WorldWideScience

Sample records for manufacturing sector carbon

  1. Wood and Paper Manufacturing Sectors

    Science.gov (United States)

    Find EPA regulatory information for the wood product and paper manufacturing sectors, including paper, pulp and lumber. Information includes NESHAPs and effluent guidelines for pulp and paper rulemaking, and compliance guidelines

  2. Carbon-On-Carbon Manufacturing

    Science.gov (United States)

    Mungas, Gregory S. (Inventor); Buchanan, Larry (Inventor); Banzon, Jr., Jose T. (Inventor)

    2017-01-01

    The presently disclosed technology relates to carbon-on-carbon (C/C) manufacturing techniques and the resulting C/C products. One aspect of the manufacturing techniques disclosed herein utilizes two distinct curing operations that occur at different times and/or using different temperatures. The resulting C/C products are substantially non-porous, even though the curing operation(s) substantially gasify a liquid carbon-entrained filler material that saturates a carbon fabric that makes up the C/C products.

  3. Pharmaceutical and Medicine Manufacturing Sector (NAICS 3254)

    Science.gov (United States)

    Find environmental regulatory and compliance information for the pharmaceutical manufacturing sector, including essential uses of CFCs, NESHAP for pharmaceutical production, effluent guidelines for wastewater and management of hazardous waste.

  4. Value Chain Model for Steel Manufacturing Sector: A Case Study

    OpenAIRE

    S G Acharyulu; K Venkata Subbaiah; K Narayana Rao

    2018-01-01

    Michael E Porter developed a value chain model for manufacturing sector with five primary activities and four supporting activities. The value chain model developed by Porter is extended to a steel manufacturing sector due to expansions of steel plants has become a continual process for their growth and survival. In this paper a value chain model for steel manufacturing sector is developed considering five primary activities and six support activities.

  5. Determinants of Public Policies and the Manufacturing Sector in ...

    African Journals Online (AJOL)

    Toshiba

    potential for growth and development within the Nigerian economy. Adenikinji and Chete (2002), conducted ... a fall in the performance level of the manufacturing sector in the country. However ..... Academic Book Press. Ugwuh, C.C. (2004).

  6. application of nanotechnology in the manufacturing sector

    African Journals Online (AJOL)

    eobe

    of nanomaterials by the modification of conventional production techniques techniques techniques. ... that goal through nano materials manufacture can only be found in the .... attainable by use of computer aided design programmes to specify ...

  7. International Outsourcing and Productivity in Italian Manufacturing Sectors

    OpenAIRE

    Lo Turco Alessia

    2007-01-01

    This paper estimates the effect of international outsourcing of materials and services on productivity in Italian manufacturing sectors during the period 1985-1997. Three different measures of outsourcing are used. Firstly, a "narrow" measure of outsourcing is calculated as the intensity of intermediate inputs that each sector imports from the same sector abroad. Secondly, a "broad" measure of outsourcing of materials is calculated as the intensity of materials imported from non-energy manufa...

  8. US manufacturing imports from China and employment in the Mexican manufacturing sector

    Directory of Open Access Journals (Sweden)

    Jorge Eduardo Mendoza Cota

    2016-09-01

    Full Text Available Since 2001 the manufacturing sector of Mexico has experienced a reduced growth rate. This study estimates the impact of U.S. and Chinese industrial activity on the demand for labor in the manufacturing sector of Mexico. With data on industrial activity, Chinese exports, wages and the peso-dollar exchange rate, a time series cointegration model is developed. The results show that exports from China to the USA and manufacturing wages have affected labor demand negatively, while factors such as the U.S. industrial production and the exchange rate tend to encourage manufacturing activity.

  9. Survey of corporate social responsibility practices in Nigerian manufacturing sector

    OpenAIRE

    Akinyomi, Oladele John

    2013-01-01

    Based on stakeholders’ theory, this study examined the practice of corporate social responsibility by manufacturing companies in Nigeria. It employed survey research design to study 15 randomly selected companies in the food and beverages sector. A total of 225 questionnaires were administered to collect data. Data analysis revealed that CSR is a familiar concept in the sector as most of the companies do engage in CSR activities regularly. The major areas of focus of the CSR activities includ...

  10. Sources of Labor Growth in Malaysian Manufacturing Sector

    Directory of Open Access Journals (Sweden)

    Poo Bee Tin

    2010-09-01

    Full Text Available The manufacturing sector plays an important role in Malaysianindustrial development. High growth rates and technology expan-sion in the manufacturing sector resulted in a substantial increasein demand for labor. This process of rapid growth and changes in thedemand for labor were also accompanied by changes in laborstructure and skills. At the same time, the range of activities andproducts became more diversified and, correspondingly the compo-sition of manpower sub sectors changed significantly. This studyemployed the input-output Structural Decomposition Analysis (SDA.The analysis computed the compositional manpower change as aresult of decomposition. The result of this study indicates thatsources of labor growth in the manufacturing sector were favored bychanges in the final demand structure. Within the changes in thefinal demand structure, changes in domestic demand structure werethe dominant source of employment growth between 1978 and 1991and the overall period 1978-2000. However, from 1991 to 2000,employment change was due mainly to changes in export structure.Changes in the structure of domestic demand had a relatively strongand increasing effect on service workers, production and relatedworkers, transport equipment operators, laborers, and clerical andrelated workers during the 1978-1991 period. Changes in the exportstructure were the main factor that had an increasing effect on the employment of high skill workers and sales workers. However,during the second sub period of 1991-2000, manpower growth wasexports structure driven. Keywords: input-output; labor; manufacturing; structural decomposition analysis

  11. Exchange Rate and International Trade: Case From Indonesian Manufacturing Sector

    Directory of Open Access Journals (Sweden)

    Anung Yoga Anindhita

    2017-07-01

    Full Text Available Exchange rate fluctuation in Floating Exchange Rate Regime is considered to Exchange rate fluctuation in Floating Exchange Rate Regime is considered to have impacts on the international trade through its adjustment to the price and its volatility to the trade risk. This paper is aimed at estimating those impacts on the international trade of manufacturing sector in Indonesia for period 2007 to 2014. To conduct estimation, it uses multiple regression analysis on two models: First, the import of raw-and-auxiliary materials; Second, the export of manufacturing sector. The results show that the exchange rate impacts both work significantly on the import of raw-and-auxiliary materials. The finding implies that, through the import of raw-and-auxiliary materials, manufacturing sector is very susceptible to the shock caused by exchange rate changes. Meanwhile, the export of manufacturing sector is not able to take advantage of the depreciation of the exchange rate due to the lack of competitiveness.DOI: 10.15408/sjie.v6i2.5210

  12. Evaluation of noise levels in manufacturing sectors in Thika district ...

    African Journals Online (AJOL)

    Noise is considered as any unwanted sound that may adversely affect the health and wellbeing of individuals or populations exposed. This study assessed the magnitude of occupational noise exposures to workers in different manufacturing sectors in Thika District‐Kenya. Systematic random sampling was used to select 8 ...

  13. PERFORMANCE AND SUSTAINABILITY IN MANUFACTURING SECTOR FROM ROMANIA

    Directory of Open Access Journals (Sweden)

    Raluca Andreea POPA

    2015-06-01

    Full Text Available Performance became a very important topic especially when it comes into discussion the idea of sustainability. If we think to the value added and the level of employees, an important sector for our society and economy is the Manufacturing because it provides a high value added to GDP (gross domestic product and also provides a high amount of work places at European level and also in Romania. The main goal of this paper is to analyse the performance of the largest enterprises from Romania that are part from the Manufacturing sector. This very large enterprises could be trend setters in their subindustries for the small and medium ones. The paper is composed from three parts. In the first part it is analysed the literature developed by specialist in the domain of sustainability and financial performance. The second part is an overview of the evolution of Manufacturing sector in the past years and the last one comes to underline the performances of this sector by analysing the evolution of specific indicators regarding the sustainability and performance of enterprise. In conclusion’s side there are made some suggestions about the importance of this sector for Romania’s economy and also for a sustainable development.

  14. A carbon footprint simulation model for the cork oak sector.

    Science.gov (United States)

    Demertzi, Martha; Paulo, Joana Amaral; Arroja, Luís; Dias, Ana Cláudia

    2016-10-01

    In the present study, a simulation model for the calculation of the carbon footprint of the cork oak sector (CCFM) is developed for the first time. A life cycle approach is adopted including the forest management, manufacturing, use and end-of-life stages. CCFM allows the user to insert the cork type used as raw material and its respective quantity and the distances in-between the various stages. The user can choose among different end-of-life destination options for the used cork products. The option of inserting different inputs, allows the use of the present simulation model for different cork oak systems, in different countries and with different conditions. CCFM allows the identification of the stages and products with the greatest carbon footprint and thus, a better management of the sector from an environmental perspective. The Portuguese cork oak sector is used as an application example of the model. The results obtained showed that the agglomeration industry is the hotspot for the carbon footprint of the cork sector mainly due to the production of the resins that are mixed with the cork granules for the production of agglomerated cork products. The consideration of the biogenic carbon emissions and sequestration of carbon at the forest in the carbon footprint, resulted to a great decrease of the sector's carbon footprint. Future actions for improvement are suggested in order to decrease the carbon footprint of the entire cork sector. It was found that by decreasing by 10% the emission factor of the agglomeration and transformation industries, substituting the transport trucks by more recent ones and by decreasing by 10% the cork products reaching the landfilling end-of-life destinations (while increasing the quantities reaching incineration and recycling), a decrease of the total CF (excluding the biogenic emissions and sequestration) of the entire cork industry by 10% can be achieved. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. A carbon footprint simulation model for the cork oak sector

    Energy Technology Data Exchange (ETDEWEB)

    Demertzi, Martha, E-mail: marthademertzi@ua.pt [Center for Environmental and Marine Studies (CESAM), Department of Environment and Planning, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro (Portugal); Paulo, Joana Amaral, E-mail: joanaap@isa.ulisboa.pt [Center of Forest Studies (CEF), Superior Institute of Agronomy (ISA), Tapada da Ajuda, University of Lisbon, 1349-017 Lisbon (Portugal); Arroja, Luís, E-mail: arroja@ua.pt [Center for Environmental and Marine Studies (CESAM), Department of Environment and Planning, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro (Portugal); Dias, Ana Cláudia, E-mail: acdias@ua.pt [Center for Environmental and Marine Studies (CESAM), Department of Environment and Planning, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro (Portugal)

    2016-10-01

    In the present study, a simulation model for the calculation of the carbon footprint of the cork oak sector (CCFM) is developed for the first time. A life cycle approach is adopted including the forest management, manufacturing, use and end-of-life stages. CCFM allows the user to insert the cork type used as raw material and its respective quantity and the distances in-between the various stages. The user can choose among different end-of-life destination options for the used cork products. The option of inserting different inputs, allows the use of the present simulation model for different cork oak systems, in different countries and with different conditions. CCFM allows the identification of the stages and products with the greatest carbon footprint and thus, a better management of the sector from an environmental perspective. The Portuguese cork oak sector is used as an application example of the model. The results obtained showed that the agglomeration industry is the hotspot for the carbon footprint of the cork sector mainly due to the production of the resins that are mixed with the cork granules for the production of agglomerated cork products. The consideration of the biogenic carbon emissions and sequestration of carbon at the forest in the carbon footprint, resulted to a great decrease of the sector's carbon footprint. Future actions for improvement are suggested in order to decrease the carbon footprint of the entire cork sector. It was found that by decreasing by 10% the emission factor of the agglomeration and transformation industries, substituting the transport trucks by more recent ones and by decreasing by 10% the cork products reaching the landfilling end-of-life destinations (while increasing the quantities reaching incineration and recycling), a decrease of the total CF (excluding the biogenic emissions and sequestration) of the entire cork industry by 10% can be achieved. - Highlights: • A carbon footprint simulation model (CCFM) for

  16. A carbon footprint simulation model for the cork oak sector

    International Nuclear Information System (INIS)

    Demertzi, Martha; Paulo, Joana Amaral; Arroja, Luís; Dias, Ana Cláudia

    2016-01-01

    In the present study, a simulation model for the calculation of the carbon footprint of the cork oak sector (CCFM) is developed for the first time. A life cycle approach is adopted including the forest management, manufacturing, use and end-of-life stages. CCFM allows the user to insert the cork type used as raw material and its respective quantity and the distances in-between the various stages. The user can choose among different end-of-life destination options for the used cork products. The option of inserting different inputs, allows the use of the present simulation model for different cork oak systems, in different countries and with different conditions. CCFM allows the identification of the stages and products with the greatest carbon footprint and thus, a better management of the sector from an environmental perspective. The Portuguese cork oak sector is used as an application example of the model. The results obtained showed that the agglomeration industry is the hotspot for the carbon footprint of the cork sector mainly due to the production of the resins that are mixed with the cork granules for the production of agglomerated cork products. The consideration of the biogenic carbon emissions and sequestration of carbon at the forest in the carbon footprint, resulted to a great decrease of the sector's carbon footprint. Future actions for improvement are suggested in order to decrease the carbon footprint of the entire cork sector. It was found that by decreasing by 10% the emission factor of the agglomeration and transformation industries, substituting the transport trucks by more recent ones and by decreasing by 10% the cork products reaching the landfilling end-of-life destinations (while increasing the quantities reaching incineration and recycling), a decrease of the total CF (excluding the biogenic emissions and sequestration) of the entire cork industry by 10% can be achieved. - Highlights: • A carbon footprint simulation model (CCFM) for the

  17. Does Electricity Drive the Development of Manufacturing Sector in Malaysia?

    Energy Technology Data Exchange (ETDEWEB)

    Husaini, Dzul Hadzwan [Faculty of Economics and Business, Universiti Malaysia Sarawak, Sarawak (Malaysia); Lean, Hooi Hooi, E-mail: hooilean@usm.my [Economics Program, School of Social Sciences, Universiti Sains Malaysia, Penang (Malaysia)

    2015-04-22

    This paper investigates the relationship between electricity consumption, output, and price in the manufacturing sector in Malaysia. We find that electricity consumption, output, and price are cointegrated in the long run. In addition, it has been found that the relationship between electricity consumption and output is positive. In the long run, we find a unidirectional causality from manufacturing output to electricity consumption. This result indicates that the development of manufacturing sector stimulates greater demand for electricity. Government needs to make sure that the planning of electricity supply in the future is in line with the economic development planning to avoid shortage in electricity supply. In the short run, a unidirectional relationship runs from electricity consumption to output is found. A decrease of energy usage in production might reduce the output growth in short run. Hence, we suggest improving the efficiency of electricity usage and some cost-effective sources of energy.

  18. Does Electricity Drive the Development of Manufacturing Sector in Malaysia?

    International Nuclear Information System (INIS)

    Husaini, Dzul Hadzwan; Lean, Hooi Hooi

    2015-01-01

    This paper investigates the relationship between electricity consumption, output, and price in the manufacturing sector in Malaysia. We find that electricity consumption, output, and price are cointegrated in the long run. In addition, it has been found that the relationship between electricity consumption and output is positive. In the long run, we find a unidirectional causality from manufacturing output to electricity consumption. This result indicates that the development of manufacturing sector stimulates greater demand for electricity. Government needs to make sure that the planning of electricity supply in the future is in line with the economic development planning to avoid shortage in electricity supply. In the short run, a unidirectional relationship runs from electricity consumption to output is found. A decrease of energy usage in production might reduce the output growth in short run. Hence, we suggest improving the efficiency of electricity usage and some cost-effective sources of energy.

  19. Manufacturing sector carbon dioxide emissions in nine OECD countries 1973--87: A Divisia index decomposition to changes in fuel mix, emission coefficients, industry structure, energy intensities, and international structure

    International Nuclear Information System (INIS)

    Torvanger, A.

    1990-11-01

    In this paper the reduction in energy-related manufacturing carbon dioxide emissions for nine OECD countries in the period 1973 to 1987 is analyzed. Carbon dioxide emissions are estimated from energy use data. The emphasis is on carbon dioxide intensities, defined as emissions divided by value added. The overall manufacturing carbon dioxide intensity for the nine OECD countries was reduced by 42% in the period 1973--1987. Five fuels are specified together with six subsectors of manufacturing. Carbon dioxide emissions are estimated from fossil fuel consumption, employing emissions coefficients for gas, oil and solids. In addition, electricity consumption is specified. For electricity use an emission coefficient index is calculated from the shares of fossil fuels, nuclear power and hydro power used to generate electricity, and the efficiency in electricity generation from these energy sources. A Divisia index approach is used to sort out the contribution to reduced carbon dioxide intensity from different components. The major finding is that the main contribution to reduced carbon dioxide intensity is from the general reduction in manufacturing energy intensity, most likely driven by economic growth and increased energy prices, giving incentives to invest in new technology and new industrial processes. There is also a significant contribution from reduced production in the most carbon dioxide intensive subsectors, and a contribution from higher efficiency in electricity generation together with a larger nuclear power share at the expense of oil. 19 refs., 5 figs., 11 tabs

  20. Environmental Compliance by Firms in the Manufacturing Sector in Mexico

    OpenAIRE

    Lata Gangadharan

    2003-01-01

    To date, little empirical evidence exists to help regulators understand why some firms comply even when there is little financial incentive to do so and others continually violate environmental regulations. This paper examines data on compliance with environmental regulations within the manufacturing sector in Mexico. The probability of complying depends, among other factors, on the kind of management practices of the firm and the level of environmental training. Some firms in the manufacturi...

  1. Safety Culture and Issue in the Malaysian Manufacturing Sector

    OpenAIRE

    Ali Danish; Yusof Yusri; Adam Anbia

    2017-01-01

    . This paper highlights the Safety culture and issue in the Malaysian Manufacturing Sector and emphasis the high occupational accidents due to lack of safety culture and non-compliance of the requirements of Occupational Safety and Health Act 1994. The aim of this study is to review the occupational accidents occurrence in the Malaysia workplace since 2012-2016. Malaysia aimed to reduce the occupational accidents, the results show by DOSH increase that Occupational Noise Induced Hearing Loss ...

  2. Carbon fiber manufacturing via plasma technology

    Science.gov (United States)

    Paulauskas, Felix L.; Yarborough, Kenneth D.; Meek, Thomas T.

    2002-01-01

    The disclosed invention introduces a novel method of manufacturing carbon and/or graphite fibers that avoids the high costs associated with conventional carbonization processes. The method of the present invention avoids these costs by utilizing plasma technology in connection with electromagnetic radiation to produce carbon and/or graphite fibers from fully or partially stabilized carbon fiber precursors. In general, the stabilized or partially stabilized carbon fiber precursors are placed under slight tension, in an oxygen-free atmosphere, and carbonized using a plasma and electromagnetic radiation having a power input which is increased as the fibers become more carbonized and progress towards a final carbon or graphite product. In an additional step, the final carbon or graphite product may be surface treated with an oxygen-plasma treatment to enhance adhesion to matrix materials.

  3. Results from ITER Vacuum Vessel Sector Manufacturing Development in Europe

    International Nuclear Information System (INIS)

    Jones, L.

    2006-01-01

    Significant results have been achieved since the previous SOFT conference, when the manufacturing development work required to prepare for the ITER Vacuum Vessel Sector was described. The contract for the manufacture of a full-size, 20 Ton poloidal part of the inboard section, fabricated according to the ITER reference manufacturing route, including bracing fixtures, welding applications, restraint effects, and fit-up aspects is approaching completion. Since the main aim of the work is to establish the practicability of achieving the tight dimensional tolerances, an accompanying SYSWELD analysis programme has been validation by instrumented welding coupons, and then used for predicting the distortion of the actual construction. A local machining tool has been developed to allow the requirement for machining of the cylindrical features at a late stage of manufacture. Experimental and analytical work has also been carried out to establish the possibility of 3-D cold-forming large sections of walls of the VV. A manufacturing programme to validate an alternative method of fabricating parts of the double-walled VV, utilising e-beam welding only and avoiding the quality issues of the one-sided access and inspection of the closing welds is presented. This paper describes the results of the manufacturing development programme and the future activities. (author)

  4. The Effect of the Implementation of Advanced Manufacturing Technologies on Training in the Manufacturing Sector

    Science.gov (United States)

    Castrillon, Isabel Dieguez; Cantorna, Ana I. Sinde

    2005-01-01

    Purpose: The aim of this article is to gain insight into some of the factors that determine personnel-training efforts in companies introducing advanced manufacturing technologies (AMTs). The study provides empirical evidence from a sector with high rates of technological modernisation. Design/methodology/approach: "Ad hoc" survey of 90…

  5. European preparations for the ITER VV sectors manufacture

    International Nuclear Information System (INIS)

    Jones, Lawrence; Arbogast, Jean-Francois; Bayon, Angel; Galvan, Stefano; Giraud, Benoit; Ioki, Kimihiro; Losasso, Marcello; Mico, Gonzalo; Stamos, Vassilis; Trentea, Alexandru; Utin, Yuri

    2011-01-01

    For the benefit of the bidders for the Call-for-Tender for the 7 sectors of the ITER Vacuum Vessel, launched in early 2010, a large amount of relevant technical information was included to ensure a rapid start to successful manufacture programme, without the need for a full-scale prototype, which would cause an unacceptable delay to the ITER schedule. The methodology of the logical structures of the specification and the additional planned mock-ups are described and the results from nearly a decade of R and D and manufacturing studies carried out inside the EU under the auspices of EFDA and F4E are also summarised. The work covers the evolution of novel manufacturing schemes and technologies, including a modular special local machining centre for making holes in the shell of the vessel with weld preparation included. New results from the combined studies by three parties, and using a round-robin trial system on the UT inspection of single-sided welds, including the successful control of the root side are described. A full-scale, partial prototype has demonstrated the successful construction segments using jigs to control the distortion from conventional welding, from the inner shell to the outer shell, and then the joining of the segments to form a part sector. The paper also summarises the results from the prototype segment, manufactured without jigs and using only EB welds. In order to be able to achieve the required as-welded tight tolerances, two specialised computational techniques have been developed, using SYSWELD and ANSYS codes and calibrated with the mock-ups in order to efficiently predict welding distortions. Based on this successful practical and theoretical work, computer models of the complete poloidal segments or sectors, including jigs, were can now generated and used to investigate many welding sequences in order to optimise the construction and achieve all the tolerances.

  6. Methodologies for Active Aging in the Manufacturing Sector

    Science.gov (United States)

    Fornasiero, Rosanna; Berdicchia, Domenica; Zambelli, Mario; Masino, Giovanni

    The research project named “Flexibly Beyond” studied and experimented innovative models for the enhancement of the role of senior workers and prolongation of their working life. The research was based on the application of innovative methods and tools to the ageing society and in particular to the European manufacturing companies represented in the project by apparel and footwear sectors. The project was funded under the Innovative Measures of the art.6 of the European Social Fund (VS/2006/0353) and coordinated by Politecnico Calzaturiero. The real strength of the project was the large network including all the actors of the value chain which allows transferring the theoretical findings to practical level in SMEs manufacturing context.

  7. Causation of severe and fatal accidents in the manufacturing sector.

    Science.gov (United States)

    Carrillo-Castrillo, Jesús A; Rubio-Romero, Juan C; Onieva, Luis

    2013-01-01

    The main purpose of this paper is to identify the most frequent causes of accidents in the manufacturing sector in Andalusia, Spain, to help safety practitioners in the task of prioritizing preventive actions. Official accident investigation reports are analyzed. A causation pattern is identified with the proportion of causes of each of the different possible groups of causes. We found evidence of a differential causation between slight and nonslight accidents. We have also found significant differences in accident causation depending on the mechanism of the accident. These results can be used to prioritize preventive actions to combat the most likely causes of each accident mechanism. We have also done research on the associations of certain latent causes with specific active (immediate) causes. These relationships show how organizational and safety management can contribute to the prevention of active failures.

  8. Technical efficiency of FDI firms in the Vietnamese manufacturing sector

    Directory of Open Access Journals (Sweden)

    Vu Hoang Duong

    2016-09-01

    Full Text Available The study examines technical efficiency of Foreign Direct Investment (FDI firms in the Vietnamese manufacturing sector by applying stochastic production frontier model and making use of cross-sectional data in the period 2009-2013. The average level of technical efficiency of FDI firms is about 60% and it is higher than that of domestic firms (including private firms and state-owned firms. In addition, the study also analyses correlation between technical efficiency of FDI firms and other factors. It finds that there are positive correlations between FDI technical efficiency and net revenue per labour, firm’s age or export activities in 2013. However, the study is unable to find evidence of a relationship between FDI technical efficiency and infrastructure or firm’s investment activities.

  9. Energy Efficiency Tracking in Thai Manufacturing Sector by Decomposition Technique

    Directory of Open Access Journals (Sweden)

    Wongsapai Wongkot

    2016-01-01

    Full Text Available This paper presents an analysis of energy saving and changes in energy intensities in Thai manufacturing sector by Logarithmic Mean Divisia Index decomposition technique. This method includes three effects consists of the energy intensity effect, the structural effect and the effect of the economic growth on the energy consumption in Thailand by using the 25-year annual data from 1990 to 2014, carried out in four phases; (i before National Energy Conservation law, (ii during the effect of the law, (iii Transition period of the law from first to second version, and (iv during the effect of the law (No.2. We found that the most effective intensity effect is in the third phase due to the effect of the implementation of new energy efficient equipment from the second phase by enforcement of the law, especially in non-metallic sector, while the first phase illustrates the lowest intensity effect due to the energy conservation law had not been occurred. However, due to the highest economic growth of the country and change from agricultural to industrial development direction, the first phase presents the most effective structural effect, then this effect continuously decreased by time. We also conclude that the energy conservation law have direct effect to energy efficiency of the country however, strictly individual regulation which have target to enforce to energy intensive industries is still required for sustainable energy efficiency improvement.

  10. Manufacturing preparations for the European Vacuum Vessel Sector for ITER

    International Nuclear Information System (INIS)

    Jones, Lawrence; Arbogast, Jean François; Bayon, Angel; Bianchi, Aldo; Caixas, Joan; Facca, Aldo; Fachin, Gianbattista; Fernández, José; Giraud, Benoit; Losasso, Marcello; Löwer, Thorsten; Micó, Gonzalo; Pacheco, Jose Miguel; Paoletti, Roberto; Sanguinetti, Gian Paolo; Stamos, Vassilis; Tacconelli, Massimiliano; Trentea, Alexandru; Utin, Yuri

    2012-01-01

    The contract for the seven European Sectors of the ITER Vacuum Vessel, which has very tight tolerances and high density of welding, was placed at the end of 2010 with AMW, a consortium of three companies. The start-up of the engineering, including R and D, design and analysis activities of this large and complex contract, one of the largest placed by F4E, the European Domestic Agency for ITER, is described. The statutory and regulatory requirements of ITER Organization and the French Nuclear Safety regulations have made the design development subject to rigorous controls. AMW was able to make use of the previous extensive R and D and prototype work carried out during the past 9 years, especially in relation to advanced welding and inspection techniques. The paper describes the manufacturing methodology with the focus on controlling distortion with predictions by analysis, avoiding use of welded-on jigs, and making use of low heat input narrow-gap welding with electron beam welding as far as possible and narrow-gap TIG when not. Further R and D and more than ten significant mock-ups are described. All these preparations will help to assure the successful manufacture of this critical path item of ITER.

  11. Safety Culture and Issue in the Malaysian Manufacturing Sector

    Directory of Open Access Journals (Sweden)

    Ali Danish

    2017-01-01

    Full Text Available . This paper highlights the Safety culture and issue in the Malaysian Manufacturing Sector and emphasis the high occupational accidents due to lack of safety culture and non-compliance of the requirements of Occupational Safety and Health Act 1994. The aim of this study is to review the occupational accidents occurrence in the Malaysia workplace since 2012-2016. Malaysia aimed to reduce the occupational accidents, the results show by DOSH increase that Occupational Noise Induced Hearing Loss 83.7%, occupational musculoskeletal diseases, 4.4% and occupational lung diseases 2.3%. But the as per the record from DOSH that in last 5-Years, the increment in the fatal accidents by Average 26%, Permanent Disability by Average 71% and Non-Permanent Disability by 64 % are investigated only in Manufacturing Industries. The government must show their high interest on such a vulnerable employees to accomplish the above aim. This step will be helpful for planning to reduce the accidents in workplaces and it will also detect the prevention for the future accidents.

  12. FORECASTING MODEL OF GHG EMISSION IN MANUFACTURING SECTORS OF THAILAND

    Directory of Open Access Journals (Sweden)

    Pruethsan Sutthichaimethee

    2017-01-01

    Full Text Available This study aims to analyze the modeling and forecasting the GHG emission of energy consumption in manufacturing sectors. The scope of the study is to analysis energy consumption and forecasting GHG emission of energy consumption for the next 10 years (2016-2025 and 25 years (2016-2040 by using ARIMAX model from the Input-output table of Thailand. The result shows that iron and steel has the highest value of energy consumption and followed by cement, fluorite, air transport, road freight transport, hotels and places of loading, coal and lignite, petrochemical products, other manufacturing, road passenger transport, respectively. The prediction results show that these models are effective in forecasting by measured by using RMSE, MAE, and MAPE. The results forecast of each model is as follows: 1 Model 1(2,1,1 shows that GHG emission will be increasing steadily and increasing at 25.17% by the year 2025 in comparison to 2016. 2 Model 2 (2,1,2 shows that GHG emission will be rising steadily and increasing at 41.51% by the year 2040 in comparison to 2016.

  13. Carbon Capture and Utilization in the Industrial Sector.

    Science.gov (United States)

    Psarras, Peter C; Comello, Stephen; Bains, Praveen; Charoensawadpong, Panunya; Reichelstein, Stefan; Wilcox, Jennifer

    2017-10-03

    The fabrication and manufacturing processes of industrial commodities such as iron, glass, and cement are carbon-intensive, accounting for 23% of global CO 2 emissions. As a climate mitigation strategy, CO 2 capture from flue gases of industrial processes-much like that of the power sector-has not experienced wide adoption given its high associated costs. However, some industrial processes with relatively high CO 2 flue concentration may be viable candidates to cost-competitively supply CO 2 for utilization purposes (e.g., polymer manufacturing, etc.). This work develops a methodology that determines the levelized cost ($/tCO 2 ) of separating, compressing, and transporting carbon dioxide. A top-down model determines the cost of separating and compressing CO 2 across 18 industrial processes. Further, the study calculates the cost of transporting CO 2 via pipeline and tanker truck to appropriately paired sinks using a bottom-up cost model and geo-referencing approach. The results show that truck transportation is generally the low-cost alternative given the relatively small volumes (ca. 100 kt CO 2 /a). We apply our methodology to a regional case study in Pennsylvania, which shows steel and cement manufacturing paired to suitable sinks as having the lowest levelized cost of capture, compression, and transportation.

  14. Mergers, Acquisitions and Export Competitiveness: Experience of Indian Manufacturing Sector

    Directory of Open Access Journals (Sweden)

    Mishra Pulak

    2012-03-01

    Full Text Available In the context of economic reforms in general and subsequent wave of M&A in particular, this paper attempts to examine the impact of M&A on the export competitiveness of firms in the Indian manufacturing sector. By using a panel dataset of 33 industries from the period of 2000-01 to 2007-08, it is found that, the wave of M&A has enhanced the export competitiveness of firms. The industries with larger number of M&A have greater penetration in the international market. The other factors that have significantly contributed to export competitiveness include the presence of MNCs and import of foreign technology. Export competiveness is higher in the industries that have larger presence of MNCs and greater foreign technology purchase intensity. On the other hand, industries with higher capital intensity or greater selling efforts by firms have limited penetration in the international market. However, this paper did not find any significant influence of market concentration, competition from imports, in-house efforts, or profitability on export competitiveness of firms. Therefore, the findings from this paper have important policy implications in relation to the regulation of M&A and entry of MNCs as well as the import of capital goods.

  15. The change of CO2 emission on manufacturing sectors in Indonesia: An input-output analysis

    Science.gov (United States)

    Putranti, Titi Muswati; Imansyah, Muhammad Handry

    2017-12-01

    The objective of this paper is to evaluate the change of CO2 emission on manufacturing sectors in Indonesia using input-output analysis. The method used supply perspective can measure the impact of an increase in the value added of different productive on manufacturing sectors on total CO2 emission and can identify the productive sectors responsible for the increase in CO2 emission when there is an increase in the value added of the economy. The data used are based on Input-Output Energy Table 1990, 1995 and 2010. The method applied the elasticity of CO2 emission to value added. Using the elasticity approach, one can identify the highest elasticity on manufacturing sector as the change of value added provides high response to CO2 emission. Therefore, policy maker can concentrate on manufacturing sectors with the high response of CO2 emission due to the increase of value added. The approach shows the contribution of the various sectors that deserve more consideration for mitigation policy. Five of highest elasticity of manufacturing sectors of CO2 emission are Spinning & Weaving, Other foods, Tobacco, Wearing apparel, and other fabricated textiles products in 1990. Meanwhile, the most sensitive sectors Petroleum refinery products, Other chemical products, Timber & Wooden Products, Iron & Steel Products and Other non-metallic mineral products in 1995. Two sectors of the 1990 were still in the big ten, i.e. Spinning & weaving and Other foods in 1995 for the most sensitive sectors. The six sectors of 1995 in the ten highest elasticity of CO2 emission on manufacturing which were Plastic products, Other chemical products,Other fabricated metal products, Cement, Iron & steel products, Iron & steel, still existed in 2010 condition. The result of this research shows that there is a change in the most elastic CO2 emission of manufacturing sectors which tends from simple and light manufacturing to be a more complex and heavier manufacturing. Consequently, CO2 emission jumped

  16. Role of Manufacturing Sector and Trade, Hotel, Restaurant Sector In East Java’s Economy: Input Output Analysis

    Directory of Open Access Journals (Sweden)

    Anggari Marya Kresnowati

    2016-11-01

    Full Text Available This study aimed to (1 analyze the relationship the manufacturing sector and the trade, hotel, and restaurant sector with other sectors in East Java, (2 to analyze the economic impact caused the two sectors based on the multiplier effect, (3 and analyze the economic impact caused by these two sectors if there additional investment funds. This study uses data analysis input output 2010 East Java 19x19 aggregation sector.The results indicate that base metals subsector has the highest linkages to other sectors. Based on household income multiplier effect, trade subsector has the greatest multiplier. Employment multiplier in trade and industrial sectors are in medium rank. This is indicates that the labor has been absorbed well in both sectors. The output multiplier effect, subsector non-metal goods, except petroleum and coal has the highest multiplier. The last, according to the analysis of investment injection simulations Input-Output East Java in 2010, subsector other processing industries has a best value added. Overall, the manufacturing sector has a better influence to East Java's economy than trade, hotel, and restaurant sector.

  17. Climate policy impacts on the competitiveness of energy-intensive manufacturing sectors

    Energy Technology Data Exchange (ETDEWEB)

    Bassi, Andrea M. [Millennium Institute, 2111 Wilson Blvd, Suite 700, Arlington, VA 22201 (United States); University of Bergen, Postboks 7800, 5020 Bergen (Norway); Yudken, Joel S. [High Road Strategies, LLC, 104 N. Columbus Street, Arlington, VA 22203 (United States); Ruth, Matthias [University of Maryland, 3139 Van Munching Hall, College Park, MD 20742 (United States)

    2009-08-15

    This study examines the impacts of energy price changes resulting from different carbon-pricing policies on the competitiveness of selected US energy-intensive industries. It further examines possible industry responses, and identifies and provides a preliminary evaluation of potential opportunities to mitigate these impacts. The industry sectors investigated - steel, aluminum, chemicals and paper - are among the largest industrial users of fossil fuels in the US economy. The results of this examination show that climate policies that put a price on carbon could have substantial impacts on the competitiveness of US energy-intensive manufacturing sectors over the next two decades, if climate regulations are applied only in the United States, and no action is taken to invest in advanced low- and no-carbon technologies. The extent of these impacts will vary across industries, depending on their energy intensities, the mix of energy sources they rely on and how energy is used in production activities (heat and power, feedstock). Of relevance is also the speed and rigor with which industries adopt new technologies and retire (or replace) old ones. Other factors affecting these impacts include an industry's vulnerability to foreign imports and its ability to pass through cost increases to its customers in the face of international market competition. (author)

  18. Climate policy impacts on the competitiveness of energy-intensive manufacturing sectors

    International Nuclear Information System (INIS)

    Bassi, Andrea M.; Yudken, Joel S.; Ruth, Matthias

    2009-01-01

    This study examines the impacts of energy price changes resulting from different carbon-pricing policies on the competitiveness of selected US energy-intensive industries. It further examines possible industry responses, and identifies and provides a preliminary evaluation of potential opportunities to mitigate these impacts. The industry sectors investigated - steel, aluminum, chemicals and paper - are among the largest industrial users of fossil fuels in the US economy. The results of this examination show that climate policies that put a price on carbon could have substantial impacts on the competitiveness of US energy-intensive manufacturing sectors over the next two decades, if climate regulations are applied only in the United States, and no action is taken to invest in advanced low- and no-carbon technologies. The extent of these impacts will vary across industries, depending on their energy intensities, the mix of energy sources they rely on and how energy is used in production activities (heat and power, feedstock). Of relevance is also the speed and rigor with which industries adopt new technologies and retire (or replace) old ones. Other factors affecting these impacts include an industry's vulnerability to foreign imports and its ability to pass through cost increases to its customers in the face of international market competition.

  19. The near-term impacts of carbon mitigation policies on manufacturing industries

    International Nuclear Information System (INIS)

    Morgenstern, Richard D.; Ho Mun; Shih, J.-S.; Zhang Xuehua

    2004-01-01

    Who pays for new policies to reduce carbon dioxide and other greenhouse gas emissions in the United States? This paper considers a slice of the question by examining the near-term impact on domestic manufacturing industries of both upstream (economy-wide) and downstream (electric power industry only) carbon mitigation policies. Detailed Census data on the electricity use of four-digit manufacturing industries are combined with input-output information on inter-industry purchases to paint a detailed picture of carbon use, including effects on final demand. Regional information on electricity supply and use by region is also incorporated. A relatively simple model is developed which yields estimates of the relative burdens within the manufacturing sector of alternative carbon policies. Overall, the principal conclusion is that within the manufacturing sector (which by definition excludes coal production and electricity generation), only a small number of industries would bear a disproportionate short-term burden of a carbon tax or similar policy. Not surprisingly, an electricity-only policy affects very different manufacturing industries than an economy-wide carbon tax

  20. Manufacturing of Nanocomposite Carbon Fibers and Composite Cylinders

    Science.gov (United States)

    Tan, Seng; Zhou, Jian-guo

    2013-01-01

    Pitch-based nanocomposite carbon fibers were prepared with various percentages of carbon nanofibers (CNFs), and the fibers were used for manufacturing composite structures. Experimental results show that these nanocomposite carbon fibers exhibit improved structural and electrical conductivity properties as compared to unreinforced carbon fibers. Composite panels fabricated from these nanocomposite carbon fibers and an epoxy system also show the same properties transformed from the fibers. Single-fiber testing per ASTM C1557 standard indicates that the nanocomposite carbon fiber has a tensile modulus of 110% higher, and a tensile strength 17.7% times higher, than the conventional carbon fiber manufactured from pitch. Also, the electrical resistance of the carbon fiber carbonized at 900 C was reduced from 4.8 to 2.2 ohm/cm. The manufacturing of the nanocomposite carbon fiber was based on an extrusion, non-solvent process. The precursor fibers were then carbonized and graphitized. The resultant fibers are continuous.

  1. Convergence of carbon dioxide emissions in different sectors in China

    International Nuclear Information System (INIS)

    Wang, Juan; Zhang, Kezhong

    2014-01-01

    In this paper, we analyze differences in per capita carbon dioxide emissions from 1996 to 2010 in six sectors across 28 provinces in China and examine the σ-convergence, stochastic convergence and β-convergence of these emissions. We also investigate the factors that impact the convergence of per capita carbon dioxide emissions in each sector. The results show that per capita carbon dioxide emissions in all sectors converged across provinces from 1996 to 2010. Factors that impact the convergence of per capita carbon dioxide emissions in each sector vary: GDP (gross domestic product) per capita, industrialization process and population density impact convergence in the Industry sector, while GDP per capita and population density impact convergence in the Transportation, Storage, Postal, and Telecommunications Services sector. Aside from GDP per capita and population density, trade openness also impacts convergence in the Wholesale, Retail, Trade, and Catering Service sector. Population density is the only factor that impacts convergence in the Residential Consumption sector. - Highlights: • Analyze differences in CO 2 emissions in six sectors among 28 provinces in China. • Examine the convergence of CO 2 emissions in six sectors. • Investigate factors impact on convergence of CO 2 emissions in each sector. • Factors impact on convergence of per capita CO 2 emissions in each sector vary

  2. Formic Acid Manufacture: Carbon Dioxide Utilization Alternatives

    Directory of Open Access Journals (Sweden)

    Marta Rumayor

    2018-06-01

    Full Text Available Carbon dioxide (CO2 utilization alternatives for manufacturing formic acid (FA such as electrochemical reduction (ER or homogeneous catalysis of CO2 and H2 could be efficient options for developing more environmentally-friendly production alternatives to FA fossil-dependant production. However, these alternatives are currently found at different technological readiness levels (TRLs, and some remaining technical challenges need to be overcome to achieve at least carbon-even FA compared to the commercial process, especially ER of CO2, which is still farther from its industrial application. The main technical limitations inherited by FA production by ER are the low FA concentration achieved and the high overpotentials required, which involve high consumptions of energy (ER cell and steam (distillation. In this study, a comparison in terms of carbon footprints (CF using the Life Cycle Assessment (LCA tool was done to evaluate the potential technological challenges assuring the environmental competitiveness of the FA production by ER of CO2. The CF of the FA conventional production were used as a benchmark, as well as the CF of a simulated plant based on homogeneous catalysts of CO2 and H2 (found closer to be commercial. Renewable energy utilization as PV solar for the reaction is essential to achieve a carbon-even product; however, the CF benefits are still negligible due to the enormous contribution of the steam produced by natural gas (purification stage. Some ER reactor configurations, plus a recirculation mode, could achieve an even CF versus commercial process. It was demonstrated that the ER alternatives could lead to lower natural resources consumption (mainly, natural gas and heavy fuel oil compared to the commercial process, which is a noticeable advantage in environmental sustainability terms.

  3. The efficiency improvement potential for coal, oil and electricity in China's manufacturing sectors

    International Nuclear Information System (INIS)

    Li, Ke; Lin, Boqiang

    2015-01-01

    This paper introduces an improved total-factor ESTR (energy-saving target ratio) index, which combines the sequence technique and the “energy direction” to a DEA (data envelopment analysis) model, in order to measure the possible energy saving potential of a manufacturing sector. Afterward, the energy saving potentials of four different energy carriers, namely coal, gasoline, diesel oil and electricity, for 27 manufacturing sectors during the period of 1998–2011 in China are calculated. The results and its policy implications are as follows: (1) the average ESTRs of coal, gasoline, diesel oil and electricity are 1.714%, 49.939%, 24.465% and 3.487% respectively. Hence, energy saving of manufacturing sectors should put more emphasis on gasoline and diesel oil. (2) The key sectors for gasoline saving is the energy-intensive sectors, while the key sectors for diesel oil saving is the equipment manufacturing sectors. (3) The manufacture of raw chemical materials and chemical products sector not only consumes a large amount of oil, but also has a low efficiency of oil usage. Therefore, it is the key sector for oil saving. (4) Manufacture of tobacco and manufacture of communication equipment, computers and other electronic equipment are the benchmark for the four major energy carriers of energy-saving ratios. - Highlights: • An improved total-factor energy-saving target ratio is proposed. • Energy saving potentials of energy carriers for sectors in 1998–2011 are calculated. • Policy implications for energy savings in sectors and energy carriers are discussed. • Some suggestions for the energy policies of China's economy are discussed

  4. Decoupling Economic Growth and Energy Use. An Empirical Cross-Country Analysis for 10 Manufacturing Sectors

    Energy Technology Data Exchange (ETDEWEB)

    Mulder, P. [International Institute for Applied Systems Analysis, Laxenburg (Austria); De Groot, H.L.F. [Faculty of Economics and Business Administration, Vrije Universiteit, Amsterdam (Netherlands)

    2004-07-01

    This paper provides an empirical analysis of decoupling economic growth and energy use and its various determinants by exploring trends in energy- and labour productivity across 10 manufacturing sectors and 14 OECD countries for the period 1970-1997. We explicitly aim to trace back aggregate developments in the manufacturing sector to developments at the level of individual subsectors. A cross-country decomposition analysis reveals that in some countries structural changes contributed considerably to aggregate manufacturing energy-productivity growth and, hence, to decoupling, while in other countries they partly offset energy-efficiency improvements. In contrast, structural changes only play a minor role in explaining aggregate manufacturing labour-productivity developments. Furthermore, we find labour-productivity growth to be higher on average than energy-productivity growth. Over time, this bias towards labour-productivity growth is increasing in the aggregate manufacturing sector, while it is decreasing in most manufacturing subsectors.

  5. Sensitivity of stock market indices to oil prices: Evidence from manufacturing sub-sectors in Turkey

    Directory of Open Access Journals (Sweden)

    Eksi Halil Ibrahim

    2012-01-01

    Full Text Available Crude oil price is a critical cost factor for manufacturing industries that are of vital importance for economic growth. This study examines the relationship between crude oil prices and the indices of seven Turkish manufacturing sub-sectors over the period 1997:01-2009:12. The error correction model results reveal the long term causality from crude oil prices to chemical petroleum-plastic and basic metal sub-sectors indicating that these sub-sectors are highly sensitive to crude oil prices. We find no causal relationship for other sector indices for short or long time periods.

  6. Analysis of energy consumption and carbon dioxide emissions in ceramic tile manufacture

    International Nuclear Information System (INIS)

    Monfort, E.; Mezquita, A.; Granel, R.; Vaquer, E.; Escrig, A.; Miralles, A.; Zaera, V.

    2010-01-01

    The ceramic tile manufacturing process is energy intensive since it contains several stages in which the product is subject to thermal treatment. The thermal energy used in the process is usually obtained by combustion of natural gas, which is a fossil fuel whose oxidation produces emissions of carbon dioxide, a greenhouse gas. Energy costs account for 15% of the average direct manufacturing costs, and are strongly influenced by the price of natural gas, which has increased significantly in the last few years. Carbon dioxide emissions are internationally monitored and controlled in the frame of the Kyoto Protocol. Applicable Spanish law is based on the European Directive on emissions trading, and the assignment of emissions rights is based on historical values in the sectors involved. Legislation is scheduled to change in 2013, and the resulting changes will directly affect the Spanish ceramic tile manufacturing industry, since many facilities will become part of the emissions trading system. The purpose of this study is to determine current thermal energy consumption and carbon dioxide emissions in the ceramic tile manufacturing process. A comprehensive sectoral study has been carried out for this purpose on several levels: the first analyses energy consumption and carbon dioxide emissions in the entire industry; the second determines energy consumption and carbon dioxide emissions in industrial facilities over a long period of time (several months); while the third level breaks down these values, determining energy consumption and emissions in terms of the product made and the manufacturing stage. (Author) 8 refs.

  7. Sectoral approaches to improve regional carbon budgets

    NARCIS (Netherlands)

    Smith, P.; Nabuurs, G.J.; Janssens, I.A.; Reis, S.; Marland, G.; Soussana, J.F.; Christensen, T.R.; Heath, L.; Apps, M.; Alexeyev, V.; Fang, J.; Gattuso, J.P.; Guerschman, J.P.; Huang, Y.; Jobbagy, E.; Murdiyarso, D.; Ni, J.; Nobre, A.; Peng, C.; Walcroft, A.; Wang, S.Q.; Pan, Y.; Zhou, G.S.

    2008-01-01

    Humans utilise about 40% of the earth¿s net primary production (NPP) but the products of this NPP are often managed by different sectors, with timber and forest products managed by the forestry sector and food and fibre products from croplands and grasslands managed by the agricultural sector. Other

  8. Application of Nanotechnology in the Manufacturing Sector: A Review

    African Journals Online (AJOL)

    This review of the manufacturing processes in the evolving field of nanotechnology describes the production of nanomaterials by the modification of conventional production techniques. A number of the manufacturing techniques for nanomaterials production and the challenges in the adaptation of the processes to enable ...

  9. Exchange Rate Volatility, Its Determinants and Effects on the Manufacturing Sector in Nigeria

    OpenAIRE

    Chimaobi V. Okolo; Onyinye S. Ugwuanyi; Kenneth A. Okpala

    2017-01-01

    This study evaluated the effect of exchange rate volatility on the manufacturing sector of Nigeria. The flow and stock market theories of exchange rate determination was adopted considering macroeconomic determinants such as balance of trade, trade openness, and net international investment. Furthermore, the influence of changes in parallel exchange rate, official exchange rate and real effective exchange rate was modeled on the manufacturing sector output. Vector autoregression techniques an...

  10. Management Accounting in the Manufacturing Sector: Managing Costs at the Design and Production Stages

    NARCIS (Netherlands)

    Davila, Tony; Wouters, Marc; Chapman, Christopher S.; Hopwood, Anthony G.; Shields, Michael D.

    2006-01-01

    This chapter analyzes the empirical research literature on management accounting in the manufacturing sector including the development as well and manufacturing phases of the product lifecycle. As managing product development has gained terrain in companies over the last 15 years, management

  11. 76 FR 41266 - Critical Path Manufacturing Sector Research Initiative (U01)

    Science.gov (United States)

    2011-07-13

    ... including nanotechnology are not fully developed in the public sector. This work will develop technology... manufacturing techniques for these products. Development of models for manufacturing and engineering of device products such as infusion pumps, prosthetic organs, defibrillators, tissue engineering devices, and...

  12. Biomass sector review for the Carbon Trust

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-10-26

    The review drew on an extensive number of sources, including a detailed literature survey, in-house references, questionnaires and interviews with trade associations, industry participants and industry observers. The policy observations that were drawn from the review, together with the results of the analysis itself, were subject to a detailed peer review with leading industry participants, observers and academics. The purpose of this document, is to place the results of this analysis in the public domain and to ensure that it is available to those interested in developing the biomass sector in the UK. Screening of the available biomass resource in the UK highlighted four key biomass fuels: forestry crops, dry agricultural residue, waste wood arid woody energy crops. The four fuels could have a material impact on UK energy supply when used for heat and power. Currently they have the potential to supply up to an additional. 41TWh/yr or about 1.5% of UK energy supply. In the future this could rise to c.80TWh/yr, mainly through expansion in the supply of woody energy crops and/or dry agricultural residue. If available resources are used for biofuels the level of potential carbon saving decreases significantly compared with providing heat or electricity due to lower conversion efficiency. Consequently, biofuels are not covered in depth in this report. Although the UK has a considerable amount of biomass resource, gaining access to it is not always viable for developers and end-users as the UK. currently has a relatively undeveloped biomass fuel supply infrastructure. Just as biomass can be drawn from a number or sources, it can be converted to useful energy through a number of processes and delivered to a variety of markets. Our screening of biomass conversion processes demonstrated that currently combustion represents the best area of focus. Combustion is a proven, established conversion process and the lowest cost option available today. Co-firing was not analysed

  13. Discriminant analysis in Polish manufacturing sector performance assessment

    Directory of Open Access Journals (Sweden)

    Józef Dziechciarz

    2004-01-01

    Full Text Available This is a presentation of the preliminary results of a larger project on the determination of the attractiveness of manufacturing branches. Results of the performance assessment of Polish manufacturing branches in 2000 (section D „Manufacturing” – based on NACE – Nomenclatures des Activites de Communite Europeene are shown. In the research, the classical (Fisher’s linear discriminant analysis technique was used for the analysis of the profit generation ability by the firms belonging to a certain production branch. For estimation, the data describing group level was used – for cross-validation, the classes data.

  14. Taxing Electricity Sector Carbon Emissions at Social Cost

    OpenAIRE

    Paul, Anthony; Beasley, Blair; Palmer, Karen

    2013-01-01

    Concerns about budget deficits, tax reform, and climate change are fueling discussions about taxing carbon emissions to generate revenue and reduce greenhouse gas emissions. Imposing a carbon tax on electricity production based on the social cost of carbon (SCC) could generate between $21 and $82 billion in revenues in 2020 and would have important effects on electricity markets. The sources of emissions reductions in the sector depend on the level of the tax. A carbon tax based on lower SCC ...

  15. Carbon Fiber Manufacturing Facility Siting and Policy Considerations: International Comparison

    Energy Technology Data Exchange (ETDEWEB)

    Cook, Jeffrey J. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Booth, Samuel [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2017-06-21

    Carbon fiber is increasingly used in a wide variety of applications due largely to its superior material properties such as high strength-to-weight ratio. The current global carbon fiber manufacturing industry is predominately located in China, Europe, Japan, and the United States. The carbon fiber market is expected to expand significantly through 2024 and to require additional manufacturing capacity to meet demand. Carbon fiber manufacturing facilities can offer significant economic development and employment opportunities as exemplified by the $1 billion investment and 500 jobs expected at a new Toray plant in Moore, South Carolina. Though the market is expected to expand, it is unclear where new manufacturing facilities will locate to meet demand. This uncertainty stems from the lack of research evaluating how different nations with significant carbon fiber manufacturing capacity compare as it relates to certain manufacturing facility siting factors such as costs of labor and energy as well as policy directed at supporting carbon fiber development, domestic deployment, and exports. This report fills these gaps by evaluating the top carbon fiber manufacturing countries, including China, European Union countries, Japan, Mexico, South Korea, Taiwan, and the United States. The report documents how the United States compares to these countries based on a range of manufacturing siting considerations and existing policies related to carbon fiber. It concludes with a discussion of various policy options the United States could adopt to both (1) increase the competitiveness of the United States as it relates to attracting new carbon fiber manufacturing and (2) foster broader end-use markets for deployment.

  16. Manufacturing progress on the first sector and lower ports for ITER vacuum vessel

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, H.J., E-mail: hjahn@nfri.re.kr [National Fusion Research Institute, Daejeon 305-333 (Korea, Republic of); Kim, H.S.; Kim, G.H.; Park, C.K.; Hong, G.H.; Jin, S.W.; Lee, H.G.; Jung, K.J. [National Fusion Research Institute, Daejeon 305-333 (Korea, Republic of); Lee, J.S.; Kim, T.S.; Won, J.G.; Roh, B.R.; Park, K.H. [Hyundai Heavy Industries Co. Ltd., Ulsan 682-792 (Korea, Republic of); Sa, J.W.; Choi, C.H.; Sborchia, C. [ITER Organization, Route de Vinon sur Verdon, 13115 Saint Paul-lez-Durance (France)

    2016-11-01

    Highlights: • All manufacturing drawings of the first sector of VV have been completed. • Full scale mock-ups have been constructed to verify fabrication procedure. • Qualifications for welding and forming are done and for NDE are ongoing. • Manufacturing progress is around 40% for the sector and LPSE up to the end of 2015. - Abstract: Manufacturing design of Korean sectors and ports for the ITER Vacuum Vessel (VV) has been developed to comply with the tight tolerance and severe inspection requirements. The first VV sector and lower ports are being fabricated slowly under strict regulations after verification using several real scale mock-ups and qualifications for welding, forming and NDE. During three years after start of fabrication, manufacturing progress on four poloidal segments of the first sector is that (1) all inner shells were welded, (2) forgings for complicate components have been machined, (3) port stubs and poloidal T-ribs were assembled, and (4) machined components are welded on the inner shells by narrow-gap TIG welding and electron beam welding. The progress of lower ports is that (1) inner shells of stub extensions were bent and treated with heat, (2) T-ribs were fabricated and examined by qualified phased array UT, (3) supporting pads and gussets have been machined, and (4) inner shells are assembled with T-ribs and machined forgings. The progress rate of manufacturing is around 40% up to the end of 2015 for the first sector and lower port stub extensions.

  17. Prioritization of manufacturing sectors in Serbia for energy management improvement – AHP method

    International Nuclear Information System (INIS)

    Jovanović, Bojana; Filipović, Jovan; Bakić, Vukman

    2015-01-01

    Highlights: • We used AHP method to prioritize manufacturing sectors in Serbia. • Priorities for energy management improvement according to five criteria. • Rank 1 – “Manufacture of food products”. • Rank 2 – “Manufacture of motor vehicles, trailers and semi-trailers”. • Rank 3 – “Manufacture of other non-metallic mineral products”. - Abstract: Manufacturing, which is destined to play the most significant role in the reindustrialization of Serbia is also one of the largest energy consumers and environmental polluters. In accordance with this, a large number of energy and environment management initiatives have been implemented over the years. In developed countries, these initiatives are at an advanced level, but not in Serbia. A group of manufacturers in Serbia has recognized the significance of the environmental initiatives implementation, but the interest in energy management improvement has remained low. Although these initiatives can be used to achieve cost reduction in industry, not all the manufacturing sectors equally value the importance of energy management improvement. Among all the manufacturing sectors, it is necessary to prioritize those with the potentials for energy management improvement, which can be done using different methods. In this paper, the AHP (Analytic Hierarchy Process) method was used to prioritize manufacturing sectors in Serbia in the area of energy management improvement. Using a created AHP questionnaires criteria weights were selected. These questionnaires were completed by the experts from the Serbian Chamber of Commerce and Industry, providing us with the opportunity to evaluate the Serbian manufacturing sectors based on the real life data. The results of the AHP method, which was used as the prioritization instrument, and their analysis are presented in the paper. As a part of a wider study, aimed at the improvement of the energy management in Serbia, the three manufacturing sectors with the highest

  18. International Assessment of Carbon Nanotube Manufacturing and Applications

    National Research Council Canada - National Science Library

    Eklund, Peter; Ajayan, Pulickel; Blackmon, Robert; Hart, A. J; Kong, Jing; Pradhan, Bhabendra; Rao, Apparao; Rinzler, Andrew

    2007-01-01

    This WTEC study focuses on the manufacturing and applications of carbon nanotubes "CNTs" to identify recent progress in understanding the commercial potential of CNTs as viewed by academic, industrial...

  19. Clean Energy Manufacturing Analysis Center. 2015 Research Highlights -- Carbon Fiber

    Energy Technology Data Exchange (ETDEWEB)

    Das, Sujit [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-03-01

    CEMAC has conducted four major studies on the manufacturing of clean energy technologies. Three of these focused on the end product: solar photovoltaic modules, wind turbines, and automotive lithium-ion batteries. The fourth area focused on a key material for manufacturing clean energy technologies, carbon fiber.

  20. Analysis of China’s Carbon Emissions Base on Carbon Flow in Four Main Sectors: 2000–2013

    Directory of Open Access Journals (Sweden)

    Xin Li

    2017-04-01

    Full Text Available Reducing carbon emissions is a major way to achieve green development and sustainability for China’s future. This paper elaborates the detailed features of China’s carbon flow for 2013 with the carbon flow chart and shows the changing characteristics of China’s CO2 flow from the viewpoint of specific sectors and energies from 2000 and 2013. The results show that (1 from 2000 to 2013, China’s CO2 emissions approximately grew by 9% annually, while the CO2 intensity of China diminished at different rates. (2 The CO2 emissions from the secondary industry are prominent from the perspective of four main sectors, accounting for 83.5% of emissions. Manufacturing plays an important part in the secondary industry with 45% of the emissions, in which the “smelting and pressing of metal” takes up a large percentage of about 50% of the emissions from manufacturing. (3 The CO2 emissions produced by coal consumption are dominant in energy-related emissions with a contribution of 65%, which will decrease in the future. (4 From the aspect of different sectors, the CO2 emissions mainly come from the “electricity and heating” sector and the “smelting, pressing and manufacturing of metals” sub-sector. It is essential and urgent to propose concrete recommendations for CO2 emissions mitigation. Firstly, the progression of creative technology is inevitable and undeniable. Secondly, the government should make different CO2 emissions reduction policies among different sectors. For example, the process emissions play an important role in “non-metallic minerals” while in “smelting and manufacturing of metals” it is energy emissions. Thirdly, the country can change the energy structure and promote renewable energy that is powered by wind or other low-carbon energy sources. Alternatively, coke oven gas can be a feasible substitution. Finally, policy makers should be aware that the emissions from residents have been growing at a fast rate. It is

  1. The impact of Foreign Direct Investments on employment: the case of the Macedonian manufacturing sector

    Directory of Open Access Journals (Sweden)

    Dimitar NIKOLOSKI

    2017-12-01

    Full Text Available As a less developed post-transition country, Macedonia has marked a moderate growing economic performance coupled with high and sustained unemployment during the past decade. In this context, fostering FDI has been promoted by the Macedonian government as one of the main instruments for generating employment and providing further economic development. The aim of this paper is to assess the impact of FDI on employment in Macedonian manufacturing sectors, which has been assessed by applying a single equation error correction model. The results indicate that FDI and personnel costs are statistically significant factors that positively affect employment in the manufacturing sub-sectors which, due to their interaction, might indicate higher productivity in the companies with FDI. In addition, the negative impact of the relative personnel cost per employee vis-à-vis Serbia in the short-run reaffirms the assertion that FDI in the Macedonian manufacturing sectors is mainly driven by efficiency seeking motives.

  2. Challenging issues in the design and manufacturing of the European sectors of the ITER vacuum vessel

    International Nuclear Information System (INIS)

    Dans, Andres; Jucker, P.; Bayon, A.; Arbogast, J.-F.; Caixas, J.; Fernández, J.; Micó, G.; Pacheco, J.; Trentea, A.; Stamos, V.

    2014-01-01

    Highlights: • ITER Vacuum Vessel was described with its features and particularities. • Engineering and CAD design of Sector 5 is finish; the work of sectors 3 and 4 is ongoing. • Fabrication Mock Ups almost finished with an important know-how acquired. • Procurement of raw material (plates and forgings) started. • Qualification of welding, NDT and forming close to be finished. - Abstract: Fusion for Energy (F4E), the European Domestic Agency for the ITER project, has to supply seven sectors as part of the European contribution to the project. F4E signed the Procurement Agreement with ITER Organization (IO) in 2009. After a call for tender in 2010, the contract for the manufacturing of seven sectors was placed in October 2010 to a consortium of three Italian companies, Ansaldo, Mangiarotti and Walter Tosto (AMW). The first sector in the manufacturing route is Sector 5 (later will come 4, 3, 2, 9, 8, 7). This paper will cover: the status of the engineering activities, design, procurement and preparation to begin the manufacturing in 2013. Also will be presented the statutory and regulatory requirements of the French Nuclear Safety regulator and the status of the relevant R and D mock-ups to demonstrate manufacturing feasibility control of distortions (using predictions with analysis and algorithms to change in real time the manufacturing route in order to correct such distortions, inspectability and metrology). Another important aspect at this stage of the manufacturing is qualification of activities like welding, Non-destructive Examination and Hot Forming. This paper describes the status of the activities currently in process in order to meet with the challenging design, schedule and high quality requirements of the project

  3. Challenging issues in the design and manufacturing of the European sectors of the ITER vacuum vessel

    Energy Technology Data Exchange (ETDEWEB)

    Dans, Andres, E-mail: andresdans@gmail.com; Jucker, P.; Bayon, A.; Arbogast, J.-F.; Caixas, J.; Fernández, J.; Micó, G.; Pacheco, J.; Trentea, A.; Stamos, V.

    2014-10-15

    Highlights: • ITER Vacuum Vessel was described with its features and particularities. • Engineering and CAD design of Sector 5 is finish; the work of sectors 3 and 4 is ongoing. • Fabrication Mock Ups almost finished with an important know-how acquired. • Procurement of raw material (plates and forgings) started. • Qualification of welding, NDT and forming close to be finished. - Abstract: Fusion for Energy (F4E), the European Domestic Agency for the ITER project, has to supply seven sectors as part of the European contribution to the project. F4E signed the Procurement Agreement with ITER Organization (IO) in 2009. After a call for tender in 2010, the contract for the manufacturing of seven sectors was placed in October 2010 to a consortium of three Italian companies, Ansaldo, Mangiarotti and Walter Tosto (AMW). The first sector in the manufacturing route is Sector 5 (later will come 4, 3, 2, 9, 8, 7). This paper will cover: the status of the engineering activities, design, procurement and preparation to begin the manufacturing in 2013. Also will be presented the statutory and regulatory requirements of the French Nuclear Safety regulator and the status of the relevant R and D mock-ups to demonstrate manufacturing feasibility control of distortions (using predictions with analysis and algorithms to change in real time the manufacturing route in order to correct such distortions, inspectability and metrology). Another important aspect at this stage of the manufacturing is qualification of activities like welding, Non-destructive Examination and Hot Forming. This paper describes the status of the activities currently in process in order to meet with the challenging design, schedule and high quality requirements of the project.

  4. Relationship between Parafiscal Contributions and Labor Demand in the Manufacturing Sector in Colombia (2001-2010

    Directory of Open Access Journals (Sweden)

    Héctor Fabio Ríos Hernández

    2016-04-01

    Full Text Available This research aims to analyze the behavior of labor demand in the manufacturing sector, in relation to parafiscal contributions and labor costs in the period between 2001 and 2010. To meet this objective, output and labor cost elasticity of employment are calculated for skilled and unskilled workers, through panel data fixed effects methodology, using the Annual Manufacturing Survey; the correction of errors was performed by feasible generalized least squares (FGLS and panel-corrected standard errors (PCSE method.

  5. Reshoring: Opportunities and Limits for Manufacturing in the UK – the case of the Auto Sector

    OpenAIRE

    David Bailey; Lisa De Propris

    2014-01-01

    ?In recent years, ‘offshoring’ and ‘outsourcing’ have transformed fundamentally nationally based auto sectors into global networks of design, production and distribution across the global value chains coordinated by the major automotive Original Equipment Manufacturers (OEMs). As manufacturing activities tended to be shifted to low-labour cost locations in Asia, Africa and Latin America, high-end design, R&D, product development have stayed anchored mostly to high-cost and high knowledge-inte...

  6. Why do firms invest in accounts receivable? An empirical investigation of the Malaysian manufacturing sector

    OpenAIRE

    Paul, S.; Guermat, C.; Devi, S.

    2017-01-01

    The purpose of this paper is to investigate the factors that influence Malaysian manufacturing sector investment in accounts receivable, an asset seen by many as one of the riskiest in any company’s balance sheet. We test several theories, related to accounts receivable, using a cross-section of 262 listed manufacturing firms over a period of five years (2007-2011). Both fixed and random effect approaches are considered to deal with potential heterogeneity across firms. Our results show that ...

  7. Decomposing Brazilian manufacturing industry dynamics in the mid-2000s: Macroeconomic factors and their sectoral impacts

    Directory of Open Access Journals (Sweden)

    Edson Paulo Domingues

    2017-09-01

    Full Text Available The manufacturing industry's loss in participation, phenomena called “deindustrialization”, has been observed for the Brazilian economy for a while and seems to have intensified from mid-2000s. However, the literature has not developed a consistent or integrated analysis of this process. We have used a detailed simulation model to identify how macroeconomic factors (such as exchange rate, labor costs, and household consumption have contributed to manufacturing dynamics. Our results indicate that the macroeconomic scenario explains a large portion of the manufacturing industry's participation loss. The rise in households consumption and investment, important factors in this period, were responsible for dampening of the pressures coming from the currency appreciation and the workforce costs, benefiting some industrial sectors, but not avoiding the manufacturings participation loss. Keywords: Manufacturing, Growth, Development, Simulations, JEL classification: O14, C68, D58

  8. Investment, finance and the business cycle : Evidence from the Dutch manufacturing sector

    NARCIS (Netherlands)

    vanEes, H; Kuper, GH; Sterken, E

    In this paper we analyse the impact of profits on investment using data from the Dutch manufacturing sector in a simple Kaleckian investment model. Profits and capacity determine the level of investment. The empirical analysis of this 'non-mainstream' model confirms conclusions drawn in the context

  9. Energy use efficiency in the Indian manufacturing sector: An interstate analysis

    International Nuclear Information System (INIS)

    Mukherjee, Kankana

    2008-01-01

    This paper approaches the measurement of energy efficiency from a production theoretic framework and uses Data Envelopment Analysis to measure energy efficiency in the Indian manufacturing sector. Using data from the Annual Survey of Industries for the years 1998-99 through 2003-04, the study compares the energy efficiency in manufacturing across states, based on several models. The results show considerable variation in energy efficiency across states. Comparing the results across our models, we find that the relative pricing of energy does not provide the appropriate incentives for energy conservation. A second-stage regression analysis reveals that states with a larger share of manufacturing output in energy-intensive industries have lower energy efficiency. Also, higher quality labor force associates with higher energy efficiency. Finally, the power sector reforms have not yet had any significant impact on achieving energy efficiency

  10. In-line manufacture of carbon nanotubes

    Science.gov (United States)

    Brambilla, Nicol Michele; Signorelli, Riccardo; Martini, Fabrizio; Corripio Luna, Oscar Enrique

    2015-04-28

    Mass production of carbon nanotubes (CNT) are facilitated by methods and apparatus disclosed herein. Advantageously, the methods and apparatus make use of a single production unit, and therefore provide for uninterrupted progress in a fabrication process. Embodiments of control systems for a variety of CNT production apparatus are included.

  11. Carbon footprint as environmental performance indicator for the manufacturing industry

    DEFF Research Database (Denmark)

    Laurent, Alexis; Olsen, Stig Irving; Hauschild, Michael Zwicky

    2010-01-01

    With the current focus on our climate change impacts, the embodied CO2 emission or "Carbon footprint" is often used as an environmental performance indicator for our products or production activities. The ability of carbon footprint to represent other types of impact like human toxicity, and hence...... the overall environmental impact is investigated based on life cycle assessments of several materials of major relevance to manufacturing industries. The dependence of the carbon footprint on the assumed scenarios for generation of thermal and electrical energy in the life cycle of the materials is analyzed......, and the appropriateness of carbon footprint as an overall indicator of the environmental performance is discussed....

  12. 78 FR 39533 - Power Sector Carbon Pollution Standards

    Science.gov (United States)

    2013-07-01

    ... Sector Carbon Pollution Standards Executive Order 13647--Establishing the White House Council on Native... speeding the transition to more sustainable sources of energy. The Environmental Protection Agency (EPA.... (Presidential Sig.) THE WHITE HOUSE, Washington, June 25, 2013. [FR Doc. 2013-15941 Filed 6-28-13; 11:15 am...

  13. Potential Consequences of the Energiewende for the Manufacturing Sector in Germany

    Directory of Open Access Journals (Sweden)

    Bardt Hubertus

    2015-12-01

    Full Text Available The abandonment of nuclear power and new focus on renewable energy sources represents a fundamental change in the structure of Germany’s electricity supply. In the wake of this change in energy policy (which is widely referred to as an energy turnaround, prices started to rise immediately and further increases are to be expected in the years ahead. For the manufacturing sector, this cost burden has been mitigated by exempting energy-intensive sectors from additional costs. However, this causes high levels of uncertainty for large electricity consumers as their current exceptional status may be called into question at some point in the future.

  14. Tendency of Embodied Carbon Change in the Export Trade of Chinese Manufacturing Industry from 2000 to 2015 and Its Driving Factors

    Directory of Open Access Journals (Sweden)

    Ji Guo

    2018-06-01

    Full Text Available The manufacturing industry is an important part of the national industrial system, and is usually an industry with high carbon content. However, few studies have been carried out on the total amount, structure and the trend of the embodied carbon emission in the international trade of the Chinese manufacturing industry. Based on the input–output method, the thesis proposes the coefficient of direct carbon emission and complete carbon emission and a method for calculating the embodied carbon of the export trade. It also calculates the coefficient of direct carbon emission and complete carbon emission for the Chinese manufacturing sector from 2000 to 2015 and breaks down the embodied carbon change of export trade in the manufacturing industry to a technological effect, structural effect and scale effect by using the method of structural decomposition. Several inspiring conclusions could be drawn from the thesis. For example: (1 the coefficient of both the direct carbon emission and the complete carbon emission has been decreasing significantly, indicating the achievements of the energy saving and emission reduction of the Chinese manufacturing industry. (2 The embodied carbon emission from the manufacturing exports remains high and presents a rising tendency. The main sectors that export the embodied carbon includes “S10 mechanical equipment and instruments”, “S9 metal products”, “S6 chemical industry”, etc., which should be the key sectors on reducing embodied carbon in exports. (3 The driving force of the embodied carbon exports lies in the scale effect of the manufacturing industry, on which the technical effect of the industry has a significant negative effect. The structural effect should have a positive influence that takes on a rising tendency; generally, this effect is only two-thirds of the scale effect. Finally, the corresponding policy suggestions have been made.

  15. Low carbon society scenario 2050 in Thai industrial sector

    International Nuclear Information System (INIS)

    Selvakkumaran, Sujeetha; Limmeechokchai, Bundit; Masui, Toshihiko; Hanaoka, Tatsuya; Matsuoka, Yuzuru

    2014-01-01

    Highlights: • Thai industrial sector has been modelled using AIM/Enduse model. • Potential mitigation of CO 2 for 2050 is approximately 20% from Baseline scenario. • Abatement cost curves show that varied counter measures are practical in the industrial sector. • Energy security is enhanced due to CO 2 mitigation in the LCS scenario. - Abstract: Energy plays a dominant role in determining the individual competitiveness of a country and this is more relevant to emerging economies. That being said, energy also plays an important and ever expanding role in carbon emissions and sustainability of the country. As a developing country Thailand’s industrial sector is vibrant and robust and consumes majority of the energy. In addition, it also has the highest CO 2 emissions, provided the emissions of power generation are taken into account. Industry also accounts for the highest consumption of electricity in Thailand. The objective of this study is to model the Thai industrial energy sector and estimate the mitigation potential for the timeframe of 2010–2050 using the principles of Low Carbon Society (LCS). In addition, the paper would also evaluate emission tax as a key driver of Greenhouse Gas (GHG) mitigation along with Marginal Abatement Cost (MAC) analysis. Another secondary objective is to analyse the impact of mitigation on energy security of the industrial sector. The Thai industrial sector was modelled using AIM/Enduse model, which is a recursive dynamic optimisation model belonging to the Asia–Pacific Integrated Model (AIM) family. Thai industrial sector was divided into nine sub-sectors based on national economic reporting procedures. Results suggest that the mitigation potential in 2050, compared to the Baseline scenario, is around 20% with positive impacts on energy security. The Baseline emission will approximately be 377 Mt-CO 2 in the industrial sector. All four indicators of energy security, Primary Energy Intensity, Carbon Intensity, Oil

  16. The physical nature and manufacture of activated carbon

    Energy Technology Data Exchange (ETDEWEB)

    McDougall, G.J. (NCP, Bedfordview (South Africa))

    1991-04-01

    After defining activated carbon, the author describes its structure and outlines the physical characteristics distinguishing one type of activated carbon from another. The adsorptive properties of these carbons, the raw materials used, and the manufacturing processes - chemical activation, and physical or thermal activation - are eoutlined. The high-temperature thermal route (which is the most important for the products employed in gold recovery) using coconut shells or coals as the raw material is then discussed in some detail. 20 refs., 11 figs., 2 tabs.

  17. Carbon emission scenarios of China's power sector: Impact of controlling measures and carbon pricing mechanism

    Directory of Open Access Journals (Sweden)

    Qiang Liu

    2018-03-01

    Full Text Available The study constructs a low-carbon path analysis model of China's power sector based on TIMES model and presents a comparative analysis of carbon emissions under Reference, Low-Carbon and Enhanced Low-Carbon scenarios, and the main difference of the three scenarios is manifested by policy selection and policy strength. The conclusions are drawn as follows: (1 The peak of carbon emission in China's power sector will range from 4.0 GtCO2 to 4.8 GtCO2, which implies an increment of 0.5–1.3 billion or 14%–35% from the 2015 levels. (2 Introducing carbon price is an effective way to inhibit coal power and promote non-fossil fuels and Carbon Capture, Utilization and Storage applications (CCUS. The carbon emission reduction effects will gradually increase with carbon price. When the carbon price attains to CN¥150 t−1CO2, the CO2 emission can decrease by 36% than that without carbon price. (3 CCUS is one of important contributing factor to reduce CO2 emission in power sector. Generally speaking, the development of non-fossil fuels and energy efficiency improvement are two main drivers for carbon mitigation, but once the carbon price reaches up to CN¥106 t−1CO2, the CCUS will be required to equip with thermal power units and its contribution on carbon emission reduction will remarkably increase. When carbon price increases to CN¥150 t−1CO2 in 2050, the application of CCUS will account for 44% of total emission reduction. (4 In the scenario with carbon price of CN¥150 t−1CO2, power sector would be decarbonized significantly, and the CO2 intensity will be 0.22 kgCO2 (kW h−1, but power sector is far from the goal that achieving net zero emission. In order to realize the long-term low greenhouse gas emission development goal that proposed by the Paris Agreement, more efforts are needed to be put to further reduce the carbon emission reduction of power sector. Based on the above scenario analysis, the study proposes four recommendations

  18. Electricity demand of manufacturing sector in Turkey. A translog cost approach

    International Nuclear Information System (INIS)

    Boeluek, Guelden; Koc, A. Ali

    2010-01-01

    This paper models factor demand for manufacturing sector in Turkey. We estimated a translog cost function with four factor consist of capital, labor, intermediate input and electricity over the 1980-2001. Our objective, taking in the consideration electricity as production input, was twofold: on the one hand, to estimate the price elasticity of electricity demand in manufacturing sector, and on the other hand to use cross-price and Morishima Elasticities of Substitution results for structural analysis regarding effects of electricity liberalization which initiated in 2001. Empirical result shows that electricity demand is relatively price sensitive (- 0.85). Our result in terms of electricity price is consistent with the previous studies. While electricity-labor and electricity-capital inputs are complementary, results indicate the existence of substitution possibilities between electricity and intermediate input. This means that changes in electricity prices have impact on labor demand and investment demand. These results have important implications for public policy. (author)

  19. Electricity demand of manufacturing sector in Turkey. A translog cost approach

    Energy Technology Data Exchange (ETDEWEB)

    Boeluek, Guelden; Koc, A. Ali [Akdeniz University, Department of Economics, Antalya, 07058 (Turkey)

    2010-05-15

    This paper models factor demand for manufacturing sector in Turkey. We estimated a translog cost function with four factor consist of capital, labor, intermediate input and electricity over the 1980-2001. Our objective, taking in the consideration electricity as production input, was twofold: on the one hand, to estimate the price elasticity of electricity demand in manufacturing sector, and on the other hand to use cross-price and Morishima Elasticities of Substitution results for structural analysis regarding effects of electricity liberalization which initiated in 2001. Empirical result shows that electricity demand is relatively price sensitive (- 0.85). Our result in terms of electricity price is consistent with the previous studies. While electricity-labor and electricity-capital inputs are complementary, results indicate the existence of substitution possibilities between electricity and intermediate input. This means that changes in electricity prices have impact on labor demand and investment demand. These results have important implications for public policy. (author)

  20. Emotional Intelligence and Organisational Citizenship Behaviour of Manufacturing Sector Employees: An Analysis

    Directory of Open Access Journals (Sweden)

    Susan Tee Suan Chin

    2011-06-01

    Full Text Available As with diversity, collaboration, co-operation and teamwork havebecome increasingly important issues for management to handle.The purpose of this study is to analyse the level of Emotional Intelligenceand Organisational Citizenship Behaviour among middlemanagement employees in the Malaysian manufacturing sector.A total of 536 employees from different organisations and industriestook part in this survey. Based on the descriptive analysis,employees in some industries tended to have a lower level ofemotional intelligence and organisational citizenship behaviour.

  1. Environmental Regulation and Competitiveness: Evidence from Trade and Production in the Manufacturing Sector

    OpenAIRE

    Yang, Tsung Yu

    2014-01-01

    Previous empirical studies of the pollution haven hypothesis (PHH) have not reached a consistent conclusion. The existing literature is primarily based on anecdotes and scattered case studies. This study analyzes the trade flows and composition change of the most polluting industries in manufacturing sectors among countries in order to offer a more general conclusion. This study finds that stricter environmental regulation stringency decreases the net export and production share of the most p...

  2. Occupational health profile of workers employed in the manufacturing sector of India.

    Science.gov (United States)

    Suri, Shivali; Das, Ranjan

    2016-01-01

    The occupational health scenario of workers engaged in the manufacturing sector in India deserves attention for their safety and increasing productivity. We reviewed the status of the manufacturing sector, identified hazards faced by workers, and assessed the existing legislations and healthcare delivery mechanisms. From October 2014 to March 2015, we did a literature review by manual search of pre-identified journals, general electronic search, electronic search of dedicated websites/databases and personal communication with experts of occupational health. An estimated 115 million workers are engaged in the manufacturing sector, though the Labour Bureau takes into account only one-tenth of them who work in factories registered with the government. Most reports do not mention the human capital employed neither their quality of life, nor occupational health services available. The incidence of accidents were documented till 2011, and industry-wise break up of data is not available. Occupational hazards reported include hypertension, stress, liver disease, diabetes, tuberculosis, eye/ hearing problems, cancers, etc. We found no studies for manufacturing industries in glass, tobacco, computer and allied products, etc. The incidence of accidents is decreasing but the proportion of fatalities is increasing. Multiple legislations exist which cover occupational health, but most of these are old and have not been amended adequately to reflect the present situation. There is a shortage of manpower and occupational health statistics for dealing with surveillance, prevention and regulation in this sector. There is an urgent need of a modern occupational health legislation and an effective machinery to enforce it, preferably through intersectoral coordination between the Employees' State Insurance Corporation, factories and state governments. Occupational health should be integrated with the general health services.

  3. Trial manufacturing of titanium-carbon steel composite overpack

    International Nuclear Information System (INIS)

    Honma, Nobuyuki; Chiba, Takahiko; Tanai, Kenji

    1999-11-01

    This paper reports the results of design analysis and trial manufacturing of full-scale titanium-carbon steel composite overpacks. The overpack is one of the key components of the engineered barrier system, hence, it is necessary to confirm the applicability of current technique in their manufacture. The required thickness was calculated according to mechanical resistance analysis, based on models used in current nuclear facilities. The Adequacy of the calculated dimensions was confirmed by finite-element methods. To investigate the necessity of a radiation shielding function of the overpack, the irradiation from vitrified waste has been calculated. As a result, it was shown that shielding on handling and transport equipment is a more reasonable and practical approach than to increase thickness of overpack to attain a self-shielding capability. After the above investigation, trial manufacturing of full-scale model of titanium-carbon steel composite overpack has been carried out. For corrosion-resistant material, ASTM Grade-2 titanium was selected. The titanium layer was bonded individually to a cylindrical shell and fiat cover plates (top and bottom) made of carbon steel. For the cylindrical shell portion, a cylindrically formed titanium layer was fitted to the inner carbon steel vessel by shrinkage. For the flat cover plates (top and bottom), titanium plate material was coated by explosive bonding. Electron beam welding and gas metal arc welding were combined to weld of the cover plates to the body. No significant failure was evident from inspections of the fabrication process, and the applicability of current technology for manufacturing titanium-carbon steel composite overpack was confirmed. Future research and development items regarding titanium-carbon steel composite overpacks are also discussed. (author)

  4. Carbon dioxide emissions from Russia's electricity sector: future scenarios

    International Nuclear Information System (INIS)

    Steenhof, Paul A.; Hill, Malcolm R.

    2006-01-01

    This article investigates future greenhouse gas emission scenarios for Russia's electricity sector, a topic of importance since Russia's ratification of the Kyoto Protocol in November 2004. Eleven scenarios are constructed to the year 2020 considering economic and technological details in both the demand and supply sides of the sector. The scenarios are based upon a thorough review of the different factors controlling carbon dioxide emissions, including potential economic growth, changes in energy efficiency and technological development, and that Russia may export large amounts of natural gas to European and Asian markets. The most likely scenario is that Russia will double industrial output over the next 10 years, increase energy efficiency in the demand sector, will remain consistent to the goals of the Energy Strategy 2020 and will implement more efficient technology in the electricity supply sector. Consequently, carbon dioxide emissions will still be 102 million tonnes below 1990 levels in 2010, representing a significant source for emission reduction credits available to be sold on international markets or transferred to the next crediting period. (Author)

  5. EMPLOYEE INVOLVEMENT IN DECISION MAKING AND FIRMS PERFORMANCE IN THE MANUFACTURING SECTOR IN NIGERIA

    Directory of Open Access Journals (Sweden)

    Abdul-Hameed Adeola Sulaimon

    2011-03-01

    Full Text Available This study examines the relationship between employee involvement in decision making andfirms’ performance in the manufacturing sector in Nigeria. Data were generated by means ofquestionnaires to 670 manufacturing firms on employee involvement in decision making andperformance variables. Responses from the survey were statistically analysed using descriptivestatistics, product moment correlation, regression analysis and Z-test (approximated with theindependent samples t-test. The results of the study indicate a statistically significant relationshipbetween employee involvement in decision making and firms’ performance as well as reveal asignificant difference between the performance of firms whose employee involvement in decisionmaking are deep and the performance of firms whose employee involvement in decision making areshallow. The findings also reveal the involvement of participating firms in employee involvement indecision making. The implications of this study include the need for manufacturing firms todemonstrate high level of commitment to employee involvement in decision making for performanceenhancement.

  6. Relationship between TQM Elements and Organizational Performance : An Empirical Study of Manufacturing Sector of Pakistan

    Directory of Open Access Journals (Sweden)

    Masood ul Hassan

    2013-05-01

    Full Text Available This study empirically reveals the influence of the TQM elements comprising leadership, people management, process management, customer focus, information & analysis and strategic planning on the organizational performance in the manufacturing sector of Pakistan. The data were collected through a questionnaire survey from the 160 managers and employees of the manufacturing firms. Results using SPSS support the hypotheses that there is a positive relationship between the TQM elements and performance of Pakistani manufacturing firms. Furthermore, it is also found that customer focus is perceived as a dominant TQM practice for enhancing quality performance. Moreover, this study also provides a valuable knowledge to the top managers. Practical implementations along with the limitations have also been discussed in this study.

  7. Carbon accounting in the United Kingdom water sector: a review.

    Science.gov (United States)

    Prescott, C

    2009-01-01

    The UK is committed to greenhouse gas (GHG) emission reduction targets and has introduced a number of initiatives to achieve these. Until recently, these targeted energy-intensive industries and, thus, the water sector was not significantly affected. However, from 2010, UK water companies will need to report their emissions under the Carbon Reduction Commitment (CRC). Both Ofwat (the economic regulator for water companies in England and Wales) and the Northern Ireland Authority for Utility Regulation (NIAUR) now require annual reporting of GHG emissions in accordance with both Defra Guidelines and the CRC. Also, carbon impacts must now be factored into all water industry investment planning in England and Wales. Building on existing approaches, the industry has developed standardised carbon accounting methodologies to meet both of these requirements. This process has highlighted gaps in knowledge where further research is needed.

  8. Evaluating the effect of exchange rate and labor productivity on import penetration of Brazilian manufacturing sectors

    Directory of Open Access Journals (Sweden)

    João Paulo Martin Faleiros

    2016-01-01

    Full Text Available In recent years, several economists have argued that the sharp loss of competitiveness of the Brazilian industry was caused by a strong exchange rate appreciation. However, other economists have attributed this loss of competitiveness to the dismal growth of labor productivity in the Brazilian industrial sector. The present paper proposes to estimate the differential impacts of variations in exchange rate and labor productivity on the Brazilian market share of imports measured by the coefficient of import penetration of total demand for manufacturing goods. We start by developing a simple theoretical model to investigate under what conditions the impacts of an exchange rate depreciation and an increase in labor productivity would differ. We test the theoretical implications of the model by means of a GMM panel data analysis focusing on 17 manufacturing sectors in the period between 1996 and 2011. Our results suggest that both variables matter to explain the coefficient of import penetration. Nevertheless, labor productivity has the strongest negative impact on the market share of imported goods, even after controlling for sector fixed-effects.

  9. An economic evaluation of carbon emission and carbon sequestration for the forestry sector in Malaysia

    International Nuclear Information System (INIS)

    Ismail, R.

    1995-01-01

    Forestry is an important sector in Malaysia. The long term development of the forestry sector will definitely affect the future amounts of carbon sequestration and emission of the country. This paper evaluates various forestry economic options that contribute to the reduction of carbon dioxide in the atmosphere. The analysis shows that, although forest plantation could sequester the highest amount of carbon per unit area, natural forests which are managed for sustainable timber production are the cheapest option for per-unit area carbon sequestrated. In evaluating forest options to address the issues of carbon sequestration and emission, the paper proposes that it should be assessed as an integral part of overall long term forestry development of the country which takes into account the future demands for forestry goods and services, financial resources, technology and human resource development. (Author)

  10. Performance Evaluation of Sub-manufacturing Sectors Using TOPSIS and ELECTRE Methods

    Directory of Open Access Journals (Sweden)

    Nuri ÖMÜRBEK

    2014-06-01

    Full Text Available Performance analysis is defined as a process of collecting, analyzing and reporting data systematically and regularly for a business to monitor its sources it has used, products and services it has produced, and the results it gained. For operators, it means quantitative expression of actions which are performed by a business or maintained in a program. In this study, financial performances of manufacture sectors are analyzed by the methods of TOPSIS and ELECTRE using current ratio, cash ratio, total debt / total assets, inventory turnover rate, equity turnover rate, net profit / equity, operating ıncome /net sales, net profit / sales and cost of good sold / net sales criteria. The findings suggest that coal and refined petroleum product manufacturing industry is in the first place in both methods.

  11. The Impact of Organizational Learning Capability on Product Innovation Performance: Evidence from the Turkish Manufacturing Sector

    Directory of Open Access Journals (Sweden)

    Özlem Yaşar Uğurlu

    2016-02-01

    Full Text Available This study aims to examine the effect of organizational learning capability on product innovation performance in the manufacturing sector using empirical data. A survey was conducted with 120 firms that were on the list of Top 1000 Firms of Turkey and registered with the Istanbul Chamber of Industry, to examine the relationship between the dimensions of organizational learning capability and the dimensions of product innovation performance. The findings of the study indicate a positive relationship between organizational learning capability and product innovation performance.

  12. Longitudinal Patterns of Compliance with OSHA Health and Safety Regulations in the Manufacturing Sector

    OpenAIRE

    Wayne B. Gray; Carol Adaire Jones

    1989-01-01

    We examine the impact of OSHA enforcement on company compliance with agency regulations in the manufacturing sector, with a unique plant-level data set of inspection and compliance behavior during 1972-1983, the first twelve years of the agency operation. The analysis suggests that, for an individual inspected plant, the average effect of OSHA inspections during this period was to reduce expected citations by 3.0 or by .36 s.d. The total effect on expected citations of additional inspections ...

  13. Energy demand and energy-related CO2 emissions in Greek manufacturing. Assessing the impact of a carbon tax

    International Nuclear Information System (INIS)

    Floros, Nikolaos; Vlachou, Andriana

    2005-01-01

    The purpose of this paper is to study the demand for energy in two-digit manufacturing sectors of Greece and to evaluate the impact of a carbon tax on energy-related CO 2 emissions. The theoretical model utilized in the analysis is the two-stage translog cost function. The model is estimated using time series data over the period 1982-1998. The results indicate substitutability between electricity and liquid fuels (diesel and mazout), and substitutability between capital, energy and labor. A carbon tax of $50 per tonne of carbon results in a considerable reduction in direct and indirect CO 2 emissions from their 1998 level. This implies that a carbon tax on Greek manufacturing is an environmentally effective policy for mitigating global warming, although a costly one

  14. An integrated DEA PCA numerical taxonomy approach for energy efficiency assessment and consumption optimization in energy intensive manufacturing sectors

    International Nuclear Information System (INIS)

    Azadeh, A.; Amalnick, M.S.; Ghaderi, S.F.; Asadzadeh, S.M.

    2007-01-01

    This paper introduces an integrated approach based on data envelopment analysis (DEA), principal component analysis (PCA) and numerical taxonomy (NT) for total energy efficiency assessment and optimization in energy intensive manufacturing sectors. Total energy efficiency assessment and optimization of the proposed approach considers structural indicators in addition conventional consumption and manufacturing sector output indicators. The validity of the DEA model is verified and validated by PCA and NT through Spearman correlation experiment. Moreover, the proposed approach uses the measure-specific super-efficiency DEA model for sensitivity analysis to determine the critical energy carriers. Four energy intensive manufacturing sectors are discussed in this paper: iron and steel, pulp and paper, petroleum refining and cement manufacturing sectors. To show superiority and applicability, the proposed approach has been applied to refinery sub-sectors of some OECD (Organization for Economic Cooperation and Development) countries. This study has several unique features which are: (1) a total approach which considers structural indicators in addition to conventional energy efficiency indicators; (2) a verification and validation mechanism for DEA by PCA and NT and (3) utilization of DEA for total energy efficiency assessment and consumption optimization of energy intensive manufacturing sectors

  15. Carbon Nanotube Chopped Fiber for Enhanced Properties in Additive Manufacturing

    Energy Technology Data Exchange (ETDEWEB)

    Menchhofer, Paul A [ORNL; Lindahl, John M [ORNL; JohnsonPhD, DR Joseph E. [Nanocomp Technologies, Inc.

    2016-06-06

    Nanocomp Technologies, Inc. is working with Oak Ridge National Laboratory to develop carbon nanotube (CNT) composite materials and evaluate their use in additive manufacturing (3D printing). The first phase demonstrated feasibility and improvements for carbon nanotube (CNT)- acrylonitrile butadiene styrene (ABS) composite filaments use in additive manufacturing, with potential future work centering on further improvements. By focusing the initial phase on standard processing methods (developed mainly for the incorporation of carbon fibers in ABS) and characterization techniques, a basis of knowledge for the incorporation of CNTs in ABS was learned. The ability to understand the various processing variables is critical to the successful development of these composites. From the degradation effects on ABS (caused by excessive temperatures), to the length of time the ABS is in the melt state, to the order of addition of constituents, and also to the many possible mixing approaches, a workable flow sequence that addresses each processing step is critical to the final material properties. Although this initial phase could not deal with each of these variables in-depth, a future study is recommended that will build on the lessons learned for this effort.

  16. Carbon footprint of telemedicine solutions--unexplored opportunity for reducing carbon emissions in the health sector.

    Science.gov (United States)

    Holmner, Asa; Ebi, Kristie L; Lazuardi, Lutfan; Nilsson, Maria

    2014-01-01

    The healthcare sector is a significant contributor to global carbon emissions, in part due to extensive travelling by patients and health workers. To evaluate the potential of telemedicine services based on videoconferencing technology to reduce travelling and thus carbon emissions in the healthcare sector. A life cycle inventory was performed to evaluate the carbon reduction potential of telemedicine activities beyond a reduction in travel related emissions. The study included two rehabilitation units at Umeå University Hospital in Sweden. Carbon emissions generated during telemedicine appointments were compared with care-as-usual scenarios. Upper and lower bound emissions scenarios were created based on different teleconferencing solutions and thresholds for when telemedicine becomes favorable were estimated. Sensitivity analyses were performed to pinpoint the most important contributors to emissions for different set-ups and use cases. Replacing physical visits with telemedicine appointments resulted in a significant 40-70 times decrease in carbon emissions. Factors such as meeting duration, bandwidth and use rates influence emissions to various extents. According to the lower bound scenario, telemedicine becomes a greener choice at a distance of a few kilometers when the alternative is transport by car. Telemedicine is a potent carbon reduction strategy in the health sector. But to contribute significantly to climate change mitigation, a paradigm shift might be required where telemedicine is regarded as an essential component of ordinary health care activities and not only considered to be a service to the few who lack access to care due to geography, isolation or other constraints.

  17. Effect of epoxy coatings on carbon fibers during manufacture of carbon fiber reinforced resin matrix composites

    International Nuclear Information System (INIS)

    Guo, Hui; Huang, Yudong; Liu, Li; Shi, Xiaohua

    2010-01-01

    The changes in oxygen and nitrogen during manufacture of the carbon fiber reinforced resin matrix composites were measured using the X-ray photoelectron spectroscopy method. The effects of the change in oxygen and nitrogen on the strength of the carbon fibers were investigated and the results revealed that the change of the tensile strength with increasing heat curing temperature was attributed to the change in the surface flaws of the carbon fibers because the carbon fibers are sensitive to the surface flaws. The effect of the surface energy that was calculated using Kaelble's method on the strength of the carbon fibers was investigated. Furthermore, the surface roughness of the carbon fibers was measured using atom force microscopy. The change trend of roughness was reverse to that of the strength, which was because of the brittle fracture of the carbon fibers.

  18. Splitting the EU ETS. Strengthening the scheme by differentiating its sectoral carbon prices

    Energy Technology Data Exchange (ETDEWEB)

    Sijm, J.P.M.; Wetzels, W.; Koutstaal, P.R. [ECN Policy Studies, Petten (Netherlands); Pollitt, H.; Chewpreecha, U. [Cambridge Econometrics, Cambridge (United Kingdom)

    2013-05-15

    The current EU ETS faces a dilemma. To induce low-carbon investments in the power sector, higher carbon prices are needed, while low carbon prices are needed to reduce the risk of carbon leakage and loss of industrial competitiveness. This study analyses the effects and implications of two alternative policy options to address this price dilemma, i.e. (1) splitting the ETS into two separated sector regimes: one more ambitious regime with a relatively high carbon price for the power sector and a less ambitious regime with a relatively low carbon price for the other sectors covered by the EU ETS (called 'industry'), and (2) imposing a carbon tax on power sector emissions additional to a single ETS carbon price for both industry and the power sector. The study uses modelling scenarios and qualitative assessments to analyse the effects and implications of these policy options. It concludes that, in a world with unequal carbon prices, there is a case for differentiating ETS sectoral carbon prices and that the first-best option to achieve this differentiation is to impose a carbon tax on power sector emissions additional to a single ETS carbon price.

  19. Environmental regulation and competitiveness: Empirical evidence on the Porter Hypothesis from European manufacturing sectors

    International Nuclear Information System (INIS)

    Rubashkina, Yana; Galeotti, Marzio; Verdolini, Elena

    2015-01-01

    This paper investigates the “weak” and “strong” versions of Porter Hypothesis (PH) focusing on the manufacturing sectors of 17 European countries between 1997 and 2009. The hypothesis that well-crafted and well-enforced regulation would benefit both the environment and the firm was originally proposed by Porter (1991) and Porter and van der Linde (1995). To date, the literature has analyzed the impact of environmental regulation on innovation and on productivity mostly in separate analyses and focusing on the USA. The few existing contributions on Europe study the effect of environmental regulation either on green innovation or on performance indicators such as exports. We instead look at overall innovation and productivity impacts. First, focusing on overall innovative activity allows us to account for potential opportunity costs of induced innovations. Second, productivity impacts are arguably the most relevant indicators for the “strong” PH. As a proxy of environmental policy stringency we use pollution abatement and control expenditures (PACE), one of the few sectoral level indicators available. We remedy upon its main drawback, namely potential endogeneity, by adopting an instrumental variable estimation approach. We find evidence of a positive impact of environmental regulation on the output of innovation activity, as proxied by patents, thus providing support in favor of the “weak” PH. This result is in line with most of the literature. On the other front, we find no evidence in favor of the “strong” PH, as productivity appears to be unaffected by the degree of pollution control and abatement efforts. -- Highlights: •Weak and strong Porter Hypothesis. •Panel of manufacturing sectors of 17 European countries between 1997 and 2009. •Look at overall innovation and productivity impacts. •Pollution abatement & control expenditures proxy of environmental policy stringency. •Account for potential endogeneity of PACE by adopting

  20. Baselines for carbon emissions in the Indian and Chinese power sectors: Implications for international carbon trading

    International Nuclear Information System (INIS)

    Zhang Chi; Shukla, P.R.; Victor, David G.; Heller, Thomas C.; Biswas, Debashish; Nag, Tirthankar

    2006-01-01

    The study examines the dynamics of carbon emissions baselines of electricity generation in Indian states and Chinese provinces in the backdrop of ongoing electricity sector reforms in these countries. Two Indian states-Gujarat and Andhra Pradesh, and three Chinese provinces-Guangdong, Liaoning and Hubei have been chosen for detailed analysis to bring out regional variations that are not captured in aggregate country studies. The study finds that fuel mix is the main driver behind the trends exhibited by the carbon baselines in these five cases. The cases confirm that opportunities exist in the Indian and Chinese electricity sectors to lower carbon intensity mainly in the substitution of other fuels for coal and, to a lesser extent, adoption of more efficient and advanced coal-fired generation technology. Overall, the findings suggest that the electricity sectors in India and China are becoming friendlier to the global environment. Disaggregated analysis, detailed and careful industry analysis is essential to establishing a power sector carbon emissions baseline as a reference for CDM crediting. However, considering all the difficulties associated with the baseline issue, our case studies demonstrate that there is merit in examining alternate approaches that rely on more aggregated baselines

  1. LMDI Decomposition Analysis of Energy Consumption in the Korean Manufacturing Sector

    Directory of Open Access Journals (Sweden)

    Suyi Kim

    2017-02-01

    Full Text Available The energy consumption of Korea’s manufacturing sector has sharply increased over the past 20 years. This paper decomposes the factors influencing energy consumption in this sector using the logarithmic mean Divisia index (LMDI method and analyzes the specific characteristics of energy consumption from 1991 to 2011. The analysis reveals that the activity effect played a major role in increasing energy consumption. While the structure and intensity effects contributed to the reduction in energy consumption, the structure effect was greater than the intensity effect. Over the periods, the effects moved in opposite directions; that is, the structure effect decreased when the intensity effect increased and vice versa. The energy consumption by each industry is decomposed into two factors, activity and intensity effects. The increase of energy consumption due to the activity effect is largest in the petroleum and chemical industry, followed by the primary metal and non-ferrous industry, and the fabricated metal industry. The decrease of energy consumption due to the intensity effect is largest in the fabricated metal industry, followed by the primary metal and non-ferrous industry, and the non-metallic industry. The energy consumption due to intensity effect in the petroleum and chemical industry has risen. To save energy consumption more efficiently for addressing climate change in this sector, industrial restructuring and industry-specific energy saving policies should be introduced.

  2. Understanding industrial energy use: Physical energy intensity changes in Indian manufacturing sector

    International Nuclear Information System (INIS)

    Sudhakara Reddy, B.; Kumar Ray, Binay

    2011-01-01

    This study develops and examines physical energy intensity indicators in five industrial sub-sectors-iron and steel, aluminum, textiles, paper, and cement-and investigates mitigation options for energy related CO 2 emissions (during 1991-2005). Decomposition analysis has been employed to separate the structural effect (share of different products in the sector) from pure intensity effect (efficiency increase through technical improvement) for each industry. The results show that the combined effect (considering both structural and intensity effects together) on both iron and steel and paper and pulp industries is negative while it is positive for aluminum and textiles. The intensity effect for all the industries, barring textiles, is negative showing improvement in energy efficiency; iron and steel in particular, has seen a decrease of 134 PJ in energy consumption owing to improvements in efficiency. However, energy intensity in textiles has risen by 47 PJ due to increased mechanization. Structural effect is positive in aluminum and iron and steel industries indicating a movement towards higher energy-intensive products. In the case of aluminum, positive structural effect dominates over negative intensive effect whereas negative intensive effect dominates iron and steel industry. The paper helps in designing policies for improving productivity and reduce energy consumption in India's manufacturing sector. - Highlights: → The study develops physical energy intensity indicators in industrial sub-sectors of India. → It identifies technological and other options for reduction in energy consumption. → The study quantifies savings in energy as well as CO 2 emissions. → The indicators are useful in examining structural changes.

  3. Assessing the influence of manufacturing sectors on electricity demand. A cross-country input-output approach

    Energy Technology Data Exchange (ETDEWEB)

    Tarancon, Miguel Angel; Callejas Albinana, Fernando [Faculty of Law and Social Sciences, Universidad de Castilla - La Mancha, Ronda de Toledo s/n, 13071 Ciudad Real (Spain); Del Rio, Pablo [Institute for Public Policies and Goods (IPP), Centro de Ciencias Humanas y Sociales, CSIC, C/Albasanz 26-28, 28037 Madrid (Spain)

    2010-04-15

    The production and consumption of electricity is a major source of CO{sub 2} emissions in Europe and elsewhere. In turn, the manufacturing sectors are significant end-users of electricity. In contrast to most papers in the literature, which focus on the supply-side, this study tackles the demand-side of electricity. An input-output approach combined with a sensitivity analysis has been developed to analyse the direct and indirect consumptions of electricity by eighteen manufacturing sectors in fifteen European countries, with indirect electricity demand related to the purchase of industrial products from other sectors which, in turn, require the consumption of electricity in their manufacturing processes. We identify the industrial transactions and sectors, which account for a greater share of electricity demand. In addition, the impact of an electricity price increase on the costs and prices of manufacturing products is simulated through a price model, allowing us to identify those sectors whose manufacturing costs are most sensitive to an increase in the electricity price. (author)

  4. Assessing the influence of manufacturing sectors on electricity demand. A cross-country input-output approach

    International Nuclear Information System (INIS)

    Tarancon, Miguel Angel; Callejas Albinana, Fernando; Del Rio, Pablo

    2010-01-01

    The production and consumption of electricity is a major source of CO 2 emissions in Europe and elsewhere. In turn, the manufacturing sectors are significant end-users of electricity. In contrast to most papers in the literature, which focus on the supply-side, this study tackles the demand-side of electricity. An input-output approach combined with a sensitivity analysis has been developed to analyse the direct and indirect consumptions of electricity by eighteen manufacturing sectors in fifteen European countries, with indirect electricity demand related to the purchase of industrial products from other sectors which, in turn, require the consumption of electricity in their manufacturing processes. We identify the industrial transactions and sectors, which account for a greater share of electricity demand. In addition, the impact of an electricity price increase on the costs and prices of manufacturing products is simulated through a price model, allowing us to identify those sectors whose manufacturing costs are most sensitive to an increase in the electricity price. (author)

  5. Impact of carbon constraint on the European electricity sector

    International Nuclear Information System (INIS)

    Stankeviciute, Loreta

    2010-01-01

    Two sets of factors will be decisive for the future evolution of European electricity sector: on the one hand, the necessity of new wave of investments for the renewal and the expansion of production capacities and, on the other hand, the emergency and the reinforcement of greenhouse gas emissions (GHG) constraints imposed by European policies and directives. The general idea of thesis is that European Emissions Trading system (ETS) is the instrument that can facilitate the decarbonization of European electricity system. However, the necessary conditions ought to be brought together in the context of liberalisation in terms of risk management, market architecture and setting up of the complementary public policy instruments, in order for the carbon price signal to be effective. The purpose of the thesis is to provide details on these conditions and to examine the potentials scenarios for the evolution of European electricity production mix under the carbon constraint. The introduction of liberalisation in the electricity industry conditions significantly the investment choice. The analysis of theoretical market model allows demonstrating organisational inadequacy for developing an optimal technological mix and for adapting to long-term issues due to the extreme difficulty of interpreting the price signals. Indeed, the logic of a market and a concurrence disadvantages the investments in capital-intensive technologies, even though some of them less polluting like renewable energies, nuclear, hydraulic and thermal technologies integrating carbon capture and sequestration (CCS). In face of numerous uncertainties, the role of long-term risk management becomes therefore crucial. The employment of transaction cost theory allows studying the combinations of vertical arrangements that remain necessary in order to manage the risk and to facilitate the investments (e.g. vertical integration). The introduction of ETS overlaps with the market risks inherent to liberalisation

  6. Environmental development of the Spanish ceramic tile manufacturing sector over the period 1992–2007

    Directory of Open Access Journals (Sweden)

    Zaera, V.

    2012-04-01

    Full Text Available The Spanish tile manufacturing sector has grown steadily over the years covered by the three benchmark studies, carried out in 1992, 2001, and 2007, from which data are compared in this paper. In that period, production output doubled, although since the last study was published, the situation has undergone a radical change and current production output stands at a level similar to that of 1995. Nevertheless, despite the world economic crisis, which has also severely impacted the ceramic wall and floor tile sector, it is worth noting that the sector’s environmental parameters have demonstrated a constant and positive trend, both in companies’ individual environmental performance and in the actual manufacturing processes itself. To a large extent, this situation was forced upon the sector as it had to adapt to numerous environmental regulations, which in general terms call for harsher and more stringent conditions than before. In this sense, the adoption of IPPC regulations, which affect practically the entire ceramic tile sector, and the approval of EU Directive 2003/87 establishing a scheme for greenhouse gas emission allowance trading were significant factors.

    El sector de fabricación de baldosas cerámicas ha crecido de forma continuada durante los años que abarcan los tres estudios cuyos datos son comparados en este informe, 1992-2001-2007, ya que la producción se ha duplicado desde el primer al último estudio, aunque si se considera el periodo del último estudio hasta la actualidad, la situación ha sufrido un cambio radical estando ahora mismo en niveles de producción similares al año 1995. No obstante, a pesar de esta crisis económica mundial en la que se ha visto arrastrado el sector cerámico, merece la pena destacar una constante evolución positiva en todos los aspectos relacionados con los temas medioambientales, tanto en aquellos aspectos relacionados con el comportamiento ambiental de las empresas como en los

  7. Rents in the European power sector due to carbon trading

    International Nuclear Information System (INIS)

    Keppler, Jan Horst; Cruciani, Michel

    2010-01-01

    The European Union Emissions Trading Scheme (EU ETS) has imposed a price on the allowances for CO 2 emissions of electricity companies. Integrating this allowance price into the price of electricity earns a rent for companies who have received these allowances for free. During Phase I, 2005-2007, rents corresponding to the aggregate value of allocated allowances amounted to roughly EUR 13 billion per year. However, due to the specific price-setting mechanism in electricity markets true rents were considerably higher. This is due to the fact that companies also that have not received any allowances gain additional infra-marginal rents to the extent that their variable costs are below the new market price after inclusion of the allowance price. Producers with low carbon emissions and low marginal costs thus also benefit substantially from carbon pricing. This paper develops a methodology to determine the specific interaction of the imposition of such a CO 2 constraint and the price-setting mechanism in the electricity sector under the assumption of marginal cost pricing in a liberalized European electricity market. The article thus provides an empirical estimate of the true total rents of power producers during Phase I of the EU-ETS (2005-2007). The EU ETS generated in Phase I additional rents in excess of EUR 19 billion per year for electricity producers. These transfers are distributed very unevenly between different electricity producers. In a second step, the paper assesses the impact of switching from free allocation to an auctioning of allowances in 2013. We show that such a switch to auctioning will continue to create additional infra-marginal rents for certain producers and will leave the electricity sector as a whole better off than before the introduction of the EU ETS. (author)

  8. Monetary Policy Transmission and Firms’ Investment: Evidence From the Manufacturing Sector of Pakistan

    Directory of Open Access Journals (Sweden)

    Arslan Majeed

    2017-12-01

    Full Text Available This study explores the effects of monetary policy on firms’ business fixed investment spending through the interest rate and broad credit channels of monetary policy transmission mechanism in Pakistan. Due to the problem of endogeneity, Generalized Method of Moments (GMM two step estimation technique is applied on neo-classical investment model by using disaggregated firm level data of manufacturing sector of Pakistan over the period 1974-2010. The results suggest the relevance of both the interest rate and broad credit channels in Pakistan. Firms’ investment found to be negatively affected by the monetary contraction while positively influenced by cash flow and the sales. Small firms explored to be more sensitive to the monetary tightening as compared to large firms indicating that monetary policy exerts heterogeneous effects. Results highlight the importance of considering the financial conditions of the firms in formulation of monetary policy.

  9. LMDI decomposition analysis of greenhouse gas emissions in the Korean manufacturing sector

    International Nuclear Information System (INIS)

    Jeong, Kyonghwa; Kim, Suyi

    2013-01-01

    In this article, we decomposed Korean industrial manufacturing greenhouse gas (GHG) emissions using the log mean Divisia index (LMDI) method, both multiplicatively and additively. Changes in industrial CO 2 emissions from 1991 to 2009 may be studied by quantifying the contributions from changes in five different factors: overall industrial activity (activity effect), industrial activity mix (structure effect), sectoral energy intensity (intensity effect), sectoral energy mix (energy-mix effect) and CO 2 emission factors (emission-factor effect). The results indicate that the structure effect and intensity effect played roles in reducing GHG emissions, and the structure effect played a bigger role than the intensity effect. The energy-mix effect increased GHG emissions, and the emission-factor effect decreased GHG emissions. The time series analysis indicates that the GHG emission pattern was changed before and after the International Monetary Fund (IMF) regime in Korea. The structure effect and the intensity effect had contributed more in emission reductions after rather than before the IMF regime in Korea. The structure effect and intensity effect have been stimulated since the high oil price period after 2001. - Highlights: • We decomposed greenhouse gas emissions of Korea's manufacturing industry using LMDI. • The structure effect and intensity effect play a role in reducing GHG emissions. • The role of structure effect was bigger than intensity effect. • The energy-mix effect increased and the emission-factor effect decreased GHG emissions. • The GHG emission pattern has been changed before and after IMF regime in Korea

  10. ACTIVITY-BASED COSTING IN THE MANUFACTURING SECTOR: A MANAGERIAL INSTRUMENT FOR DECISION-MAKING

    Directory of Open Access Journals (Sweden)

    Ioana D. BUFAN

    2014-04-01

    Full Text Available The aim of this paper is to emphasize the importance of using the activity-based costing (management system in the manufacturing sector. The utility of the ABC (ABM system concerns decisions taken at a strategic and operational level. In our country, few managers understand the need for such a system and many Romanian companies use only a traditional costing system or don’t use one at all. The paper also includes a case study which is a small example of using the ABC method in a Romanian manufacturing company. The study shows that the ABC/ABM system helps managers to properly manage indirect costs (by activities and understand the profitability of products, distribution channels and customers. Therefore, it offers a powerful instrument for decision-making. Although ABC is a new system of cost calculation that is absolutely necessary, in most cases the ABC method must be implemented in addition to the traditional costing systems, which are essential for the purposes of management accounting.

  11. ANALYSIS OF CURRENT STATE AND FUTURE TRENDS OF AUTO PARTS MANUFACTURING SECTOR IN ROMANIA

    Directory of Open Access Journals (Sweden)

    DANIELA MIHAI

    2012-10-01

    Full Text Available In the economy of any country, the auto parts manufacturing sector holds an important percentage in the national automotive industry. The dynamics of sales within it can vary significantly on short term, depending on the automotive market trend. This is also the case of the current situation in Romania, where the effect of the regressive automotive sales evolution will propagate, most probably, with a significant delay for the companies involved in production and trade of auto parts (for both first-assembly manufacture and car maintenance and repair. The statistical data indicate that even though the total volume of vehicles delivered decreased with 7.4% in 2011 as compared to 2010, the total turnover of the companies in the automotive industry increased with 7.8%. The apparent paradox is explained in the present article through the particularities of the demand for spare parts intended for the rolling stock in operation and through the effective organization of the distribution system.

  12. Role of embodied energy in the European manufacturing industry: Application to short-term impacts of a carbon tax

    International Nuclear Information System (INIS)

    Bordigoni, Mathieu; Hita, Alain; Le Blanc, Gilles

    2012-01-01

    Role of energy in the manufacturing industry is a major concern for energy and environmental policy design. Issues like energy prices, security of supply and carbon mitigation are often connected to the industry and its competitiveness. This paper examines the role and consequences of embodied energy in the European industry. To this end, a multi-regional input–output analysis including 59 industrial sectors for all European Union countries and 17 more aggregated industries for other regions of the World is developed. Other segments of the economy are not included. This base is combined with energy consumption, carbon emission as well as bilateral trade data for every sector in all included countries. Our main result is that embodied energy in manufactured products' imports represents a significant aspect of the energy situation in European industries, with quantities close to the direct energy consumption. These flows can further be broken down for detailed analysis at the sector level thanks to the number of distinct industries included. Results demonstrate that an important part of embodied energy inside European products is not concerned with domestic energy price changes. In addition, a European-wide carbon tax would induce an unbalanced burden on industries and countries. - Highlights: ► We calculate embodied energy and carbon flows in the European and World industry. ► A multi-regional input–output analysis is used with a detailed nomenclature. ► National industries' energy prices dependence is a domestic issue. ► With a European carbon tax energy-intensive industries would be penalised. ► Such a tax may also induce competition distortion among EU countries.

  13. Manufacturing High-Quality Carbon Nanotubes at Lower Cost

    Science.gov (United States)

    Benavides, Jeanette M.; Lidecker, Henning

    2004-01-01

    A modified electric-arc welding process has been developed for manufacturing high-quality batches of carbon nanotubes at relatively low cost. Unlike in some other processes for making carbon nanotubes, metal catalysts are not used and, consequently, it is not necessary to perform extensive cleaning and purification. Also, unlike some other processes, this process is carried out at atmospheric pressure under a hood instead of in a closed, pressurized chamber; as a result, the present process can be implemented more easily. Although the present welding-based process includes an electric arc, it differs from a prior electric-arc nanotube-production process. The welding equipment used in this process includes an AC/DC welding power source with an integral helium-gas delivery system and circulating water for cooling an assembly that holds one of the welding electrodes (in this case, the anode). The cathode is a hollow carbon (optionally, graphite) rod having an outside diameter of 2 in. (approximately equal to 5.1 cm) and an inside diameter of 5/8 in. (approximately equal to 1.6 cm). The cathode is partly immersed in a water bath, such that it protrudes about 2 in. (about 5.1 cm) above the surface of the water. The bottom end of the cathode is held underwater by a clamp, to which is connected the grounding cable of the welding power source. The anode is a carbon rod 1/8 in. (approximately equal to 0.3 cm) in diameter. The assembly that holds the anode includes a thumbknob- driven mechanism for controlling the height of the anode. A small hood is placed over the anode to direct a flow of helium downward from the anode to the cathode during the welding process. A bell-shaped exhaust hood collects the helium and other gases from the process. During the process, as the anode is consumed, the height of the anode is adjusted to maintain an anode-to-cathode gap of 1 mm. The arc-welding process is continued until the upper end of the anode has been lowered to a specified height

  14. Financial planning and access to financing in small and mediumsized companies in the Venezuelan manufacturing sector

    Directory of Open Access Journals (Sweden)

    Mary A. Vera-Colina

    2011-12-01

    Full Text Available The relationship between the presence of financial planning and difficulties regarding access to financing in small and medium-sized companies (SMEs in the Venezuelan manufacturing sector is studied. This is an explicative type research work, designed as non-experimental, crosssectional and correlational field work, applied to a sample of 67 SMEs. A questionnaire was applied and a review was made of the relevant literature, to establish the characteristics of the selected variables, according to the high-medium-low measurement for each of the selected indicators. The preliminary results make it possible to affirm that the financial planning variable demonstrates a medium presence in the companies, with medium and low levels of coordination among their components. Average access to financing is classified as low, marked by a medium-high access to credit from suppliers, medium access in reinvestment of profits and medium-low access to bank credit lines. There is also evidence of financing patterns compatible with the Pecking Order Theory. The conclusion is that there is a weak relationship between the characteristics of financial planning and the levels of access to financing, with the inference that the behavior of these variables is determined by a multiplicity of factors.

  15. Labour standards application among multinational and domestic firms in Ghana’s manufacturing sector

    Directory of Open Access Journals (Sweden)

    Dziedzom-Akorsu Angela

    2011-01-01

    Full Text Available This paper provides an empirical analysis of the labour standards application patterns and influences among multinational and domestic firms in Ghana. Discourses on labour standards application have continued to attract much interest in recent years. This is because globalization, in tandem with multinational corporations, has made the application of labour standards more challenging and ever more relevant. Yet competing viewpoints raised among social scientists on the subject are inconclusive and still on-going. While some are of the view that multinational companies (MNCs maintain higher labour standards than the domestic firms of their host countries, others concede that their standards are lower due to their exploitative tendencies. By means of a survey of 248 multinational and domestic firms in the manufacturing sector of Ghana, this paper concludes that there are a number of contingent factors that determine labour standards application, and so it is misleading to put all firms together and make blanket statements as to whether or not one group maintains higher labour standards than the other.

  16. Multi-sectoral decomposition in decoupling industrial growth from carbon emissions in the developed Jiangsu Province, China

    International Nuclear Information System (INIS)

    Lu, Qinli; Yang, Hong; Huang, Xianjin; Chuai, Xiaowei; Wu, Changyan

    2015-01-01

    ICE (Industrial carbon emission) is one of most important sources of anthropogenic carbon emissions. To reduce the carbon emissions, many countries, particularly China, have adjusted their industrial structures and improved energy efficiency. The complete decomposition technique and decoupling method were used to investigate and quantitatively analyze the main factors influencing the energy-related ICE in Jiangsu, the Chinese province with the largest energy consumption and carbon emissions. The importance of the sectoral dimension was taken into account by dividing the industry into three main departments consisting of 38 sub-sectors. The results indicated that the industry of Jiangsu was in a weak decoupling state from 2005 to 2012. The industrial output growth was the biggest driver of the increase in ICE, while energy efficiency advancement was the main cause for the reduction, in a weakening trend. The year of 2008 was an important breaking point when the optimization of industry structure came into play and global financial crisis took place. The biggest dilemma in Jiangsu is heavy industry is still dominant, especially the five sectors of them made the biggest contribution (88.2%) to ICE. Thankfully, there were five manufacturing industries had achieved low carbon economy at various degrees. - Highlights: • Multi-sectoral decomposition and decoupling were conducted to evaluate the ICE. • The industry of Jiangsu was in a weak decoupling state with an increasing trend. • The industrial output growth was the biggest driver for ICE from 2005 to 2012. • The optimization of industry structure came into play for the reduction since 2008. • Five backward and advanced industries were identified

  17. Product carbon footprint assessment supporting the green supply chain construction in household appliance manufacturers

    Science.gov (United States)

    Chen, Jianhua; Sun, Liang; Guo, Huiting

    2017-11-01

    Supply chain carbon emission is one of the factors considered in the green supply chain management. A method was designed to support the green supply chain measures based on the carbon footprint assessment for products. A research for 3 typical household appliances carbon footprint assessment was conducted to explore using product carbon footprint assessment method to guide the green supply chain management of the manufacturers. The result could reflect the differences directions on green supply chain management of manufacturers of washing machine, air conditioner and microwave, respectively That is, the washing machine manufacturer should pay attention to the low carbon activities in upstream suppliers in highest priority, and also the promotion of product energy efficiency. The air conditioner manufacturer should pay attention to the product energy efficiency increasing in highest priority, and the improvement of refrigerant to decrease its GWP. And the microwave manufacture could only focus on the energy efficiency increasing because it contributes most of the carbon emission to its carbon footprint. Besides, the representativeness of product and the applicability of the method were also discussed. As the manufacturer could master the technical information on raw material and components of its products to conduct the product carbon footprint assessment, this method could help the manufacturer to identify the effective green supply chain measures in the preliminary stage.

  18. Riesgo ergonómico en empresas artesanales del sector de la manufactura, Santander. Colombia Ergonomic risk craft enterprises manufacturing sector, Santander. Colombia

    Directory of Open Access Journals (Sweden)

    Claudia Patricia Ardila Jaimes

    2013-03-01

    Full Text Available Introducción: Es importante reconocer que algunas profesiones del ramo de la manufactura no tienen de manera estandarizada programas en ergonomía, por lo tanto se requiere reconocer dichas limitaciones, las cuales podrían desencadenar en patologías musculares, altos índices de ausentismo y disminución en la productividad. Objetivos: Determinar el perfil de riesgo ergonómico de las empresas artesanales de tabaco y joyería de la región de Santander, Colombia en el año 2010. Materiales y métodos: Se trató de un estudio descriptivo de corte transversal donde la población encuestada fueron empresas del sector de la manufactura de los sub-sectores artesanales tabacalero y joyero. La unidad de análisis principal fue la empresa. Se diligenció un instrumento que identificaba rasgos de la cultura ergonómica de las empresas. Resultados: Se encuestaron 15 empresas tabacaleras y 10 joyeras. Las empresas no cuentan con políticas en salud ocupacional en 73% para el sector tabaco y en 80% para el sector joyero. En ambos sectores la repetitividad fue el factor ergonómico más prevalente con 80% y 36,4% respectivamente. A su vez, 60% de las empresas del tabaco tienen establecido la elaboración de rediseño de puesto de trabajo, en relación al 10% presentado por las empresas joyeras, finalmente en ambos sectores se encontró un porcentaje no superior al 13% sobre realización de capacitaciones sobre control de riesgos ergonómicos a sus trabajadores. Conclusiones: El perfil de riesgo ergonómico en el sector tabacalero y joyero artesanal se muestra incipiente, considerando estar influenciado por factores como desconocimiento del tema y falta de compromiso gerencial en la implementación de programas que ayuden a minimizar las enfermedades derivadas de las actividades que se desarrollan en cada uno de los sectores.Introduction: It is important to recognize that some professions the manufacturing industry have no standardized way in ergonomics

  19. Changes in carbon intensity in China's industrial sector: Decomposition and attribution analysis

    International Nuclear Information System (INIS)

    Liu, Nan; Ma, Zujun; Kang, Jidong

    2015-01-01

    The industrial sector accounts for 70% of the total energy-related CO_2 emissions in China. To gain a better understanding of the changes in carbon intensity in China's industrial sector, this study first utilized logarithmic mean Divisia index (LMDI) decomposition analysis to disentangle the carbon intensity into three influencing factors, including the emission coefficient effect, the energy intensity effect, and the structure effect. Then, the analysis was furthered to explore the contributions of individual industrial sub-sectors to each factor by using an extension of the decomposition method proposed in Choi and Ang (2012). The results indicate that from 1996 to 2012, the energy intensity effect was the dominant factor in reducing carbon intensity, of which chemicals, iron and steel, metal and machinery, and cement and ceramics were the most representative sub-sectors. The structure effect did not show a strong impact on carbon intensity. The emission coefficient effect gradually increased the carbon intensity, mainly due to the expansion of electricity consumption, particularly in the metal and machinery and chemicals sub-sectors. The findings suggest that differentiated policies and measures should be considered for various industrial sub-sectors to maximize the energy efficiency potential. Moreover, readjusting the industrial structure and promoting clean and renewable energy is also urgently required to further reduce carbon intensity in China's industrial sector. - Highlights: • The study analyzed the changes in carbon intensity in China's industrial sector. • An extension of the Divisia index decomposition methodology was utilized. • Energy efficiency improvement was the dominant factor reducing carbon intensity. • The sub-sector contributions to the energy efficiency improvement varied markedly. • Emission coefficient growth can be mainly due to the expansion of electricity.

  20. Industrial sector-based volatile organic compound (VOC) source profiles measured in manufacturing facilities in the Pearl River Delta, China.

    Science.gov (United States)

    Zheng, Junyu; Yu, Yufan; Mo, Ziwei; Zhang, Zhou; Wang, Xinming; Yin, Shasha; Peng, Kang; Yang, Yang; Feng, Xiaoqiong; Cai, Huihua

    2013-07-01

    Industrial sector-based VOC source profiles are reported for the Pearl River Delta (PRD) region, China, based source samples (stack emissions and fugitive emissions) analyzed from sources operating under normal conditions. The industrial sectors considered are printing (letterpress, offset and gravure printing processes), wood furniture coating, shoemaking, paint manufacturing and metal surface coating. More than 250 VOC species were detected following US EPA methods TO-14 and TO-15. The results indicated that benzene and toluene were the major species associated with letterpress printing, while ethyl acetate and isopropyl alcohol were the most abundant compounds of other two printing processes. Acetone and 2-butanone were the major species observed in the shoemaking sector. The source profile patterns were found to be similar for the paint manufacturing, wood furniture coating, and metal surface coating sectors, with aromatics being the most abundant group and oxygenated VOCs (OVOCs) as the second largest contributor in the profiles. While OVOCs were one of the most significant VOC groups detected in these five industrial sectors in the PRD region, they have not been reported in most other source profile studies. Such comparisons with other studies show that there are differences in source profiles for different regions or countries, indicating the importance of developing local source profiles. Crown Copyright © 2013. Published by Elsevier B.V. All rights reserved.

  1. Implementación de Lean Manufacturing en el sector hotelero de la ciudad de Medellín

    OpenAIRE

    Arango Uribe, Juliana María

    2015-01-01

    El sector hotelero en la ciudad de Medellín ha tenido un crecimiento significativo en los últimos años, registrando uno de los mejores momentos históricos en ocupación hotelera, motivo por el cual surge el interés por evaluar el sector -- Este proyecto busca evaluar el grado de implementación de Lean Manufacturing en diferentes hoteles ubicados en la ciudad de Medellín, para la investigación se desarrolló un cuestionario, el cual fue aplicado a una muestra de hoteles -- Del cuestionario se o...

  2. Urban energy consumption and related carbon emission estimation: a study at the sector scale

    Science.gov (United States)

    Lu, Weiwei; Chen, Chen; Su, Meirong; Chen, Bin; Cai, Yanpeng; Xing, Tao

    2013-12-01

    With rapid economic development and energy consumption growth, China has become the largest energy consumer in the world. Impelled by extensive international concern, there is an urgent need to analyze the characteristics of energy consumption and related carbon emission, with the objective of saving energy, reducing carbon emission, and lessening environmental impact. Focusing on urban ecosystems, the biggest energy consumer, a method for estimating energy consumption and related carbon emission was established at the urban sector scale in this paper. Based on data for 1996-2010, the proposed method was applied to Beijing in a case study to analyze the consumption of different energy resources (i.e., coal, oil, gas, and electricity) and related carbon emission in different sectors (i.e., agriculture, industry, construction, transportation, household, and service sectors). The results showed that coal and oil contributed most to energy consumption and carbon emission among different energy resources during the study period, while the industrial sector consumed the most energy and emitted the most carbon among different sectors. Suggestions were put forward for energy conservation and emission reduction in Beijing. The analysis of energy consumption and related carbon emission at the sector scale is helpful for practical energy saving and emission reduction in urban ecosystems.

  3. CARBON INTENSITY OF THE ENERGY SECTOR FOR TOGO IN 2012

    African Journals Online (AJOL)

    Global Journal

    in Togo in 2012 in order to provide decision-makers, producers, distributors and final ... In line with the IPCC 2006 methodologies, greenhouse gas emissions in 2012 in Togo ... estimates by the sectoral and reference methods, the inventory is coherent as a whole. ..... oil in the residential, commercial and industrial sectors.

  4. CARRYING CAPACITY MODEL OF FOOD MANUFACTURING SECTORS FOR SUSTAINABLE DEVELOPMENT FROM USING ENVIRONMENTAL AND NATURAL RESOURCES OF THAILAND

    Directory of Open Access Journals (Sweden)

    Pruethsan Sutthichaimethee

    2015-11-01

    Full Text Available The objective of this research is to propose an indicator to assess and rank environmental problems caused by production within the food manufacturing sector of Thailand. The factors used to calculate the real benefit included the costs of natural resources, energy and transportation, fertilizer and pesticides, and sanitary and similar service. The highest environmental cost in terms of both natural resources materials and energy and transportation was ice, while the highest environmental cost for fertilizer and pesticides was coconut and palm oil. Confectionery had the highest environmental cost for sanitary and similar services. Overall, real estate gained the highest real benefit, while repair not classified elsewhere had the lowest real benefit for the company. If Thailand uses an indicator of environmental harm, especially within the food manufacturing sector, it could help to formulate efficient policies and strategies for the country in three areas of development, which are social, economic, and environmental development.

  5. 78 FR 55057 - Authority To Manufacture Carbon Fiber for the U.S. Market Not Approved; Foreign-Trade Subzone...

    Science.gov (United States)

    2013-09-09

    ... DEPARTMENT OF COMMERCE Foreign-Trade Zones Board [Order No. 1914] Authority To Manufacture Carbon... behalf of Toho Tenax America, Inc. (TTA), to manufacture carbon fiber under zone procedures for the U.S... approve the application requesting authority to manufacture carbon fiber for the U.S. market under zone...

  6. Technology choice and development in Brazil: An assessment of Brazil's alternative fuel program and the agriculture, manufacturing, energy, and service sectors

    Science.gov (United States)

    Nolan, Lucy A.

    Technology choice profoundly affects a country's development process because capital-intensive and labor-intensive technologies have different socioeconomic linkages within the economy. This research examines the impacts of technology choice through the use of a social accounting matrix (SAM) framework. SAM-based modeling determines the direct and indirect effects of technology choice on development, particularly poverty alleviation in Brazil. Brazil's alternative fuel program was analyzed as a special example of technology choice. Two ethanol production technologies and the gasoline sector were compared; to make the study more robust, labor and capital intensive technologies were evaluated in the production of agriculture, manufacturing, energy, and services. Growth in these economic sectors was examined to assess the effects on employment, factor and household income, energy intensity, and carbon dioxide costs. Poverty alleviation was a focus, so income to unskilled agriculture labor, unskilled non-agriculture labor, and income to rural and urban households in poverty was also analyzed. The major research finding is that overall, labor-intensive technologies generate more employment, factor and household income, environmental and energy benefits to Brazil's economy than capital-intensive technologies. In addition, labor-intensive technologies make a particular contribution to poverty alleviation. The results suggest that policies to encourage the adoption of these technologies, especially in the agriculture and renewable energy sectors, are important because of their intersectoral linkages within the economy. Many studies have shown that Brazil's fuel ethanol program has helped to realize multiple macroeconomic objectives. However, this is the first empirical study to quantify its household income effects. The ethanol industry generated the most household income of the energy sectors. The research confirms a key finding of the appropriate technology literature

  7. Sensemaking and politics in MNCs: A comparative analysis of vocabularies within the global manufacturing discourse in one industrial sector

    OpenAIRE

    Geppert, M

    2003-01-01

    This article compares sensemaking processes in multinational corporations (MNCs) situated in the same industrial sector. Our comparative analysis of three MNCs and their subsidiaries in Germany and the United Kingdom aims to shed light on the contextual dimension (institutions, culture, and politics) of the sensemaking process. First, I discuss ideologies related to the discourse about global restructuring of manufacturing. Second, I compare similarities and differences in vocabularies of the...

  8. An application to measure impact of working capital management on profitability in firms in manufacture sector quoted on ISE

    OpenAIRE

    Akbulut, Ramazan

    2011-01-01

    The purpose of this study is to investigate the relationship between working capital management and firm profitability of corporations in manufacture sector which are listed in İstanbul Stock Exchange for the period of 2000-2008. Working capital management is important part in firm financial management decision. The ability of the firm to continuously operate in longer period depends on how they deal with investment in working capital management. The optimal of working capital management coul...

  9. Monthly carbon emissions from natural-gas flaring and cement manufacture in the United States

    International Nuclear Information System (INIS)

    Blasing, T.J.; Hand, Kimberly

    2007-01-01

    Annual data on carbon emissions from fossil-fuel combustion and cement manufacture have been used in studies of the carbon cycle for the last few decades. However, annual data do not specify carbon emissions on the seasonal time-scales relevant to biospheric uptake and other processes affecting the carbon cycle. Estimates of monthly emissions from fossil-fuel consumption in the US have shown that an increasing percentage of the annual emissions are occurring during the growing season; however, carbon emitted from flaring natural gas at well sites was not accounted for in those emissions estimates, nor was carbon emitted during cement manufacture. Here we show that emissions from flaring, which amount around 0.1 % of all fossil-fuel carbon emissions in the US, have no clear and persistent annual pattern that can be detected in the data. In contrast, carbon emissions from cement manufacture, which add about 0.7% to carbon emissions from fossil fuels in the US, have a clear and persistent annual pattern including low values in late winter and early spring. In this paper, we provide a few remarks on carbon emissions from natural-gas flaring before presenting monthly emissions estimates. We then focus on the methodology for calculating carbon emissions from cement manufacture before presenting and discussing the monthly emissions estimates

  10. Energy use in the Greek manufacturing sector: A methodological framework based on physical indicators with aggregation and decomposition analysis

    International Nuclear Information System (INIS)

    Salta, Myrsine; Polatidis, Heracles; Haralambopoulos, Dias

    2009-01-01

    A bottom-up methodological framework was developed and applied for the period 1985-2002, to selected manufacturing sub-sectors in Greece namely, food, beverages and tobacco, iron and steel, non-ferrous metals, non-metallic minerals and paper. Disaggregate physical data were aggregated according to their specific energy consumption (SEC) values and physical energy efficiency indicators were estimated. The Logarithmic Mean Divisia index method was also used and the effects of the production, structure and energy efficiency to changes in sub-sectoral manufacturing energy use were further assessed. Primary physical energy efficiency improved by 28% for the iron and steel and by 9% for the non-metallic minerals industries, compared to the base year 1990. For the food, beverages and tobacco and the paper sub-sectors, primary efficiency deteriorated by 20% and by 15%, respectively; finally electricity efficiency deteriorated by 7% for the non-ferrous metals. Sub-sectoral energy use is mainly driven by production output and energy efficiency changes. Sensitivity analysis showed that alternative SEC values do not influence the results whereas the selected base year is more critical for this analysis. Significant efficiency improvements refer to 'heavy' industry; 'light' industry needs further attention by energy policy to modernize its production plants and improve its efficiency

  11. Energy use in the Greek manufacturing sector: A methodological framework based on physical indicators with aggregation and decomposition analysis

    Energy Technology Data Exchange (ETDEWEB)

    Salta, Myrsine; Polatidis, Heracles; Haralambopoulos, Dias [Energy Management Laboratory, Department of Environment, University of the Aegean, University Hill, Mytilene 81100 (Greece)

    2009-01-15

    A bottom-up methodological framework was developed and applied for the period 1985-2002, to selected manufacturing sub-sectors in Greece namely, food, beverages and tobacco, iron and steel, non-ferrous metals, non-metallic minerals and paper. Disaggregate physical data were aggregated according to their specific energy consumption (SEC) values and physical energy efficiency indicators were estimated. The Logarithmic Mean Divisia index method was also used and the effects of the production, structure and energy efficiency to changes in sub-sectoral manufacturing energy use were further assessed. Primary physical energy efficiency improved by 28% for the iron and steel and by 9% for the non-metallic minerals industries, compared to the base year 1990. For the food, beverages and tobacco and the paper sub-sectors, primary efficiency deteriorated by 20% and by 15%, respectively; finally electricity efficiency deteriorated by 7% for the non-ferrous metals. Sub-sectoral energy use is mainly driven by production output and energy efficiency changes. Sensitivity analysis showed that alternative SEC values do not influence the results whereas the selected base year is more critical for this analysis. Significant efficiency improvements refer to ''heavy'' industry; ''light'' industry needs further attention by energy policy to modernize its production plants and improve its efficiency. (author)

  12. Stochastic Lot-Sizing under Carbon Emission Control for Profit Optimisation in MTO Manufacturing

    Directory of Open Access Journals (Sweden)

    Qiao A.

    2017-01-01

    Full Text Available Aggravating global warming has heightened the imminent need by the world to step up forceful efforts on curbing emission of greenhouse gases. Although manufacturing is a major resource of carbon emission, few research works have studied the impacts of carbon constraints on manufacturing, leading to environmentally unsustainable production strategies and operations. This paper incorporates carbon emission management into production planning for make-to-order (MTO manufacturing. This paper proposes a model that solves lot-sizing problems to maximise profits under carbon emission caps. The model adopts stochastic interarrival times for customer orders to enhance the practicality of the results for real-world manufacturing. Numerical experiments show that reducing carbon emission undercuts short-term profits of a company. However, it is conducive to the company’s market image as being socially responsible which would attract more customers who concern about environmental protection. Hence, reducing carbon emission in manufacturing is beneficial to long-term profitability and sustainability. The results provide managerial insights into manufacture operations for balancing profitability and carbon control.

  13. An Empirical study on the competitiveness and innovation in four sectors of the Turkish manufacturing industry

    OpenAIRE

    Ulusoy, Gündüz; Ulusoy, Gunduz; Çetindamar, Dilek; Cetindamar, Dilek; Yeğenoğlu, Hande; Yegenoglu, Hande; Bulut, Çağrı; Bulut, Cagri

    2007-01-01

    In this paper, we report on some of the results of the Innovations in Manufacturing Industries in Turkey Study (IMITS). This study is an empirical investigation into the innovation performance and competitive strategies of manufacturing firms in Turkey. The data was gathered in nine different cities in Turkey during the period August 2004 – January 2005. The survey was conducted through face-to-face interviews due to the complex nature of the survey and was implemented in 135 manufacturing fi...

  14. The Near-Term Impacts of Carbon Mitigation Policies on Manufacturing Industries

    OpenAIRE

    Morgenstern, Richard; Shih, Jhih-Shyang; Ho, Mun; Zhang, Xuehua

    2002-01-01

    Who will pay for new policies to reduce carbon dioxide and other greenhouse gas emissions in the United States? This paper considers a slice of the question by examining the near-term impact on domestic manufacturing industries of both upstream (economy-wide) and downstream (electric power industry only) carbon mitigation policies. Detailed Census data on the electricity use of four-digit manufacturing industries is combined with input-output information on interindustry purchases to paint a ...

  15. The effect of China exportations to the United States of America in the job demand of the manufacturing sector of Mexico 2004-2012

    Directory of Open Access Journals (Sweden)

    Jorge Eduardo Mendoza Cota

    2013-12-01

    Full Text Available Recently the manufacturing sector of Mexico has experienced a reduced rate of growth. This study estimates the impact of the industrial activity of the U.S. and China on the demand for labor in the manufacturing sector of the northern border states of Mexico. With data on industrial activity, Chinese exports, wages and the peso-dollar exchange rate, a time series co-integration model is developed. The results show that exports from China to the Usa and manufacturing wages have affected labor demand negatively, while factors such as, the U.S. industrial production and the exchange rate tend to encourage manufacturing activity.

  16. An analysis on the short-term sectoral competitiveness impact of carbon tax in China

    International Nuclear Information System (INIS)

    Wang Xin; Li Ji Feng; Zhang Yaxiong

    2011-01-01

    Market-based instruments, particularly carbon tax, have recently drawn the attention of Chinese government by their cost-effective contribution to the achievement of China's climate targets. Most of the recent policy proposals have focused on its long-term impact. However, particularly for policy makers, both long term and short term effects of carbon tax would be necessary when determining tax rates. We provided a detailed analysis of short-term impacts of carbon tax on sectoral competitiveness in this paper. We divided China's economy into 36 sectors, based on its 2007 input-output table, in order to examine the ratio of carbon tax added costs to sector GDP. We were thus able to determine the impact level of a carbon tax on each sector. We then divided the sectoral trade impact into domestic competitiveness with regards to foreign imported products and international competitiveness external to the Chinese domestic market. We found that a high tax level (100 yuan/t CO 2 ) may necessitate compensatory measures to certain highly affected industries, and that a low tax rate (10 yuan/t CO 2 ) would generate few competitiveness problems for all industries and may therefore be considered as an appropriate starting point. - Highlights: → We study short-term sectoral competitiveness impact of carbon tax in China. → For each sector, we study its carbon cost, GDP share and trade intensity. → A high rate (100 yuan/t CO 2 ) may require compensatory measures to certain industries. → A low rate (10 yuan/t CO 2 ) would generate few competitiveness problems.

  17. Fostering Innovation in the Manufacturing Sector through R&D Consortia

    Science.gov (United States)

    McKittrick, M.

    2017-12-01

    In the U.S. Department of Energy, the Advanced Manufacturing Office (AMO) has the mission to catalyze research, development and adoption of energy-related advanced manufacturing technologies and practices to drive U.S. economic competitiveness and energy productivity. Within strategic areas of manufacturing, AMO brings together manufacturers, suppliers, institutes of higher education, national laboratories, and state and local governments in public-private R&D consortia to accelerate technology innovation. One such R&D Consortia is the Critical Materials Institute (CMI), established in 2013 and led by Ames Laboratory. CMI is a sustained, multidisciplinary effort to develop solutions across the materials lifecycle of materials essential to clean energy technologies and manufacturing, as well as reduce the impact of supply chain disruptions associated with these valuable resources. By bringing together scientists and engineers from diverse disciplines, CMI is addressing challenges in critical materials, including mineral processing, manufacture, substitution, efficient use, and end-of-life recycling; integrating scientific research, engineering innovation, manufacturing and process improvements; and developing a holistic solution to the materials challenges facing the nation. It includes expertise from four national laboratories, seven universities, and ten industry partners to minimize materials criticality as an impediment to the commercialization of clean energy technologies.

  18. Analysis of the impacts of combining carbon taxation and emission trading on different industry sectors

    International Nuclear Information System (INIS)

    Lee, Cheng F.; Lin, Sue J.; Lewis, Charles

    2008-01-01

    Application of price mechanisms has been the important instrument for carbon reduction, among which the carbon tax has been frequently advocated as a cost-effective economic tool. However, blanket taxes applied to all industries in a country might not always be fair or successful. It should therefore be implemented together with other economic tools, such as emission trading, for CO 2 reduction. This study aims to analyze the impacts of combining a carbon tax and emission trading on different industry sectors. Results indicate that the 'grandfathering rule (RCE2000)' is the more feasible approach in allocating the emission permit to each industry sector. Results also find that the accumulated GDP loss of the petrochemical industry by the carbon tax during the period 2011-2020 is 5.7%. However, the accumulated value of GDP will drop by only 4.7% if carbon taxation is implemented together with emission trading. Besides, among petrochemical-related industry sectors, up-stream sectors earn profit from emission trading, while down-stream sectors have to purchase additional emission permits due to failure to achieve their emission targets

  19. Comparison of manufactured and black carbon nanoparticle concentrations in aquatic sediments

    NARCIS (Netherlands)

    Koelmans, A.A.; Nowack, B.; Wiesner, M.

    2009-01-01

    In this paper, we show that concentrations of manufactured carbon-based nanoparticles (MCNPs) in aquatic sediments will be negligible compared to levels of black carbon nanoparticles (BCNPs). This is concluded from model calculations accounting for MCNP sedimentation fluxes, removal rates due to

  20. WTO Accession and Managerial Challenges for Manufacturing Sectors in Southern China

    OpenAIRE

    Yeung, G; Mok, V

    2002-01-01

    Based on 31 case studies, this study tests the validity of four major managerial hypotheses for manufacturers in China after WTO accession. It is argued that the skills of managers will be severely tested in four specific areas after China accedes to the WTO: (1) preparing for trade disputes with their overseas competitors, (2) developing newer and higher value-added products and diversifying their markets, (3) selecting the appropriate localization strategy, and (4) upgrading manufacturing p...

  1. Carbon tax scenarios and their effects on the Irish energy sector

    International Nuclear Information System (INIS)

    Di Cosmo, Valeria; Hyland, Marie

    2013-01-01

    In this paper we use annual time series data from 1960 to 2008 to estimate the long run price and income elasticities underlying energy demand in Ireland. The Irish economy is divided into five sectors: residential, industrial, commercial, agricultural and transport, and separate energy demand equations are estimated for all sectors. Energy demand is broken down by fuel type, and price and income elasticities are estimated for the primary fuels in the Irish fuel mix. Using the estimated price and income elasticities we forecast Irish sectoral energy demand out to 2025. The share of electricity in the Irish fuel mix is predicted to grow over time, as the share of carbon intensive fuels such as coal, oil and peat, falls. The share of electricity in total energy demand grows most in the industrial and commercial sectors, while oil remains an important fuel in the residential and transport sectors. Having estimated the baseline forecasts, two different carbon tax scenarios are imposed and the impact of these scenarios on energy demand, carbon dioxide emissions, and government revenue is assessed. If it is assumed that the level of the carbon tax will track the futures price of carbon under the EU-ETS, the carbon tax will rise from €21.50 per tonne CO 2 in 2012 (the first year forecasted) to €41 in 2025. Results show that under this scenario total emissions would be reduced by approximately 861,000 tonnes of CO 2 in 2025 relative to a zero carbon tax scenario, and that such a tax would generate €1.1 billion in revenue in the same year. We also examine a high tax scenario under which emissions reductions and revenue generated will be greater. Finally, in order to assess the macroeconomic effects of a carbon tax, the carbon tax scenarios were run in HERMES, the ESRI's medium-term macroeconomic model. The results from HERMES show that, a carbon tax of €41 per tonne CO 2 would lead to a 0.21% contraction in GDP, and a 0.08% reduction in employment. A higher carbon

  2. Report on the de-carbonated energy sector in 2010

    International Nuclear Information System (INIS)

    2011-01-01

    For different de-carbonated energies, this report presents the available technologies, describes the value chain, presents the regulatory and legal European and French frameworks, gives a brief overview of the world, European and French markets, presents the main actors at the international or French level, briefly presents research projects, and skill centres. The report addresses the following energies: bio-fuels, biomass energy, wind energy, sea energy, photovoltaic energy, thermal solar energy, CO 2 capture and storage, geothermal energy, hydrogen and fuel cells, smart grids, energy storage, nuclear energy, hydroelectricity, and the de-carbonated vehicle

  3. Study on Effect of Functional Competency on Performance of Indian Manufacturing Sector

    Directory of Open Access Journals (Sweden)

    Rameshwar Dubey

    2011-08-01

    Full Text Available India is one of the fastest emerging global manufacturing hub with a large number of firms shifting their manufacturing base to the country due to cheap labor and good supplier(s base. Over the years, India has the largest number of companies, outside of Japan, that have been recognized for excellence in quality. As many as 21 companies have received the Deming Excellence awards; 153 companies have achieved Total Productive Maintenance (TPM Excellence Award for their total productivity management practices by the Japan Institute of Plant Maintenance (JIPM committee (Source: IBEF, 2010. Here in this research article author(s conducted an empirical survey among Indian manufacturing firms to understand how manufacturing competency effect the firm performance. It has been observed that manufacturing competency has negative impact on firm performance which is contradicting with the so far empirical studies conducted in European, Japanese and American countries. Here in this study authors provides in depth analysis to explain this negative impact and how this can lead to positive impact.

  4. Carbon Nanotube Composite SHM Sensor using Additive Manufacturing

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to develop a piezoelectric sensors made of carbon nanotube and lead zirconium titanate (PZT) nanopower dispersed in a polymer matrix. These sensors will...

  5. Microwave Assisted Manufacturing and Repair of Carbon Reinforced Nanocomposites

    OpenAIRE

    Sosa, Edward D.; Worthy, Erica S.; Darlington, Thomas K.

    2016-01-01

    We report a composite capable of advanced manufacturing and damage repair. Microwave energy is used to induce thermal reversible polymerization of the matrix allowing for microwave assisted composite welding and repair. Composites can be bonded together in just a few minutes through microwave welding. Lap shear testing demonstrates that microwave welded composites exhibit 40% bond strength relative to composites bonded with epoxy resin. Double cantilever beam testing shows 60% recovery in del...

  6. Analysis of successful rate factors for small and medium enterprises in furniture manufacturing sector in Klaten Regency - Central Java, Indonesia

    Science.gov (United States)

    Budhi Utomo, R.; Lasminiasih; Prajaka, S.

    2018-03-01

    Small and Medium Enterprises (SMEs) are business activities that can expand the level of employment rate and provide economic services to the wider community and can play a role in the process of equalizing and improving people’s income, stimulating economic growth as well as realizing national stabilities. The aim of this study is to identify the factors of the success rate for Small and Medium Enterprises (SMEs) in furniture manufacturing sector in Klaten regency, Central Java, Indonesia. The method employed in this study was descriptive qualitative by also employing quantitative analysis of which the data were collected through observations, interviews and by administering questionnaires. The results seemed to indicate that the furniture business in Klaten is still experiencing difficulties in managing its various aspects of business, namely in terms of marketing (either directly or indirectly or by making the best use media of technology) and managing capital. All this time, the SMEs in furniture manufacturing sector in Klaten have been utilizing a very simple system in producing tables, chairs, wardrobes and any other furniture products which are then distributed to be sold by larger furniture companies. This condition makes the SMEs unable to be independent in running their business.

  7. Survival of Private Sector Manufacturing Establishments in Africa: The Role of Productivity and Ownership

    NARCIS (Netherlands)

    A. Shiferaw (Admasu)

    2009-01-01

    textabstractThis paper analyzes the risk of exit for privately-owned manufacturing establishments in a small African economy. It shows that changes in the structure of ownership following an economic reform have important implications on stablishment survival. The risk of exit is lower for

  8. Optimal production resource reallocation for CO2 emissions reduction in manufacturing sectors

    OpenAIRE

    Fujii, Hidemichi; Managi, Shunsuke

    2015-01-01

    To mitigate the effects of climate change, countries worldwide are advancing technologies to reduce greenhouse gas emissions. This paper proposes and measures optimal production resource reallocation using data envelopment analysis. This research attempts to clarify the effect of optimal production resource reallocation on CO2 emissions reduction, focusing on regional and industrial characteristics. We use finance, energy, and CO2 emissions data from 13 industrial sectors in 39 countries from...

  9. Evaluating the effect of exchange rate and labor productivity on import penetration of Brazilian manufacturing sectors

    OpenAIRE

    Faleiros, João Paulo Martin; da Silva, José Carlos Domingos; Nakaguma, Marcos Yamada

    2016-01-01

    In recent years, several economists have argued that the sharp loss of competitiveness of the Brazilian industry was caused by a strong exchange rate appreciation. However, other economists have attributed this loss of competitiveness to the dismal growth of labor productivity in the Brazilian industrial sector. The present paper proposes to estimate the differential impacts of variations in exchange rate and labor productivity on the Brazilian market share of imports measured by the coeffici...

  10. [Manufacture of upholstered furniture and work-related upper limb musculoskeletal disorders: an industrial sector prevention project].

    Science.gov (United States)

    Di Leone, G; Carino, M; Nicoletti, S; Trani, G; Ambrosi, L

    2008-01-01

    In cooperation with the IRCCS Fondazione Maugeri and the IRCCS Fondazione Ospedale Maggiore Policlinico - EPM-CEMOC, of Milan, the Local Health Unit in Bari, Italy carried out a research project, sponsored partly by the Italian Ministry of Health, on upper limb work-related musculoskeletal disorders (UL-WMSDs) in a specific manufacturing sector, the upholstered furniture industry. This "sofa district" is widely represented with approximately 14,000 workers and 500 factories over a wide geographic area of southern Italy. Advanced technology in the manufacturing process is combined with workers performing intensive arm-hand tasks. The aim of the study included: a) assessment of exposure to repetitive strain and movements of the upper limb in a representative sample of the factories using the OCRA method, b) analysis of the annual prevalence and incidence rates, c) definition of possible improvement via ergonomic solutions in the various factories. Via a network of occupational physicians a total of more than 6000 subjects were examined over a 5-year period. Case-definition was assessed through standardized procedures. A detailed description of the manufacturing process of the upholstered furniture industry and of the characteristics of the working population is provided Exposed groups at risk were:filling preparation workers, leather-cutting operators, sewing and upholstery-assembly workers. Data collected in private companies of different size in this extensive industrial "sofa area" emphasize the importance of prevention through adequate ergonomic solutions and the need to improve training programmes covering the whole area.

  11. Impact of working conditions on the quality of working life: Case manufacturing sector colombian Caribbean Region

    Directory of Open Access Journals (Sweden)

    Laura Martínez-Buelvas

    2015-01-01

    Full Text Available La presenta investigación centra su atención en evaluar el impacto de las Condiciones de Trabajo en la Calidad de Vida Laboral del talento humano de sector manufacturero de la región Caribe colombiana. Para analizar este proceso se entrevistaron a 518 empleados del sector. El diseño utilizado fue no experimental de tipo transversal descriptivo, puesto que a cada participante se le aplicó una entrevista con el instrumento de Condiciones de Trabajo y la Herramienta de Calidad de Vida Laboral (Condiciones Salariales y Subjetivas. Los datos fueron analizados mediante análisis de correlación y modelos de regresión logística. Los resultados mostraron que el ambiente térmico y las normas de seguridad en el trabajo afectan de forma positiva la Calidad de Vida Laboral de los empleados del sector. Estos resultados ponen de manifiesto que la relación entre las condiciones de trabajo y la CVL se basa en la competencia y distan de ser una relación lineal y simple relacionada con la consideración de la presencia o la ausencia de las condiciones de trabajo. Ello tiene implicaciones a la hora de formular políticas, programas e intervenciones para prevenir, erradicar y amortiguar los efectos negativos de las condiciones de trabajo y mejorar la seguridad industrial dentro de las empresas.

  12. Top Management Support Partially Optimized Reverse Logistics in The Manufacturing Sector of Pakistan

    Directory of Open Access Journals (Sweden)

    Ms. Sitara Shafiq

    2013-07-01

    Full Text Available Supply chain management urges reverse logistics to be an effective tool for organizational competitive advantage. Reverse chains demand astute resource deployments and strategic focus by the top management. In Pakistan manufacturing industries employing reverse logistics for cost effectiveness reported heavy reliance on top management support. However, literature is yet not benefited by such empirical facts. This study hypothesized that top management support is key for cost effective reverse logistics. Collecting and analyzing reliable data for various elements of its variables of interests, the study confirmed considerable multi linear regression between top management support and cost effectiveness. Substantiating the hypothesis, it contributes that a significant impact of strategic focus and resource commitment by top management leads reverse logistics based manufacturers to success.

  13. Innovating transformative medical devices and growing the local medical device manufacturing sector

    CSIR Research Space (South Africa)

    Bunn, Tony

    2017-01-01

    Full Text Available . The 4IR is marked by emerging technology breakthroughs in a number of fields, including robotics, genomics, biosensors and wearables, AI, the internet of things, quantum computing, big data predictive analytics, 3D printing/additive manufacturing... of personalized prosthetics and products • Personalized devices and technologies for precision medicine Secure Airway Clamp for safer Anaesthesia MANDIBULAR IMPLANTS PATIENT 2 PATIENT 1 PATIENT 3 PATIENT CT SCAN 3D PRINTED TITANIUM IMPLANT PROPOSED...

  14. Trade, Quality Upgrading and Wage Inequality in the Mexican Manufacturing Sector

    OpenAIRE

    Verhoogen, Eric A

    2007-01-01

    This paper proposes a new mechanism linking trade and wage inequality in developing countries --- the quality-upgrading mechanism --- and investigates its empirical implications in panel data on Mexican manufacturing plants. In a model with heterogeneous plants and quality-differentiated goods, only the most productive plants in a country like Mexico enter the export market, they produce higher-quality goods to appeal to richer Northern consumers, and they pay high wages to attract and motiva...

  15. Ergonomics/Human Factors Needs of an Ageing Workforce in the Manufacturing Sector

    Science.gov (United States)

    W. Stedmon, Alex; Howells, Hannah; R. Wilson, John; Dianat, Iman

    2012-01-01

    Background: As the effects of demographic transition are realised around the world, many in-dustrial societies are facing the effects of a baby boom generation, increased life expectancies, decreased birth rates and recent changes to retirement legislation with the result that older work¬ers are set to comprise a greater proportion of the labour force. Methods: This paper reviews the evidence for the physical and cognitive factors that characterise an ageing workforce in manufacturing. From an ergonomics and human factors (E/HF) pers¬pective, characteristics of manufacturing tasks and the effects of ageing provide an insight into how the industry will have to adapt to support the user needs of the older worker in the future. The approach taken is drawn from Ilmarinen’s framework of age, experience, and work performance, from which specific E/HF issues are explored. Results: There would appear to potential to support physical decline in older workers within manufacturing jobs through increased mechanisation and automation; however, those factors associated with cognitive human factors are less clear. Increased mechanisation and automation can place greater loads and demands on the older worker where cognitive decline is more subtle and varied between workers. Conclusion: Using historical and contemporary findings and the relationship between age, experience, and work performance is redrawn to include both cognitive skills and physical attributes to provide recommendations for future job design and worker needs. PMID:24688925

  16. Ergonomics/Human Factors Needs of an Ageing Workforce in the Manufacturing Sector

    Directory of Open Access Journals (Sweden)

    Alex W. Stedmon

    2012-12-01

    Full Text Available Background: As the effects of demographic transition are realised around the world, many in-dustrial societies are facing the effects of a baby boom generation, increased life expectancies, decreased birth rates and recent changes to retirement legislation with the result that older work-ers are set to comprise a greater proportion of the labour force.Methods: This paper reviews the evidence for the physical and cognitive factors that characterise an ageing workforce in manufacturing. From an ergonomics and human factors (E/HF pers-pective, characteristics of manufacturing tasks and the effects of ageing provide an insight into how the industry will have to adapt to support the user needs of the older worker in the future. The approach taken is drawn from Ilmarinen’s framework of age, experience, and work performance, from which specific E/HF issues are explored.Results: There would appear to potential to support physical decline in older workers within manufacturing jobs through increased mechanisation and automation; however, those factors associated with cognitive human factors are less clear. Increased mechanisation and automation can place greater loads and demands on the older worker where cognitive decline is more subtle and varied between workers.Conclusion: Using historical and contemporary findings and the relationship between age, experience, and work performance is redrawn to include both cognitive skills and physical attributes to provide recommendations for future job design and worker needs.

  17. Ergonomics/Human factors needs of an ageing workforce in the manufacturing sector.

    Science.gov (United States)

    W Stedmon, Alex; Howells, Hannah; R Wilson, John; Dianat, Iman

    2012-01-01

    As the effects of demographic transition are realised around the world, many in-dustrial societies are facing the effects of a baby boom generation, increased life expectancies, decreased birth rates and recent changes to retirement legislation with the result that older work¬ers are set to comprise a greater proportion of the labour force. This paper reviews the evidence for the physical and cognitive factors that characterise an ageing workforce in manufacturing. From an ergonomics and human factors (E/HF) pers¬pective, characteristics of manufacturing tasks and the effects of ageing provide an insight into how the industry will have to adapt to support the user needs of the older worker in the future. The approach taken is drawn from Ilmarinen's framework of age, experience, and work performance, from which specific E/HF issues are explored. There would appear to potential to support physical decline in older workers within manufacturing jobs through increased mechanisation and automation; however, those factors associated with cognitive human factors are less clear. Increased mechanisation and automation can place greater loads and demands on the older worker where cognitive decline is more subtle and varied between workers. Using historical and contemporary findings and the relationship between age, experience, and work performance is redrawn to include both cognitive skills and physical attributes to provide recommendations for future job design and worker needs.

  18. Manufacture of Methane Hydrate using Carbon Nano Tubes

    International Nuclear Information System (INIS)

    Park, Sung Seek

    2010-02-01

    Methane hydrate is formed by physical binding between water molecule and gas such as methane, ethane, propane, or carbon dioxide, etc., which is captured in the cavities of water molecule under the specific temperature and pressure. More than 99% of naturally produced methane hydrate consists of methane, and is widely dispersed in the continental slope and continental Shelf of the Pacific and the Atlantic, the Antarctica etc. The reserve of fossil fuel is 500 billion carbon ton and the reserve of methane is 360 million carbon ton. The reserve of gas hydrate is more than 1 trillion carbon ton, which is twice the fossil fuel. Therefore, natural gas hydrate as a kind of gas hydrate is expected to replace fossil fuel as new energy source of 21st century. Also 1 m 3 hydrate of pure methane can be decomposed to the maximum of 216 m 3 methane at standard condition. If these characteristics of hydrate are reversely utilized, natural gas is fixed into water in the form of hydrate solid. Therefore, the hydrate is considered to be a great way to transport and store natural gas in large quantity. Especially the transportation cost is known to be 18∼25% less than the liquefied transportation. However, when natural gas hydrate is artificially formed, its reaction time may be too long and the gas consumption in water becomes relatively low, because the reaction rate between water and gas is low. Therefore, for the practical purpose in the application, the present investigation focuses on the rapid production of hydrates and increases gas consumption by adding MWCNT and NaCl into pure water. The results show that the equilibrium pressure in seawater is more higher than that in pure water, and methane hydrate could be formed rapidly during pressurization if the subcooling is maintained at 9K or above in seawater and 8K or above in pure water, respectively. Also, amount of consumed gas volume in pure water is more higher that in seawater at the same experimental conditions

  19. Carbon dioxide capture from a cement manufacturing process

    Science.gov (United States)

    Blount, Gerald C [North Augusta, SC; Falta, Ronald W [Seneca, SC; Siddall, Alvin A [Aiken, SC

    2011-07-12

    A process of manufacturing cement clinker is provided in which a clean supply of CO.sub.2 gas may be captured. The process also involves using an open loop conversion of CaO/MgO from a calciner to capture CO.sub.2 from combustion flue gases thereby forming CaCO.sub.3/CaMg(CO.sub.3).sub.2. The CaCO.sub.3/CaMg(CO.sub.3).sub.2 is then returned to the calciner where CO.sub.2 gas is evolved. The evolved CO.sub.2 gas, along with other evolved CO.sub.2 gases from the calciner are removed from the calciner. The reactants (CaO/MgO) are feed to a high temperature calciner for control of the clinker production composition.

  20. ENERGY SOURCES AND CARBON EMISSIONS IN THE IRON AND STEEL INDUSTRY SECTOR IN SOUTH ASIA

    Directory of Open Access Journals (Sweden)

    Tapan Sarker

    2013-01-01

    Full Text Available This paper examines CO2 emissions from electricity and fuel consumption of different energy sources consumed in the Iron and Steel Industry sector (non-ferrous included, also known as basic metal in five South Asian countries including Bangladesh, India, Nepal, Sri Lanka and Pakistan. The study finds that about 30% of the total energy in the manufacturing industry is used in this sector, which is about 11% of total industrial input, contributing approximately 13% to the Manufacturing Value Added (MVA. Electricity, on the other hand, shares almost 60% of total energy consumption in the five countries in South Asia, followed by natural gas, coal, kerosene and diesel. The study also finds that CO2 emissions vary across sectors in countries in which the study was conducted. For instance, while in Bangladesh CO2 emissions are primarily caused by electricity generation, in India the majority of CO2 emissions are originated from coal. On the contrary, CO2 emissions in Nepal are mostly generated through other fuels such as Charcoal, Diesel and Kerosene. This study provides some policy recommendations, which could help reduce CO2 emissions in the Iron and Steel Industry sector in the South Asian region.

  1. Development of textile-reinforced carbon fibre aluminium composites manufactured with gas pressure infiltration methods

    OpenAIRE

    W. Hufenbach; M. Gude; A. Czulak; J. Śleziona; A. Dolata-Grosz; M. Dyzia

    2009-01-01

    Purpose: The aim of his paper is to show potential of textile-reinforced carbon fibre aluminium composite with advantage of the lightweight construction of structural components subjected to thermo-mechanical stress.Design/methodology/approach: The manufacture of specimens of the carbon fibre-reinforced aluminium was realised with the aid of an advanced differential gas pressure infiltration technique, which was developed at ILK, TU Dresden.Findings: The gas pressure infiltration technology e...

  2. Impact ejecta and carbonate sequence in the eastern sector of the Chicxulub crater

    Science.gov (United States)

    Urrutia-Fucugauchi, Jaime; Chavez-Aguirre, Jose Maria; Pérez-Cruz, Ligia; De la Rosa, Jose Luis

    2008-12-01

    The Chicxulub 200 km diameter crater located in the Yucatan platform of the Gulf of Mexico formed 65 Myr ago and has since been covered by Tertiary post-impact carbonates. The sediment cover and absence of significant volcanic and tectonic activity in the carbonate platform have protected the crater from erosion and deformation, making Chicxulub the only large multi-ring crater in which ejecta is well preserved. Ejecta deposits have been studied by drilling/coring in the southern crater sector and at outcrops in Belize, Quintana Roo and Campeche; little information is available from other sectors. Here, we report on the drilling/coring of a section of ˜34 m of carbonate breccias at 250 m depth in the Valladolid area (120 km away from crater center), which are interpreted as Chicxulub proximal ejecta deposits. The Valladolid breccias correlate with the carbonate breccias cored in the Peto and Tekax boreholes to the south and at similar radial distance. This constitutes the first report of breccias in the eastern sector close to the crater rim. Thickness of the Valladolid breccias is less than that at the other sites, which may indicate erosion of the ejecta deposits before reestablishment of carbonate deposition. The region east of the crater rim appears different from regions to the south and west, characterized by high density and scattered distribution of sinkholes.

  3. Antecedents and corollaries of workplace presenteeism: Empirical evidence from manufacturing sector employees

    Directory of Open Access Journals (Sweden)

    Tinuke M. Fapohunda

    2016-06-01

    Full Text Available Presenteeism is a predicament that has gained attention in business and human resource management literature and research. This study examines the antecedents and corollaries of presenteeism in the workplace and offers strategy modifications that could decrease its occurrence. The study adopted the survey research design using a total sample of three hundred and fifty respondents made up of 180 males and 170 females, randomly selected from five manufacturing firms. Nine independent variables of presenteeism were tested and found to be significantly and positively correlated with presenteeism for both females and males. No significant gender disparities in the antecedents of presenteeism were found.

  4. A macro-economic and sectoral evaluation of carbon taxation in France

    International Nuclear Information System (INIS)

    Callonnec, Gael; Reynes, Frederic; Yeddir-Tamsamani, Yasser

    2011-01-01

    This paper evaluates the macro-economic and sectoral impact of a carbon tax in France using the Three-ME model that combines two important features: (1) The model has a detailed industrial structure and detailed description of the French tax system, particularly the taxation applied to energy. (2) It has the main properties of the neo-Keynesian models because it takes into account the slow process adjustment of prices and quantifies. Our results show under certain conditions the possibility of a double economic and environmental dividends resulting from carbon taxation, for both the short and long term. Carbon tax. Neo-Keynesian macro-economic model. Sectoral analysis. Initially published in 'Revue de l'OFCE / Debats et politiques' No. 120

  5. When should green technology support policies supplement the carbon price? The case of the electricity sector

    International Nuclear Information System (INIS)

    Lecuyer, Oskar

    2013-01-01

    This thesis contributes to the literature on optimal policy choice. It studies the use of policy combinations to mitigate greenhouse gases emissions from electricity production. One finding applies to cases where uncertainty is such that the risk of a nil carbon price cannot be excluded. A cap on emissions alone may then not trigger enough abatements, justifying the addition of e.g. a renewable subsidy. When considering a transition toward a carbon free electricity sector, capital accumulation causes complex dynamic effects to happen. We find that decisions taken by comparing the leveled costs of abatement technologies, even including carbon costs, would favor intermediate technologies (e.g. gas plants) to the detriment of more-expensive but lower-carbon technologies (renewable power), leading to a suboptimal investment schedule. This thesis also studies the effects of marginal policy changes in a mix comprising the main French instruments. We find that surprisingly, adding a tariff for renewables financed by a tax on electricity consumption to a cap on emissions and a subsidy for energy efficiency will reduce the consumer electricity price when the non-renewable production is fixed and does not depend on the carbon price. The assessment of the French climate policies in the electricity sector shows that overlapping policies for mitigation may be justified by multiple carbon price failures, even if the ideal long-term policy mix depends on the carbon price trajectory. (author)

  6. Materials and Manufacturing Processing; Special Issue on Hard Carbon Films

    Science.gov (United States)

    1993-01-01

    AZ 85721 G. SMOLIK, P.O. Box 1625, Idaho National Engineering Laboratory, Idaho Falls, ID 83415 J.B. TERRELL, Reynolds Metals Company, P.O. Box 27003 ...18%Si alloy using inserts of ISO SPGN120308 and HEHN532FN. The damage to diamond films after cutting was examined by SEM and micro-laser Raman...uncoated cemented carbide insert corresponding to ISO K10 grade and sintered diamond insert were also used. Milling a hard carbon under dry condition The

  7. Good manufacturing practice (GMP) compliance in the biologics sector: plasma fractionation.

    Science.gov (United States)

    Ways, J P; Preston, M S; Baker, D; Huxsoll, J; Bablak, J

    1999-12-01

    The U.S. blood supply is the safest it has ever been. Due to blood safety and the introduction of viral inactivation/clearance technologies, protein therapies derived from human blood have also in recent years had a history of product safety. Nevertheless, since 1995, the plasma-fractionation industry has experienced increased compliance-related actions by the Food and Drug Administration (FDA), as shown by a substantive increase in the number of FDA 483 inspectional observations, FDA warning letters and other FDA regulatory action. An evaluation of these trends shows that they reflect the implementation by the FDA of increased inspectional interest in the plasma-fractionation industry and an evolution of inspectional practices and standards of current good manufacturing practice (cGMP). Plasma fractionators have responded to FDA actions by carefully evaluating and addressing each inspectional observation, assessing impact to product and taking appropriate actions, including corrective actions to prevent future occurrence. They have made major investments in facilities, quality systems, personnel and training to meet the evolving standards of cGMP and in an effort to implement these standards systemically. Through industry associations, manufacturers have further enhanced product safety by adopting additional voluntary standards for plasma to prevent the entry of potentially unsuitable plasma into the production process. The industry remains committed to application of cGMP and to working with the FDA in further evolution of these standards while striving to assure a continued supply of safe, pure and effective plasma-derived therapies.

  8. Geographical Detector Model for Influencing Factors of Industrial Sector Carbon Dioxide Emissions in Inner Mongolia, China

    Directory of Open Access Journals (Sweden)

    Rina Wu

    2016-02-01

    Full Text Available Studying the influencing factors of carbon dioxide emissions is not only practically but also theoretically crucial for establishing regional carbon-reduction policies, developing low-carbon economy and solving the climate problems. Therefore, we used a geographical detector model which is consists of four parts, i.e., risk detector, factor detector, ecological detector and interaction detector to analyze the effect of these social economic factors, i.e., GDP, industrial structure, urbanization rate, economic growth rate, population and road density on the increase of energy consumption carbon dioxide emissions in industrial sector in Inner Mongolia northeast of China. Thus, combining with the result of four detectors, we found that GDP and population more influence than economic growth rate, industrial structure, urbanization rate and road density. The interactive effect of any two influencing factors enhances the increase of the carbon dioxide emissions. The findings of this research have significant policy implications for regions like Inner Mongolia.

  9. Human capital and income within Mexicali and Tijuana’s manufacturing sector, 1994-2001

    Directory of Open Access Journals (Sweden)

    Claudio Cabrera

    2008-07-01

    Full Text Available This work study the income of the Tijuana and Mexicali industrial manufacturing worker as a function of the schooling level and work experience through a human capital econometric model. Information from the National Survey of Urban Employment (ENEU, was used in a representative data base with a sample of 184 observations for Tijuana between 1994 and 2001 (8 years and 23 industrial branches and 112 observations for Mexicali between 1998 and 2001 (4 years and 28 industrial branches. Schooling was most important than work experience in the income determination of the Tijuana and Mexicali industrial workers. This means that in the local labor market, the educational level is a key factor in the wage negotiation.

  10. The timing of biological carbon sequestration and carbon abatement in the energy sector under optimal strategies against climate risks

    International Nuclear Information System (INIS)

    Gitz, V.; Hourcade, J.Ch.; Ciais, Ph.

    2005-10-01

    This paper addresses the timing of the use of biological carbon sequestration and its capacity to alleviate the carbon constraint on the energy sector. We constructed a stochastic optimal control model balancing the costs of fossil emission abatement, the opportunity costs of lands allocated to afforestation, and the costs of uncertain climate damages. We show that a minor part of the sequestration potential should start immediately as a 'brake', slowing down both the rate of growth of concentrations and the rate of abatement in the energy sector. thus increasing the option value of the emission trajectories. But, most of the potential is put in reserve to be used as a 'safety valve' after the resolution of uncertainty, if a higher and faster decarbonization is required: sequestration cuts off the peaks of costs of fossil abatement and postpones the pivoting of the energy system by up to two decades. (authors)

  11. Role of forest sector and bioenergy in limiting the carbon emissions of Finland

    International Nuclear Information System (INIS)

    Pingoud, Kim; Lehtilae, Antti

    1997-01-01

    The greenhouse impacts of the Finnish forest sector, including the forests biomass, forest industry, forest products in use, foreign trade and waste management are discussed. The main carbon storages and flows are estimated and the greenhouse gas balance both totally and on national level are presented. The history of the greenhouse impact is also estimated and two future scenarios of the forest sector are compared. The present use and potential for additional use of bioenergy is also reviewed, and the impact of expanded bioenergy use on the national CO 2 emissions is illustrated with scenario examples. (author)

  12. A carbon dioxide stripping model for mammalian cell culture in manufacturing scale bioreactors.

    Science.gov (United States)

    Xing, Zizhuo; Lewis, Amanda M; Borys, Michael C; Li, Zheng Jian

    2017-06-01

    Control of carbon dioxide within the optimum range is important in mammalian bioprocesses at the manufacturing scale in order to ensure robust cell growth, high protein yields, and consistent quality attributes. The majority of bioprocess development work is done in laboratory bioreactors, in which carbon dioxide levels are more easily controlled. Some challenges in carbon dioxide control can present themselves when cell culture processes are scaled up, because carbon dioxide accumulation is a common feature due to longer gas-residence time of mammalian cell culture in large scale bioreactors. A carbon dioxide stripping model can be used to better understand and optimize parameters that are critical to cell culture processes at the manufacturing scale. The prevailing carbon dioxide stripping models in literature depend on mass transfer coefficients and were applicable to cell culture processes with low cell density or at stationary/cell death phase. However, it was reported that gas bubbles are saturated with carbon dioxide before leaving the culture, which makes carbon dioxide stripping no longer depend on a mass transfer coefficient in the new generation cell culture processes characterized by longer exponential growth phase, higher peak viable cell densities, and higher specific production rate. Here, we present a new carbon dioxide stripping model for manufacturing scale bioreactors, which is independent of carbon dioxide mass transfer coefficient, but takes into account the gas-residence time and gas CO 2 saturation time. The model was verified by CHO cell culture processes with different peak viable cell densities (7 to 12 × 10 6  cells mL -1 ) for two products in 5,000-L and 25,000-L bioreactors. The model was also applied to a next generation cell culture process to optimize cell culture conditions and reduce carbon dioxide levels at manufacturing scale. The model provides a useful tool to understand and better control cell culture carbon dioxide

  13. Out-of-autoclave manufacturing of a stiffened thermoplastic carbon fibre PEEK panel

    Science.gov (United States)

    Flanagan, M.; Goggins, J.; Doyle, A.; Weafer, B.; Ward, M.; Bizeul, M.; Canavan, R.; O'Bradaigh, C.; Doyle, K.; Harrison, N.

    2017-10-01

    Out-of-Autoclave manufacturing methods, specifically Automated Tape Placement (ATP) and induction welding, used in the fabrication of a stiffened thermoplastic demonstrator panel, are presented in this study. The demonstrator panel consists of two stiffeners induction welded to a flat skin, to form a typical load bearing aerospace sub-component. The skin of the panel is manufactured from uni-directional Carbon Fibre (CF) Polyetheretherkeytone (PEEK) using laser assisted Automated Tape Placement (ATP) and the stiffeners are press formed from woven CF-PEEK. The stiffeners are fusion bonded to the skin using a continuous induction welding process. A susceptor material is used at the interface to ensure the required heating is concentrated at the weldline. Microscopy was used to examine the manufactured coupons for defects. Destructive testing was carried out to evaluate the strength of the overall assembly. The work shows that assemblies manufactured using continuous induction welding and ATP are suitable for load bearing aerospace applications.

  14. Commercialization of new biotechnology: a systematic review of 16 commercial case studies in a novel manufacturing sector.

    Science.gov (United States)

    Paul, Matthew J; Thangaraj, Harry; Ma, Julian K-C

    2015-10-01

    The 1980s and 1990s saw a major expansion of biotechnology into new areas of science including genomics and recombinant technologies. This was coupled to the widespread emergence of academics into the commercial sector as they were encouraged to spin out companies or commercialize their intellectual property. There were many opportunities to raise investment, and extraordinary success stories were prominent across many areas of technology. The field of plant biotechnology for manufacturing recombinant pharmaceuticals (molecular pharming) emerged and was developed in this period. Like other biotechnologies, this was an exciting new development which offered some very obvious benefits and commercial advantages. In particularly, plant molecular pharming represented a highly novel and potentially disruptive manufacturing technology for recombinant proteins. Twenty-five years on, a series of interviews with senior members of sixteen of the most prominent companies involved in the field provides insight into the original drivers for commercialization, strategic thinking and planning behind key commercial decisions and an insider view into the major reasons for commercial success or failure. These observations and recurring themes identified across a number of commercial ventures remain relevant today, as new biotech companies continue to spin out of the world of academia. © 2015 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  15. Internet and international trade by manufacturers: An approach using industrial sectors data

    Directory of Open Access Journals (Sweden)

    Enrique Bernal-Jurado

    2010-12-01

    Full Text Available Some evidences show how the potential generated by using the Internet as a tool able to open new commercial markets is not being fulfilled. The study´s purpose is to analyze the possible intensity with which the industrial sectors incorporate and take advantage of the Internet and the volume of business generated in international markets, based on statistical information referring to Spanish industry. Starting from the available statistical information on the incorporation and commercial use of ICT, the foreign trade and production of various Spanish industries are assigned different variables and the lineal relationships among them are contrasted. Those industries with the largest importing and exporting activities are, at the same time, those that get more and more business via electronic commerce, particularly through different communication channels, such as EDI, Minitel or Internet. However, it is interesting to note the absence of this kind of relationship when we look at the e-commerce carried out exclusively through the Internet. The results justify the necessity of taking more intensive actions to improve the use of the new electronic systems in the international commercialization, especially in the environment of the small and medium sized companies.

  16. Analysis of energy use and efficiency in Turkish manufacturing sector SMEs

    International Nuclear Information System (INIS)

    Onuet, Semih; Soner, Selin

    2007-01-01

    Small and medium size enterprises (SMEs) have an important role in the Turkish economy because of the workforce involved. According to the size of the industrial facilities, there are different cost components related to the total production costs. Energy cost is usually a small portion of the total production cost, but the Turkish industrial sector comprises approximately 35% of Turkey's total energy consumption and 98.8% of the total number of enterprises in Turkey constitutes the SMEs. Because of the uncertainty of energy costs in the world, it is important to take preventive measures to reduce energy costs and increase efficiencies in industry and consequently in SMEs. In this paper, medium sized enterprises are taken into consideration essentially. Because of getting homogeneity, enterprises with the number of workers between 100 and 200 in the metallic goods industry have been considered in the survey. Energy management includes increasing the profitability by reduced operational costs, and it is also a potential for improving market share. Many different evaluation models have been published in the energy management literature. However, there have not been so many systematic approaches to compare the relative efficiency of the systems. Data envelopment analysis (DEA) is a special linear programming model for deriving the comparative efficiency of multiple-input multiple-output decision making units (DMUs). An evaluation of energy efficiency in 20 medium sized companies has been conducted, and the results are discussed in this paper

  17. Animal use in the chemical and product manufacturing sectors - can the downtrend continue?

    Science.gov (United States)

    Curren, Rodger

    2009-12-01

    During the 1990s and early 2000s, a number of manufacturing companies in the cosmetic, personal care and household product industries were able to substantially reduce their use of animals for testing (or to not use animals in the first place). These reductions were almost always the result of significant financial contributions to either direct, in-house alternatives research, or to support personnel whose duties were to understand and apply the current state-of-the-art for in vitro testing. They occurred almost exclusively in non-regulatory areas, and primarily involved acute topical toxicities. Over the last few years, the reduction in animal use has been much less dramatic, because some companies are still reluctant to change from the traditional animal studies, because systemic, repeat-dose toxicity is more difficult to model in vitro, and because many products still require animal testing for regulatory approval. Encouragingly, we are now observing an increased acceptance of non-animal methods by regulatory agencies. This is due to mounting scientific evidence from larger databases, agreement by companies to share data and testing strategies with regulatory agencies, and a focus on smaller domains of applicability. These changes, along with new emphasis and financial support for addressing systemic toxicities, promise to provide additional possibilities for industry to replace animals with in vitro methods, alone or in combination with in silico methods. However, the largest advance will not occur until more companies commit to using the non-animal test strategies that are currently available. 2009 FRAME.

  18. The work compatibility improvement framework: an assessment of the worker-work environment interaction in the manufacturing sector.

    Science.gov (United States)

    Genaidy, Ash M; Rinder, Magda M; A-Rehim, Amal D

    2008-08-01

    The manufacturing sector in the US is challenged by high health care costs and shortage of qualified workers, which are largely attributed to the degree of fit between the worker and work environment. In this regard, a healthy worker-work environment interface is a necessary and sufficient condition for the containment of health care costs and the retaining/attraction of highly qualified knowledge workers and should be based on the principles of optimum physical, cognitive and emotional health for the workers. In prior research, the Work Compatibility Improvement Framework (WCIF) was introduced as a vehicle to address these issues and was defined as the identification, improvement and maintenance of the well-being characteristics of the workforce and its interaction with the work environment through the application of engineering, medicine, management and human sciences methodologies, technologies and best practices. This paper advances WCIF by examining its applications in manufacturing with regard to the evaluation of working conditions impacting musculoskeletal/stress outcome measures. A study was conducted in a machining department of a bag packaging manufacturer in the Midwest of the United States. The work tasks were planned and executed with regard to the following aims: (1) to compute work compatibility as a function of work demands and energisers; (2) to establish whether the prevalence of musculoskeletal/stress disorders increases with a decrease in the quality of worker-work environment interface in terms of work compatibility level and other work factors such as shift and job category. A major finding is that a 'poor' work environment (a function of all work domains) results in musculoskeletal/stress disorders that are 105% and 67% higher than those for a 'good' work environment. The evening shift exhibited the poorest compatibility followed by the night shift relative to the day shift. Application of the work compatibility approach demonstrated the

  19. Improved Manufacturing Performance of Screen Printed Carbon Electrodes through Material Formulation.

    Science.gov (United States)

    Jewell, Eifion; Philip, Bruce; Greenwood, Peter

    2016-06-27

    Printed carbon graphite materials are the primary common component in the majority of screen printed sensors. Screen printing allows a scalable manufacturing solution, accelerating the means by which novel sensing materials can make the transition from laboratory material to commercial product. A common bottleneck in any thick film printing process is the controlled drying of the carbon paste material. A study has been undertaken which examines the interaction between material solvent, printed film conductivity and process consistency. The study illustrates that it is possible to reduce the solvent boiling point to significantly increase process productivity while maintaining process consistency. The lower boiling point solvent also has a beneficial effect on the conductivity of the film, reducing the sheet resistance. It is proposed that this is a result of greater film stressing increasing charge percolation through greater inter particle contact. Simulations of material performance and drying illustrate that a multi layered printing provides a more time efficient manufacturing method. The findings have implications for the volume manufacturing of the carbon sensor electrodes but also have implications for other applications where conductive carbon is used, such as electrical circuits and photovoltaic devices.

  20. Etude Climat no. 31 'Carbon offset projects in the agricultural sector'

    International Nuclear Information System (INIS)

    Foucherot, Claudine; Bellassen, Valentin

    2012-01-01

    Among the publications of CDC Climat Research, 'Climate Reports' offer in-depth analyses on a given subject. This issue addresses the following points: The agricultural sector accounts for 14% of global anthropogenic greenhouse gas emissions. If we also take into account carbon emissions and sequestration from upstream - production of fertilisers, deforestation, etc. - and downstream - bio-energies, etc. - the share rises to 30%. Many practices and technologies enable agriculture's impact on climate change to be reduced. According to a number of estimates that are summarised in this research, the agricultural sector's mitigation potential is of the same order of magnitude as its emissions over a period of 30 years. However, changing agricultural practices comes at a cost, and in most cases such changes are not made without economic incentives. Carbon offsetting projects are one of the economic tools available to reduce agricultural emissions by paying for metric tons of avoided CO 2 e emissions. A summary of the emission reductions enabled by agricultural projects to date is provided in this report. It covers most projects certified by quality assurance standards, including those set up by the Kyoto Protocol (Clean Development Mechanism and Joint Implementation) and those in the voluntary market (Verified Carbon Standard, Climate Action Reserve, Gold Standard, Chicago Climate Exchange, and American Carbon Registry). The assessment drawn up on this basis shows that emission reductions enabled through carbon offsetting are thousand times lower than actual emissions and their potential mitigation. Agricultural projects have reduced emissions by 14 MtCO 2 e in 2010, i.e. 7% of the reductions generated by all carbon offset projects across all sectors for this year. Initiatives focus on three technologies: - bio-energies (crop residues), - methanation of livestock waste, - and soil carbon sequestration using no-till practices. This is very little compared with the large

  1. Strategic research on the sustainable development cost of manufacturing industry under the background of carbon allowance and trade policy

    Science.gov (United States)

    Ma, Zhongmin; Cheng, Mengting; Wang, Mei

    2017-08-01

    The important subjects of energy consumption and carbon emission are manufacturing enterprises, with the deepening of international cooperation, and the implementation of carbon limit and trade policy, costs of manufacturing industry will rise sharply. How can the manufacturing industry survive in this reform, and it has to be a problem that the managers of the manufacturing industry need to solve. This paper analyses sustainable development cost connotation and value basis on the basis of sustainable development concept, discusses the influence of carbon allowance and trade policy for cost strategy of manufacturing industry, thinks that manufacturing industry should highlight social responsibility and realize maximization of social value, implement cost strategy the sustainable development, and pointed out the implementation way.

  2. Impacts of black carbon and co-pollutant emissions from transportation sector in Mexico City

    Science.gov (United States)

    Zavala, Miguel; Almanza, Victor; Garcia, Agustin; Jazcilevich, Aron; Lei, Wenfang; Molina, Luisa

    2016-04-01

    Black carbon is one of the most important short-lived climate-forcing agents, which is harmful to human health and also contributes significantly to climate change. Transportation is one of the largest sources of black carbon emissions in many megacities and urban complexes, with diesel vehicles leading the way. Both on-road and off-road vehicles can emit substantial amounts of harmful BC-containing particulate matter (PM) and are also responsible for large emissions of carbon dioxide (CO2), carbon monoxide (CO), nitrogen oxides (NOx), and many other co-emitted volatile organic compounds (VOCs). Regionally, black carbon emissions contributions from mobile sources may vary widely depending on the technical characteristics of the vehicle fleet, the quality and chemical properties of the fuels consumed, and the degree of local development and economic activities that foster wider and more frequent or intensive use of vehicles. This presentation will review and assess the emissions of black carbon from the on-road and off-road transportation sector in the Mexico City Metropolitan Area. Viable mitigation strategies, including innovative technological alternatives to reduce black carbon and co-pollutants in diesel vehicles and their impacts on climate, human health and ecosystems will be described.

  3. Estimating energy intensity and CO{sub 2} emission reduction potentials in the manufacturing sectors in Thailand

    Energy Technology Data Exchange (ETDEWEB)

    Wangskarn, P.; Khummongkol, P.; Schrattenholzer, L. [and others

    1996-12-31

    The final energy consumption in Thailand increased at about ten percent annually within the last 10 years. To slow the energy demand growth rate while maintaining the country`s economic advance and environmental sustainability, the Energy Conservation Promotion Act (ECPA) was adopted in 1992. With this Act, a comprehensive Energy Conservation Program (ENCON) was initiated. ENCON commits the government to promoting energy conservation, to developing appropriate regulations, and to providing financial and organizational resources for program implementation. Due to this existing ENCON program a great benefit is expected not only to reducing energy consumption, but also to decreasing GHGs emissions substantially. This study is a part of the ENCON research program which was supported by the German Federal Government under the program called Prompt-Start Measures to Implement the U.N. Framework Convention on Climate Change (FCCC). The basic activities carried out during the project included (1) An assessment of Thailand`s total and specific energy consumption in the industrial sectors and commercial buildings; (2) Identification of existing and candidate technologies for GHG emission reduction and energy efficiency improvements in specific factories and commercial buildings; and (3) Identification of individual factories and commercial buildings as candidates for detailed further study. Although the energy assessment had been carried out for the commercial buildings also, this paper will cover only the work on the manufacturing sector. On the basis of these steps, 14 factories were visited by the project team and preliminary energy audits were performed. As a result, concrete measures and investments were proposed and classified into two groups according to their economic characteristics. Those investments with a payback time of less than four years were considered together in a Moderate scenario, and those with longer payback times in an Intensive scenario.

  4. Device for manufacturing methane or synthetic gas from materials containing carbon using a nuclear reactor

    International Nuclear Information System (INIS)

    Jaeger, W.

    1984-01-01

    This invention concerns a device for manufacturing methane or synthetic gas from materials containing carbon using a nuclear reactor, where part of the carbon is gasified with hydration and the remaining carbon is converted to synthetic gas by adding steam. This synthetic gas consists mainly of H 2 , CO, CO 2 and CH 4 and can be converted to methane in so-called methanising using a nickel catalyst. The hydrogen gasifier is situated in the first of two helium circuits of a high temperature reactor, and the splitting furnace is situated in the second helium circuit, where part of the methane produced is split into hydrogen at high temperature, which is used for the hydrating splitting of another part of the material containing carbon. (orig./RB) [de

  5. Reducing Carbon Dioxide Emissions from the EU Power and Industry Sectors. An assessment of key technologies and measures

    Energy Technology Data Exchange (ETDEWEB)

    Rootzen, Johan

    2012-11-01

    In February 2011, the European Council reconfirmed the goal of reducing EU greenhouse gas emissions by at least 80 % by 2050, as compared to the levels in 1990. The power and industrial sectors currently account for almost half of the total GHG emissions in the EU. The overall objective of the work presented in this thesis is to provide a technology-based perspective on the feasibility of significant reductions in CO{sub 2} emissions in the EU power and industrial sectors, with the emphasis on expected turnover in the capital stock of the existing infrastructure. Three sectors of industry are included: petroleum refining; iron and steel production; and cement manufacturing. The analysis is based on a thorough description and characterization of the current industry infrastructure and of the key mitigation technologies and measures in each sector. The analysis comprises investigations of how specific factors, such as the age structure of the capital stock, technology and fuel mix, and spatial distribution of the plant stock, contribute to facilitating or hindering the shift towards less-emission-intensive production processes. The results presented here are the synthesis of the results described in the following three papers: Paper I investigates the potential for CCS in industrial applications in the EU by considering branch- and plant-specific conditions; Paper II assesses strategies for CO{sub 2} abatement in the European petroleum refining industry; and Paper III explores in a scenario analysis the limits for CO{sub 2} emission abatement within current production processes in the power and industrial sectors. Together, the three papers provide a comprehensive assessment of the roles of technologies and measures that are commercially available today, as well as those of emerging technologies that are still in their early phases of development. The results presented in Paper III show that the EU goal for emissions reductions in the sectors covered by the EU ETS, i

  6. Greenhouse Gas Mitigation Options in ISEEM Global Energy Model: 2010-2050 Scenario Analysis for Least-Cost Carbon Reduction in Iron and Steel Sector

    Energy Technology Data Exchange (ETDEWEB)

    Karali, Nihan; Xu, Tengfang; Sathaye, Jayant

    2013-12-01

    The goal of the modeling work carried out in this project was to quantify long-term scenarios for the future emission reduction potentials in the iron and steel sector. The main focus of the project is to examine the impacts of carbon reduction options in the U.S. iron and steel sector under a set of selected scenarios. In order to advance the understanding of carbon emission reduction potential on the national and global scales, and to evaluate the regional impacts of potential U.S. mitigation strategies (e.g., commodity and carbon trading), we also included and examined the carbon reduction scenarios in China’s and India’s iron and steel sectors in this project. For this purpose, a new bottom-up energy modeling framework, the Industrial Sector Energy Efficiency Modeling (ISEEM), (Karali et al. 2012) was used to provide detailed annual projections starting from 2010 through 2050. We used the ISEEM modeling framework to carry out detailed analysis, on a country-by-country basis, for the U.S., China’s, and India’s iron and steel sectors. The ISEEM model applicable to iron and steel section, called ISEEM-IS, is developed to estimate and evaluate carbon emissions scenarios under several alternative mitigation options - including policies (e.g., carbon caps), commodity trading, and carbon trading. The projections will help us to better understand emission reduction potentials with technological and economic implications. The database for input of ISEEM-IS model consists of data and information compiled from various resources such as World Steel Association (WSA), the U.S. Geological Survey (USGS), China Steel Year Books, India Bureau of Mines (IBM), Energy Information Administration (EIA), and recent LBNL studies on bottom-up techno-economic analysis of energy efficiency measures in the iron and steel sector of the U.S., China, and India, including long-term steel production in China. In the ISEEM-IS model, production technology and manufacturing details are

  7. Carbon flows and economic evaluation of mitigation options in Tanzania's forest sector

    International Nuclear Information System (INIS)

    Makundi, W.; Okiting'ati, Aku

    1995-01-01

    This paper presents estimates of the rate of forest use, deforestation and forest degradation, as well as the corresponding carbon flows, in the Tanzanian forest sector. It is estimated that the country lost 525,000 ha of forests in 1990, with associated committed emissions of 31.5 Mt carbon (MtC), and 7.05 MtC of committed carbon sequestration. The paper then describes the possible response options in the forest sector to mitigate GHG emissions, and evaluates the most stable subset of these - i.e. forest conservation, woodfuel plantations and agroforestry. The conservation options were found to cost an average of US$1.27 per tonne of carbon (tC) conserved. Five options for fuelwood plantations and agroforestry, with two different ownership regimes were evaluated. Each one of the options gives a positive net present value at low rates of discount, ranging from U.S.$1.06 to 3.4/tC of avoided emissions at 0% discount rate. At 10% discount, the eucalyptus and maize option has a highest PNV of U.S.$1.73/tC, and the government plantation gives a negative PNV (loss) of U.S.$ 0.13 tC sequestered. The options with a private/community type of ownership scheme fared better than government run options. This conclusion also held true when ranking the options by the BRAC indicator, with the government fuelwood plantation ranked the lowest, and the private agroforestry option of eucalyptus and corn performing best. The mitigation options evaluated here show that the forest sector in Tanzania has one of the most cost-effective GHG mitigation opportunities in the world, and they are within the development aspirations of the country. (Author)

  8. The costs and benefits of getting the ISO 9000 certification in the manufacturing sector in Saudi Arabia.

    Science.gov (United States)

    Mezher, T; Ramadan, H

    1998-01-01

    Many Saudi companies, in their journey to improve quality, efficiency and competitiveness, are pursuing and obtaining the ISO 9000 certificate. Many studies have evaluated how to implement ISO 9000 in different sectors, but none have analyzed the effectiveness of ISO 9000 certification (costs and benefits) on improving the overall quality and on meeting expectations. This study addressed these issues by investigating manufacturing organizations in Saudi Arabia that have the ISO 9000 certification. A survey questionnaire was distributed to firms throughout the kingdom. Thirty-two firms participated in the study. Results indicate that increased consistency of operations, improved service, and product quality are among the top motivators for pursuing the ISO certificate. The benefits most often experienced were improved awareness of procedural problems, better management control, keeping existing customers, increased customer satisfaction, and improved customer service. Difficulties experienced during the certification process involved time and cost, but these were not considered to be major problems. A high volume of paperwork was the main problem experienced following initial certification. Respondents in general said that the ISO 9000 certification met their expectations and that their level of satisfaction regarding the impact of ISO 9000 was high. Most recommended that other organizations pursue the certificate.

  9. A multi-period superstructure optimisation model for the optimal planning of China's power sector considering carbon dioxide mitigation

    International Nuclear Information System (INIS)

    Zhang Dongjie; Ma Linwei; Liu Pei; Zhang Lili; Li Zheng

    2012-01-01

    Power sector is the largest CO 2 emitter in China. To mitigate CO 2 emissions for the power sector is a tough task, which requires implementation of targeted carbon mitigation policies. There might be multiple forms for carbon mitigation policies and it is still unclear which one is the best for China. Applying a superstructure optimisation model for optimal planning of China's power sector built by the authors previously, which was based on real-life plants composition data of China's power sector in 2009, and could incorporate all possible actions of the power sector, including plants construction, decommission, and application of carbon capture and sequestration (CCS) on coal-fuelled plants, the implementation effects of three carbon mitigation policies were studied quantitatively, achieving a conclusion that the so-called “Surplus-Punishment and Deficit-Award” carbon tax policy is the best from the viewpoint of increasing CO 2 reduction effect and also reducing the accumulated total cost. Based on this conclusion, the corresponding relationships between CO 2 reduction objectives (including the accumulated total emissions reduction by the objective year and the annual emissions reduction in the objective year) were presented in detail. This work provides both directional and quantitative suggestions for China to make carbon mitigation policies in the future. - Highlights: ► We study the best form of carbon mitigation policy for China's power sector. ► We gain quantitative relationship between CO 2 reduction goal and carbon tax policy. ► The “Surplus-Punishment and Deficit-Award” carbon tax policy is the best. ► Nuclear and renewable power and CCS can help greatly reduce CO 2 emissions of the power sector. ► Longer objective period is preferred from the viewpoint of policy making.

  10. Comparison of manufactured and black carbon nanoparticle concentrations in aquatic sediments

    International Nuclear Information System (INIS)

    Koelmans, A.A.; Nowack, B.; Wiesner, M.R.

    2009-01-01

    In this paper, we show that concentrations of manufactured carbon-based nanoparticles (MCNPs) in aquatic sediments will be negligible compared to levels of black carbon nanoparticles (BCNPs). This is concluded from model calculations accounting for MCNP sedimentation fluxes, removal rates due to aggregation or degradation, and MCNP burial in deeper sediment layers. The resultant steady state MCNP levels are compared with BCNP levels calculated from soot levels in sediments and weight fractions of nanosized fractions of these soot particles. MCNP/BCNP ratios range from 10 -7 to 10 -4 (w:w). This suggests that the often acclaimed effect of MCNPs on organic pollutant binding and bioavailability will likely be below the level of detection if natural BCNPs are present, even if binding to MCNP is one to two orders of magnitude stronger than to BCNPs. Furthermore, exposure and toxic effects of MCNPs in sediments and soils will be negligible compared to that of BCNPs. - Concentrations of manufactured carbon-based nanoparticles in sediments and soils will be negligible compared to levels of black carbon (soot) nanoparticles

  11. Fibrous Carbon-Metallic Materials and a Method of Manufacturing Carbon-Metallic Fibrous Materials,

    Science.gov (United States)

    1983-05-12

    for obtaining solid compositions. Example 1. A carbon unwoven fabric obtained through carbonization of polyacrylic fabric is polarized anodically in...a l.5n solution of potassium carbonate, using a current load of l5mA/cm2 for 30 seconds, and then is cathodically polarized in the same solution using...bathcontaining 30g/l Of CuCO3’Cu(OH)2, 100g/1 of potassium -sodium tartrate,50g/l of KOH and 25g/l of 40% formalin. • i The length of time in the

  12. Determinants of voluntary carbon disclosure in the corporate real estate sector of Malaysia.

    Science.gov (United States)

    Kalu, Joseph Ufere; Buang, Alias; Aliagha, Godwin Uche

    2016-11-01

    Corporate real estate management holds the tent that risk which is not understood cannot be measured or managed. The effect of global warming on real estate investment and need for climate change mitigation through disclosures by companies of carbon emission information has becomes a sine-qua-non for the management of companies' carbon footprint and reducing its overall effect on global warming. This study applied the structural equation modeling technique to determine the determinants influencing Carbon Disclosure in Real Estate Companies in a developing economy. The analysis was based on 2013 annual reports of 126 property sector companies listed in Malaysia stock exchange market. The model was validated through convergent validity, discriminant validity, composite reliability and goodness of fit. The result reveals that social and financial market were critical determinant factors for carbon disclosure while the economic and institutional factors did not achieve significant effect on voluntary carbon disclosure. The result is consistent with legitimacy theory and agency theories. The implication of this finding is that increase in public education and awareness will enhance community demand for disclosure from companies and they will increase level of disclosure; also as financial institutions consider sustainability practice as a viable investment and term for credit financing, companies will be motivated to increase disclosure. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Are Firms in Corporate Groups More Resilient During an Economic Crisis? Evidence from the Manufacturing Sector in Poland

    Directory of Open Access Journals (Sweden)

    Barbara Jankowska

    2016-01-01

    Full Text Available Corporate groups are specific types of business networks that generate particular advantages for firms. They allow corporates to reduce costs, develop the pool of resources and increase the flexibility of operations and responses to external shocks among others. The above mentioned benefits are of even greater importance during times of economic turbulence. Their involvement in a corporate group should theoretically allow firms to perform better. The aim of this study is to verify whether corporate group membership truly translated into a firm’s higher input competitiveness and a firm’s better performance during the recent economic crisis. First, we try to investigate if the input competitiveness is higher in the case of firms being members of corporate groups. Second, we test whether the involvement in a corporate group matters for the performance of the firms. Using critical in-depth literature studies and conducting the primary empirical research using the CATI (computer-assisted telephone interviewing method we strive to verify the following hypothesis - the higher a company’s input competitiveness during the economic crisis, the better a competitive position the company achieves. The empirical research encompasses more than 700 corporates from the manufacturing sector in Poland during the global economic crisis and shortly afterwards. To investigate the issue we use the following methods of statistical analysis – cluster analysis, non-parametric tests and correlation coefficients. The results of the study show that firms involved in both Polish and international corporate groups were more resilient during the economic crisis than those which were not.

  14. Freer markets and the abatement of carbon emissions. The electricity-generating sector in India

    International Nuclear Information System (INIS)

    Khanna, Madhu; Zilberman, David

    1999-01-01

    This paper develops a framework to explore the implications of trade and domestic policy distortions for the magnitude of carbon emissions and for the welfare costs of abating these emissions. An application to the electricity-generating sector in India shows that economic policy reforms can also be effective environmental policy instruments and reduce carbon emissions even in the absence of an emissions tax. This reduction in emissions is accompanied by an increase in domestic welfare, an increase in electricity output, and conservation of coal. Coordinating trade and domestic policy reform with an emissions tax policy reduces emissions further, while leading to gains in welfare that are greater than those under an emissions tax policy alone

  15. Equity and efficiency in policies to reduce carbon emissions in the domestic sector

    International Nuclear Information System (INIS)

    Barker, T.; Johnstone, N.

    1993-01-01

    It is frequently asserted that the distribution effects of a carbon/energy tax - such as that proposed by the Commission of the European Communities - will be largely regressive: that the burden of the tax will fall disproportionately on lower income households. Such an assertion, although valid within the confines of the respective analyses, is based upon an unduly limited treatment of the fiscal implications of such a tax as well as a simplification of the demand for energy services in the domestic sector. It will be argued that such analyses, by implicitly assuming that efficiency objectives (reducing carbon emissions at lowest cost) and equity objectives (ensuring that lower-income households do not suffer welfare losses) are to be separately achieved, overstate the cost of reducing emissions in terms of both objectives. (Author)

  16. Impacts of climate mitigation strategies in the energy sector on global land use and carbon balance

    Science.gov (United States)

    Engström, Kerstin; Lindeskog, Mats; Olin, Stefan; Hassler, John; Smith, Benjamin

    2017-09-01

    Reducing greenhouse gas emissions to limit damage to the global economy climate-change-induced and secure the livelihoods of future generations requires ambitious mitigation strategies. The introduction of a global carbon tax on fossil fuels is tested here as a mitigation strategy to reduce atmospheric CO2 concentrations and radiative forcing. Taxation of fossil fuels potentially leads to changed composition of energy sources, including a larger relative contribution from bioenergy. Further, the introduction of a mitigation strategy reduces climate-change-induced damage to the global economy, and thus can indirectly affect consumption patterns and investments in agricultural technologies and yield enhancement. Here we assess the implications of changes in bioenergy demand as well as the indirectly caused changes in consumption and crop yields for global and national cropland area and terrestrial biosphere carbon balance. We apply a novel integrated assessment modelling framework, combining three previously published models (a climate-economy model, a socio-economic land use model and an ecosystem model). We develop reference and mitigation scenarios based on the narratives and key elements of the shared socio-economic pathways (SSPs). Taking emissions from the land use sector into account, we find that the introduction of a global carbon tax on the fossil fuel sector is an effective mitigation strategy only for scenarios with low population development and strong sustainability criteria (SSP1 Taking the green road). For scenarios with high population growth, low technological development and bioenergy production the high demand for cropland causes the terrestrial biosphere to switch from being a carbon sink to a source by the end of the 21st century.

  17. Impacts of climate mitigation strategies in the energy sector on global land use and carbon balance

    Directory of Open Access Journals (Sweden)

    K. Engström

    2017-09-01

    Full Text Available Reducing greenhouse gas emissions to limit damage to the global economy climate-change-induced and secure the livelihoods of future generations requires ambitious mitigation strategies. The introduction of a global carbon tax on fossil fuels is tested here as a mitigation strategy to reduce atmospheric CO2 concentrations and radiative forcing. Taxation of fossil fuels potentially leads to changed composition of energy sources, including a larger relative contribution from bioenergy. Further, the introduction of a mitigation strategy reduces climate-change-induced damage to the global economy, and thus can indirectly affect consumption patterns and investments in agricultural technologies and yield enhancement. Here we assess the implications of changes in bioenergy demand as well as the indirectly caused changes in consumption and crop yields for global and national cropland area and terrestrial biosphere carbon balance. We apply a novel integrated assessment modelling framework, combining three previously published models (a climate–economy model, a socio-economic land use model and an ecosystem model. We develop reference and mitigation scenarios based on the narratives and key elements of the shared socio-economic pathways (SSPs. Taking emissions from the land use sector into account, we find that the introduction of a global carbon tax on the fossil fuel sector is an effective mitigation strategy only for scenarios with low population development and strong sustainability criteria (SSP1 Taking the green road. For scenarios with high population growth, low technological development and bioenergy production the high demand for cropland causes the terrestrial biosphere to switch from being a carbon sink to a source by the end of the 21st century.

  18. Carbon doped PDMS: conductance stability over time and implications for additive manufacturing of stretchable electronics

    International Nuclear Information System (INIS)

    Tavakoli, Mahmoud; Rocha, Rui; Osorio, Luis; Almeida, Miguel; De Almeida, Anibal; Ramachandran, Vivek; Tabatabai, Arya; Lu, Tong; Majidi, Carmel

    2017-01-01

    Carbon doped PDMS (cPDMS), has been used as a conductive polymer for stretchable electronics. Compared to liquid metals, cPDMS is low cost and is easier to process or to print with an additive manufacturing process. However, changes on the conductance of the carbon based conductive PDMS (cPDMS) were observed over time, in particular after integration of cPDMS and the insulating polymer. In this article we investigate the process parameters that lead to improved stability over conductance of the cPDMS over time. Slight modifications to the fabrication process parameters were conducted and changes on the conductance of the samples for each method were monitored. Results suggested that change of the conductance happens mostly after integration of a pre-polymer over a cured cPDMS, and not after integration of the cPDMS over a cured insulating polymer. We show that such changes can be eliminated by adjusting the integration priority between the conductive and insulating polymers, by selecting the right curing temperature, changing the concentration of the carbon particles and the thickness of the conductive traces, and when possible by changing the insulating polymer material. In this way, we obtained important conclusions regarding the effect of these parameters on the change of the conductance over time, that should be considered for additive manufacturing of soft electronics. Also, we show that these changes can be possibly due to the diffusion from PDMS into cPDMS. (paper)

  19. The Impact of a Carbon Tax on the Chilean Electricity Generation Sector

    Directory of Open Access Journals (Sweden)

    Carlos Benavides

    2015-04-01

    Full Text Available This paper aims to analyse the economy-wide implications of a carbon tax applied on the Chilean electricity generation sector. In order to analyse the macroeconomic impacts, both an energy sectorial model and a Dynamic Stochastic General Equilibrium model have been used. During the year 2014 a carbon tax of 5 US$/tCO2e was approved in Chile. This tax and its increases (10, 20, 30, 40 and 50 US$/tCO2e are evaluated in this article. The results show that the effectiveness of this policy depends on some variables which are not controlled by policy makers, for example, non-conventional renewable energy investment cost projections, natural gas prices, and the feasibility of exploiting hydroelectric resources. For a carbon tax of 20 US$/tCO2e, the average annual emission reduction would be between 1.1 and 9.1 million tCO2e. However, the price of the electricity would increase between 8.3 and 9.6 US$/MWh. This price shock would decrease the annual GDP growth rate by a maximum amount of 0.13%. This article compares this energy policy with others such as the introduction of non-conventional renewable energy sources and a sectorial cap. The results show that the same global greenhouse gas (GHG emission reduction can be obtained with these policies, but the impact on the electricity price and GDP are lower than that of the carbon tax.

  20. Contribution of components of Green Supply Chain Execution-Supply Loops in Green Supply Chain Performance measurement-A Pilot Empirical Study of the Indian Automobile Manufacturing Sector

    OpenAIRE

    Mohd. Asif Gandhi

    2017-01-01

    This paper is one of the several extensions of the research works done by [5]. Green Supply Chain Practices have been known to have an impact on Green Supply Chain Performance [5].This paper tests empirically through a pilot study of the Indian Automobile Manufacturing Sector, the contribution of the three variables constituting the construct Green Supply Chain Execution-Supply Loops in Green Supply Chain Performance measurement. Also the paper establishes the reliability of the questionnaire...

  1. Carbon dioxide emissions reduction in China's transport sector: A dynamic VAR (vector autoregression) approach

    International Nuclear Information System (INIS)

    Xu, Bin; Lin, Boqiang

    2015-01-01

    Energy saving and carbon dioxide emission reduction in China is attracting increasing attention worldwide. At present, China is in the phase of rapid urbanization and industrialization, which is characterized by rapid growth of energy consumption. China's transport sector is highly energy-consuming and pollution-intensive. Between 1980 and 2012, the carbon dioxide emissions in China's transport sector increased approximately 9.7 times, with an average annual growth rate of 7.4%. Identifying the driving forces of the increase in carbon dioxide emissions in the transport sector is vital to developing effective environmental policies. This study uses Vector Autoregressive model to analyze the influencing factors of the changes in carbon dioxide emissions in the sector. The results show that energy efficiency plays a dominant role in reducing carbon dioxide emissions. Private vehicles have more impact on emission reduction than cargo turnover due to the surge in private car population and its low energy efficiency. Urbanization also has significant effect on carbon dioxide emissions because of large-scale population movements and the transformation of the industrial structure. These findings are important for the relevant authorities in China in developing appropriate energy policy and planning for the transport sector. - Highlights: • The driving forces of CO 2 emissions in China's transport sector were investigated. • Energy efficiency plays a dominant role in reducing carbon dioxide emissions. • Urbanization has significant effect on CO 2 emissions due to large-scale migration. • The role of private cars in reducing emissions is more important than cargo turnover

  2. Management of carbon across sectors and scales: Insights from land use decision making

    Science.gov (United States)

    Dilling, L.; Failey, E. L.

    2008-12-01

    Carbon management is increasingly becoming a topic of interest among policy circles and business entrepreneurs alike. In the United States, while no binding regulatory framework exists, carbon management is nonetheless being pursued both by voluntary actions at a variety of levels, from the individual to the national level, and through mandatory policies at state and local levels. Controlling the amount of carbon dioxide in the atmosphere for climate purposes will ultimately require a form of governance that will ensure that the actions taken and being rewarded financially are indeed effective with respect to the global atmosphere on long time scales. Moreover, this new system of governance will need to interface with existing governance structures and decision criteria that have been established to arbitrate among various societal values and priorities. These existing institutions and expressed values will need to be examined against those proposed for effective carbon governance, such as the permanence of carbon storage, the additionality of credited activities, and the prevention of leakage, or displacement of prohibited activities to another region outside the governance boundary. The latter issue suggests that interactions among scales of decision making and governance will be extremely important in determining the ultimate success of any future system of carbon governance. The goal of our study is to understand the current context of land use decision making in different sectors and examine the potential for future carbon policy to be effective given this context. This study examined land use decision making in the U.S. state of Colorado from a variety of ownership perspectives, including US Federal land managers, individual private owners, and policy makers involved in land use at a number of different scales. This paper will report on the results of interviews with land managers and provide insight into the policy context for carbon management through land

  3. A multi-period optimization model for planning of China's power sector with consideration of carbon dioxide mitigation—The importance of continuous and stable carbon mitigation policy

    International Nuclear Information System (INIS)

    Zhang, Dongjie; Liu, Pei; Ma, Linwei; LI, Zheng

    2013-01-01

    A great challenge China's power sector faces is to mitigate its carbon emissions whilst satisfying the ever-increasing power demand. Optimal planning of the power sector with consideration of carbon mitigation for a long-term future remains a complex task, involving many technical alternatives and an infinite number of possible plants installations, retrofitting, and decommissioning over the planning horizon. Previously the authors built a multi-period optimization model for the planning of China's power sector during 2010–2050. Based on that model, this paper executed calculations on the optimal pathways of China's power sector with two typical decision-making modes, which are based on “full-information” and “limited-information” hypothesis, and analyzed the impacts on the optimal planning results by two typical types of carbon tax policies including a “continuous and stable” one and a “loose first and tight later” one. The results showed that making carbon tax policy for long-term future, and improving the continuity and stability in policy execution can effectively help reduce the accumulated total carbon emissions, and also the cost for carbon mitigation of the power sector. The conclusion of this study is of great significance for the policy makers to make carbon mitigation policies in China and other countries as well. - Highlights: • A multi-stage optimization model for planning the power sector is applied as basis. • Difference of ideal and actual decision making processes are proposed and analyzed. • A “continuous and stable” policy and a “loose first and tight later” one are designed. • 4 policy scenarios are studied applying the optimal planning model and compared. • The importance of “continuous and stable” policy for long term is well demonstrated

  4. Additive Manufacturing of Multifunctional Components Using High Density Carbon Nanotube Yarn Filaments

    Science.gov (United States)

    Gardner, John M.; Sauti, Godfrey; Kim, Jae-Woo; Cano, Roberto J.; Wincheski, Russell A.; Stelter, Christopher J.; Grimsley, Brian W.; Working, Dennis C.; Siochi, Emilie J.

    2016-01-01

    Additive manufacturing allows for design freedom and part complexity not currently attainable using traditional manufacturing technologies. Fused Filament Fabrication (FFF), for example, can yield novel component geometries and functionalities because the method provides a high level of control over material placement and processing conditions. This is achievable by extrusion of a preprocessed filament feedstock material along a predetermined path. However if fabrication of a multifunctional part relies only on conventional filament materials, it will require a different material for each unique functionality printed into the part. Carbon nanotubes (CNTs) are an attractive material for many applications due to their high specific strength as well as good electrical and thermal conductivity. The presence of this set of properties in a single material presents an opportunity to use one material to achieve multifunctionality in an additively manufactured part. This paper describes a recently developed method for processing continuous CNT yarn filaments into three-dimensional articles, and summarizes the mechanical, electrical, and sensing performance of the components fabricated in this way.

  5. Optimising the road to a low carbon competitive energy sector in Europe. An essay

    International Nuclear Information System (INIS)

    Van Dril, A.W.N.

    2011-10-01

    In the strategy for competitive, sustainable and secure energy the European Commission stressed the urgency of far-reaching changes in energy production, use, and supply. The stated priorities are energy efficiency, integrated markets, energy security, innovation and external actions. In March 2011, an energy efficiency plan was proposed with measures leading to 20% efficiency improvement in 2020. The Commission also launched the Roadmap for a Low Carbon Economy in 2050. In December 2011, the European Commission launched its Energy Roadmap 2050. This paper will evaluate their optimality for the three basic goals: competitive, sustainable and secure. The key question addressed in this essay is: Do current and envisaged EU energy and climate policies allow for optimal introduction of new energy technologies towards a globally competitive, sustainable and secure energy system? The key findings are: (1) To ensure an affordable future energy supply and combat climate change, a global transition of the energy sector is needed. Europe has to make its choices in that global context. This process will take several decades and will be surrounded with many uncertainties; (2) Reinforcing and expanding the European emission trading scheme (ETS) to include other sectors and regions in coming decades is the preferred element in a robust regulatory framework. Stable and higher carbon prices are an essential condition for low carbon investment planning and many other Member State policies. When prices are high and stable the market will seek the most cost efficient mix; (3) Renewables and energy efficiency are important solutions for the long run. Assuming the ETS will be significantly strengthened overall EU targets and policies for renewable and efficiency beyond 2020 have to fit within the ETS framework; (4) If renewable energy and energy efficiency targets for separate MS and sectors are set, they need to be flexible in order to avoid suboptimal economic outcomes. After 2020 a

  6. The Production, Value, and Reduction Responsibility of Carbon Emissions through Electricity Consumption of Manufacturing Industries in South Korea and Thailand

    Science.gov (United States)

    Kitikun, Medhawin

    , manufacturing industries take full responsibility for emissions reductions by curtailing their use of energy without any subsidies from the government. Revenue function estimates provide measures of the differential costs imposed on different industries by emissions reductions. In the second scenario, emissions reductions are achieved by changing the mix of electricity generation technologies used by the power generation sector within the country. For the international case, I focus on the fairness of emission reduction responsibility among countries. To be fair to countries at different levels of development and with different rate of carbon emissions, I propose a new method to adjust the timing and rates of emission reductions based on a lifetime cumulative emission per capita.

  7. Sectoral and regional impacts of the European carbon market in Portugal

    International Nuclear Information System (INIS)

    Robaina Alves, Margarita; Rodriguez, Miguel; Roseta-Palma, Catarina

    2011-01-01

    Across Europe, CO 2 emission allowances represent one of the main policy instruments to comply with the goals of the Kyoto Protocol. In this paper we use microdata to address two issues regarding the impact of the European Carbon Market (EU ETS). First, we analyze the sectoral effects of the EU ETS in Portugal. The goal is to study the distributive consequences of imbalances, with the novelty of taking into account firm financial data to put values into context. We show that a large majority of installations in most sectors had surpluses and the opportunity to raise remarkable revenues in some cases. We also look at the regional impact, since the pre-existing specialization of different regions in the production of different goods and services might lead to an uneven economic impact of the allowance market. In particular, Portuguese data indicate a distribution of revenue from low income to high income regions, or rather, between installations located in those regions. We focus on the first phase of the EU ETS, using data for each one of the 244 Portuguese installations in the market as well as financial data for 80% of these installations, although we also present data for 2008 and 2009. - Research highlights: → Analysis of distributional impact of the EU ETS for Portuguese sectors and regions. → EU ETS microdata, economic data and firm financial data used to provide context. → Most installations had surpluses and in some cases may have raised notable revenues. → There seems to be an income distribution effect from low to high-income regions. → Thermoelectric generation most likely to be short, but results vary with rainfall.

  8. Sectoral and regional impacts of the European carbon market in Portugal

    Energy Technology Data Exchange (ETDEWEB)

    Robaina Alves, Margarita, E-mail: mrobaina@ua.p [GOVCOPP and Department of Economics, Management and Industrial Engineering, University of Aveiro, Campus Universitario de Santiago, 3810-193 Aveiro (Portugal); Rodriguez, Miguel [Department of Applied Economics, University of Vigo, Facultade Empresariais e Turismo, 32004 Ourense (Spain); Roseta-Palma, Catarina, E-mail: catarina.roseta@iscte.p [Department of Economics and UNIDE, ISCTE-Lisbon University Institute, Av. Forcas Armadas, 1629-026 Lisboa (Portugal)

    2011-05-15

    Across Europe, CO{sub 2} emission allowances represent one of the main policy instruments to comply with the goals of the Kyoto Protocol. In this paper we use microdata to address two issues regarding the impact of the European Carbon Market (EU ETS). First, we analyze the sectoral effects of the EU ETS in Portugal. The goal is to study the distributive consequences of imbalances, with the novelty of taking into account firm financial data to put values into context. We show that a large majority of installations in most sectors had surpluses and the opportunity to raise remarkable revenues in some cases. We also look at the regional impact, since the pre-existing specialization of different regions in the production of different goods and services might lead to an uneven economic impact of the allowance market. In particular, Portuguese data indicate a distribution of revenue from low income to high income regions, or rather, between installations located in those regions. We focus on the first phase of the EU ETS, using data for each one of the 244 Portuguese installations in the market as well as financial data for 80% of these installations, although we also present data for 2008 and 2009. - Research highlights: {yields} Analysis of distributional impact of the EU ETS for Portuguese sectors and regions. {yields} EU ETS microdata, economic data and firm financial data used to provide context. {yields} Most installations had surpluses and in some cases may have raised notable revenues. {yields} There seems to be an income distribution effect from low to high-income regions. {yields} Thermoelectric generation most likely to be short, but results vary with rainfall.

  9. Carbon tax and substitution effects in the French industrial sector: an econometric assessment

    Energy Technology Data Exchange (ETDEWEB)

    Blanc, Nicolas; Callonnec, Gael (ADEME (Agence de l' environnement et de la maitrise de l' energie) (France))

    2009-07-01

    Within the political framework of the 'Grenelle de l'environnement' in France, the French government is studying various fiscal measures to encourage actors to reduce CO{sub 2} emissions, among others a carbon tax on every fossil energy source. The efficiency of such a measure is directly linked to the price responsiveness of the actors concerned. In this paper, after a survey of the different possible forms for an energy demand function, we focus on the secondary sector of the French economy (after having removed the industrial sub-sectors concerned with double usage or non-energy use of fuels) and assess the likelihood of industrialists shifting from one energy source to another due to a change in the relative prices of different energy sources (coal, heavy fuel oil, heating oil, natural gas and electricity), besides the improvements in energy efficiency. We conclude that with price variations of the magnitude that was observed between 1986 and 2004 the substitution effects remain low: industrialists were much more likely to improve the energy efficiency of their appliances and processes than to shift energy sources in response to a given increase in prices. Significant substitution effects, for example after applying a carbon tax, would probably only occur for greater price variations. However, the actors' response (interfuel substitution) to an increase in the price of coal is 5 to 10 times higher than for other energy sources. The study also gives us information about the speed at which industrialists adapt to variations in prices, and the results have already been used for the assessment of future fiscal measures in France.

  10. The Role of Technology, Investment and Ownership Structure in the Productivity Performance of the Manufacturing Sector in Vietnam

    DEFF Research Database (Denmark)

    Newman, Carol; Narciso, Gaia; Tarp, Finn

    2009-01-01

    . The empirical analysis reveals investment and technology usage as important determinants of enterprise productivity levels. Specifically, higher levels of productivity are found in foreign- and state-owned enterprises, driven almost entirely by higher levels of investment and technology usage. Our results...... in almost all sectors and that for many sectors the dispersion in productivity is declining over time. However, for the most productive sectors the gap is widening suggesting that productivity is being driven by the most productive enterprises getting better, leaving the least productive behind...

  11. Spatial-Temporal Variations of Embodied Carbon Emission in Global Trade Flows: 41 Economies and 35 Sectors

    OpenAIRE

    Jing Tian; Hua Liao; Ce Wang

    2014-01-01

    The spatial-temporal variations of embodied carbon emissions in international trade at global scope are still unclear. This paper studies the variations of outflows and inflows of embodied carbon emissions at 35-disaggregated sectors level of 41 countries and regions, and an integrated world input-output model is employed. It also examines what would happen if there were not international trade flows in China, USA and Finland, the representatives of three different levels of the global balanc...

  12. Surface water carbon dioxide in the southwest Indian sector of the Southern Ocean

    International Nuclear Information System (INIS)

    Metzl, N.; Brunet, C.; Poisson, A.

    1991-01-01

    Measurements of partial pressure of carbon dioxide (pCO 2 ), total dissolved inorganic carbon (TCO 2 ), total alkalinity (TA) and chlorophyll a (Chl a) have been made in surface water in the southwestern Indian sector of the Southern Ocean (20-85 degE) in the austral summer (INDIVAT V cruise, January-February 1987). Between Antarctica and Africa, pCO 2 distribution was linked to the oceanic frontal zones and Chl a variations. The pCO 2 spatial structure was very close to that explored in summer 1967 in the same region but the pCO 2 differences between the ocean and the atmosphere were smaller in 1987 than 20 years ago. At all latitudes strongly contrasting surface pCO 2 characteristics were found between eastern (around 80 degE) and western (around 25 degE) regions; CO 2 sources were mainly in the west and CO 2 sinks in the east. South of 60 degS, the contrast could be due to biological activity. Between 60 degS and the Antarctic Polar Front, intensification of upwelling might be responsible for the higher pC) 2 values in the west.37 refs.; 4 figs

  13. The European forest sector: past and future carbon budget and fluxes under different management scenarios

    Science.gov (United States)

    Pilli, Roberto; Grassi, Giacomo; Kurz, Werner A.; Fiorese, Giulia; Cescatti, Alessandro

    2017-05-01

    The comprehensive analysis of carbon stocks and fluxes of managed European forests is a prerequisite to quantify their role in biomass production and climate change mitigation. We applied the Carbon Budget Model (CBM) to 26 European countries, parameterized with country information on the historical forest age structure, management practices, harvest regimes and the main natural disturbances. We modeled the C stocks for the five forest pools plus harvested wood products (HWPs) and the fluxes among these pools from 2000 to 2030. The aim is to quantify, using a consistent modeling framework for all 26 countries, the main C fluxes as affected by land-use changes, natural disturbances and forest management and to assess the impact of specific harvest and afforestation scenarios after 2012 on the mitigation potential of the EU forest sector. Substitution effects and the possible impacts of climate are not included in this analysis. Results show that for the historical period from 2000 to 2012 the net primary productivity (NPP) of the forest pools at the EU level is on average equal to 639 Tg C yr-1. The losses are dominated by heterotrophic respiration (409 Tg C yr-1) and removals (110 Tg C yr-1), with direct fire emissions being only 1 Tg C yr-1, leading to a net carbon stock change (i.e., sink) of 110 Tg C yr-1. Fellings also transferred 28 Tg C yr-1 of harvest residues from biomass to dead organic matter pools. The average annual net sector exchange (NSE) of the forest system, i.e., the carbon stock changes in the forest pools including HWP, equals a sink of 122 Tg C yr-1 (i.e., about 19 % of the NPP) for the historical period, and in 2030 it reaches 126, 101 and 151 Tg C yr-1, assuming constant, increasing (+20 %) and decreasing (-20 %) scenarios, respectively, of both harvest and afforestation rates compared to the historical period. Under the constant harvest rate scenario, our findings show an incipient aging process of the forests existing in 1990: although NPP

  14. Nanomaterial release characteristics in a single-walled carbon nanotube manufacturing workplace

    International Nuclear Information System (INIS)

    Ji, Jun Ho; Kim, Jong Bum; Lee, Gwangjae; Bae, Gwi-Nam

    2015-01-01

    As carbon nanotubes (CNTs) are widely used in various applications, exposure assessment also increases in importance with other various toxicity tests for CNTs. We conducted 24-h continuous nanoaerosol measurements to identify possible nanomaterial release in a single-walled carbon nanotube (SWCNT) manufacturing workplace. Four real-time aerosol instruments were used to determine the nanosized and microsized particle numbers, particle surface area, and carbonaceous species. Task-based exposure assessment was carried out for SWCNT synthesis using the arc plasma and thermal decomposition processes to remove amorphous carbon components as impurities. During the SWCNT synthesis, the black carbon (BC) concentration was 2–12 μg/m 3 . The maximum BC mass concentrations occurred when the synthesis chamber was opened for harvesting the SWCNTs. The number concentrations of particles with sizes 10–420 nm were 10,000–40,000 particles/cm 3 during the tasks. The maximum number concentration existed when a vacuum pump was operated to remove exhaust air from the SWCNT synthesis chamber due to the penetration of highly concentrated oil mists through the window opened. We analyzed the particle mass size distribution and particle number size distribution for each peak episode. Using real-time aerosol detectors, we distinguished the SWCNT releases from background nanoaerosols such as oil mist and atmospheric photochemical smog particles. SWCNT aggregates with sizes of 1–10 μm were mainly released from the arc plasma synthesis. The harvesting process was the main release route of SWCNTs in the workplace

  15. Nanomaterial release characteristics in a single-walled carbon nanotube manufacturing workplace

    Energy Technology Data Exchange (ETDEWEB)

    Ji, Jun Ho [EcoPictures Co., Ltd (Korea, Republic of); Kim, Jong Bum; Lee, Gwangjae; Bae, Gwi-Nam, E-mail: gnbae@kist.re.kr [Korea Institute of Science and Technology, Center for Environment, Health and Welfare Research (Korea, Republic of)

    2015-02-15

    As carbon nanotubes (CNTs) are widely used in various applications, exposure assessment also increases in importance with other various toxicity tests for CNTs. We conducted 24-h continuous nanoaerosol measurements to identify possible nanomaterial release in a single-walled carbon nanotube (SWCNT) manufacturing workplace. Four real-time aerosol instruments were used to determine the nanosized and microsized particle numbers, particle surface area, and carbonaceous species. Task-based exposure assessment was carried out for SWCNT synthesis using the arc plasma and thermal decomposition processes to remove amorphous carbon components as impurities. During the SWCNT synthesis, the black carbon (BC) concentration was 2–12 μg/m{sup 3}. The maximum BC mass concentrations occurred when the synthesis chamber was opened for harvesting the SWCNTs. The number concentrations of particles with sizes 10–420 nm were 10,000–40,000 particles/cm{sup 3} during the tasks. The maximum number concentration existed when a vacuum pump was operated to remove exhaust air from the SWCNT synthesis chamber due to the penetration of highly concentrated oil mists through the window opened. We analyzed the particle mass size distribution and particle number size distribution for each peak episode. Using real-time aerosol detectors, we distinguished the SWCNT releases from background nanoaerosols such as oil mist and atmospheric photochemical smog particles. SWCNT aggregates with sizes of 1–10 μm were mainly released from the arc plasma synthesis. The harvesting process was the main release route of SWCNTs in the workplace.

  16. Three-Dimensional Printing with Biomass-Derived PEF for Carbon-Neutral Manufacturing.

    Science.gov (United States)

    Kucherov, Fedor A; Gordeev, Evgeny G; Kashin, Alexey S; Ananikov, Valentine P

    2017-12-11

    Biomass-derived poly(ethylene-2,5-furandicarboxylate) (PEF) has been used for fused deposition modeling (FDM) 3D printing. A complete cycle from cellulose to the printed object has been performed. The printed PEF objects created in the present study show higher chemical resistance than objects printed with commonly available materials (acrylonitrile butadiene styrene (ABS), polylactic acid (PLA), glycol-modified poly(ethylene terephthalate) (PETG)). The studied PEF polymer has shown key advantages for 3D printing: optimal adhesion, thermoplasticity, lack of delamination and low heat shrinkage. The high thermal stability of PEF and relatively low temperature that is necessary for extrusion are optimal for recycling printed objects and minimizing waste. Several successive cycles of 3D printing and recycling were successfully shown. The suggested approach for extending additive manufacturing to carbon-neutral materials opens a new direction in the field of sustainable development. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. A Pilot-Scale System for Carbon Molecular Sieve Hollow Fiber Membrane Manufacturing

    KAUST Repository

    Karvan, O.

    2012-12-21

    Carbon molecular sieve (CMS) membranes offer advantages over traditional polymeric membrane materials, but scale-up of manufacturing systems has not received much attention. In the recent decade, there has been a dramatic increase in fundamental research on these materials with a variety of applications being studied. The results from a pilot-scale CMS production system are presented. This system was designed based on extensive laboratory research, and hollow fiber membranes produced in this system show similar performance compared to membranes produced using a smaller bench-scale system. After optimizing the system design, a 93% recovery of the precursor fibers for use in membrane module preparation were obtained. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. A Review of Economic Factors Influencing Voluntary Carbon Disclosure in the Property Sector of Developing Economies

    Science.gov (United States)

    Kalu, J. U.; Aliagha, G. U.; Buang, A.

    2016-02-01

    Global warming has consequences on the environment and economy; this led to the establishment of United Nation Framework Convention on Climate Change (UNFCCC) and the Kyoto Protocol. These two agreements were to reduce greenhouse gases (GHG) emissions which are responsible for climate change and global warming. Developing countries under the protocol are not obligated to reduce or disclosure GHG emission, so their participation in the protocol is on voluntary mitigation bases. This study intends to examine economic factors that influence voluntary carbon disclosure in the property sub-sector of developing countries based on annual report of listed property companies in Malaysia. Signaling theory addresses the problem of information asymmetry in the society. Disclosure is an effective tool to overcome information imbalance among different market participants. The study hypothesizes that the economic factors that influence voluntary carbon information disclosure in developing countries are: [1] the company's size; this is because a large-sized company have more resources to cover the cost of reducing pollution. [2] The company's gearing status; where there is no sufficient information disclosure in a highly geared company will result to an increased agency cost. [3] Profitability; profits grants companies a pool of resources for mitigation activities and environmental reporting. Also, carbon disclosure acts as a means for achieving public confidence and legitimacy. [4] Liquidity: Companies that are highly liquid will disclosure more information to distinguish themselves from other companies that are less liquidity. This is correlated to environmental disclosure. [5] Financial slack affects companies’ ability to participate in green technology projects that enable a reduction in emission.

  19. The world market of renewable energies. Trends on the long term for the solar, wind and hydraulic sectors - Which growth strategies for equipment manufacturers?

    International Nuclear Information System (INIS)

    2011-01-01

    This study first proposes an analysis of data related to the renewable energy market context. It aims at identifying the current and future impact of environmental factors on actors. It focuses on structural evolutions as opposed to cyclical factors. It also gives an overview of the evolution of World demand in the fields of conventional and renewable energies, and proposes a detailed analysis of three main segments: solar, wind, and hydraulic energy. The second part reports an analysis of the structure of the sector of electric equipment manufacturing for the production of energy by using clean or renewable sources, with a focus on solar, wind and hydraulic energies. Strategies are discussed, notably for the main operators (First Solar, Goldwind, Q-Cells, Suntech Power, Suzlon, and Vestas). The next part presents financial and economic data (and their evolution) for the world main equipment manufacturers (the above-mentioned ones and Alstom, Dongfang, General Electric, Siemens)

  20. Thermodynamics of the hydrogen-carbon-oxygen-tungsten system, as applied to the manufacture of tungsten and tungsten carbide

    International Nuclear Information System (INIS)

    Schwenke, G.K.

    2001-01-01

    The thermodynamics of the quaternary hydrogen-carbon oxygen-tungsten system and its binary and ternary sub-systems are reviewed. Published thermodynamic data are evaluated, and expression for free energies of formation are chosen. These expressions are integrated with and equilibrium-calculating algorithm, producing a powerful tool for understanding and improving the manufacture of tungsten and tungsten carbide. Three examples are presented: reduction/carburization of tungstic oxide with hydrogen, carbon, and methane. (author)

  1. Scoping study on SADC energy sector carbon market potential; SADC = Southern African Development Community

    Energy Technology Data Exchange (ETDEWEB)

    2010-10-22

    programmes. Biomass and bio fuels: Some of the biomass cogeneration and biofuels projects are large enough scale to be implemented at national level. However, the scale of biomass potential is so large in the region that developing several 'demonstration projects' with high replicability and visibility could catalyze rapid growth of CDM projects in this sub-sector. Household scale biomass use is covered by the SADC Programme for Biomass Energy Conservation (ProBEC), but commercial and industrial use projects in the region would have high value for promoting CDM in SADC. Institutional strengthening through regional cooperation: rather than only working at national level to build capacity in DNAs and the local consulting industry for CDM projects, sharing knowledge and experience across the region would facilitate more rapid CDM market development. Providing the opportunity for key energy sector decision makers to become more active in the negotiations around the CDM and the future of the carbon market would also strengthen SADC's 'regional voice' in the climate change debate. (Author)

  2. The history of the peat manufacturing industry in The Netherlands: Peat moss litter and active carbon

    Directory of Open Access Journals (Sweden)

    M.A.W. Gerding

    2015-11-01

    Full Text Available This article describes the development of three major forms of peat processing by the manufacturing industry in The Netherlands since the last quarter of the 19th century. At a time when peat as a fuel was gradually being replaced by coal, the first form was the peat moss litter industry. Peat moss litter was made from white peat that was ground and sieved in factories which were located mainly in bog areas in the south-east of the province of Drenthe. It served as excellent bedding for horses and cattle. The second form of industrial peat processing was the manufacture, from 1921 onwards, of active carbon made from black peat. The Purit (Norit factory, now part of the Cabot Corporation, is still the only active carbon factory using peat as a raw material. The third form of peat processing was the production of garden peat and potting soil. This is still a widespread activity in peat areas all over the world. The peat moss litter industry thrived from the 1880s until shortly after the First World War. The arrival of the horse-drawn tram in all of the major cities of Europe created a great demand for animal bedding to be used in the vast stables of the tramway companies. Peat moss litter was cleaner, healthier and easier to handle than straw. There was similar demand from the armies, which used millions of horses during the First World War. Owing to the development of motorised vehicles, the peat market collapsed after the war and this plunged the industry into a prolonged crisis which was not overcome until peat was found to be a suitable growing medium for horticulture in the 1950s. Living and working conditions in peatlands were harsh, earnings irregular and labourers’ rights limited. The peat manufacturing industry was the first to introduce collective labour agreements, medical benefits and pension plans. Nonetheless massive unemployment, poverty and the necessity to migrate to other parts of the country were clear signs that the era of

  3. The Impact of Technological Progress in the Energy Sector on Carbon Emissions: An Empirical Analysis from China.

    Science.gov (United States)

    Jin, Lei; Duan, Keran; Shi, Chunming; Ju, Xianwei

    2017-12-04

    This paper investigates the relationship between technological progress in the energy sector and carbon emissions based on the Environment Kuznets Curve (EKC) and data from China during the period of 1995-2012. Our study confirms that the situation in China conforms to the EKC hypothesis and presents the inverted U-curve relationship between per capita income and carbon emissions. Furthermore, the inflection point will be reached in at least five years. Then, we use research and development (R & D) investment in the energy industry as the quantitative indicator of its technological progress to test its impact on carbon emissions. Our results show that technological progress in the energy sector contributes to a reduction in carbon emissions with hysteresis. Furthermore, our results show that energy efficiency improvements are also helpful in reducing carbon emissions. However, climate policy and change in industrial structure increase carbon emissions to some extent. Our conclusion demonstrates that currently, China is not achieving economic growth and pollution reduction simultaneously. To further achieve the goal of carbon reduction, the government should increase investment in the energy industry research and improve energy efficiency.

  4. The Impact of Technological Progress in the Energy Sector on Carbon Emissions: An Empirical Analysis from China

    Directory of Open Access Journals (Sweden)

    Lei Jin

    2017-12-01

    Full Text Available This paper investigates the relationship between technological progress in the energy sector and carbon emissions based on the Environment Kuznets Curve (EKC and data from China during the period of 1995–2012. Our study confirms that the situation in China conforms to the EKC hypothesis and presents the inverted U-curve relationship between per capita income and carbon emissions. Furthermore, the inflection point will be reached in at least five years. Then, we use research and development (R & D investment in the energy industry as the quantitative indicator of its technological progress to test its impact on carbon emissions. Our results show that technological progress in the energy sector contributes to a reduction in carbon emissions with hysteresis. Furthermore, our results show that energy efficiency improvements are also helpful in reducing carbon emissions. However, climate policy and change in industrial structure increase carbon emissions to some extent. Our conclusion demonstrates that currently, China is not achieving economic growth and pollution reduction simultaneously. To further achieve the goal of carbon reduction, the government should increase investment in the energy industry research and improve energy efficiency.

  5. High performance, rapid thermal/UV curing epoxy resin for additive manufacturing of short and continuous carbon fiber epoxy composites

    Science.gov (United States)

    Lewicki, James

    2018-04-17

    An additive manufacturing resin system including an additive manufacturing print head; a continuous carbon fiber or short carbon fibers operatively connected to the additive manufacturing print head; and a tailored resin operatively connected to the print head, wherein the tailored resin has a resin mass and wherein the tailored resin includes an epoxy component, a filler component, a catalyst component, and a chain extender component; wherein the epoxy component is 70-95% of the resin mass, wherein the filler component is 1-20% of the resin mass, wherein the catalyst component is 0.1-10% of the resin mass, and wherein the chain extender component is 0-50% of the resin mass.

  6. Distributed generation to reduce carbon dioxide emissions : a case study for residential sector in Oman

    Energy Technology Data Exchange (ETDEWEB)

    Solanki, P.S. [Caledonian College of Engineering, Muscat (Oman); Mallela, V.S. [G. Narayanamma Inst. of Technology and Sciences Shaikpet, Hyderabad (India); Allan, M.; Zhou, C. [Glasgow Caledonian Univ., Glasgow, Scotland (United Kingdom)

    2010-07-01

    This paper presented a case study undertaken in Oman involving the use of a proposed hybrid diesel-photovoltaic distributed power system to reduce carbon dioxide (CO{sub 2}) emissions. A model of the hybrid power system comprising a photovoltaic module, a diesel generator, and essential auxiliary devices was presented. Solar energy was selected for the Distributed Generation Technology (DGT) because Oman has an abundance of direct solar radiation. A typical house located in a remote area was considered to determine the potential greenhouse gas reduction and the economic feasibility when it is powered by the proposed hybrid system, the diesel system alone, and the main interconnected grid. The Hybrid Optimization Model for Electricity Renewables (HOMER) software was used for energy simulation, economic analysis, and the calculation of greenhouse gas (GHG) emissions. The results of the simulation indicated that the proposed hybrid system would reduce CO{sub 2} emissions by 38 percent relative to the stand-alone diesel system and by 2.67 percent compared to the main grid. The hybrid system has lower operating costs and a lower per-unit energy cost than the diesel system, but the per-unit energy cost estimated for the main interconnected system is better. The latter system is less favourable for GHG emissions. Extending the hybrid system to the entire residential sector has the potential to substantially reduce GHG emissions. The proposed hybrid system is also a cost effective choice for remote locations. 18 refs., 8 tabs., 7 figs.

  7. Reducing Carbon Dioxide Emissions from Electricity Sector Using Smart Electric Grid Applications

    Directory of Open Access Journals (Sweden)

    Lamiaa Abdallah

    2013-01-01

    Full Text Available Approximately 40% of global CO2 emissions are emitted from electricity generation through the combustion of fossil fuels to generate heat needed to power steam turbines. Burning these fuels results in the production of carbon dioxide (CO2—the primary heat-trapping, “greenhouse gas” responsible for global warming. Applying smart electric grid technologies can potentially reduce CO2 emissions. Electric grid comprises three major sectors: generation, transmission and distribution grid, and consumption. Smart generation includes the use of renewable energy sources (wind, solar, or hydropower. Smart transmission and distribution relies on optimizing the existing assets of overhead transmission lines, underground cables, transformers, and substations such that minimum generating capacities are required in the future. Smart consumption will depend on the use of more efficient equipment like energy-saving lighting lamps, enabling smart homes and hybrid plug-in electric vehicles technologies. A special interest is given to the Egyptian case study. Main opportunities for Egypt include generating electricity from wind and solar energy sources and its geographical location that makes it a perfect center for interconnecting electrical systems from the Nile basin, North Africa, Gulf, and Europe. Challenges include shortage of investments, absence of political will, aging of transmission and distribution infrastructure, and lack of consumer awareness for power utilization.

  8. Structuring the carbon-free vehicle sector. Report of M. Louis Negre, Senator of Alpes-Maritimes

    International Nuclear Information System (INIS)

    Negre, Louis; Aussourd, Philippe

    2011-01-01

    This report studies the situation in the sector of carbon-free vehicles, and in particular electric vehicles, and its representation. It also compares the situation in France with that of the main countries involved in the same policy, particularly those who have chosen to voluntarily structure their own national sectors (Japan, Germany, Great Britain). It proposes two axes of complementary interventions to better structure this sector in the future: a more important intervention of the 'State as a strategist' with the creation of a delegation, placed directly under the authority of the government, which carries the industrial project of France, structures the sector and ensures its coherence and its durability; a reinforcement of representation bodies of the sector based on the gathering of all the actors grouped together in an associative structure, based on a renewed AVERE (Association for the development of transport and electric mobility), which would be the interface of the sector, both to the State and to other institutions and the public [fr

  9. Sequencing Batch Reactor and Bacterial Community in Aerobic Granular Sludge for Wastewater Treatment of Noodle-Manufacturing Sector

    OpenAIRE

    Tang Thi Chinh; Phung Duc Hieu; Bui Van Cuong; Nguyen Nhat Linh; Nguyen Ngoc Lan; Nguyen Sy Nguyen; Nguyen Quang Hung; Le Thi Thu Hien

    2018-01-01

    The sequencing batch reactor (SBR) has been increasingly applied in the control of high organic wastewater. In this study, SBR with aerobic granular sludge was used for wastewater treatment in a noodle-manufacturing village in Vietnam. The results showed that after two months of operation, the chemical oxygen demand, total nitrogen and total phosphorous removal efficiency of aerobic granular SBR reached 92%, 83% and 75%, respectively. Bacterial diversity and bacterial community in wastewater ...

  10. Firm-based Training and Innovative Strategies in the Manufacturing Sector. Empirical Evidence for a local industrial System

    OpenAIRE

    Giovanni Guidetti; Massimiliano Mazzanti

    2005-01-01

    The paper investigates the driving factors of firm training using a survey-based dataset concerning manufacturing firms in the Emilia Romagna Region, located in Northern Italy. Data derive from a structured questionnaire administered in 2002 to the management of a representative sample of firms with more than 50 employees in a highly industrialised local production system. The applied analysis explores the linkages between firm training activities and its driving forces. The main potential fa...

  11. Female labour force participation in MENA's manufacturing sector: The implications of firm-related and national factors

    OpenAIRE

    Fakih, Ali; Ghazalian, Pascal L.

    2013-01-01

    The Middle East and North Africa (MENA) region falls behind several other geo-economic regions in terms of women's participation rates in the labour market. This paper examines the implications of firm-related and national factors for Female Labour Force Participation (FLFP) rates in manufacturing firms located in the MENA region. The empirical investigation uses data derived from the World Bank's Enterprise Surveys database and applies fractional logit models to carry out the estimations. Th...

  12. New Product Development for Green and Low-Carbon Products—A Case Study of Taiwan's TFT-LCD Manufacturer

    Science.gov (United States)

    Lin, Chun-Yu; Lee, Amy H. I.

    2011-11-01

    Green supply chain has become an important topic these days due to pollution, global warming, extreme climatic events, etc. A green product is manufactured with the goal of reducing the damage to the environment and limiting the use of energy and other resources at any stage of its life, including raw materials, manufacture, use, and disposal. Carbon footprint is a good measure of the impact that a product has on the environment, especially in climate change, in the entire lifetime of the product. Carbon footprint is directly linked to CO2 emission; thus, the reduction of CO2 emission must be considered in the product life cycle. Although more and more researchers are working on the green supply chain management in the past few years, few have incorporated CO2 emission or carbon footprint into the green supply chain system. Therefore, this research aims to propose an integrated model for facilitating the new product development (NPD) for green and low-carbon products. In this research, a systematic model based on quality function deployment (QFD) is constructed for developing green and low-carbon products in a TFT-LCD manufacturer. Literature review and interviews with experts are done first to collect the factors for developing and manufacturing green and low-carbon products. Fuzzy Delphi method (FDM) is applied next to extract the important factors, and fuzzy interpretive structural modeling (FISM) is used subsequently to understand the relationships among factors. A house of quality (HOQ) for product planning is built last. The results shall provide important information for a TFT-LCD firm in designing a new product.

  13. Analysis of Low-Carbon Economy Efficiency of Chinese Industrial Sectors Based on a RAM Model with Undesirable Outputs

    Directory of Open Access Journals (Sweden)

    Ming Meng

    2017-03-01

    Full Text Available Industrial energy and environment efficiency evaluation become especially crucial as industrial sectors play a key role in CO2 emission reduction and energy consumption. This study adopts the additive range-adjusted measure data envelope analysis (RAM-DEA model to estimate the low-carbon economy efficiency of Chinese industrial sectors in 2001–2013. In addition, the CO2 emission intensity mitigation target for each industrial sector is assigned. Results show that, first, most sectors are not completely efficient, but they have experienced and have improved greatly during the period. These sectors can be divided into four categories, namely, mining, light, heavy, and electricity, gas, and water supply industries. The efficiency is diverse among the four industrial categories. The average efficiency of the light industry is the highest among the industries, followed by those of the mining and the electricity, gas, and water supply industries, and that of the heavy industry is the lowest. Second, the electricity, gas, and water supply industry shows the biggest potential for CO2 emission reduction, thus containing most of the sectors with large CO2 emission intensity mitigation targets (more than 45%, followed by the mining and the light industries. Therefore, the Chinese government should formulate diverse and flexible policy implementations according to the actual situation of the different sectors. Specifically, the sectors with low efficiency should be provided with additional policy support (such as technology and finance aids to improve their industrial efficiency, whereas the electricity, gas, and water supply industry should maximize CO2 emission reduction.

  14. What drives the carbon mitigation in Chinese commercial building sector? Evidence from decomposing an extended Kaya identity.

    Science.gov (United States)

    Ma, Minda; Cai, Weiguang

    2018-09-01

    Energy efficiency in the building sector is expected to contribute >50% to the nationwide carbon mitigation efforts for achieving China's carbon emission peak in 2030, and carbon mitigation in Chinese commercial buildings (CMCCB) is an indicator of this effort. However, the CMCCB assessment has faced the challenge of ineffective and inadequate approaches; therefore, we have followed a different approach. Using the China Database of Building Energy Consumption and Carbon Emissions as our data source, our study is the first to employ the Logarithmic Mean Divisia Index (LMDI) to decompose five driving forces from the Kaya identity of Chinese commercial building carbon emissions (CCBCE) to assess the CMCCB values in 2001-2015. The results of our study indicated that: (1) Only two driving forces (i.e., the reciprocal of GDP per capita of Tertiary Industry in China and the CCBCE intensity) contributed negatively re m i to CCBCE during 2001-2015, and the quantified negative contributions denoted the CMCCB values. Specifically, the CMCCB values in 2001-2005, 2006-2010, and 2011-2015 were 123.96, 252.83, and 249.07 MtCO 2 , respectively. (2) The data quality control involving the CMCCB values proved the reliability of our CMCCB assessment model, and the universal applicability of this model was also confirmed. (3) The substantial achievements of the energy efficiency project in the Chinese commercial building sector were the root cause of the rapidly growing CMCCB. Overall, we believe that our model successfully bridges the research gap of the nationwide CMCCB assessment and that the proposed model is also suitable either at the provincial level or in different building climate zones in China. Meanwhile, a global-level assessment of the carbon mitigation in the commercial building sector is feasible through applying our model. Furthermore, we consider our contribution as constituting significant guidance for developing the building energy efficiency strategy in China in the

  15. Potential impact of (CET) carbon emissions trading on China’s power sector: A perspective from different allowance allocation options

    OpenAIRE

    Cong, Rong-Gang; Wei, Yi-Ming

    2010-01-01

    In Copenhagen climate conference China government promised that China would cut down carbon intensity 40e45% from 2005 by 2020. CET (carbon emissions trading) is an effective tool to reduce emissions. But because CET is not fully implemented in China up to now, how to design it and its potential impact are unknown to us. This paper studies the potential impact of introduction of CET on China’s power sector and discusses the impact of different allocation options of allowances. Agent-based mod...

  16. Potential impact of (CET) carbon emissions trading on China's power sector: A perspective from different allowance allocation options

    International Nuclear Information System (INIS)

    Cong, Rong-Gang; Wei, Yi-Ming

    2010-01-01

    In Copenhagen climate conference China government promised that China would cut down carbon intensity 40-45% from 2005 by 2020. CET (carbon emissions trading) is an effective tool to reduce emissions. But because CET is not fully implemented in China up to now, how to design it and its potential impact are unknown to us. This paper studies the potential impact of introduction of CET on China's power sector and discusses the impact of different allocation options of allowances. Agent-based modeling is one appealing new methodology that has the potential to overcome some shortcomings of traditional methods. We establish an agent-based model, CETICEM (CET Introduced China Electricity Market), of introduction of CET to China. In CETICEM, six types of agents and two markets are modeled. We find that: (1) CET internalizes environment cost; increases the average electricity price by 12%; and transfers carbon price volatility to the electricity market, increasing electricity price volatility by 4%. (2) CET influences the relative cost of different power generation technologies through the carbon price, significantly increasing the proportion of environmentally friendly technologies; expensive solar power generation in particular develops significantly, with final proportion increasing by 14%. (3) Emission-based allocation brings about both higher electricity and carbon prices than by output-based allocation which encourages producers to be environmentally friendly. Therefore, output-based allocation would be more conducive to reducing emissions in the Chinese power sector. (author)

  17. Magnetically anisotropic additive for scalable manufacturing of polymer nanocomposite: iron-coated carbon nanotubes

    International Nuclear Information System (INIS)

    Yamamoto, Namiko; Manohara, Harish; Platzman, Ellen

    2016-01-01

    Novel nanoparticles additives for polymer nanocomposites were prepared by coating carbon nanotubes (CNTs) with ferromagnetic iron (Fe) layers, so that their micro-structures can be bulk-controlled by external magnetic field application. Application of magnetic fields is a promising, scalable method to deliver bulk amount of nanocomposites while maintaining organized nanoparticle assembly throughout the uncured polymer matrix. In this work, Fe layers (∼18 nm thick) were deposited on CNTs (∼38 nm diameter and ∼50 μm length) to form thin films with high aspect ratio, resulting in a dominance of shape anisotropy and thus high coercivity of ∼50–100 Oe. The Fe-coated CNTs were suspended in water and applied with a weak magnetic field of ∼75 G, and yet preliminary magnetic assembly was confirmed. Our results demonstrate that the fabricated Fe-coated CNTs are magnetically anisotropic and effectively respond to magnetic fields that are ∼10 3 times smaller than other existing work (∼10 5 G). We anticipate this work will pave the way for effective property enhancement and bulk application of CNT–polymer nanocomposites, through controlled micro-structure and scalable manufacturing. (paper)

  18. Influence of the Manufacturing Process on Defects in the Galvanized Coating of High Carbon Steel Wires.

    Science.gov (United States)

    Gelfi, Marcello; Solazzi, Luigi; Poli, Sandro

    2017-03-06

    This study is a detailed failure analysis of galvanized high carbon steel wires, which developed coating cracks during the torsion test performed as a quality control at the end of the manufacturing process. Careful visual inspections showed that the cracks are already present in the coating before the torsion test. In order to explain the origin of these cracks, systematic metallographic investigations were performed by means of optical and scanning electron microscope on both the wires and the rods that have been cold drawn to produce the wire. The chemical composition of the galvanized coatings was evaluated by means of energy dispersive spectroscopy. Micro bidimensional X-ray diffraction experiments were also performed to measure the residual stresses in the galvanized coating. The results showed that the failure is related to two main factors: the relatively high content of silicon in the steel and the unsuitable cooling rate of the rods at the exit from the galvanizing bath. The mechanism proposed to explain the origin of the defects was supported by Finite Elements Methods simulations and verified with in-plant tests. The proper countermeasures were then applied and the problem successfully solved.

  19. Influence of the Manufacturing Process on Defects in the Galvanized Coating of High Carbon Steel Wires

    Directory of Open Access Journals (Sweden)

    Marcello Gelfi

    2017-03-01

    Full Text Available This study is a detailed failure analysis of galvanized high carbon steel wires, which developed coating cracks during the torsion test performed as a quality control at the end of the manufacturing process. Careful visual inspections showed that the cracks are already present in the coating before the torsion test. In order to explain the origin of these cracks, systematic metallographic investigations were performed by means of optical and scanning electron microscope on both the wires and the rods that have been cold drawn to produce the wire. The chemical composition of the galvanized coatings was evaluated by means of energy dispersive spectroscopy. Micro bidimensional X-ray diffraction experiments were also performed to measure the residual stresses in the galvanized coating. The results showed that the failure is related to two main factors: the relatively high content of silicon in the steel and the unsuitable cooling rate of the rods at the exit from the galvanizing bath. The mechanism proposed to explain the origin of the defects was supported by Finite Elements Methods simulations and verified with in-plant tests. The proper countermeasures were then applied and the problem successfully solved.

  20. Productivity, innovation and research at the business level. An empirical analysis of the Spanish manufacturing sector; Productividad, innovacion e investigacion a nivel de empresa. Un analisis empirico del sector manufacturero espanol

    Energy Technology Data Exchange (ETDEWEB)

    Muinelo Gallo, L.

    2012-07-01

    This paper analyses the relationship between productivity, innovation and research at firm level using an extension of the structural model of Crepon, Duguet and Mairesse (1998). The study is performed for Spanish firms of manufacturing sector, by using information from the ''Encuesta sobre innovacion tecnologica en las empresas 2000 and 2004''. The empirical results suggest that the public fund, the size of the firms and the participation in the international markets plays an important role in the decisions to realize internal research activities. In addition, the firms that realize a major effort in research it is more probable that they are innovative of product and/or of process. Finally, the estimations also emphasize that increases in productivity are positively correlated with the introduction of new products and/or processes and the intensity of the physical capital. (Author)

  1. The carbon balance and greenhouse effects of the Finnish forest sector at present, in the past and future

    Energy Technology Data Exchange (ETDEWEB)

    Pingoud, K. [Technical Research Centre of Finland, Espoo (Finland)

    1996-12-31

    In this study the greenhouse impact of the total Finnish forest sector was considered, which means that the estimated emissions and sink effects from exported forest products were also included. The forest biomass is and seems to be in the next decades the most important factor in the carbon balance of the total forest sector. The development alternatives of forest industries and waste management practices has still a remarkable influence on the greenhouse impact of the Finnish forest sector. The waste management practices in the future has an important influence on the emissions but the exact net greenhouse impact of the landfills is still uncertain. However, the methane emissions from existing landfills can be reduced essentially by gas recovery. Increased incineration and energy recovery of wood waste (and replacing fossil fuel use by it) is also a future alternative for reducing the greenhouse effects in the forest sector. The sequestration of carbon by increasing the storages of long-lived wood products in use meets difficulties in practice because of all the material losses in wood using chain and the natural removal of old wood products. An important advantage of mechanical wood processing and the succeeding refinement chain is still their relative low use of energy

  2. The carbon balance and greenhouse effects of the Finnish forest sector at present, in the past and future

    Energy Technology Data Exchange (ETDEWEB)

    Pingoud, K [Technical Research Centre of Finland, Espoo (Finland)

    1997-12-31

    In this study the greenhouse impact of the total Finnish forest sector was considered, which means that the estimated emissions and sink effects from exported forest products were also included. The forest biomass is and seems to be in the next decades the most important factor in the carbon balance of the total forest sector. The development alternatives of forest industries and waste management practices has still a remarkable influence on the greenhouse impact of the Finnish forest sector. The waste management practices in the future has an important influence on the emissions but the exact net greenhouse impact of the landfills is still uncertain. However, the methane emissions from existing landfills can be reduced essentially by gas recovery. Increased incineration and energy recovery of wood waste (and replacing fossil fuel use by it) is also a future alternative for reducing the greenhouse effects in the forest sector. The sequestration of carbon by increasing the storages of long-lived wood products in use meets difficulties in practice because of all the material losses in wood using chain and the natural removal of old wood products. An important advantage of mechanical wood processing and the succeeding refinement chain is still their relative low use of energy

  3. Review of carbon dioxide capture and storage with relevance to the South African power sector

    Directory of Open Access Journals (Sweden)

    Khalid Osman

    2014-05-01

    Full Text Available Carbon dioxide (CO2 emissions and their association with climate change are currently a major discussion point in government and amongst the public at large in South Africa, especially because of the country's heavy reliance on fossil fuels for electricity production. Here we review the current situation regarding CO2 emissions in the South African power generation sector, and potential process engineering solutions to reduce these emissions. Estimates of CO2 emissions are presented, with the main sources of emissions identified and benchmarked to other countries. A promising mid-term solution for mitigation of high CO2 emissions, known as CO2 capture and storage, is reviewed. The various aspects of CO2 capture and storage technology and techniques for CO2 capture from pulverised coal power plants are discussed; these techniques include processes such as gas absorption, hydrate formation, cryogenic separation, membrane usage, sorbent usage, enzyme-based systems and metal organic frameworks. The latest power plant designs which optimise CO2 capture are also discussed and include integrated gasification combined cycle, oxy-fuel combustion, integrated gasification steam cycle and chemical looping combustion. Each CO2 capture technique and plant modification is presented in terms of the conceptual idea, the advantages and disadvantages, and the extent of development and applicability in a South African context. Lastly, CO2 transportation, storage, and potential uses are also presented. The main conclusions of this review are that gas absorption using solvents is currently most applicable for CO2 capture and that enhanced coal bed methane recovery could provide the best disposal route for CO2 emissions mitigation in South Africa.

  4. Climate change. Proposal by 'Entreprises pour l'Environnement' for an effective plan of action to reduce greenhouse gas emissions in the manufacturing sector

    International Nuclear Information System (INIS)

    1999-09-01

    Globalization, equity, efficiency, and maintaining the competitiveness of European industry are the overall requirements of this plan of action, enabling the manufacturing sector to contribute to the national commitment to reduce greenhouse gas emissions (GHG). It is in the interest of efficiency, in particular, that we have to ensure that we stick to the objective of reducing emissions without seeking additional goals. It means making flexibility a priority, motivating rather than restricting, and avoiding bureaucracy whilst ensuring that the simplicity of the mechanisms put in place is counterbalanced by an almost automatic compliance to the commitments made by the companies. Accompanying measures for a major innovation initiative are also crucial. In order to guide efforts to reduce GHG emissions within the manufacturing sector, Entreprises pour l'Environnement (EpE) proposes a combination of voluntary negotiated agreements (VNA) and emission credits (traded on the market). These voluntary agreements will be negotiated with authorities (national and, in some cases, EU) by industrial gas emitters (companies, industrial groups, industrial sectors or ad hoc groups of companies). In order to be eligible for a VNA, these industrial emitters must demonstrate their capacity to measure their emissions and to successfully conduct emission reductions or, in case of failure, to implement compensatory measures, and must show that they 'represent' a quantity of emissions in excess of a certain threshold, thereby enabling them to enter the permits market. This mechanism will make it possible to cover a large part of the manufacturing sector. The scheme is simple - if an industrial emitter improves on the target negotiated with the authorities, then he receives emission credits which he can sell or keep for a subsequent period. Should he fail to reach the target, then, on the contrary, he will have to purchase emission credits (permits) on the market

  5. Implementation competences as an attribute of executive employees of the flexible organisation – an attempt of their assessment among manufacturers of the agricultural machinery sector

    Directory of Open Access Journals (Sweden)

    Nogalski Bogdan

    2016-12-01

    Full Text Available Based on theoretical knowledge, own professional experience and conducted research, according to the authors, the paper’s objective is to develop and empirically verify the theoretical model of implementation competences of the executive employees of manufacturing companies of the agricultural machinery sector. The main objective achievement required to formulate and reach partial objectives, which include: a discussion and organisation of terminological issues in terms of understanding the term of implementation competences, b development of a general model of the executive employees’ implementation competences, which is a sign of knowledge, skills, personality features, attitudes and values, c empirical verification of the theoretical model; prioritisation of individual implementation competences in the assessment of executive employees or owners of selected companies and determination of competence weaknesses, which are characteristic of the executive personnel of these companies.

  6. IMPACT OF THE FOREIGN DIRECT INVESTMENT FROM THE MANUFACTURING SECTOR ON THE ROMANIAN IMPORTS OF INTERMEDIATE GOODS AND OF RAW MATERIALS

    Directory of Open Access Journals (Sweden)

    RAMONA DUMITRIU

    2010-01-01

    Full Text Available Increasing exports by stimulating the foreign direct investment could be a solution to the problem of the persistent trade balance deficit of Romania. However, in such an attempt there have to be taken into consideration the potential effects of the foreign direct investment on some categories of imports. This paper explores the dynamic relation between the foreign direct investment from the manufacturing sector and the Romanian imports of intermediate goods and raw materials. We found causality linkages between the foreign direct investment and the imports of intermediate goods, meaning that Romanian branches of the multinational companies prefer to import such goods instead of producing or buying from the domestic markets. Instead, we failed to identify any causality between the foreign direct investment and the imports of raw materials.

  7. Energy. Sector 1

    International Nuclear Information System (INIS)

    1994-01-01

    The aim of this article is to report the results of the greenhouse gas (GHG) emission inventory for the year 1994. The following GHG are of interest in the energy sector: Carbon dioxide CO 2 , methane CH 4 , nitrous oxide N 2 O, oxides of nitrogen NO x , carbon monoxide CO, sulphur dioxide SO 2 and non-methane volatile organic compounds (NMVOCs). The inventory has focused on the following GHG related sources: -Electricity generation through the electric utility. -Private generation of electricity -Manufacturing industries and construction -Transport: road, domestic aviation and national navigation -Energy use in the residential sector -Energy use in the commercial/institutional sector -Energy use in the agriculture/forestry/fishing sector The fuel types taken into consideration are:Gasoline, jet Kerosene, Kerosene for household use, gas oil, diesel oil, fuel oil, LPG, lubricating oil, coal, wood and charcoal (solid biomass). Care has been taken to eliminate the fuel used by international marine and aviation bunkers from the national inventory. The amount of GHG released to the atmosphere has been estimated using the IPCC methodology and emission factors .Where national emission factors differed from those of IPCC, the factors are discussed. Complete documentation of compiled information and data sources are attached to this article.Finally both the reference approach and analysis by source categories have been carried out and are reported in this inventory

  8. Investment strategy for sustainable society by development of regional economies and prevention of industrial pollutions in Japanese manufacturing sectors

    International Nuclear Information System (INIS)

    Sueyoshi, Toshiyuki; Goto, Mika

    2014-01-01

    A balance between industrial pollution prevention and economic growth becomes a world-wide issue to develop a sustainable society in many industrial nations. To discuss the issue, this study proposes a new use of DEA environmental assessment to determine how to effectively allocate capital for developing regional industries. The amount of capital is used to invest for technology innovation for both local economic growth and environmental protection. In this study, the proposed approach separates outputs into desirable and undesirable categories. Inputs are also separated into two categories, one of which indicates an amount of investment on capital assets. The other category is used for production activities. The proposed approach unifies them by two disposability concepts. This study has evaluated the performance of manufacturing industries in 47 prefectures (local government units in Japan) by Unified Efficiency under Natural disposability (UEN), Unified Efficiency under Managerial disposability (UEM) and Unified Efficiency under Natural and Managerial disposability (UENM). The UENM is further separated into its two cases: with and without a possible occurrence on desirable congestion, or technology innovation, on undesirable outputs. This study has empirically confirmed that Japanese manufacturing industries need to make their efforts to reduce greenhouse gas emissions and air pollution substances by investing in technology innovation. Furthermore, most of economic activities are currently located at metropolitan regions (e.g., Tokyo) in Japan. To develop a sustainable society, Japan needs to allocate capital into regions with a high level of investment effectiveness by shifting the manufacturing industries from the metropolitan regions to much promising local areas identified in this study. Such a shift, along with technology innovation, makes it possible to reduce air pollutions in the entire Japan by balancing economic growth and pollution prevention. This

  9. Business competitiveness in the small and medium-sized enterprises of the manufacturing sector in Baja California

    Directory of Open Access Journals (Sweden)

    Manuel Alejandro Ibarra Cisneros

    2017-01-01

    Full Text Available The objective of this research is to determine the competitiveness level of the manufacturing small and medium-sized enterprises (SMEs of Baja California and to identify which areas within them affect this competitiveness. The methodology used is descriptive, correlational, and cross-sectional; the systemic competitiveness model is developed at the micro level, and a measurement instrument with 64 questions is used on 195 companies in the state; in addition, traditional multiple linear regressions are performed to test the hypotheses. One of the findings is that the SMEs in the state have a medium-low competitiveness level and do not show any relationship between the size of the companies and their competitiveness; however, the production-operations area prove to be more important for their competitiveness level. Although the measurement instrument that is used has no proportionality at the municipality and subsector level, it does allow us to approach the internal operation of the SMEs.

  10. Carbon mitigation in the electric power sector under cap-and-trade and renewables policies

    International Nuclear Information System (INIS)

    Delarue, Erik; Van den Bergh, Kenneth

    2016-01-01

    In Europe, CO_2 emissions from the electric power sector and energy intensive industries are capped under a cap-and-trade system (i.e., the EU ETS). When other indirect measures are taken to impact emissions in a specific sector under the cap (such as a push for renewables in the electric power sector), this has implications on the overall allowance price, and on CO_2 emissions both from this specific sector and the other sectors under the cap. The central contribution of this paper is the derivation of impact curves, which describe these interactions, i.e., the impact on allowance price and the shift of emissions across sectors. From a set of detailed simulations of the electric power system operation, a so-called “emission plane” is obtained, from which impact curves can be derived. Focus is on interactions between CO_2 abatement through fuel switching and measures affecting the residual electricity demand (such as deployment of renewables) in the electric power sector, as well as on interactions with other sectors, both in a short-term framework. A case study for Central-Western Europe is presented. The analysis reveals a substantial impact of renewables on CO_2 emissions, and hence on emissions shifts across sectors and/or on the CO_2 price. - Highlights: •CO_2 cap-and-trade interacts with policies targeting one specific sector under cap. •Interaction creates emission displacement and/or impacts CO_2 price. •The central contribution is the derivation of impact curves from the emission plane. •The method is applied to a case study of Central-Western Europe. •The analysis reveals a large impact of renewables on CO_2 displacement and/or price.

  11. Analysis of the energy metabolism of urban socioeconomic sectors and the associated carbon footprints: Model development and a case study for Beijing

    International Nuclear Information System (INIS)

    Zhang, Yan; Zheng, Hongmei; Fath, Brian D.

    2014-01-01

    Cities consume 80% of the world's energy; therefore, analyzing urban energy metabolism and the resulting carbon footprint provides basic data for formulating target carbon emission reductions. While energy metabolism includes both direct and indirect consumptions among sectors, few researchers have studied indirect consumption due to a lack of data. In this study, we used input–output analysis to calculate the energy flows among directly linked sectors. Building on this, we used ecological network analysis to develop a model of urban energy flows and also account for energy consumption embodied by the flows among indirectly linked sectors (represented numerically as paths with a length of 2 or more). To illustrate the model, monetary input–output tables for Beijing from 2000 to 2010 were analyzed to determine the embodied energy consumption and associated carbon footprints of these sectors. This analysis reveals the environmental pressure based on the source (energy consumption) and sink (carbon footprint) values. Indirect consumption was Beijing's primary form, and the carbon footprint therefore resulted mainly from indirect consumption (both accounting for ca. 60% of the total, though with considerable variation among sectors). To reduce emissions, the utilization efficiency of indirect consumption must improve. - Highlights: • We quantified the embodied energy transfers among Beijing's socioeconomic sectors. • We calculated the sectors' intensity of energy consumption and carbon footprint. • The indirect energy consumption was higher than the direct for all sectors. • The high-indirect-consumption sectors are at the end of industrial supply chains. • High-indirect-consumption sectors can improve upstream products energy efficiency

  12. Boron carbide-coated carbon material, manufacturing method therefor and plasma facing material

    International Nuclear Information System (INIS)

    Suzuki, Takayuki; Kikuchi, Yoshihiro; Hyakki, Yasuo.

    1997-01-01

    The present invention concerns a plasma facing material suitable to a thermonuclear device. The material comprises a carbon material formed by converting the surface of a carbon fiber-reinforced carbon material comprising a carbon matrix and carbon fibers to a boron carbide, the material has a surface comprising vertically or substantially vertically oriented carbon fibers, and the thickness of the surface converted to boron carbide is reduced in the carbon fiber portion than in the carbon matrix portion. Alternatively, a carbon fiber-reinforced carbon material containing carbon fibers having a higher graphitizing degree than the carbon matrix is converted to boron carbide on the surface where the carbon fibers are oriented vertically or substantially vertically. The carbon fiber-reinforced material is used as a base material, and a resin material impregnated into a shaped carbon fiber product is carbonized or thermally decomposed carbon is filled as a matrix. The material of the present invention has high heat conduction and excellent in heat resistance thereby being suitable to a plasma facing material for a thermonuclear device. Electric specific resistivity of the entire coating layer can be lowered, occurrence of arc discharge is prevented and melting can be prevented. (N.H.)

  13. Mechanical, thermal and morphological characterization of polycarbonate/oxidized carbon nanofiber composites produced with a lean 2-step manufacturing process.

    Science.gov (United States)

    Lively, Brooks; Kumar, Sandeep; Tian, Liu; Li, Bin; Zhong, Wei-Hong

    2011-05-01

    In this study we report the advantages of a 2-step method that incorporates an additional process pre-conditioning step for rapid and precise blending of the constituents prior to the commonly used melt compounding method for preparing polycarbonate/oxidized carbon nanofiber composites. This additional step (equivalent to a manufacturing cell) involves the formation of a highly concentrated solid nano-nectar of polycarbonate/carbon nanofiber composite using a solution mixing process followed by melt mixing with pure polycarbonate. This combined method yields excellent dispersion and improved mechanical and thermal properties as compared to the 1-step melt mixing method. The test results indicated that inclusion of carbon nanofibers into composites via the 2-step method resulted in dramatically reduced ( 48% lower) coefficient of thermal expansion compared to that of pure polycarbonate and 30% lower than that from the 1-step processing, at the same loading of 1.0 wt%. Improvements were also found in dynamic mechanical analysis and flexural mechanical properties. The 2-step approach is more precise and leads to better dispersion, higher quality, consistency, and improved performance in critical application areas. It is also consistent with Lean Manufacturing principles in which manufacturing cells are linked together using less of the key resources and creates a smoother production flow. Therefore, this 2-step process can be more attractive for industry.

  14. Grid-connected photovoltaic systems for Malaysian residential sector: Effects of component costs, feed-in tariffs, and carbon taxes

    International Nuclear Information System (INIS)

    Lau, K.Y.; Muhamad, N.A.; Arief, Y.Z.; Tan, C.W.; Yatim, A.H.M.

    2016-01-01

    Blessed with abundant solar radiation, Malaysia has a huge potential for grid-connected PV (photovoltaic) installations, particularly for its fast-growing residential sector. Nevertheless, Malaysia's PV installation capacity is relatively small compared with the global PV capacity. Significantly, the pricing mechanisms for grid-connected PV projects need to be appropriately assessed to build up the public's confidence to invest in PV projects. In this paper, we analyze the effects of component costs, FiTs (feed-in tariffs), and carbon taxes on grid-connected PV systems in Malaysian residential sector using the HOMER (Hybrid Optimization of Multiple Energy Resources) software. Results demonstrate that the implementation of grid-connected PV systems is highly feasible with PV array costs of $ 1120/kW or lower. For higher PV array costs up to $ 2320/kW, introducing an FiT rate three times higher ($ 0.30/kWh) than the grid tariff for a 100 kW grid sale capacity will, NPC-wise, prioritize grid-connected PV systems over the utility grid. By implementing the FiT ($ 0.50/kWh) and the carbon tax ($ 36/metric ton) schemes simultaneously, grid-connected PV systems will remain as the optimal systems even for costly PV arrays (up to $ 4000/kW). The findings are of paramount importance as far as PV pricing variability is concerned. - Highlights: • Grid-connected PV for Malaysian residential sector has been analyzed using HOMER. • Component costs, feed-in tariffs, and carbon taxes affect optimal system types. • Grid-connected PV projects are feasible for low PV array costs ($ 1120/kW or lower). • For higher PV array and inverter costs, feed-in tariffs should be implemented. • Combining feed-in tariffs with carbon taxes are effective for further lowering NPCs.

  15. Sequencing Batch Reactor and Bacterial Community in Aerobic Granular Sludge for Wastewater Treatment of Noodle-Manufacturing Sector

    Directory of Open Access Journals (Sweden)

    Tang Thi Chinh

    2018-03-01

    Full Text Available The sequencing batch reactor (SBR has been increasingly applied in the control of high organic wastewater. In this study, SBR with aerobic granular sludge was used for wastewater treatment in a noodle-manufacturing village in Vietnam. The results showed that after two months of operation, the chemical oxygen demand, total nitrogen and total phosphorous removal efficiency of aerobic granular SBR reached 92%, 83% and 75%, respectively. Bacterial diversity and bacterial community in wastewater treatment were examined using Illumina Miseq sequencing to amplify the V3-V4 regions of the 16S rRNA gene. A high diversity of bacteria was observed in the activated sludge, with more than 400 bacterial genera and 700 species. The predominant genus was Lactococcus (21.35% mainly containing Lactococcus chungangensis species. Predicted functional analysis showed a high representation of genes involved in membrane transport (12.217%, amino acid metabolism (10.067%, and carbohydrate metabolism (9.597%. Genes responsible for starch and sucrose metabolism accounted for 0.57% of the total reads and the composition of starch hydrolytic enzymes including α-amylase, starch phosphorylase, glucoamylase, pullulanase, α-galactosidase, β-galactosidase, α-glucosidase, β-glucosidase, and 1,4-α-glucan branching enzyme. The presence of these enzymes in the SBR system may improve the removal of starch pollutants in wastewater.

  16. Strategies for Low Carbon Growth In India: Industry and Non Residential Sectors

    Energy Technology Data Exchange (ETDEWEB)

    Sathaye, Jayant; de la Rue du Can, Stephane; Iyer, Maithili; McNeil, Michael; Kramer, Klaas Jan; Roy, Joyashree; Roy, Moumita; Chowdhury, Shreya Roy

    2011-04-15

    This report analyzed the potential for increasing energy efficiency and reducing greenhouse gas emissions (GHGs) in the non-residential building and the industrial sectors in India. The first two sections describe the research and analysis supporting the establishment of baseline energy consumption using a bottom up approach for the non residential sector and for the industry sector respectively. The third section covers the explanation of a modeling framework where GHG emissions are projected according to a baseline scenario and alternative scenarios that account for the implementation of cleaner technology.

  17. Social cost of carbon pricing of power sector CO2: accounting for leakage and other social implications from subnational policies

    Science.gov (United States)

    Bistline, John E.; Rose, Steven K.

    2018-01-01

    In environments where climate policy has partial coverage or unequal participation, carbon dioxide (CO2) emissions or economic activity may shift to locations and sectors where emissions are unregulated. This is referred to as leakage. Leakage can offset or augment emissions reductions associated with a policy, which has important environmental and economic implications. Although leakage has been studied at national levels, analysis of leakage for subnational policies is limited. This is despite greater market integration and many existing state and regional environmental regulations in the US. This study explores leakage potential, net emissions changes, and other social implications in the US energy system with regionally differentiated pricing of power sector CO2 emissions. We undertake an economic analysis using EPRI’s US-REGEN model, where power sector CO2 emissions are priced in individual US regions with a range of social cost of carbon (SCC) values. SCC estimates are being considered by policy-makers for valuing potential societal damages from CO2 emissions. In this study, we evaluate the emissions implications within the SCC pricing region, within the power sector outside the SCC region, and outside the power sector (i.e. in the rest of the energy system). Results indicate that CO2 leakage is possible within and outside the electric sector, ranging from negative 70% to over 80% in our scenarios, with primarily positive leakage outcomes. Typically ignored in policy analysis, leakage would affect CO2 reduction benefits. We also observe other potential societal effects within and across regions, such as higher electricity prices, changes in power sector investments, and overall consumption losses. Efforts to reduce leakage, such as constraining power imports into the SCC pricing region likely reduce leakage, but could also result in lower net emissions reductions, as well as larger price increases. Thus, it is important to look beyond leakage and consider a

  18. Does the private sector help or hurt the environment? Evidence from carbon dioxide pollution in developing countries

    International Nuclear Information System (INIS)

    Talukdar, D.; Meisner, C.M.

    2001-01-01

    How does the nature of enterprise ownership affect the environment in an economy? Conventional wisdom and theoretical conjectures are split on this important question. In this paper we estimate a reduced-form, random-effects model using data from 44 developing countries over nine years (1987-95) to study for any systematic empirical relationship between the relative level of private sector involvement in an economy and the environmental performance of the economy in terms of its emission of industrial carbon dioxide. We control for both observed and unobserved crosscountry heterogeneity along various institutional and structural dimensions such as the scope of financial market, industrial sector composition and level of foreign direct investment. The regression results indicate that the higher the degree of private sector involvement in a developing economy, the lower is its environmental degradation. In addition, its environmental degradation is likely to be further reduced in presence of a well-functioning domestic capital market and through increased participation by developed economies in its private sector development. (author)

  19. A carbon floor price for the electric power sector: which consequences? Policy Brief nr 2015-03

    International Nuclear Information System (INIS)

    Trotignon, Raphael; Solier, Boris; Perthuis, Christian de

    2015-11-01

    As France envisages to introduce a carbon floor price (raised from 8 to 30 euros) for the electricity sector like it has been the case in the UK since 2013, such a measure would not result in CO_2 emission reductions, but in emission transfers between actors. The authors comments and analyse the possible consequences of such a measure. By using the ZEPHYR model, they discuss the consequences on the European ETS and on the western European electric power market. They notably briefly comment the impact of a price of 30 euros per CO_2 ton on the emissions by the electricity sector in France, Germany, the UK and Poland, and more particularly of French emissions in 2013 and 2014

  20. Adoption of carbon dioxide efficient technologies and practices: An analysis of sector-specific convergence trends among 12 nations

    International Nuclear Information System (INIS)

    Persson, Tobias A.; Colpier, Ulrika Claeson; Azar, Christian

    2007-01-01

    Carbon dioxide intensities in economic terms (GDP in PPP terms) in industrialized and developing countries have been shown to converge, and it has been argued that technology diffusion, leading to the use of similar technologies in all countries, is an important reason for this convergence. Indicators based on CO 2 per output in PPP terms, however, give in comparison to physical indicators limited understanding of the process of technology diffusion. In order to analyze the technology diffusion hypothesis in more detail, we therefore study the trend in carbon dioxide emissions in relation to the production output in four separate sectors: iron and steel; paper, board and pulp; coal fuelled power plants; and natural gas fuelled power plants, in each of 12 countries, between 1980 and 1998. The indicators converge in each sector, indicating that across countries, technologies with more similar carbon dioxide efficiencies are used today than 25 years ago. We also find that at least some developing countries with high energy prices use more efficient technologies than industrialized countries with low energy prices

  1. Adoption of carbon dioxide efficient technologies and practices: an analysis of sector-specific convergence trends among 12 nations

    Energy Technology Data Exchange (ETDEWEB)

    Tobias A. Persson; Ulrika Claeson Colpier; Christian Azar [Chalmers University of Technology, Goeteborg (Sweden). Physical Resource Theory

    2007-05-15

    Carbon dioxide intensities in economic terms (GDP in purchasing power parity (PPP) terms) in industrialized and developing countries have been shown to converge, and it has been argued that technology diffusion, leading to the use of similar technologies in all countries, is an important reason for this convergence. Indicators based on CO{sub 2} per output in PPP terms, however, give in comparison to physical indicators limited understanding of the process of technology diffusion. In order to analyze the technology diffusion hypothesis in more detail, a study was made of the trend in carbon dioxide emissions in relation to the production output in four separate sectors: iron and steel; paper, board and pulp; coal fuelled power plants; and natural gas fuelled power plants, in each of 12 countries, between 1980 and 1998. The indicators converge in each sector, indicating that across countries, technologies with more similar carbon dioxide efficiencies are used today than 25 years ago. It was found that at least some developing countries with high energy prices use more efficient technologies than industrialized countries with low energy prices. 31 refs., 5 figs., 5 tabs.

  2. Energy-climate-manufacturing nexus: New insights from the regional and global supply chains of manufacturing industries

    International Nuclear Information System (INIS)

    Kucukvar, Murat; Cansev, Bunyamin; Egilmez, Gokhan; Onat, Nuri C.; Samadi, Hamidreza

    2016-01-01

    Highlights: • A multi region input–output sustainability assessment model is developed. • Energy-climate-manufacturing nexus within the context of global supply chains is investigated. • Electricity, Gas, and Water Supply sector is the main contributor to energy and carbon impacts. • Turkish regional manufacturing accounts for approximately 40–60% of total carbon emissions. • China, USA, and Rest-of-the World have the largest shares in the Turkish global energy footprint. - Abstract: The main objectives of this research are to improve our understanding of energy-climate-manufacturing nexus within the context of regional and global manufacturing supply chains as well as show the significance of full coverage of entire supply chain tiers in order to prevent significant underestimations, which might lead to invalid policy conclusions. With this motivation, a multi region input–output (MRIO) sustainability assessment model is developed by using the World Input–Output Database, which is a dynamic MRIO framework on the world’s 40 largest economies covering 1440 economic sectors. The method presented in this study is the first environmentally-extended MRIO model that harmonizes energy and carbon footprint accounts for Turkish manufacturing sectors and a global trade-linked carbon and energy footprint analysis of Turkish manufacturing sectors is performed as a case study. The results are presented by distinguishing the contributions of five common supply chain phases such as upstream suppliers, onsite manufacturing, transportation, wholesale, and retail trade. The findings showed that onsite and upstream supply chains are found to have over 90% of total energy use and carbon footprint for all industrial sectors. Electricity, Gas and Water Supply sector is usually found to be as the main contributor to global climate change, and Coke, Refined Petroleum, and Nuclear Fuel sector is the main driver of energy use in upstream supply chains. Overall, the

  3. Carbon profile of the managed forest sector in Canada in the 20th century: sink or source?

    Science.gov (United States)

    Chen, Jiaxin; Colombo, Stephen J; Ter-Mikaelian, Michael T; Heath, Linda S

    2014-08-19

    Canada contains 10% of global forests and has been one of the world's largest harvested wood products (HWP) producers. Therefore, Canada's managed forest sector, the managed forest area and HWP, has the potential to significantly increase or reduce atmospheric greenhouse gases. Using the most comprehensive carbon balance analysis to date, this study shows Canada's managed forest area and resulting HWP were a sink of 7510 and 849 teragrams carbon (TgC), respectively, in the period 1901-2010, exceeding Canada's fossil fuel-based emissions over this period (7333 TgC). If Canadian HWP were not produced and used for residential construction, and instead more energy intensive materials were used, there would have been an additional 790 TgC fossil fuel-based emissions. Because the forest carbon increases in the 20th century were mainly due to younger growing forests that resulted from disturbances in the 19th century, and future increases in forest carbon stocks appear uncertain, in coming decades most of the mitigation contribution from Canadian forests will likely accrue from wood substitution that reduces fossil fuel-based emissions and stores carbon, so long as those forests are managed sustainably.

  4. Sectoral roles in greenhouse gas emissions and policy implications for energy utilization and carbon emissions trading: a case study of Beijing, China.

    Science.gov (United States)

    Ge, Jianping; Lei, Yalin; Xu, Qun; Wang, Xibo

    2016-01-01

    In this study, a decomposition and emissions matrix is developed to identify the roles (giver or taker) played by the sectors in the greenhouse gas emissions for the economy of Beijing in China. Our results indicate that services were the most important emitter if we consider the total (direct and indirect) emissions. In addition to Construction, Scientific studies and technical services and Finance sectors of services were the largest takers. They have a large role in boosting greenhouse gas emissions throughout the economy of Beijing. As the basis and supporter of production activities, the electricity production and the transportation sectors were the greatest givers. More emphasis should be placed on using clean energy and carbon capture and storage technologies to reduce emissions within these sectors. Based on the roles played by these sectors in greenhouse gas emissions, some policy implications were proposed for energy utilization and carbon emissions trading.

  5. Low carbon society scenario analysis of transport sector of an emerging economy—The AIM/Enduse modelling approach

    International Nuclear Information System (INIS)

    Selvakkumaran, Sujeetha; Limmeechokchai, Bundit

    2015-01-01

    The transport sector of a country is the backbone driving the economy forward. Thailand’s land transport sector is modelled using the AIM/Enduse, which is a recursive dynamic optimization model, based on bottom-up modelling principle. The travel demand is divided into two major categories which are passenger travel and freight travel. The objective of this paper is to analyse the mitigation possible through low carbon society (LCS) measures and emission tax (ET). Two scenario clusters are devised along with the BAU case. The LCS scenario cluster has three designed scenarios which are LCS-L, LCS-M and LCS-H. The emission tax (ET) cluster has four scenarios, where the taxes of 50, 100, 200 and 500 USD/t-CO 2 are implemented. Along with this the marginal abatement costs (MAC) of the counter-measures (CMs) and the co-benefits in terms of energy security, productivity and air pollutant mitigation are also assessed. Results show that LCS scenarios are possible of mitigating up to 1230 Mt-CO 2 cumulatively, from 2010 to 2050. In terms of MACs, new vehicles play a pivotal role, along with hybrid vehicles. The Average Abatement Cost (AAC) assessment shows that the AAC of LCS-H scenario is in the order of 100 USD/t-CO 2 . All the LCS and ET scenarios show an enhancement in energy security and also a threefold increase in productivity. There is distinct mitigation in terms of air pollutants from the transport sector as well. -- Highlights: •Thailand transport sector has been modelled using AIM/Enduse model. •Potential cumulative mitigation of CO 2 during 2010–2050 is approximately 30% when compared the BAU scenario. •Abatement cost curves show that various counter measures are practical in the transport sector. •Energy security is enhanced due to CO 2 mitigation in the LCS scenario

  6. Exploring carbon futures in the EU power sector : Using Exploratory System Dynamics Modelling and Analysis to explore policy regimes under deep uncertainty

    NARCIS (Netherlands)

    Loonen, E.; Pruyt, E.; Hamarat, C.

    2013-01-01

    The European Emissions Trading Scheme (ETS) in combination with other renewable electricity (RES-E) support schemes such as (premium) feed-in tariffs or tradable green certificates do not guarantee a carbon neutral power sector in 2050. This paper shows that many plausible futures of high carbon

  7. Carbon Foam Self-Heated Tooling for Out-of-Autoclave Composites Manufacturing, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This proposal addresses NASA's need for non-autoclave composites manufacture. The Constellation program, including the Ares V launch vehicle, will require very...

  8. The manufacture of carbon armoured plasma-facing components for fusion devices

    International Nuclear Information System (INIS)

    Schedler, B.; Huber, T.; Zabernig, A.; Rainer, F.; Scheiber, K.H.; Schedle, D.

    2001-01-01

    Within the last decade Plansee has been active in the development and manufacture of different plasma-facing-components for nuclear fusion experiments consisting in a tungsten or CFC-armor joined onto metallic substrates like TZM, stainless steel or copper-alloys. The manufacture of these components requires unique joining technologies in order to obtain reliable thermo mechanical stable joints able to withstand highest heat fluxes without any deterioration of the joint. In an overview the different techniques will be presented by some examples of components already manufactured and successfully tested under high heat flux conditions. Furthermore an overview will be given on the manufacture of different high heat flux components for TORE SUPRA, Wendelstein 7-X and ITER. (author)

  9. Development of the Croatian Energy Sector by 2050 in Terms of Reducing Carbon Dioxide Emissions

    International Nuclear Information System (INIS)

    Granic, G.; Pesut, D.; Tot, M.; Juric, Z.; Horvath, L.; Bacan, A.; Kulisic, B.; Majstorovic, G.

    2012-01-01

    The paper analyzes the question: is it possible to achieve and what would be the consequences of energy development while reducing CO 2 emissions by 80% by year 2050. Thereby, the growth of costs is not the only expected consequence, but there are also desirable and possible impacts of the energy sector on technological development, science, the economy and increasing the added value. In paper, the development of the energy sector by 2050 is modeled and simulated using two models for the evaluation of the energy systems: model for the analysis of energy consumption (MAED - Model for Energy System Analysis ) and model for optimization of energy supply systems (MESSAGE - Model for Energy Supply Strategy Alternatives and their General Environmental Impacts ). MESSAGE use the results of MAED model as input assumptions and data. Development opportunities in the sectors of industry, households, services and transport were modeled in the simulation, i.e. possible trajectories of development were considered, in order to achieve the objectives of the sectoral reducing of CO 2 emissions in line with the stated objectives which are discussed at the EU level. The average cost of electricity production in year 2050 will increase by nearly 140% compared to the year 2015. The answer is: the reduction of CO 2 emissions in Croatia by 80% in total and by 95% in the power sector is possible from a technical and technological point of view, but with the high financial impact and significant changes in the energy sector, to which should precede changes in scientific and industrial development.(author)

  10. The Financial Sector Facing the Transition to a Low-Carbon Climate-Resilient Economy

    International Nuclear Information System (INIS)

    Boissinot, Jean; Huber, Doryane; Camilier-Cortial, Isabelle; Lame, Gildas

    2016-01-01

    Successfully addressing global warming requires decisive actions and hinges on a 2 deg. C-consistent reallocation of capital and financial flows. The implementation of adequate climate policies will be decisive to foster this process. The financial sector can play a complementary role to enhance the effectiveness of these policies, as the recognition of the risks and opportunities related to climate change contributes to this reallocation. Understanding the issues at play, the availability of data on the financial consequences of climate change as well as an appropriation of climate issues by the financial sector are key factors for risk management. Several policy measures have been implemented in this respect, particularly in France

  11. Carbon sequestration in the U.S. forest sector from 1990 to 2010

    Science.gov (United States)

    Peter B. Woodbury; James E. Smith; Linda S. Heath

    2007-01-01

    Forest inventory data supplemented with data from intensive research sites and models were used to estimate carbon stocks and sequestration rates in U.S. forests, including effects of land use change. Data on the production of wood products and emission from decomposition were used to estimate carbon stocks and sequestration rates in wood products and landfills. From...

  12. Polymer/Carbon Nanotubes (CNT Nanocomposites Processing Using Additive Manufacturing (Three-Dimensional Printing Technique: An Overview

    Directory of Open Access Journals (Sweden)

    Sushanta Ghoshal

    2017-10-01

    Full Text Available Additive manufacturing (AM/3D printing (3DP is a revolutionary technology which has been around for more than two decades, although the potential of this technique was not fully explored until recently. Because of the expansion of this technology in recent years, new materials and additives are being searched for to meet the growing demand. 3DP allows accurate fabrication of complicated models, however, structural anisotropy caused by the 3DP approaches could limit robust application. A possible solution to the inferior properties of the 3DP based materials compared to that of conventionally manufactured counterparts could be the incorporation of nanoparticles, such as carbon nanotubes (CNT which have demonstrated remarkable mechanical, electrical, and thermal properties. In this article we review some of the research, products, and challenges involved in 3DP technology. The importance of CNT dispersion in the matrix polymer is highlighted and the future outlook for the 3D printed polymer/CNT nanocomposites is presented.

  13. How realistic is green growth? Sectoral-level carbon intensity versus productivity

    NARCIS (Netherlands)

    Gazheli, A.; van den Bergh, J.C.J.M.; Antal, M.

    2016-01-01

    This study considers the potential conflict between economic growth and climate change mitigation. Some believe green growth is an option, while others think climate goals are incompatible with growth. It does so by developing a sector-based approach to analyze the relation between on the one hand

  14. Carbon dioxide emissions from the electricity sector in major countries: a decomposition analysis.

    Science.gov (United States)

    Li, Xiangzheng; Liao, Hua; Du, Yun-Fei; Wang, Ce; Wang, Jin-Wei; Liu, Yanan

    2018-03-01

    The electric power sector is one of the primary sources of CO 2 emissions. Analyzing the influential factors that result in CO 2 emissions from the power sector would provide valuable information to reduce the world's CO 2 emissions. Herein, we applied the Divisia decomposition method to analyze the influential factors for CO 2 emissions from the power sector from 11 countries, which account for 67% of the world's emissions from 1990 to 2013. We decompose the influential factors for CO 2 emissions into seven areas: the emission coefficient, energy intensity, the share of electricity generation, the share of thermal power generation, electricity intensity, economic activity, and population. The decomposition analysis results show that economic activity, population, and the emission coefficient have positive roles in increasing CO 2 emissions, and their contribution rates are 119, 23.9, and 0.5%, respectively. Energy intensity, electricity intensity, the share of electricity generation, and the share of thermal power generation curb CO 2 emissions and their contribution rates are 17.2, 15.7, 7.7, and 2.8%, respectively. Through decomposition analysis for each country, economic activity and population are the major factors responsible for increasing CO 2 emissions from the power sector. However, the other factors from developed countries can offset the growth in CO 2 emissions due to economic activities.

  15. Integration of carbon capture and sequestration and renewable resource technologies for sustainable energy supply in the transportation sector

    International Nuclear Information System (INIS)

    Kim, Minsoo; Won, Wangyun; Kim, Jiyong

    2017-01-01

    Highlights: • Integration of carbon capture and sequestration and renewable resource technologies. • A new superstructure-based optimization model to identify the energy supply system. • Model validation via application study of the future transportation sector in Korea. - Abstract: In this study, a new design for a sustainable energy system was developed by integrating two technology frameworks: the renewable resource-based energy supply and the conventional (fossil fuel) resource-based energy production coupled with carbon capture and sequestration. To achieve this goal, a new superstructure-based optimization model was proposed using mixed-integer linear programming to identify the optimal combination of these technologies that minimizes the total daily cost, subject to various practical and logical constraints. The performance of the proposed model was validated via an application study of the future transportation sector in Korea. By considering six different scenarios that combined varying crude oil/natural gas prices and environmental regulation options, the optimal configuration of the energy supply system was identified, and the major cost drivers and their sensitivities were analyzed. It was shown that conventional resource-based energy production was preferred if crude oil and natural gas prices were low, even though environmental regulation was considered. Environmental regulation caused an increase in the total daily cost by an average of 26.4%, mainly due to CO_2 capture cost.

  16. Consumer-supplier-government triangular relations. Rethinking the UK policy path for carbon emissions reduction from the UK residential sector

    Energy Technology Data Exchange (ETDEWEB)

    Parag, Yael; Darby, Sarah [Environmental Change Institute, University of Oxford, OUCE, South Parks Road, Oxford OX1 3QY (United Kingdom)

    2009-10-15

    The UK residential (household) sector is responsible for approximately 30% of total carbon dioxide emissions and is often seen as the most promising in terms of early reductions. As most direct household emissions come from only two fuel sources, this paper critically examines how existing emissions reduction policies for the sector shape - and are shaped by - relations between the three main groups of actor in this policy domain: central government, gas and electricity suppliers, and energy users. Focusing on relations between three dyads (government-suppliers, suppliers-consumers and consumers-government) enables us to examine aspects of demand reduction that have often been overlooked to date. By 'relations' we refer to services, power relationships and flows of capital and information, as well as less easily defined elements such as loyalty, trust and accountability. The paper argues that the chosen government policy path to deliver demand reduction, which heavily emphasises the suppliers' role, suffers from principal-agent problems, fails to align consumers and supplier interests toward emissions reduction, and does not yet portray a lower-carbon future in positive terms. It suggests that more attention should be paid to government-consumer relations, recognising that energy consumers are also citizens. (author)

  17. Consumer-supplier-government triangular relations: Rethinking the UK policy path for carbon emissions reduction from the UK residential sector

    Energy Technology Data Exchange (ETDEWEB)

    Parag, Yael [Environmental Change Institute, University of Oxford, OUCE, South Parks Road, Oxford OX1 3QY (United Kingdom)], E-mail: yael.parag@ouce.ox.ac.uk; Darby, Sarah [Environmental Change Institute, University of Oxford, OUCE, South Parks Road, Oxford OX1 3QY (United Kingdom)

    2009-10-15

    The UK residential (household) sector is responsible for approximately 30% of total carbon dioxide emissions and is often seen as the most promising in terms of early reductions. As most direct household emissions come from only two fuel sources, this paper critically examines how existing emissions reduction policies for the sector shape - and are shaped by - relations between the three main groups of actor in this policy domain: central government, gas and electricity suppliers, and energy users. Focusing on relations between three dyads (government-suppliers, suppliers-consumers and consumers-government) enables us to examine aspects of demand reduction that have often been overlooked to date. By 'relations' we refer to services, power relationships and flows of capital and information, as well as less easily defined elements such as loyalty, trust and accountability. The paper argues that the chosen government policy path to deliver demand reduction, which heavily emphasises the suppliers' role, suffers from principal-agent problems, fails to align consumers and supplier interests toward emissions reduction, and does not yet portray a lower-carbon future in positive terms. It suggests that more attention should be paid to government-consumer relations, recognising that energy consumers are also citizens.

  18. Consumer-supplier-government triangular relations: Rethinking the UK policy path for carbon emissions reduction from the UK residential sector

    International Nuclear Information System (INIS)

    Parag, Yael; Darby, Sarah

    2009-01-01

    The UK residential (household) sector is responsible for approximately 30% of total carbon dioxide emissions and is often seen as the most promising in terms of early reductions. As most direct household emissions come from only two fuel sources, this paper critically examines how existing emissions reduction policies for the sector shape - and are shaped by - relations between the three main groups of actor in this policy domain: central government, gas and electricity suppliers, and energy users. Focusing on relations between three dyads (government-suppliers, suppliers-consumers and consumers-government) enables us to examine aspects of demand reduction that have often been overlooked to date. By 'relations' we refer to services, power relationships and flows of capital and information, as well as less easily defined elements such as loyalty, trust and accountability. The paper argues that the chosen government policy path to deliver demand reduction, which heavily emphasises the suppliers' role, suffers from principal-agent problems, fails to align consumers and supplier interests toward emissions reduction, and does not yet portray a lower-carbon future in positive terms. It suggests that more attention should be paid to government-consumer relations, recognising that energy consumers are also citizens.

  19. Desktop Systems for Manufacturing Carbon Nanotube Films by Chemical Vapor Deposition

    National Research Council Canada - National Science Library

    Kuhn, David S

    2007-01-01

    Carbon nanotubes (CNTs) exhibit exceptional electrical, thermal, and mechanical properties that could potentially transform such diverse fields as composites, electronics, cooling, energy storage, and biological sensing...

  20. Design of a Carbon Fiber Composite Grid Structure for the GLAST Spacecraft Using a Novel Manufacturing Technique

    Energy Technology Data Exchange (ETDEWEB)

    Hicks, M

    2004-04-12

    The Gamma-Ray Large Area Space Telescope is an orbital observatory being planned as a joint DOE/NASA mission. The primary support of the instrument requires a grid structure which is very stiff, strong, light-weight, and thermally conductive. A carbon fiber composite grid design using a novel manufacture technique is proposed which meets or exceeds an aluminum design in all performance criteria and is economically competitive as well. Finite element analysis, confirmed by testing of a sample grid, is used to examine trade-offs for the materials and layups. Based on these analyses, recommendations are given for a viable design.

  1. The unknown story of the European carbon market: an archaeology of the electrical sector

    International Nuclear Information System (INIS)

    Cartel, Melodie; Aggeri, Franck; Caneill, Jean-Yves

    2017-01-01

    In economic literature, the creation of the European carbon market is presented as a major institutional innovation that can be viewed as a direct application of economic theory. In this article, we propose another version of how the European carbon market came about that emphasizes the active role played by companies. For a period of three years, these companies designed and tested a prototype carbon market, while being observed by European experts. Drawing on archive documents, we analyze this experimentation process and examine in detail its influence on the European carbon market. We then discuss the role of companies in the processes of institutional innovation, a process that generally remains invisible. Finally it is explained how such experiments, conducted in protected spaces, can facilitate the design and testing of new concepts

  2. A projection of energy consumption and carbon dioxide emissions in the electricity sector for Saudi Arabia: The case for carbon capture and storage and solar photovoltaics

    International Nuclear Information System (INIS)

    Mansouri, Noura Y.; Crookes, Roy J.; Korakianitis, Theodosios

    2013-01-01

    The paper examined the case study of the Saudi electricity sector and provided projections for energy use and respective carbon dioxide (CO 2 ) emissions for the period 2010–2025 with and without cleaner energy technologies. Based on two sets of 20 life cycle assessment studies for carbon capture and storage and solar photovoltaic technologies, CO 2 emission reduction rates were used for projecting future CO 2 emissions. Results showed enormous savings in CO 2 emissions, for the most likely case, year 2025 reported savings that range from 136 up to 235 MtCO 2 . Including low growth and high growth cases, these savings could range from 115 up to 468 MtCO 2 presenting such an unrivalled opportunity for Saudi Arabia. These projections were developed as a way of translating the inherent advantages that cleaner energy technologies could provide for CO 2 emissions savings. It is hoped that the results of this paper would inform energy policymaking in Saudi Arabia. - Highlights: • Electricity use in Saudi Arabia is predicted in the period 2010–2025. • Use of photovoltaic plants and carbon capture and storage are considered. • Life cycle assessment of the options is conducted. • Carbon emissions with and without the renewable energy are estimated. • The projections showcase the CO 2 emissions savings

  3. Sectoral Innovation Watch electrical and Optical Equipment Sector. Final sector report

    NARCIS (Netherlands)

    Broek, T. van den; Giessen, A.M. van der

    2011-01-01

    The electrical and optical equipment sector is a high-tech manufacturing sector. It is one of the most innovative sectors in Europe with investments and advances in fundamental research, applied R&D and innovation in the actual use of equipment. This sector is also one of the most global sectors

  4. Manufacturing method of molten carbonate fuel cell. Yoyu tansan prime en nenryo denchi no seizo hoho

    Energy Technology Data Exchange (ETDEWEB)

    Muneuchi, Atsuo; Murata, Kenji

    1989-09-14

    An fuel electrode of a molten carbonate fuel cell is preliminarily dipped with molten carbonate. This operation is troublesome and reduces the productivity because this operation is made by the fuel electrode unit. In this invention, the carbonate is dipped in the process of temperature elevation after the assembly of the fuel cell. In other words, the carbonate electrode is buried in a groove formed in the fuel electrode leaving a gas flowing space; this fuel electrode is layer-built with a matrix and an oxidant electrode to form a unit cell; this unit cell is assembled to compose a fuel cell; while an anti-oxidant gas is fed to a groove of the fuel electrode, temperature is raised up to the operation level, wherein the carbonnate in the groove is molten to be dipped into the fuel electrode. The anti-oxidant gas is such inactive ones as carbon dioxide, nitrogen, argon and helium. 2 figs.

  5. Urban cross-sector actions for carbon mitigation with local health co-benefits in China

    Science.gov (United States)

    Ramaswami, Anu; Tong, Kangkang; Fang, Andrew; Lal, Raj M.; Nagpure, Ajay Singh; Li, Yang; Yu, Huajun; Jiang, Daqian; Russell, Armistead G.; Shi, Lei; Chertow, Marian; Wang, Yangjun; Wang, Shuxiao

    2017-10-01

    Cities offer unique strategies to reduce fossil fuel use through the exchange of energy and materials across homes, businesses, infrastructure and industries co-located in urban areas. However, the large-scale impact of such strategies has not been quantified. Using new models and data sets representing 637 Chinese cities, we find that such cross-sectoral strategies--enabled by compact urban design and circular economy policies--contribute an additional 15%-36% to national CO2 mitigation, compared to conventional single-sector strategies. As a co-benefit, ~25,500 to ~57,500 deaths annually are avoided from air pollution reduction. The benefits are highly variable across cities, ranging from advanced technologies in diverse city types.

  6. Financial development and sectoral CO2 emissions in Malaysia.

    Science.gov (United States)

    Maji, Ibrahim Kabiru; Habibullah, Muzafar Shah; Saari, Mohd Yusof

    2017-03-01

    The paper examines the impacts of financial development on sectoral carbon emissions (CO 2 ) for environmental quality in Malaysia. Since the financial sector is considered as one of the sectors that will contribute to Malaysian economy to become a developed country by 2020, we utilize a cointegration method to investigate how financial development affects sectoral CO 2 emissions. The long-run results reveal that financial development increases CO 2 emissions from the transportation and oil and gas sector and reduces CO 2 emissions from manufacturing and construction sectors. However, the elasticity of financial development is not significant in explaining CO 2 emissions from the agricultural sector. The results for short-run elasticities were also consistent with the long-run results. We conclude that generally, financial development increases CO 2 emissions and reduces environmental quality in Malaysia.

  7. Industrial sector

    International Nuclear Information System (INIS)

    Ainul Hayati Daud; Hazmimi Kasim

    2010-01-01

    The industrial sector is categorized as related to among others, the provision of technical and engineering services, supply of products, testing and troubleshooting of parts, systems and industrial plants, quality control and assurance as well as manufacturing and processing. A total of 161 entities comprising 47 public agencies and 114 private companies were selected for the study in this sector. The majority of the public agencies, 87 %, operate in Peninsular Malaysia. The remainders were located in Sabah and Sarawak. The findings of the study on both public agencies and private companies are presented in subsequent sections of this chapter. (author)

  8. The history of the peat manufacturing industry in The Netherlands : peat moss litter and active carbon

    NARCIS (Netherlands)

    Karel, Erwin; Gerding, Michiel; De Vries, Gerben

    This article describes the development of three major forms of peat processing by the manufacturing industry in The Netherlands since the last quarter of the 19th century. At a time when peat as a fuel was gradually being replaced by coal, the first form was the peat moss litter industry. Peat moss

  9. Carbon footprint of electronic devices

    Science.gov (United States)

    Sloma, Marcin

    2013-07-01

    Paper assesses the greenhouse gas emissions related to the electronic sectors including information and communication technology and media sectors. While media often presents the carbon emission problem of other industries like petroleum industry, the airlines and automobile sectors, plastics and steel manufacturers, the electronics industry must include the increasing carbon footprints caused from their applications like media and entertainment, computers and cooling devices, complex telecommunications networks, cloud computing and powerful mobile phones. In that sense greenhouse gas emission of electronics should be studied in a life cycle perspective, including regular operational electricity use. Paper presents which product groups or processes are major contributors in emission. From available data and extrapolation of existing information we know that the information and communication technology sector produced 1.3% and media sector 1.7% of global gas emissions within production cycle, using the data from 2007.In the same time global electricity use of that sectors was 3.9% and 3.2% respectively. The results indicate that for both sectors operation leads to more gas emissions than manufacture, although impacts from the manufacture is significant, especially in the supply chain. Media electronics led to more emissions than PCs (manufacture and operation). Examining the role of electronics in climate change, including disposal of its waste, will enable the industry to take internal actions, leading to lowering the impact on the climate change within the sector itself.

  10. Applying a systems approach to assess carbon emission reductions from climate change mitigation in Mexico’s forest sector

    Science.gov (United States)

    Olguin, Marcela; Wayson, Craig; Fellows, Max; Birdsey, Richard; Smyth, Carolyn E.; Magnan, Michael; Dugan, Alexa J.; Mascorro, Vanessa S.; Alanís, Armando; Serrano, Enrique; Kurz, Werner A.

    2018-03-01

    The Paris Agreement of the United Nation Framework Convention on Climate Change calls for a balance of anthropogenic greenhouse emissions and removals in the latter part of this century. Mexico indicated in its Intended Nationally Determined Contribution and its Climate Change Mid-Century Strategy that the land sector will contribute to meeting GHG emission reduction goals. Since 2012, the Mexican government through its National Forestry Commission, with international financial and technical support, has been developing carbon dynamics models to explore climate change mitigation options in the forest sector. Following a systems approach, here we assess the biophysical mitigation potential of forest ecosystems, harvested wood products and their substitution benefits (i.e. the change in emissions resulting from substitution of wood for more emissions-intensive products and fossil fuels), for policy alternatives considered by the Mexican government, such as a net zero deforestation rate and sustainable forest management. We used available analytical frameworks (Carbon Budget Model of the Canadian Forest Sector and a harvested wood products model), parameterized with local input data in two contrasting Mexican states. Using information from the National Forest Monitoring System (e.g. forest inventories, remote sensing, disturbance data), we demonstrate that activities aimed at reaching a net-zero deforestation rate can yield significant CO2e mitigation benefits by 2030 and 2050 relative to a baseline scenario (‘business as usual’), but if combined with increasing forest harvest to produce long-lived products and substitute more energy-intensive materials, emissions reductions could also provide other co-benefits (e.g. jobs, illegal logging reduction). We concluded that the relative impact of mitigation activities is locally dependent, suggesting that mitigation strategies should be designed and implemented at sub-national scales. We were also encouraged about the

  11. Projection of U.S. forest sector carbon sequestration under U.S. and global timber market and wood energy consumption scenarios, 2010-2060

    Science.gov (United States)

    Prakash Nepal; Peter J. Ince; Kenneth E. Skog; Sun J. Chang

    2012-01-01

    This study provides a modeling framework to examine change over time in U.S. forest sector carbon inventory (in U.S. timberland tree biomass and harvested wood products) for alternative projections of U.S. and global timber markets, including wood energy consumption, based on established IPCC/RPA scenarios. Results indicated that the U.S. forest sector’s projected...

  12. Carbon emissions and resources use by Chinese economy 2007: A 135-sector inventory and input-output embodiment

    Science.gov (United States)

    Chen, G. Q.; Chen, Z. M.

    2010-11-01

    A 135-sector inventory and embodiment analysis for carbon emissions and resources use by Chinese economy 2007 is presented in this paper by an ecological input-output modeling based on the physical entry scheme. Included emissions and resources belong to six categories as: (1) greenhouse gas (GHG) in terms of CO 2, CH 4, and N 2O; (2) energy in terms of coal, crude oil, natural gas, hydropower, nuclear power, and firewood; (3) water in terms of freshwater; (4) exergy in terms of coal, crude oil, natural gas, grain, bean, tuber, cotton, peanut, rapeseed, sesame, jute, sugarcane, sugar beet, tobacco, silkworm feed, tea, fruits, vegetables, wood, bamboo, pulp, meat, egg, milk, wool, aquatic products, iron ore, copper ore, bauxite, lead ore, zinc ore, pyrite, phosphorite, gypsum, cement, nuclear fuel, and hydropower; (5) and (6) solar and cosmic emergies in terms of sunlight, wind power, deep earth heat, chemical power of rain, geopotential power of rain, chemical power of stream, geopotential power of stream, wave power, geothermal power, tide power, topsoil loss, coal, crude oil, natural gas, ferrous metal ore, non-ferrous metal ore, non-metal ore, cement, and nuclear fuel. Accounted based on the embodied intensities are carbon emissions and resources use embodied in the final use as rural consumption, urban consumption, government consumption, gross fixed capital formation, change in inventories, and export, as well as in the international trade balance. The resulted database is basic to environmental account of carbon emissions and resources use at various levels.

  13. Generation and Use of Thermal Energy in the U.S. Industrial Sector and Opportunities to Reduce its Carbon Emissions

    Energy Technology Data Exchange (ETDEWEB)

    McMillan, Colin A. [National Renewable Energy Lab. (NREL), Golden, CO (United States). Strategic Energy Analysis Center; Boardman, Richard [Idaho National Lab. (INL), Idaho Falls, ID (United States); McKellar, Michael [Idaho National Lab. (INL), Idaho Falls, ID (United States); Sabharwall, Piyush [Idaho National Lab. (INL), Idaho Falls, ID (United States); Ruth, Mark [National Renewable Energy Lab. (NREL), Golden, CO (United States); Bragg-Sitton, Shannon [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-11-01

    The industrial sector was the third-largest source of direct U.S. greenhouse gas (GHG) emissions in 2014 behind electricity generation and transportation and accounted for roughly 20% of total emissions (EPA 2016). The Energy Information Administration (EIA) projects that total U.S. energy consumption will grow to about 108 exajoules (1 EJ = 1018 J) or 102 quads (1 quad = 1015 British thermal units) in 2025, with nearly all of the growth coming from the industrial sector (DOE 2015b). Energy consumption in the industrial sector is forecast to increase to 39.5 EJ (37.4 quads)—a 22% increase, exceeding 36% of total energy consumption in the United States. Therefore, it is imperative that industrial GHG emissions be considered in any strategy intent on achieving deep decarbonization of the energy sector as a whole. It is important to note that unlike the transportation sector and electrical grid, energy use by industry often involves direct conversion of primary energy sources to thermal and electrical energy at the point of consumption. About 52% of U.S. industrial direct GHG emissions are the result of fuel combustion (EPA 2016) to produce hot gases and steam for process heating, process reactions, and process evaporation, concentration, and drying. The heterogeneity and variations in scale of U.S. industry and the complexity of modern industrial firms’ global supply chains are among the sector’s unique challenges to minimizing its GHG emissions. A combination of varied strategies—such as energy efficiency, material efficiency, and switching to low-carbon fuels—can help reduce absolute industrial GHG emissions. This report provides a complement to process-efficiency improvement to consider how clean energy delivery and use by industry could reduce GHG emissions. Specifically, it considers the possibility of replacing fossil-fuel combustion in industry with nuclear (specifically small modular reactors [SMRs]), solar thermal (referred to

  14. Cost-effective analysis of carbon abatement options in China's electricity sector

    NARCIS (Netherlands)

    Zhang, Z.X.

    1998-01-01

    This article attempts to shed light on technological aspects of carbon abatement in China's power industry and is thus devoted to satisfying electricity planning requirements in the CO2 context. To that end, a technology-oriented dynamic optimization model for power system expansion planning has

  15. Energy use and carbon dioxide emissions in the steel sector in key developing countries

    Energy Technology Data Exchange (ETDEWEB)

    Price, L.K.; Phylipsen, G.J.M.; Worrell, E.

    2001-04-01

    Iron and steel production consumes enormous quantities of energy, especially in developing countries where outdated, inefficient technologies are still used to produce iron and steel. Carbon dioxide emissions from steel production, which range between 5 and 15% of total country emissions in key developing countries (Brazil, China, India, Mexico, and South Africa), will continue to grow as these countries develop and as demand for steel products such as materials, automobiles, and appliances increases. In this report, we describe the key steel processes, discuss typical energy-intensity values for these processes, review historical trends in iron and steel production by process in five key developing countries, describe the steel industry in each of the five key developing countries, present international comparisons of energy use and carbon dioxide emissions among these countries, and provide our assessment of the technical potential to reduce these emissions based on best-practice benchmarking. Using a best practice benchmark, we find that significant savings, in the range of 33% to 49% of total primary energy used to produce steel, are technically possible in these countries. Similarly, we find that the technical potential for reducing intensities of carbon dioxide emissions ranges between 26% and 49% of total carbon dioxide emissions from steel production in these countries.

  16. Carbon accounting rules and guidelines for the United States Forest Sector

    Science.gov (United States)

    Richard A. Birdsey

    2006-01-01

    The United States Climate Change initiative includes improvements to the U.S. Department of Energy's Voluntary Greenhouse Gas Reporting Program. The program includes specific accounting rules and guidelines for reporting and registering forestry activities that reduce atmospheric CO2 by increasing carbon sequestration or reducing emissions....

  17. Aerosol Emission Monitoring and Assessment of Potential Exposure to Multi-walled Carbon Nanotubes in the Manufacture of Polymer Nanocomposites.

    Science.gov (United States)

    Thompson, Drew; Chen, Sheng-Chieh; Wang, Jing; Pui, David Y H

    2015-11-01

    Recent animal studies have shown that carbon nanotubes (CNTs) may pose a significant health risk to those exposed in the workplace. To further understand this potential risk, effort must be taken to measure the occupational exposure to CNTs. Results from an assessment of potential exposure to multi-walled carbon nanotubes (MWCNTs) conducted at an industrial facility where polymer nanocomposites were manufactured by an extrusion process are presented. Exposure to MWCNTs was quantified by the thermal-optical analysis for elemental carbon (EC) of respirable dust collected by personal sampling. All personal respirable samples collected (n = 8) had estimated 8-h time weighted average (TWA) EC concentrations below the limit of detection for the analysis which was about one-half of the recommended exposure limit for CNTs, 1 µg EC/m(3) as an 8-h TWA respirable mass concentration. Potential exposure sources were identified and characterized by direct-reading instruments and area sampling. Area samples analyzed for EC yielded quantifiable mass concentrations inside an enclosure where unbound MWCNTs were handled and near a pelletizer where nanocomposite was cut, while those analyzed by electron microscopy detected the presence of MWCNTs at six locations throughout the facility. Through size selective area sampling it was identified that the airborne MWCNTs present in the workplace were in the form of large agglomerates. This was confirmed by electron microscopy where most of the MWCNT structures observed were in the form of micrometer-sized ropey agglomerates. However, a small fraction of single, free MWCNTs was also observed. It was found that the high number concentrations of nanoparticles, ~200000 particles/cm(3), present in the manufacturing facility were likely attributable to polymer fumes produced in the extrusion process. © The Author 2015. Published by Oxford University Press on behalf of the British Occupational Hygiene Society.

  18. Carbon and Energy Saving Financial Opportunities in the Industrial Compressed Air Sector

    Science.gov (United States)

    Vittorini, Diego; Cipollone, Roberto

    2017-08-01

    The transition towards a more sustainable energy scenario calls for both medium-to-long and short term interventions, with CO2 reduction and fossil fuel saving as main goals for all the Countries in the World. Among all others, one way to support these efforts is the setting-up of immaterial markets able to regulate, in the form of purchase and sales quotas, CO2 emissions avoided and fossil fuels not consumed. As a consequence, the upgrade of those sectors, characterized by high energy impact, is currently more than an option due to the related achievable financial advantage on the afore mentioned markets. Being responsible for about 10% electricity consumption in Industry, the compressed air sector is currently addressed as extremely appealing, when CO2 emissions and burned fossil fuels saving are in question. In the paper, once a standard is defined for compressors performances, based on data from the Compressed Air and Gas Institute and PNEUROP, the achievable energy saving is evaluated along with the effect in terms of CO2 emissions: with reference to those contexts in which mature intangible markets are established, an estimation of the financial benefit from savings sale on correspondent markets is possible, in terms of both avoided CO2 and fossil fuels not burned. The approach adopted allows to extend the analysis results to every context of interest, by applying the appropriate emission factor to the datum on compressor specific consumption.

  19. Generation and Use of Thermal Energy in the Industrial Sector and Opportunities to Reduce its Carbon Emissions

    International Nuclear Information System (INIS)

    McMillan, Colin; Boardman, Richard; McKellar, Michael; Sabharwall, Piyush; Ruth, Mark; Bragg-Sitton, Shannon

    2016-01-01

    Changes are occurring throughout the U.S. economy, especially in regard to how energy is generated and used in the electricity, buildings, industrial, and transportation sectors. These changes are being driven by environmental and energy security concerns and by economics. The electric-sector market share of natural gas and variable renewable generation, such as wind and solar photovoltaics (PV), continues to grow. The buildings sector is evolving to meet efficiency standards, the transportation sector is evolving to meet efficiency and renewable fuels standards, and the industrial sector is evolving to reduce emissions. Those changes are driving investment and utilization strategies for generation and other assets. Nuclear and renewable energy sources are important to consider in the energy sector’s evolution because both are considered to be clean and non-carbon-emitting energy sources. The Idaho National Laboratory (INL) and the National Renewable Energy Laboratory (NREL) are jointly investigating potential synergies between technologies exploiting nuclear and renewable energy sources. The two laboratories have held several joint workshops since 2011. Those workshops brought together experts in both areas to identify synergies and potential opportunities to work together. Workshop participants identified nuclear-renewable hybrid energy systems (N-R HESs) as one of the opportunities and recommended investigating whether N-R HESs could both generate dispatchable electricity without carbon emissions and provide clean energy to industrial processes. They also recommended analyzing the potential for N-R HESs to provide dispatchable capacity to a grid with high penetrations of non-dispatchable resources and to investigate whether real inertia provided by thermal power cycles within N-R HESs provides value to the grid. This report is one of a series of reports INL and NREL are producing to investigate the technical and economic aspects of N-R HESs. Previous reports

  20. Generation and Use of Thermal Energy in the Industrial Sector and Opportunities to Reduce its Carbon Emissions

    Energy Technology Data Exchange (ETDEWEB)

    McMillan, Colin [National Renewable Energy Lab. (NREL), Golden, CO (United States); Boardman, Richard [Idaho National Lab. (INL), Idaho Falls, ID (United States); McKellar, Michael [Idaho National Lab. (INL), Idaho Falls, ID (United States); Sabharwall, Piyush [Idaho National Lab. (INL), Idaho Falls, ID (United States); Ruth, Mark [National Renewable Energy Lab. (NREL), Golden, CO (United States); Bragg-Sitton, Shannon [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-09-01

    Changes are occurring throughout the U.S. economy, especially in regard to how energy is generated and used in the electricity, buildings, industrial, and transportation sectors. These changes are being driven by environmental and energy security concerns and by economics. The electric-sector market share of natural gas and variable renewable generation, such as wind and solar photovoltaics (PV), continues to grow. The buildings sector is evolving to meet efficiency standards, the transportation sector is evolving to meet efficiency and renewable fuels standards, and the industrial sector is evolving to reduce emissions. Those changes are driving investment and utilization strategies for generation and other assets. Nuclear and renewable energy sources are important to consider in the energy sector’s evolution because both are considered to be clean and non-carbon-emitting energy sources. The Idaho National Laboratory (INL) and the National Renewable Energy Laboratory (NREL) are jointly investigating potential synergies between technologies exploiting nuclear and renewable energy sources. The two laboratories have held several joint workshops since 2011. Those workshops brought together experts in both areas to identify synergies and potential opportunities to work together. Workshop participants identified nuclear-renewable hybrid energy systems (N-R HESs) as one of the opportunities and recommended investigating whether N-R HESs could both generate dispatchable electricity without carbon emissions and provide clean energy to industrial processes. They also recommended analyzing the potential for N-R HESs to provide dispatchable capacity to a grid with high penetrations of non-dispatchable resources and to investigate whether real inertia provided by thermal power cycles within N-R HESs provides value to the grid. This report is one of a series of reports INL and NREL are producing to investigate the technical and economic aspects of N-R HESs. Previous reports

  1. Potential for large-scale solar collector system to offset carbon-based heating in the Ontario greenhouse sector

    Science.gov (United States)

    Semple, Lucas M.; Carriveau, Rupp; Ting, David S.-K.

    2018-04-01

    In the Ontario greenhouse sector the misalignment of available solar radiation during the summer months and large heating demand during the winter months makes solar thermal collector systems an unviable option without some form of seasonal energy storage. Information obtained from Ontario greenhouse operators has shown that over 20% of annual natural gas usage occurs during the summer months for greenhouse pre-heating prior to sunrise. A transient model of the greenhouse microclimate and indoor conditioning systems is carried out using TRNSYS software and validated with actual natural gas usage data. A large-scale solar thermal collector system is then incorporated and found to reduce the annual heating energy demand by approximately 35%. The inclusion of the collector system correlates to a reduction of about 120 tonnes of CO2 equivalent emissions per acre of greenhouse per year. System payback period is discussed considering the benefits of a future Ontario carbon tax.

  2. Eco-efficient based logistics network design in hybrid manufacturing/ remanufacturing system in low-carbon economy

    Directory of Open Access Journals (Sweden)

    Yacan Wang

    2013-03-01

    Full Text Available Purpose: Low-carbon economy requires the pursuit of eco-efficiency, which is a win-win situation between economic and environmental efficiency. In this paper the question of trading off the economic and environmental effects embodied in eco-efficiency in the hybrid manufacturing/remanufacturing logistics network design in the context of low-carbon economy is examined.Design/methodology/approach: A multi-objective mixed integer linear programming model to find the optimal facility locations and materials flow allocation is established. In the objective function, three minimum targets are set: economic cost, CO2 emission and waste generation. Through an iterative algorithm, the Pareto Boundary of the problem is obtained.Findings: The results of numeric study show that in order to achieve a Pareto improvement over an original system, three of the critical rates (i.e. return rate, recovery rate, and cost substitute rate should be increased.Practical implications: To meet the need of low-carbon dioxide, an iso- CO2 emission curve in which decision makers have a series of optimal choices with the same CO2 emission but different cost and waste generation is plotted. Each choice may have different network design but all of these are Pareto optimal solutions, which provide a comprehensive evaluation of both economics and ecology for the decision making.Originality/value: This research chooses carbon emission as one of the three objective functions and uses Pareto sets to analyze how to balance profitability and environmental impacts in designing remanufacturing closed-loop supply chain in the context of low-carbon economy.

  3. Sustainable Low-Carbon Expansion for the Power Sector of an Emerging Economy: The Case of Kenya.

    Science.gov (United States)

    Carvallo, Juan-Pablo; Shaw, Brittany J; Avila, Nkiruka I; Kammen, Daniel M

    2017-09-05

    Fast growing and emerging economies face the dual challenge of sustainably expanding and improving their energy supply and reliability while at the same time reducing poverty. Critical to such transformation is to provide affordable and sustainable access to electricity. We use the capacity expansion model SWITCH to explore low carbon development pathways for the Kenyan power sector under a set of plausible scenarios for fast growing economies that include uncertainty in load projections, capital costs, operational performance, and technology and environmental policies. In addition to an aggressive and needed expansion of overall supply, the Kenyan power system presents a unique transition from one basal renewable resource-hydropower-to another based on geothermal and wind power for ∼90% of total capacity. We find geothermal resource adoption is more sensitive to operational degradation than high capital costs, which suggests an emphasis on ongoing maintenance subsidies rather than upfront capital cost subsidies. We also find that a cost-effective and viable suite of solutions includes availability of storage, diesel engines, and transmission expansion to provide flexibility to enable up to 50% of wind power penetration. In an already low-carbon system, typical externality pricing for CO 2 has little to no effect on technology choice. Consequently, a "zero carbon emissions" by 2030 scenario is possible with only moderate levelized cost increases of between $3 and $7/MWh with a number of social and reliability benefits. Our results suggest that fast growing and emerging economies could benefit by incentivizing anticipated strategic transmission expansion. Existing and new diesel and natural gas capacity can play an important role to provide flexibility and meet peak demand in specific hours without a significant increase in carbon emissions, although more research is required for other pollutant's impacts.

  4. Energy efficiency, carbon emissions, and measures towards their improvement in the food and beverage sector for six European countries

    International Nuclear Information System (INIS)

    Meyers, Steven; Schmitt, Bastian; Chester-Jones, Mae; Sturm, Barbara

    2016-01-01

    Basic and detailed audits of small and medium sized food and beverage enterprises were conducted in six European Union countries to determine product specific energy consumption and measures to reduce energy use and carbon emissions. Collected results showed that the companies’ products had similar specific energy consumption as prior studies, but due to no standard metrics, the range was rather large. Auditors primarily recommended energy savings measures (process optimization and heat recovery), due to their low payback periods. Lower carbon energy sources were also recommended (solar thermal and combined heat/power), but often at higher costs, supported through government incentive programs. Through these measures, energy savings of up to 45% and carbon to 30% (∼30,000 t CO_2 equivalent in the audited companies) were possible, dependent on the type, size of company, and fuel choice. Typically, very small companies and those using coal showed the greatest margin for improvement, though it varied greatly depending on the type of product produced and the installed heating and cooling equipment. Auditors noted significant barriers toward the implementation of measures, e.g. companies found the costs too high, did not know of efficient technologies and their performance, or did not have managerial support to implement efficiency measures. - Highlights: • The Food and Beverage sector in Europe was assessed for carbon reduction potential. • Significant emission reductions can be achieved by energy efficiency and renewables. • The Bakery and Meat branches can reduce energy consumption by 30–40%. • Small and coal burning companies have the greatest potential for emission reduction. • Financial barriers remain the hardest obstacle to realize reduction potential.

  5. Towards a Carbon-Neutral Energy Sector: Opportunities and Challenges of Coordinated Bioenergy Supply Chains-A PSE Approach

    Directory of Open Access Journals (Sweden)

    Luis Puigjaner

    2015-06-01

    Full Text Available The electricity generation sector needs to reduce its environmental impact and dependence on fossil fuel, mainly from coal. Biomass is one of the most promising future options to produce electricity, given its potential contribution to climate change mitigation. Even though biomass is an old source of energy, it is not yet a well-established commodity. The use of biomass in large centralised systems requires the establishment of delivery channels to provide the desired feedstock with the necessary attributes, at the right time and place. In terms of time to deployment and cost of the solution, co-combustion/co-gasification of biomass and coal are presented as transition and short-medium term alternatives towards a carbon-neutral energy sector. Hence, there is a need to assess an effective introduction of co-combustion/co-gasification projects in the current electricity production share. The purpose of this work is to review recent steps in Process Systems Engineering towards bringing into reality individualised and ad-hoc solutions, by building a common but adjustable design platform to tailored approaches of biomass-based supply chains. Current solutions and the latest developments are presented and future needs under study are also identified.

  6. Carbon footprint as an instrument for enhancing food quality: overview of the wine, olive oil and cereals sectors.

    Science.gov (United States)

    Pattara, Claudio; Russo, Carlo; Antrodicchia, Vittoria; Cichelli, Angelo

    2017-01-01

    The quantification of greenhouse gases (GHG) emissions represents a critical issue for the future development of agro-food produces. Consumers' behaviour could play an important role in requiring environmental performance as an essential element for food quality. Nowadays, the carbon footprint (CFP) is a tool used worldwide by agro-food industries to communicate environmental information. This paper aims to investigate the role that CFP could have in consumers' choices in three significant agro-food sectors in the Mediterranean area: wine, olive oil and cereals. A critical review about the use of CFP was carried out along the supply chain of these three sectors, in order to identify opportunities for enhancing food quality and environmental sustainability and highlighting how environmental information could influence consumers' preferences. The analysis of the state of the art shows a great variability of the results about GHG emissions referred to agricultural and industrial processes. In many cases, the main environmental criticisms are linked to the agricultural phase, but the other phases of the supply chain could also contribute to the increased CFP. However, despite the wide use of CFP by companies as a communication tool to help consumers' choices in agro-food products, some improvements are needed in order to provide clearer and more understandable information. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  7. 78 FR 67117 - Manufacturing Council

    Science.gov (United States)

    2013-11-08

    ... preeminent destination for investment in manufacturing throughout the world'' as provided for in Section 4 of... the viewpoint of those stakeholders on current and emerging issues in the manufacturing sector. In... the U.S. manufacturing industry in terms of industry sectors, geographic locations, demographics, and...

  8. Marginal abatement cost and carbon reduction potential outlook of key energy efficiency technologies in China's building sector to 2030

    International Nuclear Information System (INIS)

    Xiao, He; Wei, Qingpeng; Wang, Hailin

    2014-01-01

    China achieved an energy savings of 67.5 Mtce in the building sector at the end of the 11th Five-Year Plan and set a new target of 116 Mtce by the end of the 12th Five-Year Plan. In this paper, an improved bottom-up model is developed to assess the carbon abatement potential and marginal abatement cost (MAC) of 34 selected energy-saving technologies/measures for China's building sector. The total reduction potential is 499.8 million t-CO 2 by 2030. 4.8 Gt-CO 2 potential will be achieved cumulatively to 2030. By 2030, total primary energy consumption of Chinese building sector will rise continuously to 1343 Mtce in the reference scenario and 1114 Mtce in the carbon reduction scenario. Total carbon dioxide emission will rise to 2.39 Gt-CO 2 and 1.9 Gt-CO 2 in two scenarios separately. The average carbon abatement cost of the aforementioned technologies is 19.5 $/t-CO 2 . The analysis reveals that strengthening successfully energy-saving technologies is important, especially for the residential building sector. The central government's direct investments in such technologies should be reduced without imposing significant negative effects. - Highlights: • MAC of 34 energy-saving technologies of China's building sector is calculated. • Energy use and CO 2 emission of China's building sector by 2030 is forecasted. • The reference and the carbon reduction scenarios are compared

  9. Carbonate system in the water masses of the Southeast Atlantic sector of the Southern Ocean during February and March 2008

    Directory of Open Access Journals (Sweden)

    M. González-Dávila

    2011-05-01

    Full Text Available Carbonate system variables were measured in the South Atlantic sector of the Southern Ocean along a transect from South Africa to the southern limit of the Antarctic Circumpolar Current (ACC from February to March 2008. Eddies detached from the retroflection of the Agulhas Current increased the gradients observed along the fronts. Minima in the fugacity of CO2, fCO2, and maxima in pH on either side of the frontal zone were observed, noting that within the frontal zone fCO2 reached maximum values and pH was at a minimum.

    Vertical distributions of water masses were described by their carbonate system properties and their relationship to CFC concentrations. Upper Circumpolar Deep Water (UCDW and Lower Circumpolar Deep Water (LCDW offered pHT,25 values of 7.56 and 7.61, respectively. The UCDW also had higher concentrations of CFC-12 (>0.2 pmol kg−1 as compared to deeper waters, revealing that UCDW was mixed with recently ventilated waters. Calcite and aragonite saturation states (Ω were also affected by the presence of these two water masses with high carbonate concentrations. The aragonite saturation horizon was observed at 1000 m in the subtropical area and north of the Subantarctic Front. At the position of the Polar Front, and under the influence of UCDW and LCDW, the aragonite saturation horizon deepened from 800 m to 1500 m at 50.37° S, and reached 700 m south of 57.5° S. High latitudes proved to be the most sensitive areas to predicted anthropogenic carbon increase. Buffer coefficients related to changes in [CO2], [H+] and Ω with changes in dissolved inorganic carbon (CT and total alkalinity (AT offered minima values in the Antarctic Intermediate Water and UCDW layers. These coefficients suggest that a small increase in CT will sharply decrease the status of pH and carbonate saturation

  10. Evaluation of a carbon fibre powder scraper used in metal additive manufacturing

    CSIR Research Space (South Africa)

    Bester, Duwan C

    2017-11-01

    Full Text Available was designed which would be flexible, work for extended periods of time and have the ability to operate at high temperatures. In this study, the process of development toward carbon fibre scrapers and the evaluation for comparison to commercially available...

  11. Evidence for thermal convection in the deep carbonate aquifer of the eastern sector of the Po Plain, Italy

    Science.gov (United States)

    Pasquale, V.; Chiozzi, P.; Verdoya, M.

    2013-05-01

    Temperatures recorded in wells as deep as 6 km drilled for hydrocarbon prospecting were used together with geological information to depict the thermal regime of the sedimentary sequence of the eastern sector of the Po Plain. After correction for drilling disturbance, temperature data were analyzed through an inversion technique based on a laterally constant thermal gradient model. The obtained thermal gradient is quite low within the deep carbonate unit (14 mK m- 1), while it is larger (53 mK m- 1) in the overlying impermeable formations. In the uppermost sedimentary layers, the thermal gradient is close to the regional average (21 mK m- 1). We argue that such a vertical change cannot be ascribed to thermal conductivity variation within the sedimentary sequence, but to deep groundwater flow. Since the hydrogeological characteristics (including litho-stratigraphic sequence and structural setting) hardly permit forced convection, we suggest that thermal convection might occur within the deep carbonate aquifer. The potential of this mechanism was evaluated by means of the Rayleigh number analysis. It turned out that permeability required for convection to occur must be larger than 3 10- 15 m2. The average over-heat ratio is 0.45. The lateral variation of hydrothermal regime was tested by using temperature data representing the aquifer thermal conditions. We found that thermal convection might be more developed and variable at the Ferrara High and its surroundings, where widespread fracturing may have increased permeability.

  12. Towards a low-carbon future in China's building sector-A review of energy and climate models forecast

    International Nuclear Information System (INIS)

    Li Jun

    2008-01-01

    This article investigates the potentials of energy saving and greenhouse gases emission mitigation offered by implementation of building energy efficiency policies in China. An overview of existing literature regarding long-term energy-demand and carbon dioxide (CO 2 ) emission forecast scenarios is presented. Energy consumption in buildings could be reduced by 100-300 million tons of oil equivalent (mtoe) in 2030 compared with the business-as-usual (BAU) scenario, which means that 600-700 million metric tons of CO 2 emissions could be saved by implementing appropriate energy policies within an adapted institutional framework. The main energy-saving potentials in buildings can be achieved by improving a building's thermal performance and district heating system efficiency. The analyses also reveal that the energy interchange systems are effective especially in the early stage of penetration. Our analysis on the reviewed models suggests that more ambitious efficiency improvement policies in both supply- and demand-side as well as the carbon price should be taken into account in the policy scenarios to address drastic reduction of CO 2 emission in the building sector to ensure climate security over the next decades

  13. Advance Manufacturing Office FY 2017 Budget At-A-Glance

    Energy Technology Data Exchange (ETDEWEB)

    None

    2016-03-01

    The Advanced Manufacturing Office (AMO) brings together manufacturers, research institutions, suppliers, and universities to investigate manufacturing processes, information, and materials technologies critical to advance domestic manufacturing of clean energy products, and to support energy productivity across the entire manufacturing sector.

  14. The effects of carbon prices and anti-leakage policies on selected industrial sectors in Spain – Cement, steel and oil refining

    International Nuclear Information System (INIS)

    Santamaría, Alberto; Linares, Pedro; Pintos, Pablo

    2014-01-01

    This paper assesses the impacts on the cement, steel and oil refining sectors in Spain of the carbon prices derived from the European Emissions Trading Scheme (EU ETS), and the potential effect on these sectors of the European Union anti-leakage policy measures. The assessment is carried out by means of three engineering models developed for this purpose. Our results show a high exposure to leakage of cement in coastal regions; a smaller risk in the steel sector, and non-negligible risk of leakage for the oil refining sector when carbon allowance prices reach high levels. We also find that the risk of leakage could be better handled with other anti-leakage policies than those currently in place in the EU. - Highlights: • We simulate the impact of carbon prices on the risk of leakage in the cement, steel and oil refining sectors. • We also assess the effectiveness of different anti-leakage policies in Europe. • Cement production in coastal areas is highly exposed. • The risk of leakage for steel and oil refining is smaller. • Anti-leakage policies should be modified to be efficient

  15. Effects of a carbon price in the U.S. on economic sectors, resource use, and emissions: An input-output approach

    International Nuclear Information System (INIS)

    Choi, Jun-Ki; Bakshi, Bhavik R.; Haab, Timothy

    2010-01-01

    Despite differences in their implementation, most carbon policies aim to have similar outcomes: effectively raising the price of carbon-intensive products relative to non-carbon-intensive products. While it is possible to predict the simple broad-scale economic impacts of raising the price of carbon-intensive products-the demand for non-carbon-intensive products will increase-understanding the economic and environmental impacts of carbon policies throughout the life cycle of both types of products is more difficult. Using the example of a carbon tax, this study proposes a methodology that integrates short-term policy-induced consumer demand changes into the input-output framework to analyze the environmental and economic repercussions of a policy. Environmental repercussions include the direct and the indirect impacts on emissions, materials flow in the economy, and the reliance on various ecosystem goods and services. The approach combines economic data with data about physical flow of fossil fuels between sectors, consumption of natural resources and emissions from each sector. It applies several input-output modeling equations sequentially and uses various levels of aggregation/disaggregation. It is illustrated with the data for the 2002 U.S. economy and physical flows. The framework provides insight into the short-term complex interactions between carbon price and its economic and environmental effects.

  16. Embedding of MEMS pressure and temperature sensors in carbon fiber composites: a manufacturing approach

    Science.gov (United States)

    Javidinejad, Amir; Joshi, Shiv P.

    2000-06-01

    In this paper embedding of surface mount pressure and temperature sensors in the Carbon fiber composites are described. A commercially available surface mount pressure and temperature sensor are used for embedding in a composite lay- up of IM6/HST-7, IM6/3501 and AS4/E7T1-2 prepregs. The fabrication techniques developed here are the focus of this paper and provide for a successful embedding procedure of pressure sensors in fibrous composites. The techniques for positioning and insulating, the sensor and the lead wires, from the conductive carbon prepregs are described and illustrated. Procedural techniques are developed and discussed for isolating the sensor's flow-opening, from the exposure to the prepreg epoxy flow and exposure to the fibrous particles, during the autoclave curing of the composite laminate. The effects of the autoclave cycle (if any) on the operation of the embedded pressure sensor are discussed.

  17. Polyurethane foams obtained from residues of PET manufacturing and modified with carbon nanotubes

    International Nuclear Information System (INIS)

    Stiebra, L; Cabulis, U; Knite, M

    2016-01-01

    In this work we report the preparation of rigid microcellular polyurethane/carbon nanotube nanocomposites with different CNT loadings (0.09-0.46%) and various isocyanate indexes (110-260). Water was used as a blowing agent for samples. Density of all obtained samples – 200 ± 10 kg/m 3 . Electrical properties, as well as heat conductivity, cellular structure and mechanical properties of these nanocomposites were investigated. (paper)

  18. Polyurethane foams obtained from residues of PET manufacturing and modified with carbon nanotubes

    Science.gov (United States)

    Stiebra, L.; Cabulis, U.; Knite, M.

    2016-04-01

    In this work we report the preparation of rigid microcellular polyurethane/carbon nanotube nanocomposites with different CNT loadings (0.09-0.46%) and various isocyanate indexes (110-260). Water was used as a blowing agent for samples. Density of all obtained samples - 200 ± 10 kg/m3. Electrical properties, as well as heat conductivity, cellular structure and mechanical properties of these nanocomposites were investigated.

  19. The effect of manufacturing conditions on discontinuity population and fatigue fracture behavior in carbon/epoxy composites

    Science.gov (United States)

    Hakim, Issa; Laquai, Rene; Walter, David; Mueller, Bernd; Graja, Paul; Meyendorf, Norbert; Donaldson, Steven

    2017-02-01

    Carbon fiber composites have been increasingly used in aerospace, military, sports, automotive and other fields due to their excellent properties, including high specific strength, high specific modulus, corrosion resistance, fatigue resistance, and low thermal expansion coefficient. Interlaminar fracture is a serious failure mode leading to a loss in composite stiffness and strength. Discontinuities formed during manufacturing process degrade the fatigue life and interlaminar fracture resistance of the composite. In his study, three approaches were implemented and their results were correlated to quantify discontinuities effecting static and fatigue interlaminar fracture behavior of carbon fiber composites. Samples were fabricated by hand layup vacuum bagging manufacturing process under three different vacuum levels, indicated High (-686 mmHg), Moderate (-330 mmHg) and Poor (0 mmHg). Discontinuity content was quantified through-thickness by destructive and nondestructive techniques. Eight different NDE methods were conducted including imaging NDE methods: X-Ray laminography, ultrasonic, high frequency eddy current, pulse thermography, pulse phase thermography and lock-in-thermography, and averaging NDE techniques: X-Ray refraction and thermal conductivity measurements. Samples were subsequently destructively serial sectioned through-thickness into several layers. Both static and fatigue interlaminar fracture behavior under Mode I were conducted. The results of several imaging NDE methods revealed the trend in percentages of discontinuity. However, the results of averaging NDE methods showed a clear correlation since they gave specific values of discontinuity through-thickness. Serial sectioning exposed the composite's internal structure and provided a very clear idea about the type, shape, size, distribution and location of most discontinuities included. The results of mechanical testing showed that discontinuities lead to a decrease in Mode I static interlaminar

  20. Deep carbon reductions in California require electrification and integration across economic sectors

    International Nuclear Information System (INIS)

    Wei, Max; Greenblatt, Jeffery B; McMahon, James E; Nelson, James H; Mileva, Ana; Johnston, Josiah; Jones, Chris; Kammen, Daniel M; Ting, Michael; Yang, Christopher

    2013-01-01

    Meeting a greenhouse gas (GHG) reduction target of 80% below 1990 levels in the year 2050 requires detailed long-term planning due to complexity, inertia, and path dependency in the energy system. A detailed investigation of supply and demand alternatives is conducted to assess requirements for future California energy systems that can meet the 2050 GHG target. Two components are developed here that build novel analytic capacity and extend previous studies: (1) detailed bottom-up projections of energy demand across the building, industry and transportation sectors; and (2) a high-resolution variable renewable resource capacity planning model (SWITCH) that minimizes the cost of electricity while meeting GHG policy goals in the 2050 timeframe. Multiple pathways exist to a low-GHG future, all involving increased efficiency, electrification, and a dramatic shift from fossil fuels to low-GHG energy. The electricity system is found to have a diverse, cost-effective set of options that meet aggressive GHG reduction targets. This conclusion holds even with increased demand from transportation and heating, but the optimal levels of wind and solar deployment depend on the temporal characteristics of the resulting load profile. Long-term policy support is found to be a key missing element for the successful attainment of the 2050 GHG target in California. (letter)

  1. Release characteristics of single-wall carbon nanotubes during manufacturing and handling

    International Nuclear Information System (INIS)

    Ogura, I; Kishimoto, A; Kotake, M; Hashimoto, N; Gotoh, K

    2013-01-01

    We investigated the release characteristics of single-wall carbon nanotubes (CNTs) synthesized by a pilot-scale plant. In addition to on-site aerosol measurements at the pilot-scale plant where the CNTs were synthesized, harvested, and packed, we conducted dustiness tests by vortex shaking and by transferring CNTs from one bowl to another. In the results of the on-site aerosol measurements, slight increases in the concentration were observed by aerosol monitoring instruments in the enclosure where CNTs were harvested and packed. In filter samples collected in this enclosure, micron-sized CNT clusters were observed by electron microscopy analysis. For samples collected outside the enclosure or during other processes, no CNTs were observed. The concentrations of elemental carbon at all locations were lower than the proposed occupational exposure limits of CNTs. The results of the dustiness tests revealed that submicron-sized particles were dominant in the number concentration measured by aerosol monitoring instruments, whereas micron-sized CNT clusters were mainly observed by electron microscopy analysis. The results of dustiness tests indicate that these CNTs have a low release characteristic. The lower drop impact of CNT clusters due to their lower bulk density resulted in lower CNT release from falling CNTs.

  2. Biogenic silica and organic carbon in sediments from the Pacific sector of the Southern Ocean

    International Nuclear Information System (INIS)

    Giglio, F.; Langone, L.; Morigi, C.; Frignani, M.; Ravaioli, M.

    2002-01-01

    Four cores, collected during the 1995/96 Italian Antarctic cruise and located north and south of the Polar Front, provided both qualitative and quantitative information about changes of the sediment settings driven by climate changes. Biogenic silica and organic carbon flux variations and sedimentological analyses allow us to make inferences about the fluctuation of the Polar Front during the last climate cycles: the records of our cores Anta96-1 and Anta96-16 account for fluctuations of the Polar Front of at least 5 degrees with respect to the present position, with a concomitant movement of the Marginal Ice Zone. The very low accumulation rates at the study sites are probably due to the scarce availability of micronutrients. In the area south of the Polar Front, sediment accumulation, after a decrease, appears constant during the last 250,000 yr. A subdivision in glacial/interglacial stages has been proposed, which permits the identification of the warm stage 11, which is particularly important in the Southern Ocean. (author). 13 refs., 5 figs

  3. Impacts of global, regional, and sectoral black carbon emission reductions on surface air quality and human mortality

    Directory of Open Access Journals (Sweden)

    S. C. Anenberg

    2011-07-01

    Full Text Available As a component of fine particulate matter (PM2.5, black carbon (BC is associated with premature human mortality. BC also affects climate by absorbing solar radiation and reducing planetary albedo. Several studies have examined the climate impacts of BC emissions, but the associated health impacts have been studied less extensively. Here, we examine the surface PM2.5 and premature mortality impacts of halving anthropogenic BC emissions globally and individually from eight world regions and three major economic sectors. We use a global chemical transport model, MOZART-4, to simulate PM2.5 concentrations and a health impact function to calculate premature cardiopulmonary and lung cancer deaths. We estimate that halving global anthropogenic BC emissions reduces outdoor population-weighted average PM2.5 by 542 ng m−3 (1.8 % and avoids 157 000 (95 % confidence interval, 120 000–194 000 annual premature deaths globally, with the vast majority occurring within the source region. Most of these avoided deaths can be achieved by halving emissions in East Asia (China; 54 %, followed by South Asia (India; 31 %, however South Asian emissions have 50 % greater mortality impacts per unit BC emitted than East Asian emissions. Globally, halving residential, industrial, and transportation emissions contributes 47 %, 35 %, and 15 % to the avoided deaths from halving all anthropogenic BC emissions. These contributions are 1.2, 1.2, and 0.6 times each sector's portion of global BC emissions, owing to the degree of co-location with population globally. We find that reducing BC emissions increases regional SO4 concentrations by up to 28 % of the magnitude of the regional BC concentration reductions, due to reduced absorption of radiation that drives photochemistry. Impacts of residential BC emissions are likely underestimated since indoor PM2.5 exposure is excluded. We estimate ∼8 times

  4. Impacts of global, regional, and sectoral black carbon emission reductions on surface air quality and human mortality

    Science.gov (United States)

    Anenberg, S. C.; Talgo, K.; Arunachalam, S.; Dolwick, P.; Jang, C.; West, J. J.

    2011-07-01

    As a component of fine particulate matter (PM2.5), black carbon (BC) is associated with premature human mortality. BC also affects climate by absorbing solar radiation and reducing planetary albedo. Several studies have examined the climate impacts of BC emissions, but the associated health impacts have been studied less extensively. Here, we examine the surface PM2.5 and premature mortality impacts of halving anthropogenic BC emissions globally and individually from eight world regions and three major economic sectors. We use a global chemical transport model, MOZART-4, to simulate PM2.5 concentrations and a health impact function to calculate premature cardiopulmonary and lung cancer deaths. We estimate that halving global anthropogenic BC emissions reduces outdoor population-weighted average PM2.5 by 542 ng m-3 (1.8 %) and avoids 157 000 (95 % confidence interval, 120 000-194 000) annual premature deaths globally, with the vast majority occurring within the source region. Most of these avoided deaths can be achieved by halving emissions in East Asia (China; 54 %), followed by South Asia (India; 31 %), however South Asian emissions have 50 % greater mortality impacts per unit BC emitted than East Asian emissions. Globally, halving residential, industrial, and transportation emissions contributes 47 %, 35 %, and 15 % to the avoided deaths from halving all anthropogenic BC emissions. These contributions are 1.2, 1.2, and 0.6 times each sector's portion of global BC emissions, owing to the degree of co-location with population globally. We find that reducing BC emissions increases regional SO4 concentrations by up to 28 % of the magnitude of the regional BC concentration reductions, due to reduced absorption of radiation that drives photochemistry. Impacts of residential BC emissions are likely underestimated since indoor PM2.5 exposure is excluded. We estimate ∼8 times more avoided deaths when BC and organic carbon (OC) emissions are halved together, suggesting

  5. Carbon Dioxide Gas Sensors and Method of Manufacturing and Using Same

    Science.gov (United States)

    Hunter, Gary W. (Inventor); Xu, Jennifer C. (Inventor)

    2014-01-01

    A gas sensor comprises a substrate layer; a pair of interdigitated metal electrodes, said electrodes include upper surfaces, the electrodes selected from the group consisting of Pt, Pd, Au, Ir, Ag, Ru, Rh, In, Os, and their alloys. A first layer of solid electrolyte staying in between electrode fingers and partially on said upper surfaces of said electrodes, said first layer selected from NASICON, LISICON, KSICON and.beta.''-Alumina. A second layer of metal carbonate(s) as an auxiliary electrolyte engaging said upper surfaces of the electrodes and the first solid electrolyte. The metal carbonates selected from the group consisting of the following ions Na.sup.+, K.sup.+, Li.sup.+, Ag.sup.+, H.sup.+, Pb.sup.2+, Sr.sup.2+, Ba.sup.2+, and any combination thereof. An extra layer of metal oxide selected from the group consisting of SnO.sub.2, In.sub.2O.sub.3, TiO.sub.2, WO.sub.3, ZnO, Fe.sub.2O.sub.3, ITO, CdO, U.sub.3O.sub.8, Ta.sub.2O.sub.5, BaO, MoO.sub.2, MoO.sub.3, V.sub.2O.sub.5, Nb.sub.2O.sub.5, CuO, Cr.sub.2O.sub.3, La.sub.2O.sub.3, RuO.sub.3, RuO.sub.2, ReO.sub.2, ReO.sub.3, Ag.sub.2O, CoO, Cu.sub.2O, SnO, NiO, Pr.sub.2O.sub.3, BaO, PdO.sub.2, HfO.sub.3, HfO.sub.3 or other metal oxide and their mixtures residing above and in engagement with the second electrolyte to improve sensor performance and/or to reduce sensor heating power consumption.

  6. Innovative Design and Manufacture of “S” Type Carbon-Free Cars

    Directory of Open Access Journals (Sweden)

    Liu Jianwei

    2017-01-01

    Full Text Available Based on the new rules of the 4th national college students’ engineering and comprehensive training ability competition, established three-dimensional model using software UG NX, designed a kind of “S” type carbon-free,it can adapt to various poles’ distance and easy assembling and debugging.Focus on variable pitch mechanism and steering mechanism’s designing, and by motion simulation verify its rationality, the simulation analysis showed the car trajectory accords with a requirement. Finally,processed parts,assembled and debugged of the cars.Practice has proved that the design of the car conform to the requirements of the game, is reasonable, assembling outfit is convenient, easy to debug, can meet the requirements of a variety of stem from, smooth finish and get good grades.

  7. Study of carbon dioxide emission inventory from transportation sector at Kualanamu International Airport

    Science.gov (United States)

    Suryati, I.; Indrawan, I.; Alihta, K. N.

    2018-02-01

    Transportation includes sources of greenhouse gas emission contributor in the form of carbon dioxide (CO2). CO2 is one of the air pollutant gases that cause climate change. The source of CO2 emissions at airports comes from road and air transportation. Kualanamu International Airport is one of the public service airports in North Sumatera Province. The purpose of this study is to inventory the emission loads generated by motor vehicles and aircraft and to forecast contributions of CO2 emissions from motor vehicles and aircraft. The research method used is quantitative and qualitative methods. The quantitative method used is to estimate emission loads of motor vehicles based on vehicle volume and emission factors derived from the literature and using the Tier-2 method to calculate the aircraft emission loads. The results for the maximum CO2 concentration were 6,206,789.37 μg/m3 and the minimal CO2 concentration was 4,070,674.84 μg/Nm3. The highest aircraft CO2 emission load is 200,164,424.5 kg/hr (1.75 x 109 ton/year) and the lowest is 38,884,064.5 kg/hr (3.40 x 108 ton/year). Meanwhile, the highest CO2 emission load from motor vehicles was 51,299.25 gr/hr (449,38 ton/year) and the lowest was 38,990.42 gr/hr (341,55 ton/year). CO2 contribution from a motor vehicle is 65% and 5% from aircraft in Kualanamu International Airport.

  8. Heterogeneity of demand responses in modelling the distributional consequences of tradable carbon permits in the road transport sector

    International Nuclear Information System (INIS)

    Wadud, Zia; Noland, Robert B.; Graham, Daniel J.

    2007-01-01

    Personal road transport sector is one of the largest and fastest growing sources of CO 2 emissions. This paper investigates a tradable permit policy for mitigating carbon emissions from personal road transport and discusses various issues of permit allocation. As tradable permits will effectively raise the price of fuel, the policy has important distributional implications. The distribution of burden depends on permit allocation strategies and on the consumer response to an increase in price. The behavioural response may vary among different segments of the population depending on their travel needs, which in turn are contingent upon their income, location of residence and other factors. Consumer Expenditure Survey micro dataset from 1997 to 2002 has been used to econometrically model the possible variation of price elasticity for different socio-economic groups in the USA. Results indicate that the response of gasoline demand to a change in price does depend on income level or location of the household. Distributional impacts of the tradable permit policy are then evaluated using the micro dataset for year 2002. In this regard, different permit allocation schemes are considered in the analysis. Impacts on households owning a vehicle and households with no vehicles have been evaluated as well

  9. Geometrically nonlinear resonance of higher-order shear deformable functionally graded carbon-nanotube-reinforced composite annular sector plates excited by harmonic transverse loading

    Science.gov (United States)

    Gholami, Raheb; Ansari, Reza

    2018-02-01

    This article presents an attempt to study the nonlinear resonance of functionally graded carbon-nanotube-reinforced composite (FG-CNTRC) annular sector plates excited by a uniformly distributed harmonic transverse load. To this purpose, first, the extended rule of mixture including the efficiency parameters is employed to approximately obtain the effective material properties of FG-CNTRC annular sector plates. Then, the focus is on presenting the weak form of discretized mathematical formulation of governing equations based on the variational differential quadrature (VDQ) method and Hamilton's principle. The geometric nonlinearity and shear deformation effects are considered based on the von Kármán assumptions and Reddy's third-order shear deformation plate theory, respectively. The discretization process is performed via the generalized differential quadrature (GDQ) method together with numerical differential and integral operators. Then, an efficient multi-step numerical scheme is used to obtain the nonlinear dynamic behavior of the FG-CNTRC annular sector plates near their primary resonance as the frequency-response curve. The accuracy of the present results is first verified and then a parametric study is presented to show the impacts of CNT volume fraction, CNT distribution pattern, geometry of annular sector plate and sector angle on the nonlinear frequency-response curve of FG-CNTRC annular sector plates with different edge supports.

  10. [Survey of carbon fiber reinforced plastic orthoses and occupational and medical problems based on a questionnaire administered to companies involved in the manufacture of prosthetics and orthotics].

    Science.gov (United States)

    Kaneshiro, Yuko; Furuta, Nami; Makino, Kenichiro; Wada, Futoshi; Hachisuka, Kenji

    2011-09-01

    We surveyed carbon fiber reinforced plastic orthoses (carbon orthoses) and their associated occupational and medical problems based on a questionnaire sent to 310 companies which were members of the Japan Orthotics and Prosthetics Association. Of all the companies, 232 responded: 77 of the 232 companies dealt with ready-made carbon orthoses, 52 dealt with fabricated custom-made orthoses, and 155 did not dealt with carbon orthoses. Although the total number of custom-made carbon ortheses in Japan was 829/ 5 years, there was a difference by region, and one company fabricated only 12 (per 5 years) custom-made carbon orthoses on average. The advantages of the carbon orthosis were the fact that it was "light weight", "well-fitted", had a "good appearance", and "excellent durability", while the disadvantages were that it was "expensive", "high cost of production", of "black color", and required a "longer time for completion", and "higher fabrication techniques". From the standpoint of industrial medicine, "scattering of fine fragments of carbon fibers", "itching on the skin" and "health hazards" were indicated in companies that manufacture the orthosis. In order to make the carbon orthosis more popular, it is necessary to develop a new carbon material that is easier to fabricate at a lower cost, to improve the fabrication technique, and to resolve the occupational and medical problems.

  11. Directory of the French thermal solar sector

    International Nuclear Information System (INIS)

    Demangeon, Elsa; Simmonet, Raphael; Canals, Jonathan

    2011-01-01

    After an overview of what is at stake for the thermal solar sector in terms of employment and industrial development, a discussion of the huge energy and industrial potential of this sector, and the proposition of a road map for the development of this sector in France, this publication proposes a directory of actors of the different activity sectors: research and development, engineering, electric and electronic hardware manufacturing, thermal equipment manufacturing, fluid manufacturing, reflector manufacturing, thermodynamic machine manufacturer, structure component manufacturer, control-command system, energy storage, developers, and so on

  12. Chances for the development of manufactures of capital goods. Analysis of the situation and sector evolution; Oportunidades para el desarrollo de los fabricantes de bienes de equipo. Analisis de la situacion y evolucion del sector

    Energy Technology Data Exchange (ETDEWEB)

    Pelaez Ramos, M. L.

    2012-07-01

    The main purpose of this paper is to analyze the situation and development in the capital goods sector in Spain. This industry is not just an important sector in the Spanish economy but, given its structural characteristics (dynamism, influence on the production processes of other activities and presence in all developed countries), it conditions the recovery of our economy. The article includes an analysis of the weaknesses, threats, strengths and opportunities of the sector. Further, it is crucial its contribution to make sustainable development of industrial activity. Also, it deals with those opportunities that are presented for the future development of this industry such as eco-design, energy efficiency and life cycle analysis. (Author)

  13. Análisis de los componentes de la cadena de suministro y global manufacturing y su relación con el desempeño organizacional en el sector manufacturero

    OpenAIRE

    Melo Vargas, Jorge Andrés

    2014-01-01

    El presente trabajo tiene como objetivo mostrar la relación que existe entre la cadena de suministro, global manufacturing y su relación con el desempeño organizacional en el sector manufacturero. El proyecto va a estar divido en tres grandes partes, en primer lugar estará el marco conceptual donde se especificarán los conceptos más significativos que abarcan la investigación, seguido del marco teórico donde se expondrán las teorías y estudios encontrados, analizados y estudiados con el fin d...

  14. Effect of Surfactants and Manufacturing Methods on the Electrical and Thermal Conductivity of Carbon Nanotube/Silicone Composites

    Directory of Open Access Journals (Sweden)

    Martina Hřibová

    2012-11-01

    Full Text Available The effect of ionic surfactants and manufacturing methods on the separation and distribution of multi-wall carbon nanotubes (CNTs in a silicone matrix are investigated. The CNTs are dispersed in an aqueous solution of the anionic surfactant dodecylbenzene sulfonic acid (DBSA, the cationic surfactant cetyltrimethylammonium bromide (CTAB, and in a DBSA/CTAB surfactant mixture. Four types of CNT-based composites of various concentrations from 0 to 6 vol.% are prepared by simple mechanical mixing and sonication. The morphology, electrical and thermal conductivity of the CNT-based composites are analyzed. The incorporation of both neat and modified CNTs leads to an increase in electrical and thermal conductivity. The dependence of DC conductivity versus CNT concentration shows percolation behaviour with a percolation threshold of about 2 vol.% in composites with neat CNT. The modification of CNTs by DBSA increases the percolation threshold to 4 vol.% due to the isolation/separation of individual CNTs. This, in turn, results in a significant decrease in the complex permittivity of CNT–DBSA-based composites. In contrast to the percolation behaviour of DC conductivity, the concentration dependence of thermal conductivity exhibits a linear dependence, the thermal conductivity of composites with modified CNTs being lower than that of composites with neat CNTs. All these results provide evidence that the modification of CNTs by DBSA followed by sonication allows one to produce composites with high homogeneity.

  15. Release potential of single-wall carbon nanotubes produced by super-growth method during manufacturing and handling

    International Nuclear Information System (INIS)

    Ogura, Isamu; Sakurai, Hiromu; Mizuno, Kohei; Gamo, Masashi

    2011-01-01

    We investigated the release potential of single-wall carbon nanotubes (CNTs) produced by the super-growth method during their manufacturing and handling processes at a research facility. We generally sampled air at points both outside and inside of protective enclosures such as a glove box and fume hood. Sampling the air outside of the enclosures was intended to evaluate the actual exposure of workers to CNTs, while sampling the air inside the enclosures was performed to quantify the release of CNTs to the air in order to estimate the potential exposure of workers without protection. The results revealed that airborne CNTs were generated when (1) CNTs were separated from the substrates using a spatula and placed in a container in a glove box; (2) an air gun was used to clean the air filters (containing dust that included CNTs) of a vacuum cleaner; (3) a vacuum cleaner was used to collect CNTs (emission with exhaust air from the cleaner); (4) the container of CNTs was opened; and (5) CNTs in the bin of the cleaner were transferred to a container. In these processes, airborne CNTs were only found inside the enclosures, except for a small amount of CNTs released from the glove box when it was opened. Electron microscopic observations of aerosol particles found CNT clusters, which were fragments of CNT forests, with sizes ranging from submicrometers to tens of micrometers.

  16. Effect of surfactants and manufacturing methods on the electrical and thermal conductivity of carbon nanotube/silicone composites.

    Science.gov (United States)

    Vilčáková, Jarmila; Moučka, Robert; Svoboda, Petr; Ilčíková, Markéta; Kazantseva, Natalia; Hřibová, Martina; Mičušík, Matej; Omastová, Mária

    2012-11-05

    The effect of ionic surfactants and manufacturing methods on the separation and distribution of multi-wall carbon nanotubes (CNTs) in a silicone matrix are investigated. The CNTs are dispersed in an aqueous solution of the anionic surfactant dodecylbenzene sulfonic acid (DBSA), the cationic surfactant cetyltrimethylammonium bromide (CTAB), and in a DBSA/CTAB surfactant mixture. Four types of CNT-based composites of various concentrations from 0 to 6 vol.% are prepared by simple mechanical mixing and sonication. The morphology, electrical and thermal conductivity of the CNT-based composites are analyzed. The incorporation of both neat and modified CNTs leads to an increase in electrical and thermal conductivity. The dependence of DC conductivity versus CNT concentration shows percolation behaviour with a percolation threshold of about 2 vol.% in composites with neat CNT. The modification of CNTs by DBSA increases the percolation threshold to 4 vol.% due to the isolation/separation of individual CNTs. This, in turn, results in a significant decrease in the complex permittivity of CNT–DBSA-based composites. In contrast to the percolation behaviour of DC conductivity, the concentration dependence of thermal conductivity exhibits a linear dependence, the thermal conductivity of composites with modified CNTs being lower than that of composites with neat CNTs. All these results provide evidence that the modification of CNTs by DBSA followed by sonication allows one to produce composites with high homogeneity.

  17. Single, aligned carbon nanotubes in 3D nanoscale architectures enabled by top-down and bottom-up manufacturable processes

    International Nuclear Information System (INIS)

    Kaul, Anupama B; Megerian, Krikor G; Von Allmen, Paul; Baron, Richard L

    2009-01-01

    We have developed manufacturable approaches for forming single, vertically aligned carbon nanotubes, where the tubes are centered precisely, and placed within a few hundred nm of 1-1.5 μm deep trenches. These wafer-scale approaches were enabled by using chemically amplified resists and high density, low pressure plasma etching techniques to form the 3D nanoscale architectures. The tube growth was performed using dc plasma-enhanced chemical vapor deposition (PECVD), and the materials used in the pre-fabricated 3D architectures were chemically and structurally compatible with the high temperature (700 deg. C) PECVD synthesis of our tubes, in an ammonia and acetylene ambient. Such scalable, high throughput top-down fabrication processes, when integrated with the bottom-up tube synthesis techniques, should accelerate the development of plasma grown tubes for a wide variety of applications in electronics, such as nanoelectromechanical systems, interconnects, field emitters and sensors. Tube characteristics were also engineered to some extent, by adjusting the Ni catalyst thickness, as well as the pressure and plasma power during growth.

  18. Sectoral Innovation Watch Food and Drinks Sector. Final Sector Report

    NARCIS (Netherlands)

    Leis, M.; Gijsbers, G.; Zee, F. van der

    2011-01-01

    The food and drinks manufacturing industry is a diverse and complex sector. There are ample possibilities for performance improvement and innovation in the food and drinks industry as well as a variety of challenges ranging from a lack of financial and human resources, fragmented consumer interests

  19. Investigation of compaction and permeability during the out-of-autoclave and vacuum-bag-only manufacturing of a laminate composite with aligned carbon nanofibers

    Science.gov (United States)

    Mann, Erin

    Both industry and commercial entities are in the process of using more lightweight composites. Fillers, such as fibers, nanofibers and other nanoconstituents in polymer matrix composites have been proven to enhance the properties of composites and are still being studied in order to optimize the benefits. Further optimization can be studied during the manufacturing process. The air permeability during the out-of-autoclave-vacuum-bag-only (OOA-VBO) cure method is an important property to understand during the optimization of manufacturing processes. Changes in the manufacturing process can improve or decrease composite quality depending on the ability of the composite to evacuate gases such as air and moisture during curing. Therefore, in this study, the axial permeability of a prepreg stack was experimentally studied. Three types of samples were studied: control (no carbon nanofiber (CNF) modification), unaligned CNF modified and aligned CNF modified samples.

  20. Competitive manufacturing strategies for the manufacturing industries in Turkey

    OpenAIRE

    Ulusoy, Gündüz; Ulusoy, Gunduz

    2003-01-01

    In this study, results of the research into competitive manufacturing strategies of companies in four different sector studies covering 82 companies from the electronics, cement, automotive manufacturers, and appliances part and component suppliers in Turkey are presented. The data used in the study are gathered by conducting four sector surveys in 1997 and 1998 using a questionnaire supported by some follow-up interviews and site visits. A competitive manufacturing strategy is represented he...

  1. EFFECT OF INTELLECTUAL CAPITAL, CAPITAL STRUCTURE AND MANAGERIAL OWNERSHIP TOWARD FIRM VALUE OF MANUFACTURING SECTOR COMPANIES LISTED IN INDONESIA STOCK EXCHANGE (IDX PERIOD 2010-2014

    Directory of Open Access Journals (Sweden)

    Hamidah Hamidah

    2015-09-01

    Full Text Available The purpose of this study is to know the effect of Intellectual Capital, Capital Structure and Managerial Ownership on Firm Value in Manufacturing Company Listed on Indonesia Stock Exchange in 2010-2014. In this research, intellectual capital can be seen from VACA (Value Added Capital Employed, VAHU (Value Added Human Capital, and STVA (Structural Capital Value Added. The research model in this study employs panel data analysis. The samples are manufacturing companies listed in Indonesian Stock Exchange in 2010-2014 selected by purposive sampling. The result show that VACA and STVA has negative and not significant effect on firm value (Tobins’Q. Whereas, VAHU have positive and not significant effect on firm value. Capital structure (DAR have positive and significant effect on firm value. Managerial ownership (MGRL have negative and significant effect on firm value.

  2. SCENARIOS FOR MEETING CALIFORNIA'S 2050 CLIMATE GOALS California's Carbon Challenge Phase II Volume I: Non-Electricity Sectors and Overall Scenario Results

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Max; Greenblatt, Jeffrey; Donovan, Sally; Nelson, James; Mileva, Ana; Johnston, Josiah; Kammen, Daniel

    2014-06-01

    This study provides an updated analysis of long-term energy system scenarios for California consistent with the State meeting its 2050 climate goal, including detailed analysis and assessment of electricity system build-out, operation, and costs across the Western Electricity Coordinating Council (WECC) region. Four key elements are found to be critical for the State to achieve its 2050 goal of 80 percent greenhouse (GHG) reductions from the 1990 level: aggressive energy efficiency; clean electricity; widespread electrification of passenger vehicles, building heating, and industry heating; and large-scale production of low-carbon footprint biofuels to largely replace petroleum-based liquid fuels. The approach taken here is that technically achievable energy efficiency measures are assumed to be achieved by 2050 and aggregated with the other key elements mentioned above to estimate resultant emissions in 2050. The energy and non-energy sectors are each assumed to have the objective of meeting an 80 percent reduction from their respective 1990 GHG levels for the purposes of analysis. A different partitioning of energy and non-energy sector GHG greenhouse reductions is allowed if emission reductions in one sector are more economic or technically achievable than in the other. Similarly, within the energy or non-energy sectors, greater or less than 80 percent reduction from 1990 is allowed for sub-sectors within the energy or non-energy sectors as long as the overall target is achieved. Overall emissions for the key economy-wide scenarios are considered in this report. All scenarios are compliant or nearly compliant with the 2050 goal. This finding suggests that multiple technical pathways exist to achieve the target with aggressive policy support and continued technology development of largely existing technologies.

  3. Modernization perspectives of the Sao Paulo State sugarcane sector through the clean development mechanism and potential carbon credits generation

    Energy Technology Data Exchange (ETDEWEB)

    Coelho, Suani Teixeira; Lora, Beatriz Acquaro [Brazilian Reference Center on Biomass (CENBIO/USP), SP (Brazil)], Emails: suani@iee.usp.br, blora@iee.usp.br

    2009-07-01

    The world-wide necessity of greenhouse gases mitigation and the intergovernmental mobilization to reach the objectives established by the United Nations Framework on Climate Change (UNFCCC) has opened space for the renewable energy increase in the world's energy matrix. In Brazil, the solid sugarcane industry currently develops business in the scope of the clean development mechanism (CDM) under the Kyoto's Protocol, by means of 18 biomass-based projects, with renewable energy generation through bagasse cogeneration at 20 Sao Paulo State's sugarcane production units. The projects activity's consists of increasing the efficiency in the bagasse cogeneration facilities, qualifying the units to sell surplus electricity to the national grid, avoiding the dispatch of the same amount of energy produced by fossil-fuelled thermal plants to that grid. The reduced emissions are measured in carbon equivalent and can be converted into negotiable credits. The objective of this study was to build a 'state of art' scenario, calculating the potential emissions reduction through CDM projects for the sugarcane sector of Sao Paulo State, in which we consider the adherence of all the production units of the State to the CDM projects. The technological parameters used to elaborate the scenario were provided by the Sao Paulo State Government Bioenergy Special Commission and the baseline factor used of 0,268 tCO{sub 2}e/MWh was the adopted by the CDM projects in operation in the State. The sugarcane database for the calculations was the production ranking provided by UNICA for the 2006/2007 season. In the most conservative scenario (40 bar bagasse) 131 units could generate 607 MWm of surplus power avoiding the emission of 1.404.593 tCO{sub 2}e/year. For the 92 bar (bagasse and straw) scenario, the units could generate 3.055 MWm of surplus power avoiding 12.199.443 tCO{sub 2}e/year. (author)

  4. Prospects of carbon capture and storage (CCS) in China’s power sector – An integrated assessment

    International Nuclear Information System (INIS)

    Viebahn, Peter; Vallentin, Daniel; Höller, Samuel

    2015-01-01

    expect a striking dominance of coal-fired power generation in the country’s electricity sector, even if the recent trend towards a flattened deployment of coal capacity and reduced annual growth rates of coal-fired generation proves to be true in the future. In order to reduce fossil fuel-related CO_2 emissions to a level that would be consistent with the long-term climate protection target of the international community to which China is increasingly committing itself, this option may require the introduction of CCS. However, a precondition for opting for CCS would be finding robust solutions to the constraints highlighted in this article. Furthermore, a comparison with other low-carbon technology options may be useful in drawing completely valid conclusions on the economic, ecological and social viability of CCS in a low-carbon policy environment. The assessment dimensions should be integrated into macro-economic optimisation models by combining qualitative with quantitative modelling, and the flexible operation of CCS power plants should be analysed in view of a possible role of CCS for balancing fluctuating renewable energies.

  5. Forest sector carbon analyses support land management planning and projects: Assessing the influence of anthropogenic and natural factors

    Science.gov (United States)

    Alexa J. Dugan; Richard Birdsey; Sean P. Healey; Yude Pan; Fangmin Zhang; Gang Mo; Jing Chen; Christopher W. Woodall; Alexander J. Hernandez; Kevin McCullough; James B. McCarter; Crystal L. Raymond; Karen. Dante-Wood

    2017-01-01

    Management of forest carbon stocks on public lands is critical to maintaining or enhancing carbon dioxide removal from the atmosphere. Acknowledging this, an array of federal regulations and policies have emerged that requires US National Forests to report baseline carbon stocks and changes due to disturbance and management and assess how management activities and...

  6. A decomposition analysis of the driving factors of CO_2 (Carbon dioxide) emissions from the power sector in the European Union countries

    International Nuclear Information System (INIS)

    Karmellos, M.; Kopidou, D.; Diakoulaki, D.

    2016-01-01

    The scope of this paper is to investigate the driving factors of CO_2 emissions from electricity generation in all European Union countries (EU-28) during the period 2000–2012. Particular emphasis is placed on the assessment of any potential association between the examined driving factors and major climate and energy policies implemented during the examined period. In addition, the analysis distinguishes two subperiods, namely 2000–2007 and 2007–2012 in order to detect the impact of the economic crisis on each distinct driving factor and, consequently, on the total level of CO_2 emissions from the power sector. The model developed to analyse the changes in CO_2 emissions from the power sector across EU-28, is based on LMDI-I method and takes into account five driving factors: level of activity, electricity intensity, electricity trade, efficiency of electricity generation and fuel mix. The obtained results show that in times of economic growth the main factor counterbalancing the activity effect was in most countries the decreasing electricity intensity, while the contribution of all other factors becomes apparent later, despite the economic crisis and in view of the Kyoto targets. - Highlights: • LMDI is used to identify driving forces of CO_2 emissions from EU's power sector. • Declining electricity intensity was the main restrictive factor before 2007. • Fuel shifts contributed to emissions fall mostly after 2007, despite the crisis. • Trade effect is notable and indicates growing carbon leakage in the power sector.

  7. Manufacturing strategy issues in selected Indian manufacturing industry

    Directory of Open Access Journals (Sweden)

    Mahender Singh

    2013-03-01

    Full Text Available This paper presents some findings of Indian manufacturing sectors viz. automobile (especially two-wheeler, tractor and general manufacturing industry. Various manufacturing strategy issues such as competitive priorities, improvement activities, and performance measures, have been identified and assessed in Indian context. Sector wise comparison of competitive priorities, improvement activities i.e. advanced manufacturing technology (AMT, integrated information systems (IIS, and advanced management systems (AMS, and performance measure, is provided. Our results showed that most of the Indian companies are still emphasizing on quality. However, automobile sector has set to compete globally with high innovation rate, faster new product development, and continuous improvement. It is also observed that Indian companies are investing more in AMS as compared to IIS and AMT. Manufacturing competence index is also computed for each sector.

  8. The Moderating Role of Corporate Governance on the Relationship between Capital Structure and Financial Performance: Evidence from Manufacturing Sector of Pakistan

    Directory of Open Access Journals (Sweden)

    Muhammad Iqbal

    2017-02-01

    Full Text Available The key purpose of this research paper is to explore the moderating effect of Corporate Governance on the relationship between accounting base financial performance i.e. ROA, and ROE and Capital Structure of 173 Manufacturing firms listed in KSE of Pakistan for the period of 2009 to 2014. In this study multiple regression method is used under fixed effect regression model approach on panel data. The empirical results show that the inclusion of Corporate Governance Index (CGI as moderating variable has influenced the interaction between Capital Structure and Financial Performance which was positively significant. The result is generally found that the most of Pakistani manufacturing listed firms pursue good corporate governance mechanism and use good and optimal level of Capital Mix to get the better and high financial performance. Furthermore, the corporate governance sub-indices i.e. board structure (BOD-I and transparency & disclosure (DISC-III both also have positive and statistically significant association with both firms performance variables: ROA and ROE. Moreover, the ownership structure sub-index (OWS-II has not significant influence on financial performance. In last, the capital structure also has positive relationship with financial performance, interestingly about 70 per cent of Capital is financed by Equity capital and the Debt capital signifies 30 per cent only. The core significance of this paper is to investigate the impact of Corporate Governance practices on financial decisions from the Pakistani perspective.

  9. Fuelling Economic Growth The Role of Public–Private Sector ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Types of parts manufactured by domestic firms in the automotive sector. 237. 8.8. The first ... Tanzania Engineering and Manufacturing Design Organization. TIRDO. Tanzania ...... Table 2.3 Distribution of firms according to sector of production ...

  10. Energy sector integration for low carbon development in Greater Mekong sub-region: Towards a model of South-South cooperation

    Energy Technology Data Exchange (ETDEWEB)

    Zhai, Yongping

    2010-09-15

    The Greater Mekong Sub-region (GMS) in Southeast Asia has embarked on a roadmap of power interconnection and expanded energy sector cooperation. An Asian development bank committed study using Model of Energy Supply Systems Alternatives and their General Environmental Impacts (MESSAGE) assessed the impacts of various scenarios, the results indicate that GMS integration will help these countries to achieve low carbon and sustainable development. The article suggests that the experience of GMS cooperation be made a model for South-South cooperation in the global effort to fight climate change.

  11. Thermal energy consumption and carbon dioxide emissions in ceramic tile manufacture - Analysis of the Spanish and Brazilian industries

    International Nuclear Information System (INIS)

    Monfort, E.; Mezquita, A.; Vaquer, E.; Mallol, G.; Alves, H. J.; Boschi, A. O.

    2012-01-01

    Spain and Brazil are two of the world's biggest ceramic tile producers. The tile manufacturing process consumes a great quantity of thermal energy that, in these two countries, is mainly obtained from natural gas combustion, which entails CO 2 emission, a greenhouse gas. This study presents a comparative analysis of the thermal energy consumption and CO 2 emissions in the ceramic tile manufacturing process in Spain and Brazil, in terms of the different production technologies and different products made. The energy consumption and CO 2 emissions in ceramic tile manufacture by the wet process are very similar in both countries. In the dry process used in Brazil, less thermal energy is consumed and less CO 2 is emitted than in the wet process, but it is a process that is only used in manufacturing one particular type of product, which exhibits certain technical limitations. While in Spain the use of cogeneration systems in spray-dryers improves significantly the global energy efficiency. The average energy consumption in the different process stages, in both countries, lies within the range indicated in the Reference Document on Best Available Techniques in the Ceramic Manufacturing Industry (BREF of the Ceramic Manufacturing Industry) of the European Union. (Author) 14 refs.

  12. Pathways to Carbon Neutral Industrial Sectors: Integrated Modelling Approach with High Level of Detail for End-use Processes

    DEFF Research Database (Denmark)

    Industry constitutes a substantial share of the energy and fuel consumption in energy systems. Types and patterns of usage within different industrial sectors are diverse. In this paper, we illustrate the energy and fuel use in Danish industry by 24 end-uses and 20 fuels and provide hourly profiles...... for electricity, space and process heating. The heat profiles are based on measured natural gas consumption. While seasonal patterns are predominant for space heating, process heating and electricity consumption are found to follow sector-related activities on a temporal scale. Building on this data analysis...

  13. Comparison of The Performance of Proton Exchange Membrane Fuel Cell (PEMFC Electrodes with Different Carbon Powder Content and Methods of Manufacture

    Directory of Open Access Journals (Sweden)

    Dedi Rohendi

    2016-11-01

    Full Text Available Carbon powder in the gas diffusion layer (GDL contained in the membrane electrode assembly (MEA has an important role in the flow of electrons and reactant gas. Meanwhile, the method of making the electrode is one of the many studies conducted to determine the most appropriate method to use. Comparative study of the performance of proton exchange membrane fuel cell (PEMFC electrodes with different carbon powder content (vulcan XC-72 in the GDL and methods of manufacture of the electrode between casting and spraying method has been carried out. The spraying method consists of one layer and three layer of catalyst layer (CL. The content of carbon powder in the GDL as much as 3 mg cm-2 has a better performance compared to 1.5 mg cm-2 with an increase of 177.78% current density at 0.6 V. Meanwhile, the manufacture of CL with three-layer spraying method has better performance compared with one-layer spraying and casting method.

  14. Research report for fiscal 1998. Research into the trends of low-carbon automotive fuel manufacturing technologies; 1998 nendo jidoshayo teitanso nenryo no seizo gijutsu doko chosa hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    Studies are made of optimum materials and methods for manufacturing low-carbon fuels for reduction in greenhouse gas emissions. When their thermal dynamic limits and the technological maturity are considered, it is inferred that no extensive improvement will be achieved by merely improving on the efficiency of the existing fuels. The use of various high-efficiency driving power sources utterly different in mechanism from the conventional ones, such as those for fuel cell-powered automobiles, and the promotion of the use of low-carbon fuels such as methanol and methane for all kinds of driving power sources including those for the said fuel cell-powered automobiles, will become necessary. The use will also be necessary of recyclable materials. The biomass resources, in particular, since they absorb CO2 gas in their growing process by virtue of photosynthesis, may be said to be free of CO2 gas emissions. They have their own problems, however, which involve the economy of energy consumed for their production, harvesting, transportation, and conversion into fuels. It is therefore required that their whole life cycle be studied before their greenhouse gas reduction effect may be correctly assessed. The quantities of resources available for the production of automotive low-carbon fuels, manufacturing technologies, etc., are first of all put in order for easy perusal. An effective way is assessed for the whole including the life cycle. (NEDO)

  15. Decoupling Analysis of China’s Product Sector Output and Its Embodied Carbon Emissions—An Empirical Study Based on Non-Competitive I-O and Tapio Decoupling Model

    Directory of Open Access Journals (Sweden)

    Jianbo Hu

    2017-05-01

    Full Text Available This paper uses the non-competitive I-O model and the Tapio decoupling model to comprehensively analyze the decoupling relationship between the output of the product sector in China and its embodied carbon emissions under trade openness. For this purpose, the Chinese input and output data in 2002, 2005, 2007, 2010, and 2012 are used. This approach is beneficial to identify the direct mechanism for the increased carbon emission in China from a micro perspective and provides a new perspective for the subsequent study about low-carbon economy. The obtained empirical results are as follows: (1 From overall perspective, the decoupling elasticity between the output of the product sector and its embodied carbon emissions decreased. Output and embodied carbon emissions showed a growth link from 2002 to 2005 and a weak decoupling relationship for the rest of the study period. (2 Among the 28 industries in the product sector, the increased growth rate of output in more and more product sectors was no longer accompanied by large CO2 emissions. The number of industries with strong decoupling relationships between output and embodied carbon emissions increased. (3 From the perspective of three industries, the output and embodied carbon emissions in the second and third industries exhibited a growth link only from 2002 to 2005; the three industries presented weak or strong decoupling for the rest of the study period. Through empirical analysis, this paper mainly through the construction of ecological and environmental protection of low carbon agriculture, low carbon cycle industrial system, as well as intensive and efficient service industry to reduce the carbon emissions of China’s product sector.

  16. Late summer particulate organic carbon export and twilight zone remineralisation in the Atlantic sector of the Southern Ocean

    Science.gov (United States)

    Planchon, F.; Cavagna, A.-J.; Cardinal, D.; André, L.; Dehairs, F.

    2013-02-01

    As part of the GEOTRACES Bonus-GoodHope (BGH) expedition (January-March 2008) in the Atlantic sector of the Southern Ocean, particulate organic carbon (POC) export was examined from the surface to the mesopelagic twilight zone using water column distributions of total 234Th and biogenic particulate Ba (Baxs). Surface POC export production was estimated from steady state and non steady state modelling of 234Th fluxes, which were converted into POC fluxes, using the POC/234Th ratio of large, potentially sinking particles (> 53 μm) collected via in situ pumps. Deficits in 234Th activities were observed at all stations from the surface to the bottom of the mixed layer, yielding 234Th export fluxes from the upper 100 m of 496 ± 214 dpm m-2 d-1 to 1195 ± 158 dpm m-2 d-1 for the steady state model and of 149 ±517 dpm m-2 d-1 to 1217 ± 231 dpm m-2 d-1 for the non steady state model. Using the POC/234Thp ratio of sinking particles (ratios varied from 1.7 ± 0.2 μmol dpm-1 to 4.8 ± 1.9 μmol dpm-1) POC export production at 100 m was calculated to range between 0.9 ± 0.4 and 5.1 ± 2.1 mmol C m-2 d-1,assuming steady state and between 0.3 ± 0.9 m-2 d-1 and 4.9 ± 3.3 mmol C m-2 d-1, assuming non steady state. From the comparison of both approaches, it appears that during late summer export decreased by 56 to 16% for the area between the sub-Antarctic zone and the southern Antarctic Circumpolar Current Front (SACCF), whereas it remained rather constant over time in the HNLC area south of the SACCF. POC export represented only 6 to 54% of new production, indicating that export efficiency was, in general, low, except in the vicinity of the SACCF, where export represented 56% of new production. Attenuation of the POC sinking flux in the upper mesopelagic waters (100-600 m depth interval) was evidenced both, from excess 234Th activities and from particulate biogenic Ba (Baxs) accumulation. Excess 234Th activities, reflected by 234Th/238U ratios as large as 1.21 ± 0

  17. Pathways to Carbon Neutral Industrial Sectors: Integrated Modelling Approach with High Level of Detail for End-use Processes

    DEFF Research Database (Denmark)

    Wiese, Frauke; Baldini, Mattia

    for electricity, space and process heating. The heat profiles are based on measured natural gas consumption. While seasonal patterns are predominant for space heating, process heating and electricity consumption are found to follow sector-related activities on a temporal scale. Building on this data analysis...

  18. Carbon Leakage in the Primary Aluminium Sector: What evidence after 6 1/2 years of the EU ETS? - Working Paper No. 2012-12

    International Nuclear Information System (INIS)

    Sartor, Oliver

    2012-02-01

    This paper provides an econometric analysis of the evidence of carbon leakage from the European primary aluminium industry during the first 6 1/2 years of the EU ETS. The findings suggest that while rising electricity prices have played a critical role in reducing the competitiveness of EU primary aluminium smelting in recent years, no evidence of carbon leakage can be detected so far. Other factors, including rising primary energy prices and changes in EU competition law regarding long term contracts, appear to be more important factors explaining the rise in net imports of primary aluminium and the gradual closure of a number of European primary smelters during the past 6 1/2 years. Our results suggest that the carbon leakage debate in this sector may therefore be better seen in terms of not accelerating the decline of the industry in Europe, rather than preventing it, and that any state-aid to the industry to prevent carbon leakage should therefore be applied accordingly. (author)

  19. Comparing PAH availability from manufactured gas plant soils and sediments with chemical and biological tests. 1. PAH release during water desorption and supercritical carbon dioxide extraction

    Energy Technology Data Exchange (ETDEWEB)

    Hawthorne, S.B.; Poppendieck, D.G.; Grabanski, C.B.; Loehr, R.C. [University of North Dakota, Grand Forks, ND (US). Energy and Environmental Research Center

    2002-11-15

    Soil and sediment samples from OG (oil gas) and CG (coal gas) manufactured gas plant (MGP) sites in the United States that had been closed for about 50 years were selected to represent a range of PAH concentrations and sample matrix compositions. Samples varied from vegetated soils to lampblack soot and had carbon contents from 3 to 87 wt%. Supercritical carbon dioxide, SFE desorption and water/XAD{sub 2} desorption curves were determined and fit with a simple two-site model to determine the rapid-released fraction (F) for PAHs ranging from naphthalene to benzo-(ghi)perylene. F values varied greatly among the samples. Release rates did not correlate with sample matrix characteristics including PAH concentrations, elemental composition or 'hard' and 'soft' organic carbon, indicating that PAH release cannot easily be estimated on the basis of sample matrix composition. F values for CG site samples obtained with SFE and water desorption agreed well but SFE yielded higher F values for the OG samples. These behaviors were attributed to the stronger ability of carbon dioxide than water to desorb PAHs from the highly aromatic (hard) carbon of the OG matrixes, while carbon dioxide and water showed similar abilities to desorb PAHs from the more polar (soft) carbon of the CG samples. The combined SFE and water desorption approaches should improve the understanding of PAH sequestration and release from contaminated soils and sediments and provide the basis for subsequent studies, using the same samples to compare PAH release with PAH availability to earthworms. 46 refs., 4 figs., 4 tabs.

  20. The carbon credit market at the electric sector; O mercado de creditos de carbono no setor eletrico

    Energy Technology Data Exchange (ETDEWEB)

    Huayllas, T.E.C.; Ramos, D.S.; Arnez, R.L.V. [Universidade de Sao Paulo (USP), SP (Brazil)]. E-mails: tesoroelena@pea.usp.br; dorel.ramos@poli.usp.br; ricleon@pea.usp.br

    2006-07-01

    The main goal of this work is to evaluate the carbon market development regarding important issues such as the sale and purchase negotiations' state of the art in both the international and regional markets. Despite the uncertainties, the carbon market became a reality and is assuming increasing importance as a response to the emissions reduction of the greenhouse gases. At present, the carbon market trading is motivating to international entities, governments and corporations to adopt actions that could contribute to the reduction and commercialization of the greenhouse gases. The contribution of the electric industry to the production of the main greenhouse gases is also an aspect analyzed herein. (author)

  1. Potential impact of (CET) carbon emissions trading on China’s power sector: A perspective from different allowance allocation options

    DEFF Research Database (Denmark)

    Cong, Ronggang; Wei, Yi-Ming

    2010-01-01

    of traditional methods. We establish an agent-based model, CETICEM (CET Introduced China Electricity Market), of introduction of CET to China. In CETICEM, six types of agents and two markets are modeled. We find that: (1) CET internalizes environment cost; increases the average electricity price by 12......In Copenhagen climate conference China government promised that China would cut down carbon intensity 40–45% from 2005 by 2020. CET (carbon emissions trading) is an effective tool to reduce emissions. But because CET is not fully implemented in China up to now, how to design it and its potential......%; and transfers carbon price volatility to the electricity market, increasing electricity price volatility by 4%. (2) CET influences the relative cost of different power generation technologies through the carbon price, significantly increasing the proportion of environmentally friendly technologies; expensive...

  2. An Eco-Design and Innovation Feasibility Study of Low-Carbon Illumination Technologies for the Tertiary Sector in Denmark

    DEFF Research Database (Denmark)

    Bjarklev, Araceli

    objective is to contribute by discussing the elements that a new framework for eco-design and innovation feasibility studies could provide to the evaluation of technologies that will facilitate a response to the climate, energy and economic development challenges the illumination sector in Denmark faces......This thesis presents an eco-design and innovation feasibility study that focuses on the Danish lighting sector. The main general research objective is: To identify possibilities for further innovations that can contribute to reducing CO2 emissions and reduce the use of fossil fuels. An integrated...... today. To achieve these goals, this study integrates three different levels of systemic analysis: Firstly, the product system analysis, where technological possibilities to improve energy efficiency are discussed and new technological improvements identified. Secondly, it takes into consideration...

  3. VARIMAX MODEL TO FORECAST THE EMISSION OF CARBON DIOXIDE FROM ENERGY CONSUMPTION IN RUBBER AND PETROLEUM INDUSTRIES SECTORS IN THAILAND

    Directory of Open Access Journals (Sweden)

    Pruethsan Sutthichaimethee

    2017-05-01

    Full Text Available This study aims to analyze the forecasting of CO2 emission from the energy consumption in the Rubber, Chemical and Petroleum Industries sectors in Thailand. The scope of research employed the input-output table of Thailand from the year 2000 to 2015. It was used to create the model of CO2 emission, population, GDP growth and predict ten years and thirty years in advance. The model used was the VARIMAX Model which was divided into two models. The results show that from the first model by using which predicted the duration of ten years (2016-2025 by using VARIMAX Model (2,1,2, On average, Thailand has 17.65% higher quantity of CO2 emission than the energy consumption sector (in 2025. The second model predicted the duration of 30 years (2016-2045 by using VARIMAX Model (2,1,3 shows that Thailand has average 39.68% higher quantity of CO2 emission than the energy consumption sector (in 2025. From the analyses, it shows that Thailand has continuously higher quantity of CO2 emission from the energy consumption. This negatively affects the environmental system and economical system of the country incessantly. This effect can lead to unsustainable development.

  4. Effects of carbon fibres on the life cycle assessment of additively manufactured injection moulding inserts for rapid prototyping

    DEFF Research Database (Denmark)

    Hofstätter, Thomas; Bey, Niki; Mischkot, Michael

    2017-01-01

    properties and lifetime. The additively manufactured inserts are compared to the standard materials steel, aluminium and brass. The investigated part of the production and prototyping phase considers the insert itself, the moulded part, and resulting waste material of the injection moulding process....

  5. Tendances Carbone no. 102. Effort sharing, enhanced flexibility and low-carbon transformation: a new proposal for non-ETS sectors in the post-2020 period

    International Nuclear Information System (INIS)

    Sarto, Oliver; Cochran, Ian

    2015-05-01

    Among the publications of CDC Climat Research, 'Tendances Carbone' bulletin specifically studies the developments of the European market for CO 2 allowances. Beside some statistical figures about energy production/consumption and carbon markets, this issue specifically addresses the following points: - EU ETS - MSR timetable: The second Trilogue meeting between EU institutions took place on 5 May. An agreement was reached for the implementation of the MSR as from 2019, and a placement of back-loaded as well as unused allowances straight into the reserve. - EU ETS - Carbon leakages: The European Commission should propose measures to tackle carbon leakages issues in the six months following the adoption of the MSR. - EU ETS emissions: Emissions under the EU ETS decreased by 4,4 % in 2014, and are yet below the 2020 cap of 1,816 Mt CO 2 e

  6. Comparing PAH availability from manufactured gas plant soils and sediments with chemical and biological tests. 1. PAH release during water desorption and supercritical carbon dioxide extraction.

    Science.gov (United States)

    Hawthorne, Steven B; Poppendieck, Dustin G; Grabanski, Carol B; Loehr, Raymond C

    2002-11-15

    Soil and sediment samples from oil gas (OG) and coal gas (CG) manufactured gas plant (MGP) sites were selected to represent a range of PAH concentrations (150-40,000 mg/kg) and sample matrix compositions. Samples varied from vegetated soils to lampblack soot and had carbon contents from 3 to 87 wt %. SFE desorption (120 min) and water/XAD2 desorption (120 days) curves were determined and fit with a simple two-site model to determine the rapid-released fraction (F) for PAHs ranging from naphthalene to benzo[ghi]perylene. F values varied greatly among the samples, from ca. 10% to >90% for the two- and three-ring PAHs and from <1% to ca. 50% for the five- and six-ring PAHs. Release rates did not correlate with sample matrix characteristics including PAH concentrations, elemental composition (C, H, N, S), or "hard" and "softs" organic carbon, indicating that PAH release cannot easily be estimated on the basis of sample matrix composition. Fvalues for CG site samples obtained with SFE and water desorption agreed well (linear correlation coefficient, r2 = 0.87, slope = 0.93), but SFE yielded higher F values for the OG samples. These behaviors were attributed to the stronger ability of carbon dioxide than water to desorb PAHs from the highly aromatic (hard) carbon of the OG matrixes, while carbon dioxide and water showed similar abilities to desorb PAHs from the more polar (soft) carbon of the CG samples. The combined SFE and water desorption approaches should improve the understanding of PAH sequestration and release from contaminated soils and sediments and provide the basis for subsequent studies using the same samples to compare PAH release with PAH availability to earthworms.

  7. Carbon dioxide emissions from fossil fuel consumption and cement manufacture, 1751-1991, and an estimate of their isotopic composition and latitudinal distribution

    Energy Technology Data Exchange (ETDEWEB)

    Andres, R.J.; Marland, G.; Boden, T.; Bischof, S. [University of Alaska, Fairbanks, AK (USA). Inst. of Northern Engineering

    2000-05-01

    This work briefly discusses four of the current research emphases at Oak Ridge National Laboratory regarding the emission of CO{sub 2} from fossil fuel consumption, natural gas flaring, and cement manufacture. These emphases include: (1) updating the 1950 to present time series of CO{sub 2} emissions from fossil fuel consumption and cement manufacture, (2) extending this time series back to 1751, (3) gridding the data at 1 x 1{degree} resolution, and (4) estimating the isotopic signature of these emissions. A latitudinal distribution of carbon emissions is being completed. A southward shift in the major mass of CO{sub 2} emissions is occurring from European-North American latitudes toward Central-Southeast Asian latitudes, reflecting the growth of population and industrialization at these lower latitudes. The carbon isotopic signature of these CO{sub 2} emissions has been reexamined. The emissions of the past two decades were approximately 1% lighter than previously estimated. 37 refs., 5 figs., 5 tabs.

  8. Characteristics of particle-bound polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) in atmosphere used in carbon black feeding process at a tire manufacturing plant.

    Science.gov (United States)

    Chuang, Kuen-Yuan; Lai, Chia-Hsiang; Peng, Yen-Ping; Yen, Ting-Yu

    2015-12-01

    Concentrations of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) were estimated for different particle size distributions in a carbon black feeding process at a tire manufacturing plant on 15 days in March and April of 2014. A total of 75 integrated air samples were collected using a micro-orifice uniform deposition impactor (MOUDI). Particle-bound PCDD/Fs were analyzed using a high-resolution gas chromatograph/high-resolution mass spectrometer (HRGC/HRMS). Concentrations of thoracic particles and total particles produced in the carbon black feeding process of a tire manufacturing plant were measured in ranges of 0.19-2.61 and 0.28-4.22 mg/m(3), respectively. On all sampling days, the three most abundant species of PCDD/Fs were OCDD, 1,2,3,4,6,7,8-HpCDF, and OCDF. The mean concentrations of total PCDD/Fs were 0.74-6.83 pg/m(3) within five particle size ranges. Total I-TEQ in particulate matter (PM)18 and PM2.5-10, respectively. However, the total I-TEQ of thoracic PM contributed approximately 74 % of the total I-TEQ of total PM. The assessment of health risk indicates that exposure to fractions of thoracic PM by inhalation poses a significant cancer risk (>10(-6)).

  9. The journey towards decarbonization: Exploring socio-technical transitions in the electricity sector in the province of Ontario (1885–2013) and potential low-carbon pathways

    International Nuclear Information System (INIS)

    Rosenbloom, Daniel; Meadowcroft, James

    2014-01-01

    This article employs the multi-level perspective on socio-technical transitions to explore the historical evolution of the electricity regime in the province of Ontario from 1885-2013 and to interpret the potential for future movement towards decarbonization. With an emphasis on the political and social dimensions of transitions, this analysis traces the key features influencing change within Ontario's electricity system over the past century. This paper uses multiple criteria (the phase of electrification; role of the electricity system in economic development; structures of ownership, market and regulation; dominant technologies; and the relative stability of arrangements) to characterize distinct regime configurations and periods of instability which separate relatively stable system orientations. Lessons are drawn from the historical case with implications for future decarbonization in the province, including the importance of: (1) residual momentum; (2) embedded guiding principles; and, (3) politico-economic coalitions. - Highlights: • Investigates transitions in the electricity sector using the multi-level perspective. • Explores the socio-technical evolution of the electricity system in Ontario. • Draws lessons relevant for low-carbon transitions. • Poses key questions for the development of low-carbon pathways in Ontario. • Provides insights on the political dimensions of low-carbon transitions

  10. Generation and Use of Thermal Energy in the U.S. Industrial Sector and Opportunities to Reduce its Carbon Emissions

    Energy Technology Data Exchange (ETDEWEB)

    McMillan, Colin [National Renewable Energy Lab. (NREL), Golden, CO (United States); Boardman, Richard [Idaho National Lab. (INL), Idaho Falls, ID (United States); McKellar, Michael [Idaho National Lab. (INL), Idaho Falls, ID (United States); Sabharwall, Piyush [Idaho National Lab. (INL), Idaho Falls, ID (United States); Ruth, Mark [National Renewable Energy Lab. (NREL), Golden, CO (United States); Bragg-Sitton, Shannon [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-12-01

    This report quantifies greenhouse gas (GHG) emissions from the industrial sector and identifies opportunities for non-GHG-emitting thermal energy sources to replace the most significant GHG-emitting U.S. industries based on targeted, process-level analysis of industrial heat requirements. The intent is to provide a basis for projecting opportunities for clean energy use. This provides a prospectus for small modular nuclear reactors (including nuclear-renewable hybrid energy systems), solar industrial process heat, and geothermal energy. This report provides a complement to analysis of process-efficiency improvement by considering how clean energy delivery and use by industry could reduce GHG emissions.

  11. Carbon dioxide emissions from fossil fuel consumption and cement manufacture, 1751-1991; and an estimate of their isotopic composition and latitudinal distribution

    Energy Technology Data Exchange (ETDEWEB)

    Andres, R.J.; Marland, G.; Boden, T.; Bischof, S.

    1994-10-01

    This work briefly discusses four of the current research emphases at Oak Ridge National Laboratory regarding the emission of carbon dioxide (CO{sub 2}) from fossil fuel consumption, natural gas flaring and cement manufacture. These emphases include: (1) updating the 1950 to present time series of CO{sub 2} emissions from fossil fuel consumption and cement manufacture, (2) extending this time series back to 1751, (3) gridding the data at 1{sup 0} by 1{sup 0} resolution, and (4) estimating the isotopic signature of these emissions. In 1991, global emissions of CO{sub 2} from fossil fuel and cement increased 1.5% over 1990 levels to 6188 {times} 10{sup 6} metric tonnes C. The Kuwaiti oil fires can account for all of the increase. Recently published energy data (Etemad et al., 1991) allow extension of the CO emissions time series back to 1751. Preliminary examination shows good agreement with two other, but shorter, energy time series. A latitudinal distribution of carbon emissions is being completed. A southward shift in the major mass of CO{sub 2} emissions is occurring from European-North American latitudes towards central-southeast Asian latitudes, reflecting the growth of population and industrialization at these lower latitudes. The carbon isotopic signature of these emissions has been re-examined. The emissions of the last two decades are approximately 1{per_thousand} lighter than previously reported (Tans, 1981). This lightening of the emissions signature is due to fossil fuel gases and liquids, including a revision of their {delta}{sup 13}C isotopic signature and an increased production rate.

  12. Estimates of carbon dioxide emissions from fossil fuels combustion in the main sectors of selected countries 1971-1990

    International Nuclear Information System (INIS)

    Primio, J.C. di.

    1993-01-01

    Calculations of sectoral CO 2 emissions from fossil fuel burning in the period 1971-1990 were done for the 15 countries at the top of the list of nations ordered by decreasing contribution to global emissions, namely: United States of America, Soviet Union, People's Republic of China, Japan, Federal Republic of Germany, United Kingdom, India, Poland, Canada, France, Italy, German Democratic Republic, South Africa, Mexico and Czechoslovakia. In addition, the CO 2 emission of two groups of industrialized countries, namely the OECD and the European Economic Community (EEC) were calculated. The main recommendations of the IPCC/OECD current methodology have been adopted for the calculations, with the principal exception that CO 2 emissions from the use of bunker fuels have not been included in the national estimates. The sectors are: 1. Transformations. Total emissions and the part stemming from power plants 2. Industry (excluding Feedstocks) 3. Transportation 4. Agriculture 5. Residential 6. Commerce and Public Services 7. Non-specified Other 8. Non-Energy Use 9. Feedstocks (in Industry). Data are presented in tables and diagrams. (orig./KW)

  13. Tendances Carbone no. 84 'Climate and energy policies in the EU: a major role in reducing CO2 emissions from the energy and industry sectors'

    International Nuclear Information System (INIS)

    Alberola, Emilie; Gloaguen, Olivier

    2013-01-01

    Among the publications of CDC Climat Research, 'Tendances Carbone' bulletin specifically studies the developments of the European market for CO 2 allowances. This issue addresses the following points: This month, the European Environmental Agency revealed that the European Union had reduced emissions between 1990 and 2012 by approximately 18%, close to the 20% emissions reduction target by 2020. On May 15 2013, the European Commission had already announced that the verified CO 2 emissions generated by installations covered by the EU ETS amounted to 1,867 MtCO 2 in 2012, a 2% decline compared with 2011. In total, by excluding the aviation sector and on a like-for-like basis, the EU ETS' CO 2 emissions decreased by 12.3% between 2005 and 2012. Should we applaud this fall in CO 2 emissions? In other words, is this a structural decrease encouraged by climate and energy policies, or a circumstantial decrease triggered solely by the economic downturn?

  14. Proof of Concept Coded Aperture Miniature Mass Spectrometer Using a Cycloidal Sector Mass Analyzer, a Carbon Nanotube (CNT) Field Emission Electron Ionization Source, and an Array Detector

    Science.gov (United States)

    Amsden, Jason J.; Herr, Philip J.; Landry, David M. W.; Kim, William; Vyas, Raul; Parker, Charles B.; Kirley, Matthew P.; Keil, Adam D.; Gilchrist, Kristin H.; Radauscher, Erich J.; Hall, Stephen D.; Carlson, James B.; Baldasaro, Nicholas; Stokes, David; Di Dona, Shane T.; Russell, Zachary E.; Grego, Sonia; Edwards, Steven J.; Sperline, Roger P.; Denton, M. Bonner; Stoner, Brian R.; Gehm, Michael E.; Glass, Jeffrey T.

    2018-02-01

    Despite many potential applications, miniature mass spectrometers have had limited adoption in the field due to the tradeoff between throughput and resolution that limits their performance relative to laboratory instruments. Recently, a solution to this tradeoff has been demonstrated by using spatially coded apertures in magnetic sector mass spectrometers, enabling throughput and signal-to-background improvements of greater than an order of magnitude with no loss of resolution. This paper describes a proof of concept demonstration of a cycloidal coded aperture miniature mass spectrometer (C-CAMMS) demonstrating use of spatially coded apertures in a cycloidal sector mass analyzer for the first time. C-CAMMS also incorporates a miniature carbon nanotube (CNT) field emission electron ionization source and a capacitive transimpedance amplifier (CTIA) ion array detector. Results confirm the cycloidal mass analyzer's compatibility with aperture coding. A >10× increase in throughput was achieved without loss of resolution compared with a single slit instrument. Several areas where additional improvement can be realized are identified.

  15. Manufacturing Initiative

    Data.gov (United States)

    National Aeronautics and Space Administration — The Advanced Manufacturing Technologies (AMT) Project supports multiple activities within the Administration's National Manufacturing Initiative. A key component of...

  16. 75 FR 30781 - Manufacturing Council

    Science.gov (United States)

    2010-06-02

    ... convenience. Pending applicants remain under consideration and do not need to resubmit their applications..., particularly seeking the representation of small- and medium-sized enterprises. Additional factors which may be... marketing programs in support of manufacturing industries, job creation in the manufacturing sector, or the...

  17. Manufacturing consumption of energy 1994

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-01

    This report provides estimates on energy consumption in the manufacturing sector of the U.S. economy based on data from the Manufacturing Energy Consumption Survey. The sample used in this report represented about 250,000 of the largest manufacturing establishments which account for approximately 98 percent of U.S. economic output from manufacturing, and an expected similar proportion of manufacturing energy use. The amount of energy use was collected for all operations of each establishment surveyed. Highlights of the report include profiles for the four major energy-consuming industries (petroleum refining, chemical, paper, and primary metal industries), and an analysis of the effects of changes in the natural gas and electricity markets on the manufacturing sector. Seven appendices are included to provide detailed background information. 10 figs., 51 tabs.

  18. Electricity sector reforms in four Latin-American countries and their impact on carbon dioxide emissions and renewable energy

    International Nuclear Information System (INIS)

    Janet Ruiz-Mendoza, Belizza; Sheinbaum-Pardo, Claudia

    2010-01-01

    This paper analyzes carbon dioxide (CO 2 ) emissions related to energy consumption for electricity generation in four Latin-American countries in the context of the liberalization process. From 1990 to 2006, power plants based on renewable energy sources decreased its share in power installed capacity, and the carbon index defined as CO 2 emission by unit of energy for electricity production stayed almost constant for all countries with the exception of Colombia, where the index reduced due to increase in hydroelectricity generation in the last years. The paper also presents a new set of policies to promote renewable energy sources that have been developed in the four countries. The paper concludes that restructuring did not bring about environmental benefits related to a decrease in CO 2 emissions because this depend on the existence of committed policies, and dedicated institutional and regulatory frameworks.

  19. COAL DERIVED MATRIX PITCHES FOR CARBON-CARBON COMPOSITE MANUFACTURE/PRODUCTION OF FIBERS AND COMPOSITES FROM COAL-BASED PRECURSORS

    Energy Technology Data Exchange (ETDEWEB)

    Peter G. Stansberry; John W. Zondlo

    2001-07-01

    The Consortium for premium Carbon Products from Coal, with funding from the US Department of Energy, National Energy Technology Laboratory continue with the development of innovative technologies that will allow coal or coal-derived feedstocks to be used in the production of value-added carbon materials. In addition to supporting eleven independent projects during budget period 3, three meetings were held at two separate locations for the membership. The first was held at Nemacolin Woodlands Resort on May 15-16, 2000. This was followed by two meetings at Penn State, a tutorial on August 11, 2000 and a technical progress meeting on October 26-27.

  20. Manufacturing consumption of energy 1991

    Energy Technology Data Exchange (ETDEWEB)

    1994-12-01

    This report provides estimates on energy consumption in the manufacturing sector of the US economy. These estimates are based on data from the 1991 Manufacturing Energy Consumption Survey (MECS). This survey--administered by the Energy End Use and Integrated Statistics Division, Office of Energy Markets and End Use, Energy Information Administration (EIA)--is the most comprehensive source of national-level data on energy-related information for the manufacturing industries.

  1. Green Manufacturing Fundamentals and Applications

    CERN Document Server

    2013-01-01

    Green Manufacturing: Fundamentals and Applications introduces the basic definitions and issues surrounding green manufacturing at the process, machine and system (including supply chain) levels. It also shows, by way of several examples from different industry sectors, the potential for substantial improvement and the paths to achieve the improvement. Additionally, this book discusses regulatory and government motivations for green manufacturing and outlines the path for making manufacturing more green as well as making production more sustainable. This book also: • Discusses new engineering approaches for manufacturing and provides a path from traditional manufacturing to green manufacturing • Addresses regulatory and economic issues surrounding green manufacturing • Details new supply chains that need to be in place before going green • Includes state-of-the-art case studies in the areas of automotive, semiconductor and medical areas as well as in the supply chain and packaging areas Green Manufactu...

  2. China’s High-yield Pulp Sector and Its Carbon Dioxide Emission: Considering the Saved Standing Wood as an Increase of Carbon Storage

    Directory of Open Access Journals (Sweden)

    Yanhong Gao

    2014-11-01

    Full Text Available The production of high-yield pulp in China has increased significantly in recent years. The well-known advantages of this type of pulp include low production cost, high opacity, and good paper formation. In the context of state-of-the-art technologies, China’s high-yield pulping, which is dominated by the PRC-APMP (preconditioning refiner chemical treatment-alkaline peroxide mechanical pulping process, has a much higher energy input but a significantly lower wood consumption in comparison with the kraft pulping process. If the saved wood in the forest or plantation is considered as an increment of carbon storage, then the carbon dioxide emission from the production of high-yield pulp can be regarded as much lower than that of kraft pulp.

  3. Preparation of a New Adsorbent from Activated Carbon and Carbon Nanofiber (AC/CNF for Manufacturing Organic-Vacbpour Respirator Cartridge

    Directory of Open Access Journals (Sweden)

    Mehdi Jahangiri

    2013-01-01

    Full Text Available In this study a composite of activated carbon and carbon nanofiber (AC/CNF was prepared to improve the performance of activated carbon (AC for adsorption of volatile organic compounds (VOCs and its utilization for respirator cartridges. Activated carbon was impregnated with a nickel nitrate catalyst precursor and carbonnanofibers (CNF were deposited directly on the AC surface using catalytic chemical vapor deposition. Deposited CNFs on catalyst particles in AC micropores, were activated by CO2 to recover the surface area and micropores.Surface and textural characterizations of the prepared composites were investigated using Brunauer, Emmett andTeller’s (BET technique and electron microscopy respectively. Prepared composite adsorbent was tested forbenzene, toluene and xylene (BTX adsorption and then employed in an organic respirator cartridge in granularform. Adsorption studies were conducted by passing air samples through the adsorbents in a glass column at an adjustable flow rate. Finally, any adsorbed species not retained by the adsorbents in the column were trapped in a charcoal sorbent tube and analyzed by gas chromatography. CNFs with a very thin diameter of about 10-20 nmwere formed uniformly on the AC/CNF. The breakthrough time for cartridges prepared with CO2 activated AC/CNF was 117 minutes which are significantly longer than for those cartridges prepared with walnut shell- based activated carbon with the same weight of adsorbents. This study showed that a granular form CO2 activated AC/CNF composite could be a very effective alternate adsorbent for respirator cartridges due to its larger adsorption capacities and lower weight.

  4. Agriculture Sectors

    Science.gov (United States)

    The Agriculture sectors comprise establishments primarily engaged in growing crops, raising animals, and harvesting fish and other animals. Find information on compliance, enforcement and guidance on EPA laws and regulations on the NAICS 111 & 112 sectors.

  5. Radiation hardness of silicon detectors manufactured on epitaxial material and FZ bulk enriched with oxygen, carbon, tin and platinum

    CERN Document Server

    Ruzin, A; Glaser, M; Lemeilleur, F; Talamonti, R; Watts, S; Zanet, A

    1999-01-01

    Recent results on the radiation hardness of silicon detectors fabricated on epitaxial and float zone bulk silicon enriched by various impurities, such as carbon, oxygen, tin and platinum are reported. A new methodology of measurements of electrical properties of the devices has been utilized in the experiment. It has been shown that in the case of irradiation by protons, oxygen enriched silicon has better radiation hardness than standard float zone silicon. The carbon enriched silicon detectors, on the other hand, exhibited significantly inferior radiation hardness compared to standard detectors. This study shows for the first time, a violation of the widely used normalization technique of the various particle irradiations by NIEL coefficients. The study has been carried out in the framework of the RD48 (ROSE) collaboration, which studies the radiation hardening of silicon detectors. (5 refs).

  6. Synthesis of silica nanoparticles for the manufacture of porous carbon membrane and particle size analysis by sedimentation field-flow fractionation

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Seung Ho; Eum, Chul; Hun; Choi, Seong Ho; Kim, Woon Jung [Dept. of Chemistry, Hannam University, Daejeon (Korea, Republic of)

    2016-11-15

    Silica nanoparticles were synthesized by emulsion polymerization by mixing ethanol, ammonium hydroxide, water, and tetraethyl orthosilicate. An apparatus was designed and assembled for a large-scale synthesis of silica nanospheres, which was aimed for uniform mixing of the reactants. Then sedimentation field-flow fractionation (SdFFF) was used to determine the size distribution of the silica nanoparticles. SdFFF provided mass-based separation where the retention time increased with the particle size, thus the size distribution of silica nanoparticles obtained from SdFFF appeared more accurate than that from dynamic light scattering, particularly for those having broad and multimodal size distributions. A disk-shaped porous carbon membrane (PCM) was manufactured for application as an adsorbent by pressurizing the silica particles, followed by calcination. Results showed that PCM manufactured in this study has relatively high surface area and temperature stability. The PCM surface was modified by attaching a carboxyl group (PCM-COOH) and then by incorporating silver (PCM-COOH-Ag). The amount of COOH group on PCM was measured electrochemically by cyclic voltammetry, and the surface area, pore size, pore volume of PCM-COOH-Ag by Brunauer–Emmet–Teller measurement. The surface area was 40.65 and reduced to 13.02 after loading a COOH group then increased up to 30.37 after incorporating Ag.

  7. Social manufacturing

    OpenAIRE

    Hamalainen, Markko; Karjalainen, Jesse

    2017-01-01

    New business models harnessing the power of individuals have already revolutionized service industries and digital content production. In this study, we investigate whether a similar phenomenon is taking place in manufacturing industries. We start by conceptually defining two distinct forms of firm-individual collaboration in manufacturing industries: (1) social cloud manufacturing, in which firms outsource manufacturing to individuals, and (2) social platform manufacturing, in which firms pr...

  8. Water column distribution and carbon isotopic signal of cholesterol, brassicasterol and particulate organic carbon in the Atlantic sector of the Southern Ocean

    Directory of Open Access Journals (Sweden)

    A.-J. Cavagna

    2013-04-01

    Full Text Available The combination of concentrations and δ13C signatures of Particulate Organic Carbon (POC and sterols provides a powerful approach to study ecological and environmental changes in both the modern and ancient ocean. We applied this tool to study the biogeochemical changes in the modern ocean water column during the BONUS-GoodHope survey (February–March 2008 from Cape Basin to the northern part of the Weddell Gyre. Cholesterol and brassicasterol were chosen as ideal biomarkers of the heterotrophic and autotrophic carbon pools, respectively, because of their ubiquitous and relatively refractory nature. We document depth distributions of concentrations (relative to bulk POC and δ13C signatures of cholesterol and brassicasterol combined with CO2 aq. surface concentration variation. While the relationship between CO2 aq. and δ13C of bulk POC and biomarkers have been reported by others for the surface water, our data show that this persists in mesopelagic and deep waters, suggesting that δ13C signatures of certain biomarkers in the water column could be applied as proxies for surface water CO2 aq. We observed a general increase in sterol δ13C signatures with depth, which is likely related to a combination of particle size effects, selective feeding on larger cells by zooplankton, and growth rate related effects. Our data suggest a key role of zooplankton fecal aggregates in carbon export for this part of the Southern Ocean (SO. Additionally, in the southern part of the transect south of the Polar Front (PF, the release of sea-ice algae during the ice demise in the Seasonal Ice Zone (SIZ is hypothesized to influence the isotopic signature of sterols in the open ocean. Overall, the combined use of δ13C values and concentrations measurements of both bulk organic C and specific sterols throughout the water column offers the promising potential to explore the recent history of plankton and the fate of organic matter in the SO.

  9. Coccolithophore populations and their contribution to carbonate export during an annual cycle in the Australian sector of the Antarctic zone

    Science.gov (United States)

    Rigual Hernández, Andrés S.; Flores, José A.; Sierro, Francisco J.; Fuertes, Miguel A.; Cros, Lluïsa; Trull, Thomas W.

    2018-03-01

    The Southern Ocean is experiencing rapid and relentless change in its physical and biogeochemical properties. The rate of warming of the Antarctic Circumpolar Current exceeds that of the global ocean, and the enhanced uptake of carbon dioxide is causing basin-wide ocean acidification. Observational data suggest that these changes are influencing the distribution and composition of pelagic plankton communities. Long-term and annual field observations on key environmental variables and organisms are a critical basis for predicting changes in Southern Ocean ecosystems. These observations are particularly needed, since high-latitude systems have been projected to experience the most severe impacts of ocean acidification and invasions of allochthonous species. Coccolithophores are the most prolific calcium-carbonate-producing phytoplankton group playing an important role in Southern Ocean biogeochemical cycles. Satellite imagery has revealed elevated particulate inorganic carbon concentrations near the major circumpolar fronts of the Southern Ocean that can be attributed to the coccolithophore Emiliania huxleyi. Recent studies have suggested changes during the last decades in the distribution and abundance of Southern Ocean coccolithophores. However, due to limited field observations, the distribution, diversity and state of coccolithophore populations in the Southern Ocean remain poorly characterised. We report here on seasonal variations in the abundance and composition of coccolithophore assemblages collected by two moored sediment traps deployed at the Antarctic zone south of Australia (2000 and 3700 m of depth) for 1 year in 2001-2002. Additionally, seasonal changes in coccolith weights of E. huxleyi populations were estimated using circularly polarised micrographs analysed with C-Calcita software. Our findings indicate that (1) coccolithophore sinking assemblages were nearly monospecific for E. huxleyi morphotype B/C in the Antarctic zone waters in 2001-2002; (2

  10. Business venture-analysis case study relating to the manufacture of gas turbines for the generation of utility electric power. Volume II. Private sector and public sector venture studies. Final report. [Use of coal gasifier with combined gas and steam system

    Energy Technology Data Exchange (ETDEWEB)

    Davison, W.R.

    1978-05-05

    Increasing national attention is being directed toward the search for clean, efficient, and reliable energy-conversion systems, capable of using abundant indigenous fuels such as coal, for generation of utility electric power. A prime candidate in this area is the combined gas and steam (COGAS) system employing a high-temperature gas turbine with a steam-turbine bottoming cycle, fed by a coal gasifier. This program demonstrates the use of a logical and consistent venture-analysis methodology which could also be applied to investigate other high-technology, energy-conversion systems that have yet to reach a state of commercialization but which are of significant interest to the U.S. Government. The venture analysis was performed by using a computer to model the development, production, sales, and in-service development phases of programs necessary to introduce new gas turbines in COGAS systems. The simulations were produced in terms of estimated cash flows, rates of returns, and risks which a manufacturer would experience. Similar simulations were used to estimate public-sector benefits resulting from the lower cost of power and improved environment gained from the use of COGAS systems rather than conventional systems. The study shows that substantial social benefits could be realized and private investment would be made by the gas-turbine manufacturers if an infusion of external funds were made during key portions of the gas-turbine development program. It is shown that there is substantial precedent for such public assistance to make possible economic and environmental benefits that otherwise would not be possible. 42 references.

  11. Supercritical carbon dioxide extraction as a predictor of polycyclic aromatic hydrocarbon bioaccumulation and toxicity by earthworms in manufactured-gas plant site soils.

    Science.gov (United States)

    Kreitinger, Joseph P; Quiñones-Rivera, Antonio; Neuhauser, Edward F; Alexander, Martin; Hawthorne, Steven B

    2007-09-01

    The toxicity and uptake of polycyclic aromatic hydrocarbons (PAHs) by earthworms were measured in soil samples collected from manufactured-gas plant sites having a wide range in PAH concentrations (170-42,000 mg/kg) and soil characteristics. Samples varied from vegetated soils to pure lampblack soot and had total organic carbon contents ranging from 3 to 87%. The biota-soil accumulation factors (BSAFs) observed for individual PAHs in field-collected earthworms (Aporrectodea caliginosa) were up to 50-fold lower than the BSAFs predicted using equilibrium-partitioning theory. Acute toxicity to the earthworm Eisenia fetida was unrelated to total PAH concentration: Mortality was not observed in some soils having high concentrations of total PAHs (>42,000 mg/kg), whereas 100% mortality was observed in other soils having much lower concentrations of total PAHs (1,520 mg/kg). Instead, toxicity appeared to be related to the rapidly released fraction of PAHs determined by mild supercritical CO2 extraction (SFE). The results demonstrate that soils having approximately 16,000 mg rapidly released total PAH/kg organic carbon can be acutely toxic to earthworms and that the concentration of PAHs in soil that is rapidly released by SFE can estimate toxicity to soil invertebrates.

  12. What role for microgeneration in a shift to a low carbon domestic energy sector in the UK?

    Energy Technology Data Exchange (ETDEWEB)

    Bergman, N.; Eyre, N. [Environmental Change Institute, School of Geography and Environment, University of Oxford, South Parks Road, Oxford, OX1 3QY (United Kingdom)

    2011-06-15

    policy are that, as well as supporting the technologies, it needs to support existing niches and to develop new niche experiments. Policy needs to consider how to promote empowerment and responsibility and support or even develop new energy sector models; this will involve a range of stakeholders and multiple governance levels, not just national incentive schemes.

  13. 75 FR 71417 - Manufacturing Council Membership

    Science.gov (United States)

    2010-11-23

    ... DEPARTMENT OF COMMERCE International Trade Administration Manufacturing Council Membership AGENCY... marketing programs in support of manufacturing industries, job creation in the manufacturing sector, or the... their travel, living and other personal expenses. Meetings are held regularly and not less than annually...

  14. Integrated assessment of carbon capture and storage (CCS) in the German power sector and comparison with the deployment of renewable energies

    International Nuclear Information System (INIS)

    Viebahn, Peter; Daniel, Vallentin; Samuel, Höller

    2012-01-01

    Highlights: ► In this study an integrated approach is chosen for the assessment of CCS in Germany. ► Five different assessment dimensions are covered. ► A Conservative storage capacity assessment for Germany is done. ► There might be no need to focus on CCS in the power plant sector in Germany. ► We see a potential field of CCS for industrial processes and biomass applications. -- Abstract: If the current energy policy priorities are retained, there may be no need to focus additionally on carbon capture and storage (CCS) in the power plant sector of Germany. This applies even in the case of ambitious climate protection targets, according to the results of the presented integrated assessment study. These cover a variety of aspects: Firstly, the technology is not expected to become available on a large scale in Germany before 2025. Secondly, if renewable energies and combined heat and power are expanded further and energy productivity is enhanced, there is likely to be only a limited demand for CCS power plants, as a scenario analysis of CCS deployment in Germany shows. Thirdly, cost analysis using the learning curve approach shows that the electricity generation costs of renewable electricity approach those of CCS power plants. This leads to the consequence that, from 2020, several renewable technologies may well be in a position to offer electricity at a cheaper rate than CCS power plants. In addition, a review of new life cycle assessments for CO 2 separation in the power plant sector indicates that the greenhouse gas emissions from 1 kW h of electricity generated by first-generation CCS power plants could only be reduced by 68% to 87% (95% in individual cases). Finally, a cautious, conservative estimate of the effective German CO 2 storage capacity of approximately 5 billion tonnes of CO 2 is calculated, including a fluctuation range yielding values between 4 and 15 billion tonnes of CO 2 . Therefore, the total CO 2 emissions caused by large point

  15. Tipping points for carbon dioxide and air pollution benefits: an energy systems analysis of natural gas verses electric technologies in the U.S. buildings sector

    Science.gov (United States)

    Our analysis examines emission trade-offs between electricity and natural gas use in the buildings sector at the system level, including upstream emissions from the electric sector and natural gas mining emissions.

  16. ÜRETİM SEKTÖRÜNDE FAALİYET GÖSTEREN KOBİLERDE ISO 9000’NİN ETKİLİ UYGULAMASI İÇİN KRİTİK BAŞARI FAKTÖRLERİ (CRITICAL SUCCESS FACTORS FOR EFFECTIVE IMPLEMENTATION OF ISO 9000 IN SME’S OPERATING IN MANUFACTURING SECTOR

    Directory of Open Access Journals (Sweden)

    Adnan KALKAN

    2012-07-01

    Full Text Available ISO 9000 for quality is one of the most applicable strategies by businesses all over the world. ISO 9000 has been one of important issues in many developing countries including Turkey. Up to now less study is published on the successful use of ISO 9000 Quality Management System, critical success factors and application problems in SME’s. The purpose of this study is to investigate the critical success factors for the effective implementation of ISO 9000 standard in small and medium-sized enterprises (SME’s operating in the manufacturing sector in Turkey.This empirical study has been carried out with a sample of 246 ISO 9000-certified SME’s selected from enterprises operating in manufacturing sector in Turkey. Data were obtained by a questionnaire survey of the managers responsible for quality in each of the sample SME’s. Critical success factors for the effective implementation of ISO 9000 were assessed for importance by simple descriptive statistics.This study provides practical guidance for SME’s operating in manufacturing sector and seeking to implement the ISO 9000 standard effectively.

  17. Framework for Sustainability Performance Assessment for Manufacturing Processes- A Review

    Science.gov (United States)

    Singh, K.; Sultan, I.

    2017-07-01

    Manufacturing industries are facing tough competition due to increasing raw material cost and depleting natural resources. There is great pressure on the industry to produce environmental friendly products using environmental friendly processes. To address these issues modern manufacturing industries are focusing on sustainable manufacturing. To develop more sustainable societies, industries need to better understand how to respond to environmental, economic and social challenges. This paper proposed some framework and tools that accelerate the transition towards a sustainable system. The developed framework will be beneficial for sustainability assessment comparing different plans alongside material properties, ultimately helping the manufacturing industries to reduce the carbon emissions and material waste, besides improving energy efficiency. It is expected that this would be highly beneficial for determination of environmental impact of a process at early design stages. Therefore, it would greatly help the manufacturing industries for selection of process plan based on sustainable indices. Overall objective of this paper would have good impact on reducing air emissions and protecting environment. We expect this work to contribute to the development of a standard reference methodology to help further sustainability in the manufacturing sector.

  18. Prospects of carbon capture and storage (CCS) in India’s power sector – An integrated assessment

    International Nuclear Information System (INIS)

    Viebahn, Peter; Vallentin, Daniel; Höller, Samuel

    2014-01-01

    governmental, industrial or societal CCS advocates. Conclusion and practice implications: Several preconditions need to be fulfilled if CCS is to play a future role in reducing CO 2 emissions in India, the most crucial one being to determine reliable storage capacity figures. In order to overcome these barriers, the industrialised world would need to make a stronger commitment in terms of CCS technology demonstration, cooperation and transfer to emerging economies like India. The integrated assessment might also be extended by a comparison with other low-carbon technology options to draw fully valid conclusions on the most suitable solution for a sustainable future energy supply in India

  19. Cleaning verification: A five parameter study of a Total Organic Carbon method development and validation for the cleaning assessment of residual detergents in manufacturing equipment.

    Science.gov (United States)

    Li, Xue; Ahmad, Imad A Haidar; Tam, James; Wang, Yan; Dao, Gina; Blasko, Andrei

    2018-02-05

    A Total Organic Carbon (TOC) based analytical method to quantitate trace residues of clean-in-place (CIP) detergents CIP100 ® and CIP200 ® on the surfaces of pharmaceutical manufacturing equipment was developed and validated. Five factors affecting the development and validation of the method were identified: diluent composition, diluent volume, extraction method, location for TOC sample preparation, and oxidant flow rate. Key experimental parameters were optimized to minimize contamination and to improve the sensitivity, recovery, and reliability of the method. The optimized concentration of the phosphoric acid in the swabbing solution was 0.05M, and the optimal volume of the sample solution was 30mL. The swab extraction method was 1min sonication. The use of a clean room, as compared to an isolated lab environment, was not required for method validation. The method was demonstrated to be linear with a correlation coefficient (R) of 0.9999. The average recoveries from stainless steel surfaces at multiple spike levels were >90%. The repeatability and intermediate precision results were ≤5% across the 2.2-6.6ppm range (50-150% of the target maximum carry over, MACO, limit). The method was also shown to be sensitive with a detection limit (DL) of 38ppb and a quantitation limit (QL) of 114ppb. The method validation demonstrated that the developed method is suitable for its intended use. The methodology developed in this study is generally applicable to the cleaning verification of any organic detergents used for the cleaning of pharmaceutical manufacturing equipment made of electropolished stainless steel material. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Carbon/carbon composite materials

    International Nuclear Information System (INIS)

    Thebault, J.; Orly, P.

    2006-01-01

    Carbon/carbon composites are singular materials from their components, their manufacturing process as well as their characteristics. This paper gives a global overview of these particularities and applications which make them now daily used composites. (authors)

  1. Morphological and mechanical analyses of laminates manufactured from randomly positioned carbon fibre/epoxy resin prepreg scraps

    Science.gov (United States)

    Souza, Christiane S. R.; Cândido, Geraldo M.; Alves, Wellington; Marlet, José Maria F.; Rezende, Mirabel C.

    2017-10-01

    This study aims to contribute to sustainability by proposing the reuse of composite prepreg scrap as an added value from discards. The research evaluates the microstructure and mechanical properties of laminates processed by the reuse of uncured carbon fibre/F155-epoxy resin prepreg scraps, waste from the ply cutting area of an aeronautical industry. The composite scraps were used as collected and were randomly positioned to produce laminates to be cured at an autoclave. The mechanical characterization shows a decrease of 39% for the compression property due to the discontinuous fibres in the laminate and an increase of 34% for the interlaminar shear strength, when compared to continuous fibre laminates. This increase is attributed to the higher crosslink density of the epoxy resin, as a result of the cure temperature used in autoclave (60 °C higher than suggested by supplier) and also to the randomly positioned scraps. Microscopic analyses confirm the consolidation of laminates, although show resin rich areas with different sizes and shapes attributed to the overlapping of the scraps with different sizes and shapes. These resin rich areas may contribute to decrease the mechanical properties of laminates. The correlation between mechanical and morphological results shows potential to be used on non-critical structural application, as composite jigs, contributing to sustainability.

  2. Estimation of Sector-Resolved Effects of Dust and Black Carbon Emissions on Water Resources in the Himalaya, Karakoram, and Hindu Kush Mountains

    Science.gov (United States)

    Mosier, T. M.; Alvarado, M. J.; Kleiman, G.; Winijkul, E.; Shindell, D. T.; Adams-Selin, R.; Hunt, E. D.; Brodowski, C. M.; Lonsdale, C. R.; Faluvegi, G.

    2017-12-01

    contribution of black carbon and dust to changes in snow, glaciers, and water resources as a function of emissions sector and location.

  3. Precision manufacturing

    CERN Document Server

    Dornfeld, David

    2008-01-01

    Today there is a high demand for high-precision products. The manufacturing processes are now highly sophisticated and derive from a specialized genre called precision engineering. Precision Manufacturing provides an introduction to precision engineering and manufacturing with an emphasis on the design and performance of precision machines and machine tools, metrology, tooling elements, machine structures, sources of error, precision machining processes and precision process planning. As well as discussing the critical role precision machine design for manufacturing has had in technological developments over the last few hundred years. In addition, the influence of sustainable manufacturing requirements in precision processes is introduced. Drawing upon years of practical experience and using numerous examples and illustrative applications, David Dornfeld and Dae-Eun Lee cover precision manufacturing as it applies to: The importance of measurement and metrology in the context of Precision Manufacturing. Th...

  4. An Exploratory Study on Implementation of Lean Manufacturing Practices(With Special Reference to Automobile Sector Industry(Yalın İmalat Faaliyetine Yönelik Bir Uygulama (Otomobil Endüstrisi Örneği

    Directory of Open Access Journals (Sweden)

    Er. Rajesh Kumar MEHTA

    2012-01-01

    Full Text Available At present scenario, Lean Manufacturing has become a world wide phenomenon. It is quite successful in drawing the attention of companies of all sizes. A large number of organizations are following Lean technologies and experiencing vast improvements in quality, production, customer service, and profitability. Lean Manufacturing is a systematic approach to identifying and eliminating waste through continuous improvement. The manufacturing industry in India must also look to leverage its advantages, its large domestic market, good conditions in terms of raw materials and skilled labour, and the quality focus. In India at the state level, there are few companies that are implementing Lean manufacturing techniques. In Dewas city, the industrial town of Madhya Pradesh, some of the automobile companies are vigorously following the Lean manufacturing techniques to eliminate waste and downsize the cost. Hence, all these factors prompted the researchers to analyze and study the implication of Lean Manufacturing Practices in Automobile Industries.

  5. Possibilities for carbon sequestration by the forestry sector in Hungary. COST E21 Workshop. Contribution of forests and forestry to mitigate greenhouse effects. Joensuu (Finland. 28-30 Sep 2000

    Directory of Open Access Journals (Sweden)

    Somogyi Z.

    2000-01-01

    Full Text Available In Hungary, gross emissions of carbon amount to some 17.6 millions t C per year. Forestry, the only sector which can offset emissions, seems to be a net sink of 1.6 Mt C per year. Afforesting large areas could substantially increase the carbon fixing capacity of the Hungarian forests. To assess the possibilities of sequestering carbon by afforestation, the CASFOR model, an adaptation of the COMAP model, was developed for Hungarian conditions. The technical potential scenario showed that, by afforesting 773,000 ha of former agricultural land by 2050, some 46 millions t C could be sequestered. The specific costs of sequestering carbon by afforestation are pretty low.

  6. Identification of environmental bottleneck using Bayesian Networks: a case study of an Indian pig iron manufacturing organization

    Directory of Open Access Journals (Sweden)

    Sen Parag

    2015-01-01

    Full Text Available Environmentally conscious manufacturing has become a global attention for the iron and steel manufacturers to prevent global warming and climate change while making money. Iron and steel sector is considered as one of the most polluting sectors in the world. It is also one of the most energy intensive industries. During pig iron manufacturing, there is a number of steps that affect the environment emitting different pollutants. While some step(s may be considered critical to damage the environment among all the steps, some pollutant(s may be considered critical to affect the environment among all the pollutants. This paper proposes environmental bottleneck to consider critical step and critical pollutant simultaneously. Unless environmental bottleneck is improved, environmental performance of the entire manufacturing process may not improve significantly even if other processes (i.e. other than environmental bottleneck are taken care of. Thus, environmental bottleneck must be taken care of properly by the manufacturing organization to enable environmentally conscious manufacturing. Hence, a method should be developed to identify environmental bottleneck. Current research work uses Bayesian Networks (BN to identify environmental bottleneck. The contribution of the paper is to identify the environmental bottleneck for an Indian pig iron manufacturing organization. Results suggest that carbon monoxide (CO emission from the blast furnace is the environmental bottleneck for the current pig iron manufacturing organization. Hence, proper precautions should be considered to control the CO emission from the blast furnace.

  7. Using Additive Manufacturing to Reduce the Cost of Instrument Development

    Data.gov (United States)

    National Aeronautics and Space Administration — Additive Manufacturing (AM), commonly known as 3D printing, is widely used in the commercial sector for the manufacture of consumer goods, high performance parts for...

  8. Additive manufacturing.

    Science.gov (United States)

    Mumith, A; Thomas, M; Shah, Z; Coathup, M; Blunn, G

    2018-04-01

    Increasing innovation in rapid prototyping (RP) and additive manufacturing (AM), also known as 3D printing, is bringing about major changes in translational surgical research. This review describes the current position in the use of additive manufacturing in orthopaedic surgery. Cite this article: Bone Joint J 2018;100-B:455-60.

  9. Manufacturing technologies

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-01

    The Manufacturing Technologies Center is an integral part of Sandia National Laboratories, a multiprogram engineering and science laboratory, operated for the Department of Energy (DOE) with major facilities at Albuquerque, New Mexico, and Livermore, California. Our Center is at the core of Sandia`s Advanced Manufacturing effort which spans the entire product realization process.

  10. Canadian Manufacturing Malaise: Three Hypotheses

    Directory of Open Access Journals (Sweden)

    Matt Krzepkowski

    2013-03-01

    Full Text Available The danger in politicians promoting the idea that “Dutch Disease” is responsible for the decline of the Ontario manufacturing sector is that the suggestion implies that Canada’s manufacturing sector will bounce back if only we could slow down oil sands development, or if the Canadian dollar were to devalue. In reality, evidence suggests that the decline in Ontario manufacturing is the result of long-term structural changes in the economy, independent of the rise of the country’s natural-resource sector and the rising dollar. And the sooner policymakers realize that, and stop blaming the decline in manufacturing on Dutch Disease (which holds that a booming natural-resource sector that drives up our dollar makes our manufacturing exports less competitive the sooner they can get to work on helping manufacturing-dependent regions transition to the evolving economy. A closer analysis of Canada’s manufacturing sector shows that jobs in that sector have been disappearing across the country since the end of the Second World War, with the sector’s share of employment falling dramatically well before rapid development began to take hold in the oil sands, and back when Canada’s dollar was still worth far less than the American dollar. It is a trend that has been occurring among most of our OECD peers, including the United States, which may be due to the widespread reallocation of production to lower cost countries. But it is also true that Canada’s manufacturing productivity performance in particular has been declining for a generation, with especially poor performance in the last decade, when labour productivity in Canada grew at just a quarter of the U.S. rate. Meanwhile, capital investment that may have improved the competitiveness of Canadian manufacturing has been anemic. Yet there is no particular reason to lament the scaling-down of manufacturing jobs in Ontario. The province remains just as economically important, as a share of

  11. Carbon footprint evaluation at industrial park level: A hybrid life cycle assessment approach

    International Nuclear Information System (INIS)

    Dong, Huijuan; Geng, Yong; Xi, Fengming; Fujita, Tsuyoshi

    2013-01-01

    Industrial parks have become the effective strategies for government to promote sustainable economic development due to the following advantages: shared infrastructure and concentrated industrial activities within planned areas. However, due to intensive energy consumption and dependence on fossil fuels, industrial parks have become the main areas for greenhouse gas emissions. Therefore, it is critical to quantify their carbon footprints so that appropriate emission reduction policies can be raised. The objective of this paper is to seek an appropriate method on evaluating the carbon footprint of one industrial park. The tiered hybrid LCA method was selected due to its advantages over other methods. Shenyang Economic and Technological Development Zone (SETDZ), a typical comprehensive industrial park in China, was chosen as a case study park. The results show that the total life cycle carbon footprint of SETDZ was 15.29 Mt, including 6.81 Mt onsite (direct) carbon footprint, 8.47 Mt upstream carbon footprint, and only 3201 t downstream carbon footprint. Analysis from industrial sector perspectives shows that chemical industry and manufacture of general purpose machinery and special purposes machinery sector were the two largest sectors for life cycle carbon footprint. Such a sector analysis may be useful for investigation of appropriate emission reduction policies. - Highlights: ► A hybrid LCA model was employed to calculate industrial park carbon footprint. ► A case study on SETDZ is done. ► Life cycle carbon footprint of SETDZ is 15.29 Mt. ► Upstream and onsite carbon footprints account for 55.40% and 44.57%, respectively. ► Chemical industry and machinery manufacturing sectors are the two largest sectors

  12. Improving Manufacturing Performance In South Africa

    International Development Research Centre (IDRC) Digital Library (Canada)

    In a number of sectors, our research has indicated that the principle factors ... MALAYSIA ..... However, these practices are not diffusing rapidly through the manufacturing .... An export tax on these products, for example, could be considered.

  13. Modular manufacturing processes : Status, challenges, and opportunities

    NARCIS (Netherlands)

    Baldea, Michael; Edgar, Thomas F.; Stanley, Bill L.; Kiss, Anton A.

    2017-01-01

    Chemical companies are constantly seeking new, high-margin growth opportunities, the majority of which lie in high-grade, specialty chemicals, rather than in the bulk sector. To realize these opportunities, manufacturers are increasingly considering decentralized, flexible production facilities:

  14. Implementation of a safe-by-design approach in the development of new open pilot lines for the manufacture of carbon nanotube-based nano-enabled products

    Science.gov (United States)

    López de Ipiña, Jesús M.; Hernan, Angel; Cenigaonaindia, Xabier; Insunza, Mario; Florez, Sonia; Seddon, Richard; Vavouliotis, Antonios; Kostopoulos, Vasilios; Latko, Paulina; Durałek, Paweł; Kchit, Nadir

    2017-06-01

    The project PLATFORM (H2020, GA 646307) aims to develop three new pilot lines (PPLs) for the manufacture of carbon nanotube-based nano-enabled products (buckypapers, treated prepregs, doped veils), for the European aeronautics and automotive industries (a Technology Readiness Level 6 - TRL6 - is expected at the end of the project). The Machinery Directive 2006/42/EC (MD) - transposed into the respective national legislations - is the European regulatory framework for the design and construction of new machinery, as the future PPLs. PPLs are not required to comply with the provisions of the MD until they are put into service - expected in 2020, after project completion - but then, the MD will be fully applicable. In this regulatory context, the project PLATFORM is aligning the design of the PPLs according to the MD requirements, in order to facilitate the CE marking in 2020 (TRL9) and avoid potential economic costs associated with future re-adaptations or modifications needed to ensure compliance with the MD. This paper discusses the methodological approach followed by the project PLATFORM to integrate all the nanosafety aspects in the design of the PPLs, in order to achieve safe designs in conformity with the relevant Essential Health and Safety Requirements (EHSRs) of the MD. Since machinery must be designed and constructed taking into account the results of the risk assessment (RA), this paper describes the systematic and iterative approach for RA and risk reduction followed to eliminate hazards as far practicable and to adequately reduce risks by the implementation of protective measures. This process has been guided by the harmonized standards EN ISO 12100 and EN ISO 14123, taking the relevant phases of life cycle, expected uses and operation modes of the PPLs into account. A specific tool to guide the safe design of the PPLs and facilitate the RA process has also been produced by the project (PLATFORM - SbD toolkit).

  15. Implementation of a safe-by-design approach in the development of new open pilot lines for the manufacture of carbon nanotube-based nano-enabled products

    International Nuclear Information System (INIS)

    López de Ipiña, Jesús M; Hernan, Angel; Cenigaonaindia, Xabier; Insunza, Mario; Florez, Sonia; Seddon, Richard; Vavouliotis, Antonios; Kostopoulos, Vasilios; Latko, Paulina; Durałek, Paweł; Kchit, Nadir

    2017-01-01

    The project PLATFORM (H2020, GA 646307) aims to develop three new pilot lines (PPLs) for the manufacture of carbon nanotube-based nano-enabled products (buckypapers, treated prepregs, doped veils), for the European aeronautics and automotive industries (a Technology Readiness Level 6 - TRL6 - is expected at the end of the project). The Machinery Directive 2006/42/EC (MD) - transposed into the respective national legislations - is the European regulatory framework for the design and construction of new machinery, as the future PPLs. PPLs are not required to comply with the provisions of the MD until they are put into service - expected in 2020, after project completion - but then, the MD will be fully applicable. In this regulatory context, the project PLATFORM is aligning the design of the PPLs according to the MD requirements, in order to facilitate the CE marking in 2020 (TRL9) and avoid potential economic costs associated with future re-adaptations or modifications needed to ensure compliance with the MD. This paper discusses the methodological approach followed by the project PLATFORM to integrate all the nanosafety aspects in the design of the PPLs, in order to achieve safe designs in conformity with the relevant Essential Health and Safety Requirements (EHSRs) of the MD. Since machinery must be designed and constructed taking into account the results of the risk assessment (RA), this paper describes the systematic and iterative approach for RA and risk reduction followed to eliminate hazards as far practicable and to adequately reduce risks by the implementation of protective measures. This process has been guided by the harmonized standards EN ISO 12100 and EN ISO 14123, taking the relevant phases of life cycle, expected uses and operation modes of the PPLs into account. A specific tool to guide the safe design of the PPLs and facilitate the RA process has also been produced by the project (PLATFORM – SbD toolkit). (paper)

  16. The players in the French photovoltaic sector

    International Nuclear Information System (INIS)

    Houot, G.

    2011-01-01

    This article reviews all the players of the photovoltaic industry in France (silicon producers, electrical component manufacturers, solar system manufacturers, design offices, solar system wholesalers, installers, and solar farm operators). For each company the following is reported: name, activity sector, historical background, staff, turnover, achievement and projects. (A.C.)

  17. 77 FR 56811 - Manufacturing Council

    Science.gov (United States)

    2012-09-14

    ... consideration for appointment must be received by the Office of Advisory Committees by close of business on... of responsibility) that are leaders within their local manufacturing communities and industry sectors... Subcommittee. The purpose of this subcommittee will be to examine factors that impact the long-term strategic...

  18. Agricultural sector

    International Nuclear Information System (INIS)

    Ainul Hayati Daud; Hazmimi Kasim

    2010-01-01

    The applications of nuclear technology in agriculture sector cover the use of the technology at every aspects of agricultural activity, starting from the seed to harvesting as well as the management of plantations itself. In this sector, a total of 55 entities comprising 17 public agencies and 38 private companies were selected for the study. Almost all, 91 % of them are located in Peninsular Malaysia; the rest operates in Sabah and Sarawak. The findings of the study in the public agencies and private companies are presented in the next sections. (author)

  19. Micro Manufacturing

    DEFF Research Database (Denmark)

    Hansen, Hans Nørgaard

    2003-01-01

    Manufacturing deals with systems that include products, processes, materials and production systems. These systems have functional requirements, constraints, design parameters and process variables. They must be decomposed in a systematic manner to achieve the best possible system performance....... If a micro manufacturing system isn’t designed rationally and correctly, it will be high-cost, unreliable, and not robust. For micro products and systems it is a continuously increasing challenge to create the operational basis for an industrial production. As the products through product development...... processes are made applicable to a large number of customers, the pressure in regard to developing production technologies that make it possible to produce the products at a reasonable price and in large numbers is growing. The micro/nano manufacturing programme at the Department of Manufacturing...

  20. Smart Manufacturing.

    Science.gov (United States)

    Davis, Jim; Edgar, Thomas; Graybill, Robert; Korambath, Prakashan; Schott, Brian; Swink, Denise; Wang, Jianwu; Wetzel, Jim

    2015-01-01

    Historic manufacturing enterprises based on vertically optimized companies, practices, market share, and competitiveness are giving way to enterprises that are responsive across an entire value chain to demand dynamic markets and customized product value adds; increased expectations for environmental sustainability, reduced energy usage, and zero incidents; and faster technology and product adoption. Agile innovation and manufacturing combined with radically increased productivity become engines for competitiveness and reinvestment, not simply for decreased cost. A focus on agility, productivity, energy, and environmental sustainability produces opportunities that are far beyond reducing market volatility. Agility directly impacts innovation, time-to-market, and faster, broader exploration of the trade space. These changes, the forces driving them, and new network-based information technologies offering unprecedented insights and analysis are motivating the advent of smart manufacturing and new information technology infrastructure for manufacturing.

  1. The use of coal mining wastes for manufacturing paving materials; Los Esteriles del Carbon como Materia Prima para la Fabricacion de Materiales para Pavimentacion

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-07-01

    This project was aimed at proving the technical feasibility of the use of coal mining wastes in the manufacturing of paving materials: floor-tiles, flags, paving-stones, grit stones, etc. The study proved that coal mining wastes in a mixture with other raw materials can be used in the manufacturing of paving materials: floor-tiles, paving-stones, grit stones.

  2. Non-manufacturing applications of robotics

    International Nuclear Information System (INIS)

    Dauchez, P.

    2000-12-01

    This book presents the different non-manufacturing sectors of activity where robotics can have useful or necessary applications: underwater robotics, agriculture robotics, road work robotics, nuclear robotics, medical-surgery robotics, aids to disabled people, entertainment robotics. Service robotics has been voluntarily excluded because this developing sector is not mature yet. (J.S.)

  3. Optimization of inventory management in furniture manufacturing

    OpenAIRE

    Karkauskas, Justinas

    2017-01-01

    Aim of research - to present inventory management optimization guidelines for furniture manufacturing company, based on analysis of scientific literature and empirical research. Tasks of the Issue: • Disclose problems of inventory management in furniture manufacturing sector; • To analyze theoretical inventory management decisions; • To develop theoretical inventory management optimization model; • Do empirical research of inventory management and present offers for optimizatio...

  4. The carbon fibre market and uses for composite wind blades

    Energy Technology Data Exchange (ETDEWEB)

    Lowe, J R [Tenax Fibers Gmbh and Co. KG, Wuppertal (Germany)

    1996-09-01

    Due to its excellent fatigue properties, low weight and high stiffness, carbon fibre reinforced plastic (CFRP) is the ideal material to use for the manufacture of wind blades. The present use of CFRP in the wind energy sector however is very low in comparison to glass fibre reinforced plastic (GFRP) materials. The main reason for this low use of CFRP is cost since at present times carbon fibre is valued ten times as much as glass fibre. This paper introduces carbon fibre as an alternative material to glass and examines the use of CFRP components in other high fatigue applications. (au)

  5. Potential reduction of CO2 emissions and low carbon scenario for the Brazilian industrial sector for 2030; Potencial de reducao de emissoes de Co2 e cenario de baixo carbono para o setor industrial brasileiro para 2030

    Energy Technology Data Exchange (ETDEWEB)

    Henriques Junior, Mauricio F. [Instituto Nacional de Tecnologia (INT), Rio de Janeiro, RJ (Brazil)], email: mauricio.henriques@int.gov.br; Schaeffer, Roberto [Coordenacao dos Programas de Pos-Graduacao de Engenharia (COPPE/UFRJ), RJ (Brazil)], email: roberto@ppe.ufrj.br

    2010-07-01

    This study discusses the potential for reducing carbon dioxide (CO2) emissions from energy use by the Brazilian industrial sector in a low-carbon scenario over a horizon until 2030. It evaluates the main mitigation measures, the quantities of this gas avoided and the respective abatement costs. In relation to a benchmark scenario projected for 2030, the reduction of CO2 emissions estimated here can reach 40% by adopting energy efficiency measures, materials recycling, cogeneration, shifting from fossil fuels to renewable or less carbon content sources, and eliminating the use of biomass from deforestation. The set of measures studied here would bring cumulative emissions reductions of nearly 1.5 billion tCO2 over a period of 20 years (2010-2030). This would require huge investments, but the majority of them would have significant economic return and negative abatement costs. However, in the cases there would be low economic attractiveness and higher abatement costs, thus requiring more effective incentives and a collective effort, from both the public and private sectors. (author)

  6. Policy Reform Impact on Food Manufacturing

    OpenAIRE

    Celikkol, Pinar; Dunn, James W.; Stefanou, Spiro E.

    2003-01-01

    The impact of agricultural policies and their reform is of major concern when addressing issues of growth, innovation and consolidation in the food manufacturing sector. Growth is one of the forces fueling the globalization of food manufacturing activities. Market- and policy-driven forces present a myriad of opportunities to influence growth and reorientation of patterns at the nexus where food manufacturing links the food system. The productivity and international competitiveness of the foo...

  7. Energy sector

    International Nuclear Information System (INIS)

    1995-01-01

    Within the framework of assessing the state of the environment in Lebanon, this chapter describes primary energy demand, the electricity generating sector and environmental impacts arising from the energy sector.Apart from hydropower and traditional energy sources, which together represent 1.7% of energy consumption, all energy in Lebanon derives from imported petroleum products and some coal.Tables present the imports of different petroleum products (Gasoil, Kerosene, fuel oil, coal etc...), their use, the energy balance and demand.Energy pricing and pricing policies, formal and informal electricity generations in Lebanon are described emphasized by tables. The main environmental impacts are briefly summarized. Thermal power stations give rise to emissions of Sulphur dioxide (SO 2 ), particulates, oxides of nitrogen (NO x ) and CO/CO 2 from combustion of primary fuel informally generated power from both industry and domestic consumption produce particulate materials and emissions of NO x and SO 2 projected emissions of SO 2 from the power sector with the present generating capacity and with the new combined cycle power plants in operation are shown. Other environmental impacts are described. Recommendations for supply and environment policy are presented

  8. LEAN Manufacturing

    DEFF Research Database (Denmark)

    Bilberg, Arne

    . The mission with the strategy is to obtain competitive production in Denmark and in Western Europe based on the right combination of manufacturing principles, motivated and trained employees, level of automation, and cooperation with suppliers and customers worldwide. The strategy has resulted in technical...

  9. Leading sector development in Muaro Jambi District

    Directory of Open Access Journals (Sweden)

    Muhammad Safri

    2017-09-01

    Full Text Available Efforts to improve economic development and economic growth of Muaro Jambi Regency is a must. Efforts to increase economic development and economic growth can occur, if local governments are able to determine or identify priority sectors or become a base sector. Given the importance of determining and defining the right and correct strategy in the development of leading economic sectors/bases, it is necessary to conduct further study related to the development of leading sector policy in Muaro Jambi Regency. Analysis tools that are used are LQ (Location Quotient and SWOT analysis. The results of the analysis found that of there are three sectors that are the main sector or base in Muaro Jambi Regency, namely agriculture, livestock, plantation, fishery and forestry sector, mining and quarrying sector and manufacturing industry sector. Strategies that can be done in order to maintain and develop the sector and sub-sectors/recommended base there are several alternative strategies that combine internal environmental conditions and external environment Muaro Jambi Regency is S - O (power against opportunities, S - T (power against threats W - O (weakness to opportunity and W - T (weakness to threat. Keywords: Location Quotient, SWOT Analysis, Base Sector

  10. Nuova industria o nuova economia? L'impatto dell'informatica sulla produttività dei settori manifatturieri in Italia (New Industry or New Economy? The Impact of the Information Technology on the Productivity of the Italian Manufacturing Sectors

    Directory of Open Access Journals (Sweden)

    Alfonso Gambardella

    2012-04-01

    Full Text Available This paper employs a sample of 3,525 manufacturing firms in Italy to estimate the impact of investments in Information & Communication Technology (ICT on firms' productivity. The results, which are confirmed by separate estimations for individual industries or groups thereof, support the hypothesis that the ICTs are a general-purpose technology, or a new technological paradigm. This is because, like with electricity, they influence the productivity of firms in many industries, including traditional ones. Moreover, the firms with higher investments in ICTs show higher employment growth. Our results also indicate that there are differences among firms in the propensity to invest in the ICTs, irrespective of their industry.       JEL Codes: L60, D24, L86, G31Keywords: Firm, Investment, Manufacturing, Productivity         

  11. Job Creation, Job Destruction and Plant Turnover in Norwegian Manufacturing

    OpenAIRE

    Tor Jakob Klette; Astrid Mathiassen

    1995-01-01

    The labour market in Norway, as in other Scandinavian countries, is often claimed to be overregulated and incapable of adjustment to changes in job opportunities. The results presented in this paper suggest to the contrary that in terms of job creation and job reallocation between plants, the manufacturing sector in Norway is surprisingly flexible, and similar to the manufacturing sector in other OECD countries such as the U.S. We show that 8.4 percent of the manufacturing jobs are eliminated...

  12. The Healthcare and Public Health Sector Challenges and Strategies to Conducting Sector Wide Assessments

    OpenAIRE

    Meyer, Harry

    2008-01-01

    Our Healthcare and Public Health (HPH) sector is vast, complex and essential to virtually all other sectors of our nation’s infrastructure. Without a healthy workforce modern society quickly grinds to a halt. The often messy networks of healthcare providers, insurance companies, emergency departments, pharmaceutical manufactures and other equally important actors are bound together in fragile alliances to maintain and restore basic health. Thus the HPH sector becomes an important cog in the w...

  13. Reaching carbon neutral transport sector in Denmark - Evidence from the incorporation of modal shift into the TIMES energy system modeling framework

    DEFF Research Database (Denmark)

    Tattini, Jacopo; Gargiulo, Maurizio; Karlsson, Kenneth Bernard

    2018-01-01

    Energy/Economy/Environment/Engineering (E4) models have been rarely apt to represent human behaviour in transportation mode adoption. This paper contributes to the scientific literature by using an E4 model to analyse the long-term decarbonisation of the Danish transport sector. The study...

  14. The use of coal mining wastes for manufacturing paving materials; Los esteriles del carbon como materia prima para la fabricacion de materiales para pavimentacion

    Energy Technology Data Exchange (ETDEWEB)

    1999-09-01

    This project was aimed at proving the technical feasibility of the use of coal mining wastes in the manufacturing of paving materials; floor-tiles, flags, paving-stones, grit stones, etc.. With that aim, four types of coal mining wastes were selected out of an inventory and several tests were conducted and following the results, the most appropriate coal mining wastes, the acceptance limits and the quality control tests to be applied to the materials obtained from coal mining wastes as starting materials for the manufacturing of paving materials were established. Different laboratory test were conducted on the manufacturing of flags, floor-tiles and paving-stones. In addition, semi-industrial scale tests were carried out on the manufacturing of grit stones. Preliminary manufactory designs were elaborated for both material types. The study proved that coal mining wastes in a mixture with other raw materials can be used in the manufacturing of paving materials: floor-tiles, flags, paving-stones, grit stones. (Author)

  15. Value networks in manufacturing sustainability and performance excellence

    CERN Document Server

    Uusitalo, Teuvo

    2017-01-01

    This book highlights innovative solutions together with various techniques and methods that can help support the manufacturing sector to excel in economic, social, and environmental terms in networked business environments. The book also furthers understanding of sustainable manufacturing from the perspective of value creation in manufacturing networks, by capitalizing on the outcomes of the European ‘Sustainable Value Creation in Manufacturing Networks’ project. New dynamics and uncertainties in modern markets call for innovative solutions in the global manufacturing sector. While the manufacturing sector is traditionally driven by technology, it also requires other managerial and organizational solutions in terms of network governance, business models, sustainable solution development for products and services, performance management portals, etc., which can provide major competitive advantages for companies. At the same time, the manufacturing industry is subject to a change process, where business net...

  16. Semiconductor Manufacturing equipment introduction

    International Nuclear Information System (INIS)

    Im, Jong Sun

    2001-02-01

    This book deals with semiconductor manufacturing equipment. It is comprised of nine chapters, which are manufacturing process of semiconductor device, history of semiconductor manufacturing equipment, kinds and role of semiconductor manufacturing equipment, construction and method of semiconductor manufacturing equipment, introduction of various semiconductor manufacturing equipment, spots of semiconductor manufacturing, technical elements of semiconductor manufacturing equipment, road map of technology of semiconductor manufacturing equipment and semiconductor manufacturing equipment in the 21st century.

  17. Characterization of the coal of the Cauca Valley in the Swallows sector, Cali Municipality; Caracterizacion de los carbones del Valle del Cauca en el Sector de Golondrinas, Municipio de Cali

    Energy Technology Data Exchange (ETDEWEB)

    Barros de Ferreira, Lucy; Garcia Gonzalez, Fabio; Saldarriaga Bermudez, Cesar

    1992-07-01

    The study of the geologic, physical-chemical and petrography characteristics of the coal of the Cauca valley, are indispensable for the knowledge of the Colombian coal. For technical and logistical reasons the sector Cerro Golondrinas was chosen, near to the Cali city, where were taken samplings in many mines realizing analysis and interpretation of the results. The importance of the development of the pacific region in the industrial aspect it is excellent. Therefore, the best knowledge in its energy resources is basic for an appropriate use. It was possible to determine the presence of bituminous coal high volatile A, with a heating, dry power free of ashy (slcz), around 8.000 calories for gram, also, a content average of 6% of hydrogen with a relationship H/C (slcz) near to 8 x 10{sup 2}, that which gives to these coal the possibility of being used in gasification processes and liquefaction. The mill index shows an average of 46 corresponding to the range of coal of the area that which means that in the mill they should be kept in mind the conditions that require fairly hard coal. Even when there was not a mathematical correlation of the mill index with the ashes, the variability and the quantity of these last it is also an important parameter to keep in mind in the preparation of the coal. The same composition of the ashes is also variable in the whole area: of 75 samples of analyzed ashes, 56% is classified as bituminous and 44%, as lignite, in most of them was a deposition factor (slagging) low and an fouling factor, also low, that which indicates that these ashes don't present problems of accumulation of deposits in the combustion processes. The temperature of initial deformation in reducing atmosphere (itr) it reveals the presence of two populations, one with the maximum between 1.100 and 1.200 Celsius Degree and another with the maximum, superior to 1.500 Celsius Degree, fact that should be kept in mind for the correct use of the coal. One can say that the

  18. Carbon leakage from a Nordic perspective

    Energy Technology Data Exchange (ETDEWEB)

    Naess-Schmidt, S.; Hansen, Martin Bo; Sand Kirk, J. [Copenhagen Economics, Copenhagen (Denmark)

    2012-02-15

    Carbon pricing is generally considered a highly effective tool in reducing carbon emissions. Putting a price on carbon provides incentives for users and producers of fossil fuels to reduce consumption and develop low carbon products and processes. However, pursuing an ambitious climate policy can lead to carbon leakage, which refers to a situation where unilateral or regional climate change policy drives the relocation of industry investments and installations, and associated emissions, to third countries. This report by Copenhagen Economics has been commissioned by the Nordic Council of Ministers to give an overview of the industries at risk of carbon leakage in the Nordic countries, and estimate the expected extent of carbon leakage from unilateral climate policies in the Nordic countries. The report also assesses available policy options that may reduce the risk of carbon leakage, such as exemptions from energy tax and exemptions from quota obligations under green certificate schemes. The key drivers of carbon leakage are identified, which include energy intensity, product differentiation, transportation costs and capital intensity. The analysis suggests that industries such as paper and pulp, iron and steel, aluminium, cement, pharmaceuticals, chemicals, and fertilizers are most at risk of carbon leakage in the Nordic manufacturing sector. (Author)

  19. Green Manufacturing

    Energy Technology Data Exchange (ETDEWEB)

    Patten, John

    2013-12-31

    Green Manufacturing Initiative (GMI): The initiative provides a conduit between the university and industry to facilitate cooperative research programs of mutual interest to support green (sustainable) goals and efforts. In addition to the operational savings that greener practices can bring, emerging market demands and governmental regulations are making the move to sustainable manufacturing a necessity for success. The funding supports collaborative activities among universities such as the University of Michigan, Michigan State University and Purdue University and among 40 companies to enhance economic and workforce development and provide the potential of technology transfer. WMU participants in the GMI activities included 20 faculty, over 25 students and many staff from across the College of Engineering and Applied Sciences; the College of Arts and Sciences' departments of Chemistry, Physics, Biology and Geology; the College of Business; the Environmental Research Institute; and the Environmental Studies Program. Many outside organizations also contribute to the GMI's success, including Southwest Michigan First; The Right Place of Grand Rapids, MI; Michigan Department of Environmental Quality; the Michigan Department of Energy, Labor and Economic Growth; and the Michigan Manufacturers Technical Center.

  20. Carbon Monoxide Information Center

    Medline Plus

    Full Text Available ... Community Outreach Resource Center Toy Recall Statistics CO Poster Contest Pool Safely Business & Manufacturing Business & Manufacturing Business ... Featured Resources CPSC announces winners of carbon monoxide poster contest Video View the blog Clues You Can ...

  1. The gas sector in Quebec

    International Nuclear Information System (INIS)

    Teixeira, G.

    2000-05-01

    Natural gas in Canada represents 29% of the primary energy and 42% of the energy used in the industrial sector. The biggest users are the manufacturing industries for which the low cost of natural gas and the quality of products resulting from its use represent a serious advantage in a more and more competitive market. This document takes stock of the situation of natural gas and gas-related technologies in Quebec. The first part recalls the historical evolution of the gas distribution network in Quebec and its present day situation. Then, some technical-economical data about the consumption of natural gas in Quebec are presented according to the sectors of use. The third part treats of the R and D activities linked with the gas sector, in particular the activities of the two main research organizations: the technical centre of natural gas and the research group in gas technologies of the Polytechnique school of Montreal. (J.S.)

  2. Implementation Issues and Challenges in Applying Lean Manufacturing Tools & Techniques in Different Manufacturing Environments

    OpenAIRE

    Low, Kwee Ang

    2005-01-01

    Lean Manufacturing has made a significant impact on both the academic and manufacturing circles in the last decade. Fostered by a rapid spread into many other industrial sectors beyond the automotive industry, there has been significant development and "localisation" of the Lean Manufacturing concept in both developed and developing countries worldwide. Despite its successful application in a wide range of industries, little research has been carried out on its successful application outside ...

  3. Sectoral assessments

    Energy Technology Data Exchange (ETDEWEB)

    Callaway, J M; Fenhann, J; Gorham, R; Makundi, W; Sathaye, J

    1999-09-01

    This publication contains five papers that were written as a part of the GEF project, The Economics of Greenhouse Gas Limitations. The main goal of the project was to assess the greenhouse gas reductions and incremental costs of mitigation option sin Ecuador, Argentina, Senegal, Mauritius, Vietnam, Indonesia, Estonia and Hungary. In addition, regional studies were conducted for the Andean Pact nations and Southern Africa to assess various aspects of regional co-operation in reducing greenhouse gas emissions. The GEF study also involved the development of a methodological framework for climate change assessment, with a special emphasis on developing countries. These guidelines have been published in a separate document, Economics of Greenhouse Gas Limitations: Methodological Guidelines. The papers in this publication focus on various methodological and policy aspects of greenhouse gas mitigation at the sectoral level, and are outgrowth of work performed on other parts of the GEF project. (au)

  4. Integrated inventory-based carbon accounting for energy-induced emissions in Chongming eco-island of Shanghai, China

    International Nuclear Information System (INIS)

    Li Qingqing; Guo Ru; Li Fengting; Xia Bingbin

    2012-01-01

    The majority of the total carbon emissions in China are energy induced. A clear understanding of energy-induced carbon emissions is therefore necessary for local communities to develop a better carbon emissions management system. We develop an integrated inventory method for energy-induced carbon emissions accounting in local Chinese communities. The method combines scope and sectoral analyses on the basis of local statistical features. As an outcome four core findings are presented: (1) From 2000 to 2009, the energy-induced carbon emissions of Chongming rapidly increased from 1.75 to 4.90 million tons, with the annual growth rate of 12.12%. (2) Emissions from manufacturing, construction, and household sectors accounted for 84.44%; manufacturing is the biggest emitting sector. (3) Carbon emissions from imported electricity reached a historic high of 22.51% in 2009, indicating the necessity of taking the imported carbon emissions into consideration. (4) In 2008, the per capita carbon emissions of Chongming were lower than that of the United States and Shanghai, but higher than that of the global average. Three strategic approaches are proposed: to optimize industrial structure and improve efficiency, reinforce carbon management for the household sector, and enhance carbon statistics. - Highlights: ► The use of natural gas in the large-sized industrial and commercial sectors is shown. ► This study estimates the market potential and characterizes the energy consumption. ► It makes a selection of technological alternatives for the use of natural gas. ► The residual oil and diesel consumption decline over time by the natural gas use. ► In 2017, the cogeneration could provide 7.7% of total electricity demand in Peru.

  5. Joint R and D in low-carbon technology development in China: A case study of the wind-turbine manufacturing industry

    International Nuclear Information System (INIS)

    Zhou Yuanchun; Zhang Bing; Zou Ji; Bi Jun; Wang Ke

    2012-01-01

    China faces the dual challenges of climate change and increased energy demand. These challenges in turn increase the demand for wind energy development. Along with rapid growth in manufacturing capacity, Chinese companies have aspired to increase their innovation capacity in order to enhance their competitiveness in the market. Joint research and development (R and D) is an attractive path for Chinese companies striving to advance their R and D capacity. This paper examines joint R and D between Chinese wind-turbine manufacturing companies and foreign design firms, assessing the performance of joint R and D activities in China using the structure-conduct-performance (SCP) framework. The study found that joint R and D has improved Chinese companies’ technical capacity, human resources and financial growth. However, the effect on Chinese companies’ innovation capacity is still limited because of unequal technical capacities of the two sides in collaboration, as well as their preference for augmenting profits rather than technical capacity. Current joint R and D mode is only the extension of licensing mode in wind-turbine manufacturing industry. - Highlights: ► Joint R and D is an attractive path for Chinese companies striving to advance R and D capacity. ► We examined the performance of joint R and D in wind-turbine manufacturing industry. ► Joint R and D has improved Chinese companies’ technical capacity. ► The effect of Joint R and D on innovation capacity is still limited.

  6. Assessment of the trade-offs and synergies between low-carbon power sector transition and land and water resources of the United Kingdom using the "ForeseerTM" approach

    Science.gov (United States)

    Konadu, D. D.; Sobral Mourao, Z.

    2016-12-01

    Transitioning to a low-carbon power system has been identified as one of the main strategies for achieving GHG emissions reduction targets stipulated in the UK Climate Change Act (2008). However, projected mix of technologies aimed at achieving the targeted level of decarbonisation have implications for sustainable level natural resource exploitation at different spatial and temporal scales. Critical among these are the impact on land use (food production) and water resources, which are usually not adequately analysed and accounted for in developing these long-term energy system transition strategies and scenarios. Given the importance of the UK power sector to meeting economy-wide emissions targets, the overall environmental consequence of the prescribed scenarios could significantly affect meeting long-term legislated GHG emission reduction targets. It is therefore imperative that synergies and trade-offs between the power systems and these resources are comprehensively analysed. The current study employs an integrated energy and resource use accounting methodology, called ForeseerTM, to assess the land and water requirement for the deployment of the power sector technologies of the UK Committee on Climate Change (CCC) Carbon Budget scenarios. This is analysed under different scenarios of energy crop yield and electricity infrastructure location. The outputs are then compared with sustainable limits of resource exploitation to establish the environmental tractability of the scenarios. The results show that even if stringent environmental and land use restrictions are applied, all the projected bioenergy and ground-mounted solar PV can be deployed within the UK with no significant impacts on land use and food production. However, inland water resources would be significantly affected if high Carbon Capture and Storage deployment, and without new nuclear capacity. Overall, the output highlights that contrary to the notion of the inevitability of CCS deployment in

  7. The solar photovoltaics wedge: pathways for growth and potential carbon mitigation in the US

    Energy Technology Data Exchange (ETDEWEB)

    Drury, Easan; Denholm, Paul [National Renewable Energy Laboratory, 1617 Cole Boulevard, Golden, CO 80401 (United States); Margolis, Robert M, E-mail: easan.drury@nrel.go [National Renewable Energy Laboratory, 901 D Street SW, Suite 930, Washington, DC 20024 (United States)

    2009-09-15

    The challenge of stabilizing global carbon emissions over the next 50 years has been framed in the context of finding seven 1.0 Gton C/year carbon reduction wedges. Solar photovoltaics (PV) could provide at least one carbon wedge, but will require significant growth in PV manufacturing capacity. The actual amount of installed PV capacity required to reach wedge-level carbon reductions will vary greatly depending on the mix of avoided fuels and the additional emissions from manufacturing PV capacity. In this work, we find that the US could reduce its carbon emissions by 0.25 Gton C/year, equal to the fraction of a global carbon wedge proportional to its current domestic electricity use, by installing 792-811 GW of PV capacity. We evaluate a series of PV growth scenarios and find that wedge-level reductions could be met by increasing PV manufacturing capacity and annual installations by 0.95 GW/year/year each year from 2009 to 2050 or by increasing up to 4 GW/year/year for a period of 4-17 years for early and late growth scenarios. This challenge of increasing PV manufacturing capacity and market demand is significant but not out of line with the recent rapid growth in both the global and US PV industry. We find that the rapid growth in PV manufacturing capacity leads to a short term increase in carbon emissions from the US electric sector. However, this increase is small, contributing less than an additional 0.3% to electric sector emissions for less than 4.5 years, alleviating recent concern regarding carbon emissions from rapid PV growth scenarios.

  8. New formulae for the manufacture of formed coke of the ICEM type and carbonization of this type of coke in oblique ovens

    Energy Technology Data Exchange (ETDEWEB)

    Barbu, I.; Georgescu, I.

    1978-01-01

    This paper presents the industrial experiences between 1971 and 1976 which led to the elaboration of new formulae for the manufacture of ICEM type coke briquettes, plus the results of coking the latter in a vertical oven. The possibility of using this type of coke in the chemical industry and in metallurgy instead of ordinary coke was simultaneously examined but this proved unsuccessful. Gives a detailed report of all the tests carried out by the State undertaking, Victoria-Galan.

  9. A STUDY OF IRON AND STEEL SECTOR IN INDIA

    OpenAIRE

    Chand, Sumit

    2008-01-01

    ABSTRACT The iron and steel manufacturing sector is one of the largest sectors in the world in terms of financial volume of trade, employment potential, development of ancillary and allied industries and geographical spread. Added to this is the fact that iron and steel is used as an input in almost all the industrial and manufacturing sectors and goods produced by them. As a result this sector attracts the maximum attention of almost all the countries of the world, whether being one of t...

  10. Macrocrustáceos (Peracarida, Decapoda de fondos carbonatados del sector occidental del banco de Campeche en el sur del golfo de México Macrocrustacea (Peracarida, Decapoda from carbonated habitats in the western sector of the Campeche Bank in the Southern Gulf of Mexico

    Directory of Open Access Journals (Sweden)

    Elva Escobar-Briones

    2010-10-01

    Full Text Available Este estudio reconoce el número de familias, abundancia, diversidad biológica y distribución de las comunidades de macrocrustáceos asociadas a fondos carbonatados del sector occidental del banco de Campeche. Las muestras analizadas de fondos carbonatados provinieron de colectas realizadas a bordo del B/O Pelican de la Universidad de Louisiana con arrastres efectuados en un intervalo de 20 a 182 m de profundidad. Se identificaron 64 familias. El número de familias, la abundancia y diversidad biológica disminuyó con la profundidad. La distancia a los bancos y arrecifes determinan la variación en la riqueza de familias y la distribución de la asociación de macrocrustáceos. El banco de Campeche puede considerarse un hotspot de diversidad biológica marina para los macrocrustáceos asociados a fondos carbonatados.This study contributes with information on the number of families, abundance, biodiversity and geographical distribution of the crustacean assemblage associated to carbonated habitats in the western sector of the Campeche Bank. The samples studied were collected onboard the R/V Pelican of the University of Louisiana from dredge materials obtained at a range of 20 to 182 m depth. The specimens were grouped into 64 families. The number of families, the abundance and diversity values decreased with increasing depth. The distance to the banks and reef islands determined the variability recorded in the richness of families and the distribution patterns of the macrocrustacean assemblage. The Campeche Bank is suggested to be a "hotspot" of biological diversity for the macrocrustaceans associated to the carbonated bottoms.

  11. Retrospective and Prospective Decomposition Analysis of Chinese Manufacturing Energy Use, 1995-2020

    Energy Technology Data Exchange (ETDEWEB)

    Hasanbeigi, Ali [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Environmental Energy Technologies Division, Environmental Impacts Dept., China Energy Group; Price, Lynn [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Environmental Energy Technologies Division, Environmental Impacts Dept., China Energy Group; Fino-Chen, Cecilia [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Environmental Energy Technologies Division, Environmental Impacts Dept., China Energy Group; Lu, Hongyou [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Environmental Energy Technologies Division, Environmental Impacts Dept., China Energy Group; Ke, Jing [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Environmental Energy Technologies Division, Environmental Impacts Dept., China Energy Group

    2013-01-15

    In 2010, China was responsible for nearly 20 percent of global energy use and 25 percent of energy-related carbon dioxide (CO2) emissions. Unlike most countries, China’s energy consumption pattern is unique because the industrial sector dominates the country’s total energy consumption, accounting for about 70 percent of energy use and 72 percent of CO2 emissions in 2010. For this reason, the development path of China’s industrial sector will greatly affect future energy demand and dynamics of not only China, but the entire world. A number of analyses of historical trends have been conducted, but careful projections of the key factors affecting China’s industry sector energy use over the next decade are scarce. This study analyzes industrial energy use and the economic structure of the Chinese manufacturing sector in detail. First, the study analyzes the energy use of and output from 18 industry sub-sectors. Then, retrospective (1995-2010) and prospective (2010-2020) decomposition analyses are conducted for these industrial sectors in order to show how different factors (production growth, structural change, and energy intensity change) influenced industrial energy use trends in China over the last 15 years and how they will do so over the next 10 years. The results of this study will allow policy makers to quantitatively compare the level of structural change in the past and in the years to come and adjust their policies if needed to move towards the target of less energy-intensive industries. The scenario analysis shows the structural change achieved through different paths and helps to understand the consequences of supporting or limiting the growth of certain manufacturing subsectors from the point of view of energy use and structural change. The results point out the industries that have the largest influence in such structural change

  12. An implementation framework for additive manufacturing in supply chains

    Directory of Open Access Journals (Sweden)

    Raed Handal

    2017-12-01

    Full Text Available Additive manufacturing has become one of the most important technologies in the manufacturing field. Full implementation of additive manufacturing will change many well-known management practices in the production sector. However, theoretical development in the field of additive manufacturing with regard to its impact on supply chain management is rare. While additive manufacturing is believed to revolutionize and enhance traditional manufacturing, there is no comprehensive toolset developed in the manufacturing field to assess the impact of additive manufacturing and determine the best production method that suits the applied supply chain strategy. A significant portion of the existing supply chain methods and frameworks were adopted in this study to examine the implementation of additive manufacturing in supply chain management. The aim of this study is to develop a framework to explain when additive manufacturing impacts supply chain management efficiently.

  13. Accelerating the transfer and diffusion of energy saving technologies steel sector experience-Lessons learned

    International Nuclear Information System (INIS)

    Okazaki, Teruo; Yamaguchi, Mitsutsune

    2011-01-01

    It is imperative to tackle the issue globally mobilizing all available policies and measures. One of the important ones among them is technology transfer and diffusion. By utilizing international co-operation, industry can promote such measures in two ways: through government policy and through industry's own voluntary initiative. Needless to say, various government policies and measures play essential role. By the same token, industry initiative can complement them. There is much literature documenting the former. On the contrary there are few on the latter. This paper sheds light on the latter. The purpose of this paper is to explore the effectiveness of global voluntary sectoral approach for technology diffusion and transfer based on steel sector experience. The goal is to contribute toward building a worldwide low-carbon society by manufacturing goods with less energy through international cooperation of each sector. The authors believe that the voluntary sectoral approach is an effective method with political and practical feasibilities, and hope to see the continued growth of more initiatives based on this approach. - Highlights: → There exist huge reduction potentials in steel industries globally. → Technology transfer and diffusion are keys to achieve reductions. → Main barriers are economic, technological and policy-related. → Case studies in overcoming barriers are discussed. → In steel industry, a voluntary sectoral approach has shown to be effective.

  14. Carbonization

    Energy Technology Data Exchange (ETDEWEB)

    Hennebutte, H G; Goutal, E

    1921-07-04

    Materials such as coal, peat, or schist are subjected to a rising temperature in successive stages in apparatus in which the distillation products are withdrawn at each stage. For example in a three-stage process, the acid products of the first or low-temperature stage are fixed in a suitable reagent, the basic products from a second or higher-temperature stage are absorbed in an acid reagent, hydrocarbons being retained by solvents, while the third are subjected to a pyrogenation process carried out in a closed vessel. Wherein the material is subjected in stages to a rising temperature, the gasified products being withdrawn at each stage, and are prevented as far as possible from mixing with the carbonized products.

  15. How to Measure Carbon Emission Reduction in China’s Public Building Sector: Retrospective Decomposition Analysis Based on STIRPAT Model in 2000–2015

    Directory of Open Access Journals (Sweden)

    Minda Ma

    2017-09-01

    Full Text Available Productive building energy efficiency (BEE work is an approved factor in the progress of sustainable urbanization in China, with the assessment of carbon emission reduction in China’s public buildings (CERCPB being an essential element of this endeavor. Nevertheless, such evaluation has been hampered by inadequate and inefficient approaches; this is the first study to utilize the Logarithmic Mean Divisia Index Type I (LMDI-I to decompose the equation of China’s public building carbon emissions (CPBCE with the connected driving factors (population in China, floor areas of China’s existing public buildings, building service level index of China’s existing public buildings, and the comparable CPBCE intensity, and this equation was established by the Stochastic Impacts by Regression on Population, Affluence, and Technology (STIRPAT model. The LMDI and STIRPAT approaches subsequently assessed the CERCPB values from 2001 to 2015. The results indicated that: (1 Only the contribution of the comparable CPBCE intensity to CPBCE was negative during 2001–2015; this represents the CERCPB value for the period. (2 The assessment results indicated that CERCPB has accumulated considerably with the swift progress of BEE work in China in 2001–2015. The CERCPB values in 2001–2005, 2006–2010, and 2011–2015 were 69.29, 158.53, and 277.86 million tons of carbon dioxide, respectively. (3 This study demonstrated that the positive effect of implementing public BEE work in China had led to significant results in 2001–2015, which can be regarded as a prerequisite for producing the considerable accumulation of CERCPB over this period. Overall, this study illustrated the feasibility of employing the LMDI and STIRPAT approaches for assessing the CERCPB value. Accordingly, we believe the results of this study are a significant driving force in the next phase of the development of the carbon emission control strategy of public buildings and sustainable

  16. Acquiring energy savings in manufactured housing

    International Nuclear Information System (INIS)

    Davey, D.

    1993-01-01

    In 1991, the Northwest utilities faced a complex situation. They needed new sources of electrical power to avoid future deficits. A significant block of energy savings was available in the manufactured housing sector in the form of energy savings from increased insulation to new manufactured homes. The manufacturers were interested in saving the electricity in the homes, but would only deal with the utility sector as a whole. Half of the homes targeted were sited in investor-owned utility (IOU) service territories, and half in the public sector made up of utilities that purchased some or all of their electricity from the Bonneville Power Administration. Utilities agreed to acquire energy from manufacturers In the form of thermal efficiency measures specified by the Bonneville Power Administration. The program that resulted from over one year of negotiations was called the Manufactured Housing Acquisition Program, or MAP. Manufacturers, the utilities, State Energy Offices, the Northwest Power Planning Council and Bonneville all worked closely and with tenacity to build the program that went into effect on April 1, 1992, and should save the region between 7 and 9 megawatts, enough energy to supply 11,000 homes in the Northwest

  17. Greenhouse gas options, policy and measures for the Canadian Transportation Equipment Manufacturing Industry - Final report

    International Nuclear Information System (INIS)

    2000-02-01

    This report summarizes and analyses the work that have been carried out by the Transportation Equipment Manufacturing Sector (TEMS) Working Group of the National Climate Change Industry Table over the last 14 months, and presents the Group's view of appropriate policies for greenhouse gas emission reduction in Canada. To develop its approach, the Working Group conducted five separate studies which are included in this report as annexes. Annex A is a Foundation Paper, which provides an overview of the sector's performance vis-a-vis energy use and greenhouse gas production. Annex B analyzes the competitive position of the industry by reviewing growth trends in each of the industry sub-sectors and the key factors in maintaining and enhancing the sector's international competitive position. Annex C is a technology assessment. It provides an overview of the uptake of energy saving technology in the sector. Annex D provides a facility level analysis focusing on energy use in the automotive parts manufacturing sector. Annex E is a review of American policies on climate change, summarizing the approach currently being taken towards greenhouse gas emission reduction in the United States. Some of the key findings of this report are: (1) business-as-usual emissions will greatly exceed the implicit Kyoto target of six per cent reduction from 1990 levels, (2) relatively few opportunities exist for major emissions reductions through the use of existing technology, (3) sector-specific policies appear to be ill-advised, but cross-cutting policies provide good opportunities for the transportation equipment manufacturing sector to do its part in helping Canada meeting its Kyoto commitment. The report recommends investigation of barriers to adoption of new technologies and examination of market imperfections, promotion of cogeneration where it makes economic sense, and consideration of the use of flexible instruments such as carbon taxes and tradable emission permits. Overall, the

  18. Scenarios for low carbon and low water electric power plant ...

    Science.gov (United States)

    In the water-energy nexus, water use for the electric power sector is critical. Currently, the operational phase of electric power production dominates the electric sector's life cycle withdrawal and consumption of fresh water resources. Water use associated with the fuel cycle and power plant equipment manufacturing phase is substantially lower on a life cycle basis. An outstanding question is: how do regional shifts to lower carbon electric power mixes affect the relative contribution of the upstream life cycle water use? To test this, we examine a range of scenarios comparing a baseline with scenarios of carbon reduction and water use constraints using the MARKet ALlocation (MARKAL) energy systems model with ORD's 2014 U.S. 9-region database (EPAUS9r). The results suggest that moving toward a low carbon and low water electric power mix may increase the non-operational water use. In particular, power plant manufacturing water use for concentrating solar power, and fuel cycle water use for biomass feedstock, could see sharp increases under scenarios of high deployment of these low carbon options. Our analysis addresses the following questions. First, how does moving to a lower carbon electricity generation mix affect the overall regional electric power water use from a life cycle perspective? Second, how does constraining the operational water use for power plants affect the mix, if at all? Third, how does the life cycle water use differ among regions under

  19. Manufactured volvulus.

    Science.gov (United States)

    Zweifel, Noemi; Meuli, Martin; Subotic, Ulrike; Moehrlen, Ueli; Mazzone, Luca; Arlettaz, Romaine

    2013-06-01

    Malrotation with a common mesentery is the classical pathology allowing midgut volvulus to occur. There are only a few reports of small bowel volvulus without malrotation or other pathology triggering volvulation. We describe three cases of small bowel volvulus in very premature newborns with a perfectly normal intra-abdominal anatomy and focus on the question, what might have set off volvulation. In 2005 to 2008, three patients developed small bowel volvulus without any underlying pathology. Retrospective patient chart review was performed with special focus on clinical presentation, preoperative management, intraoperative findings, and potential causative explanations. Mean follow-up period was 46 months. All patients were born between 27 and 31 weeks (mean 28 weeks) with a birth weight between 800 and 1,000 g (mean 887 g). They presented with an almost identical pattern of symptoms including sudden abdominal distension, abdominal tenderness, erythema of the abdominal wall, high gastric residuals, and radiographic signs of ileus. All of them were treated with intensive abdominal massage or pelvic rotation to improve bowel movement before becoming symptomatic. Properistaltic maneuvers including abdominal massage and pelvic rotation may cause what we term a "manufactured" volvulus in very premature newborns. Thus, this practice was stopped. Georg Thieme Verlag KG Stuttgart · New York.

  20. The Reality of Training and its Needs, for Production Managers of the Footwear, Leather and Manufactures Sector in the Metropolitan Area of Cúcuta Realidad de la capacitación y sus necesidades en los gerentes de producción del sector del calzado, cuero y sus manufacturas del Área Metropolitana de Cúcuta (Colombia

    Directory of Open Access Journals (Sweden)

    Álvaro Junior Caicedo Rolon

    2013-10-01

    Full Text Available The research identified the reality of the training and its needs, in the managers of industrial production of footwear, leather and leather goods in the metropolitan area of Cúcuta. The study was addressed by applying a validated and reliable, which led to a current profile for the 20 managerial skills sector production managers. The areas with greater training received were: inventory management, supervisory skills, improving product quality and design of new products. The most commonly used types of training are lectures, seminars and short courses and the institutions they support are external consultants and other public or private institutions. The current profile allowed to identify training needs in the technical skills of planning, scheduling, production control and inventory control through software tools. The human skills include capacity building of teamwork, negotiation, leadership and management tools to communicate effectively. Finally, conceptual skills required management methods to collect information.La investigación identificó la realidad de la capacitación y sus necesidades en los gerentes de producción del sector industrial de calzado, cuero y sus manufacturas en el área metropolitana de Cúcuta. El estudio se abordó mediante la aplicación de un cuestionario validado y confiable que determinó un perfil actual en habilidades gerenciales para 20 gerentes de producción del sector. Las áreas con mayor capacitación recibida fueron: manejo de inventarios, técnicas de supervisión, mejoramiento de la calidad del producto y diseño de nuevos productos. Las modalidades de capacitación más utilizadas son las conferencias, seminarios y los cursos cortos, y las instituciones en las que se apoyan son consultoras externas y otras instituciones públicas o privadas. El perfil actual permitió identificar necesidades de capacitación en las habilidades técnicas de planificación, programación, control de la producci

  1. Robotics in space-age manufacturing

    Science.gov (United States)

    Jones, Chip

    1991-01-01

    Robotics technologies are developed to improve manufacturing of space hardware. The following applications of robotics are covered: (1) welding for the space shuttle and space station Freedom programs; (2) manipulation of high-pressure water for shuttle solid rocket booster refurbishment; (3) automating the application of insulation materials; (4) precision application of sealants; and (5) automation of inspection procedures. Commercial robots are used for these development programs, but they are teamed with advanced sensors, process controls, and computer simulation to form highly productive manufacturing systems. Many of the technologies are also being actively pursued in private sector manufacturing operations.

  2. The impact of fit manufacturing on green manufacturing: A review

    Science.gov (United States)

    Qi, Ang Nian; Sin, Tan Chan; Fathullah, M.; Lee, C. C.

    2017-09-01

    Fit manufacturing and Green manufacturing are a new trend principle and concept. They are getting popular in industrial. This paper is identifying the impact between Fit manufacturing and Green manufacturing. Besides Fit manufacturing, Lean manufacturing, Agile manufacturing and Sustainable manufacturing gives big impacts to Green Manufacturing. On top of that, this paper also discuss the benefits of applying Fit manufacturing and Green manufacturing in industrial as well as environment. Hence, applications of Fit manufacturing and Green Manufacturing are increasing year by year.

  3. Emerging Materials Technologies That Matter to Manufacturers

    Science.gov (United States)

    Misra, Ajay K.

    2015-01-01

    A brief overview of emerging materials technologies. Exploring the weight reduction benefit of replacing Carbon Fiber with Carbon Nanotube (CNT) in Polymer Composites. Review of the benign purification method developed for CNT sheets. The future of manufacturing will include the integration of computational material design and big data analytics, along with Nanomaterials as building blocks.

  4. Improved Methods for Production Manufacturing Processes in Environmentally Benign Manufacturing

    Directory of Open Access Journals (Sweden)

    Yan-Yan Wang

    2011-09-01

    Full Text Available How to design a production process with low carbon emissions and low environmental impact as well as high manufacturing performance is a key factor in the success of low-carbon production. It is important to address concerns about climate change for the large carbon emission source manufacturing industries because of their high energy consumption and environmental impact during the manufacturing stage of the production life cycle. In this paper, methodology for determining a production process is developed. This methodology integrates process determination from three different levels: new production processing, selected production processing and batch production processing. This approach is taken within a manufacturing enterprise based on prior research. The methodology is aimed at providing decision support for implementing Environmentally Benign Manufacturing (EBM and low-carbon production to improve the environmental performance of the manufacturing industry. At the first level, a decision-making model for new production processes based on the Genetic Simulated Annealing Algorithm (GSAA is presented. The decision-making model considers not only the traditional factors, such as time, quality and cost, but also energy and resource consumption and environmental impact, which are different from the traditional methods. At the second level, a methodology is developed based on an IPO (Input-Process-Output model that integrates assessments of resource consumption and environmental impact in terms of a materials balance principle for batch production processes. At the third level, based on the above two levels, a method for determining production processes that focus on low-carbon production is developed based on case-based reasoning, expert systems and feature technology for designing the process flow of a new component. Through the above three levels, a method for determining the production process to identify, quantify, assess, and optimize the

  5. THE EFFECT OF GASOLINE PRICE ON ECONOMIC SECTORS IN NIGERIA

    Directory of Open Access Journals (Sweden)

    Philip Ifeakachukwu Nwosa

    2013-01-01

    Full Text Available This paper examined the long-run and short-run relationship between gasoline price and sectoral output in Nigeria for the period from 1980 to 2010. Six sectors (agriculture; manufacturing; building and construction; wholesale and retail; transportation and communication of the economy were examined. The long run regression estimate showed that gasoline price is a significant determinant output in all sectors examined with exception to the building and construction sector while the short run error correction estimate revealed that only output of the agriculture and the manufacturing sectors of the Nigerian economy is affect by gasoline price increase in the short run. The study recommended among others the need for the government to ensure adequate power supply in order to reduce the over reliance of economics sectors on gasoline as a prime source of power.

  6. Advanced Manufacturing Technologies

    Science.gov (United States)

    Fikes, John

    2016-01-01

    Advanced Manufacturing Technologies (AMT) is developing and maturing innovative and advanced manufacturing technologies that will enable more capable and lower-cost spacecraft, launch vehicles and infrastructure to enable exploration missions. The technologies will utilize cutting edge materials and emerging capabilities including metallic processes, additive manufacturing, composites, and digital manufacturing. The AMT project supports the National Manufacturing Initiative involving collaboration with other government agencies.

  7. Power Watch: Increasing Transparency and Accessibility of Data in the Global Power Sector to Accelerate the Transition to a Lower Carbon Economy

    Science.gov (United States)

    Hennig, R. J.; Friedrich, J.; Malaguzzi Valeri, L.; McCormick, C.; Lebling, K.; Kressig, A.

    2016-12-01

    The Power Watch project will offer open data on the global electricity sector starting with power plants and their impacts on climate and water systems; it will also offer visualizations and decision making tools. Power Watch will create the first comprehensive, open database of power plants globally by compiling data from national governments, public and private utilities, transmission grid operators, and other data providers to create a core dataset that has information on over 80% of global installed capacity for electrical generation. Power plant data will at a minimum include latitude and longitude, capacity, fuel type, emissions, water usage, ownership, and annual generation. By providing data that is both comprehensive, as well as making it publically available, this project will support decision making and analysis by actors across the economy and in the research community. The Power Watch research effort focuses on creating a global standard for power plant information, gathering and standardizing data from multiple sources, matching information from multiple sources on a plant level, testing cross-validation approaches (regional statistics, crowdsourcing, satellite data, and others) and developing estimation methodologies for generation, emissions, and water usage. When not available from official reports, emissions, annual generation, and water usage will be estimated. Water use estimates of power plants will be based on capacity, fuel type and satellite imagery to identify cooling types. This analysis is being piloted in several states in India and will then be scaled up to a global level. Other planned applications of of the Power Watch data include improving understanding of energy access, air pollution, emissions estimation, stranded asset analysis, life cycle analysis, tracking of proposed plants and curtailment analysis.

  8. Which Way for the Kenyan Manufacturing Firms?

    African Journals Online (AJOL)

    User

    2011-07-21

    Jul 21, 2011 ... Indexed African Journals Online: www.ajol.info. An International ... In this paper, firm level panel data for Kenyan manufacturing sector is used ... profits abroad. ... 2. the national income or growth accounting approach which uses .... TFP = productivity measured as value added i.e. total output minus value of.

  9. Environmental Aspects of Use of Recycled Carbon Fiber Composites in Automotive Applications.

    Science.gov (United States)

    Meng, Fanran; McKechnie, Jon; Turner, Thomas; Wong, Kok H; Pickering, Stephen J

    2017-11-07

    The high cost and energy intensity of virgin carbon fiber manufacture provides an opportunity to recover substantial value from carbon fiber reinforced plastic wastes. In this study, we assess the life cycle environmental implications of recovering carbon fiber and producing composite materials as substitutes for conventional and proposed lightweight materials in automotive applications (e.g., steel, aluminum, virgin carbon fiber). Key parameters for the recycled carbon fiber materials, including fiber volume fraction and fiber alignment, are investigated to identify beneficial uses of recycled carbon fiber in the automotive sector. Recycled carbon fiber components can achieve the lowest life cycle environmental impacts of all materials considered, although the actual impact is highly dependent on the design criteria (λ value) of the specific component. Low production impacts associated with recycled carbon fiber components are observed relative to lightweight competitor materials (e.g., aluminum, virgin carbon fiber reinforced plastic). In addition, recycled carbon fiber components have low in-use energy use due to mass reductions and associated reduction in mass-induced fuel consumption. The results demonstrate environmental feasibility of the CFRP recycling materials, supporting the emerging commercialization of CF recycling technologies and identifying significant potential market opportunities in the automotive sector.

  10. Manufacturing and Shear Response Characterization of Carbon Nanofiber Modified CFRP Using the Out-of-Autoclave-Vacuum-Bag-Only Cure Process

    Directory of Open Access Journals (Sweden)

    Erin E. McDonald

    2014-01-01

    Full Text Available The interlaminar shear response is studied for carbon nanofiber (CNF modified out-of-autoclave-vacuum-bag-only (OOA-VBO carbon fiber reinforced plastic (CFRP. Commercial OOA-VBO prepregs were coated with a CNF modified epoxy solution and a control epoxy solution without CNF to make CNF modified samples and control samples, respectively. Tensile testingwas used to study the in-plane shear performance of [±45°]4s composite laminates. Significant difference in failure modes between the control and CNF modified CFRPs was identified. The control samples experienced half-plane interlaminar delamination, whereas the CNF modified samples experienced a localized failure in the intralaminar region. Digital image correlation (DIC surface strain results of the control sample showed no further surface strain increase along the delaminated section when the sample was further elongated prior to sample failure. On the other hand, the DIC results of the CNF modified sample showed that the surface strain increased relatively and uniformly across the CFRP as the sample was further elongated until sample failure. The failure mode evidence along with microscope pictures indicated that the CNF modification acted as a beneficial reinforcement inhibiting interlaminar delamination.

  11. Manufacturing and Shear Response Characterization of Carbon Nanofiber Modified CFRP Using the Out-of-Autoclave-Vacuum-Bag-Only Cure Process

    Science.gov (United States)

    McDonald, Erin E.; Wallace, Landon F.; Hickman, Gregory J. S.; Hsiao, Kuang-Ting

    2014-01-01

    The interlaminar shear response is studied for carbon nanofiber (CNF) modified out-of-autoclave-vacuum-bag-only (OOA-VBO) carbon fiber reinforced plastic (CFRP). Commercial OOA-VBO prepregs were coated with a CNF modified epoxy solution and a control epoxy solution without CNF to make CNF modified samples and control samples, respectively. Tensile testingwas used to study the in-plane shear performance of [±45°]4s composite laminates. Significant difference in failure modes between the control and CNF modified CFRPs was identified. The control samples experienced half-plane interlaminar delamination, whereas the CNF modified samples experienced a localized failure in the intralaminar region. Digital image correlation (DIC) surface strain results of the control sample showed no further surface strain increase along the delaminated section when the sample was further elongated prior to sample failure. On the other hand, the DIC results of the CNF modified sample showed that the surface strain increased relatively and uniformly across the CFRP as the sample was further elongated until sample failure. The failure mode evidence along with microscope pictures indicated that the CNF modification acted as a beneficial reinforcement inhibiting interlaminar delamination. PMID:24688435

  12. Manufacturing and shear response characterization of carbon nanofiber modified CFRP using the out-of-autoclave-vacuum-bag-only cure process.

    Science.gov (United States)

    McDonald, Erin E; Wallace, Landon F; Hickman, Gregory J S; Hsiao, Kuang-Ting

    2014-01-01

    The interlaminar shear response is studied for carbon nanofiber (CNF) modified out-of-autoclave-vacuum-bag-only (OOA-VBO) carbon fiber reinforced plastic (CFRP). Commercial OOA-VBO prepregs were coated with a CNF modified epoxy solution and a control epoxy solution without CNF to make CNF modified samples and control samples, respectively. Tensile testing was used to study the in-plane shear performance of [± 45°]4s composite laminates. Significant difference in failure modes between the control and CNF modified CFRPs was identified. The control samples experienced half-plane interlaminar delamination, whereas the CNF modified samples experienced a localized failure in the intralaminar region. Digital image correlation (DIC) surface strain results of the control sample showed no further surface strain increase along the delaminated section when the sample was further elongated prior to sample failure. On the other hand, the DIC results of the CNF modified sample showed that the surface strain increased relatively and uniformly across the CFRP as the sample was further elongated until sample failure. The failure mode evidence along with microscope pictures indicated that the CNF modification acted as a beneficial reinforcement inhibiting interlaminar delamination.

  13. Cement manufacture and the environment - Part I: Chemistry and technology

    Science.gov (United States)

    Van Oss, H. G.; Padovani, A.C.

    2002-01-01

    Hydraulic (chiefly portland) cement is the binding agent in concrete and mortar and thus a key component of a country's construction sector. Concrete is arguably the most abundant of all manufactured solid materials. Portland cement is made primarily from finely ground clinker, which itself is composed dominantly of hydraulically active calcium silicate minerals formed through high-temperature burning of limestone and other materials in a kiln. This process requires approximately 1.7 tons of raw materials perton of clinker produced and yields about 1 ton of carbon dioxide (CO2) emissions, of which calcination of limestone and the combustion of fuels each contribute about half. The overall level of CO2 output makes the cement industry one of the top two manufacturing industry sources of greenhouse gases; however, in many countries, the cement industry's contribution is a small fraction of that from fossil fuel combustion by power plants and motor vehicles. The nature of clinker and the enormous heat requirements of its manufacture allow the cement industry to consume a wide variety of waste raw materials and fuels, thus providing the opportunity to apply key concepts of industrial ecology, most notably the closing of loops through the use of by-products of other industries (industrial symbiosis). In this article, the chemistry and technology of cement manufacture are summarized. In a forthcoming companion article (part II), some of the environmental challenges and opportunities facing the cement industry are described. Because of the size and scope of the U.S. cement industry, the analysis relies primarily on data and practices from the United States.

  14. Análisis de la gestión estratégica y operativa de una empresa industrial del sector del mueble y reingeniería de procesos en la planta de producción de tapicería. Aplicación del modelo 7s y de las técnicas Kaizen, Seis Sigma y Lean Manufacturing

    OpenAIRE

    ESTEVE FERNÁNDEZ DE CORDOVA, JAVIER

    2013-01-01

    Proyecto Confidencial Esteve Fernández De Cordova, J. (2008). Análisis de la gestión estratégica y operativa de una empresa industrial del sector del mueble y reingeniería de procesos en la planta de producción de tapicería. Aplicación del modelo 7s y de las técnicas Kaizen, Seis Sigma y Lean Manufacturing. http://hdl.handle.net/10251/34162. Archivo delegado

  15. Global Carbon Fiber Composites Supply Chain Competitiveness Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Das, Sujit [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Warren, Josh [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); West, Devin [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Schexnayder, Susan M. [Univ. of Tennessee, Knoxville, TN (United States)

    2016-05-01

    This study identifies key opportunities in the carbon fiber supply chain where the United States Department of Energy's Office of Energy Efficiency and Renewable Energy resources and investments can help the United States achieve or maintain a competitive advantage. The report focuses on four application areas--wind energy, aerospace, automotive, and pressure vessels--that top the list of industries using carbon fiber and carbon fiber reinforced polymers and are also particularly relevant to EERE's mission. For each of the four application areas, the report addresses the supply and demand trends within that sector, supply chain, and costs of carbon fiber and components, all contributing to a competitiveness assessment that addresses the United States' role in future industry growth. This report was prepared by researchers at Oak Ridge National Laboratory and the University of Tennessee for the Clean Energy Manufacturing Analysis Center.

  16. Long-run sectoral development time series evidence for the German economy

    OpenAIRE

    Dietrich, Andreas; Krüger, Jens J.

    2008-01-01

    In economic development, long-run structural change among the three main sectors of an economy follows a typical pattern with the primary sector (agriculture, mining) first dominating, followed by the secondary sector (manufacturing) and finally by the tertiary sector (services) in terms of employment and value added. We reconsider the verbal theoretical work of Fourastié and build a simple model encompassing its main features, most notably the macroeconomic influences on the sectoral develop...

  17. Innovation Training within the Australian Advanced Manufacturing Industry

    Science.gov (United States)

    Donovan, Jerome Denis; Maritz, Alex; McLellan, Andrew

    2013-01-01

    Innovation has emerged as a core driver for the future profitability and success of the manufacturing sector, and increasingly both governments and the private sector are examining ways to support the development of innovation capabilities within organisations. In this research, we have evaluated a government-funded innovation training course…

  18. Tribology in Manufacturing Technology

    CERN Document Server

    2013-01-01

    The present book aims to provide research advances on tribology in manufacturing technology for modern industry. This book can be used as a research book for final undergraduate engineering course (for example, mechanical, manufacturing, materials, etc) or as a subject on manufacturing at the postgraduate level. Also, this book can serve as a useful reference for academics, manufacturing and tribology researchers, mechanical, mechanical, manufacturing and materials engineers, professionals in related industries with manufacturing and tribology.

  19. Environmental issues of Ukrainian energy sector

    International Nuclear Information System (INIS)

    Streimikiene, D.

    2005-01-01

    Ukraine's power sector is the twelfth-largest in the world in terms of installed capacity, with 54 GW and Ukraine still obtains over 50% of its electricity usage from nuclear source. In terms of energy consumption per dollar, Ukraine has one of the highest levels of energy and carbon intensity in the world. The country has very huge energy sector which cause a significant impact on environment

  20. Technology Innovation and Future Research Needs in Net Shape Manufacturing

    International Nuclear Information System (INIS)

    Yang, Dong-Yol

    2005-01-01

    The rapid change in customer needs and industrial environment has demanded innovations in the manufacturing sector. Metal forming industries have been confronted with new challenges of innovations in products, processes, machines, materials and production systems. From the viewpoints of competitiveness of products, new paradigms are required for innovation in manufacturing, especially in net shape manufacturing. Product innovations are increasingly put under emphasis beyond manufacturing innovations based on the holistic concurrent engineering approach. The presentation covers not only the innovation methodologies, but also the innovation directions in net shape manufacturing

  1. Centers for manufacturing technology: Industrial Advisory Committee Review

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-10-01

    An advisory committee, composed of senior managers form industrial- sector companies and major manufacturing trade associations and representatives from appropriate educational institutions, meets semi-annually to review and advise the Oak Ridge Centers for Manufacturing Technology (ORCMT) on its economic security program. Individual papers have been indexed separately for the database.

  2. The Effects of Firm Strategic Factors on Manufacturing Companies ...

    African Journals Online (AJOL)

    The effects of firms' strategic factors on strategic choices and performance differentials in Nigerian manufacturing sectors have not been systematically investigated. Against the backdrop of declining manufacturing performance in Nigeria, this paper examined the effects of selected firm strategic factors on the returns on ...

  3. Issues and solutions: opportunities for European LED manufacturers

    Science.gov (United States)

    Pearsall, T. P.

    2007-09-01

    Marketing studies by EPIC show significant revenue opportunities by 2012 for UHB-LEDs in the automotive, LCD backlighting, and architectural lighting sectors. The goal of this workshop on manufacturing issues is to consider five key issues for UHB-LED manufacturing and to propose solutions that will pave the way to full exploitation of the opportunities.

  4. South African manufacturing performance in international perspective, 1970-1999

    NARCIS (Netherlands)

    Dijk, Michiel van

    2002-01-01

    This paper analyses the historical performance of the South African manufacturing sector in an international perspective. After a brief overview of the industrialisation process of South Africa during the 20th century, a binary comparison of manufacturing output and productivity between South Africa

  5. Lightweighting Automotive Materials for Increased Fuel Efficiency and Delivering Advanced Modeling and Simulation Capabilities to U.S. Manufacturers

    Energy Technology Data Exchange (ETDEWEB)

    Hale, Steve

    2013-09-11

    Abstract The National Center for Manufacturing Sciences (NCMS) worked with the U.S. Department of Energy (DOE), National Energy Technology Laboratory (NETL), to bring together research and development (R&D) collaborations to develop and accelerate the knowledgebase and infrastructure for lightweighting materials and manufacturing processes for their use in structural and applications in the automotive sector. The purpose/importance of this DOE program: • 2016 CAFÉ standards. • Automotive industry technology that shall adopt the insertion of lightweighting material concepts towards manufacturing of production vehicles. • Development and manufacture of advanced research tools for modeling and simulation (M&S) applications to reduce manufacturing and material costs. • U.S. competitiveness that will help drive the development and manufacture of the next generation of materials. NCMS established a focused portfolio of applied R&D projects utilizing lightweighting materials for manufacture into automotive structures and components. Areas that were targeted in this program: • Functionality of new lightweighting materials to meet present safety requirements. • Manufacturability using new lightweighting materials. • Cost reduction for the development and use of new lightweighting materials. The automotive industry’s future continuously evolves through innovation, and lightweight materials are key in achieving a new era of lighter, more efficient vehicles. Lightweight materials are among the technical advances needed to achieve fuel/energy efficiency and reduce carbon dioxide (CO2) emissions: • Establish design criteria methodology to identify the best materials for lightweighting. • Employ state-of-the-art design tools for optimum material development for their specific applications. • Match new manufacturing technology to production volume. • Address new process variability with new production-ready processes.

  6. Technology transfer and international development: Materials and manufacturing technology

    Science.gov (United States)

    1982-01-01

    Policy oriented studies on technological development in several relatively advanced developing countries were conducted. Priority sectors defined in terms of technological sophistication, capital intensity, value added, and export potential were studied in Brazil, Venezuela, Israel, and Korea. The development of technological policy alternatives for the sponsoring country is assessed. Much emphasis is placed on understanding the dynamics of the sectors through structured interviews with a large sample of firms in the leading manufacturing and materials processing sectors.

  7. Sector agreements in post-2012 commitments

    International Nuclear Information System (INIS)

    Vieillefosse, A.

    2007-01-01

    After having recalled the economical theory on havens of pollution, and the problem of concurrence distortions in the Kyoto protocol, and then defined what a sector-based objective is, this report proposed analyses on several sectors: electricity and heat production, steel, cement, aluminium, chemistry and, more partially, the transport sector (light motor vehicles and air transporters). The objective is to develop economical instruments which will help industrialists in adopting less polluting technologies while minimizing concurrence distortions induced by the carbon constraint. For each sector, the report proposes an assessment of emissions, growth prospects, and exposure to international concurrence. It assess to which extent a sector-based objective would be justified and relevant

  8. Regional Capital Inputs in Chinese Industry and Manufacturing, 1978-2003

    NARCIS (Netherlands)

    Wang, Lili; Szirmai, Adam

    2008-01-01

    This paper provides new estimates of capital inputs in the Chinese economy. Estimates are made for the total economy (1953-2003), for the industrial sector (1978-2003) and for the manufacturing sector (1985-2003). The estimates for industry and manufacturing are broken down by thirty regions. The

  9. Telefacturing Based Distributed Manufacturing Environment for Optimal Manufacturing Service by Enhancing the Interoperability in the Hubs

    Directory of Open Access Journals (Sweden)

    V. K. Manupati

    2017-01-01

    Full Text Available Recent happenings are surrounding the manufacturing sector leading to intense progress towards the development of effective distributed collaborative manufacturing environments. This evolving collaborative manufacturing not only focuses on digitalisation of this environment but also necessitates service-dependent manufacturing system that offers an uninterrupted approach to a number of diverse, complicated, dynamic manufacturing operations management systems at a common work place (hub. This research presents a novel telefacturing based distributed manufacturing environment for recommending the manufacturing services based on the user preferences. The first step in this direction is to deploy the most advanced tools and techniques, that is, Ontology-based Protégé 5.0 software for transforming the huge stored knowledge/information into XML schema of Ontology Language (OWL documents and Integration of Process Planning and Scheduling (IPPS for multijobs in a collaborative manufacturing system. Thereafter, we also investigate the possibilities of allocation of skilled workers to the best feasible operations sequence. In this context, a mathematical model is formulated for the considered objectives, that is, minimization of makespan and total training cost of the workers. With an evolutionary algorithm and developed heuristic algorithm, the performance of the proposed manufacturing system has been improved. Finally, to manifest the capability of the proposed approach, an illustrative example from the real-time manufacturing industry is validated for optimal service recommendation.

  10. Analysis of the technical potential for carbon capture and geological sequestration in the oil sector of Brazil; Analise do potencial tecnico do sequestro geologico de CO{sub 2} no setor petroleo no Brasil

    Energy Technology Data Exchange (ETDEWEB)

    Costa, Isabella Vaz Leal da

    2009-02-15

    This thesis focuses on the technologies related to CO{sub 2} capture and geological storage. The main objective of this study is to perform an analysis of the technical potential of geological sequestration of CO{sub 2} in the oil and gas sector in Brazil. Climate changes are directly related to emissions of greenhouse gases. Mainly, are related to increased carbon dioxide emissions due to the use of fossil fuels. To mitigate climate changes there are technologies that have the purpose of promoting the reduction of emissions of greenhouse gases such as the Geological Sequestration of CO{sub 2}. Thus, the study presents a description of the stages of the geological sequestration of CO{sub 2} and the state of the art of the technology in Brazil and worldwide. In addition, is presented the capacity for storage of the Brazilian sedimentary basins. Finally, this thesis analyzes the application of the described technologies in two stationary sources of great importance: refineries and oil and gas production fields. (author)

  11. Sectoral Innovation Performance in the Food and Drinks Sector. Final Report. Task 1

    NARCIS (Netherlands)

    Leis, M.

    2010-01-01

    Food and drinks manufacturing is a very complex sector with a lot of possibilities for improvement and innovation, but also with a variety of challenges in regard to financial and human resources, fragmented consumer interests and concerns, regulations, costs and a balancing act between novelty and

  12. Quantifying Adoption Rates and Energy Savings Over Time for Advanced Manufacturing Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Hanes, Rebecca [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Carpenter Petri, Alberta C [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Riddle, Matt [Argonne National Laboratory; Graziano, Diane [Argonne National Laboratory

    2017-10-09

    Energy-efficient manufacturing technologies can reduce energy consumption and lower operating costs for an individual manufacturing facility, but increased process complexity and the resulting risk of disruption means that manufacturers may be reluctant to adopt such technologies. In order to quantify potential energy savings at scales larger than a single facility, it is necessary to account for how quickly and how widely the technology will be adopted by manufacturers. This work develops a methodology for estimating energy-efficient manufacturing technology adoption rates using quantitative, objectively measurable technology characteristics, including energetic, economic and technical criteria. Twelve technology characteristics are considered, and each characteristic is assigned an importance weight that reflects its impact on the overall technology adoption rate. Technology characteristic data and importance weights are used to calculate the adoption score, a number between 0 and 1 that represents how quickly the technology is likely to be adopted. The adoption score is then used to estimate parameters for the Bass diffusion curve, which quantifies the change in the number of new technology adopters in a population over time. Finally, energy savings at the sector level are calculated over time by multiplying the number of new technology adopters at each time step with the technology's facility-level energy savings. The proposed methodology will be applied to five state-of-the-art energy-efficient technologies in the carbon fiber composites sector, with technology data obtained from the Department of Energy's 2016 bandwidth study. Because the importance weights used in estimating the Bass curve parameters are subjective, a sensitivity analysis will be performed on the weights to obtain a range of parameters for each technology. The potential energy savings for each technology and the rate at which each technology is adopted in the sector are quantified

  13. Next Generation Print-based Manufacturing for Photovoltaics and Solid State Lighting

    Energy Technology Data Exchange (ETDEWEB)

    Sue A. Carter

    2012-09-07

    For the grand challenge of reducing our energy and carbon footprint, the development of renewable energy and energy efficient technologies offer a potential solution. Energy technologies can reduce our dependence on foreign oil as well as the energy consumed by the petroleum industry, the leading consumer of energy by a U.S. industry sector. Nonetheless, the manufacturing processes utilized to manufacture equipment for alternative energy technologies often involve energy-intensive processes. This undermines some of the advantages to moving to 'green' technologies in the first place. Our answer to the Industrial Technology Program's (ITP) Grand Challenge FOA was to develop a transformational low cost manufacturing process for plastic-based photovoltaics that will lower by over 50% both energy consumption and greenhouse emissions and offer a return-of-investment of over 20%. We demonstrated a Luminescent Solar Concentrator fabricated on a plastic acrylic substrate (i.e. no glass) that increases the power output of the PV cell by 2.2x with a 2% power efficiency as well as an LSC with a 7% power efficiency that increased the power output from the PV cells by 35%. S large area 20-inch x 60-inch building-integrated photovoltaic window was fabricated using contract manufacturing with a 4% power efficiency which improved the power output of the PV cell by over 50%. In addition, accelerated lifetimes of the luminescent material demonstrate lifetimes of 20-years.

  14. Manufacturing network evolution

    DEFF Research Database (Denmark)

    Yang, Cheng; Farooq, Sami; Johansen, John

    2011-01-01

    Purpose – This paper examines the effect of changes at the manufacturing plant level on other plants in the manufacturing network and also investigates the role of manufacturing plants on the evolution of a manufacturing network. Design/methodology/approach –The research questions are developed...... different manufacturing plants in the network and their impact on network transformation. Findings – The paper highlights the dominant role of manufacturing plants in the continuously changing shape of a manufacturing network. The paper demonstrates that a product or process change at one manufacturing...... by identifying the gaps in the reviewed literature. The paper is based on three case studies undertaken in Danish manufacturing companies to explore in detail their manufacturing plants and networks. The cases provide a sound basis for developing the research questions and explaining the interaction between...

  15. Sector Information Data Set

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Fishing sectors were established in the Greater Atlantic region in 2010 under catch share management initiatives. Sector data kept at GARFO is mostly a collection of...

  16. Europe’s climate goals and the electricity sector

    International Nuclear Information System (INIS)

    Eskeland, Gunnar S.; Rive, Nathan A.; Mideksa, Torben K.

    2012-01-01

    EU's objective of attaining 20% reductions in greenhouse gas emissions by 2020 is analysed with a general equilibrium model detailing electricity generation technologies and capital vintaging. Consistent with theory and other analysts we find that the nonuniform treatment of emitting sectors in EU raises abatement costs – by a factor of two to three. Under cost effective emission reductions – a more comprehensive tradable cap—electricity generation abates more than its proportional share in emissions. The European economy abates by substitution towards natural gas, by energy efficiency improvements, and by reductions in emission intensive manufactures. Applied policies such as renewable support – and responses such as carbon leakage – hold down the prices for emission and electricity, thus also holds down incentives for energy efficiency and technological change. This leads to little preparation for the future and global mitigation. - Highlights: ► We analyse the EU's climate emissions objectives in 2020 using a computable general equilibrium model. ► We focus on its impact on electricity prices, demand, output, and technology mix in the EU regions. ► We compare alternative realistic and theoretical implementations of policies. ► We find that the electricity generation abates more than its proportional share in emissions. ► The targets are likely met at low carbon cost, and thus unlikely to promote long-term technological change.

  17. Integral Ring Carbon-Carbon Piston

    Science.gov (United States)

    Northam, G. Burton (Inventor)

    1999-01-01

    An improved structure for a reciprocating internal combustion engine or compressor piston fabricate from carbon-carbon composite materials is disclosed. An integral ring carbon-carbon composite piston, disclosed herein, reduces the need for piston rings and for small clearances by providing a small flexible, integral component around the piston that allows for variation in clearance due to manufacturing tolerances, distortion due to pressure and thermal loads, and variations in thermal expansion differences between the piston and cylinder liner.

  18. Ultrasonic-assisted manufacturing of new hydrogel nanocomposite biosorbent containing calcium carbonate nanoparticles and tragacanth gum for removal of heavy metal.

    Science.gov (United States)

    Mallakpour, Shadpour; Abdolmaleki, Amir; Tabesh, Farbod

    2018-03-01

    This article reports the first incorporation of calcium carbonate nanoparticles (CC NPs) into tragacanth gum (TG) to prepare a new hydrogel nanocomposite (HNC) system using a green, safe, and eco-friendly method, ultrasound irradiation as an efficient biosorbent of heavy metal ions from wastewater. Morphological studies revealed that the surface of obtained HNCs is rough, homogeneous, and porous-like due to the embedding of CC NPs as well as sonication in comparison to the neat TG which has a smooth surface. The particle size reduction was observed for CC NPs in the matrix (from 57 to 10 nm), which is owing to the extraordinary effect of sonication on this process. Thermal stability of HNCs has been increased after using CC NPs from 8.5 wt% for TG to about 22 wt% for HNCs. The optical band gap of TG/CC HNC 5 wt% calculated to be 4.46 eV which is less than that of CC NPs (5.58 eV) and even TG (6.28 eV) and this result indicated that TG/CC HNC 5 wt% is relatively more conductive than CC NPs and TG. The nitrogen adsorption-desorption disclosed an isotherm type III of Brunauer classification for TG/CC HNC 5 wt% and the surface area has been increased from 0.7 m 2 .g -1 for TG to 2.3 m 2 .g -1 for TG/CC HNC 5 wt%. Also, the BET surface area for TG/CC HNC 5 wt% calculated to be 7.8 nm which is classified into mesoporous materials. The Pb 2+ ions were significantly removed from water using TG/CC HNC 5 wt% and the removal efficiency was determined as 83% at optimized conditions (pH = 5, adsorbent dosage = 0.015 g, time = 3 h, and Pb 2+ concentration = 70 mg.L -1 ). Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Sectoral analysis of the causal relationship between electricity consumption and real output in Pakistan

    International Nuclear Information System (INIS)

    Tang, Chor Foon; Shahbaz, Muhammad

    2013-01-01

    This study uses the annual data from 1972 to 2010 to assess the causal relationship between electricity consumption and real output at the aggregate and sectoral levels in Pakistan. This study covers three main economic sectors in Pakistan namely agricultural, manufacturing and services sectors. Our cointegration results reveal that the variables are cointegrated at the aggregate and sectoral levels. At the aggregate level, we find that there is uni-directional Granger causality running from electricity consumption to real output in Pakistan. At the sectoral level, we find that electricity consumption Granger-causes real output in the manufacturing and services sectors. However, there is no causal relationship between electricity consumption and real output in the agricultural sector. The policy implication of these results is that electricity conservation policies in general would deteriorate the process of economic growth as well as the real output in the manufacturing and services sectors in Pakistan. Nevertheless, we suggest the Pakistani government to implement the electricity conservation policies merely to the agricultural sector because such policies may have less or no adverse impact on its real output. - Highlights: • We assess the electricity-growth nexus in Pakistan at the aggregate and sectoral levels. • The variables are cointegrated at both levels. • We find causality from electricity to output at the aggregate level and services. • We find neutral causality in the agricultural sector. • We find bi-directional causality in the manufacturing sector

  20. Inflation and capacity utilisation in Nigeria's manufacturing sector ...

    African Journals Online (AJOL)

    This study analysed the relationship between inflation and capacity utilisation empirically leaning on the model employed by Baylor (2001). It utilised time series secondary data using least square multiple regression technique. The quarterly data utilised were tested for stationarity using ADF test. The multiple regression ...