showed impairment in at least one aspect of basic visual processing. However, a number of dissociations between basic visual skills indicated a heterogeneous pattern of visual impairment among the PCA patients. Furthermore, basic visual impairments were associated with particular higher-order object and space perception deficits, but not with nonvisual parietal tasks, suggesting the specific involvement of visual networks in PCA. Cortical thickness analysis revealed trends toward lower cortical thickness in occipitotemporal (ventral) and occipitoparietal (dorsal) regions in patients with visuoperceptual and visuospatial deficits, respectively. However, there was also a lot of overlap in their patterns of cortical thinning. These findings suggest that different presentations of PCA represent points in a continuum of phenotypical variation.

  5. Charge transport in films of Geobacter sulfurreducens on graphite electrodes as a function of film thickness

    KAUST Repository

    Jana, Partha Sarathi; Katuri, Krishna; Kavanagh, Paul; Kumar, Amit Ravi Pradeep; Leech, Dó nal

    2014-01-01

    Harnessing, and understanding the mechanisms of growth and activity of, biofilms of electroactive bacteria (EAB) on solid electrodes is of increasing interest, for application to microbial fuel and electrolysis cells. Microbial electrochemical cell technology can be used to generate electricity, or higher value chemicals, from organic waste. The capability of biofilms of electroactive bacteria to transfer electrons to solid anodes is a key feature of this emerging technology, yet the electron transfer mechanism is not fully characterized as yet. Acetate oxidation current generated from biofilms of an EAB, Geobacter sulfurreducens, on graphite electrodes as a function of time does not correlate with film thickness. Values of film thickness, and the number and local concentration of electrically connected redox sites within Geobacter sulfurreducens biofilms as well as a charge transport diffusion co-efficient for the biofilm can be estimated from non-turnover voltammetry. The thicker biofilms, of 50 ± 9 μm, display higher charge transport diffusion co-efficient than that in thinner films, as increased film porosity of these films improves ion transport, required to maintain electro-neutrality upon electrolysis. This journal is © the Partner Organisations 2014.

  6. Fluid Phase Lipid Areas and Bilayer Thicknesses of Commonly Used Phosphatidylcholines as a Function of Temperature

    International Nuclear Information System (INIS)

    Kucerka, Norbert; Nieh, Mu-Ping; Katsaras, John

    2011-01-01

    The structural parameters of fluid phase bilayers composed of phosphatidylcholines with fully saturated, mixed, and branched fatty acid chains, at several temperatures, have been determined by simultaneously analyzing small-angle neutron and X-ray scattering data. Bilayer parameters, such as area per lipid and overall bilayer thickness have been obtained in conjunction with intrabilayer structural parameters (e.g. hydrocarbon region thickness). The results have allowed us to assess the effect of temperature and hydrocarbon chain composition on bilayer structure. For example, we found that for all lipids there is, not surprisingly, an increase in fatty acid chain trans-gauche isomerization with increasing temperature. Moreover, this increase in trans-gauche isomerization scales with fatty acid chain length in mixed chain lipids. However, in the case of lipids with saturated fatty acid chains, trans-gauche isomerization is increasingly tempered by attractive chain-chain van der Waals interactions with increasing chain length. Finally, our results confirm a strong dependence of lipid chain dynamics as a function of double bond position along fatty acid chains.

  7. The Thickness Effect of the Functional Film for the Fabrication of Photovoltaic Module.

    Science.gov (United States)

    Shan, Bowen; Kim, Jung Hyun; Choi, Wonseok

    2018-09-01

    In this study, a functional coating technology to improve the anti-fouling properties of the photo-voltaic module is introduced. The coating was applied on the cover glass, which is the same material as the photovoltaic module. After coating the cover glass once, twice, and three times in the horizontal and vertical directions respectively, the anti-fouling properties was tested according to the coating times and the thickness of the coating film. To ensure the durability of the coating film, the annealing process was performed for 1 hour at 200 °C in a furnace after coating. Finally, the photovoltaic module will be coated with the best coating method. Compared to uncoated modules, the coated photovoltaic modules showed significantly improved anti-fouling properties and also good performance in hardness and adhesion.

  8. Three-dimensional inverse transient heat transfer analysis of thick functionally graded plates

    Energy Technology Data Exchange (ETDEWEB)

    Haghighi, M.R. Golbahar; Malekzadeh, P. [Department of Mechanical Engineering, School of Engineering, Persian Gulf University, Bushehr 75168 (Iran); Eghtesad, M. [Department of Mechanical Engineering, School of Engineering, Shiraz University, Shiraz 71348-51154 (Iran); Necsulescu, D.S. [Department of Mechanical Engineering, Faculty of Engineering, University of Ottawa, Ottawa, Ontario (Canada)

    2009-03-15

    In this paper, a three-dimensional transient inverse heat conduction (IHC) procedure is presented to estimate the unknown boundary heat flux of thick functionally graded (FG) plates. For this purpose, the conjugate gradient method (CGM) in conjunction with adjoint problem is used. A recently developed three-dimensional efficient hybrid method is employed to solve variable-coefficient initial-boundary-value differential equations of direct problem as a part of the inverse solution. The accuracy of the inverse analysis is examined by simulating the exact and noisy data for problems with different types of boundary conditions and material properties. In addition to rectangular domain, skew plates are considered. The results obtained show good accuracy for the estimation of boundary heat fluxes. (author)

  9. The deployment of manufacturing flexibility as a function of company strategy

    Directory of Open Access Journals (Sweden)

    Carla Estorilio

    2013-08-01

    Full Text Available The flexibility is one of the priorities in manufacturing companies. However, the lack of guidelines for carrying out a critical analysis of the use of resources in manufacturing industry leads to a loss of process performance. This article describes a method to help companies identify the resources needed to provide manufacturing flexibility and meet the demands of their consumers while complying with company strategy. The literature related to flexibility is reviewed and a classification based on four levels is proposed: abilities, dimensions, elements and resources that provide flexibility. Based on this taxonomy and using the principles of QFD (Quality Function Deployment, a method is proposed that shows the correlation between these four levels, starting with customer demand and company strategy. The method was tested in an automobile manufacturing company, showing the applicability of the method. It highlighted the high degree of automation, which’s had serious problems related to restrictions on product mix. It can be inferred that this problem could be minimized by simplifying the tasks involved in the manufacture of car and by hiring more experienced, multi-skilled workers. The proposed method is different from those founded in the literature review because it deploys two levels more of flexibility, considering the QFD structure, and addresses strategic company issues.

  10. Industry 4.0 implies lean manufacturing: Research activities in industry 4.0 function as enablers for lean manufacturing

    Directory of Open Access Journals (Sweden)

    Adam Sanders

    2016-09-01

    Full Text Available Purpose: Lean Manufacturing is widely regarded as a potential methodology to improve productivity and decrease costs in manufacturing organisations. The success of lean manufacturing demands consistent and conscious efforts from the organisation, and has to overcome several hindrances. Industry 4.0 makes a factory smart by applying advanced information and communication systems and future-oriented technologies. This paper analyses the incompletely perceived link between Industry 4.0 and lean manufacturing, and investigates whether Industry 4.0 is capable of implementing lean. Executing Industry 4.0 is a cost-intensive operation, and is met with reluctance from several manufacturers. This research also provides an important insight into manufacturers’ dilemma as to whether they can commit into Industry 4.0, considering the investment required and unperceived benefits. Design/methodology/approach: Lean manufacturing is first defined and different dimensions of lean are presented. Then Industry 4.0 is defined followed by representing its current status in Germany. The barriers for implementation of lean are analysed from the perspective of integration of resources. Literatures associated with Industry 4.0 are studied and suitable solution principles are identified to solve the abovementioned barriers of implementing lean. Findings: It is identified that researches and publications in the field of Industry 4.0 held answers to overcome the barriers of implementation of lean manufacturing. These potential solution principles prove the hypothesis that Industry 4.0 is indeed capable of implementing lean. It uncovers the fact that committing into Industry 4.0 makes a factory lean besides being smart. Originality/value: Individual researches have been done in various technologies allied with Industry 4.0, but the potential to execute lean manufacturing was not completely perceived. This paper bridges the gap between these two realms, and identifies

  11. Right frontal pole cortical thickness and executive functioning in children with traumatic brain injury: the impact on social problems.

    Science.gov (United States)

    Levan, Ashley; Black, Garrett; Mietchen, Jonathan; Baxter, Leslie; Brock Kirwan, C; Gale, Shawn D

    2016-12-01

    Cognitive and social outcomes may be negatively affected in children with a history of traumatic brain injury (TBI). We hypothesized that executive function would mediate the association between right frontal pole cortical thickness and problematic social behaviors. Child participants with a history of TBI were recruited from inpatient admissions for long-term follow-up (n = 23; average age = 12.8, average time post-injury =3.2 years). Three measures of executive function, the Trail Making Test, verbal fluency test, and the Conners' Continuous Performance Test-Second edition (CPT-II), were administered to each participant while caregivers completed the Childhood Behavior Checklist (CBCL). All participants underwent brain magnetic resonance imaging following cognitive testing. Regression analysis demonstrated right frontal pole cortical thickness significantly predicted social problems. Measures of executive functioning also significantly predicted social problems; however, the mediation model testing whether executive function mediated the relationship between cortical thickness and social problems was not statistically significant. Right frontal pole cortical thickness and omission errors on the CPT-II predicted Social Problems on the CBCL. Results did not indicate that the association between cortical thickness and social problems was mediated by executive function.

  12. Estimating crustal thickness and Vp/Vs ratio with joint constraints of receiver function and gravity data

    Science.gov (United States)

    Shi, Lei; Guo, Lianghui; Ma, Yawei; Li, Yonghua; Wang, Weilai

    2018-05-01

    The technique of teleseismic receiver function H-κ stacking is popular for estimating the crustal thickness and Vp/Vs ratio. However, it has large uncertainty or ambiguity when the Moho multiples in receiver function are not easy to be identified. We present an improved technique to estimate the crustal thickness and Vp/Vs ratio by joint constraints of receiver function and gravity data. The complete Bouguer gravity anomalies, composed of the anomalies due to the relief of the Moho interface and the heterogeneous density distribution within the crust, are associated with the crustal thickness, density and Vp/Vs ratio. According to their relationship formulae presented by Lowry and Pérez-Gussinyé, we invert the complete Bouguer gravity anomalies by using a common algorithm of likelihood estimation to obtain the crustal thickness and Vp/Vs ratio, and then utilize them to constrain the receiver function H-κ stacking result. We verified the improved technique on three synthetic crustal models and evaluated the influence of selected parameters, the results of which demonstrated that the novel technique could reduce the ambiguity and enhance the accuracy of estimation. Real data test at two given stations in the NE margin of Tibetan Plateau illustrated that the improved technique provided reliable estimations of crustal thickness and Vp/Vs ratio.

  13. Development and Implementation of Methods and Means for Achieving a Uniform Functional Coating Thickness

    Science.gov (United States)

    Shishlov, A. V.; Sagatelyan, G. R.; Shashurin, V. D.

    2017-12-01

    A mathematical model is proposed to calculate the growth rate of the thin-film coating thickness at various points in a flat substrate surface during planetary motion of the substrate, which makes it possible to calculate an expected coating thickness distribution. Proper software package is developed. The coefficients used for computer simulation are experimentally determined.

  14. Orientation of Al3Ti platelets in Al-Al3Ti functionally graded material manufactured by centrifugal method

    International Nuclear Information System (INIS)

    Watanabe, Y.; Fukui, Y.

    1997-01-01

    Al-Al 3 Ti functionally graded materials (FGMs) were manufactured by the centrifugal method with a commercial ingot of Al-5 mass% Ti master alloy. The alloy was melted at a liquid/solid coexisting temperature, at which Al 3 Ti remains as a solid, and then it was cast into a thick-walled ring. It was found that the Al-Al 3 Ti functionally graded material can be successfully fabricated by the centrifugal method. It was also found that the volume fraction of the Al 3 Ti can be increased by repetition of the centrifugal method. Since the shape of Al 3 Ti particles in a commercial alloy ingot is that of a platelet, the Al 3 Ti particles are arranged with their platelet planes nearly perpendicular to the radial direction. The orientation effects become stronger when the G number becomes larger. Although the final centrifugal casting was conducted under a very large centrifugal force for the specimen cast three times, the orientation effects were weaker than those in the specimen cast one time. From these observations, it is concluded that the origin of orientation of Al 3 Ti platelets can be attributed to the angular velocity gradient of the melt along the radial direction produced by the difference in the viscosity. (orig.)

  15. Crustal Structure and Mantle Transition Zone Thickness beneath the Central Mongolia from Teleseismic Receiver Functions

    Science.gov (United States)

    He, J.; Wu, Q.; Gao, M.; Munkhuu, U.; Demberel, S. G.

    2013-12-01

    The Mongolian Plateau (northern Asia) is situated between the Gobi-Altai range and the Siberian craton. In order to understand the crustal and mantle structure environmental characteristics, we use the teleseismic data recorded by 69 broadband stations located in the Central Mongolia(103.5°-111.5°E, 42°-50°N). The teleseismic events are selected from the global earthquakes between Aug. 2011 and Dec. 2013 with magnitude >5.5and the epicentral distance range from 30° to 95° to the center of the network. Lateral variations of the crustal thicknesses H and Vp/Vs ratios are obtained by using receiver function method. The crust thins gradually from northwest to southeast in the studying field. We found that the thinnest crust is ~37.5km in the southeast which is Gobi. The distribution of Vp/Vs ratios are between 1.68 and 1.84, which shows the heterogeneity. There are three high-anomaly areas: the Gobi range which is the Later Paleozoic Orogeny; the Khentei Mountains which is in the Jurassic-Cretaceous Reactive Continental Margin; the northwest area which is granite. Our research not only reveals the powerful evident of the crustal formation and evolution mechanism, but also provides some constraints on the mechanism of uplift of the Mongolian Plateau.This study was supported by the international cooperation project of the Ministry of Science and Technology of China (2011DFB20120).

  16. Relationship of Plantar Fascia Thickness and Preoperative Pain, Function, and Quality of Life in Recalcitrant Plantar Fasciitis.

    Science.gov (United States)

    Gamba, Carlo; Sala-Pujals, Aleix; Perez-Prieto, Daniel; Ares-Vidal, Jesus; Solano-Lopez, Alberto; Gonzalez-Lucena, Gemma; Ginés-Caspedosa, Alberto

    2018-04-01

    The measurement of plantar fascia thickness has been advocated as a diagnostic and prognostic instrument in patients with plantar fasciitis, but there are no data relative to it in recalcitrant plantar fasciitis. The aim of the study is to evaluate the correlation between plantar fascia thickness and pain, functional score, and health perception in patients with this condition. Thirty-eight feet were studied with ultrasound and magnetic resonance imaging to measure plantar fascia thickness. The visual analogue scale (VAS), American Orthopaedic Foot & Ankle Hindfoot Score (AOFAS), and SF-36 were then recorded for each patient. The relationship between the fascia and these scores was analyzed to evaluate the correlation of thickness with pain, functional level, and health perception of patients. In patients with recalcitrant plantar fasciitis, plantar fascia thickness did not correlate with pain (VAS), AOFAS, or any item of the SF-36. The thickness of the plantar fascia in patients with recalcitrant plantar fasciitis did not correlate with its clinical impact, and thus, we believe it should not be used in treatment planning. Level IV, case series.

  17. New routes to the functionalization patterning and manufacture of graphene-based materials for biomedical applications.

    Science.gov (United States)

    De Sanctis, A; Russo, S; Craciun, M F; Alexeev, A; Barnes, M D; Nagareddy, V K; Wright, C D

    2018-06-06

    Graphene-based materials are being widely explored for a range of biomedical applications, from targeted drug delivery to biosensing, bioimaging and use for antibacterial treatments, to name but a few. In many such applications, it is not graphene itself that is used as the active agent, but one of its chemically functionalized forms. The type of chemical species used for functionalization will play a key role in determining the utility of any graphene-based device in any particular biomedical application, because this determines to a large part its physical, chemical, electrical and optical interactions. However, other factors will also be important in determining the eventual uptake of graphene-based biomedical technologies, in particular the ease and cost of manufacture of proposed device and system designs. In this work, we describe three novel routes for the chemical functionalization of graphene using oxygen, iron chloride and fluorine. We also introduce novel in situ methods for controlling and patterning such functionalization on the micro- and nanoscales. Our approaches are readily transferable to large-scale manufacturing, potentially paving the way for the eventual cost-effective production of functionalized graphene-based materials, devices and systems for a range of important biomedical applications.

  18. Control of Alq3 wetting layer thickness via substrate surface functionalization.

    Science.gov (United States)

    Tsoi, Shufen; Szeto, Bryan; Fleischauer, Michael D; Veinot, Jonathan G C; Brett, Michael J

    2007-06-05

    The effects of substrate surface energy and vapor deposition rate on the initial growth of porous columnar tris(8-hydroxyquinoline)aluminum (Alq3) nanostructures were investigated. Alq3 nanostructures thermally evaporated onto as-supplied Si substrates bearing an oxide were observed to form a solid wetting layer, likely caused by an interfacial energy mismatch between the substrate and Alq3. Wetting layer thickness control is important for potential optoelectronic applications. A dramatic decrease in wetting layer thickness was achieved by depositing Alq3 onto alkyltrichlorosilane-derivatized Si/oxide substrates. Similar effects were noted with increasing deposition rates. These two effects enable tailoring of the wetting layer thickness.

  19. Maternal pre-pregnancy obesity and child ADHD symptoms, executive function and cortical thickness

    Directory of Open Access Journals (Sweden)

    Claudia Buss

    2012-09-01

    Full Text Available Rationale/statement of the problem : Increasing evidence suggests exposure to adverse conditions in intrauterine life may increase the risk of developing attention-deficit/hyperactivity disorder (ADHD in childhood. High maternal pre-pregnancy body mass index (BMI has been shown to predict child ADHD symptoms; however, the neurocognitive processes underlying this relationship are not known. The aim of the present study was to test the hypothesis that this association is mediated by alterations in child executive function and cortical development. Methods : A population-based cohort of 174 children (mean age = 7.3±0.9 (SD years, 55% girls was evaluated for ADHD symptoms, using the Child Behavior Checklist, and for neurocognitive function, using the Go/No-go Task. This cohort had been followed prospectively from early gestation and birth through infancy and childhood with serial measures of maternal and child prenatal and postnatal factors. In 108 children, a structural MRI scan was acquired and the association between maternal obesity and child cortical thickness was investigated using Freesurfer software. Results : Maternal pre-pregnancy BMI was a significant predictor of child ADHD symptoms (F (1,158=4.80, p = 0.03 and of child performance on the Go/No-go Task (F (1,157=8.37, p=0.004 after controlling for key potential confounding variables. A test of the mediation model revealed that the association between higher maternal pre-pregnancy BMI and child ADHD symptoms was mediated by impaired executive function (inefficient/less attentive processing; Sobel test: t=2.39 (±0.002, SEM; p=0.02. Interestingly, after controlling for key potential confounding variables pre-pregnancy obesity was furthermore associated with region-specific thinner cortices, including regions previously reported to be thinner in children with ADHD, like the prefrontal cortex. Conclusion : To the best of our knowledge, this is the first study to report the

  20. Using Analytic Hierarchy Process for Exploring Prioritization of Functional Strategies in Auto Parts Manufacturing SMEs of Pakistan

    OpenAIRE

    Yasir Ahmad; Danial Saeed Pirzada

    2014-01-01

    This article uses analytical hierarchy process (AHP) to find prioritization of functional strategies (manufacturing, marketing, human resource, and financial management) by small and medium enterprises (SMEs) operating in auto parts manufacturing sector of Pakistan. SMEs are major part of the industrial structure and have significant contribution toward generating jobs in Pakistan. These enterprises are generally famil...

  1. Non-Photolithographic Manufacturing Processes for Micro-Channels Functioned by Micro-Contact-Printed SAMs

    Science.gov (United States)

    Saigusa, Hiroki; Suga, Yasuo; Miki, Norihisa

    In this paper we propose non-photolithographic fabrication processes of micro-fluid channels with patterned SAMs (Self-Assembled-Monolayers). SAMs with a thiol group are micro-contact printed on a patterned Au/Ti layer, which is vapor-deposited through a shadow mask. Ti is an adhesion layer. Subsequently, the micro-channels are formed by bonding surface-activated PDMS onto the silicon substrate via a silanol group, producing a SAMs-functioned bottom wall of the micro-channel. No photolithographic processes are necessary and thus, the proposed processes are very simple, quick and low cost. The micro-reactors can have various functions associated with the micro-contact-printed SAMs. We demonstrate successful manufacturing of micro-reactors with two types of SAMs. The micro-reactor with patterned AUT (11-amino-1-undecanethiol) successfully trapped nano-particles with a carboxylic acid group, indicating that micro-contact-printed SAMs remain active after the manufacturing processes of the micro-reactor. AUT -functioned micro-channels are applicable to bioassay and to immobilize proteins for DNA arrays. ODT (1-octadecanethiol) makes surfaces hydrophobic with the methyl terminal group. When water was introduced into the micro-reactor with ODT-patterned surfaces, water droplets remained only in the hydrophilic areas where ODT was not patterned. ODT -functioned micro-channels are applicable to fluid handling.

  2. The dependence of the modulation transfer function on the blocking layer thickness in amorphous selenium x-ray detectors

    International Nuclear Information System (INIS)

    Hunter, David M.; Belev, Gueorgi; DeCrescenzo, Giovanni; Kasap, Safa O.; Mainprize, James G.; Rowlands, J. A.; Smith, Charles; Tuemer, Tuemay; Verpakhovski, Vladimir; Yin Shi; Yaffe, Martin J.

    2007-01-01

    Blocking layers are used to reduce leakage current in amorphous selenium detectors. The effect of the thickness of the blocking layer on the presampling modulation transfer function (MTF) and on dark current was experimentally determined in prototype single-line CCD-based amorphous selenium (a-Se) x-ray detectors. The sampling pitch of the detectors evaluated was 25 μm and the blocking layer thicknesses varied from 1 to 51 μm. The blocking layers resided on the signal collection electrodes which, in this configuration, were used to collect electrons. The combined thickness of the blocking layer and a-Se bulk in each detector was ∼200 μm. As expected, the dark current increased monotonically as the thickness of the blocking layer was decreased. It was found that if the blocking layer thickness was small compared to the sampling pitch, it caused a negligible reduction in MTF. However, the MTF was observed to decrease dramatically at spatial frequencies near the Nyquist frequency as the blocking layer thickness approached or exceeded the electrode sampling pitch. This observed reduction in MTF is shown to be consistent with predictions of an electrostatic model wherein the image charge from the a-Se is trapped at a characteristic depth within the blocking layer, generally near the interface between the blocking layer and the a-Se bulk

  3. Imaging derived cortical thickness reduction in high-functioning autism: key regions and temporal slope.

    Science.gov (United States)

    Scheel, Christian; Rotarska-Jagiela, Anna; Schilbach, Leonhard; Lehnhardt, Fritz G; Krug, Barbara; Vogeley, Kai; Tepest, Ralf

    2011-09-15

    Cortical thickness (CT) changes possibly contribute to the complex symptomatology of autism. The aberrant developmental trajectories underlying such differences in certain brain regions and their continuation in adulthood are a matter of intense debate. We studied 28 adults with high-functioning autism (HFA) and 28 control subjects matched for age, gender, IQ and handedness. A surface-based whole brain analysis utilizing FreeSurfer was employed to detect CT differences between the two diagnostic groups and to investigate the time course of age-related changes. Direct comparison with control subjects revealed thinner cortex in HFA in the posterior superior temporal sulcus (pSTS) of the left hemisphere. Considering the time course of CT development we found clusters around the pSTS and cuneus in the left and the paracentral lobule in the right hemisphere to be thinner in HFA with comparable age-related slopes in patients and controls. Conversely, we found clusters around the supramarginal gyrus and inferior parietal lobule (IPL) in the left and the precentral and postcentral gyrus in the right hemisphere to be thinner in HFA, but with different age-related slopes in patients and controls. In the latter regions CT showed a steady decrease in controls but no analogous thinning in HFA. CT analyses contribute in characterizing neuroanatomical correlates of HFA. Reduced CT is present in brain regions involved in social cognition. Furthermore, our results demonstrate that aberrant brain development leading to such differences is proceeding throughout adulthood. Discrepancies in prior morphometric studies may be induced by the complex time course of cortical changes. Copyright © 2011 Elsevier Inc. All rights reserved.

  4. Development of Manufacturing Method of Highly Functional Material Gallic acid-CLA Ester Using Irradiation

    International Nuclear Information System (INIS)

    Cho, C. H.; Byun, M. W.; Jeong, I. Y.; Kim, D. H.

    2006-01-01

    Increasing interest and current trends for natural materials with various health beneficial functions by radiation (RT)-biotechnology (BT) fusion by developed countries. However, the information and development of new functional materials using the RT-BT fusion technology is still limited. The target material developed and manufactured by RT-BT fusion technology may have a multi-functional effect on human health and it can be applied for pharmaceutical materials as well as functional food ingredient. The market of functional new materials has been grown dramatically and a multi-functional material manufactured by RT-BT fusion technology may have a great economic impact for both the domestic and overseas market. Development of GA-CLA ester by chemical synthetic method. Transformation of linoleic acid to conjugated linoleic acid by irradiation. Identification and confirmation of the biological functions including antioxidative, cancer cell proliferation inhibition, anti-microbial, enhancement of immune response and lipid metabolism of GA-CLA ester. Increase industrial applicability of the new materials. Development of GA-CLA ester by chemical synthetic method(2 patents submitted). Development of the optimum methodology of GA-CLA and its derivative, octadeca-9,12-dienyl-3,4,5-trihydroxy benzoate). Identification and confirmation of biological activities of GA-CLA. Extramural funding from the Ministry of Commerce, Industry, and Energy subjected by gallic acid-fatty acid derivatives (205,000,000 Won). Provides the basic data for successful project 'Development of cosmeceutical and cosmetics using gallic acid fatty acid derivatives' funded by Ministry of Commerce, Industry, and Energy and collaboration with the Technology-invested venture company, SunBiotech, Co. and problem-solving for industrial application. Complete the patent procedure and publish the results to international or domestic peer-reviewed journals

  5. Adding functionality with additive manufacturing: Fabrication of titanium-based antibiotic eluting implants.

    Science.gov (United States)

    Cox, Sophie C; Jamshidi, Parastoo; Eisenstein, Neil M; Webber, Mark A; Hassanin, Hany; Attallah, Moataz M; Shepherd, Duncan E T; Addison, Owen; Grover, Liam M

    2016-07-01

    Additive manufacturing technologies have been utilised in healthcare to create patient-specific implants. This study demonstrates the potential to add new implant functionality by further exploiting the design flexibility of these technologies. Selective laser melting was used to manufacture titanium-based (Ti-6Al-4V) implants containing a reservoir. Pore channels, connecting the implant surface to the reservoir, were incorporated to facilitate antibiotic delivery. An injectable brushite, calcium phosphate cement, was formulated as a carrier vehicle for gentamicin. Incorporation of the antibiotic significantly (p=0.01) improved the compressive strength (5.8±0.7MPa) of the cement compared to non-antibiotic samples. The controlled release of gentamicin sulphate from the calcium phosphate cement injected into the implant reservoir was demonstrated in short term elution studies using ultraviolet-visible spectroscopy. Orientation of the implant pore channels were shown, using micro-computed tomography, to impact design reproducibility and the back-pressure generated during cement injection which ultimately altered porosity. The amount of antibiotic released from all implant designs over a 6hour period (additively manufacture a titanium-based antibiotic eluting implant, which is an attractive alternative to current treatment strategies of periprosthetic infections. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Metformin improves endothelial function and carotid intima media thickness in patients with PCOS.

    Science.gov (United States)

    Kaya, Mehmet Gungor; Yildirim, Sumeyra; Calapkorur, Bekir; Akpek, Mahmut; Unluhizarci, Kursad; Kelestimur, Fahrettin

    2015-05-01

    Oral contraceptive pills (OCP) are widely used for treating women with polycystic ovary syndrome (PCOS). Metformin has beneficial effects on insulin resistance and endothelial functions. The aim of this study was to investigate the effects of treatment with drospirenone/ethinyl estradiol (EE) alone or in combination with metformin on the flow-mediated vasodilatation (FMD) and carotid intima media thickness (CIMT) in women with PCOS. Fifty women with PCOS (mean age 23 ± 5) were randomized to oral treatment of OCP alone (n = 25) or an OCP combination with metformin (n = 25) for 6 months. FMD from the brachial artery and CIMT were calculated. The hormonal profile, HOMA-IR score, basal insulin and glucose levels were studied in both groups. Before and after 6 months' treatment, echocardiographic measurements and laboratory tests were also obtained. After 6 months' treatment we observed a small decrease in FMD in the OCP group (14.9 ± 9.4 versus 14.4 ± 9.9, p = 0.801) and a slight increase in the combination group (14.5 ± 9.1 versus 15.0 ± 8.0, p = 0.715) but neither of them reached significance. CIMT increased in the OCP group (0.048 ± 0.011 to 0.050 ± 0.010 cm, p = 0.433) and decreased slightly in the combination group (0.049 ± 0.012, 0.048 ± 0.011 cm, p = 0.833). We demonstrated that adding metformin to OCP treatment may have beneficial effect on FMD and CIMT that represent vascular function in patients with PCOS. These results suggest that adding metformin to OCP treatment for PCOS could preserve the cardiovascular system and improve it.

  7. Adding functionality with additive manufacturing: Fabrication of titanium-based antibiotic eluting implants

    International Nuclear Information System (INIS)

    Cox, Sophie C.; Jamshidi, Parastoo; Eisenstein, Neil M.; Webber, Mark A.; Hassanin, Hany; Attallah, Moataz M.; Shepherd, Duncan E.T.; Addison, Owen; Grover, Liam M.

    2016-01-01

    Additive manufacturing technologies have been utilised in healthcare to create patient-specific implants. This study demonstrates the potential to add new implant functionality by further exploiting the design flexibility of these technologies. Selective laser melting was used to manufacture titanium-based (Ti-6Al-4V) implants containing a reservoir. Pore channels, connecting the implant surface to the reservoir, were incorporated to facilitate antibiotic delivery. An injectable brushite, calcium phosphate cement, was formulated as a carrier vehicle for gentamicin. Incorporation of the antibiotic significantly (p = 0.01) improved the compressive strength (5.8 ± 0.7 MPa) of the cement compared to non-antibiotic samples. The controlled release of gentamicin sulphate from the calcium phosphate cement injected into the implant reservoir was demonstrated in short term elution studies using ultraviolet-visible spectroscopy. Orientation of the implant pore channels were shown, using micro-computed tomography, to impact design reproducibility and the back-pressure generated during cement injection which ultimately altered porosity. The amount of antibiotic released from all implant designs over a 6 hour period (< 28% of the total amount) were found to exceed the minimum inhibitory concentrations of Staphylococcus aureus (16 μg/mL) and Staphylococcus epidermidis (1 μg/mL); two bacterial species commonly associated with periprosthetic infections. Antibacterial efficacy was confirmed against both bacterial cultures using an agar diffusion assay. Interestingly, pore channel orientation was shown to influence the directionality of inhibition zones. Promisingly, this work demonstrates the potential to additively manufacture a titanium-based antibiotic eluting implant, which is an attractive alternative to current treatment strategies of periprosthetic infections. - Highlights: • Titanium implants were additively manufactured with surface connected reservoirs. • Implants

  8. Analysis, manufacture and characterization of Ni/Cu functionally graded structures

    International Nuclear Information System (INIS)

    Rubio, Wilfredo Montealegre; Paulino, Glaucio H.; Silva, Emilio Carlos Nelli

    2012-01-01

    Highlights: ► Functionally graded structures (FGSs) of nickel and copper can be manufactured. ► The hardness curve of FGS can be used for approximating the gradation function of elastic properties. ► The graded finite element approaches with great accuracy the FGS resonance frequencies obtained experimentally. -- Abstract: In this work, an experimental and numerical analysis and characterization of functionally graded structures (FGSs) is developed. Nickel (Ni) and copper (Cu) materials are used as basic materials in the numerical modeling and experimental characterization. For modeling, a MATLAB finite element code is developed, which allows simulation of harmonic and modal analysis considering the graded finite element formulation. For experimental characterization, Ni–Cu FGSs are manufactured by using spark plasma sintering technique. Hardness and Young’s modulus are found by using microindentation and ultrasonic measurements, respectively. The effective gradation of Ni/Cu FGS is addressed by means of optical microscopy, energy dispersive spectrometry, scanning electron microscopy and hardness testing. For the purpose of comparing modeling and experimental results, the hardness curve, along the gradation direction, is used for identifying the gradation profile; accordingly, the experimental hardness curve is used for approximating the Young’s modulus variation and the graded finite element modeling is used for verification. For the first two resonance frequency values, a difference smaller than 1% between simulated and experimental results is obtained.

  9. Developing and Managing Cross-Functional Teams: A Multi-Case Study of Brazilian Manufacturing Companies

    Directory of Open Access Journals (Sweden)

    Márcio Lopes Pimenta

    2014-06-01

    Full Text Available The growth of industries and the strong economic base in Brazil require improvements and adaptations in business processes. Cross-functional teams (CFT may help to companies achieve these improvements. This research looks at characterizing CFT according to application processes, structures, objectives and impacts, considering the context of demand planning and related processes. In-depth interviews with 22 managers were performed in three Brazilian manufacturing companies. A framework to characterize CFT and respective impacts is proposed, including elements such as: procedures, context and goals, power distribution, impacts on cross-functional integration, impacts on teams' performance and on organization's performance. One significant managerial finding is that effective and efficient CFTs need balanced distribution of power among members by effectively establishing and structuring the team. By doing this, managers may observe positive impacts on inter-functional integration and in firm's results. Moreover, teams should permanently perform joint planning to predict unfavorable situations, improve communication and mutual understanding.

  10. Thickness control and interface quality as functions of slurry formulation and casting speed in side-by-side tape casting

    DEFF Research Database (Denmark)

    Bulatova, Regina; Jabbari, Mirmasoud; Kaiser, Andreas

    2014-01-01

    A novel method of co-casting called side-by-side tape casting was developed aiming to form thin functionally graded films with varying properties within a single plane. The standard organic-based recipe was optimized to co-cast slurries into thick graded tapes. Performed numerical simulations...... identified the stable flow beneath the blade with a shear rate profile independent of slurry viscosity as long as the slurry load in the casting tank was low. Thickness and interface shape could be well predicted if the rheological behaviour of slurries is known and the processing parameters are well...

  11. Indicial lift response function: an empirical relation for finite‐thickness airfoils, and effects on aeroelastic simulations

    DEFF Research Database (Denmark)

    Bergami, Leonardo; Gaunaa, Mac; Heinz, Joachim Christian

    2013-01-01

    The aeroelastic response of wind turbines is often simulated in the time domain by using indicial response techniques. Unsteady aerodynamics in attached flow are usually based on Jones's approximation of the flat plate indicial response, although the response for finite‐thickness airfoils differs...... from the flat plate one. The indicial lift response of finite‐thickness airfoils is simulated with a panel code, and an empirical relation is outlined connecting the airfoil indicial response to its geometric characteristics. The effects of different indicial approximations are evaluated on a 2D...... of equivalent fatigue loads, ultimate loads, and stability limits. The agreement with CFD computations of a 2D profile in harmonic motion is improved by the indicial function accounting for the finite‐thickness of the airfoil. Concerning the full wind turbine aeroelastic behavior, the differences between...

  12. Continuous functionally graded porous titanium scaffolds manufactured by selective laser melting for bone implants.

    Science.gov (United States)

    Han, Changjun; Li, Yan; Wang, Qian; Wen, Shifeng; Wei, Qingsong; Yan, Chunze; Hao, Liang; Liu, Jie; Shi, Yusheng

    2018-04-01

    A significant requirement for a bone implant is to replicate the functional gradient across the bone to mimic the localization change in stiffness. In this work, continuous functionally graded porous scaffolds (FGPSs) based on the Schwartz diamond unit cell with a wide range of graded volume fraction were manufactured by selective laser melting (SLM). The micro-topology, strut dimension characterization and effect of graded volume fraction on the mechanical properties of SLM-processed FGPSs were systematically investigated. The micro-topology observations indicate that diamond FGPSs with a wide range of graded volume fraction from 7.97% to 19.99% were fabricated without any defects, showing a good geometric reproduction of the original designs. The dimensional characterization demonstrates the capability of SLM in manufacturing titanium diamond FGPSs with the strut size of 483-905µm. The elastic modulus and yield strength of the titanium diamond FGPSs can be tailored in the range of 0.28-0.59GPa and 3.79-17.75MPa respectively by adjusting the graded volume fraction, which are comparable to those of the cancellous bone. The mathematical relationship between the graded porosity and compression properties of a FGPS was revealed. Furthermore, two equations based on the Gibson and Ashby model have been established to predict the modulus and yield strength of SLM-processed diamond FGPSs. Compared to homogeneous diamond porous scaffolds, FGPSs provide a wide range of mutative pore size and porosity, which are potential to be tailored to optimize the pore space for bone tissue growth. The findings provide a basis of new methodologies to design and manufacture superior graded scaffolds for bone implant applications. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. MDCT assessment of airway wall thickness in COPD patients using a new method: correlations with pulmonary function tests

    International Nuclear Information System (INIS)

    Achenbach, Tobias; Weinheimer, Oliver; Schmitt, Sabine; Freudenstein, Daniela; Kunz, Richard Peter; Dueber, Christoph; Biedermann, Alexander; Buhl, Roland; Goutham, Edula; Heussel, Claus Peter

    2008-01-01

    Quantitative assessment of airway-wall dimensions by computed tomography (CT) has proven to be a marker of airway-wall remodelling in chronic obstructive pulmonary disease (COPD) patients. The objective was to correlate the wall thickness of large and small airways with functional parameters of airflow obstruction in COPD patients on multi-detector (MD) CT images using a new quantification procedure from a three-dimensional (3D) approach of the bronchial tree. In 31 patients (smokers/COPD, non-smokers/controls), we quantitatively assessed contiguous MDCT cross-sections reconstructed orthogonally along the airway axis, taking the point-spread function into account to circumvent over-estimation. Wall thickness and wall percentage were measured and the per-patient mean/median correlated with FEV1 and FEV1%. A median of 619 orthogonal airway locations was assessed per patient. Mean wall percentage/mean wall thickness/median wall thickness in non-smokers (29.6%/0.69 mm/0.37 mm) was significantly different from the COPD group (38.9%/0.83 mm/0.54 mm). Correlation coefficients (r) between FEV1 or FEV1% predicted and intra-individual means of the wall percentage were -0.569 and -0.560, respectively, with p<0.001. Depending on the parameter, they were increased for airways of 4 mm and smaller in total diameter, being -0.621 (FEV1) and -0.537 (FEV1%) with p < 0.002. The wall thickness was significantly higher in smokers than in non-smokers. In COPD patients, the wall thickness measured as a mean for a given patient correlated with the values of FEV1 and FEV1% predicted. Correlation with FEV1 was higher when only small airways were considered. (orig.)

  14. Investigation of the correlation between dielectric function, thickness and morphology of nano-granular ZnO very thin films

    Energy Technology Data Exchange (ETDEWEB)

    Gilliot, Mickaël, E-mail: mickael.gilliot@univ-reims.fr [Laboratoire d' Ingénierie et Sciences des Matériaux, Université de Reims Champagne-Ardenne (France); Hadjadj, Aomar [Laboratoire d' Ingénierie et Sciences des Matériaux, Université de Reims Champagne-Ardenne (France); Martin, Jérôme [Laboratoire de Nanotechnologie et d' Instrumentation Optique, Université de Technologie de Troyes (France)

    2015-12-31

    Thin nano-granular ZnO layers were prepared using a sol–gel synthesis and spin-coating deposition process with a thickness ranging between 20 and 120 nm. The complex dielectric function (ϵ) of the ZnO film was determined from spectroscopic ellipsometry measurements. Up to a critical thickness close to 60 nm, the magnitude of both the real and the imaginary parts of ϵ rapidly increases and then slowly tends to values closer to the bulk ZnO material. This trend suggests a drastic change in the film porosity at both sides of this critical thickness, due to the pre-heating and post-crystallization processes, as confirmed by additional characterization of the structure and the morphology of the ZnO films. - Highlights: • c-Axis oriented ZnO thin films were grown with different morphological states. • The morphology and structures are controlled by controlling the thickness. • The optical properties are correlated to morphological evolution. • Two growth behaviors and property evolutions are identified around a critical thickness.

  15. Polyoxylglycerides and glycerides: effects of manufacturing parameters on API stability, excipient functionality and processing.

    Science.gov (United States)

    Jannin, Vincent; Rodier, Jean-David; Musakhanian, Jasmine

    2014-05-15

    Lipid-based formulations are a viable option to address modern drug delivery challenges such as increasing the oral bioavailability of poorly water-soluble active pharmaceutical ingredients (APIs), or sustaining the drug release of molecules intended for chronic diseases. Esters of fatty acids and glycerol (glycerides) and polyethylene-glycols (polyoxylglycerides) are two main classes of lipid-based excipients used by oral, dermal, rectal, vaginal or parenteral routes. These lipid-based materials are more and more commonly used in pharmaceutical drug products but there is still a lack of understanding of how the manufacturing processes, processing aids, or additives can impact the chemical stability of APIs within the drug product. In that regard, this review summarizes the key parameters to look at when formulating with lipid-based excipients in order to anticipate a possible impact on drug stability or variation of excipient functionality. The introduction presents the chemistry of natural lipids, fatty acids and their properties in relation to the extraction and refinement processes. Then, the key parameters during the manufacturing process influencing the quality of lipid-based excipients are provided. Finally, their critical characteristics are discussed in relation with their intended functionality and ability to interact with APIs and others excipients within the formulation. Copyright © 2014. Published by Elsevier B.V.

  16. Comparison of laser welds in thick section S700 high-strength steel manufactured in flat (1G) and horizontal (2G) positions

    OpenAIRE

    Guo, Wei; Liu, Qiang; Francis, John Anthony; Crowther, Dave; Thompson, Alan; Liu, Zhu; Li, Lin

    2015-01-01

    Lack of penetration, undercut and melt sagging are common welding defects for single-pass laser welds in thick plates, particularly when using a traditional 1G welding position (laser directed towards ground). This investigation shows, for the first time, that welding 13 mm thick high-strength S700 steel plates in the 2G position (laser beam perpendicular to the direction of gravity) can mitigate some of the common welding defects including undercut and sagging. A computational fluid dynamic ...

  17. Comparison of functional parameters of CsI:Tl crystals and thick films

    International Nuclear Information System (INIS)

    Fedorov, A.; Gektin, A.; Lebedynskiy, A.; Mateychenko, P.; Shkoropatenko, A.

    2013-01-01

    500 mkm thick CsI:Tl columnar films can be produced using thermal evaporation in vacuum by sublimation of the same bulk crystal. Comparison of afterglow and radiation stability of deposited CsI:Tl films with source crystal was the aim of current work. It is shown that the afterglow in the films is always below its level in initial single crystal. It was ascertained that the annealing atmospheres influence the processes leading to the activator depletion of the films during the thermal processing. -- Highlights: ► Thick CsI:Tl columnar films were obtained by thermal evaporation in vacuum. ► Radiation stability of such CsI:Tl films appears to be better than that of crystal. ► CsI:Tl film parameters can be modified by annealing in different atmospheres

  18. Impaired cognitive control mediates the relationship between cortical thickness of the superior frontal gyrus and role functioning in schizophrenia.

    Science.gov (United States)

    Tully, Laura M; Lincoln, Sarah Hope; Liyanage-Don, Nadia; Hooker, Christine I

    2014-02-01

    Structural abnormalities in the lateral prefrontal cortex (LPFC) are well-documented in schizophrenia and recent evidence suggests that these abnormalities relate to functional outcome. Cognitive control mechanisms, reliant on the LPFC, are impaired in schizophrenia and predict functional outcome, thus impaired cognitive control could mediate the relationship between neuroanatomical abnormalities in the LPFC and functional outcome. We used surface-based morphometry to investigate relationships between cortical surface characteristics, cognitive control, and measures of social and role functioning in 26 individuals with schizophrenia and 29 healthy controls. Results demonstrate that schizophrenia participants had thinner cortex in a region of the superior frontal gyrus (BA10). Across all participants, decreased cortical thickness in this region related to decreased cognitive control and decreased role functioning. Moreover, cognitive control fully mediated the relationship between cortical thickness in the superior frontal gyrus and role functioning, indicating that neuroanatomical abnormalities in the LPFC adversely impact role functioning via impaired cognitive control processes. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. Advanced manufacturing of microdisk vaccines for uniform control of material properties and immune cell function.

    Science.gov (United States)

    Zeng, Qin; Zhang, Peipei; Zeng, Xiangbin; Tostanoski, Lisa H; Jewell, Christopher M

    2017-12-19

    The continued challenges facing vaccines in infectious disease and cancer highlight a need for better control over the features of vaccines and the responses they generate. Biomaterials offer unique advantages to achieve this goal through features such as controlled release and co-delivery of antigens and adjuvants. However, many synthesis strategies lead to particles with heterogeneity in diameter, shape, loading level, or other properties. In contrast, advanced manufacturing techniques allow precision control of material properties at the micro- and nano-scale. These capabilities in vaccines and immunotherapies could allow more rational design to speed efficient design and clinical translation. Here we employed soft lithography to generate polymer microdisk vaccines with uniform structures and tunable compositions of vaccine antigens and toll like receptor agonists (TLRas) that serve as molecular adjuvants. Compared to conventional PLGA particles formed by emulsion, microdisks provided a dramatic improvement in the consistency of properties such as diameter. During culture with primary dendritic cells (DCs) from mice, microdisks were internalized by the cells without toxicity, while promoting co-delivery of antigen and TLRa to the same cell. Analysis of DC surface activation markers by flow cytometry revealed microdisk vaccines activated dendritic cells in a manner that depended on the level of TLRa, while antigen processing and presentation depended on the amount of antigen in the microdisks. Together, this work demonstrates the use of advanced manufacturing techniques to produce uniform vaccines that direct DC function depending on the composition in the disks.

  20. Adding functionality with additive manufacturing: Fabrication of titanium-based antibiotic eluting implants

    Energy Technology Data Exchange (ETDEWEB)

    Cox, Sophie C. [School of Chemical Engineering, University of Birmingham, Edgbaston B15 2TT (United Kingdom); Jamshidi, Parastoo [School of Materials and Metallurgy, University of Birmingham, Edgbaston B15 2TT (United Kingdom); Eisenstein, Neil M. [School of Chemical Engineering, University of Birmingham, Edgbaston B15 2TT (United Kingdom); Royal Centre for Defence Medicine, Birmingham Research Park, Vincent Drive, Edgbaston B15 2SQ (United Kingdom); Webber, Mark A. [School of Biosciences, University of Birmingham, Edgbaston B15 2TT (United Kingdom); Hassanin, Hany [School of Materials and Metallurgy, University of Birmingham, Edgbaston B15 2TT (United Kingdom); School of Mechanical and Automotive Engineering, Kingston University, London SW15 3DW (United Kingdom); Attallah, Moataz M. [School of Materials and Metallurgy, University of Birmingham, Edgbaston B15 2TT (United Kingdom); Shepherd, Duncan E.T. [Department of Mechanical Engineering, School of Engineering, University of Birmingham, Edgbaston B15 2TT (United Kingdom); Addison, Owen [School of Dentistry, University of Birmingham, Edgbaston B15 2TT (United Kingdom); Grover, Liam M. [School of Chemical Engineering, University of Birmingham, Edgbaston B15 2TT (United Kingdom)

    2016-07-01

    Additive manufacturing technologies have been utilised in healthcare to create patient-specific implants. This study demonstrates the potential to add new implant functionality by further exploiting the design flexibility of these technologies. Selective laser melting was used to manufacture titanium-based (Ti-6Al-4V) implants containing a reservoir. Pore channels, connecting the implant surface to the reservoir, were incorporated to facilitate antibiotic delivery. An injectable brushite, calcium phosphate cement, was formulated as a carrier vehicle for gentamicin. Incorporation of the antibiotic significantly (p = 0.01) improved the compressive strength (5.8 ± 0.7 MPa) of the cement compared to non-antibiotic samples. The controlled release of gentamicin sulphate from the calcium phosphate cement injected into the implant reservoir was demonstrated in short term elution studies using ultraviolet-visible spectroscopy. Orientation of the implant pore channels were shown, using micro-computed tomography, to impact design reproducibility and the back-pressure generated during cement injection which ultimately altered porosity. The amount of antibiotic released from all implant designs over a 6 hour period (< 28% of the total amount) were found to exceed the minimum inhibitory concentrations of Staphylococcus aureus (16 μg/mL) and Staphylococcus epidermidis (1 μg/mL); two bacterial species commonly associated with periprosthetic infections. Antibacterial efficacy was confirmed against both bacterial cultures using an agar diffusion assay. Interestingly, pore channel orientation was shown to influence the directionality of inhibition zones. Promisingly, this work demonstrates the potential to additively manufacture a titanium-based antibiotic eluting implant, which is an attractive alternative to current treatment strategies of periprosthetic infections. - Highlights: • Titanium implants were additively manufactured with surface connected reservoirs. • Implants

  1. Lessons from a tarantula: new insights into muscle thick filament and myosin interacting-heads motif structure and function.

    Science.gov (United States)

    Alamo, Lorenzo; Koubassova, Natalia; Pinto, Antonio; Gillilan, Richard; Tsaturyan, Andrey; Padrón, Raúl

    2017-10-01

    The tarantula skeletal muscle X-ray diffraction pattern suggested that the myosin heads were helically arranged on the thick filaments. Electron microscopy (EM) of negatively stained relaxed tarantula thick filaments revealed four helices of heads allowing a helical 3D reconstruction. Due to its low resolution (5.0 nm), the unambiguous interpretation of densities of both heads was not possible. A resolution increase up to 2.5 nm, achieved by cryo-EM of frozen-hydrated relaxed thick filaments and an iterative helical real space reconstruction, allowed the resolving of both heads. The two heads, "free" and "blocked", formed an asymmetric structure named the "interacting-heads motif" (IHM) which explained relaxation by self-inhibition of both heads ATPases. This finding made tarantula an exemplar system for thick filament structure and function studies. Heads were shown to be released and disordered by Ca 2+ -activation through myosin regulatory light chain phosphorylation, leading to EM, small angle X-ray diffraction and scattering, and spectroscopic and biochemical studies of the IHM structure and function. The results from these studies have consequent implications for understanding and explaining myosin super-relaxed state and thick filament activation and regulation. A cooperative phosphorylation mechanism for activation in tarantula skeletal muscle, involving swaying constitutively Ser35 mono-phosphorylated free heads, explains super-relaxation, force potentiation and post-tetanic potentiation through Ser45 mono-phosphorylated blocked heads. Based on this mechanism, we propose a swaying-swinging, tilting crossbridge-sliding filament for tarantula muscle contraction.

  2. Increased cortical thickness and altered functional connectivity of the right superior temporal gyrus in left-handers.

    Science.gov (United States)

    Li, Meiling; Chen, Heng; Wang, Junping; Liu, Feng; Wang, Yifeng; Lu, Fengmei; Yu, Chunshui; Chen, Huafu

    2015-01-01

    Altered structure in the temporal cortex has been implicated in the variable language laterality of left-handers (LH). The neuroanatomy of language lateralization and the corresponding synchronous functional connectivity (FC) in handedness cohorts are not, however, fully understood. We used structural and resting-state functional magnetic resonance imaging (fMRI) data to investigate the effect of altered cortical thickness on FC in LH and right-handers (RH). Whole-brain cortical thickness was calculated and compared between the LH and RH. We observed increased cortical thickness in the right superior temporal gyrus (STG) in the LH. A further FC analysis was conducted between the right STG and the remaining voxels in the brain. Compared with RH, the LH showed significantly higher FC in the left STG, right occipital cortex, and lower FC in the left inferior frontal gyrus and supramarginal gyrus. Our findings suggest that LH have atypical connectivity in the language network, with an enhanced role of the STG, findings which provide novel insights into the structural and functional substrates underlying the atypical language development of left-handed individuals. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Functional Repertoire of Antibiotic Resistance Genes in Antibiotic Manufacturing Effluents and Receiving Freshwater Sediments

    Science.gov (United States)

    González-Plaza, Juan J.; Šimatović, Ana; Milaković, Milena; Bielen, Ana; Wichmann, Fabienne; Udiković-Kolić, Nikolina

    2018-01-01

    Environments polluted by direct discharges of effluents from antibiotic manufacturing are important reservoirs for antibiotic resistance genes (ARGs), which could potentially be transferred to human pathogens. However, our knowledge about the identity and diversity of ARGs in such polluted environments remains limited. We applied functional metagenomics to explore the resistome of two Croatian antibiotic manufacturing effluents and sediments collected upstream of and at the effluent discharge sites. Metagenomic libraries built from an azithromycin-production site were screened for resistance to macrolide antibiotics, whereas the libraries from a site producing veterinary antibiotics were screened for resistance to sulfonamides, tetracyclines, trimethoprim, and beta-lactams. Functional analysis of eight libraries identified a total of 82 unique, often clinically relevant ARGs, which were frequently found in clusters and flanked by mobile genetic elements. The majority of macrolide resistance genes identified from matrices exposed to high levels of macrolides were similar to known genes encoding ribosomal protection proteins, macrolide phosphotransferases, and transporters. Potentially novel macrolide resistance genes included one most similar to a 23S rRNA methyltransferase from Clostridium and another, derived from upstream unpolluted sediment, to a GTPase HflX from Emergencia. In libraries deriving from sediments exposed to lower levels of veterinary antibiotics, we found 8 potentially novel ARGs, including dihydrofolate reductases and beta-lactamases from classes A, B, and D. In addition, we detected 7 potentially novel ARGs in upstream sediment, including thymidylate synthases, dihydrofolate reductases, and class D beta-lactamase. Taken together, in addition to finding known gene types, we report the discovery of novel and diverse ARGs in antibiotic-polluted industrial effluents and sediments, providing a qualitative basis for monitoring the dispersal of ARGs

  4. Functional Repertoire of Antibiotic Resistance Genes in Antibiotic Manufacturing Effluents and Receiving Freshwater Sediments

    Directory of Open Access Journals (Sweden)

    Juan J. González-Plaza

    2018-01-01

    Full Text Available Environments polluted by direct discharges of effluents from antibiotic manufacturing are important reservoirs for antibiotic resistance genes (ARGs, which could potentially be transferred to human pathogens. However, our knowledge about the identity and diversity of ARGs in such polluted environments remains limited. We applied functional metagenomics to explore the resistome of two Croatian antibiotic manufacturing effluents and sediments collected upstream of and at the effluent discharge sites. Metagenomic libraries built from an azithromycin-production site were screened for resistance to macrolide antibiotics, whereas the libraries from a site producing veterinary antibiotics were screened for resistance to sulfonamides, tetracyclines, trimethoprim, and beta-lactams. Functional analysis of eight libraries identified a total of 82 unique, often clinically relevant ARGs, which were frequently found in clusters and flanked by mobile genetic elements. The majority of macrolide resistance genes identified from matrices exposed to high levels of macrolides were similar to known genes encoding ribosomal protection proteins, macrolide phosphotransferases, and transporters. Potentially novel macrolide resistance genes included one most similar to a 23S rRNA methyltransferase from Clostridium and another, derived from upstream unpolluted sediment, to a GTPase HflX from Emergencia. In libraries deriving from sediments exposed to lower levels of veterinary antibiotics, we found 8 potentially novel ARGs, including dihydrofolate reductases and beta-lactamases from classes A, B, and D. In addition, we detected 7 potentially novel ARGs in upstream sediment, including thymidylate synthases, dihydrofolate reductases, and class D beta-lactamase. Taken together, in addition to finding known gene types, we report the discovery of novel and diverse ARGs in antibiotic-polluted industrial effluents and sediments, providing a qualitative basis for monitoring the

  5. Update on visual function and choroidal-retinal thickness alterations in Parkinson's disease.

    Science.gov (United States)

    Obis, J; Satue, M; Alarcia, R; Pablo, L E; Garcia-Martin, E

    2018-05-01

    Parkinson's disease (PD) is a neurodegenerative process that affects 7.5 million people around the world. Since 2004, several studies have demonstrated changes in various retinal layers in PD using optical coherence tomography (OCT). However, there are some discrepancies in the results of those studies. Some of them have correlated retinal thickness with the severity or duration of the disease, demonstrating that OCT measurements may be an innocuous and easy biomarker for PD progression. Other studies have demonstrated visual dysfunctions since early phases of the disease. Lastly, the most recent studies that use Swept Source OCT technology, have found choroidal thickness increase in PD patients and provide new information related to the retinal degenerative process in this disease. The aim of this paper is to review the literature on OCT and PD, in order to determine the altered retinal and choroidal parameters in PD and their possible clinical usefulness, and also the visual dysfunctions with higher impact in these patients. Copyright © 2018 Sociedad Española de Oftalmología. Publicado por Elsevier España, S.L.U. All rights reserved.

  6. Sunburn protection as a function of sunscreen application thickness differs between high and low SPFs.

    Science.gov (United States)

    Liu, Wei; Wang, Xuemin; Lai, Wei; Yan, Tian; Wu, Yanyu; Wan, Miaojian; Yi, Jinling; Matsui, Mary S

    2012-06-01

    Sunscreens are an important component of healthy sun-protection behavior. To achieve satisfactory protection, sunscreens must be applied consistently, evenly and correctly. Consumers do not apply sunscreen properly and, therefore, do not achieve the protection indicated by the label 'sun protection factor' (SPF). The objective of the present study was to determine the actual sun(burn) protection given by a range of sunscreen application thickness levels for both low and high SPF formulas. Forty study subjects were recruited from each of three geographical regions in China. Sunscreens with label SPFs of 4, 15, 30, and 55 were tested at application levels of 0.5, 1.0, 1.5, and 2.0 mg/cm(2) in three laboratories using a standard SPF protocol. Sunscreens with lower SPFs (4 and 15) showed a linear dose-response relationship with application level, but higher SPF (30 and 55) product protection was exponentially related to application thickness. Sunscreen protection is not related in one uniform way to the amount of product applied to human skin. Consumers may achieve an even lower than expected sunburn protection from high SPF products than from low SPF sunscreens. © 2012 John Wiley & Sons A/S.

  7. Crustal thickness and Moho sharpness beneath the Midcontinent rift from receiver functions

    Directory of Open Access Journals (Sweden)

    Moikwathai Moidaki

    2013-02-01

    Full Text Available The Mesoproterozoic Midcontinent rift (MCR in the central US is an approximately 2000 km long, 100 km wide structure from Kansas to Michigan. During the 20-40 million years of rifting, a thick (up to 20 km layer of basaltic lava was deposited in the rift valleys. Quantifying the effects of the rifting and associated volcanic eruptions on the structure and composition of the crust and mantle beneath the MCR is important for the understanding of the evolution of continental lithosphere. In this study we measure the crustal thickness (H, and the sharpness of the Moho (R at about 24 portable and permanent stations in Iowa, Kansas, and South Dakota by stacking Pto- S converted waves (PmS and their multiples (PPmS and PSmS. Under the assumption that the crustal mean velocity in the study area is the same as the IASP91 earth model, we find a significantly thickened crust beneath the MCR of about 53 km. The crustal Vp/Vs ratios increases from about 1.80 off rift to as large as 1.95 within the rift, which corresponds to an increase of Poisson’s ratio from 0.28 to 0.32, suggesting a more mafic crust beneath the MCR. The R measurements are spatially variable and are relatively small in the vicinity of the MCR, indicating the disturbance of the original sharp Moho by the rifting and magmatic intrusion and volcanic eruption.

  8. Post-curing conversion kinetics as functions of the irradiation time and increment thickness

    Directory of Open Access Journals (Sweden)

    Nicola Scotti

    2013-04-01

    Full Text Available Objective: This study evaluated the variation of conversion degree (DC in the 12 hours following initial photoactivation of a low-shrinkage composite resin (Venus Diamond. Material and Methods: The conversion degree was monitored for 12 hours using Attenuated Total Reflection (ATR F-TIR Spectroscopy. The composite was placed in 1 or 2 mm rings and cured for 10 or 20 seconds with a LED lamp. ATR spectra were acquired from the bottom surface of each sample immediately after the initial photoactivation (P=0, 30 minutes (P=0.5 and 12 hours after photoactivation (P=12 in order to obtain the DC progression during the post-curing period. Interactions between thickness (T, irradiation time (I and post-curing (P on the DC were calculated through ANOVA testing. Results: All the first order interactions were statistically significant, with the exception of the T-P interaction. Furthermore, the shift from P=0 to P=0.5 had a statistically higher influence than the shift from P=0.5 to P=12. The post-curing period played a fundamental role in reaching higher DC values with the low-shrinkage composite resin tested in this study. Moreover, both the irradiation time and the composite thickness strongly influenced the DC. Conclusions: Increased irradiation time may be useful in obtaining a high conversion degree (DC with a low-shrinkage nano-hybrid composite resin, particularly with 2 mm composite layers.

  9. Using Goat's Milk, Barley Flour, Honey, and Probiotic to Manufacture of Functional Dairy Product.

    Science.gov (United States)

    Ismail, Magdy Mohamed; Hamad, Mohamed Farid; Elraghy, Esraa Mohamed

    2017-08-23

    Stirred yogurt manufactured using probiotic culture which usually called Rayeb milk in the Middle East region is one of the most important functional fermented milk products. To increase the health and functionality properties to this product, some ingredients like fruits, cereal, and whey protein are used in production. This study was carried out to prepare functional Rayeb milk from goat's milk, barley flour (15%) and honey (4%) mixtures using ABT culture. Also, vanilla and cocoa powder were used as flavorings. Adding barley flour and honey to goat's milk increased curd tension and water-holding capacity and decreased coagulation time and susceptibility to syneresis. The values of carbohydrate, total solids, dietary fiber, ash, total protein, water soluble nitrogen, total volatile fatty acids, unsaturated fatty acids, oleic, linoleic, α-linolenic acids, and antioxidant activity were higher in Rayeb milk supplemented with barley flour and honey than control. The viabilities of Lactobacillus acidophilus and Bifidobacterium lactis Bb12 (Chr. Hansen's Lab A/S) increased in fortified Rayeb milk. The recommended level of 10 7  cfu g -1 of bifidobacteria as a probiotic was exceeded for these samples. Addition of vanilla (0.1%) or cocoa powder (0.5%) improved the sensory properties of fortified Rayeb milk.

  10. Crustal Thickness Beneath Libya and the Origin of Partial Melt Beneath AS Sawda Volcanic Province From Receiver Function Constraints

    Science.gov (United States)

    Lemnifi, Awad A.; Elshaafi, Abdelsalam; Browning, John; Aouad, Nassib S.; El Ebaidi, Saad K.; Liu, Kelly K.; Gudmundsson, Agust

    2017-12-01

    This study investigates crustal thickness and properties within the Libyan region. Results obtained from 15 seismic stations belonging to the Libyan Center for Remote Sensing and Space Science are reported, in addition to 3 seismic stations publically available, using receiver functions. The results show crustal thicknesses ranging from 24 km to 36 km (with uncertainties ranging between ±0.10 km and ±0.90 km). More specifically, crustal thickness ranges from 32 km to 36 km in the southern portion of the Libyan territory then becomes thinner, between 24 km and 30 km, in the coastal areas of Libya and thinnest, between 24 km and 28 km, in the Sirt Basin. The observed high Vp/Vs value of 1.91 at one station located at the AS Sawda Volcanic Province in central Libya indicates the presence of either partial melt or an abnormally warm area. This finding suggests that magma reservoirs beneath the Libyan territory may still be partially molten and active, thereby posing significant earthquake and volcanic risks. The hypothesis of an active magma source is further demonstrated though the presence of asthenospheric upwelling and extension of the Sirt Basin. This study provides a new calculation of unconsolidated sediment layers by using the arrival time of the P to S converted phases. The results show sediments thicknesses of 0.4 km to 3.7 km, with the Vp/Vs values ranging from 2.2 to 4.8. The variations in crustal thickness throughout the region are correlated with surface elevation and Bouguer gravity anomalies, which suggest that they are isostatically compensated.

  11. Crustal thickness variations in the Zagros continental collision zone (Iran) from joint inversion of receiver functions and surface wave dispersion

    Science.gov (United States)

    Tatar, M.; Nasrabadi, A.

    2013-10-01

    Variations in crustal thickness in the Zagros determined by joint inversion of P wave receiver functions (RFs) and Rayleigh wave group and phase velocity dispersion. The time domain iterative deconvolution procedure was employed to compute RFs from teleseismic recordings at seven broadband stations of INSN network. Rayleigh wave phase velocity dispersion curves were estimated employing two-station method. Fundamental mode Rayleigh wave group velocities for each station is taken from a regional scale surface wave tomographic imaging. The main variations in crustal thickness that we observe are between stations located in the Zagros fold and thrust belt with those located in the Sanandaj-Sirjan zone (SSZ) and Urumieh-Dokhtar magmatic assemblage (UDMA). Our results indicate that the average crustal thickness beneath the Zagros Mountain Range varies from ˜46 km in Western and Central Zagros beneath SHGR and GHIR up to ˜50 km beneath BNDS located in easternmost of the Zagros. Toward NE, we observe an increase in Moho depth where it reaches ˜58 km beneath SNGE located in the SSZ. Average crustal thickness also varies beneath the UDMA from ˜50 km in western parts below ASAO to ˜58 in central parts below NASN. The observed variation along the SSZ and UDMA may be associated to ongoing slab steepening or break off in the NW Zagros, comparing under thrusting of the Arabian plate beneath Central Zagros. The results show that in Central Iran, the crustal thickness decrease again to ˜47 km below KRBR. There is not a significant crustal thickness difference along the Zagros fold and thrust belt. We found the same crystalline crust of ˜34 km thick beneath the different parts of the Zagros fold and thrust belt. The similarity of crustal structure suggests that the crust of the Zagros fold and thrust belt was uniform before subsidence and deposition of the sediments. Our results confirm that the shortening of the western and eastern parts of the Zagros basement is small and

  12. Elastic and Viscoelastic Stresses of Nonlinear Rotating Functionally Graded Solid and Annular Disks with Gradually Varying Thickness

    Directory of Open Access Journals (Sweden)

    Allam M. N. M.

    2017-12-01

    Full Text Available Analytical and numerical nonlinear solutions for rotating variable-thickness functionally graded solid and annular disks with viscoelastic orthotropic material properties are presented by using the method of successive approximations.Variable material properties such as Young’s moduli, density and thickness of the disk, are first introduced to obtain the governing equation. As a second step, the method of successive approximations is proposed to get the nonlinear solution of the problem. In the third step, the method of effective moduli is deduced to reduce the problem to the corresponding one of a homogeneous but anisotropic material. The results of viscoelastic stresses and radial displacement are obtained for annular and solid disks of different profiles and graphically illustrated. The calculated results are compared and the effects due to many parameters are discussed.

  13. Fabrication of tubed functionally graded material by slurry dipping process. Thickness control of dip-coated layer

    International Nuclear Information System (INIS)

    Watanabe, Ryuzo

    1997-03-01

    In order to obtain long life fuel cladding tubes for the fast breeder reactor, the concept of functionally graded material was applied for the material combination of Molybdenum/stainless steel/Titanium, in which Titanium and Molybdenum were placed at the inner and outer sides, respectively. Slurry dipping method was employed because of its capability of shape forming and microstructural control. We have hitherto reported the design criteria for the graded layers, preparation of the slurry, and microstructural control of the dip-coated layers. In the present report, the thickness control of the dip-coated layer is described in detail. The thickness of the dip-coated layer depends primarily on the viscosity of the slurry. Nevertheless, for the stable dispersion of the powder in the slurry, which dominates the microstructural homogeneity, an optimum viscosity value is present for the individual slurries. With stable slurries of Ti, Mo, stainless steel powders and their mixtures, the thicknesses of dip-coated layers were controlled in dependence of their viscosities and yield values. For Ti and stainless steel powders and their mixture a PAANa was used as a dispersing agent. A NaHMP was found to be effective for the dispersion of Mo powder and Mo/stainless steel powder mixture. For all slurries tested in the present investigation PVA addition was helpful for the viscosity control. Dip-coating maps have been drawn for the stabilization of the slurries and for the formation of films with a sufficient strength for further manipulation for the slurries with low viscosity (∼10 mPa s). The final film thickness for the low-viscosity slurry with the optimum condition was about 200 μm. The slurries with high viscosities of several hundreds mPa s had a good stability and the yield value was easy to be controlled. The film thickness was able to be adjusted in the size range between several tens and several hundreds μm. The final thickness of the graded layer was determined

  14. A wrinkling-based method for investigating glassy polymer film relaxation as a function of film thickness and temperature.

    Science.gov (United States)

    Chung, Jun Young; Douglas, Jack F; Stafford, Christopher M

    2017-10-21

    We investigate the relaxation dynamics of thin polymer films at temperatures below the bulk glass transition T g by first compressing polystyrene films supported on a polydimethylsiloxane substrate to create wrinkling patterns and then observing the slow relaxation of the wrinkled films back to their final equilibrium flat state by small angle light scattering. As with recent relaxation measurements on thin glassy films reported by Fakhraai and co-workers, we find the relaxation time of our wrinkled films to be strongly dependent on film thickness below an onset thickness on the order of 100 nm. By varying the temperature between room temperature and T g (≈100 °C), we find that the relaxation time follows an Arrhenius-type temperature dependence to a good approximation at all film thicknesses investigated, where both the activation energy and the relaxation time pre-factor depend appreciably on film thickness. The wrinkling relaxation curves tend to cross at a common temperature somewhat below T g , indicating an entropy-enthalpy compensation relation between the activation free energy parameters. This compensation effect has also been observed recently in simulated supported polymer films in the high temperature Arrhenius relaxation regime rather than the glassy state. In addition, we find that the film stress relaxation function, as well as the height of the wrinkle ridges, follows a stretched exponential time dependence and the short-time effective Young's modulus derived from our modeling decreases sigmoidally with increasing temperature-both characteristic features of glassy materials. The relatively facile nature of the wrinkling-based measurements in comparison to other film relaxation measurements makes our method attractive for practical materials development, as well as fundamental studies of glass formation.

  15. Using Analytic Hierarchy Process for Exploring Prioritization of Functional Strategies in Auto Parts Manufacturing SMEs of Pakistan

    Directory of Open Access Journals (Sweden)

    Yasir Ahmad

    2014-11-01

    Full Text Available This article uses analytical hierarchy process (AHP to find prioritization of functional strategies (manufacturing, marketing, human resource, and financial management by small and medium enterprises (SMEs operating in auto parts manufacturing sector of Pakistan. SMEs are major part of the industrial structure and have significant contribution toward generating jobs in Pakistan. These enterprises are generally family-owned businesses, and this study provides concrete insights into the mind-set of owners toward different functional strategies. The AHP implementation steps are performed using commercially available software “Expert Choice®.” Marketing strategy is considered to be the most important strategy, while manufacturing management strategy is the second most important strategy. There is little emphasis on the financial and human resource management which is a serious cause of concern. The study would help policy makers to understand the business behaviors of this sector and consequently formulate policies to enhance their performance.

  16. Functional Echomyography: thickness, ecogenicity, contraction and perfusion of the LMN denervated human muscle before and during h-bFES

    Directory of Open Access Journals (Sweden)

    Riccardo Zanato

    2010-03-01

    Full Text Available Permanent denervated muscles were evaluated by ultrasound to monitor changes in morphology, thickness, contraction-relaxation kinetics and perfusion due to the electrical stimulation program of the Rise2-Italy project. In a case of monolateral lesion, morphology and ultrasonographic structure of the denervated muscles changed during the period of stimulation from a pattern typical of complete denervation-induced muscle atrophy to a pattern which might be considered “normal” when detected in an old patient. Thickness improved significantly more in the middle third of the denervated muscle, reaching the same value as the contralateral innervated muscle. Contraction-relaxation kinetics, measured by recording the muscle movements during electrical stimulation, showed an abnormal behavior of the chronically denervated muscle during the relaxation phase, which resulted to be significantly longer than in normal muscle. The long-term denervated muscles analyzed with Echo Doppler showed at rest a low resistance arterial flow that became pulsed during and after electrical stimulation. As expected, the ultra sound measured electrical stimulation-induced hyperemia lasted longer than the stimulation period. The higher than normal energy of the delivered electrical stimuli of the Vienna home-based Functional Electrical Stimulation strategy (h-b FES demonstrate that the explored muscles were still almost completely denervated during the one-year of training. In conclusion, this pilot study confirms the usefulness of Functional Echomyography in the follow-up and the positive effects of h-b FES of denervated muscles.

  17. Investigation of trapped thickness-twist waves induced by functionally graded piezoelectric material in an inhomogeneous plate

    International Nuclear Information System (INIS)

    Li, Peng; Jin, Feng; Cao, Xiao-Shan

    2013-01-01

    The effect of functional graded piezoelectric materials on the propagation of thickness-twist waves is investigated through equations of the linear theory of piezoelectricity. The elastic and piezoelectric coefficients, dielectric permittivity, and mass density are assumed to change in a linear form but with different graded parameters along the wave propagation direction. We employ the power-series technique to solve the governing differential equations with variable coefficients attributed to the different graded parameters and prove the correction and convergence of this method. As a special case, the functional graded middle layer resulting from piezoelectric damage and material bonding is investigated. Piezoelectric damaged material can facilitate energy trapping, which is impossible in perfect materials. The increase in the damaged length and the reduction in the piezoelectric coefficient decrease the resonance frequency but increase the number of modes. Higher modes of thickness-twist waves appear periodically along the damaged length. Moreover, the displacement of the center of the damaged portion is neither symmetric nor anti-symmetric, unlike the non-graded plate. The conclusions are theoretically and practically significant for wave devices. (paper)

  18. What's your relationship with computerized manufacturing technologies -- functional, dysfunctional or non-existent?

    Science.gov (United States)

    Jan Wiedenbeck; Jeff Parsons; Bruce Beeken

    2009-01-01

    Computer-aided manufacturing (CAM), in which computer-aided design (CAD) and computer numerically controlled (CNC) machining are integrated for the production of parts, became a viable option for the woodworking industry in the 1980s.

  19. Optical Coherence Tomography in Optic Nerve Hypoplasia: Correlation With Optic Disc Diameter, Nerve Fiber Layer Thickness, and Visual Function.

    Science.gov (United States)

    Kelly, John P; Baran, Francine; Phillips, James O; Weiss, Avery H

    2017-12-15

    The correlation between optic disc diameters (DDs) with average retinal nerve fiber layer thickness (RNFLT) and visual function in children with optic nerve hypoplasia (ONH) having nystagmus is unknown. Data were obtained from a retrospective review of 28 children (mean age: 9.4 years; ±5.1). Optic DD was defined as the maximal horizontal opening of Bruch membrane with spectral optical coherence tomography combined with a confocal laser ophthalmoscope. Average RNFLT was obtained from circumpapillary b-scans. RNFLT was also remeasured at eccentricities that were proportionate with DD to rule out potential sampling artifacts. Visual function was assessed by visual acuity at last follow-up and by visual evoked potentials (VEP) in 11 patients. The eye with the larger DD, which had better visual acuity, was analyzed to exclude potential effects of amblyopia. DD was correlated with average RNFLT (r = 0.61), visual acuity (r = 0.32), and VEPs (r = 0.66). The relationship between RNFLT and DD was as follows: average RNFLT (μm) = 0.074 * DD (μm) - 18.8. RNFLT also correlated with the ratio of horizontal optic DD to macula-disc-margin distance (DD:DM; r = 0.59). RNFLT measured at eccentricities proportionate with DD showed progressive decrease in thickness only for DDs <1,100 μm. All patients with DD <1,000 μm had subnormal visual acuity, whereas those with DD <1,200 μm had subnormal VEPs. DD correlates with average RNFLT and with visual function in children with ONH. Using OCT imaging, DD can be obtained in children with nystagmus and provides objective information.

  20. Assessment of a virtual functional prototyping process for the rapid manufacture of passive-dynamic ankle-foot orthoses.

    Science.gov (United States)

    Schrank, Elisa S; Hitch, Lester; Wallace, Kevin; Moore, Richard; Stanhope, Steven J

    2013-10-01

    Passive-dynamic ankle-foot orthosis (PD-AFO) bending stiffness is a key functional characteristic for achieving enhanced gait function. However, current orthosis customization methods inhibit objective premanufacture tuning of the PD-AFO bending stiffness, making optimization of orthosis function challenging. We have developed a novel virtual functional prototyping (VFP) process, which harnesses the strengths of computer aided design (CAD) model parameterization and finite element analysis, to quantitatively tune and predict the functional characteristics of a PD-AFO, which is rapidly manufactured via fused deposition modeling (FDM). The purpose of this study was to assess the VFP process for PD-AFO bending stiffness. A PD-AFO CAD model was customized for a healthy subject and tuned to four bending stiffness values via VFP. Two sets of each tuned model were fabricated via FDM using medical-grade polycarbonate (PC-ISO). Dimensional accuracy of the fabricated orthoses was excellent (average 0.51 ± 0.39 mm). Manufacturing precision ranged from 0.0 to 0.74 Nm/deg (average 0.30 ± 0.36 Nm/deg). Bending stiffness prediction accuracy was within 1 Nm/deg using the manufacturer provided PC-ISO elastic modulus (average 0.48 ± 0.35 Nm/deg). Using an experimentally derived PC-ISO elastic modulus improved the optimized bending stiffness prediction accuracy (average 0.29 ± 0.57 Nm/deg). Robustness of the derived modulus was tested by carrying out the VFP process for a disparate subject, tuning the PD-AFO model to five bending stiffness values. For this disparate subject, bending stiffness prediction accuracy was strong (average 0.20 ± 0.14 Nm/deg). Overall, the VFP process had excellent dimensional accuracy, good manufacturing precision, and strong prediction accuracy with the derived modulus. Implementing VFP as part of our PD-AFO customization and manufacturing framework, which also includes fit customization, provides a novel and powerful method to

  1. Study on Effect of Functional Competency on Performance of Indian Manufacturing Sector

    Directory of Open Access Journals (Sweden)

    Rameshwar Dubey

    2011-08-01

    Full Text Available India is one of the fastest emerging global manufacturing hub with a large number of firms shifting their manufacturing base to the country due to cheap labor and good supplier(s base. Over the years, India has the largest number of companies, outside of Japan, that have been recognized for excellence in quality. As many as 21 companies have received the Deming Excellence awards; 153 companies have achieved Total Productive Maintenance (TPM Excellence Award for their total productivity management practices by the Japan Institute of Plant Maintenance (JIPM committee (Source: IBEF, 2010. Here in this research article author(s conducted an empirical survey among Indian manufacturing firms to understand how manufacturing competency effect the firm performance. It has been observed that manufacturing competency has negative impact on firm performance which is contradicting with the so far empirical studies conducted in European, Japanese and American countries. Here in this study authors provides in depth analysis to explain this negative impact and how this can lead to positive impact.

  2. Micro Manufacturing

    DEFF Research Database (Denmark)

    Hansen, Hans Nørgaard

    2003-01-01

    Manufacturing deals with systems that include products, processes, materials and production systems. These systems have functional requirements, constraints, design parameters and process variables. They must be decomposed in a systematic manner to achieve the best possible system performance....... If a micro manufacturing system isn’t designed rationally and correctly, it will be high-cost, unreliable, and not robust. For micro products and systems it is a continuously increasing challenge to create the operational basis for an industrial production. As the products through product development...... processes are made applicable to a large number of customers, the pressure in regard to developing production technologies that make it possible to produce the products at a reasonable price and in large numbers is growing. The micro/nano manufacturing programme at the Department of Manufacturing...

  3. Construction typification as the tool for optimizing the functioning of a robotized manufacturing system

    Science.gov (United States)

    Gwiazda, A.; Banas, W.; Sekala, A.; Foit, K.; Hryniewicz, P.; Kost, G.

    2015-11-01

    Process of workcell designing is limited by different constructional requirements. They are related to technological parameters of manufactured element, to specifications of purchased elements of a workcell and to technical characteristics of a workcell scene. This shows the complexity of the design-constructional process itself. The results of such approach are individually designed workcell suitable to the specific location and specific production cycle. Changing this parameters one must rebuild the whole configuration of a workcell. Taking into consideration this it is important to elaborate the base of typical elements of a robot kinematic chain that could be used as the tool for building Virtual modelling of kinematic chains of industrial robots requires several preparatory phase. Firstly, it is important to create a database element, which will be models of industrial robot arms. These models could be described as functional primitives that represent elements between components of the kinematic pairs and structural members of industrial robots. A database with following elements is created: the base kinematic pairs, the base robot structural elements, the base of the robot work scenes. The first of these databases includes kinematic pairs being the key component of the manipulator actuator modules. Accordingly, as mentioned previously, it includes the first stage rotary pair of fifth stage. This type of kinematic pairs was chosen due to the fact that it occurs most frequently in the structures of industrial robots. Second base consists of structural robot elements therefore it allows for the conversion of schematic structures of kinematic chains in the structural elements of the arm of industrial robots. It contains, inter alia, the structural elements such as base, stiff members - simple or angular units. They allow converting recorded schematic three-dimensional elements. Last database is a database of scenes. It includes elements of both simple and complex

  4. Functionalization of Biomedical Ti6Al4V via In Situ Alloying by Cu during Laser Powder Bed Fusion Manufacturing

    Science.gov (United States)

    Krakhmalev, Pavel; Yadroitsev, Igor; Yadroitsava, Ina; de Smidt, Olga

    2017-01-01

    The modern medical industry successfully utilizes Laser Powder Bed Fusion (LPBF) to manufacture complex custom implants. Ti6Al4V is one of the most commonly used biocompatible alloys. In surgery practice, infection at the bone–implant interface is one of the key reasons for implant failure. Therefore, advanced implants with biocompatibility and antibacterial properties are required. Modification of Ti alloy with Cu, which in small concentrations is a proven non-toxic antibacterial agent, is an attractive way to manufacture implants with embedded antibacterial functionality. The possibility of achieving alloying in situ, during manufacturing, is a unique option of the LPBF technology. It provides unique opportunities to manufacture customized implant shapes and design new alloys. Nevertheless, optimal process parameters need to be established for the in situ alloyed materials to form dense parts with required mechanical properties. This research is dedicated to an investigation of Ti6Al4V (ELI)-1 at % Cu material, manufactured by LPBF from a mixture of Ti6Al4V (ELI) and pure Cu powders. The effect of process parameters on surface roughness, chemical composition and distribution of Cu was investigated. Chemical homogeneity was discussed in relation to differences in the viscosity and density of molten Cu and Ti6Al4V. Microstructure, mechanical properties, and fracture behavior of as-built 3D samples were analyzed and discussed. Pilot antibacterial functionalization testing of Ti6Al4V (ELI) in situ alloyed with 1 at % Cu showed promising results and notable reduction in the growth of pure cultures of Escherichia coli and Staphylococcus aureus. PMID:28972546

  5. Functionalization of Biomedical Ti6Al4V via In Situ Alloying by Cu during Laser Powder Bed Fusion Manufacturing

    Directory of Open Access Journals (Sweden)

    Pavel Krakhmalev

    2017-10-01

    Full Text Available The modern medical industry successfully utilizes Laser Powder Bed Fusion (LPBF to manufacture complex custom implants. Ti6Al4V is one of the most commonly used biocompatible alloys. In surgery practice, infection at the bone–implant interface is one of the key reasons for implant failure. Therefore, advanced implants with biocompatibility and antibacterial properties are required. Modification of Ti alloy with Cu, which in small concentrations is a proven non-toxic antibacterial agent, is an attractive way to manufacture implants with embedded antibacterial functionality. The possibility of achieving alloying in situ, during manufacturing, is a unique option of the LPBF technology. It provides unique opportunities to manufacture customized implant shapes and design new alloys. Nevertheless, optimal process parameters need to be established for the in situ alloyed materials to form dense parts with required mechanical properties. This research is dedicated to an investigation of Ti6Al4V (ELI-1 at % Cu material, manufactured by LPBF from a mixture of Ti6Al4V (ELI and pure Cu powders. The effect of process parameters on surface roughness, chemical composition and distribution of Cu was investigated. Chemical homogeneity was discussed in relation to differences in the viscosity and density of molten Cu and Ti6Al4V. Microstructure, mechanical properties, and fracture behavior of as-built 3D samples were analyzed and discussed. Pilot antibacterial functionalization testing of Ti6Al4V (ELI in situ alloyed with 1 at % Cu showed promising results and notable reduction in the growth of pure cultures of Escherichia coli and Staphylococcus aureus.

  6. Additive manufacturing technology (direct metal laser sintering) as a novel approach to fabricate functionally graded titanium implants: preliminary investigation of fabrication parameters.

    Science.gov (United States)

    Lin, Wei-Shao; Starr, Thomas L; Harris, Bryan T; Zandinejad, Amirali; Morton, Dean

    2013-01-01

    This article describes the preliminary findings of the mechanical properties of functionally graded titanium with controlled distribution of porosity and a reduced Young's modulus on the basis of a computeraided design (CAD) file, using the rapid-prototyping, direct metal laser sintering (DMLS) technique. Sixty specimens of Ti-6Al-4V were created using a DMLS machine (M270) following the standard for tensile testing of metals. One group was fabricated with only 170 W of laser energy to create fully dense specimens (control group). The remaining specimens all featured an outer fully dense "skin" layer and a partially sintered porous inner "core" region. The outer "skin" of each specimen was scanned at 170 W and set at a thickness of 0.35, 1.00, or 1.50 mm for different specimen groups. The inner "core" of each specimen was scanned at a lower laser power (43 or 85 W). The partially sintered core was clearly visible in all specimens, with somewhat greater porosity with the lower laser power. However, the amount of porosity in the core region was not related to the laser power alone; thinner skin layers resulted in higher porosity for the same power values in the core structure. The lowest Young's modulus achieved, 35 GPa, is close to that of bone and was achieved with a laser power of 43 W and a skin thickness of 0.35 mm, producing a core that comprised 74% of the total volume. Additive manufacturing technology may provide an efficient alternative way to fabricate customized dental implants based on a CAD file with a functionally graded structure that may minimize stress shielding and improve the long-term performance of dental implants.

  7. Radial variation in sap velocity as a function of stem diameter and sapwood thickness in yellow-poplar trees.

    Science.gov (United States)

    Wullschleger, Stan D.; King, Anthony W.

    2000-04-01

    Canopy transpiration and forest water use are frequently estimated as the product of sap velocity and cross-sectional sapwood area. Few studies, however, have considered whether radial variation in sap velocity and the proportion of sapwood active in water transport are significant sources of uncertainty in the extrapolation process. Therefore, radial profiles of sap velocity were examined as a function of stem diameter and sapwood thickness for yellow-poplar (Liriodendron tulipifera L.) trees growing on two adjacent watersheds in eastern Tennessee. The compensation heat pulse velocity technique was used to quantify sap velocity at four equal-area depths in 20 trees that ranged in stem diameter from 15 to 69 cm, and in sapwood thickness from 2.1 to 14.8 cm. Sap velocity was highly dependent on the depth of probe insertion into the sapwood. Rates of sap velocity were greatest for probes located in the two outer sapwood annuli (P1 and P2) and lowest for probes in closest proximity to the heartwood (P3 and P4). Relative sap velocities averaged 0.98 at P1, 0.66 at P2, 0.41 at P3 and 0.35 at P4. Tree-specific sap velocities measured at each of the four probe positions, divided by the maximum sap velocity measured (usually at P1 or P2), indicated that the fraction of sapwood functional in water transport (f(S)) varied between 0.49 and 0.96. There was no relationship between f(S) and sapwood thickness, or between f(S) and stem diameter. The fraction of functional sapwood averaged 0.66 +/- 0.13 for trees on which radial profiles were determined. No significant depth-related differences were observed for sapwood density, which averaged 469 kg m(-3) across all four probe positions. There was, however, a significant decline in sapwood water content between the two outer probe positions (1.04 versus 0.89 kg kg(-1)). This difference was not sufficient to account for the observed radial variation in sap velocity. A Monte-Carlo analysis indicated that the standard error in

  8. Static and dynamic through thickness lamina properties of thick laminates

    NARCIS (Netherlands)

    Lahuerta, F.; Nijssen, R.P.L.; Van der Meer, F.P.; Sluys, L.J.

    2015-01-01

    Thick laminates are increasingly present in large composites structures such as wind turbine blades. Different factors are suspected to be involved in the decreased static and dynamic performance of thick laminates. These include the effect of self-heating, the scaling effect, and the manufacturing

  9. Pulmonary function, respiratory symptoms, and dust exposures among workers engaged in early manufacturing processes of tea: a cohort study.

    Science.gov (United States)

    Shieh, Tzong-Shiun; Chung, Jui-Jung; Wang, Chung-Jing; Tsai, Perng-Jy; Kuo, Yau-Chang; Guo, How-Ran

    2012-02-13

    To evaluate pulmonary function and respiratory symptoms in workers engaged in the early manufacturing processes of tea and to identify the associated factors, we conducted a study in a tea production area in Taiwan. We recruited tea workers who engaged in the early manufacturing process in the Mountain Ali area in Taiwan and a comparison group of local office workers who were matched for age, gender, and smoking habits. We performed questionnaire interviews, pulmonary function tests, skin prick tests, and measurement of specific IgE for tea on the participants and assessed tea dust exposures in the tea factories. The 91 participating tea workers had higher prevalence of respiratory symptoms than the comparison group (32 participants). Among tea workers, ball-rolling workers had the highest prevalence of symptoms and the highest exposures of inhalable dusts. At baseline, tea workers had similar pulmonary functions as the comparison group, but compared to the other tea workers ball-rolling workers had a lower ratio of the 1-second forced expiratory volume to forced vital capacity (FEV1/FVC) and a lower maximal mid-expiratory flow rate expressed as% of the predicted value--MMF (%pred). A total of 58 tea workers participated in the on-site investigation and the cross-shift lung function measurements. We found ball-rolling yielded the highest inhalable dust level, panning yielded the highest respirable dust level, and withering yielded the lowest levels of both dusts. Ball-rolling also yielded the highest coarse fraction (defined as inhalable dusts minus respirable dusts), which represented exposures from nose to tracheobronchial tract. During the shift, we observed significant declines in pulmonary function, especially in ball-rolling workers. Multiple regressions showed that age, height, work tasks, coarse fraction, and number of months working in tea manufacturing each year were independent predictors of certain pulmonary function parameters in tea workers. Tea

  10. Fabrication of functionally graded materials between P21 tool steel and Cu by using laser aided layered manufacturing

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Jong Seol; Shin, Ki Hoon [Seoul Nat' l Univ., Seoul (Korea, Republic of)

    2013-01-15

    With the development of layered manufacturing, thermally conductive molds or molds embedding conformal cooling channels can be directly fabricated. Although P21 tool steel is widely used as a mold material because of its dimensional stability, it is not efficient for cooling molds owing to its low thermal conductivity. Hence, the use of functionally graded materials (FGMs) between P21 and Cu may circumvent a tradeoff between the strength and the heat transfer rate. As a preliminary study for the layered manufacturing of thermally conductive molds having FGM structures, one dimensional P21 Cu FGMs were fabricated by using laser aided direct metal tooling (DMT), and then, material properties such as the thermal conductivity and specific heat that are related to the heat transfer were measured and analyzed.

  11. Value of renal cortical thickness as a predictor of renal function impairment in chronic renal disease patients

    Directory of Open Access Journals (Sweden)

    Samia Rafael Yamashita

    2015-02-01

    Full Text Available Objective: To determine the presence of linear relationship between renal cortical thickness, bipolar length, and parenchymal thickness in chronic kidney disease patients presenting with different estimated glomerular filtration rates (GFRs and to assess the reproducibility of these measurements using ultrasonography. Materials and Methods: Ultrasonography was performed in 54 chronic renal failure patients. The scans were performed by two independent and blinded radiologists. The estimated GFR was calculated using the Cockcroft-Gault equation. Interobserver agreement was calculated and a linear correlation coefficient (r was determined in order to establish the relationship between the different renal measurements and estimated GFR. Results: The correlation between GFR and measurements of renal cortical thickness, bipolar length, and parenchymal thickness was, respectively, moderate (r = 0.478; p < 0.001, poor (r = 0.380; p = 0.004, and poor (r = 0.277; p = 0.116. The interobserver agreement was considered excellent (0.754 for measurements of cortical thickness and bipolar length (0.833, and satisfactory for parenchymal thickness (0.523. Conclusion: The interobserver reproducibility for renal measurements obtained was good. A moderate correlation was observed between estimated GFR and cortical thickness, but bipolar length and parenchymal thickness were poorly correlated.

  12. Three dimensional Free Vibration and Transient Analysis of Two Directional Functionally Graded Thick Cylindrical Panels Under Impact Loading

    Directory of Open Access Journals (Sweden)

    Hassan Zafarmand

    Full Text Available AbstractIn this paper three dimensional free vibration and transient response of a cylindrical panel made of two directional functionally graded materials (2D-FGMs based on three dimensional equations of elasticity and subjected to internal impact loading is considered. Material properties vary through both radial and axial directions continuously. The 3D graded finite element method (GFEM based on Rayleigh-Ritz energy formulation and Newmark direct integration method has been applied to solve the equations in space and time domains. The fundamental normalized natural frequency, time history of displacements and stresses in three directions and velocity of radial stress wave propagation for various values of span angel of cylindrical panel and different power law exponents have been investigated. The present results show that using 2D-FGMs leads to a more flexible design than conventional 1D-FGMs. The GFEM solution have been compared with the results of an FG thick hollow cylinder and an FG curved panel, where a good agreement between them is observed.

  13. Exchange bias variations of the seed and top NiFe layers in NiFe/FeMn/NiFe trilayer as a function of seed layer thickness

    International Nuclear Information System (INIS)

    Sankaranarayanan, V.K.; Yoon, S.M.; Kim, C.G.; Kim, C.O.

    2005-01-01

    Development of exchange bias at the seed and top NiFe layers in the NiFe (t nm)/FeMn(10 nm)/NiFe(5 nm) trilayer structure is investigated as a function of seed layer thickness, in the range of 2-20 nm. The seed NiFe layer shows maximum exchange bias at 4 nm seed layer thickness. The bias shows inverse thickness dependence with increasing thickness. The top NiFe layer on the other hand shows only half the bias of the seed layer which is retained even after the sharp fall in seed layer bias. The much smaller bias for the top NiFe layer is related to the difference in crystalline texture and spin orientations at the top FeMn/NiFe interface, in comparison to the bottom NiFe/FeMn interface which grows on a saturated NiFe layer with (1 1 1) orientation

  14. Particle diffusional layer thickness in a USP dissolution apparatus II: a combined function of particle size and paddle speed.

    Science.gov (United States)

    Sheng, Jennifer J; Sirois, Paul J; Dressman, Jennifer B; Amidon, Gordon L

    2008-11-01

    This work was to investigate the effects of particle size and paddle speed on the particle diffusional layer thickness h(app) in a USP dissolution apparatus II. After the determination of the powder dissolution rates of five size fractions of fenofibrate, including <20, 20-32, 32-45, 63-75, and 90-106 microm, the present work shows that the dependence of h(app) on particle size follows different functions in accordance with the paddle speed. At 50 rpm, the function of h(app) is best described by a linear plot of h{app} = 9.91sqrt d-23.31 (R(2) = 0.98) throughout the particle diameter, d, from 6.8 to 106 microm. In contrast, at 100 rpm a transitional particle radius, r, of 23.7 microm exists, under which linear relationship h(app) = 1.59r (R(2) = 0.98) occurs, but above which h(app) becomes a constant of 43.5 microm. Thus, h(app) changes not only with particle size, but also with the hydrodynamics under standard USP configurations, which has been overlooked in the past. Further, the effects of particle size and paddle speed on h(app) were combined using dimensionless analysis. Within certain fluid velocity/particle regime, linear correlation of h(app)/d with the square-root of Reynolds number (d\\varpi/upsilon){1/2}, that is, h{app}/d = 1.5207 - 9.25 x 10{- 4} (d\\varpi/n){1/2} (R(2) = 0.9875), was observed.

  15. Apparent temperature versus true temperature of silicon crystals as a function of their thickness using infrared measurements

    International Nuclear Information System (INIS)

    Smither, R.K.; Fernandez, P.B.

    1993-01-01

    The very high intensity x-ray beams that will be present at the Advanced Photon Source and other third generation synchrotron sources will require that the first optical element in the beamline and, possibly, the second optical element as well, be cooled to remove the heat deposited by the x-ray beam. In many of the beamlines this heat will be in the 1 to 5 kW range, and any failure of the cooling system will require a quick response from safety control circuits to shut off the beam before damage is done to the optical element. In many cases, this first optical element will be a silicon diffraction crystal. Viewing the surface of objects subjected to high heat fluxes with an infrared camera or infrared sensor has proved to be a very effective method for monitoring the magnitude and distribution of surface temperatures on the object. This approach has been quite useful in studies of cooling silicon crystals in monochromators subject to high heat loads. The main drawback to this method is that single crystals of silicon are partially transparent to the infrared radiation monitored in most infrared cameras. This means that the infrared radiation emitted from the surface contains a component that comes from the interior of the crystal and that the intensity of the emitted radiation and thus the apparent temperature of the surface of the crystal depends on the thickness of the crystal and the kind of coating on the back (and/or the front) of the crystal. The apparent temperature of the crystal increases as the crystal is made thicker. A series of experiments were performed at Argonne National Laboratory to calibrate the apparent surface temperature of the crystal as measured with an infrared camera as a function of the crystal thickness and the type of coating (if any) on the back side of the crystal. A number of examples are given for data taken in synchrotron experiments with high intensity x-ray beams

  16. Correlation of CsK2Sb photocathode lifetime with antimony thickness

    Energy Technology Data Exchange (ETDEWEB)

    Mamun, M. A. [Department of Mechanical and Aerospace Engineering, Old Dominion University, Norfolk, Virginia 23529, USA; The Applied Research Center, Thomas Jefferson National Accelerator Facility, Newport News, Virginia 23606, USA; Hernandez-Garcia, C. [Thomas Jefferson National Accelerator Facility, Newport News, Virginia 23606, USA; Poelker, M. [Thomas Jefferson National Accelerator Facility, Newport News, Virginia 23606, USA; Elmustafa, A. A. [Department of Mechanical and Aerospace Engineering, Old Dominion University, Norfolk, Virginia 23529, USA; The Applied Research Center, Thomas Jefferson National Accelerator Facility, Newport News, Virginia 23606, USA

    2015-06-01

    CsK2Sb photocathodes with quantum efficiency on the order of 10% at 532 nm, and lifetime greater than 90 days at low voltage, were successfully manufactured via co-deposition of alkali species emanating from an effusion source. Photocathodes were characterized as a function of antimony layer thickness and alkali consumption, inside a vacuum chamber that was initially baked, but frequently vented without re-baking. Photocathode lifetime measured at low voltage is correlated with the antimony layer thickness. Photocathodes manufactured with comparatively thick antimony layers exhibited the best lifetime. We speculate that the antimony layer serves as a reservoir, or sponge, for the alkali.

  17. Correlation of CsK2Sb photocathode lifetime with antimony thickness

    Directory of Open Access Journals (Sweden)

    M. A. Mamun

    2015-06-01

    Full Text Available CsK2Sb photocathodes with quantum efficiency on the order of 10% at 532 nm, and lifetime greater than 90 days at low voltage, were successfully manufactured via co-deposition of alkali species emanating from an effusion source. Photocathodes were characterized as a function of antimony layer thickness and alkali consumption, inside a vacuum chamber that was initially baked, but frequently vented without re-baking. Photocathode lifetime measured at low voltage is correlated with the antimony layer thickness. Photocathodes manufactured with comparatively thick antimony layers exhibited the best lifetime. We speculate that the antimony layer serves as a reservoir, or sponge, for the alkali.

  18. Correlation of CsK{sub 2}Sb photocathode lifetime with antimony thickness

    Energy Technology Data Exchange (ETDEWEB)

    Mamun, M. A., E-mail: mmamu001@odu.edu; Elmustafa, A. A. [Department of Mechanical and Aerospace Engineering, Old Dominion University, Norfolk, Virginia 23529 (United States); The Applied Research Center, Thomas Jefferson National Accelerator Facility, Newport News, Virginia 23606 (United States); Hernandez-Garcia, C.; Poelker, M. [Thomas Jefferson National Accelerator Facility, Newport News, Virginia 23606 (United States)

    2015-06-01

    CsK{sub 2}Sb photocathodes with quantum efficiency on the order of 10% at 532 nm, and lifetime greater than 90 days at low voltage, were successfully manufactured via co-deposition of alkali species emanating from an effusion source. Photocathodes were characterized as a function of antimony layer thickness and alkali consumption, inside a vacuum chamber that was initially baked, but frequently vented without re-baking. Photocathode lifetime measured at low voltage is correlated with the antimony layer thickness. Photocathodes manufactured with comparatively thick antimony layers exhibited the best lifetime. We speculate that the antimony layer serves as a reservoir, or sponge, for the alkali.

  19. Additive manufacturing of a functionally graded material from Ti-6Al-4V to Invar: Experimental characterization and thermodynamic calculations

    International Nuclear Information System (INIS)

    Bobbio, Lourdes D.; Otis, Richard A.; Borgonia, John Paul; Dillon, R. Peter; Shapiro, Andrew A.; Liu, Zi-Kui; Beese, Allison M.

    2017-01-01

    In functionally graded materials (FGMs), the elemental composition, or structure, within a component varies gradually as a function of position, allowing for the gradual transition from one alloy to another, and the local tailoring of properties. One method for fabricating FGMs with varying elemental composition is through layer-by-layer directed energy deposition additive manufacturing. This work combines experimental characterization and computational analysis to investigate a material graded from Ti-6Al-4V to Invar 36 (64 wt% Fe, 36 wt% Ni). The microstructure, composition, phases, and microhardness were determined as a function of position within the FGM. During the fabrication process, detrimental phases associated with the compositional blending of the Ti-6Al-4V and Invar formed, leading to cracking in the final deposited part. Intermetallic phases (FeTi, Fe_2Ti, Ni_3Ti, and NiTi_2) were experimentally identified to occur throughout the gradient region, and were considered as the reason that the FGM cracked during fabrication. CALPHAD (CALculation of PHase Diagrams) thermodynamic calculations were used concurrently to predict phases that would form during the manufacturing process and were compared to the experimental results. The experimental-computational approach described herein for characterizing FGMs can be used to improve the understanding and design of other FGMs.

  20. Critical current density and microstructure of YBa2Cu3O7-x films as a function of film thickness

    International Nuclear Information System (INIS)

    Mogro-Campero, A.; Turner, L.G.; Hall, E.L.; Lewis, N.

    1990-01-01

    Thin films of nominal composition YBa 2 Cu 3 O 7-x (YBCO) were produced on (100) SrTiO 3 substrates by coevaporation and furnace annealing. Film thicknesses in the range of 0.2 to 2.4 μm were analyzed. Microstructural investigations by cross sectional transmission electron microscopy (TEM) reveal a continuous layer of about 0.4 μm thickness adjacent to the substrate with c-axis normal to the substrate plane. In thicker films the remaining top portion has the c-axis in the film plane. The critical current density (J c ) at 77 K decreases with increasing thickness in the thickness range exceeding 0.4 μm, qualitatively consistent with the microstructural observation, but quantitatively inconsistent with a simple model based on the microstructural data

  1. Changes in visual function and thickness of macula after photodynamic therapy for age-related macular degeneration

    Directory of Open Access Journals (Sweden)

    Kyoko Okada

    2009-09-01

    Full Text Available Kyoko Okada, Mariko Kubota-Taniai, Masayasu Kitahashi, Takayuki Baba, Yoshinori Mitamura, Shuichi YamamotoDepartment of Ophthalmology and Visual Science, Chiba University Graduate School of Medicine, Chiba, JapanPurpose: To determine the correlation between the changes in the central retinal sensitivity and the changes in the foveal thickness (FT after photodynamic therapy (PDT for age-related macular degeneration (AMD.Methods: Nineteen eyes of 19 patients with choroidal neovasularizations (CNVs secondary to AMD were studied. The pretreatment values of the central retinal sensitivity determined by Micro Perimeter 1 (MP1; Nidek Technologies, best-corrected visual acuity (BCVA, and optical coherence tomography (OCT-determined FT were compared to the postoperative values at three and six months after PDT.Results: At six months, the retinal sensitivity within the central 10° was significantly improved (P = 0.02 and the FT was significantly thinner (P = 0.016. The BCVA, however, did not change significantly (P = 0.80. The changes in the retinal sensitivities were significantly correlated with the changes in the decrease in the FT (r = -0.59, P = 0.012 within the central 10° at six months after PDT.Conclusion: Significant improvements in retinal sensitivities within the central 10° and a decrease in FT were observed even though the BCVA was not significantly improved. The measurement of retinal sensitivity by MP1 may be a better method to assess central visual function than the conventional visual acuity after PDT.Keywords: age-related macular degeneration, fundus-related microperimetry, optical coherence tomography, photodynamic therapy

  2. Titanium-Based Hip Stems with Drug Delivery Functionality through Additive Manufacturing.

    Science.gov (United States)

    Bezuidenhout, Martin B; Dimitrov, Dimitar M; van Staden, Anton D; Oosthuizen, Gert A; Dicks, Leon M T

    2015-01-01

    Postoperative infections are a major concern in patients that receive implants. These infections generally occur in areas with poor blood flow and pathogens do not always respond to antibiotic treatment. With the latest developments in nanotechnology, the incorporation of antibiotics into prosthetic implants may soon become a standard procedure. The success will, however, depend on the ability to control the release of antibiotics at concentrations high enough to prevent the development of antibiotic-resistant strains. Through additive manufacturing, antibiotics can be incorporated into cementless femoral stems to produce prosthetic devices with antimicrobial properties. With the emerging increase in resistance to antibiotics, the incorporation of antimicrobial compounds other than antibiotics, preferably drugs with a broader spectrum of antimicrobial activity, will have to be explored. This review highlights the microorganisms associated with total hip arthroplasty (THA), discusses the advantages and disadvantages of the latest materials used in hip implants, compares different antimicrobial agents that could be incorporated, and addresses novel ideas for future research.

  3. The chiroptical properties of chiral substituted poly[3-((3S)-3,7-dimethyloctyl)thiophene] as a function of film thickness

    NARCIS (Netherlands)

    Lakhwani, G.; Koeckelberghs, G.; Meskers, S.C.J.; Janssen, R.A.J.

    2007-01-01

    Circular dichroism (CD) and circular polarization of the luminescence (CPL) of spin coated films of chiral, regioregular poly[3-((3S)-3,7-dimethyloctyl)thiophene] are investigated as a function of their thickness (50–500 nm). The dissymmetry factors for absorption (gabs) and emission (glum) do not

  4. Factors that Affected Functional Outcome After a Delayed Excision and Split-Thickness Skin Graft on the Dorsal Side of Burned Hands.

    Science.gov (United States)

    Shichinohe, Ryuji; Yamamoto, Yuhei; Kawashima, Kunihiro; Kimura, Chu; Ono, Kentaro; Horiuchi, Katsumi; Yoshida, Tetsunori; Murao, Naoki; Hayashi, Toshihiko; Funayama, Emi; Oyama, Akihiko; Furukawa, Hiroshi

    Early excision and skin grafting is the principle treatment for a burned hand although there are occasions when it cannot be done such as severe general condition, delayed consultation, and the lack of a definitive assessment of burn depth. This study analyzes the factors that affected function after a delayed excision and skin graft for hands with a deep dermal burn. This study retrospectively evaluated 43 burned hands that required a delayed excision and split-thickness skin graft on the dorsal side. Cases were required to only have split-thickness skin grafting from the dorsum of the hand and fingers distally to at least the proximal interphalangeal joint at least 8 days after the injury. The hands were divided into two functional categories: Functional category A, normal or nearly normal joint movements, and functional category B, abnormal joint movements. Demographic data were assessed statistically by a univariate analysis following a multiple regression analysis by a stepwise selection. A significant difference was observed between the groups in the number of days from grafting to complete wound healing of the graft site and with or without an escharotomy in the analysis. These parameters were statistically significant predictors of functional category B. The functional outcome of a burned hand after a delayed excision and split-thickness skin graft on the dorsal side became degraded depending on the number of days from grafting to complete wound healing. Cases that underwent an escharotomy also showed deterioration in function.

  5. A framework for the computer-aided planning and optimisation of manufacturing processes for components with functional graded properties

    Science.gov (United States)

    Biermann, D.; Gausemeier, J.; Heim, H.-P.; Hess, S.; Petersen, M.; Ries, A.; Wagner, T.

    2014-05-01

    In this contribution a framework for the computer-aided planning and optimisation of functional graded components is presented. The framework is divided into three modules - the "Component Description", the "Expert System" for the synthetisation of several process chains and the "Modelling and Process Chain Optimisation". The Component Description module enhances a standard computer-aided design (CAD) model by a voxel-based representation of the graded properties. The Expert System synthesises process steps stored in the knowledge base to generate several alternative process chains. Each process chain is capable of producing components according to the enhanced CAD model and usually consists of a sequence of heating-, cooling-, and forming processes. The dependencies between the component and the applied manufacturing processes as well as between the processes themselves need to be considered. The Expert System utilises an ontology for that purpose. The ontology represents all dependencies in a structured way and connects the information of the knowledge base via relations. The third module performs the evaluation of the generated process chains. To accomplish this, the parameters of each process are optimised with respect to the component specification, whereby the result of the best parameterisation is used as representative value. Finally, the process chain which is capable of manufacturing a functionally graded component in an optimal way regarding to the property distributions of the component description is presented by means of a dedicated specification technique.

  6. Thick Toenails

    Science.gov (United States)

    ... in individuals with nail fungus (onychomycosis), psoriasis and hypothyroidism. Those who have problems with the thickness of their toenails should consult a foot and ankle surgeon for proper diagnosis and treatment. Find an ACFAS Physician Search Search Tools Find ...

  7. Titanium-Based Hip Stems with Drug Delivery Functionality through Additive Manufacturing

    Directory of Open Access Journals (Sweden)

    Martin B. Bezuidenhout

    2015-01-01

    Full Text Available Postoperative infections are a major concern in patients that receive implants. These infections generally occur in areas with poor blood flow and pathogens do not always respond to antibiotic treatment. With the latest developments in nanotechnology, the incorporation of antibiotics into prosthetic implants may soon become a standard procedure. The success will, however, depend on the ability to control the release of antibiotics at concentrations high enough to prevent the development of antibiotic-resistant strains. Through additive manufacturing, antibiotics can be incorporated into cementless femoral stems to produce prosthetic devices with antimicrobial properties. With the emerging increase in resistance to antibiotics, the incorporation of antimicrobial compounds other than antibiotics, preferably drugs with a broader spectrum of antimicrobial activity, will have to be explored. This review highlights the microorganisms associated with total hip arthroplasty (THA, discusses the advantages and disadvantages of the latest materials used in hip implants, compares different antimicrobial agents that could be incorporated, and addresses novel ideas for future research.

  8. [Introduction of Functional Foods--Types, Manufacturing Methods and Quality Assurance].

    Science.gov (United States)

    Budai, Kinga Anna; Hankó, Balázs; AntalL, István; Zelkó, Romána

    2015-01-01

    Because of the beneficial effects to health functional foods are important elements of health promotion. The positive effect of the functional components should be based on scientific evidence-based. In addition to the traditional food processing technology new technologies have appeared, e.g. microencapsulation, edible coatings and orodispersible films, nano-technology, vacuum impregnation. In the present study, probiotics and the structure, the production and the impact of prebiotic functional cereals are discussed in more detail. In addition to their numerous advantages in connection with the safe application, several questions arise because of inadequate quality control measures prior to coming onto the market.

  9. Modelling injection moulding machines for micro manufacture applications through functional analysis

    DEFF Research Database (Denmark)

    Fantoni, G.; Tosello, Guido; Gabelloni, D.

    2012-01-01

    The paper presents the analysis of an injection moulding machine using functional analysis to identify both its critical components and possible working problems when such a machine is employed for the production of polymer-based micro products. The step-by-step procedure starts from the study...... of the process phases of a machine and then it employs functional analysis to decompose the phases and attributes functions to part features. Part features are subsequently analyzed to understand the causal chains bringing either to the desired behaviour or to failures to avoid. The assessment of the design...... solution is finally performed by gathering quantitative data from experiments. The case study investigates the design motivations and functional drivers of a micro injection moulding machine. The analysis allows identifying the correlations between failures and advantages with the design of the machine...

  10. Insights from Machine Learning for Evaluating Production Function Estimators on Manufacturing Survey Data

    OpenAIRE

    Arreola, José Luis Preciado; Johnson, Andrew L.

    2016-01-01

    Organizations like census bureaus rely on non-exhaustive surveys to estimate industry population-level production functions. In this paper we propose selecting an estimator based on a weighting of its in-sample and predictive performance on actual application datasets. We compare Cobb-Douglas functional assumptions to existing nonparametric shape constrained estimators and a newly proposed estimated presented in this paper. For simulated data, we find that our proposed estimator has the lowes...

  11. A tale of two neglected systems - structure and function of the thin- and thick-walled sieve tubes in monocotyledonous leaves.

    Directory of Open Access Journals (Sweden)

    Ted eBotha

    2013-08-01

    Full Text Available There is a large body of information relating to the ontogeny, development and the vasculature of eudicotyledonous leaves. However there is less information available concerning the vascular anatomy of monocotyledonous leaves. This is surprising, given that there are two uniquely different phloem systems present in large groups such as grasses and sedges. Monocotyledonous leaves contain marginal, large, intermediate and small longitudinal veins that are interconnected by numerous transverse veins. The longitudinal veins contain two metaphloem sieve tube types, which, based upon their ontogeny and position within the phloem, are termed early (thin-walled and late (thick-walled sieve tubes. Early metaphloem comprises sieve tubes, companion cells and vascular parenchyma cells, whilst the late metaphloem, contains thick-walled sieve tubes that lack companion cells. Thick-walled sieve tubes are generally adjacent to, or no more than one cell removed from the metaxylem. Unlike thin-walled sieve tube-companion cell complexes, thick-walled sieve tubes are connected to parenchyma by pore-plasmodesma units and are generally symplasmically isolated from the thin walled sieve tubes. This paper addresses key structural and functional differences between thin- and thick-walled sieve tubes and explores the unique advantages of alternate transport strategies that this 5 to 7 million year old dual system may offer. It would seem that these two systems may enhance, add to, or play a significant role in increasing the efficiency of solute retrieval as well as of assimilate transfer.

  12. Functional response of osteoblasts in functionally gradient titanium alloy mesh arrays processed by 3D additive manufacturing.

    Science.gov (United States)

    Nune, K C; Kumar, A; Misra, R D K; Li, S J; Hao, Y L; Yang, R

    2017-02-01

    We elucidate here the osteoblasts functions and cellular activity in 3D printed interconnected porous architecture of functionally gradient Ti-6Al-4V alloy mesh structures in terms of cell proliferation and growth, distribution of cell nuclei, synthesis of proteins (actin, vinculin, and fibronectin), and calcium deposition. Cell culture studies with pre-osteoblasts indicated that the interconnected porous architecture of functionally gradient mesh arrays was conducive to osteoblast functions. However, there were statistically significant differences in the cellular response depending on the pore size in the functionally gradient structure. The interconnected porous architecture contributed to the distribution of cells from the large pore size (G1) to the small pore size (G3), with consequent synthesis of extracellular matrix and calcium precipitation. The gradient mesh structure significantly impacted cell adhesion and influenced the proliferation stage, such that there was high distribution of cells on struts of the gradient mesh structure. Actin and vinculin showed a significant difference in normalized expression level of protein per cell, which was absent in the case of fibronectin. Osteoblasts present on mesh struts formed a confluent sheet, bridging the pores through numerous cytoplasmic extensions. The gradient mesh structure fabricated by electron beam melting was explored to obtain fundamental insights on cellular activity with respect to osteoblast functions. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Composite scaffolds for osteochondral repair obtained by combination of additive manufacturing, leaching processes and hMSC-CM functionalization.

    Science.gov (United States)

    Díaz Lantada, Andrés; Alarcón Iniesta, Hernán; García-Ruíz, Josefa Predestinación

    2016-02-01

    Articular repair is a relevant and challenging area for the emerging fields of tissue engineering and biofabrication. The need of significant gradients of properties, for the promotion of osteochondral repair, has led to the development of several families of composite biomaterials and scaffolds, using different effective approaches, although a perfect solution has not yet been found. In this study we present the design, modeling, rapid manufacturing and in vitro testing of a composite scaffold aimed at osteochondral repair. The presented composite scaffold stands out for having a functional gradient of density and stiffness in the bony phase, obtained in titanium by means of computer-aided design combined with additive manufacture using selective laser sintering. The chondral phase is obtained by sugar leaching, using a PDMS matrix and sugar as porogen, and is joined to the bony phase during the polymerization of PDMS, therefore avoiding the use of supporting adhesives or additional intermediate layers. The mechanical performance of the construct is biomimetic and the stiffness values of the bony and chondral phases can be tuned to the desired applications, by means of controlled modifications of different parameters. A human mesenchymal stem cell (h-MSC) conditioned medium (CM) is used for improving scaffold response. Cell culture results provide relevant information regarding the viability of the composite scaffolds used. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Amoxicillin effects on functional microbial community and spread of antibiotic resistance genes in amoxicillin manufacture wastewater treatment system.

    Science.gov (United States)

    Meng, Lingwei; Li, Xiangkun; Wang, Xinran; Ma, Kaili; Liu, Gaige; Zhang, Jie

    2017-11-01

    This study aimed to reveal how amoxicillin (AMX) affected the microbial community and the spread mechanism of antibiotic resistance genes (ARGs) in the AMX manufacture wastewater treatment system. For this purpose, a 1.47 L expanded granular sludge bed (EGSB) reactor was designed and run for 241days treating artificial AMX manufacture wastewater. 454 pyrosequencing was applied to analyze functional microorganisms in the system. The antibiotic genes OXA- 1 , OXA -2 , OXA -10 , TEM -1 , CTX-M -1 , class I integrons (intI1) and 16S rRNA genes were also examined in sludge samples. The results showed that the genera Ignavibacterium, Phocoenobacter, Spirochaeta, Aminobacterium and Cloacibacillus contributed to the degradation of different organic compounds (such as various sugars and amines). And the relative quantification of each β-lactam resistance gene in the study was changed with the increasing of AMX concentration. Furthermore the vertical gene transfer was the main driver for the spread of ARGs rather than horizontal transfer pathways in the system. Copyright © 2017. Published by Elsevier B.V.

  15. [Probiotics as functional food products: manufacture and approaches to evaluating of the effectiveness].

    Science.gov (United States)

    Markova, Iu M; Sheveleva, S A

    2014-01-01

    This review concerns the issues of foodfortifications and the creation of functional foods (FF) and food supplements based on probiotics and covers an issue of approaches to the regulation of probiotic food products in various countries. The status of functional foods, optimizing GIT functions, as a separate category of FF is emphasized. Considering the strain-specificity effect of probiotics, the minimum criteria used for probiotics in food products are: 1) the need to identify a probiotics at genus, species, and strain levels, using the high-resolution techniques, 2) the viability and the presence of a sufficient amount of the probiotic in product at the end of shelf life, 3) the proof of functional characteristics inherent to probiotic strains, in the controlled experiments. The recommended by FA O/WHO three-stage evaluation procedure offunctional efficiency of FF includes: Phase I--safety assessment in in vitro and in vivo experiments, Phase II--Evaluation in the Double-Blind, Randomized, Placebo-Controlled trial (DBRPC) and Phase III--Post-approval monitoring. It is noted that along with the ability to obtain statistically significant results of the evaluation, there are practical difficulties of conducting DBRPC (duration, costs, difficulties in selection of target biomarkers and populations). The promising approach for assessing the functional efficacy of FF is the concept of nutrigenomics. It examines the link between the human diet and the characteristics of his genome to determine the influence of food on the expression of genes and, ultimately, to human health. Nutrigenomic approaches are promising to assess the impact of probiotics in healthy people. The focusing on the nutrigenomic response of intestinal microbial community and its individual populations (in this regard the lactobacilli can be very informative) was proposed.

  16. Atomic pairwise distribution function analysis of the amorphous phase prepared by different manufacturing routes

    DEFF Research Database (Denmark)

    Boetker, Johan P.; Koradia, Vishal; Rades, Thomas

    2012-01-01

    was subjected to quench cooling thereby creating an amorphous form of the drug from both starting materials. The milled and quench cooled samples were, together with the crystalline starting materials, analyzed with X-ray powder diffraction (XRPD), Raman spectroscopy and atomic pair-wise distribution function...... (PDF) analysis of the XRPD pattern. When compared to XRPD and Raman spectroscopy, the PDF analysis was superior in displaying the difference between the amorphous samples prepared by milling and quench cooling approaches of the two starting materials....

  17. Time-dependent fracture probability of bilayer, lithium-disilicate-based glass-ceramic molar crowns as a function of core/veneer thickness ratio and load orientation

    Science.gov (United States)

    Anusavice, Kenneth J.; Jadaan, Osama M.; Esquivel–Upshaw, Josephine

    2013-01-01

    Recent reports on bilayer ceramic crown prostheses suggest that fractures of the veneering ceramic represent the most common reason for prosthesis failure. Objective The aims of this study were to test the hypotheses that: (1) an increase in core ceramic/veneer ceramic thickness ratio for a crown thickness of 1.6 mm reduces the time-dependent fracture probability (Pf) of bilayer crowns with a lithium-disilicate-based glass-ceramic core, and (2) oblique loading, within the central fossa, increases Pf for 1.6-mm-thick crowns compared with vertical loading. Materials and methods Time-dependent fracture probabilities were calculated for 1.6-mm-thick, veneered lithium-disilicate-based glass-ceramic molar crowns as a function of core/veneer thickness ratio and load orientation in the central fossa area. Time-dependent fracture probability analyses were computed by CARES/Life software and finite element analysis, using dynamic fatigue strength data for monolithic discs of a lithium-disilicate glass-ceramic core (Empress 2), and ceramic veneer (Empress 2 Veneer Ceramic). Results Predicted fracture probabilities (Pf) for centrally-loaded 1,6-mm-thick bilayer crowns over periods of 1, 5, and 10 years are 1.2%, 2.7%, and 3.5%, respectively, for a core/veneer thickness ratio of 1.0 (0.8 mm/0.8 mm), and 2.5%, 5.1%, and 7.0%, respectively, for a core/veneer thickness ratio of 0.33 (0.4 mm/1.2 mm). Conclusion CARES/Life results support the proposed crown design and load orientation hypotheses. Significance The application of dynamic fatigue data, finite element stress analysis, and CARES/Life analysis represent an optimal approach to optimize fixed dental prosthesis designs produced from dental ceramics and to predict time-dependent fracture probabilities of ceramic-based fixed dental prostheses that can minimize the risk for clinical failures. PMID:24060349

  18. Time-dependent fracture probability of bilayer, lithium-disilicate-based, glass-ceramic, molar crowns as a function of core/veneer thickness ratio and load orientation.

    Science.gov (United States)

    Anusavice, Kenneth J; Jadaan, Osama M; Esquivel-Upshaw, Josephine F

    2013-11-01

    Recent reports on bilayer ceramic crown prostheses suggest that fractures of the veneering ceramic represent the most common reason for prosthesis failure. The aims of this study were to test the hypotheses that: (1) an increase in core ceramic/veneer ceramic thickness ratio for a crown thickness of 1.6mm reduces the time-dependent fracture probability (Pf) of bilayer crowns with a lithium-disilicate-based glass-ceramic core, and (2) oblique loading, within the central fossa, increases Pf for 1.6-mm-thick crowns compared with vertical loading. Time-dependent fracture probabilities were calculated for 1.6-mm-thick, veneered lithium-disilicate-based glass-ceramic molar crowns as a function of core/veneer thickness ratio and load orientation in the central fossa area. Time-dependent fracture probability analyses were computed by CARES/Life software and finite element analysis, using dynamic fatigue strength data for monolithic discs of a lithium-disilicate glass-ceramic core (Empress 2), and ceramic veneer (Empress 2 Veneer Ceramic). Predicted fracture probabilities (Pf) for centrally loaded 1.6-mm-thick bilayer crowns over periods of 1, 5, and 10 years are 1.2%, 2.7%, and 3.5%, respectively, for a core/veneer thickness ratio of 1.0 (0.8mm/0.8mm), and 2.5%, 5.1%, and 7.0%, respectively, for a core/veneer thickness ratio of 0.33 (0.4mm/1.2mm). CARES/Life results support the proposed crown design and load orientation hypotheses. The application of dynamic fatigue data, finite element stress analysis, and CARES/Life analysis represent an optimal approach to optimize fixed dental prosthesis designs produced from dental ceramics and to predict time-dependent fracture probabilities of ceramic-based fixed dental prostheses that can minimize the risk for clinical failures. Copyright © 2013 Academy of Dental Materials. All rights reserved.

  19. Manufacturing Initiative

    Data.gov (United States)

    National Aeronautics and Space Administration — The Advanced Manufacturing Technologies (AMT) Project supports multiple activities within the Administration's National Manufacturing Initiative. A key component of...

  20. Study for evaluation of filter thickness in the determination of k Vp in function of the attenuation relative factors of the radiation

    International Nuclear Information System (INIS)

    Martin, J.G.; Souza, R.T.F.; Carbi, E.D.O.; Pina, D.R.

    2009-01-01

    This work consisted of evaluating 3 pairs of filters (cupper). The aim of it was to verify the best combination between attenuating material thicknesses for determination voltage value applied to X ray tube as function of attenuation relative factors. The employed methodology consisted of measuring the relative expositions, using thicknesses copper plates: (0,3, 0,5 and 0,8) mm. The thicknesses had been combined between itself with the purpose to form pairs of filters look that used ones ink Vp measurers. The great kVp band was used for 3 X ray equipment with generators of single-phase. Three-phase tension of 12 pulses and generator of tension in high frequency. The results had pointed the best combination, the thicknesses of filters (0,5/0,3) mm, because it does not have presented duplicity of values throughout all the band of evaluated tension. The results had still shown that the relative attenuation factors had not suffered significant variations between the different equipment with different voltage wave form. The variations found are related with differences in the effective energy of X ray beam. (author)

  1. Application of Ti6Al7Nb Alloy for the Manufacture of Biomechanical Functional Structures (BFS) for Custom-Made Bone Implants.

    Science.gov (United States)

    Szymczyk, Patrycja; Ziółkowski, Grzegorz; Junka, Adam; Chlebus, Edward

    2018-06-08

    Unlike conventional manufacturing techniques, additive manufacturing (AM) can form objects of complex shape and geometry in an almost unrestricted manner. AM’s advantages include higher control of local process parameters and a possibility to use two or more various materials during manufacture. In this work, we applied one of AM technologies, selective laser melting, using Ti6Al7Nb alloy to produce biomedical functional structures (BFS) in the form of bone implants. Five types of BFS structures (A1, A2, A3, B, C) were manufactured for the research. The aim of this study was to investigate such technological aspects as architecture, manufacturing methods, process parameters, surface modification, and to compare them with such functional properties such as accuracy, mechanical, and biological in manufactured implants. Initial in vitro studies were performed using osteoblast cell line hFOB 1.19 (ATCC CRL-11372) (American Type Culture Collection). The results of the presented study confirm high applicative potential of AM to produce bone implants of high accuracy and geometric complexity, displaying desired mechanical properties. The experimental tests, as well as geometrical accuracy analysis, showed that the square shaped (A3) BFS structures were characterized by the lowest deviation range and smallestanisotropy of mechanical properties. Moreover, cell culture experiments performed in this study proved that the designed and obtained implant’s internal porosity (A3) enhances the growth of bone cells (osteoblasts) and can obtain predesigned biomechanical characteristics comparable to those of the bone tissue.

  2. Development Manufacturing Method of Highly Functional Kapok Fiber Absorbent Using Irradiation

    International Nuclear Information System (INIS)

    Chung, Byung Yeoup; Kim, Jae Sung; Nho, Young Chang; Kang, Phil Hyun; Baek, Myung Hwa

    2006-01-01

    The hydrophobic characteristic of kapok fibers was changed to hydrophilic property after NaClO2, treatments which is able to break all phenolic units especially lignin. After NaClO2 treatment, NaIO4, applied to kapok fibers for opening hexagonal polysaccharide structure, this step led to produce carbonyl groups(>C=O) on kapok fibers. In the final step, NaClO2, treatments were performed again to provide carboxyl groups(-COOH) on kapok fibers. In addition, kapok fibers after all chemical treatments were retained hollow structure which was observed by scanning electron microscopy(SEM). Kapok fibers which were obtained after chemical treatments would be a good heavy metal absorbent when these fibers applied less than in 10 mg/L standard solution. Moreover, these fibers were not detached heavy metals even added physical forces and used kapok fibers are able to reuse after detached heavy metals under pH 2-3. The degree of grafting increased as the irradiation dose increased, and are in the range 32% to 250% when the concentration of glycidyl methacrylate monomer was 50 vol. %. Based on this result, various functional groups are possible to be attached on kapok fibers used by radiation grafting technique

  3. Quality of life and female sexual function after skinning vulvectomy with split-thickness skin graft in women with vulvar intraepithelial neoplasia or vulvar Paget disease.

    Science.gov (United States)

    Lavoué, V; Lemarrec, A; Bertheuil, N; Henno, S; Mesbah, H; Watier, E; Levêque, J; Morcel, K

    2013-12-01

    Vulvar intraepithelial neoplasia (VIN) and vulvar Paget disease are managed with either vulvectomy, destructive treatments (laser, antimitotic drugs) or immunostimulants. All these options are associated with functional complications. The purpose of this study was to evaluate the surgical technique consisting of skinning vulvectomy with split-thickness skin graft, and its effect on overall quality of life and sexual function. A retrospective study was conducted on thirteen patients who underwent skinning vulvectomy with split-thickness skin graft between 1999 and 2009. Overall quality of life and sexual function were assessed with the Medical Outcome Study Short Form 36 (MOS SF-36) and Female Sexual Function Index (FSFI), respectively. The median age of patients was 54 (range: 33-77) years. Three patients had Paget disease and 10 patients had VIN lesions. The excision margins were clear in 46% of cases. The incidence of occult cancer was 31%. The mean follow-up period was 77 (±35) months. Four patients experienced a relapse of their intraepithelial disease. The mean disease-free survival was 58 (±44) months. There was no significant difference in MOS SF-36 scores between the study population and the general population. The patients assessed with the FSFI regained normal sexual function after the surgical procedure. Skinning vulvectomy with split-thickness skin graft is a feasible technique yielding good results in terms of quality of life and sexual function. It enables occult cancer to be diagnosed in patients with VIN or Paget disease. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Modeling FBG sensors sensitivity from cryogenic temperatures to room temperature as a function of metal coating thickness

    Science.gov (United States)

    Vendittozzi, Cristian; Felli, Ferdinando; Lupi, Carla

    2018-05-01

    Fiber optics with photo-imprinted Bragg grating have been studied in order to be used as temperature sensors in cryogenic applications. The main disadvantage presented by Fiber Bragg Grating (FBG) sensors is the significant drop in sensitivity as temperature decreases, mainly due to the critical lowering of the thermo-optic coefficient of the fiber and the very low thermal expansion coefficient (CTE) of fused silica at cryogenic temperatures. Thus, especially for the latter, it is important to enhance sensitivity to temperature by depositing a metal coating presenting higher CTE. In this work the thermal sensitivity of metal-coated FBG sensors has been evaluated by considering their elongation within temperature variations in the cryogenic range, as compared to bare fiber sensors. To this purpose, a theoretical model simulating elongation of metal-coated sensors has been developed. The model has been used to evaluate the behaviour of different metals which can be used as coating (Ni, Cu, Al, Zn, Pb and In). The optimal coating thickness has been calculated at different fixed temperature (from 5 K to 100 K) for each metal. It has been found that the metal coating effectiveness depends on thickness and operating temperature in accordance to our previous experimental work and theory suggest.

  5. Thermoelastic analysis of non-uniform pressurized functionally graded cylinder with variable thickness using first order shear deformation theory(FSDT) and perturbation method

    Science.gov (United States)

    Khoshgoftar, M. J.; Mirzaali, M. J.; Rahimi, G. H.

    2015-11-01

    Recently application of functionally graded materials(FGMs) have attracted a great deal of interest. These materials are composed of various materials with different micro-structures which can vary spatially in FGMs. Such composites with varying thickness and non-uniform pressure can be used in the aerospace engineering. Therefore, analysis of such composite is of high importance in engineering problems. Thermoelastic analysis of functionally graded cylinder with variable thickness under non-uniform pressure is considered. First order shear deformation theory and total potential energy approach is applied to obtain the governing equations of non-homogeneous cylinder. Considering the inner and outer solutions, perturbation series are applied to solve the governing equations. Outer solution for out of boundaries and more sensitive variable in inner solution at the boundaries are considered. Combining of inner and outer solution for near and far points from boundaries leads to high accurate displacement field distribution. The main aim of this paper is to show the capability of matched asymptotic solution for different non-homogeneous cylinders with different shapes and different non-uniform pressures. The results can be used to design the optimum thickness of the cylinder and also some properties such as high temperature residence by applying non-homogeneous material.

  6. Effect of type of concentrated sweet cream buttermilk on the manufacture, yield, and functionality of pizza cheese.

    Science.gov (United States)

    Govindasamy-Lucey, S; Lin, T; Jaeggi, J J; Martinelli, C J; Johnson, M E; Lucey, J A

    2007-06-01

    Sweet cream buttermilk (SCB) is a rich source of phospholipids (PL). Most SCB is sold in a concentrated form. This study was conducted to determine if different concentration processes could affect the behavior of SCB as an ingredient in cheese. Sweet cream buttermilk was concentrated by 3 methods: cold ( pizza cheese was manufactured using the 3 different types of concentrated SCB as an ingredient in standardized milk. Cheesemilks of casein:fat ratio of 1.0 and final casein content approximately 2.7% were obtained by blending ultrafiltered (UF)-SCB retentate (19.9% solids), RO-SCB retentate (21.9% solids), or EVAP-SCB retentate (36.6% solids) with partially skimmed milk (11.2% solids) and cream (34.6% fat). Control milk (11.0% solids) was standardized by blending partially skimmed milk with cream. Cheese functionality was assessed using dynamic low-amplitude oscillatory rheology, UW Meltprofiler (degree of flow after heating to 60 degrees C), and performance of cheese on pizza. Initial trials with SCB-fortified cheeses resulted in approximately 4 to 5% higher moisture (51 to 52%) than control cheese (approximately 47%). In subsequent trials, procedures were altered to obtain similar moisture content in all cheeses. Fat recoveries were significantly lower in RO- and EVAP-SCB cheeses than in control or UF-SCB cheeses. Nitrogen recoveries were not significantly different but tended to be slightly lower in control cheeses than the various SCB cheeses. Total PL recovered in SCB cheeses ( approximately 32 to 36%) were lower than control ( approximately 41%), even though SCB is high in PL. From the rheology test, the loss tangent curves at temperatures > 40 degrees C increased as cheese aged up to a month and were significantly lower in SCB cheeses than the control, indicating lower meltability. Degree of flow in all the cheeses was similar regardless of the treatment used, and as cheese ripened, it increased for all cheeses. Trichloroacetic acid-soluble N levels were

  7. Social manufacturing

    OpenAIRE

    Hamalainen, Markko; Karjalainen, Jesse

    2017-01-01

    New business models harnessing the power of individuals have already revolutionized service industries and digital content production. In this study, we investigate whether a similar phenomenon is taking place in manufacturing industries. We start by conceptually defining two distinct forms of firm-individual collaboration in manufacturing industries: (1) social cloud manufacturing, in which firms outsource manufacturing to individuals, and (2) social platform manufacturing, in which firms pr...

  8. Optimizing Functional Outcomes in Mandibular Condyle Reconstruction With the Free Fibula Flap Using Computer-Aided Design and Manufacturing Technology.

    Science.gov (United States)

    Lee, Z-Hye; Avraham, Tomer; Monaco, Casian; Patel, Ashish A; Hirsch, David L; Levine, Jamie P

    2018-05-01

    Mandibular defects involving the condyle represent a complex reconstructive challenge for restoring proper function of the temporomandibular joint (TMJ) because it requires precise bone graft alignment for full restoration of joint function. The use of computer-aided design and manufacturing (CAD/CAM) technology can aid in accurate reconstruction of mandibular condyle defects with a vascularized free fibula flap without the need for additional adjuncts. The purpose of this study was to analyze clinical and functional outcomes after reconstruction of mandibular condyle defects using only a free fibula graft with the help of virtual surgery techniques. A retrospective review was performed to identify all patients who underwent mandibular reconstruction with only a free fibula flap without any TMJ adjuncts after a total condylectomy. Three-dimensional modeling software was used to plan and execute reconstruction for all patients. From 2009 through 2014, 14 patients underwent reconstruction of mandibular defects involving the condyle with the aid of virtual surgery technology. The average age was 38.7 years (range, 11 to 77 yr). The average follow-up period was 2.6 years (range, 0.8 to 4.2 yr). Flap survival was 100% (N = 14). All patients reported improved facial symmetry, adequate jaw opening, and normal dental occlusion. In addition, they achieved good functional outcomes, including normal intelligible speech and the tolerance of a regular diet with solid foods. Maximal interincisal opening range for all patients was 25 to 38 mm with no lateral deviation or subjective joint pain. No patient had progressive joint hypomobility or condylar migration. One patient had ankylosis, which required release. TMJ reconstruction poses considerable challenges in bone graft alignment for full restoration of joint function. The use of CAD/CAM technology can aid in accurate reconstruction of mandibular condyle defects with a vascularized free fibula flap through precise

  9. Design and Manufacture of an Energy-saving LED Lantern with Paper-cut Figure Projection Function

    Directory of Open Access Journals (Sweden)

    Tzer-Ming Jeng

    2014-03-01

    Full Text Available This work designed and manufactured an energy-saving LED lantern adorned with a revolving circle of paper characters, showing the shadow-show function. It used the high-cooling performance LED lamp to light. A small motor was also installed in the lantern to rotate paper characters. Under the light of LED, the rotating paper characters in the lantern would play a shadow show. Many shadows of well-known characters ran on the skin surface of the lantern, being like to tell a story and having lots of fun. For example, “The Magical Monkey King” is the classic Chinese adventure tale. It is one of the favorites in our growing collection of Asian children's books. One can think about that it will touch your mind and return you back to the childhood when such shadows of well-known characters run on the skin surface of the lantern. Besides, it used a special assembly of aluminum-alloy pin-fin heat sinks to be the cooling device of LED lamp within the lantern. The configuration of the cooling device was a vertical hollow square cylinder. Many circular pin fins extended inwardly from the internal surfaces of the vertical cylinder. The LEDs were installed onto the external surfaces of the vertical cylinder. Therefore, the chimney effect of the free convection heat transfer would be formed. A series of experimental tests demonstrated that such cooling design enhanced the total heat-transfer capacity remarkably.

  10. Structural-Geometric Functionalization of the Additively Manufactured Prototype of Biomimetic Multispiked Connecting Ti-Alloy Scaffold for Entirely Noncemented Resurfacing Arthroplasty Endoprostheses

    Directory of Open Access Journals (Sweden)

    Ryszard Uklejewski

    2017-01-01

    Full Text Available The multispiked connecting scaffold (MSC-Scaffold prototype, inspired by the biological system of anchorage of the articular cartilage in the periarticular trabecular bone by means of subchondral bone interdigitations, is the essential innovation in fixation of the bone in resurfacing arthroplasty (RA endoprostheses. The biomimetic MSC‐Scaffold, due to its complex geometric structure, can be manufactured only using additive technology, for example, selective laser melting (SLM. The major purpose of this work is determination of constructional possibilities for the structural-geometric functionalization of SLM‐manufactured MSC‐Scaffold prototype, compensating the reduced ability—due to the SLM technological limitations—to accommodate the ingrowing bone filling the interspike space of the prototype, which is important for the prototype bioengineering design. Confocal microscopy scanning of components of the SLM‐manufactured prototype of total hip resurfacing arthroplasty (THRA endoprosthesis with the MSC‐Scaffold was performed. It was followed by the geometric measurements of a variety of specimens designed as the fragments of the MSC-Scaffold of both THRA endoprosthesis components. The reduced ability to accommodate the ingrowing bone tissue in the SLM‐manufactured prototypes versus that in the corresponding CAD models has been quantitatively determined. Obtained results enabled to establish a way of compensatory structural‐geometric functionalization, allowing the MSC‐Scaffold adequate redesigning and manufacturing in additive SLM technology.

  11. Flexible, Transparent, Thickness-Controllable SWCNT/PEDOT:PSS Hybrid Films Based on Coffee-Ring Lithography for Functional Noncontact Sensing Device

    KAUST Repository

    Tai, Yanlong

    2015-12-08

    Flexible transparent conductive films (FTCFs) as the essential components of the next generation of functional circuits and devices are presently attracting more attention. Here, a new strategy has been demonstrated to fabricate thickness-controllable FTCFs through coffee ring lithography (CRL) of single-wall carbon nanotube (SWCNT)/poly(3,4-ethylenedioxythiophene)-polystyrenesulfonate (PEDOT:PSS) hybrid ink. The influence of ink concentration and volume on the thickness and size of hybrid film has been investigated systematically. Results show that the final FTCFs present a high performance, including a homogeneous thickness of 60-65 nm, a sheet resistance of 1.8 kohm/sq, a visible/infrared-range transmittance (79%, PET = 90%), and a dynamic mechanical property (>1000 cycle, much better than ITO film), respectively, when SWCNT concentration is 0.2 mg/mL, ink volume is 0.4 μL, drying at room temperature. Moreover, the benefits of these kinds of FTCFs have been verified through a full transparent, flexible noncontact sensing panel (3 × 4 sensing pixels) and a flexible battery-free wireless sensor based on a humidity sensing mechanism, showing excellent human/machine interaction with high sensitivity, good stability, and fast response/recovery ability. © 2015 American Chemical Society.

  12. Flexible, Transparent, Thickness-Controllable SWCNT/PEDOT:PSS Hybrid Films Based on Coffee-Ring Lithography for Functional Noncontact Sensing Device

    KAUST Repository

    Tai, Yanlong; Yang, Zhen Guo

    2015-01-01

    Flexible transparent conductive films (FTCFs) as the essential components of the next generation of functional circuits and devices are presently attracting more attention. Here, a new strategy has been demonstrated to fabricate thickness-controllable FTCFs through coffee ring lithography (CRL) of single-wall carbon nanotube (SWCNT)/poly(3,4-ethylenedioxythiophene)-polystyrenesulfonate (PEDOT:PSS) hybrid ink. The influence of ink concentration and volume on the thickness and size of hybrid film has been investigated systematically. Results show that the final FTCFs present a high performance, including a homogeneous thickness of 60-65 nm, a sheet resistance of 1.8 kohm/sq, a visible/infrared-range transmittance (79%, PET = 90%), and a dynamic mechanical property (>1000 cycle, much better than ITO film), respectively, when SWCNT concentration is 0.2 mg/mL, ink volume is 0.4 μL, drying at room temperature. Moreover, the benefits of these kinds of FTCFs have been verified through a full transparent, flexible noncontact sensing panel (3 × 4 sensing pixels) and a flexible battery-free wireless sensor based on a humidity sensing mechanism, showing excellent human/machine interaction with high sensitivity, good stability, and fast response/recovery ability. © 2015 American Chemical Society.

  13. Improved diagnostic accuracy of Alzheimer's disease by combining regional cortical thickness and default mode network functional connectivity: Validated in the Alzheimer's disease neuroimaging initiative set

    International Nuclear Information System (INIS)

    Park, Ji Eun; Park, Bum Woo; Kim, Sang Joon; Kim, Ho Sung; Choi, Choong Gon; Jung, Seung Jung; Oh, Joo Young; Shim, Woo Hyun; Lee, Jae Hong; Roh, Jee Hoon

    2017-01-01

    To identify potential imaging biomarkers of Alzheimer's disease by combining brain cortical thickness (CThk) and functional connectivity and to validate this model's diagnostic accuracy in a validation set. Data from 98 subjects was retrospectively reviewed, including a study set (n = 63) and a validation set from the Alzheimer's Disease Neuroimaging Initiative (n = 35). From each subject, data for CThk and functional connectivity of the default mode network was extracted from structural T1-weighted and resting-state functional magnetic resonance imaging. Cortical regions with significant differences between patients and healthy controls in the correlation of CThk and functional connectivity were identified in the study set. The diagnostic accuracy of functional connectivity measures combined with CThk in the identified regions was evaluated against that in the medial temporal lobes using the validation set and application of a support vector machine. Group-wise differences in the correlation of CThk and default mode network functional connectivity were identified in the superior temporal (p < 0.001) and supramarginal gyrus (p = 0.007) of the left cerebral hemisphere. Default mode network functional connectivity combined with the CThk of those two regions were more accurate than that combined with the CThk of both medial temporal lobes (91.7% vs. 75%). Combining functional information with CThk of the superior temporal and supramarginal gyri in the left cerebral hemisphere improves diagnostic accuracy, making it a potential imaging biomarker for Alzheimer's disease

  14. Contribution of CT quantified emphysema, air trapping and airway wall thickness on pulmonary function in male smokers with and without COPD.

    Science.gov (United States)

    Mohamed Hoesein, Firdaus A A; de Jong, Pim A; Lammers, Jan-Willem J; Mali, Willem P Th M; Mets, Onno M; Schmidt, Michael; de Koning, Harry J; Aalst, Carlijn van der; Oudkerk, Matthijs; Vliegenthart, Rozemarijn; Ginneken, Bram van; van Rikxoort, Eva M; Zanen, Pieter

    2014-09-01

    Emphysema, airway wall thickening and air trapping are associated with chronic obstructive pulmonary disease (COPD). All three can be quantified by computed tomography (CT) of the chest. The goal of the current study is to determine the relative contribution of CT derived parameters on spirometry, lung volume and lung diffusion testing. Emphysema, airway wall thickening and air trapping were quantified automatically on CT in 1,138 male smokers with and without COPD. Emphysema was quantified by the percentage of voxels below -950 Hounsfield Units (HU), airway wall thickness by the square root of wall area for a theoretical airway with 10 mm lumen perimeter (Pi10) and air trapping by the ratio of mean lung density at expiration and inspiration (E/I-ratio). Spirometry, residual volume to total lung capacity (RV/TLC) and diffusion capacity (Kco) were obtained. Standardized regression coefficients (β) were used to analyze the relative contribution of CT changes to pulmonary function measures. The independent contribution of the three CT measures differed per lung function parameter. For the FEV1 airway wall thickness was the most contributing structural lung change (β = -0.46), while for the FEV1/FVC this was emphysema (β = -0.55). For the residual volume (RV) air trapping was most contributing (β = -0.35). Lung diffusion capacity was most influenced by emphysema (β = -0.42). In a cohort of smokers with and without COPD the effect of different CT changes varies per lung function measure and therefore emphysema, airway wall thickness and air trapping need to be taken in account.

  15. Brain changes following four weeks of unimanual motor training: Evidence from behavior, neural stimulation, cortical thickness, and functional MRI.

    Science.gov (United States)

    Sale, Martin V; Reid, Lee B; Cocchi, Luca; Pagnozzi, Alex M; Rose, Stephen E; Mattingley, Jason B

    2017-09-01

    Although different aspects of neuroplasticity can be quantified with behavioral probes, brain stimulation, and brain imaging assessments, no study to date has combined all these approaches into one comprehensive assessment of brain plasticity. Here, 24 healthy right-handed participants practiced a sequence of finger-thumb opposition movements for 10 min each day with their left hand. After 4 weeks, performance for the practiced sequence improved significantly (P left (mean increase: 53.0% practiced, 6.5% control) and right (21.0%; 15.8%) hands. Training also induced significant (cluster p-FWE right hemisphere, 301 voxel cluster; left hemisphere 700 voxel cluster), and sensorimotor cortices and superior parietal lobules (right hemisphere 864 voxel cluster; left hemisphere, 1947 voxel cluster). Transcranial magnetic stimulation over the right ("trained") primary motor cortex yielded a 58.6% mean increase in a measure of motor evoked potential amplitude, as recorded at the left abductor pollicis brevis muscle. Cortical thickness analyses based on structural MRI suggested changes in the right precentral gyrus, right post central gyrus, right dorsolateral prefrontal cortex, and potentially the right supplementary motor area. Such findings are consistent with LTP-like neuroplastic changes in areas that were already responsible for finger sequence execution, rather than improved recruitment of previously nonutilized tissue. Hum Brain Mapp 38:4773-4787, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  16. Gate-first integration of tunable work function metal gates of different thicknesses into high-k metal gates CMOS FinFETs for multi- VTh engineering

    KAUST Repository

    Hussain, Muhammad Mustafa

    2010-03-01

    Gate-first integration of tunable work function metal gates of different thicknesses (320 nm) into high-k/metal gates CMOS FinFETs was demonstrated to achieve multiple threshold voltages (VTh) for 32-nm technology and beyond logic, memory, input/output, and system-on-a-chip applications. The fabricated devices showed excellent short-channel effect immunity (drain-induced barrier lowering ∼ 40 mV/V), nearly symmetric VTh, low T inv(∼ 1.4 nm), and high Ion(∼780μAμm) for N/PMOS without any intentional strain enhancement. © 2006 IEEE.

  17. Gate-first integration of tunable work function metal gates of different thicknesses into high-k metal gates CMOS FinFETs for multi- VTh engineering

    KAUST Repository

    Hussain, Muhammad Mustafa; Smith, Casey Eben; Harris, Harlan Rusty; Young, Chadwin; Tseng, Hsinghuang; Jammy, Rajarao

    2010-01-01

    Gate-first integration of tunable work function metal gates of different thicknesses (320 nm) into high-k/metal gates CMOS FinFETs was demonstrated to achieve multiple threshold voltages (VTh) for 32-nm technology and beyond logic, memory, input/output, and system-on-a-chip applications. The fabricated devices showed excellent short-channel effect immunity (drain-induced barrier lowering ∼ 40 mV/V), nearly symmetric VTh, low T inv(∼ 1.4 nm), and high Ion(∼780μAμm) for N/PMOS without any intentional strain enhancement. © 2006 IEEE.

  18. Manufacturing tolerant topology optimization

    DEFF Research Database (Denmark)

    Sigmund, Ole

    2009-01-01

    In this paper we present an extension of the topology optimization method to include uncertainties during the fabrication of macro, micro and nano structures. More specifically, we consider devices that are manufactured using processes which may result in (uniformly) too thin (eroded) or too thick...... (dilated) structures compared to the intended topology. Examples are MEMS devices manufactured using etching processes, nano-devices manufactured using e-beam lithography or laser micro-machining and macro structures manufactured using milling processes. In the suggested robust topology optimization...... approach, under- and over-etching is modelled by image processing-based "erode" and "dilate" operators and the optimization problem is formulated as a worst case design problem. Applications of the method to the design of macro structures for minimum compliance and micro compliant mechanisms show...

  19. Report on achievements in fiscal 1998. Project of research and development of regional consortium (Development of energy saving type manufacturing process of smart material having electromagnetic wave absorbing function utilizing microwave-hydrothermal process); 1999 nendo micro ha - suinetsuho wo riyoshita denjiyha kyushu kino wo yusuru smart zairyo no sho energy gata seizo process no kaihatsu seika hokokusho. 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    The present research is aimed at developing an energy saving manufacturing process of a smart material having electromagnetic wave absorbing function in conventionally undeveloped bands as high as 30 MHz to 60 GHz. The process is composed of design, synthesis and forming of hybrid electromagnetic wave absorbing materials in which such magnetically permeable substance and conductive substance as ferrite is covered on fabrics having large dielectric loss through controlling the particle diameters and membrane thickness by using the microwave-hydrothermal process. The following researches have been performed: (1) development of smart material design and hybrid process technology, (2) evaluation on the electromagnetic wave absorbing function, (3) development of a manufacturing process for a smart forming material, and (4) development of a process for processing fabric material surface utilizing ocean resources. In Item (1), electromagnetic wave shielding function of 30 dB or higher was found provided in 200 MHz to 2 GHz bands. Calcium silicate and ferrite were manufactured by using the microwave-hydrothermal process, and calcium silicate was formed with energy being saved by using the hydrothermal curing process. In Item (2), TR17301A made by the Advanced Corporation was used to structure a system to evaluate the field in the vicinity of electric field and magnetic field. In Item (3), a ferrite forming material manufacturing process was developed. In Item (4), an attempt was carried out on forming ferrite by using reactions of nickel salt and iron salt. (NEDO)

  20. Development of a metrology method for composition and thickness of barium strontium titanate thin films

    International Nuclear Information System (INIS)

    Remmel, Thomas; Werho, Dennis; Liu, Ran; Chu, Peir

    1998-01-01

    Thin films of barium strontium titanate (BST) are being investigated as the charge storage dielectric in advanced memory devices, due to their promise for high dielectric constant. Since the capacitance of BST films is a function of both stoichiometry and thickness, implementation into manufacturing requires precise metrology methods to monitor both of these properties. This is no small challenge, considering the BST film thicknesses are 60 nm or less. A metrology method was developed based on X-ray Fluorescence and applied to the measurement of stoichiometry and thickness of BST thin films in a variety of applications

  1. Influence of functional group on the electrical transport properties of polyvinyl alcohol grafted multiwall carbon nanotube composite thick film

    Science.gov (United States)

    Kumar Das, Amit; Dharmana, Reuben; Mukherjee, Ayan; Baba, Koumei; Hatada, Ruriko; Kumar Meikap, Ajit

    2018-04-01

    We present a novel technique to obtain a higher or lower value of dielectric constant due to the variation of a functional group on the surface of multiwall carbon nanotube (MWCNTs) for a polyvinyl alcohol (PVA) grafted MWCNT system. We have prepared PVA grafted pristine and different types of functionalized (-COOH, -OH, and -NH2) MWCNT nanocomposite films. The strong interfacial interaction between the host PVA matrix and nanofiller is characterized by different experimental techniques. The frequency variation of the electrical transport properties of the composite films is investigated in a wide temperature range (303 ≤ T ≤ 413 K) and frequency range (20 Hz ≤ f ≤ 1 MHz). The dielectric constant of the amine (-NH2) functionalized MWCNT incorporated PVA film is about 2 times higher than that of the pristine MWCNT embedded PVA film. The temperature variation of the dielectric constant shows an anomalous behaviour. The modified Cole-Cole equation simulated the experimentally observed dielectric spectroscopy at high temperature. The ac conductivity of the composite films obeys the correlated barrier hopping model. The imaginary part of the electric modulus study shows the ideal Debye-type behaviour at low frequency and deviation of that at high frequency. To illustrate the impedance spectroscopy of the nanocomposite films, we have proposed an impedance based battery equivalent circuit model. The current-voltage characteristic shows hysteresis behaviour of the nanocomposite films. The trap state height for all composite films is evaluated by simulating the current density-electric field data with the Poole-Frenkel emission model. This investigation opens a new avenue for designing electronic devices with a suitable combination of cost effective soft materials.

  2. Precision manufacturing

    CERN Document Server

    Dornfeld, David

    2008-01-01

    Today there is a high demand for high-precision products. The manufacturing processes are now highly sophisticated and derive from a specialized genre called precision engineering. Precision Manufacturing provides an introduction to precision engineering and manufacturing with an emphasis on the design and performance of precision machines and machine tools, metrology, tooling elements, machine structures, sources of error, precision machining processes and precision process planning. As well as discussing the critical role precision machine design for manufacturing has had in technological developments over the last few hundred years. In addition, the influence of sustainable manufacturing requirements in precision processes is introduced. Drawing upon years of practical experience and using numerous examples and illustrative applications, David Dornfeld and Dae-Eun Lee cover precision manufacturing as it applies to: The importance of measurement and metrology in the context of Precision Manufacturing. Th...

  3. Composition, functional properties and sensory characteristics of Mozzarella cheese manufactured from different somatic cell counts in milk

    Directory of Open Access Journals (Sweden)

    Evelise Andreatta

    2009-10-01

    Full Text Available In the present study, composition, functional properties and sensory characteristics of Mozzarella cheese produced from milk with somatic cell counts (SCC at low (800,000 cells/mL levels were investigated. Three batches of cheese were produced for each SCC category. The cheeses were vacuum packed in plastic bags and analysed after 2, 9, 16, 23 and 30 days of storage at 4ºC. SCC level did not affect the moisture, fat, total protein and ash content, mesophilic and psychrotrophic bacteria, and sensory parameters of Mozzarella cheese. However, meltability increased in cheese manufactured from high SCC milk. Results indicated that raw milk used to produce Mozzarella cheese should not contain high SCC (>800,000 cells/mL in order to avoid changes in the functional properties of the Mozzarella cheese.No presente estudo foram investigadas a composição, as propriedades funcionais e as características sensoriais do queijo Mussarela produzido a partir de leite com contagens de células somáticas (CCS em níveis baixos (800.000 CS/mL. Foram produzidos 3 lotes de queijo para cada CCS. Os queijos foram embalados a vácuo e analisados após 2, 9, 16, 23 e 30 dias de armazenamento a 4ºC. O nível de CS não afetou a umidade, os teores de gordura, proteína total e cinzas, os níveis de bactérias mesófilas e psicrotróficas, e os parâmetros sensoriais do queijo Mussarela. Entretanto, houve aumento da capacidade de derretimento no queijo fabricado com leite de alta CCS. Os resultados indicam que o leite cru utilizado para a produção de queijo Mussarela não deve conter níveis de CS acima de 800.000/mL, para evitar alterações nas propriedades funcionais do queijo Mussarela.

  4. Calibration of the apparent temperature of silicon single crystals as a function of their true temperature and their thickness as determined by infrared measurements

    International Nuclear Information System (INIS)

    Smither, R.K.; Fernandez, P.B.

    1993-09-01

    Viewing the surface of objects subjected to high heat fluxes with an infrared camera or infrared sensor has proved to be a very effective method for monitoring the magnitude and distribution of surface temperature on the object. This approach has been quite useful in studies of cooling silicon crystals in monochromators subject to high heat loads. The main drawback to this method is that single crystals of silicon are partially transparent to the infrared radiation monitored in most infrared cameras. This means that the infrared radiation emitted from the surface contains a component that comes from the interior of the crystal and that the intensity of the emitted radiation and thus the apparent temperature of the surface of the crystal depends on the thickness of the crystal and the kind of coating on the back (and/or the front) of the crystal. The apparent temperature of the crystal increases as the crystal is made thicker. A series of experiments were performed at Argonne National Laboratory to calibrate the apparent surface temperature of the crystal as measured with an infrared camera as a function of the crystal thickness and the type of coating (if any) on the back side of the crystal. A good reflecting surface on the back side of the crystal increases the apparent temperature of the crystal and simulates the response of a crystal twice the thickness. These measurements make it possible to interpret the infrared signals from cooled silicon crystals used in past high heat load experiments. A number of examples are given for data taken in synchrotron experiments with high intensity x-ray beams

  5. Serum neuron-specific enolase, biogenic amino-acids and neurobehavioral function in lead-exposed workers from lead-acid battery manufacturing process.

    Science.gov (United States)

    Ravibabu, K; Barman, T; Rajmohan, H R

    2015-01-01

    The interaction between serum neuron-specific enolase (NSE), biogenic amino-acids and neurobehavioral function with blood lead levels in workers exposed to lead form lead-acid battery manufacturing process was not studied. To evaluate serum NSE and biogenic amino-acids (dopamine and serotonin) levels, and neurobehavioral performance among workers exposed to lead from lead-acid storage battery plant, and its relation with blood lead levels (BLLs). In a cross-sectional study, we performed biochemical and neurobehavioral function tests on 146 workers exposed to lead from lead-acid battery manufacturing process. BLLs were assessed by an atomic absorption spectrophotometer. Serum NSE, dopamine and serotonin were measured by ELISA. Neurobehavioral functions were assessed by CDC-recommended tests---simple reaction time (SRT), symbol digit substitution test (SDST), and serial digit learning test (SDLT). There was a significant correlation (r 0.199, pSDLT and SRT had also a significant positive correlation (r 0.238, p<0.01). NSE had a negative correlation (r -0.194, p<0.05) with serotonin level. Multiple linear regression analysis revealed that both SRT and SDST had positive significant associations with BLL. SRT also had a positive significant association with age. Serum NSE cannot be used as a marker for BLL. The only domain of neurobehavioral function tests that is affected by increased BLL in workers of lead-acid battery manufacturing process is that of the "attention and perception" (SDST).

  6. Long-term Saxagliptin Treatment Improves Endothelial Function but not Pulse Wave Velocity and Intima-Media Thickness in Type 2 Diabetic Patients.

    Science.gov (United States)

    Dell'Oro, Raffaella; Maloberti, Alessandro; Nicoli, Francesco; Villa, Paolo; Gamba, Pierluigi; Bombelli, Michele; Mancia, Giuseppe; Grassi, Guido

    2017-12-01

    Pharmacological inhibition of dipeptidyl-peptidase-4 may represent a promising therapeutic approach for glucose control and vascular protection. No information is available on the effects of saxagliptin (S) on aortic pulse wave velocity, carotid intima-media thickness and flow-mediated dilation (FMD, brachial artery) in diabetes. We investigated the long-term effects of S, as add-on therapy to metformin, on the above mentioned variables. In 16 patients with decompensated diabetes aortic pulse wave velocity, carotid intima-media thickness and FMD, office and 24-h ambulatory blood pressure, anthropometric, biochemical and metabolic parameters were measured at baseline and after 6 and 12 months of treatment. A group of 16 compensated diabetics served as controls. The two groups showed superimposable values of the different parameters, with the exception of glycated hemoglobin, blood glucose significantly (P function, related at least in part to the concomitant improvement in glucose metabolism. This may represent a first step in the chain of events leading to a reduction in the progression of the vascular atherogenic process.

  7. [Carotid intima-media thickness distribution according to the stratification of cardiovascular risk by means of Framingham-REGICOR and score function charts].

    Science.gov (United States)

    Hermida-Ameijeiras, Á; López-Paz, J E; Riveiro-Cruz, M A; Calvo-Gómez, C

    2016-01-01

    Carotid intima-media thickness (cIMT) has been suggested as a further tool for risk function charts. The aim of this study was to describethe relationship between cIMT and cardiovascular risk (CVR) estimation according to Framingham-REGICOR and SCORE equations. Observational, cross-sectional cohort study from 362 hypertensive subjects. Demographic and clinical information were collected as well as laboratory, ultrasonographic and CVR estimation by the Framingham-REGICOR and SCORE functions. Statistical analysis was performed using SPSS software (version 20,0). To analyze the data, statistical tests such as Chi-square, T-test, ANOVA, and Pearson correlation coefficient were used. According to both functions, differences on mean cIMT were found between low CVR group and intermediate to high groups. No differences were found between intermediate and high risk groups (cIMT: 0,73mm low risk patients vs. 0,89 or 0,88mm respectively according to SCORE function and cIMT: 0,73 vs. 0,85 or 0,87mm respectively according to Framingham-REGICOR function). cIMT correlated positively with CVR estimation according to both SCORE (r=0,421; P<.01), and Framingham-REGICOR functions (r=0,363; P<.01). cIMT correlates positively with CVR estimated by SCORE and Framingham-REGICOR functions. cIMT in those subjects at intermediate risk is similar to those at high risk. Our findings highlight the importance of carotid ultrasound in identifying silent target-organ damage in those patients at intermediate CVR. Copyright © 2015 SEHLELHA. Published by Elsevier España, S.L.U. All rights reserved.

  8. Insulin resistance and carotid intima-media thickness mediate the association between resting-state heart rate variability and executive function: A path modelling study.

    Science.gov (United States)

    Kemp, Andrew H; López, Santiago Rodríguez; Passos, Valeria M A; Bittencourt, Marcio S; Dantas, Eduardo M; Mill, José G; Ribeiro, Antonio L P; Thayer, Julian F; Bensenor, Isabela M; Lotufo, Paulo A

    2016-05-01

    Research has linked high-frequency heart rate variability (HF-HRV) to cognitive function. The present study adopts a modern path modelling approach to understand potential causal pathways that may underpin this relationship. Here we examine the association between resting-state HF-HRV and executive function in a large sample of civil servants from Brazil (N=8114) recruited for the Brazilian Longitudinal Study of Adult Health (ELSA-Brasil). HF-HRV was calculated from 10-min resting-state electrocardiograms. Executive function was assessed using the trail-making test (version B). Insulin resistance (a marker of type 2 diabetes mellitus) and carotid intima-media thickness (subclinical atherosclerosis) mediated the relationship between HRV and executive function in seriatim. A limitation of the present study is its cross-sectional design; therefore, conclusions must be confirmed in longitudinal study. Nevertheless, findings support that possibility that HRV provides a 'spark' that initiates a cascade of adverse downstream effects that subsequently leads to cognitive impairment. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Affordable and Scalable Manufacturing of Wearable Multi-Functional Sensory “Skin” for Internet of Everything Applications

    KAUST Repository

    Nassar, Joanna M.

    2017-10-01

    Demand for wearable electronics is expected to at least triple by 2020, embracing all sorts of Internet of Everything (IoE) applications, such as activity tracking, environmental mapping, and advanced healthcare monitoring, in the purpose of enhancing the quality of life. This entails the wide availability of free-form multifunctional sensory systems (i.e “skin” platforms) that can conform to the variety of uneven surfaces, providing intimate contact and adhesion with the skin, necessary for localized and enhanced sensing capabilities. However, current wearable devices appear to be bulky, rigid and not convenient for continuous wear in everyday life, hindering their implementation into advanced and unexplored applications beyond fitness tracking. Besides, they retail at high price tags which limits their availability to at least half of the World’s population. Hence, form factor (physical flexibility and/or stretchability), cost, and accessibility become the key drivers for further developments. To support this need in affordable and adaptive wearables and drive academic developments in “skin” platforms into practical and functional consumer devices, compatibility and integration into a high performance yet low power system is crucial to sustain the high data rates and large data management driven by IoE. Likewise, scalability becomes essential for batch fabrication and precision. Therefore, I propose to develop three distinct but necessary “skin” platforms using scalable and cost effective manufacturing techniques. My first approach is the fabrication of a CMOS-compatible “silicon skin”, crucial for any truly autonomous and conformal wearable device, where monolithic integration between heterogeneous material-based sensory platform and system components is a challenge yet to be addressed. My second approach displays an even more affordable and accessible “paper skin”, using recyclable and off-the-shelf materials, targeting environmental

  10. Serum Neuron-Specific Enolase, Biogenic Amino-Acids and Neurobehavioral Function in Lead-Exposed Workers from Lead-Acid Battery Manufacturing Process

    OpenAIRE

    K Ravibabu; T Barman; HR Rajmohan

    2015-01-01

    Background: The interaction between serum neuron-specific enolase (NSE), biogenic amino-acids and neurobehavioral function with blood lead levels in workers exposed to lead form lead-acid battery manufacturing process was not studied. Objective: To evaluate serum NSE and biogenic amino-acids (dopamine and serotonin) levels, and neurobehavioral performance among workers exposed to lead from lead-acid storage battery plant, and its relation with blood lead levels (BLLs). Methods: In a c...

  11. Perceptions of firms within a cluster regarding the cluster's function and success: Amish furniture manufacturing in Ohio

    Science.gov (United States)

    Matthew S. Bumgardner; Gary W. Graham; P. Charles Goebel; Robert L. Romig

    2011-01-01

    The Amish-based furniture manufacturing cluster in and around Holmes County, OH, is home to some 400 shops and has become an important regional driver of demand for hardwood products. The cluster has expanded even as the broader domestic furniture industry has declined. Clustering dynamics are seen as important to the success, but little information has been available...

  12. Carotid Artery Intima-Media Thickness and Cutaneous Microvascular Function are Associated With Vitamin C Levels in Young Patients With Type 1 Diabetes

    DEFF Research Database (Denmark)

    Odermarsky, Michal; Lykkesfeldt, Jens; Liuba, Petru

    2008-01-01

    Background: Vascular endothelial dysfunction and accelerated thickening of arterial intima contribute to increased cardiovascular morbidity in type 1 diabetes. Although vitamin C has important antioxidant functions, and increased oxidative stress is a central mechanism of vascular abnormalities......, lower plasma levels of vitamin C appears to predispose to more pronounced adverse changes in both microcirculation and peripheral arteries. Further studies are needed to investigate whether dietary supplementation with vitamin C could retard the development of microvasculopathy and atherosclerosis...... in diabetes, the relationship between these two in young patients with this disease has not been yet investigated. Methods: Carotid artery intima-media thickness (cIMT) and cutaneous microvascular reactivity to endothelium-dependent (acetylcholine, ACH) and independent (sodium nitroprusside, SNP) were...

  13. Nondestructive testing technology for measurement coatings thickness on material

    International Nuclear Information System (INIS)

    Yang Mingtai; Wu Lunqiang; Zhang Lianping

    2008-01-01

    The principle, applicability range, advantage and disadvantage of electromagnetic, eddy current method, β backscatter method and XRF methods for nondestructive testing coating thickness of material have been reviewed. The relevant apparatus and manufacturers have been summarized. And the application and developmental direction of manufacturers for nondestructive testing coatings thickness has been foreshowed. (authors)

  14. Improvement of the effective work function and transmittance of thick indium tin oxide/ultrathin ruthenium doped indium oxide bilayers as transparent conductive oxide

    International Nuclear Information System (INIS)

    Taweesup, Kattareeya; Yamamoto, Ippei; Chikyow, Toyohiro; Lothongkum, Gobboon; Tsukagoshi, Kazutoshi; Ohishi, Tomoji; Tungasmita, Sukkaneste; Visuttipitukul, Patama; Ito, Kazuhiro; Takahashi, Makoto; Nabatame, Toshihide

    2016-01-01

    Ruthenium doped indium oxide (In_1_−_xRu_xO_y) films fabricated using DC magnetron co-sputtering with In_2O_3 and Ru targets were investigated for use as transparent conductive oxides. The In_1_−_xRu_xO_y films had an amorphous structure in the wide compositional range of x = 0.3–0.8 and had an extremely smooth surface. The transmittance and resistivity of the In_1_−_xRu_xO_y films increased as the Ru content increased. The transmittance of the In_0_._3_8Ru_0_._6_2O_y film improved to over 80% when the film thickness was less than 5 nm, while the specific resistivity (ρ) was kept to a low value of 1.6 × 10"−"4 Ω cm. Based on these experimental data, we demonstrated that thick indium tin oxide (In_0_._9Sn_0_._1O_y, ITO) (150 nm)/ultrathin In_0_._3_8Ru_0_._6_2O_y (3 nm) bilayers have a high effective work function of 5.3 eV, transmittance of 86%, and low ρ of 9.2 × 10"−"5 Ω cm. This ITO/In_0_._3_8Ru_0_._6_2O_y bilayer is a candidate for use as an anode for organic electroluminescent devices. - Highlights: • We investigated characteristics of thick ITO/ultrathin Ru doped In_2O_3 bilayers. • Effect of Ru addition in In_2O_3 results in smooth surface because of an amorphous structure. • The In_0_._3_8Ru_0_._6_2O_y film with less than 5 nm improves to high transmittance over 80%. • ITO/In_0_._3_8Ru_0_._6_2O_y bilayer has a high effective work function of 5.3 eV. • We conclude that ITO/ultrathin In_0_._3_8Ru_0_._6_2O_y bilayer is a candidate as an anode of OEL.

  15. Sonographic Visualization of the Rotator Cable in Patients With Symptomatic Full-Thickness Rotator Cuff Tears: Correlation With Tear Size, Muscular Fatty Infiltration and Atrophy, and Functional Outcome.

    Science.gov (United States)

    Bureau, Nathalie J; Blain-Paré, Etienne; Tétreault, Patrice; Rouleau, Dominique M; Hagemeister, Nicola

    2016-09-01

    To assess the prevalence of sonographic visualization of the rotator cable in patients with symptomatic full-thickness rotator cuff tears and asymptomatic controls and to correlate rotator cable visualization with tear size, muscular fatty infiltration and atrophy, and the functional outcome in the patients with rotator cuff tears. Fifty-seven patients with rotator cuff tears and 30 asymptomatic volunteers underwent shoulder sonography for prospective assessment of the rotator cable and rotator cuff tear and responded to 2 functional outcome questionnaires (shortened Disabilities of the Arm, Shoulder, and Hand [QuickDASH] and Constant). In the patients with rotator cuff tears, appropriate tests were used to correlate rotator cable visualization with the tear size, functional outcome, muscular fatty infiltration, and atrophy. The patients with rotator cuff tears included 25 women and 32 men (mean age,57 years; range, 39-67 years), and the volunteers included 13 women and 17 men (mean age, 56 years; range, 35-64 years). The rotator cable was identified in 77% (23 of 30) of controls and 23% (13 of 57) of patients with rotator cuff tears. In the patients, nonvisualization of the rotator cable correlated with larger tears (P tears than asymptomatic controls and was associated with a larger tear size and greater supraspinatus fatty infiltration and atrophy. Diligent assessment of the supraspinatus muscle should be done in patients with rotator cuff tears without a visible rotator cable, as the integrity of these anatomic structures may be interdependent.

  16. Additive manufacturing.

    Science.gov (United States)

    Mumith, A; Thomas, M; Shah, Z; Coathup, M; Blunn, G

    2018-04-01

    Increasing innovation in rapid prototyping (RP) and additive manufacturing (AM), also known as 3D printing, is bringing about major changes in translational surgical research. This review describes the current position in the use of additive manufacturing in orthopaedic surgery. Cite this article: Bone Joint J 2018;100-B:455-60.

  17. Manufacturing technologies

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-01

    The Manufacturing Technologies Center is an integral part of Sandia National Laboratories, a multiprogram engineering and science laboratory, operated for the Department of Energy (DOE) with major facilities at Albuquerque, New Mexico, and Livermore, California. Our Center is at the core of Sandia`s Advanced Manufacturing effort which spans the entire product realization process.

  18. Carotid intima-media thickness and cognitive function in a middle-aged and older adult community: a cross-sectional study.

    Science.gov (United States)

    Wang, Anxin; Chen, Guojuan; Su, Zhaoping; Liu, Xiaoxue; Yuan, Xiaodong; Jiang, Ruixuan; Cao, Yibin; Chen, Shuohua; Luo, Yanxia; Guo, Xiuhua; Wu, Shouling; Zhao, Xingquan

    2016-10-01

    The relationship between atherosclerosis and cognitive function is less well studied in Chinese populations. In addition, the results among middle-aged adults have been mixed. We aimed to investigate the association of atherosclerosis measured by carotid intima-media thickness (CIMT) and cognitive function in middle-aged and older adults from a Chinese community. Participants in the Asymptomatic Polyvascular Abnormalities in Community study (APAC) who had completed the CIMT detection and cognitive function measurements in 2012/2013 were included. Cognitive function was measured using the Mini-Mental State Examination (MMSE). Multivariate linear regression analysis was used to analyze the association between CIMT and MMSE. Then, a stratified analysis was performed separately in middle-aged and older adults. A total of 3227 participants were included in this study (mean age 57.9 years, range 43-93 years); 56.6 % of them were men, 66.0 % were middle-aged adults. After adjusting for potential confounders, larger CIMT was associated with lower MMSE scores, with a 0.75-point decrease in MMSE score for every 1-mm increase in CIMT (β = - 0.75, P = 0.0020). The association remained statistically significant in middle-aged adults (β = - 0.57, P = 0.0390), and was stronger in older adults and adults with low education levels. There is a significant association between CIMT and cognitive function among middle-aged and older adults sampled from a Chinese population. This association was stronger in older adults and adults with low education levels.

  19. Three-dimensional fabrication of thick and densely populated soft constructs with complex and actively perfused channel network

    DEFF Research Database (Denmark)

    Pimentel, C Rodrigo; Ko, Suk Kyu; Caviglia, Claudia

    2017-01-01

    One of the fundamental steps needed to design functional tissues and, ultimately organs is the ability to fabricate thick and densely populated tissue constructs with controlled vasculature and microenvironment. To date, bioprinting methods have been employed to manufacture tissue constructs with...

  20. Relating C-band Microwave and Optical Satellite Observations as A Function of Snow Thickness on First-Year Sea Ice during the Winter to Summer Transition

    Science.gov (United States)

    Zheng, J.; Yackel, J.

    2015-12-01

    The Arctic sea ice and its snow cover have a direct impact on both the Arctic and global climate system through their ability to moderate heat exchange across the ocean-sea ice-atmosphere (OSA) interface. Snow cover plays a key role in the OSA interface radiation and energy exchange, as it controls the growth and decay of first-year sea ice (FYI). However, meteoric accumulation and redistribution of snow on FYI is highly stochastic over space and time, which makes it poorly understood. Previous studies have estimated local-scale snow thickness distributions using in-situ technique and modelling but it is spatially limited and challenging due to logistic difficulties. Moreover, snow albedo is also critical for determining the surface energy balance of the OSA during the critical summer ablation season. Even then, due to persistent and widespread cloud cover in the Arctic at various spatio-temporal scales, it is difficult and unreliable to remotely measure albedo of snow cover on FYI in the optical spectrum. Previous studies demonstrate that only large-scale sea ice albedo was successfully estimated using optical-satellite sensors. However, space-borne microwave sensors, with their capability of all-weather and 24-hour imaging, can provide enhanced information about snow cover on FYI. Daily spaceborne C-band scatterometer data (ASCAT) and MODIS data are used to investigate the the seasonal co-evolution of the microwave backscatter coefficient and optical albedo as a function of snow thickness on smooth FYI. The research focuses on snow-covered FYI near Cambridge Bay, Nunavut (Fig.1) during the winter to advanced-melt period (April-June, 2014). The ACSAT time series (Fig.2) show distinct increase in scattering at melt onset indicating the first occurrence of melt water in the snow cover. The corresponding albedo exhibits no decrease at this stage. We show how the standard deviation of ASCAT backscatter on FYI during winter can be used as a proxy for surface roughness

  1. Control of the Shell Thickness of TiO{sub 2} SiO{sub 2} Particles and Its Surface Functionalization

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, Junho; Jung, Sung Ho; Lee, Ji Ha; Kwon, Kiyoung; Jung, Jong Hwa [Gyeongsang National Univ., Jinju (Korea, Republic of)

    2013-11-15

    TiO{sub 2} SiO{sub 2} yolk/core shell particles were obtained by a sol-gel polymerization. The shell thickness of TiO{sub 2} SiO{sub 2} can successfully be controlled by sol-gel reaction times. The anatase structure of TiO{sub 2} SiO{sub 2} was more stable than that of TiO{sub 2} particles calcinated at higher temperature. Moreover, acrylate-functionalized TiO{sub 2} SiO{sub 2} particles were also successfully synthesized using the TiO{sub 2} SiO{sub 2} particles as building blocks by copolymerization of trimethoxysilyl groups of MPA with the existing hydroxyl groups on the surface of TiO{sub 2} SiO{sub 2} particles. Furthermore, TEM, EDX, and FTIR studies confirmed that MPA had been successfully grafted to the surface of TiO{sub 2} SiO{sub 2} particles. Finally, we believe that the present results showing the development of surface functionalized particles can be very useful in the fields of various functional applications, and could be extended to more sophisticated hybrid materials.The fabrication of functional hollow particles is of great scientific and technological interest for purposes of applications ranging from drug delivery, coatings, photonic devices, and nanoscale reaction vessels. Various methods, including approaches such as spray drying, emulsion templating techniques, and self-assembly processes, have been described for the preparation of hollow spheres out of latex, metal, and inorganic materials.

  2. Epicardial fat thickness correlates with P-wave duration, left atrial size and decreased left ventricular systolic function in morbid obesity.

    Science.gov (United States)

    Fernandes-Cardoso, A; Santos-Furtado, M; Grindler, J; Ferreira, L A; Andrade, J L; Santo, M A

    2017-08-01

    Epicardial fat (EF) is increased in obesity and has important interactions with atrial and ventricular myocardium. Most of the evidence in this scenario can be confused by the presence of comorbidities such as hypertension, diabetes and dyslipidemia, which are very common in this population. The influence of EF on atrial remodeling and cardiac function demands further investigation on morbidly obese without these comorbidities. We prospectively recruited 20 metabolically healthy morbidly obese and 20 normo-weights controls. The maximum P-wave duration (PWD) was analyzed by 12-lead electrocardiogram. Left atrial diameter (LAD), left ventricular ejection fraction (LVEF) and EF thickness (EFT) were evaluated by two-dimensional echocardiography. The mean of maximum PWD and LAD were significantly larger in the obese group as compared to the control group: 109.55 ± 11.52 ms × 89.38 ± 11.19 ms and 36.12 ± 3.46 mm × 31.45 ± 2.64 mm, (p function. Copyright © 2017 The Italian Society of Diabetology, the Italian Society for the Study of Atherosclerosis, the Italian Society of Human Nutrition, and the Department of Clinical Medicine and Surgery, Federico II University. Published by Elsevier B.V. All rights reserved.

  3. Serum Neuron-Specific Enolase, Biogenic Amino-Acids and Neurobehavioral Function in Lead-Exposed Workers from Lead-Acid Battery Manufacturing Process

    Directory of Open Access Journals (Sweden)

    K Ravibabu

    2015-01-01

    Full Text Available Background: The interaction between serum neuron-specific enolase (NSE, biogenic amino-acids and neurobehavioral function with blood lead levels in workers exposed to lead form lead-acid battery manufacturing process was not studied. Objective: To evaluate serum NSE and biogenic amino-acids (dopamine and serotonin levels, and neurobehavioral performance among workers exposed to lead from lead-acid storage battery plant, and its relation with blood lead levels (BLLs. Methods: In a cross-sectional study, we performed biochemical and neurobehavioral function tests on 146 workers exposed to lead from lead-acid battery manufacturing process. BLLs were assessed by an atomic absorption spectrophotometer. Serum NSE, dopamine and serotonin were measured by ELISA. Neurobehavioral functions were assessed by CDC-recommended tests—simple reaction time (SRT, symbol digit substitution test (SDST, and serial digit learning test (SDLT. Results: There was a significant correlation (r 0.199, p<0.05 between SDST and BLL. SDLT and SRT had also a significant positive correlation (r 0.238, p<0.01. NSE had a negative correlation (r –0.194, p<0.05 with serotonin level. Multiple linear regression analysis revealed that both SRT and SDST had positive significant associations with BLL. SRT also had a positive significant association with age. Conclusion: Serum NSE cannot be used as a marker for BLL. The only domain of neurobehavioral function tests that is affected by increased BLL in workers of lead-acid battery manufacturing process is that of the “attention and perception” (SDST.

  4. Smart Manufacturing.

    Science.gov (United States)

    Davis, Jim; Edgar, Thomas; Graybill, Robert; Korambath, Prakashan; Schott, Brian; Swink, Denise; Wang, Jianwu; Wetzel, Jim

    2015-01-01

    Historic manufacturing enterprises based on vertically optimized companies, practices, market share, and competitiveness are giving way to enterprises that are responsive across an entire value chain to demand dynamic markets and customized product value adds; increased expectations for environmental sustainability, reduced energy usage, and zero incidents; and faster technology and product adoption. Agile innovation and manufacturing combined with radically increased productivity become engines for competitiveness and reinvestment, not simply for decreased cost. A focus on agility, productivity, energy, and environmental sustainability produces opportunities that are far beyond reducing market volatility. Agility directly impacts innovation, time-to-market, and faster, broader exploration of the trade space. These changes, the forces driving them, and new network-based information technologies offering unprecedented insights and analysis are motivating the advent of smart manufacturing and new information technology infrastructure for manufacturing.

  5. Chemical, sensory, and functional properties of whey-based popsicles manufactured with watermelon juice concentrated at different temperatures.

    Science.gov (United States)

    Martins, Carolina P C; Ferreira, Marcus Vinicius S; Esmerino, Erick A; Moraes, Jeremias; Pimentel, Tatiana C; Rocha, Ramon S; Freitas, Mônica Q; Santos, Jânio S; Ranadheera, C Senaka; Rosa, Lana S; Teodoro, Anderson J; Mathias, Simone P; Silva, Márcia C; Raices, Renata S L; Couto, Silvia R M; Granato, Daniel; Cruz, Adriano G

    2018-07-30

    The effects of the concentration of watermelon juice at different temperatures (45, 55, or 65 °C) on the physicochemical and sensory characteristics, antioxidant capacity, and volatile organic compounds (VOCs) of whey-based popsicles were investigated. Total phenolic content, lycopene, citrulline, VOCs, melting rate, instrumental colour, antioxidant capacity, and the sensory characteristics (hedonic test and free listing) were determined. The temperature led to a significant decrease in bioactive compounds (total phenolics, lycopene, and citrulline). The popsicle manufactured with reconstituted watermelon juice concentrated to 60 °Brix at 65 °C presented higher antioxidant capacity and was characterized by the presence of alcohols, aldehydes and ketones and presented a similar acceptance to the untreated popsicle (except for flavour). It is possible to combine whey and concentrated watermelon juice for the manufacture of bioactive-rich popsicles, using the concentration temperature of 65 °C as a suitable processing condition for potential industrial applications. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. Thick resist for MEMS processing

    Science.gov (United States)

    Brown, Joe; Hamel, Clifford

    2001-11-01

    The need for technical innovation is always present in today's economy. Microfabrication methods have evolved in support of the demand for smaller and faster integrated circuits with price performance improvements always in the scope of the manufacturing design engineer. The dispersion of processing technology spans well beyond IC fabrication today with batch fabrication and wafer scale processing lending advantages to MEMES applications from biotechnology to consumer electronics from oil exploration to aerospace. Today the demand for innovative processing techniques that enable technology is apparent where only a few years ago appeared too costly or not reliable. In high volume applications where yield and cost improvements are measured in fractions of a percent it is imperative to have process technologies that produce consistent results. Only a few years ago thick resist coatings were limited to thickness less than 20 microns. Factors such as uniformity, edge bead and multiple coatings made high volume production impossible. New developments in photoresist formulation combined with advanced coating equipment techniques that closely controls process parameters have enable thick photoresist coatings of 70 microns with acceptable uniformity and edge bead in one pass. Packaging of microelectronic and micromechanical devices is often a significant cost factor and a reliability issue for high volume low cost production. Technologies such as flip- chip assembly provide a solution for cost and reliability improvements over wire bond techniques. The processing for such technology demands dimensional control and presents a significant cost savings if it were compatible with mainstream technologies. Thick photoresist layers, with good sidewall control would allow wafer-bumping technologies to penetrate the barriers to yield and production where costs for technology are the overriding issue. Single pass processing is paramount to the manufacturability of packaging

  7. Ceramic-Based 4D Components: Additive Manufacturing (AM) of Ceramic-Based Functionally Graded Materials (FGM) by Thermoplastic 3D Printing (T3DP).

    Science.gov (United States)

    Scheithauer, Uwe; Weingarten, Steven; Johne, Robert; Schwarzer, Eric; Abel, Johannes; Richter, Hans-Jürgen; Moritz, Tassilo; Michaelis, Alexander

    2017-11-28

    In our study, we investigated the additive manufacturing (AM) of ceramic-based functionally graded materials (FGM) by the direct AM technology thermoplastic 3D printing (T3DP). Zirconia components with varying microstructures were additively manufactured by using thermoplastic suspensions with different contents of pore-forming agents (PFA), which were co-sintered defect-free. Different materials were investigated concerning their suitability as PFA for the T3DP process. Diverse zirconia-based suspensions were prepared and used for the AM of single- and multi-material test components. All of the samples were sintered defect-free, and in the end, we could realize a brick wall-like component consisting of dense (<1% porosity) and porous (approx. 5% porosity) zirconia areas to combine different properties in one component. T3DP opens the door to the AM of further ceramic-based 4D components, such as multi-color, multi-material, or especially, multi-functional components.

  8. Functional Elastic Knits Made of Bamboo Charcoal and Quick-Dry Yarns: Manufacturing Techniques and Property Evaluations

    Directory of Open Access Journals (Sweden)

    Jia-Horng Lin

    2017-12-01

    Full Text Available Conventional sportswear fabrics are functional textiles that can mitigate the impaired muscles caused by exercises for the wearers, but they can also cause discomfort and skin allergy. This study proposes combining two yarns to form functional composite yarns, by using a twisting or wrapping process. Moreover, a different twist number is used in order to adjust the performance of functional composite yarns. A crochet machine is used to make the functional composite yarns into functional elastic knits that are suitable for use in sportswear. The test results show that, in comparison to the non-processed yarns, using the twisted or wrapped yarns can considerably decrease the water vapor transmission rate of functional elastic knits by 38%, while also improving their far infrared emissivity by 13%, water absorption rate by 39%, and air permeability by 136%. In particular, the functional elastic knits that are made of B-wrapped yarns (bamboo charcoal- wrapped yarns, composed of 20 twists per inch, have the optimal diverse functions.

  9. Specific cell-derived microvesicles: Linking endothelial function to carotid artery intima-media thickness in low cardiovascular risk menopausal women.

    Science.gov (United States)

    Miller, Virginia M; Lahr, Brian D; Bailey, Kent R; Hodis, Howard N; Mulvagh, Sharon L; Jayachandran, Muthuvel

    2016-03-01

    Decreases in endothelial function measured by reactive hyperemic index (RHI) correlated with increases in carotid intima-media thickness (CIMT) in recently menopausal women with a low risk cardiovascular profile. Factors linking this association are unknown. Assess, longitudinally, markers of platelet activation and cell-derived, blood-borne microvesicles (MV) in relationship to RHI and CIMT in asymptomatic, low risk menopausal women. RHI by digital pulse tonometry (n = 93), CIMT by ultrasound (n = 113), measures of platelet activation and specific cell-derived, blood-borne MV were evaluated in women throughout the Kronos Early Estrogen Prevention Study (KEEPS) at Mayo Clinic. CIMT, but not RHI, increased significantly over 4 years. The average change in CIMT correlated significantly with the average follow-up values of MV positive for common leukocyte antigen [CD45; ρ = 0.285 (P = 0.002)] and VCAM-1 [ρ = 0.270 (P = 0.0040)]. Using principal components analysis (PC) on the aggregate set of average follow-up measures, the first derived PC representing numbers of MV positive for markers of vascular endothelium, inflammatory cells (leukocyte and monocytes), pro-coagulant (tissue factor), and cell adhesion molecules (ICAM-1 and VCAM-1) associated with changes in RHI and CIMT. Changes in RHI associated with another PC defined by measures of platelet activation (dense granular ATP secretion, surface expression of P-selectin and fibrinogen receptors). MV derived from activated endothelial and inflammatory cells, and those expressing cell adhesion and pro-coagulant molecules may reflect early vascular dysfunction in low risk menopausal women. Assays of MV as non-conventional measures to assess cardiovascular risk in asymptomatic women remain to be developed. Copyright © 2015 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  10. Thickness dependence of electro-optical properties of WO{sub 3} films as an electrochromic functional material for energy-efficient applications

    Energy Technology Data Exchange (ETDEWEB)

    Esmail, Ayat; Hashem, Hany; Soltan, Soltan; Hammam, Mahmoud; Ramadan, Ahmed [Faculty of Science, Department of Physics, Helwan University, Cairo (Egypt)

    2017-01-15

    WO{sub 3} films of different thicknesses (100, 200, and 300 nm) were prepared by two vacuum physical vapor deposition (PVD) methods (thermal evaporation and an electron gun). Electrophysical measurements (cyclic voltammetry and chronoamperometry) were carried out using a potentiostat in an electrochromic cell (liquid device) that consists of a substrate coated with double layers of F: SnO{sub 2} and WO{sub 3} served as working electrodes. X-ray diffraction showed an amorphous structure for all the deposited WO{sub 3} thin films. While the transmission in the bleached state does not change and it is close to the as-deposited state, it is slightly less at larger thickness. The cyclic voltammogram was more open (more current flow) for thicker films due to the less dense structure with many channels. Also, the coloration efficiency was higher at low thickness. The response time was of the order of seconds and decreased for coloration, while it increased for the bleaching process as the film thickness increases. According to the proposed figure of merit, the electrochromic performance deteriorates as the WO{sub 3} film thickness decreases. However, the thickness is more effective in the case of an electron gun. Generally, continuous films but thinner than 200 nm, are recommended for deposition methods. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  11. LEAN Manufacturing

    DEFF Research Database (Denmark)

    Bilberg, Arne

    . The mission with the strategy is to obtain competitive production in Denmark and in Western Europe based on the right combination of manufacturing principles, motivated and trained employees, level of automation, and cooperation with suppliers and customers worldwide. The strategy has resulted in technical...

  12. Semiconductor Manufacturing equipment introduction

    International Nuclear Information System (INIS)

    Im, Jong Sun

    2001-02-01

    This book deals with semiconductor manufacturing equipment. It is comprised of nine chapters, which are manufacturing process of semiconductor device, history of semiconductor manufacturing equipment, kinds and role of semiconductor manufacturing equipment, construction and method of semiconductor manufacturing equipment, introduction of various semiconductor manufacturing equipment, spots of semiconductor manufacturing, technical elements of semiconductor manufacturing equipment, road map of technology of semiconductor manufacturing equipment and semiconductor manufacturing equipment in the 21st century.

  13. Virtual Manufacturing Techniques Designed and Applied to Manufacturing Activities in the Manufacturing Integration and Technology Branch

    Science.gov (United States)

    Shearrow, Charles A.

    1999-01-01

    One of the identified goals of EM3 is to implement virtual manufacturing by the time the year 2000 has ended. To realize this goal of a true virtual manufacturing enterprise the initial development of a machinability database and the infrastructure must be completed. This will consist of the containment of the existing EM-NET problems and developing machine, tooling, and common materials databases. To integrate the virtual manufacturing enterprise with normal day to day operations the development of a parallel virtual manufacturing machinability database, virtual manufacturing database, virtual manufacturing paradigm, implementation/integration procedure, and testable verification models must be constructed. Common and virtual machinability databases will include the four distinct areas of machine tools, available tooling, common machine tool loads, and a materials database. The machine tools database will include the machine envelope, special machine attachments, tooling capacity, location within NASA-JSC or with a contractor, and availability/scheduling. The tooling database will include available standard tooling, custom in-house tooling, tool properties, and availability. The common materials database will include materials thickness ranges, strengths, types, and their availability. The virtual manufacturing databases will consist of virtual machines and virtual tooling directly related to the common and machinability databases. The items to be completed are the design and construction of the machinability databases, virtual manufacturing paradigm for NASA-JSC, implementation timeline, VNC model of one bridge mill and troubleshoot existing software and hardware problems with EN4NET. The final step of this virtual manufacturing project will be to integrate other production sites into the databases bringing JSC's EM3 into a position of becoming a clearing house for NASA's digital manufacturing needs creating a true virtual manufacturing enterprise.

  14. The role of quality function deployment in meeting customers’ requirements: A case study on the Egyptian tire manufacturing company

    Directory of Open Access Journals (Sweden)

    El Mehelmi Heba

    2017-03-01

    Full Text Available The purpose of this study is to explore the use of QFD within the Egyptian public sector. Thus, there is a need to examine the role of QFD as an improvement approach within the Egyptian public sector organizations. Where QFD had consistently been claimed in the Western world and Europe. This study aimed to extend the knowledge of choosing an appropriate TQM tool for the Egyptian PSOs. Where it serves as an extension to previous studies carried out in the Western world but within the Egyptian context. This study is based on two sources of data collection, semi structured interviews from customers which were analyzed using content analysis and focus groups with managers to construct the QFD model. A purposive sample targeting the company's customers and managers were selected who had the requisite information. Semi-structured interviews helped to identify the factors affecting customers' purchase preferences, customers' opinions, perception, requirements, and problems. Moreover, it served the purpose to identify the 'WHATs' that are an essential part of the proposed QFD framework. Two focus group sessions were conducted to construct the QFD model. The findings of the study indicate that QFD is a generic framework that is appropriate and feasible for application within the public sector tire manufacturing company in Egypt. It was quite a good scientific exercise to demonstrate how customers' requirements were identified, the technical specifications needed and finally constructing the QFD framework to meet customers' requirements. The current study is a single case study which might limit the ability to generalize the research findings, although it identified powerful context and specific insights into QFD implementation. Yet, generalization of findings could be applied to other public sector companies in Egypt facing almost the same problems and having the same surrounding context and environment. Another limitation of this study is the sample

  15. Green Manufacturing

    Energy Technology Data Exchange (ETDEWEB)

    Patten, John

    2013-12-31

    Green Manufacturing Initiative (GMI): The initiative provides a conduit between the university and industry to facilitate cooperative research programs of mutual interest to support green (sustainable) goals and efforts. In addition to the operational savings that greener practices can bring, emerging market demands and governmental regulations are making the move to sustainable manufacturing a necessity for success. The funding supports collaborative activities among universities such as the University of Michigan, Michigan State University and Purdue University and among 40 companies to enhance economic and workforce development and provide the potential of technology transfer. WMU participants in the GMI activities included 20 faculty, over 25 students and many staff from across the College of Engineering and Applied Sciences; the College of Arts and Sciences' departments of Chemistry, Physics, Biology and Geology; the College of Business; the Environmental Research Institute; and the Environmental Studies Program. Many outside organizations also contribute to the GMI's success, including Southwest Michigan First; The Right Place of Grand Rapids, MI; Michigan Department of Environmental Quality; the Michigan Department of Energy, Labor and Economic Growth; and the Michigan Manufacturers Technical Center.

  16. Non-contact radiation thickness gauge

    International Nuclear Information System (INIS)

    Tsujii, T.; Okino, T.

    1983-01-01

    A noncontact thickness gauge system for measuring the thickness of a material comprising a source of radiation, a detector for detecting the amount of radiation transmitted through the material which is a function of the absorptance and thickness of the material, a memory for storing the output signals of the detector and curve-defining parameters for a plurality of quadratic calibration curves which correspond to respective thickness ranges, and a processor for processing the signals and curve defining parameters to determine the thickness of the material. Measurements are made after precalibration to obtain calibration curves and these are stored in the memory, providing signals representative of a nominal thickness and an alloy compensation coefficient for the material. The calibration curve corresponding to a particular thickness range is selected and the curve compensated for drift; the material is inserted into the radiation path and the detector output signal processed with the compensated calibration curve to determine the thickness of the material. (author)

  17. Design and fabrication of integrated micro/macrostructure for 3D functional gradient systems based on additive manufacturing

    Science.gov (United States)

    Yin, Ming; Xie, Luofeng; Jiang, Weifeng; Yin, Guofu

    2018-05-01

    Functional gradient systems have important applications in many areas. Although a 2D dielectric structure that serves as the gradient index medium for controlling electromagnetic waves is well established, it may not be suitable for application in 3D case. In this paper, we present a method to realize functional gradient systems with 3D integrated micro/macrostructure. The homogenization of the structure is studied in detail by conducting band diagram analysis. The analysis shows that the effective medium approximation is valid even when periodicity is comparable to wavelength. The condition to ensure the polarization-invariant, isotropic, and frequency-independent property is investigated. The scheme for the design and fabrication of 3D systems requiring spatial material property distribution is presented. By using the vat photopolymerization process, a large overall size of macrostructure at the system level and precise fine features of microstructure at the unit cell level are realized, thus demonstrating considerable scalability of the system for wave manipulation.

  18. Enhanced sensitivity to dielectric function and thickness of absorbing thin films by combining total internal reflection ellipsometry with standard ellipsometry and reflectometry

    International Nuclear Information System (INIS)

    Lizana, A; Foldyna, M; Garcia-Caurel, E; Stchakovsky, M; Georges, B; Nicolas, D

    2013-01-01

    High sensitivity of spectroscopic ellipsometry and reflectometry for the characterization of thin films can strongly decrease when layers, typically metals, absorb a significant fraction of the light. In this paper, we propose a solution to overcome this drawback using total internal reflection ellipsometry (TIRE) and exciting a surface longitudinal wave: a plasmon-polariton. As in the attenuated total reflectance technique, TIRE exploits a minimum in the intensity of reflected transversal magnetic (TM) polarized light and enhances the sensitivity of standard methods to thicknesses of absorbing films. Samples under study were stacks of three films, ZnO : Al/Ag/ZnO : Al, deposited on glass substrates. The thickness of the silver layer varied from sample to sample. We performed measurements with a UV–visible phase-modulated ellipsometer, an IR Mueller ellipsometer and a UV–NIR reflectometer. We used the variance–covariance formalism to evaluate the sensitivity of the ellipsometric data to different parameters of the optical model. Results have shown that using TIRE doubled the sensitivity to the silver layer thickness when compared with the standard ellipsometry. Moreover, the thickness of the ZnO : Al layer below the silver layer can be reliably quantified, unlike for the fit of the standard ellipsometry data, which is limited by the absorption of the silver layer. (paper)

  19. Enhanced sensitivity to dielectric function and thickness of absorbing thin films by combining total internal reflection ellipsometry with standard ellipsometry and reflectometry

    Science.gov (United States)

    Lizana, A.; Foldyna, M.; Stchakovsky, M.; Georges, B.; Nicolas, D.; Garcia-Caurel, E.

    2013-03-01

    High sensitivity of spectroscopic ellipsometry and reflectometry for the characterization of thin films can strongly decrease when layers, typically metals, absorb a significant fraction of the light. In this paper, we propose a solution to overcome this drawback using total internal reflection ellipsometry (TIRE) and exciting a surface longitudinal wave: a plasmon-polariton. As in the attenuated total reflectance technique, TIRE exploits a minimum in the intensity of reflected transversal magnetic (TM) polarized light and enhances the sensitivity of standard methods to thicknesses of absorbing films. Samples under study were stacks of three films, ZnO : Al/Ag/ZnO : Al, deposited on glass substrates. The thickness of the silver layer varied from sample to sample. We performed measurements with a UV-visible phase-modulated ellipsometer, an IR Mueller ellipsometer and a UV-NIR reflectometer. We used the variance-covariance formalism to evaluate the sensitivity of the ellipsometric data to different parameters of the optical model. Results have shown that using TIRE doubled the sensitivity to the silver layer thickness when compared with the standard ellipsometry. Moreover, the thickness of the ZnO : Al layer below the silver layer can be reliably quantified, unlike for the fit of the standard ellipsometry data, which is limited by the absorption of the silver layer.

  20. MANUFACTURING BIODEGRADABLE COMPOSITE MATERIALS BASED ON POLYETHYLENE AND FUNCTIONALIZED BY ALCOHOLYSIS OF ETHYLENE-VINYL ACETATE COPOLYMER

    Directory of Open Access Journals (Sweden)

    Aleksandr A. Shabarin

    2016-06-01

    Full Text Available Introduction. The continuous growth of production and consumption of plastic packaging creates a serious problem of disposal of package. This problem has ecological character, because the contents of the landfills decompose for decades, emit toxic com¬pounds and pollute the environment. The work is devoted to obtaining and investigation mechanical and rheological properties of biodegradable composite materials based on polyethylene and starch. Materials and Methods. In this work the author used polyethylene grade HDPE 273- 83 (GOST 16338-85, Sevilen brand 12206-007 (TU 6-05-1636-97 and potato starch (GOST 53876-2010 as a filler. Functionalization of sevilen was carried in the 30 % ethanol solution KOH at a temperature 80 °C during 3 hours. Compounding components was carried out at the laboratory of the two rotary mixer HAAKE PolyLab Rheomix 600 OS with rotors Banbury. Formation of plates for elastic strength and rheological studies were carried out on a hydraulic press Gibitre. Elastic and strength tests were carried out on the tensile machine the UAI-7000 M. Rheology tests were carried out on the rheometer Haake MARS III. The humidity filler (starch authors determined by the thermogravimetric method on the analyzer of moisture “Evlas-2M”. Results. It is shown, that the filler should not contain more than 7% moisture. Functionalization of ethylene with vinyl acetate copolymer (sevilen has performed by the method of alkaline alcoholysis. By the method of IC – spectroscopy the authors confirmed the presence of hydroxyl groups in the polymer. Using as a compatibilizer functionalized by the method of alcoholises has greatly ( significantly improved physical, mechanical and rheological properties of composite materials. Optimal content of sevilen (F in the compound according to the results of experiments amount 10 %. Discussion and Conclusions. Using of functionalized by the method of alcoholysis ethy-lene-vinyl acetate copolymer as a

  1. Corneal thickness: measurement and implications.

    Science.gov (United States)

    Ehlers, Niels; Hjortdal, Jesper

    2004-03-01

    The thickness of the cornea was reported in more than 100-year-old textbooks on physiological optics (Helmholtz, Gullstrand). Physiological interest was revived in the 1950s by David Maurice, and over the next 50 years, this 'simple' biological parameter has been studied extensively. Several techniques for its measurement have been described and physiological and clinical significance have been studied. In this review, the different methods and techniques of measurement are briefly presented (optical, ultrasound). While the corneal thickness of many animals are the same over a considerable part of the surface, in the human cornea anterior and posterior curvature are not concentric giving rise to a problem of definition. Based on this the precision and accuracy of determining the central corneal thickness are discussed. Changes in corneal thickness reflects changes in function of the boundary layers, in particular the endothelial barrier. The absolute value of thickness is of importance for the estimation of IOP but also in diagnosis of corneal and systemic disorders. Finally it is discussed to what extent the thickness is a biometric parameter of significance, e.g. in the progression of myopia or in the development of retinal detachment.

  2. Advanced Manufacturing Technologies (AMT): Modular Rapidly Manufactured SmallSat

    Data.gov (United States)

    National Aeronautics and Space Administration — Utilize advanced manufacturing processes to design and fabricate a fully functional prototype flight model, with the goal of demonstrating rapid on-orbit assembly of...

  3. Effects of the Food Manufacturing Chain on the Viability and Functionality of Bifidobacterium animalis through Simulated Gastrointestinal Conditions.

    Science.gov (United States)

    Charnchai, Pattra; Jantama, Sirima Suvarnakuta; Prasitpuriprecha, Chutinun; Kanchanatawee, Sunthorn; Jantama, Kaemwich

    2016-01-01

    The viability and functionality of probiotics may be influenced by industrial production processes resulting in a decrease in probiotic efficiency that benefit the health of humans. This study aimed to investigate the probiotic characteristics of Bifidobacterium strains isolated from fecal samples of healthy Thai infants. In the present work, three local strains (BF014, BF052, and BH053) belonging to Bifidobacterium animalis showed a great resistance against conditions simulating the gastrointestinal tract. Among these, B. animalis BF052 possessed considerable probiotic properties, including high acid and bile tolerance, strong adhesion capability to Caco-2 cells, and inhibitory activity against pathogens including Salmonella typhimurium and Vibrio cholerae. This strain also exhibited a high survival rate compared to commercial strains during storage in a wide variety of products, including pasteurized milk, soy milk, drinking yogurt, and orange juice. The impact of food processing processes as well as the freeze-drying process, storage of freeze-dried powders, and incorporation of freeze-dried cells in food matrix on probiotic properties was also determined. The stability of the probiotic properties of the BF052 strain was not affected by food processing chain, especially its resistance in the simulated gastrointestinal conditions and its adherence ability to Caco-2 cells. It indicates that it satisfies the criteria as a potential probiotic and may be used as an effective probiotic starter in food applications.

  4. Manufacturing of a novel double-function ssDNA aptamer for sensitive diagnosis and efficient neutralization of SEA.

    Science.gov (United States)

    Sedighian, Hamid; Halabian, Raheleh; Amani, Jafar; Heiat, Mohammad; Taheri, Ramezan Ali; Imani Fooladi, Abbas Ali

    2018-05-01

    Staphylococcal enterotoxin A (SEA) is an enterotoxin produced mainly by Staphylococcus aureus. In recent years, it has become the most prevalent compound for staphylococcal food poisoning (SFP) around the world. In this study, we isolate new dual-function single-stranded DNA (ssDNA) aptamers by using some new methods, such as the Taguchi method, by focusing on the detection and neutralization of SEA enterotoxin in food and clinical samples. For the asymmetric polymerase chain reaction (PCR) optimization of each round of systematic evolution of ligands by exponential enrichment (SELEX), we use Taguchi L9 orthogonal arrays, and the aptamer mobility shift assay (AMSA) is used for initial evaluation of the protein-DNA interactions on the last SELEX round. In our investigation the dissociation constant (K D ) value and the limit of detection (LOD) of the candidate aptamer were found to be 8.5 ± 0.91 of nM and 5 ng/ml using surface plasmon resonance (SPR). In the current study, the Taguchi and mobility shift assay methods were innovatively harnessed to improve the selection process and evaluate the protein-aptamer interactions. To the best of our knowledge, this is the first report on employing these two methods in aptamer technology especially against bacterial toxin. Copyright © 2018 Elsevier Inc. All rights reserved.

  5. Evolution of the SrTiO{sub 3} surface electronic state as a function of LaAlO{sub 3} overlayer thickness

    Energy Technology Data Exchange (ETDEWEB)

    Plumb, N.C.; Kobayashi, M. [Swiss Light Source, Paul Scherrer Insitut, CH-5232 Villigen PSI (Switzerland); Salluzzo, M. [CNR-SPIN, Complesso Universitario Monte S. Angelo, Via Cinthia, I-80126 Napoli (Italy); Razzoli, E.; Matt, C.E.; Strocov, V.N.; Zhou, K.J.; Shi, M. [Swiss Light Source, Paul Scherrer Insitut, CH-5232 Villigen PSI (Switzerland); Mesot, J. [Paul Scherrer Institut, CH-5232 Villigen PSI (Switzerland); Institut de la Matiere Complexe, EPF Lausanne, CH-1015 Lausanne (Switzerland); Laboratory for Solid State Physics, ETH Zürich, CH-8093 Zürich (Switzerland); Schmitt, T. [Swiss Light Source, Paul Scherrer Insitut, CH-5232 Villigen PSI (Switzerland); Patthey, L. [Swiss Light Source, Paul Scherrer Insitut, CH-5232 Villigen PSI (Switzerland); SwissFEL, Paul Scherrer Institut, CH-5232 Villigen PSI (Switzerland); Radović, M., E-mail: milan.radovic@psi.ch [Swiss Light Source, Paul Scherrer Insitut, CH-5232 Villigen PSI (Switzerland); Institut de la Matiere Complexe, EPF Lausanne, CH-1015 Lausanne (Switzerland); SwissFEL, Paul Scherrer Institut, CH-5232 Villigen PSI (Switzerland)

    2017-08-01

    Highlights: • The close similarities in the electronic structures of the metallic bare surface of STO and the buried interfaces (LAO/STO). • The similar spectroscopic responses of these systems to photon irradiation. • The emergence of 2 × 1 structural ordering in sufficiently thick LAO/STO interfaces. - Abstract: The novel electronic properties emerging at interfaces between transition metal oxides, and in particular the discovery of conductivity in heterostructures composed of LaAlO{sub 3} (LAO) and SrTiO{sub 3} (STO) band insulators, have generated new challenges and opportunities in condensed matter physics. Although the interface conductivity is stabilized when LAO matches or exceeds a critical thickness of 4 unit cells (uc), other phenomena such as a universal metallic state found on the bare surface of STO single crystals and persistent photon-triggered conductivity in otherwise insulating STO-based interfaces raise important questions about the role of the LAO overlayer and the possible relations between vacuum/STO and LAO/STO interfaces. Here, using angle-resolved photoemission spectroscopy (ARPES) on in situ prepared samples complemented by resonant inelastic X-ray scattering (RIXS), we study how the metallic STO surface state evolves during the growth of a crystalline LAO overlayer. In all the studied samples, the character of the conduction bands, their carrier densities, the Ti{sup 3+} crystal field, and the response to photon irradiation bear strong similarities. Nevertheless, we report here that studied LAO/STO interfaces exhibit an instability toward an apparent 2 × 1 folding of the Fermi surface at and above a 4 uc thickness threshold, which distinguishes these heterostructures from bare STO and sub-critical-thickness LAO/STO.

  6. STRUCTURAL, PHOTO-FUNCTIONAL AND SEMICONDUCTOR PROPERTIES OF COPPER OXIDE THIN FILMS PREPARED BY DC REACTIVE METHOD UNDER VARIOUS THICKNESSES Anmar H. Shukur

    Directory of Open Access Journals (Sweden)

    Anmar H. Shukur

    2018-01-01

    Full Text Available Cuprous oxide (Cu2O has been formed on glass substrates by dc reactive magnetron sputtering method, whereas pure target of the solid copper was sputtered with a mixture of plasma for argon gas and oxygen gas was used to form these films. Under vacuum chamber pressure of 1.2×10-5 Pa, thin film thickness was changed from 100 nm to 300 nm while other deposition parameters were fixed. The influence of changing the thickness of thin films on the electrical and the optical properties was investigated in this study. X-ray photoelectron spectroscopy (XPS, X-ray Diffractions system XRD, Atomic Force Microscopy (AFM, hall effect measurement system, UV–VIS spectrophotometer were employed to determine the characteristic of the deposited thin films. Thin film of 200 nm has observed low resistivity of 60.63 Ω cm and direct band gap of 2.5eV. This study has demonstrated that the thickness has direct influence on electrical and optical properties.

  7. Manufacturing validation of biologically functional T cells targeted to CD19 antigen for autologous adoptive cell therapy

    Science.gov (United States)

    Hollyman, Daniel; Stefanski, Jolanta; Przybylowski, Mark; Bartido, Shirley; Borquez-Ojeda, Oriana; Taylor, Clare; Yeh, Raymond; Capacio, Vanessa; Olszewska, Malgorzata; Hosey, James; Sadelain, Michel; Brentjens, Renier J.; Rivière, Isabelle

    2009-01-01

    Summary Based on promising pre-clinical data demonstrating the eradication of systemic B cell malignancies by CD19-targeted T lymphocytes in vivo in SCID beige mouse models, we are launching Phase 1 clinical trials in patients with chronic lymphocytic leukemia (CLL) and acute lymphoblastic leukemia (ALL). We present here the validation of the bioprocess we developed for the production and expansion of clinical grade autologous T cells derived from patients with CLL. We demonstrate that T cells genetically modified with a replication-defective gammaretroviral vector derived from the Moloney murine leukemia virus encoding a chimeric antigen receptor (CAR) targeted to CD19 (1928z) can be expanded with Dynabeads® CD3/CD28. This bioprocess allows us to generate clinical doses of 1928z+ T cells in approximately 2 to 3 weeks in a large-scale semi-closed culture system using the Wave bioreactor. These 1928z+ T cells remain biologically functional not only in vitro but also in SCID beige mice bearing disseminated tumors. The validation requirements in terms of T cell expansion, T cell transduction with the 1928z CAR, biological activity, quality control testing and release criteria were met for all four validation runs using apheresis products from patients with CLL. Additionally, following expansion of the T cells, the diversity of the skewed Vβ T cell receptor repertoire was significantly restored. This validated process will be used in phase I clinical trials in patients with chemo-refractory CLL and in patients with relapsed ALL. It can also be adapted for other clinical trials involving the expansion and transduction of patient or donor T cells using any chimeric antigen receptor or T cell receptor. PMID:19238016

  8. Support given by the manufacturer

    International Nuclear Information System (INIS)

    Schomer, E.

    1993-01-01

    As regards German NPP, the purchaser has the control function and the manufacturer the role of a general planner binding together all supply lots. Therefore the manufacturer possesses a very broad and thorough detailed knowledge of the plant functioning and becomes a life-long important partner of the plant. Such partnership requires from the manufacturer to provide continuously available and economical services to the plant; he must work purposefully in a quality-conscious and innovative way. This is his vision, and he will comply with it over the whole service life of the plant. The importance of services is illustrated by a large number of examples. (orig./DG) [de

  9. Charge state and incident energy dependence of K X-ray emission as a function of target thickness for 50-165 MeV Cu ions incident on 11-250 μg/cm2 Cu

    International Nuclear Information System (INIS)

    Momoi, T.; Shima, K.; Umetani, K.; Moriyama, M.; Ishihara, T.; Mikumo, T.

    1986-01-01

    Thin self-supporting Cu targets in 11-250 μg/cm 2 thickness were bombarded with 50-165 MeV Cu sup(qi + ) ions (7 + )+Cu. From the observed K X-ray yields, K-shell vacancy production cross sections averaged over the target thickness t of projectile sigmasub(KV) and target sigmasup(*)sub(KV) were separately derived taking into account the fluorescence yield that can be estimated from the Ksub(α) X-ray energy shift. When the values of sigmasub(KV) and sigmasup(*)sub(KV) are extrapolated to zero foil thickness, the K shell vacancy formed in the collision has been found to be equally shared between projectile and target in a single collision. With the increase of penetration depth, however, the values of sigmasup(*)sub(KV) are greater than those of sigmasub(KV) presumably due to electron transfer of a target K electron to the projectile K vacancy. The evolution process of projectile excited states as a function of target thickness and the resulting variation of projectile and target K X-ray emissions are discussed. (orig.)

  10. Arthroscopic-Assisted Repair in Full-Thickness Rotator Cuff Ruptures: Functional and Radiologic Results of Five-Year Follow-Up

    Directory of Open Access Journals (Sweden)

    Meriç Uğurlar

    2016-06-01

    Full Text Available Objective: In our study, we evaluated the post-operative 5-year clinical and radiological results and the ratio of re­current ruptures under magnetic resonance imaging of the patients diagnosed as wide and massive, full-thick­ness rotator cuff rupture and arthroscopic-assisted mini-open rotator cuff repair is applied. Methods: We evaluated the pre-operative and post-op­erative clinical and radiological results of 38 patients with wide and massive, full-thickness rotator cuff rupture and arthroscopic-assisted rotator cuff repair is applied after failure of conservative treatment. Results: Mean post-operative follow-up period was 60.4 months. According to UCLA scoring there were excellent results in 26 patients, good results in 10, and moderate results in 2 patients. According to Constant scoring there were excellent results in 24 patients, good results in 12, and moderate results in 2 patients. 34 of the 38 patients indicated that they were satisfied with the results. The continuity of the rotator cuffs are evaluated with magnetic resonance imaging at the last visits of the patients and there was recurrent ruptures at the 8 patients. Conclusion: Although recurrent rotator cuff rupture rates varies depending on the age of the patients, moderate clinical results are obtained in elder patients. Neverthe­less, despite the rupture rates in the treatment of wide and massive, full-thickness ruptures, satisfactory clinical results can be obtained with arthroscopic-assisted mini-open rotator cuff repair.

  11. Lead Thickness Measurements

    International Nuclear Information System (INIS)

    Rucinski, R.

    1998-01-01

    The preshower lead thickness applied to the outside of D-Zero's superconducting solenoid vacuum shell was measured at the time of application. This engineering documents those thickness measurements. The lead was ordered in sheets 0.09375-inch and 0.0625-inch thick. The tolerance on thickness was specified to be +/- 0.003-inch. The sheets all were within that thickness tolerance. The nomenclature for each sheet was designated 1T, 1B, 2T, 2B where the numeral designates it's location in the wrap and 'T' or 'B' is short for 'top' or 'bottom' half of the solenoid. Micrometer measurements were taken at six locations around the perimeter of each sheet. The width,length, and weight of each piece was then measured. Using an assumed pure lead density of 0.40974 lb/in 3 , an average sheet thickness was calculated and compared to the perimeter thickness measurements. In every case, the calculated average thickness was a few mils thinner than the perimeter measurements. The ratio was constant, 0.98. This discrepancy is likely due to the assumed pure lead density. It is not felt that the perimeter is thicker than the center regions. The data suggests that the physical thickness of the sheets is uniform to +/- 0.0015-inch.

  12. Manufactured volvulus.

    Science.gov (United States)

    Zweifel, Noemi; Meuli, Martin; Subotic, Ulrike; Moehrlen, Ueli; Mazzone, Luca; Arlettaz, Romaine

    2013-06-01

    Malrotation with a common mesentery is the classical pathology allowing midgut volvulus to occur. There are only a few reports of small bowel volvulus without malrotation or other pathology triggering volvulation. We describe three cases of small bowel volvulus in very premature newborns with a perfectly normal intra-abdominal anatomy and focus on the question, what might have set off volvulation. In 2005 to 2008, three patients developed small bowel volvulus without any underlying pathology. Retrospective patient chart review was performed with special focus on clinical presentation, preoperative management, intraoperative findings, and potential causative explanations. Mean follow-up period was 46 months. All patients were born between 27 and 31 weeks (mean 28 weeks) with a birth weight between 800 and 1,000 g (mean 887 g). They presented with an almost identical pattern of symptoms including sudden abdominal distension, abdominal tenderness, erythema of the abdominal wall, high gastric residuals, and radiographic signs of ileus. All of them were treated with intensive abdominal massage or pelvic rotation to improve bowel movement before becoming symptomatic. Properistaltic maneuvers including abdominal massage and pelvic rotation may cause what we term a "manufactured" volvulus in very premature newborns. Thus, this practice was stopped. Georg Thieme Verlag KG Stuttgart · New York.

  13. Comparison of the effectiveness in pain reduction and pulmonary function between a rib splint constructed in the ER and a manufactured rib splint.

    Science.gov (United States)

    Lee, Yoonje; Lee, Sang-Hyun; Kim, Changsun; Choi, Hyuk Joong

    2018-05-01

    In the treatment of patients with rib fractures (RFs), pain reduction is the most important consideration. Various studies have examined the effectiveness of treatments administered to RF patients, such as lidocaine patches, IV drugs, nerve blockers, and surgery. In this study, we evaluated the difference in the effectiveness in pain reduction between 2 groups of RF patients: 1 group who received a rib splint constructed in the ER (ER splint) and another group who received a Chrisofix Chest Orthosis (CCO) manufactured rib splint. A pilot study for a prospective randomized clinical trial was conducted to compare subjects using the CCO (Group A) with those using the ER splint (Group B) before and after the intervention. The primary outcome was difference in the level of pain based on the visual analogue scale (VAS) and the pulmonary function (PF) variables between before and after intervention in each group during forceful and resting respiration. A total of 24 subjects were enrolled in this study. The VAS results showed that the intervention was significantly effective in each group (before vs after: Group A resting: 8.50 ± 1.05 vs 4.17 ± 1.33, P pain, and no significant differences in pain level were observed between these 2 techniques.

  14. Education and "Thick" Epistemology

    Science.gov (United States)

    Kotzee, Ben

    2011-01-01

    In this essay Ben Kotzee addresses the implications of Bernard Williams's distinction between "thick" and "thin" concepts in ethics for epistemology and for education. Kotzee holds that, as in the case of ethics, one may distinguish between "thick" and "thin" concepts of epistemology and, further, that this distinction points to the importance of…

  15. Thick film hydrogen sensor

    Science.gov (United States)

    Hoffheins, Barbara S.; Lauf, Robert J.

    1995-01-01

    A thick film hydrogen sensor element includes an essentially inert, electrically-insulating substrate having deposited thereon a thick film metallization forming at least two resistors. The metallization is a sintered composition of Pd and a sinterable binder such as glass frit. An essentially inert, electrically insulating, hydrogen impermeable passivation layer covers at least one of the resistors.

  16. Cardiac function in offspring of women with diabetes using fetal ECG, umbilical cord blood pro-BNP, and neonatal interventricular septal thickness

    DEFF Research Database (Denmark)

    Halse, Karen; Lindegaard, Marie Louise Skakkebæk; Amer-Wahlin, Isis

    2013-01-01

    were included prospectively. Umbilical cord blood pro-BNP concentrations were measured immediately after delivery (n=68) and echocardiography was performed in the newborns (n=75). Fetal ECG in combination with cardiotocography, that is STAN technology was also performed during labor. Results......Objective: Increased pro-brain natriuretic peptide (BNP) concentrations in newborns of diabetic women are associated with fetal stress, and fetal ECG changes often occur in labor in diabetic women. These findings could reflect a degree of fetal cardiomyopathy. We aimed to explore possible relations......: The concentration of umbilical cord blood pro-BNP was associated positively with the neonatal cardiac interventricular septal thickness (P=0.025) and associated negatively with umbilical cord blood pH levels (P=0.036). Fetal ECG changes (STAN events) were recorded in 22 of 53 labors where STAN was used (42...

  17. The impact of fit manufacturing on green manufacturing: A review

    Science.gov (United States)

    Qi, Ang Nian; Sin, Tan Chan; Fathullah, M.; Lee, C. C.

    2017-09-01

    Fit manufacturing and Green manufacturing are a new trend principle and concept. They are getting popular in industrial. This paper is identifying the impact between Fit manufacturing and Green manufacturing. Besides Fit manufacturing, Lean manufacturing, Agile manufacturing and Sustainable manufacturing gives big impacts to Green Manufacturing. On top of that, this paper also discuss the benefits of applying Fit manufacturing and Green manufacturing in industrial as well as environment. Hence, applications of Fit manufacturing and Green Manufacturing are increasing year by year.

  18. Functional VEGF C-634G polymorphism is associated with development of diabetic macular edema and correlated with macular retinal thickness in type 2 diabetes

    International Nuclear Information System (INIS)

    Awata, Takuya; Kurihara, Susumu; Takata, Nobuki; Neda, Tamotsu; Iizuka, Hiroyuki; Ohkubo, Tomoko; Osaki, Masataka; Watanabe, Masaki; Nakashima, Youhei; Inukai, Kouichi; Inoue, Ikuo; Kawasaki, Izumi; Mori, Keisuke; Yoneya, Shin; Katayama, Shigehiro

    2005-01-01

    Since vascular endothelial growth factor (VEGF) has a strong effect on induction of vascular permeability, VEGF is an attractive candidate gene for development of diabetic macular edema (ME). Among the 378 patients with type 2 diabetes studied, 203 patients had no retinopathy, 93 had non-proliferative diabetic retinopathy (NPDR), and 82 had proliferative diabetic retinopathy (PDR). ME was present in 16 patients with NPDR and 47 patients with PDR. We genotyped three VEGF polymorphisms: C-2,578A, G-1,154A, and C-634G. Genotype and allele distribution of C-634G, but not C-2,578A or G-1,154A, were significantly different between patients with and without diabetic retinopathy. Logistic regression analysis revealed that the C-634G genotype was a risk factor for DR (p = 0.002), and furthermore for ME (p = 0.047), independently from severity of DR, with the -634C allele increasing the risk. Macular thickness measured by optical coherence tomography was correlated with the C-634G genotype, with the trend increasing with the presence of more -634C alleles (p = 0.006). Stepwise regression analysis showed that duration of diabetes and presence of the C-634G genotype were independent predictors of macular thickness. In addition, basic transcriptional activity levels associated with the -634C allele were greater compared to those seen with the -634G allele in human glioma and lymphoblastic T-lymphocyte cells. These results demonstrate that the VEGF C-634G polymorphism is a genetic risk factor for ME as well as DR

  19. Dual beam x-ray thickness gauge

    International Nuclear Information System (INIS)

    Allport, J.J.

    1977-01-01

    The apparatus and method for continuous measurement of thickness of a sheet at a rolling mill or the like without contacting the sheet are described. A system directing radiation through the sheet in two energy bands and providing a measure of change in composition of the material as it passes the thickness gauging station is included. A system providing for changing the absorption coefficient of the material in the thickness measurement as a function of the change in composition so that the measured thickness is substantially independent of variations in composition is described

  20. Test manufacturing of copper canisters with cast inserts. Assessment report

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, C.G

    1998-08-01

    The current design of canisters for the deep repository for spent nuclear fuel consists of an outer corrosion-protective copper casing in the form of a tubular section with lid and bottom and an inner pressure-resistant insert. The insert is designed to be manufactured by casting and inside are channels in which the fuel assemblies are to be placed. Over the last years, a number of full-scale manufacturing tests of all canister components have been carried out. The purpose has been to determine and develop the best manufacturing technique and to establish long-term contacts with the best suppliers of material and technology. Part of the work has involved the developing and implementing of a quality assurance system in accordance with ISO 9001, covering the whole chain from suppliers of material up to and including the delivery of assembled canisters. This report consists of a description of the design of the canister together with current drawings and complementary technical specifications stipulating, among other things, requirements placed on different materials. The different manufacturing methods that have been used are also described and commented on in both text and illustrations. For the manufacturing of copper tubes, the roll-forming of rolled plate to tube halves and longitudinal welding is a method that has been tested on a relatively large number of tubes by now, and that probably can be developed into a functioning production method. However, the very promising outcome of performed tests on seamless tube manufacturing, has resulted in a change in direction in tube manufacturing, focusing on continued testing of extrusion as well as pierce and draw processing in the immediate future. In connection with ongoing operations, new manufacturing tests of tubes with less material thickness will be carried out. Test manufacturing of cast inserts has resulted in the choice of nodular iron as material in the continued work. This improvement in design has resulted

  1. Test manufacturing of copper canisters with cast inserts. Assessment report

    International Nuclear Information System (INIS)

    Andersson, C.G.

    1998-08-01

    The current design of canisters for the deep repository for spent nuclear fuel consists of an outer corrosion-protective copper casing in the form of a tubular section with lid and bottom and an inner pressure-resistant insert. The insert is designed to be manufactured by casting and inside are channels in which the fuel assemblies are to be placed. Over the last years, a number of full-scale manufacturing tests of all canister components have been carried out. The purpose has been to determine and develop the best manufacturing technique and to establish long-term contacts with the best suppliers of material and technology. Part of the work has involved the developing and implementing of a quality assurance system in accordance with ISO 9001, covering the whole chain from suppliers of material up to and including the delivery of assembled canisters. This report consists of a description of the design of the canister together with current drawings and complementary technical specifications stipulating, among other things, requirements placed on different materials. The different manufacturing methods that have been used are also described and commented on in both text and illustrations. For the manufacturing of copper tubes, the roll-forming of rolled plate to tube halves and longitudinal welding is a method that has been tested on a relatively large number of tubes by now, and that probably can be developed into a functioning production method. However, the very promising outcome of performed tests on seamless tube manufacturing, has resulted in a change in direction in tube manufacturing, focusing on continued testing of extrusion as well as pierce and draw processing in the immediate future. In connection with ongoing operations, new manufacturing tests of tubes with less material thickness will be carried out. Test manufacturing of cast inserts has resulted in the choice of nodular iron as material in the continued work. This improvement in design has resulted

  2. Translucency of dental ceramics with different thicknesses.

    Science.gov (United States)

    Wang, Fu; Takahashi, Hidekazu; Iwasaki, Naohiko

    2013-07-01

    The increased use of esthetic restorations requires an improved understanding of the translucent characteristics of ceramic materials. Ceramic translucency has been considered to be dependent on composition and thickness, but less information is available about the translucent characteristics of these materials, especially at different thicknesses. The purpose of this study was to investigate the relationship between translucency and the thickness of different dental ceramics. Six disk-shaped specimens of 8 glass ceramics (IPS e.max Press HO, MO, LT, HT, IPS e.max CAD LT, MO, AvanteZ Dentin, and Trans) and 5 specimens of 5 zirconia ceramics (Cercon Base, Zenotec Zr Bridge, Lava Standard, Lava Standard FS3, and Lava Plus High Translucency) were prepared following the manufacturers' instructions and ground to a predetermined thickness with a grinding machine. A spectrophotometer was used to measure the translucency parameters (TP) of the glass ceramics, which ranged from 2.0 to 0.6 mm, and of the zirconia ceramics, which ranged from 1.0 to 0.4 mm. The relationship between the thickness and TP of each material was evaluated using a regression analysis (α=.05). The TP values of the glass ceramics ranged from 2.2 to 25.3 and the zirconia ceramics from 5.5 to 15.1. There was an increase in the TP with a decrease in thickness, but the amount of change was material dependent. An exponential relationship with statistical significance (Pceramics and zirconia ceramics. The translucency of dental ceramics was significantly influenced by both material and thickness. The translucency of all materials increased exponentially as the thickness decreased. All of the zirconia ceramics evaluated in the present study showed some degree of translucency, which was less sensitive to thickness compared to that of the glass ceramics. Copyright © 2013 The Editorial Council of the Journal of Prosthetic Dentistry. Published by Mosby, Inc. All rights reserved.

  3. Advanced Manufacturing Technologies

    Science.gov (United States)

    Fikes, John

    2016-01-01

    Advanced Manufacturing Technologies (AMT) is developing and maturing innovative and advanced manufacturing technologies that will enable more capable and lower-cost spacecraft, launch vehicles and infrastructure to enable exploration missions. The technologies will utilize cutting edge materials and emerging capabilities including metallic processes, additive manufacturing, composites, and digital manufacturing. The AMT project supports the National Manufacturing Initiative involving collaboration with other government agencies.

  4. Integrated Glass Coating Manufacturing Line

    Energy Technology Data Exchange (ETDEWEB)

    Brophy, Brenor [Enki Technology Inc., San Jose, CA (United States)

    2015-09-30

    This project aims to enable US module manufacturers to coat glass with Enki’s state of the art tunable functionalized AR coatings at the lowest possible cost and highest possible performance by encapsulating Enki’s coating process in an integrated tool that facilitates effective process improvement through metrology and data analysis for greater quality and performance while reducing footprint, operating and capital costs. The Phase 1 objective was a fully designed manufacturing line, including fully specified equipment ready for issue of purchase requisitions; a detailed economic justification based on market prices at the end of Phase 1 and projected manufacturing costs and a detailed deployment plan for the equipment.

  5. Biochemical effects of lead exposure and toxicity on battery manufacturing workers of Western Maharashtra (India): with respect to liver and kidney function tests

    OpenAIRE

    Mandakini Kshirsagar; Jyotsna Patil; Arun Patil; Ganesh Ghanwat; Ajit Sontakke; R.K. Ayachit

    2015-01-01

    Background: The battery recycling and manufacturing involves the use of metallic lead for making grids, bearing and solder. The process results in release of lead particles and lead oxide causing environmental pollution and severe lead poisoning. Aims and Objectives: To know the present scenario of the blood lead level and its biochemical effects on occupational lead-exposed population, mainly battery manufacturing workers in Western Maharashtra (India) with respect to liver and kidney functi...

  6. Improved diagnostic accuracy of Alzheimer's disease by combining regional cortical thickness and default mode network functional connectivity: Validated in the Alzheimer's disease neuroimaging initiative set

    Energy Technology Data Exchange (ETDEWEB)

    Park, Ji Eun; Park, Bum Woo; Kim, Sang Joon; Kim, Ho Sung; Choi, Choong Gon; Jung, Seung Jung; Oh, Joo Young; Shim, Woo Hyun [Dept. of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul (Korea, Republic of); Lee, Jae Hong; Roh, Jee Hoon [University of Ulsan College of Medicine, Asan Medical Center, Seoul (Korea, Republic of)

    2017-11-15

    To identify potential imaging biomarkers of Alzheimer's disease by combining brain cortical thickness (CThk) and functional connectivity and to validate this model's diagnostic accuracy in a validation set. Data from 98 subjects was retrospectively reviewed, including a study set (n = 63) and a validation set from the Alzheimer's Disease Neuroimaging Initiative (n = 35). From each subject, data for CThk and functional connectivity of the default mode network was extracted from structural T1-weighted and resting-state functional magnetic resonance imaging. Cortical regions with significant differences between patients and healthy controls in the correlation of CThk and functional connectivity were identified in the study set. The diagnostic accuracy of functional connectivity measures combined with CThk in the identified regions was evaluated against that in the medial temporal lobes using the validation set and application of a support vector machine. Group-wise differences in the correlation of CThk and default mode network functional connectivity were identified in the superior temporal (p < 0.001) and supramarginal gyrus (p = 0.007) of the left cerebral hemisphere. Default mode network functional connectivity combined with the CThk of those two regions were more accurate than that combined with the CThk of both medial temporal lobes (91.7% vs. 75%). Combining functional information with CThk of the superior temporal and supramarginal gyri in the left cerebral hemisphere improves diagnostic accuracy, making it a potential imaging biomarker for Alzheimer's disease.

  7. Tungsten thick coatings for plasma facing components

    International Nuclear Information System (INIS)

    Riccardi, B.; Pizzuto, A.; Orsini, A.; Libera, S.; Visca, E.; Bertamini, L.; Casadei, F.; Severini, E.; Montanari, R.; Litunovsky, N.

    1998-01-01

    The aim of the R and D activity was to realize thick W coatings on CuCrZr hollow bars and to test the mock ups with respect to thermal fatigue. Eight mock ups provided of 4 mm thick W coating were finally manufactured. The bonding integrity between coating and substrate was checked by means of an Ultrasonic apparatus. Characterisation of coatings was performed in order to assess microstructure, impurity content, density, tensile strength, adhesion strength, thermal conductivity and thermal expansion coefficient. Macroscopic residual strain measurements were performed by means of 'hole drilling' technique. The activities performed demonstrated the feasibility of thick Tungsten coatings on geometries with more complex residual strain distribution. These coatings are reliable armour of medium heat flux plasma facing component. (author)

  8. Ocean Sediment Thickness Contours

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Ocean sediment thickness contours in 200 meter intervals for water depths ranging from 0 - 18,000 meters. These contours were derived from a global sediment...

  9. Tribology in Manufacturing Technology

    CERN Document Server

    2013-01-01

    The present book aims to provide research advances on tribology in manufacturing technology for modern industry. This book can be used as a research book for final undergraduate engineering course (for example, mechanical, manufacturing, materials, etc) or as a subject on manufacturing at the postgraduate level. Also, this book can serve as a useful reference for academics, manufacturing and tribology researchers, mechanical, mechanical, manufacturing and materials engineers, professionals in related industries with manufacturing and tribology.

  10. In vitro biocompatibility and electrical stability of thick-film platinum/gold alloy electrodes printed on alumina

    Science.gov (United States)

    Carnicer-Lombarte, Alejandro; Lancashire, Henry T.; Vanhoestenberghe, Anne

    2017-06-01

    Objective. High-density electrode arrays are a powerful tool in both clinical neuroscience and basic research. However, current manufacturing techniques require the use of specialised techniques and equipment, which are available to few labs. We have developed a high-density electrode array with customisable design, manufactured using simple printing techniques and with commercially available materials. Approach. Electrode arrays were manufactured by thick-film printing a platinum-gold alloy (Pt/Au) and an insulating dielectric on 96% alumina ceramic plates. Arrays were conditioned in serum and serum-free conditions, with and without 1 kHz, 200 µA, charge balanced stimulation for up to 21 d. Array biocompatibility was assessed using an extract assay and a PC-12 cell contact assay. Electrode impedance, charge storage capacity and charge injection capacity were before and after array conditioning. Main results. The manufactured Pt/Au electrodes have a highly porous surface and exhibit electrical properties comparable to arrays manufactured using alternative techniques. Materials used in array manufacture were found to be non-toxic to L929 fibroblasts by extract assay, and neuronal-like PC-12 cells adhered and extended neurites on the array surfaces. Arrays remained functional after long-term delivery of electrical pulses while exposed to protein-rich environments. Charge storage capacities and charge injection capacities increased following stimulation accounted for by an increase in surface index (real surface area) observed by vertical scanning interferometry. Further, we observed accumulation of proteins at the electrode sites following conditioning in the presence of serum. Significance. This study demonstrates the in vitro biocompatibility of commercially available thick-film printing materials. The printing technique is both simple and versatile, with layouts readily modified to produce customized electrode arrays. Thick-film electrode arrays are an

  11. Trial manufacturing of titanium-carbon steel composite overpack

    International Nuclear Information System (INIS)

    Honma, Nobuyuki; Chiba, Takahiko; Tanai, Kenji

    1999-11-01

    This paper reports the results of design analysis and trial manufacturing of full-scale titanium-carbon steel composite overpacks. The overpack is one of the key components of the engineered barrier system, hence, it is necessary to confirm the applicability of current technique in their manufacture. The required thickness was calculated according to mechanical resistance analysis, based on models used in current nuclear facilities. The Adequacy of the calculated dimensions was confirmed by finite-element methods. To investigate the necessity of a radiation shielding function of the overpack, the irradiation from vitrified waste has been calculated. As a result, it was shown that shielding on handling and transport equipment is a more reasonable and practical approach than to increase thickness of overpack to attain a self-shielding capability. After the above investigation, trial manufacturing of full-scale model of titanium-carbon steel composite overpack has been carried out. For corrosion-resistant material, ASTM Grade-2 titanium was selected. The titanium layer was bonded individually to a cylindrical shell and fiat cover plates (top and bottom) made of carbon steel. For the cylindrical shell portion, a cylindrically formed titanium layer was fitted to the inner carbon steel vessel by shrinkage. For the flat cover plates (top and bottom), titanium plate material was coated by explosive bonding. Electron beam welding and gas metal arc welding were combined to weld of the cover plates to the body. No significant failure was evident from inspections of the fabrication process, and the applicability of current technology for manufacturing titanium-carbon steel composite overpack was confirmed. Future research and development items regarding titanium-carbon steel composite overpacks are also discussed. (author)

  12. A Comparison of Simple Methods to Incorporate Material Temperature Dependency in the Green's Function Method for Estimating Transient Thermal Stresses in Thick-Walled Power Plant Components.

    Science.gov (United States)

    Rouse, James; Hyde, Christopher

    2016-01-06

    The threat of thermal fatigue is an increasing concern for thermal power plant operators due to the increasing tendency to adopt "two-shifting" operating procedures. Thermal plants are likely to remain part of the energy portfolio for the foreseeable future and are under societal pressures to generate in a highly flexible and efficient manner. The Green's function method offers a flexible approach to determine reference elastic solutions for transient thermal stress problems. In order to simplify integration, it is often assumed that Green's functions (derived from finite element unit temperature step solutions) are temperature independent (this is not the case due to the temperature dependency of material parameters). The present work offers a simple method to approximate a material's temperature dependency using multiple reference unit solutions and an interpolation procedure. Thermal stress histories are predicted and compared for realistic temperature cycles using distinct techniques. The proposed interpolation method generally performs as well as (if not better) than the optimum single Green's function or the previously-suggested weighting function technique (particularly for large temperature increments). Coefficients of determination are typically above 0 . 96 , and peak stress differences between true and predicted datasets are always less than 10 MPa.

  13. Manufacture of Probiotic Bacteria

    Science.gov (United States)

    Muller, J. A.; Ross, R. P.; Fitzgerald, G. F.; Stanton, C.

    Lactic acid bacteria (LAB) have been used for many years as natural biopreservatives in fermented foods. A small group of LAB are also believed to have beneficial health effects on the host, so called probiotic bacteria. Probiotics have emerged from the niche industry from Asia into European and American markets. Functional foods are one of the fastest growing markets today, with estimated growth to 20 billion dollars worldwide by 2010 (GIA, 2008). The increasing demand for probiotics and the new food markets where probiotics are introduced, challenges the industry to produce high quantities of probiotic cultures in a viable and stable form. Dried concentrated probiotic cultures are the most convenient form for incorporation into functional foods, given the ease of storage, handling and transport, especially for shelf-stable functional products. This chapter will discuss various aspects of the challenges associated with the manufacturing of probiotic cultures.

  14. Manufacturing a Porous Structure According to the Process Parameters of Functional 3D Porous Polymer Printing Technology Based on a Chemical Blowing Agent

    Science.gov (United States)

    Yoo, C. J.; Shin, B. S.; Kang, B. S.; Yun, D. H.; You, D. B.; Hong, S. M.

    2017-09-01

    In this paper, we propose a new porous polymer printing technology based on CBA(chemical blowing agent), and describe the optimization process according to the process parameters. By mixing polypropylene (PP) and CBA, a hybrid CBA filament was manufactured; the diameter of the filament ranged between 1.60 mm and 1.75 mm. A porous polymer structure was manufactured based on the traditional fused deposition modelling (FDM) method. The process parameters of the three-dimensional (3D) porous polymer printing (PPP) process included nozzle temperature, printing speed, and CBA density. Porosity increase with an increase in nozzle temperature and CBA density. On the contrary, porosity increase with a decrease in the printing speed. For porous structures, it has excellent mechanical properties. We manufactured a simple shape in 3D using 3D PPP technology. In the future, we will study the excellent mechanical properties of 3D PPP technology and apply them to various safety fields.

  15. Monitoring production target thickness

    International Nuclear Information System (INIS)

    Oothoudt, M.A.

    1993-01-01

    Pion and muon production targets at the Clinton P. Anderson Meson Physics Facility consist of rotating graphite wheels. The previous target thickness monitoring Procedure scanned the target across a reduced intensity beam to determine beam center. The fractional loss in current across the centered target gave a measure of target thickness. This procedure, however, required interruption of beam delivery to experiments and frequently indicated a different fractional loss than at normal beam currents. The new monitoring Procedure compares integrated ups and downs toroid current monitor readings. The current monitors are read once per minute and the integral of readings are logged once per eight-hour shift. Changes in the upstream to downstream fractional difference provide a nonintrusive continuous measurement of target thickness under nominal operational conditions. Target scans are now done only when new targets are installed or when unexplained changes in the current monitor data are observed

  16. Intelligent processing for thick composites

    Science.gov (United States)

    Shin, Daniel Dong-Ok

    2000-10-01

    Manufacturing thick composite parts are associated with adverse curing conditions such as large in-plane temperature gradient and exotherms. The condition is further aggravated because the manufacturer's cycle and the existing cure control systems do not adequately counter such affects. In response, the forecast-based thermal control system is developed to have better cure control for thick composites. Accurate cure kinetic model is crucial for correctly identifying the amount of heat generated for composite process simulation. A new technique for identifying cure parameters for Hercules AS4/3502 prepreg is presented by normalizing the DSC data. The cure kinetics is based on an autocatalytic model for the proposed method, which uses dynamic and isothermal DSC data to determine its parameters. Existing models are also used to determine kinetic parameters but rendered inadequate because of the material's temperature dependent final degree of cure. The model predictions determined from the new technique showed good agreement to both isothermal and dynamic DSC data. The final degree of cure was also in good agreement with experimental data. A realistic cure simulation model including bleeder ply analysis and compaction is validated with Hercules AS4/3501-6 based laminates. The nonsymmetrical temperature distribution resulting from the presence of bleeder plies agreed well to the model prediction. Some of the discrepancies in the predicted compaction behavior were attributed to inaccurate viscosity and permeability models. The temperature prediction was quite good for the 3cm laminate. The validated process simulation model along with cure kinetics model for AS4/3502 prepreg were integrated into the thermal control system. The 3cm Hercules AS4/3501-6 and AS4/3502 laminate were fabricated. The resulting cure cycles satisfied all imposed requirements by minimizing exotherms and temperature gradient. Although the duration of the cure cycles increased, such phenomena was

  17. Manufacturing network evolution

    DEFF Research Database (Denmark)

    Yang, Cheng; Farooq, Sami; Johansen, John

    2011-01-01

    Purpose – This paper examines the effect of changes at the manufacturing plant level on other plants in the manufacturing network and also investigates the role of manufacturing plants on the evolution of a manufacturing network. Design/methodology/approach –The research questions are developed...... different manufacturing plants in the network and their impact on network transformation. Findings – The paper highlights the dominant role of manufacturing plants in the continuously changing shape of a manufacturing network. The paper demonstrates that a product or process change at one manufacturing...... by identifying the gaps in the reviewed literature. The paper is based on three case studies undertaken in Danish manufacturing companies to explore in detail their manufacturing plants and networks. The cases provide a sound basis for developing the research questions and explaining the interaction between...

  18. The effect of oxide shell thickness on the structural, electronic, and optical properties of Si-SiO{sub 2} core-shell nano-crystals: A (time dependent)density functional theory study

    Energy Technology Data Exchange (ETDEWEB)

    Nazemi, Sanaz, E-mail: s.nazemi@ut.ac.ir, E-mail: pourfath@ut.ac.ir; Soleimani, Ebrahim Asl [School of Electrical and Computer Engineering, University of Tehran, Tehran 14395-515 (Iran, Islamic Republic of); Pourfath, Mahdi, E-mail: s.nazemi@ut.ac.ir, E-mail: pourfath@ut.ac.ir [School of Electrical and Computer Engineering, University of Tehran, Tehran 14395-515 (Iran, Islamic Republic of); Institute for Microelectronics, Technische Universität Wien, Wien A-1040 (Austria); Kosina, Hans [Institute for Microelectronics, Technische Universität Wien, Wien A-1040 (Austria)

    2016-04-14

    Due to their tunable properties, silicon nano-crystals (NC) are currently being investigated. Quantum confinement can generally be employed for size-dependent band-gap tuning at dimensions smaller than the Bohr radius (∼5 nm for silicon). At the nano-meter scale, however, increased surface-to-volume ratio makes the surface effects dominant. Specifically, in Si-SiO{sub 2} core-shell semiconductor NCs the interfacial transition layer causes peculiar electronic and optical properties, because of the co-existence of intermediate oxidation states of silicon (Si{sup n+}, n = 0–4). Due to the presence of the many factors involved, a comprehensive understanding of the optical properties of these NCs has not yet been achieved. In this work, Si-SiO{sub 2} NCs with a diameter of 1.1 nm and covered by amorphous oxide shells with thicknesses between 2.5 and 4.75 Å are comprehensively studied, employing density functional theory calculations. It is shown that with increased oxide shell thickness, the low-energy part of the optical transition spectrum of the NC is red shifted and attenuated. Moreover, the absorption coefficient is increased in the high-energy part of the spectrum which corresponds to SiO{sub 2} transitions. Structural examinations indicate a larger compressive stress on the central silicon cluster with a thicker oxide shell. Examination of the local density of states reveals the migration of frontier molecular orbitals from the oxide shell into the silicon core with the increase of silica shell thickness. The optical and electrical properties are explained through the analysis of the density of states and the spatial distribution of silicon sub-oxide species.

  19. The crustal thickness of Australia

    Science.gov (United States)

    Clitheroe, G.; Gudmundsson, O.; Kennett, B.L.N.

    2000-01-01

    We investigate the crustal structure of the Australian continent using the temporary broadband stations of the Skippy and Kimba projects and permanent broadband stations. We isolate near-receiver information, in the form of crustal P-to-S conversions, using the receiver function technique. Stacked receiver functions are inverted for S velocity structure using a Genetic Algorithm approach to Receiver Function Inversion (GARFI). From the resulting velocity models we are able to determine the Moho depth and to classify the width of the crust-mantle transition for 65 broadband stations. Using these results and 51 independent estimates of crustal thickness from refraction and reflection profiles, we present a new, improved, map of Moho depth for the Australian continent. The thinnest crust (25 km) occurs in the Archean Yilgarn Craton in Western Australia; the thickest crust (61 km) occurs in Proterozoic central Australia. The average crustal thickness is 38.8 km (standard deviation 6.2 km). Interpolation error estimates are made using kriging and fall into the range 2.5-7.0 km. We find generally good agreement between the depth to the seismologically defined Moho and xenolith-derived estimates of crustal thickness beneath northeastern Australia. However, beneath the Lachlan Fold Belt the estimates are not in agreement, and it is possible that the two techniques are mapping differing parts of a broad Moho transition zone. The Archean cratons of Western Australia appear to have remained largely stable since cratonization, reflected in only slight variation of Moho depth. The largely Proterozoic center of Australia shows relatively thicker crust overall as well as major Moho offsets. We see evidence of the margin of the contact between the Precambrian craton and the Tasman Orogen, referred to as the Tasman Line. Copyright 2000 by the American Geophysical Union.

  20. Coating thickness measurement

    International Nuclear Information System (INIS)

    1976-12-01

    The standard specifies measurements of the coating thickness, which make use of beta backscattering and/or x-ray fluorescence. For commonly used combinations of coating material and base material the appropriate measuring ranges and radionuclides to be used are given for continuous as well as for discontinuous measurements

  1. Residual stress analysis in thick uranium films

    International Nuclear Information System (INIS)

    Hodge, A.M.; Foreman, R.J.; Gallegos, G.F.

    2005-01-01

    Residual stress analysis was performed on thick, 1-25 μm, depleted uranium (DU) films deposited on an Al substrate by magnetron sputtering. Two distinct characterization techniques were used to measure substrate curvature before and after deposition. Stress evaluation was performed using the Benabdi/Roche equation, which is based on beam theory of a bi-layer material. The residual stress evolution was studied as a function of coating thickness and applied negative bias voltage (0, -200, -300 V). The stresses developed were always compressive; however, increasing the coating thickness and applying a bias voltage presented a trend towards more tensile stresses and thus an overall reduction of residual stresses

  2. Experiment study on the thick GEM-like multiplier for X-ray photoelectrons energy deposition gaining

    International Nuclear Information System (INIS)

    Zhu Pengfei; Ye Yan; Long Yan; Cao Ningxiang; Jia Xing; Li Jianfeng

    2009-01-01

    The GEM is a novel detector with high gain,high time and location resolution. Imitating the structure of the GEM, a thick GEM-like multiplier which has the similar function with that of the GEM is designed and manufactured. The characteristics of the thick GEM-like multiplier increasing electron energy deposition in absorbing medium has been experimentally studied. The results indicate that the energy deposition gain of x-ray photoelectron in medium is apparent, and the maximum energy deposition can increase by more than 40%. Some suggestions of further increasing the energy deposition are given, and the future application of the way of increasing the x-ray photoelectron energy deposition by the thick GEM-like multiplier in hard x-ray imaging is prospected. (authors)

  3. Effects of Inhomogeneity and Thickness Parameters on the Elastic Response of a Pressurized Hyperbolic Annulus/Disc Made of Functionally Graded Material

    Directory of Open Access Journals (Sweden)

    Vebil Yıldırım

    2017-10-01

    Full Text Available A broad parametric study is carried out to investigate the effects of both the inhomogeneity parameter, and a profile index of Stodola’s hyperbolic function on the static response of such structures subjected to both the inner and outer pressures. The investigation is based on the analytical formulas lately published by the author. The effects of those parameters on the variation of the radial displacement, the radial and hoop stresses are all graphically illustrated for an annulus pressurized at its both surfaces. It is observed that, especially, the variation of the hoop stress in radial coordinate is closely sensible to variation of those parameters. For the chosen problems it was observed that one of two materials whose Young’s modulus is higher than the other is better to locate at the inner surface of the disc having divergent profile to get reasonable maximum hoop stresses. However much smaller radial displacements may be obtained by using positive inhomogeneity indexes for all discs whose surfaces host a material whose Young’s modulus is smaller than the other. To reach a final decision, analytical formulas such as those used in the present study together with a failure criteria such as Von Mises and Tresca become indispensable means in a design process.

  4. Crustal structure and mantle transition zone thickness beneath a hydrothermal vent at the ultra-slow spreading Southwest Indian Ridge (49°39'E): a supplementary study based on passive seismic receiver functions

    Science.gov (United States)

    Ruan, Aiguo; Hu, Hao; Li, Jiabiao; Niu, Xiongwei; Wei, Xiaodong; Zhang, Jie; Wang, Aoxing

    2017-06-01

    As a supplementary study, we used passive seismic data recorded by one ocean bottom seismometer (OBS) station (49°41.8'E) close to a hydrothermal vent (49°39'E) at the Southwest Indian Ridge to invert the crustal structure and mantle transition zone (MTZ) thickness by P-to-S receiver functions to investigate previous active seismic tomographic crustal models and determine the influence of the deep mantle thermal anomaly on seafloor hydrothermal venting at an ultra-slow spreading ridge. The new passive seismic S-wave model shows that the crust has a low velocity layer (2.6 km/s) from 4.0 to 6.0 km below the sea floor, which is interpreted as partial melting. We suggest that the Moho discontinuity at 9.0 km is the bottom of a layer (2-3 km thick); the Moho (at depth of 6-7 km), defined by active seismic P-wave models, is interpreted as a serpentinized front. The velocity spectrum stacking plot made from passive seismic data shows that the 410 discontinuity is depressed by 15 km, the 660 discontinuity is elevated by 18 km, and a positive thermal anomaly between 182 and 237 K is inferred.

  5. Thickness filters for gradient based multi-material and thickness optimization of laminated composite structures

    DEFF Research Database (Denmark)

    Sørensen, Rene; Lund, Erik

    2015-01-01

    This paper presents a new gradient based method for performing discrete material and thickness optimization of laminated composite structures. The novelty in the new method lies in the application of so-called casting constraints, or thickness filters in this context, to control the thickness...... variation throughout the laminate. The filters replace the layerwise density variables with a single continuous through-the-thickness design variable. Consequently, the filters eliminate the need for having explicit constraints for preventing intermediate void through the thickness of the laminate....... Therefore, the filters reduce both the number of constraints and design variables in the optimization problem. Based upon a continuous approximation of a unit step function, the thickness filters are capable of projecting discrete 0/1 values to the underlying layerwise or ”physical” density variables which...

  6. Direct stamping of silver nanoparticles toward residue-free thick electrode

    Directory of Open Access Journals (Sweden)

    Jiseok Kim, Kevin Wubs, Byeong-Soo Bae and Woo Soo Kim

    2012-01-01

    Full Text Available Direct stamping of functional materials has been developed for cost-effective and process-effective manufacturing of nano/micro patterns. However, there remain several challenging issues like the perfect removal of the residual layer and realization of high aspect ratio. We have demonstrated facile fabrication of flexible strain sensors that have microscale thick interdigitated capacitors with no residual layer by a simple direct stamping with silver nanoparticles (AgNPs. Polyurethane (PU prepolymer was utilized as an adhesive layer to transfer AgNPs more efficiently during the separation step of the flexible stamp from directly stamped AgNPs. Scanning electron microscopy images and energy dispersive x-ray spectroscopy analysis revealed residue-free transfer of microscale thick interdigitated electrodes onto two different flexible substrates (elastomeric and brittle for the application to highly sensitive strain sensors.

  7. Photoacoustic study of curing time by UV laser radiation of a photoresin with different thickness

    Energy Technology Data Exchange (ETDEWEB)

    Pincel, P. Vieyra [UPIITA IPN, Avenida Instituto Politécnico Nacional, No. 2580, Col. Barrio la Laguna Ticomán, Delegación Gustavo A. Madero, C.P. 07340 México, D.F. (Mexico); Jiménez-Pérez, J.L., E-mail: jimenezp@fis.cinvestav.mx [UPIITA IPN, Avenida Instituto Politécnico Nacional, No. 2580, Col. Barrio la Laguna Ticomán, Delegación Gustavo A. Madero, C.P. 07340 México, D.F. (Mexico); Cruz-Orea, A. [Departamento de Física, CINVESTAV-IPN, Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, C.P. 07360 México, D.F. (Mexico); Correa-Pacheco, Z.N. [Instituto Politécnico Nacional-Centro de Desarrollo de Productos Bióticos (CEPROBI). Carr. Yautepec–Jojutla, km 6. San Isidro, C.P. 62730 Yautepec, Morelos (Mexico); Rosas, J. Hernández [UPIITA IPN, Avenida Instituto Politécnico Nacional, No. 2580, Col. Barrio la Laguna Ticomán, Delegación Gustavo A. Madero, C.P. 07340 México, D.F. (Mexico)

    2015-04-20

    Highlights: • The curing of a resin in the presence of a UV laser radiation was studied. • Open photoacoustic cell technique was used to characterize the curing of the resin. • The curing of the resin as a function of time was studied. • A parabolic behavior of the resin thickness, as a function of time was observed. • UV–vis and FTIR spectroscopy were employed to characterize the resin. - Abstract: This paper deals with the study of the cure of a resin in the presence of a UV laser radiation used as the excitation source, operated at λ = 405 nm, with an output power of 20 mW. The open photoacoustic cell (OPC) technique was used to study the curing of the resins as a function of time. The curing characteristic time values were τ = 10.43, 20.99, 30.18, 45.84, 67.59 and 89.55 s for the resin thicknesses of 1000, 2000, 3000, 4000, 5000 and 6000 μm, respectively. A parabolic behavior of the resin thickness, as a function of the curing characteristic time, was obtained. UV–vis spectroscopy and infrared Fourier transform spectroscopy (FTIR) techniques were employed to characterize the resin in order to study the optical absorption and the chemical bonds, respectively. Our work has applications in the manufacture of 3D printing parts for applications, among others, in medicine.

  8. Photoacoustic study of curing time by UV laser radiation of a photoresin with different thickness

    International Nuclear Information System (INIS)

    Pincel, P. Vieyra; Jiménez-Pérez, J.L.; Cruz-Orea, A.; Correa-Pacheco, Z.N.; Rosas, J. Hernández

    2015-01-01

    Highlights: • The curing of a resin in the presence of a UV laser radiation was studied. • Open photoacoustic cell technique was used to characterize the curing of the resin. • The curing of the resin as a function of time was studied. • A parabolic behavior of the resin thickness, as a function of time was observed. • UV–vis and FTIR spectroscopy were employed to characterize the resin. - Abstract: This paper deals with the study of the cure of a resin in the presence of a UV laser radiation used as the excitation source, operated at λ = 405 nm, with an output power of 20 mW. The open photoacoustic cell (OPC) technique was used to study the curing of the resins as a function of time. The curing characteristic time values were τ = 10.43, 20.99, 30.18, 45.84, 67.59 and 89.55 s for the resin thicknesses of 1000, 2000, 3000, 4000, 5000 and 6000 μm, respectively. A parabolic behavior of the resin thickness, as a function of the curing characteristic time, was obtained. UV–vis spectroscopy and infrared Fourier transform spectroscopy (FTIR) techniques were employed to characterize the resin in order to study the optical absorption and the chemical bonds, respectively. Our work has applications in the manufacture of 3D printing parts for applications, among others, in medicine

  9. Detailed design of product oriented manufacturing systems

    OpenAIRE

    Silva, Sílvio Carmo; Alves, Anabela Carvalho

    2006-01-01

    This paper presents a procedure for the detailed design and redesign of manufacturing systems within a framework of constantly fitting production system configuration to the varying production needs of products. With such an approach is achieved the design of Product Oriented Manufacturing Systems – POMS. This approach is in opposition to the fitting, before hand, of a production system to all products within a company. In this case is usual to adopt a Function Oriented Manufactur...

  10. Coating thickness measuring device

    International Nuclear Information System (INIS)

    Joffe, B.B.; Sawyer, B.E.; Spongr, J.J.

    1984-01-01

    A device especially adapted for measuring the thickness of coatings on small, complexly-shaped parts, such as, for example, electronic connectors, electronic contacts, or the like. The device includes a source of beta radiation and a radiation detector whereby backscatter of the radiation from the coated part can be detected and the thickness of the coating ascertained. The radiation source and detector are positioned in overlying relationship to the coated part and a microscope is provided to accurately position the device with respect to the part. Means are provided to control the rate of descent of the radiation source and radiation detector from its suspended position to its operating position and the resulting impact it makes with the coated part to thereby promote uniformity of readings from operator to operator, and also to avoid excessive impact with the part, thereby improving accuracy of measurement and eliminating damage to the parts

  11. Towards Additive Manufacture of Functional, Spline-Based Morphometric Models of Healthy and Diseased Coronary Arteries: In Vitro Proof-of-Concept Using a Porcine Template

    Directory of Open Access Journals (Sweden)

    Rachel Jewkes

    2018-02-01

    Full Text Available The aim of this study is to assess the additive manufacture of morphometric models of healthy and diseased coronary arteries. Using a dissected porcine coronary artery, a model was developed with the use of computer aided engineering, with splines used to design arteries in health and disease. The model was altered to demonstrate four cases of stenosis displaying varying severity, based on published morphometric data available. Both an Objet Eden 250 printer and a Solidscape 3Z Pro printer were used in this analysis. A wax printed model was set into a flexible thermoplastic and was valuable for experimental testing with helical flow patterns observed in healthy models, dominating the distal LAD (left anterior descending and left circumflex arteries. Recirculation zones were detected in all models, but were visibly larger in the stenosed cases. Resin models provide useful analytical tools for understanding the spatial relationships of blood vessels, and could be applied to preoperative planning techniques, but were not suitable for physical testing. In conclusion, it is feasible to develop blood vessel models enabling experimental work; further, through additive manufacture of bio-compatible materials, there is the possibility of manufacturing customized replacement arteries.

  12. Towards Additive Manufacture of Functional, Spline-Based Morphometric Models of Healthy and Diseased Coronary Arteries: In Vitro Proof-of-Concept Using a Porcine Template.

    Science.gov (United States)

    Jewkes, Rachel; Burton, Hanna E; Espino, Daniel M

    2018-02-02

    The aim of this study is to assess the additive manufacture of morphometric models of healthy and diseased coronary arteries. Using a dissected porcine coronary artery, a model was developed with the use of computer aided engineering, with splines used to design arteries in health and disease. The model was altered to demonstrate four cases of stenosis displaying varying severity, based on published morphometric data available. Both an Objet Eden 250 printer and a Solidscape 3Z Pro printer were used in this analysis. A wax printed model was set into a flexible thermoplastic and was valuable for experimental testing with helical flow patterns observed in healthy models, dominating the distal LAD (left anterior descending) and left circumflex arteries. Recirculation zones were detected in all models, but were visibly larger in the stenosed cases. Resin models provide useful analytical tools for understanding the spatial relationships of blood vessels, and could be applied to preoperative planning techniques, but were not suitable for physical testing. In conclusion, it is feasible to develop blood vessel models enabling experimental work; further, through additive manufacture of bio-compatible materials, there is the possibility of manufacturing customized replacement arteries.

  13. Nano Manufacturing - Products and Technologies

    DEFF Research Database (Denmark)

    Hansen, Hans Nørgaard; Alting, Leo

    2004-01-01

    The use of micro and nano technologies in components and products not only sets new demands to the manufacturing technologies. Product concepts have to be rethought and redefined in order to implement the micro and nano technologies into functional systems. Both a technology driven and a product ...

  14. Thick melanoma in Tuscany.

    Science.gov (United States)

    Chiarugi, Alessandra; Nardini, Paolo; Borgognoni, Lorenzo; Brandani, Paola; Gerlini, Gianni; Rubegni, Pietro; Lamberti, Arianna; Salvini, Camilla; Lo Scocco, Giovanni; Cecchi, Roberto; Sirna, Riccardo; Lorenzi, Stefano; Gattai, Riccardo; Battistini, Silvio; Crocetti, Emanuele

    2017-03-14

    The epidemiologic trends of cutaneous melanoma are similar in several countries with a Western-type life style, where there is a progressive increasing incidence and a low but not decreasing mor- tality, or somewhere an increase too, especially in the older age groups. Also in Tuscany there is a steady rise in incidence with prevalence of in situ and invasive thin melanomas, with also an increase of thick melanomas. It is necessary to reduce the frequency of thick melanomas to reduce specific mortality. The objective of the current survey has been to compare, in the Tuscany population, by a case- case study, thin and thick melanoma cases, trying to find out those personal and tumour characteristics which may help to customize preventive interventions. RESULTS The results confirmed the age and the lower edu- cation level are associated with a later detection. The habit to perform skin self-examination is resulted protec- tive forward thick melanoma and also the diagnosis by a doctor. The elements emerging from the survey allow to hypothesize a group of subjects resulting at higher risk for a late diagnosis, aged over 50 and carrier of a fewer constitutional and environmental risk factors: few total and few atypical nevi, and lower sun exposure and burning. It is assumable that a part of people did not be reached from messages of prevention because does not recognize oneself in the categories of people at risk for skin cancers described in educational cam- paigns. If we want to obtain better results on diagnosis of skin melanoma we have to think a new strategy. At least to think over the educational messages discriminating people more at risk of incidence of melanoma from people more at risk to die from melanoma, and to renewed active involvement of the Gen- eral Practitioners .

  15. Thick brane solutions

    International Nuclear Information System (INIS)

    Dzhunushaliev, Vladimir; Minamitsuji, Masato; Folomeev, Vladimir

    2010-01-01

    This paper gives a comprehensive review on thick brane solutions and related topics. Such models have attracted much attention from many aspects since the birth of the brane world scenario. In many works, it has been usually assumed that a brane is an infinitely thin object; however, in more general situations, one can no longer assume this. It is also widely considered that more fundamental theories such as string theory would have a minimal length scale. Many multidimensional field theories coupled to gravitation have exact solutions of gravitating topological defects, which can represent our brane world. The inclusion of brane thickness can realize a variety of possible brane world models. Given our understanding, the known solutions can be classified into topologically non-trivial solutions and trivial ones. The former class contains solutions of a single scalar (domain walls), multi-scalar, gauge-Higgs (vortices), Weyl gravity and so on. As an example of the latter class, we consider solutions of two interacting scalar fields. Approaches to obtain cosmological equations in the thick brane world are reviewed. Solutions with spatially extended branes (S-branes) and those with an extra time-like direction are also discussed.

  16. Research of Manufacture Time Management System Based on PLM

    Science.gov (United States)

    Jing, Ni; Juan, Zhu; Liangwei, Zhong

    This system is targeted by enterprises manufacturing machine shop, analyzes their business needs and builds the plant management information system of Manufacture time and Manufacture time information management. for manufacturing process Combined with WEB technology, based on EXCEL VBA development of methods, constructs a hybrid model based on PLM workshop Manufacture time management information system framework, discusses the functionality of the system architecture, database structure.

  17. USABILITY OF ADDITIVE MANUFACTURING (THREEDIMENSIONAL PRINTING) TECHNOLOGIES IN EDUCATION

    OpenAIRE

    ÖZSOY, KORAY; DUMAN, BURHAN

    2017-01-01

    Additive manufacturing technologies which are emerge in 1980’s years, they are using for prototip production in first time for that reason their denomination rapid prototyping . Nowadays it called additive manufacturing because of it using for end use functional part’s production. In additive manufacturing, the basic rationales the same, but many different technologies have been developed to manufacture with different approaches. The most common additive manufacturing technologies are stereol...

  18. A study on manufacturing and construction method of buffer

    International Nuclear Information System (INIS)

    Chijimatsu, Masakazu; Sugita, Yutaka; Amemiya, Kiyoshi

    1999-09-01

    As an engineered barrier system in the geological disposal of high-level waste, multibarrier system is considered. Multibarrier system consists of the vitrified waste, the overpack and the buffer. Bentonite is one of the potential material as the buffer because of its low water permeability, self-sealing properties, radionuclides adsorption and retardation properties, thermal conductivity, chemical buffering properties, overpack supporting properties, stress buffering properties, etc. In order to evaluate the functions of buffer, a lot of experiments has been conducted. The evaluations of these functions are based on the assumption that the buffer is emplaced or constructed in the disposal tunnel (or disposal pit) properly. Therefore, it is necessary to study on the manufacturing / construction method of buffer. As the manufacturing / construction technology of the buffer, the block installation method and in-situ compaction method, etc, are being investigated. The block installation method is to emplace the buffer blocks manufactured in advance at the ground facility, and construction processes of the block installation method at the underground will be simplified compared with the in-situ compaction method. On the other hand, the in-situ compaction method is to introduce the buffer material with specified water content into the disposal tunnel and to make the buffer with high density at the site using a compaction machine. In regard to the in-situ compaction method, it is necessary to investigate the optimum finished thickness of one layer because it is impossible to construct the buffer at one time. This report describes the results of compaction property test and the summary of the past investigation results in connection with the manufacturing / construction method. Then this report shows the construction method that will be feasible in the actual disposal site. (J.P.N.)

  19. Appraising manufacturing location

    NARCIS (Netherlands)

    Steenhuis, H.J.; de Bruijn, E.J.

    2002-01-01

    International location of manufacturing activities is an issue for managers of manufacturing companies as well as public policy makers. For managers, the issue is relevant because international locations offer opportunities for lowering costs due to productivity improvements. For governments the

  20. Manufacturing engineering and technology

    CERN Document Server

    Kalpakjian, Serope; Vijai Sekar, K S

    2014-01-01

    For courses in manufacturing processes at two- or four-year schools. An up-to-date text that provides a solid background in manufacturing processes. Manufacturing Engineering and Technology, SI Edition, 7e, presents a mostly qualitative description of the science, technology, and practice of manufacturing. This includes detailed descriptions of manufacturing processes and the manufacturing enterprise that will help introduce students to important concepts. With a total of 120 examples and case studies, up-to-date and comprehensive coverage of all topics, and superior two-color graphics, this text provides a solid background for manufacturing students and serves as a valuable reference text for professionals. Teaching and Learning Experience To provide a better teaching and learning experience, for both instructors and students, this program will: * Apply Theory and/or Research: An excellent overview of manufacturing conceptswith a balance of relevant fundamentals and real-world practices. * Engage Students: E...

  1. Additive Manufacturing Infrared Inspection

    Science.gov (United States)

    Gaddy, Darrell; Nettles, Mindy

    2015-01-01

    The Additive Manufacturing Infrared Inspection Task started the development of a real-time dimensional inspection technique and digital quality record for the additive manufacturing process using infrared camera imaging and processing techniques. This project will benefit additive manufacturing by providing real-time inspection of internal geometry that is not currently possible and reduce the time and cost of additive manufactured parts with automated real-time dimensional inspections which deletes post-production inspections.

  2. Influência da espessura de biofilmes feitos à base de proteínas miofibrilares sobre suas propriedades funcionais Thickness effects of myofibrillar protein based edible films on their functional properties

    Directory of Open Access Journals (Sweden)

    PAULO JOSÉ DO AMARAL SOBRAL

    2000-06-01

    Full Text Available O emprego potencial de filmes comestíveis e biodegradáveis em embalagens é condicionado pelas suas propriedades funcionais, que são influenciadas por muitos fatores, inclusive pela espessura. O objetivo deste trabalho foi estudar a influência da espessura dos biofilmes feitos à base de proteínas miofibrilares (de carne bovina e de tilápia-do-nilo sobre suas propriedades funcionais. Os biofilmes foram preparados a partir de uma solução filmogênica com 1 g de proteínas/100 g de solução. A concentração de plastificante foi de 45 g de glicerina/100 g de proteínas, e o pH foi mantido em 2,7. Após secagem, os filmes foram acondicionados em dessecadores a 58% de umidade relativa e 22°C, por quatro dias. As propriedades mecânicas foram determinadas por teste de perfuração; a permeabilidade ao vapor de água, por um método gravimétrico, e a cor e a opacidade, com colorímetro HunterLab, a 22°C. A força na perfuração, a permeabilidade ao vapor de água, a diferença de cor e a opacidade dos dois biofilmes aumentaram linearmente com a espessura dos corpos-de-prova. A deformação na perfuração foi pouco dependente da espessura e apresentou grande dispersão, em ambos os filmes. A taxa de permeabilidade ao vapor de água diminuiu linearmente com a espessura.Research on edible and biodegradable films had been promoted recently because of environmental concerns. The use of these materials for packaging applications is conditioned by their functional properties, which are influenced by many factors, including thickness. The objective of this work was to study the influence of thickness of myofibrillar protein-based biofilms on some of their functional properties. Biofilms were prepared from film forming solutions (FFS containing 1 g of protein/100 g of FFS. The plasticizer concentration was 45 g glycerin/100 g of protein and the pH was kept at 2.7. After drying, biofilms were conditioned in desiccators at 58% relative humidity and

  3. Full reflector thickness and isolation thickness on neutron transport

    International Nuclear Information System (INIS)

    Sakai, Tomohiro; Naito, Yoshitaka; Komuro, Yuichi.

    1988-08-01

    A method to determine ''full reflector thickness'' and ''isolation thickness'', which is utilized for criticality safety evaluation on nuclear fuel facilities, was proposed in this paper. Firstly, a calculation was tryed to obtain the two kinds of thicknesses from the result of criticality calculations for a specific case. Then, two simple equations which calculates the two kinds of thicknesses were made from the relation between reflector (or isolator) thickness and k eff , and one-group diffusion theory. Finally, we proposed a new method to determine the thicknesses. From the method we proposed, ''full reflector thickness'' and ''isolation thickness'' can be obtain using the equations and migration length of the reflector (or isolator) and infinite and effective multiplication factor of the fuel. (author)

  4. ACE - Manufacturer Identification Code (MID)

    Data.gov (United States)

    Department of Homeland Security — The ACE Manufacturer Identification Code (MID) application is used to track and control identifications codes for manufacturers. A manufacturer is identified on an...

  5. Structure-function relationship between the octopus perimeter cluster mean sensitivity and sector retinal nerve fiber layer thickness measured with the RTVue optical coherence tomography and scanning laser polarimetry.

    Science.gov (United States)

    Naghizadeh, Farzaneh; Garas, Anita; Vargha, Péter; Holló, Gábor

    2014-01-01

    To determine structure-function relationship between each of 16 Octopus perimeter G2 program clusters and the corresponding 16 peripapillary sector retinal nerve fiber layer thickness (RNFLT) values measured with the RTVue-100 Fourier-domain optical coherence tomography (RTVue OCT) and scanning laser polarimetry with variable corneal compensation (GDx-VCC) and enhanced corneal compensation (GDx-ECC) corneal compensation. One eye of 110 white patients (15 healthy, 20 ocular hypertensive, and 75 glaucoma eyes) were investigated. The Akaike information criterion and the F test were used to identify the best fitting model. Parabolic relationship with logarithmic cluster mean sensitivity and linear sector RNFLT values provided the best fit. For RTVue OCT, significant (P0.05) was found for the control eyes. Mean sensitivity of the Octopus visual field clusters showed significant parabolic relationship with the corresponding peripapillary RNFLT sectors. The relationship was more general with the RTVue OCT than GDx-VCC or GDx-ECC. The results show that visual field clusters of the Octopus G program can be applied for detailed structure-function research.

  6. Uncertainty estimation of ultrasonic thickness measurement

    International Nuclear Information System (INIS)

    Yassir Yassen, Abdul Razak Daud; Mohammad Pauzi Ismail; Abdul Aziz Jemain

    2009-01-01

    The most important factor that should be taken into consideration when selecting ultrasonic thickness measurement technique is its reliability. Only when the uncertainty of a measurement results is known, it may be judged if the result is adequate for intended purpose. The objective of this study is to model the ultrasonic thickness measurement function, to identify the most contributing input uncertainty components, and to estimate the uncertainty of the ultrasonic thickness measurement results. We assumed that there are five error sources significantly contribute to the final error, these sources are calibration velocity, transit time, zero offset, measurement repeatability and resolution, by applying the propagation of uncertainty law to the model function, a combined uncertainty of the ultrasonic thickness measurement was obtained. In this study the modeling function of ultrasonic thickness measurement was derived. By using this model the estimation of the uncertainty of the final output result was found to be reliable. It was also found that the most contributing input uncertainty components are calibration velocity, transit time linearity and zero offset. (author)

  7. An Interoperability Framework and Capability Profiling for Manufacturing Software

    Science.gov (United States)

    Matsuda, M.; Arai, E.; Nakano, N.; Wakai, H.; Takeda, H.; Takata, M.; Sasaki, H.

    ISO/TC184/SC5/WG4 is working on ISO16100: Manufacturing software capability profiling for interoperability. This paper reports on a manufacturing software interoperability framework and a capability profiling methodology which were proposed and developed through this international standardization activity. Within the context of manufacturing application, a manufacturing software unit is considered to be capable of performing a specific set of function defined by a manufacturing software system architecture. A manufacturing software interoperability framework consists of a set of elements and rules for describing the capability of software units to support the requirements of a manufacturing application. The capability profiling methodology makes use of the domain-specific attributes and methods associated with each specific software unit to describe capability profiles in terms of unit name, manufacturing functions, and other needed class properties. In this methodology, manufacturing software requirements are expressed in terns of software unit capability profiles.

  8. Feasibility of using Big Area Additive Manufacturing to Directly Manufacture Boat Molds

    Energy Technology Data Exchange (ETDEWEB)

    Post, Brian K. [ORNL; Chesser, Phillip C. [ORNL; Lind, Randall F. [ORNL; Sallas, Matthew R. [ORNL; Love, Lonnie J. [ORNL

    2018-01-01

    The goal of this project was to explore the feasibility of using Big Area Additive Manufacturing (BAAM) to directly manufacture a boat mold without the need for coatings. All prior tooling projects with BAAM required the use to thick coatings to overcome the surface finish limitations of the BAAM process. While the BAAM process significantly lowers the cost of building the mold, the high cost element rapidly became the coatings (cost of the material, labor on coating, and finishing). As an example, the time and cost to manufacture the molds for the Wind Turbine project with TPI Composites Inc. and the molds for the submarine project with Carderock Naval Warfare Systems was a fraction of the time and cost of the coatings. For this project, a catamaran boat hull mold was designed, manufactured, and assembled with an additional 0.15” thickness of material on all mold surfaces. After printing, the mold was immediately machined and assembled. Alliance MG, LLC (AMG), the industry partner of this project, experimented with mold release agents on the carbon-fiber reinforced acrylonitrile butadiene styrene (CF ABS) to verify that the material can be directly used as a mold (rather than needing a coating). In addition, for large molds (such as the wind turbine mold with TPI Composites Inc.), the mold only provided the target surface. A steel subframe had to be manufactured to provide structural integrity. If successful, this will significantly reduce the time and cost necessary for manufacturing large resin infusion molds using the BAAM process.

  9. Thick film heater for sensor application

    International Nuclear Information System (INIS)

    Milewski, J; Borecki, M; Kalenik, J; Król, K

    2014-01-01

    A thick film microheater was elaborated. The microheater is intended for fast heating of small volume samples under measurement in optical based system. Thermal analysis of microheater was carried out using finite element method (FEM) for heat transfer calculation as a function of time and space. A nodal heat transfer function was calculated in classical form including all basics mechanisms of heat exchange – heat conduction, convection and radiation were considered. Work focuses on the influence of some construction parameters (ex. length, thermal conductivity of substrate, substrate thickness) on microheater performance. The results show that application of thin substrate of low thermal conductivity and low thickness for miroheater construction and resistor of optimum dimensions leads to significant power consumption decrease and increase of overall optical measurement system performance.

  10. Radioactive thickness gauge (1962)

    International Nuclear Information System (INIS)

    Guizerix, J.

    1962-01-01

    The author describes a thickness gauge in which the scintillating crystal detector alternately 'sees' a radioactive source through the material which is to be measured and then a control source of the same material; the radiations are separated in time by an absorbing valve whose sections are alternately full and hollow. The currents corresponding to the two sources are separated beyond the photomultiplier tube by a detector synchronized with the rotation of the valve. The quotient of these two currents is then obtained with a standard recording potentiometer. It is found that the average value of the response which is in the form G = f(I 1 /I 2 ) is not affected by decay of the radioactive sources, and that it is little influenced by variations of high tension, temperature, or properties of the air in the source detector interval. The performance of the gauge is given. (author) [fr

  11. Thick-Big Descriptions

    DEFF Research Database (Denmark)

    Lai, Signe Sophus

    The paper discusses the rewards and challenges of employing commercial audience measurements data – gathered by media industries for profitmaking purposes – in ethnographic research on the Internet in everyday life. It questions claims to the objectivity of big data (Anderson 2008), the assumption...... communication systems, language and behavior appear as texts, outputs, and discourses (data to be ‘found’) – big data then documents things that in earlier research required interviews and observations (data to be ‘made’) (Jensen 2014). However, web-measurement enterprises build audiences according...... to a commercial logic (boyd & Crawford 2011) and is as such directed by motives that call for specific types of sellable user data and specific segmentation strategies. In combining big data and ‘thick descriptions’ (Geertz 1973) scholars need to question how ethnographic fieldwork might map the ‘data not seen...

  12. Toward the standard population synthesis model of the X-ray background: Evolution of X-ray luminosity and absorption functions of active galactic nuclei including Compton-thick populations

    Energy Technology Data Exchange (ETDEWEB)

    Ueda, Yoshihiro [Department of Astronomy, Kyoto University, Kitashirakawa-Oiwake-cho, Sakyo-ku, Kyoto 606-8502 (Japan); Akiyama, Masayuki [Astronomical Institute, Tohoku University, 6-3 Aramaki, Aoba-ku, Sendai 980-8578 (Japan); Hasinger, Günther [Institute for Astronomy, 2680 Woodlawn Drive Honolulu, HI 96822-1839 (United States); Miyaji, Takamitsu [Instituto de Astronomía, Universidad Nacional Autónoma de México, Ensenada, Baja California (Mexico); Watson, Michael G. [Department of Physics and Astronomy, University of Leicester, University Road, Leicester LE1 7RH (United Kingdom)

    2014-05-10

    We present the most up to date X-ray luminosity function (XLF) and absorption function of active galactic nuclei (AGNs) over the redshift range from 0 to 5, utilizing the largest, highly complete sample ever available obtained from surveys performed with Swift/BAT, MAXI, ASCA, XMM-Newton, Chandra, and ROSAT. The combined sample, including that of the Subaru/XMM-Newton Deep Survey, consists of 4039 detections in the soft (0.5-2 keV) and/or hard (>2 keV) band. We utilize a maximum likelihood method to reproduce the count rate versus redshift distribution for each survey, by taking into account the evolution of the absorbed fraction, the contribution from Compton-thick (CTK) AGNs, and broadband spectra of AGNs, including reflection components from tori based on the luminosity- and redshift-dependent unified scheme. We find that the shape of the XLF at z ∼ 1-3 is significantly different from that in the local universe, for which the luminosity-dependent density evolution model gives much better description than the luminosity and density evolution model. These results establish the standard population synthesis model of the X-ray background (XRB), which well reproduces the source counts, the observed fractions of CTK AGNs, and the spectrum of the hard XRB. The number ratio of CTK AGNs to the absorbed Compton-thin (CTN) AGNs is constrained to be ≈0.5-1.6 to produce the 20-50 keV XRB intensity within present uncertainties, by assuming that they follow the same evolution as CTN AGNs. The growth history of supermassive black holes is discussed based on the new AGN bolometric luminosity function.

  13. Rapid Measurement of Nanoparticle Thickness Profiles

    International Nuclear Information System (INIS)

    Katz-Boon, Hadas; Rossouw, Chris J.; Dwyer, Christian; Etheridge, Joanne

    2013-01-01

    A method to measure the thickness of a single-crystal nanoparticle in the direction parallel to the incident beam from annular dark field scanning transmission electron microscope (ADF-STEM) images is reported, providing a map of thickness versus position across the nanoparticle—a ‘thickness profile’ image. The method is rapid and hence suitable for surveying large numbers of nanoparticles. The method measures the intensity scattered to a characterised ADF detector and compares this to the incident beam intensity, to obtain a normalized ADF image. The normalised intensity is then converted to thickness via dynamical ADF image simulations. The method is accurate within 10% and the precision is dominated primarily by ‘shot noise’. Merits and limitations of this method are discussed. A method to calibrate the response function of the ADF detector without external equipment is also described, which is applicable to the entire range of gain and background settings. -- Highlights: ► A method is developed to convert ADF-STEM images to ‘thickness profile’ images. ► It is applicable in particles survey, facets determination and discrete tomography. ► A method to calibrate the response of the ADF detector is described. ► The response in analysed across a range of conditions. ► Dynamical ADF image simulations are presented, demonstrating intensity vs. thickness dependence.

  14. Disentangling The Thick Concept Argument

    DEFF Research Database (Denmark)

    Blomberg, Olle

    2007-01-01

    Critics argue that non-cognitivism cannot adequately account for the existence and nature of some thick moral concepts. They use the existence of thick concepts as a lever in an argument against non-cognitivism, here called the Thick Concept Argument (TCA). While TCA is frequently invoked...

  15. Manufacturing prototypes for LIPAC beam dump

    Energy Technology Data Exchange (ETDEWEB)

    Arranz, F., E-mail: fernando.arranz@ciemat.es [CIEMAT, Madrid (Spain); Brañas, B.; Iglesias, D. [CIEMAT, Madrid (Spain); Nomen, O. [IREC, Barcelona (Spain); Rapisarda, D.; Lapeña, J.; Muñoz, A. [CIEMAT, Madrid (Spain); Szcepaniak, B. [GALVANO-T, Windeck (Germany); Manini, J. [CARMAN, Madrid (Spain); Gómez, J. [TRINOS VACUUM, Valencia (Spain)

    2014-10-15

    Highlights: •Electroforming of copper and electronbeam welding techniques are compared. •Mechanical properties of Cu–stainless steel joint by electroforming are presented. •Achieved manufacturing tolerances are shown. •The difficulties and solutions for the complicated manufacturing are explained. -- Abstract: The purpose of the research is to define the most adequate manufacturing process for the dump of a linear deuteron accelerator. The deuteron beam can be pulsed as well as continuous with energies up to 9 MeV. The maximum beam power is 1.12 MW corresponding to a beam current of 125 mA. The requirements on the surface on which the deuterons will be stopped are quite demanding and the length and slenderness of the cone poses a considerable difficulty in the manufacturing process. The design of the beam dump is based on a copper cone 2500 mm long, 300 mm aperture and 5 to 6.5 mm thickness. Basically only two technologies were found feasible for the manufacturing of the cone: Electroforming and Electron Beam Welding (EBW). The article shows the main results found when manufacturing different prototypes.

  16. Measuring Manufacturing Innovativeness

    DEFF Research Database (Denmark)

    Blichfeldt, Henrik; Knudsen, Mette Præst

    2017-01-01

    Globalization and customization increases the pressure on manufacturing companies, and the ability to provide innovativeness is a potential source of competitive advantage. This paper positions the manufacturing entity in the innovation process, and investigates the relation between innovation vers...... technology and organizational concepts. Based on Danish survey data from the European Manufacturing Survey (EMS-2015) this paper finds that there is a relation between innovative companies, and their level of technology and use of organizational concepts. Technology and organizational concepts act...... as manufacturing levers to support the manufacturing and production system to provide innovativeness. The managerial implication lies in building manufacturing capabilities to support the innovative process, by standardization, optimization and creating stability in combination with automation and advanced...

  17. Technique of manufacturing specimen of irradiated fuel rods

    International Nuclear Information System (INIS)

    Min, Duck Seok; Seo, Hang Seok; Min, Duck Kee; Koo, Dae Seo; Lee, Eun Pyo; Yang, Song Yeol

    1999-04-01

    Technique of manufacturing specimen of irradiated fuel rods to perform efficient PIE is developed by analyzing the relation between requiring time of manufacturing specimen and manufacturing method in irradiated fuel rods. It takes within an hour to grind 1 mm of specimen thickness under 150 rpm in speed of grinding, 600 g gravity in force using no.120, no.240, no.320 of grinding paper. In case of no.400 of grinding paper, it takes more an hour to grind the same thickness as above. It takes up to a quarter to grind 80-130 μm in specimen thickness using no.400 of grinding paper. When grinding time goes beyond 15 minutes, the grinding thickness of specimen does not exist. The polishing of specimen with 150 Rpms in speed of grinding machine, 600 g gravity in force, 10 minutes in polishing time using diamond paste 15 μm on polishing cloths amounts to 50 μm in specimen thickness. In case of diamond paste 9 μm on polishing cloth, the polishing of specimen amounts to 20 μm. The polishing thickness of specimen with 15 minutes in polishing time using 6 μm, 3 μm, 1 μm, 1/4 μm does not exist. Technique of manufacturing specimen of irradiated fuel rods will have application to the destructive examination of PIE. (author). 6 refs., 1 tab., 10 figs

  18. Manufacturing ontology through templates

    Directory of Open Access Journals (Sweden)

    Diciuc Vlad

    2017-01-01

    Full Text Available The manufacturing industry contains a high volume of knowhow and of high value, much of it being held by key persons in the company. The passing of this know-how is the basis of manufacturing ontology. Among other methods like advanced filtering and algorithm based decision making, one way of handling the manufacturing ontology is via templates. The current paper tackles this approach and highlights the advantages concluding with some recommendations.

  19. Manufacturing knowledge management strategy

    OpenAIRE

    Shaw , Duncan; Edwards , John

    2006-01-01

    Abstract The study sought to understand the components of knowledge management strategy from the perspective of staff in UK manufacturing organisations. To analyse this topic we took an empirical approach and collaborated with two manufacturing organisations. Our main finding centres on the key components of a knowledge management strategy, and the relationships between it and manufacturing strategy and corporate strategy. Other findings include: the nature of knowledge in manufact...

  20. Industrial & Manufacturing Engineering | Classification | College of

    Science.gov (United States)

    Electrical Engineering Instructional Laboratories Student Resources Industrial & Manufacturing Engineering Industrial & Manufacturing Engineering Academic Programs Industrial & Manufacturing Engineering Major Industrial & Manufacturing Engineering Minor Industrial & Manufacturing Engineering

  1. Strategic Roles of Manufacturing

    DEFF Research Database (Denmark)

    Yang, Cheng

    with the trend of globalisation, how do industrial companies develop their global manufacturing networks? These two questions are actually interlinked. On the one hand, facing increasing offshoring and outsourcing of production activities, industrial companies have to understand how to develop their global...... manufacturing networks. On the other hand, ongoing globalisation also brings tremendous impacts to post-industrial economies (e.g. Denmark). A dilemma therefore arises, i.e. whether it is still necessary to keep manufacturing in these post-industrial economies; if yes, what kinds of roles manufacturing should...

  2. Composite Structures Manufacturing Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Composite Structures Manufacturing Facility specializes in the design, analysis, fabrication and testing of advanced composite structures and materials for both...

  3. Manufacturing Demonstration Facility (MDF)

    Data.gov (United States)

    Federal Laboratory Consortium — The U.S. Department of Energy Manufacturing Demonstration Facility (MDF) at Oak Ridge National Laboratory (ORNL) provides a collaborative, shared infrastructure to...

  4. Advanced Manufacturing Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The Advanced Manufacturing Laboratory at the University of Maryland provides the state of the art facilities for realizing next generation products and educating the...

  5. Tritium target manufacturing for use in accelerators

    Science.gov (United States)

    Bach, P.; Monnin, C.; Van Rompay, M.; Ballanger, A.

    2001-07-01

    As a neutron tube manufacturer, SODERN is now in charge of manufacturing tritium targets for accelerators, in cooperation with CEA/DAM/DTMN in Valduc. Specific deuterium and tritium targets are manufactured on request, according to the requirements of the users, starting from titanium target on copper substrate, and going to more sophisticated devices. A wide range of possible uses is covered, including thin targets for neutron calibration, thick targets with controlled loading of deuterium and tritium, rotating targets for higher lifetimes, or large size rotating targets for accelerators used in boron neutron therapy. Activity of targets lies in the 1 to 1000 Curie, diameter of targets being up to 30 cm. Special targets are also considered, including surface layer targets for lowering tritium desorption under irradiation, or those made from different kinds of occluders such as titanium, zirconium, erbium, scandium, with different substrates. It is then possible to optimize either neutron output, or lifetime and stability, or thermal behavior.

  6. Acylinder and freeform optical manufacturing

    Science.gov (United States)

    Fess, Edward; Wolfs, Frank; DeFisher, Scott; Ross, James

    2015-10-01

    Aspheric cylinders have the ability to improve optical performance over standard cylindrical surfaces. Over the last several years there has also been development into the application and functionality of utilizing freeform surfaces to improve optical performance. Freeforms have the ability to not only improve image quality over a greater field of view, but can open up the design space of an optical system making it more compact. Freeform geometries, much like aspheric cylinders, may not have an axis of rotation to spin the optic about during manufacturing. This leads to costly fabrication processes and custom metrology set ups, which may inhibit their use. Over the last several years, OptiPro Systems has developed and optimized our eSX grinding, UFF and USF polishing, UltraSurf metrology, and ProSurf software programming technologies to make the processing of these complex geometries much easier and deterministic. In this paper we will discuss the challenges associated with manufacturing complex shapes like aspheric cylinders as well as freeform geometries, and how several technologies working together can overcome them. The technologies focus on metrology feedback to a grinding and polishing machine that is controlled through an iterative computer aided manufacturing software system. We will also present examples of these hard to manufacture shapes with results.

  7. Overview and status of ITER Cryostat manufacturing

    Energy Technology Data Exchange (ETDEWEB)

    Bhardwaj, Anil K., E-mail: anil.bhardwaj@iter-india.org [ITER-India, Institute For Plasma Research, A-29, GIDC Electronics Estate, Sector-25, Gandhinagar 382016 (India); Gupta, Girish; Prajapati, Rajnikant; Joshi, Vaibhav; Patel, Mitul; Bhavsar, Jagrut; More, Vipul; Jindal, Mukesh; Bhattacharya, Avik; Jogi, Gourav; Palaliya, Amit; Jha, Saroj; Pandey, Manish; Shukla, Dileep [ITER-India, Institute For Plasma Research, A-29, GIDC Electronics Estate, Sector-25, Gandhinagar 382016 (India); Iyer, Ganesh; Jadhav, Pandurang; Goyal, Dipesh; Desai, Anish [Larsen & Toubro Limited, Heavy Engineering, Hazira Manufacturing Complex, Gujarat (India); Sekachev, I.; Vitupier, Guillaume [ITER Organization, Route de Vinon sur Verdon – CS 90046, 13067 Saint Paul Lez Durance Cedex (France); and others

    2016-11-01

    Highlights: • Manufacturing status of one of the largest and the heaviest fully welded stainless steel vacuum chambers in the world (ITER Cryostat). • Overview of manufacturing stages and its segmentation. • Overview of manufacturing procedures and assembly and installation. - Abstract: One of ITER-India's commitments to the ITER Organization is procurement of the ITER Cryostat. It is a large vacuum vessel (∼29 m dia. and ∼29 m height), which is made up of 304/304 L dual marked stainless steel and has a total mass over 3500 t. The thickness of the vessel wall varies from 50 mm to 190 mm. It is one of the largest and the heaviest fully welded stainless steel vacuum chambers in the world which provides vacuum thermal insulation for the superconducting magnets operating at 4.5 K and for the thermal shield operating at 80 K. It also mechanically supports the magnet system along with the vacuum vessel (VV). The cryostat is designed and constructed according to ASME Section-VIII Division-2 with additional ITER Vacuum Handbook requirements and it is classified as protection important component (PIC-2). Manufacturing of cryostat segments is ongoing in India; sub-assembly of four major sections of the cryostat from the segments will be done at the ITER site in a temporary workshop building and the final assembly will be done in the pit of the tokamak building, the final location. The cryostat manufacturing contract has been awarded to Larsen and Toubro Limited in August 2012 after completion of design [4] and signing of Procurement Arrangement [1] with ITER Organization. Manufacturing of the cryostat was started in January 2014 after approval of the manufacturing drawings and procedures. The temporary workshop of 44 m × 110 m × 26 m in height has been completed in November 2014 at the ITER site with a 200 t crane installed. This paper gives an overview and the status of the cryostat manufacturing.

  8. Determination of gold coating thickness measurement by using EDXRF

    International Nuclear Information System (INIS)

    Meor Yusoff Meor Sulaian; Masliana Muslimin; Fadlullah Jili Fursani

    2005-01-01

    The paper relates a study on the development of an analysis procedure for measuring the gold coating thickness using EDXRF technique. Gold coating thickness was measured by relating the counts under the Au L? peak its thickness value. In order to get a reasonably accurate result, a calibration graph was plotted using five gold-coated reference standards of different thickness. The calibration graph shows a straight line for thin coating measurement until 0.9 μm. Beyond this the relationship was not linear and this may be resulted from the self-absorption effect. Quantitative analysis was also performed on two different samples of gold coated jewelry and a phone connector. Result from the phone connector analysis seems to agree with the manufacturer gold coating value. From the analysis of gold-coated jewelry it had been able to differentiate the two articles as gold wash and gold electroplated. (Author)

  9. Improving Project Manufacturing Coordination

    Directory of Open Access Journals (Sweden)

    Korpivaara Ville

    2014-09-01

    Full Text Available The objective of this research is to develop firms’ project manufacturing coordination. The development will be made by centralizing the manufacturing information flows in one system. To be able to centralize information, a deep user need assessment is required. After user needs have been identified, the existing system will be developed to match these needs. The theoretical background is achieved through exploring the literature of project manufacturing, development project success factors and different frameworks and tools for development project execution. The focus of this research is rather in customer need assessment than in system’s technical expertise. To ensure the deep understanding of customer needs this study is executed by action research method. As a result of this research the information system for project manufacturing coordination was developed to respond revealed needs of the stakeholders. The new system improves the quality of the manufacturing information, eliminates waste in manufacturing coordination processes and offers a better visibility to the project manufacturing. Hence it provides a solid base for the further development of project manufacturing.

  10. Modern manufacturing engineering

    CERN Document Server

    2015-01-01

    This book covers recent research and trends in Manufacturing Engineering. The chapters emphasize different aspects of the transformation from materials to products. It provides the reader with fundamental materials treatments and the integration of processes. Concepts such as green and lean manufacturing are also covered in this book.

  11. Sampling supraglacial debris thickness using terrestrial photogrammetry

    Science.gov (United States)

    Nicholson, Lindsey; Mertes, Jordan

    2017-04-01

    The melt rate of debris-covered ice differs to that of clean ice primarily as a function of debris thickness. The spatial distribution of supraglacial debris thickness must therefore be known in order to understand how it is likely to impact glacier behaviour, and meltwater contribution to local hydrological resources and global sea level rise. However, practical means of determining debris cover thickness remain elusive. In this study we explore the utility of terrestrial photogrammetry to produce high resolution, scaled and texturized digital terrain models of debris cover exposures above ice cliffs as a means of quantifying and characterizing debris thickness. Two Nikon D5000 DSLRs with Tamron 100mm lenses were used to photograph a sample area of the Ngozumpa glacier in the Khumbu Himal of Nepal in April 2016. A Structure from Motion workflow using Agisoft Photoscan software was used to generate a surface models with <10cm resolution. A Trimble Geo7X differential GPS with Zephyr antenna, along with a local base station, was used to precisely measure marked ground control points to scale the photogrammetric surface model. Measurements of debris thickness along the exposed cliffline were made from this scaled model, assuming that the ice surface at the debris-ice boundary is horizontal, and these data are compared to 50 manual point measurements along the same clifftops. We conclude that sufficiently high resolution photogrammetry, with precise scaling information, provides a useful means to determine debris thickness at clifftop exposures. The resolution of the possible measurements depends on image resolution, the accuracy of the ground control points and the computational capacity to generate centimetre scale surface models. Application of such techniques to sufficiently high resolution imagery from UAV-borne cameras may offer a powerful means of determining debris thickness distribution patterns over debris covered glacier termini.

  12. Optimized manufacturable porous materials

    DEFF Research Database (Denmark)

    Andreassen, Erik; Andreasen, Casper Schousboe; Jensen, Jakob Søndergaard

    Topology optimization has been used to design two-dimensional material structures with specific elastic properties, but optimized designs of three-dimensional material structures are more scarsely seen. Partly because it requires more computational power, and partly because it is a major challenge...... to include manufacturing constraints in the optimization. This work focuses on incorporating the manufacturability into the optimization procedure, allowing the resulting material structure to be manufactured directly using rapid manufacturing techniques, such as selective laser melting/sintering (SLM....../S). The available manufacturing methods are best suited for porous materials (one constituent and void), but the optimization procedure can easily include more constituents. The elasticity tensor is found from one unit cell using the homogenization method together with a standard finite element (FE) discretization...

  13. Development of on-line wall thickness gauge for small size seamless tube. Shokei seamless netsukan nikuatsukei no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Okumura, T; Konya, N; Oka, H; Kasuya, T [Kawasaki Steel Corp., Tokyo (Japan)

    1991-03-01

    In order to heighten the accuracy of small size seamless tube wall thickness, hot wall thickness gauge was developed to be installed, immediately behind the finishing/rolling mill, for the on-line measurement, of which the method was by the parallel-beam transmissivity of gamma-ray. The measurement unit, aiming at flexible manufacturing system (FMS), is completely automated in correcting the accuracy, changing the sizes, etc. The damping characteristics of gamma-ray beam can be expressed by a characteristic function, taking the outside diameter and wall thickness of subject tube as parameters. The functional calculation, as based on measurement of transmitted quantity of gamma-ray through the three-dimensional steel material, changes, depending upon the outside diameter, wall thickness and material specification of subject tube. System was so applied as to calculate it therefore on a case-by-case basis. Though in the vicinity of tube end, the transmitted quantity of gamma-ray is largely influenced by the horizontal dislocation, that influence is slack in the middle part of tube. Therefore, the cross sectional division was made dense and sparse in the end part and middle part, respectively of tube, which division could diminish the error from several percent to less than 0.1%. The static noise was compressed by the optimized digital filter. That gauge is presently applied for the operational administration of small size seamless tube rolling. 2 refs., 11 figs., 2 tabs.

  14. Radiography of large-volume thick-walled structures using transportable high-energy sources

    International Nuclear Information System (INIS)

    Vanek, J.; Gross, E.

    1994-01-01

    Carried by a Renault Saviem truck, the ORION 4 MeV linear accelerator manufactured by the French company CGR MeV proved to be well suited for quality control of welded joints of heavy thick-walled facilities performed directly in the manufacturing plant halls or at the construction sites, as well as for radiographic testing of steel and concrete structures. The operating principles and parameters of the accelerator are given. Steel up to 200 mm thick and concrete up to 550 mm thick can be inspected. Dosimetric data show that the use of the accelerator is radiologically safe. (Z.S.). 2 figs., 5 refs

  15. Manufacture of disposal canisters

    International Nuclear Information System (INIS)

    Nolvi, L.

    2009-12-01

    The report summarizes the development work carried out in the manufacturing of disposal canister components, and present status, in readiness for manufacturing, of the components for use in assembly of spent nuclear fuel disposal canister. The disposal canister consist of two major components: the nodular graphite cast iron insert and overpack of oxygen-free copper. The manufacturing process for copper components begins with a cylindrical cast copper billet. Three different manufacturing processes i.e. pierce and draw, extrusion and forging are being developed, which produce a seamless copper tube or a tube with an integrated bottom. The pierce and draw process, Posiva's reference method, makes an integrated bottom possible and only the lid requires welding. Inserts for BWR-element are cast with 12 square channels and inserts for VVER 440-element with 12 round channels. Inserts for EPR-elements have four square channels. Casting of BWR insert type has been studied so far. Experience of casting inserts for PWR, which is similar to the EPR-type, has been got in co-operation with SKB. The report describes the processes being developed for manufacture of disposal canister components and some results of the manufacturing experiments are presented. Quality assurance and quality control in manufacture of canister component is described. (orig.)

  16. Photoelastic Analysis of Cracked Thick Walled Cylinders

    Science.gov (United States)

    Pastramă, Ştefan Dan

    2017-12-01

    In this paper, the experimental determination of the stress intensity factor in thick walled cylinders subject to uniform internal pressure and having longitudinal non-penetrating cracks is presented. Photoelastic measurements were used together with the expressions of the stress field near the crack tip for Mode I crack extension and a specific methodology for stress intensity factor determination. Two types of longitudinal cracks - internal and external - were considered. Four plane models were manufactured and analyzed in a plane polariscope at different values of the applied internal pressure. The values of the normalized stress intensity factor were calculated and the results were compared to those reported by other authors. A good accuracy was noticed, showing the reliability of the experimental procedure.

  17. Temperature distribution of thick thermoset composites

    Science.gov (United States)

    Guo, Zhan-Sheng; Du, Shanyi; Zhang, Boming

    2004-05-01

    The development of temperature distribution of thick polymeric matrix laminates during an autoclave vacuum bag process was measured and compared with numerically calculated results. The finite element formulation of the transient heat transfer problem was carried out for polymeric matrix composite materials from the heat transfer differential equations including internal heat generation produced by exothermic chemical reactions. Software based on the general finite element software package was developed for numerical simulation of the entire composite process. From the experimental and numerical results, it was found that the measured temperature profiles were in good agreement with the numerical ones, and conventional cure cycles recommended by prepreg manufacturers for thin laminates should be modified to prevent temperature overshoot.

  18. Safety in a Manufacturing Company

    Directory of Open Access Journals (Sweden)

    Kopczewski Marian

    2017-02-01

    Full Text Available The safety systems include the functioning of the institutions of a state, central, and local government, businesses, and social organizations. Research in this discipline should contribute to the development of the theoretical foundations and systems of national and international security and operating systems in the area of technical safety. Technical safety engineering should deal with a design, build, operation, and decommissioning of technical measures in order to minimize the opportunities and the size of their negative impact on the environment, people, and the good of civilization. With this in mind, the main purpose of the research was to evaluate the safety of technical manufacturing company that uses a wide machine park. A plant manufacturing parts and components for automobiles was the audited company.

  19. Manufacturing and characterisation of water repellent surfaces

    DEFF Research Database (Denmark)

    De Grave, Arnaud; Botija, Pablo; Hansen, Hans Nørgaard

    2006-01-01

    design criteria for such surfaces. The problem of adapting this behaviour to artificially roughened surfaces is addressed by providing design criteria for superhydrophobic, water-repellent and self-cleaning surfaces according to the concrete performance desired for them. Different kind of manufacturing...... techniques are investigated and the production of patterned micro structured surfaces following two different manufacturing techniques is reported. The first is a combination of laser manufacturing and hot embossing on polystyrene. To compare geometry and functionality a non-silicon based lithography...

  20. Piezoresistive silicon nanowire resonators as embedded building blocks in thick SOI

    Science.gov (United States)

    Nasr Esfahani, Mohammad; Kilinc, Yasin; Çagatay Karakan, M.; Orhan, Ezgi; Hanay, M. Selim; Leblebici, Yusuf; Erdem Alaca, B.

    2018-04-01

    The use of silicon nanowire resonators in nanoelectromechanical systems for new-generation sensing and communication devices faces integration challenges with higher-order structures. Monolithic and deterministic integration of such nanowires with the surrounding microscale architecture within the same thick crystal is a critical aspect for the improvement of throughput, reliability and device functionality. A monolithic and IC-compatible technology based on a tuned combination of etching and protection processes was recently introduced yielding silicon nanowires within a 10 μ m-thick device layer. Motivated by its success, the implications of the technology regarding the electromechanical resonance are studied within a particular setting, where the resonator is co-fabricated with all terminals and tuning electrodes. Frequency response is measured via piezoresistive readout with frequency down-mixing. Measurements indicate mechanical resonance with frequencies as high as 100 MHz exhibiting a Lorentzian behavior with proper transition to nonlinearity, while Allan deviation on the order of 3-8 ppm is achieved. Enabling the fabrication of silicon nanowires in thick silicon crystals using conventional semiconductor manufacturing, the present study thus demonstrates an alternative pathway to bottom-up and thin silicon-on-insulator approaches for silicon nanowire resonators.

  1. Micro/Nano manufacturing

    DEFF Research Database (Denmark)

    Tosello, Guido

    2017-01-01

    Micro- and nano-scale manufacturing has been the subject of an increasing amount of interest and research effort worldwide in both academia and industry over the past 10 years.Traditional (MEMS) manufacturing, but also precision manufacturing technologies have been developed to cover micro......-scale dimensions and accuracies. Furthermore, these fundamentally different technology ecosystems are currently combined in order to exploit strengths of both platforms. One example is the use of lithography-based technologies to establish nanostructures that are subsequently transferred to 3D geometries via...

  2. Computer-assisted nuclear fuel manufacture

    International Nuclear Information System (INIS)

    Maloney, J.P.; Schaumann, S.M.; Stone, E.

    1976-01-01

    At the ERDA Savannah River Plant, a process monitor, which incorporates an online digital computer, assists in manufacturing fuel elements used to produce nuclides such as plutonium, tritium, and californium in the plant's nuclear reactors. Also, inventory functions assist in safeguarding fissile material and protecting against accidental nuclear criticality. Terminals at strategic locations throughout the process area enable production operators to send and receive instructions and information on each manufacturing step

  3. Computer-assisted nuclear fuel manufacture

    International Nuclear Information System (INIS)

    Maloney, J.P.; Schaumann, C.M.; Stone, E.

    1976-06-01

    At the ERDA Savannah River Plant, a process monitor, which incorporates an online digital computer, assists in manufacturing fuel elements used to produce nuclides such as plutonium, tritium, and californium in the plant's nuclear reactors. Also, inventory functions assist in safeguarding fissile material and protecting against accidental nuclear criticality. Terminals at strategic locations throughout the process area enable production operators to send and receive instructions and information on each manufacturing step. 11 fig

  4. Optimum target thickness for polarimeters

    International Nuclear Information System (INIS)

    Sitnik, I.M.

    2003-01-01

    Polarimeters with thick targets are a tool to measure the proton polarization. But the question about the optimum target thickness is still the subject of discussion. An attempt to calculate the most common parameters concerning this problem, in a few GeV region, is made

  5. Advanced engineering materials and thick film hybrid circuit technology

    International Nuclear Information System (INIS)

    Faisal, S.; Aslam, M.; Mehmood, K.

    2006-01-01

    The use of Thick Film hybrid Technology to manufacture electronic circuits and passive components continues to grow at rapid rate. Thick Film Technology can be viewed as a means of packaging active devices, spanning the gap between monolithic integrated circuit chips and printed circuit boards with attached active and passive components. An advancement in engineering materials has moved from a formulating art to a base of greater understanding of relationship of material chemistry to the details of electrical and mechanical performance. This amazing advancement in the field of engineering materials has brought us up to a magnificent standard that we are able to manufacture small size, low cost and sophisticated electronic circuits of Military, Satellite systems, Robotics, Medical and Telecommunications. (author)

  6. Mechanical strength of welding zones produced by material extrusion additive manufacturing.

    Science.gov (United States)

    Davis, Chelsea S; Hillgartner, Kaitlyn E; Han, Seung Hoon; Seppala, Jonathan E

    2017-08-01

    As more manufacturing processes and research institutions adopt customized manufacturing as a key element in their design strategies and finished products, the resulting mechanical properties of parts produced through additive manufacturing (AM) must be characterized and understood. In material extrusion (MatEx), the most recently extruded polymer filament must bond to the previously extruded filament via polymer diffusion to form a "weld". The strength of the weld limits the performance of the manufactured part and is controlled through processing conditions. Under-standing the role of processing conditions, specifically extruder velocity and extruder temperature, on the overall strength of the weld will allow optimization of MatEx-AM parts. Here, the fracture toughness of a single weld is determined through a facile "trouser tear" Mode III fracture experiment. The actual weld thickness is observed directly by optical microscopy characterization of cross sections of MatEx-AM samples. Representative data of weld strength as a function of printing parameters on a commercial 3D printer demonstrates the robustness of the method.

  7. Manufacturing parabolic mirrors

    CERN Multimedia

    CERN PhotoLab

    1975-01-01

    The photo shows the construction of a vertical centrifuge mounted on an air cushion, with a precision of 1/10000 during rotation, used for the manufacture of very high=precision parabolic mirrors. (See Annual Report 1974.)

  8. MEDICAL MANUFACTURING INNOVATIONS

    Directory of Open Access Journals (Sweden)

    Cosma Sorin Cosmin

    2015-02-01

    Full Text Available The purpose of these studies was to improve the design and manufacturing process by selective laser melting, of new medical implants. After manufacturing process, the implants were measured, microscopically and mechanical analyzed. Implants manufactured by AM can be an attractive option for surface coatings to improve the osseointegration process. The main advantages of customized implants made by AM process are: the precise adaptation to the region of implantation, better cosmesis, reduced surgical times and better performance over their generic counterparts. These medical manufacturing changes the way that the surgeons are planning surgeries and engineers are designing custom implant. AM process has eliminated the constraints of shape, size, internal structure and mechanical properties making it possible for fabrication of implants that conform to the physical and mechanical requirements of implantation according to CT images. This article will review some custom implants fabricated in DME using biocompatible titanium.

  9. Manufacturing Enterprise in Asia

    International Development Research Centre (IDRC) Digital Library (Canada)

    2017-12-13

    Dec 13, 2017 ... 53 Designing Financial Systems in East Asia and Japan ..... 5.3 Weights for the industrial production index (%) ..... The demand for manufactured goods for this low level of consumption per capita also tends to be very low.

  10. Additive manufactured serialization

    Science.gov (United States)

    Bobbitt, III, John T.

    2017-04-18

    Methods for forming an identifying mark in a structure are described. The method is used in conjunction with an additive manufacturing method and includes the alteration of a process parameter during the manufacturing process. The method can form in a unique identifying mark within or on the surface of a structure that is virtually impossible to be replicated. Methods can provide a high level of confidence that the identifying mark will remain unaltered on the formed structure.

  11. Thickness measurement by using cepstrum ultrasonic signal processing

    International Nuclear Information System (INIS)

    Choi, Young Chul; Yoon, Chan Hoon; Choi, Heui Joo; Park, Jong Sun

    2014-01-01

    Ultrasonic thickness measurement is a non-destructive method to measure the local thickness of a solid element, based on the time taken for an ultrasound wave to return to the surface. When an element is very thin, it is difficult to measure thickness with the conventional ultrasonic thickness method. This is because the method measures the time delay by using the peak of a pulse, and the pulses overlap. To solve this problem, we propose a method for measuring thickness by using the power cepstrum and the minimum variance cepstrum. Because the cepstrums processing can divides the ultrasound into an impulse train and transfer function, where the period of the impulse train is the traversal time, the thickness can be measured exactly. To verify the proposed method, we performed experiments with steel and, acrylic plates of variable thickness. The conventional method is not able to estimate the thickness, because of the overlapping pulses. However, the cepstrum ultrasonic signal processing that divides a pulse into an impulse and a transfer function can measure the thickness exactly.

  12. Energetics Manufacturing Technology Center (EMTC)

    Data.gov (United States)

    Federal Laboratory Consortium — The Energetics Manufacturing Technology Center (EMTC), established in 1994 by the Office of Naval Research (ONR) Manufacturing Technology (ManTech) Program, is Navy...

  13. Advanced Material Strategies for Next-Generation Additive Manufacturing

    Science.gov (United States)

    Chang, Jinke; He, Jiankang; Zhou, Wenxing; Lei, Qi; Li, Xiao; Li, Dichen

    2018-01-01

    Additive manufacturing (AM) has drawn tremendous attention in various fields. In recent years, great efforts have been made to develop novel additive manufacturing processes such as micro-/nano-scale 3D printing, bioprinting, and 4D printing for the fabrication of complex 3D structures with high resolution, living components, and multimaterials. The development of advanced functional materials is important for the implementation of these novel additive manufacturing processes. Here, a state-of-the-art review on advanced material strategies for novel additive manufacturing processes is provided, mainly including conductive materials, biomaterials, and smart materials. The advantages, limitations, and future perspectives of these materials for additive manufacturing are discussed. It is believed that the innovations of material strategies in parallel with the evolution of additive manufacturing processes will provide numerous possibilities for the fabrication of complex smart constructs with multiple functions, which will significantly widen the application fields of next-generation additive manufacturing. PMID:29361754

  14. Advanced Material Strategies for Next-Generation Additive Manufacturing.

    Science.gov (United States)

    Chang, Jinke; He, Jiankang; Mao, Mao; Zhou, Wenxing; Lei, Qi; Li, Xiao; Li, Dichen; Chua, Chee-Kai; Zhao, Xin

    2018-01-22

    Additive manufacturing (AM) has drawn tremendous attention in various fields. In recent years, great efforts have been made to develop novel additive manufacturing processes such as micro-/nano-scale 3D printing, bioprinting, and 4D printing for the fabrication of complex 3D structures with high resolution, living components, and multimaterials. The development of advanced functional materials is important for the implementation of these novel additive manufacturing processes. Here, a state-of-the-art review on advanced material strategies for novel additive manufacturing processes is provided, mainly including conductive materials, biomaterials, and smart materials. The advantages, limitations, and future perspectives of these materials for additive manufacturing are discussed. It is believed that the innovations of material strategies in parallel with the evolution of additive manufacturing processes will provide numerous possibilities for the fabrication of complex smart constructs with multiple functions, which will significantly widen the application fields of next-generation additive manufacturing.

  15. Advanced Material Strategies for Next-Generation Additive Manufacturing

    Directory of Open Access Journals (Sweden)

    Jinke Chang

    2018-01-01

    Full Text Available Additive manufacturing (AM has drawn tremendous attention in various fields. In recent years, great efforts have been made to develop novel additive manufacturing processes such as micro-/nano-scale 3D printing, bioprinting, and 4D printing for the fabrication of complex 3D structures with high resolution, living components, and multimaterials. The development of advanced functional materials is important for the implementation of these novel additive manufacturing processes. Here, a state-of-the-art review on advanced material strategies for novel additive manufacturing processes is provided, mainly including conductive materials, biomaterials, and smart materials. The advantages, limitations, and future perspectives of these materials for additive manufacturing are discussed. It is believed that the innovations of material strategies in parallel with the evolution of additive manufacturing processes will provide numerous possibilities for the fabrication of complex smart constructs with multiple functions, which will significantly widen the application fields of next-generation additive manufacturing.

  16. Percolation effect in thick film superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Sali, R.; Harsanyi, G. [Technical Univ. of Budapest (Hungary)

    1994-12-31

    A thick film superconductor paste has been developed to study the properties of granulated superconductor materials, to observe the percolation effect and to confirm the theory of the conducting mechanism in the superconducting thick films. This paste was also applied to make a superconducting planar transformer. Due to high T{sub c} and advantageous current density properties the base of the paste was chosen to be of Bi(Pb)SrCaCuO system. For contacts a conventional Ag/Pt paste was used. The critical temperature of the samples were between 110 K and 115 K depending on the printed layer thickness. The critical current density at the boiling temperature of the liquid He- was between 200-300 A/cm{sup 2}. The R(T) and V(I) functions were measured with different parameters. The results of the measurements have confirmed the theory of conducting mechanism in the material. The percolation structure model has been built and described. As an application, a superconducting planar thick film transformer was planned and produced. Ten windings of the transformer were printed on one side of the alumina substrate and one winding was printed on the other side. The coupling between the two sides was possible through the substrate. The samples did not need special drying and firing parameters. After the preparation, the properties of the transformer were measured. The efficiency and the losses were determined. Finally, some fundamental advantages and problems of the process were discussed.

  17. Percolation effect in thick film superconductors

    International Nuclear Information System (INIS)

    Sali, R.; Harsanyi, G.

    1994-01-01

    A thick film superconductor paste has been developed to study the properties of granulated superconductor materials, to observe the percolation effect and to confirm the theory of the conducting mechanism in the superconducting thick films. This paste was also applied to make a superconducting planar transformer. Due to high T c and advantageous current density properties the base of the paste was chosen to be of Bi(Pb)SrCaCuO system. For contacts a conventional Ag/Pt paste was used. The critical temperature of the samples were between 110 K and 115 K depending on the printed layer thickness. The critical current density at the boiling temperature of the liquid He- was between 200-300 A/cm 2 . The R(T) and V(I) functions were measured with different parameters. The results of the measurements have confirmed the theory of conducting mechanism in the material. The percolation structure model has been built and described. As an application, a superconducting planar thick film transformer was planned and produced. Ten windings of the transformer were printed on one side of the alumina substrate and one winding was printed on the other side. The coupling between the two sides was possible through the substrate. The samples did not need special drying and firing parameters. After the preparation, the properties of the transformer were measured. The efficiency and the losses were determined. Finally, some fundamental advantages and problems of the process were discussed

  18. Direct laser metal sintering as a new approach to fabrication of an isoelastic functionally graded material for manufacture of porous titanium dental implants.

    Science.gov (United States)

    Traini, T; Mangano, C; Sammons, R L; Mangano, F; Macchi, A; Piattelli, A

    2008-11-01

    This work focuses on a titanium alloy implants incorporating a gradient of porosity, from the inner core to the outer surface, obtained by laser sintering of metal powder. Surface appearance, microstructure, composition, mechanical properties and fractography were evaluated. All the specimens were prepared by a selective laser sintering procedure using a Ti-6Al-4V alloy powder with a particle size of 1-10 microm. The morphological and chemical analyses were performed by SEM and energy dispersive X-ray spectroscopy. The flexure strength was determined by a three-point bend test using a universal testing machine. The surface roughness was investigated using a confocal scanning laser microscope. The surface roughness variation was statistically evaluated by use of a Chi square test. A p value of metal core consisted of columnar beta grains with alpha and beta laths within the grains. The alloy was composed of 90.08% Ti, 5.67% Al and 4.25% V. The Young's modulus of the inner core material was 104+/-7.7 GPa; while that of the outer porous material was 77+/-3.5 GPa. The fracture face showed a dimpled appearance typical of ductile fracture. In conclusion, laser metal sintering proved to be an efficient means of construction of dental implants with a functionally graded material which is better adapted to the elastic properties of the bone. Such implants should minimize stress shielding effects and improve long-term performance.

  19. Mechanical properties of F82H plates with different thicknesses

    Energy Technology Data Exchange (ETDEWEB)

    Sakasegawa, Hideo, E-mail: sakasegawa.hideo@jaea.go.jp; Tanigawa, Hiroyasu

    2016-11-01

    Highlights: • Mass effect, homogeneity, and anisotropy in mechanical properties were studied. • Thickness dependence of tensile property was not observed. • Thickness dependence of Charpy impact property was observed. • Appropriate mechanical properties were obtained using an electric furnace. - Abstract: Fusion DEMO reactor requires over 11,000 tons of reduced activation ferritic/martensitic steel and it is indispensable to develop the manufacturing technology for producing large-scale components of DEMO blanket with appropriate mechanical properties. This is because mechanical properties are generally degraded with increasing production volume. In this work, we focused mechanical properties of F82H–BA12 heat which was melted in a 20 tons electric arc furnace. Plates with difference thicknesses from 18 to 100 mm{sup t} were made from its ingot through forging and hot-rolling followed by heat treatments. Tensile and Charpy impact tests were then performed on plates focusing on their homogeneity and anisotropy. From the result, their homogeneity and anisotropy were not significant. No obvious differences were observed in tensile properties between the plates with different thicknesses. However, Charpy impact property changed with increasing plate thickness, i.e. the ductile brittle transition temperature of a 100 mm{sup t} thick plate was higher than that of the other thinner plates.

  20. Dynamic Roles and Locations of Manufacturing

    DEFF Research Database (Denmark)

    Slepniov, Dmitrij; Wæhrens, Brian Vejrum; Johansen, John

    2014-01-01

    Purpose – The principal objective of this paper is to relate functional nodes of production and innovation in global operations networks. The authors aim to capture the implications of changing strategic roles and locations of manufacturing for innovation capabilities. Design...... companies presented in this paper, the authors find that although the potential benefits of global dispersion of manufacturing are vast, the realisation of these potentials depends on how successful companies are with linking the new strategic roles and locations of manufacturing with innovation...... of global dispersion of operations. The findings assist global companies in organising cross-functional coordination and interrelated functional nodes of production and innovation in global operations networks. Originality/value – Not only routine transactional tasks but also more knowledge...

  1. Features of the Manufacturing Vision Development Process

    DEFF Research Database (Denmark)

    Dukovska-Popovska, Iskra; Riis, Jens Ove; Boer, Harry

    2005-01-01

    of action research. The methodology recommends wide participation of people from different hierarchical and functional positions, who engage in a relatively short, playful and creative process and come up with a vision (concept) for the future manufacturing system in the company. Based on three case studies......This paper discusses the key features of the process of Manufacturing Vision Development, a process that enables companies to develop their future manufacturing concept. The basis for the process is a generic five-phase methodology (Riis and Johansen, 2003) developed as a result of ten years...... of companies going through the initial phases of the methodology, this research identified the key features of the Manufacturing Vision Development process. The paper elaborates the key features by defining them, discussing how and when they can appear, and how they influence the process....

  2. Discovery and functional characterization of two diterpene synthases for sclareol biosynthesis in Salvia sclarea (L. and their relevance for perfume manufacture

    Directory of Open Access Journals (Sweden)

    Caniard Anne

    2012-07-01

    Full Text Available Abstract Background Sclareol is a diterpene natural product of high value for the fragrance industry. Its labdane carbon skeleton and its two hydroxyl groups also make it a valued starting material for semisynthesis of numerous commercial substances, including production of Ambrox® and related ambergris substitutes used in the formulation of high end perfumes. Most of the commercially-produced sclareol is derived from cultivated clary sage (Salvia sclarea and extraction of the plant material. In clary sage, sclareol mainly accumulates in essential oil-producing trichomes that densely cover flower calices. Manool also is a minor diterpene of this species and the main diterpene of related Salvia species. Results Based on previous general knowledge of diterpene biosynthesis in angiosperms, and based on mining of our recently published transcriptome database obtained by deep 454-sequencing of cDNA from clary sage calices, we cloned and functionally characterized two new diterpene synthase (diTPS enzymes for the complete biosynthesis of sclareol in clary sage. A class II diTPS (SsLPPS produced labda-13-en-8-ol diphosphate as major product from geranylgeranyl diphosphate (GGPP with some minor quantities of its non-hydroxylated analogue, (9 S, 10 S-copalyl diphosphate. A class I diTPS (SsSS then transformed these intermediates into sclareol and manool, respectively. The production of sclareol was reconstructed in vitro by combining the two recombinant diTPS enzymes with the GGPP starting substrate and in vivo by co-expression of the two proteins in yeast (Saccharomyces cerevisiae. Tobacco-based transient expression assays of green fluorescent protein-fusion constructs revealed that both enzymes possess an N-terminal signal sequence that actively targets SsLPPS and SsSS to the chloroplast, a major site of GGPP and diterpene production in plants. Conclusions SsLPPS and SsSS are two monofunctional diTPSs which, together, produce the diterpenoid

  3. Discovery and functional characterization of two diterpene synthases for sclareol biosynthesis in Salvia sclarea (L.) and their relevance for perfume manufacture.

    Science.gov (United States)

    Caniard, Anne; Zerbe, Philipp; Legrand, Sylvain; Cohade, Allison; Valot, Nadine; Magnard, Jean-Louis; Bohlmann, Jörg; Legendre, Laurent

    2012-07-26

    Sclareol is a diterpene natural product of high value for the fragrance industry. Its labdane carbon skeleton and its two hydroxyl groups also make it a valued starting material for semisynthesis of numerous commercial substances, including production of Ambrox® and related ambergris substitutes used in the formulation of high end perfumes. Most of the commercially-produced sclareol is derived from cultivated clary sage (Salvia sclarea) and extraction of the plant material. In clary sage, sclareol mainly accumulates in essential oil-producing trichomes that densely cover flower calices. Manool also is a minor diterpene of this species and the main diterpene of related Salvia species. Based on previous general knowledge of diterpene biosynthesis in angiosperms, and based on mining of our recently published transcriptome database obtained by deep 454-sequencing of cDNA from clary sage calices, we cloned and functionally characterized two new diterpene synthase (diTPS) enzymes for the complete biosynthesis of sclareol in clary sage. A class II diTPS (SsLPPS) produced labda-13-en-8-ol diphosphate as major product from geranylgeranyl diphosphate (GGPP) with some minor quantities of its non-hydroxylated analogue, (9 S, 10 S)-copalyl diphosphate. A class I diTPS (SsSS) then transformed these intermediates into sclareol and manool, respectively. The production of sclareol was reconstructed in vitro by combining the two recombinant diTPS enzymes with the GGPP starting substrate and in vivo by co-expression of the two proteins in yeast (Saccharomyces cerevisiae). Tobacco-based transient expression assays of green fluorescent protein-fusion constructs revealed that both enzymes possess an N-terminal signal sequence that actively targets SsLPPS and SsSS to the chloroplast, a major site of GGPP and diterpene production in plants. SsLPPS and SsSS are two monofunctional diTPSs which, together, produce the diterpenoid specialized metabolite sclareol in a two-step process. They

  4. Implementation of hierarchical design for manufacture rules in manufacturing processes

    OpenAIRE

    Parvez, Masud

    2008-01-01

    In order to shorten the product development cycle time, minimise overall cost and smooth transition into production, early consideration of manufacturing processes is important. Design for Manufacture (DFM) is the practice of designing products with manufacturing issues using an intelligent system, which translates 3D solid models into manufacturable features. Many existing and potential applications, particularly in the field of manufacturing, require various aspects of features technology. ...

  5. Surface texture measurement for additive manufacturing

    Science.gov (United States)

    Triantaphyllou, Andrew; Giusca, Claudiu L.; Macaulay, Gavin D.; Roerig, Felix; Hoebel, Matthias; Leach, Richard K.; Tomita, Ben; Milne, Katherine A.

    2015-06-01

    The surface texture of additively manufactured metallic surfaces made by powder bed methods is affected by a number of factors, including the powder’s particle size distribution, the effect of the heat source, the thickness of the printed layers, the angle of the surface relative to the horizontal build bed and the effect of any post processing/finishing. The aim of the research reported here is to understand the way these surfaces should be measured in order to characterise them. In published research to date, the surface texture is generally reported as an Ra value, measured across the lay. The appropriateness of this method for such surfaces is investigated here. A preliminary investigation was carried out on two additive manufacturing processes—selective laser melting (SLM) and electron beam melting (EBM)—focusing on the effect of build angle and post processing. The surfaces were measured using both tactile and optical methods and a range of profile and areal parameters were reported. Test coupons were manufactured at four angles relative to the horizontal plane of the powder bed using both SLM and EBM. The effect of lay—caused by the layered nature of the manufacturing process—was investigated, as was the required sample area for optical measurements. The surfaces were also measured before and after grit blasting.

  6. Surface texture measurement for additive manufacturing

    International Nuclear Information System (INIS)

    Triantaphyllou, Andrew; Tomita, Ben; Milne, Katherine A; Giusca, Claudiu L; Macaulay, Gavin D; Roerig, Felix; Hoebel, Matthias; Leach, Richard K

    2015-01-01

    The surface texture of additively manufactured metallic surfaces made by powder bed methods is affected by a number of factors, including the powder’s particle size distribution, the effect of the heat source, the thickness of the printed layers, the angle of the surface relative to the horizontal build bed and the effect of any post processing/finishing. The aim of the research reported here is to understand the way these surfaces should be measured in order to characterise them. In published research to date, the surface texture is generally reported as an Ra value, measured across the lay. The appropriateness of this method for such surfaces is investigated here. A preliminary investigation was carried out on two additive manufacturing processes—selective laser melting (SLM) and electron beam melting (EBM)—focusing on the effect of build angle and post processing. The surfaces were measured using both tactile and optical methods and a range of profile and areal parameters were reported. Test coupons were manufactured at four angles relative to the horizontal plane of the powder bed using both SLM and EBM. The effect of lay—caused by the layered nature of the manufacturing process—was investigated, as was the required sample area for optical measurements. The surfaces were also measured before and after grit blasting. (paper)

  7. Robust Manufacturing Control

    CERN Document Server

    2013-01-01

    This contributed volume collects research papers, presented at the CIRP Sponsored Conference Robust Manufacturing Control: Innovative and Interdisciplinary Approaches for Global Networks (RoMaC 2012, Jacobs University, Bremen, Germany, June 18th-20th 2012). These research papers present the latest developments and new ideas focusing on robust manufacturing control for global networks. Today, Global Production Networks (i.e. the nexus of interconnected material and information flows through which products and services are manufactured, assembled and distributed) are confronted with and expected to adapt to: sudden and unpredictable large-scale changes of important parameters which are occurring more and more frequently, event propagation in networks with high degree of interconnectivity which leads to unforeseen fluctuations, and non-equilibrium states which increasingly characterize daily business. These multi-scale changes deeply influence logistic target achievement and call for robust planning and control ...

  8. Flexibility in fuel manufacturing

    International Nuclear Information System (INIS)

    Reparaz, A.; Stavig, W.E.; McLees, R.B.

    1987-01-01

    From its inception Exxon Nuclear has produced both BWR and PWR fuels. This is reflected in a product line that, to date, includes over 20 fuel designs. These range from 6x6 design at one end of the spectrum to the recently introduced 17x17 design. The benefits offered include close tailoring of the fuel design to match the customer's requirements, and the ability to rapidly introduce product changes, such as the axial blanket design, with a minimal impact on manufacturing. This flexibility places a number of demands on the manufacturing organization. Close interfaces must be established, and maintained, between the marketing, product design, manufacturing, purchasing and quality organizations, and the information flows must be immediate and accurate. Production schedules must be well planned and must be maintained or revised to reflect changing circumstances. Finally, the manufacturing facilities must be designed to allow rapid switchover between product designs with minor tooling changes and/or rerouting of product flows to alternate work stations. Among the tools used to manage the flow of information and to maintain the tight integration necessary between the various manufacturing, engineering and quality organizations is a commercially available, computerized planning and tracking system, AMAPS. A real-time production data collection system has been designed which gathers data from each production work station for use by the shop floor control module of AMAPS. Accuracy of input to the system is improved through extensive use of bar codes to gather information on the product as it moves through and between work stations. This computerized preparation of material tracing has an impact on direct manufacturing records, quality control records, nuclear material records and accounting and inventory records. This is of benefit to both Exxon Nuclear and its customers

  9. Diccionario Lean Manufacturing

    OpenAIRE

    Muñoz Ellner, Sarah María

    2016-01-01

    El Diccionario Bilingüe de Lean Manufacturing pretende ser un instrumento de apoyo a todo aquel que tenga la responsabilidad de planear, ejecutar o simplemente algún interés con las actividades de Lean Manufacturing, aportando así también conceptos claros tanto en castellano como en inglés, con el fin de entender de forma integral el alcance mismo que puede llegar a tener dicha filosofía, al igual que se proporcionara una serie de siglas y herramientas para la implementación del Lean Manufact...

  10. Developments in fuel manufacturing

    International Nuclear Information System (INIS)

    Williams, T.

    1997-01-01

    BNFL has a long tradition of willingness to embrace technological challenge and a dedication to quality. This paper describes advances in the overall manufacturing philosophy at BNFL's Fuel Business Group and then covers how some new technologies are currently being employed in BNFL Fuel Business Group's flagship oxide complex (OFC), which is currently in its final stages of commissioning. This plant represents a total investment of some Pound 200 million. This paper also describes how these technologies are also being deployed in BNFL's MOX plant now being built at Sellafield and, finally, covers some new processes being developed for advanced fuel manufacture. (author)

  11. Optimal Design of Composite Structures Under Manufacturing Constraints

    DEFF Research Database (Denmark)

    Marmaras, Konstantinos

    algorithms to perform the global optimization. The efficiency of the proposed models is examined on a set of well–defined discrete multi material and thickness optimization problems originating from the literature. The inclusion of manufacturing limitations along with structural considerations in the early...... mixed integer 0–1 programming problems. The manufacturing constraints have been treated by developing explicit models with favorable properties. In this thesis we have developed and implemented special purpose global optimization methods and heuristic techniques for solving this class of problems......This thesis considers discrete multi material and thickness optimization of laminated composite structures including local failure criteria and manufacturing constraints. Our models closely follow an immediate extension of the Discrete Material Optimization scheme, which allows simultaneous...

  12. Cortical thickness abnormalities in late adolescence with online gaming addiction.

    Science.gov (United States)

    Yuan, Kai; Cheng, Ping; Dong, Tao; Bi, Yanzhi; Xing, Lihong; Yu, Dahua; Zhao, Limei; Dong, Minghao; von Deneen, Karen M; Liu, Yijun; Qin, Wei; Tian, Jie

    2013-01-01

    Online gaming addiction, as the most popular subtype of Internet addiction, had gained more and more attention from the whole world. However, the structural differences in cortical thickness of the brain between adolescents with online gaming addiction and healthy controls are not well unknown; neither was its association with the impaired cognitive control ability. High-resolution magnetic resonance imaging scans from late adolescence with online gaming addiction (n = 18) and age-, education- and gender-matched controls (n = 18) were acquired. The cortical thickness measurement method was employed to investigate alterations of cortical thickness in individuals with online gaming addiction. The color-word Stroop task was employed to investigate the functional implications of the cortical thickness abnormalities. Imaging data revealed increased cortical thickness in the left precentral cortex, precuneus, middle frontal cortex, inferior temporal and middle temporal cortices in late adolescence with online gaming addiction; meanwhile, the cortical thicknesses of the left lateral orbitofrontal cortex (OFC), insula, lingual gyrus, the right postcentral gyrus, entorhinal cortex and inferior parietal cortex were decreased. Correlation analysis demonstrated that the cortical thicknesses of the left precentral cortex, precuneus and lingual gyrus correlated with duration of online gaming addiction and the cortical thickness of the OFC correlated with the impaired task performance during the color-word Stroop task in adolescents with online gaming addiction. The findings in the current study suggested that the cortical thickness abnormalities of these regions may be implicated in the underlying pathophysiology of online gaming addiction.

  13. Cortical thickness abnormalities in late adolescence with online gaming addiction.

    Directory of Open Access Journals (Sweden)

    Kai Yuan

    Full Text Available Online gaming addiction, as the most popular subtype of Internet addiction, had gained more and more attention from the whole world. However, the structural differences in cortical thickness of the brain between adolescents with online gaming addiction and healthy controls are not well unknown; neither was its association with the impaired cognitive control ability. High-resolution magnetic resonance imaging scans from late adolescence with online gaming addiction (n = 18 and age-, education- and gender-matched controls (n = 18 were acquired. The cortical thickness measurement method was employed to investigate alterations of cortical thickness in individuals with online gaming addiction. The color-word Stroop task was employed to investigate the functional implications of the cortical thickness abnormalities. Imaging data revealed increased cortical thickness in the left precentral cortex, precuneus, middle frontal cortex, inferior temporal and middle temporal cortices in late adolescence with online gaming addiction; meanwhile, the cortical thicknesses of the left lateral orbitofrontal cortex (OFC, insula, lingual gyrus, the right postcentral gyrus, entorhinal cortex and inferior parietal cortex were decreased. Correlation analysis demonstrated that the cortical thicknesses of the left precentral cortex, precuneus and lingual gyrus correlated with duration of online gaming addiction and the cortical thickness of the OFC correlated with the impaired task performance during the color-word Stroop task in adolescents with online gaming addiction. The findings in the current study suggested that the cortical thickness abnormalities of these regions may be implicated in the underlying pathophysiology of online gaming addiction.

  14. A Taxonomy of Manufacturing Strategies

    OpenAIRE

    Jeffrey G. Miller; Aleda V. Roth

    1994-01-01

    This paper describes the development and analysis of a numerical taxonomy of manufacturing strategies. The taxonomy was developed with standard methods of cluster analysis, and is based on the relative importance attached to eleven competitive capabilities defining the manufacturing task of 164 large American manufacturing business units. Three distinct clusters of manufacturing strategy groups were observed. Though there is an industry effect, all three manufacturing strategy types are obser...

  15. Automatic measuring system of zirconium thickness for zirconium liner cladding tubes

    International Nuclear Information System (INIS)

    Matsui, K.; Yamaguchi, H.; Hiroshima, T.; Sakamoto, T.; Murayama, R.

    1985-01-01

    An automatic system of pure zirconium liner thickness for zirconium-zircaloy cladding tubes has been successfully developed. The system consists of three parts. (1) An ultrasonic thickness measuring method for mother tubes before cold rolling. (2) An electromagnetic thickness measuring method for the manufactured tubes. (3) An image processing method for the cross sectional view of the manufactured cut tube samples. In Japanese nuclear industry, zirconium-zircaloy cladding tubes have been tested in order to realize load following operation in the atomic power plant. In order to provide for the practical use in the near future, Sumitomo Metal Industries, Ltd. has been studied and established the practical manufacturing process of the zirconium liner cladding tubes. The zirconium-liner cladding tube is a duplex tube comprising an inner layer of pure zirconium bonded to zircaloy metallurgically. The thickness of the pure zirconium is about 10 % of the total wall thickness. Several types of the automatic thickness measuring methods have been investigated instead of the usual microscopic viewing method in which the liner thickness is measured by the microscopic cross sectional view of the cut tube samples

  16. Achievement report for fiscal 1998. Research and development on a new manufacturing method for functional thin films suitable for recycling, and their application to colored glasses (the second year); 1998 nendo seika hokokusho. Recycle ni tekishita kinosei usumaku no shinki seizoho to chakushoku glass eno oyo ni kansuru kenkyu kaihatsu (dai 2 nendo)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    A new thin film manufacturing method is established to add a function to glass material surface, as a new material technology which harmonizes with global environment, and is suitable for resource re-utilization and energy conservation. It is intended to develop a leading technology to promote recycling of colored glasses by applying this technical method to colored glasses. Fiscal 1998 has implemented subsequently to fiscal 1997 the following subjects in the three research items composed of a new manufacturing method of functional thin films, application of the functional thin films to colored glasses, and the comprehensive investigative studies: establishment of an industrial manufacturing method for color coating liquid and evaluation of basic characteristics of the colored functional thin films, optimization of element technology for photo-sensitive gel films by means of chemically modifying metallic alkoxide, tests of forming films on glass bottles and plate glasses by using a coating machine installed in fiscal 1997, design and prototype fabrication of a new demonstration coating machine, and analysis on thermal decomposition of the colored thin films. Optimization was performed on the element technology for manufacturing sol-gel functional thin films, and a survey was carried out on recycling systems of colored glasses adopted in Europe. (NEDO)

  17. Transfer of manufacturing units

    DEFF Research Database (Denmark)

    Madsen, Erik Skov; Riis, Jens Ove; Sørensen, Brian Vejrum

    2008-01-01

    The ongoing and unfolding relocation of activities is one of the major trends, that calls for attention in the domain of operations management. In particular, prescriptive models outlining: stages of the process, where to locate, and how to establish the new facilities have been studied, while...... and dilemmas to be addressed when transferring manufacturing units....

  18. Reusing Old Manufacturing Buildings

    Science.gov (United States)

    Roman, Harry T.

    2014-01-01

    This article presents an interesting design challenge for students, one that will certainly let them integrate subject matter and get a sense of pride for doing something useful in their own community. The author would be willing to bet that the average town or city has some old red brick manufacturing building(s) that have seen much better days.…

  19. Virtual manufacturing in reality

    Science.gov (United States)

    Papstel, Jyri; Saks, Alo

    2000-10-01

    SMEs play an important role in manufacturing industry. But from time to time there is a shortage in resources to complete the particular order in time. Number of systems is introduced to produce digital information in order to support product and process development activities. Main problem is lack of opportunity for direct data transition within design system modules when needed temporary extension of design capacity (virtuality) or to implement integrated concurrent product development principles. The planning experience in the field is weakly used as well. The concept of virtual manufacturing is a supporting idea to solve this problem. At the same time a number of practical problems should be solved like information conformity, data transfer, unified technological concepts acceptation etc. In the present paper the proposed ways to solve the practical problems of virtual manufacturing are described. General objective is to introduce the knowledge-based CAPP system as missing module for Virtual Manufacturing in the selected product domain. Surface-centered planning concept based on STEP- based modeling principles, and knowledge-based process planning methodology will be used to gain the objectives. As a result the planning module supplied by design data with direct access, and supporting advising environment is expected. Mould producing SME would be as test basis.

  20. Tolerances in micro manufacturing

    DEFF Research Database (Denmark)

    Hansen, Hans Nørgaard; Zhang, Yang; Islam, Aminul

    This paper describes a method for analysis of tolerances in micro manufacturing. It proposes a mapping oftolerances to dimensions and compares this with current available international standards. The analysisdocuments that tolerances are not scaled down as the absolute dimension. In practice...

  1. Cladding tube manufacturing technology

    International Nuclear Information System (INIS)

    Hahn, R.; Jeong, Y. H.; Baek, B. J.; Kim, K. H.; Kim, S. J.; Choi, B. K.; Kim, J. M.

    1999-04-01

    This report gives an overview of the manufacturing routine of PWR cladding tubes. The routine essentially consists of a series of deformation and annealing processes which are necessary to transform the ingot geometry to tube dimensions. By changing shape, microstructure and structure-related properties are altered simultaneously. First, a short overview of the basics of that part of deformation geometry is given which is related to tube reducing operations. Then those processes of the manufacturing routine which change the microstructure are depicted, and the influence of certain process parameters on microstructure and material properties are shown. The influence of the resulting microstructure on material properties is not discussed in detail, since it is described in my previous report A lloy Development for High Burnup Cladding . Because of their paramount importance still up to now, and because manufacturing data and their influence on properties for other alloys are not so well established or published, the descriptions are mostly related to Zry4 tube manufacturing, and are only in short for other alloys. (author). 9 refs., 46 figs

  2. Nuclear fuel manufacture

    International Nuclear Information System (INIS)

    Costello, J.M.

    1980-09-01

    The technologies used to manufacture nuclear fuel from uranium ore are outlined, with particular reference to the light water reactor fuel cycle. Capital and operating cost estimates for the processing stages are given, and the relevance to a developing uranium industry in Australia is discussed

  3. Manufacturing and Merchandising Careers

    Science.gov (United States)

    Ryan, Peter J.; And Others

    1977-01-01

    Anyone with a flair for business, product development, or promotion might consider a manufacturing or merchandising occupation. The music industry offers many career opportunities for administrators, salespersons, marketing specialists--the record industry offers positions from promotion manager to rack jobber. Describes instrument company…

  4. Manufacturing in Denmark

    DEFF Research Database (Denmark)

    Hansen, Johannes; Boer, Henrike Engele Elisabeth; Boer, Harry

    This report compares the manufacturing strategies, practices, performances and improvement activities of 39 companies that are representative for the Danish assembly industry with those of 804 companies from 19 other countries. The data supporting this report were collected in 2013 and concern...

  5. Competitive Manufacturing Dynamics

    DEFF Research Database (Denmark)

    Rymaszewska, Anna; Christensen, Irene; Karlsson, Christer

    to constantly improve this process in terms of time to volume, according to predefined cost and quality measures. The importance of the success of this process can lead to a significant creation of competitive advantage. This paper addresses the challenges of the manufacturing ramp-up process in the context...

  6. Cladding tube manufacturing technology

    Energy Technology Data Exchange (ETDEWEB)

    Hahn, R. [Kraftwerk Union AG, Mulheim (Germany); Jeong, Y.H.; Baek, B.J.; Kim, K.H.; Kim, S.J.; Choi, B.K.; Kim, J.M. [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1999-04-01

    This report gives an overview of the manufacturing routine of PWR cladding tubes. The routine essentially consists of a series of deformation and annealing processes which are necessary to transform the ingot geometry to tube dimensions. By changing shape, microstructure and structure-related properties are altered simultaneously. First, a short overview of the basics of that part of deformation geometry is given which is related to tube reducing operations. Then those processes of the manufacturing routine which change the microstructure are depicted, and the influence of certain process parameters on microstructure and material properties are shown. The influence of the resulting microstructure on material properties is not discussed in detail, since it is described in my previous report 'Alloy Development for High Burnup Cladding.' Because of their paramount importance still up to now, and because manufacturing data and their influence on properties for other alloys are not so well established or published, the descriptions are mostly related to Zry4 tube manufacturing, and are only in short for other alloys. (author). 9 refs., 46 figs.

  7. Turbine airfoil manufacturing technology

    Energy Technology Data Exchange (ETDEWEB)

    Kortovich, C. [PCC Airfoils, Inc., Beachwood, OH (United States)

    1995-12-31

    The specific goal of this program is to define manufacturing methods that will allow single crystal technology to be applied to complex-cored airfoils components for power generation applications. Tasks addressed include: alloy melt practice to reduce the sulfur content; improvement of casting process; core materials design; and grain orientation control.

  8. Drug development and manufacturing

    Science.gov (United States)

    Warner, Benjamin P.; McCleskey, T. Mark; Burrell, Anthony K.

    2015-10-13

    X-ray fluorescence (XRF) spectrometry has been used for detecting binding events and measuring binding selectivities between chemicals and receptors. XRF may also be used for estimating the therapeutic index of a chemical, for estimating the binding selectivity of a chemical versus chemical analogs, for measuring post-translational modifications of proteins, and for drug manufacturing.

  9. DECOMPOSITION OF MANUFACTURING PROCESSES: A REVIEW

    Directory of Open Access Journals (Sweden)

    N.M.Z.N. Mohamed

    2012-06-01

    Full Text Available Manufacturing is a global activity that started during the industrial revolution in the late 19th century to cater for the large-scale production of products. Since then, manufacturing has changed tremendously through the innovations of technology, processes, materials, communication and transportation. The major challenge facing manufacturing is to produce more products using less material, less energy and less involvement of labour. To face these challenges, manufacturing companies must have a strategy and competitive priority in order for them to compete in a dynamic market. A review of the literature on the decomposition of manufacturing processes outlines three main processes, namely: high volume, medium volume and low volume. The decomposition shows that each sub process has its own characteristics and depends on the nature of the firm’s business. Two extreme processes are continuous line production (fast extreme and project shop (slow extreme. Other processes are in between these two extremes of the manufacturing spectrum. Process flow patterns become less complex with cellular, line and continuous flow compared with jobbing and project. The review also indicates that when the product is high variety and low volume, project or functional production is applied.

  10. Additive Manufacturing: From Form to Function

    Science.gov (United States)

    2016-01-01

    Failure Evaluation, and Reclamation facility.26 AM will be used to demon - strate repairs on Army aviation assets that cannot currently be restored...Institute in Los Angeles , California.37 Seven new institutes were proposed for 2016 (one for the DOD, two for the DOE, two for the DOC, and two for the...ranging from large companies offering high-throughput industrial printers to small start-ups demon - strating unique capabilities in niche applications

  11. Effect of the addition of phytosterols and tocopherols on Streptococcus thermophilus robustness during industrial manufacture and ripening of a functional cheese as evaluated by qPCR and RT-qPCR.

    Science.gov (United States)

    Pega, J; Rizzo, S; Pérez, C D; Rossetti, L; Díaz, G; Ruzal, S M; Nanni, M; Descalzo, A M

    2016-09-02

    The quality of functional food products designed for the prevention of degenerative diseases can be affected by the incorporation of bioactive compounds. In many types of cheese, the performance of starter microorganisms is critical for optimal elaboration and for providing potential probiotic benefits. Phytosterols are plant lipophilic triterpenes that have been used for the design of functional dairy products because of their ability to lower serum cholesterol levels in humans. However, their effect on the starter culture behavior during cheesemaking has not yet been studied. Here, we followed DNA and RNA kinetics of the bacterium Streptococcus thermophilus, an extensively used dairy starter with probiotic potential, during industrial production of a functional, semi-soft, reduced-fat cheese containing phytosterol esters and alpha-tocopherol as bioactive compounds. For this purpose, real-time quantitative PCR (qPCR) and reverse transcription-qPCR (RT-qPCR) assays were optimized and applied to samples obtained during the manufacture and ripening of functional and control cheeses. An experimental set-up was used to evaluate the detection threshold of free nucleic acids for extraction protocols based on pelleted microorganisms. To our knowledge, this straight-forward approach provides the first experimental evidence indicating that DNA is not a reliable marker of cell integrity, whereas RNA may constitute a more accurate molecular signature to estimate both bacterial viability and metabolic activity. Compositional analysis revealed that the bioactive molecules were effectively incorporated into the cheese matrix, at levels considered optimal to exert their biological action. The starter S. thermophilus was detected by qPCR and RT-qPCR during cheese production at the industrial level, from at least 30min after its inoculation until 81days of ripening, supporting the possible role of this species in shaping organoleptic profiles. We also showed for the first time that

  12. Substrate effects on terahertz metamaterial resonances for various metal thicknesses

    International Nuclear Information System (INIS)

    Park, S. J.; Ahn, Y. H.

    2014-01-01

    We demonstrate dielectric substrate effects on the resonance shift of terahertz metamaterials with various metal thicknesses by using finite-difference time-domain simulations. We found a small red shift in the metamaterial resonance with increasing metal thickness for the free-standing case. Conversely, when the metamaterial pattern was supported by a substrate with a high dielectric constant, the resonant frequency exhibited a large blue shift because the relative contribution of the substrate's refractive index to the resonant frequency decreased drastically as we increased the metal thickness. We determined the substrate's refractive index, 1.26, at which the metamaterial resonance was independent of the metal thickness. We extracted the effective refractive index as a function of the substrate's refractive index explicitly, which was noticeably different for different film thicknesses.

  13. Are galaxy discs optically thick?

    International Nuclear Information System (INIS)

    Disney, Michael; Davies, Jonathan; Phillipps, Steven

    1989-01-01

    We re-examine the classical optical evidence for the low optical depths traditionally assigned to spiral discs and argue that it is highly model-dependent and unconvincing. In particular, layered models with a physically thin but optically thick dust layer behave like optically thin discs. The opposite hypotheses, that such discs are optically thick is then examined in the light of modern evidence. We find it to be consistent with the near-infrared and IRAS observations, with the surface brightnesses, with the HI and CO column densities and with the Hα measurements. (author)

  14. Manufacturing and testing of active composite panels with embedded piezoelectric sensors and actuators: wires out by molded-in holes

    Science.gov (United States)

    Ghasemi-Nejhad, Mehrdad N.; Pourjalali, Saeid

    2003-08-01

    This work presents manufacturing and testing of active composite panels (ACPs) with embedded piezoelectric sensors and actuators. The composite material employed here is a plain weave carbon epoxy prepreg fabric with about 0.33 mm ply thickness. The piezoelectric patches employed here are Continuum Control Corporation, CCC, (recently Continuum Photonics, Inc) active fiber composite patches with 0.33 mm thickness, i.e. close to the composite ply thickness. Composite cut-out layers are used to fill the space around the embedded piezoelectric patches to minimize the problems associated with ply drops in composites. The piezoelectric patches were embedded inside the composite laminate. High-temperature wires were soldered to the piezoelectric leads, insulated from the carbon substructure by high-temperature materials, and were taken out of the composite laminates employing a molded-in hole technique that reduces the stress concentration as opposed to a drilled hole, and thereby enhancing the performance of the composite structure. The laminated ACP"s were co-cured inside an autoclave employing the cure cycle recommended by the composite material supplier. The curie temperature of the embedded piezoelectric patches should be well above the curing temperature of the composite materials as was the case here. The manufactured ACP beams and plates were trimmed and then tested for their functionality. Vibration suppression as well as simultaneous vibration suppression and precision positioning tests, using PID control as well as Hybrid Adaptive Control techniques were successfully conducted on the manufactured ACP beams and their functionality were demonstrated. Recommendations on the use of this embedding technique for ACPs are provided.

  15. Thiophene Rings Improve the Device Performance of Conjugated Polymers in Polymer Solar Cells with Thick Active Layers

    NARCIS (Netherlands)

    Duan, C.; Gao, K.; Colberts, F. J. M.; Liu, F.; Meskers, S. C. J.; Wienk, M. M.; Janssen, R. A. J.

    2017-01-01

    Developing novel materials that tolerate thickness variations of the active layer is critical to further enhance the efficiency of polymer solar cells and enable large-scale manufacturing. Presently, only a few polymers afford high efficiencies at active layer thickness exceeding 200 nm and

  16. Fiscal 1999 achievement report on regional consortium research and development project. Regional consortium on energy research in its 3rd year (Research and development of novel method for manufacturing recycling-compatible functional thin film and its application to coloring of glass); 1999 nendo recycle ni tekishita kinosei usumaku no shinki seizoho to chakushoku glass eno oyo ni kansuru kenkyu kaihatsi seika hokokusho. 3

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    A thin film is developed which adds new functions to the surface of glass materials. The method is applied to the coloring of glass for the enhancement of recyclability (for example, by coating colorless glass bottles with colorful thin film) and to the functionalization of glass. Studies are conducted about the assessment of coloring-capable thin film basic characteristics, manufacture of liquids for application, and the manufacture of photosensitive gel thin film using chemically modified metal alkoxides. It is found that use of functional pigments reduces the transmissivity of ultraviolet and infrared rays. A method for manufacturing coloring liquids for application to glass bottles and a method of improving film durability using a 3,2-functional silane are established. Ultrafine gold/cuprous oxide powder, azobenzen based pigments, etc., are deposited on porous glass for the formation of a photoresponsive film. Conditions for color application to round glass bottles are optimized by use of an air spray device. Film exfoliation during colored glass bottle transportation is lessoned to a practically acceptable level by modifying the carton pack configuration. A large roll-type applicator is operated to successfully form a homogenous coating on a 1.8m times 1m glass plate. Double glazing capable of light modulation is also manufactured. (NEDO)

  17. Thickness optimization of fiber reinforced laminated composites using the discrete material optimization method

    DEFF Research Database (Denmark)

    Sørensen, Søren Nørgaard; Lund, Erik

    2012-01-01

    This work concerns a novel large-scale multi-material topology optimization method for simultaneous determination of the optimum variable integer thickness and fiber orientation throughout laminate structures with fixed outer geometries while adhering to certain manufacturing constraints....... The conceptual combinatorial/integer problem is relaxed to a continuous problem and solved on basis of the so-called Discrete Material Optimization method, explicitly including the manufacturing constraints as linear constraints....

  18. Retinal sensitivity and choroidal thickness in high myopia.

    Science.gov (United States)

    Zaben, Ahmad; Zapata, Miguel Á; Garcia-Arumi, Jose

    2015-03-01

    To estimate the association between choroidal thickness in the macular area and retinal sensitivity in eyes with high myopia. This investigation was a transversal study of patients with high myopia, all of whom had their retinal sensitivity measured with macular integrity assessment microperimetry. The choroidal thicknesses in the macular area were then measured by optical coherence tomography, and statistical correlations between their functionality and the anatomical structuralism, as assessed by both types of measurements, were analyzed. Ninety-six eyes from 77 patients with high myopia were studied. The patients had a mean age ± standard deviation of 38.9 ± 13.2 years, with spherical equivalent values ranging from -6.00 diopter to -20.00 diopter (8.74 ± 2.73 diopter). The mean central choroidal thickness was 159.00 ± 50.57. The mean choroidal thickness was directly correlated with sensitivity (r = 0.306; P = 0.004) and visual acuity but indirectly correlated with the spherical equivalent values and patient age. The mean sensitivity was not significantly correlated with the macular foveal thickness (r = -0.174; P = 0.101) or with the overall macular thickness (r = 0.103; P = 0.334); furthermore, the mean sensitivity was significantly correlated with visual acuity (r = 0.431; P < 0.001) and the spherical equivalent values (r = -0.306; P = 0.003). Retinal sensitivity in highly myopic eyes is directly correlated with choroidal thickness and does not seem to be associated with retinal thickness. Thus, in patients with high myopia, accurate measurements of choroidal thickness may provide more accurate information about this pathologic condition because choroidal thickness correlates to a greater degree with the functional parameters, patient age, and spherical equivalent values.

  19. Modelling curves of manufacturing feasibilities and demand

    Directory of Open Access Journals (Sweden)

    Soloninko K.S.

    2017-03-01

    Full Text Available The authors research the issue of functional properties of curves of manufacturing feasibilities and demand. Settlement of the problem, and its connection with important scientific and practical tasks. According to its nature, the market economy is unstable and is in constant movement. Economy has an effective instrument for explanation of changes in economic environment; this tool is called the modelling of economic processes. The modelling of economic processes depends first and foremost on the building of economic model which is the base for the formalization of economic process, that is, the building of mathematical model. The effective means for formalization of economic process is the creation of the model of hypothetic or imaginary economy. The building of demand model is significant for the market of goods and services. The problem includes the receiving (as the result of modelling definite functional properties of curves of manufacturing feasibilities and demand according to which one can determine their mathematical model. Another problem lies in obtaining majorant properties of curves of joint demand on the market of goods and services. Analysis of the latest researches and publications. Many domestic and foreign scientists dedicated their studies to the researches and building of the models of curves of manufacturing feasibilities and demand. In spite of considerable work of the scientists, such problems as functional properties of the curves and their practical use in modelling. The purpose of the article is to describe functional properties of curves of manufacturing feasibilities and demand on the market of goods and services on the base of modelling of their building. Scientific novelty and practical value. The theoretical regulations (for functional properties of curves of manufacturing feasibilities and demand received as a result of the present research, that is convexity, give extra practical possibilities in a microeconomic

  20. Lean management in a non-manufacturing organization

    Directory of Open Access Journals (Sweden)

    Mladen Žvorc

    2013-12-01

    Full Text Available This paper examines the possibilities of a lean approach to non-manufacturing functions, i.e. a market-oriented organization. This refers to purchasing, shipment, storage, sale and delivery of goods; marketing, etc. A lean approach to business operations is discussed and several lean business methods are developed on the basis of which lean management can be used not only in manufacturing, but also in non-manufacturing organizations.

  1. Micro-manufacturing: design and manufacturing of micro-products

    National Research Council Canada - National Science Library

    Koç, Muammer; Özel, Tuğrul

    2011-01-01

    .... After addressing the fundamentals and non-metallic-based micro-manufacturing processes in the semiconductor industry, it goes on to address specific metallic-based micro-manufacturing processes...

  2. Reconfigurable manufacturing system for agile mass customization manufacturing

    CSIR Research Space (South Africa)

    Xing, B

    2006-07-01

    Full Text Available Manufacturing companies are facing three challenges: low cost production of product, high quality standard and rapid responsiveness to customer requirements. These three goals are equally important for the manufacturing companies who want...

  3. Nano-Hydroxyapatite Thick Film Gas Sensors

    International Nuclear Information System (INIS)

    Khairnar, Rajendra S.; Mene, Ravindra U.; Munde, Shivaji G.; Mahabole, Megha P.

    2011-01-01

    In the present work pure and metal ions (Co and Fe) doped hydroxyapatite (HAp) thick films have been successfully utilized to improve the structural, morphological and gas sensing properties. Nanocrystalline HAp powder is synthesized by wet chemical precipitation route, and ion exchange process is employed for addition of Co and Fe ions in HAp matrix. Moreover, swift heavy ion irradiation (SHI) technique is used to modify the surface of pure and metal ion exchanged HAp with various ion fluence. The structural investigation of pure and metal ion exchanged HAp thick films are carried out using X-ray diffraction and the presence of functional group is observed by means FTIR spectroscopy. Furthermore, surface morphology is visualized by means of SEM and AFM analysis. CO gas sensing study is carried out for, pure and metal ions doped, HAp thick films with detail investigation on operating temperature, response/recovery time and gas uptake capacity. The surface modifications of sensor matrix by SHI enhance the gas response, response/recovery and gas uptake capacity. The significant observation is here to note that, addition of Co and Fe in HAp matrix and surface modification by SHI improves the sensing properties of HAp films drastically resulting in gas sensing at relatively lower temperatures.

  4. 40 CFR 723.175 - Chemical substances used in or for the manufacture or processing of instant photographic and peel...

    Science.gov (United States)

    2010-07-01

    ... manufacture and processing in the special production area. All manufacturing, processing, and use operations... shape or design during manufacture, (ii) which has end use function(s) dependent in whole or in part... production area, the ambient air concentration of the new chemical substance during manufacture, processing...

  5. Design and application of reconfigurable manufacturing systems in agile mass customization manufacturing environment.

    CSIR Research Space (South Africa)

    Xing, B

    2007-05-01

    Full Text Available processes. Many manufacturing techniques are based on the principles of Flexible Manufacturing and Dedicated Manufacturing for mass production. Reconfigurable Manufacturing System, (RMS), is a manufacturing system that can provide for Agile Manufacturing...

  6. Capability of Sputtered Micro-patterned NiTi Thick Films

    Science.gov (United States)

    Bechtold, Christoph; Lima de Miranda, Rodrigo; Quandt, Eckhard

    2015-09-01

    Today, most NiTi devices are manufactured by a combination of conventional metal fabrication steps, e.g., melting, extrusion, cold working, etc., and are subsequently structured by high accuracy laser cutting. This combination has been proven to be very successful; however, there are several limitations to this fabrication route, e.g., in respect to the fabrication of more complex device designs, device miniaturization or the combination of different materials for the integration of further functionality. These issues have to be addressed in order to develop new devices and applications. The fabrication of micro-patterned films using magnetron sputtering, UV lithography, and wet etching has great potential to overcome limitations of conventional device manufacturing. Due to its fabrication characteristics, this method allows the production of devices with complex designs, high structural accuracy, smooth edge profile, at layer thicknesses up to 75 µm. The aim of this study is to present recent developments in the field of NiTi thin film technology, its advantages and limitations, as well as new possible applications in the medical and in non-medical fields. These developments include among others NiTi scaffold structures covered with NiTi membranes for their potential use as filters, heart valve components or aneurysm treatments, as well as micro-actuators for consumable electronics or automotive applications.

  7. [Endoscopic full-thickness resection].

    Science.gov (United States)

    Meier, B; Schmidt, A; Caca, K

    2016-08-01

    Conventional endoscopic resection techniques such as endoscopic mucosal resection (EMR) or endoscopic submucosal dissection (ESD) are powerful tools for the treatment of gastrointestinal (GI) neoplasms. However, those techniques are limited to the superficial layers of the GI wall (mucosa and submucosa). Lesions without lifting sign (usually arising from deeper layers) or lesions in difficult anatomic positions (appendix, diverticulum) are difficult - if not impossible - to resect using conventional techniques, due to the increased risk of complications. For larger lesions (>2 cm), ESD appears to be superior to the conventional techniques because of the en bloc resection, but the procedure is technically challenging, time consuming, and associated with complications even in experienced hands. Since the development of the over-the-scope clips (OTSC), complications like bleeding or perforation can be endoscopically better managed. In recent years, different endoscopic full-thickness resection techniques came to the focus of interventional endoscopy. Since September 2014, the full-thickness resection device (FTRD) has the CE marking in Europe for full-thickness resection in the lower GI tract. Technically the device is based on the OTSC system and combines OTSC application and snare polypectomy in one step. This study shows all full-thickness resection techniques currently available, but clearly focuses on the experience with the FTRD in the lower GI tract.

  8. Robot skills for manufacturing

    DEFF Research Database (Denmark)

    Pedersen, Mikkel Rath; Nalpantidis, Lazaros; Andersen, Rasmus Skovgaard

    2016-01-01

    -asserting robot skills for manufacturing. We show how a relatively small set of skills are derived from current factory worker instructions, and how these can be transferred to industrial mobile manipulators. General robot skills can not only be implemented on these robots, but also be intuitively concatenated...... products are introduced by manufacturers. In order to compete on global markets, the factories of tomorrow need complete production lines, including automation technologies that can effortlessly be reconfigured or repurposed, when the need arises. In this paper we present the concept of general, self...... in running production facilities at an industrial partner. It follows from these experiments that the use of robot skills, and associated task-level programming framework, is a viable solution to introducing robots that can intuitively and on the fly be programmed to perform new tasks by factory workers....

  9. Additive manufacturing of metals

    International Nuclear Information System (INIS)

    Herzog, Dirk; Seyda, Vanessa; Wycisk, Eric; Emmelmann, Claus

    2016-01-01

    Additive Manufacturing (AM), the layer-by layer build-up of parts, has lately become an option for serial production. Today, several metallic materials including the important engineering materials steel, aluminium and titanium may be processed to full dense parts with outstanding properties. In this context, the present overview article describes the complex relationship between AM processes, microstructure and resulting properties for metals. It explains the fundamentals of Laser Beam Melting, Electron Beam Melting and Laser Metal Deposition, and introduces the commercially available materials for the different processes. Thereafter, typical microstructures for additively manufactured steel, aluminium and titanium are presented. Special attention is paid to AM specific grain structures, resulting from the complex thermal cycle and high cooling rates. The properties evolving as a consequence of the microstructure are elaborated under static and dynamic loading. According to these properties, typical applications are presented for the materials and methods for conclusion.

  10. Manufacture of heat exchangers

    International Nuclear Information System (INIS)

    Burton, J.E.; Tombs, R.W.T.

    1980-01-01

    A tube bundle for use in a heat exchanger has a series of spaced parallel tubes supported by tube plates and is manufactured by depositing welding material around the end of each tube, machining the deposited material to form an annular flange around the end of the tube and welding the flange into apertures in the tube plate. Preferably the tubes have a length which is slightly less than the distance between the outer surfaces of the tube plates and the deposited material is deposited so that it overlaps and protects the end surfaces of the tubes. A plug may be inserted in the bore of the tubes during the welding material deposition which, as described, is effected by manual metal arc welding. One use of heat exchangers incorporating a tube bundle manufactured as above is in apparatus for reducing the volume of, and recovering nitric acid from, radioactive effluents from a nuclear reprocessing plant. (author)

  11. The manufacturers' viewpoint

    International Nuclear Information System (INIS)

    Davis, D.A.

    1986-01-01

    This paper describes the approach by six separate manufacturers to the problem of availability from their particular view point. This presentation demonstrates basic strategy: attention to high reliability at the design phase, based on positive and detailed feedback from existing plant; quality assurance at the production stage which has been planned into the production process in the form of a Q.A. manual in design; sophisticated test procedures and facilities; simplicity of design with high accuracy in production; provision of a clear operational maintenance manual, etc. The manufacturers agreed on the need to make a conscious commitment to design for high availability, taking into account both initial and ongoing operating costs in life cycle cost assessment. Predictability, reliability, maintainability, efficiency, market acceptability and maintenance support based on high quality feedback between operator and supplier were all stressed on the grounds that prevention is always better than cure

  12. Brief communication: Enamel thickness and durophagy in mangabeys revisited.

    Science.gov (United States)

    McGraw, W Scott; Pampush, James D; Daegling, David J

    2012-02-01

    The documentation of enamel thickness variation across primates is important because enamel thickness has both taxonomic and functional relevance. The Old World monkeys commonly referred to as mangabeys have figured prominently in investigations of feeding ecology and enamel thickness. In this article, we report enamel thickness values for four mangabey taxa (Cercocebus atys, Cercocebus torquatus, Lophocebus aterrimus, and Lophocebus albigena), offer revised interpretation of the significance of thick enamel in papionin evolution, and place our new data in a broader comparative framework. Our data indicate that all mangabeys have thick enamel and that the values obtained for Cercocebus and Lophocebus equal or exceed those published for most extant non-human primates. In addition, new field data combined with a current reading of the dietary literature indicate that hard foods make up a portion of the diet of every mangabey species sampled to date. Clarification on the relationship between diet and enamel thickness among mangabeys is important not only because of recognition that mangabeys are not a natural group but also because of recent arguments that explain thick enamel as an evolved response to the seasonal consumption of hard foods. Copyright © 2011 Wiley Periodicals, Inc.

  13. Cortical Thickness Changes Associated with Photoparoxysmal Response

    DEFF Research Database (Denmark)

    Hanganu, Alexandru; Groppa, Stanislav A; Deuschl, Günther

    2014-01-01

    Photoparoxysmal response (PPR) is an EEG trait of spike and spike-wave discharges in response to photic stimulation that is closely linked to idiopathic generalized epilepsy (IGE). In our previous studies we showed that PPR is associated with functional alterations in the occipital and frontal co...... in the occipital lobe, frontoparietal regions and temporal lobe, which also show functional changes associated with PPR. Patients with epilepsy present changes in the temporal lobe and supplementary motor area.......-positive-subjects presented a significant decrease of cortical thickness in the temporal cortex in the same group contrast. IGE patients exhibited lower cortical thickness in the temporal lobe bilaterally and in the right paracentral region in comparison to PPR-positive-subjects. Our study demonstrates structural changes......Photoparoxysmal response (PPR) is an EEG trait of spike and spike-wave discharges in response to photic stimulation that is closely linked to idiopathic generalized epilepsy (IGE). In our previous studies we showed that PPR is associated with functional alterations in the occipital and frontal...

  14. Northwest Manufacturing Initiative

    Science.gov (United States)

    2014-07-31

    biodegradable wipes, and bags. The gStyle clothing line consists of various types of stylish clothes for babies. All gDiapers are plastic free...offers recycling services for industrial plastics and non-serviceable containers. Industrial plastics include pails, buckets, pallets, plastic film, and...manufacturer, now recycle used soda bottles, unusable second quality fabrics and worn out garments into polyester fibers to produce many of their clothes

  15. Rapid manufacturing for microfluidics

    CSIR Research Space (South Africa)

    Land, K

    2012-10-01

    Full Text Available for microfluidics K. LAND, S. HUGO, M MBANJWA, L FOURIE CSIR Materials Science and Manufacturing P O Box 395, Pretoria 0001, SOUTH AFRICA Email: kland@csir.co.za INTRODUCTION Microfluidics refers to the manipulation of very small volumes of fluid.... Microfluidics is at the forefront of developing solutions for drug discovery, diagnostics (from glucose tests to malaria and TB testing) and environmental diagnostics (E-coli monitoring of drinking water). In order to quickly implement new designs, a rapid...

  16. Northwest Manufacturing Initiative

    Science.gov (United States)

    2013-08-31

    Kadali R. Talla R. Hugo T. Russell A. Thoreson E. Porgharibshahishahrebabak Dae-wook Kim Ellen A. Fuller J. Rick Evans 5d. PROJECT NUMBER...Manufacturing (CIM) Cell .................................................................................. 8 Hurricane 130W Laser Cutter/Engraver (48” X 36...Miniature Prototype Warehouse Application using Imaging Source and RoboRealm® 3. Hurricane 130W Laser Cutter/Engraver (48” X 36”) a. Rapid

  17. Technology for Manufacturing Efficiency

    Science.gov (United States)

    1995-01-01

    The Ground Processing Scheduling System (GPSS) was developed by Ames Research Center, Kennedy Space Center and divisions of the Lockheed Company to maintain the scheduling for preparing a Space Shuttle Orbiter for a mission. Red Pepper Software Company, now part of PeopleSoft, Inc., commercialized the software as their ResponseAgent product line. The software enables users to monitor manufacturing variables, report issues and develop solutions to existing problems.

  18. Advances in Additive Manufacturing

    Science.gov (United States)

    2016-07-14

    with a collection of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS...Hamilton • Beth Bimber Air Force Research Laboratory, Metals Branch • Eddie Schwalbach • Mike Groeber • Benjamin Leever • James Hardin...conducting more in-field, or point-of-need, manufacturing than ever before. Other areas of concentration include man- machine interface, capabilities

  19. The Selection of Materials for Roller Chains From The Perspective Of Manufacturing Process

    Directory of Open Access Journals (Sweden)

    Rahmat Saptono

    2010-10-01

    Full Text Available The selection of materials for an engineering component is not only requested by its design function and shape, but also the sequence through which it is manufactured. The manufacturing operation of roller chains involves drawing and trimming processes aimed at producing semi-finished chain drives component with a well-standardized dimension. In addition to final combination of properties required by design constraints, the ability of materials to be formed into a desired shape and geometry without failure is also critical. The objective of materials selection should therefore involve additional attributes that are not typically  accommodated by the standard procedure of materials selection. The present paper deals with the selection of materials for roller chains from the perspective of manufacturing process. Ears and un-uniform wall thickness have been identified as a key problem in the mass production of component. Provided all process parameters were established, the  anisotropy factor of materials is critical. Simulative test can be reasonably used to obtain material performance indices that can be added up to the standard procedure of material selection. Of three commercially available steel grades evaluated with regard to the criteria defined, one grade is more suitable for the present objective.

  20. Advanced manufacturing: Technology diffusion

    Energy Technology Data Exchange (ETDEWEB)

    Tesar, A.

    1995-12-01

    In this paper we examine how manufacturing technology diffuses rom the developers of technology across national borders to those who do not have the capability or resources to develop advanced technology on their own. None of the wide variety of technology diffusion mechanisms discussed in this paper are new, yet the opportunities to apply these mechanisms are growing. A dramatic increase in technology diffusion occurred over the last decade. The two major trends which probably drive this increase are a worldwide inclination towards ``freer`` markets and diminishing isolation. Technology is most rapidly diffusing from the US In fact, the US is supplying technology for the rest of the world. The value of the technology supplied by the US more than doubled from 1985 to 1992 (see the Introduction for details). History shows us that technology diffusion is inevitable. It is the rates at which technologies diffuse to other countries which can vary considerably. Manufacturers in these countries are increasingly able to absorb technology. Their manufacturing efficiency is expected to progress as technology becomes increasingly available and utilized.

  1. Fuel manufacturing and utilization

    International Nuclear Information System (INIS)

    2005-01-01

    The efficient utilisation of nuclear fuel requires manufacturing facilities capable of making advanced fuel types, with appropriate quality control. Once made, the use of such fuels requires a proper understanding of their behaviour in the reactor environment, so that safe operation for the design life can be achieved. The International Atomic Energy Agency supports Member States to improve in-pile fuel performance and management of materials; and to develop advanced fuel technologies for ensuring reliability and economic efficiency of the nuclear fuel cycle. It provides assistance to Member States to support fuel-manufacturing capability, including quality assurance techniques, optimization of manufacturing parameters and radiation protection. The IAEA supports the development fuel modelling expertise in Member States, covering both normal operation and postulated and severe accident conditions. It provides information and support for the operation of Nuclear Power Plant to ensure that the environment and water chemistry is appropriate for fuel operation. The IAEA supports fuel failure investigations, including equipment for failed fuel detection and for post-irradiation examination and inspection, as well as fuel repair, it provides information and support research into the basic properties of fuel materials, including UO 2 , MOX and zirconium alloys. It further offers guidance on the relationship with back-end requirement (interim storage, transport, reprocessing, disposal), fuel utilization and management, MOX fuels, alternative fuels and advanced fuel technology

  2. Gammatography of thick lead vessels

    International Nuclear Information System (INIS)

    Raghunath, V.M.; Bhatnagar, P.K.; Sundaram, V.M.

    1979-01-01

    Radiography, scintillation and GM counting and dose measurements using ionisation chamber equipment are commonly used for detecting flaws/voids in materials. The first method is mostly used for steel vessels and to a lesser extent thin lead vessels also and is essentially qualitative. Dose measuring techniques are used for very thick and large lead vessels for which high strength radioactive sources are required, with its inherent handling problems. For vessels of intermediate thicknesses, it is ideal to use a small strength source and a GM or scintillation counter assembly. At the Reactor Research Centre, Kalpakkam, such a system was used for checking three lead vessels of thicknesses varying from 38mm to 65mm. The tolerances specified were +- 4% variation in lead thickness. The measurements also revealed the non concentricity of one vessel which had a thickness varying from 38mm to 44mm. The second vessel was patently non-concentric and the dimensional variation was truly reproduced in the measurements. A third vessel was fabricated with careful control of dimensions and the measurements exhibited good concentricity. Small deviations were observed, attributable to imperfect bondings between steel and lead. This technique has the following advantages: (a) weaker sources used result in less handling problems reducing the personnel exposures considerably; (b) the sensitivity of the instrument is quite good because of better statistics; (c) the time required for scanning a small vessel is more, but a judicious use of a scintillometer for initial fast scan will help in reducing the total scanning time; (d) this method can take advantage of the dimensional variations themselves to get the calibration and to estimate the deviations from specified tolerances. (auth.)

  3. Charge Distribution Dependency on Gap Thickness of CMS Endcap RPC

    CERN Document Server

    Park, Sung K.; Lee, Kyongsei

    2016-01-01

    We report a systematic study of charge distribution dependency of CMS Resistive Plate Chamber (RPC) on gap thickness. Prototypes of double-gap RPCs with six different gap thickness ranging from from 1.0 to 2.0 mm in 0.2-mm steps have been built with 2-mm-thick phenolic high-pressure-laminated plates. The efficiencies of the six gaps are measured as a function of the effective high voltages. We report that the strength of the electric fields of the gap is decreased as the gap thickness is increased. The distributions of charges in six gaps are measured. The space charge effect is seen in the charge distribution at the higher voltages. The logistic function is used to fit the charge distribution data. Smaller charges can be produced within smaller gas gap. But the digitization threshold should be also lowered to utilize these smaller charges.

  4. Transistor and integrated circuit manufacture

    International Nuclear Information System (INIS)

    Colman, D.

    1978-01-01

    This invention relates to the manufacture of transistors and integrated circuits by ion bombardment techniques and is particularly, but not exclusively, of value in the manufacture of so-called integrated injection logic circuitry. (author)

  5. 77 FR 2275 - Manufacturing Council

    Science.gov (United States)

    2012-01-17

    ... DEPARTMENT OF COMMERCE International Trade Administration Manufacturing Council AGENCY... candidate's proven experience in promoting, developing and marketing programs in support of manufacturing... participating in Council meetings and events are responsible for their travel, living and other personal...

  6. 76 FR 33244 - Manufacturing Council

    Science.gov (United States)

    2011-06-08

    ... DEPARTMENT OF COMMERCE International Trade Administration Manufacturing Council AGENCY... experience in promoting, developing and marketing programs in support of manufacturing industries, in job... Council meetings and events are responsible for their travel, living and other personal expenses. Meetings...

  7. Manufacturing mobility in global operations

    NARCIS (Netherlands)

    Steenhuis, H.J.; de Bruijn, E.J.

    2002-01-01

    The globalization trend inevitably affects the organization of manufacturing by enterprises. It offers opportunities to examine manufacturing from a global perspective and consequently to produce where it is most appropriate. However, globalization has also led to an increase in competitive

  8. Green Manufacturing Fundamentals and Applications

    CERN Document Server

    2013-01-01

    Green Manufacturing: Fundamentals and Applications introduces the basic definitions and issues surrounding green manufacturing at the process, machine and system (including supply chain) levels. It also shows, by way of several examples from different industry sectors, the potential for substantial improvement and the paths to achieve the improvement. Additionally, this book discusses regulatory and government motivations for green manufacturing and outlines the path for making manufacturing more green as well as making production more sustainable. This book also: • Discusses new engineering approaches for manufacturing and provides a path from traditional manufacturing to green manufacturing • Addresses regulatory and economic issues surrounding green manufacturing • Details new supply chains that need to be in place before going green • Includes state-of-the-art case studies in the areas of automotive, semiconductor and medical areas as well as in the supply chain and packaging areas Green Manufactu...

  9. 75 FR 80040 - Manufacturing Council

    Science.gov (United States)

    2010-12-21

    ..., developing and marketing programs in support of manufacturing industries, job creation in the manufacturing... relevant contact information such as mailing address, fax, e-mail, fixed and mobile phone numbers and...

  10. Transistor and integrated circuit manufacture

    Energy Technology Data Exchange (ETDEWEB)

    Colman, D

    1978-09-27

    This invention relates to the manufacture of transistors and integrated circuits by ion bombardment techniques and is particularly, but not exclusively, of value in the manufacture of so-called integrated injection logic circuitry.

  11. Ultrafast demagnetisation dependence on film thickness: A TDDFT calculation

    Science.gov (United States)

    Singh, N.; Sharma, S.

    2018-04-01

    Ferromagnetic materials when subjected to intense laser pulses leads to reduction of their magnetisation on an ultrafast scale. Here, we perform an ab-initio calculation to study the behavior of ultrafast demagnetisation as a function of film thickness for Nickel as compared to the bulk of the material. In thin films surface formation results in amplification of demagnetisation with the percentage of demagnetisation depending upon the film thickness.

  12. Manufacturing Process for OLED Integrated Substrate

    Energy Technology Data Exchange (ETDEWEB)

    Hung, Cheng-Hung [Vitro Flat Glass LLC, Cheswick, PA (United States). Glass Technology Center

    2017-03-31

    The main objective of this project was to develop a low-cost integrated substrate for rigid OLED solid-state lighting produced at a manufacturing scale. The integrated substrates could include combinations of soda lime glass substrate, light extraction layer, and an anode layer (i.e., Transparent Conductive Oxide, TCO). Over the 3+ year course of the project, the scope of work was revised to focus on the development of a glass substrates with an internal light extraction (IEL) layer. A manufacturing-scale float glass on-line particle embedding process capable of producing an IEL glass substrate having a thickness of less than 1.7mm and an area larger than 500mm x 400mm was demonstrated. Substrates measuring 470mm x 370mm were used in the OLED manufacturing process for fabricating OLED lighting panels in single pixel devices as large as 120.5mm x 120.5mm. The measured light extraction efficiency (calculated as external quantum efficiency, EQE) for on-line produced IEL samples (>50%) met the project’s initial goal.

  13. Composites Manufacturing Education and Technology Facility Expedites Manufacturing Innovation

    Energy Technology Data Exchange (ETDEWEB)

    2017-01-01

    The Composites Manufacturing Education and Technology facility (CoMET) at the National Wind Technology Center at the National Renewable Energy Laboratory (NREL) paves the way for innovative wind turbine components and accelerated manufacturing. Available for use by industry partners and university researchers, the 10,000-square-foot facility expands NREL's composite manufacturing research capabilities by enabling researchers to design, prototype, and test composite wind turbine blades and other components -- and then manufacture them onsite. Designed to work in conjunction with NREL's design, analysis, and structural testing capabilities, the CoMET facility expedites manufacturing innovation.

  14. Exploring manufacturing solutions for SMEs

    DEFF Research Database (Denmark)

    Radziwon, Agnieszka; Blichfeldt, Henrik; Bilberg, Arne

    This exploratory study provides an overview over current state of manufacturing solutions in small and medium sized enterprises (SMEs) in region of Southern Denmark. Building on manufacturing paradigms, this paper reveals relevant aspects for the development and implementation of improving SMEs...... of manufacturing solutions, which are required to increase their competitiveness and assure sustainable growth....

  15. 78 FR 67117 - Manufacturing Council

    Science.gov (United States)

    2013-11-08

    ... preeminent destination for investment in manufacturing throughout the world'' as provided for in Section 4 of... the viewpoint of those stakeholders on current and emerging issues in the manufacturing sector. In... the U.S. manufacturing industry in terms of industry sectors, geographic locations, demographics, and...

  16. 2001 Industry Studies: Advanced Manufacturing

    Science.gov (United States)

    2001-05-28

    oriented, 19 and manufacturers are employing the Internet and associated information technologies to better integrate supply chains and form extended...ways to compete in world markets . As part of this ongoing transformation, the broad implementation of advanced manufacturing technologies , processes...competitive advantages and better performance in world markets . Importantly, advanced manufacturing involves the innovative integration of new technology

  17. Development of Integration in Manufacturing

    DEFF Research Database (Denmark)

    Sørensen, Torben; Trostmann, Erik

    1996-01-01

    significance to all manufacturing industries.International standardization based on the product model definition standard STEP (ISO10303) is playing a key role in promoting a modern approach to Product Data Technology. The initial release of STEP, consisting of twelve essential parts, has recently been...... must be extended to cope with descriptions of functional behavior of products.In the robotics area, Computer Aided Robotics (CAR) systems for design, off-line programming, and simulation are currently increasing their model features with new topics, such as multi-body dynamics, realistic motion......Current international developments in the broad field of Product Data Technology are advancing rapidly and are leading up to new levels of technology in product model definition, product model communications, enterprise integration and cooperation. These developments will be of strategic...

  18. Out-of-Autoclave Manufacturing of Aerospace Representative Parts

    Science.gov (United States)

    Cauberghs, Julien

    The use of carbon fibre reinforced composites for aerospace structures has seen a high increase in recent years, and is still growing. The high stiffness-to-weight ratio of these materials makes them ideal for primary structures on airplanes, satellites, and spacecrafts. Nevertheless, the manufacturing of composites remains very costly since it requires equipment investment such as an autoclave, and very qualified workers. Out-of-autoclave manufacturing technology is very promising since it only requires a traditional oven, while still aiming at similar part quality. However, the absence of positive pressure compared with an autoclave makes it more difficult to achieve low porosity parts. This research investigates the manufacturing of complex features with out-of autoclave prepreg technology. The features studied are tight-radius corners with a curvature change, and ply drop-offs. Ply drop-offs tests were conducted to identify if porosity is higher at ply terminations. In corners, the bagging arrangement was modified to achieve the most uniform thickness in areas of curvature change, even with small radii. The conclusions from these studies provided us with guidelines to manufacture larger representative parts, which included these features. The representative parts were tested for porosity, thickness uniformity, mechanical performance, and glass transition temperature (Tg). A total of four representative parts were manufactured with out-of-autoclave technology, and one more was manufactured with an autoclave to allow for a proper comparison between the two processes. The materials used were MTM45-1 5 harness satin and CYCOM5320 plain weave for the out-of-autoclave parts, and CYCOM5276-1 plain weave for the autoclave part. The effect of ply drop-offs on porosity was found to be negligible. Thickness deviation in corners was attributed to a combination of consumable bridging, prepreg's bulk factor and inter-ply shear. Overall, out-of-autoclave prepregs showed

  19. Experience with quality assurance in fuel design and manufacturing

    International Nuclear Information System (INIS)

    Holzer, R.; Nilson, F.

    1984-01-01

    The Quality Assurance/Quality Control activities for nuclear fuel design and manufacturing described here are coordinated under a common ''Quality Assurance System For Fuel Assemblies and Associated Core Components'' which regulates the QA-functions of the development, design and manufacturing of fuel assemblies independent of the organizational assignment of the contributing technical groups. Some essential characteristics of the system are shown, using examples from design control, procurement, manufacturing and qualification of special processes. The experience is very good, it allowed a flexible and well controlled implementation of design and manufacturing innovations and contributed to the overall good fuel behavior. (orig.)

  20. Manufacturing Cell Therapies Using Engineered Biomaterials.

    Science.gov (United States)

    Abdeen, Amr A; Saha, Krishanu

    2017-10-01

    Emerging manufacturing processes to generate regenerative advanced therapies can involve extensive genomic and/or epigenomic manipulation of autologous or allogeneic cells. These cell engineering processes need to be carefully controlled and standardized to maximize safety and efficacy in clinical trials. Engineered biomaterials with smart and tunable properties offer an intriguing tool to provide or deliver cues to retain stemness, direct differentiation, promote reprogramming, manipulate the genome, or select functional phenotypes. This review discusses the use of engineered biomaterials to control human cell manufacturing. Future work exploiting engineered biomaterials has the potential to generate manufacturing processes that produce standardized cells with well-defined critical quality attributes appropriate for clinical testing. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Additive Manufacturing of Shape Memory Alloys

    Science.gov (United States)

    Van Humbeeck, Jan

    2018-04-01

    Selective Laser Melting (SLM) is an additive manufacturing production process, also called 3D printing, in which functional, complex parts are produced by selectively melting patterns in consecutive layers of powder with a laser beam. The pattern the laser beam is following is controlled by software that calculates the pattern by slicing a 3D CAD model of the part to be constructed. Apart from SLM, also other additive manufacturing techniques such as EBM (Electron Beam Melting), FDM (Fused Deposition Modelling), WAAM (Wire Arc Additive Manufacturing), LENS (Laser Engineered Net Shaping such as Laser Cladding) and binder jetting allow to construct complete parts layer upon layer. But since more experience of AM of shape memory alloys is collected by SLM, this paper will overview the potentials, limits and problems of producing NiTi parts by SLM.

  2. Factors Affecting Labour Productivity in Manufacturing Enterprises

    Directory of Open Access Journals (Sweden)

    Zbigniew Gołaś

    2011-07-01

    Full Text Available The article presents the results of the analysis of the factors influencing labour productivity in the manufacturing business sector in 20042008. Labour productivity was analyzed in the context of the assets productivity, technical equipment of work, labour intensity of production, wages, value added and depreciation costs, and using linear stepwise regression. The study shows that despite significant progress, the level of labour productivity in domestic manufacturing significantly lower than the average in the European Union. Lower than in Poland, the level of labour productivity gain only companies in Romania, Bulgaria, Lithuania, Latvia and Estonia. Estimated parameters of the regression function showed that the most important determinants of labour productivity in manufacturing are technical equipment of work, labour intensity of production, assets productivity, level of added value in relation to revenues. These factors explain the variability of labour productivity in 20042008 in a high degree.

  3. The effect of unilateral partial edentulism to muscle thickness

    International Nuclear Information System (INIS)

    Koca-Ceylan, Golzem; Guler, Ahmet U.; Taskay-Yelmir, Nergiz; Lutfi, Incesu; Aksoz, Tolga

    2003-01-01

    Teeth and muscle play a very important role for occlusal equilibrium and function.when tooth loss begins ,it may also effect the function of muscle tissues. The thickness of masseter and anterior temporalis muscles were measured bilaterally in 30 healthy fully dentate adults and in 30 unilateral edentulous patients by using ultrasonographic imaging. All scans were carried out by the same radiologist to eliminate the inter-observer difference, using a real time scanner (Toshiba SSA -270A,Japan). A 7.5 MHz linear transducer was used. The effect of age, sex, duration of partial edentulism, unilateral chewing habits of the individuals to the muscle thickness were also evaluated. In all subjects,facial proportion index was also determined. Main purpose of this study was to compare and establish the differences of muscle thickness between dentate and edentulous side in unilateral partial edentulous patients with ultrasonography and to test whether the variation in the thickness of the muscle is related to the variation in the facial and morphology. Ultrasonography revealed a large variation in the thickness of the masseter and temporolis muscles in experimental and controlled groups ,both relaxed and contracted conditions.The thickness of muscles in females was less in both conditions.In experimental group, a high negative correlation was found between the thickness of the masseter muscle and Facial Proportion Index ( FPI) in the females ,however, the statistical analysis showed no significant difference in the males. Also a high negative correlation was found in female control group. There was no statistically significant relationship between unilateral chewing habits and muscle thickness .In this study the duration of partial edentulism did not affect the thickness of the muscle.Further research is required to study muscular atrophy for comparison with total edentulism. (author)

  4. Accurate thickness measurement of graphene

    International Nuclear Information System (INIS)

    Shearer, Cameron J; Slattery, Ashley D; Stapleton, Andrew J; Shapter, Joseph G; Gibson, Christopher T

    2016-01-01

    Graphene has emerged as a material with a vast variety of applications. The electronic, optical and mechanical properties of graphene are strongly influenced by the number of layers present in a sample. As a result, the dimensional characterization of graphene films is crucial, especially with the continued development of new synthesis methods and applications. A number of techniques exist to determine the thickness of graphene films including optical contrast, Raman scattering and scanning probe microscopy techniques. Atomic force microscopy (AFM), in particular, is used extensively since it provides three-dimensional images that enable the measurement of the lateral dimensions of graphene films as well as the thickness, and by extension the number of layers present. However, in the literature AFM has proven to be inaccurate with a wide range of measured values for single layer graphene thickness reported (between 0.4 and 1.7 nm). This discrepancy has been attributed to tip-surface interactions, image feedback settings and surface chemistry. In this work, we use standard and carbon nanotube modified AFM probes and a relatively new AFM imaging mode known as PeakForce tapping mode to establish a protocol that will allow users to accurately determine the thickness of graphene films. In particular, the error in measuring the first layer is reduced from 0.1–1.3 nm to 0.1–0.3 nm. Furthermore, in the process we establish that the graphene-substrate adsorbate layer and imaging force, in particular the pressure the tip exerts on the surface, are crucial components in the accurate measurement of graphene using AFM. These findings can be applied to other 2D materials. (paper)

  5. Laser 3D micro-manufacturing

    International Nuclear Information System (INIS)

    Piqué, Alberto; Auyeung, Raymond C Y; Kim, Heungsoo; Charipar, Nicholas A; Mathews, Scott A

    2016-01-01

    Laser-based materials processing techniques are gaining widespread use in micro-manufacturing applications. The use of laser microfabrication techniques enables the processing of micro- and nanostructures from a wide range of materials and geometries without the need for masking and etching steps commonly associated with photolithography. This review aims to describe the broad applications space covered by laser-based micro- and nanoprocessing techniques and the benefits offered by the use of lasers in micro-manufacturing processes. Given their non-lithographic nature, these processes are also referred to as laser direct-write and constitute some of the earliest demonstrations of 3D printing or additive manufacturing at the microscale. As this review will show, the use of lasers enables precise control of the various types of processing steps—from subtractive to additive—over a wide range of scales with an extensive materials palette. Overall, laser-based direct-write techniques offer multiple modes of operation including the removal (via ablative processes) and addition (via photopolymerization or printing) of most classes of materials using the same equipment in many cases. The versatility provided by these multi-function, multi-material and multi-scale laser micro-manufacturing processes cannot be matched by photolithography nor with other direct-write microfabrication techniques and offer unique opportunities for current and future 3D micro-manufacturing applications. (topical review)

  6. Study on Resource Configuration on Cloud Manufacturing

    Directory of Open Access Journals (Sweden)

    Yanlong Cao

    2015-01-01

    Full Text Available The purpose of manufacturing is to realize the requirement of customer. In manufacturing process of cloud system, there exist a lot of resource services which have similar functional characteristics to realize the requirement. It makes the manufacturing process more diverse. To develop the quality and reduce cost, a resource configuration model on cloud-manufacturing platform is put forward in this paper. According to the generalized six-point location principle, a growth design from the requirement of customers to entities with geometric constraints is proposed. By the requirement growing up to product, a configuration process is used to match the entities with the instances which the resources in the database could supply. Different from most existing studies, this paper studies the tolerance design with multiple candidate resource suppliers on cloud manufacturing to make the market play a two-level game considering the benefit of customers and the profit of resources to give an optimal result. A numerical case study is used to illustrate the proposed model and configuration process. The performance and advantage of the proposed method are discussed at the end.

  7. Soliton models for thick branes

    International Nuclear Information System (INIS)

    Peyravi, Marzieh; Riazi, Nematollah; Lobo, Francisco S.N.

    2016-01-01

    In this work, we present new soliton solutions for thick branes in 4+1 dimensions. In particular, we consider brane models based on the sine-Gordon (SG), φ 4 and φ 6 scalar fields, which have broken Z 2 symmetry in some cases and are responsible for supporting and stabilizing the thick branes. The origin of the symmetry breaking in these models resides in the fact that the modified scalar field potential may have non-degenerate vacua. These vacua determine the cosmological constant on both sides of the brane. We also study the geodesic equations along the fifth dimension, in order to explore the particle motion in the neighborhood of the brane. Furthermore, we examine the stability of the thick branes, by determining the sign of the w 2 term in the expansion of the potential for the resulting Schroedinger-like equation, where w is the five-dimensional coordinate. It turns out that the φ 4 brane is stable, while there are unstable modes for certain ranges of the model parameters in the SG and φ 6 branes. (orig.)

  8. Soliton models for thick branes

    Energy Technology Data Exchange (ETDEWEB)

    Peyravi, Marzieh [Ferdowsi University of Mashhad, Department of Physics, School of Sciences, Mashhad (Iran, Islamic Republic of); Riazi, Nematollah [Shahid Beheshti University, Physics Department, Tehran (Iran, Islamic Republic of); Lobo, Francisco S.N. [Faculdade de Ciencias da Universidade de Lisboa, Instituto de Astrofisica e Ciencias do Espaco, Lisbon (Portugal)

    2016-05-15

    In this work, we present new soliton solutions for thick branes in 4+1 dimensions. In particular, we consider brane models based on the sine-Gordon (SG), φ{sup 4} and φ{sup 6} scalar fields, which have broken Z{sub 2} symmetry in some cases and are responsible for supporting and stabilizing the thick branes. The origin of the symmetry breaking in these models resides in the fact that the modified scalar field potential may have non-degenerate vacua. These vacua determine the cosmological constant on both sides of the brane. We also study the geodesic equations along the fifth dimension, in order to explore the particle motion in the neighborhood of the brane. Furthermore, we examine the stability of the thick branes, by determining the sign of the w{sup 2} term in the expansion of the potential for the resulting Schroedinger-like equation, where w is the five-dimensional coordinate. It turns out that the φ{sup 4} brane is stable, while there are unstable modes for certain ranges of the model parameters in the SG and φ{sup 6} branes. (orig.)

  9. Analysis of Shrinkage on Thick Plate Part using Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    Najihah S.N.

    2016-01-01

    Full Text Available Injection moulding is the most widely used processes in manufacturing plastic products. Since the quality of injection improves plastic parts are mostly influenced by process conditions, the method to determine the optimum process conditions becomes the key to improving the part quality. This paper presents a systematic methodology to analyse the shrinkage of the thick plate part during the injection moulding process. Genetic Algorithm (GA method was proposed to optimise the process parameters that would result in optimal solutions of optimisation goals. Using the GA, the shrinkage of the thick plate part was improved by 39.1% in parallel direction and 17.21% in the normal direction of melt flow.

  10. Fatigue qualification of high thickness composite rotor components

    Science.gov (United States)

    Raggi, M.; Mariani, U.; Zaffaroni, G.

    Fatigue qualification aspects of composite rotor components are presented according with the safe life procedure usually applied by helicopter manufacturers. Test activities are identified at three levels of specimen complexity: coupon, structural element and full scale component. Particular attention is given to high thickness laminates qualification as far as environmental exposure is concerned. A practical approach for an accelerated conditioning procedure is described. The application to a main rotor tension link is presented showing the negligible effect of the moisture absorption on its fatigue strength.

  11. Additive manufacturing method for SRF components of various geometries

    Science.gov (United States)

    Rimmer, Robert; Frigola, Pedro E; Murokh, Alex Y

    2015-05-05

    An additive manufacturing method for forming nearly monolithic SRF niobium cavities and end group components of arbitrary shape with features such as optimized wall thickness and integral stiffeners, greatly reducing the cost and technical variability of conventional cavity construction. The additive manufacturing method for forming an SRF cavity, includes atomizing niobium to form a niobium powder, feeding the niobium powder into an electron beam melter under a vacuum, melting the niobium powder under a vacuum in the electron beam melter to form an SRF cavity; and polishing the inside surface of the SRF cavity.

  12. 3D Volume Rendering and 3D Printing (Additive Manufacturing).

    Science.gov (United States)

    Katkar, Rujuta A; Taft, Robert M; Grant, Gerald T

    2018-07-01

    Three-dimensional (3D) volume-rendered images allow 3D insight into the anatomy, facilitating surgical treatment planning and teaching. 3D printing, additive manufacturing, and rapid prototyping techniques are being used with satisfactory accuracy, mostly for diagnosis and surgical planning, followed by direct manufacture of implantable devices. The major limitation is the time and money spent generating 3D objects. Printer type, material, and build thickness are known to influence the accuracy of printed models. In implant dentistry, the use of 3D-printed surgical guides is strongly recommended to facilitate planning and reduce risk of operative complications. Copyright © 2018 Elsevier Inc. All rights reserved.

  13. Good manufacturing practice

    International Nuclear Information System (INIS)

    Schlyer, D.J.

    2001-01-01

    In this presentation author deals with the Implementation of good manufacturing practice for radiopharmaceuticals. The presentation is divided into next parts: Batch size; Expiration date; QC Testing; Environmental concerns; Personnel aspects; Radiation concerns; Theoretical yields; Sterilizing filters; Control and reconciliation of materials and components; Product strength; In process sampling and testing; Holding and distribution; Drug product inspection; Buildings and facilities; Renovations at BNL for GMP; Aseptic processing and sterility assurance; Process validation and control; Quality control and drug product stability; Documentation and other GMP topics; Building design considerations; Equipment; and Summary

  14. Real time PV manufacturing diagnostic system

    Energy Technology Data Exchange (ETDEWEB)

    Kochergin, Vladimir [MicroXact Inc., Blacksburg, VA (United States); Crawford, Michael A. [MicroXact Inc., Blacksburg, VA (United States)

    2015-09-01

    The main obstacle Photovoltaic (PV) industry is facing at present is the higher cost of PV energy compared to that of fossil energy. While solar cell efficiencies continue to make incremental gains these improvements are so far insufficient to drive PV costs down to match that of fossil energy. Improved in-line diagnostics however, has the potential to significantly increase the productivity and reduce cost by improving the yield of the process. On this Phase I/Phase II SBIR project MicroXact developed and demonstrated at CIGS pilot manufacturing line a high-throughput in-line PV manufacturing diagnostic system, which was verified to provide fast and accurate data on the spatial uniformity of thickness, an composition of the thin films comprising the solar cell as the solar cell is processed reel-to-reel. In Phase II project MicroXact developed a stand-alone system prototype and demonstrated the following technical characteristics: 1) ability of real time defect/composition inconsistency detection over 60cm wide web at web speeds up to 3m/minute; 2) Better than 1mm spatial resolution on 60cm wide web; 3) an average better than 20nm spectral resolution resulting in more than sufficient sensitivity to composition imperfections (copper-rich and copper-poor regions were detected). The system was verified to be high vacuum compatible. Phase II results completely validated both technical and economic feasibility of the proposed concept. MicroXact’s solution is an enabling technique for in-line PV manufacturing diagnostics to increase the productivity of PV manufacturing lines and reduce the cost of solar energy, thus reducing the US dependency on foreign oil while simultaneously reducing emission of greenhouse gasses.

  15. Manufacturing process for electrodes for ionizing radiation detectors

    International Nuclear Information System (INIS)

    Tirelli, M.G.; Hecquet, R.

    1987-01-01

    A manufacturing proces for electrodes for ionizing radiation detectors, particularly electrodes for X-ray multidetectors, is proposed. It consists of electrodepositing at least one layer of an electrically conducting material on at least one side of a relatively flat plate. A ductile material is used to form the conducting layer. The assembly formed by the plate covered by the ductile conducting material is subjected to pressing to crush the ductile conducting material at least in the zones where the assembly formed by the plate and the covering material has a total thickness superior to a constant thickness desired for the electrode [fr

  16. OPINION: Safe exponential manufacturing

    Science.gov (United States)

    Phoenix, Chris; Drexler, Eric

    2004-08-01

    In 1959, Richard Feynman pointed out that nanometre-scale machines could be built and operated, and that the precision inherent in molecular construction would make it easy to build multiple identical copies. This raised the possibility of exponential manufacturing, in which production systems could rapidly and cheaply increase their productive capacity, which in turn suggested the possibility of destructive runaway self-replication. Early proposals for artificial nanomachinery focused on small self-replicating machines, discussing their potential productivity and their potential destructiveness if abused. In the light of controversy regarding scenarios based on runaway replication (so-called 'grey goo'), a review of current thinking regarding nanotechnology-based manufacturing is in order. Nanotechnology-based fabrication can be thoroughly non-biological and inherently safe: such systems need have no ability to move about, use natural resources, or undergo incremental mutation. Moreover, self-replication is unnecessary: the development and use of highly productive systems of nanomachinery (nanofactories) need not involve the construction of autonomous self-replicating nanomachines. Accordingly, the construction of anything resembling a dangerous self-replicating nanomachine can and should be prohibited. Although advanced nanotechnologies could (with great difficulty and little incentive) be used to build such devices, other concerns present greater problems. Since weapon systems will be both easier to build and more likely to draw investment, the potential for dangerous systems is best considered in the context of military competition and arms control.

  17. INTEGRATED AUTOMOTIVE MANUFACTURING SUPPLY

    Directory of Open Access Journals (Sweden)

    P.J.S. Van Dyk

    2012-01-01

    Full Text Available

    ENGLISH ABSTRACT: Supply planning and traffic flow planning are major activities in the automotive manufacturing environment worldwide. Traditionally, the impact of supply planning strategies on plant traffic is rarely considered. This paper describes the development of a Decision Support System (DSS that will assist automotive manufacturers to analyse the effect of supply planning decisions on plant traffic during the supply planning phase of their logistics planning process. In essence, this DSS consists of a Supply Medium Decision Support Tool (SMDST (an interactive MS-Excel model with Visual Basic interfacing and a traffic flow simulation model tool (using eMPlant simulation software.

    AFRIKAANSE OPSOMMING: Verskaffingsbeplanning en verkeersvloeibeplanning is belangrike aktiwiteite in die motorvervaardigingsbedryf wêreldwyd. Tradisioneel word die uitwerking van verskaffings-beplanningsstrategië op aanlegverkeer selde in ag geneem. Hierdie artikel beskryf die ontwikkeling van ’n Besluitnemings Ondersteuningstelsel (DSS wat motorvervaardigers sal ondersteun in die analise van die effek van verskaffingsbeplanningbesluite op aanlegverkeer tydens die verskaffingsbeplanningsfase van hulle logistieke beplanningsproses. Hierdie DSS bestaan hoofsaaklik uit ’n Verskaffings-vervoermiddel Besluitnemingshulpmiddel (SMDST (’n interaktiewe MS-Excel model met “Visual Basic” koppelling asook ’n simulasiemodel van verkeersvloei (met eM-Plant simulasiesagteware.

  18. An Overview of Cloud Implementation in the Manufacturing Process Life Cycle

    Science.gov (United States)

    Kassim, Noordiana; Yusof, Yusri; Hakim Mohamad, Mahmod Abd; Omar, Abdul Halim; Roslan, Rosfuzah; Aryanie Bahrudin, Ida; Ali, Mohd Hatta Mohamed

    2017-08-01

    The advancement of information and communication technology (ICT) has changed the structure and functions of various sectors and it has also started to play a significant role in modern manufacturing in terms of computerized machining and cloud manufacturing. It is important for industries to keep up with the current trend of ICT for them to be able survive and be competitive. Cloud manufacturing is an approach that wanted to realize a real-world manufacturing processes that will apply the basic concept from the field of Cloud computing to the manufacturing domain called Cloud-based manufacturing (CBM) or cloud manufacturing (CM). Cloud manufacturing has been recognized as a new paradigm for manufacturing businesses. In cloud manufacturing, manufacturing companies need to support flexible and scalable business processes in the shop floor as well as the software itself. This paper provides an insight or overview on the implementation of cloud manufacturing in the modern manufacturing processes and at the same times analyses the requirements needed regarding process enactment for Cloud manufacturing and at the same time proposing a STEP-NC concept that can function as a tool to support the cloud manufacturing concept.

  19. New Crustal Thickness for Djibouti, Afar, Using Seismic Techniques

    Science.gov (United States)

    Dugda, Mulugeta; Bililign, Solomon

    2008-10-01

    Crustal thickness and Poisson's ratio for the seismic station ATD in Djibouti, Afar, has been investigated using two seismic techniques (H-κ stacking of receiver functions and a joint inversion of receiver functions and surface wave group velocities). Both techniques give consistent results of crustal thickness 23±1.5 km and Poisson's ratio 0.31±0.02. We also determined a mean P-wave velocity (Vp) of ˜6.2 km/s but ˜6.9-7.0 km/s below a 2 - 5 km thick low velocity layer at the surface. Previous studies of crustal structure for Djibouti reported that the crust is 6 to 11 km thick while our study shows that the crust beneath Djibouti is between 20 and 25 km. This study argues that the crustal thickness values reported for Djibouti for the last 3 decades were not consistent with the reports for the other neighboring region in central and eastern Afar. Our results for ATD in Djibouti, however, are consistent with the reports of crustal thickness in many other parts of central and eastern Afar. We attribute this difference to how the Moho (the crust-mantle discontinuity) is defined (an increase of Vp to 7.4 km/s in this study vs. 6.9 km/s in previous studies).

  20. Hydrophobic thickness of fluid planar monooleylglycerol membran maximally thinned by inversed micellisation

    DEFF Research Database (Denmark)

    Knudsen, P. J.; Mouritsen, Ole G.

    1999-01-01

    be measured by a capacitance technique assuming the relative permittivity of the hydrophobic part of the bilayer. Introduction of an AC microvolt technique allowed manufacture of stable thick membranes by quenching the electroconstriction observed when DC electrical potentials in the millivolt range are used...

  1. On determining dead layer and detector thicknesses for a position-sensitive silicon detector

    Science.gov (United States)

    Manfredi, J.; Lee, Jenny; Lynch, W. G.; Niu, C. Y.; Tsang, M. B.; Anderson, C.; Barney, J.; Brown, K. W.; Chajecki, Z.; Chan, K. P.; Chen, G.; Estee, J.; Li, Z.; Pruitt, C.; Rogers, A. M.; Sanetullaev, A.; Setiawan, H.; Showalter, R.; Tsang, C. Y.; Winkelbauer, J. R.; Xiao, Z.; Xu, Z.

    2018-04-01

    In this work, two particular properties of the position-sensitive, thick silicon detectors (known as the "E" detectors) in the High Resolution Array (HiRA) are investigated: the thickness of the dead layer on the front of the detector, and the overall thickness of the detector itself. The dead layer thickness for each E detector in HiRA is extracted using a measurement of alpha particles emitted from a 212Pb pin source placed close to the detector surface. This procedure also allows for energy calibrations of the E detectors, which are otherwise inaccessible for alpha source calibration as each one is sandwiched between two other detectors. The E detector thickness is obtained from a combination of elastically scattered protons and an energy-loss calculation method. Results from these analyses agree with values provided by the manufacturer.

  2. Full-field optical thickness profilometry of semitransparent thin films with transmission densitometry

    International Nuclear Information System (INIS)

    Johnson, Jay; Harris, Tequila

    2010-01-01

    A novel bidirectional thickness profilometer based on transmission densitometry was designed to measure the localized thickness of semitransparent films on a dynamic manufacturing line. The densitometer model shows that, for materials with extinction coefficients between 0.3 and 2.9 D/mm, 100-500 μm measurements can be recorded with less than ±5% error at more than 10,000 locations in real time. As a demonstration application, the thickness profiles of 75 mmx100 mm regions of polymer electrolyte membrane (PEM) were determined by converting the optical density of the sample to thickness with the Beer-Lambert law. The PEM extinction coefficient was determined to be 1.4 D/mm, with an average thickness error of 4.7%.

  3. Cloud manufacturing distributed computing technologies for global and sustainable manufacturing

    CERN Document Server

    Mehnen, Jörn

    2013-01-01

    Global networks, which are the primary pillars of the modern manufacturing industry and supply chains, can only cope with the new challenges, requirements and demands when supported by new computing and Internet-based technologies. Cloud Manufacturing: Distributed Computing Technologies for Global and Sustainable Manufacturing introduces a new paradigm for scalable service-oriented sustainable and globally distributed manufacturing systems.   The eleven chapters in this book provide an updated overview of the latest technological development and applications in relevant research areas.  Following an introduction to the essential features of Cloud Computing, chapters cover a range of methods and applications such as the factors that actually affect adoption of the Cloud Computing technology in manufacturing companies and new geometrical simplification method to stream 3-Dimensional design and manufacturing data via the Internet. This is further supported case studies and real life data for Waste Electrical ...

  4. Model-based cartilage thickness measurement in the submillimeter range

    International Nuclear Information System (INIS)

    Streekstra, G. J.; Strackee, S. D.; Maas, M.; Wee, R. ter; Venema, H. W.

    2007-01-01

    Current methods of image-based thickness measurement in thin sheet structures utilize second derivative zero crossings to locate the layer boundaries. It is generally acknowledged that the nonzero width of the point spread function (PSF) limits the accuracy of this measurement procedure. We propose a model-based method that strongly reduces PSF-induced bias by incorporating the PSF into the thickness estimation method. We estimated the bias in thickness measurements in simulated thin sheet images as obtained from second derivative zero crossings. To gain insight into the range of sheet thickness where our method is expected to yield improved results, sheet thickness was varied between 0.15 and 1.2 mm with an assumed PSF as present in the high-resolution modes of current computed tomography (CT) scanners [full width at half maximum (FWHM) 0.5-0.8 mm]. Our model-based method was evaluated in practice by measuring layer thickness from CT images of a phantom mimicking two parallel cartilage layers in an arthrography procedure. CT arthrography images of cadaver wrists were also evaluated, and thickness estimates were compared to those obtained from high-resolution anatomical sections that served as a reference. The thickness estimates from the simulated images reveal that the method based on second derivative zero crossings shows considerable bias for layers in the submillimeter range. This bias is negligible for sheet thickness larger than 1 mm, where the size of the sheet is more than twice the FWHM of the PSF but can be as large as 0.2 mm for a 0.5 mm sheet. The results of the phantom experiments show that the bias is effectively reduced by our method. The deviations from the true thickness, due to random fluctuations induced by quantum noise in the CT images, are of the order of 3% for a standard wrist imaging protocol. In the wrist the submillimeter thickness estimates from the CT arthrography images correspond within 10% to those estimated from the anatomical

  5. Thermal behavior variations in coating thickness using pulse phase thermography

    Energy Technology Data Exchange (ETDEWEB)

    Ranjit, Shrestha; Chung, Yoonjae; Kim, Won Tae [Kongju National University, Cheonan (Korea, Republic of)

    2016-08-15

    This paper presents a study on the use of pulsed phase thermography in the measurement of thermal barrier coating thickness with a numerical simulation. A multilayer heat transfer model was used to analyze the surface temperature response acquired from one-sided pulsed thermal imaging. The test sample comprised four layers: the metal substrate, bond coat, thermally grown oxide and the top coat. The finite element software, ANSYS, was used to model and predict the temperature distribution in the test sample under an imposed heat flux on the exterior of the TBC. The phase image was computed with the use of the software MATLAB and Thermofit Pro using a Fourier transform. The relationship between the coating thickness and the corresponding phase angle was then established with the coating thickness being expressed as a function of the phase angle. The method is successfully applied to measure the coating thickness that varied from 0.25 mm to 1.5 mm.

  6. Manufacturing Renaissance : Return of manufacturing to western countries

    OpenAIRE

    Kianian, Babak; Larsson, Tobias; Tavassoli, Mohammad

    2013-01-01

    This chapter argues that the location of manufacturing is gradually shifting to the west again, exemplifying the ‘manufacturing renaissance’. Such a claim is based on the recent observed trend and the discussion is contextualized within the established theory that has been able to explain the location of manufacturing, that is, the product life cycle (PLC) model. Then the chapter identifies and discusses the four main drivers of this new phenomenon: (i) rising wage levels in emerging economie...

  7. Competitive manufacturing strategies for the manufacturing industries in Turkey

    OpenAIRE

    Ulusoy, Gündüz; Ulusoy, Gunduz

    2003-01-01

    In this study, results of the research into competitive manufacturing strategies of companies in four different sector studies covering 82 companies from the electronics, cement, automotive manufacturers, and appliances part and component suppliers in Turkey are presented. The data used in the study are gathered by conducting four sector surveys in 1997 and 1998 using a questionnaire supported by some follow-up interviews and site visits. A competitive manufacturing strategy is represented he...

  8. Design and Manufacture of Conical Shell Structures Using Prepreg Laminates

    Science.gov (United States)

    Khakimova, Regina; Burau, Florian; Degenhardt, Richard; Siebert, Mark; Castro, Saullo G. P.

    2016-06-01

    The design and manufacture of unstiffened composite conical structures is very challenging, as the variation of the fiber orientations, lay-up and the geometry of the ply pieces have a significant influence on the thickness imperfections and ply angle deviations imprinted to the final part. This paper deals with the manufacture of laminated composite cones through the prepeg/autoclave process. The cones are designed to undergo repetitive buckling tests without accumulating permanent damage. The aim is to define a process that allows the control of fiber angle deviations and the removal of thickness imperfections generated from gaps and overlaps between ply pieces. Ultrasonic scan measurements are used to proof the effectiveness of the proposed method.

  9. Photovoltaic manufacturing technology (PVMaT). Annual subcontract report, March 31, 1994--June 30, 1995

    Energy Technology Data Exchange (ETDEWEB)

    Holley, W A [Springborn Labs., Inc., Enfield, CT (United States)

    1996-01-01

    This report describes work performed under a subcontract to the National Renewable Energy Laboratory under the Photovoltaic Manufacturing Technology Project. The objectives of this subcontract are to (1) define the problem of yellowing/browning of EVA-based encapsulants; (2) determine probable mechanisms and the role of various parameters such as heat, UV exposure, module construction, EVA interfaces, and EVA thickness, in the browning of EVA-based encapsulants; (3) develop stabilization strategies for various module constructions to protect the encapsulant from degradative failure; (4) conduct laboratory, accelerated outdoor, and field testing of encapsulant, laminated test coupons, and full modules to demonstrate the functional adequacy of the stabilization strategies; and (5) implement these strategies. This report summarizes the accomplishments related to the above goals for the reporting period.

  10. Calculation of thermal effects occuring during the manufacture of CR-39 sheets

    Energy Technology Data Exchange (ETDEWEB)

    Szilagyi, S.; Somogyi, G.

    1984-01-01

    To manufacture a good-quality, uniform CR-39 track detector, the polymerization rate should be below a critical value to avoid the development of undesirable thermal gradients and internal temperature fluctuations in the sheet being cast. To improve curing cycles a computer program was developed to study the trends of thermal effects under different casting conditions. These calculations are based on the solution of the one-dimensional heat transport equation and take into account the relations proposed by Dial et. al. for describing the chemical kinetics of CR-39 polymerization. The authors have revised the empirical parameters available to such calculations. With new ''Dial constants'' they have calculated the critical initial bath temperature (which results in thermal runaway at the central plane of the sheet being cast) as a function of the CR-39 thickness and IPP initiator concentration. Results are also presented for the temperature profile in the depth of cast CR-39 sheets.

  11. Manufacturing halal in Malaysia

    DEFF Research Database (Denmark)

    Fischer, Johan

    2016-01-01

    In Arabic, halal literally means ‘permissible’ or ‘lawful’. Halal is no longer an expression of an esoteric form of production, trade and consumption, but part of a huge and expanding globalized market in which certification, standards and technoscience play important roles. Over the past three...... production, trade and consumption. Based on fieldwork in Malaysia, this article explores how manufacturing companies understand and practise halal certification, standards and technoscience. I argue that while existing studies of halal overwhelmingly explore micro-social aspects such as the everyday...... consumption among Muslim groups, ‘the bigger institutional picture’ that frames such consumption production and regulation are not well understood. By studying halal production, I provide an ethnography of the overlapping technologies and techniques of production and regulation that together warrant a product...

  12. Developments in fuel manufacturing

    International Nuclear Information System (INIS)

    Ion, S.E.; Harrop, G.; Maricalva Gonzalez, J.

    1995-01-01

    The status of the investment and R and D programmes in the UK and Spanish fuel fabrication facilities is outlined. Due to a number of circumstances, BNFL and ENUSA have been in the forefront of capital investment, with associated commitment to engineering and scientific research and development. Carrying through this investment has allowed the embodiment of proven state of the art technologies in the design of fuel fabrication plants, with particular emphasis on meeting the future challenge of health and safety, and product quality, at an acceptable cost. ENUSA and BNFL currently supply fuel, not only to their respective 'home' markets but also to France, Belgium, Sweden, and Germany. Both organisations employ an International Business outlook and partake in focused and speculative R and D projects for the design and manufacture of nuclear fuel. (orig./HP)

  13. Maintenance in sustainable manufacturing

    Directory of Open Access Journals (Sweden)

    Vladimir Stuchly

    2014-09-01

    Full Text Available Background: Sustainable development is about reaching a balance between economic, social, and environmental goals, as well as people's participation in the planning process in order to gain their input and support. For a company, sustainable development means adoption of such business strategy and actions that contribute to satisfying present needs of company and stakeholders, as well as simultaneous protection, maintenance and strengthening of human and environmental potential which will be needed in the future. This new approach forces manufacturing companies to change their previous management paradigms. New management paradigm should include new issues and develop innovative methods, practices and technologies striving for solving problem of shortages of resources, softening environment overload and enabling development of environment-friendly lifecycle of products. Hence, its realization requires updating existing production models as they are based on previously accepted paradigm of unlimited resources and unlimited regeneration capabilities. Maintenance plays a crucial role because of its impact on availability, reliability, quality and life cycle cost, thus it should be one of the main pillars of new business running model.  Material and methods: The following paper is a result of research on the literature and observation of practices undertaken by a company within maintenance area. Results and conclusions: The main message is that considering sustainable manufacturing requires considerable expanding range of analysis and focusing on supporting processes. Maintenance offers numerous opportunities of decreasing influence of business processes on natural environment and more efficient resources utilization. The goal of maintenance processes realizing sustainable development strategy is increased profitability of exploitation and optimization of total lifecycle cost without disturbing safety and environmental issues. 

  14. Integration of Manufacturing and Development in Emerging Markets

    DEFF Research Database (Denmark)

    Søberg, Peder Veng; Wæhrens, Brian Vejrum

    2011-01-01

    The paper investigates the problems related to functional integration between manufacturing activities and R&D activities in emerging markets within multinational companies. A framework to this end is developed and illustrated in relation to four cases from multinational companies, which have...... established R&D and manufacturing in China or India. The findings point to the importance of contingencies such as industrial clock speed, technological complexity, as well as the extent to which local adaptation is needed. Keywords: Co-location, Emerging markets, Functional integration, Manufacturing, R&D....

  15. Multimedia Image Technology and Computer Aided Manufacturing Engineering Analysis

    Science.gov (United States)

    Nan, Song

    2018-03-01

    Since the reform and opening up, with the continuous development of science and technology in China, more and more advanced science and technology have emerged under the trend of diversification. Multimedia imaging technology, for example, has a significant and positive impact on computer aided manufacturing engineering in China. From the perspective of scientific and technological advancement and development, the multimedia image technology has a very positive influence on the application and development of computer-aided manufacturing engineering, whether in function or function play. Therefore, this paper mainly starts from the concept of multimedia image technology to analyze the application of multimedia image technology in computer aided manufacturing engineering.

  16. Manufacturing consumption of energy 1994

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-01

    This report provides estimates on energy consumption in the manufacturing sector of the U.S. economy based on data from the Manufacturing Energy Consumption Survey. The sample used in this report represented about 250,000 of the largest manufacturing establishments which account for approximately 98 percent of U.S. economic output from manufacturing, and an expected similar proportion of manufacturing energy use. The amount of energy use was collected for all operations of each establishment surveyed. Highlights of the report include profiles for the four major energy-consuming industries (petroleum refining, chemical, paper, and primary metal industries), and an analysis of the effects of changes in the natural gas and electricity markets on the manufacturing sector. Seven appendices are included to provide detailed background information. 10 figs., 51 tabs.

  17. Additive Manufacturing: Unlocking the Evolution of Energy Materials.

    Science.gov (United States)

    Zhakeyev, Adilet; Wang, Panfeng; Zhang, Li; Shu, Wenmiao; Wang, Huizhi; Xuan, Jin

    2017-10-01

    The global energy infrastructure is undergoing a drastic transformation towards renewable energy, posing huge challenges on the energy materials research, development and manufacturing. Additive manufacturing has shown its promise to change the way how future energy system can be designed and delivered. It offers capability in manufacturing complex 3D structures, with near-complete design freedom and high sustainability due to minimal use of materials and toxic chemicals. Recent literatures have reported that additive manufacturing could unlock the evolution of energy materials and chemistries with unprecedented performance in the way that could never be achieved by conventional manufacturing techniques. This comprehensive review will fill the gap in communicating on recent breakthroughs in additive manufacturing for energy material and device applications. It will underpin the discoveries on what 3D functional energy structures can be created without design constraints, which bespoke energy materials could be additively manufactured with customised solutions, and how the additively manufactured devices could be integrated into energy systems. This review will also highlight emerging and important applications in energy additive manufacturing, including fuel cells, batteries, hydrogen, solar cell as well as carbon capture and storage.

  18. Effect of Sb thickness on the performance of bialkali-antimonide photocathodes

    Energy Technology Data Exchange (ETDEWEB)

    Mamun, Md Abdullah A., E-mail: mmamu001@odu.edu; Elmustafa, Abdelmageed A. [Department of Mechanical and Aerospace Engineering, Old Dominion University, Norfolk, Virginia 23529 and The Applied Research Center, Thomas Jefferson National Accelerator Facility, Newport News, Virginia 23606 (United States); Hernandez-Garcia, Carlos; Mammei, Russell; Poelker, Matthew [Thomas Jefferson National Accelerator Facility, Newport News, Virginia 23606 (United States)

    2016-03-15

    The alkali species Cs and K were codeposited using an effusion source, onto relatively thick layers of Sb (50 nm to ∼7 μm) grown on GaAs and Ta substrates inside a vacuum chamber that was baked and not-vented, and also baked and vented with clean dry nitrogen but not rebaked. The characteristics of the Sb films, including sticking probability, surface roughness, grain size, and crystal properties were very different for these conditions, yet comparable values of photocathode yield [or quantum efficiency (QE)] at 284 V were obtained following codeposition of the alkali materials. Photocathodes manufactured with comparatively thick Sb layers exhibited the highest QE and the best 1/e lifetime. The authors speculate that the alkali codeposition enabled optimized stoichiometry for photocathodes manufactured using thick Sb layers, which could serve as a reservoir for the alkali materials.

  19. Manufacturing consumption of energy 1991

    Energy Technology Data Exchange (ETDEWEB)

    1994-12-01

    This report provides estimates on energy consumption in the manufacturing sector of the US economy. These estimates are based on data from the 1991 Manufacturing Energy Consumption Survey (MECS). This survey--administered by the Energy End Use and Integrated Statistics Division, Office of Energy Markets and End Use, Energy Information Administration (EIA)--is the most comprehensive source of national-level data on energy-related information for the manufacturing industries.

  20. Green manufacturing processes and systems

    Energy Technology Data Exchange (ETDEWEB)

    Davim, J. Paulo (ed.) [Aveiro Univ. (Portugal). Dept. of Mechanical Engineering, Campus Universitario de Santiago

    2013-02-01

    This book provides the recent advances on green manufacturing processes and systems for modern industry. Chapter 1 provides information on sustainable manufacturing through environmentally-friendly machining. Chapter 2 is dedicated to environmentally-friendly machining: vegetable based cutting fluids. Chapter 3 describes environmental-friendly joining of tubes. Chapter 4 contains information on concepts, methods and strategies for zero-waste in manufacturing. Finally, chapter 5 is dedicated to the application of hybrid MCDM approach for selecting the best tyre recycling process.

  1. The state of biopharmaceutical manufacturing.

    Science.gov (United States)

    Molowa, David T; Mazanet, Rosemary

    2003-01-01

    The manufacturing of protein-based biopharmaceuticals is done in bacterial or mammalian cell cultures. While bacterial cultures are inexpensive, dependable, and approved by regulatory authorities, many complex proteins cannot be manufactured this way. Complex proteins must be manufactured in mammalian cell cultures to produce active products. Mammalian cell culture capacity is limited and has slowed the delivery of necessary biopharmaceutical products to patients. The nature of the production capacity problem and future outlook are critically examined.

  2. Wide and High Additive Manufacturing

    Energy Technology Data Exchange (ETDEWEB)

    Post, Brian K. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Roschli, Alex C. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-03-01

    The goal of this project is to develop and demonstrate the enabling technologies for Wide and High Additive Manufacturing (WHAM). WHAM will open up new areas of U.S. manufacturing for very large tooling in support of the transportation and energy industries, significantly reducing cost and lead time. As with Big Area Additive Manufacturing (BAAM), the initial focus is on the deposition of composite materials.

  3. APPLICATION OF ADDITIVELY MANUFACTURED POLYMER COMPOSITE PROTOTYPES IN FOUNDRY

    Directory of Open Access Journals (Sweden)

    Wiesław Kuczko

    2015-05-01

    Full Text Available The paper presents a method, developed by the authors, for manufacturing polymer composites with the matrix manufactured in a layered manner (via 3D printing – Fused Deposition Modeling out of a thermoplastic material. As an example of practical application of this method, functional prototypes are presented, which were used as elements of foundry tooling – patterns for sand molding. In case of manufacturing prototype castings or short series of products, foundries usually cooperate with modeling studios, which produce patterns by conventional, subtractive manufacturing technologies. If patterns have complex shapes, this results in high manufacturing costs and significantly longer time of tooling preparation. The method proposed by the authors allows manufacturing functional prototypes in a short time thanks to utilizing capabilities of additive manufacturing (3D printing technology. Thanks to using two types of materials simultaneously (ABS combined with chemically hardened resins, the produced prototypes are capable of carrying increased loads. Moreover, the method developed by the authors is characterized by manufacturing costs lower than in the basic technology of Fused Deposition Modeling. During the presented studies, the pattern was produced as a polymer composite and it was used to prepare a mold and a set of metal castings.

  4. Virtual CIM and Digital Manufacturing

    Institute of Scientific and Technical Information of China (English)

    Sev V.Nagalingam; Grier C.I.Lin

    2006-01-01

    Manufacturing enterprises play an important role in improving the economic environment of a country.Today, the capability to produce high quality products with shorter delivery time and the ability to produce according to the diverse customer requirements has become the characteristics of successful manufacturing industries. Application of intelligent manufacturing systems and Computer integrated manufacturing (CIM) are the most effective methods for overcoming the issues faced by present day manufactures while retaining the employment level and revenue of a country in today's highly competitive global market. With the developments taking place in CIM and its related technologies, the application of CIM in manufacturing enterprises has become a reality from the dream. This paper highlights the historical developments towards automation and the need for CIM systems. Furthermore, it analyses some new terms such as agile manufacturing, digital manufacturing, agent-based manufacturing and others, which have been emerging recently, and argues all these new technologies are the subsystems of CIM. In addition, this paper provides a new direction in CIM to fulfil the emerging challenges in today's global market and to satisfy the emerging need of virtual enterprises in the form of Virtual CIM.

  5. Methods of manufacturing a detector device

    International Nuclear Information System (INIS)

    Wotherspoon, J.T.M.

    1982-01-01

    In the manufacture of an infra-red radiation detector device, a body of rho-type cadmium mercury telluride is bombarded with ions to etch away a part of the body and to produce from the etched-away part of the body an excess concentration of mercury which acts as a dopant source converting an adjacent part of the body into n-type material. The energy of the bombarding ions is less than 30 keV, and by appropriately choosing the ion dose this conversion can be effected over a depth considerably greater than the penetration depth of the ions. A p-n junction can be fabricated in this way for a photovoltaic detector. The conductivity type conversion may even be effected through the body thickness. The etching and conversion can be localised by masking part of the body surface against the ion bombardment. (author)

  6. A Comparison of Simple Methods to Incorporate Material Temperature Dependency in the Green’s Function Method for Estimating Transient Thermal Stresses in Thick-Walled Power Plant Components

    Directory of Open Access Journals (Sweden)

    James Rouse

    2016-01-01

    Full Text Available The threat of thermal fatigue is an increasing concern for thermal power plant operators due to the increasing tendency to adopt “two-shifting” operating procedures. Thermal plants are likely to remain part of the energy portfolio for the foreseeable future and are under societal pressures to generate in a highly flexible and efficient manner. The Green’s function method offers a flexible approach to determine reference elastic solutions for transient thermal stress problems. In order to simplify integration, it is often assumed that Green’s functions (derived from finite element unit temperature step solutions are temperature independent (this is not the case due to the temperature dependency of material parameters. The present work offers a simple method to approximate a material’s temperature dependency using multiple reference unit solutions and an interpolation procedure. Thermal stress histories are predicted and compared for realistic temperature cycles using distinct techniques. The proposed interpolation method generally performs as well as (if not better than the optimum single Green’s function or the previously-suggested weighting function technique (particularly for large temperature increments. Coefficients of determination are typically above 0 . 96 , and peak stress differences between true and predicted datasets are always less than 10 MPa.

  7. Manufacturing Data Uncertainties Propagation Method in Burn-Up Problems

    Directory of Open Access Journals (Sweden)

    Thomas Frosio

    2017-01-01

    Full Text Available A nuclear data-based uncertainty propagation methodology is extended to enable propagation of manufacturing/technological data (TD uncertainties in a burn-up calculation problem, taking into account correlation terms between Boltzmann and Bateman terms. The methodology is applied to reactivity and power distributions in a Material Testing Reactor benchmark. Due to the inherent statistical behavior of manufacturing tolerances, Monte Carlo sampling method is used for determining output perturbations on integral quantities. A global sensitivity analysis (GSA is performed for each manufacturing parameter and allows identifying and ranking the influential parameters whose tolerances need to be better controlled. We show that the overall impact of some TD uncertainties, such as uranium enrichment, or fuel plate thickness, on the reactivity is negligible because the different core areas induce compensating effects on the global quantity. However, local quantities, such as power distributions, are strongly impacted by TD uncertainty propagations. For isotopic concentrations, no clear trends appear on the results.

  8. Design and manufacturing of the CFRP lightweight telescope structure

    Science.gov (United States)

    Stoeffler, Guenter; Kaindl, Rainer

    2000-06-01

    Design of earthbound telescopes is normally based on conventional steel constructions. Several years ago thermostable CFRP Telescope and reflector structures were developed and manufacturing for harsh terrestrial environments. The airborne SOFIA TA requires beyond thermostability an excessive stiffness to mass ratio for the structure fulfilling performance and not to exceed mass limitations by the aircraft Boeing 747 SP. Additional integration into A/C drives design of structure subassemblies. Thickness of CFRP Laminates, either filament wound or prepreg manufactured need special attention and techniques to gain high material quality according to aerospace requirements. Sequential shop assembly of the structure subassemblies minimizes risk for assembling TA. Design goals, optimization of layout and manufacturing techniques and results are presented.

  9. Thickly Syndetical Sensitivity of Topological Dynamical System

    Directory of Open Access Journals (Sweden)

    Heng Liu

    2014-01-01

    Full Text Available Consider the surjective continuous map f:X→X, where X is a compact metric space. In this paper we give several stronger versions of sensitivity, such as thick sensitivity, syndetic sensitivity, thickly syndetic sensitivity, and strong sensitivity. We establish the following. (1 If (X,f is minimal and sensitive, then (X,f is syndetically sensitive. (2 Weak mixing implies thick sensitivity. (3 If (X,f is minimal and weakly mixing, then it is thickly syndetically sensitive. (4 If (X,f is a nonminimal M-system, then it is thickly syndetically sensitive. Devaney chaos implies thickly periodic sensitivity. (5 We give a syndetically sensitive system which is not thickly sensitive. (6 We give thickly syndetically sensitive examples but not cofinitely sensitive ones.

  10. three dimensional photoelastic investigations on thick rectangular

    African Journals Online (AJOL)

    user

    1983-09-01

    Sep 1, 1983 ... Thick rectangular plates are investigated by means of three-dimensional photoelasticity ... a thin plate theory and a higher order thick plate theory. 1. ..... number of fringes lest the accuracy of the results will be considerably.

  11. Advanced manufacturing technologies modern machining, advanced joining, sustainable manufacturing

    CERN Document Server

    2017-01-01

    This book provides details and collective information on working principle, process mechanism, salient features, and unique applications of various advanced manufacturing techniques and processes belong. The book is divided in three sessions covering modern machining methods, advanced repair and joining techniques and, finally, sustainable manufacturing. The latest trends and research aspects of those fields are highlighted.

  12. Manufacturing Math Classes: An Instructional Program Guide for Manufacturing Workers.

    Science.gov (United States)

    McBride, Pamela G.; And Others

    This program guide documents a manufacturing job family curriculum that develops competence in generic work force education skills through three courses: Reading Rulers, Charts, and Gauges and Math for Manufacturing Workers I and II. An annotated table of contents lists a brief description of the questions answered in each section. An introduction…

  13. Manufacturing and testing of ITER divertor gas box liners

    International Nuclear Information System (INIS)

    Mazul, I.; Giniatulin, R.; Komarov, V.L.; Krylov, V.; Kuzmin, Ye.; Makhankov, A.; Odintsov, V.; Zhuk, A.

    1998-01-01

    Among a variety of R and D works performed by different ITER parties there are seven large projects which deal with the development, manufacturing and testing of most important complex reactor components. One of the projects is directed to produce a prototype of divertor cassette. In according with integration plan two full size liners with dummy armour are manufactured by RF Home Team. Except for liners with dummy armors the large - scale mock-up with real armour have to be manufactured in order to demonstrate the semi-industrial possibilities for joining of Be and W to CuCrZr heat - sink structure. The design of this liners, technological approaches to their manufacturing are presented. The description of brazing facility and joining technology which use a fast ohmic heating by 15 kA current is made. A mock-up of 800 mm in length and 90 mm in width was armored by 18 Be tiles (44 x 44 mm 2 in plane, 10 mm - thick) and 16 W-Cu tiles (44 x 44 mm 2 in plane, 3 mm - thick W). The preliminary results of high heat flux testing of the armored mock-ups are also presented. (author)

  14. Autonomous Sea-Ice Thickness Survey

    Science.gov (United States)

    2016-06-01

    the conductivity of an infinitely thick slab of sea ice. Ice thickness, Hice, is then obtained by subtracting the height of the ...Thickness Survey of Sea Ice Runway” ERDC/CRREL SR-16-4 ii Abstract We conducted an autonomous survey of sea -ice thickness using the Polar rover Yeti...efficiency relative to manual surveys routinely con- ducted to assess the safety of roads and runways constructed on the sea ice. Yeti executed the

  15. Manufacturing strategy issues in selected Indian manufacturing industry

    Directory of Open Access Journals (Sweden)

    Mahender Singh

    2013-03-01

    Full Text Available This paper presents some findings of Indian manufacturing sectors viz. automobile (especially two-wheeler, tractor and general manufacturing industry. Various manufacturing strategy issues such as competitive priorities, improvement activities, and performance measures, have been identified and assessed in Indian context. Sector wise comparison of competitive priorities, improvement activities i.e. advanced manufacturing technology (AMT, integrated information systems (IIS, and advanced management systems (AMS, and performance measure, is provided. Our results showed that most of the Indian companies are still emphasizing on quality. However, automobile sector has set to compete globally with high innovation rate, faster new product development, and continuous improvement. It is also observed that Indian companies are investing more in AMS as compared to IIS and AMT. Manufacturing competence index is also computed for each sector.

  16. Modeling of Powder Bed Manufacturing Defects

    Science.gov (United States)

    Mindt, H.-W.; Desmaison, O.; Megahed, M.; Peralta, A.; Neumann, J.

    2018-01-01

    Powder bed additive manufacturing offers unmatched capabilities. The deposition resolution achieved is extremely high enabling the production of innovative functional products and materials. Achieving the desired final quality is, however, hampered by many potential defects that have to be managed in due course of the manufacturing process. Defects observed in products manufactured via powder bed fusion have been studied experimentally. In this effort we have relied on experiments reported in the literature and—when experimental data were not sufficient—we have performed additional experiments providing an extended foundation for defect analysis. There is large interest in reducing the effort and cost of additive manufacturing process qualification and certification using integrated computational material engineering. A prerequisite is, however, that numerical methods can indeed capture defects. A multiscale multiphysics platform is developed and applied to predict and explain the origin of several defects that have been observed experimentally during laser-based powder bed fusion processes. The models utilized are briefly introduced. The ability of the models to capture the observed defects is verified. The root cause of the defects is explained by analyzing the numerical results thus confirming the ability of numerical methods to provide a foundation for rapid process qualification.

  17. Laser Additive Manufacturing of Magnetic Materials

    Science.gov (United States)

    Mikler, C. V.; Chaudhary, V.; Borkar, T.; Soni, V.; Jaeger, D.; Chen, X.; Contieri, R.; Ramanujan, R. V.; Banerjee, R.

    2017-03-01

    While laser additive manufacturing is becoming increasingly important in the context of next-generation manufacturing technologies, most current research efforts focus on optimizing process parameters for the processing of mature alloys for structural applications (primarily stainless steels, titanium base, and nickel base alloys) from pre-alloyed powder feedstocks to achieve properties superior to conventionally processed counterparts. However, laser additive manufacturing or processing can also be applied to functional materials. This article focuses on the use of directed energy deposition-based additive manufacturing technologies, such as the laser engineered net shaping (LENS™) process, to deposit magnetic alloys. Three case studies are presented: Fe-30 at.%Ni, permalloys of the type Ni-Fe-V and Ni-Fe-Mo, and Fe-Si-B-Cu-Nb (derived from Finemet) alloys. All these alloys have been processed from a blend of elemental powders used as the feedstock, and their resultant microstructures, phase formation, and magnetic properties are discussed in this paper. Although these alloys were produced from a blend of elemental powders, they exhibited relatively uniform microstructures and comparable magnetic properties to those of their conventionally processed counterparts.

  18. Lithographic manufacturing of adaptive optics components

    Science.gov (United States)

    Scott, R. Phillip; Jean, Madison; Johnson, Lee; Gatlin, Ridley; Bronson, Ryan; Milster, Tom; Hart, Michael

    2017-09-01

    Adaptive optics systems and their laboratory test environments call for a number of unusual optical components. Examples include lenslet arrays, pyramids, and Kolmogorov phase screens. Because of their specialized application, the availability of these parts is generally limited, with high cost and long lead time, which can also significantly drive optical system design. These concerns can be alleviated by a fast and inexpensive method of optical fabrication. To that end, we are exploring direct-write lithographic techniques to manufacture three different custom elements. We report results from a number of prototype devices including 1, 2, and 3 wave Multiple Order Diffractive (MOD) lenslet arrays with 0.75 mm pitch and phase screens with near Kolmogorov structure functions with a Fried length r0 around 1 mm. We also discuss plans to expand our research to include a diffractive pyramid that is smaller, lighter, and more easily manufactured than glass versions presently used in pyramid wavefront sensors. We describe how these components can be produced within the limited dynamic range of the lithographic process, and with a rapid prototyping and manufacturing cycle. We discuss exploratory manufacturing methods, including replication, and potential observing techniques enabled by the ready availability of custom components.

  19. Thickness-dependent spontaneous dewetting morphology of ultrathin Ag films.

    Science.gov (United States)

    Krishna, H; Sachan, R; Strader, J; Favazza, C; Khenner, M; Kalyanaraman, R

    2010-04-16

    We show here that the morphological pathway of spontaneous dewetting of ultrathin Ag films on SiO2 under nanosecond laser melting is dependent on film thickness. For films with thickness h of 2 nm < or = h < or = 9.5 nm, the morphology during the intermediate stages of dewetting consisted of bicontinuous structures. For films with 11.5 nm < or = h < or = 20 nm, the intermediate stages consisted of regularly sized holes. Measurement of the characteristic length scales for different stages of dewetting as a function of film thickness showed a systematic increase, which is consistent with the spinodal dewetting instability over the entire thickness range investigated. This change in morphology with thickness is consistent with observations made previously for polymer films (Sharma and Khanna 1998 Phys. Rev. Lett. 81 3463-6; Seemann et al 2001 J. Phys.: Condens. Matter 13 4925-38). Based on the behavior of free energy curvature that incorporates intermolecular forces, we have estimated the morphological transition thickness for the intermolecular forces for Ag on SiO2. The theory predictions agree well with observations for Ag. These results show that it is possible to form a variety of complex Ag nanomorphologies in a consistent manner, which could be useful in optical applications of Ag surfaces, such as in surface enhanced Raman sensing.

  20. Thickness-dependent spontaneous dewetting morphology of ultrathin Ag films

    Energy Technology Data Exchange (ETDEWEB)

    Krishna, H; Favazza, C [Department of Physics, Washington University in St Louis, MO 63130 (United States); Sachan, R; Strader, J; Kalyanaraman, R [Department of Material Science and Engineering, University of Tennessee, Knoxville, TN 37996 (United States); Khenner, M, E-mail: ramki@utk.edu [Department of Mathematics, Western Kentucky University, Bowling Green, KY 42101 (United States)

    2010-04-16

    We show here that the morphological pathway of spontaneous dewetting of ultrathin Ag films on SiO{sub 2} under nanosecond laser melting is dependent on film thickness. For films with thickness h of 2 nm {<=} h {<=} 9.5 nm, the morphology during the intermediate stages of dewetting consisted of bicontinuous structures. For films with 11.5 nm {<=} h {<=} 20 nm, the intermediate stages consisted of regularly sized holes. Measurement of the characteristic length scales for different stages of dewetting as a function of film thickness showed a systematic increase, which is consistent with the spinodal dewetting instability over the entire thickness range investigated. This change in morphology with thickness is consistent with observations made previously for polymer films (Sharma and Khanna 1998 Phys. Rev. Lett. 81 3463-6; Seemann et al 2001 J. Phys.: Condens. Matter 13 4925-38). Based on the behavior of free energy curvature that incorporates intermolecular forces, we have estimated the morphological transition thickness for the intermolecular forces for Ag on SiO{sub 2}. The theory predictions agree well with observations for Ag. These results show that it is possible to form a variety of complex Ag nanomorphologies in a consistent manner, which could be useful in optical applications of Ag surfaces, such as in surface enhanced Raman sensing.

  1. doped ZnO thick film resistors

    Indian Academy of Sciences (India)

    The characterization and ethanol gas sensing properties of pure and doped ZnO thick films were investigated. Thick films of pure zinc oxide were prepared by the screen printing technique. Pure zinc oxide was almost insensitive to ethanol. Thick films of Al2O3 (1 wt%) doped ZnO were observed to be highly sensitive to ...

  2. Macular thickness and volume in the elderly

    DEFF Research Database (Denmark)

    Subhi, Yousif; Forshaw, Thomas; Sørensen, Torben Lykke

    2016-01-01

    manifests in the macula of the elderly focusing on clinical relevant measures that are thicknesses and volumes of different macular areas. Ageing seems to increase center point foveal thickness. Ageing does not seem to change the center subfield thickness significantly. Ageing decreases the inner and outer...

  3. Manufacture and characterization of mucoadhesive buccal films.

    Science.gov (United States)

    Morales, Javier O; McConville, Jason T

    2011-02-01

    The buccal route of administration has a number of advantages including bypassing the gastrointestinal tract and the hepatic first pass effect. Mucoadhesive films are retentive dosage forms and release drug directly into a biological substrate. Furthermore, films have improved patient compliance due to their small size and reduced thickness, compared for example to lozenges and tablets. The development of mucoadhesive buccal films has increased dramatically over the past decade because it is a promising delivery alternative to various therapeutic classes including peptides, vaccines, and nanoparticles. The "film casting process" involves casting of aqueous solutions and/or organic solvents to yield films suitable for this administration route. Over the last decade, hot-melt extrusion has been explored as an alternative manufacturing process and has yielded promising results. Characterization of critical properties such as the mucoadhesive strength, drug content uniformity, and permeation rate represent the major research areas in the design of buccal films. This review will consider the literature that describes the manufacture and characterization of mucoadhesive buccal films. Copyright © 2010 Elsevier B.V. All rights reserved.

  4. Advanced Manufacture of Reflectors

    Energy Technology Data Exchange (ETDEWEB)

    Angel, Roger [Univ. of Arizona, Tucson, AZ (United States)

    2014-12-17

    The main project objective has been to develop an advanced gravity sag method for molding large glass solar reflectors with either line or point focus, and with long or short focal length. The method involves taking standard sized squares of glass, 1.65 m x 1.65 m, and shaping them by gravity sag into precision steel molds. The method is designed for high volume manufacture when incorporated into a production line with separate pre-heating and cooling. The performance objectives for the self-supporting glass mirrors made by this project include mirror optical accuracy of 2 mrad root mean square (RMS), requiring surface slope errors less than 1 mrad rms, a target not met by current production of solar reflectors. Our objective also included development of new methods for rapidly shaping glass mirrors and coating them for higher reflectivity and soil resistance. Reflectivity of 95% for a glass mirror with anti-soil coating was targeted, compared to the present ~94% with no anti-soil coating. Our mirror cost objective is ~$20/m2 in 2020, a significant reduction compared to the present ~$35/m2 for solar trough mirrors produced for trough solar plants.

  5. Additive Manufactured Superconducting Cavities

    Science.gov (United States)

    Holland, Eric; Rosen, Yaniv; Woolleet, Nathan; Materise, Nicholas; Voisin, Thomas; Wang, Morris; Mireles, Jorge; Carosi, Gianpaolo; Dubois, Jonathan

    Superconducting radio frequency cavities provide an ultra-low dissipative environment, which has enabled fundamental investigations in quantum mechanics, materials properties, and the search for new particles in and beyond the standard model. However, resonator designs are constrained by limitations in conventional machining techniques. For example, current through a seam is a limiting factor in performance for many waveguide cavities. Development of highly reproducible methods for metallic parts through additive manufacturing, referred to colloquially as 3D printing\\x9D, opens the possibility for novel cavity designs which cannot be implemented through conventional methods. We present preliminary investigations of superconducting cavities made through a selective laser melting process, which compacts a granular powder via a high-power laser according to a digitally defined geometry. Initial work suggests that assuming a loss model and numerically optimizing a geometry to minimize dissipation results in modest improvements in device performance. Furthermore, a subset of titanium alloys, particularly, a titanium, aluminum, vanadium alloy (Ti - 6Al - 4V) exhibits properties indicative of a high kinetic inductance material. This work is supported by LDRD 16-SI-004.

  6. APPROACHES FOR SUSTAINABLE MANUFACTURING

    Institute of Scientific and Technical Information of China (English)

    G(U)NTHER Seliger; SEBASTIAN Kernbaum; MARCO Zettl

    2007-01-01

    Sustainable development is a holistic approach harmonizing ecological, economical and socio-political needs with respect to the superior objective of enhancing human living standards. Thereby the availability of natural resources and the conservation of the ecosystems have to be considered that future generations have the possibility to meet their own needs. A long-term economical development demands the transition from a source-sink economy to a cycle economy as a result of limited resources, limited environmental capacities to absorb waste and emissions as well as increasing needs of a growing population. A reference model for sustainability in manufacturing is presented and used to illustrate sustainable approaches with respect to management, technology, process and product. Adaptation of products and components is a vital element for supporting efficient reuse of products and components. Consequently adaptation contributes to the ambitious goals of sustainability. Technological enablers for adaptation as modularity, information and communication technology are exemplarily introduced. Moreover, approaches for disseminating knowledge in sustainability are given.

  7. Balances instruments, manufacturers, history

    CERN Document Server

    Robens, Erich; Kiefer, Susanne

    2014-01-01

    The book deals mainly with direct mass determination by means of a conventional balances. It covers the history of the balance from the beginnings in Egypt earlier than 3000 BC to recent developments. All balance types are described with emphasis on scientific balances. Methods of indirect mass determination, which are applied to very light objects like molecules and the basic particles of matter and celestial bodies, are included.  As additional guidance, today’s manufacturers are listed and the profile of important companies is reviewed. Several hundred photographs, reproductions and drawings show instruments and their uses. This book includes commercial weighing instruments for merchandise and raw materials in workshops as well as symbolic weighing in the ancient Egyptian’s ceremony of ‘Weighing of the Heart’, the Greek fate balance, the Roman  Justitia, Juno Moneta and Middle Ages scenes of the Last Judgement with Jesus or St. Michael and of modern balances. The photographs are selected from the...

  8. Application of manufactured products

    Science.gov (United States)

    Sastri, Sankar; Duke, Michael B.

    1992-01-01

    A wide range of products can be manufactured from the following materials: (1) lunar regolith or basalt; (2) regolith or rock beneficiated to concentrate plagioclase or other minerals; (3) iron, extracted from lunar soil or rocks by various means; (4) naturally occurring or easily obtained materials that have cementitious properties; and (5) byproducts of the above materials. Among the products that can be produced from these materials are the following: beams; plates and sheets; transparent plates (windows); bricks and blocks; pipes and tubes; low-density materials (foams); fiber, wire, and cables; foils and reflective coatings; hermetic seals (coatings); and formed objects. In addition to oxygen, which can be obtained by several processes, either from unbeneficiated regolith or by reduction of concentrated ilmenite, these materials make the simplest requirements of the lunar resource extraction system. A thorough analysis of the impact of these simplest products on the economics of space operations is not possible at this point. Research is necessary both to define optimum techniques and adapt them to space and to determine the probable market for the products so that the priority of various processes can be assessed. Discussions of the following products are presented: aerobraking heat shields; pressurized habitats; lunar photovoltaic farms; and agricultural systems.

  9. Metalorganic solution deposition of lead zirconate titanate films onto an additively manufactured Ni-based superalloy

    International Nuclear Information System (INIS)

    Patel, T.; Khassaf, H.; Vijayan, S.; Bassiri-Gharb, N.; Aindow, M.; Alpay, S.P.; Hebert, R.J.

    2017-01-01

    Recent advances in additive manufacturing of high-temperature alloys for structural aerospace applications has led to interest in integrating additional functionality into such parts. Lead zirconate titanate (PZT) is a prototypical ferroelectric ceramic used as the electro-active material in many piezoelectric sensors and actuators. In this study, 300 nm thick PbZr_0_._2Ti_0_._8O_3 (PZT 20/80) films were grown using metalorganic solution deposition onto additively manufactured substrates of Inconel 718. The microstructures of the films and the nature of the film/substrate interfaces were characterized using a combination of X-ray diffraction and electron microscopy techniques. Electrical measurements were performed to determine the ferroelectric, dielectric, and conductive responses of the PZT films. Our findings show that the PZT films exhibit robust ferroelectricity characterized by well-defined polarization-applied electric field (P-E) hysteresis loops. The samples display internal bias of up to ∼40 kV/cm. The room temperature remnant polarization and the small signal dielectric permittivity are ∼70 μC/cm"2 and 205, respectively. The dielectric loss (tan δ) and the leakage current at 1 kHz are 9% and 1 nA at 1 V, respectively. We attribute the internal bias observed in the hysteresis loops and the overall large dielectric losses to the presence of an intermediate oxide layer at the PZT/Inconel interface, which forms during the high temperature crystallization of the ferroelectric film. These results show that it is possible to grow functional oxides with promising electrical properties onto additively manufactured metallic substrates.

  10. Screen printing as a holistic manufacturing method for multifunctional microsystems and microreactors

    International Nuclear Information System (INIS)

    Bejarano, D; Lozano, P; Mata, D; Cito, S; Constantí, M; Katakis, I

    2009-01-01

    Microsystems are commonly manufactured by photolithographic or injection moulding techniques in a variety of realizations and on almost any material. A perennial problem in the manufacturing of microsystems is the difficulty to obtain hybrid devices that incorporate distinct materials with different functionalities. In most of the cases, cumbersome prototyping and high investment needed for manufacturing are additional problems that add to the cost of the final product. Such drawbacks are true not only for lab-on-a-chip but also for certain microreactor applications. Most importantly, in many commercial applications where an intermediate product between full fluidics control and a 'strip' is needed, such restraints prohibit the feasibility of reduction to practice. Screen printing on the other hand is a low cost technique that has been used for years in mass producing two-dimensional low cost reproductions of a mask pattern for circuits and art incorporates prototyping in production and allows the use of an almost limitless variety of materials as 'inks'. In this work it is demonstrated that taking advantage of the deposited ink's three-dimensional nature, screen printing can be used as a versatile and low cost technique for the fabrication of microchannels. Microchannels with dimensions in the order of 100 µm were fabricated that could readily incorporate functionalities through the choice of the materials used to create the microstructure. Variables have been investigated through a factorial experimental design as important process parameters that affect the resolution and print thickness of the resulting microchannels that incorporate electroactive elements. Such studies can lead to the optimization of the process for custom applications

  11. Topology of interaction between titin and myosin thick filaments.

    Science.gov (United States)

    Kellermayer, Miklós; Sziklai, Dominik; Papp, Zsombor; Decker, Brennan; Lakatos, Eszter; Mártonfalvi, Zsolt

    2018-05-05

    Titin is a giant protein spanning between the Z- and M-lines of the sarcomere. In the A-band titin is associated with the myosin thick filament. It has been speculated that titin may serve as a blueprint for thick-filament formation due to the super-repeat structure of its A-band domains. Accordingly, titin might provide a template that determines the length and structural periodicity of the thick filament. Here we tested the titin ruler hypothesis by mixing titin and myosin at in situ stoichiometric ratios (300 myosins per 12 titins) in buffers of different ionic strength (KCl concentration range 100-300 mM). The topology of the filamentous complexes was investigated with atomic force microscopy. We found that the samples contained distinct, segregated populations of titin molecules and myosin thick filaments. We were unable to identify complexes in which myosin molecules were regularly associated to either mono- or oligomeric titin in either relaxed or stretched states of the titin filaments. Thus, the electrostatically driven self-association is stronger in both myosin and titin than their binding to each other, and it is unlikely that titin functions as a geometrical template for thick-filament formation. However, when allowed to equilibrate configurationally, long myosin thick filaments appeared with titin oligomers attached to their surface. The titin meshwork formed on the thick-filament surface may play a role in controlling thick-filament length by regulating the structural dynamics of myosin molecules and placing a mechanical limit on the filament length. Copyright © 2018 Elsevier Inc. All rights reserved.

  12. Training for New Manufacturing Technologies.

    Science.gov (United States)

    Jacobs, James

    1988-01-01

    Examines the effects of computer-based manufacturing technologies on employment opportunities and job skills. Describes the establishment of the Industrial Technology Institute in Michigan to develop and utilize advanced manufacturing technologies, and the institute's relationship to the state's community colleges. Reviews lessons learned from…

  13. 75 FR 30781 - Manufacturing Council

    Science.gov (United States)

    2010-06-02

    ... convenience. Pending applicants remain under consideration and do not need to resubmit their applications..., particularly seeking the representation of small- and medium-sized enterprises. Additional factors which may be... marketing programs in support of manufacturing industries, job creation in the manufacturing sector, or the...

  14. Applications of Fiber-Reinforced Polymers in Additive Manufacturing

    DEFF Research Database (Denmark)

    Hofstätter, Thomas; Pedersen, David Bue; Tosello, Guido

    2017-01-01

    Additive manufacturing technologies are these years entering the market of functional final parts. Initial research has been performed targeting the integration of fibers into additive manufactured plastic composites. Major advantages, among others, are for example increased tensile strength...... and Young's modulus. Key challenges in the field, as of now, are proper fiber placement, fiber seizing, an increased knowledge in the used materials and how they are applied into engineering solutions through proper control of the additive manufacturing process. The aim of this research is the improved...... understanding of fiber-reinforcement in additive manufacturing in terms of production and application. Vat polymerization and material extrusion techniques for composite additive manufacturing were investigated with respect of increasing adhesion between the matrix material and the fibers. Process optimization...

  15. Mechanical properties of additively manufactured octagonal honeycombs

    Energy Technology Data Exchange (ETDEWEB)

    Hedayati, R., E-mail: rezahedayati@gmail.com [Department of Mechanical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Hafez Ave, Tehran (Iran, Islamic Republic of); Department of Biomechanical Engineering, Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology (TU Delft), Mekelweg 2, 2628 CD Delft (Netherlands); Sadighi, M.; Mohammadi-Aghdam, M. [Department of Mechanical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Hafez Ave, Tehran (Iran, Islamic Republic of); Zadpoor, A.A. [Department of Biomechanical Engineering, Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology (TU Delft), Mekelweg 2, 2628 CD Delft (Netherlands)

    2016-12-01

    Honeycomb structures have found numerous applications as structural and biomedical materials due to their favourable properties such as low weight, high stiffness, and porosity. Application of additive manufacturing and 3D printing techniques allows for manufacturing of honeycombs with arbitrary shape and wall thickness, opening the way for optimizing the mechanical and physical properties for specific applications. In this study, the mechanical properties of honeycomb structures with a new geometry, called octagonal honeycomb, were investigated using analytical, numerical, and experimental approaches. An additive manufacturing technique, namely fused deposition modelling, was used to fabricate the honeycomb from polylactic acid (PLA). The honeycombs structures were then mechanically tested under compression and the mechanical properties of the structures were determined. In addition, the Euler-Bernoulli and Timoshenko beam theories were used for deriving analytical relationships for elastic modulus, yield stress, Poisson's ratio, and buckling stress of this new design of honeycomb structures. Finite element models were also created to analyse the mechanical behaviour of the honeycombs computationally. The analytical solutions obtained using Timoshenko beam theory were close to computational results in terms of elastic modulus, Poisson's ratio and yield stress, especially for relative densities smaller than 25%. The analytical solutions based on the Timoshenko analytical solution and the computational results were in good agreement with experimental observations. Finally, the elastic properties of the proposed honeycomb structure were compared to those of other honeycomb structures such as square, triangular, hexagonal, mixed, diamond, and Kagome. The octagonal honeycomb showed yield stress and elastic modulus values very close to those of regular hexagonal honeycombs and lower than the other considered honeycombs. - Highlights: • The octagonal

  16. Applicability of spectral indices on thickness identification of oil slick

    Science.gov (United States)

    Niu, Yanfei; Shen, Yonglin; Chen, Qihao; Liu, Xiuguo

    2016-10-01

    Hyperspectral remote sensing technology has played a vital role in the identification and monitoring of oil spill events, and amount of spectral indices have been developed. In this paper, the applicability of six frequently-used indices is analyzed, and a combination of spectral indices in aids of support vector machine (SVM) algorithm is used to identify the oil slicks and corresponding thickness. The six spectral indices are spectral rotation (SR), spectral absorption depth (HI), band ratio of blue and green (BG), band ratio of BG and shortwave infrared index (BGN), 555nm and 645nm normalized by the blue band index (NB) and spectral slope (ND). The experimental study is conducted in the Gulf of Mexico oil spill zone, with Airborne Visible Infrared Imaging Spectrometer (AVIRIS) hyperspectral imagery captured in May 17, 2010. The results show that SR index is the best in all six indices, which can effectively distinguish the thickness of the oil slick and identify it from seawater; HI index and ND index can obviously distinguish oil slick thickness; BG, BGN and NB are more suitable to identify oil slick from seawater. With the comparison among different kernel functions of SVM, the classify accuracy show that the polynomial and RBF kernel functions have the best effect on the separation of oil slick thickness and the relatively pure seawater. The applicability of spectral indices of oil slick and the method of oil film thickness identification will in aids of oil/gas exploration and oil spill monitoring.

  17. Localization in superlattices with randomness in layer thickness

    International Nuclear Information System (INIS)

    Yuan Jian; Tsai Chienhua.

    1987-08-01

    The localization length for electrons in superlattices with randomness in layer thickness is studied in both the commensurate and the incommensurate cases. It is demonstrated that disorder limits the electrons to see only structures within the extent of their wave functions and to be hardly effected by any long range correlation. (author). 4 refs, 6 figs

  18. Screen-printed piezoceramic thick films for miniaturised devices

    DEFF Research Database (Denmark)

    Lou-Moeller, R.; Hindrichsen, Christian Carstensen; Thamdrup, Lasse Højlund

    2007-01-01

    machining. On the other hand, the process of screen printing thick films involves potential problems of thermal matching and chemical compatibility at the processing temperatures between the functional film, the substrate and the electrodes. As an example of such a miniaturised device, a MEMS accelerometer...

  19. Localization of abelian gauge fields on thick branes

    Energy Technology Data Exchange (ETDEWEB)

    Vaquera-Araujo, Carlos A. [Universidad de Colima, Facultad de Ciencias, CUICBAS, Colima (Mexico); Corradini, Olindo [Universidad Autonoma de Chiapas, Ciudad Universitaria, Facultad de Ciencias en Fisica y Matematicas, Tuxtla Gutierrez (Mexico); Universita di Modena e Reggio Emilia, Dipartimento di Scienze Fisiche, Informatiche e Matematiche, Modena (Italy)

    2015-02-01

    In this work, we explore a mechanism for abelian gauge field localization on thick branes based on a five-dimensional Stueckelberg-like action. A normalizable zero mode is found through the identification of a suitable coupling function between the brane and the gauge field. The same mechanism is studied for the localization of the abelian Kalb-Ramond field. (orig.)

  20. New models of general relativistic static thick disks

    NARCIS (Netherlands)

    Vogt, D.; Letelier, P.S.

    2005-01-01

    New families of exact general relativistic thick disks are constructed using the "displace, cut, fill, and reflect" method. A class of functions used to fill the disks is derived imposing conditions on the first and second derivatives to generate physically acceptable disks. The analysis of the