WorldWideScience

Sample records for manufacturing recombinant adeno-associated

  1. Pharmacology of Recombinant Adeno-associated Virus Production

    Directory of Open Access Journals (Sweden)

    Magalie Penaud-Budloo

    2018-03-01

    Full Text Available Recombinant adeno-associated viral (rAAV vectors have been used in more than 150 clinical trials with a good safety profile and significant clinical benefit in many genetic diseases. In addition, due to their ability to infect non-dividing and dividing cells and to serve as efficient substrate for homologous recombination, rAAVs are being used as a tool for gene-editing approaches. However, manufacturing of these vectors at high quantities and fulfilling current good manufacturing practices (GMP is still a challenge, and several technological platforms are competing for this niche. Herein, we will describe the most commonly used upstream methods to produce rAAVs, paying particular attention to the starting materials (input used in each platform and which related impurities can be expected in final products (output. The most commonly found impurities in rAAV stocks include defective particles (i.e., AAV capsids that do contain the therapeutic gene or are not infectious, residual proteins from host cells and helper viruses (adenovirus, herpes simplex virus, or baculoviruses, and illegitimate DNA from plasmids, cells, or helper viruses that may be encapsidated into rAAV particles. Given the role that impurities may play in immunotoxicity, this article reviews the impurities inherently associated with each manufacturing platform.

  2. Toward exascale production of recombinant adeno-associated virus for gene transfer applications.

    Science.gov (United States)

    Cecchini, S; Negrete, A; Kotin, R M

    2008-06-01

    To gain acceptance as a medical treatment, adeno-associated virus (AAV) vectors require a scalable and economical production method. Recent developments indicate that recombinant AAV (rAAV) production in insect cells is compatible with current good manufacturing practice production on an industrial scale. This platform can fully support development of rAAV therapeutics from tissue culture to small animal models, to large animal models, to toxicology studies, to Phase I clinical trials and beyond. Efforts to characterize, optimize and develop insect cell-based rAAV production have culminated in successful bioreactor-scale production of rAAV, with total yields potentially capable of approaching the exa-(10(18)) scale. These advances in large-scale AAV production will allow us to address specific catastrophic, intractable human diseases such as Duchenne muscular dystrophy, for which large amounts of recombinant vector are essential for successful outcome.

  3. A novel and highly efficient production system for recombinant adeno-associated virus vector.

    Science.gov (United States)

    Wu, Zhijian; Wu, Xiaobing; Cao, Hui; Dong, Xiaoyan; Wang, Hong; Hou, Yunde

    2002-02-01

    Recombinant adeno-associated virus (rAAV) has proven to be a promising gene delivery vector for human gene therapy. However, its application has been limited by difficulty in obtaining enough quantities of high-titer vector stocks. In this paper, a novel and highly efficient production system for rAAV is described. A recombinant herpes simplex virus type 1 (rHSV-1) designated HSV1-rc/DeltaUL2, which expressed adeno-associated virus type2 (AAV-2) Rep and Cap proteins, was constructed previously. The data confirmed that its functions were to support rAAV replication and packaging, and the generated rAAV was infectious. Meanwhile, an rAAV proviral cell line designated BHK/SG2, which carried the green fluorescent protein (GFP) gene expression cassette, was established by transfecting BHK-21 cells with rAAV vector plasmid pSNAV-2-GFP. Infecting BHK/SG2 with HSV1-rc/DeltaUL2 at an MOI of 0.1 resulted in the optimal yields of rAAV, reaching 250 transducing unit (TU) or 4.28x10(4) particles per cell. Therefore, compared with the conventional transfection method, the yield of rAAV using this "one proviral cell line, one helper virus" strategy was increased by two orders of magnitude. Large-scale production of rAAV can be easily achieved using this strategy and might meet the demands for clinical trials of rAAV-mediated gene therapy.

  4. Recombination and population mosaic of a multifunctional viral gene, adeno-associated virus cap.

    Directory of Open Access Journals (Sweden)

    Yasuhiro Takeuchi

    Full Text Available Homologous recombination is a dominant force in evolution and results in genetic mosaics. To detect evidence of recombination events and assess the biological significance of genetic mosaics, genome sequences for various viral populations of reasonably large size are now available in the GenBank. We studied a multi-functional viral gene, the adeno-associated virus (AAV cap gene, which codes for three capsid proteins, VP1, VP2 and VP3. VP1-3 share a common C-terminal domain corresponding to VP3, which forms the viral core structure, while the VP1 unique N-terminal part contains an enzymatic domain with phospholipase A2 activity. Our recombinant detection program (RecI revealed five novel recombination events, four of which have their cross-over points in the N-terminal, VP1 and VP2 unique region. Comparison of phylogenetic trees for different cap gene regions confirmed discordant phylogenies for the recombinant sequences. Furthermore, differences in the phylogenetic tree structures for the VP1 unique (VP1u region and the rest of cap highlighted the mosaic nature of cap gene in the AAV population: two dominant forms of VP1u sequences were identified and these forms are linked to diverse sequences in the rest of cap gene. This observation together with the finding of frequent recombination in the VP1 and 2 unique regions suggests that this region is a recombination hot spot. Recombination events in this region preserve protein blocks of distinctive functions and contribute to convergence in VP1u and divergence of the rest of cap. Additionally the possible biological significance of two dominant VP1u forms is inferred.

  5. Convection Enhanced Delivery of Recombinant Adeno-associated Virus into the Mouse Brain.

    Science.gov (United States)

    Nash, Kevin R; Gordon, Marcia N

    2016-01-01

    Recombinant adeno-associated virus (rAAV) has become an extremely useful tool for the study of gene over expression or knockdown in the central nervous system of experimental animals. One disadvantage of intracranial injections of rAAV vectors into the brain parenchyma has been restricted distribution to relatively small volumes of the brain. Convection enhanced delivery (CED) is a method for delivery of clinically relevant amounts of therapeutic agents to large areas of the brain in a direct intracranial injection procedure. CED uses bulk flow to increase the hydrostatic pressure and thus improve volume distribution. The CED method has shown robust gene transfer and increased distribution within the CNS and can be successfully used for different serotypes of rAAV for increased transduction of the mouse CNS. This chapter details the surgical injection of rAAV by CED into a mouse brain.

  6. Molecular design for recombinant adeno-associated virus (rAAV) vector production.

    Science.gov (United States)

    Aponte-Ubillus, Juan Jose; Barajas, Daniel; Peltier, Joseph; Bardliving, Cameron; Shamlou, Parviz; Gold, Daniel

    2018-02-01

    Recombinant adeno-associated virus (rAAV) vectors are increasingly popular tools for gene therapy applications. Their non-pathogenic status, low inflammatory potential, availability of viral serotypes with different tissue tropisms, and prospective long-lasting gene expression are important attributes that make rAAVs safe and efficient therapeutic options. Over the last three decades, several groups have engineered recombinant AAV-producing platforms, yielding high titers of transducing vector particles. Current specific productivity yields from different platforms range from 10 3 to 10 5 vector genomes (vg) per cell, and there is an ongoing effort to improve vector yields in order to satisfy high product demands required for clinical trials and future commercialization.Crucial aspects of vector production include the molecular design of the rAAV-producing host cell line along with the design of AAV genes, promoters, and regulatory elements. Appropriately, configuring and balancing the expression of these elements not only contributes toward high productivity, it also improves process robustness and product quality. In this mini-review, the rational design of rAAV-producing expression systems is discussed, with special attention to molecular strategies that contribute to high-yielding, biomanufacturing-amenable rAAV production processes. Details on molecular optimization from four rAAV expression systems are covered: adenovirus, herpesvirus, and baculovirus complementation systems, as well as a recently explored yeast expression system.

  7. Adeno-associated virus-mediated gene transfer

    OpenAIRE

    Srivastava, Arun

    2008-01-01

    Although the remarkable versatility and efficacy of recombinant adeno-associated virus 2 (AAV2) vectors in transducing a wide variety of cells and tissues in vitro, and in numerous pre-clinical animal models of human diseases in vivo, have been well established, the published literature is replete with controversies with regard to the efficacy of AAV2 vectors in hematopoietic stem cell (HSC) transduction. A number of factors have contributed to these controversies, the molecular bases of whic...

  8. Recombinant Adeno-Associated Virus-Mediated microRNA Delivery into the Postnatal Mouse Brain Reveals a Role for miR-134 in Dendritogenesis in Vivo

    DEFF Research Database (Denmark)

    Christensen, Mette; Larsen, Lars A; Kauppinen, Sakari

    2010-01-01

    delivery of microRNAs in vivo by use of recombinant adeno-associated virus (rAAV). rAAV-mediated overexpression of miR-134 in neurons of the postnatal mouse brain provided evidence for a negative role of miR-134 in dendritic arborization of cortical layer V pyramidal neurons in vivo, thereby confirming...

  9. Process optimization of large-scale production of recombinant adeno-associated vectors using dielectric spectroscopy.

    Science.gov (United States)

    Negrete, Alejandro; Esteban, Geoffrey; Kotin, Robert M

    2007-09-01

    A well-characterized manufacturing process for the large-scale production of recombinant adeno-associated vectors (rAAV) for gene therapy applications is required to meet current and future demands for pre-clinical and clinical studies and potential commercialization. Economic considerations argue in favor of suspension culture-based production. Currently, the only feasible method for large-scale rAAV production utilizes baculovirus expression vectors and insect cells in suspension cultures. To maximize yields and achieve reproducibility between batches, online monitoring of various metabolic and physical parameters is useful for characterizing early stages of baculovirus-infected insect cells. In this study, rAAVs were produced at 40-l scale yielding ~1 x 10(15) particles. During the process, dielectric spectroscopy was performed by real time scanning in radio frequencies between 300 kHz and 10 MHz. The corresponding permittivity values were correlated with the rAAV production. Both infected and uninfected reached a maximum value; however, only infected cell cultures permittivity profile reached a second maximum value. This effect was correlated with the optimal harvest time for rAAV production. Analysis of rAAV indicated the harvesting time around 48 h post-infection (hpi), and 72 hpi produced similar quantities of biologically active rAAV. Thus, if operated continuously, the 24-h reduction in the production process of rAAV gives sufficient time for additional 18 runs a year corresponding to an extra production of ~2 x 10(16) particles. As part of large-scale optimization studies, this new finding will facilitate the bioprocessing scale-up of rAAV and other bioproducts.

  10. Treatment of lysosomal storage disease in MPS VII mice using a recombinant adeno-associated virus.

    Science.gov (United States)

    Watson, G L; Sayles, J N; Chen, C; Elliger, S S; Elliger, C A; Raju, N R; Kurtzman, G J; Podsakoff, G M

    1998-12-01

    Mucopolysaccharidosis type VII (MPS VII) is a lysosomal storage disease caused by a genetic deficiency of beta-glucuronidase (GUS). We used a recombinant adeno-associated virus vector (AAV-GUS) to deliver GUS cDNA to MPS VII mice. The route of vector administration had a dramatic effect on the extent and distribution of GUS activity. Intramuscular injection of AAV-GUS resulted in high, localized production of GUS, while intravenous administration produced low GUS activity in several tissues. This latter treatment of MPS VII mice reduced glycosaminoglycan levels in the liver to normal and reduced storage granules dramatically. We show that a single administration of AAV-GUS can provide sustained expression of GUS in a variety of cell types and is sufficient to reverse the disease phenotype at least in the liver.

  11. Novel strategy for generation and titration of recombinant adeno-associated virus vectors.

    Science.gov (United States)

    Shiau, Ai-Li; Liu, Pu-Ste; Wu, Chao-Liang

    2005-01-01

    Recombinant adeno-associated virus (rAAV) vectors have many advantages for gene therapeutic applications compared with other vector systems. Several methods that use plasmids or helper viruses have been reported for the generation of rAAV vectors. Unfortunately, the preparation of large-scale rAAV stocks is labor-intensive. Moreover, the biological titration of rAAV is still difficult, which may limit its preclinical and clinical applications. For this study, we developed a novel strategy to generate and biologically titrate rAAV vectors. A recombinant pseudorabies virus (PrV) with defects in its gD, gE, and thymidine kinase genes was engineered to express the AAV rep and cap genes, yielding PS virus, which served as a packaging and helper virus for the generation of rAAV vectors. PS virus was useful not only for generating high-titer rAAV vectors by cotransfection with an rAAV vector plasmid, but also for amplifying rAAV stocks. Notably, the biological titration of rAAV vectors was also feasible when cells were coinfected with rAAV and PS virus. Based on this strategy, we produced an rAAV that expresses prothymosin alpha (ProT). Expression of the ProT protein in vitro and in vivo mediated by rAAV/ProT gene transfer was detected by immunohistochemistry and a bioassay. Taken together, our results demonstrate that the PrV vector-based system is useful for generating rAAV vectors carrying various transgenes.

  12. Factors influencing recombinant adeno-associated virus production.

    Science.gov (United States)

    Salvetti, A; Orève, S; Chadeuf, G; Favre, D; Cherel, Y; Champion-Arnaud, P; David-Ameline, J; Moullier, P

    1998-03-20

    Recombinant adeno-associated virus (rAAV) is produced by transfecting cells with two constructs: the rAAV vector plasmid and the rep-cap plasmid. After subsequent adenoviral infection, needed for rAAV replication and assembly, the virus is purified from total cell lysates through CsCl gradients. Because this is a long and complex procedure, the precise titration of rAAV stocks, as well as the measure of the level of contamination with adenovirus and rep-positive AAV, are essential to evaluate the transduction efficiency of these vectors in vitro and in vivo. Our vector core is in charge of producing rAAV for outside investigators as part of a national network promoted by the Association Française contre les Myopathies/Généthon. We report here the characterization of 18 large-scale rAAV stocks produced during the past year. Three major improvements were introduced and combined in the rAAV production procedure: (i) the titration and characterization of rAAV stocks using a stable rep-cap HeLa cell line in a modified Replication Center Assay (RCA); (ii) the use of different rep-cap constructs to provide AAV regulatory and structural proteins; (iii) the use of an adenoviral plasmid to provide helper functions needed for rAAV replication and assembly. Our results indicate that: (i) rAAV yields ranged between 10(11) to 5 x 10(12) total particles; (ii) the physical particle to infectious particle (measured by RCA) ratios were consistently below 50 when using a rep-cap plasmid harboring an ITR-deleted AAV genome; the physical particle to transducing particle ratios ranged between 400 and 600; (iii) the use of an adenoviral plasmid instead of an infectious virion did not affect the particles or the infectious particles yields nor the above ratio. Most of large-scale rAAV stocks (7/9) produced using this plasmid were free of detectable infectious adenovirus as determined by RCA; (iv) all the rAAV stocks were contaminated with rep-positive AAV as detected by RCA. In summary

  13. Adeno-associated viral vector-induced overexpression of neuropeptide Y Y2 receptors in the hippocampus suppresses seizures

    DEFF Research Database (Denmark)

    Woldbye, David Paul Drucker; Ängehagen, Mikael; Gøtzsche, Casper René

    2010-01-01

    Gene therapy using recombinant adeno-associated viral vectors overexpressing neuropeptide Y in the hippocampus exerts seizure-suppressant effects in rodent epilepsy models and is currently considered for clinical application in patients with intractable mesial temporal lobe epilepsy. Seizure...... recombinant adeno-associated viral vectors. In two temporal lobe epilepsy models, electrical kindling and kainate-induced seizures, vector-based transduction of Y2 receptor complementary DNA in the hippocampus of adult rats exerted seizure-suppressant effects. Simultaneous overexpression of Y2...... and neuropeptide Y had a more pronounced seizure-suppressant effect. These results demonstrate that overexpression of Y2 receptors (alone or in combination with neuropeptide Y) could be an alternative strategy for epilepsy treatment....

  14. Novel recombinant adeno-associated viruses for Cre activated and inactivated transgene expression in neurons

    Science.gov (United States)

    Saunders, Arpiar; Johnson, Caroline A.; Sabatini, Bernardo L.

    2012-01-01

    Understanding the organization of the nervous system requires methods for dissecting the contributions of each component cell type to circuit function. One widely used approach combines genetic targeting of Cre recombinase to specific cell populations with infection of recombinant adeno-associated viruses (rAAVs) whose transgene expression is activated by Cre (“Cre-On”). Distinguishing how the Cre-expressing neurons differ functionally from neighboring Cre-negative neurons requires rAAVs that are inactivated by Cre (“Cre-Off”) and can be used in tandem with Cre-On viruses. Here we introduce two rAAV vectors that are inactivated by Cre and carry different fluorophore and optogenetic constructs. We demonstrate single and dual rAAV systems to achieve Cre-On and Cre-Off expression in spatially-intermingled cell populations of the striatum. Using these systems, we uncovered cryptic genomic interactions that occur between multiple Cre-sensitive rAAVs or between Cre-sensitive rAAVs and somatic Cre-conditional alleles and devised methods to avoid these interactions. Our data highlight both important experimental caveats associated with Cre-dependent rAAV use as well as opportunities for the development of improved rAAVs for gene delivery. PMID:22866029

  15. Cre Activated and Inactivated Recombinant Adeno-Associated Viral Vectors for Neuronal Anatomical Tracing or Activity Manipulation.

    Science.gov (United States)

    Saunders, Arpiar; Sabatini, Bernardo L

    2015-07-01

    Recombinant adeno-associated viruses (rAAVs) transcriptionally activated by Cre recombinase (Cre-On) are powerful tools for determining the anatomy and function of genetically defined neuronal types in transgenic Cre driver mice. Here we describe how rAAVs transcriptionally inactivated by Cre (Cre-Off) can be used in conjunction with Cre-On rAAVs or genomic Cre-reporter alleles to study brain circuits. Intracranial injection of Cre-On/Cre-Off rAAVs into spatially intermingled Cre(+) and Cre(-) neurons allows these populations to be differentially labeled or manipulated within individual animals. This comparison helps define the unique properties of Cre(+) neurons, highlighting the specialized role they play in their constituent brain circuits. This protocol touches on the conceptual and experimental background of Cre-Off rAAV systems, including caveats and methods of validation. Copyright © 2015 John Wiley & Sons, Inc.

  16. Efficient photoreceptor-targeted gene expression in vivo by recombinant adeno-associated virus.

    Science.gov (United States)

    Flannery, J G; Zolotukhin, S; Vaquero, M I; LaVail, M M; Muzyczka, N; Hauswirth, W W

    1997-06-24

    We describe a general approach for achieving efficient and cell type-specific expression of exogenous genes in photoreceptor cells of the mammalian retina. Recombinant adeno-associated virus (rAAV) vectors were used to transfer the bacterial lacZ gene or a synthetic green fluorescent protein gene (gfp) to mouse or rat retinas after injection into the subretinal space. Using a proximal murine rod opsin promoter (+86 to -385) to drive expression, reporter gene product was found exclusively in photoreceptors, not in any other retinal cell type or in the adjacent retinal pigment epithelium. GFP-expressing photoreceptors typically encompassed 10-20% of the total retinal area after a single 2-microl injection. Photoreceptors were transduced with nearly 100% efficiency in the region directly surrounding the injection site. We estimate approximately 2.5 million photoreceptors were transduced as a result of the single subretinal inoculation. This level of gene transfer and expression suggests the feasibility of genetic therapy for retinal disease. The gfp-containing rAAV stock was substantially free of both adenovirus and wild-type AAV, as judged by plaque assay and infectious center assay, respectively. Thus, highly purified, helper virus-free rAAV vectors can achieve high-frequency tissue-specific transduction of terminally differentiated, postmitotic photoreceptor cells.

  17. Stable producer cell lines for adeno-associated virus (AAV) assembly.

    Science.gov (United States)

    Chadeuf, Gilliane; Salvetti, Anna

    2010-10-01

    Stable producer cell lines containing both the rep and cap genes and recombinant adeno-associated virus (rAAV) vectors can be infected with a helper virus to provide reliable and efficient production of rAAV stocks. However, the development of these cell lines is time-consuming. The procedure described here is therefore recommended only for studies requiring the production of high amounts of rAAV, such as preclinical studies performed in large animals.

  18. Adeno-Associated Viral Vector-Induced Overexpression of Neuropeptide Y Y2 Receptors in the Hippocampus Suppresses Seizures

    Science.gov (United States)

    Woldbye, David P. D.; Angehagen, Mikael; Gotzsche, Casper R.; Elbrond-Bek, Heidi; Sorensen, Andreas T.; Christiansen, Soren H.; Olesen, Mikkel V.; Nikitidou, Litsa; Hansen, Thomas v. O.; Kanter-Schlifke, Irene; Kokaia, Merab

    2010-01-01

    Gene therapy using recombinant adeno-associated viral vectors overexpressing neuropeptide Y in the hippocampus exerts seizure-suppressant effects in rodent epilepsy models and is currently considered for clinical application in patients with intractable mesial temporal lobe epilepsy. Seizure suppression by neuropeptide Y in the hippocampus is…

  19. Construction of adeno-associated virus packaging plasmids and cells that directly select for AAV helper functions.

    Science.gov (United States)

    Whiteway, Alistair; Deru, Wale; Prentice, H Grant; Anderson, Robert

    2003-12-01

    Recombinant adeno-associated virus type 2 (rAAV) has promise for use as a gene therapy vector. Potential problems in the production of rAAV stocks are both the limited amount of recombinant virus that is produced by traditional methods and the possibility of wild-type replication competent adeno-associated virus (wtAAV) contamination. The presence of these contaminants is largely dependent upon the helper plasmid used. Whilst wtAAV is not a pathogen, the presence of these contaminants is undesirable as they may affect experiments concerning the biology of rAAV. Additionally as protocols using rAAV with altered tropism are becoming more prevalent, it is important that no recombination be permitted that may cause the creation of a replication competent AAV with modified (targeting) capsids. Many experimental protocols require the generation of large amounts of high titre rAAV stocks. We describe the production of several AAV helper plasmids and cell lines designed to achieve this goal. These plasmids possess split AAV rep and cap genes to eliminate the production of wtAAV and they possess a selection mechanism which is operatively linked to expression from the AAV cap gene. This allows positive selection of those cells expressing the highest level of the structural capsid proteins and therefore those cells which yield the highest amount of rAAV.

  20. High-titer recombinant adeno-associated virus production utilizing a recombinant herpes simplex virus type I vector expressing AAV-2 Rep and Cap.

    Science.gov (United States)

    Conway, J E; Rhys, C M; Zolotukhin, I; Zolotukhin, S; Muzyczka, N; Hayward, G S; Byrne, B J

    1999-06-01

    Recombinant adeno-associated virus type 2 (rAAV) vectors have recently been used to achieve long-term, high level transduction in vivo. Further development of rAAV vectors for clinical use requires significant technological improvements in large-scale vector production. In order to facilitate the production of rAAV vectors, a recombinant herpes simplex virus type I vector (rHSV-1) which does not produce ICP27, has been engineered to express the AAV-2 rep and cap genes. The optimal dose of this vector, d27.1-rc, for AAV production has been determined and results in a yield of 380 expression units (EU) of AAV-GFP produced from 293 cells following transfection with AAV-GFP plasmid DNA. In addition, d27.1-rc was also efficient at producing rAAV from cell lines that have an integrated AAV-GFP provirus. Up to 480 EU/cell of AAV-GFP could be produced from the cell line GFP-92, a proviral, 293 derived cell line. Effective amplification of rAAV vectors introduced into 293 cells by infection was also demonstrated. Passage of rAAV with d27. 1-rc results in up to 200-fold amplification of AAV-GFP with each passage after coinfection of the vectors. Efficient, large-scale production (>109 cells) of AAV-GFP from a proviral cell line was also achieved and these stocks were free of replication-competent AAV. The described rHSV-1 vector provides a novel, simple and flexible way to introduce the AAV-2 rep and cap genes and helper virus functions required to produce high-titer rAAV preparations from any rAAV proviral construct. The efficiency and potential for scalable delivery of d27.1-rc to producer cell cultures should facilitate the production of sufficient quantities of rAAV vectors for clinical application.

  1. Adeno-associated viral vector serotypes 1 and 5 targeted to the neonatal rat and pig striatum induce widespread transgene expression in the forebrain

    DEFF Research Database (Denmark)

    Kornum, Birgitte R; Stott, Simon R W; Mattsson, Bengt

    2010-01-01

    Viral vector-mediated gene transfer has emerged as a powerful means to target transgene expression in the central nervous system. Here we characterized the efficacy of serotypes 1 and 5 recombinant adeno-associated virus (rAAV) vectors encoding green fluorescent protein (GFP) after stereotaxic...

  2. Adeno-Associated Viral Vector-Mediated mTOR Inhibition by Short Hairpin RNA Suppresses Laser-Induced Choroidal Neovascularization

    Directory of Open Access Journals (Sweden)

    Tae Kwann Park

    2017-09-01

    Full Text Available Choroidal neovascularization (CNV is the defining characteristic feature of the wet subtype of age-related macular degeneration (AMD and may result in irreversible blindness. Based on anti-vascular endothelial growth factor (anti-VEGF, the current therapeutic approaches to CNV are fraught with difficulties, and mammalian target of rapamycin (mTOR has recently been proposed as a possible therapeutic target, although few studies have been conducted. Here, we show that a recombinant adeno-associated virus-delivered mTOR-inhibiting short hairpin RNA (rAAV-mTOR shRNA, which blocks the activity of both mTOR complex 1 and 2, represents a promising therapeutic approach for the treatment of CNV. Eight-week-old male C57/B6 mice were treated with the short hairpin RNA (shRNA after generating CNV lesions in the eyes via laser photocoagulation. The recombinant adeno-associated virus (rAAV delivery vehicle was able to effectively transduce cells in the inner retina, and significantly fewer inflammatory cells and less extensive CNV were observed in the animals treated with rAAV-mTOR shRNA when compared with control- and rAAV-scrambled shRNA-treated groups. Presumably related to the reduction of CNV, increased autophagy was detected in CNV lesions treated with rAAV-mTOR shRNA, whereas significantly fewer apoptotic cells detected in the outer nuclear layer around the CNV indicate that mTOR inhibition may also have neuroprotective effects. Taken together, these results demonstrate the therapeutic potential of mTOR inhibition, resulting from rAAV-mTOR shRNA activity, in the treatment of AMD-related CNV. Keywords: retinal neovascularization, choroidal neovascularization, adeno-associated virus, mTOR, RNA interference, mTOR shRNA, autophagy

  3. Effect and Mechanism of Mitomycin C Combined with Recombinant Adeno-Associated Virus Type II against Glioma

    Directory of Open Access Journals (Sweden)

    Hong Ma

    2013-12-01

    Full Text Available The effect of chemotherapy drug Mitomycin C (MMC in combination with recombinant adeno-associated virus II (rAAV2 in cancer therapy was investigated, and the mechanism of MMC affecting rAAV2’s bioactivity was also studied. The combination effect was evaluated by the level of GFP and TNF expression in a human glioma cell line, and the mechanism of MMC effects on rAAV mediated gene expression was investigated by AAV transduction related signal molecules. C57 and BALB/c nude mice were injected with rAAV-EGFP or rAAV-TNF alone, or mixed with MMC, to evaluate the effect of MMC on AAV-mediated gene expression and tumor suppression. MMC was shown to improve the infection activity of rAAV2 both in vitro and in vivo. Enhancement was found to be independent of initial rAAV2 receptor binding stage or subsequent second-strand synthesis of target DNA, but was related to cell cycle retardation followed by blocked genome degradation. In vivo injection of MMC combined with rAAV2 into the tumors of the animals resulted in significant suppression of tumor growth. It was thus demonstrated for the first time that MMC could enhance the expression level of the target gene mediated by rAAV2. The combination of rAAV2 and MMC may be a promising strategy in cancer therapy.

  4. Correction of mutant Fanconi anemia gene by homologous recombination in human hematopoietic cells using adeno-associated virus vector.

    Science.gov (United States)

    Paiboonsukwong, Kittiphong; Ohbayashi, Fumi; Shiiba, Haruka; Aizawa, Emi; Yamashita, Takayuki; Mitani, Kohnosuke

    2009-11-01

    Adeno-associated virus (AAV) vectors have been shown to correct a variety of mutations in human cells by homologous recombination (HR) at high rates, which can overcome insertional mutagenesis and transgene silencing, two of the major hurdles in conventional gene addition therapy of inherited diseases. We examined an ability of AAV vectors to repair a mutation in human hematopoietic cells by HR. We infected a human B-lymphoblastoid cell line (BCL) derived from a normal subject with an AAV, which disrupts the hypoxanthine phosphoribosyl transferase1 (HPRT1) locus, to measure the frequency of AAV-mediated HR in BCL cells. We subsequently constructed an AAV vector encoding the normal sequences from the Fanconi anemia group A (FANCA) locus to correct a mutation in the gene in BCL derived from a FANCA patient. Under optimal conditions, approximately 50% of BCL cells were transduced with an AAV serotype 2 (AAV-2) vector. In FANCA BCL cells, up to 0.016% of infected cells were gene-corrected by HR. AAV-mediated restoration of normal genotypic and phenotypic characteristics in FANCA-mutant cells was confirmed at the DNA, protein and functional levels. The results obtained in the present study indicate that AAV vectors may be applicable for gene correction therapy of inherited hematopoietic disorders.

  5. Role of cellular FKBP52 protein in intracellular trafficking of recombinant adeno-associated virus 2 vectors

    International Nuclear Information System (INIS)

    Zhao Weihong; Zhong Li; Wu Jianqing; Chen Linyuan; Qing Keyun; Weigel-Kelley, Kirsten A.; Larsen, Steven H.; Shou Weinian; Warrington, Kenneth H.; Srivastava, Arun

    2006-01-01

    We have reported that tyrosine-phosphorylated forms of a cellular protein, FKBP52, inhibit the second-strand DNA synthesis of adeno-associated virus 2 (AAV), leading to inefficient transgene expression from recombinant AAV vectors. To further explore the role of FKBP52 in AAV-mediated transduction, we established murine embryo fibroblasts (MEFs) cultures from FKBP52 wild-type (WT), heterozygous (HE), and knockout (KO) mice. Conventional AAV vectors failed to transduce WT MEFs efficiently, and the transduction efficiency was not significantly increased in HE or KO MEFs. AAV vectors failed to traffic efficiently to the nucleus in these cells. Treatment with hydroxyurea (HU) increased the transduction efficiency of conventional AAV vectors by ∼25-fold in WT MEFs, but only by ∼4-fold in KO MEFs. The use of self-complementary AAV (scAAV) vectors, which bypass the requirement of viral second-strand DNA synthesis, revealed that HU treatment increased the transduction efficiency ∼23-fold in WT MEFs, but only ∼4-fold in KO MEFs, indicating that the lack of HU treatment-mediated increase in KO MEFs was not due to failure of AAV to undergo viral second-strand DNA synthesis. Following HU treatment, ∼59% of AAV genomes were present in the nuclear fraction from WT MEFs, but only ∼28% in KO MEFs, indicating that the pathway by which HU treatment mediates nuclear transport of AAV was impaired in KO MEFs. When KO MEFs were stably transfected with an FKBP52 expression plasmid, HU treatment-mediated increase in the transduction efficiency was restored in these cells, which correlated directly with improved intracellular trafficking. Intact AAV particles were also shown to interact with FKBP52 as well as with dynein, a known cellular protein involved in AAV trafficking. These studies suggest that FKBP52, being a cellular chaperone protein, facilitates intracellular trafficking of AAV, which has implications in the optimal use of recombinant AAV vectors in human gene

  6. Adeno-associated virus-mediated gene transfer.

    Science.gov (United States)

    Srivastava, Arun

    2008-09-01

    Although the remarkable versatility and efficacy of recombinant adeno-associated virus 2 (AAV2) vectors in transducing a wide variety of cells and tissues in vitro, and in numerous pre-clinical animal models of human diseases in vivo, have been well established, the published literature is replete with controversies with regard to the efficacy of AAV2 vectors in hematopoietic stem cell (HSC) transduction. A number of factors have contributed to these controversies, the molecular bases of which have begun to come to light in recent years. With the availability of several novel serotypes (AAV1 through AAV12), rational design of AAV capsid mutants, and strategies (self-complementary vector genomes, hematopoietic cell-specific promoters), it is indeed becoming feasible to achieve efficient transduction of HSC by AAV vectors. Using a murine serial bone marrow transplantation model in vivo, we have recently documented stable integration of the proviral AAV genome into mouse chromosomes, which does not lead to any overt hematological abnormalities. Thus, a better understanding of the AAV-HSC interactions, and the availability of a vast repertoire of novel serotype and capsid mutant vectors, are likely to have significant implications in the use of AAV vectors in high-efficiency transduction of HSCs as well as in gene therapy applications involving the hematopoietic system. (c) 2008 Wiley-Liss, Inc.

  7. Adeno-associated virus for cystic fibrosis gene therapy

    Directory of Open Access Journals (Sweden)

    S.V. Martini

    2011-11-01

    Full Text Available Gene therapy is an alternative treatment for genetic lung disease, especially monogenic disorders such as cystic fibrosis. Cystic fibrosis is a severe autosomal recessive disease affecting one in 2500 live births in the white population, caused by mutation of the cystic fibrosis transmembrane conductance regulator (CFTR. The disease is classically characterized by pancreatic enzyme insufficiency, an increased concentration of chloride in sweat, and varying severity of chronic obstructive lung disease. Currently, the greatest challenge for gene therapy is finding an ideal vector to deliver the transgene (CFTR to the affected organ (lung. Adeno-associated virus is the most promising viral vector system for the treatment of respiratory disease because it has natural tropism for airway epithelial cells and does not cause any human disease. This review focuses on the basic properties of adeno-associated virus and its use as a vector for cystic fibrosis gene therapy.

  8. Next generation of adeno-associated virus 2 vectors: Point mutations in tyrosines lead to high-efficiency transduction at lower doses

    OpenAIRE

    Zhong, Li; Li, Baozheng; Mah, Cathryn S.; Govindasamy, Lakshmanan; Agbandje-McKenna, Mavis; Cooper, Mario; Herzog, Roland W.; Zolotukhin, Irene; Warrington, Kenneth H.; Weigel-Van Aken, Kirsten A.; Hobbs, Jacqueline A.; Zolotukhin, Sergei; Muzyczka, Nicholas; Srivastava, Arun

    2008-01-01

    Recombinant adeno-associated virus 2 (AAV2) vectors are in use in several Phase I/II clinical trials, but relatively large vector doses are needed to achieve therapeutic benefits. Large vector doses also trigger an immune response as a significant fraction of the vectors fails to traffic efficiently to the nucleus and is targeted for degradation by the host cell proteasome machinery. We have reported that epidermal growth factor receptor protein tyrosine kinase (EGFR-PTK) signaling negatively...

  9. Long-term correction of obesity and diabetes in genetically obese mice by a single intramuscular injection of recombinant adeno-associated virus encoding mouse leptin

    Science.gov (United States)

    Murphy, John E.; Zhou, Shangzhen; Giese, Klaus; Williams, Lewis T.; Escobedo, Jaime A.; Dwarki, Varavani J.

    1997-01-01

    The ob/ob mouse is genetically deficient in leptin and exhibits a phenotype that includes obesity and non-insulin-dependent diabetes melitus. This phenotype closely resembles the morbid obesity seen in humans. In this study, we demonstrate that a single intramuscular injection of a recombinant adeno-associated virus (AAV) vector encoding mouse leptin (rAAV-leptin) in ob/ob mice leads to prevention of obesity and diabetes. The treated animals show normalization of metabolic abnormalities including hyperglycemia, insulin resistance, impaired glucose tolerance, and lethargy. The effects of a single injection have lasted through the 6-month course of the study. At all time points measured the circulating levels of leptin in the serum were similar to age-matched control C57 mice. These results demonstrate that maintenance of normal levels of leptin (2–5 ng/ml) in the circulation can prevent both the onset of obesity and associated non-insulin-dependent diabetes. Thus a single injection of a rAAV vector expressing a therapeutic gene can lead to complete and long-term correction of a genetic disorder. Our study demonstrates the long-term correction of a disease caused by a genetic defect and proves the feasibility of using rAAV-based vectors for the treatment of chronic disorders like obesity. PMID:9391128

  10. Phase 2 clinical trial of a recombinant adeno-associated viral vector expressing α1-antitrypsin: interim results.

    LENUS (Irish Health Repository)

    Flotte, Terence R

    2011-10-01

    Recombinant adeno-associated virus (rAAV) vectors offer promise for the gene therapy of α(1)-antitrypsin (AAT) deficiency. In our prior trial, an rAAV vector expressing human AAT (rAAV1-CB-hAAT) provided sustained, vector-derived AAT expression for >1 year. In the current phase 2 clinical trial, this same vector, produced by a herpes simplex virus complementation method, was administered to nine AAT-deficient individuals by intramuscular injection at doses of 6.0×10(11), 1.9×10(12), and 6.0×10(12) vector genomes\\/kg (n=3 subjects\\/dose). Vector-derived expression of normal (M-type) AAT in serum was dose dependent, peaked on day 30, and persisted for at least 90 days. Vector administration was well tolerated, with only mild injection site reactions and no serious adverse events. Serum creatine kinase was transiently elevated on day 30 in five of six subjects in the two higher dose groups and normalized by day 45. As expected, all subjects developed anti-AAV antibodies and interferon-γ enzyme-linked immunospot responses to AAV peptides, and no subjects developed antibodies to AAT. One subject in the mid-dose group developed T cell responses to a single AAT peptide unassociated with any clinical effects. Muscle biopsies obtained on day 90 showed strong immunostaining for AAT and moderate to marked inflammatory cell infiltrates composed primarily of CD3-reactive T lymphocytes that were primarily of the CD8(+) subtype. These results support the feasibility and safety of AAV gene therapy for AAT deficiency, and indicate that serum levels of vector-derived normal human AAT >20 μg\\/ml can be achieved. However, further improvements in the design or delivery of rAAV-AAT vectors will be required to achieve therapeutic target serum AAT concentrations.

  11. Induction of immunity to antigens expressed by recombinant adeno-associated virus depends on the route of administration.

    Science.gov (United States)

    Brockstedt, D G; Podsakoff, G M; Fong, L; Kurtzman, G; Mueller-Ruchholtz, W; Engleman, E G

    1999-07-01

    Recombinant adeno-associated virus (rAAV) is a replication-defective parvovirus which is being explored as a vector for gene therapy because of its broad host range, excellent safety profile, and durable transgene expression in infected hosts. rAAV has also been reported by several groups to induce little or no immune response to its encoded transgene products. In this study we examined the immunogenicity of rAAV by studying the immune response of C57BL/6 mice to a single dose of rAAV-encoding ovalbumin (AAV-Ova) administered by a variety of routes. Mice injected with AAV-Ova intraperitoneally (ip), intravenously, or subcutaneously developed potent ovalbumin-specific cytotoxic T lymphocytes (CTL) as well as anti-ovalbumin antibodies and antibodies to AAV. In contrast, mice injected with AAV-Ova intramuscularly developed a humoral response to the virus and the transgene but minimal ovalbumin-specific CTLs. The induced CTL response after ip administration of AAV-Ova protected mice against a subsequent tumor challenge with an ovalbumin-transfected B16 melanoma cell line. Studies of the mechanism by which AAV-Ova induces CTL confirmed that the virus delivers the transgene product into the classical MHC class I pathway of antigen processing. Mice that previously had been exposed to rAAV vectors failed to develop ovalbumin-specific CTL following administration of AAV-Ova. Analysis of these mice revealed the presence of circulating anti-AAV antibodies that blocked rAAV transduction in vitro and inhibited CTL induction in vivo. These results suggest a possible role for rAAV in the immunotherapy of malignancies and viral infections, although induced antibody responses to AAV may limit its ability to be administered for repeated vaccinations. Copyright 1999 Academic Press.

  12. [Hybrids of human and monkey adenoviruses (adeno-adeno hybrids) that can reproduce in monkey cells: biological and molecular genetic peculiarities].

    Science.gov (United States)

    Grinenko, N F; Savitskaia, N V; Pashvykina, G V; Al'tshteĭn, A D

    2003-06-01

    A highly oncogenic monkey adenovirus SA7(C8) facilitates the reproduction of human adenovirus type 2 (Ad2) in monkey cells. Upon mixed infection of monkey cells with both viruses, these viruses recombine producing defective adeno-adeno hybrids Ad2C8 serologically identical to Ad2 and capable of assisting Ad2 to reproduce in monkey cells. Ad2C8 and Ad2 form an intercomplementary pair inseparable in monkey cells. Unlike oncogenic SA7(C8), Ad2C8 is a nononcogenic virus for hamsters but is able to induce tumor antigens of this virus (T and TSTA). Molecular genetic analysis of 68 clones of adeno-adeno hybrids revealed that the left part of their genome consists of Ad2 DNA, and the right part contains no less than 40% of the viral SA7(C8) genome where E2A, E3, and E4 genes are located. Apparently, the products of these genes contribute to the composition of adenoviral tumor antigens, while the E4 gene is involved in complementation of monkey and human adenoviruses and makes a contribution to host range determination of these viruses.

  13. Adeno-associated viral vector transduction of human mesenchymal stem cells

    DEFF Research Database (Denmark)

    Stender, Stefan; Murphy, Mary; O'Brien, Tim

    2007-01-01

    Mesenchymal stem cells (MSCs) have received considerable attention in the emerging field of regenerative medicine. One aspect of MSC research focuses on genetically modifying the cells with the aim of enhancing their regenerative potential. Adeno-associated virus (AAV) holds promise as a vector...

  14. Lipofection of purified adeno-associated virus Rep68 protein: toward a chromosome-targeting nonviral particle.

    Science.gov (United States)

    Lamartina, S; Roscilli, G; Rinaudo, D; Delmastro, P; Toniatti, C

    1998-09-01

    Adeno-associated virus (AAV) integrates very efficiently into a specific site (AAVS1) of human chromosome 19. Two elements of the AAV genome are sufficient: the inverted terminal repeats (ITRs) and the Rep78 or Rep68 protein. The incorporation of the AAV integration machinery in nonviral delivery systems is of great interest for gene therapy. We demonstrate that purified recombinant Rep68 protein is functionally active when directly delivered into human cells by using the polycationic liposome Lipofectamine, promoting the rescue-replication of a codelivered ITR-flanked cassette in adenovirus-infected cells and its site-specific integration in noninfected cells. The sequencing of cloned virus-host DNA junctions confirmed that lipofected Rep68 protein triggers site-specific integration at the same sites in chromosome 19 already characterized in cells latently infected with AAV.

  15. The effect of surface demineralization of cortical bone allograft on the properties of recombinant adeno-associated virus coatings.

    Science.gov (United States)

    Yazici, Cemal; Yanoso, Laura; Xie, Chao; Reynolds, David G; Samulski, R Jude; Samulski, Jade; Yannariello-Brown, Judith; Gertzman, Arthur A; Zhang, Xinping; Awad, Hani A; Schwarz, Edward M

    2008-10-01

    Freeze-dried recombinant adeno-associated virus (rAAV) coated structural allografts have emerged as an approach to engender necrotic cortical bone with host factors that will persist for weeks following surgery to facilitate revascularization, osteointegration, and remodeling. However, one major limitation is the nonporous cortical surface that prohibits uniform distribution of the rAAV coating prior to freeze-drying. To overcome this we have developed a demineralization method to increase surface absorbance while retaining the structural integrity of the allograft. Demineralized bone wafers (DBW) made from human femoral allograft rings demonstrated a significant 21.1% (73.6+/-3.9% versus 52.5+/-2.6%; pcoating versus mineralized controls. Co-incubation of rAAV-luciferase (rAAV-Luc) coated DBW with a monolayer of C3H10T1/2 cells in culture led to peak luciferase levels that were not significantly different from soluble rAAV-Luc controls (p>0.05), although the peaks occurred at 60h and 12h, respectively. To assess the transduction efficiency of rAAV-Luc coated DBW in vivo, we first performed a dose response with allografts containing 10(7), 10(9) or 10(10) particles that were surgically implanted into the quadriceps of mice, and assayed by in vivo bioluminescence imaging (BLI) on days 1, 3, 5, 7, 10, 14, and 21. The results demonstrated a dose response in which the DBW coated with 10(10) rAAV-Luc particles achieved peak gene expression levels on day 3, which persisted until day 21, and was significantly greater than the 10(7) dose throughout this time period (pcoated with 10(10) rAAV-Luc particles failed to demonstrate any significant differences in transduction kinetics or efficiency in vivo. Thus, surface demineralization of human cortical bone allograft increases its absorbance for uniform rAAV coating, without affecting vector transduction efficiency.

  16. Myocardial gene delivery using molecular cardiac surgery with recombinant adeno-associated virus vectors in vivo

    Science.gov (United States)

    White, JD; Thesier, DM; Swain, JBD; Katz, MG; Tomasulo, C; Henderson, A; Wang, L; Yarnall, C; Fargnoli, A; Sumaroka, M; Isidro, A; Petrov, M; Holt, D; Nolen-Walston, R; Koch, WJ; Stedman, HH; Rabinowitz, J; Bridges, CR

    2013-01-01

    We use a novel technique that allows for closed recirculation of vector genomes in the cardiac circulation using cardiopulmonary bypass, referred to here as molecular cardiac surgery with recirculating delivery (MCARD). We demonstrate that this platform technology is highly efficient in isolating the heart from the systemic circulation in vivo. Using MCARD, we compare the relative efficacy of single-stranded (ss) adeno-associated virus (AAV)6, ssAAV9 and self-complimentary (sc)AAV6-encoding enhanced green fluorescent protein, driven by the constitutive cytomegalovirus promoter to transduce the ovine myocardium in situ. MCARD allows for the unprecedented delivery of up to 48 green fluorescent protein genome copies per cell globally in the sheep left ventricular (LV) myocardium. We demonstrate that scAAV6-mediated MCARD delivery results in global, cardiac-specific LV gene expression in the ovine heart and provides for considerably more robust and cardiac-specific gene delivery than other available delivery techniques such as intramuscular injection or intracoronary injection; thus, representing a potential, clinically translatable platform for heart failure gene therapy. PMID:21228882

  17. Recombinant adeno-associated virus-delivered hypoxia-inducible stanniocalcin-1 expression effectively inhibits hypoxia-induced cell apoptosis in cardiomyocytes.

    Science.gov (United States)

    Shi, Xin; Wang, Jianzhong; Qin, Yan

    2014-12-01

    Ischemia/hypoxia-induced oxidative stress is detrimental for the survival of cardiomyocytes and cardiac function. Stanniocalcin-1 (STC-1), a glycoprotein, has been found to play an inhibitory role in the production of reactive oxygen species (ROS). Here, we speculated that the overexpression of STC-1 might alleviate oxidative damage in cardiomyocytes under conditions of hypoxia. To control the expression of STC-1 in hypoxia, we constructed a recombinant adeno-associated virus (AAV) carrying the hypoxia-responsive element (HRE) to mediate hypoxia induction. Cardiomyocytes were infected with AAV-HRE-STC-1 and cultured in normoxic or hypoxic conditions, and STC-1 overexpression was only detected in hypoxic cultured cardiomyocytes by using quantitative real-time polymerase chain reaction and Western blot analysis. Using the 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, AAV-HRE-STC-1 infection was shown to significantly enhance cell survival under hypoxia. Hypoxia-induced cell apoptosis was inhibited by AAV-HRE-STC-1 infection by using the Annexin V-fluorescein isothiocyanate (FITC)/propidium iodide apoptosis assay. Moreover, the proapoptotic protein Caspase-3 and anti-apoptotic protein Bcl-2, which were dysregulated by hypoxia, were reversed by AAV-HRE-STC-1 infection. AAV-HRE-STC-1-mediated STC-1 overexpression markedly inhibited ROS production in cardiomyocytes cultured under hypoxic conditions. AAV-HRE-STC-1 infection significantly upregulated uncoupled protein 3 (UCP3), whereas silencing of UCP3 blocked the inhibitory effect of AAV-HRE-STC-1 on ROS production. In contrast, AAV-HRE-STC-1 infection had no effect on UCP2, and knockdown of UCP2 did not block the inhibitory effect of AAV-HRE-STC-1 on ROS production in the cardiomyocytes cultured under hypoxic conditions. Taken together, STC1 activates antioxidant pathway in cardiomyocytes through the induction of UCP3, implying that AAV-HRE-STC-1 has potential in the treatment of ischemic

  18. Adeno-associated virus-mediated doxycycline-regulatable TRAIL expression suppresses growth of human breast carcinoma in nude mice

    International Nuclear Information System (INIS)

    Zheng, Liu; Weilun, Zhang; Minghong, Jiang; Yaxi, Zhang; Shilian, Liu; Yanxin, Liu; Dexian, Zheng

    2012-01-01

    Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) functions as a cytokine to selectively kill various cancer cells without toxicity to most normal cells. Numerous studies have demonstrated the potential use of recombinant soluble TRAIL as a cancer therapeutic agent. We have showed previous administration of a recombinant adeno-associated virus (rAAV) vector expressing soluble TRAIL results in an efficient suppression of human tumor growth in nude mice. In the present study, we introduced Tet-On gene expression system into the rAAV vector to control the soluble TRAIL expression and evaluate the efficiency of the system in cancer gene therapy. Controllability of the Tet-On system was determined by luciferase activity assay, and Western blotting and enzyme-linked immunoabsorbent assay. Cell viability was determined by MTT assay. The breast cancer xenograft animal model was established and recombinant virus was administrated through tail vein injection to evaluate the tumoricidal activity. The expression of soluble TRAIL could be strictly controlled by the Tet-On system in both normal and cancer cells. Transduction of human cancer cell lines with rAAV-TRE-TRAIL&rAAV-Tet-On under the presence of inducer doxycycline resulted in a considerable cell death by apoptosis. Intravenous injection of the recombinant virus efficiently suppressed the growth of human breast carcinoma in nude mice when activated by doxycycline. These data suggest that rAAV-mediated soluble TRAIL expression under the control of the Tet-On system is a promising strategy for breast cancer therapy

  19. Engineering adeno-associated viruses for clinical gene therapy.

    Science.gov (United States)

    Kotterman, Melissa A; Schaffer, David V

    2014-07-01

    Clinical gene therapy has been increasingly successful owing both to an enhanced molecular understanding of human disease and to progressively improving gene delivery technologies. Among these technologies, delivery vectors based on adeno-associated viruses (AAVs) have emerged as safe and effective and, in one recent case, have led to regulatory approval. Although shortcomings in viral vector properties will render extension of such successes to many other human diseases challenging, new approaches to engineer and improve AAV vectors and their genetic cargo are increasingly helping to overcome these barriers.

  20. Restoration of central nervous system alpha-N-acetylglucosaminidase activity and therapeutic benefits in mucopolysaccharidosis IIIB mice by a single intracisternal recombinant adeno-associated viral type 2 vector delivery.

    Science.gov (United States)

    Fu, Haiyan; DiRosario, Julianne; Kang, Lu; Muenzer, Joseph; McCarty, Douglas M

    2010-07-01

    Finding efficient central nervous system (CNS) delivery approaches has been the major challenge facing therapeutic development for treating diseases with global neurological manifestation, such as mucopolysaccharidosis (MPS) IIIB, a lysosomal storage disease, caused by autosomal recessive defect of alpha-N-acetylglucosaminidase (NaGlu). Previously, we developed an approach, intracisternal (i.c.) injection, to deliver recombinant adeno-associated viral (rAAV) vector to the CNS of mice, leading to a widespread periventricular distribution of transduction. In the present study, we delivered rAAV2 vector expressing human NaGlu into the CNS of MPS IIIB mice by an i.c. injection approach, to test its therapeutic efficacy and feasibility for treating the neurological manifestation of the disease. We demonstrated significant functional neurological benefits of a single i.c. vector infusion in adult MPS IIIB mice. The treatment slowed the disease progression by mediating widespread recombinant NaGlu expression in the CNS, resulting in the reduction of brain lysosomal storage pathology, significantly improved cognitive function and prolonged survival. However, persisting motor function deficits suggested that pathology in areas outside the CNS contributes to the MPS IIIB behavioral phenotype. The therapeutic benefit of i.c. rAAV2 delivery was dose-dependent and could be attribute solely to the CNS transduction because the procedure did not lead to detectable transduction in somatic tissues. A single IC rAAV2 gene delivery is functionally beneficial for treating the CNS disease of MPS IIIB in mice. It is immediately clinically translatable, with the potential of improving the quality of life for patients with MPS IIIB.

  1. Formation of newly synthesized adeno-associated virus capsids in the cell nucleus.

    Science.gov (United States)

    Bell, Peter; Vandenberghe, Luk H; Wilson, James M

    2014-06-01

    Adeno-associated virus (AAV) particles inside the nucleus of a HEK 293 cell are shown by electron microscopy. Cells have been triple-transfected for vector production and were analyzed for capsid formation three days later. Newly assembled particle are visible as seemingly unstructured conglomerates or crystal-like arrays.

  2. Adeno-associated virus-mediated doxycycline-regulatable TRAIL expression suppresses growth of human breast carcinoma in nude mice

    Directory of Open Access Journals (Sweden)

    Zheng Liu

    2012-04-01

    Full Text Available Abstract Background Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL functions as a cytokine to selectively kill various cancer cells without toxicity to most normal cells. Numerous studies have demonstrated the potential use of recombinant soluble TRAIL as a cancer therapeutic agent. We have showed previous administration of a recombinant adeno-associated virus (rAAV vector expressing soluble TRAIL results in an efficient suppression of human tumor growth in nude mice. In the present study, we introduced Tet-On gene expression system into the rAAV vector to control the soluble TRAIL expression and evaluate the efficiency of the system in cancer gene therapy. Methods Controllability of the Tet-On system was determined by luciferase activity assay, and Western blotting and enzyme-linked immunoabsorbent assay. Cell viability was determined by MTT assay. The breast cancer xenograft animal model was established and recombinant virus was administrated through tail vein injection to evaluate the tumoricidal activity. Results The expression of soluble TRAIL could be strictly controlled by the Tet-On system in both normal and cancer cells. Transduction of human cancer cell lines with rAAV-TRE-TRAIL&rAAV-Tet-On under the presence of inducer doxycycline resulted in a considerable cell death by apoptosis. Intravenous injection of the recombinant virus efficiently suppressed the growth of human breast carcinoma in nude mice when activated by doxycycline. Conclusion These data suggest that rAAV-mediated soluble TRAIL expression under the control of the Tet-On system is a promising strategy for breast cancer therapy.

  3. Delivery and evaluation of recombinant adeno-associated viral vectors in the equine distal extremity for the treatment of laminitis.

    Science.gov (United States)

    Mason, J B; Gurda, B L; Van Wettere, A; Engiles, J B; Wilson, J M; Richardson, D W

    2017-01-01

    Our long-term aim is to develop a gene therapy approach for the prevention of laminitis in the contralateral foot of horses with major musculoskeletal injuries and non-weightbearing lameness. The goal of this study was to develop a practical method to efficiently deliver therapeutic proteins deep within the equine foot. Randomised in vivo experiment. We used recombinant adeno-associated viral vectors (rAAVs) to deliver marker genes using regional limb perfusion through the palmar digital artery of the horse. Vector serotypes rAAV2/1, 2/8 and 2/9 all successfully transduced equine foot tissues and displayed similar levels and patterns of transduction. The regional distribution of transduction within the foot decreased with decreasing vector dose. The highest transduction values were seen in the sole and coronary regions and the lowest transduction values were detected in the dorsal hoof-wall region. The use of a surfactant-enriched vector diluent increased regional distribution of the vector and improved the transduction in the hoof-wall region. The hoof-wall region of the foot, which exhibited the lowest levels of transduction using saline as the vector diluent, displayed a dramatic increase in transduction when surfactant was included in the vector diluent (9- to 81-fold increase). In transduced tissues, no significant difference was observed between promoters (chicken β-actin vs. cytomegalovirus) for gene expression. All horses tested for vector-neutralising antibodies were positive for serotype-specific neutralising antibodies to rAAV2/5. The current experiments demonstrate that transgenes can be successfully delivered to the equine distal extremity using rAAV vectors and that serotypes 2/8, 2/9 and 2/1 can successfully transduce tissues of the equine foot. When the vector was diluted with surfactant-containing saline, the level of transduction increased dramatically. The increased level of transduction due to the addition of surfactant also improved the

  4. Disruption of Microtubules Post-Virus Entry Enhances Adeno-Associated Virus Vector Transduction

    Science.gov (United States)

    Xiao, Ping-Jie; Mitchell, Angela M.; Huang, Lu; Li, Chengwen; Samulski, R. Jude

    2016-01-01

    Perinuclear retention of viral particles is a poorly understood phenomenon observed during many virus infections. In this study, we investigated whether perinuclear accumulation acts as a barrier to limit recombinant adeno-associated virus (rAAV) transduction. After nocodazole treatment to disrupt microtubules at microtubule-organization center (MT-MTOC) after virus entry, we observed higher rAAV transduction. To elucidate the role of MT-MTOC in rAAV infection and study its underlying mechanisms, we demonstrated that rAAV's perinuclear localization was retained by MT-MTOC with fluorescent analysis, and enhanced rAAV transduction from MT-MTOC disruption was dependent on the rAAV capsid's nuclear import signals. Interestingly, after knocking down RhoA or inhibiting its downstream effectors (ROCK and Actin), MT-MTOC disruption failed to increase rAAV transduction or nuclear entry. These data suggest that enhancement of rAAV transduction is the result of increased trafficking to the nucleus via the RhoA-ROCK-Actin pathway. Ten-fold higher rAAV transduction was also observed by disrupting MT-MTOC in brain, liver, and tumor in vivo. In summary, this study indicates that virus perinuclear accumulation at MT-MTOC is a barrier-limiting parameter for effective rAAV transduction and defines a novel defense mechanism by which host cells restrain viral invasion. PMID:26942476

  5. Crystallization and preliminary X-ray structural studies of adeno-associated virus serotype 6

    International Nuclear Information System (INIS)

    Xie, Qing; Ongley, Heather M.; Hare, Joan; Chapman, Michael S.

    2008-01-01

    Adeno-associated virus type 6, a human DNA virus that is being developed as a vector for gene therapy, has been crystallized in a form suitable for structure determination at about 3.2 Å resolution. Adeno-associated viruses are being developed as vectors for gene therapy and have been used in a number of clinical trials. Vectors to date have been based on the type species AAV-2, the structure of which was published in 2002. There is growing interest in modulating the cellular tropism and immune neutralization of AAV-2 with variants inspired by the properties of other serotypes. Towards the determination of a structure for AAV type 6, this paper reports the high-yield production, purification, crystallization and preliminary diffraction studies of infectious AAV-6 virions. The crystals diffracted to 3.2 Å resolution using synchrotron radiation. The most promising crystal form belonged to space group R3 and appeared to be suitable for initial structure determination

  6. DNA Minicircle Technology Improves Purity of Adeno-associated Viral Vector Preparations

    Directory of Open Access Journals (Sweden)

    Maria Schnödt

    2016-01-01

    Full Text Available Adeno-associated viral (AAV vectors are considered as one of the most promising delivery systems in human gene therapy. In addition, AAV vectors are frequently applied tools in preclinical and basic research. Despite this success, manufacturing pure AAV vector preparations remains a difficult task. While empty capsids can be removed from vector preparations owing to their lower density, state-of-the-art purification strategies as of yet failed to remove antibiotic resistance genes or other plasmid backbone sequences. Here, we report the development of minicircle (MC constructs to replace AAV vector and helper plasmids for production of both, single-stranded (ss and self-complementary (sc AAV vectors. As bacterial backbone sequences are removed during MC production, encapsidation of prokaryotic plasmid backbone sequences is avoided. This is of particular importance for scAAV vector preparations, which contained an unproportionally high amount of plasmid backbone sequences (up to 26.1% versus up to 2.9% (ssAAV. Replacing standard packaging plasmids by MC constructs not only allowed to reduce these contaminations below quantification limit, but in addition improved transduction efficiencies of scAAV preparations up to 30-fold. Thus, MC technology offers an easy to implement modification of standard AAV packaging protocols that significantly improves the quality of AAV vector preparations.

  7. Twinned crystals of adeno-associated virus serotype 3b prove suitable for structural studies

    International Nuclear Information System (INIS)

    Lerch, Thomas F.; Xie, Qing; Ongley, Heather M.; Hare, Joan; Chapman, Michael S.

    2009-01-01

    Crystals of adeno-associated virus serotype 3b, a human DNA virus with promise as a vector for gene therapy, have been grown, diffract X-rays to ∼2.6 Å resolution and are suitable for structure determination in spite of twinning. Adeno-associated viruses (AAVs) are leading candidate vectors for gene-therapy applications. The AAV-3b capsid is closely related to the well characterized AAV-2 capsid (87% identity), but sequence and presumably structural differences lead to distinct cell-entry and immune-recognition properties. In an effort to understand these differences and to perhaps harness them, diffraction-quality crystals of purified infectious AAV-3b particles have been grown and several partial diffraction data sets have been recorded. The crystals displayed varying levels of merohedral twinning that in earlier times would have rendered them unsuitable for structure determination, but here is shown to be a tractable complication

  8. Characterization of cognitive deficits in rats overexpressing human alpha-synuclein in the ventral tegmental area and medial septum using recombinant adeno-associated viral vectors.

    Science.gov (United States)

    Hall, Hélène; Jewett, Michael; Landeck, Natalie; Nilsson, Nathalie; Schagerlöf, Ulrika; Leanza, Giampiero; Kirik, Deniz

    2013-01-01

    Intraneuronal inclusions containing alpha-synuclein (a-syn) constitute one of the pathological hallmarks of Parkinson's disease (PD) and are accompanied by severe neurodegeneration of A9 dopaminergic neurons located in the substantia nigra. Although to a lesser extent, A10 dopaminergic neurons are also affected. Neurodegeneration of other neuronal populations, such as the cholinergic, serotonergic and noradrenergic cell groups, has also been documented in PD patients. Studies in human post-mortem PD brains and in rodent models suggest that deficits in cholinergic and dopaminergic systems may be associated with the cognitive impairment seen in this disease. Here, we investigated the consequences of targeted overexpression of a-syn in the mesocorticolimbic dopaminergic and septohippocampal cholinergic pathways. Rats were injected with recombinant adeno-associated viral vectors encoding for either human wild-type a-syn or green fluorescent protein (GFP) in the ventral tegmental area and the medial septum/vertical limb of the diagonal band of Broca, two regions rich in dopaminergic and cholinergic neurons, respectively. Histopathological analysis showed widespread insoluble a-syn positive inclusions in all major projections areas of the targeted nuclei, including the hippocampus, neocortex, nucleus accumbens and anteromedial striatum. In addition, the rats overexpressing human a-syn displayed an abnormal locomotor response to apomorphine injection and exhibited spatial learning and memory deficits in the Morris water maze task, in the absence of obvious spontaneous locomotor impairment. As losses in dopaminergic and cholinergic immunoreactivity in both the GFP and a-syn expressing animals were mild-to-moderate and did not differ from each other, the behavioral impairments seen in the a-syn overexpressing animals appear to be determined by the long term persisting neuropathology in the surviving neurons rather than by neurodegeneration.

  9. Structure-guided evolution of antigenically distinct adeno-associated virus variants for immune evasion.

    Science.gov (United States)

    Tse, Longping Victor; Klinc, Kelli A; Madigan, Victoria J; Castellanos Rivera, Ruth M; Wells, Lindsey F; Havlik, L Patrick; Smith, J Kennon; Agbandje-McKenna, Mavis; Asokan, Aravind

    2017-06-13

    Preexisting neutralizing antibodies (NAbs) against adeno-associated viruses (AAVs) pose a major, unresolved challenge that restricts patient enrollment in gene therapy clinical trials using recombinant AAV vectors. Structural studies suggest that despite a high degree of sequence variability, antibody recognition sites or antigenic hotspots on AAVs and other related parvoviruses might be evolutionarily conserved. To test this hypothesis, we developed a structure-guided evolution approach that does not require selective pressure exerted by NAbs. This strategy yielded highly divergent antigenic footprints that do not exist in natural AAV isolates. Specifically, synthetic variants obtained by evolving murine antigenic epitopes on an AAV serotype 1 capsid template can evade NAbs without compromising titer, transduction efficiency, or tissue tropism. One lead AAV variant generated by combining multiple evolved antigenic sites effectively evades polyclonal anti-AAV1 neutralizing sera from immunized mice and rhesus macaques. Furthermore, this variant displays robust immune evasion in nonhuman primate and human serum samples at dilution factors as high as 1:5, currently mandated by several clinical trials. Our results provide evidence that antibody recognition of AAV capsids is conserved across species. This approach can be applied to any AAV strain to evade NAbs in prospective patients for human gene therapy.

  10. Recombinant adeno-associated virus type 2 replication and packaging is entirely supported by a herpes simplex virus type 1 amplicon expressing Rep and Cap.

    Science.gov (United States)

    Conway, J E; Zolotukhin, S; Muzyczka, N; Hayward, G S; Byrne, B J

    1997-11-01

    Recombinant adeno-associated virus (AAV) type 2 (rAAV) vectors have recently been shown to have great utility as gene transfer agents both in vitro and in vivo. One of the problems associated with the use of rAAV vectors has been the difficulty of large-scale vector production. Low-efficiency plasmid transfection of the rAAV vector and complementing AAV type 2 (AAV-2) functions (rep and cap) followed by superinfection with adenovirus has been the standard approach to rAAV production. The objectives of this study were to demonstrate the ability of a recombinant herpes simplex virus type 1 (HSV-1) amplicon expressing AAV-2 Rep and Cap to support replication and packaging of rAAV vectors. HSV-1 amplicon vectors were constructed which contain the AAV-2 rep and cap genes under control of their native promoters (p5, p19, and p40). An HSV-1 amplicon vector, HSV-RC/KOS or HSV-RC/d27, was generated by supplying helper functions with either wild-type HSV-1 (KOS strain) or the ICP27-deleted mutant of HSV-1, d27-1, respectively. Replication of the amplicon stocks is not inhibited by the presence of AAV-2 Rep proteins, which highlights important differences between HSV-1 and adenovirus replication and the mechanism of providing helper function for productive AAV infection. Coinfection of rAAV and HSV-RC/KOS resulted in the replication and amplification of rAAV genomes. Similarly, rescue and replication of rAAV genomes occurred when rAAV vector plasmids were transfected into cells followed by HSV-RC/KOS infection and when two rAAV proviral cell lines were infected with HSV-RC/KOS or HSV-RC/d27. Production of infectious rAAV by rescue from two rAAV proviral cell lines has also been achieved with HSV-RC/KOS and HSV-RC/d27. The particle titer of rAAV produced with HSV-RC/d27 is equal to that achieved by supplying rep and cap by transfection followed by adenovirus superinfection. Importantly, no detectable wild-type AAV-2 is generated with this approach. These results demonstrate

  11. Stable integration of recombinant adeno-associated virus vector genomes after transduction of murine hematopoietic stem cells.

    Science.gov (United States)

    Han, Zongchao; Zhong, Li; Maina, Njeri; Hu, Zhongbo; Li, Xiaomiao; Chouthai, Nitin S; Bischof, Daniela; Weigel-Van Aken, Kirsten A; Slayton, William B; Yoder, Mervin C; Srivastava, Arun

    2008-03-01

    We previously reported that among single-stranded adeno-associated virus (ssAAV) vectors, serotypes 1 through 5, ssAAV1 is the most efficient in transducing murine hematopoietic stem cells (HSCs), but viral second-strand DNA synthesis remains a rate-limiting step. Subsequently, using double-stranded, self-complementary AAV (scAAV) vectors, serotypes 7 through 10, we observed that scAAV7 vectors also transduce murine HSCs efficiently. In the present study, we used scAAV1 and scAAV7 shuttle vectors to transduce HSCs in a murine bone marrow serial transplant model in vivo, which allowed examination of the AAV proviral integration pattern in the mouse genome, as well as recovery and nucleotide sequence analyses of AAV-HSC DNA junction fragments. The proviral genomes were stably integrated, and integration sites were localized to different mouse chromosomes. None of the integration sites was found to be in a transcribed gene, or near a cellular oncogene. None of the animals, monitored for up to 1 year, exhibited pathological abnormalities. Thus, AAV proviral integration-induced risk of oncogenesis was not found in our study, which provides functional confirmation of stable transduction of self-renewing multipotential HSCs by scAAV vectors as well as promise for the use of these vectors in the potential treatment of disorders of the hematopoietic system.

  12. Recombinant adeno-associated virus: efficient transduction of the rat VMH and clearance from blood.

    Directory of Open Access Journals (Sweden)

    Margriet A van Gestel

    Full Text Available To promote the efficient and safe application of adeno-associated virus (AAV vectors as a gene transfer tool in the central nervous system (CNS, transduction efficiency and clearance were studied for serotypes commonly used to transfect distinct areas of the brain. As AAV2 was shown to transduce only small volumes in several brain regions, this study compares the transduction efficiency of three AAV pseudotyped vectors, namely AAV2/1, AAV2/5 and AAV2/8, in the ventromedial nucleus of the hypothalamus (VMH. No difference was found between AAV2/1 and AAV2/5 in transduction efficiency. Both AAV2/1 and AAV2/5 achieved a higher transduction rate than AAV2/8. One hour after virus administration to the brain, no viral particles could be traced in blood, indicating that no or negligible numbers of virions crossed the blood-brain barrier. In order to investigate survival of AAV in blood, clearance was determined following systemic AAV administration. The half-life of AAV2/1, AAV2/2, AAV2/5 and AAV2/8 was calculated by determining virus clearance rates from blood after systemic injection. The half-life of AAV2/2 was 4.2 minutes, which was significantly lower than the half-lives of AAV2/1, AAV2/5 and AAV2/8. With a half-life of more than 11 hours, AAV2/8 particles remained detectable in blood significantly longer than AAV2/5. We conclude that application of AAV in the CNS is relatively safe as no AAV particles are detectable in blood after injection into the brain. With a half-life of 1.67 hours of AAV2/5, a systemic injection with 1×109 genomic copies of AAV would be fully cleared from blood after 2 days.

  13. Efficient gene transfer into nondividing cells by adeno-associated virus-based vectors.

    OpenAIRE

    Podsakoff, G; Wong, K K; Chatterjee, S

    1994-01-01

    Gene transfer vectors based on adeno-associated virus (AAV) are emerging as highly promising for use in human gene therapy by virtue of their characteristics of wide host range, high transduction efficiencies, and lack of cytopathogenicity. To better define the biology of AAV-mediated gene transfer, we tested the ability of an AAV vector to efficiently introduce transgenes into nonproliferating cell populations. Cells were induced into a nonproliferative state by treatment with the DNA synthe...

  14. Gene therapy with adeno-associated virus vector 5-human factor IX in adults with hemophilia B

    DEFF Research Database (Denmark)

    Miesbach, Wolfgang; Meijer, Karina; Coppens, Michiel

    2018-01-01

    Hemophilia B gene therapy aims to ameliorate bleeding risk and provide endogenous factor IX (FIX) activity/synthesis through a single treatment, eliminating the requirement for FIX concentrate. AMT-060 combines an adeno-associated virus-5 (AAV5) vector with a liver-specific promoter driving expre...

  15. Regulation of adeno-associated virus DNA replication by the cellular TAF-I/set complex.

    Science.gov (United States)

    Pegoraro, Gianluca; Marcello, Alessandro; Myers, Michael P; Giacca, Mauro

    2006-07-01

    The Rep proteins of the adeno-associated virus (AAV) are required for viral replication in the presence of adenovirus helper functions and as yet poorly characterized cellular factors. In an attempt to identify such factors, we purified Flag-Rep68-interacting proteins from human cell lysates. Several polypeptides were identified by mass spectrometry, among which was ANP32B, a member of the acidic nuclear protein 32 family which takes part in the formation of the template-activating factor I/Set oncoprotein (TAF-I/Set) complex. The N terminus of Rep was found to specifically bind the acidic domain of ANP32B; through this interaction, Rep was also able to recruit other members of the TAF-I/Set complex, including the ANP32A protein and the histone chaperone TAF-I/Set. Further experiments revealed that silencing of ANP32A and ANP32B inhibited AAV replication, while overexpression of all of the components of the TAF-I/Set complex increased de novo AAV DNA synthesis in permissive cells. Besides being the first indication that the TAF-I/Set complex participates in wild-type AAV replication, these findings have important implications for the generation of recombinant AAV vectors since overexpression of the TAF-I/Set components was found to markedly increase viral vector production.

  16. Intracellular route and biological activity of exogenously delivered Rep proteins from the adeno-associated virus type 2

    International Nuclear Information System (INIS)

    Awedikian, Rafi; Francois, Achille; Guilbaud, Mickael; Moullier, Philippe; Salvetti, Anna

    2005-01-01

    The two large Rep proteins, Rep78 and Rep68, from the adeno-associated virus type 2 (AAV-2) are required for AAV-2 DNA replication, site-specific integration, and for the regulation of viral gene expression. The study of their activities is dependent on the ability to deliver these proteins to the cells in a time and dose-dependent manner. We evaluated the ability of a protein transduction domain (PTD) derived from the human immunodeficiency virus 1 (HIV-1) TAT protein to drive the cellular internalization of exogenously delivered PTD-fused Rep68 proteins. This analysis unexpectedly revealed that recombinant Rep68 alone, in the absence of any PTD, could be endocytosed by the cells. Rep68 as the chimeric TAT-Rep68 proteins were internalized through endocytosis in clathrin-coated vesicles and retained in late endosomes/lysosomes with no detectable nuclear localization. In the presence of adenovirus, the Rep proteins could translocate into the nucleus where they displayed a biological activity. These findings support recent reports on the mechanism of entry of TAT-fused proteins and also revealed a new property of Rep68

  17. The next step in gene delivery: molecular engineering of adeno-associated virus serotypes.

    Science.gov (United States)

    Wang, Jinhui; Faust, Susan M; Rabinowitz, Joseph E

    2011-05-01

    Delivery is at the heart of gene therapy. Viral DNA delivery systems are asked to avoid the immune system, transduce specific target cell types while avoiding other cell types, infect dividing and non-dividing cells, insert their cargo within the host genome without mutagenesis or to remain episomal, and efficiently express transgenes for a substantial portion of a lifespan. These sought-after features cannot be associated with a single delivery system, or can they? The Adeno-associated virus family of gene delivery vehicles has proven to be highly malleable. Pseudotyping, using AAV serotype 2 terminal repeats to generate designer shells capable of transducing selected cell types, enables the packaging of common genomes into multiple serotypes virions to directly compare gene expression and tropism. In this review the ability to manipulate this virus will be examined from the inside out. The influence of host cell factors and organism biology including the immune response on the molecular fate of the viral genome will be discussed as well as differences in cellular trafficking patterns and uncoating properties that influence serotype transduction. Re-engineering the prototype vector AAV2 using epitope insertion, chemical modification, and molecular evolution not only demonstrated the flexibility of the best-studied serotype, but now also expanded the tool kit for molecular modification of all AAV serotypes. Current AAV research has changed its focus from examination of wild-type AAV biology to the feedback of host cell/organism on the design and development of a new generation of recombinant AAV delivery vehicles. This article is part of a Special Section entitled "Special Section: Cardiovascular Gene Therapy". Copyright © 2010 Elsevier Ltd. All rights reserved.

  18. Relevance of Assembly-Activating Protein for Adeno-associated Virus Vector Production and Capsid Protein Stability in Mammalian and Insect Cells.

    Science.gov (United States)

    Grosse, Stefanie; Penaud-Budloo, Magalie; Herrmann, Anne-Kathrin; Börner, Kathleen; Fakhiri, Julia; Laketa, Vibor; Krämer, Chiara; Wiedtke, Ellen; Gunkel, Manuel; Ménard, Lucie; Ayuso, Eduard; Grimm, Dirk

    2017-10-15

    The discovery that adeno-associated virus 2 (AAV2) encodes an eighth protein, called assembly-activating protein (AAP), transformed our understanding of wild-type AAV biology. Concurrently, it raised questions about the role of AAP during production of recombinant vectors based on natural or molecularly engineered AAV capsids. Here, we show that AAP is indeed essential for generation of functional recombinant AAV2 vectors in both mammalian and insect cell-based vector production systems. Surprisingly, we observed that AAV2 capsid proteins VP1 to -3 are unstable in the absence of AAP2, likely due to rapid proteasomal degradation. Inhibition of the proteasome led to an increase of intracellular VP1 to -3 but neither triggered assembly of functional capsids nor promoted nuclear localization of the capsid proteins. Together, this underscores the crucial and unique role of AAP in the AAV life cycle, where it rapidly chaperones capsid assembly, thus preventing degradation of free capsid proteins. An expanded analysis comprising nine alternative AAV serotypes (1, 3 to 9, and rh10) showed that vector production always depends on the presence of AAP, with the exceptions of AAV4 and AAV5, which exhibited AAP-independent, albeit low-level, particle assembly. Interestingly, AAPs from all 10 serotypes could cross-complement AAP-depleted helper plasmids during vector production, despite there being distinct intracellular AAP localization patterns. These were most pronounced for AAP4 and AAP5, congruent with their inability to rescue an AAV2/AAP2 knockout. We conclude that AAP is key for assembly of genuine capsids from at least 10 different AAV serotypes, which has implications for vectors derived from wild-type or synthetic AAV capsids. IMPORTANCE Assembly of adeno-associated virus 2 (AAV2) is regulated by the assembly-activating protein (AAP), whose open reading frame overlaps with that of the viral capsid proteins. As the majority of evidence was obtained using virus

  19. A human parvovirus, adeno-associated virus, as a eucaryotic vector: Transient expression and encapsidation of the procaryotic gene for chloramphenicol acetyltransferase

    Energy Technology Data Exchange (ETDEWEB)

    Tratschin, J.D.; West, M.H.P.; Sandbank, T.; Carter, B.J.

    1984-10-01

    The authors have used the defective human parvovirus adeno-associated virus (AAV) as a novel eurocaryotic vector (parvector) for the expression of a foreign gene in human cells. The recombinant, pAV2, contains the AAV genome in a pBR322-derived bacterial plasmid. When pAV2 is transfected into human cells together with helper adenovirus particles, the AAV genome is rescued from the recombinant plasmid and replicated to produce infectious AAV particles at high efficiency. To create a vector, we inserted a procaryotic sequence coding for chloramphenicol acetyltransferase (CAT) into derivatives of pAV2 following either of the AAV promoters p/sub 40/ (pAVHiCAT) and p/sub 19/ (pAVBcCAT). When transfected into human 293 cells or HeLa cells, pAVHiCAT expressed CAT activity in the absence of adenovirus. In the presence of adenovirus, this vector produced increased amounts of CAT activity and the recombinant AAV-CAT genome was replicated. In 293 cells, pAVBcCAT expressed a similar amount of CAT activity in the absence or presence of adenovirus and the recombinant AAV-CAT genome was not replicated. In HeLa cells, pAVBcCAT expressed low levels of CAT activity, but this level was elevated by coinfection with adenovirus particles or by cotransfection with a plasmid which expressed the adenovirus early region 1A (E1A) product. The E1A product is a transcriptional activator and is expressed in 293 cells. Thus, expression from two AAV promoters is differentially regulated: expression from p/sub 19/ is increased by E1A, whereas p/sub 40/ yields high levels of constitutive expression in the absence of E1A. Both AAV vectors were packaged into AAV particles by complementation with wild-type AAV and yielded CAT activity when subsequently infected into cells in the presence of adenovirus.

  20. Recombinant adeno-associated virus mediates a high level of gene transfer but less efficient integration in the K562 human hematopoietic cell line.

    Science.gov (United States)

    Malik, P; McQuiston, S A; Yu, X J; Pepper, K A; Krall, W J; Podsakoff, G M; Kurtzman, G J; Kohn, D B

    1997-03-01

    We tested the ability of a recombinant adeno-associated virus (rAAV) vector to express and integrate exogenous DNA into human hematopoietic cells in the absence of selection. We developed an rAAV vector, AAV-tNGFR, carrying a truncated rat nerve growth factor receptor (tNGFR) cDNA as a cell surface reporter under the control of the Moloney murine leukemia virus (MoMuLV) long terminal repeat. An analogous MoMuLV-based retroviral vector (L-tNGFR) was used in parallel, and gene transfer and expression in human hematopoietic cells were assessed by flow cytometry and DNA analyses. Following gene transfer into K562 cells with AAV-tNGFR at a multiplicity of infection (MOI) of 13 infectious units (IU), 26 to 38% of cells expressed tNGFR on the surface early after transduction, but the proportion of tNGFR expressing cells steadily declined to 3.0 to 3.5% over 1 month of culture. At an MOI of 130 IU, nearly all cells expressed tNGFR immediately posttransduction, but the proportion of cells expressing tNGFR declined to 62% over 2 months of culture. The decline in the proportion of AAV-tNGFR-expressing cells was associated with ongoing losses of vector genomes. In contrast, K562 cells transduced with the retroviral vector L-tNGFR expressed tNGFR in a constant fraction. Integration analyses on clones showed that integration occurred at different sites. Integration frequencies were estimated at about 49% at an MOI of 130 and 2% at an MOI of 1.3. Transduction of primary human CD34+ progenitor cells by AAV-tNGFR was less efficient than with K562 cells and showed a declining percentage of cells expressing tNGFR over 2 weeks of culture. Thus, purified rAAV caused very high gene transfer and expression in human hematopoietic cells early after transduction, which steadily declined during cell passage in the absence of selection. Although the efficiency of integration was low, overall integration was markedly improved at a high MOI. While prolonged episomal persistence may be adequate

  1. Intramuscular Adeno-Associated Virus-Mediated Expression of Monoclonal Antibodies Provides 100% Protection Against Ebola Virus Infection in Mice.

    Science.gov (United States)

    van Lieshout, Laura P; Soule, Geoff; Sorensen, Debra; Frost, Kathy L; He, Shihua; Tierney, Kevin; Safronetz, David; Booth, Stephanie A; Kobinger, Gary P; Qiu, Xiangguo; Wootton, Sarah K

    2018-03-05

    The 2013-2016 West Africa outbreak demonstrated the epidemic potential of Ebola virus and highlighted the need for counter strategies. Monoclonal antibody (mAb)-based therapies hold promise as treatment options for Ebola virus infections. However, production of clinical-grade mAbs is labor intensive, and immunity is short lived. Conversely, adeno-associated virus (AAV)-mediated mAb gene transfer provides the host with a genetic blueprint to manufacture mAbs in vivo, leading to steady release of antibody over many months. Here we demonstrate that AAV-mediated expression of nonneutralizing mAb 5D2 or 7C9 confers 100% protection against mouse-adapted Ebola virus infection, while neutralizing mAb 2G4 was 83% protective. A 2-component cocktail, AAV-2G4/AAV-5D2, provided complete protection when administered 7 days prior to challenge and was partially protective with a 3-day lead time. Finally, AAV-mAb therapies provided sustained protection from challenge 5 months following AAV administration. AAV-mAb may be a viable alternative strategy for vaccination against emerging infectious diseases.

  2. associated virus (AAV)-mediated expression of small interfering RNA

    African Journals Online (AJOL)

    user

    2011-04-11

    Apr 11, 2011 ... disadvantages. In this study, a siRNA expression recombinant adeno-associated virus (AAV) was .... cleotides were designed, which contained a sense strand of p53 or ..... During MJ, Kaplitt MG, Stem MB, Eidelberg D (2001).

  3. Identification of an adeno-associated virus binding epitope for AVB sepharose affinity resin

    Directory of Open Access Journals (Sweden)

    Qiang Wang

    Full Text Available Recent successes of adeno-associated virus (AAV–based gene therapy have created a demand for large-scale AAV vector manufacturing and purification techniques for use in clinical trials and beyond. During the development of purification protocols for rh.10, hu.37, AAV8, rh.64R1, AAV3B, and AAV9 vectors, based on a widely used affinity resin, AVB sepharose (GE, we found that, under the same conditions, different serotypes have different affinities to the resin, with AAV3B binding the best and AAV9 the poorest. Further analysis revealed a surface-exposed residue (amino acid number 665 in AAV8 VP1 numbering differs between the high-affinity AAV serotypes (serine in AAV3B, rh.10, and hu.37 and the low-affinity ones (asparagine in AAV8, rh.64R1, and AAV9. The residue locates within a surface-exposed, variable epitope flanked by highly conserved residues. The substitution of the epitope in AAV8, rh.64R1, and AAV9 with the corresponding epitope of AAV3B (SPAKFA resulted in greatly increased affinity to AVB sepharose with no reduction in the vectors’ in vitro potency. The presence of the newly identified AVB-binding epitope will be useful for affinity resin selection for the purification of novel AAV serotypes. It also suggests the possibility of vector engineering to yield a universal affinity chromatography purification method for multiple AAV serotypes.

  4. Manufacturing recombinant proteins in kg-ton quantities using animal cells in bioreactors.

    Science.gov (United States)

    De Jesus, Maria; Wurm, Florian M

    2011-06-01

    Mammalian cells in bioreactors as production host are the focus of this review. We wish to briefly describe today's technical status and to highlight emerging trends in the manufacture of recombinant therapeutic proteins, focusing on Chinese hamster ovary (CHO) cells. CHO cells are the manufacturing host system of choice for more than 70% of protein pharmaceuticals on the market [21]. The current global capacity to grow mammalian cells in bioreactors stands at about 0.5 million liters, whereby the largest vessels can have a working volume of about 20,000l. We are focusing in this article on the upstream part of protein manufacturing. Over the past 25 years, volumetric yields for recombinant cell lines have increased about 20-fold mainly as the result of improvements in media and bioprocess design. Future yield increases are expected to come from improved gene delivery methods, from improved, possibly genetically modified host systems, and from further improved bioprocesses in bioreactors. Other emerging trends in protein manufacturing that are discussed include the use of disposal bioreactors and transient gene expression. We specifically highlight here current research in our own laboratories. Copyright © 2011 Elsevier B.V. All rights reserved.

  5. Robust Lentiviral Gene Delivery But Limited Transduction Capacity of Commonly Used Adeno-Associated Viral Serotypes in Xenotransplanted Human Skin.

    Science.gov (United States)

    Jakobsen, Maria; Askou, Anne Louise; Stenderup, Karin; Rosada, Cecilia; Dagnæs-Hansen, Frederik; Jensen, Thomas G; Corydon, Thomas J; Mikkelsen, Jacob Giehm; Aagaard, Lars

    2015-08-01

    Skin is an easily accessible organ, and therapeutic gene transfer to skin remains an attractive alternative for the treatment of skin diseases. Although we have previously documented potent lentiviral gene delivery to human skin, vectors based on adeno-associated virus (AAV) rank among the most promising gene delivery tools for in vivo purposes. Thus, we compared the potential usefulness of various serotypes of recombinant AAV vectors and lentiviral vectors for gene transfer to human skin in a xenotransplanted mouse model. Vector constructs encoding firefly luciferase were packaged in AAV capsids of serotype 1, 2, 5, 6, 8, and 9 and separately administered by intradermal injection in human skin transplants. For all serotypes, live bioimaging demonstrated low levels of transgene expression in the human skin graft, and firefly luciferase expression was observed primarily in neighboring tissue outside of the graft. In contrast, gene delivery by intradermally injected lentiviral vectors was efficient and led to extensive and persistent firefly luciferase expression within the human skin graft only. The study demonstrates the limited capacity of single-stranded AAV vectors of six commonly used serotypes for gene delivery to human skin in vivo.

  6. Adeno-associated viral vector transduction of human mesenchymal stem cells

    DEFF Research Database (Denmark)

    Stender, Stefan; Murphy, Mary; O'Brien, Tim

    2007-01-01

    Mesenchymal stem cells (MSCs) have received considerable attention in the emerging field of regenerative medicine. One aspect of MSC research focuses on genetically modifying the cells with the aim of enhancing their regenerative potential. Adeno-associated virus (AAV) holds promise as a vector...... in human MSCs and to assess whether AAV transduction affects MSC multipotentiality. The results indicated that human MSCs could indeed be transiently transduced in vitro by the AAV2 vector with efficiencies of up to 65%. The percentage of GFP-positive cells peaked at 4 days post-transduction and declined...... rapidly towards 0% after day 8. The level of transgene expression in the GFP-positive population increased 4-fold over a 10,000 fold viral dose increase. This dose-response contrasted with the 200-fold increase observed in similarly transduced 293-cells, indicating a relatively restricted transgene...

  7. Efficient delivery of Cre-recombinase to neurons in vivo and stable transduction of neurons using adeno-associated and lentiviral vectors

    Directory of Open Access Journals (Sweden)

    Sablitzky Fred

    2004-01-01

    Full Text Available Abstract Background Inactivating genes in vivo is an important technique for establishing their function in the adult nervous system. Unfortunately, conventional knockout mice may suffer from several limitations including embryonic or perinatal lethality and the compensatory regulation of other genes. One approach to producing conditional activation or inactivation of genes involves the use of Cre recombinase to remove loxP-flanked segments of DNA. We have studied the effects of delivering Cre to the hippocampus and neocortex of adult mice by injecting replication-deficient adeno-associated virus (AAV and lentiviral (LV vectors into discrete regions of the forebrain. Results Recombinant AAV-Cre, AAV-GFP (green fluorescent protein and LV-Cre-EGFP (enhanced GFP were made with the transgene controlled by the cytomegalovirus promoter. Infecting 293T cells in vitro with AAV-Cre and LV-Cre-EGFP resulted in transduction of most cells as shown by GFP fluorescence and Cre immunoreactivity. Injections of submicrolitre quantities of LV-Cre-EGFP and mixtures of AAV-Cre with AAV-GFP into the neocortex and hippocampus of adult Rosa26 reporter mice resulted in strong Cre and GFP expression in the dentate gyrus and moderate to strong labelling in specific regions of the hippocampus and in the neocortex, mainly in neurons. The pattern of expression of Cre and GFP obtained with AAV and LV vectors was very similar. X-gal staining showed that Cre-mediated recombination had occurred in neurons in the same regions of the brain, starting at 3 days post-injection. No obvious toxic effects of Cre expression were detected even after four weeks post-injection. Conclusion AAV and LV vectors are capable of delivering Cre to neurons in discrete regions of the adult mouse brain and producing recombination.

  8. Unrestricted Hepatocyte Transduction with Adeno-Associated Virus Serotype 8 Vectors in Mice

    Science.gov (United States)

    Nakai, Hiroyuki; Fuess, Sally; Storm, Theresa A.; Muramatsu, Shin-ichi; Nara, Yuko; Kay, Mark A.

    2005-01-01

    Recombinant adeno-associated virus (rAAV) vectors can mediate long-term stable transduction in various target tissues. However, with rAAV serotype 2 (rAAV2) vectors, liver transduction is confined to only a small portion of hepatocytes even after administration of extremely high vector doses. In order to investigate whether rAAV vectors of other serotypes exhibit similar restricted liver transduction, we performed a dose-response study by injecting mice with β-galactosidase-expressing rAAV1 and rAAV8 vectors via the portal vein. The rAAV1 vector showed a blunted dose-response similar to that of rAAV2 at high doses, while the rAAV8 vector dose-response remained unchanged at any dose and ultimately could transduce all the hepatocytes at a dose of 7.2 × 1012 vector genomes/mouse without toxicity. This indicates that all hepatocytes have the ability to process incoming single-stranded vector genomes into duplex DNA. A single tail vein injection of the rAAV8 vector was as efficient as portal vein injection at any dose. In addition, intravascular administration of the rAAV8 vector at a high dose transduced all the skeletal muscles throughout the body, including the diaphragm, the entire cardiac muscle, and substantial numbers of cells in the pancreas, smooth muscles, and brain. Thus, rAAV8 is a robust vector for gene transfer to the liver and provides a promising research tool for delivering genes to various target organs. In addition, the rAAV8 vector may offer a potential therapeutic agent for various diseases affecting nonhepatic tissues, but great caution is required for vector spillover and tight control of tissue-specific gene expression. PMID:15596817

  9. Adeno-associated viral vectors as agents for gene delivery : application in disorders and trauma of the central nervous system

    NARCIS (Netherlands)

    Ruitenberg, Marc J; Eggers, Ruben; Boer, Gerard J; Verhaagen, J.

    2002-01-01

    The use of viral vectors as agents for gene delivery provides a direct approach to manipulate gene expression in the mammalian central nervous system (CNS). The present article describes in detail the methodology for the injection of viral vectors, in particular adeno-associated virus (AAV) vectors,

  10. Adeno-associated viral vector-mediated neurotrophin gene transfer in the injured adult rat spinal cord improves hind-limb function

    NARCIS (Netherlands)

    Blits, B; Oudega, M.; Boer, G J; Bartlett Bunge, M; Verhaagen, J

    2003-01-01

    To foster axonal growth from a Schwann cell bridge into the caudal spinal cord, spinal cells caudal to the implant were transduced with adeno-associated viral (AAV) vectors encoding for brain-derived neurotrophic factor (BDNF) and neurotrophin-3 (AAV-NT-3). Control rats received AAV vectors encoding

  11. Targeted CNS delivery using human MiniPromoters and demonstrated compatibility with adeno-associated viral vectors

    Directory of Open Access Journals (Sweden)

    Charles N de Leeuw

    2014-01-01

    Full Text Available Critical for human gene therapy is the availability of small promoters tools to drive gene expression in a highly specific and reproducible manner. We tackled this challenge by developing human DNA MiniPromoters (MiniPs using computational biology and phylogenetic conservation. MiniPs were tested in mouse as single-copy knock-ins at the Hprt locus on the X chromosome and evaluated for lacZ reporter expression in central nervous system (CNS and non–CNS tissue. Eighteen novel MiniPs driving expression in mouse brain were identified, 2 MiniPs for driving pan-neuronal expression and 17 MiniPs for the mouse eye. Key areas of therapeutic interest were represented in this set: the cerebral cortex, embryonic hypothalamus, spinal cord, bipolar and ganglion cells of the retina, and skeletal muscle. We also demonstrated that three retinal ganglion cell MiniPs exhibit similar cell type specificity when delivered via adeno-associated virus vectors intravitreally. We conclude that our methodology and characterization has resulted in desirable expression characteristics that are intrinsic to the MiniPromoter, not dictated by copy-number effects or genomic location, and results in constructs predisposed to success in adeno-associated virus. These MiniPs are immediately applicable for preclinical studies toward gene therapy in humans and are publicly available to facilitate basic and clinical research, and human gene therapy.

  12. A compact dual promoter adeno-associated viral vector for efficient delivery of two genes to dorsal root ganglion neurons

    NARCIS (Netherlands)

    Fagoe, N D; Eggers, R; Verhaagen, J; Mason, M R J

    Adeno-associated viral (AAV) vectors based on serotype 5 are an efficient means to target dorsal root ganglia (DRG) to study gene function in the primary sensory neurons of the peripheral nervous system. In this study, we have developed a compact AAV dual promoter vector composed of the

  13. Perinatal systemic gene delivery using adeno-associated viral vectors

    Directory of Open Access Journals (Sweden)

    Rajvinder eKarda

    2014-11-01

    Full Text Available Neurodegenerative monogenic diseases can also affect a broad range of tissues and organs throughout the body. An effective treatment would require a systemic approach. The intravenous administration of novel therapies is ideal but is hampered by the inability of such drugs to cross the blood-brain barrier and precludes efficacy in the central nervous system. A number of these early lethal intractable diseases also present devastating irreversible pathology at birth or soon after. Therefore, any therapy would ideally be administered during the perinatal period to prevent, stop or ameliorate disease progression. The concept of perinatal gene therapy has moved a step further towards being a feasible approach to treating such disorders. This has primarily been driven by the recent discoveries that particular serotypes of adeno-associated virus (AAV gene delivery vectors have the ability to cross the blood-brain barrier following intravenous administration. Furthermore, this has been safely demonstrated in perinatal mice and non-human primates. This review focuses on the progress made in using AAV to achieve systemic transduction and what this means for developing perinatal gene therapy for early lethal neurodegenerative diseases.

  14. Construction of recombinant adenovirus with Egr-1 promoter and Smad7 cDNA and study of the Egr-1 promoter's biological activity

    International Nuclear Information System (INIS)

    Cai Xuwei; Fu Xiaolong; Yang Jian; Song Houyan

    2005-01-01

    Objective: To construct a recombinant replication-defective adenovirus containing Egr-1 promoter and Smad7 cDNA, then to evaluate the biological activity of Egr-1 promoter. Methods: Based on Adeno- X TM expression system, CMV promoter of the pShuttle vector was replaced by Egr-1 promoter, and the Smad7 cDNA was subcloned into the MCS(multiple cloning site) of pShuttle. The recombinant pShuttle was then sub-cloned into the Adeno-X TM genome, which was transformed into E. coli to get recombinant Adeno-X TM plasmid DNA. The recombinant adenovirus was packaged and amplified in the transfected HEK293 cells before it was purified and tested for viral titer. The fibroblasts (3T6 cells) infected by the recombinant adenovirus were irradiated , and the activity of Egr-1 promoter was quantitively determined by the amount of Smad7 protein expressed in the 3T6 cells using Western blot. Results: Identified by restriction endonuclease analysis and PCR, the recombinant adenovirus containing Egr-1 promoter and Smad7 cDNA was constructed successfully, with a viral titer of 1.0 x 10 11 TCID 50 /ml. The expressed amount of Smad7 protein varied at different dose levels and different time points post-irradiation in the 3T6 cells infected with the recombinant adenovirus. The amount of Smad7 protein increased along with the rising of the irradiation dose, and remained at a high expression level from 8 Gy to 15 Gy. The amount of Smad7 protein started to increase at 2 hours post-irradiation, and maintained a relatively high level for the next 5 hours before it descended, which was not observed in the control 3T6 cells. Conclusions: With the aid of Adeno-X TM expression system and molecular cloning techniques, construction of recombinant adenovirus could be quick and efficient. The recombined Egr-1 promoter has the activity of regulating the expression of downstream Smad7 cDNA. The increase in Smad7 expression under control of Egr-1 promoter induced by ionizing radiation is time- and dose

  15. High-accuracy biodistribution analysis of adeno-associated virus variants by double barcode sequencing.

    Science.gov (United States)

    Marsic, Damien; Méndez-Gómez, Héctor R; Zolotukhin, Sergei

    2015-01-01

    Biodistribution analysis is a key step in the evaluation of adeno-associated virus (AAV) capsid variants, whether natural isolates or produced by rational design or directed evolution. Indeed, when screening candidate vectors, accurate knowledge about which tissues are infected and how efficiently is essential. We describe the design, validation, and application of a new vector, pTR-UF50-BC, encoding a bioluminescent protein, a fluorescent protein and a DNA barcode, which can be used to visualize localization of transduction at the organism, organ, tissue, or cellular levels. In addition, by linking capsid variants to different barcoded versions of the vector and amplifying the barcode region from various tissue samples using barcoded primers, biodistribution of viral genomes can be analyzed with high accuracy and efficiency.

  16. Adeno-associated virus Rep-mediated targeting of integrase-defective retroviral vector DNA circles into human chromosome 19

    International Nuclear Information System (INIS)

    Huang, Shuohao; Kawabe, Yoshinori; Ito, Akira; Kamihira, Masamichi

    2012-01-01

    Highlights: ► Adeno-associated virus (AAV) is capable of targeted integration in human cells. ► Integrase-defective retroviral vector (IDRV) enables a circular DNA delivery. ► A targeted integration system of IDRV DNA using the AAV integration mechanism. ► Targeted IDRV integration ameliorates the safety concerns for retroviral vectors. -- Abstract: Retroviral vectors have been employed in clinical trials for gene therapy owing to their relative large packaging capacity, alterable cell tropism, and chromosomal integration for stable transgene expression. However, uncontrollable integrations of transgenes are likely to cause safety issues, such as insertional mutagenesis. A targeted transgene integration system for retroviral vectors, therefore, is a straightforward way to address the insertional mutagenesis issue. Adeno-associated virus (AAV) is the only known virus capable of targeted integration in human cells. In the presence of AAV Rep proteins, plasmids possessing the p5 integration efficiency element (p5IEE) can be integrated into the AAV integration site (AAVS1) in the human genome. In this report, we describe a system that can target the circular DNA derived from non-integrating retroviral vectors to the AAVS1 site by utilizing the Rep/p5IEE integration mechanism. Our results showed that after G418 selection 30% of collected clones had retroviral DNA targeted at the AAVS1 site.

  17. Systemic gene delivery to the central nervous system using Adeno-associated virus

    Directory of Open Access Journals (Sweden)

    Mathieu eBOURDENX

    2014-06-01

    Full Text Available Adeno-associated virus (AAV-mediated gene delivery has emerged as an effective and safe tool for both preclinical and clinical studies of neurological disorders. The recent discovery that several serotypes are able to cross the blood-brain-barrier when administered systemically has been a real breakthrough in the field of neurodegenerative diseases. Widespread transgene expression after systemic injection could spark interest as a therapeutic approach. Such strategy will avoid invasive brain surgery and allow non-focal gene therapy promising for CNS diseases affecting large portion of the brain. Here, we will review the recent results achieved through different systemic routes of injection generated in the last decade using systemic AAV-mediated delivery and propose a brief assessment of their values. In particular, we emphasize how the methods used for virus engineering could improve brain transduction after peripheral delivery.

  18. Gene therapy strategy for long-term myocardial protection using adeno-associated virus-mediated delivery of heme oxygenase gene.

    Science.gov (United States)

    Melo, Luis G; Agrawal, Reitu; Zhang, Lunan; Rezvani, Mojgan; Mangi, Abeel A; Ehsan, Afshin; Griese, Daniel P; Dell'Acqua, Giorgio; Mann, Michael J; Oyama, Junichi; Yet, Shaw-Fang; Layne, Matthew D; Perrella, Mark A; Dzau, Victor J

    2002-02-05

    Ischemia and oxidative stress are the leading mechanisms for tissue injury. An ideal strategy for preventive/protective therapy would be to develop an approach that could confer long-term transgene expression and, consequently, tissue protection from repeated ischemia/reperfusion injury with a single administration of a therapeutic gene. In the present study, we used recombinant adeno-associated virus (rAAV) as a vector for direct delivery of the cytoprotective gene heme oxygenase-1 (HO-1) into the rat myocardium, with the purpose of evaluating this strategy as a therapeutic approach for long-term protection from ischemia-induced myocardial injury. Human HO-1 gene (hHO-1) was delivered to normal rat hearts by intramyocardial injection. AAV-mediated transfer of the hHO-1 gene 8 weeks before acute coronary artery ligation and release led to a dramatic reduction (>75%) in left ventricular myocardial infarction. The reduction in infarct size was accompanied by decreases in myocardial lipid peroxidation and in proapoptotic Bax and proinflammatory interleukin-1beta protein abundance, concomitant with an increase in antiapoptotic Bcl-2 protein level. This suggested that the transgene exerts its cardioprotective effects in part by reducing oxidative stress and associated inflammation and apoptotic cell death. This study documents the beneficial therapeutic effect of rAAV-mediated transfer, before myocardial injury, of a cytoprotective gene that confers long-term myocardial protection from ischemia/reperfusion injury. Our data suggest that this novel "pre-event" gene transfer approach may provide sustained tissue protection from future repeated episodes of injury and may be beneficial as preventive therapy for patients with or at risk of developing coronary ischemic events.

  19. Adeno-associated virus vector-mediated transduction in the cat brain.

    Science.gov (United States)

    Vite, Charles H; Passini, Marco A; Haskins, Mark E; Wolfe, John H

    2003-10-01

    Adeno-associated virus (AAV) vectors are capable of delivering a therapeutic gene to the mouse brain that can result in long-term and widespread protein production. However, the human infant brain is more than 1000 times larger than the mouse brain, which will make the treatment of global neurometabolic disorders in children more difficult. In this study, we evaluated the ability of three AAV serotypes (1,2, and 5) to transduce cells in the cat brain as a model of a large mammalian brain. The human lysosomal enzyme beta-glucuronidase (GUSB) was used as a reporter gene, because it can be distinguished from feline GUSB by heat stability. The vectors were injected into the cerebral cortex, caudate nucleus, thalamus, corona radiata, internal capsule, and centrum semiovale of 8-week-old cats. The brains were evaluated for gene expression using in situ hybridization and enzyme histochemistry 10 weeks after surgery. The AAV2 vector was capable of transducing cells in the gray matter, while the AAV1 vector resulted in greater transduction of the gray matter than AAV2 as well as transduction of the white matter. AAV5 did not result in detectable transduction in the cat brain.

  20. Adeno-Associated Virus-Mediated Correction of a Canine Model of Glycogen Storage Disease Type Ia

    Science.gov (United States)

    Weinstein, David A.; Correia, Catherine E.; Conlon, Thomas; Specht, Andrew; Verstegen, John; Onclin-Verstegen, Karine; Campbell-Thompson, Martha; Dhaliwal, Gurmeet; Mirian, Layla; Cossette, Holly; Falk, Darin J.; Germain, Sean; Clement, Nathalie; Porvasnik, Stacy; Fiske, Laurie; Struck, Maggie; Ramirez, Harvey E.; Jordan, Juan; Andrutis, Karl; Chou, Janice Y.; Byrne, Barry J.

    2010-01-01

    Abstract Glycogen storage disease type Ia (GSDIa; von Gierke disease; MIM 232200) is caused by a deficiency in glucose-6-phosphatase-α. Patients with GSDIa are unable to maintain glucose homeostasis and suffer from severe hypoglycemia, hepatomegaly, hyperlipidemia, hyperuricemia, and lactic acidosis. The canine model of GSDIa is naturally occurring and recapitulates almost all aspects of the human form of disease. We investigated the potential of recombinant adeno-associated virus (rAAV) vector-based therapy to treat the canine model of GSDIa. After delivery of a therapeutic rAAV2/8 vector to a 1-day-old GSDIa dog, improvement was noted as early as 2 weeks posttreatment. Correction was transient, however, and by 2 months posttreatment the rAAV2/8-treated dog could no longer sustain normal blood glucose levels after 1 hr of fasting. The same animal was then dosed with a therapeutic rAAV2/1 vector delivered via the portal vein. Two months after rAAV2/1 dosing, both blood glucose and lactate levels were normal at 4 hr postfasting. With more prolonged fasting, the dog still maintained near-normal glucose concentrations, but lactate levels were elevated by 9 hr, indicating that partial correction was achieved. Dietary glucose supplementation was discontinued starting 1 month after rAAV2/1 delivery and the dog continues to thrive with minimal laboratory abnormalities at 23 months of age (18 months after rAAV2/1 treatment). These results demonstrate that delivery of rAAV vectors can mediate significant correction of the GSDIa phenotype and that gene transfer may be a promising alternative therapy for this disease and other genetic diseases of the liver. PMID:20163245

  1. Adeno-associated virus (AAV-mediated suppression of Ca2+/calmodulin kinase IV activity in the nucleus accumbens modulates emotional behaviour in mice

    Directory of Open Access Journals (Sweden)

    Bading Hilmar

    2007-12-01

    Full Text Available Abstract Background Calcium/calmodulin-dependent protein kinase IV (CaMKIV controls activity-dependent gene transcription by regulating the activity of the cyclic AMP response element binding protein (CREB. This signaling pathway is involved in gating emotional responses in the CNS but previous studies did not address the potential roles of CaMKIV in discrete brain regions. In the present study, we aimed at specifically dissecting the role of CaMKIV in the nucleus accumbens of adult mice. Results We used recombinant adeno-associated virus (rAAV-mediated gene transfer of a dominant-negative CaMKIV variant (rAAV-dnCaMKIV to inhibit endogenous CaMKIV in the nucleus accumbens. rAAV-dnCaMKIV treated animals were subjected to a battery of tests including, prepulse inhibition of the acoustic startle response, open field, social interaction and anxiety-related behaviour. We found that basal locomotor activity in the open field, and prepulse inhibition or startle performance were unaltered in mice infected with rAAV-dnCaMKIV in the nucleus accumbens. However, anxiogenic effects were revealed in social interaction testing and the light/dark emergence test. Conclusion Our findings suggest a modulatory role of CaMKIV in the nucleus accumbens in anxiety-like behaviour but not sensorimotor gating.

  2. Enhancing gene delivery of adeno-associated viruses by cell-permeable peptides

    Directory of Open Access Journals (Sweden)

    Yarong Liu

    2014-01-01

    Full Text Available Adeno-associated virus type 2 (AAV2 is considered a promising gene delivery vector and has been extensively applied in several disease models; however, inefficient transduction in various cells and tissues has limited its widespread application in many areas of gene therapy. In this study, we have developed a general, but efficient, strategy to enhance viral transduction, both in vitro and in vivo, by incubating viral particles with cell-permeable peptides (CPPs. We show that CPPs increase internalization of viral particles into cells by facilitating both energy-independent and energy-dependent endocytosis. Moreover, CPPs can significantly enhance the endosomal escape process of viral particles, thus enhancing viral transduction to those cells that have exhibited very low permissiveness to AAV2 infection as a result of impaired intracellular viral processing. We also demonstrated that this approach could be applicable to other AAV serotypes. Thus, the membrane-penetrating ability of CPPs enables us to generate an efficient method for enhanced gene delivery of AAV vectors, potentially facilitating its applicability to human gene therapy.

  3. Effective relief of neuropathic pain by adeno-associated virus-mediated expression of a small hairpin RNA against GTP cyclohydrolase 1

    Directory of Open Access Journals (Sweden)

    Chang Jin

    2009-11-01

    Full Text Available Abstract Background Recent studies show that transcriptional activation of GTP cyclohydrolase I (GCH1 in dorsal root ganglia (DRG is significantly involved in the development and persistency of pain symptoms. We thus hypothesize that neuropathic pain may be attenuated by down-regulation of GCH1 expression, and propose a gene silencing system for this purpose. Results To interrupt GCH1 synthesis, we designed a bidirectional recombinant adeno-associated virus encoding both a small hairpin RNA against GCH1 and a GFP reporter gene (rAAV-shGCH1. After rAAV-shGCH1 was introduced into the sciatic nerve prior to or following pain-inducing surgery, therapeutic efficacy and the underlying mechanisms were subsequently validated in animal models. The GFP expression data indicates that rAAV effectively delivered transgenes to DRG. Subsequently reduced GCH1 expression was evident from immunohistochemistry and western-blotting analysis. Along with the down-regulation of GCH1, the von Frey test correspondingly indicated a sharp decline in pain symptoms upon both pre- and post-treatment with rAAV-shGCH1. Interestingly, GCH1 down-regulation additionally led to decreased microglial activation in the dorsal horn, implying an association between pain attenuation and reduced inflammation. Conclusion Therefore, the data suggests that GCH1 levels can be reduced by introducing rAAV-shGCH1, leading to pain relief. Based on the results, we propose that GCH1 modulation may be developed as a clinically applicable gene therapy strategy to treat neuropathic pain.

  4. Sensitivity and specificity of the AdenoPlus test for diagnosing adenoviral conjunctivitis.

    Science.gov (United States)

    Sambursky, Robert; Trattler, William; Tauber, Shachar; Starr, Christopher; Friedberg, Murray; Boland, Thomas; McDonald, Marguerite; DellaVecchia, Michael; Luchs, Jodi

    2013-01-01

    To compare the clinical sensitivity and specificity of the AdenoPlus test with those of both viral cell culture (CC) with confirmatory immunofluorescence assay (IFA) and polymerase chain reaction (PCR) at detecting the presence of adenovirus in tear fluid. A prospective, sequential, masked, multicenter clinical trial enrolled 128 patients presenting with a clinical diagnosis of acute viral conjunctivitis from a combination of 8 private ophthalmology practices and academic centers. Patients were tested with AdenoPlus, CC-IFA, and PCR to detect the presence of adenovirus. The sensitivity and specificity of AdenoPlus were assessed for identifying cases of adenoviral conjunctivitis. Of the 128 patients enrolled, 36 patients' results were found to be positive by either CC-IFA or PCR and 29 patients' results were found to be positive by both CC-IFA and PCR. When compared only with CC-IFA, AdenoPlus showed a sensitivity of 90% (28/31) and specificity of 96% (93/97). When compared only with PCR, AdenoPlus showed a sensitivity of 85% (29/34) and specificity of 98% (89/91). When compared with both CC-IFA and PCR, AdenoPlus showed a sensitivity of 93% (27/29) and specificity of 98% (88/90). When compared with PCR, CC-IFA showed a sensitivity of 85% (29/34) and specificity of 99% (90/91). AdenoPlus is sensitive and specific at detecting adenoviral conjunctivitis. An accurate and rapid in-office test can prevent the misdiagnosis of adenoviral conjunctivitis that leads to the spread of disease, unnecessary antibiotic use, and increased health care costs. Additionally, AdenoPlus may help a clinician make a more informed treatment decision regarding the use of novel therapeutics. clinicaltrials.gov Identifier: NCT00921895.

  5. Adeno-associated virus type 2 enhances goose parvovirus replication in embryonated goose eggs

    International Nuclear Information System (INIS)

    Malkinson, Mertyn; Winocour, Ernest

    2005-01-01

    The autonomous goose parvovirus (GPV) and the human helper-dependent adeno-associated virus type 2 (AAV2) share a high degree of homology. To determine if this evolutionary relationship has a biological impact, we studied viral replication in human 293 cells and in embryonated goose eggs coinfected with both viruses. Similar experiments were performed with the minute virus of mice (MVM), an autonomous murine parvovirus with less homology to AAV2. In human 293 cells, both GPV and MVM augmented AAV2 replication. In contrast, AAV2 markedly enhanced GPV replication in embryonated goose eggs under conditions where a similar effect was not observed with MVM. AAV2 did not replicate in embryonated goose eggs and AAV2 inactivated by UV-irradiation also enhanced GPV replication. To our knowledge, this is the first report that a human helper-dependent member of the Parvoviridae can provide helper activity for an autonomous parvovirus in a natural host

  6. Creation of a cardiotropic adeno-associated virus: the story of viral directed evolution

    Directory of Open Access Journals (Sweden)

    Yang Lin

    2013-02-01

    Full Text Available Abstract Adeno-associated virus (AAV is an important vector system for human gene therapy. Although use of AAV serotypes can result in efficient myocardial gene transfer, improvements in the transduction efficiency and specificity are still required. As a method for artificial modification and selection of gene function, directed evolution has been used for diverse applications in genetic engineering of enzymes and proteins. Since 2000, pioneering work has been performed on directed evolution of viral vectors. We further attempted to evolve the AAV using DNA shuffling and in vivo biopanning in a mouse model. An AAVM41 mutant was characterized, which was found to have improved transduction efficiency and specificity in myocardium, an attribute unknown for any natural AAV serotypes. This review focuses on the development of AAV vector for cardiac gene transfer, the history of directed evolution of viral vectors, and our creation of a cardiotropic AAV, which might have implications for the future design and application of viral vectors.

  7. Generation of insulin-producing human mesenchymal stem cells using recombinant adeno-associated virus.

    Science.gov (United States)

    Kim, Jeong Hwan; Park, Si-Nae; Suh, Hwal

    2007-02-28

    The purpose of current experiment is the generation of insulin-producing human mesenchymal stem cells as therapeutic source for the cure of type 1 diabetes. Type 1 diabetes is generally caused by insulin deficiency accompanied by the destruction of islet beta-cells. In various trials for the treatment of type 1 diabetes, cell-based gene therapy using stem cells is considered as one of the most useful candidate for the treatment. In this experiment, human mesenchymal stem cells were transduced with AAV which is containing furin-cleavable human preproinsulin gene to generate insulin-producing cells as surrogate beta-cells for the type 1 diabetes therapy. In the rAAV production procedure, rAAV was generated by transfection of AD293 cells. Human mesenchymal stems cells were transduced using rAAV with a various multiplicity of infection. Transduction of recombinant AAV was also tested using beta-galactosidse expression. Cell viability was determined by using MTT assay to evaluate the toxicity of the transduction procedure. Expression and production of Insulin were tested using reverse transcriptase-polymerase chain reaction and immunocytochemistry. Secretion of human insulin and C-peptide from the cells was assayed using enzyme-linked immunosorbent assay. Production of insulin and C-peptide from the test group represented a higher increase compared to the control group. In this study, we examined generation of insulin-producing cells from mesenchymal stem cells by genetic engineering for diabetes therapy. This work might be valuable to the field of tissue engineering for diabetes treatment.

  8. Perspective on Adeno-Associated Virus Capsid Modification for Duchenne Muscular Dystrophy Gene Therapy.

    Science.gov (United States)

    Nance, Michael E; Duan, Dongsheng

    2015-12-01

    Duchenne muscular dystrophy (DMD) is a X-linked, progressive childhood myopathy caused by mutations in the dystrophin gene, one of the largest genes in the genome. It is characterized by skeletal and cardiac muscle degeneration and dysfunction leading to cardiac and/or respiratory failure. Adeno-associated virus (AAV) is a highly promising gene therapy vector. AAV gene therapy has resulted in unprecedented clinical success for treating several inherited diseases. However, AAV gene therapy for DMD remains a significant challenge. Hurdles for AAV-mediated DMD gene therapy include the difficulty to package the full-length dystrophin coding sequence in an AAV vector, the necessity for whole-body gene delivery, the immune response to dystrophin and AAV capsid, and the species-specific barriers to translate from animal models to human patients. Capsid engineering aims at improving viral vector properties by rational design and/or forced evolution. In this review, we discuss how to use the state-of-the-art AAV capsid engineering technologies to overcome hurdles in AAV-based DMD gene therapy.

  9. Bcl-2–associated athanogene 3 protects the heart from ischemia/reperfusion injury

    OpenAIRE

    Su, Feifei; Myers, Valerie D.; Knezevic, Tijana; Wang, JuFang; Gao, Erhe; Madesh, Muniswamy; Tahrir, Farzaneh G.; Gupta, Manish K.; Gordon, Jennifer; Rabinowitz, Joseph; Ramsey, Frederick V.; Tilley, Douglas G.; Khalili, Kamel; Cheung, Joseph Y.; Feldman, Arthur M.

    2016-01-01

    Bcl-2–associated athanogene 3 (BAG3) is an evolutionarily conserved protein expressed at high levels in the heart and the vasculature and in many cancers. While altered BAG3 expression has been associated with cardiac dysfunction, its role in ischemia/reperfusion (I/R) is unknown. To test the hypothesis that BAG3 protects the heart from reperfusion injury, in vivo cardiac function was measured in hearts infected with either recombinant adeno-associated virus serotype 9–expressing (rAAV9-expre...

  10. Adeno-associated virus vectors can be efficiently produced without helper virus.

    Science.gov (United States)

    Matsushita, T; Elliger, S; Elliger, C; Podsakoff, G; Villarreal, L; Kurtzman, G J; Iwaki, Y; Colosi, P

    1998-07-01

    The purpose of this work was to develop an efficient method for the production of adeno-associated virus (AAV) vectors in the absence of helper virus. The adenovirus regions that mediate AAV vector replication were identified and assembled into a helper plasmid. These included the VA, E2A and E4 regions. When this helper plasmid was cotransfected into 293 cells, along with plasmids encoding the AAV vector, and rep and cap genes, AAV vector was produced as efficiently as when using adenovirus infection as a source of help. CMV-driven constructs expressing the E4orf6 and the 72-M(r), E2A proteins were able to functionally replace the E4 and E2A regions, respectively. Therefore the minimum set of genes required to produce AAV helper activity equivalent to that provided by adenovirus infection consists of, or is a subset of, the following genes: the E4orf6 gene, the 72-M(r), E2A protein gene, the VA RNA genes and the E1 region. AAV vector preparations made with adenovirus and by the helper virus-free method were essentially indistinguishable with respect to particle density, particle to infectivity ratio, capsimer ratio and efficiency of muscle transduction in vivo. Only AAV vector preparations made by the helper virus-free method were not reactive with anti-adenovirus sera.

  11. Defective-interfering particles of the human parvovirus adeno-associated virus

    International Nuclear Information System (INIS)

    Laughlin, C.A.; Myers, M.W.; Risin, D.L.; Carter, B.J.

    1979-01-01

    We have previously shown that adeno-associated virus (AAV) grown in KB cells with a helper adenovirus, produced several classes of particles defined by their buoyant density in CsCl. The predominant density classes were referred to as AAV(1.45), AAV(1.41), AAV (1.35), and AAV(1.32), respectively, where the density of the particle was written in the parentheses. The AAV(1.45) and AAV(1.41) particles which contained standard genomes were the only infectious AAV these infectious AAV particles exhibited autointerference. The ligh-density AAV(1.35) and (1.32) particles contained aberrant (deleted and/or snap-back) genomes. We report here experiments which show that the light-density AAV particles were noninfectious but interfered with the replication of AAV(1.41). The interference was intracellular and resulted in inhibition of synthesis of standard (14.5S) AAV genomes. In some cases there was also a concomitant increase in synthesis of aberrant, shorter AAV DNA. The inhibitory activity of the light-density particles was abolished by uv irradiation. These results show that the population of light AAV particles contained DI particles. The observed autointerference of AAV(1.45) or AAV(1.41) virus is postulated to be due to AAV DI particles. Replication of AAV DI genomes appeared to require the presence of replicating, standard AAV genomes. This is interpreted to mean that progeny strand replication of AAV requires an AAV-specified product, presumably the AAV capsid protein. In contrast to standard, infectious AAV, the AAV DI particles alone do not inhibit replication of the helper adenovirus

  12. Adeno-associated virus rep protein synthesis during productive infection

    International Nuclear Information System (INIS)

    Redemann, B.E.; Mendelson, E.; Carter, B.J.

    1989-01-01

    Adeno-associated virus (AAV) Rep proteins mediate viral DNA replication and can regulate expression from AAV genes. The authors studied the kinetics of synthesis of the four Rep proteins, Rep78, Rep68, Rep52, and Rep40, during infection of human 293 or KB cells with AAV and helper adenovirus by in vivo labeling with [ 35 S]methionine, immunoprecipitation, and immunoblotting analyses. Rep78 and Rep52 were readily detected concomitantly with detection of viral monomer duplex DNA replicating about 10 to 12 h after infection, and Rep68 and Rep40 were detected 2 h later. Rep78 and Rep52 were more abundant than Rep68 and Rep40 owing to a higher synthesis rate throughout the infectious cycle. In some experiments, very low levels of Rep78 could be detected as early as 4 h after infection. The synthesis rates of Rep proteins were maximal between 14 and 24 h and then decreased later after infection. Isotopic pulse-chase experiments showed that each of the Rep proteins was synthesized independently and was stable for at least 15 h. A slower-migrating, modified form of Rep78 was identified late after infection. AAV capsid protein synthesis was detected at 10 to 12 h after infection and also exhibited synthesis kinetics similar to those of the Rep proteins. AAV DNA replication showed at least two clearly defined stages. Bulk duplex replicating DNA accumulation began around 10 to 12 h and reached a maximum level at about 20 h when Rep and capsid protein synthesis was maximal. Progeny single-stranded DNA accumulation began about 12 to 13 h, but most of this DNA accumulated after 24 h when Rep and capsid protein synthesis had decreased

  13. Next generation of adeno-associated virus 2 vectors: Point mutations in tyrosines lead to high-efficiency transduction at lower doses

    Science.gov (United States)

    Zhong, Li; Li, Baozheng; Mah, Cathryn S.; Govindasamy, Lakshmanan; Agbandje-McKenna, Mavis; Cooper, Mario; Herzog, Roland W.; Zolotukhin, Irene; Warrington, Kenneth H.; Weigel-Van Aken, Kirsten A.; Hobbs, Jacqueline A.; Zolotukhin, Sergei; Muzyczka, Nicholas; Srivastava, Arun

    2008-01-01

    Recombinant adeno-associated virus 2 (AAV2) vectors are in use in several Phase I/II clinical trials, but relatively large vector doses are needed to achieve therapeutic benefits. Large vector doses also trigger an immune response as a significant fraction of the vectors fails to traffic efficiently to the nucleus and is targeted for degradation by the host cell proteasome machinery. We have reported that epidermal growth factor receptor protein tyrosine kinase (EGFR-PTK) signaling negatively affects transduction by AAV2 vectors by impairing nuclear transport of the vectors. We have also observed that EGFR-PTK can phosphorylate AAV2 capsids at tyrosine residues. Tyrosine-phosphorylated AAV2 vectors enter cells efficiently but fail to transduce effectively, in part because of ubiquitination of AAV capsids followed by proteasome-mediated degradation. We reasoned that mutations of the surface-exposed tyrosine residues might allow the vectors to evade phosphorylation and subsequent ubiquitination and, thus, prevent proteasome-mediated degradation. Here, we document that site-directed mutagenesis of surface-exposed tyrosine residues leads to production of vectors that transduce HeLa cells ≈10-fold more efficiently in vitro and murine hepatocytes nearly 30-fold more efficiently in vivo at a log lower vector dose. Therapeutic levels of human Factor IX (F.IX) are also produced at an ≈10-fold reduced vector dose. The increased transduction efficiency of tyrosine-mutant vectors is due to lack of capsid ubiquitination and improved intracellular trafficking to the nucleus. These studies have led to the development of AAV vectors that are capable of high-efficiency transduction at lower doses, which has important implications in their use in human gene therapy. PMID:18511559

  14. Ultrasound Targeted Microbubble Destruction Stimulates Cellular Endocytosis in Facilitation of Adeno-Associated Virus Delivery

    Directory of Open Access Journals (Sweden)

    Lian-Fang Du

    2013-05-01

    Full Text Available The generally accepted mechanism for ultrasound targeted microbubble destruction (UTMD to enhance drug and gene delivery is through sonoporation. However, passive uptake of adeno-associated virus (AAV into cells following sonoporation does not adequately explain observations of enhanced transduction by UTMD. This study investigated alternative mechanisms of UTMD enhancement in AAV delivery. UTMD significantly enhanced transduction efficiency of AAV in a dose-dependent manner. UTMD stimulated a persistent uptake of AAV into the cytoplasm and nucleus. This phenomenon occurred over several hours, suggesting that some viral particles are endocytosed by cells rather than exclusively passing through pores created by sonoporation. Additionally, UTMD enhanced clathrin expression and accumulation at the plasma membrane suggesting greater clathrin-mediated endocytosis following UTMD. Transmission electron microscopy (TEM revealed that UTMD stimulated formation of clathrin-coated pits (CPs and uncoated pits (nCPs. Furthermore, inhibition of clathrin-mediated endocytosis partially blocked the enhancement of AAV uptake following UTMD. The results of this study implicate endocytosis as a mechanism that contributes to UTMD-enhanced AAV delivery.

  15. Effects of guidelines on adeno-tonsillar surgery on the clinical behaviour of otorhinolaryngologists in Italy

    Directory of Open Access Journals (Sweden)

    Motta Giovanni

    2013-01-01

    Full Text Available Abstract Background Several guidelines on adeno-tonsillar disease have been proposed in recent years and some discrepancies in relation both to clinical manifestations and indications for surgical treatment have emerged. The aim of the study was to verify what influence (adeno-tonsillectomy guidelines have had on the clinical behaviour of ENT specialists in Italy. Our study is a retrospective and multi-centre case series with chart review. Methods The survey involved 14,770 children, aged between the ages of 2 and 11, who had undergone adeno-tonsillar surgery between 2002 and 2008 in fourteen Italian tertiary and secondary referral centres. Anova test was used for the statistical analysis, assuming p Results The frequency of adeno-tonsillar surgeries did not change significantly (p>0.05 during the study period and following the Italian policy document publication. Overall, adeno-tonsillectomy was the most frequent intervention (64.1%, followed by adenoidectomy (31.1% and tonsillectomy (4.8%. The indications for surgery did not change significantly for each of the operations (p>0.05, with the exception of adeno-tonsillectomy in case of feverish episodes due to acute recurrent tonsillitis ≥ 5 without nasal obstruction (decreased p= 0.010 , even when the feverish episodes due to acute recurrent tonsillitis were Conclusions The recommendations first developed in Italy in a 2003 policy document and then resumed in guidelines in 2008, were not implemented by ENT units involved in the survey. The study highlights the fact that the indications for adeno-tonsillar operations are based on the overall clinical presentation (comorbidity rather than on a single symptom. Guidelines are necessary to give coherent recommendations based on both the findings obtained through randomized controlled trials and the data collected from observational studies.

  16. Efficient gene transfer into nondividing cells by adeno-associated virus-based vectors.

    Science.gov (United States)

    Podsakoff, G; Wong, K K; Chatterjee, S

    1994-09-01

    Gene transfer vectors based on adeno-associated virus (AAV) are emerging as highly promising for use in human gene therapy by virtue of their characteristics of wide host range, high transduction efficiencies, and lack of cytopathogenicity. To better define the biology of AAV-mediated gene transfer, we tested the ability of an AAV vector to efficiently introduce transgenes into nonproliferating cell populations. Cells were induced into a nonproliferative state by treatment with the DNA synthesis inhibitors fluorodeoxyuridine and aphidicolin or by contact inhibition induced by confluence and serum starvation. Cells in logarithmic growth or DNA synthesis arrest were transduced with vCWR:beta gal, an AAV-based vector encoding beta-galactosidase under Rous sarcoma virus long terminal repeat promoter control. Under each condition tested, vCWR:beta Gal expression in nondividing cells was at least equivalent to that in actively proliferating cells, suggesting that mechanisms for virus attachment, nuclear transport, virion uncoating, and perhaps some limited second-strand synthesis of AAV vectors were present in nondividing cells. Southern hybridization analysis of vector sequences from cells transduced while in DNA synthetic arrest and expanded after release of the block confirmed ultimate integration of the vector genome into cellular chromosomal DNA. These findings may provide the basis for the use of AAV-based vectors for gene transfer into quiescent cell populations such as totipotent hematopoietic stem cells.

  17. Genome-wide recombination dynamics are associated with phenotypic variation in maize.

    Science.gov (United States)

    Pan, Qingchun; Li, Lin; Yang, Xiaohong; Tong, Hao; Xu, Shutu; Li, Zhigang; Li, Weiya; Muehlbauer, Gary J; Li, Jiansheng; Yan, Jianbing

    2016-05-01

    Meiotic recombination is a major driver of genetic diversity, species evolution, and agricultural improvement. Thus, an understanding of the genetic recombination landscape across the maize (Zea mays) genome will provide insight and tools for further study of maize evolution and improvement. Here, we used c. 50 000 single nucleotide polymorphisms to precisely map recombination events in 12 artificial maize segregating populations. We observed substantial variation in the recombination frequency and distribution along the ten maize chromosomes among the 12 populations and identified 143 recombination hot regions. Recombination breakpoints were partitioned into intragenic and intergenic events. Interestingly, an increase in the number of genes containing recombination events was accompanied by a decrease in the number of recombination events per gene. This kept the overall number of intragenic recombination events nearly invariable in a given population, suggesting that the recombination variation observed among populations was largely attributed to intergenic recombination. However, significant associations between intragenic recombination events and variation in gene expression and agronomic traits were observed, suggesting potential roles for intragenic recombination in plant phenotypic diversity. Our results provide a comprehensive view of the maize recombination landscape, and show an association between recombination, gene expression and phenotypic variation, which may enhance crop genetic improvement. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  18. A new analgesia regimen after (adeno) tonsillectomy in children: a pilot study.

    Science.gov (United States)

    Syed, M I; Magos, T A; Singh, J; Montague, M L

    2016-12-01

    The objective was to ascertain the efficacy of a new analgesic regimen introduced in children undergoing (adeno)tonsillectomy in view of the ban on codeine use in children codeine, albeit one should bear in mind that parental concerns and adverse effects of the drug were seen in a minority of patients (n = 11) and anaesthetists were reluctant to prescribe the drug in cases of severe OSA or associated central apnoeas (n = 7). © 2015 John Wiley & Sons Ltd.

  19. Adeno-Associated Virus Vectors and Stem Cells: Friends or Foes?

    Science.gov (United States)

    Brown, Nolan; Song, Liujiang; Kollu, Nageswara R; Hirsch, Matthew L

    2017-06-01

    The infusion of healthy stem cells into a patient-termed "stem-cell therapy"-has shown great promise for the treatment of genetic and non-genetic diseases, including mucopolysaccharidosis type 1, Parkinson's disease, multiple sclerosis, numerous immunodeficiency disorders, and aplastic anemia. Stem cells for cell therapy can be collected from the patient (autologous) or collected from another "healthy" individual (allogeneic). The use of allogenic stem cells is accompanied with the potentially fatal risk that the transplanted donor T cells will reject the patient's cells-a process termed "graft-versus-host disease." Therefore, the use of autologous stem cells is preferred, at least from the immunological perspective. However, an obvious drawback is that inherently as "self," they contain the disease mutation. As such, autologous cells for use in cell therapies often require genetic "correction" (i.e., gene addition or editing) prior to cell infusion and therefore the requirement for some form of nucleic acid delivery, which sets the stage for the AAV controversy discussed herein. Despite being the most clinically applied gene delivery context to date, unlike other more concerning integrating and non-integrating vectors such as retroviruses and adenovirus, those based on adeno-associated virus (AAV) have not been employed in the clinic. Furthermore, published data regarding AAV vector transduction of stem cells are inconsistent in regards to vector transduction efficiency, while the pendulum swings far in the other direction with demonstrations of AAV vector-induced toxicity in undifferentiated cells. The variation present in the literature examining the transduction efficiency of AAV vectors in stem cells may be due to numerous factors, including inconsistencies in stem-cell collection, cell culture, vector preparation, and/or transduction conditions. This review summarizes the controversy surrounding AAV vector transduction of stem cells, hopefully setting the

  20. Nonclinical comparability studies of recombinant human arylsulfatase A addressing manufacturing process changes.

    Science.gov (United States)

    Wright, Teresa; Li, Aiqun; Lotterhand, Jason; Graham, Anne-Renee; Huang, Yan; Avila, Nancy; Pan, Jing

    2018-01-01

    Recombinant human arylsulfatase A (rhASA) is in clinical development for the treatment of patients with metachromatic leukodystrophy (MLD). Manufacturing process changes were introduced to improve robustness and efficiency, resulting in higher levels of mannose-6-phosphate and sialic acid in post-change (process B) compared with pre-change (process A) rhASA. A nonclinical comparability program was conducted to compare process A and process B rhASA. All doses were administered intrathecally. Pharmacodynamic comparability was evaluated in immunotolerant MLD mice, using immunohistochemical staining of lysosomal-associated membrane protein-1 (LAMP-1). Pharmacokinetic comparability was assessed in juvenile cynomolgus monkeys dosed once with 6.0 mg (equivalent to 100 mg/kg of brain weight) process A or process B rhASA. Biodistribution was compared by quantitative whole-body autoradiography in rats. Potential toxicity of process B rhASA was evaluated by repeated rhASA administration at doses of 18.6 mg in juvenile cynomolgus monkeys. The specific activities for process A and process B rhASA were 89 U/mg and 106 U/mg, respectively, which were both well within the target range for the assay. Pharmacodynamic assessments showed no statistically significant differences in LAMP-1 immunohistochemical staining in the spinal cord and in most of the brain areas assessed between process A and B rhASA-dosed mice. LAMP-1 staining was reduced with both process A and B rhASA compared with vehicle, supporting its activity. Concentration-time curves in cerebrospinal fluid and serum of cynomolgus monkeys were similar with process A and B rhASA. Process A and B rhASA were similar in terms of their pharmacokinetic parameters and biodistribution data. No process B rhASA-related toxicity was detected. In conclusion, manufacturing process changes did not affect the pharmacodynamic, pharmacokinetic or safety profiles of process B rhASA relative to process A rhASA.

  1. Identification of rep-associated factors in herpes simplex virus type 1-induced adeno-associated virus type 2 replication compartments.

    Science.gov (United States)

    Nicolas, Armel; Alazard-Dany, Nathalie; Biollay, Coline; Arata, Loredana; Jolinon, Nelly; Kuhn, Lauriane; Ferro, Myriam; Weller, Sandra K; Epstein, Alberto L; Salvetti, Anna; Greco, Anna

    2010-09-01

    Adeno-associated virus (AAV) is a human parvovirus that replicates only in cells coinfected with a helper virus, such as adenovirus or herpes simplex virus type 1 (HSV-1). We previously showed that nine HSV-1 factors are able to support AAV rep gene expression and genome replication. To elucidate the strategy of AAV replication in the presence of HSV-1, we undertook a proteomic analysis of cellular and HSV-1 factors associated with Rep proteins and thus potentially recruited within AAV replication compartments (AAV RCs). This study resulted in the identification of approximately 60 cellular proteins, among which factors involved in DNA and RNA metabolism represented the largest functional categories. Validation analyses indicated that the cellular DNA replication enzymes RPA, RFC, and PCNA were recruited within HSV-1-induced AAV RCs. Polymerase delta was not identified but subsequently was shown to colocalize with Rep within AAV RCs even in the presence of the HSV-1 polymerase complex. In addition, we found that AAV replication is associated with the recruitment of components of the Mre11/Rad50/Nbs1 complex, Ku70 and -86, and the mismatch repair proteins MSH2, -3, and -6. Finally, several HSV-1 factors were also found to be associated with Rep, including UL12. We demonstrated for the first time that this protein plays a role during AAV replication by enhancing the resolution of AAV replicative forms and AAV particle production. Altogether, these analyses provide the basis to understand how AAV adapts its replication strategy to the nuclear environment induced by the helper virus.

  2. Homologous Recombination between Genetically Divergent Campylobacter fetus Lineages Supports Host-Associated Speciation

    Science.gov (United States)

    Duim, Birgitta; van der Graaf-van Bloois, Linda; Wagenaar, Jaap A; Zomer, Aldert L

    2018-01-01

    Abstract Homologous recombination is a major driver of bacterial speciation. Genetic divergence and host association are important factors influencing homologous recombination. Here, we study these factors for Campylobacter fetus, which shows a distinct intraspecific host dichotomy. Campylobacter fetus subspecies fetus (Cff) and venerealis are associated with mammals, whereas C. fetus subsp. testudinum (Cft) is associated with reptiles. Recombination between these genetically divergent C. fetus lineages is extremely rare. Previously it was impossible to show whether this barrier to recombination was determined by the differential host preferences, by the genetic divergence between both lineages or by other factors influencing recombination, such as restriction-modification, CRISPR/Cas, and transformation systems. Fortuitously, a distinct C. fetus lineage (ST69) was found, which was highly related to mammal-associated C. fetus, yet isolated from a chelonian. The whole genome sequences of two C. fetus ST69 isolates were compared with those of mammal- and reptile-associated C. fetus strains for phylogenetic and recombination analysis. In total, 5.1–5.5% of the core genome of both ST69 isolates showed signs of recombination. Of the predicted recombination regions, 80.4% were most closely related to Cft, 14.3% to Cff, and 5.6% to C. iguaniorum. Recombination from C. fetus ST69 to Cft was also detected, but to a lesser extent and only in chelonian-associated Cft strains. This study shows that despite substantial genetic divergence no absolute barrier to homologous recombination exists between two distinct C. fetus lineages when occurring in the same host type, which provides valuable insights in bacterial speciation and evolution. PMID:29608720

  3. Bioreactor production of recombinant herpes simplex virus vectors.

    Science.gov (United States)

    Knop, David R; Harrell, Heather

    2007-01-01

    Serotypical application of herpes simplex virus (HSV) vectors to gene therapy (type 1) and prophylactic vaccines (types 1 and 2) has garnered substantial clinical interest recently. HSV vectors and amplicons have also been employed as helper virus constructs for manufacture of the dependovirus adeno-associated virus (AAV). Large quantities of infectious HSV stocks are requisite for these therapeutic applications, requiring a scalable vector manufacturing and processing platform comprised of unit operations which accommodate the fragility of HSV. In this study, production of a replication deficient rHSV-1 vector bearing the rep and cap genes of AAV-2 (denoted rHSV-rep2/cap2) was investigated. Adaptation of rHSV production from T225 flasks to a packed bed, fed-batch bioreactor permitted an 1100-fold increment in total vector production without a decrease in specific vector yield (pfu/cell). The fed-batch bioreactor system afforded a rHSV-rep2/cap2 vector recovery of 2.8 x 10(12) pfu. The recovered vector was concentrated by tangential flow filtration (TFF), permitting vector stocks to be formulated at greater than 1.5 x 10(9) pfu/mL.

  4. Manufacturing process used to produce long-acting recombinant factor VIII Fc fusion protein.

    Science.gov (United States)

    McCue, Justin; Kshirsagar, Rashmi; Selvitelli, Keith; Lu, Qi; Zhang, Mingxuan; Mei, Baisong; Peters, Robert; Pierce, Glenn F; Dumont, Jennifer; Raso, Stephen; Reichert, Heidi

    2015-07-01

    Recombinant factor VIII Fc fusion protein (rFVIIIFc) is a long-acting coagulation factor approved for the treatment of hemophilia A. Here, the rFVIIIFc manufacturing process and results of studies evaluating product quality and the capacity of the process to remove potential impurities and viruses are described. This manufacturing process utilized readily transferable and scalable unit operations and employed multi-step purification and viral clearance processing, including a novel affinity chromatography adsorbent and a 15 nm pore size virus removal nanofilter. A cell line derived from human embryonic kidney (HEK) 293H cells was used to produce rFVIIIFc. Validation studies evaluated identity, purity, activity, and safety. Process-related impurity clearance and viral clearance spiking studies demonstrate robust and reproducible removal of impurities and viruses, with total viral clearance >8-15 log10 for four model viruses (xenotropic murine leukemia virus, mice minute virus, reovirus type 3, and suid herpes virus 1). Terminal galactose-α-1,3-galactose and N-glycolylneuraminic acid, two non-human glycans, were undetectable in rFVIIIFc. Biochemical and in vitro biological analyses confirmed the purity, activity, and consistency of rFVIIIFc. In conclusion, this manufacturing process produces a highly pure product free of viruses, impurities, and non-human glycan structures, with scale capabilities to ensure a consistent and adequate supply of rFVIIIFc. Copyright © 2015 Biogen. Published by Elsevier Ltd.. All rights reserved.

  5. Development toward rapid and efficient screening for high performance hydrolysate lots in a recombinant monoclonal antibody manufacturing process.

    Science.gov (United States)

    Luo, Ying; Pierce, Karisa M

    2012-07-01

    Plant-derived hydrolysates are widely used in mammalian cell culture media to increase yields of recombinant proteins and monoclonal antibodies (mAbs). However, these chemically varied and undefined raw materials can have negative impact on yield and/or product quality in large-scale cell culture processes. Traditional methods that rely on fractionation of hydrolysates yielded little success in improving hydrolysate quality. We took a holistic approach to develop an efficient and reliable method to screen intact soy hydrolysate lots for commercial recombinant mAb manufacturing. Combined high-resolution (1) H nuclear magnetic resonance (NMR) spectroscopy and partial least squares (PLS) analysis led to a prediction model between product titer and NMR fingerprinting of soy hydrolysate with cross-validated correlation coefficient R(2) of 0.87 and root-mean-squared-error of cross-validation RMSECV% of 11.2%. This approach screens for high performance hydrolysate lots, therefore ensuring process consistency and product quality in the mAb manufacturing process. Furthermore, PLS analysis was successful in discerning multiple markers (DL-lactate, soy saccharides, citrate and succinate) among hydrolysate components that positively and negatively correlate with titer. Interestingly, these markers correlate to the metabolic characteristics of some strains of taxonomically diverse lactic acid bacteria (LAB). Thus our findings indicate that LAB strains may exist during hydrolysate manufacturing steps and their biochemical activities may attribute to the titer enhancement effect of soy hydrolysates. Copyright © 2012 American Institute of Chemical Engineers (AIChE).

  6. Gene Delivery of Activated Factor VII Using Alternative Adeno-Associated Virus Serotype Improves Hemostasis in Hemophiliac Mice with FVIII Inhibitors and Adeno-Associated Virus Neutralizing Antibodies.

    Science.gov (United States)

    Sun, Junjiang; Hua, Baolai; Chen, Xiaojing; Samulski, Richard J; Li, Chengwen

    2017-08-01

    While therapeutic expression of coagulation factors from adeno-associated virus (AAV) vectors has been successfully achieved in patients with hemophilia, neutralizing antibodies to the vector and inhibitory antibodies to the transgene severely limit efficacy. Indeed, approximately 40% of mice transduced with human factor VIII using the AAV8 serotype developed inhibitory antibodies to factor VIII (FVIII inhibitor), as well as extremely high titers (≥1:500) of neutralizing antibodies to AAV8. To correct hemophilia in these mice, AAV9, a serotype with low in vitro cross-reactivity (≤1:5) to anti-AAV8, was used to deliver mouse-activated factor VII (mFVIIa). It was found that within 6 weeks of systemic administration of 2 × 10 13 particles/kg of AAV9/mFVIIa, hemophiliac mice with FVIII inhibitors and neutralizing antibodies (NAb) to AAV8 achieved hemostasis comparable to that in wild-type mice, as measured by rotational thromboelastometry. A level of 737 ng/mL mFVIIa was achieved after AAV9/mFVIIa adminstration compared to around 150 ng/mL without vector treatment, and concomitantly prothrombin time was shortened. Tissues collected after intra-articular hemorrhage from FVIII-deficient mice and mice with FVIII inhibitors were scored 4.7 and 5.5, respectively, on a scale of 0-10, indicating significant pathological damage. However, transduction with AAV9/mFVIIa decreased pathology scores to 3.6 and eliminated hemosiderin iron deposition in the synovium in most mice. Collectively, these results suggest that application of alternative serotypes of AAV vector to deliver bypassing reagents has the potential to correct hemophilia and prevent hemoarthrosis, even in the presence of FVIII inhibitor and neutralizing antibodies to AAV.

  7. Effects of immunosuppression on circulating adeno-associated virus capsid-specific T cells in humans.

    Science.gov (United States)

    Parzych, Elizabeth M; Li, Hua; Yin, Xiangfan; Liu, Qin; Wu, Te-Lang; Podsakoff, Gregory M; High, Katherine A; Levine, Matthew H; Ertl, Hildegund C J

    2013-04-01

    In humans adeno-associated virus (AAV)-mediated gene transfer is followed by expansion of AAV capsid-specific T cells, evidence of cell damage, and loss of transgene product expression, implicating immunological rejection of vector-transduced cells, which may be prevented by immunosuppressive drugs. We undertook this study to assess the effect of immunosuppression (IS) used for organ transplantation on immune responses to AAV capsid antigens. Recipients of liver or kidney transplants were tested before and 4 weeks after induction of IS in comparison with matched samples from healthy human adults and an additional cohort with comorbid conditions similar to those of the transplant patients. Our data show that transplant patients and comorbid control subjects have markedly higher frequencies of circulating AAV capsid-specific T cells compared with healthy adults. On average, IS resulted in a reduction of AAV-specific CD4⁺ T cells, whereas numbers of circulating CD8⁺ effector and central memory T cells tended to increase. Independent of the type of transplant or the IS regimens, the trend of AAV capsid-specific T cell responses after drug treatment varied; in some patients responses were unaffected whereas others showed decreases or even pronounced increases, casting doubt on the usefulness of prophylactic IS for AAV vector recipients.

  8. Structural Studies of Adeno-Associated Virus Serotype 8 Capsid Transitions Associated with Endosomal Trafficking

    Energy Technology Data Exchange (ETDEWEB)

    Nam, Hyun-Joo; Gurda, Brittney L.; McKenna, Robert; Potter, Mark; Byrne, Barry; Salganik, Maxim; Muzyczka, Nicholas; Agbandje-McKenna, Mavis (Florida)

    2012-09-17

    The single-stranded DNA (ssDNA) parvoviruses enter host cells through receptor-mediated endocytosis, and infection depends on processing in the early to late endosome as well as in the lysosome prior to nuclear entry for replication. However, the mechanisms of capsid endosomal processing, including the effects of low pH, are poorly understood. To gain insight into the structural transitions required for this essential step in infection, the crystal structures of empty and green fluorescent protein (GFP) gene-packaged adeno-associated virus serotype 8 (AAV8) have been determined at pH values of 6.0, 5.5, and 4.0 and then at pH 7.5 after incubation at pH 4.0, mimicking the conditions encountered during endocytic trafficking. While the capsid viral protein (VP) topologies of all the structures were similar, significant amino acid side chain conformational rearrangements were observed on (i) the interior surface of the capsid under the icosahedral 3-fold axis near ordered nucleic acid density that was lost concomitant with the conformational change as pH was reduced and (ii) the exterior capsid surface close to the icosahedral 2-fold depression. The 3-fold change is consistent with DNA release from an ordering interaction on the inside surface of the capsid at low pH values and suggests transitions that likely trigger the capsid for genome uncoating. The surface change results in disruption of VP-VP interface interactions and a decrease in buried surface area between VP monomers. This disruption points to capsid destabilization which may (i) release VP1 amino acids for its phospholipase A2 function for endosomal escape and nuclear localization signals for nuclear targeting and (ii) trigger genome uncoating.

  9. Manufacturing of recombinant therapeutic proteins in microbial systems.

    Science.gov (United States)

    Graumann, Klaus; Premstaller, Andreas

    2006-02-01

    Recombinant therapeutic proteins have gained enormous importance for clinical applications. The first recombinant products have been produced in E. coli more than 20 years ago. Although with the advent of antibody-based therapeutics mammalian expression systems have experienced a major boost, microbial expression systems continue to be widely used in industry. Their intrinsic advantages, such as rapid growth, high yields and ease of manipulation, make them the premier choice for expression of non-glycosylated peptides and proteins. Innovative product classes such as antibody fragments or alternative binding molecules will further expand the use of microbial systems. Even more, novel, engineered production hosts and integrated technology platforms hold enormous potential for future applications. This review summarizes current applications and trends for development, production and analytical characterization of recombinant therapeutic proteins in microbial systems.

  10. Adeno-Associated Virus Gene Therapy in a Sheep Model of Tay-Sachs Disease.

    Science.gov (United States)

    Gray-Edwards, Heather L; Randle, Ashley N; Maitland, Stacy A; Benatti, Hector R; Hubbard, Spencer M; Canning, Peter F; Vogel, Matthew B; Brunson, Brandon L; Hwang, Misako; Ellis, Lauren E; Bradbury, Allison M; Gentry, Atoska S; Taylor, Amanda R; Wooldridge, Anne A; Wilhite, Dewey R; Winter, Randolph L; Whitlock, Brian K; Johnson, Jacob A; Holland, Merilee; Salibi, Nouha; Beyers, Ronald J; Sartin, James L; Denney, Thomas S; Cox, Nancy R; Sena-Esteves, Miguel; Martin, Douglas R

    2018-03-01

    Tay-Sachs disease (TSD) is a fatal neurodegenerative disorder caused by a deficiency of the enzyme hexosaminidase A (HexA). TSD also occurs in sheep, the only experimental model of TSD that has clinical signs of disease. The natural history of sheep TSD was characterized using serial neurological evaluations, 7 Tesla magnetic resonance imaging, echocardiograms, electrodiagnostics, and cerebrospinal fluid biomarkers. Intracranial gene therapy was also tested using AAVrh8 monocistronic vectors encoding the α-subunit of Hex (TSD α) or a mixture of two vectors encoding both the α and β subunits separately (TSD α + β) injected at high (1.3 × 10 13 vector genomes) or low (4.2 × 10 12 vector genomes) dose. Delay of symptom onset and/or reduction of acquired symptoms were noted in all adeno-associated virus-treated sheep. Postmortem evaluation showed superior HexA and vector genome distribution in the brain of TSD α + β sheep compared to TSD α sheep, but spinal cord distribution was low in all groups. Isozyme analysis showed superior HexA formation after treatment with both vectors (TSD α + β), and ganglioside clearance was most widespread in the TSD α + β high-dose sheep. Microglial activation and proliferation in TSD sheep-most prominent in the cerebrum-were attenuated after gene therapy. This report demonstrates therapeutic efficacy for TSD in the sheep brain, which is on the same order of magnitude as a child's brain.

  11. Sendai virosomal infusion of an adeno-associated virus-derived construct containing neuropeptide Y into primary rat brain cultures.

    Science.gov (United States)

    Wu, P; de Fiebre, C M; Millard, W J; Elmstrom, K; Gao, Y; Meyer, E M

    1995-05-05

    A novel neuronal gene-delivery system was investigated in primary neuron-enriched cultures with respect to driving the expression of neuropeptide Y (NPY). This delivery system consists of an adeno-associated virus-derived (AAV) plasmid, pJDT95npy, encapsulated in reconstituted Sendai virosomes. pJDT95npy contains full length rat NPY cDNA inserted downstream from the P40 promoter in a cap-gene deleted AAV-derived construct. The rep-sequences under control of the P5 and P19 promoters are intact. Virosomally encapsulated pJDT95npy drove the expression of NPY mRNAs, predominantly by P40. Total cellular NPY immunoreactivity and release in the presence of depolarization increased following pJDT95npy-transfection. Neither empty virosomes nor virosomes containing pJDT95 affected NPY mRNA expression or immunoreactivity. This study demonstrates that an AAV-derived plasmid can drive exogenous gene expression in intact neurons after infusion by Sendai virosomes.

  12. Consistent manufacturing and quality control of a highly complex recombinant polyclonal antibody product for human therapeutic use.

    Science.gov (United States)

    Frandsen, Torben P; Naested, Henrik; Rasmussen, Søren K; Hauptig, Peter; Wiberg, Finn C; Rasmussen, Lone Kjaer; Jensen, Anne Marie Valentin; Persson, Pia; Wikén, Margareta; Engström, Anders; Jiang, Yun; Thorpe, Susan J; Förberg, Cecilia; Tolstrup, Anne B

    2011-09-01

    The beneficial effect of antibody therapy in human disease has become well established mainly for the treatment of cancer and immunological disorders. The inherent monospecificity of mAbs present limitations to mAb therapy which have become apparent notably in addressing complex entities like infectious agents or heterogenic endogenous targets. For such indications mixtures of antibodies comprising a combination of specificities would convey more potent biological effect which could translate into therapeutic efficacy. Recombinant polyclonal antibodies (rpAb) consisting of a defined number of well-characterized mAbs constitute a new class of target specific antibody therapy. We have developed a cost-efficient cell banking and single-batch manufacturing concept for the production of such products and demonstrate that a complex pAb composition, rozrolimupab, comprising 25 individual antibodies can be manufactured in a highly consistent manner in a scaled-up manufacturing process. We present a strategy for the release and characterization of antibody mixtures which constitute a complete series of chemistry, manufacturing, and control (CMC) analytical methods to address identity, purity, quantity, potency, and general characteristics. Finally we document selected quality attributes of rozrolimupab based on a battery of assays at the genetic-, protein-, and functional level and demonstrate that the manufactured rozrolimupab batches are highly pure and very uniform in their composition. Copyright © 2011 Wiley Periodicals, Inc.

  13. Efficient Capsid Antigen Presentation From Adeno-Associated Virus Empty Virions In Vivo.

    Science.gov (United States)

    Pei, Xiaolei; Earley, Lauriel Freya; He, Yi; Chen, Xiaojing; Hall, Nikita Elexa; Samulski, Richard Jude; Li, Chengwen

    2018-01-01

    Adeno-associated virus (AAV) vectors have been successfully applied in clinical trials for hemophilic patients. Although promising, the clinical results suggest that the capsid-specific CD8+T cell response has a negative effect on therapeutic success. In an in vitro analysis using an engineered AAV virus carrying immune-dominant SIINFEKL peptide in the capsid backbone, we have previously demonstrated that capsid antigen presentation from full (genome containing) AAV capsids requires endosome escape and is proteasome dependent and that no capsid antigen presentation is induced from empty virions. In the present study, we examined capsid antigen presentation from administration of empty virions in animal models. In wild-type mice, similar to AAV full particles, capsid antigen presentation from AAV empty virion infection was dose dependent, and the kinetics studies showed that antigen presentation was detected from 2 to 40 days after AAV empty virion administration. In the transporter associated with antigen processing 1 deficient (TAP-/-) mice, capsid antigen presentation was inhibited from both AAV full and empty virions, but higher inhibition was achieved from AAV full particle administration than that from empty virions. This indicates that the pathway of capsid antigen presentation from AAV transduction is dependent on proteasome-mediated degradation of AAV capsids (mainly for full particles) and that the endosomal pathway may also play a role in antigen presentation from empty particles but not full virions. The capsid antigen presentation efficiency from AAV preparations was positively correlated with the amount of empty virions contaminated with full particles. Collectively, the results indicate that contamination of AAV empty virions induces efficient antigen presentation in vivo and the mechanism of capsid antigen presentation from empty virions involves both endosomal and proteasomal pathways. The elucidation of capsid antigen presentation from AAV empty

  14. Adeno-associated virus-mediated rescue of the cognitive defects in a mouse model for Angelman syndrome.

    Directory of Open Access Journals (Sweden)

    Jennifer L Daily

    Full Text Available Angelman syndrome (AS, a genetic disorder occurring in approximately one in every 15,000 births, is characterized by severe mental retardation, seizures, difficulty speaking and ataxia. The gene responsible for AS was discovered to be UBE3A and encodes for E6-AP, an ubiquitin ligase. A unique feature of this gene is that it undergoes maternal imprinting in a neuron-specific manner. In the majority of AS cases, there is a mutation or deletion in the maternally inherited UBE3A gene, although other cases are the result of uniparental disomy or mismethylation of the maternal gene. While most human disorders characterized by severe mental retardation involve abnormalities in brain structure, no gross anatomical changes are associated with AS. However, we have determined that abnormal calcium/calmodulin-dependent protein kinase II (CaMKII regulation is seen in the maternal UBE3A deletion AS mouse model and is responsible for the major phenotypes. Specifically, there is an increased αCaMKII phosphorylation at the autophosphorylation sites Thr(286 and Thr(305/306, resulting in an overall decrease in CaMKII activity. CaMKII is not produced until after birth, indicating that the deficits associated with AS are not the result of developmental abnormalities. The present studies are focused on exploring the potential to rescue the learning and memory deficits in the adult AS mouse model through the use of an adeno-associated virus (AAV vector to increase neuronal UBE3A expression. These studies show that increasing the levels of E6-AP in the brain using an exogenous vector can improve the cognitive deficits associated with AS. Specifically, the associative learning deficit was ameliorated in the treated AS mice compared to the control AS mice, indicating that therapeutic intervention may be possible in older AS patients.

  15. Protection from the toxicity of diisopropylfluorophosphate by adeno-associated virus expressing acetylcholinesterase

    International Nuclear Information System (INIS)

    Li Bin; Duysen, Ellen G.; Poluektova, Larisa Y.; Murrin, L. Charles; Lockridge, Oksana

    2006-01-01

    Organophosphorus esters (OP) are highly toxic chemicals used as pesticides and nerve agents. Their acute toxicity is attributed to inhibition of acetylcholinesterase (AChE, EC 3.1.1.7) in nerve synapses. Our goal was to find a new therapeutic for protection against OP toxicity. We used a gene therapy vector, adeno-associated virus serotype 2 (AAV-2), to deliver murine AChE to AChE-/- mice that have no endogenous AChE activity. The vector encoded the most abundant form of AChE: exons 2, 3, 4, and 6. Two-day old animals, with an immature immune system, were injected. AChE delivered intravenously was expressed up to 5 months in plasma, liver, heart, and lung, at 5-15% of the level in untreated wild-type mice. A few mice formed antibodies, but antibodies did not block AChE activity. The plasma AChE was a mixture of dimers and tetramers. AChE delivered intramuscularly had 40-fold higher activity levels than in wild-type muscle. None of the AChE was collagen-tailed. No retrograde transport through the motor neurons to the central nervous system was detected. AChE delivered intrastriatally assembled into tetramers. In brain, the AAV-2 vector transduced neurons, but not astrocytes and microglia. Vector-treated AChE-/- mice lived longer than saline-treated controls. AChE-/- mice were protected from diisopropylfluorophosphate-induced respiratory failure when the vector was delivered intravenously, but not intrastriatally. Since vector-treated animals had no AChE activity in diaphragm muscle, protection from respiratory failure came from AChE in other tissues. We conclude that AChE scavenged OP and in this way protected the activity of butyrylcholinesterase (BChE, EC 3.1.1.8) in motor endplates

  16. Production of recombinant antigens and antibodies in Nicotiana benthamiana using 'magnifection' technology: GMP-compliant facilities for small- and large-scale manufacturing.

    Science.gov (United States)

    Klimyuk, Victor; Pogue, Gregory; Herz, Stefan; Butler, John; Haydon, Hugh

    2014-01-01

    This review describes the adaptation of the plant virus-based transient expression system, magnICON(®) for the at-scale manufacturing of pharmaceutical proteins. The system utilizes so-called "deconstructed" viral vectors that rely on Agrobacterium-mediated systemic delivery into the plant cells for recombinant protein production. The system is also suitable for production of hetero-oligomeric proteins like immunoglobulins. By taking advantage of well established R&D tools for optimizing the expression of protein of interest using this system, product concepts can reach the manufacturing stage in highly competitive time periods. At the manufacturing stage, the system offers many remarkable features including rapid production cycles, high product yield, virtually unlimited scale-up potential, and flexibility for different manufacturing schemes. The magnICON system has been successfully adaptated to very different logistical manufacturing formats: (1) speedy production of multiple small batches of individualized pharmaceuticals proteins (e.g. antigens comprising individualized vaccines to treat NonHodgkin's Lymphoma patients) and (2) large-scale production of other pharmaceutical proteins such as therapeutic antibodies. General descriptions of the prototype GMP-compliant manufacturing processes and facilities for the product formats that are in preclinical and clinical testing are provided.

  17. Novel adeno-associated viral vector delivering the utrophin gene regulator jazz counteracts dystrophic pathology in mdx mice.

    Science.gov (United States)

    Strimpakos, Georgios; Corbi, Nicoletta; Pisani, Cinzia; Di Certo, Maria Grazia; Onori, Annalisa; Luvisetto, Siro; Severini, Cinzia; Gabanella, Francesca; Monaco, Lucia; Mattei, Elisabetta; Passananti, Claudio

    2014-09-01

    Over-expression of the dystrophin-related gene utrophin represents a promising therapeutic strategy for Duchenne muscular dystrophy (DMD). The strategy is based on the ability of utrophin to functionally replace defective dystrophin. We developed the artificial zinc finger transcription factor "Jazz" that up-regulates both the human and mouse utrophin promoter. We observed a significant recovery of muscle strength in dystrophic Jazz-transgenic mdx mice. Here we demonstrate the efficacy of an experimental gene therapy based on the systemic delivery of Jazz gene in mdx mice by adeno-associated virus (AAV). AAV serotype 8 was chosen on the basis of its high affinity for skeletal muscle. Muscle-specific expression of the therapeutic Jazz gene was enhanced by adding the muscle α-actin promoter to the AAV vector (mAAV). Injection of mAAV8-Jazz viral preparations into mdx mice resulted in muscle-specific Jazz expression coupled with up-regulation of the utrophin gene. We show a significant recovery from the dystrophic phenotype in mAAV8-Jazz-treated mdx mice. Histological and physiological analysis revealed a reduction of fiber necrosis and inflammatory cell infiltration associated with functional recovery in muscle contractile force. The combination of ZF-ATF technology with the AAV delivery can open a new avenue to obtain a therapeutic strategy for treatment of DMD. © 2014 Wiley Periodicals, Inc.

  18. Validation of the manufacturing process used to produce long-acting recombinant factor IX Fc fusion protein.

    Science.gov (United States)

    McCue, J; Osborne, D; Dumont, J; Peters, R; Mei, B; Pierce, G F; Kobayashi, K; Euwart, D

    2014-07-01

    Recombinant factor IX Fc (rFIXFc) fusion protein is the first of a new class of bioengineered long-acting factors approved for the treatment and prevention of bleeding episodes in haemophilia B. The aim of this work was to describe the manufacturing process for rFIXFc, to assess product quality and to evaluate the capacity of the process to remove impurities and viruses. This manufacturing process utilized a transferable and scalable platform approach established for therapeutic antibody manufacturing and adapted for production of the rFIXFc molecule. rFIXFc was produced using a process free of human- and animal-derived raw materials and a host cell line derived from human embryonic kidney (HEK) 293H cells. The process employed multi-step purification and viral clearance processing, including use of a protein A affinity capture chromatography step, which binds to the Fc portion of the rFIXFc molecule with high affinity and specificity, and a 15 nm pore size virus removal nanofilter. Process validation studies were performed to evaluate identity, purity, activity and safety. The manufacturing process produced rFIXFc with consistent product quality and high purity. Impurity clearance validation studies demonstrated robust and reproducible removal of process-related impurities and adventitious viruses. The rFIXFc manufacturing process produces a highly pure product, free of non-human glycan structures. Validation studies demonstrate that this product is produced with consistent quality and purity. In addition, the scalability and transferability of this process are key attributes to ensure consistent and continuous supply of rFIXFc. © 2014 The Authors. Haemophilia Published by John Wiley & Sons Ltd.

  19. Adeno-Associated Virus Serotype 9–Driven Expression of BAG3 Improves Left Ventricular Function in Murine Hearts With Left Ventricular Dysfunction Secondary to a Myocardial Infarction

    Directory of Open Access Journals (Sweden)

    Tijana Knezevic, PhD

    2016-12-01

    Full Text Available Mutations in Bcl-2–associated athanogene 3 (BAG3 were associated with skeletal muscle dysfunction and dilated cardiomyopathy. Retro-orbital injection of an adeno-associated virus serotype 9 expressing BAG3 (rAAV9-BAG3 significantly (p < 0.0001 improved left ventricular ejection fraction, fractional shortening, and stroke volume 9 days post-injection in mice with cardiac dysfunction secondary to a myocardial infarction. Furthermore, myocytes isolated from mice 3 weeks after injection showed improved cell shortening, enhanced systolic [Ca2+]i and increased [Ca2+]i transient amplitudes, and increased maximal L-type Ca2+ current amplitude. These results suggest that BAG3 gene therapy may provide a novel therapeutic option for the treatment of heart failure.

  20. Intrathecal long-term gene expression by self-complementary adeno-associated virus type 1 suitable for chronic pain studies in rats

    Directory of Open Access Journals (Sweden)

    Janssen William GM

    2006-01-01

    Full Text Available Abstract Background Intrathecal (IT gene transfer is an attractive approach for targeting spinal mechanisms of nociception but the duration of gene expression achieved by reported methods is short (up to two weeks impairing their utility in the chronic pain setting. The overall goal of this study was to develop IT gene transfer yielding true long-term transgene expression defined as ≥ 3 mo following a single vector administration. We defined "IT" administration as atraumatic injection into the lumbar cerebrospinal fluid (CSF modeling a lumbar puncture. Our studies focused on recombinant adeno-associated virus (rAAV, one of the most promising vector types for clinical use. Results Conventional single stranded rAAV2 vectors performed poorly after IT delivery in rats. Pseudotyping of rAAV with capsids of serotypes 1, 3, and 5 was tested alone or in combination with a modification of the inverted terminal repeat. The former alters vector tropism and the latter allows packaging of self-complementary rAAV (sc-rAAV vectors. Combining both types of modification led to the identification of sc-rAAV2/l as a vector that performed superiorly in the IT space. IT delivery of 3 × 10e9 sc-rAAV2/l particles per animal led to stable expression of enhanced green fluorescent protein (EGFP for ≥ 3 mo detectable by Western blotting, quantitative PCR, and in a blinded study by confocal microscopy. Expression was strongest in the cauda equina and the lower sections of the spinal cord and only minimal in the forebrain. Microscopic examination of the SC fixed in situ with intact nerve roots and meninges revealed strong EGFP fluorescence in the nerve roots. Conclusion sc-rAAVl mediates stable IT transgene expression for ≥ 3 mo. Our findings support the underlying hypothesis that IT target cells for gene transfer lack the machinery for efficient conversion of the single-stranded rAAV genome into double-stranded DNA and favor uptake of serotype 1 vectors over 2

  1. Association of poly-purine/poly-pyrimidine sequences with meiotic recombination hot spots

    Directory of Open Access Journals (Sweden)

    Pitt Joel PW

    2006-07-01

    Full Text Available Abstract Background Meiotic recombination events have been found to concentrate in 1–2.5 kilo base regions, but these recombination hot spots do not share a consensus sequence and why they occur at specific sites is not fully understood. Some previous evidence suggests that poly-purine/poly-pyrimidine (poly-pu/py tracts (PPTs, a class of sequence with distinctive biochemical properties, could be involved in recombination, but no general association of PPTs with meiotic recombination hot spots has previously been reported. Results We used computational methods to investigate in detail the relationship between PPTs and hot spots. We show statistical associations of PPT frequency with hot spots of meiotic recombination initiating lesions, double-strand breaks, in the genome of the yeast S. cerevisiae and with experimentally well characterized human meiotic recombination hot spots. Supporting a possible role of poly-pu/py-rich sequences in hot spot recombination, we also found that all three single nucleotide polymorphisms previously shown to be associated with human hot spot activity changes occur within sequence contexts of 14 bp or longer that are 85% or more poly-pu/py and at least 70% G/C. These polymorphisms are all close to the hot spot mid points. Comparing the sequences of experimentally characterized human hot spots with the orthologous regions of the chimpanzee genome previously shown not to contain hot spots, we found that in all five cases in which comparisons for the hot spot central regions are possible with publicly available sequence data, there are differences near the human hot spot mid points within sequences 14 bp or longer consisting of more than 80% poly-pu/py and at least 50% G/C. Conclusion Our results, along with previous evidence for the unique biochemical properties and recombination-stimulating potential of poly-pu/py-rich sequences, suggest that the possible functional involvement of this type of sequence in meiotic

  2. Integration of adeno-associated virus vectors in CD34+ human hematopoietic progenitor cells after transduction.

    Science.gov (United States)

    Fisher-Adams, G; Wong, K K; Podsakoff, G; Forman, S J; Chatterjee, S

    1996-07-15

    Gene transfer vectors based on adeno-associated virus (AAV) appear promising because of their high transduction frequencies regardless of cell cycle status and ability to integrate into chromosomal DNA. We tested AAV-mediated gene transfer into a panel of human bone marrow or umbilical cord-derived CD34+ hematopoietic progenitor cells, using vectors encoding several transgenes under the control of viral and cellular promoters. Gene transfer was evaluated by (1) chromosomal integration of vector sequences and (2) analysis of transgene expression. Southern hybridization and fluorescence in situ hybridization analysis of transduced CD34 genomic DNA showed the presence of integrated vector sequences in chromosomal DNA in a portion of transduced cells and showed that integrated vector sequences were replicated along with cellular DNA during mitosis. Transgene expression in transduced CD34 cells in suspension cultures and in myeloid colonies differentiating in vitro from transduced CD34 cells approximated that predicted by the multiplicity of transduction. This was true in CD34 cells from different donors, regardless of the transgene or selective pressure. Comparisons of CD34 cell transduction either before or after cytokine stimulation showed similar gene transfer frequencies. Our findings suggest that AAV transduction of CD34+ hematopoietic progenitor cells is efficient, can lead to stable integration in a population of transduced cells, and may therefore provide the basis for safe and efficient ex vivo gene therapy of the hematopoietic system.

  3. A comparative analysis of constitutive promoters located in adeno-associated viral vectors.

    Directory of Open Access Journals (Sweden)

    Lkhagvasuren Damdindorj

    Full Text Available The properties of constitutive promoters within adeno-associated viral (AAV vectors have not yet been fully characterized. In this study, AAV vectors, in which enhanced GFP expression was directed by one of the six constitutive promoters (human β-actin, human elongation factor-1α, chicken β-actin combined with cytomegalovirus early enhancer, cytomegalovirus (CMV, simian virus 40, and herpes simplex virus thymidine kinase, were constructed and introduced into the HCT116, DLD-1, HT-1080, and MCF-10A cell lines. Quantification of GFP signals in infected cells demonstrated that the CMV promoter produced the highest GFP expression in the six promoters and maintained relatively high GFP expression for up to eight weeks after infection of HCT116, DLD-1, and HT-1080. Exogenous human CDKN2A gene expression was also introduced into DLD-1 and MCF-10A in a similar pattern by using AAV vectors bearing the human β-actin and the CMV promoters. The six constitutive promoters were subsequently placed upstream of the neomycin resistance gene within AAV vectors, and HCT116, DLD-1, and HT-1080 were infected with the resulting vectors. Of the six promoters, the CMV promoter produced the largest number of G418-resistant colonies in all three cell lines. Because AAV vectors have been frequently used as a platform to construct targeting vectors that permit gene editing in human cell lines, we lastly infected the three cell lines with AAV-based targeting vectors against the human PIGA gene in which one of the six promoters regulate the neomycin resistance gene. This assay revealed that the CMV promoter led to the lowest PIGA gene targeting efficiency in the investigated promoters. These results provide a clue to the identification of constitutive promoters suitable to express exogenous genes with AAV vectors, as well as those helpful to conduct efficient gene targeting using AAV-based targeting vectors in human cell lines.

  4. Combined gene overexpression of neuropeptide Y and its receptor Y5 in the hippocampus suppresses seizures

    DEFF Research Database (Denmark)

    Gøtzsche, Casper René; Nikitidou, Litsa; Sørensen, Andreas Toft

    2012-01-01

    We recently demonstrated that recombinant adeno-associated viral vector-induced hippocampal overexpression of neuropeptide Y receptor, Y2, exerts a seizure-suppressant effect in kindling and kainate-induced models of epilepsy in rats. Interestingly, additional overexpression of neuropeptide Y...

  5. Development of a recombinant toxin fragment vaccine for Clostridium difficile infection.

    Science.gov (United States)

    Karczewski, Jerzy; Zorman, Julie; Wang, Su; Miezeiewski, Matthew; Xie, Jinfu; Soring, Keri; Petrescu, Ioan; Rogers, Irene; Thiriot, David S; Cook, James C; Chamberlin, Mihaela; Xoconostle, Rachel F; Nahas, Debbie D; Joyce, Joseph G; Bodmer, Jean-Luc; Heinrichs, Jon H; Secore, Susan

    2014-05-19

    Clostridium difficile infection (CDI) is the major cause of antibiotic-associated diarrhea and pseudomembranous colitis, a disease associated with significant morbidity and mortality. The disease is mostly of nosocomial origin, with elderly patients undergoing anti-microbial therapy being particularly at risk. C. difficile produces two large toxins: Toxin A (TcdA) and Toxin B (TcdB). The two toxins act synergistically to damage and impair the colonic epithelium, and are primarily responsible for the pathogenesis associated with CDI. The feasibility of toxin-based vaccination against C. difficile is being vigorously investigated. A vaccine based on formaldehyde-inactivated Toxin A and Toxin B (toxoids) was reported to be safe and immunogenic in healthy volunteers and is now undergoing evaluation in clinical efficacy trials. In order to eliminate cytotoxic effects, a chemical inactivation step must be included in the manufacturing process of this toxin-based vaccine. In addition, the large-scale production of highly toxic antigens could be a challenging and costly process. Vaccines based on non-toxic fragments of genetically engineered versions of the toxins alleviate most of these limitations. We have evaluated a vaccine assembled from two recombinant fragments of TcdB and explored their potential as components of a novel experimental vaccine against CDI. Golden Syrian hamsters vaccinated with recombinant fragments of TcdB combined with full length TcdA (Toxoid A) developed high titer IgG responses and potent neutralizing antibody titers. We also show here that the recombinant vaccine protected animals against lethal challenge with C. difficile spores, with efficacy equivalent to the toxoid vaccine. The development of a two-segment recombinant vaccine could provide several advantages over toxoid TcdA/TcdB such as improvements in manufacturability. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Long-term correction of canine hemophilia B by gene transfer of blood coagulation factor IX mediated by adeno-associated viral vector.

    Science.gov (United States)

    Herzog, R W; Yang, E Y; Couto, L B; Hagstrom, J N; Elwell, D; Fields, P A; Burton, M; Bellinger, D A; Read, M S; Brinkhous, K M; Podsakoff, G M; Nichols, T C; Kurtzman, G J; High, K A

    1999-01-01

    Hemophilia B is a severe X-linked bleeding diathesis caused by the absence of functional blood coagulation factor IX, and is an excellent candidate for treatment of a genetic disease by gene therapy. Using an adeno-associated viral vector, we demonstrate sustained expression (>17 months) of factor IX in a large-animal model at levels that would have a therapeutic effect in humans (up to 70 ng/ml, adequate to achieve phenotypic correction, in an animal injected with 8.5x10(12) vector particles/kg). The five hemophilia B dogs treated showed stable, vector dose-dependent partial correction of the whole blood clotting time and, at higher doses, of the activated partial thromboplastin time. In contrast to other viral gene delivery systems, this minimally invasive procedure, consisting of a series of percutaneous intramuscular injections at a single timepoint, was not associated with local or systemic toxicity. Efficient gene transfer to muscle was shown by immunofluorescence staining and DNA analysis of biopsied tissue. Immune responses against factor IX were either absent or transient. These data provide strong support for the feasibility of the approach for therapy of human subjects.

  7. Cellular toxicity following application of adeno-associated viral vector-mediated RNA interference in the nervous system

    Directory of Open Access Journals (Sweden)

    Verhaagen Joost

    2010-02-01

    Full Text Available Abstract Background After a spinal cord lesion, axon regeneration is inhibited by the presence of a diversity of inhibitory molecules in the lesion environment. At and around the lesion site myelin-associated inhibitors, chondroitin sulfate proteoglycans (CSPGs and several axon guidance molecules, including all members of the secreted (class 3 Semaphorins, are expressed. Interfering with multiple inhibitory signals could potentially enhance the previously reported beneficial effects of blocking single molecules. RNA interference (RNAi is a tool that can be used to simultaneously silence expression of multiple genes. In this study we aimed to employ adeno-associated virus (AAV mediated expression of short hairpin RNAs (shRNAs to target all Semaphorin class 3 signaling by knocking down its receptors, Neuropilin 1 (Npn-1 and Neuropilin 2 (Npn-2. Results We have successfully generated shRNAs that knock down Npn-1 and Npn-2 in a neuronal cell line. We detected substantial knockdown of Npn-2 mRNA when AAV5 viral vector particles expressing Npn-2 specific shRNAs were injected in dorsal root ganglia (DRG of the rat. Unexpectedly however, AAV1-mediated expression of Npn-2 shRNAs and a control shRNA in the red nucleus resulted in an adverse tissue response and neuronal degeneration. The observed toxicity was dose dependent and was not seen with control GFP expressing AAV vectors, implicating the shRNAs as the causative toxic agents. Conclusions RNAi is a powerful tool to knock down Semaphorin receptor expression in neuronal cells in vitro and in vivo. However, when shRNAs are expressed at high levels in CNS neurons, they trigger an adverse tissue response leading to neuronal degradation.

  8. Intra- and inter-subunit disulfide bond formation is nonessential in adeno-associated viral capsids.

    Directory of Open Access Journals (Sweden)

    Nagesh Pulicherla

    Full Text Available The capsid proteins of adeno-associated viruses (AAV have five conserved cysteine residues. Structural analysis of AAV serotype 2 reveals that Cys289 and Cys361 are located adjacent to each other within each monomer, while Cys230 and Cys394 are located on opposite edges of each subunit and juxtaposed at the pentamer interface. The Cys482 residue is located at the base of a surface loop within the trimer region. Although plausible based on molecular dynamics simulations, intra- or inter-subunit disulfides have not been observed in structural studies. In the current study, we generated a panel of Cys-to-Ser mutants to interrogate the potential for disulfide bond formation in AAV capsids. The C289S, C361S and C482S mutants were similar to wild type AAV with regard to titer and transduction efficiency. However, AAV capsid protein subunits with C230S or C394S mutations were prone to proteasomal degradation within the host cells. Proteasomal inhibition partially blocked degradation of mutant capsid proteins, but failed to rescue infectious virions. While these results suggest that the Cys230/394 pair is critical, a C394V mutant was found viable, but not the corresponding C230V mutant. Although the exact nature of the structural contribution(s of Cys230 and Cys394 residues to AAV capsid formation remains to be determined, these results support the notion that disulfide bond formation within the Cys289/361 or Cys230/394 pair appears to be nonessential. These studies represent an important step towards understanding the role of inter-subunit interactions that drive AAV capsid assembly.

  9. Clinical infection control in gene therapy : A multidisciplinary conference

    NARCIS (Netherlands)

    Evans, ME; Jordan, CT; Chang, SMW; Conrad, C; Gerberding, JL; Kaufman, HL; Mayhall, CG; Nolta, JA; Pilaro, AM; Sullivan, S; Weber, DJ; Wivel, NA

    2000-01-01

    Gene therapy is being studied for the treatment of a variety of acquired and inherited disorders. Retroviruses, adenoviruses, poxviruses, adeno-associated viruses, herpesviruses, and others are being engineered to transfer genes into humans. Treatment protocols using recombinant viruses are being

  10. Inflammation and Immune Response of Intra-Articular Serotype 2 Adeno-Associated Virus or Adenovirus Vectors in a Large Animal Model

    Directory of Open Access Journals (Sweden)

    Akikazu Ishihara

    2012-01-01

    Full Text Available Intra-articular gene therapy has potential for the treatment of osteoarthritis and rheumatoid arthritis. To quantify in vitro relative gene transduction, equine chondrocytes and synovial cells were treated with adenovirus vectors (Ad, serotype 2 adeno-associated virus vectors (rAAV2, or self-complementary (sc AAV2 vectors carrying green fluorescent protein (GFP. Using 6 horses, bilateral metacarpophalangeal joints were injected with Ad, rAAV2, or scAAV2 vectors carrying GFP genes to assess the in vivo joint inflammation and neutralizing antibody (NAb titer in serum and joint fluid. In vitro, the greater transduction efficiency and sustained gene expression were achieved by scAAV2 compared to rAAV2 in equine chondrocytes and synovial cells. In vivo, AAV2 demonstrated less joint inflammation than Ad, but similar NAb titer. The scAAV2 vectors can induce superior gene transduction than rAAV2 in articular cells, and both rAAV2 and scAAV2 vectors were showed to be safer for intra-articular use than Ad vectors.

  11. Technology transfer and scale-up of the Flublok recombinant hemagglutinin (HA) influenza vaccine manufacturing process.

    Science.gov (United States)

    Buckland, Barry; Boulanger, Robert; Fino, Mireli; Srivastava, Indresh; Holtz, Kathy; Khramtsov, Nikolai; McPherson, Clifton; Meghrous, Jamal; Kubera, Paul; Cox, Manon M J

    2014-09-22

    Multiple different hemagglutinin (HA) protein antigens have been reproducibly manufactured at the 650L scale by Protein Sciences Corporation (PSC) based on an insect cell culture with baculovirus infection. Significantly, these HA protein antigens were produced by the same Universal Manufacturing process as described in the biological license application (BLA) for the first recombinant influenza vaccine approved by the FDA (Flublok). The technology is uniquely designed so that a change in vaccine composition can be readily accommodated from one HA protein antigen to another one. Here we present a vaccine candidate to combat the recently emerged H7N9 virus as an example starting with the genetic sequence for the required HA, creation of the baculovirus and ending with purified protein antigen (or vaccine component) at the 10L scale accomplished within 38 days under GMP conditions. The same process performance is being achieved at the 2L, 10L, 100L, 650L and 2500L scale. An illustration is given of how the technology was transferred from the benchmark 650L scale facility to a retrofitted microbial facility at the 2500L scale within 100 days which includes the time for facility engineering changes. The successful development, technology transfer and scale-up of the Flublok process has major implications for being ready to make vaccine rapidly on a worldwide scale as a defense against pandemic influenza. The technology described does not have the same vulnerability to mutations in the egg adapted strain, and resulting loss in vaccine efficacy, faced by egg based manufacture. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Safe and bodywide muscle transduction in young adult Duchenne muscular dystrophy dogs with adeno-associated virus.

    Science.gov (United States)

    Yue, Yongping; Pan, Xiufang; Hakim, Chady H; Kodippili, Kasun; Zhang, Keqing; Shin, Jin-Hong; Yang, Hsiao T; McDonald, Thomas; Duan, Dongsheng

    2015-10-15

    The ultimate goal of muscular dystrophy gene therapy is to treat all muscles in the body. Global gene delivery was demonstrated in dystrophic mice more than a decade ago using adeno-associated virus (AAV). However, translation to affected large mammals has been challenging. The only reported attempt was performed in newborn Duchenne muscular dystrophy (DMD) dogs. Unfortunately, AAV injection resulted in growth delay, muscle atrophy and contracture. Here we report safe and bodywide AAV delivery in juvenile DMD dogs. Three ∼2-m-old affected dogs received intravenous injection of a tyrosine-engineered AAV-9 reporter or micro-dystrophin (μDys) vector at the doses of 1.92-6.24 × 10(14) viral genome particles/kg under transient or sustained immune suppression. DMD dogs tolerated injection well and their growth was not altered. Hematology and blood biochemistry were unremarkable. No adverse reactions were observed. Widespread muscle transduction was seen in skeletal muscle, the diaphragm and heart for at least 4 months (the end of the study). Nominal expression was detected in internal organs. Improvement in muscle histology was observed in μDys-treated dogs. In summary, systemic AAV gene transfer is safe and efficient in young adult dystrophic large mammals. This may translate to bodywide gene therapy in pediatric patients in the future. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  13. Particle correlations in the recombination model associated with modified Kuti-Weisskopf structure functions

    International Nuclear Information System (INIS)

    Takasugi, E.; Tata, X.

    1982-01-01

    The recombination model associated with modified Kuti-Weisskopf multiquark structure functions is used to analyze particle production by hadronic collisions. The justification of the use of the impulse approximation in these processes and the universal nature of the recombination process are discussed. Single-meson inclusive production in the fragmentation domains of the proton, the pion, and the kaon is used as an input to determine the primitive structure functions. Our parameter-free predictions for low-p/sub T/ multimeson and associated meson-baryon inclusive production are found to be in good agreement with a large amount of recently obtained correlation data. It is pointed out, however, that reactions involving multivalence recombination fall outside the scope of present considerations

  14. The adeno-associated virus major regulatory protein Rep78-c-Jun-DNA motif complex modulates AP-1 activity

    International Nuclear Information System (INIS)

    Prasad, C. Krishna; Meyers, Craig; Zhan Dejin; You Hong; Chiriva-Internati, Maurizio; Mehta, Jawahar L.; Liu Yong; Hermonat, Paul L.

    2003-01-01

    Multiple epidemiologic studies show that adeno-associated virus (AAV) is negatively associated with cervical cancer (CX CA), a cancer which is positively associated with human papillomavirus (HPV) infection. Mechanisms for this correlation may be by Rep78's (AAV's major regulatory protein) ability to bind the HPV-16 p97 promoter DNA and inhibit transcription, to bind and interfere with the functions of the E7 oncoprotein of HPV-16, and to bind a variety of HPV-important cellular transcription factors such as Sp1 and TBP. c-Jun is another important cellular factor intimately linked to the HPV life cycle, as well as keratinocyte differentiation and skin development. Skin is the natural host tissue for both HPV and AAV. In this article it is demonstrated that Rep78 directly interacts with c-Jun, both in vitro and in vivo, as analyzed by Western blot, yeast two-hybrid cDNA, and electrophoretic mobility shift-supershift assay (EMSA supershift). Addition of anti-Rep78 antibodies inhibited the EMSA supershift. Investigating the biological implications of this interaction, Rep78 inhibited the c-Jun-dependent c-jun promoter in transient and stable chloramphenicol acetyl-transferase (CAT) assays. Rep78 also inhibited c-Jun-augmented c-jun promoter as well as the HPV-16 p97 promoter activity (also c-Jun regulated) in in vitro transcription assays in T47D nuclear extracts. Finally, the Rep78-c-Jun interaction mapped to the amino-half of Rep78. The ability of Rep78 to interact with c-Jun and down-regulate AP-1-dependent transcription suggests one more mechanism by which AAV may modulate the HPV life cycle and the carcinogenesis process

  15. A recombination hotspot in a schizophrenia-associated region of GABRB2.

    Directory of Open Access Journals (Sweden)

    Siu-Kin Ng

    Full Text Available BACKGROUND: Schizophrenia is a major disorder with complex genetic mechanisms. Earlier, population genetic studies revealed the occurrence of strong positive selection in the GABRB2 gene encoding the beta(2 subunit of GABA(A receptors, within a segment of 3,551 bp harboring twenty-nine single nucleotide polymorphisms (SNPs and containing schizophrenia-associated SNPs and haplotypes. METHODOLOGY/PRINCIPAL FINDINGS: In the present study, the possible occurrence of recombination in this 'S1-S29' segment was assessed. The occurrence of hotspot recombination was indicated by high resolution recombination rate estimation, haplotype diversity, abundance of rare haplotypes, recurrent mutations and torsos in haplotype networks, and experimental haplotyping of somatic and sperm DNA. The sub-segment distribution of relative recombination strength, measured by the ratio of haplotype diversity (H(d over mutation rate (theta, was indicative of a human specific Alu-Yi6 insertion serving as a central recombining sequence facilitating homologous recombination. Local anomalous DNA conformation attributable to the Alu-Yi6 element, as suggested by enhanced DNase I sensitivity and obstruction to DNA sequencing, could be a contributing factor of the increased sequence diversity. Linkage disequilibrium (LD analysis yielded prominent low LD points that supported ongoing recombination. LD contrast revealed significant dissimilarity between control and schizophrenic cohorts. Among the large array of inferred haplotypes, H26 and H73 were identified to be protective, and H19 and H81 risk-conferring, toward the development of schizophrenia. CONCLUSIONS/SIGNIFICANCE: The co-occurrence of hotspot recombination and positive selection in the S1-S29 segment of GABRB2 has provided a plausible contribution to the molecular genetics mechanisms for schizophrenia. The present findings therefore suggest that genome regions characterized by the co-occurrence of positive selection and

  16. Biological effects of rAAV-caAlk2 coating on structural allograft healing

    DEFF Research Database (Denmark)

    Koefoed, Mette; Ito, Hiromu; Gromov, Kirill

    2005-01-01

    Structural bone allografts often fracture due to their lack of osteogenic and remodeling potential. To overcome these limitations, we utilized allografts coated with recombinant adeno-associated virus (rAAV) that mediate in vivo gene transfer. Using beta-galactosidase as a reporter gene, we show...

  17. Single Amino Acid Modification of Adeno-Associated Virus Capsid Changes Transduction and Humoral Immune Profiles

    Science.gov (United States)

    Diprimio, Nina; Bowles, Dawn E.; Hirsch, Matthew L.; Monahan, Paul E.; Asokan, Aravind; Rabinowitz, Joseph; Agbandje-McKenna, Mavis

    2012-01-01

    Adeno-associated virus (AAV) vectors have the potential to promote long-term gene expression. Unfortunately, humoral immunity restricts patient treatment and in addition provides an obstacle to the potential option of vector readministration. In this study, we describe a comprehensive characterization of the neutralizing antibody (NAb) response to AAV type 1 (AAV1) through AAV5 both in vitro and in vivo. These results demonstrated that NAbs generated from one AAV type are unable to neutralize the transduction of other types. We extended this observation by demonstrating that a rationally engineered, muscle-tropic AAV2 mutant containing 5 amino acid substitutions from AAV1 displayed a NAb profile different from those of parental AAV2 and AAV1. Here we found that a single insertion of Thr from AAV1 into AAV2 capsid at residue 265 preserved high muscle transduction, while also changing the immune profile. To better understand the role of Thr insertion at position 265, we replaced all 20 amino acids and evaluated both muscle transduction and the NAb response. Of these variants, 8 mutants induced higher muscle transduction than AAV2. Additionally, three classes of capsid NAb immune profile were defined based on the ability to inhibit transduction from AAV2 or mutants. While no relationship was found between transduction, amino acid properties, and NAb titer or its cross-reactivity, these studies map a critical capsid motif involved in all steps of AAV infectivity. Our results suggest that AAV types can be utilized not only as templates to generate mutants with enhanced transduction efficiency but also as substrates for repeat administration. PMID:22593151

  18. Recombination in diverse maize is stable, predictable, and associated with genetic load.

    Science.gov (United States)

    Rodgers-Melnick, Eli; Bradbury, Peter J; Elshire, Robert J; Glaubitz, Jeffrey C; Acharya, Charlotte B; Mitchell, Sharon E; Li, Chunhui; Li, Yongxiang; Buckler, Edward S

    2015-03-24

    Among the fundamental evolutionary forces, recombination arguably has the largest impact on the practical work of plant breeders. Varying over 1,000-fold across the maize genome, the local meiotic recombination rate limits the resolving power of quantitative trait mapping and the precision of favorable allele introgression. The consequences of low recombination also theoretically extend to the species-wide scale by decreasing the power of selection relative to genetic drift, and thereby hindering the purging of deleterious mutations. In this study, we used genotyping-by-sequencing (GBS) to identify 136,000 recombination breakpoints at high resolution within US and Chinese maize nested association mapping populations. We find that the pattern of cross-overs is highly predictable on the broad scale, following the distribution of gene density and CpG methylation. Several large inversions also suppress recombination in distinct regions of several families. We also identify recombination hotspots ranging in size from 1 kb to 30 kb. We find these hotspots to be historically stable and, compared with similar regions with low recombination, to have strongly differentiated patterns of DNA methylation and GC content. We also provide evidence for the historical action of GC-biased gene conversion in recombination hotspots. Finally, using genomic evolutionary rate profiling (GERP) to identify putative deleterious polymorphisms, we find evidence for reduced genetic load in hotspot regions, a phenomenon that may have considerable practical importance for breeding programs worldwide.

  19. An adeno-associated viral vector transduces the rat hypothalamus and amygdala more efficient than a lentiviral vector

    Directory of Open Access Journals (Sweden)

    Vreugdenhil Erno

    2010-07-01

    Full Text Available Abstract Background This study compared the transduction efficiencies of an adeno-associated viral (AAV vector, which was pseudotyped with an AAV1 capsid and encoded the green fluorescent protein (GFP, with a lentiviral (LV vector, which was pseudotyped with a VSV-G envelop and encoded the discosoma red fluorescent protein (dsRed, to investigate which viral vector transduced the lateral hypothalamus or the amygdala more efficiently. The LV-dsRed and AAV1-GFP vector were mixed and injected into the lateral hypothalamus or into the amygdala of adult rats. The titers that were injected were 1 × 108 or 1 × 109 genomic copies of AAV1-GFP and 1 × 105 transducing units of LV-dsRed. Results Immunostaining for GFP and dsRed showed that AAV1-GFP transduced significantly more cells than LV-dsRed in both the lateral hypothalamus and the amygdala. In addition, the number of LV particles that were injected can not easily be increased, while the number of AAV1 particles can be increased easily with a factor 100 to 1000. Both viral vectors appear to predominantly transduce neurons. Conclusions This study showed that AAV1 vectors are better tools to overexpress or knockdown genes in the lateral hypothalamus and amygdala of adult rats, since more cells can be transduced with AAV1 than with LV vectors and the titer of AAV1 vectors can easily be increased to transduce the area of interest.

  20. Advances in recombinant antibody manufacturing.

    Science.gov (United States)

    Kunert, Renate; Reinhart, David

    2016-04-01

    Since the first use of Chinese hamster ovary (CHO) cells for recombinant protein expression, production processes have steadily improved through numerous advances. In this review, we have highlighted several key milestones that have contributed to the success of CHO cells from the beginning of their use for monoclonal antibody (mAb) expression until today. The main factors influencing the yield of a production process are the time to accumulate a desired amount of biomass, the process duration, and the specific productivity. By comparing maximum cell densities and specific growth rates of various expression systems, we have emphasized the limiting parameters of different cellular systems and comprehensively described scientific approaches and techniques to improve host cell lines. Besides the quantitative evaluation of current systems, the quality-determining properties of a host cell line, namely post-translational modifications, were analyzed and compared to naturally occurring polyclonal immunoglobulin fractions from human plasma. In summary, numerous different expression systems for mAbs are available and also under scientific investigation. However, CHO cells are the most frequently investigated cell lines and remain the workhorse for mAb production until today.

  1. Recombinant AAV-mediated in vivo long-term expression and antitumour activity of an anti-ganglioside GM3(Neu5Gc) antibody.

    Science.gov (United States)

    Piperno, G M; López-Requena, A; Predonzani, A; Dorvignit, D; Labrada, M; Zentilin, L; Burrone, O R; Cesco-Gaspere, M

    2015-12-01

    The ganglioside GM3(Neu5Gc) has gained increasing attention as therapeutic target because of its selective expression in various human tumours, such as melanoma, breast and lung cancer. 14F7 is a mouse IgG1 with specific reactivity to GM3(Neu5Gc)-positive tumours. The therapeutic activity of 14F7 has also been demonstrated in vivo, through its repetitive passive administration in tumour-bearing animals. In this work we used an alternative strategy to deliver recombinant 14F7 in vivo and analysed the therapeutic efficacy of this approach. We engineered a recombinant adeno-associated vector to direct the expression of secretable recombinant 14F7 in BALB/c animals. A single administration of the rAAV induced efficient production and secretion of the antibody in the bloodstream, with an expression level reaching plateau at ∼3 weeks after injection and persisting for almost a year. Strikingly, upon challenge with GM3(Neu5Gc)-positive X63-AG8.653 myeloma cells, tumour development was significantly delayed in animals treated with rAAV-14F7 with respect to animals treated with a control rAAV codifying for an irrelevant antibody. Finally, no significant differences in survival proportion were detected in animals injected with rAAV-14F7 or treated by standard administration of repetitive doses of purified monoclonal antibody 14F7.

  2. NOD mouse model for Sjögren's syndrome: lack of longitudinal stability

    NARCIS (Netherlands)

    Lodde, B. M.; Mineshiba, F.; Kok, M. R.; Wang, J.; Zheng, C.; Schmidt, M.; Cotrim, A. P.; Kriete, M.; Tak, P. P.; Baum, B. J.

    2006-01-01

    OBJECTIVES: The non-obese diabetic (NOD) mouse is not only a widely used model for diabetes mellitus type I, but also for the chronic autoimmune disease Sjögren's syndrome (SS), mainly affecting salivary and lacrimal glands. We studied the efficacy of local recombinant serotype 2 adeno-associated

  3. Synthetic scaffold coating with adeno-associated virus encoding BMP2 to promote endogenous bone repair.

    Science.gov (United States)

    Dupont, Kenneth M; Boerckel, Joel D; Stevens, Hazel Y; Diab, Tamim; Kolambkar, Yash M; Takahata, Masahiko; Schwarz, Edward M; Guldberg, Robert E

    2012-03-01

    Biomaterial scaffolds functionalized to stimulate endogenous repair mechanisms via the incorporation of osteogenic cues offer a potential alternative to bone grafting for the treatment of large bone defects. We first quantified the ability of a self-complementary adeno-associated viral vector encoding bone morphogenetic protein 2 (scAAV2.5-BMP2) to enhance human stem cell osteogenic differentiation in vitro. In two-dimensional culture, scAAV2.5-BMP2-transduced human mesenchymal stem cells (hMSCs) displayed significant increases in BMP2 production and alkaline phosphatase activity compared with controls. hMSCs and human amniotic-fluid-derived stem cells (hAFS cells) seeded on scAAV2.5-BMP2-coated three-dimensional porous polymer Poly(ε-caprolactone) (PCL) scaffolds also displayed significant increases in BMP2 production compared with controls during 12 weeks of culture, although only hMSC-seeded scaffolds displayed significantly increased mineral formation. PCL scaffolds coated with scAAV2.5-BMP2 were implanted into critically sized immunocompromised rat femoral defects, both with or without pre-seeding of hMSCs, representing ex vivo and in vivo gene therapy treatments, respectively. After 12 weeks, defects treated with acellular scAAV2.5-BMP2-coated scaffolds displayed increased bony bridging and had significantly higher bone ingrowth and mechanical properties compared with controls, whereas defects treated with scAAV2.5-BMP2 scaffolds pre-seeded with hMSCs failed to display significant differences relative to controls. When pooled, defect treatment with scAAV2.5-BMP2-coated scaffolds, both with or without inclusion of pre-seeded hMSCs, led to significant increases in defect mineral formation at all time points and increased mechanical properties compared with controls. This study thus presents a novel acellular bone-graft-free endogenous repair therapy for orthotopic tissue-engineered bone regeneration.

  4. Targeted decorin gene therapy delivered with adeno-associated virus effectively retards corneal neovascularization in vivo.

    Directory of Open Access Journals (Sweden)

    Rajiv R Mohan

    Full Text Available Decorin, small leucine-rich proteoglycan, has been shown to modulate angiogenesis in nonocular tissues. This study tested a hypothesis that tissue-selective targeted decorin gene therapy delivered to the rabbit stroma with adeno-associated virus serotype 5 (AAV5 impedes corneal neovascularization (CNV in vivo without significant side effects. An established rabbit CNV model was used. Targeted decorin gene therapy in the rabbit stroma was delivered with a single topical AAV5 titer (100 µl; 5×10(12 vg/ml application onto the stroma for two minutes after removing corneal epithelium. The levels of CNV were examined with stereomicroscopy, H&E staining, lectin, collagen type IV, CD31 immunocytochemistry and CD31 immunoblotting. Real-time PCR quantified mRNA expression of pro- and anti-angiogenic genes. Corneal health in live animals was monitored with clinical, slit-lamp and optical coherence tomography biomicroscopic examinations. Selective decorin delivery into stroma showed significant 52% (p<0.05, 66% (p<0.001, and 63% (p<0.01 reduction at early (day 5, mid (day 10, and late (day 14 stages of CNV in decorin-delivered rabbit corneas compared to control (no decorin delivered corneas in morphometric analysis. The H&E staining, lectin, collagen type IV, CD31 immunostaining (57-65, p<0.5, and CD31 immunoblotting (62-67%, p<0.05 supported morphometric findings. Quantitative PCR studies demonstrated decorin gene therapy down-regulated expression of VEGF, MCP1 and angiopoietin (pro-angiogenic and up-regulated PEDF (anti-angiogenic genes. The clinical, biomicroscopy and transmission electron microscopy studies revealed that AAV5-mediated decorin gene therapy is safe for the cornea. Tissue-targeted AAV5-mediated decorin gene therapy decreases CNV with no major side effects, and could potentially be used for treating patients.

  5. Current good manufacturing practice production of an oncolytic recombinant vesicular stomatitis viral vector for cancer treatment.

    Science.gov (United States)

    Ausubel, L J; Meseck, M; Derecho, I; Lopez, P; Knoblauch, C; McMahon, R; Anderson, J; Dunphy, N; Quezada, V; Khan, R; Huang, P; Dang, W; Luo, M; Hsu, D; Woo, S L C; Couture, L

    2011-04-01

    Vesicular stomatitis virus (VSV) is an oncolytic virus currently being investigated as a promising tool to treat cancer because of its ability to selectively replicate in cancer cells. To enhance the oncolytic property of the nonpathologic laboratory strain of VSV, we generated a recombinant vector [rVSV(MΔ51)-M3] expressing murine gammaherpesvirus M3, a secreted viral chemokine-binding protein that binds to a broad range of mammalian chemokines with high affinity. As previously reported, when rVSV(MΔ51)-M3 was used in an orthotopic model of hepatocellular carcinoma (HCC) in rats, it suppressed inflammatory cell migration to the virus-infected tumor site, which allowed for enhanced intratumoral virus replication leading to increased tumor necrosis and substantially prolonged survival. These encouraging results led to the development of this vector for clinical translation in patients with HCC. However, a scalable current Good Manufacturing Practice (cGMP)-compliant manufacturing process has not been described for this vector. To produce the quantities of high-titer virus required for clinical trials, a process that is amenable to GMP manufacturing and scale-up was developed. We describe here a large-scale (50-liter) vector production process capable of achieving crude titers on the order of 10(9) plaque-forming units (PFU)/ml under cGMP. This process was used to generate a master virus seed stock and a clinical lot of the clinical trial agent under cGMP with an infectious viral titer of approximately 2 × 10(10) PFU/ml (total yield, 1 × 10(13) PFU). The lot has passed all U.S. Food and Drug Administration-mandated release testing and will be used in a phase 1 clinical translational trial in patients with advanced HCC.

  6. Applying biotin-streptavidin binding for iscom (immunostimulating complex) association of recombinant immunogens.

    Science.gov (United States)

    Wikman, Maria; Friedman, Mikaela; Pinitkiatisakul, Sunan; Hemphill, Andrew; Lövgren-Bengtsson, Karin; Lundén, Anna; Ståhl, Stefan

    2005-04-01

    We have previously reported strategies for Escherichia coli production of recombinant immunogens fused to hydrophobic peptide or lipid tags to improve their capacity to be incorporated into an adjuvant formulation. In the present study, we have explored the strong interaction between biotin and SA (streptavidin) (K(D) approximately 10(-15) M) to couple recombinant immunogens to iscoms (immunostimulating complexes). Two different concepts were evaluated. In the first concept, a His(6)-tagged SA fusion protein (His(6)-SA) was bound to Ni(2+)-loaded iscom matrix (iscom without associated protein), and biotinylated immunogens were thereafter associated with the SA-coated iscoms. The immunogens were either biotinylated in vivo on E. coli expression or double biotinylated in vivo and in vitro. In the second concept, the recombinant immunogens were expressed as SA fusion proteins, which were directly bound to a biotinylated iscom matrix. A 53-amino-acid malaria peptide (M5), derived from the central repeat region of the Plasmodium falciparum blood-stage antigen Pf155/RESA, and a 232-amino-acid segment (SRS2') from the central region (from Pro-97 to Lys-328) of the major surface antigen NcSRS2 of the protozoan parasite Neospora caninum, served as model immunogens in the present study. All fusion proteins generated were found to be efficiently expressed and could be recovered to high purity using affinity chromatography. The association between the different immunogen-containing fusion proteins and the corresponding iscom matrix was demonstrated by analytical ultracentrifugation in a sucrose density gradient. However, some fusion proteins were, to a certain extent, also found to associate unspecifically with a regular iscom matrix. Furthermore, selected iscom fractions were demonstrated to induce high-titre antigen-specific antibody responses on immunization of mice. For the particular target immunogen SRS2', the induced antibodies demonstrated reactivity to the native

  7. Hepatorenal correction in murine glycogen storage disease type I with a double-stranded adeno-associated virus vector.

    LENUS (Irish Health Repository)

    Luo, Xiaoyan

    2011-11-01

    Glycogen storage disease type Ia (GSD-Ia) is caused by the deficiency of glucose-6-phosphatase (G6Pase). Long-term complications of GSD-Ia include life-threatening hypoglycemia and proteinuria progressing to renal failure. A double-stranded (ds) adeno-associated virus serotype 2 (AAV2) vector encoding human G6Pase was pseudotyped with four serotypes, AAV2, AAV7, AAV8, and AAV9, and we evaluated efficacy in 12-day-old G6pase (-\\/-) mice. Hypoglycemia during fasting (plasma glucose <100 mg\\/dl) was prevented for >6 months by the dsAAV2\\/7, dsAAV2\\/8, and dsAAV2\\/9 vectors. Prolonged fasting for 8 hours revealed normalization of blood glucose following dsAAV2\\/9 vector administration at the higher dose. The glycogen content of kidney was reduced by >65% with both the dsAAV2\\/7 and dsAAV2\\/9 vectors, and renal glycogen content was stably reduced between 7 and 12 months of age for the dsAAV2\\/9 vector-treated mice. Every vector-treated group had significantly reduced glycogen content in the liver, in comparison with untreated G6pase (-\\/-) mice. G6Pase was expressed in many renal epithelial cells of with the dsAAV2\\/9 vector for up to 12 months. Albuminuria and renal fibrosis were reduced by the dsAAV2\\/9 vector. Hepatorenal correction in G6pase (-\\/-) mice demonstrates the potential of AAV vectors for the correction of inherited diseases of metabolism.

  8. Adeno-associated virus-mediated gene delivery into the scala media of the normal and deafened adult mouse ear.

    Science.gov (United States)

    Kilpatrick, L A; Li, Q; Yang, J; Goddard, J C; Fekete, D M; Lang, H

    2011-06-01

    Murine models are ideal for studying cochlear gene transfer, as many hearing loss-related mutations have been discovered and mapped within the mouse genome. However, because of the small size and delicate nature, the membranous labyrinth of the mouse is a challenging target for the delivery of viral vectors. To minimize injection trauma, we developed a procedure for the controlled release of adeno-associated viruses (AAVs) into the scala media of adult mice. This procedure poses minimal risk of injury to structures of the cochlea and middle ear, and allows for near-complete preservation of low and middle frequency hearing. In this study, transduction efficiency and cellular specificity of AAV vectors (serotypes 1, 2, 5, 6 and 8) were investigated in normal and drug-deafened ears. Using the cytomegalovirus promoter to drive gene expression, a variety of cell types were transduced successfully, including sensory hair cells and supporting cells, as well as cells in the auditory nerve and spiral ligament. Among all five serotypes, inner hair cells were the most effectively transduced cochlear cell type. All five serotypes of AAV vectors transduced cells of the auditory nerve, though serotype 8 was the most efficient vector for transduction. Our findings indicate that efficient AAV inoculation (via the scala media) can be performed in adult mouse ears, with hearing preservation a realistic goal. The procedure we describe may also have applications for intra-endolymphatic drug delivery in many mouse models of human deafness.

  9. Characterization of DNA binding, transcriptional activation, and regulated nuclear association of recombinant human NFATp

    Directory of Open Access Journals (Sweden)

    Seto Anita G

    2000-11-01

    Full Text Available Abstract Background NFATp is one member of a family of transcriptional activators whose nuclear accumulation and hence transcriptional activity is regulated in mammalian cells. Human NFATp exists as a phosphoprotein in the cytoplasm of naive T cells. Upon antigen stimulation, NFATp is dephosphorylated, accumulates in nuclei, and functions to regulate transcription of genes including those encoding cytokines. While the properties of the DNA binding domain of NFATp have been investigated in detail, biochemical studies of the transcriptional activation and regulated association with nuclei have remained unexplored because of a lack of full length, purified recombinant NFATp. Results We developed methods for expressing and purifying full length recombinant human NFATp that has all of the properties known to be associated with native NFATp. The recombinant NFATp binds DNA on its own and cooperatively with AP-1 proteins, activates transcription in vitro, is phosphorylated, can be dephosphorylated by calcineurin, and exhibits regulated association with nuclei in vitro. Importantly, activation by recombinant NFATp in a reconstituted transcription system required regions of the protein outside of the central DNA binding domain. Conclusions We conclude that NFATp is a bona fide transcriptional activator. Moreover, the reagents and methods that we developed will facilitate future studies on the mechanisms of transcriptional activation and nuclear accumulation by NFATp, a member of an important family of transcriptional regulatory proteins.

  10. Genetic recombination is associated with intrinsic disorder in plant proteomes.

    Science.gov (United States)

    Yruela, Inmaculada; Contreras-Moreira, Bruno

    2013-11-09

    Intrinsically disordered proteins, found in all living organisms, are essential for basic cellular functions and complement the function of ordered proteins. It has been shown that protein disorder is linked to the G + C content of the genome. Furthermore, recent investigations have suggested that the evolutionary dynamics of the plant nucleus adds disordered segments to open reading frames alike, and these segments are not necessarily conserved among orthologous genes. In the present work the distribution of intrinsically disordered proteins along the chromosomes of several representative plants was analyzed. The reported results support a non-random distribution of disordered proteins along the chromosomes of Arabidopsis thaliana and Oryza sativa, two model eudicot and monocot plant species, respectively. In fact, for most chromosomes positive correlations between the frequency of disordered segments of 30+ amino acids and both recombination rates and G + C content were observed. These analyses demonstrate that the presence of disordered segments among plant proteins is associated with the rates of genetic recombination of their encoding genes. Altogether, these findings suggest that high recombination rates, as well as chromosomal rearrangements, could induce disordered segments in proteins during evolution.

  11. Definition of herpes simplex virus type 1 helper activities for adeno-associated virus early replication events.

    Directory of Open Access Journals (Sweden)

    Nathalie Alazard-Dany

    2009-03-01

    Full Text Available The human parvovirus Adeno-Associated Virus (AAV type 2 can only replicate in cells co-infected with a helper virus, such as Adenovirus or Herpes Simplex Virus type 1 (HSV-1; whereas, in the absence of a helper virus, it establishes a latent infection. Previous studies demonstrated that the ternary HSV-1 helicase/primase (HP complex (UL5/8/52 and the single-stranded DNA-Binding Protein (ICP8 were sufficient to induce AAV-2 replication in transfected cells. We independently showed that, in the context of a latent AAV-2 infection, the HSV-1 ICP0 protein was able to activate rep gene expression. The present study was conducted to integrate these observations and to further explore the requirement of other HSV-1 proteins during early AAV replication steps, i.e. rep gene expression and AAV DNA replication. Using a cellular model that mimics AAV latency and composite constructs coding for various sets of HSV-1 genes, we first confirmed the role of ICP0 for rep gene expression and demonstrated a synergistic effect of ICP4 and, to a lesser extent, ICP22. Conversely, ICP27 displayed an inhibitory effect. Second, our analyses showed that the effect of ICP0, ICP4, and ICP22 on rep gene expression was essential for the onset of AAV DNA replication in conjunction with the HP complex and ICP8. Third, and most importantly, we demonstrated that the HSV-1 DNA polymerase complex (UL30/UL42 was critical to enhance AAV DNA replication to a significant level in transfected cells and that its catalytic activity was involved in this process. Altogether, this work represents the first comprehensive study recapitulating the series of early events taking place during HSV-1-induced AAV replication.

  12. Induction of sustained hypercholesterolemia by single adeno-associated virus-mediated gene transfer of mutant hPCSK9.

    Science.gov (United States)

    Roche-Molina, Marta; Sanz-Rosa, David; Cruz, Francisco M; García-Prieto, Jaime; López, Sergio; Abia, Rocío; Muriana, Francisco J G; Fuster, Valentín; Ibáñez, Borja; Bernal, Juan A

    2015-01-01

    Patients with mutations in the proprotein convertase subtilisin/kexin type 9 (PCSK9) gene have hypercholesterolemia and are at high risk of adverse cardiovascular events. We aimed to stably express the pathological human D374Y gain-of-function mutant form of PCSK9 (PCSK9(DY)) in adult wild-type mice to generate a hyperlipidemic and proatherogenic animal model, achieved with a single systemic injection with adeno-associated virus (AAV). We constructed an AAV-based vector to support targeted transfer of the PCSK9(DY) gene to liver. After injection with 3.5×10(10) viral particles, mice in the C57BL/6J, 129/SvPasCrlf, or FVB/NCrl backgrounds developed long-term hyperlipidemia with a strong increase in serum low-density lipoprotein. Macroscopic and histological analysis showed atherosclerotic lesions in the aortas of AAV-PCSK9(DY) mice fed a high-fat-diet. Advanced lesions in these high-fat-diet-fed mice also showed evidence of macrophage infiltration and fibrous cap formation. Hepatic AAV-PCSK9(DY) infection did not result in liver damage or signs of immunologic response. We further tested the use of AAV-PCSK9(DY) to study potential genetic interaction with the ApoE gene. Histological analysis of ApoE(-/-) AAV-PCSK9(DY) mice showed a synergistic response to ApoE deficiency, with aortic lesions twice as extensive in ApoE(-/-) AAV-PCSK9(DY)-transexpressing mice as in ApoE(-/-) AAV-Luc controls without altering serum cholesterol levels. Single intravenous AAV-PCSK9(DY) injection is a fast, easy, and cost-effective approach, resulting in rapid and long-term sustained hyperlipidemia and atherosclerosis. We demonstrate as a proof of concept the synergy between PCSK9(DY) gain-of-function and ApoE deficiency. This methodology could allow testing of the genetic interaction of several mutations without the need for complex and time-consuming backcrosses. © 2014 American Heart Association, Inc.

  13. Random Insertion of mCherry Into VP3 Domain of Adeno-associated Virus Yields Fluorescent Capsids With no Loss of Infectivity

    Directory of Open Access Journals (Sweden)

    Justin Judd

    2012-01-01

    Full Text Available Adeno-associated virus (AAV-derived vectors are promising gene delivery systems, and a number of design strategies have been pursued to improve their performance. For example, genetic insertion of proteins into the capsid may be used to achieve vector retargeting, reduced immunogenicity, or to track vector transport. Unfortunately, rational approaches to genetic insertion have experienced limited success due to the unpredictable context-dependent nature of protein folding and the complexity of the capsid's macroassembly. We report the construction and use of a frame-enriched DNase-based random insertion library based on AAV2 cap, called pAAV2_RaPID (Random Peptide Insertion by DNase. The fluorescent mCherry protein was inserted randomly throughout the AAV2 capsid and the library was selected for fluorescent and infectious variants. A capsid site was identified in VP3 that can tolerate the large protein insertion. In contrast to previous efforts to incorporate fluorescent proteins into the AAV2 capsid, the isolated mCherry mutant maintains native infectivity while displaying robust fluorescence. Collectively, these results demonstrate that the pAAV2_RaPID platform library can be used to create fully infectious AAV vectors carrying large functional protein domains on the capsid.

  14. Distribution of AAV8 particles in cell lysates and culture media changes with time and is dependent on the recombinant vector

    Directory of Open Access Journals (Sweden)

    Bryan A Piras

    2016-01-01

    Full Text Available With clinical trials ongoing, efficient clinical production of adeno-associated virus (AAV to treat large numbers of patients remains a challenge. We compared distribution of AAV8 packaged with Factor VIII (FVIII in cell culture media and lysates on days 3, 5, 6, and 7 post-transfection and found increasing viral production through day 6, with the proportion of viral particles in the media increasing from 76% at day 3 to 94% by day 7. Compared to FVIII, AAV8 packaged with Factor IX and Protective Protein/Cathepsin A vectors demonstrated a greater shift from lysate towards media from day 3 to 6, implying that particle distribution is dependent on recombinant vector. Larger-scale productions showed that the ratio of full-to-empty AAV particles is similar in media and lysate, and that AAV harvested on day 6 post-transfection provides equivalent function in mice compared to AAV harvested on day 3. This demonstrates that AAV8 production can be optimized by prolonging the duration of culture post-transfection, and simplified by allowing harvest of media only, with disposal of cells that contain 10% or less of total vector yield. Additionally, the difference in particle distribution with different expression cassettes implies a recombinant vector-dependent processing mechanism which should be taken into account during process development.

  15. Gene Delivery into Plant Cells for Recombinant Protein Production

    Directory of Open Access Journals (Sweden)

    Qiang Chen

    2015-01-01

    Full Text Available Recombinant proteins are primarily produced from cultures of mammalian, insect, and bacteria cells. In recent years, the development of deconstructed virus-based vectors has allowed plants to become a viable platform for recombinant protein production, with advantages in versatility, speed, cost, scalability, and safety over the current production paradigms. In this paper, we review the recent progress in the methodology of agroinfiltration, a solution to overcome the challenge of transgene delivery into plant cells for large-scale manufacturing of recombinant proteins. General gene delivery methodologies in plants are first summarized, followed by extensive discussion on the application and scalability of each agroinfiltration method. New development of a spray-based agroinfiltration and its application on field-grown plants is highlighted. The discussion of agroinfiltration vectors focuses on their applications for producing complex and heteromultimeric proteins and is updated with the development of bridge vectors. Progress on agroinfiltration in Nicotiana and non-Nicotiana plant hosts is subsequently showcased in context of their applications for producing high-value human biologics and low-cost and high-volume industrial enzymes. These new advancements in agroinfiltration greatly enhance the robustness and scalability of transgene delivery in plants, facilitating the adoption of plant transient expression systems for manufacturing recombinant proteins with a broad range of applications.

  16. Homologous recombination mediates functional recovery of dysferlin deficiency following AAV5 gene transfer.

    Directory of Open Access Journals (Sweden)

    William E Grose

    Full Text Available The dysferlinopathies comprise a group of untreatable muscle disorders including limb girdle muscular dystrophy type 2B, Miyoshi myopathy, distal anterior compartment syndrome, and rigid spine syndrome. As with other forms of muscular dystrophy, adeno-associated virus (AAV gene transfer is a particularly auspicious treatment strategy, however the size of the DYSF cDNA (6.5 kb negates packaging into traditional AAV serotypes known to express well in muscle (i.e. rAAV1, 2, 6, 8, 9. Potential advantages of a full cDNA versus a mini-gene include: maintaining structural-functional protein domains, evading protein misfolding, and avoiding novel epitopes that could be immunogenic. AAV5 has demonstrated unique plasticity with regards to packaging capacity and recombination of virions containing homologous regions of cDNA inserts has been implicated in the generation of full-length transcripts. Herein we show for the first time in vivo that homologous recombination following AAV5.DYSF gene transfer leads to the production of full length transcript and protein. Moreover, gene transfer of full-length dysferlin protein in dysferlin deficient mice resulted in expression levels sufficient to correct functional deficits in the diaphragm and importantly in skeletal muscle membrane repair. Intravascular regional gene transfer through the femoral artery produced high levels of transduction and enabled targeting of specific muscle groups affected by the dysferlinopathies setting the stage for potential translation to clinical trials. We provide proof of principle that AAV5 mediated delivery of dysferlin is a highly promising strategy for treatment of dysferlinopathies and has far-reaching implications for the therapeutic delivery of other large genes.

  17. Suppression of cancer growth in mice by adeno-associated virus vector-mediated IFN-beta expression driven by hTERT promoter.

    Science.gov (United States)

    He, Ling Feng; Wang, Yi Gang; Xiao, Tian; Zhang, Kang Jiang; Li, Gong Chu; Gu, Jin Fa; Chu, Liang; Tang, Wen Hao; Tan, Wen-Song; Liu, Xin Yuan

    2009-12-28

    Adeno-associated virus (AAV) has rapidly become a promising gene delivery vehicle for its excellent advantages of non-immunogenic, low pathogenicity and long-term gene expression in vivo. However, a major obstacle in development of effective AAV vector is the lack of tissue specificity, which caused low efficiency of AAV transfer to target cells. The application of human telomerase reverse transcriptase (hTERT) promoter is a prior targeting strategy for AAV in cancer gene therapy as hTERT activity is transcriptionally upregulated in most cancer cells. In the present work, we investigated whether AAV-mediated human interferon beta (IFN-beta) gene driven by hTERT promoter could specifically express in tumor cells and suppress tumor cell growth. Our data demonstrated that hTERT promoter-driven IFN-beta expression was the tumor-specific, decreased the cell viability of tumor cells but not normal cells, and induced tumor cell apoptosis via activation of caspase pathway and release of cytochrome c. AAV-mediated IFN-beta expression driven by hTERT promoter significantly suppressed the growth of colorectal cancer and lung cancer xenograft in mice and resulted in tumor cells death in vivo. These data suggested that AAVs in combination with hTERT-mediated IFN-beta expression could exert potential antitumor activity and provide a novel targeting approach to clinical gene therapy of varieties of cancers.

  18. Methods of treating Parkinson's disease using viral vectors

    Energy Technology Data Exchange (ETDEWEB)

    Bankiewicz, Krystof; Cunningham, Janet

    2016-11-15

    Methods of delivering viral vectors, particularly recombinant adeno-associated virus (rAAV) virions, to the central nervous system (CNS) using convection enhanced delivery (CED) are provided. The rAAV virions include a nucleic acid sequence encoding a therapeutic polypeptide. The methods can be used for treating CNS disorders such as for treating Parkinson's Disease.

  19. PATIENTS WITH SQUAMOUS-CELL VERSUS ADENO(SQUAMOUS) CARCINOMA OF THE CERVIX, WHAT FACTORS DETERMINE THE PROGNOSIS

    NARCIS (Netherlands)

    TINGA, DJ; BOUMA, J; AALDERS, JG

    1992-01-01

    Patients with squamous cell carcinoma of the cervix FIGO stages IB to IV (n = 306) were compared to patients with adeno(squamous) carcinoma (n = 70). There was no difference between the mean ages of the groups. In the patients who underwent radical surgical treatment, whether or not in combination

  20. Recombinant AAV-mediated HSVtk gene transfer with direct intratumoral injections and Tet-On regulation for implanted human breast cancer

    International Nuclear Information System (INIS)

    Zi-Bo, LI; Zhao-Jun, ZENG; Qian, CHEN; Sai-Qun, LUO; Wei-Xin, HU

    2006-01-01

    HSVtk/ganciclovir (GCV) gene therapy has been extensively studied in tumors and relies largely on the gene expression of HSVtk. Most studies, however, have failed to demonstrate any significant benefit of a controlled gene expression strategy in cancer treatment. The Tet-On system is commonly used to regulate gene expression following Dox induction. We have evaluated the antitumor effect of HSVtk/ganciclovir gene therapy under Tet-On regulation by means of adeno-associated virus-2 (AAV-2)-mediated HSVtk gene transfer with direct intratumoral injections in mice bearing breast cancer tumors. Recombinant adeno-associated virus-2 (rAAV) was constructed and transduced into MCF-7 cell line. GCV treatment to the rAAV infected MCF-7 cells was performed by MTT assay under the doxycycline (Dox) induction or without Dox induction at a vp (viral particle) number of ≥10 4 /cell. The virus was administered intratumorally to nude mice that had also received GCV intraperitoneally. The antitumor effects were evaluated by measuring tumor regression and histological analysis. We have demonstrated that GCV treatment to the infected MCF-7 cells under the Dox induction was of more inhibited effects than those without Dox induction at ≥10 4 vp/cell. In ex vivo experiments, tumor growth of BALB/C nude mice breast cancer was retarded after rAAV-2/HSVtk/Tet-On was injected into the tumors under the Dox induction. Infiltrating cells were also observed in tumors after Dox induction followed by GCV treatment and cells were profoundly damaged. The expression of HSVtk gene in MCF-7 cells and BALB/C nude mice tumors was up-regulated by Tet-On under Dox induction with reverse transcription-PCR (RT-PCR) analysis. The antitumor effect of rAAV-mediated HSVtk/GCV gene therapy under the Dox induction with direct intratumoral injections may be a useful treatment for breast cancer and other solid tumors

  1. HoxD10 gene delivery using adenovirus/adeno-associate hybrid virus inhibits the proliferation and tumorigenicity of GH4 pituitary lactotrope tumor cells

    International Nuclear Information System (INIS)

    Cho, Mi Ae; Yashar, Parham; Kim, Suk Kyoung; Noh, Taewoong; Gillam, Mary P.; Lee, Eun Jig; Jameson, J. Larry

    2008-01-01

    Prolactinoma is one of the most common types of pituitary adenoma. It has been reported that a variety of growth factors and cytokines regulating cell growth and angiogenesis play an important role in the growth of prolactinoma. HoxD10 has been shown to impair endothelial cell migration, block angiogenesis, and maintain a differentiated phenotype of cells. We investigated whether HoxD10 gene delivery could inhibit the growth of prolactinoma. Rat GH4 lactotrope tumor cells were infected with adenovirus/adeno-associated virus (Ad/AAV) hybrid vectors carrying the mouse HoxD10 gene (Hyb-HoxD10) or the β-galactosidase gene (Hyb-Gal). Hyb-HoxD10 expression inhibited GH4 cell proliferation in vitro. The expression of FGF-2 and cyclin D2 was inhibited in GH4 cells infected with Hyb-HoxD10. GH4 cells transduced with Hyb-HoxD10 did not form tumors in nude mice. These results indicate that the delivery of HoxD10 could potentially inhibit the growth of PRL-secreting tumors. This approach may be a useful tool for targeted therapy of prolactinoma and other neoplasms

  2. Commercial-scale biotherapeutics manufacturing facility for plant-made pharmaceuticals.

    Science.gov (United States)

    Holtz, Barry R; Berquist, Brian R; Bennett, Lindsay D; Kommineni, Vally J M; Munigunti, Ranjith K; White, Earl L; Wilkerson, Don C; Wong, Kah-Yat I; Ly, Lan H; Marcel, Sylvain

    2015-10-01

    Rapid, large-scale manufacture of medical countermeasures can be uniquely met by the plant-made-pharmaceutical platform technology. As a participant in the Defense Advanced Research Projects Agency (DARPA) Blue Angel project, the Caliber Biotherapeutics facility was designed, constructed, commissioned and released a therapeutic target (H1N1 influenza subunit vaccine) in manufacturing facilities, with the capacity to process over 3500 kg of plant biomass per week in an automated multilevel growing environment using proprietary LED lighting. The facility can commission additional plant grow rooms that are already built to double this capacity. In addition to the commercial-scale manufacturing facility, a pilot production facility was designed based on the large-scale manufacturing specifications as a way to integrate product development and technology transfer. The primary research, development and manufacturing system employs vacuum-infiltrated Nicotiana benthamiana plants grown in a fully contained, hydroponic system for transient expression of recombinant proteins. This expression platform has been linked to a downstream process system, analytical characterization, and assessment of biological activity. This integrated approach has demonstrated rapid, high-quality production of therapeutic monoclonal antibody targets, including a panel of rituximab biosimilar/biobetter molecules and antiviral antibodies against influenza and dengue fever. © 2015 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  3. Recombinant AAV8-mediated intrastriatal gene delivery of CDNF protects rats against methamphetamine neurotoxicity

    Science.gov (United States)

    Wang, Lizheng; Wang, Zixuan; Xu, Xiaoyu; Zhu, Rui; Bi, Jinpeng; Liu, Wenmo; Feng, Xinyao; Wu, Hui; Zhang, Haihong; Wu, Jiaxin; Kong, Wei; Yu, Bin; Yu, Xianghui

    2017-01-01

    Methamphetamine (METH) exerts significant neurotoxicity in experimental animals and humans when taken at high doses or abused chronically. Long-term abusers have decreased dopamine levels, and they are more likely to develop Parkinson's disease (PD). To date, few medications are available to treat the METH-induced damage of neurons. Glial cell line-derived neurotrophic factor (GDNF) has been previously shown to reduce the dopamine-depleting effects of neurotoxic doses of METH. However, the effect of cerebral dopamine neurotrophic factor (CDNF), which has been reported to be more specific and efficient than GDNF in protecting dopaminergic neurons against 6-OHDA toxicity, in attenuating METH neurotoxicity has not been determined. Thus, the present study aimed to evaluate the neuroprotective effect of CDNF against METH-induced damage to the dopaminergic system in vitro and in vivo. In vitro, CDNF protein increased the survival rate and reduced the tyrosine hydroxylase (TH) loss of METH-treated PC12 cells. In vivo, METH was administered to rats following human CDNF overexpression mediated by the recombinant adeno-associated virus. Results demonstrated that CDNF overexpression in the brain could attenuate the METH-induced dopamine and TH loss in the striatum but could not lower METH-induced hyperthermia. PMID:28553166

  4. Adeno-Associated Viral Vector (Serotype 2)-Nerve Growth Factor for Patients With Alzheimer Disease: A Randomized Clinical Trial.

    Science.gov (United States)

    Rafii, Michael S; Tuszynski, Mark H; Thomas, Ronald G; Barba, David; Brewer, James B; Rissman, Robert A; Siffert, Joao; Aisen, Paul S

    2018-03-26

    Nerve growth factor (NGF) is an endogenous neurotrophic factor that prevents the death and augments the functional state of cholinergic neurons of the basal forebrain, a cell population that undergoes extensive degeneration in Alzheimer disease (AD). To determine whether stereotactically guided intracerebral injections of adeno-associated viral vector (serotype 2)-nerve growth factor (AAV2-NGF) are well tolerated and exhibit preliminary evidence of impact on cognitive decline in mild to moderate AD-associated dementia. In a multicenter phase 2 trial, 49 participants with mild to moderate AD were randomly assigned in a 1:1 ratio to receive stereotactically guided intracerebral injections of AAV2-NGF or sham surgery. Participants were enrolled between November 2009 and December 2012. Analyses began in February 2015. The study was conducted at 10 US academic medical centers. Eligibility required a diagnosis of mild to moderate dementia due to AD and individuals aged 55 to 80 years. A total of 39 participants did not pass screening; the most common reason was Mini-Mental State Examination scores below cutoff. Analyses were intention-to-treat. Stereotactically guided intracerebral injections of AAV2-NGF into the nucleus basalis of Meynert of each hemisphere or sham surgery. Change from baseline on the Alzheimer Disease Assessment Scale-cognitive subscale at month 24. Among 49 participants, 21 (43%) were women, 42 (86%) self-identified as white, and the mean (SD) age was 68 (6.4) years. AAV2-NGF was safe and well-tolerated through 24 months. No significant difference was noted between the treatment group and placebo on the primary outcome measure, the Alzheimer Disease Assessment Scale-cognitive subscale (mean [SD] score, 14.52 [4.66] vs 9.11 [4.65], P = .17). This multicenter randomized clinical trial demonstrated the feasibility of sham-surgery-controlled stereotactic gene delivery studies in patients with AD. AAV2-NGF delivery was well-tolerated but did not

  5. Intravenous administration of the adeno-associated virus-PHP.B capsid fails to upregulate transduction efficiency in the marmoset brain.

    Science.gov (United States)

    Matsuzaki, Yasunori; Konno, Ayumu; Mochizuki, Ryuta; Shinohara, Yoichiro; Nitta, Keisuke; Okada, Yukihiro; Hirai, Hirokazu

    2018-02-05

    Intravenous administration of adeno-associated virus (AAV)-PHP.B, a capsid variant of AAV9 containing seven amino acid insertions, results in a greater permeability of the blood brain barrier (BBB) than standard AAV9 in mice, leading to highly efficient and global transduction of the central nervous system (CNS). The present study aimed to examine whether the enhanced BBB penetrance of AAV-PHP.B observed in mice also occurs in non-human primates. Thus, a young adult (age, 1.6 years) and an old adult (age, 7.2 years) marmoset received an intravenous injection of AAV-PHP.B expressing enhanced green fluorescent protein (EGFP) under the control of the constitutive CBh promoter (a hybrid of cytomegalovirus early enhancer and chicken β-actin promoter). Age-matched control marmosets were treated with standard AAV9-capsid vectors. The animals were sacrificed 6 weeks after the viral injection. Based on the results, only limited transduction of neurons (0-2%) and astrocytes (0.1-2.5%) was observed in both AAV-PHP.B- and AAV9-treated marmosets. One noticeable difference between AAV-PHP.B and AAV9 was the marked transduction of the peripheral dorsal root ganglia neurons. Indeed, the soma and axons in the projection from the spinal cord to the nucleus cuneatus in the medulla oblongata were strongly labeled with EGFP by AAV-PHP.B. Thus, except for the peripheral dorsal root ganglia neurons, the AAV-PHP.B transduction efficiency in the CNS of marmosets was comparable to that of AAV9 vectors. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Delivery of Human EV71 Receptors by Adeno-Associated Virus Increases EV71 Infection-Induced Local Inflammation in Adult Mice

    Directory of Open Access Journals (Sweden)

    Hung-Bo Hsiao

    2014-01-01

    Full Text Available Enterovirus71 (EV71 is now recognized as an emerging neurotropic virus in Asia and one major causative agent of hand-foot-mouth diseases (HFMD. However potential animal models for vaccine development are limited to young mice. In this study, we used an adeno-associated virus (AAV vector to introduce the human EV71 receptors P-selectin glycoprotein ligand-1 (hPSGL1 or a scavenger receptor class-B member-2 (hSCARB2 into adult ICR mice to change their susceptibility to EV71 infection. Mice were administered AAV-hSCARB2 or AAV-hPSGL1 through intravenous and oral routes. After three weeks, expression of human SCARB2 and PSGL1 was detected in various organs. After infection with EV71, we found that the EV71 viral load in AAV-hSCARB2- or AAV-hPSGL1-transduced mice was higher than that of the control mice in both the brain and intestines. The presence of EV71 viral particles in tissues was confirmed using immunohistochemistry analysis. Moreover, inflammatory cytokines were induced in the brain and intestines of AAV-hSCARB2- or AAV-hPSGL1-transduced mice after EV71 infection but not in wild-type mice. However, neurological disease was not observed in these animals. Taken together, we successfully infected adult mice with live EV71 and induced local inflammation using an AAV delivery system.

  7. Overcoming tumor resistance by heterologous adeno-poxvirus combination therapy

    Directory of Open Access Journals (Sweden)

    Markus Vähä-Koskela

    2014-01-01

    Full Text Available Successful cancer control relies on overcoming resistance to cell death and on activation of host antitumor immunity. Oncolytic viruses are particularly attractive in this regard, as they lyse infected tumor cells and trigger robust immune responses during the infection. However, repeated injections of the same virus promote antiviral rather than antitumor immunity and tumors may mount innate antiviral defenses to restrict oncolytic virus replication. In this article, we have explored if alternating the therapy virus could circumvent these problems. We demonstrate in two virus-resistant animal models a substantial delay in antiviral immune- and innate cellular response induction by alternating injections of two immunologically distinct oncolytic viruses, adenovirus, and vaccinia virus. Our results are in support of clinical development of heterologous adeno-/vaccinia virus therapy of cancer.

  8. Hydrogen recombiner development at AECL

    International Nuclear Information System (INIS)

    Dewit, W.A.; Koroll, G.W.; Loesel Sitar, J.; Graham, W.R.C.

    1997-01-01

    Catalytic recombiners have been developed at AECL for the purpose of hydrogen removal in post-accident nuclear containment buildings. The recombiners are based on a particular catalyst designed by AECL which has extraordinary resistance to fouling from water and water vapour and a large thermodynamic range of operation. The catalysts were developed, originally, for the purpose of heavy water manufacturing by way of a catalytic exchange process. Application of these catalyst materials in recombiners for containment applications began in the late 1980's. The first application was a passive recombiner, qualified for use in control of radiolytic hydrogen in the headspace of a pool-type experimental reactor of AECL design in 1988. The passive, or natural convection recombiner concept has continued development to commercial stage for application in power reactor containments. This paper reviews the AECL recombiner development, describes the current model and shows results from tests of full-scale recombiners in the Large Scale Vented Combustion Test Facility at AECL-WL. The AECL recombiner is designed for compactness and ease of engineering into containment. The design is a simple, open-ended rectangular enclosure with catalyst elements arranged inside to promote optimum convective flow driven by heat of recombination at the catalyst surface. Self start, as evidenced by catalyst heating and initiation of flow, is achieved in less than 1% hydrogen, with available oxygen, at room temperature and 100% relative humidity. This low temperature start-up in condensing atmospheres is viewed as the most challenging condition for wet-proofing effectiveness. Cold start-up is a vital performance requirement in containments, such as CANDU, where engineered air-cooling systems are operating and where long-term hydrogen control is required, after containment atmospheres have cooled. Once started, the removal capacity scales linearly with the inlet cross-section area and the partial

  9. Experimental evolution across different thermal regimes yields genetic divergence in recombination fraction but no divergence in temperature associated plastic recombination.

    Science.gov (United States)

    Kohl, Kathryn P; Singh, Nadia D

    2018-04-01

    Phenotypic plasticity is pervasive in nature. One mechanism underlying the evolution and maintenance of such plasticity is environmental heterogeneity. Indeed, theory indicates that both spatial and temporal variation in the environment should favor the evolution of phenotypic plasticity under a variety of conditions. Cyclical environmental conditions have also been shown to yield evolved increases in recombination frequency. Here, we use a panel of replicated experimental evolution populations of D. melanogaster to test whether variable environments favor enhanced plasticity in recombination rate and/or increased recombination rate in response to temperature. In contrast to expectation, we find no evidence for either enhanced plasticity in recombination or increased rates of recombination in the variable environment lines. Our data confirm a role of temperature in mediating recombination fraction in D. melanogaster, and indicate that recombination is genetically and plastically depressed under lower temperatures. Our data further suggest that the genetic architectures underlying plastic recombination and population-level variation in recombination rate are likely to be distinct. © 2018 The Author(s). Evolution © 2018 The Society for the Study of Evolution.

  10. Recombinant human parvovirus B19 vectors: erythroid cell-specific delivery and expression of transduced genes.

    Science.gov (United States)

    Ponnazhagan, S; Weigel, K A; Raikwar, S P; Mukherjee, P; Yoder, M C; Srivastava, A

    1998-06-01

    A novel packaging strategy combining the salient features of two human parvoviruses, namely the pathogenic parvovirus B19 and the nonpathogenic adeno-associated virus type 2 (AAV), was developed to achieve erythroid cell-specific delivery as well as expression of the transduced gene. The development of such a chimeric vector system was accomplished by packaging heterologous DNA sequences cloned within the inverted terminal repeats of AAV and subsequently packaging the DNA inside the capsid structure of B19 virus. Recombinant B19 virus particles were assembled, as evidenced by electron microscopy as well as DNA slot blot analyses. The hybrid vector failed to transduce nonerythroid human cells, such as 293 cells, as expected. However, MB-02 cells, a human megakaryocytic leukemia cell line which can be infected by B19 virus following erythroid differentiation with erythropoietin (N. C. Munshi, S. Z. Zhou, M. J. Woody, D. A. Morgan, and A. Srivastava, J. Virol. 67:562-566, 1993) but lacks the putative receptor for AAV (S. Ponnazhagan, X.-S. Wang, M. J. Woody, F. Luo, L. Y. Kang, M. L. Nallari, N. C. Munshi, S. Z. Zhou, and A. Srivastava, J. Gen. Virol. 77:1111-1122, 1996), were readily transduced by this vector. The hybrid vector was also found to specifically target the erythroid population in primary human bone marrow cells as well as more immature hematopoietic progenitor cells following erythroid differentiation, as evidenced by selective expression of the transduced gene in these target cells. Preincubation with anticapsid antibodies against B19 virus, but not anticapsid antibodies against AAV, inhibited transduction of primary human erythroid cells. The efficiency of transduction of primary human erythroid cells by the recombinant B19 virus vector was significantly higher than that by the recombinant AAV vector. Further development of the AAV-B19 virus hybrid vector system should prove beneficial in gene therapy protocols aimed at the correction of inherited and

  11. Recombinant Human Parvovirus B19 Vectors: Erythroid Cell-Specific Delivery and Expression of Transduced Genes

    Science.gov (United States)

    Ponnazhagan, Selvarangan; Weigel, Kirsten A.; Raikwar, Sudhanshu P.; Mukherjee, Pinku; Yoder, Mervin C.; Srivastava, Arun

    1998-01-01

    A novel packaging strategy combining the salient features of two human parvoviruses, namely the pathogenic parvovirus B19 and the nonpathogenic adeno-associated virus type 2 (AAV), was developed to achieve erythroid cell-specific delivery as well as expression of the transduced gene. The development of such a chimeric vector system was accomplished by packaging heterologous DNA sequences cloned within the inverted terminal repeats of AAV and subsequently packaging the DNA inside the capsid structure of B19 virus. Recombinant B19 virus particles were assembled, as evidenced by electron microscopy as well as DNA slot blot analyses. The hybrid vector failed to transduce nonerythroid human cells, such as 293 cells, as expected. However, MB-02 cells, a human megakaryocytic leukemia cell line which can be infected by B19 virus following erythroid differentiation with erythropoietin (N. C. Munshi, S. Z. Zhou, M. J. Woody, D. A. Morgan, and A. Srivastava, J. Virol. 67:562–566, 1993) but lacks the putative receptor for AAV (S. Ponnazhagan, X.-S. Wang, M. J. Woody, F. Luo, L. Y. Kang, M. L. Nallari, N. C. Munshi, S. Z. Zhou, and A. Srivastava, J. Gen. Virol. 77:1111–1122, 1996), were readily transduced by this vector. The hybrid vector was also found to specifically target the erythroid population in primary human bone marrow cells as well as more immature hematopoietic progenitor cells following erythroid differentiation, as evidenced by selective expression of the transduced gene in these target cells. Preincubation with anticapsid antibodies against B19 virus, but not anticapsid antibodies against AAV, inhibited transduction of primary human erythroid cells. The efficiency of transduction of primary human erythroid cells by the recombinant B19 virus vector was significantly higher than that by the recombinant AAV vector. Further development of the AAV-B19 virus hybrid vector system should prove beneficial in gene therapy protocols aimed at the correction of inherited

  12. Activation of the cellular unfolded protein response by recombinant adeno-associated virus vectors.

    Directory of Open Access Journals (Sweden)

    Balaji Balakrishnan

    Full Text Available The unfolded protein response (UPR is a stress-induced cyto-protective mechanism elicited towards an influx of large amount of proteins in the endoplasmic reticulum (ER. In the present study, we evaluated if AAV manipulates the UPR pathways during its infection. We first examined the role of the three major UPR axes, namely, endoribonuclease inositol-requiring enzyme-1 (IRE1α, activating transcription factor 6 (ATF6 and PKR-like ER kinase (PERK in AAV infected cells. Total RNA from mock or AAV infected HeLa cells were used to determine the levels of 8 different ER-stress responsive transcripts from these pathways. We observed a significant up-regulation of IRE1α (up to 11 fold and PERK (up to 8 fold genes 12-48 hours after infection with self-complementary (scAAV2 but less prominent with single-stranded (ssAAV2 vectors. Further studies demonstrated that scAAV1 and scAAV6 also induce cellular UPR in vitro, with AAV1 vectors activating the PERK pathway (3 fold while AAV6 vectors induced a significant increase on all the three major UPR pathways [6-16 fold]. These data suggest that the type and strength of UPR activation is dependent on the viral capsid. We then examined if transient inhibition of UPR pathways by RNA interference has an effect on AAV transduction. siRNA mediated silencing of PERK and IRE1α had a modest effect on AAV2 and AAV6 mediated gene expression (∼1.5-2 fold in vitro. Furthermore, hepatic gene transfer of scAAV2 vectors in vivo, strongly elevated IRE1α and PERK pathways (2 and 3.5 fold, respectively. However, when animals were pre-treated with a pharmacological UPR inhibitor (metformin during scAAV2 gene transfer, the UPR signalling and its subsequent inflammatory response was attenuated concomitant to a modest 2.8 fold increase in transgene expression. Collectively, these data suggest that AAV vectors activate the cellular UPR pathways and their selective inhibition may be beneficial during AAV mediated gene transfer.

  13. Monitoring of the antiviral potential of bee venom and wax extracts against Adeno-7 (DNA) and Rift Valley fever virus (RNA) viruses models.

    Science.gov (United States)

    Hassan, Mostafa I; Mohamed, Aly F; Amer, Moner A; Hammad, Kotb M; Riad, Saber A

    2015-04-01

    This study monitored the antiviral potential of bee venom and four wax extracts, ethanol white and black beeswax (EWW/EBW) and acetone white and black beeswax (AWW/ABW) extracts. Two different virus models namely Adeno-7 as DNA model and RVFV as RNA virus models. End point calculation assay was used to calculate virus depletion titer. The depletion of viral infectivity titer of ABW to Adeno-7 virus showed strong antiviral activity recorded a depletion of viral infectivity titer (1.66 log (10)/ ml) that gave equal action with bee venom and more than interferon IFN (1 log (10)/ ml). On the other hand, antiviral activity of EBW showed a moderate potential, while AWW showed no antiviral activity. Finally EWW showed synergetic activity against Adeno-7 virus activity. Thus, activity of wax extracts to RVFV was arranged in order of IFN bee venom > AWW & EBW > EWW and ABW recorded 3.34, 0.65, 0.5, 0.34 respectively. It is the first time to study the beeswax effect against DNA and RNA virus' models; acetone black beeswax recorded a depletion titer 1.66 log (10)/ml.

  14. Absence of interference in association with gene conversion in Sordaria fimicola, and presence of interference in association with ordinary recombination.

    Science.gov (United States)

    Kitani, Y

    1978-07-01

    From the analysis of large samples of gene conversion asci in the g locus of Sordaria fimicola, it was found that neither the conversion event itself nor conversion-associated recombination of flanking markers cause either chiasma or chromatid interference with crossing over in a neighboring interval. The presence of more than one kind of crossover event, one causing interference the other not, is considered. The existence of two kinds of gene loci, one of single-cistron composition and the other of multiple-cistron composition, is discussed in relation to reciprocal recombination within a locus.

  15. Adeno-associated virus gene therapy vector scAAVIGF-I for transduction of equine articular chondrocytes and RNA-seq analysis.

    Science.gov (United States)

    Hemphill, D D; McIlwraith, C W; Slayden, R A; Samulski, R J; Goodrich, L R

    2016-05-01

    IGF-I is one of several anabolic factors being investigated for the treatment of osteoarthritis (OA). Due to the short biological half-life, extended administration is required for more robust cartilage healing. Here we create a self-complimentary adeno-associated virus (AAV) gene therapy vector utilizing the transgene for IGF-I. Various biochemical assays were performed to investigate the cellular response to scAAVIGF-I treatment vs an scAAVGFP positive transduction control and a negative for transduction control culture. RNA-sequencing analysis was also performed to establish a differential regulation profile of scAAVIGF-I transduced chondrocytes. Biochemical analyses indicated an average media IGF-I concentration of 608 ng/ml in the scAAVIGF-I transduced chondrocytes. This increase in IGF-I led to increased expression of collagen type II and aggrecan and increased protein concentrations of cellular collagen type II and media glycosaminoglycan vs both controls. RNA-seq revealed a global regulatory pattern consisting of 113 differentially regulated GO categories including those for chondrocyte and cartilage development and regulation of apoptosis. This research substantiates that scAAVIGF-I gene therapy vector increased production of IGF-I to clinically relevant levels with a biological response by chondrocytes conducive to increased cartilage healing. The RNA-seq further established a set of differentially expressed genes and gene ontologies induced by the scAAVIGF-I vector while controlling for AAV infection. This dataset provides a static representation of the cellular transcriptome that, while only consisting of one time point, will allow for further gene expression analyses to compare additional cartilage healing therapeutics or a transient cellular response. Copyright © 2015. Published by Elsevier Ltd.

  16. An adeno-associated virus-based intracellular sensor of pathological nuclear factor-κB activation for disease-inducible gene transfer.

    Directory of Open Access Journals (Sweden)

    Abdelwahed Chtarto

    Full Text Available Stimulation of resident cells by NF-κB activating cytokines is a central element of inflammatory and degenerative disorders of the central nervous system (CNS. This disease-mediated NF-κB activation could be used to drive transgene expression selectively in affected cells, using adeno-associated virus (AAV-mediated gene transfer. We have constructed a series of AAV vectors expressing GFP under the control of different promoters including NF-κB -responsive elements. As an initial screen, the vectors were tested in vitro in HEK-293T cells treated with TNF-α. The best profile of GFP induction was obtained with a promoter containing two blocks of four NF-κB -responsive sequences from the human JCV neurotropic polyoma virus promoter, fused to a new tight minimal CMV promoter, optimally distant from each other. A therapeutical gene, glial cell line-derived neurotrophic factor (GDNF cDNA under the control of serotype 1-encapsidated NF-κB -responsive AAV vector (AAV-NF was protective in senescent cultures of mouse cortical neurons. AAV-NF was then evaluated in vivo in the kainic acid (KA-induced status epilepticus rat model for temporal lobe epilepsy, a major neurological disorder with a central pathophysiological role for NF-κB activation. We demonstrate that AAV-NF, injected in the hippocampus, responded to disease induction by mediating GFP expression, preferentially in CA1 and CA3 neurons and astrocytes, specifically in regions where inflammatory markers were also induced. Altogether, these data demonstrate the feasibility to use disease-activated transcription factor-responsive elements in order to drive transgene expression specifically in affected cells in inflammatory CNS disorders using AAV-mediated gene transfer.

  17. Inherent risks associated with manufacture of bioengineered ocular surface tissue.

    Science.gov (United States)

    Schwab, Ivan R; Johnson, Nigel T; Harkin, Damien G

    2006-12-01

    To review the potential health risks associated with bioengineered ocular surface tissue, which serves as a bellwether for other tissues. All clinical trials using bioengineered ocular surface tissue published between July 1, 1996, and June 30, 2005, were reviewed with respect to materials used and statements of risk assessment, risk remediation, adverse events, manufacturing standards, and regulatory oversight. Ninety-five percent of investigational protocols used 1 or more animal-derived products and an overlapping 95% used 1 or more donor human tissues. Consideration of risks reveals a very low probability of potential harm but a significant risk of disability or death if such an event were to occur. Details of ethics approval, patient consent, and donor serologic test results were not consistently provided. No references were made to risk assessment or to codes of manufacturing and clinical practice. While a degree of risk is associated with bioengineered ocular surface tissue, investigational reports of this new technology have yet to address issues of risk management and regulatory oversight. Attention to risk and codes of manufacturing and clinical practice will be required for advancement of the technology. We suggest the adoption of international standards to address these issues.

  18. Commercialization of new biotechnology: a systematic review of 16 commercial case studies in a novel manufacturing sector.

    Science.gov (United States)

    Paul, Matthew J; Thangaraj, Harry; Ma, Julian K-C

    2015-10-01

    The 1980s and 1990s saw a major expansion of biotechnology into new areas of science including genomics and recombinant technologies. This was coupled to the widespread emergence of academics into the commercial sector as they were encouraged to spin out companies or commercialize their intellectual property. There were many opportunities to raise investment, and extraordinary success stories were prominent across many areas of technology. The field of plant biotechnology for manufacturing recombinant pharmaceuticals (molecular pharming) emerged and was developed in this period. Like other biotechnologies, this was an exciting new development which offered some very obvious benefits and commercial advantages. In particularly, plant molecular pharming represented a highly novel and potentially disruptive manufacturing technology for recombinant proteins. Twenty-five years on, a series of interviews with senior members of sixteen of the most prominent companies involved in the field provides insight into the original drivers for commercialization, strategic thinking and planning behind key commercial decisions and an insider view into the major reasons for commercial success or failure. These observations and recurring themes identified across a number of commercial ventures remain relevant today, as new biotech companies continue to spin out of the world of academia. © 2015 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  19. Mapping the Structural Determinants Responsible for Enhanced T Cell Activation to the Immunogenic Adeno-Associated Virus Capsid from Isolate Rhesus 32.33

    Science.gov (United States)

    Mays, Lauren E.; Wang, Lili; Tenney, Rebeca; Bell, Peter; Nam, Hyun-Joo; Lin, Jianping; Gurda, Brittney; Van Vliet, Kim; Mikals, Kyle; Agbandje-McKenna, Mavis

    2013-01-01

    Avoiding activation of immunity to vector-encoded proteins is critical to the safe and effective use of adeno-associated viral (AAV) vectors for gene therapy. While commonly used serotypes, such as AAV serotypes 1, 2, 7, 8, and 9, are often associated with minimal and/or dysfunctional CD8+ T cell responses in mice, the threshold for immune activation appears to be lower in higher-order species. We have modeled this discrepancy within the mouse by identifying two capsid variants with differential immune activation profiles: AAV serotype 8 (AAV8) and a hybrid between natural rhesus isolates AAVrh32 and AAVrh33 (AAVrh32.33). Here, we aimed to characterize the structural determinants of the AAVrh32.33 capsid that augment cellular immunity to vector-encoded proteins or those of AAV8 that may induce tolerance. We hypothesized that the structural domain responsible for differential immune activation could be mapped to surface-exposed regions of the capsid, such as hypervariable regions (HVRs) I to IX of VP3. To test this, a series of hybrid AAV capsids was constructed by swapping domains between AAV8 and AAVrh32.33. By comparing their ability to generate transgene-specific T cells in vivo versus the stability of transgene expression in the muscle, we confirmed that the functional domain lies within the VP3 portion of the capsid. Our studies were able to exclude the regions of VP3 which are not sufficient for augmenting the cellular immune response, notably, HVRs I, II, and V. We have also identified HVR IV as a region of interest in conferring the efficiency and stability of muscle transduction to AAVrh32.33. PMID:23720715

  20. Leber’s congenital amaurosis and the role of gene therapy in congenital retinal disorders

    Directory of Open Access Journals (Sweden)

    Walid Sharif

    2017-03-01

    Full Text Available Leber’s congenital amaurosis (LCA and recent gene therapy advancement for treating inherited retinopathies were extensive literature reviewed using MEDLINE, PubMed and EMBASE. Adeno-associated viral vectors were the most utilised vectors for ocular gene therapy. Cone photoreceptor cells might use an alternate pathway which was not reliant of the retinal pigment epithelium (RPE derived retinoid isomerohydrolase (RPE65 to access the 11-cis retinal dehydechromophore. Research efforts dedicated on the progression of a gene-based therapy for the treatment of LCA2. Such gene therapy approaches were extremely successful in canine, porcine and rodent LCA2 models. The recombinant AAV2.hRPE65v2 adeno-associated vector contained the RPE65 cDNA and was replication deficient. Its in vitro injection in target cells induced RPE65 protein production. The gene therapy trials that were so far conducted for inherited retinopathies have generated promising results. Phase I clinical trials to cure LCA and choroideremia demonstrated that adeno-associated viral vectors containing RPE genes and photoreceptors respectively, could be successfully administered to inherited retinopathy patients. A phase III trial is presently ongoing and if successful, it will lead the way to additional gene therapy attempts to cure monogenic, inherited retinopathies.

  1. Tyrosine-phosphorylation of AAV2 vectors and its consequences on viral intracellular trafficking and transgene expression

    OpenAIRE

    Zhong, Li; Li, Baozheng; Jayandharan, Giridhararao; Mah, Cathryn S.; Govindasamy, Lakshmanan; Agbandje-McKenna, Mavis; Herzog, Roland W.; Weigel-Van Aken, Kirsten A.; Hobbs, Jacqueline A.; Zolotukhin, Sergei; Muzyczka, Nicholas; Srivastava, Arun

    2008-01-01

    We have documented that epidermal growth factor receptor protein tyrosine kinase (EGFR-PTK) signaling negatively affects intracellular trafficking and transduction efficiency of recombinant adeno-associated virus 2 (AAV2) vectors. Specifically, inhibition of EGFR-PTK signaling leads to decreased ubiquitination of AAV2 capsid proteins, which in turn, facilitates viral nuclear transport by limiting proteasome-mediated degradation of AAV2 vectors. In the present studies, we observed that AAV cap...

  2. Use of self-complementary adeno-associated virus serotype 2 as a tracer for labeling axons: implications for axon regeneration.

    Directory of Open Access Journals (Sweden)

    Yingpeng Liu

    Full Text Available Various types of tracers are available for use in axon regeneration, but they require an extra operational tracer injection, time-consuming immunohistochemical analysis and cause non-specific labeling. Considerable efforts over the past years have explored other methodologies, especially the use of viral vectors, to investigate axon regeneration after injury. Recent studies have demonstrated that self-complementary Adeno-Associated Virus (scAAV induced a high transduction efficiency and faster expression of transgenes. Here, we describe for the first time the use of scAAV2-GFP to label long-projection axons in the corticospinal tract (CST, rubrospinal tract (RST and the central axons of dorsal root ganglion (DRG in the normal and lesioned animal models. We found that scAAV2-GFP could efficiently transduce neurons in the sensorimotor cortex, red nucleus and DRG. Strong GFP expression could be transported anterogradely along the axon to label the numerous axon fibers from CST, RST and central axons of DRG separately. Comparison of the scAAV2 vector with single-stranded (ss AAV2 vector in co-labeled sections showed that the scAAV2 vector induced a faster and stronger transgene expression than the ssAAV2 vector in DRG neurons and their axons. In both spinal cord lesion and dorsal root crush injury models, scAAV-GFP could efficiently label the lesioned and regenerated axons around the lesion cavity and the dorsal root entry zone (DREZ respectively. Further, scAAV2-GFP vector could be combined with traditional tracer to specifically label sensory and motor axons after spinal cord lesion. Thus, we show that using scAAV2-GFP as a tracer is a more effective and efficient way to study axon regeneration following injury.

  3. Induction of Immune Tolerance to Foreign Protein via Adeno-Associated Viral Vector Gene Transfer in Mid-Gestation Fetal Sheep

    Science.gov (United States)

    Davey, Marcus G.; Riley, John S.; Andrews, Abigail; Tyminski, Alec; Limberis, Maria; Pogoriler, Jennifer E.; Partridge, Emily; Olive, Aliza; Hedrick, Holly L.; Flake, Alan W.; Peranteau, William H.

    2017-01-01

    A major limitation to adeno-associated virus (AAV) gene therapy is the generation of host immune responses to viral vector antigens and the transgene product. The ability to induce immune tolerance to foreign protein has the potential to overcome this host immunity. Acquisition and maintenance of tolerance to viral vector antigens and transgene products may also permit repeat administration thereby enhancing therapeutic efficacy. In utero gene transfer (IUGT) takes advantage of the immunologic immaturity of the fetus to induce immune tolerance to foreign antigens. In this large animal study, in utero administration of AAV6.2, AAV8 and AAV9 expressing green fluorescent protein (GFP) to ~60 day fetal sheep (term: ~150 days) was performed. Transgene expression and postnatal immune tolerance to GFP and viral antigens were assessed. We demonstrate 1) hepatic expression of GFP 1 month following in utero administration of AAV6.2.GFP and AAV8.GFP, 2) in utero recipients of either AAV6.2.GFP or AAV8.GFP fail to mount an anti-GFP antibody response following postnatal GFP challenge and lack inflammatory cellular infiltrates at the intramuscular site of immunization, 3) a serotype specific anti-AAV neutralizing antibody response is elicited following postnatal challenge of in utero recipients of AAV6.2 or AAV8 with the corresponding AAV serotype, and 4) durable hepatic GFP expression was observed up to 6 months after birth in recipients of AAV8.GFP but expression was lost between 1 and 6 months of age in recipients of AAV6.2.GFP. The current study demonstrates, in a preclinical large animal model, the potential of IUGT to achieve host immune tolerance to the viral vector transgene product but also suggests that a single exposure to the vector capsid proteins at the time of IUGT is inadequate to induce tolerance to viral vector antigens. PMID:28141818

  4. Construction of PR39 recombinant AAV under control of the HRE promoter and the effect of recombinant AAV on gene therapy of ischemic heart disease.

    Science.gov (United States)

    Sun, Lijun; Hao, Yuewen; Nie, Xiaowei; Zhang, Xuexin; Yang, Guangxiao; Wang, Quanying

    2012-11-01

    The objective of this study was to investigate the effect of the PR39 recombinant adeno-associated virus (AAV) controlled by the hypoxia-responsive element (HRE) on gene therapy of ischemic heart disease. The minimal HRE was artificially synthesized and the AAV vector controlled by HRE was introduced with NT4-TAT-His-PR39 to investigate the expression of AAV-PR39 in hypoxic vascular endothelial cells (VEC) of human umbilical vein (CRL-1730 cell line) and the angiogenesis-promoting effect in pigs with acute myocardial infraction (AMI). The minimal HRE/CMV was designed and artificially synthesized using the PCR method and cloned with the T vector cloning method. The pSS-HRE-CMV-NT4-6His-PR39-PolyA-AAV plasmid was constructed. Using the calcium phosphate precipitation method, HEK-293 cells were co-transfected with three plasmids to produce the recombinant virus. An equal volume of pSS-HRE-CMV-NT4-6His-PR39-PolyAAAV and enterovirus (EV, blank virus) was transfected into CRL-1730 cell lines, respectively. The immunohistochemical method was used to assay the expression of 6xHis in CRL-1730 cell lines and the expression of PR39 under hypoxia. Eighteen AMI miniature pigs were randomized into the experimental group (HRE-AAV-PR39 group), control group 1 (physical saline group) and control group 2 (EV group). The area of ischemia was assessed with conventional MRI and myocardium perfusion MRI. Pigs were sacrificed at preset time-points to obtain samples of ischemic myocardium. Morphological and pathological data were collected. According to data in the literature and databases, the minimal HRE was designed and synthesized with the PCR method. A large number of HREs were connected to modified pSSHGAAV (pSSV9int-/XbaI) vector followed by insertion of the NT4-6His-PR39 gene segment and, thus, the recombinant plasmid pSS-HRE-CMV-NT4-6His-PR39-PolyA-AAV was successfully constructed. The expression of 6xHis in CRL-1730 cells under the regulation of HRE was assayed using the

  5. Genetic modification of adeno-associated viral vector type 2 capsid enhances gene transfer efficiency in polarized human airway epithelial cells.

    Science.gov (United States)

    White, April F; Mazur, Marina; Sorscher, Eric J; Zinn, Kurt R; Ponnazhagan, Selvarangan

    2008-12-01

    Cystic fibrosis (CF) is a common genetic disease characterized by defects in the expression of the CF transmembrane conductance regulator (CFTR) gene. Gene therapy offers better hope for the treatment of CF. Adeno-associated viral (AAV) vectors are capable of stable expression with low immunogenicity. Despite their potential in CF gene therapy, gene transfer efficiency by AAV is limited because of pathophysiological barriers in these patients. Although a few AAV serotypes have shown better transduction compared with the AAV2-based vectors, gene transfer efficiency in human airway epithelium has still not reached therapeutic levels. To engineer better AAV vectors for enhanced gene delivery in human airway epithelium, we developed and characterized mutant AAV vectors by genetic capsid modification, modeling the well-characterized AAV2 serotype. We genetically incorporated putative high-affinity peptide ligands to human airway epithelium on the GH loop region of AAV2 capsid protein. Six independent mutant AAV were constructed, containing peptide ligands previously reported to bind with high affinity for known and unknown receptors on human airway epithelial cells. The vectors were tested on nonairway cells and nonpolarized and polarized human airway epithelial cells for enhanced infectivity. One of the mutant vectors, with the peptide sequence THALWHT, not only showed the highest transduction in undifferentiated human airway epithelial cells but also indicated significant transduction in polarized cells. Interestingly, this modified vector was also able to infect cells independently of the heparan sulfate proteoglycan receptor. Incorporation of this ligand on other AAV serotypes, which have shown improved gene transfer efficiency in the human airway epithelium, may enhance the application of AAV vectors in CF gene therapy.

  6. Adeno-associated virus-mediated expression of myostatin propeptide improves the growth of skeletal muscle and attenuates hyperglycemia in db/db mice.

    Science.gov (United States)

    Jiang, J G; Shen, G F; Li, J; Qiao, C; Xiao, B; Yan, H; Wang, D W; Xiao, X

    2017-03-01

    Inhibition of myostatin, a negative growth modulator for muscle, can functionally enhance muscle mass and improve glucose and fat metabolism in myostatin propeptide (MPRO) transgenic mice. This study was to investigate whether myostatin inhibition by adeno-associated virus (AAV)-mediated gene delivery of MPRO could improve muscle mass and achieve therapeutic effects on glucose regulation and lipid metabolism in the db/db mice and the mechanisms involved in that process. Eight-week-old male db/db mice were administered saline, AAV-GFP and AAV-MPRO/Fc vectors and monitored random blood glucose levels and body weight for 36 weeks. Body weight gain was not different during follow-up among the groups, but AAV-MPRO/Fc vectors resulted high level of MPRO in the blood companied by an increase in skeletal muscle mass and muscle hypertrophy. In addition, AAV-MPRO/Fc-treated db/db mice showed significantly lower blood glucose and insulin levels and significantly increased glucose tolerance and insulin sensitivity compared with the control groups (P<0.05). Moreover, these mice exhibited lower triglyceride (TG) and free fatty acid (FFA) content in the skeletal muscle, although no difference was observed in fat pad weights and serum TG and FFA levels. Finally, AAV-MPRO/Fc-treated mice had enhanced insulin signaling in the skeletal muscle. These data suggest that AAV-mediated MPRO therapy may provide an important clue for potential clinical applications to prevent type II diabetes, and these studies confirm that MPRO is a therapeutic target for type II diabetes.

  7. Recombination Modulates How Selection Affects Linked Sites in Drosophila

    Science.gov (United States)

    McGaugh, Suzanne E.; Heil, Caiti S. S.; Manzano-Winkler, Brenda; Loewe, Laurence; Goldstein, Steve; Himmel, Tiffany L.; Noor, Mohamed A. F.

    2012-01-01

    One of the most influential observations in molecular evolution has been a strong association between local recombination rate and nucleotide polymorphisms across the genome. This is interpreted as evidence for ubiquitous natural selection. The alternative explanation, that recombination is mutagenic, has been rejected by the absence of a similar association between local recombination rate and nucleotide divergence between species. However, many recent studies show that recombination rates are often very different even in closely related species, questioning whether an association between recombination rate and divergence between species has been tested satisfactorily. To circumvent this problem, we directly surveyed recombination across approximately 43% of the D. pseudoobscura physical genome in two separate recombination maps and 31% of the D. miranda physical genome, and we identified both global and local differences in recombination rate between these two closely related species. Using only regions with conserved recombination rates between and within species and accounting for multiple covariates, our data support the conclusion that recombination is positively related to diversity because recombination modulates Hill–Robertson effects in the genome and not because recombination is predominately mutagenic. Finally, we find evidence for dips in diversity around nonsynonymous substitutions. We infer that at least some of this reduction in diversity resulted from selective sweeps and examine these dips in the context of recombination rate. PMID:23152720

  8. B chromosomes are associated with redistribution of genetic recombination towards lower recombination chromosomal regions in perennial ryegrass.

    Science.gov (United States)

    Harper, John; Phillips, Dylan; Thomas, Ann; Gasior, Dagmara; Evans, Caron; Powell, Wayne; King, Julie; King, Ian; Jenkins, Glyn; Armstead, Ian

    2018-04-09

    Supernumerary 'B' chromosomes are non-essential components of the genome present in a range of plant and animal species-including many grasses. Within diploid and polyploid ryegrass and fescue species, including the forage grass perennial ryegrass (Lolium perenne L.), the presence of B chromosomes has been reported as influencing both chromosome pairing and chiasma frequencies. In this study, the effects of the presence/absence of B chromosomes on genetic recombination has been investigated through generating DArT (Diversity Arrays Technology) marker genetic maps for six perennial ryegrass diploid populations, the pollen parents of which contained either two B or zero B chromosomes. Through genetic and cytological analyses of these progeny and their parents, we have identified that, while overall cytological estimates of chiasma frequencies were significantly lower in pollen mother cells with two B chromosomes as compared with zero B chromosomes, the recombination frequencies within some marker intervals were actually increased, particularly for marker intervals in lower recombination regions of chromosomes, namely pericentromeric regions. Thus, in perennial ryegrass, the presence of two B chromosomes redistributed patterns of meiotic recombination in pollen mother cells in ways which could increase the range of allelic variation available to plant breeders.

  9. Assessment of toxicity and biodistribution of recombinant AAV8 vector–mediated immunomodulatory gene therapy in mice with Pompe disease

    Directory of Open Access Journals (Sweden)

    Gensheng Wang

    2014-01-01

    Full Text Available A preclinical safety study was conducted to evaluate the short- and long-term toxicity of a recombinant adeno-associated virus serotype 8 (AAV2/8 vector that has been developed as an immune-modulatory adjunctive therapy to recombinant human acid α-glucosidase (rhGAA, Myozyme enzyme replacement treatment (ERT for patients with Pompe disease (AAV2/8-LSPhGAApA. The AAV2/8-LSPhGAApA vector at 1.6 × 1013 vector particles/kg, after intravenous injection, did not cause significant short- or long-term toxicity. Recruitment of CD4+ (but not CD8+ lymphocytes to the liver was elevated in the vector-dosed male animals at study day (SD 15, and in group 8 animals at SD 113, in comparison to their respective control animals. Administration of the vector, either prior to or after the one ERT injection, uniformly prevented the hypersensitivity induced by subsequent ERT in males, but not always in female animals. The vector genome was sustained in all tissues through 16-week postdosing, except for in blood with a similar tissue tropism between males and females. Administration of the vector alone, or combined with the ERT, was effective in producing significantly increased GAA activity and consequently decreased glycogen accumulation in multiple tissues, and the urine biomarker, Glc4, was significantly reduced. The efficacy of the vector (or with ERT was better in males than in females, as demonstrated both by the number of tissues showing significantly effective responses and the extent of response in a given tissue. Given the lack of toxicity for AAV2/8LSPhGAApA, further consideration of clinical translation is warranted in Pompe disease.

  10. Absolute determination of single-stranded and self-complementary adeno-associated viral vector genome titers by droplet digital PCR.

    Science.gov (United States)

    Lock, Martin; Alvira, Mauricio R; Chen, Shu-Jen; Wilson, James M

    2014-04-01

    Accurate titration of adeno-associated viral (AAV) vector genome copies is critical for ensuring correct and reproducible dosing in both preclinical and clinical settings. Quantitative PCR (qPCR) is the current method of choice for titrating AAV genomes because of the simplicity, accuracy, and robustness of the assay. However, issues with qPCR-based determination of self-complementary AAV vector genome titers, due to primer-probe exclusion through genome self-annealing or through packaging of prematurely terminated defective interfering (DI) genomes, have been reported. Alternative qPCR, gel-based, or Southern blotting titering methods have been designed to overcome these issues but may represent a backward step from standard qPCR methods in terms of simplicity, robustness, and precision. Droplet digital PCR (ddPCR) is a new PCR technique that directly quantifies DNA copies with an unparalleled degree of precision and without the need for a standard curve or for a high degree of amplification efficiency; all properties that lend themselves to the accurate quantification of both single-stranded and self-complementary AAV genomes. Here we compare a ddPCR-based AAV genome titer assay with a standard and an optimized qPCR assay for the titration of both single-stranded and self-complementary AAV genomes. We demonstrate absolute quantification of single-stranded AAV vector genomes by ddPCR with up to 4-fold increases in titer over a standard qPCR titration but with equivalent readout to an optimized qPCR assay. In the case of self-complementary vectors, ddPCR titers were on average 5-, 1.9-, and 2.3-fold higher than those determined by standard qPCR, optimized qPCR, and agarose gel assays, respectively. Droplet digital PCR-based genome titering was superior to qPCR in terms of both intra- and interassay precision and is more resistant to PCR inhibitors, a desirable feature for in-process monitoring of early-stage vector production and for vector genome biodistribution

  11. Meiotic recombination in human oocytes.

    Directory of Open Access Journals (Sweden)

    Edith Y Cheng

    2009-09-01

    Full Text Available Studies of human trisomies indicate a remarkable relationship between abnormal meiotic recombination and subsequent nondisjunction at maternal meiosis I or II. Specifically, failure to recombine or recombination events located either too near to or too far from the centromere have been linked to the origin of human trisomies. It should be possible to identify these abnormal crossover configurations by using immunofluorescence methodology to directly examine the meiotic recombination process in the human female. Accordingly, we initiated studies of crossover-associated proteins (e.g., MLH1 in human fetal oocytes to analyze their number and distribution on nondisjunction-prone human chromosomes and, more generally, to characterize genome-wide levels of recombination in the human female. Our analyses indicate that the number of MLH1 foci is lower than predicted from genetic linkage analysis, but its localization pattern conforms to that expected for a crossover-associated protein. In studies of individual chromosomes, our observations provide evidence for the presence of "vulnerable" crossover configurations in the fetal oocyte, consistent with the idea that these are subsequently translated into nondisjunctional events in the adult oocyte.

  12. Site directed recombination

    Science.gov (United States)

    Jurka, Jerzy W.

    1997-01-01

    Enhanced homologous recombination is obtained by employing a consensus sequence which has been found to be associated with integration of repeat sequences, such as Alu and ID. The consensus sequence or sequence having a single transition mutation determines one site of a double break which allows for high efficiency of integration at the site. By introducing single or double stranded DNA having the consensus sequence flanking region joined to a sequence of interest, one can reproducibly direct integration of the sequence of interest at one or a limited number of sites. In this way, specific sites can be identified and homologous recombination achieved at the site by employing a second flanking sequence associated with a sequence proximal to the 3'-nick.

  13. Long-Term Efficacy Following Readministration of an Adeno-Associated Virus Vector in Dogs with Glycogen Storage Disease Type Ia

    Science.gov (United States)

    Demaster, Amanda; Luo, Xiaoyan; Curtis, Sarah; Williams, Kyha D.; Landau, Dustin J.; Drake, Elizabeth J.; Kozink, Daniel M.; Bird, Andrew; Crane, Bayley; Sun, Francis; Pinto, Carlos R.; Brown, Talmage T.; Kemper, Alex R.

    2012-01-01

    Abstract Glycogen storage disease type Ia (GSD-Ia) is the inherited deficiency of glucose-6-phosphatase (G6Pase), primarily found in liver and kidney, which causes life-threatening hypoglycemia. Dogs with GSD-Ia were treated with double-stranded adeno-associated virus (AAV) vectors encoding human G6Pase. Administration of an AAV9 pseudotyped (AAV2/9) vector to seven consecutive GSD-Ia neonates prevented hypoglycemia during fasting for up to 8 hr; however, efficacy eventually waned between 2 and 30 months of age, and readministration of a new pseudotype was eventually required to maintain control of hypoglycemia. Three of these dogs succumbed to acute hypoglycemia between 7 and 9 weeks of age; however, this demise could have been prevented by earlier readministration an AAV vector, as demonstrated by successful prevention of mortality of three dogs treated earlier in life. Over the course of this study, six out of nine dogs survived after readministration of an AAV vector. Of these, each dog required readministration on average every 9 months. However, two were not retreated until >34 months of age, while one with preexisting antibodies was re-treated three times in 10 months. Glycogen content was normalized in the liver following vector administration, and G6Pase activity was increased in the liver of vector-treated dogs in comparison with GSD-Ia dogs that received only with dietary treatment. G6Pase activity reached approximately 40% of normal in two female dogs following AAV2/9 vector administration. Elevated aspartate transaminase in absence of inflammation indicated that hepatocellular turnover in the liver might drive the loss of vector genomes. Survival was prolonged for up to 60 months in dogs treated by readministration, and all dogs treated by readministration continue to thrive despite the demonstrated risk for recurrent hypoglycemia and mortality from waning efficacy of the AAV2/9 vector. These preclinical data support the further translation of AAV

  14. Novel Vector Design and Hexosaminidase Variant Enabling Self-Complementary Adeno-Associated Virus for the Treatment of Tay-Sachs Disease.

    Science.gov (United States)

    Karumuthil-Melethil, Subha; Nagabhushan Kalburgi, Sahana; Thompson, Patrick; Tropak, Michael; Kaytor, Michael D; Keimel, John G; Mark, Brian L; Mahuran, Don; Walia, Jagdeep S; Gray, Steven J

    2016-07-01

    GM2 gangliosidosis is a family of three genetic neurodegenerative disorders caused by the accumulation of GM2 ganglioside (GM2) in neuronal tissue. Two of these are due to the deficiency of the heterodimeric (α-β), "A" isoenzyme of lysosomal β-hexosaminidase (HexA). Mutations in the α-subunit (encoded by HEXA) lead to Tay-Sachs disease (TSD), whereas mutations in the β-subunit (encoded by HEXB) lead to Sandhoff disease (SD). The third form results from a deficiency of the GM2 activator protein (GM2AP), a substrate-specific cofactor for HexA. In their infantile, acute forms, these diseases rapidly progress with mental and psychomotor deterioration resulting in death by approximately 4 years of age. After gene transfer that overexpresses one of the deficient subunits, the amount of HexA heterodimer formed would empirically be limited by the availability of the other endogenous Hex subunit. The present study used a new variant of the human HexA α-subunit, μ, incorporating critical sequences from the β-subunit that produce a stable homodimer (HexM) and promote functional interactions with the GM2AP- GM2 complex. We report the design of a compact adeno-associated viral (AAV) genome using a synthetic promoter-intron combination to allow self-complementary (sc) packaging of the HEXM gene. Also, a previously published capsid mutant, AAV9.47, was used to deliver the gene to brain and spinal cord while having restricted biodistribution to the liver. The novel capsid and cassette design combination was characterized in vivo in TSD mice for its ability to efficiently transduce cells in the central nervous system when delivered intravenously in both adult and neonatal mice. This study demonstrates that the modified HexM is capable of degrading long-standing GM2 storage in mice, and it further demonstrates the potential of this novel scAAV vector design to facilitate widespread distribution of the HEXM gene or potentially other similar-sized genes to the nervous system.

  15. The evolution of heart gene delivery vectors

    Science.gov (United States)

    Wasala, Nalinda B.; Shin, Jin-Hong; Duan, Dongsheng

    2012-01-01

    Gene therapy holds promise for treating numerous heart diseases. A key premise for the success of cardiac gene therapy is the development of powerful gene transfer vehicles that can achieve highly efficient and persistent gene transfer specifically in the heart. Other features of an ideal vector include negligible toxicity, minimal immunogenicity and easy manufacturing. Rapid progress in the fields of molecular biology and virology has offered great opportunities to engineer various genetic materials for heart gene delivery. Several nonviral vectors (e.g. naked plasmids, plasmid lipid/polymer complexes and oligonucleotides) have been tested. Commonly used viral vectors include lentivirus, adenovirus and adeno-associated virus. Among these, adeno-associated virus has shown many attractive features for pre-clinical experimentation in animal models of heart diseases. We review the history and evolution of these vectors for heart gene transfer. PMID:21837689

  16. V(D)J recombination frequency is affected by the sequence interposed between a pair of recombination signals: sequence comparison reveals a putative recombinational enhancer element

    DEFF Research Database (Denmark)

    Roch, F A; Hobi, R; Berchtold, M W

    1997-01-01

    respectively, can markedly affect the frequency of V(D)J recombination. We report that the entire Emu, the Emu core as well as its flanking 5' and 3' matrix associated regions (5' and 3' MARs) upregulate V(D)J recombination while the downstream section of the 3' MAR of Emu does not. Also, prokaryotic sequences...

  17. Exceptionally high levels of recombination across the honey bee genome.

    Science.gov (United States)

    Beye, Martin; Gattermeier, Irene; Hasselmann, Martin; Gempe, Tanja; Schioett, Morten; Baines, John F; Schlipalius, David; Mougel, Florence; Emore, Christine; Rueppell, Olav; Sirviö, Anu; Guzmán-Novoa, Ernesto; Hunt, Greg; Solignac, Michel; Page, Robert E

    2006-11-01

    The first draft of the honey bee genome sequence and improved genetic maps are utilized to analyze a genome displaying 10 times higher levels of recombination (19 cM/Mb) than previously analyzed genomes of higher eukaryotes. The exceptionally high recombination rate is distributed genome-wide, but varies by two orders of magnitude. Analysis of chromosome, sequence, and gene parameters with respect to recombination showed that local recombination rate is associated with distance to the telomere, GC content, and the number of simple repeats as described for low-recombining genomes. Recombination rate does not decrease with chromosome size. On average 5.7 recombination events per chromosome pair per meiosis are found in the honey bee genome. This contrasts with a wide range of taxa that have a uniform recombination frequency of about 1.6 per chromosome pair. The excess of recombination activity does not support a mechanistic role of recombination in stabilizing pairs of homologous chromosome during chromosome pairing. Recombination rate is associated with gene size, suggesting that introns are larger in regions of low recombination and may improve the efficacy of selection in these regions. Very few transposons and no retrotransposons are present in the high-recombining genome. We propose evolutionary explanations for the exceptionally high genome-wide recombination rate.

  18. Short Sleep Duration is Associated with Obesity in Hispanic Manufacturing Workers.

    Science.gov (United States)

    Benham, Grant; Ghaddar, Suad F; Talavera-Garza, Liza

    2017-01-01

    The present study examined the relationship between obesity and sleep duration among Hispanic manufacturing workers. Two hundred and twenty eight Hispanic workers from eight manufacturing plants completed an in-person interview that included measures of demographics, health literacy, and sleep duration. Height and weight were directly assessed. A logistic regression, controlling for gender, education, age, income, physical activity levels, self-reported health status, and health literacy, indicated that workers who slept six hours or less were significantly more likely to be obese than those sleeping seven to nine hours (OR: 1.90, 95% CI: 1.04-3.47). Our results extend previous research on the association between sleep duration and obesity to an understudied population of Hispanic workers.

  19. PAX6 MiniPromoters drive restricted expression from rAAV in the adult mouse retina

    Directory of Open Access Journals (Sweden)

    Jack W Hickmott

    2016-01-01

    Full Text Available Current gene therapies predominantly use small, strong, and readily available ubiquitous promoters. However, as the field matures, the availability of small, cell-specific promoters would be greatly beneficial. Here we design seven small promoters from the human paired box 6 (PAX6 gene and test them in the adult mouse retina using recombinant adeno-associated virus. We chose the retina due to previous successes in gene therapy for blindness, and the PAX6 gene since it is: well studied; known to be driven by discrete regulatory regions; expressed in therapeutically interesting retinal cell types; and mutated in the vision-loss disorder aniridia, which is in need of improved therapy. At the PAX6 locus, 31 regulatory regions were bioinformatically predicted, and nine regulatory regions were constructed into seven MiniPromoters. Driving Emerald GFP, these MiniPromoters were packaged into recombinant adeno-associated virus, and injected intravitreally into postnatal day 14 mice. Four MiniPromoters drove consistent retinal expression in the adult mouse, driving expression in combinations of cell-types that endogenously express Pax6: ganglion, amacrine, horizontal, and Müller glia. Two PAX6-MiniPromoters drive expression in three of the four cell types that express PAX6 in the adult mouse retina. Combined, they capture all four cell types, making them potential tools for research, and PAX6-gene therapy for aniridia.

  20. PAX6 MiniPromoters drive restricted expression from rAAV in the adult mouse retina.

    Science.gov (United States)

    Hickmott, Jack W; Chen, Chih-Yu; Arenillas, David J; Korecki, Andrea J; Lam, Siu Ling; Molday, Laurie L; Bonaguro, Russell J; Zhou, Michelle; Chou, Alice Y; Mathelier, Anthony; Boye, Sanford L; Hauswirth, William W; Molday, Robert S; Wasserman, Wyeth W; Simpson, Elizabeth M

    2016-01-01

    Current gene therapies predominantly use small, strong, and readily available ubiquitous promoters. However, as the field matures, the availability of small, cell-specific promoters would be greatly beneficial. Here we design seven small promoters from the human paired box 6 (PAX6) gene and test them in the adult mouse retina using recombinant adeno-associated virus. We chose the retina due to previous successes in gene therapy for blindness, and the PAX6 gene since it is: well studied; known to be driven by discrete regulatory regions; expressed in therapeutically interesting retinal cell types; and mutated in the vision-loss disorder aniridia, which is in need of improved therapy. At the PAX6 locus, 31 regulatory regions were bioinformatically predicted, and nine regulatory regions were constructed into seven MiniPromoters. Driving Emerald GFP, these MiniPromoters were packaged into recombinant adeno-associated virus, and injected intravitreally into postnatal day 14 mice. Four MiniPromoters drove consistent retinal expression in the adult mouse, driving expression in combinations of cell-types that endogenously express Pax6: ganglion, amacrine, horizontal, and Müller glia. Two PAX6-MiniPromoters drive expression in three of the four cell types that express PAX6 in the adult mouse retina. Combined, they capture all four cell types, making them potential tools for research, and PAX6-gene therapy for aniridia.

  1. Genetic analysis of variation in human meiotic recombination.

    Directory of Open Access Journals (Sweden)

    Reshmi Chowdhury

    2009-09-01

    Full Text Available The number of recombination events per meiosis varies extensively among individuals. This recombination phenotype differs between female and male, and also among individuals of each gender. In this study, we used high-density SNP genotypes of over 2,300 individuals and their offspring in two datasets to characterize recombination landscape and to map the genetic variants that contribute to variation in recombination phenotypes. We found six genetic loci that are associated with recombination phenotypes. Two of these (RNF212 and an inversion on chromosome 17q21.31 were previously reported in the Icelandic population, and this is the first replication in any other population. Of the four newly identified loci (KIAA1462, PDZK1, UGCG, NUB1, results from expression studies provide support for their roles in meiosis. Each of the variants that we identified explains only a small fraction of the individual variation in recombination. Notably, we found different sequence variants associated with female and male recombination phenotypes, suggesting that they are regulated by different genes. Characterization of genetic variants that influence natural variation in meiotic recombination will lead to a better understanding of normal meiotic events as well as of non-disjunction, the primary cause of pregnancy loss.

  2. Human Embryonic Kidney 293 Cells: A Vehicle for Biopharmaceutical Manufacturing, Structural Biology, and Electrophysiology.

    Science.gov (United States)

    Hu, Jianwen; Han, Jizhong; Li, Haoran; Zhang, Xian; Liu, Lan Lan; Chen, Fei; Zeng, Bin

    2018-01-01

    Mammalian cells, e.g., CHO, BHK, HEK293, HT-1080, and NS0 cells, represent important manufacturing platforms in bioengineering. They are widely used for the production of recombinant therapeutic proteins, vaccines, anticancer agents, and other clinically relevant drugs. HEK293 (human embryonic kidney 293) cells and their derived cell lines provide an attractive heterologous system for the development of recombinant proteins or adenovirus productions, not least due to their human-like posttranslational modification of protein molecules to provide the desired biological activity. Secondly, they also exhibit high transfection efficiency yielding high-quality recombinant proteins. They are easy to maintain and express with high fidelity membrane proteins, such as ion channels and transporters, and thus are attractive for structural biology and electrophysiology studies. In this article, we review the literature on HEK293 cells regarding their origins but also stress their advancements into the different cell lines engineered and discuss some significant aspects which make them versatile systems for biopharmaceutical manufacturing, drug screening, structural biology research, and electrophysiology applications. © 2018 S. Karger AG, Basel.

  3. A phylogenetic method to perform genome-wide association studies in microbes that accounts for population structure and recombination.

    Directory of Open Access Journals (Sweden)

    Caitlin Collins

    2018-02-01

    Full Text Available Genome-Wide Association Studies (GWAS in microbial organisms have the potential to vastly improve the way we understand, manage, and treat infectious diseases. Yet, microbial GWAS methods established thus far remain insufficiently able to capitalise on the growing wealth of bacterial and viral genetic sequence data. Facing clonal population structure and homologous recombination, existing GWAS methods struggle to achieve both the precision necessary to reject spurious findings and the power required to detect associations in microbes. In this paper, we introduce a novel phylogenetic approach that has been tailor-made for microbial GWAS, which is applicable to organisms ranging from purely clonal to frequently recombining, and to both binary and continuous phenotypes. Our approach is robust to the confounding effects of both population structure and recombination, while maintaining high statistical power to detect associations. Thorough testing via application to simulated data provides strong support for the power and specificity of our approach and demonstrates the advantages offered over alternative cluster-based and dimension-reduction methods. Two applications to Neisseria meningitidis illustrate the versatility and potential of our method, confirming previously-identified penicillin resistance loci and resulting in the identification of both well-characterised and novel drivers of invasive disease. Our method is implemented as an open-source R package called treeWAS which is freely available at https://github.com/caitiecollins/treeWAS.

  4. The influence of recombination on human genetic diversity.

    Directory of Open Access Journals (Sweden)

    Chris C A Spencer

    2006-09-01

    Full Text Available In humans, the rate of recombination, as measured on the megabase scale, is positively associated with the level of genetic variation, as measured at the genic scale. Despite considerable debate, it is not clear whether these factors are causally linked or, if they are, whether this is driven by the repeated action of adaptive evolution or molecular processes such as double-strand break formation and mismatch repair. We introduce three innovations to the analysis of recombination and diversity: fine-scale genetic maps estimated from genotype experiments that identify recombination hotspots at the kilobase scale, analysis of an entire human chromosome, and the use of wavelet techniques to identify correlations acting at different scales. We show that recombination influences genetic diversity only at the level of recombination hotspots. Hotspots are also associated with local increases in GC content and the relative frequency of GC-increasing mutations but have no effect on substitution rates. Broad-scale association between recombination and diversity is explained through covariance of both factors with base composition. To our knowledge, these results are the first evidence of a direct and local influence of recombination hotspots on genetic variation and the fate of individual mutations. However, that hotspots have no influence on substitution rates suggests that they are too ephemeral on an evolutionary time scale to have a strong influence on broader scale patterns of base composition and long-term molecular evolution.

  5. Long-Term Effect of Gene Therapy on Leber's Congenital Amaurosis

    OpenAIRE

    Bainbridge, James W B; Mehat, Manjit S; Sundaram, Venki; Robbie, Scott J; Barker, Susie E; Ripamonti, Caterina; Georgiadis, Anastasios; Mowat, Freya M; Beattie, Stuart G; Gardner, Peter J; Feathers, Kecia L; Luong, Vy A; Yzer, Suzanne; Balaggan, Kamaljit; Viswanathan, Ananth

    2015-01-01

    Background Mutations in RPE65 cause Leber's congenital amaurosis, a progressive retinal degenerative disease that severely impairs sight in children. Gene therapy can result in modest improvements in night vision, but knowledge of its efficacy in humans is limited. Methods We performed a phase 1-2 open-label trial involving 12 participants to evaluate the safety and efficacy of gene therapy with a recombinant adeno-associated virus 2/2 (rAAV2/2) vector carrying the RPE65 complementary DNA, an...

  6. [Optogenetic activation of dorsal hippocampal astrocytic Rac1 blocks the learning of associative memory].

    Science.gov (United States)

    Guo, Xiao-Mu; Liao, Zhao-Hui; Tao, Ye-Zheng; Wang, Fei-Fei; Ma, Lan

    2017-06-25

    Rac1 belongs to the family of Rho GTPases, and plays important roles in the brain function. It affects the cell migration and axon guidance via regulating the cytoskeleton and cellular morphology. However, the effect of its dynamic activation in regulating physiological function remains unclear. Recently, a photoactivatable analogue of Rac1 (PA-Rac1) has been developed, allowing the activation of Rac1 by the specific wavelength of light in living cells. Thus, we constructed recombinant adeno-associated virus (AAV) of PA-Rac1 and its light-insensitive mutant PA-Rac1-C450A under the control of the mouse glial fibrillary acidic protein (mGFAP) promoter to manipulate Rac1 activity in astrocytes by optical stimulation. Primary culture of hippocampal astrocytes was infected with the recombinant AAV-PA-Rac1 or AAV-PA-Rac1-C450A. Real-time fluorescence imaging showed that the cell membrane of the astrocyte expressing PA-Rac1 protruded near the light spot, while the astrocyte expressing PA-Rac1-C450A did not. We injected AAV-PA-Rac1 and AAV-PA-Rac1-C450A into dorsal hippocampus to investigate the role of the activation of Rac1 in regulating the associative learning. With optical stimulation, the PA-Rac1 group, rather than the PA-Rac1-C450A group, showed slower learning curve during the fear conditioning compared with the control group, indicating that activating astrocytic Rac1 blocks the formation of contextual memory. Our data suggest that the activation of Rac1 in dorsal hippocampal astrocyte plays an important role in the associative learning.

  7. Two novel porcine epidemic diarrhea virus (PEDV) recombinants from a natural recombinant and distinct subtypes of PEDV variants.

    Science.gov (United States)

    Chen, Nanhua; Li, Shuangjie; Zhou, Rongyun; Zhu, Meiqin; He, Shan; Ye, Mengxue; Huang, Yucheng; Li, Shuai; Zhu, Cong; Xia, Pengpeng; Zhu, Jianzhong

    2017-10-15

    Porcine epidemic diarrhea virus (PEDV) causes devastating impact on global pig-breeding industry and current vaccines have become not effective against the circulating PEDV variants since 2011. During the up-to-date investigation of PEDV prevalence in Fujian China 2016, PEDV was identified in vaccinated pig farms suffering severe diarrhea while other common diarrhea-associated pathogens were not detected. Complete genomes of two PEDV representatives (XM1-2 and XM2-4) were determined. Genomic comparison showed that these two viruses share the highest nucleotide identities (99.10% and 98.79%) with the 2011 ZMDZY strain, but only 96.65% and 96.50% nucleotide identities with the attenuated CV777 strain. Amino acid alignment of spike (S) proteins indicated that they have the similar mutation, insertion and deletion pattern as other Chinese PEDV variants but also contain several unique substitutions. Phylogenetic analysis showed that 2016 PEDV variants belong to the cluster of recombination strains but form a new branch. Recombination detection suggested that both XM1-2 and XM2-4 are inter-subgroup recombinants with breakpoints within ORF1b. Remarkably, the natural recombinant HNQX-3 isolate serves as a parental virus for both natural recombinants identified in this study. This up-to-date investigation provides the direct evidence that natural recombinants may serve as parental viruses to generate recombined PEDV progenies that are probably associated with the vaccination failure. Copyright © 2017. Published by Elsevier B.V.

  8. Comparison of efficacy of the disease-specific LOX1- and constitutive cytomegalovirus-promoters in expressing interleukin 10 through adeno-associated virus 2/8 delivery in atherosclerotic mice.

    Directory of Open Access Journals (Sweden)

    Hongqing Zhu

    Full Text Available The development of gene therapy vectors for treating diseases of the cardiovascular system continues at a steady pace. Moreover, in the field of gene therapy the utility of "disease-specific promoters" has strong appeal. Many therapeutic genes, including transforming growth factor beta 1 or interleukin 10, are associated to adverse effects. The use of a disease-specific promoter might minimize toxicity. The lectin-like oxidized low density lipoprotein receptor 1 is a marker of cardiovascular disease and a potential therapeutic target. The lectin-like oxidized low density lipoprotein receptor 1 is known to be up-regulated early during disease onset in a number of cell types at the sites where the disease will be clinically evident. In this study an adeno-associated virus-2 DNA vector (AAV2 using the AAV8 capsid, and containing the full length The lectin-like oxidized low density lipoprotein receptor 1 promoter, was generated and assayed for its ability to express human interleukin 10 in low density lipoprotein receptor knockout mice on high cholesterol diet. The cytomegalovirus early promoter was used for comparison in a similarly structured vector. The two promoters were found to have equal efficacy in reducing atherogenesis as measured by aortic systolic blood velocity, aortic cross sectional area, and aortic wall thickness. This is the first head-to-head comparison of a constitutive with a disease-specific promoter in a therapeutic context. These data strongly suggest that the use of a disease-specific promoter is appropriate for therapeutic gene delivery.

  9. JIT Manufacturing: A Survey of Implementations in Small and Large U.S. Manufacturers

    OpenAIRE

    Richard E. White; John N. Pearson; Jeffrey R. Wilson

    1999-01-01

    Since the early 1980s, the diffusion of Just-In-Time (JIT) manufacturing from Japanese manufacturers to U.S. manufacturers has progressed at an accelerated rate. At this stage of the diffusion process, JIT implementations are more common and more advanced in large U.S. manufacturers than in small; consequently, U.S. businessmen's understanding of issues associated with JIT implementations in large manufacturers is more developed than that of small manufacturers. When small manufacturers repre...

  10. The Association of Recombination Events in the Founding and Emergence of Subgenogroup Evolutionary Lineages of Human Enterovirus 71

    Science.gov (United States)

    McWilliam Leitch, E. C.; Cabrerizo, M.; Cardosa, J.; Harvala, H.; Ivanova, O. E.; Koike, S.; Kroes, A. C. M.; Lukashev, A.; Perera, D.; Roivainen, M.; Susi, P.; Trallero, G.; Evans, D. J.

    2012-01-01

    Enterovirus 71 (EV71) is responsible for frequent large-scale outbreaks of hand, foot, and mouth disease worldwide and represent a major etiological agent of severe, sometimes fatal neurological disease. EV71 variants have been classified into three genogroups (GgA, GgB, and GgC), and the latter two are further subdivided into subgenogroups B1 to B5 and C1 to C5. To investigate the dual roles of recombination and evolution in the epidemiology and transmission of EV71 worldwide, we performed a large-scale genetic analysis of isolates (n = 308) collected from 19 countries worldwide over a 40-year period. A series of recombination events occurred over this period, which have been identified through incongruities in sequence grouping between the VP1 and 3Dpol regions. Eleven 3Dpol clades were identified, each specific to EV71 and associated with specific subgenogroups but interspersed phylogenetically with clades of coxsackievirus A16 and other EV species A serotypes. The likelihood of recombination increased with VP1 sequence divergence; mean half-lives for EV71 recombinant forms (RFs) of 6 and 9 years for GgB and GgC overlapped with those observed for the EV-B serotypes, echovirus 9 (E9), E30, and E11, respectively (1.3 to 9.8 years). Furthermore, within genogroups, sporadic recombination events occurred, such as the linkage of two B4 variants to RF-W instead of RF-A and of two C4 variants to RF-H. Intriguingly, recombination events occurred as a founding event of most subgenogroups immediately preceding their lineage expansion and global emergence. The possibility that recombination contributed to their subsequent spread through improved fitness requires further biological and immunological characterization. PMID:22205739

  11. The Genetic Architecture of Natural Variation in Recombination Rate in Drosophila melanogaster.

    Science.gov (United States)

    Hunter, Chad M; Huang, Wen; Mackay, Trudy F C; Singh, Nadia D

    2016-04-01

    Meiotic recombination ensures proper chromosome segregation in many sexually reproducing organisms. Despite this crucial function, rates of recombination are highly variable within and between taxa, and the genetic basis of this variation remains poorly understood. Here, we exploit natural variation in the inbred, sequenced lines of the Drosophila melanogaster Genetic Reference Panel (DGRP) to map genetic variants affecting recombination rate. We used a two-step crossing scheme and visible markers to measure rates of recombination in a 33 cM interval on the X chromosome and in a 20.4 cM interval on chromosome 3R for 205 DGRP lines. Though we cannot exclude that some biases exist due to viability effects associated with the visible markers used in this study, we find ~2-fold variation in recombination rate among lines. Interestingly, we further find that recombination rates are uncorrelated between the two chromosomal intervals. We performed a genome-wide association study to identify genetic variants associated with recombination rate in each of the two intervals surveyed. We refined our list of candidate variants and genes associated with recombination rate variation and selected twenty genes for functional assessment. We present strong evidence that five genes are likely to contribute to natural variation in recombination rate in D. melanogaster; these genes lie outside the canonical meiotic recombination pathway. We also find a weak effect of Wolbachia infection on recombination rate and we confirm the interchromosomal effect. Our results highlight the magnitude of population variation in recombination rate present in D. melanogaster and implicate new genetic factors mediating natural variation in this quantitative trait.

  12. SequenceLDhot: detecting recombination hotspots.

    Science.gov (United States)

    Fearnhead, Paul

    2006-12-15

    There is much local variation in recombination rates across the human genome--with the majority of recombination occurring in recombination hotspots--short regions of around approximately 2 kb in length that have much higher recombination rates than neighbouring regions. Knowledge of this local variation is important, e.g. in the design and analysis of association studies for disease genes. Population genetic data, such as that generated by the HapMap project, can be used to infer the location of these hotspots. We present a new, efficient and powerful method for detecting recombination hotspots from population data. We compare our method with four current methods for detecting hotspots. It is orders of magnitude quicker, and has greater power, than two related approaches. It appears to be more powerful than HotspotFisher, though less accurate at inferring the precise positions of the hotspot. It was also more powerful than LDhot in some situations: particularly for weaker hotspots (10-40 times the background rate) when SNP density is lower (maths.lancs.ac.uk/~fearnhea/Hotspot.

  13. TopBP1 associates with NBS1 and is involved in homologous recombination repair

    International Nuclear Information System (INIS)

    Morishima, Ken-ichi; Sakamoto, Shuichi; Kobayashi, Junya; Izumi, Hideki; Suda, Tetsuji; Matsumoto, Yoshiyuki; Tauchi, Hiroshi; Ide, Hiroshi; Komatsu, Kenshi; Matsuura, Shinya

    2007-01-01

    TopBP1 is involved in DNA replication and DNA damage checkpoint. Recent studies have demonstrated that TopBP1 is a direct positive effecter of ATR. However, it is not known how TopBP1 recognizes damaged DNA. Here, we show that TopBP1 formed nuclear foci after exposure to ionizing radiation, but such TopBP1 foci were abolished in Nijmegen breakage syndrome cells. We also show that TopBP1 physically associated with NBS1 in vivo. These results suggested that NBS1 might regulate TopBP1 recruitment to the sites of DNA damage. TopBP1-depleted cells showed hypersensitivity to Mitomycin C and ionizing radiation, an increased frequency of sister-chromatid exchange level, and a reduced frequency of DNA double-strand break induced homologous recombination repair. Together, these results suggested that TopBP1 might be a mediator of DNA damage signaling from NBS1 to ATR and promote homologous recombination repair

  14. The Genetic Architecture of Natural Variation in Recombination Rate in Drosophila melanogaster.

    Directory of Open Access Journals (Sweden)

    Chad M Hunter

    2016-04-01

    Full Text Available Meiotic recombination ensures proper chromosome segregation in many sexually reproducing organisms. Despite this crucial function, rates of recombination are highly variable within and between taxa, and the genetic basis of this variation remains poorly understood. Here, we exploit natural variation in the inbred, sequenced lines of the Drosophila melanogaster Genetic Reference Panel (DGRP to map genetic variants affecting recombination rate. We used a two-step crossing scheme and visible markers to measure rates of recombination in a 33 cM interval on the X chromosome and in a 20.4 cM interval on chromosome 3R for 205 DGRP lines. Though we cannot exclude that some biases exist due to viability effects associated with the visible markers used in this study, we find ~2-fold variation in recombination rate among lines. Interestingly, we further find that recombination rates are uncorrelated between the two chromosomal intervals. We performed a genome-wide association study to identify genetic variants associated with recombination rate in each of the two intervals surveyed. We refined our list of candidate variants and genes associated with recombination rate variation and selected twenty genes for functional assessment. We present strong evidence that five genes are likely to contribute to natural variation in recombination rate in D. melanogaster; these genes lie outside the canonical meiotic recombination pathway. We also find a weak effect of Wolbachia infection on recombination rate and we confirm the interchromosomal effect. Our results highlight the magnitude of population variation in recombination rate present in D. melanogaster and implicate new genetic factors mediating natural variation in this quantitative trait.

  15. Sustained miRNA-mediated Knockdown of Mutant AAT With Simultaneous Augmentation of Wild-type AAT Has Minimal Effect on Global Liver miRNA Profiles

    OpenAIRE

    2013-01-01

    α-1 antitrypsin (AAT) deficiency can exhibit two pathologic states: a lung disease that is primarily due to the loss of AAT's antiprotease function, and a liver disease resulting from a toxic gain-of-function of the PiZ-AAT (Z-AAT) mutant protein. We have developed several recombinant adeno-associated virus (rAAV) vectors that incorporate microRNA (miRNA) sequences targeting the AAT gene while also driving the expression of miRNA-resistant wild-type AAT-PiM (M-AAT) gene, thus achieving concom...

  16. Purification of inclusion bodies using PEG precipitation under denaturing conditions to produce recombinant therapeutic proteins from Escherichia coli.

    Science.gov (United States)

    Chen, Huanhuan; Li, Ninghuan; Xie, Yueqing; Jiang, Hua; Yang, Xiaoyi; Cagliero, Cedric; Shi, Siwei; Zhu, Chencen; Luo, Han; Chen, Junsheng; Zhang, Lei; Zhao, Menglin; Feng, Lei; Lu, Huili; Zhu, Jianwei

    2017-07-01

    It has been documented that the purification of inclusion bodies from Escherichia coli by size exclusion chromatography (SEC) may benefit subsequent refolding and recovery of recombinant proteins. However, loading volume and the high cost of the column limits its application in large-scale manufacturing of biopharmaceutical proteins. We report a novel process using polyethylene glycol (PEG) precipitation under denaturing conditions to replace SEC for rapid purification of inclusion bodies containing recombinant therapeutic proteins. Using recombinant human interleukin 15 (rhIL-15) as an example, inclusion bodies of rhIL-15 were solubilized in 7 M guanidine hydrochloride, and rhIL-15 was precipitated by the addition of PEG 6000. A final concentration of 5% (w/v) PEG 6000 was found to be optimal to precipitate target proteins and enhance recovery and purity. Compared to the previously reported S-200 size exclusion purification method, PEG precipitation was easier to scale up and achieved the same protein yields and quality of the product. PEG precipitation also reduced manufacturing time by about 50 and 95% of material costs. After refolding and further purification, the rhIL-15 product was highly pure and demonstrated a comparable bioactivity with a rhIL-15 reference standard. Our studies demonstrated that PEG precipitation of inclusion bodies under denaturing conditions holds significant potential as a manufacturing process for biopharmaceuticals from E. coli protein expression systems.

  17. Recombinant Programming

    OpenAIRE

    Pawlak , Renaud; Cuesta , Carlos; Younessi , Houman

    2004-01-01

    This research report presents a promising new approach to computation called Recombinant Programming. The novelty of our approach is that it separates the program into two layers of computation: the recombination and the interpretation layer. The recombination layer takes sequences as inputs and allows the programmer to recombine these sequences through the definition of cohesive code units called extensions. The output of such recombination is a mesh that can be used by the interpretation la...

  18. Detoxifying Escherichia coli for endotoxin-free production of recombinant proteins.

    Science.gov (United States)

    Mamat, Uwe; Wilke, Kathleen; Bramhill, David; Schromm, Andra Beate; Lindner, Buko; Kohl, Thomas Andreas; Corchero, José Luis; Villaverde, Antonio; Schaffer, Lana; Head, Steven Robert; Souvignier, Chad; Meredith, Timothy Charles; Woodard, Ronald Wesley

    2015-04-16

    Lipopolysaccharide (LPS), also referred to as endotoxin, is the major constituent of the outer leaflet of the outer membrane of virtually all Gram-negative bacteria. The lipid A moiety, which anchors the LPS molecule to the outer membrane, acts as a potent agonist for Toll-like receptor 4/myeloid differentiation factor 2-mediated pro-inflammatory activity in mammals and, thus, represents the endotoxic principle of LPS. Recombinant proteins, commonly manufactured in Escherichia coli, are generally contaminated with endotoxin. Removal of bacterial endotoxin from recombinant therapeutic proteins is a challenging and expensive process that has been necessary to ensure the safety of the final product. As an alternative strategy for common endotoxin removal methods, we have developed a series of E. coli strains that are able to grow and express recombinant proteins with the endotoxin precursor lipid IVA as the only LPS-related molecule in their outer membranes. Lipid IVA does not trigger an endotoxic response in humans typical of bacterial LPS chemotypes. Hence the engineered cells themselves, and the purified proteins expressed within these cells display extremely low endotoxin levels. This paper describes the preparation and characterization of endotoxin-free E. coli strains, and demonstrates the direct production of recombinant proteins with negligible endotoxin contamination.

  19. Freeze-dried allograft-mediated gene or protein delivery of growth and differentiation factor 5 reduces reconstructed murine flexor tendon adhesions

    DEFF Research Database (Denmark)

    Svensson, Sys Hasslund; Dadali, Tulin; Ulrich-Vinther, Michael

    2014-01-01

    reverse transcription polymerase chain reaction (RT-PCR), enzyme-linked immunosorbent assay (ELISA), and in vivo bioluminescent imaging. We then reconstructed flexor digitorum longus (FDL) tendons of the mouse hindlimb with allografts loaded with low and high doses of recombinant GDF-5 protein and r......Advances in allograft processing have opened new horizons for clinical adaptation of flexor tendon allografts as delivery scaffolds for antifibrotic therapeutics. Recombinant adeno-associated-virus (rAAV) gene delivery of the growth and differentiation factor 5 (GDF-5) has been previously...... associated with antifibrotic effects in a mouse model of flexor tendoplasty. In this study, we compared the effects of loading freeze-dried allografts with different doses of GDF-5 protein or rAAV-Gdf5 on flexor tendon healing and adhesions. We first optimized the protein and viral loading parameters using...

  20. Recombiner

    International Nuclear Information System (INIS)

    Kikuchi, Nobuo.

    1983-01-01

    Purpose: To shorten the pre-heating time for a recombiner and obtain a uniform temperature distribution for the charged catalyst layer in a BWR type reactor. Constitution: A pre-heating heater is disposed to the outer periphery of a vessel for a recombiner packed with catalysts for recombining hydrogen and oxygen in gases flowing through a radioactive gaseous wastes processing system. Heat pipes for transmitting the heat applied to said container to the catalyst are disposed vertically and horizontally within the container. Different length of the heat pipes are combined. In this way, pre-heating time for the recombiner before the operation start and before the system switching can be shortened and the uniform pre-heating for the inside of the recombiner is also made possible. Further, heater control in the pre-heating can be carried out effectively and with ease. (Moriyama, K.)

  1. Practical utilization of recombinant AAV vector reference standards: focus on vector genomes titration by free ITR qPCR

    Directory of Open Access Journals (Sweden)

    Susan D'Costa

    2016-01-01

    Full Text Available Clinical trials using recombinant adeno-associated virus (rAAV vectors have demonstrated efficacy and a good safety profile. Although the field is advancing quickly, vector analytics and harmonization of dosage units are still a limitation for commercialization. AAV reference standard materials (RSMs can help ensure product safety by controlling the consistency of assays used to characterize rAAV stocks. The most widely utilized unit of vector dosing is based on the encapsidated vector genome. Quantitative polymerase chain reaction (qPCR is now the most common method to titer vector genomes (vg; however, significant inter- and intralaboratory variations have been documented using this technique. Here, RSMs and rAAV stocks were titered on the basis of an inverted terminal repeats (ITRs sequence-specific qPCR and we found an artificial increase in vg titers using a widely utilized approach. The PCR error was introduced by using single-cut linearized plasmid as the standard curve. This bias was eliminated using plasmid standards linearized just outside the ITR region on each end to facilitate the melting of the palindromic ITR sequences during PCR. This new “Free-ITR” qPCR delivers vg titers that are consistent with titers obtained with transgene-specific qPCR and could be used to normalize in-house product-specific AAV vector standards and controls to the rAAV RSMs. The free-ITR method, including well-characterized controls, will help to calibrate doses to compare preclinical and clinical data in the field.

  2. Practical utilization of recombinant AAV vector reference standards: focus on vector genomes titration by free ITR qPCR.

    Science.gov (United States)

    D'Costa, Susan; Blouin, Veronique; Broucque, Frederic; Penaud-Budloo, Magalie; François, Achille; Perez, Irene C; Le Bec, Christine; Moullier, Philippe; Snyder, Richard O; Ayuso, Eduard

    2016-01-01

    Clinical trials using recombinant adeno-associated virus (rAAV) vectors have demonstrated efficacy and a good safety profile. Although the field is advancing quickly, vector analytics and harmonization of dosage units are still a limitation for commercialization. AAV reference standard materials (RSMs) can help ensure product safety by controlling the consistency of assays used to characterize rAAV stocks. The most widely utilized unit of vector dosing is based on the encapsidated vector genome. Quantitative polymerase chain reaction (qPCR) is now the most common method to titer vector genomes (vg); however, significant inter- and intralaboratory variations have been documented using this technique. Here, RSMs and rAAV stocks were titered on the basis of an inverted terminal repeats (ITRs) sequence-specific qPCR and we found an artificial increase in vg titers using a widely utilized approach. The PCR error was introduced by using single-cut linearized plasmid as the standard curve. This bias was eliminated using plasmid standards linearized just outside the ITR region on each end to facilitate the melting of the palindromic ITR sequences during PCR. This new "Free-ITR" qPCR delivers vg titers that are consistent with titers obtained with transgene-specific qPCR and could be used to normalize in-house product-specific AAV vector standards and controls to the rAAV RSMs. The free-ITR method, including well-characterized controls, will help to calibrate doses to compare preclinical and clinical data in the field.

  3. Capsid Mutated Adeno-Associated Virus Delivered to the Anterior Chamber Results in Efficient Transduction of Trabecular Meshwork in Mouse and Rat.

    Directory of Open Access Journals (Sweden)

    Barbara Bogner

    Full Text Available Adeno associated virus (AAV is well known for its ability to deliver transgenes to retina and to mediate improvements in animal models and patients with inherited retinal disease. Although the field is less advanced, there is growing interest in AAV's ability to target cells of the anterior segment. The purpose of our study was to fully articulate a reliable and reproducible method for injecting the anterior chamber (AC of mice and rats and to investigate the transduction profiles of AAV2- and AAV8-based capsid mutants containing self-complementary (sc genomes in the anterior segment of the eye.AC injections were performed in C57BL/6 mice and Sprague Dawley rats. The cornea was punctured anterior of the iridocorneal angle. To seal the puncture site and to prevent reflux an air bubble was created in the AC. scAAVs expressing GFP were injected and transduction was evaluated by immunohistochemistry. Both parent serotype and capsid modifications affected expression. scAAV2- based vectors mediated efficient GFP-signal in the corneal endothelium, ciliary non-pigmented epithelium (NPE, iris and chamber angle including trabecular meshwork, with scAAV2(Y444F and scAAV2(triple being the most efficient.This is the first study to semi quantitatively evaluate transduction of anterior segment tissues following injection of capsid-mutated AAV vectors. scAAV2- based vectors transduced corneal endothelium, ciliary NPE, iris and trabecular meshwork more effectively than scAAV8-based vectors. Mutagenesis of surface-exposed tyrosine residues greatly enhanced transduction efficiency of scAAV2 in these tissues. The number of Y-F mutations was not directly proportional to transduction efficiency, however, suggesting that proteosomal avoidance alone may not be sufficient. These results are applicable to the development of targeted, gene-based strategies to investigate pathological processes of the anterior segment and may be applied toward the development of gene

  4. A VNTR element associated with steroid sulfatase gene deletions stimulates recombination in cultured cells

    Energy Technology Data Exchange (ETDEWEB)

    Gong, Y.; Li, X.M.; Shapiro, L.J. [UCSF School of Medicine, San Francisco, CA (United States)] [and others

    1994-09-01

    Steroid sulfatase deficiency is a common genetic disorder, with a prevalence of approximately one in every 3500 males world wide. About 90% of these patients have complete gene deletions, which appear to result from recombination between members of a low-copy repeat family (CRI-232 is the prototype) that flank the gene. RU1 and RU2 are two VNTR elements found within each of these family members. RU1 consists of 30 bp repeating units and its length shows minimal variation among individuals. The RU2 element consists of repeating sequences which are highly asymmetric, with about 90% purines and no C`s on one strand, and range from 0.6 kb to over 23 kb among different individuals. We conducted a study to determine if the RU1 or RU2 elements can promote recombination in an in vivo test system. We inserted these elements adjacent to the neo gene in each of two pSV2neo derivatives, one of which has a deletion in the 5{prime} portion of the neo gene and the other having a deletion in the 3{prime} portion. These plasmids were combined and used to transfect EJ cells. Survival of cells in G418 indicates restoration of a functional neo gene by recombination between two deletion constructs. Thus counting G418 resistant colonies gives a quantitative measure of the enhancement of recombination by the inserted VNTR elements. The results showed no effect on recombination by the inserted RU1 element (compared to the insertion of a nonspecific sequence), while the RU2 element stimulated recombination by 3.5-fold (P<0.01). A separate set of constructs placed RU1 or RU2 within the intron of an exon trapping vector. Following tranfection of cells, recombination events were monitored by a PCR assay that detected the approximation of primer binding sites (as a result of recombination). These studies showed that, as in the first set of experiments, the highly variable RU2 element is capable of stimulating somatic recombination in mammalian cells.

  5. Essential Aspects in Assessing the Safety Impact of Interactions between a Drug Product and Its Associated Manufacturing System.

    Science.gov (United States)

    Jenke, Dennis

    2012-01-01

    An emerging trend in the biotechnology industry is the utilization of plastic components in manufacturing systems for the production of an active pharmaceutical ingredient (API) or a finished drug product (FDP). If the API, the FDP, or any solution used to generate them (for example, process streams such as media, buffers, and the like) come in contact with a plastic at any time during the manufacturing process, there is the potential that substances leached from the plastic may accumulate in the API or FDP, affecting safety and/or efficacy. In this article the author develops a terminology that addresses process streams associated with the manufacturing process. Additionally, the article outlines the safety assessment process for manufacturing systems, specifically addressing the topics of risk management and the role of compendial testing. Finally, the proper use of vendor-supplied extractables information is considered. Manufacturing suites used to produce biopharmaceuticals can include components that are made out of plastics. Thus it is possible that substances could leach out of the plastics and into manufacturing solutions, and it is further possible that such leachables could accumulate in the pharmaceutical product. In this article, the author develops a terminology that addresses process streams associated with the manufacturing process. Additionally, the author proposes a process by which the impact on product safety of such leached substances can be assessed.

  6. Assessment of tropism and effectiveness of new primate-derived hybrid recombinant AAV serotypes in the mouse and primate retina.

    Directory of Open Access Journals (Sweden)

    Peter Charbel Issa

    Full Text Available Adeno-associated viral vectors (AAV have been shown to be safe in the treatment of retinal degenerations in clinical trials. Thus, improving the efficiency of viral gene delivery has become increasingly important to increase the success of clinical trials. In this study, structural domains of different rAAV serotypes isolated from primate brain were combined to create novel hybrid recombinant AAV serotypes, rAAV2/rec2 and rAAV2/rec3. The efficacy of these novel serotypes were assessed in wild type mice and in two models of retinal degeneration (the Abca4(-/- mouse which is a model for Stargardt disease and in the Pde6b(rd1/rd1 mouse in vivo, in primate tissue ex-vivo, and in the human-derived SH-SY5Y cell line, using an identical AAV2 expression cassette. We show that these novel hybrid serotypes can transduce retinal tissue in mice and primates efficiently, although no more than AAV2/2 and rAAV2/5 serotypes. Transduction efficiency appeared lower in the Abca4(-/- mouse compared to wild type with all vectors tested, suggesting an effect of specific retinal diseases on the efficiency of gene delivery. Shuffling of AAV capsid domains may have clinical applications for patients who develop T-cell immune responses following AAV gene therapy, as specific peptide antigen sequences could be substituted using this technique prior to vector re-treatments.

  7. Assessment of tropism and effectiveness of new primate-derived hybrid recombinant AAV serotypes in the mouse and primate retina.

    Science.gov (United States)

    Charbel Issa, Peter; De Silva, Samantha R; Lipinski, Daniel M; Singh, Mandeep S; Mouravlev, Alexandre; You, Qisheng; Barnard, Alun R; Hankins, Mark W; During, Matthew J; Maclaren, Robert E

    2013-01-01

    Adeno-associated viral vectors (AAV) have been shown to be safe in the treatment of retinal degenerations in clinical trials. Thus, improving the efficiency of viral gene delivery has become increasingly important to increase the success of clinical trials. In this study, structural domains of different rAAV serotypes isolated from primate brain were combined to create novel hybrid recombinant AAV serotypes, rAAV2/rec2 and rAAV2/rec3. The efficacy of these novel serotypes were assessed in wild type mice and in two models of retinal degeneration (the Abca4(-/-) mouse which is a model for Stargardt disease and in the Pde6b(rd1/rd1) mouse) in vivo, in primate tissue ex-vivo, and in the human-derived SH-SY5Y cell line, using an identical AAV2 expression cassette. We show that these novel hybrid serotypes can transduce retinal tissue in mice and primates efficiently, although no more than AAV2/2 and rAAV2/5 serotypes. Transduction efficiency appeared lower in the Abca4(-/-) mouse compared to wild type with all vectors tested, suggesting an effect of specific retinal diseases on the efficiency of gene delivery. Shuffling of AAV capsid domains may have clinical applications for patients who develop T-cell immune responses following AAV gene therapy, as specific peptide antigen sequences could be substituted using this technique prior to vector re-treatments.

  8. Differences in meiotic recombination rates in childhood acute lymphoblastic leukemia at an MHC class II hotspot close to disease associated haplotypes.

    Directory of Open Access Journals (Sweden)

    Pamela Thompson

    Full Text Available Childhood Acute Lymphoblastic Leukemia (ALL is a malignant lymphoid disease of which B-cell precursor- (BCP and T-cell- (T ALL are subtypes. The role of alleles encoded by major histocompatibility loci (MHC have been examined in a number of previous studies and results indicating weak, multi-allele associations between the HLA-DPB1 locus and BCP-ALL suggested a role for immunosusceptibility and possibly infection. Two independent SNP association studies of ALL identified loci approximately 37 kb from one another and flanking a strong meiotic recombination hotspot (DNA3, adjacent to HLA-DOA and centromeric of HLA-DPB1. To determine the relationship between this observation and HLA-DPB1 associations, we constructed high density SNP haplotypes of the 316 kb region from HLA-DMB to COL11A2 in childhood ALL and controls using a UK GWAS data subset and the software PHASE. Of four haplotype blocks identified, predicted haplotypes in Block 1 (centromeric of DNA3 differed significantly between BCP-ALL and controls (P = 0.002 and in Block 4 (including HLA-DPB1 between T-ALL and controls (P = 0.049. Of specific common (>5% haplotypes in Block 1, two were less frequent in BCP-ALL, and in Block 4 a single haplotype was more frequent in T-ALL, compared to controls. Unexpectedly, we also observed apparent differences in ancestral meiotic recombination rates at DNA3, with BCP-ALL showing increased and T-ALL decreased levels compared to controls. In silico analysis using LDsplit sotware indicated that recombination rates at DNA3 are influenced by flanking loci, including SNPs identified in childhood ALL association studies. The observed differences in rates of meiotic recombination at this hotspot, and potentially others, may be a characteristic of childhood leukemia and contribute to disease susceptibility, alternatively they may reflect interactions between ALL-associated haplotypes in this region.

  9. Hadron correlations from recombination and fragmentation

    Energy Technology Data Exchange (ETDEWEB)

    Fries, Rainer J [School of Physics and Astronomy, University of Minnesota, Minneapolis, MN 55455 (United States)

    2005-04-01

    We review the formalism of quark recombination applied to the hadronization of a quark-gluon plasma. Evidence in favour of the quark recombination model is outlined. Recent work on parton correlations, leading to detectable correlations between hadrons, is discussed. Hot spots from completely quenched jets are a likely source of such correlations which appear to be jet like. It will be discussed how such a picture compares with measurement of associated hadron yields at RHIC.

  10. Advances and Future Challenges in Recombinant Adenoviral Vectored H5N1 Influenza Vaccines

    Directory of Open Access Journals (Sweden)

    Jianfeng Zhang

    2012-11-01

    Full Text Available The emergence of a highly pathogenic avian influenza virus H5N1 has increased the potential for a new pandemic to occur. This event highlights the necessity for developing a new generation of influenza vaccines to counteract influenza disease. These vaccines must be manufactured for mass immunization of humans in a timely manner. Poultry should be included in this policy, since persistent infected flocks are the major source of avian influenza for human infections. Recombinant adenoviral vectored H5N1 vaccines are an attractive alternative to the currently licensed influenza vaccines. This class of vaccines induces a broadly protective immunity against antigenically distinct H5N1, can be manufactured rapidly, and may allow mass immunization of human and poultry. Recombinant adenoviral vectors derived from both human and non-human adenoviruses are currently being investigated and appear promising both in nonclinical and clinical studies. This review will highlight the current status of various adenoviral vectored H5N1 vaccines and will outline novel approaches for the future.

  11. Recombinant immunotherapeutics: current state and perspectives regarding the feasibility and market.

    Science.gov (United States)

    Huang, Chung-Jr; Lowe, Adam J; Batt, Carl A

    2010-06-01

    Recombinant immunotherapeutics are important biologics for the treatment and prevention of various diseases. Immunotherapy can be divided into two categories, passive and active. For passive immunotherapy, the successes of antibody and cytokine therapeutics represent a promising future and opportunities for improvements. Efforts, such as cell engineering, antibody engineering, human-like glycosylation in yeast, and Fab fragment development, have led the way to improve antibody efficacy while decreasing its high manufacturing costs. Both new cytokines and currently used cytokines have demonstrated therapeutic effects for different indications. As for active immunotherapy, recently approved HPV vaccines have encouraged the development of preventative vaccines for other infectious diseases. Immunogenic antigens of pathogenic bacteria can now be identified by genomic means (reverse vaccinology). Due to the recent outbreaks of pandemic H1N1 influenza virus, recombinant influenza vaccines using virus-like particles and other antigens have also been engineered in several different recombinant systems. However, limitations are found in existing immunotherapeutics for cancer treatment, and recent development of therapeutic cancer vaccines such as MAGE-A3 and NY-ESO-1 may provide alternative therapeutic strategy.

  12. Optimizing viral and non-viral gene transfer methods for genetic modification of porcine mesenchymal stem cells

    DEFF Research Database (Denmark)

    Stiehler, Maik; Duch, Mogens R.; Mygind, Tina

    2006-01-01

    -old Danish landrace pigs by Ficoll step gradient separation and polystyrene adherence technique. Vectors expressing enhanced green fluorescent protein (eGFP) and human bone morphogenetic protein-2 (BMP-2) were transferred to the cells by different non-viral methods and by use of recombinant adeno...

  13. Photoionization and Recombination

    Science.gov (United States)

    Nahar, Sultana N.

    2000-01-01

    Theoretically self-consistent calculations for photoionization and (e + ion) recombination are described. The same eigenfunction expansion for the ion is employed in coupled channel calculations for both processes, thus ensuring consistency between cross sections and rates. The theoretical treatment of (e + ion) recombination subsumes both the non-resonant recombination ("radiative recombination"), and the resonant recombination ("di-electronic recombination") processes in a unified scheme. In addition to the total, unified recombination rates, level-specific recombination rates and photoionization cross sections are obtained for a large number of atomic levels. Both relativistic Breit-Pauli, and non-relativistic LS coupling, calculations are carried out in the close coupling approximation using the R-matrix method. Although the calculations are computationally intensive, they yield nearly all photoionization and recombination parameters needed for astrophysical photoionization models with higher precision than hitherto possible, estimated at about 10-20% from comparison with experimentally available data (including experimentally derived DR rates). Results are electronically available for over 40 atoms and ions. Photoionization and recombination of He-, and Li-like C and Fe are described for X-ray modeling. The unified method yields total and complete (e+ion) recombination rate coefficients, that can not otherwise be obtained theoretically or experimentally.

  14. Enhanced defects recombination in ion irradiated SiC

    International Nuclear Information System (INIS)

    Izzo, G.; Litrico, G.; Grassia, F.; Calcagno, L.; Foti, G.

    2010-01-01

    Point defects induced in SiC by ion irradiation show a recombination at temperatures as low as 320 K and this process is enhanced after running current density ranging from 80 to 120 A/cm 2 . Ion irradiation induces in SiC the formation of different defect levels and low-temperature annealing changes their concentration. Some levels (S 0 , S x and S 2 ) show a recombination and simultaneously a new level (S 1 ) is formed. An enhanced recombination of defects is besides observed after running current in the diode at room temperature. The carriers introduction reduces the S 2 trap concentration, while the remaining levels are not modified. The recombination is negligible up to a current density of 50 A/cm 2 and increases at higher current density. The enhanced recombination of the S 2 trap occurs at 300 K, which otherwise requires a 400 K annealing temperature. The process can be related to the electron-hole recombination at the associated defect.

  15. Strategies to generate high-titer, high-potency recombinant AAV3 serotype vectors

    Directory of Open Access Journals (Sweden)

    Chen Ling

    2016-01-01

    Full Text Available Although recombinant adeno-associated virus serotype 3 (AAV3 vectors were largely ignored previously, owing to their poor transduction efficiency in most cells and tissues examined, our initial observation of the selective tropism of AAV3 serotype vectors for human liver cancer cell lines and primary human hepatocytes has led to renewed interest in this serotype. AAV3 vectors and their variants have recently proven to be extremely efficient in targeting human and nonhuman primate hepatocytes in vitro as well as in vivo. In the present studies, we wished to evaluate the relative contributions of the cis-acting inverted terminal repeats (ITRs from AAV3 (ITR3, as well as the trans-acting Rep proteins from AAV3 (Rep3 in the AAV3 vector production and transduction. To this end, we utilized two helper plasmids: pAAVr2c3, which carries rep2 and cap3 genes, and pAAVr3c3, which carries rep3 and cap3 genes. The combined use of AAV3 ITRs, AAV3 Rep proteins, and AAV3 capsids led to the production of recombinant vectors, AAV3-Rep3/ITR3, with up to approximately two to fourfold higher titers than AAV3-Rep2/ITR2 vectors produced using AAV2 ITRs, AAV2 Rep proteins, and AAV3 capsids. We also observed that the transduction efficiency of Rep3/ITR3 AAV3 vectors was approximately fourfold higher than that of Rep2/ITR2 AAV3 vectors in human hepatocellular carcinoma cell lines in vitro. The transduction efficiency of Rep3/ITR3 vectors was increased by ∼10-fold, when AAV3 capsids containing mutations in two surface-exposed residues (serine 663 and threonine 492 were used to generate a S663V+T492V double-mutant AAV3 vector. The Rep3/ITR3 AAV3 vectors also transduced human liver tumors in vivo approximately twofold more efficiently than those generated with Rep2/ITR2. Our data suggest that the transduction efficiency of AAV3 vectors can be significantly improved both using homologous Rep proteins and ITRs as well as by capsid optimization. Thus, the combined use of

  16. A 1-Year Quantitative Survey of Noro-, Adeno-, Human Boca-, and Hepatitis E Viruses in Raw and Secondarily Treated Sewage from Two Plants in Norway.

    Science.gov (United States)

    Myrmel, M; Lange, H; Rimstad, E

    2015-09-01

    A study of enteric viruses in raw and treated sewage from two secondary treatment plants, which received sewage from Oslo city (plant A) and small municipalities in Hedmark county in Norway (plant B), showed high levels of noro-, adeno-, and bocavirus throughout the year. A seasonal variation was observed for adeno- and GII norovirus with higher levels during winter and bocavirus that had more positive samples during winter. The virus concentrations in raw sewage were comparable in the two plants, with medians (log10 genome copies per liter) of 6.1, 6.3, 6.0, and 4.5 for noro GI, noro GII, adeno-, and bocavirus, respectively. The level of hepatitis E virus was not determined as it was below the limit of quantification. The mean log10 virus reduction was 0.55 (plant A) and 1.44 (plant B) with the highest reduction found in the plant with longer hydraulic retention time. The adenoviruses were dominantly serotype 41, while serotype 12 appeared sporadically. Of the 102 raw and treated sewage samples that were tested, eight were positive for hepatitis E virus of which four were from treated sewage. Two of the four obtained gene sequences from hepatitis E virus originated from the rural sewage samples and showed high similarity with a genotype 3 strain of hepatitis E virus detected in local piglets. Two other hepatitis E virus sequences obtained from urban sewage samples showed high similarities with genotype 3 strains isolated from urban sewage in Spain and a human genotype 1 isolate from India. The study gives information on the levels of noroviruses in raw and treated sewage, which is valuable to risk assessment, information indicating that some infections with hepatitis E viruses in Norway have a regional origin and that human bocavirus 2 and 3 are prevalent in the Norwegian population.

  17. Manufacturing best practices and performance

    DEFF Research Database (Denmark)

    Szász, Levente; Demeter, Krisztina; Boer, Harry

    2014-01-01

    whether a) home and host country characteristics moderate the association between manufacturing practices and performance, and, thus, whether b) there are manufacturing practices that are universally best. Manufacturing practices and performance are measured using data collected through the fifth round...... analysis is used to develop groups of companies based on home and host country development. Exploratory factor analysis is applied to create bundles of manufacturing practices and performance measures. Then, using moderated multiple regressions (MMR) with interaction factor, and separate multiple...... regression analyses for each group of companies, bundles of manufacturing practices are identified that lead to best-in-class performance improvements. A range of control variables is introduced to help interpret the results. The study shows that home and host country context does affect the association...

  18. Containment air circulation for optimal hydrogen recombination

    International Nuclear Information System (INIS)

    Spinks, N.; Krause, M.

    1997-01-01

    An accepted first-line defense for hydrogen mitigation is to design for the hydrogen to be rapidly mixed with the containment atmosphere and diluted to below flammability concentrations. Then, as hydrogen continues to be produced in the longer term, recombiners can be used to remove hydrogen: recombiners can be located in forced-air ducts or passive recombiners can be distributed within containment and the heat of recombination used to promote local air circulation. However, this principle does not eliminate the possibility of high hydrogen concentrations at locations removed from the recombiners. An improvement on this strategy is to arrange for a specific, buoyancy-driven, overall circulation of the containment atmosphere such that the recombiners can be located within the recirculation flow, immediately downstream of the hydrogen source. This would make the mixing process more predictable and solve the mass-transfer problem associated with distributed recombiners. Ideally, the recombiners would be located just above the hydrogen source so that the heat of recombination would assist the overall circulation. In this way, the hydrogen would be removed as close as possible to the source, thereby minimizing the amount of hydrogen immediately downstream of the source and reducing the hydrogen concentration to acceptable levels at other locations. Such a strategy requires the containment volume to be divided into an upflow path, past the hydrogen source and the recombiner, and a downflow path to complete the circuit. The flow could be generated actively using fans or passively using buoyancy forces arising from the difference in density of gases in the upfiow and downflow paths; the gases in the downflow path being cooled at an elevated heat sink. (author)

  19. Epigenetic functions enriched in transcription factors binding to mouse recombination hotspots.

    Science.gov (United States)

    Wu, Min; Kwoh, Chee-Keong; Przytycka, Teresa M; Li, Jing; Zheng, Jie

    2012-06-21

    The regulatory mechanism of recombination is a fundamental problem in genomics, with wide applications in genome-wide association studies, birth-defect diseases, molecular evolution, cancer research, etc. In mammalian genomes, recombination events cluster into short genomic regions called "recombination hotspots". Recently, a 13-mer motif enriched in hotspots is identified as a candidate cis-regulatory element of human recombination hotspots; moreover, a zinc finger protein, PRDM9, binds to this motif and is associated with variation of recombination phenotype in human and mouse genomes, thus is a trans-acting regulator of recombination hotspots. However, this pair of cis and trans-regulators covers only a fraction of hotspots, thus other regulators of recombination hotspots remain to be discovered. In this paper, we propose an approach to predicting additional trans-regulators from DNA-binding proteins by comparing their enrichment of binding sites in hotspots. Applying this approach on newly mapped mouse hotspots genome-wide, we confirmed that PRDM9 is a major trans-regulator of hotspots. In addition, a list of top candidate trans-regulators of mouse hotspots is reported. Using GO analysis we observed that the top genes are enriched with function of histone modification, highlighting the epigenetic regulatory mechanisms of recombination hotspots.

  20. Variation in human recombination rates and its genetic determinants.

    Directory of Open Access Journals (Sweden)

    Adi Fledel-Alon

    Full Text Available Despite the fundamental role of crossing-over in the pairing and segregation of chromosomes during human meiosis, the rates and placements of events vary markedly among individuals. Characterizing this variation and identifying its determinants are essential steps in our understanding of the human recombination process and its evolution.Using three large sets of European-American pedigrees, we examined variation in five recombination phenotypes that capture distinct aspects of crossing-over patterns. We found that the mean recombination rate in males and females and the historical hotspot usage are significantly heritable and are uncorrelated with one another. We then conducted a genome-wide association study in order to identify loci that influence them. We replicated associations of RNF212 with the mean rate in males and in females as well as the association of Inversion 17q21.31 with the female mean rate. We also replicated the association of PRDM9 with historical hotspot usage, finding that it explains most of the genetic variance in this phenotype. In addition, we identified a set of new candidate regions for further validation.These findings suggest that variation at broad and fine scales is largely separable and that, beyond three known loci, there is no evidence for common variation with large effects on recombination phenotypes.

  1. Viral vaccines and their manufacturing cell substrates: New trends and designs in modern vaccinology.

    Science.gov (United States)

    Rodrigues, Ana F; Soares, Hugo R; Guerreiro, Miguel R; Alves, Paula M; Coroadinha, Ana S

    2015-09-01

    Vaccination is one of the most effective interventions in global health. The worldwide vaccination programs significantly reduced the number of deaths caused by infectious agents. A successful example was the eradication of smallpox in 1979 after two centuries of vaccination campaigns. Since the first variolation administrations until today, the knowledge on immunology has increased substantially. This knowledge combined with the introduction of cell culture and DNA recombinant technologies revolutionized vaccine design. This review will focus on vaccines against human viral pathogens, recent developments on vaccine design and cell substrates used for their manufacture. While the production of attenuated and inactivated vaccines requires the use of the respective permissible cell substrates, the production of recombinant antigens, virus-like particles, vectored vaccines and chimeric vaccines requires the use - and often the development - of specific cell lines. Indeed, the development of novel modern viral vaccine designs combined with, the stringent safety requirements for manufacture, and the better understanding on animal cell metabolism and physiology are increasing the awareness on the importance of cell line development and engineering areas. A new era of modern vaccinology is arriving, offering an extensive toolbox to materialize novel and creative ideas in vaccine design and its manufacture. Copyright © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. DNA secondary structures are associated with recombination in major Plasmodium falciparum variable surface antigen gene families

    DEFF Research Database (Denmark)

    Sander, Adam F.; Lavstsen, Thomas; Rask, Thomas Salhøj

    2014-01-01

    falciparum-erythrocyte membrane protein 1 class on the infected erythrocyte surface. Recombination clearly generates var diversity, but the nature and control of the genetic exchanges involved remain unclear. By experimental and bioinformatic identification of recombination events and genome...... of recombination during DNA replication in P. falciparum sexual stages, and that these DSS-regulated genetic exchanges generate functional and diverse P. falciparum adhesion antigens. DSS-induced recombination may represent a common mechanism for optimizing the evolvability of virulence gene families in pathogens....

  3. Automated Manufacturing/Robotics Technology: Certificate and Associate Degree Programs.

    Science.gov (United States)

    McQuay, Paul L.

    A description is provided of the Automated Manufacturing/Robotics program to be offered at Delaware County Community College beginning in September 1984. Section I provides information on the use of reprogramable industrial robots in manufacturing and the rapid changes in production that can be effected through the application of automated…

  4. Sex in a test tube: testing the benefits of in vitro recombination.

    Science.gov (United States)

    Pesce, Diego; Lehman, Niles; de Visser, J Arjan G M

    2016-10-19

    The origin and evolution of sex, and the associated role of recombination, present a major problem in biology. Sex typically involves recombination of closely related DNA or RNA sequences, which is fundamentally a random process that creates but also breaks up beneficial allele combinations. Directed evolution experiments, which combine in vitro mutation and recombination protocols with in vitro or in vivo selection, have proved to be an effective approach for improving functionality of nucleic acids and enzymes. As this approach allows extreme control over evolutionary conditions and parameters, it also facilitates the detection of small or position-specific recombination benefits and benefits associated with recombination between highly divergent genotypes. Yet, in vitro approaches have been largely exploratory and motivated by obtaining improved end products rather than testing hypotheses of recombination benefits. Here, we review the various experimental systems and approaches used by in vitro studies of recombination, discuss what they say about the evolutionary role of recombination, and sketch their potential for addressing extant questions about the evolutionary role of sex and recombination, in particular on complex fitness landscapes. We also review recent insights into the role of 'extracellular recombination' during the origin of life.This article is part of the themed issue 'Weird sex: the underappreciated diversity of sexual reproduction'. © 2016 The Author(s).

  5. Effective gene therapy in an authentic model of Tay-Sachs-related diseases.

    Science.gov (United States)

    Cachón-González, M Begoña; Wang, Susan Z; Lynch, Andrew; Ziegler, Robin; Cheng, Seng H; Cox, Timothy M

    2006-07-05

    Tay-Sachs disease is a prototypic neurodegenerative disease. Lysosomal storage of GM2 ganglioside in Tay-Sachs and the related disorder, Sandhoff disease, is caused by deficiency of beta-hexosaminidase A, a heterodimeric protein. Tay-Sachs-related diseases (GM2 gangliosidoses) are incurable, but gene therapy has the potential for widespread correction of the underlying lysosomal defect by means of the secretion-recapture cellular pathway for enzymatic complementation. Sandhoff mice, lacking the beta-subunit of hexosaminidase, manifest many signs of classical human Tay-Sachs disease and, with an acute course, die before 20 weeks of age. We treated Sandhoff mice by stereotaxic intracranial inoculation of recombinant adeno-associated viral vectors encoding the complementing human beta-hexosaminidase alpha and beta subunit genes and elements, including an HIV tat sequence, to enhance protein expression and distribution. Animals survived for >1 year with sustained, widespread, and abundant enzyme delivery in the nervous system. Onset of the disease was delayed with preservation of motor function; inflammation and GM2 ganglioside storage in the brain and spinal cord was reduced. Gene delivery of beta-hexosaminidase A by using adeno-associated viral vectors has realistic potential for treating the human Tay-Sachs-related diseases.

  6. Recombiner

    International Nuclear Information System (INIS)

    Osumi, Morimichi.

    1979-01-01

    Purpose: To provide a recombiner which is capable of converting hydrogen gas into water by use of high-frequency heating at comparatively low temperatures and is safe and cheap in cost. Constitution: Hydrogen gas is introduced from an outer pipeline to the main structure of a recombiner, and when it passes through the vicinity of the central part of the recombiner, it is reacted with copper oxide (CuO 2 ) heated to a temperature more than 300 0 C by a high-frequency heater, and converted gently into water by reduction operation (2H 2 + CuO 2 → Cu + 2H 2 O). The thus prepared water is exhausted through the outer pipeline to a suppression pool. A part of hydrogen gas which has not been converted completely into water by the reaction and is remaining as hydrogen is recovered through exhaust nozzles and again introduced into the main structure of the recombiner. (Yoshino, Y.)

  7. Dissociation of recombinant prion autocatalysis from infectivity.

    Science.gov (United States)

    Noble, Geoffrey P; Supattapone, Surachai

    2015-01-01

    Within the mammalian prion field, the existence of recombinant prion protein (PrP) conformers with self-replicating (ie. autocatalytic) activity in vitro but little to no infectious activity in vivo challenges a key prediction of the protein-only hypothesis of prion replication--that autocatalytic PrP conformers should be infectious. To understand this dissociation of autocatalysis from infectivity, we recently performed a structural and functional comparison between a highly infectious and non-infectious pair of autocatalytic recombinant PrP conformers derived from the same initial prion strain. (1) We identified restricted, C-terminal structural differences between these 2 conformers and provided evidence that these relatively subtle differences prevent the non-infectious conformer from templating the conversion of native PrP(C) substrates containing a glycosylphosphatidylinositol (GPI) anchor. (1) In this article we discuss a model, consistent with these findings, in which recombinant PrP, lacking post-translational modifications and associated folding constraints, is capable of adopting a wide variety of autocatalytic conformations. Only a subset of these recombinant conformers can be adopted by post-translationally modified native PrP(C), and this subset represents the recombinant conformers with high specific infectivity. We examine this model's implications for the generation of highly infectious recombinant prions and the protein-only hypothesis of prion replication.

  8. Genomic Investigation Reveals Highly Conserved, Mosaic, Recombination Events Associated with Capsular Switching among Invasive Neisseria meningitidis Serogroup W Sequence Type (ST)-11 Strains.

    Science.gov (United States)

    Mustapha, Mustapha M; Marsh, Jane W; Krauland, Mary G; Fernandez, Jorge O; de Lemos, Ana Paula S; Dunning Hotopp, Julie C; Wang, Xin; Mayer, Leonard W; Lawrence, Jeffrey G; Hiller, N Luisa; Harrison, Lee H

    2016-07-03

    Neisseria meningitidis is an important cause of meningococcal disease globally. Sequence type (ST)-11 clonal complex (cc11) is a hypervirulent meningococcal lineage historically associated with serogroup C capsule and is believed to have acquired the W capsule through a C to W capsular switching event. We studied the sequence of capsule gene cluster (cps) and adjoining genomic regions of 524 invasive W cc11 strains isolated globally. We identified recombination breakpoints corresponding to two distinct recombination events within W cc11: A 8.4-kb recombinant region likely acquired from W cc22 including the sialic acid/glycosyl-transferase gene, csw resulted in a C→W change in capsular phenotype and a 13.7-kb recombinant segment likely acquired from Y cc23 lineage includes 4.5 kb of cps genes and 8.2 kb downstream of the cps cluster resulting in allelic changes in capsule translocation genes. A vast majority of W cc11 strains (497/524, 94.8%) retain both recombination events as evidenced by sharing identical or very closely related capsular allelic profiles. These data suggest that the W cc11 capsular switch involved two separate recombination events and that current global W cc11 meningococcal disease is caused by strains bearing this mosaic capsular switch. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  9. Scaled-up manufacturing of recombinant antibodies produced by plant cells in a 200-L orbitally-shaken disposable bioreactor.

    Science.gov (United States)

    Raven, Nicole; Rasche, Stefan; Kuehn, Christoph; Anderlei, Tibor; Klöckner, Wolf; Schuster, Flora; Henquet, Maurice; Bosch, Dirk; Büchs, Jochen; Fischer, Rainer; Schillberg, Stefan

    2015-02-01

    Tobacco BY-2 cells have emerged as a promising platform for the manufacture of biopharmaceutical proteins, offering efficient protein secretion, favourable growth characteristics and cultivation in containment under a controlled environment. The cultivation of BY-2 cells in disposable bioreactors is a useful alternative to conventional stainless steel stirred-tank reactors, and orbitally-shaken bioreactors could provide further advantages such as simple bag geometry, scalability and predictable process settings. We carried out a scale-up study, using a 200-L orbitally-shaken bioreactor holding disposable bags, and BY-2 cells producing the human monoclonal antibody M12. We found that cell growth and recombinant protein accumulation were comparable to standard shake flask cultivation, despite a 200-fold difference in cultivation volume. Final cell fresh weights of 300-387 g/L and M12 yields of ∼20 mg/L were achieved with both cultivation methods. Furthermore, we established an efficient downstream process for the recovery of M12 from the culture broth. The viscous spent medium prevented clarification using filtration devices, but we used expanded bed adsorption (EBA) chromatography with SP Sepharose as an alternative for the efficient capture of the M12 antibody. EBA was introduced as an initial purification step prior to protein A affinity chromatography, resulting in an overall M12 recovery of 75-85% and a purity of >95%. Our results demonstrate the suitability of orbitally-shaken bioreactors for the scaled-up cultivation of plant cell suspension cultures and provide a strategy for the efficient purification of antibodies from the BY-2 culture medium. © 2014 Wiley Periodicals, Inc.

  10. Metabolite profiling of recombinant CHO cells: Designing tailored feeding regimes that enhance recombinant antibody production.

    NARCIS (Netherlands)

    Sellick, C.A.; Croxford, A.S.; Maqsood, A.R.; Stephens, G.; Westerhoff, H.V.; Goodacre, R.; Dickson, A.J.

    2011-01-01

    Chinese hamster ovary (CHO) cells are the primary platform for commercial expression of recombinant therapeutic proteins. Obtaining maximum production from the expression platform requires optimal cell culture medium (and associated nutrient feeds). We have used metabolite profiling to define the

  11. Metabolite profiling of recombinant CHO cells: designing tailored feeding regimes that enhance recombinant antibody production.

    NARCIS (Netherlands)

    Sellick, C.A.; Croxford, A.S.; Maqsood, A.R.; Stephens, G.; Westerhoff, H.V.; Goodacre, R.; Dickson, A.J.

    2011-01-01

    Chinese hamster ovary (CHO) cells are the primary platform for commercial expression of recombinant therapeutic proteins. Obtaining maximum production from the expression platform requires optimal cell culture medium (and associated nutrient feeds). We have used metabolite profiling to define the

  12. Acetylated Histone H3K9 is associated with meiotic recombination hotspots, and plays a role in recombination redundantly with other factors including the H3K4 methylase Set1 in fission yeast

    Science.gov (United States)

    Yamada, Shintaro; Ohta, Kunihiro; Yamada, Takatomi

    2013-01-01

    Histone modifications are associated with meiotic recombination hotspots, discrete sites with augmented recombination frequency. For example, trimethylation of histone H3 lysine4 (H3K4me3) marks most hotspots in budding yeast and mouse. Modified histones are known to regulate meiotic recombination partly by promoting DNA double-strand break (DSB) formation at hotspots, but the role and precise landscape of involved modifications remain unclear. Here, we studied hotspot-associated modifications in fission yeast and found general features: acetylation of H3 lysine9 (H3K9ac) is elevated, and H3K4me3 is not significantly enriched. Mutating H3K9 to non-acetylatable alanine mildly reduced levels of the DSB-inducing protein Rec12 (the fission yeast homologue of Spo11) and DSB at hotspots, indicating that H3K9ac may be involved in DSB formation by enhancing the interaction between Rec12 and hotspots. In addition, we found that the lack of the H3K4 methyltransferase Set1 generally increased Rec12 binding to chromatin but partially reduced DSB formation at some loci, suggesting that Set1 is also involved in DSB formation. These results suggest that meiotic DSB formation is redundantly regulated by multiple chromatin-related factors including H3K9ac and Set1 in fission yeast. PMID:23382177

  13. Biological evaluation of recombinant human erythropoietin in pharmaceutical products

    Directory of Open Access Journals (Sweden)

    Ramos A.S.

    2003-01-01

    Full Text Available The potencies of mammalian cell-derived recombinant human erythropoietin pharmaceutical preparations, from a total of five manufacturers, were assessed by in vivo bioassay using standardized protocols. Eight-week-old normocythemic mice received a single subcutaneous injection followed by blood sampling 96 h later or multiple daily injections with blood sampling 24 h after the last injection. Reticulocyte counting by microscopic examination was employed as the end-point using the brilliant cresyl blue or selective hemolysis methods, together with automated flow cytometry. Different injection schedules were investigated and dose-response curves for the European Pharmacopoeia Biological Reference Preparation of erythropoietin were compared. Manual and automated methods of reticulocyte counting were correlated with respect to assay validity and precision. Using 8 mice per treatment group, intra-assay precision determined for all of the assays in the study showed coefficients of variation of 12.1-28.4% for the brilliant cresyl blue method, 14.1-30.8% for the selective hemolysis method and 8.5-19.7% for the flow cytometry method. Applying the single injection protocol, a combination of at least two independent assays was required to achieve the precision potency and confidence limits indicated by the manufacturers, while the multiple daily injection protocol yielded the same acceptable results within a single assay. Although the latter protocol using flow cytometry for reticulocyte counting gave more precise and reproducible results (intra-assay coefficients of variation: 5.9-14.2%, the well-characterized manual methods provide equally valid alternatives for the quality control of recombinant human erythropoietin therapeutic products.

  14. 2001 Industry Studies: Advanced Manufacturing

    Science.gov (United States)

    2001-05-28

    oriented, 19 and manufacturers are employing the Internet and associated information technologies to better integrate supply chains and form extended...ways to compete in world markets . As part of this ongoing transformation, the broad implementation of advanced manufacturing technologies , processes...competitive advantages and better performance in world markets . Importantly, advanced manufacturing involves the innovative integration of new technology

  15. Genetic and evolutionary correlates of fine-scale recombination rate variation in Drosophila persimilis.

    Science.gov (United States)

    Stevison, Laurie S; Noor, Mohamed A F

    2010-12-01

    Recombination is fundamental to meiosis in many species and generates variation on which natural selection can act, yet fine-scale linkage maps are cumbersome to construct. We generated a fine-scale map of recombination rates across two major chromosomes in Drosophila persimilis using 181 SNP markers spanning two of five major chromosome arms. Using this map, we report significant fine-scale heterogeneity of local recombination rates. However, we also observed "recombinational neighborhoods," where adjacent intervals had similar recombination rates after excluding regions near the centromere and telomere. We further found significant positive associations of fine-scale recombination rate with repetitive element abundance and a 13-bp sequence motif known to associate with human recombination rates. We noted strong crossover interference extending 5-7 Mb from the initial crossover event. Further, we observed that fine-scale recombination rates in D. persimilis are strongly correlated with those obtained from a comparable study of its sister species, D. pseudoobscura. We documented a significant relationship between recombination rates and intron nucleotide sequence diversity within species, but no relationship between recombination rate and intron divergence between species. These results are consistent with selection models (hitchhiking and background selection) rather than mutagenic recombination models for explaining the relationship of recombination with nucleotide diversity within species. Finally, we found significant correlations between recombination rate and GC content, supporting both GC-biased gene conversion (BGC) models and selection-driven codon bias models. Overall, this genome-enabled map of fine-scale recombination rates allowed us to confirm findings of broader-scale studies and identify multiple novel features that merit further investigation.

  16. Recombination in Streptococcus pneumoniae Lineages Increase with Carriage Duration and Size of the Polysaccharide Capsule

    Science.gov (United States)

    Andam, Cheryl P.; Harris, Simon R.; Cornick, Jennifer E.; Yang, Marie; Bricio-Moreno, Laura; Kamng’ona, Arox W.; French, Neil; Heyderman, Robert S.; Kadioglu, Aras; Everett, Dean B.; Bentley, Stephen D.

    2016-01-01

    ABSTRACT Streptococcus pneumoniae causes a high burden of invasive pneumococcal disease (IPD) globally, especially in children from resource-poor settings. Like many bacteria, the pneumococcus can import DNA from other strains or even species by transformation and homologous recombination, which has allowed the pneumococcus to evade clinical interventions such as antibiotics and pneumococcal conjugate vaccines (PCVs). Pneumococci are enclosed in a complex polysaccharide capsule that determines the serotype; the capsule varies in size and is associated with properties including carriage prevalence and virulence. We determined and quantified the association between capsule and recombination events using genomic data from a diverse collection of serotypes sampled in Malawi. We determined both the amount of variation introduced by recombination relative to mutation (the relative rate) and how many individual recombination events occur per isolate (the frequency). Using univariate analyses, we found an association between both recombination measures and multiple factors associated with the capsule, including duration and prevalence of carriage. Because many capsular factors are correlated, we used multivariate analysis to correct for collinearity. Capsule size and carriage duration remained positively associated with recombination, although with a reduced P value, and this effect may be mediated through some unassayed additional property associated with larger capsules. This work describes an important impact of serotype on recombination that has been previously overlooked. While the details of how this effect is achieved remain to be determined, it may have important consequences for the serotype-specific response to vaccines and other interventions. PMID:27677790

  17. Recombination in Streptococcus pneumoniae Lineages Increase with Carriage Duration and Size of the Polysaccharide Capsule

    Directory of Open Access Journals (Sweden)

    Chrispin Chaguza

    2016-09-01

    Full Text Available Streptococcus pneumoniae causes a high burden of invasive pneumococcal disease (IPD globally, especially in children from resource-poor settings. Like many bacteria, the pneumococcus can import DNA from other strains or even species by transformation and homologous recombination, which has allowed the pneumococcus to evade clinical interventions such as antibiotics and pneumococcal conjugate vaccines (PCVs. Pneumococci are enclosed in a complex polysaccharide capsule that determines the serotype; the capsule varies in size and is associated with properties including carriage prevalence and virulence. We determined and quantified the association between capsule and recombination events using genomic data from a diverse collection of serotypes sampled in Malawi. We determined both the amount of variation introduced by recombination relative to mutation (the relative rate and how many individual recombination events occur per isolate (the frequency. Using univariate analyses, we found an association between both recombination measures and multiple factors associated with the capsule, including duration and prevalence of carriage. Because many capsular factors are correlated, we used multivariate analysis to correct for collinearity. Capsule size and carriage duration remained positively associated with recombination, although with a reduced P value, and this effect may be mediated through some unassayed additional property associated with larger capsules. This work describes an important impact of serotype on recombination that has been previously overlooked. While the details of how this effect is achieved remain to be determined, it may have important consequences for the serotype-specific response to vaccines and other interventions.

  18. Inactivated recombinant plant virus protects dogs from a lethal challenge with canine parvovirus.

    Science.gov (United States)

    Langeveld, J P; Brennan, F R; Martínez-Torrecuadrada, J L; Jones, T D; Boshuizen, R S; Vela, C; Casal, J I; Kamstrup, S; Dalsgaard, K; Meloen, R H; Bendig, M M; Hamilton, W D

    2001-06-14

    A vaccine based upon a recombinant plant virus (CPMV-PARVO1), displaying a peptide derived from the VP2 capsid protein of canine parvovirus (CPV), has previously been described. To date, studies with the vaccine have utilized viable plant chimaeric particles (CVPs). In this study, CPMV-PARVO1 was inactivated by UV treatment to remove the possibility of replication of the recombinant plant virus in a plant host after manufacture of the vaccine. We show that the inactivated CVP is able to protect dogs from a lethal challenge with CPV following parenteral immunization with the vaccine. Dogs immunized with the inactivated CPMV-PARVO1 in adjuvant displayed no clinical signs of disease and shedding of CPV in faeces was limited following CPV challenge. All immunized dogs elicited high titres of peptide-specific antibody, which neutralized CPV in vitro. Levels of protection, virus shedding and VP2-specific antibody were comparable to those seen in dogs immunized with the same VP2- peptide coupled to keyhole limpet hemocyanin (KLH). Since plant virus-derived vaccines have the potential for cost-effective manufacture and are not known to replicate in mammalian cells, they represent a viable alternative to current replicating vaccine vectors for development of both human and veterinary vaccines.

  19. The Mitochondrial DNA (mtDNA)-Associated Protein SWIB5 Influences mtDNA Architecture and Homologous Recombination

    KAUST Repository

    Blomme, Jonas

    2017-04-19

    In addition to the nucleus, mitochondria and chloroplasts in plant cells also contain genomes. Efficient DNA repair pathways are crucial in these organelles to fix damage resulting from endogenous and exogenous factors. Plant organellar genomes are complex compared with their animal counterparts, and although several plant-specific mediators of organelle DNA repair have been reported, many regulators remain to be identified. Here, we show that a mitochondrial SWI/SNF (nucleosome remodeling) complex B protein, SWIB5, is capable of associating with mitochondrial DNA (mtDNA) in Arabidopsis thaliana. Gainand loss-of-function mutants provided evidence for a role of SWIB5 in influencing mtDNA architecture and homologous recombination at specific intermediate-sized repeats both under normal and genotoxic conditions. SWIB5 interacts with other mitochondrial SWIB proteins. Gene expression and mutant phenotypic analysis of SWIB5 and SWIB family members suggests a link between organellar genome maintenance and cell proliferation. Taken together, our work presents a protein family that influences mtDNA architecture and homologous recombination in plants and suggests a link between organelle functioning and plant development.

  20. Recombinant FSH versus urinary gonadotrophins or recombinant FSH for ovulation induction in subfertility associated with polycystic ovary syndrome

    NARCIS (Netherlands)

    Bayram, N.; van Wely, M.; van der Veen, F.

    2001-01-01

    BACKGROUND: Over the last four decades, various urinary FSH (uFSH) products of different purity have been developed. In 1988 recombinant FSH (rFSH ) was prepared by transfecting Chinese hamster ovary cell lines with both FSH subunit genes. Both rFSH and uFSH are known to be effective in inducing

  1. Cattle Sex-Specific Recombination and Genetic Control from a Large Pedigree Analysis.

    Science.gov (United States)

    Ma, Li; O'Connell, Jeffrey R; VanRaden, Paul M; Shen, Botong; Padhi, Abinash; Sun, Chuanyu; Bickhart, Derek M; Cole, John B; Null, Daniel J; Liu, George E; Da, Yang; Wiggans, George R

    2015-11-01

    Meiotic recombination is an essential biological process that generates genetic diversity and ensures proper segregation of chromosomes during meiosis. From a large USDA dairy cattle pedigree with over half a million genotyped animals, we extracted 186,927 three-generation families, identified over 8.5 million maternal and paternal recombination events, and constructed sex-specific recombination maps for 59,309 autosomal SNPs. The recombination map spans for 25.5 Morgans in males and 23.2 Morgans in females, for a total studied region of 2,516 Mb (986 kb/cM in males and 1,085 kb/cM in females). The male map is 10% longer than the female map and the sex difference is most pronounced in the subtelomeric regions. We identified 1,792 male and 1,885 female putative recombination hotspots, with 720 hotspots shared between sexes. These hotspots encompass 3% of the genome but account for 25% of the genome-wide recombination events in both sexes. During the past forty years, males showed a decreasing trend in recombination rate that coincided with the artificial selection for milk production. Sex-specific GWAS analyses identified PRDM9 and CPLX1 to have significant effects on genome-wide recombination rate in both sexes. Two novel loci, NEK9 and REC114, were associated with recombination rate in both sexes, whereas three loci, MSH4, SMC3 and CEP55, affected recombination rate in females only. Among the multiple PRDM9 paralogues on the bovine genome, our GWAS of recombination hotspot usage together with linkage analysis identified the PRDM9 paralogue on chromosome 1 to be associated in the U.S. Holstein data. Given the largest sample size ever reported for such studies, our results reveal new insights into the understanding of cattle and mammalian recombination.

  2. The humoral immune response to recombinant nucleocapsid antigen of canine distemper virus in dogs vaccinated with attenuated distemper virus or DNA encoding the nucleocapsid of wild-type virus.

    Science.gov (United States)

    Griot-Wenk, M E; Cherpillod, P; Koch, A; Zurbriggen, R; Bruckner, L; Wittek, R; Zurbriggen, A

    2001-06-01

    This study compared the humoral immune response against the nucleocapsid-(N) protein of canine distemper virus (CDV) of dogs vaccinated with a multivalent vaccine against parvo-, adeno-, and parainfluenza virus and leptospira combined with either the attenuated CDV Onderstepoort strain (n = 15) or an expression plasmid containing the N-gene of CDV (n = 30). The vaccinations were applied intramuscularly three times at 2-week intervals beginning at the age of 6 weeks. None of the pre-immune sera recognized the recombinant N-protein, confirming the lack of maternal antibodies at this age. Immunization with DNA vaccine for CDV resulted in positive serum N-specific IgG response. However, their IgG (and IgA) titres were lower than those of CDV-vaccinated dogs. Likewise, DNA-vaccinated dogs did not show an IgM peak. There was no increase in N-specific serum IgE titres in either group. Serum titres to the other multivalent vaccine components were similar in both groups.

  3. Meiotic recombination breakpoints are associated with open chromatin and enriched with Stowaway transposons in potato

    Science.gov (United States)

    Meiotic recombination is the foundation for genetic variation in natural and artificial populations of eukaryotes. Although genetic recombination maps have been developed in numerous plant species since late the 1980s, very few of these maps have provided the necessary resolution needed to investiga...

  4. LDSplitDB: a database for studies of meiotic recombination hotspots in MHC using human genomic data.

    Science.gov (United States)

    Guo, Jing; Chen, Hao; Yang, Peng; Lee, Yew Ti; Wu, Min; Przytycka, Teresa M; Kwoh, Chee Keong; Zheng, Jie

    2018-04-20

    Meiotic recombination happens during the process of meiosis when chromosomes inherited from two parents exchange genetic materials to generate chromosomes in the gamete cells. The recombination events tend to occur in narrow genomic regions called recombination hotspots. Its dysregulation could lead to serious human diseases such as birth defects. Although the regulatory mechanism of recombination events is still unclear, DNA sequence polymorphisms have been found to play crucial roles in the regulation of recombination hotspots. To facilitate the studies of the underlying mechanism, we developed a database named LDSplitDB which provides an integrative and interactive data mining and visualization platform for the genome-wide association studies of recombination hotspots. It contains the pre-computed association maps of the major histocompatibility complex (MHC) region in the 1000 Genomes Project and the HapMap Phase III datasets, and a genome-scale study of the European population from the HapMap Phase II dataset. Besides the recombination profiles, related data of genes, SNPs and different types of epigenetic modifications, which could be associated with meiotic recombination, are provided for comprehensive analysis. To meet the computational requirement of the rapidly increasing population genomics data, we prepared a lookup table of 400 haplotypes for recombination rate estimation using the well-known LDhat algorithm which includes all possible two-locus haplotype configurations. To the best of our knowledge, LDSplitDB is the first large-scale database for the association analysis of human recombination hotspots with DNA sequence polymorphisms. It provides valuable resources for the discovery of the mechanism of meiotic recombination hotspots. The information about MHC in this database could help understand the roles of recombination in human immune system. DATABASE URL: http://histone.scse.ntu.edu.sg/LDSplitDB.

  5. Genome-wide recombination rate variation in a recombination map of cotton.

    Science.gov (United States)

    Shen, Chao; Li, Ximei; Zhang, Ruiting; Lin, Zhongxu

    2017-01-01

    Recombination is crucial for genetic evolution, which not only provides new allele combinations but also influences the biological evolution and efficacy of natural selection. However, recombination variation is not well understood outside of the complex species' genomes, and it is particularly unclear in Gossypium. Cotton is the most important natural fibre crop and the second largest oil-seed crop. Here, we found that the genetic and physical maps distances did not have a simple linear relationship. Recombination rates were unevenly distributed throughout the cotton genome, which showed marked changes along the chromosome lengths and recombination was completely suppressed in the centromeric regions. Recombination rates significantly varied between A-subgenome (At) (range = 1.60 to 3.26 centimorgan/megabase [cM/Mb]) and D-subgenome (Dt) (range = 2.17 to 4.97 cM/Mb), which explained why the genetic maps of At and Dt are similar but the physical map of Dt is only half that of At. The translocation regions between A02 and A03 and between A04 and A05, and the inversion regions on A10, D10, A07 and D07 indicated relatively high recombination rates in the distal regions of the chromosomes. Recombination rates were positively correlated with the densities of genes, markers and the distance from the centromere, and negatively correlated with transposable elements (TEs). The gene ontology (GO) categories showed that genes in high recombination regions may tend to response to environmental stimuli, and genes in low recombination regions are related to mitosis and meiosis, which suggested that they may provide the primary driving force in adaptive evolution and assure the stability of basic cell cycle in a rapidly changing environment. Global knowledge of recombination rates will facilitate genetics and breeding in cotton.

  6. [Chinese medicine industry 4.0:advancing digital pharmaceutical manufacture toward intelligent pharmaceutical manufacture].

    Science.gov (United States)

    Cheng, Yi-Yu; Qu, Hai-Bin; Zhang, Bo-Li

    2016-01-01

    A perspective analysis on the technological innovation in pharmaceutical engineering of Chinese medicine unveils a vision on "Future Factory" of Chinese medicine industry in mind. The strategy as well as the technical roadmap of "Chinese medicine industry 4.0" is proposed, with the projection of related core technology system. It is clarified that the technical development path of Chinese medicine industry from digital manufacture to intelligent manufacture. On the basis of precisely defining technical terms such as process control, on-line detection and process quality monitoring for Chinese medicine manufacture, the technical concepts and characteristics of intelligent pharmaceutical manufacture as well as digital pharmaceutical manufacture are elaborated. Promoting wide applications of digital manufacturing technology of Chinese medicine is strongly recommended. Through completely informationized manufacturing processes and multi-discipline cluster innovation, intelligent manufacturing technology of Chinese medicine should be developed, which would provide a new driving force for Chinese medicine industry in technology upgrade, product quality enhancement and efficiency improvement. Copyright© by the Chinese Pharmaceutical Association.

  7. Bcl-2–associated athanogene 3 protects the heart from ischemia/reperfusion injury

    Science.gov (United States)

    Su, Feifei; Myers, Valerie D.; Knezevic, Tijana; Wang, JuFang; Gao, Erhe; Madesh, Muniswamy; Tahrir, Farzaneh G.; Gupta, Manish K.; Gordon, Jennifer; Rabinowitz, Joseph; Tilley, Douglas G.; Khalili, Kamel; Cheung, Joseph Y.

    2016-01-01

    Bcl-2–associated athanogene 3 (BAG3) is an evolutionarily conserved protein expressed at high levels in the heart and the vasculature and in many cancers. While altered BAG3 expression has been associated with cardiac dysfunction, its role in ischemia/reperfusion (I/R) is unknown. To test the hypothesis that BAG3 protects the heart from reperfusion injury, in vivo cardiac function was measured in hearts infected with either recombinant adeno-associated virus serotype 9–expressing (rAAV9-expressing) BAG3 or GFP and subjected to I/R. To elucidate molecular mechanisms by which BAG3 protects against I/R injury, neonatal mouse ventricular cardiomyocytes (NMVCs) in which BAG3 levels were modified by adenovirus expressing (Ad-expressing) BAG3 or siBAG3 were exposed to hypoxia/reoxygenation (H/R). H/R significantly reduced NMVC BAG3 levels, which were associated with enhanced expression of apoptosis markers, decreased expression of autophagy markers, and reduced autophagy flux. The deleterious effects of H/R on apoptosis and autophagy were recapitulated by knockdown of BAG3 with Ad-siBAG3 and were rescued by Ad-BAG3. In vivo, treatment of mice with rAAV9-BAG3 prior to I/R significantly decreased infarct size and improved left ventricular function when compared with mice receiving rAAV9-GFP and improved markers of autophagy and apoptosis. These findings suggest that BAG3 may provide a therapeutic target in patients undergoing reperfusion after myocardial infarction. PMID:27882354

  8. Duplex PCR assay for the detection of avian adeno virus and chicken anemia virus prevalent in Pakistan

    Directory of Open Access Journals (Sweden)

    Iqbal Aqib

    2011-09-01

    Full Text Available Abstract Avian Adeno viruses and Chicken Anemia Viruses cause serious economic losses to the poultry industry of Pakistan each year. Timely and efficient diagnosis of the viruses is needed in order to practice prevention and control strategies. In the first part of this study, we investigated broilers, breeder and Layer stocks for morbidity and mortality rates due to AAV and CAV infections and any co-infections by examining signs and symptoms typical of their infestation or post mortem examination. In the second part of the study, we developed a duplex PCR assay for the detection of AAV and CAV which is capable to simultaneously detect both the viral types prevalent in Pakistan with high sensitivity and 100% specificity.

  9. Fine-Scale Recombination Maps of Fungal Plant Pathogens Reveal Dynamic Recombination Landscapes and Intragenic Hotspots.

    Science.gov (United States)

    Stukenbrock, Eva H; Dutheil, Julien Y

    2018-03-01

    Meiotic recombination is an important driver of evolution. Variability in the intensity of recombination across chromosomes can affect sequence composition, nucleotide variation, and rates of adaptation. In many organisms, recombination events are concentrated within short segments termed recombination hotspots. The variation in recombination rate and positions of recombination hotspot can be studied using population genomics data and statistical methods. In this study, we conducted population genomics analyses to address the evolution of recombination in two closely related fungal plant pathogens: the prominent wheat pathogen Zymoseptoria tritici and a sister species infecting wild grasses Z. ardabiliae We specifically addressed whether recombination landscapes, including hotspot positions, are conserved in the two recently diverged species and if recombination contributes to rapid evolution of pathogenicity traits. We conducted a detailed simulation analysis to assess the performance of methods of recombination rate estimation based on patterns of linkage disequilibrium, in particular in the context of high nucleotide diversity. Our analyses reveal overall high recombination rates, a lack of suppressed recombination in centromeres, and significantly lower recombination rates on chromosomes that are known to be accessory. The comparison of the recombination landscapes of the two species reveals a strong correlation of recombination rate at the megabase scale, but little correlation at smaller scales. The recombination landscapes in both pathogen species are dominated by frequent recombination hotspots across the genome including coding regions, suggesting a strong impact of recombination on gene evolution. A significant but small fraction of these hotspots colocalize between the two species, suggesting that hotspot dynamics contribute to the overall pattern of fast evolving recombination in these species. Copyright © 2018 Stukenbrock and Dutheil.

  10. Bayesian inference of shared recombination hotspots between humans and chimpanzees.

    Science.gov (United States)

    Wang, Ying; Rannala, Bruce

    2014-12-01

    Recombination generates variation and facilitates evolution. Recombination (or lack thereof) also contributes to human genetic disease. Methods for mapping genes influencing complex genetic diseases via association rely on linkage disequilibrium (LD) in human populations, which is influenced by rates of recombination across the genome. Comparative population genomic analyses of recombination using related primate species can identify factors influencing rates of recombination in humans. Such studies can indicate how variable hotspots for recombination may be both among individuals (or populations) and over evolutionary timescales. Previous studies have suggested that locations of recombination hotspots are not conserved between humans and chimpanzees. We made use of the data sets from recent resequencing projects and applied a Bayesian method for identifying hotspots and estimating recombination rates. We also reanalyzed SNP data sets for regions with known hotspots in humans using samples from the human and chimpanzee. The Bayes factors (BF) of shared recombination hotspots between human and chimpanzee across regions were obtained. Based on the analysis of the aligned regions of human chromosome 21, locations where the two species show evidence of shared recombination hotspots (with high BFs) were identified. Interestingly, previous comparative studies of human and chimpanzee that focused on the known human recombination hotspots within the β-globin and HLA regions did not find overlapping of hotspots. Our results show high BFs of shared hotspots at locations within both regions, and the estimated locations of shared hotspots overlap with the locations of human recombination hotspots obtained from sperm-typing studies. Copyright © 2014 by the Genetics Society of America.

  11. An efficient rHSV-based complementation system for the production of multiple rAAV vector serotypes.

    Science.gov (United States)

    Kang, W; Wang, L; Harrell, H; Liu, J; Thomas, D L; Mayfield, T L; Scotti, M M; Ye, G J; Veres, G; Knop, D R

    2009-02-01

    Recombinant herpes simplex virus type 1 (rHSV)-assisted recombinant adeno-associated virus (rAAV) vector production provides a highly efficient and scalable method for manufacture of clinical grade rAAV vectors. Here, we present an rHSV co-infection system for rAAV production, which uses two ICP27-deficient rHSV constructs, one bearing the rep2 and cap (1, 2 or 9) genes of rAAV, and the second bearing an AAV2 ITR-gene of interest (GOI) cassette. The optimum rAAV production parameters were defined by producing rAAV2/GFP in HEK293 cells, yielding greater than 9000 infectious particles per cell with a 14:1 DNase resistance particle to infectious particle (DRP/ip) ratio. The optimized co-infection parameters were then used to generate large-scale stocks of rAAV1/AAT, which encode the human alpha-1-antitrypsin (hAAT) protein, and purified by column chromatography. The purified vector was extensively characterized by rAAV- and rHSV-specific assays and compared to transfection-made vector for in vivo efficacy in mice through intramuscular injection. The co-infection method was also used to produce rAAV9/AAT for comparison to rAAV1/AAT in vivo. Intramuscular administration of 1 x 10(11) DRP per animal of rHSV-produced rAAV1/AAT and rAAV9/AAT resulted in hAAT protein expression of 5.4 x 10(4) and 9.4 x 10(5) ng ml(-1) serum respectively, the latter being clinically relevant.

  12. Structural and functional characterization of the recombinant death domain from death-associated protein kinase.

    Science.gov (United States)

    Dioletis, Evangelos; Dingley, Andrew J; Driscoll, Paul C

    2013-01-01

    Death-associated protein kinase (DAPk) is a calcium/calmodulin-regulated Ser/Thr-protein kinase that functions at an important point of integration for cell death signaling pathways. DAPk has a structurally unique multi-domain architecture, including a C-terminally positioned death domain (DD) that is a positive regulator of DAPk activity. In this study, recombinant DAPk-DD was observed to aggregate readily and could not be prepared in sufficient yield for structural analysis. However, DAPk-DD could be obtained as a soluble protein in the form of a translational fusion protein with the B1 domain of streptococcal protein G. In contrast to other DDs that adopt the canonical six amphipathic α-helices arranged in a compact fold, the DAPk-DD was found to possess surprisingly low regular secondary structure content and an absence of a stable globular fold, as determined by circular dichroism (CD), NMR spectroscopy and a temperature-dependent fluorescence assay. Furthermore, we measured the in vitro interaction between extracellular-regulated kinase-2 (ERK2) and various recombinant DAPk-DD constructs. Despite the low level of structural order, the recombinant DAPk-DD retained the ability to interact with ERK2 in a 1∶1 ratio with a K d in the low micromolar range. Only the full-length DAPk-DD could bind ERK2, indicating that the apparent 'D-motif' located in the putative sixth helix of DAPk-DD is not sufficient for ERK2 recognition. CD analysis revealed that binding of DAPk-DD to ERK2 is not accompanied by a significant change in secondary structure. Taken together our data argue that the DAPk-DD, when expressed in isolation, does not adopt a classical DD fold, yet in this state retains the capacity to interact with at least one of its binding partners. The lack of a stable globular structure for the DAPk-DD may reflect either that its folding would be supported by interactions absent in our experimental set-up, or a limitation in the structural bioinformatics

  13. Antihemophilic factor (recombinant plasma/albumin-free method for the management and prevention of bleeding episodes in patients with hemophilia A

    Directory of Open Access Journals (Sweden)

    Steven Pipe

    2009-02-01

    Full Text Available Steven PipeDepartment of Pediatrics and Communicable Diseases, University of Michigan, Ann Arbor, MI, USAAbstract: Hemophilia is a rare genetic bleeding disorder that, if not adequately controlled, is associated with life-threatening bleeding events and serious and costly complications, primarily from joint damage. The advent of effective clotting factor replacement therapy for patients with hemophilia is considered one of the foremost medical advances of the 20th century. The last 3 decades of experience in hemophilia care have witnessed the effectiveness of the care of patients with hemophilia within specialized comprehensive care centers, advances in factor replacement therapies, the benefits of prophylaxis over on-demand replacement therapy, and the role of aggressive management of joint disease to prevent dysfunction. Ongoing challenges, including the management of inhibitors to factor therapies and the consequences of thousands of patients with hemophilia becoming infected with human immunodeficiency virus and hepatitis C virus in the 1980s from contaminated plasma-derived factor concentrates, have highlighted the need for vigilance with respect to clotting factor product safety, access to care, and a full complement of choice of factor replacement therapies. Advate® (antihemophilic factor [recombinant] plasma/albumin-free method [rAHF-PFM] is the first recombinant factor VIII therapy manufactured without human or animal protein additives to eliminate the risk of pathogen transmission that could be carried by these additives. Preclinical studies established bioequivalence with recombinant antihemophilic factor (Recombinate®, a product with 16 years of clinical experience. Currently licensed in 44 countries worldwide, rAHF-PFM has over 7 years of clinical research within 5 global studies supporting its safety and efficacy in the treatment of patients with hemophilia A.Keywords: factor VIII, hemophilia A, recombinant proteins, clinical

  14. High-Resolution Patterns of Meiotic Recombination across the Human Major Histocompatibility Complex

    Science.gov (United States)

    Cullen, Michael; Perfetto, Stephen P.; Klitz, William; Nelson, George; Carrington, Mary

    2002-01-01

    Definitive characteristics of meiotic recombination events over large (i.e., >1 Mb) segments of the human genome remain obscure, yet they are essential for establishing the haplotypic structure of the genome and for efficient mapping of complex traits. We present a high-resolution map of recombination at the kilobase level across a 3.3-Mb interval encompassing the major histocompatibility complex (MHC). Genotyping of 20,031 single sperm from 12 individuals resulted in the identification and fine mapping of 325 recombinant chromosomes within genomic intervals as small as 7 kb. Several principal characteristics of recombination in this region were observed: (1) rates of recombination can differ significantly between individuals; (2) intense hot spots of recombination occur at least every 0.8 Mb but are not necessarily evenly spaced; (3) distribution in the location of recombination events can differ significantly among individuals; (4) between hot spots, low levels of recombination occur fairly evenly across 100-kb segments, suggesting the presence of warm spots of recombination; and (5) specific sequence motifs associate significantly with recombination distribution. These data provide a plausible model for recombination patterns of the human genome overall. PMID:12297984

  15. Genetic Recombination

    Science.gov (United States)

    Whitehouse, H. L. K.

    1973-01-01

    Discusses the mechanisms of genetic recombination with particular emphasis on the study of the fungus Sordaria brevicollis. The study of recombination is facilitated by the use of mutants of this fungus in which the color of the ascospores is affected. (JR)

  16. Genetic interactions between the chromosome axis-associated protein Hop1 and homologous recombination determinants in Schizosaccharomyces pombe.

    Science.gov (United States)

    Brown, Simon David; Jarosinska, Olga Dorota; Lorenz, Alexander

    2018-03-17

    Hop1 is a component of the meiosis-specific chromosome axis and belongs to the evolutionarily conserved family of HORMA domain proteins. Hop1 and its orthologs in higher eukaryotes are a major factor in promoting double-strand DNA break formation and inter-homolog recombination. In budding yeast and mammals, they are also involved in a meiotic checkpoint kinase cascade monitoring the completion of double-strand DNA break repair. We used the fission yeast, Schizosaccharomyces pombe, which lacks a canonical synaptonemal complex to test whether Hop1 has a role beyond supporting the generation of double-strand DNA breaks and facilitating inter-homolog recombination events. We determined how mutants of homologous recombination factors genetically interact with hop1, studied the role(s) of the HORMA domain of Hop1, and characterized a bio-informatically predicted interactor of Hop1, Aho1 (SPAC688.03c). Our observations indicate that in fission yeast, Hop1 does require its HORMA domain to support wild-type levels of meiotic recombination and localization to meiotic chromatin. Furthermore, we show that hop1∆ only weakly interacts genetically with mutants of homologous recombination factors, and in fission yeast likely has no major role beyond break formation and promoting inter-homolog events. We speculate that after the evolutionary loss of the synaptonemal complex, Hop1 likely has become less important for modulating recombination outcome during meiosis in fission yeast, and that this led to a concurrent rewiring of genetic pathways controlling meiotic recombination.

  17. Meiotic recombination breakpoints are associated with open chromatin and enriched with repetitive DNA elements in potato

    Science.gov (United States)

    Meiotic recombination provides the framework for the genetic variation in natural and artificial populations of eukaryotes through the creation of novel haplotypes. Thus, determining the molecular characteristics of meiotic recombination remains essential for future plant breeding efforts, which hea...

  18. Alpha-1 antitrypsin protein and gene therapies decrease autoimmunity and delay arthritis development in mouse model

    Directory of Open Access Journals (Sweden)

    Atkinson Mark A

    2011-02-01

    Full Text Available Abstract Background Alpha-1 antitrypsin (AAT is a multi-functional protein that has anti-inflammatory and tissue protective properties. We previously reported that human AAT (hAAT gene therapy prevented autoimmune diabetes in non-obese diabetic (NOD mice and suppressed arthritis development in combination with doxycycline in mice. In the present study we investigated the feasibility of hAAT monotherapy for the treatment of chronic arthritis in collagen-induced arthritis (CIA, a mouse model of rheumatoid arthritis (RA. Methods DBA/1 mice were immunized with bovine type II collagen (bCII to induce arthritis. These mice were pretreated either with hAAT protein or with recombinant adeno-associated virus vector expressing hAAT (rAAV-hAAT. Control groups received saline injections. Arthritis development was evaluated by prevalence of arthritis and arthritic index. Serum levels of B-cell activating factor of the TNF-α family (BAFF, antibodies against both bovine (bCII and mouse collagen II (mCII were tested by ELISA. Results Human AAT protein therapy as well as recombinant adeno-associated virus (rAAV8-mediated hAAT gene therapy significantly delayed onset and ameliorated disease development of arthritis in CIA mouse model. Importantly, hAAT therapies significantly reduced serum levels of BAFF and autoantibodies against bCII and mCII, suggesting that the effects are mediated via B-cells, at least partially. Conclusion These results present a new drug for arthritis therapy. Human AAT protein and gene therapies are able to ameliorate and delay arthritis development and reduce autoimmunity, indicating promising potential of these therapies as a new treatment strategy for RA.

  19. Application of a risk analysis method to different technologies for producing a monoclonal antibody employed in hepatitis B vaccine manufacturing.

    Science.gov (United States)

    Milá, Lorely; Valdés, Rodolfo; Tamayo, Andrés; Padilla, Sigifredo; Ferro, Williams

    2012-03-01

    CB.Hep-1 monoclonal antibody (mAb) is used for a recombinant Hepatitis B vaccine manufacturing, which is included in a worldwide vaccination program against Hepatitis B disease. The use of this mAb as immunoligand has been addressed into one of the most efficient steps of active pharmaceutical ingredient purification process. Regarding this, Quality Risk Management (QRM) provides an excellent framework for the risk management use in pharmaceutical manufacturing and quality decision-making applications. Consequently, this study sought applying a prospective risk analysis methodology Failure Mode Effects Analysis (FMEA) as QRM tool for analyzing different CB.Hep-1 mAb manufacturing technologies. As main conclusions FMEA was successfully used to assess risks associated with potential problems in CB.Hep-1 mAb manufacturing processes. The severity and occurrence of risks analysis evidenced that the percentage of very high severe risks ranged 31.0-38.7% of all risks and the huge majority of risks have a very low occurrence level (61.9-83.3%) in all assessed technologies. Finally, additive Risk Priority Number, was descending ordered as follow: transgenic plants (2636), ascites (2577), transgenic animals (2046) and hollow fiber bioreactors (1654), which also corroborated that in vitro technology, should be the technology of choice for CB.Hep-1 mAb manufacturing in terms of risks and mAb molecule quality. Copyright © 2011 The International Alliance for Biological Standardization. Published by Elsevier Ltd. All rights reserved.

  20. LDsplit: screening for cis-regulatory motifs stimulating meiotic recombination hotspots by analysis of DNA sequence polymorphisms.

    Science.gov (United States)

    Yang, Peng; Wu, Min; Guo, Jing; Kwoh, Chee Keong; Przytycka, Teresa M; Zheng, Jie

    2014-02-17

    As a fundamental genomic element, meiotic recombination hotspot plays important roles in life sciences. Thus uncovering its regulatory mechanisms has broad impact on biomedical research. Despite the recent identification of the zinc finger protein PRDM9 and its 13-mer binding motif as major regulators for meiotic recombination hotspots, other regulators remain to be discovered. Existing methods for finding DNA sequence motifs of recombination hotspots often rely on the enrichment of co-localizations between hotspots and short DNA patterns, which ignore the cross-individual variation of recombination rates and sequence polymorphisms in the population. Our objective in this paper is to capture signals encoded in genetic variations for the discovery of recombination-associated DNA motifs. Recently, an algorithm called "LDsplit" has been designed to detect the association between single nucleotide polymorphisms (SNPs) and proximal meiotic recombination hotspots. The association is measured by the difference of population recombination rates at a hotspot between two alleles of a candidate SNP. Here we present an open source software tool of LDsplit, with integrative data visualization for recombination hotspots and their proximal SNPs. Applying LDsplit on SNPs inside an established 7-mer motif bound by PRDM9 we observed that SNP alleles preserving the original motif tend to have higher recombination rates than the opposite alleles that disrupt the motif. Running on SNP windows around hotspots each containing an occurrence of the 7-mer motif, LDsplit is able to guide the established motif finding algorithm of MEME to recover the 7-mer motif. In contrast, without LDsplit the 7-mer motif could not be identified. LDsplit is a software tool for the discovery of cis-regulatory DNA sequence motifs stimulating meiotic recombination hotspots by screening and narrowing down to hotspot associated SNPs. It is the first computational method that utilizes the genetic variation of

  1. Leber’s congenital amaurosis and the role of gene therapy in congenital retinal disorders

    Institute of Scientific and Technical Information of China (English)

    Walid; Sharif; Zuhair; Sharif

    2017-01-01

    Leber’s congenital amaurosis(LCA)and recent gene therapy advancement for treating inherited retinopathies were extensive literature reviewed using MEDLINE,Pub Med and EMBASE. Adeno-associated viral vectors were the most utilised vectors for ocular gene therapy. Cone photoreceptor cells might use an alternate pathway which was not reliant of the retinal pigment epithelium(RPE)derived retinoid isomerohydrolase(RPE65)to access the 11-cis retinal dehydechromophore. Research efforts dedicated on the progression of a gene-based therapy for the treatment of LCA2. Such gene therapy approaches were extremely successful in canine,porcine and rodent LCA2 models. The recombinant AAV2.h RPE65v2 adenoassociated vector contained the RPE65 cDNA and was replication deficient. Its in vitro injection in target cells induced RPE65 protein production. The gene therapy trials that were so far conducted for inherited retinopathies have generated promising results. Phase I clinical trials to cure LCA and choroideremia demonstrated that adeno-associated viral vectors containing RPE genes and photoreceptors respectively,could be successfully administered to inherited retinopathy patients. A phase III trial is presently ongoing and if successful,it will lead the way to additional gene therapy attempts to cure monogenic,inherited retinopathies.

  2. Antitumor activity and inhibitory effects on cancer stem cell-like properties of Adeno-associated virus (AAV) -mediated Bmi-1 interference driven by Bmi-1 promoter for gastric cancer

    Science.gov (United States)

    Wang, Xiaofeng; Liu, Xinyang; Huang, Mingzhu; Gan, Lu; Cheng, Yufan; Li, Jin

    2016-01-01

    Bmi-1 is aberrantly activated in various cancers and plays a vital role in maintaining the self-renewal of stem cells. Our previous research revealed that Bmi-1 was overexpressed in gastric cancer (GC) and it's overexpression was an independent negative prognostic factor, suggesting it can be a therapeutic target. The main purpose of this investigation was to explore the antitumor activity of Bmi-1 interference driven by its own promoter (Ad-Bmi-1i) for GC. In this study, we used adenoviral vector to deliver Bmi-1 shRNA driven by its own promoter to treat GC. Our results revealed that Ad-Bmi-1i could selectively silence Bmi-1 in GC cells which overexpress Bmi-1 and suppress the malignant phenotypes and stem-like properties of GC cells in vitro and in vivo. Moreover, direct injection of Ad-Bmi-1i into xenografts suppressed tumor growth and destroyed cancer cells in vivo. Ad-Bmi-1i inhibited the proliferation of GC cells mainly via inducing senescence in vitro, but it suppressed tumor through inducing senescence and apoptosis, and inhibiting angiogenesis in vivo. Bmi-1 knockdown by Ad-Bmi-1i downregulated VEGF via inhibiting AKT activity. These results suggest that Ad-Bmi-1i not only inhibits tumor growth and stem cell-like phenotype by inducing cellular senescence directly, but also has an indirect anti-tumor activity by anti-angiogenesis effects via regulating PTEN/AKT/VEGF pathway. Transfer of gene interference guided by its own promoter by an adeno-associated virus (AAV) vector might be a potent antitumor approach for cancer therapy. PMID:27009837

  3. Characterization of an Sf-rhabdovirus-negative Spodoptera frugiperda cell line as an alternative host for recombinant protein production in the baculovirus-insect cell system.

    Science.gov (United States)

    Maghodia, Ajay B; Geisler, Christoph; Jarvis, Donald L

    2016-06-01

    Cell lines derived from the fall armyworm, Spodoptera frugiperda (Sf), are widely used as hosts for recombinant protein production in the baculovirus-insect cell system (BICS). However, it was recently discovered that these cell lines are contaminated with a virus, now known as Sf-rhabdovirus [1]. The detection of this adventitious agent raised a potential safety issue that could adversely impact the BICS as a commercial recombinant protein production platform. Thus, we examined the properties of Sf-RVN, an Sf-rhabdovirus-negative Sf cell line, as a potential alternative host. Nested RT-PCR assays showed Sf-RVN cells had no detectable Sf-rhabdovirus over the course of 60 passages in continuous culture. The general properties of Sf-RVN cells, including their average growth rates, diameters, morphologies, and viabilities after baculovirus infection, were virtually identical to those of Sf9 cells. Baculovirus-infected Sf-RVN and Sf9 cells produced equivalent levels of three recombinant proteins, including an intracellular prokaryotic protein and two secreted eukaryotic glycoproteins, and provided similar N-glycosylation patterns. In fact, except for the absence of Sf-rhabdovirus, the only difference between Sf-RVN and Sf9 cells was SF-RVN produced higher levels of infectious baculovirus progeny. These results show Sf-RVN cells can be used as improved, alternative hosts to circumvent the potential safety hazard associated with the use of Sf-rhabdovirus-contaminated Sf cells for recombinant protein manufacturing with the BICS. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Meiotic recombination, synapsis, meiotic inactivation and sperm aneuploidy in a chromosome 1 inversion carrier.

    Science.gov (United States)

    Kirkpatrick, Gordon; Chow, Victor; Ma, Sai

    2012-01-01

    Disrupted meiotic behaviour of inversion carriers may be responsible for suboptimal sperm parameters in these carriers. This study investigated meiotic recombination, synapsis, transcriptional silencing and chromosome segregation effects in a pericentric inv(1) carrier. Recombination (MLH1), synapsis (SYCP1, SYCP3) and transcriptional inactivation (γH2AX, BRCA1) were examined by fluorescence immunostaining. Chromosome specific rates of recombination were determined by fluorescence in-situ hybridization. Furthermore, testicular sperm was examined for aneuploidy and segregation of the inv(1). Our findings showed that global recombination rates were similar to controls. Recombination on the inv(1) and the sex chromosomes were reduced. The inv(1) associated with the XY body in 43.4% of cells, in which XY recombination was disproportionately absent, and 94.3% of cells displayed asynapsed regions which displayed meiotic silencing regardless of their association with the XY body. Furthermore, a low frequency of chromosomal imbalance was observed in spermatozoa (3.4%). Our results suggest that certain inversion carriers may display unimpaired global recombination and impaired recombination on the involved and the sex chromosomes during meiosis. Asynapsis or inversion-loop formation in the inverted region may be responsible for impaired spermatogenesis and may prevent sperm-chromosome imbalance. Copyright © 2011 Reproductive Healthcare Ltd. Published by Elsevier Ltd. All rights reserved.

  5. Results of the independent radiological verification survey at the former Associate Aircraft Tool and Manufacturing Company site, Fairfield, Ohio (FOH001)

    International Nuclear Information System (INIS)

    Rice, D.E.; Murray, M.E.; Brown, K.S.

    1996-01-01

    The former Associate Aircraft Tool and Manufacturing Company site is located at 3550 Dixie Highway, Fairfield, Ohio. Associate Aircraft Tool and Manufacturing Company produced hollow uranium slugs in a machine shop at the site in 1956. The work was performed for National Lead of Ohio in a contract with the Atomic Energy Commission to augment the capacity of the Feed Materials Production Center at Fernald in the development of nuclear energy for defense-related projects. The current occupant of the building, Force Control, operates a multipurpose machine shop. At the request of the US Department of Energy (DOE), a team from Oak Ridge National Laboratory conducted an independent radiological verification survey at the former Associate Aircraft Tool and Manufacturing Company Site, Fairfield, Ohio. The survey was performed from February to May of 1995. The purpose of the survey was to verify that radioactivity from residues of 238 U was remediated to a level below acceptable DOE guidelines levels

  6. Dielectronic and Trielectronic Recombination Rate Coefficients of Be-like Ar14+

    Science.gov (United States)

    Huang, Z. K.; Wen, W. Q.; Xu, X.; Mahmood, S.; Wang, S. X.; Wang, H. B.; Dou, L. J.; Khan, N.; Badnell, N. R.; Preval, S. P.; Schippers, S.; Xu, T. H.; Yang, Y.; Yao, K.; Xu, W. Q.; Chuai, X. Y.; Zhu, X. L.; Zhao, D. M.; Mao, L. J.; Ma, X. M.; Li, J.; Mao, R. S.; Yuan, Y. J.; Wu, B.; Sheng, L. N.; Yang, J. C.; Xu, H. S.; Zhu, L. F.; Ma, X.

    2018-03-01

    Electron–ion recombination of Be-like 40Ar14+ has been measured by employing the electron–ion merged-beams method at the cooler storage ring CSRm. The measured absolute recombination rate coefficients for collision energies from 0 to 60 eV are presented, covering all dielectronic recombination (DR) resonances associated with 2s 2 → 2s2p core transitions. In addition, strong trielectronic recombination (TR) resonances associated with 2s 2 → 2p 2 core transitions were observed. Both DR and TR processes lead to series of peaks in the measured recombination spectrum, which have been identified by the Rydberg formula. Theoretical calculations of recombination rate coefficients were performed using the state-of-the-art multi-configuration Breit–Pauli atomic structure code AUTOSTRUCTURE to compare with the experimental results. The plasma rate coefficients for DR+TR of Ar14+ were deduced from the measured electron–ion recombination rate coefficients in the temperature range from 103 to 107 K, and compared with calculated data from the literature. The experimentally derived plasma rate coefficients are 60% larger and 30% lower than the previously recommended atomic data for the temperature ranges of photoionized plasmas and collisionally ionized plasmas, respectively. However, good agreement was found between experimental results and the calculations by Gu and Colgan et al. The plasma rate coefficients deduced from experiment and calculated by the current AUTOSTRUCTURE code show agreement that is better than 30% from 104 to 107 K. The present results constitute a set of benchmark data for use in astrophysical modeling.

  7. Variation in Recombination Rate and Its Genetic Determinism in Sheep Populations.

    Science.gov (United States)

    Petit, Morgane; Astruc, Jean-Michel; Sarry, Julien; Drouilhet, Laurence; Fabre, Stéphane; Moreno, Carole R; Servin, Bertrand

    2017-10-01

    Recombination is a complex biological process that results from a cascade of multiple events during meiosis. Understanding the genetic determinism of recombination can help to understand if and how these events are interacting. To tackle this question, we studied the patterns of recombination in sheep, using multiple approaches and data sets. We constructed male recombination maps in a dairy breed from the south of France (the Lacaune breed) at a fine scale by combining meiotic recombination rates from a large pedigree genotyped with a 50K SNP array and historical recombination rates from a sample of unrelated individuals genotyped with a 600K SNP array. This analysis revealed recombination patterns in sheep similar to other mammals but also genome regions that have likely been affected by directional and diversifying selection. We estimated the average recombination rate of Lacaune sheep at 1.5 cM/Mb, identified ∼50,000 crossover hotspots on the genome, and found a high correlation between historical and meiotic recombination rate estimates. A genome-wide association study revealed two major loci affecting interindividual variation in recombination rate in Lacaune, including the RNF212 and HEI10 genes and possibly two other loci of smaller effects including the KCNJ15 and FSHR genes. The comparison of these new results to those obtained previously in a distantly related population of domestic sheep (the Soay) revealed that Soay and Lacaune males have a very similar distribution of recombination along the genome. The two data sets were thus combined to create more precise male meiotic recombination maps in Sheep. However, despite their similar recombination maps, Soay and Lacaune males were found to exhibit different heritabilities and QTL effects for interindividual variation in genome-wide recombination rates. This highlights the robustness of recombination patterns to underlying variation in their genetic determinism. Copyright © 2017 by the Genetics Society

  8. ARG-walker: inference of individual specific strengths of meiotic recombination hotspots by population genomics analysis.

    Science.gov (United States)

    Chen, Hao; Yang, Peng; Guo, Jing; Kwoh, Chee Keong; Przytycka, Teresa M; Zheng, Jie

    2015-01-01

    Meiotic recombination hotspots play important roles in various aspects of genomics, but the underlying mechanisms for regulating the locations and strengths of recombination hotspots are not yet fully revealed. Most existing algorithms for estimating recombination rates from sequence polymorphism data can only output average recombination rates of a population, although there is evidence for the heterogeneity in recombination rates among individuals. For genome-wide association studies (GWAS) of recombination hotspots, an efficient algorithm that estimates the individualized strengths of recombination hotspots is highly desirable. In this work, we propose a novel graph mining algorithm named ARG-walker, based on random walks on ancestral recombination graphs (ARG), to estimate individual-specific recombination hotspot strengths. Extensive simulations demonstrate that ARG-walker is able to distinguish the hot allele of a recombination hotspot from the cold allele. Integrated with output of ARG-walker, we performed GWAS on the phased haplotype data of the 22 autosome chromosomes of the HapMap Asian population samples of Chinese and Japanese (JPT+CHB). Significant cis-regulatory signals have been detected, which is corroborated by the enrichment of the well-known 13-mer motif CCNCCNTNNCCNC of PRDM9 protein. Moreover, two new DNA motifs have been identified in the flanking regions of the significantly associated SNPs (single nucleotide polymorphisms), which are likely to be new cis-regulatory elements of meiotic recombination hotspots of the human genome. Our results on both simulated and real data suggest that ARG-walker is a promising new method for estimating the individual recombination variations. In the future, it could be used to uncover the mechanisms of recombination regulation and human diseases related with recombination hotspots.

  9. Finding trans-regulatory genes and protein complexes modulating meiotic recombination hotspots of human, mouse and yeast.

    Science.gov (United States)

    Wu, Min; Kwoh, Chee-Keong; Li, Xiaoli; Zheng, Jie

    2014-09-11

    The regulatory mechanism of recombination is one of the most fundamental problems in genomics, with wide applications in genome wide association studies (GWAS), birth-defect diseases, molecular evolution, cancer research, etc. Recombination events cluster into short genomic regions called "recombination hotspots". Recently, a zinc finger protein PRDM9 was reported to regulate recombination hotspots in human and mouse genomes. In addition, a 13-mer motif contained in the binding sites of PRDM9 is found to be enriched in human hotspots. However, this 13-mer motif only covers a fraction of hotspots, indicating that PRDM9 is not the only regulator of recombination hotspots. Therefore, the challenge of discovering other regulators of recombination hotspots becomes significant. Furthermore, recombination is a complex process. Hence, multiple proteins acting as machinery, rather than individual proteins, are more likely to carry out this process in a precise and stable manner. Therefore, the extension of the prediction of individual trans-regulators to protein complexes is also highly desired. In this paper, we introduce a pipeline to identify genes and protein complexes associated with recombination hotspots. First, we prioritize proteins associated with hotspots based on their preference of binding to hotspots and coldspots. Second, using the above identified genes as seeds, we apply the Random Walk with Restart algorithm (RWR) to propagate their influences to other proteins in protein-protein interaction (PPI) networks. Hence, many proteins without DNA-binding information will also be assigned a score to implicate their roles in recombination hotspots. Third, we construct sub-PPI networks induced by top genes ranked by RWR for various species (e.g., yeast, human and mouse) and detect protein complexes in those sub-PPI networks. The GO term analysis show that our prioritizing methods and the RWR algorithm are capable of identifying novel genes associated with

  10. Comparison of human sodium iodide symporter (hNIS) gene expression between lentiviral and adenoviral vectors in rat mesenchymal stem cell

    International Nuclear Information System (INIS)

    Park, So Yeon; Lee, Won Woo; Kim, Sung Jin; Lee, Heui Ran; Kim, Hyun Joo; Chung, June Key; Kim, Sang Eun

    2007-01-01

    Quantitative comparison of transgene expression within stem cells between lentivirus and adenovirus-mediated delivery systems has not been done. Here, we evaluated the human sodium iodide symporter (hNIS) gene expression in rat mesenchymal stem cell (rMSC) transduced by lentivirus or adenovirus, and compared the hNIS expression quantitatively between the two delivery systems. Lentiviral-mediated stably hNIS expressing rMSC (lenti-hNIS-rMSC) was constructed by cloning the hNIS gene into pLenti6/UbC/V5-DEST (Invitrogen) to obtain pLenti-hNIS, transducing rMSC with the pLenti-hNIS, and selecting with blasticidin for 3 weeks. Recombinant adenovirus expressing hNIS gene (Rad-hNIS) was produced by homologous recombination and Rad-hNIS transduced rMSC (adeno-hNIS-rMSC) was evaluated for the hNIS expression 48 hours post infection at MOI 1, 5, 20, 50, and 100. The hNIS expression in lenti-hNIS-rMSC or adeno-hNIS-rMSC was assessed by immunocytochemistry, western blot, and I-125 uptake. Immunocytochemistry using mono-clonal anti-hNIS antibody revealed that intensity of hNIS immunoreactivity in lenti-hNIS-rMSC was greater than that in adeno-hNIS-rMSC at MOl 20 but lower than that at MOl 50. Western blot analysis also showed that lenti-hNIS-rMSC was intermediate between adeno-hNIS-rMSCs at MOl 20 and 50 in hNIS expression. However in vitro I-125 uptake test demonstrated that iodide uptake in lenti-hNIS-rMSC (297046659 picomole/106 cells) was greater than that in adeno-hNIS-rMSC at MOI 100 (61682134 picomole/106 cells). These results suggest that lentivirus mediated hNIS expression is greater in terms of hNIS function but lower in terms of hNIS protein amount than adenovirus mediated hNIS expression 48 hours post infection. Stem cell tracking using hNIS as a reporter gene should be conducted in consideration of relative viral efficiency of transgene expression

  11. Genetic relatedness and recombination analysis of Allorhizobium vitis strains associated with grapevine crown gall outbreaks in Europe.

    Science.gov (United States)

    Kuzmanović, N; Biondi, E; Bertaccini, A; Obradović, A

    2015-09-01

    To analyse genetic diversity and epidemiological relationships among 54 strains of Allorhizobium vitis isolated in Europe during an 8-year period and to assess the relative contribution of mutation and recombination in shaping their diversity. By using random amplified polymorphic DNA (RAPD) PCR, strains studied were distributed into 12 genetic groups. Sequence analysis of dnaK, gyrB and recA housekeeping genes was employed to characterize a representative subcollection of 28 strains. A total of 15 different haplotypes were found. Nucleotide sequence analysis suggested the presence of recombination events in A. vitis, particularly affecting dnaK locus. Although prevalence of mutation over recombination was found, impact of recombination was about two times greater than mutation in the evolution of the housekeeping genes analysed. The RAPD analysis indicated high degree of genetic diversity among the strains. However, the most abundant RAPD group was composed of 35 strains, which could lead to the conclusion that they share a common origin and were distributed by the movement of infected grapevine planting material as a most common way of crossing long distances. Furthermore, it seems that recombination is acting as an important driving force in the evolution of A. vitis. As no substantial evidence of recombination was detected within recA gene fragment, this phylogenetic marker could be reliable to characterize phylogenetic relationships among A. vitis strains. We demonstrated clear epidemiological relationship between majority of strains studied, suggesting a need for more stringent phytosanitary measures in international trade. Moreover, this is the first study to report recombination in A. vitis. © 2015 The Society for Applied Microbiology.

  12. A high-yielding, generic fed-batch process for recombinant antibody production of GS-engineered cell lines

    DEFF Research Database (Denmark)

    Fan, Li; Zhao, Liang; Sun, Yating

    2009-01-01

    An animal component-free and chemically defined fed-batch process for GS-engineered cell lines producing recombinant antibodies has been developed. The fed-batch process relied on supplying sufficient nutrients to match their consumption, simultaneously minimizing the accumulation of byproducts....... This generic and high-yielding fed-batch process would shorten development time, and ensure process stability, thereby facilitating the manufacture of therapeutic antibodies by GS-engineered cell lines....

  13. Dielectronic recombination of highly ionized iron

    International Nuclear Information System (INIS)

    Griffin, D.C.; Pindzola, M.S.

    1987-01-01

    Dielectronic recombination of the iron ions Fe/sup 15+/, Fe/sup 23+/, and Fe/sup 25+/ has been studied in the isolated-resonance, distorted-wave approximation. The cross-section calculations include the dielec- tronic transitions associated with the 3s→3l and 3s→4l excitations in Fe/sup 15+/, the 2s→2p and 2s→3l excitations in Fe/sup 23+/, and the 1s→2l excitations in Fe/sup 25+/. The effects of external electric fields have been included by employing intermediate-coupled, field-mixed eigenvectors for the doubly excited Rydberg states, determined by diagonalizing a Hamiltonian matrix which includes the internal electrostatic and spin-orbit terms, as well as the Stark matrix elements. The field effects are found to be quite large in Fe/sup 15+/, relatively small in Fe/sup 23+/, and negligible in Fe/sup 25+/. The calculations indicate that there are large resonances near threshold in Fe/sup 23+/ that are unaffected by external fields and may be measurable in new experiments currently being designed. In addition, the contributions of radiative recombination and the possible interference between radiative and dielectronic recombination in low-lying resonances are considered. Even though the radiative recombination cross sections may be appreciable near threshold in Fe/sup 15+/ and Fe/sup 23+/, the interference between these processes appears to be completely negligible

  14. Recombinant human endostatin improves tumor vasculature and alleviates hypoxia in Lewis lung carcinoma

    International Nuclear Information System (INIS)

    Peng Fang; Wang Jin; Zou Yi; Bao Yong; Huang Wenlin; Chen Guangming; Luo Xianrong; Chen Ming

    2011-01-01

    Objective: To investigate whether recombinant human endostatin can create a time window of vascular normalization prior to vascular pruning to alleviate hypoxia in Lewis lung carcinoma in mice. Methods: Kinetic changes in morphology of tumor vasculature in response to recombinant human endostatin were detected under a confocal microscope with immunofluorescent staining in Lewis lung carcinomas in mice. The hypoxic cell fraction of different time was assessed with immunohistochemical staining . Effects on tumor growth were monitored as indicated in the growth curve of tumors . Results: Compared with the control group vascularity of the tumors was reduced over time by recombinant human endostatin treatment and significantly regressed for 9 days. During the treatment, pericyte coverage increased at day 3, increased markedly at day 5, and fell again at day 7. The vascular basement membrane was thin and closely associated with endothelial cells after recombinant human endostatin treatment, but appeared thickened, loosely associated with endothelial cells in control tumors. The decrease in hypoxic cell fraction at day 5 after treatment was also found. Tumor growth was not accelerated 5 days after recombinant human endostatin treatment. Conclusions: Recombinant human endostatin can normalize tumor vasculature within day 3 to 7, leading to improved tumor oxygenation. The results provide important experimental basis for combining recombinant human endostatin with radiation therapy in human tumors. (authors)

  15. Recombining without Hotspots: A Comprehensive Evolutionary Portrait of Recombination in Two Closely Related Species of Drosophila

    Science.gov (United States)

    Smukowski Heil, Caiti S.; Ellison, Chris; Dubin, Matthew; Noor, Mohamed A.F.

    2015-01-01

    Meiotic recombination rate varies across the genome within and between individuals, populations, and species in virtually all taxa studied. In almost every species, this variation takes the form of discrete recombination hotspots, determined in some mammals by a protein called PRDM9. Hotspots and their determinants have a profound effect on the genomic landscape, and share certain features that extend across the tree of life. Drosophila, in contrast, are anomalous in their absence of hotspots, PRDM9, and other species-specific differences in the determination of recombination. To better understand the evolution of meiosis and general patterns of recombination across diverse taxa, we present a truly comprehensive portrait of recombination across time, combining recently published cross-based contemporary recombination estimates from each of two sister species with newly obtained linkage-disequilibrium-based historic estimates of recombination from both of these species. Using Drosophila pseudoobscura and Drosophila miranda as a model system, we compare recombination rate between species at multiple scales, and we suggest that Drosophila replicate the pattern seen in human–chimpanzee in which recombination rate is conserved at broad scales. We also find evidence of a species-wide recombination modifier(s), resulting in both a present and historic genome-wide elevation of recombination rates in D. miranda, and identify broad scale effects on recombination from the presence of an inversion. Finally, we reveal an unprecedented view of the distribution of recombination in D. pseudoobscura, illustrating patterns of linked selection and where recombination is taking place. Overall, by combining these estimation approaches, we highlight key similarities and differences in recombination between Drosophila and other organisms. PMID:26430062

  16. Unique Safety Issues Associated with Virus Vectored Vaccines: Potential for and Theoretical Consequences of Recombination with Wild Type Virus Strains

    Science.gov (United States)

    Condit, Richard C.; Williamson, Anna-Lise; Sheets, Rebecca; Seligman, Stephen J.; Monath, Thomas P.; Excler, Jean-Louis; Gurwith, Marc; Bok, Karin; Robertson, James S.; Kim, Denny; Hendry, Michael; Singh, Vidisha; Mac, Lisa M.; Chen, Robert T.

    2016-01-01

    In 2003 and 2013, the World Health Organization convened informal consultations on characterization and quality aspects of vaccines based on live virus vectors. In the resulting reports, one of several issues raised for future study was the potential for recombination of virus-vectored vaccines with wild type pathogenic virus strains. This paper presents an assessment of this issue formulated by the Brighton Collaboration. To provide an appropriate context for understanding the potential for recombination of virus-vectored vaccines, we review briefly the current status of virus vectored vaccines, mechanisms of recombination between viruses, experience with recombination involving live attenuated vaccines in the field, and concerns raised previously in the literature regarding recombination of virus-vectored vaccines with wild type virus strains. We then present a discussion of the major variables that could influence recombination between a virus-vectored vaccine and circulating wild type virus and the consequences of such recombination, including intrinsic recombination properties of the parent virus used as a vector; sequence relatedness of vector and wild virus; virus host range, pathogenesis and transmission; replication competency of vector in target host; mechanism of vector attenuation; additional factors potentially affecting virulence; and circulation of multiple recombinant vectors in the same target population. Finally, we present some guiding principles for vector design and testing intended to anticipate and mitigate the potential for and consequences of recombination of virus-vectored vaccines with wild type pathogenic virus strains. PMID:27346303

  17. Genetic recombination is targeted towards gene promoter regions in dogs.

    Science.gov (United States)

    Auton, Adam; Rui Li, Ying; Kidd, Jeffrey; Oliveira, Kyle; Nadel, Julie; Holloway, J Kim; Hayward, Jessica J; Cohen, Paula E; Greally, John M; Wang, Jun; Bustamante, Carlos D; Boyko, Adam R

    2013-01-01

    The identification of the H3K4 trimethylase, PRDM9, as the gene responsible for recombination hotspot localization has provided considerable insight into the mechanisms by which recombination is initiated in mammals. However, uniquely amongst mammals, canids appear to lack a functional version of PRDM9 and may therefore provide a model for understanding recombination that occurs in the absence of PRDM9, and thus how PRDM9 functions to shape the recombination landscape. We have constructed a fine-scale genetic map from patterns of linkage disequilibrium assessed using high-throughput sequence data from 51 free-ranging dogs, Canis lupus familiaris. While broad-scale properties of recombination appear similar to other mammalian species, our fine-scale estimates indicate that canine highly elevated recombination rates are observed in the vicinity of CpG rich regions including gene promoter regions, but show little association with H3K4 trimethylation marks identified in spermatocytes. By comparison to genomic data from the Andean fox, Lycalopex culpaeus, we show that biased gene conversion is a plausible mechanism by which the high CpG content of the dog genome could have occurred.

  18. Homologous Recombination and Xylella fastidiosa Host-Pathogen Associations in South America.

    Science.gov (United States)

    Coletta-Filho, Helvécio D; Francisco, Carolina S; Lopes, João R S; Muller, Christiane; Almeida, Rodrigo P P

    2017-03-01

    Homologous recombination affects the evolution of bacteria such as Xylella fastidiosa, a naturally competent plant pathogen that requires insect vectors for dispersal. This bacterial species is taxonomically divided into subspecies, with phylogenetic clusters within subspecies that are host specific. One subspecies, pauca, is primarily limited to South America, with the exception of recently reported strains in Europe and Costa Rica. Despite the economic importance of X. fastidiosa subsp. pauca in South America, little is known about its genetic diversity. Multilocus sequence typing (MLST) has previously identified six sequence types (ST) among plant samples collected in Brazil (both subsp. pauca and multiplex). Here, we report on a survey of X. fastidiosa genetic diversity (MLST based) performed in six regions in Brazil and two in Argentina, by sampling five different plant species. In addition to the six previously reported ST, seven new subsp. pauca and two new subsp. multiplex ST were identified. The presence of subsp. multiplex in South America is considered to be the consequence of a single introduction from its native range in North America more than 80 years ago. Different phylogenetic approaches clustered the South American ST into four groups, with strains infecting citrus (subsp. pauca); coffee and olive (subsp. pauca); coffee, hibiscus, and plum (subsp. pauca); and plum (subsp. multiplex). In areas where these different genetic clusters occurred sympatrically, we found evidence of homologous recombination in the form of bidirectional allelic exchange between subspp. pauca and multiplex. In fact, the only strain of subsp. pauca isolated from a plum host had an allele that originated from subsp. multiplex. These signatures of bidirectional homologous recombination between endemic and introduced ST indicate that gene flow occurs in short evolutionary time frames in X. fastidiosa, despite the ecological isolation (i.e., host plant species) of genotypes.

  19. Laser-induced electron--ion recombination used to study enhanced spontaneous recombination during electron cooling

    International Nuclear Information System (INIS)

    Schramm, U.; Wolf, A.; Schuess ler, T.; Habs, D.; Schwalm, D.; Uwira, O.; Linkemann, J.; Mueller, A.

    1997-01-01

    Spontaneous recombination of highly charged ions with free electrons in merged velocity matched electron and ion beams has been observed in earlier experiments to occur at rates significantly higher than predicted by theoretical estimates. To study this enhanced spontaneous recombination, laser induced recombination spectra were measured both in velocity matched beams and in beams with well defined relative velocities, corresponding to relative electron-ion detuning energies ranging from 1 meV up to 6.5 meV where the spontaneous recombination enhancement was found to be strongly reduced. Based on a comparison with simplified calculations, the development of the recombination spectra for decreasing detuning energies indicates additional contributions at matched velocities which could be related to the energy distribution of electrons causing the spontaneous recombination rate enhancement

  20. Recombination Rate Heterogeneity within Arabidopsis Disease Resistance Genes.

    Science.gov (United States)

    Choi, Kyuha; Reinhard, Carsten; Serra, Heïdi; Ziolkowski, Piotr A; Underwood, Charles J; Zhao, Xiaohui; Hardcastle, Thomas J; Yelina, Nataliya E; Griffin, Catherine; Jackson, Matthew; Mézard, Christine; McVean, Gil; Copenhaver, Gregory P; Henderson, Ian R

    2016-07-01

    Meiotic crossover frequency varies extensively along chromosomes and is typically concentrated in hotspots. As recombination increases genetic diversity, hotspots are predicted to occur at immunity genes, where variation may be beneficial. A major component of plant immunity is recognition of pathogen Avirulence (Avr) effectors by resistance (R) genes that encode NBS-LRR domain proteins. Therefore, we sought to test whether NBS-LRR genes would overlap with meiotic crossover hotspots using experimental genetics in Arabidopsis thaliana. NBS-LRR genes tend to physically cluster in plant genomes; for example, in Arabidopsis most are located in large clusters on the south arms of chromosomes 1 and 5. We experimentally mapped 1,439 crossovers within these clusters and observed NBS-LRR gene associated hotspots, which were also detected as historical hotspots via analysis of linkage disequilibrium. However, we also observed NBS-LRR gene coldspots, which in some cases correlate with structural heterozygosity. To study recombination at the fine-scale we used high-throughput sequencing to analyze ~1,000 crossovers within the RESISTANCE TO ALBUGO CANDIDA1 (RAC1) R gene hotspot. This revealed elevated intragenic crossovers, overlapping nucleosome-occupied exons that encode the TIR, NBS and LRR domains. The highest RAC1 recombination frequency was promoter-proximal and overlapped CTT-repeat DNA sequence motifs, which have previously been associated with plant crossover hotspots. Additionally, we show a significant influence of natural genetic variation on NBS-LRR cluster recombination rates, using crosses between Arabidopsis ecotypes. In conclusion, we show that a subset of NBS-LRR genes are strong hotspots, whereas others are coldspots. This reveals a complex recombination landscape in Arabidopsis NBS-LRR genes, which we propose results from varying coevolutionary pressures exerted by host-pathogen relationships, and is influenced by structural heterozygosity.

  1. DNAzyme-mediated recovery of small recombinant RNAs from a 5S rRNA-derived chimera expressed in Escherichia coli

    Directory of Open Access Journals (Sweden)

    Willson Richard C

    2010-12-01

    Full Text Available Abstract Background Manufacturing large quantities of recombinant RNAs by overexpression in a bacterial host is hampered by their instability in intracellular environment. To overcome this problem, an RNA of interest can be fused into a stable bacterial RNA for the resulting chimeric construct to accumulate in the cytoplasm to a sufficiently high level. Being supplemented with cost-effective procedures for isolation of the chimera from cells and recovery of the recombinant RNA from stabilizing scaffold, this strategy might become a viable alternative to the existing methods of chemical or enzymatic RNA synthesis. Results Sequence encoding a 71-nucleotide recombinant RNA was inserted into a plasmid-borne deletion mutant of the Vibrio proteolyticus 5S rRNA gene in place of helix III - loop C segment of the original 5S rRNA. After transformation into Escherichia coli, the chimeric RNA (3×pen aRNA was expressed constitutively from E. coli rrnB P1 and P2 promoters. The RNA chimera accumulated to levels that exceeded those of the host's 5S rRNA. A novel method relying on liquid-solid partitioning of cellular constituents was developed for isolation of total RNA from bacterial cells. This protocol avoids toxic chemicals, and is therefore more suitable for large scale RNA purification than traditional methods. A pair of biotinylated 8-17 DNAzymes was used to bring about the quantitative excision of the 71-nt recombinant RNA from the chimera. The recombinant RNA was isolated by sequence-specific capture on beads with immobilized complementary deoxyoligonucleotide, while DNAzymes were recovered by biotin affinity chromatography for reuse. Conclusions The feasibility of a fermentation-based approach for manufacturing large quantities of small RNAs in vivo using a "5S rRNA scaffold" strategy is demonstrated. The approach provides a route towards an economical method for the large-scale production of small RNAs including shRNAs, siRNAs and aptamers for use

  2. Effects of nuclear mutations for recombination and repair functions and of caffeine on mitochondrial recombination

    International Nuclear Information System (INIS)

    Fraenkel, A.H.M.

    1974-01-01

    Studies of both prokaryotic and eukaryotic organisms indicate that pathways governing repair of damage to nuclear DNA caused by x-ray or ultraviolet irradiation overlap with those controlling recombination. Fourteen nuclear mutants of Saccharomyces cerevisiae were tested in order to determine whether these mutant genes affected mitochondrial recombination. None of the mutations studied significantly affected mitochondrial recombination. The nuclear recombination and repair pathways studied do not overlap with the nuclear pathway which controls recombination of mitochondrial DNA. A second set of experiments was designed to test the effect of caffeine on both nuclear and mitochondrial recombination in Saccharomyces cerevisiae. (U.S.)

  3. Direct bacterial killing in vitro by recombinant Nod2 is compromised by Crohn's disease-associated mutations.

    Directory of Open Access Journals (Sweden)

    Laurent-Herve Perez

    2010-06-01

    Full Text Available A homeostatic relationship with the intestinal microflora is increasingly appreciated as essential for human health and wellbeing. Mutations in the leucine-rich repeat (LRR domain of Nod2, a bacterial recognition protein, are associated with development of the inflammatory bowel disorder, Crohn's disease. We investigated the molecular mechanisms underlying disruption of intestinal symbiosis in patients carrying Nod2 mutations.In this study, using purified recombinant LRR domains, we demonstrate that Nod2 is a direct antimicrobial agent and this activity is generally deficient in proteins carrying Crohn's-associated mutations. Wild-type, but not Crohn's-associated, Nod2 LRR domains directly interacted with bacteria in vitro, altered their metabolism and disrupted the integrity of the plasma membrane. Antibiotic activity was also expressed by the LRR domains of Nod1 and other pattern recognition receptors suggesting that the LRR domain is a conserved anti-microbial motif supporting innate cellular immunity.The lack of anti-bacterial activity demonstrated with Crohn's-associated Nod2 mutations in vitro, supports the hypothesis that a deficiency in direct bacterial killing contributes to the association of Nod2 polymorphisms with the disease.

  4. Human resource factors associated with workplace safety and health education of small manufacturing businesses in Korea.

    Science.gov (United States)

    Park, Kyoung-Ok

    2018-01-25

    Human resources (HR) are essential indicators of safety and health (SH) status, and HR can be key sources of workplace safety management such as safety and health education at work (SHEW). This study analyzed significant HR factors associated with SHEW of small manufacturing businesses in Korea. The secondary data of the 2012 Korea Occupational Safety and Health Trend Survey were used to achieve this research purpose. A total of 2,089 supervisors or managers employed in the small manufacturing businesses completed the interview survey. Survey businesses were selected by multiple stratified sampling method based on industry code, business size, and region in Korea. The survey included workplace characteristics of HR and SHEW. SHEW was significantly related to business size, occupational injury incidence in the previous year, foreign and elderly worker employment, presence of site supervisors, and presence of SH committees (p <.05). SHEW for office workers, non-office workers, and newcomers was associated with business size, presence of site supervisors, and presence of SH committees in logistic regression analysis (p <.001). Businesses with 30-49 workers conducted SHEW 3.64 times more than did businesses with 5 to fewer than 10 workers. The companies that had occupational injuries in the previous year conducted SHEW 1.68 times more than the others. The businesses that had site supervisors and committees conducted SHEW 2.30 and 2.18 times more, respectively, than others. Site supervisors and SH committees were significant HR factors that improved SHEW in small manufacturing businesses.

  5. Recombining without Hotspots: A Comprehensive Evolutionary Portrait of Recombination in Two Closely Related Species of Drosophila.

    Science.gov (United States)

    Smukowski Heil, Caiti S; Ellison, Chris; Dubin, Matthew; Noor, Mohamed A F

    2015-10-01

    Meiotic recombination rate varies across the genome within and between individuals, populations, and species in virtually all taxa studied. In almost every species, this variation takes the form of discrete recombination hotspots, determined in some mammals by a protein called PRDM9. Hotspots and their determinants have a profound effect on the genomic landscape, and share certain features that extend across the tree of life. Drosophila, in contrast, are anomalous in their absence of hotspots, PRDM9, and other species-specific differences in the determination of recombination. To better understand the evolution of meiosis and general patterns of recombination across diverse taxa, we present a truly comprehensive portrait of recombination across time, combining recently published cross-based contemporary recombination estimates from each of two sister species with newly obtained linkage-disequilibrium-based historic estimates of recombination from both of these species. Using Drosophila pseudoobscura and Drosophila miranda as a model system, we compare recombination rate between species at multiple scales, and we suggest that Drosophila replicate the pattern seen in human-chimpanzee in which recombination rate is conserved at broad scales. We also find evidence of a species-wide recombination modifier(s), resulting in both a present and historic genome-wide elevation of recombination rates in D. miranda, and identify broad scale effects on recombination from the presence of an inversion. Finally, we reveal an unprecedented view of the distribution of recombination in D. pseudoobscura, illustrating patterns of linked selection and where recombination is taking place. Overall, by combining these estimation approaches, we highlight key similarities and differences in recombination between Drosophila and other organisms. © The Author(s) 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  6. Therapeutic Recombinant Monoclonal Antibodies

    Science.gov (United States)

    Bakhtiar, Ray

    2012-01-01

    During the last two decades, the rapid growth of biotechnology-derived techniques has led to a myriad of therapeutic recombinant monoclonal antibodies with significant clinical benefits. Recombinant monoclonal antibodies can be obtained from a number of natural sources such as animal cell cultures using recombinant DNA engineering. In contrast to…

  7. Optimization of Recombination Layer in the Tunnel Junction of Amorphous Silicon Thin-Film Tandem Solar Cells

    Directory of Open Access Journals (Sweden)

    Yang-Shin Lin

    2011-01-01

    Full Text Available The amorphous silicon/amorphous silicon (a-Si/a-Si tandem solar cells have attracted much attention in recent years, due to the high efficiency and low manufacturing cost compared to the single-junction a-Si solar cells. In this paper, the tandem cells are fabricated by high-frequency plasma-enhanced chemical vapor deposition (HF-PECVD at 27.1 MHz. The effects of the recombination layer and the i-layer thickness matching on the cell performance have been investigated. The results show that the tandem cell with a p+ recombination layer and i2/i1 thickness ratio of 6 exhibits a maximum efficiency of 9.0% with the open-circuit voltage (Voc of 1.59 V, short-circuit current density (Jsc of 7.96 mA/cm2, and a fill factor (FF of 0.70. After light-soaking test, our a-Si/a-Si tandem cell with p+ recombination layer shows the excellent stability and the stabilized efficiency of 8.7%.

  8. Recent and historical recombination in the admixed Norwegian Red cattle breed

    Directory of Open Access Journals (Sweden)

    Grove Harald

    2011-01-01

    Full Text Available Abstract Background Comparison of recent patterns of recombination derived from linkage maps to historical patterns of recombination from linkage disequilibrium (LD could help identify genomic regions affected by strong artificial selection, appearing as reduced recent recombination. Norwegian Red cattle (NRF make an interesting case study for investigating these patterns as it is an admixed breed with an extensively recorded pedigree. NRF have been under strong artificial selection for traits such as milk and meat production, fertility and health. While measures of LD is also crucial for determining the number of markers required for association mapping studies, estimates of recombination rate can be used to assess quality of genomic assemblies. Results A dataset containing more than 17,000 genome-wide distributed SNPs and 2600 animals was used to assess recombination rates and LD in NRF. Although low LD measured by r2 was observed in NRF relative to some of the breeds from which this breed originates, reports from breeds other than those assessed in this study have described more rapid decline in r2 at short distances than what was found in NRF. Rate of decline in r2 for NRF suggested that to obtain an expected r2 between markers and a causal polymorphism of at least 0.5 for genome-wide association studies, approximately one SNP every 15 kb or a total of 200,000 SNPs would be required. For well known quantitative trait loci (QTLs for milk production traits on Bos Taurus chromosomes 1, 6 and 20, map length based on historic recombination was greater than map length based on recent recombination in NRF. Further, positions for 130 previously unpositioned contigs from assembly of the bovine genome sequence (Btau_4.0 found using comparative sequence analysis were validated by linkage analysis, and 28% of these positions corresponded to extreme values of population recombination rate. Conclusion While LD is reduced in NRF compared to some of the

  9. Recombination and its impact on the genome of the haplodiploid parasitoid wasp Nasonia.

    Directory of Open Access Journals (Sweden)

    Oliver Niehuis

    2010-01-01

    Full Text Available Homologous meiotic recombination occurs in most sexually reproducing organisms, yet its evolutionary advantages are elusive. Previous research explored recombination in the honeybee, a eusocial hymenopteran with an exceptionally high genome-wide recombination rate. A comparable study in a non-social member of the Hymenoptera that would disentangle the impact of sociality from Hymenoptera-specific features such as haplodiploidy on the evolution of the high genome-wide recombination rate in social Hymenoptera is missing. Utilizing single-nucleotide polymorphisms (SNPs between two Nasonia parasitoid wasp genomes, we developed a SNP genotyping microarray to infer a high-density linkage map for Nasonia. The map comprises 1,255 markers with an average distance of 0.3 cM. The mapped markers enabled us to arrange 265 scaffolds of the Nasonia genome assembly 1.0 on the linkage map, representing 63.6% of the assembled N. vitripennis genome. We estimated a genome-wide recombination rate of 1.4-1.5 cM/Mb for Nasonia, which is less than one tenth of the rate reported for the honeybee. The local recombination rate in Nasonia is positively correlated with the distance to the center of the linkage groups, GC content, and the proportion of simple repeats. In contrast to the honeybee genome, gene density in the parasitoid wasp genome is positively associated with the recombination rate; regions of low recombination are characterized by fewer genes with larger introns and by a greater distance between genes. Finally, we found that genes in regions of the genome with a low recombination frequency tend to have a higher ratio of non-synonymous to synonymous substitutions, likely due to the accumulation of slightly deleterious non-synonymous substitutions. These findings are consistent with the hypothesis that recombination reduces interference between linked sites and thereby facilitates adaptive evolution and the purging of deleterious mutations. Our results imply

  10. Genetic recombination is directed away from functional genomic elements in mice.

    Science.gov (United States)

    Brick, Kevin; Smagulova, Fatima; Khil, Pavel; Camerini-Otero, R Daniel; Petukhova, Galina V

    2012-05-13

    Genetic recombination occurs during meiosis, the key developmental programme of gametogenesis. Recombination in mammals has been recently linked to the activity of a histone H3 methyltransferase, PR domain containing 9 (PRDM9), the product of the only known speciation-associated gene in mammals. PRDM9 is thought to determine the preferred recombination sites--recombination hotspots--through sequence-specific binding of its highly polymorphic multi-Zn-finger domain. Nevertheless, Prdm9 knockout mice are proficient at initiating recombination. Here we map and analyse the genome-wide distribution of recombination initiation sites in Prdm9 knockout mice and in two mouse strains with different Prdm9 alleles and their F(1) hybrid. We show that PRDM9 determines the positions of practically all hotspots in the mouse genome, with the exception of the pseudo-autosomal region (PAR)--the only area of the genome that undergoes recombination in 100% of cells. Surprisingly, hotspots are still observed in Prdm9 knockout mice, and as in wild type, these hotspots are found at H3 lysine 4 (H3K4) trimethylation marks. However, in the absence of PRDM9, most recombination is initiated at promoters and at other sites of PRDM9-independent H3K4 trimethylation. Such sites are rarely targeted in wild-type mice, indicating an unexpected role of the PRDM9 protein in sequestering the recombination machinery away from gene-promoter regions and other functional genomic elements.

  11. How hot are drosophila hotspots? examining recombination rate variation and associations with nucleotide diversity, divergence, and maternal age in Drosophila pseudoobscura.

    Directory of Open Access Journals (Sweden)

    Brenda Manzano-Winkler

    Full Text Available Fine scale meiotic recombination maps have uncovered a large amount of variation in crossover rate across the genomes of many species, and such variation in mammalian and yeast genomes is concentrated to <5kb regions of highly elevated recombination rates (10-100x the background rate called "hotspots." Drosophila exhibit substantial recombination rate heterogeneity across their genome, but evidence for these highly-localized hotspots is lacking. We assayed recombination across a 40Kb region of Drosophila pseudoobscura chromosome 2, with one 20kb interval assayed every 5Kb and the adjacent 20kb interval bisected into 10kb pieces. We found that recombination events across the 40kb stretch were relatively evenly distributed across each of the 5kb and 10kb intervals, rather than concentrated in a single 5kb region. This, in combination with other recent work, indicates that the recombination landscape of Drosophila may differ from the punctate recombination pattern observed in many mammals and yeast. Additionally, we found no correlation of average pairwise nucleotide diversity and divergence with recombination rate across the 20kb intervals, nor any effect of maternal age in weeks on recombination rate in our sample.

  12. Isolation of Specific Clones from Nonarrayed BAC Libraries through Homologous Recombination

    Directory of Open Access Journals (Sweden)

    Mikhail Nefedov

    2011-01-01

    Full Text Available We have developed a new approach to screen bacterial artificial chromosome (BAC libraries by recombination selection. To test this method, we constructed an orangutan BAC library using an E. coli strain (DY380 with temperature inducible homologous recombination (HR capability. We amplified one library segment, induced HR at 42∘C to make it recombination proficient, and prepared electrocompetent cells for transformation with a kanamycin cassette to target sequences in the orangutan genome through terminal recombineering homologies. Kanamycin-resistant colonies were tested for the presence of BACs containing the targeted genes by the use of a PCR-assay to confirm the presence of the kanamycin insertion. The results indicate that this is an effective approach for screening clones. The advantage of recombination screening is that it avoids the high costs associated with the preparation, screening, and archival storage of arrayed BAC libraries. In addition, the screening can be conceivably combined with genetic engineering to create knockout and reporter constructs for functional studies.

  13. Recombination every day: abundant recombination in a virus during a single multi-cellular host infection.

    Directory of Open Access Journals (Sweden)

    Remy Froissart

    2005-03-01

    Full Text Available Viral recombination can dramatically impact evolution and epidemiology. In viruses, the recombination rate depends on the frequency of genetic exchange between different viral genomes within an infected host cell and on the frequency at which such co-infections occur. While the recombination rate has been recently evaluated in experimentally co-infected cell cultures for several viruses, direct quantification at the most biologically significant level, that of a host infection, is still lacking. This study fills this gap using the cauliflower mosaic virus as a model. We distributed four neutral markers along the viral genome, and co-inoculated host plants with marker-containing and wild-type viruses. The frequency of recombinant genomes was evaluated 21 d post-inoculation. On average, over 50% of viral genomes recovered after a single host infection were recombinants, clearly indicating that recombination is very frequent in this virus. Estimates of the recombination rate show that all regions of the genome are equally affected by this process. Assuming that ten viral replication cycles occurred during our experiment-based on data on the timing of coat protein detection-the per base and replication cycle recombination rate was on the order of 2 x 10(-5 to 4 x 10(-5. This first determination of a virus recombination rate during a single multi-cellular host infection indicates that recombination is very frequent in the everyday life of this virus.

  14. Characterization of recombination features and the genetic basis in multiple cattle breeds.

    Science.gov (United States)

    Shen, Botong; Jiang, Jicai; Seroussi, Eyal; Liu, George E; Ma, Li

    2018-04-27

    Crossover generated by meiotic recombination is a fundamental event that facilitates meiosis and sexual reproduction. Comparative studies have shown wide variation in recombination rate among species, but the characterization of recombination features between cattle breeds has not yet been performed. Cattle populations in North America count millions, and the dairy industry has genotyped millions of individuals with pedigree information that provide a unique opportunity to study breed-level variations in recombination. Based on large pedigrees of Jersey, Ayrshire and Brown Swiss cattle with genotype data, we identified over 3.4 million maternal and paternal crossover events from 161,309 three-generation families. We constructed six breed- and sex-specific genome-wide recombination maps using 58,982 autosomal SNPs for two sexes in the three dairy cattle breeds. A comparative analysis of the six recombination maps revealed similar global recombination patterns between cattle breeds but with significant differences between sexes. We confirmed that male recombination map is 10% longer than the female map in all three cattle breeds, consistent with previously reported results in Holstein cattle. When comparing recombination hotspot regions between cattle breeds, we found that 30% and 10% of the hotspots were shared between breeds in males and females, respectively, with each breed exhibiting some breed-specific hotspots. Finally, our multiple-breed GWAS found that SNPs in eight loci affected recombination rate and that the PRDM9 gene associated with hotspot usage in multiple cattle breeds, indicating a shared genetic basis for recombination across dairy cattle breeds. Collectively, our results generated breed- and sex-specific recombination maps for multiple cattle breeds, provided a comprehensive characterization and comparison of recombination patterns between breeds, and expanded our understanding of the breed-level variations in recombination features within an

  15. Recombinant Chromosome 4 from a Familial Pericentric Inversion: Prenatal and Adulthood Wolf-Hirschhorn Phenotypes

    Directory of Open Access Journals (Sweden)

    Francesca Malvestiti

    2013-01-01

    Full Text Available Pericentric inversion of chromosome 4 can give rise to recombinant chromosomes by duplication or deletion of 4p. We report on a familial case of Wolf-Hirschhorn Syndrome characterized by GTG-banding karyotypes, FISH, and array CGH analysis, caused by a recombinant chromosome 4 with terminal 4p16.3 deletion and terminal 4q35.2 duplication. This is an aneusomy due to a recombination which occurred during the meiosis of heterozygote carrier of cryptic pericentric inversion. We also describe the adulthood and prenatal phenotypes associated with the recombinant chromosome 4.

  16. Rapid Response Manufacturing (RRM). Final CRADA report

    Energy Technology Data Exchange (ETDEWEB)

    Cain, W.D. [Lockheed Martin Energy Systems, Inc., Oak Ridge, TN (United States); Waddell, W.L. [National Centers for Manufacturing Sciences, Ann Arbor, MI (United States)

    1997-08-28

    A major accomplishment of the Rapid Response Manufacturing (RRM) project was the development of a broad-based generic framework for automating and integrating the design-to-manufacturing activities associated with machined part products. Key components of the framework are a manufacturing model that integrates product and process data in a consistent, minimally redundant manner, an advanced computer-aided engineering working environment, knowledge-based software systems for design, process planning, and manufacturing and new production technologies for making products directly from design application software.

  17. Regulation of Meiotic Recombination

    Energy Technology Data Exchange (ETDEWEB)

    Gregory p. Copenhaver

    2011-11-09

    Meiotic recombination results in the heritable rearrangement of DNA, primarily through reciprocal exchange between homologous chromosome or gene conversion. In plants these events are critical for ensuring proper chromosome segregation, facilitating DNA repair and providing a basis for genetic diversity. Understanding this fundamental biological mechanism will directly facilitate trait mapping, conventional plant breeding, and development of genetic engineering techniques that will help support the responsible production and conversion of renewable resources for fuels, chemicals, and the conservation of energy (1-3). Substantial progress has been made in understanding the basal recombination machinery, much of which is conserved in organisms as diverse as yeast, plants and mammals (4, 5). Significantly less is known about the factors that regulate how often and where that basal machinery acts on higher eukaryotic chromosomes. One important mechanism for regulating the frequency and distribution of meiotic recombination is crossover interference - or the ability of one recombination event to influence nearby events. The MUS81 gene is thought to play an important role in regulating the influence of interference on crossing over. The immediate goals of this project are to use reverse genetics to identify mutants in two putative MUS81 homologs in the model plant Arabidopsis thaliana, characterize those mutants and initiate a novel forward genetic screen for additional regulators of meiotic recombination. The long-term goal of the project is to understand how meiotic recombination is regulated in higher eukaryotes with an emphasis on the molecular basis of crossover interference. The ability to monitor recombination in all four meiotic products (tetrad analysis) has been a powerful tool in the arsenal of yeast geneticists. Previously, the qrt mutant of Arabidopsis, which causes the four pollen products of male meiosis to remain attached, was developed as a facile system

  18. Biocompatibility of Advanced Manufactured Titanium Implants—A Review

    Science.gov (United States)

    Sidambe, Alfred T.

    2014-01-01

    Titanium (Ti) and its alloys may be processed via advanced powder manufacturing routes such as additive layer manufacturing (or 3D printing) or metal injection moulding. This field is receiving increased attention from various manufacturing sectors including the medical devices sector. It is possible that advanced manufacturing techniques could replace the machining or casting of metal alloys in the manufacture of devices because of associated advantages that include design flexibility, reduced processing costs, reduced waste, and the opportunity to more easily manufacture complex or custom-shaped implants. The emerging advanced manufacturing approaches of metal injection moulding and additive layer manufacturing are receiving particular attention from the implant fabrication industry because they could overcome some of the difficulties associated with traditional implant fabrication techniques such as titanium casting. Using advanced manufacturing, it is also possible to produce more complex porous structures with improved mechanical performance, potentially matching the modulus of elasticity of local bone. While the economic and engineering potential of advanced manufacturing for the manufacture of musculo-skeletal implants is therefore clear, the impact on the biocompatibility of the materials has been less investigated. In this review, the capabilities of advanced powder manufacturing routes in producing components that are suitable for biomedical implant applications are assessed with emphasis placed on surface finishes and porous structures. Given that biocompatibility and host bone response are critical determinants of clinical performance, published studies of in vitro and in vivo research have been considered carefully. The review concludes with a future outlook on advanced Ti production for biomedical implants using powder metallurgy. PMID:28788296

  19. Biocompatibility of Advanced Manufactured Titanium Implants—A Review

    Directory of Open Access Journals (Sweden)

    Alfred T. Sidambe

    2014-12-01

    Full Text Available Titanium (Ti and its alloys may be processed via advanced powder manufacturing routes such as additive layer manufacturing (or 3D printing or metal injection moulding. This field is receiving increased attention from various manufacturing sectors including the medical devices sector. It is possible that advanced manufacturing techniques could replace the machining or casting of metal alloys in the manufacture of devices because of associated advantages that include design flexibility, reduced processing costs, reduced waste, and the opportunity to more easily manufacture complex or custom-shaped implants. The emerging advanced manufacturing approaches of metal injection moulding and additive layer manufacturing are receiving particular attention from the implant fabrication industry because they could overcome some of the difficulties associated with traditional implant fabrication techniques such as titanium casting. Using advanced manufacturing, it is also possible to produce more complex porous structures with improved mechanical performance, potentially matching the modulus of elasticity of local bone. While the economic and engineering potential of advanced manufacturing for the manufacture of musculo-skeletal implants is therefore clear, the impact on the biocompatibility of the materials has been less investigated. In this review, the capabilities of advanced powder manufacturing routes in producing components that are suitable for biomedical implant applications are assessed with emphasis placed on surface finishes and porous structures. Given that biocompatibility and host bone response are critical determinants of clinical performance, published studies of in vitro and in vivo research have been considered carefully. The review concludes with a future outlook on advanced Ti production for biomedical implants using powder metallurgy.

  20. Biocompatibility of Advanced Manufactured Titanium Implants-A Review.

    Science.gov (United States)

    Sidambe, Alfred T

    2014-12-19

    Titanium (Ti) and its alloys may be processed via advanced powder manufacturing routes such as additive layer manufacturing (or 3D printing) or metal injection moulding. This field is receiving increased attention from various manufacturing sectors including the medical devices sector. It is possible that advanced manufacturing techniques could replace the machining or casting of metal alloys in the manufacture of devices because of associated advantages that include design flexibility, reduced processing costs, reduced waste, and the opportunity to more easily manufacture complex or custom-shaped implants. The emerging advanced manufacturing approaches of metal injection moulding and additive layer manufacturing are receiving particular attention from the implant fabrication industry because they could overcome some of the difficulties associated with traditional implant fabrication techniques such as titanium casting. Using advanced manufacturing, it is also possible to produce more complex porous structures with improved mechanical performance, potentially matching the modulus of elasticity of local bone. While the economic and engineering potential of advanced manufacturing for the manufacture of musculo-skeletal implants is therefore clear, the impact on the biocompatibility of the materials has been less investigated. In this review, the capabilities of advanced powder manufacturing routes in producing components that are suitable for biomedical implant applications are assessed with emphasis placed on surface finishes and porous structures. Given that biocompatibility and host bone response are critical determinants of clinical performance, published studies of in vitro and in vivo research have been considered carefully. The review concludes with a future outlook on advanced Ti production for biomedical implants using powder metallurgy.

  1. The remarkable frequency of human immunodeficiency virus type 1 genetic recombination.

    Science.gov (United States)

    Onafuwa-Nuga, Adewunmi; Telesnitsky, Alice

    2009-09-01

    The genetic diversity of human immunodeficiency virus type 1 (HIV-1) results from a combination of point mutations and genetic recombination, and rates of both processes are unusually high. This review focuses on the mechanisms and outcomes of HIV-1 genetic recombination and on the parameters that make recombination so remarkably frequent. Experimental work has demonstrated that the process that leads to recombination--a copy choice mechanism involving the migration of reverse transcriptase between viral RNA templates--occurs several times on average during every round of HIV-1 DNA synthesis. Key biological factors that lead to high recombination rates for all retroviruses are the recombination-prone nature of their reverse transcription machinery and their pseudodiploid RNA genomes. However, HIV-1 genes recombine even more frequently than do those of many other retroviruses. This reflects the way in which HIV-1 selects genomic RNAs for coencapsidation as well as cell-to-cell transmission properties that lead to unusually frequent associations between distinct viral genotypes. HIV-1 faces strong and changeable selective conditions during replication within patients. The mode of HIV-1 persistence as integrated proviruses and strong selection for defective proviruses in vivo provide conditions for archiving alleles, which can be resuscitated years after initial provirus establishment. Recombination can facilitate drug resistance and may allow superinfecting HIV-1 strains to evade preexisting immune responses, thus adding to challenges in vaccine development. These properties converge to provide HIV-1 with the means, motive, and opportunity to recombine its genetic material at an unprecedented high rate and to allow genetic recombination to serve as one of the highest barriers to HIV-1 eradication.

  2. Quality prediction modeling for multistage manufacturing based on classification and association rule mining

    Directory of Open Access Journals (Sweden)

    Kao Hung-An

    2017-01-01

    Full Text Available For manufacturing enterprises, product quality is a key factor to assess production capability and increase their core competence. To reduce external failure cost, many research and methodology have been introduced in order to improve process yield rate, such as TQC/TQM, Shewhart CycleDeming's 14 Points, etc. Nowadays, impressive progress has been made in process monitoring and industrial data analysis because of the Industry 4.0 trend. Industries start to utilize quality control (QC methodology to lower inspection overhead and internal failure cost. Currently, the focus of QC is mostly in the inspection of single workstation and final product, however, for multistage manufacturing, many factors (like equipment, operators, parameters, etc. can have cumulative and interactive effects to the final quality. When failure occurs, it is difficult to resume the original settings for cause analysis. To address these problems, this research proposes a combination of principal components analysis (PCA with classification and association rule mining algorithms to extract features representing relationship of multiple workstations, predict final product quality, and analyze the root-cause of product defect. The method is demonstrated on a semiconductor data set.

  3. Recombination Proteins Mediate Meiotic Spatial Chromosome Organization and Pairing

    Science.gov (United States)

    Storlazzi, Aurora; Gargano, Silvana; Ruprich-Robert, Gwenael; Falque, Matthieu; David, Michelle; Kleckner, Nancy; Zickler, Denise

    2010-01-01

    SUMMARY Meiotic chromosome pairing involves not only recognition of homology but also juxtaposition of entire chromosomes in a topologically regular way. Analysis of filamentous fungus Sordaria macrospora reveals that recombination proteins Mer3, Msh4 and Mlh1 play direct roles in all of these aspects, in advance of their known roles in recombination. Absence of Mer3 helicase results in interwoven chromosomes, thereby revealing the existence of features that specifically ensure “entanglement avoidance”. Entanglements that remain at zygotene, i.e. “interlockings”, require Mlh1 for resolution, likely to eliminate constraining recombinational connections. Patterns of Mer3 and Msh4 foci along aligned chromosomes show that the double-strand breaks mediating homologous alignment have spatially separated ends, one localized to each partner axis, and that pairing involves interference among developing interhomolog interactions. We propose that Mer3, Msh4 and Mlh1 execute all of these roles during pairing by modulating the state of nascent double-strand break/partner DNA contacts within axis-associated recombination complexes. PMID:20371348

  4. Work-related depression and associated factors in a shoe manufacturing factory in Haiphong City, Vietnam

    Directory of Open Access Journals (Sweden)

    Khue Pham Minh

    2014-12-01

    Full Text Available Objectives: To determine the prevalence and associated factors of work-related depression among the employees of a shoe manufacturing factory in Haiphong City, Vietnam. Material and Methods: We carried out this cross-sectional study among 420 workers in 2012 in Le Lai II Shoe Manufacturing Factory in Haiphong City, Vietnam using Karasek’s Job Content Questionnaire (JCQ and the Diagnostic and Statistical Manual of Mental Disorders, 4th Edition (DSM IV tool for measuring depression. Results: The study results show that a relatively high proportion of workers (20.7% belongs to the high-strain group based on Karasek’s model. The prevalence of work-related depression among workers was relatively high (18.8%. The factors associated with depression at work were high psychological demand (adjusted OR = 3.0, 95% CI: 1.1–8.3, low social support (adjusted OR = 4.7, 95% CI: 1.2–12.8, inadequate work protection materials (OR = 4.1, 95% CI: 2.2–10.1 and work absenteeism (OR = 6.2, 95% CI: 2.5–18.9. Conclusions: Strengthening the social support network (involving supervisors and co‑workers, reducing psychological job demand and assuring work protection materials at the workplace may highly facilitate reducing work-related depression.

  5. Whole-genome patterns of linkage disequilibrium across flycatcher populations clarify the causes and consequences of fine-scale recombination rate variation in birds.

    Science.gov (United States)

    Kawakami, Takeshi; Mugal, Carina F; Suh, Alexander; Nater, Alexander; Burri, Reto; Smeds, Linnéa; Ellegren, Hans

    2017-08-01

    Recombination rate is heterogeneous across the genome of various species and so are genetic diversity and differentiation as a consequence of linked selection. However, we still lack a clear picture of the underlying mechanisms for regulating recombination. Here we estimated fine-scale population recombination rate based on the patterns of linkage disequilibrium across the genomes of multiple populations of two closely related flycatcher species (Ficedula albicollis and F. hypoleuca). This revealed an overall conservation of the recombination landscape between these species at the scale of 200 kb, but we also identified differences in the local rate of recombination despite their recent divergence (recombination rate in a lineage-specific manner, indicating differences in the extent of linked selection between species. We detected 400-3,085 recombination hotspots per population. Location of hotspots was conserved between species, but the intensity of hotspot activity varied between species. Recombination hotspots were primarily associated with CpG islands (CGIs), regardless of whether CGIs were at promoter regions or away from genes. Recombination hotspots were also associated with specific transposable elements (TEs), but this association appears indirect due to shared preferences of the transposition machinery and the recombination machinery for accessible open chromatin regions. Our results suggest that CGIs are a major determinant of the localization of recombination hotspots, and we propose that both the distribution of TEs and fine-scale variation in recombination rate may be associated with the evolution of the epigenetic landscape. © 2017 The Authors. Molecular Ecology Published by John Wiley & Sons Ltd.

  6. Recombination of cluster ions

    Science.gov (United States)

    Johnsen, Rainer

    1993-01-01

    Some of our recent work on molecular band emissions from recombination of molecular dimer ions (N4(+) and CO(+) CO) is discussed. Much of the experimental work was done by Y. S. Cao; the results on N4(+) recombination have been published. A brief progress report is given on our ongoing measurements of neutral products of recombination using the flowing-afterglow Langmuir-probe technique in conjunction with laser-induced fluorescence.

  7. A new large-scale manufacturing platform for complex biopharmaceuticals.

    Science.gov (United States)

    Vogel, Jens H; Nguyen, Huong; Giovannini, Roberto; Ignowski, Jolene; Garger, Steve; Salgotra, Anil; Tom, Jennifer

    2012-12-01

    Complex biopharmaceuticals, such as recombinant blood coagulation factors, are addressing critical medical needs and represent a growing multibillion-dollar market. For commercial manufacturing of such, sometimes inherently unstable, molecules it is important to minimize product residence time in non-ideal milieu in order to obtain acceptable yields and consistently high product quality. Continuous perfusion cell culture allows minimization of residence time in the bioreactor, but also brings unique challenges in product recovery, which requires innovative solutions. In order to maximize yield, process efficiency, facility and equipment utilization, we have developed, scaled-up and successfully implemented a new integrated manufacturing platform in commercial scale. This platform consists of a (semi-)continuous cell separation process based on a disposable flow path and integrated with the upstream perfusion operation, followed by membrane chromatography on large-scale adsorber capsules in rapid cycling mode. Implementation of the platform at commercial scale for a new product candidate led to a yield improvement of 40% compared to the conventional process technology, while product quality has been shown to be more consistently high. Over 1,000,000 L of cell culture harvest have been processed with 100% success rate to date, demonstrating the robustness of the new platform process in GMP manufacturing. While membrane chromatography is well established for polishing in flow-through mode, this is its first commercial-scale application for bind/elute chromatography in the biopharmaceutical industry and demonstrates its potential in particular for manufacturing of potent, low-dose biopharmaceuticals. Copyright © 2012 Wiley Periodicals, Inc.

  8. In vivo production of recombinant proteins using occluded recombinant AcMNPV-derived baculovirus vectors.

    Science.gov (United States)

    Guijarro-Pardo, Eva; Gómez-Sebastián, Silvia; Escribano, José M

    2017-12-01

    Trichoplusia ni insect larvae infected with vectors derived from the Autographa californica multiple nucleopolyhedrovirus (AcMNPV), are an excellent alternative to insect cells cultured in conventional bioreactors to produce recombinant proteins because productivity and cost-efficiency reasons. However, there is still a lot of work to do to reduce the manual procedures commonly required in this production platform that limit its scalability. To increase the scalability of this platform technology, a current bottleneck to be circumvented in the future is the need of injection for the inoculation of larvae with polyhedrin negative baculovirus vectors (Polh-) because of the lack of oral infectivity of these viruses, which are commonly used for production in insect cell cultures. In this work we have developed a straightforward alternative to obtain orally infective vectors derived from AcMNPV and expressing recombinant proteins that can be administered to the insect larvae (Trichoplusia ni) by feeding, formulated in the insect diet. The approach developed was based on the use of a recombinant polyhedrin protein expressed by a recombinant vector (Polh+), able to co-occlude any recombinant Polh- baculovirus vector expressing a recombinant protein. A second alternative was developed by the generation of a dual vector co-expressing the recombinant polyhedrin protein and the foreign gene of interest to obtain the occluded viruses. Additionally, by the incorporation of a reporter gene into the helper Polh+ vector, it was possible the follow-up visualization of the co-occluded viruses infection in insect larvae and will help to homogenize infection conditions. By using these methodologies, the production of recombinant proteins in per os infected larvae, without manual infection procedures, was very similar in yield to that obtained by manual injection of recombinant Polh- AcMNPV-based vectors expressing the same proteins. However, further analyses will be required for a

  9. Construction of adenoviral vectors expressing F and G glycoproteins of human respiratory syncytial virus (HRSV Construção de vetores adenovirais expressando as glicoproteínas F e G de vírus respiratório sincicial humano (HRSV

    Directory of Open Access Journals (Sweden)

    Ithana Monteiro Kosaka

    2004-06-01

    Full Text Available Human Respiratory Syncytial Virus (HRSV was first characterized in 1957 and has since been recognized as the most common viral cause of severe respiratory tract infection in young infants worldwide. Despite many years of research there is still no effective treatment or any immediate prospect of a vaccine. The HRSV genome is composed of single stranded negative sense RNA and the virion consists of a nucleocapsid packaged within a lipid envelope. The envelope contains spike-like projections, each being a homo-oligomer of one of three transmembrane viral envelope proteins: the attachment protein G, the fusion protein F involved in viral penetration and the small hydrofobic protein SH. The aim of this work was to construct two recombinant replication-defective adenoviruses carrying separately F and G genes from HRSV. This system was chosen because adenovirus delivers genes into target cells with high efficiency in a variety of cell lines and can be used in vitro and in vivo. In order to obtain the recombinant viruses, we did RT-PCR of RNA extracted from the HRSV A2 strain, the genes F and G were cloned in to pAdeno-X vectors. pAdeno-F and pAdeno-G were transfected in HEK-293 cells for the production of recombinant viruses, that expressed efficiently these two proteins and provide us the means for doing functional assays and immunization tests.O Vírus Sincicial Respiratório Humano (HRSV foi isolado e caracterizado pela primeira vez em 1957 e é considerado como o patógeno viral mais freqüente do trato respiratório de bebês e crianças. Apesar de muitos anos de pesquisa, não há ainda um tratamento específico ou uma vacina licenciada. Seu genoma é composto por uma fita simples de RNA polaridade negativa e o vírion consiste em um nucleocapsídeo empacotado por um envelope lipídico. O envelope contém projeções, chamadas espículas, constituídas de homoligômeros de uma das 3 glicoproteínas de membrana: a proteína de ligação G

  10. Sink strengths of dislocations taking into account bulk recombination effects

    International Nuclear Information System (INIS)

    Steinbach, E.

    1988-01-01

    The applicability of the rate theory to describe radiation damage processes is closely associated with the calculation of the various sink strengths. In this connection the effect of bulk recombination is usually neglected, because of the complexity of the problem. For this reason we present in this paper, for the first time, by means of the rigorous elastic-field model of a dislocation embedded in a lossy continuum, analytic expressions for the diffusion flux of irradiation-induced point defects into a dislocation, taking into account the elastic interaction, additional sinks and higher order bulk recombination effects. The resulting self-consistent formulae for the dislocation sink strengths clearly demonstrate the importance of the bulk recombination for the micro-structures of irradiated materials. In conjunction with the Harwell computer code VS5 it became clear that this new dislocation bias also leads to a change in the macrostructural observables. The order of magnitude of this effect emphasizes that neglecting bulk recombination as a general principle is not justified

  11. Recombination pattern reanalysis of some HIV-1 circulating recombination forms suggest the necessity and difficulty of revision.

    Directory of Open Access Journals (Sweden)

    Lei Jia

    Full Text Available Recombination is one of the major mechanisms underlying the generation of HIV-1 variability. Currently 61 circulating recombinant forms of HIV-1 have been identified. With the development of recombination detection techniques and accumulation of HIV-1 reference stains, more accurate mosaic structures of circulating recombinant forms (CRFs, like CRF04 and CRF06, have undergone repeated analysis and upgrades. Such revisions may also be necessary for other CRFs. Unlike previous studies, whose results are based primarily on a single recombination detection program, the current study was based on multiple recombination analysis, which may have produced more impartial results.Representative references of 3 categories of intersubtype recombinants were selected, including BC recombinants (CRF07 and CRF08, BG recombinants (CRF23 and CRF24, and BF recombinants (CRF38 and CRF44. They were reanalyzed in detail using both the jumping profile hidden Markov model and RDP3.The results indicate that revisions and upgrades are very necessary and the entire re-analysis suggested 2 types of revision: (i length of inserted fragments; and (ii number of inserted fragments. The reanalysis also indicated that determination of small regions of about 200 bases or fewer should be performed with more caution.Results indicated that the involvement of multiple recombination detection programs is very necessary. Additionally, results suggested two major challenges, one involving the difficulty of accurately determining the locations of breakpoints and the second involving identification of small regions of about 200 bases or fewer with greater caution. Both indicate the complexity of HIV-1 recombination. The resolution would depend critically on development of a recombination analysis algorithm, accumulation of HIV-1 stains, and a higher sequencing quality. With the changes in recombination pattern, phylogenetic relationships of some CRFs may also change. All these results may

  12. The relationships between Lean manufacturing, management accounting and firm performance

    DEFF Research Database (Denmark)

    Kristensen, Thomas Borup; Nielsen, Henrik; Grasso, Lawrency

    2016-01-01

    with management accounting practices. Specifically, we document that Lean manufacturing is positively associated with Value Stream Costing, Lean visual controls and, more importantly, measures of labor and materials efficiency. Lean manufacturing is positively related to Lean thinking and both are positively...... associated with operational performance and so are Lean visual controls. We also document that the management accounting practices intervene affecting operational performance and they intervene with Lean thinking as well. Lastly, the relationship between Lean manufacturing and measures of labor and materials......Lean manufacturing has been adopted by numerous western companies as an answer to an increasing competitive environment. Lean manufacturing is seen as an enterprise-wide strategy encompassing a transformation of manufacturing practices, affecting companies’ management accounting practices and...

  13. Bicarbonate-dependent secretion and proteolytic processing of recombinant myocilin.

    Directory of Open Access Journals (Sweden)

    José-Daniel Aroca-Aguilar

    Full Text Available Myocilin is an extracellular glycoprotein of poorly understood function. Mutations of this protein are involved in glaucoma, an optic neuropathy characterized by a progressive and irreversible visual loss and frequently associated with elevated intraocular pressure. We previously showed that recombinant myocilin undergoes an intracellular proteolytic processing by calpain II which cleaves the central region of the protein, releasing one N- and one C-terminal fragment. Myocilin cleavage is reduced by glaucoma mutations and it has been proposed to participate in intraocular pressure modulation. To identify possible factors regulating the proteolytic processing of recombinant myocilin, we used a cellular model in which we analyzed how different culture medium parameters (i.e., culture time, cell density, pH, bicarbonate concentration, etc. affect the presence of the extracellular C-terminal fragment. Extracellular bicarbonate depletion associated with culture medium acidification produced a reversible intracellular accumulation of full-length recombinant myocilin and incremented its intracellular proteolytic processing, raising the extracellular C-terminal fragment percentage. It was also determined that myocilin intracellular accumulation depends on its N-terminal region. These data suggest that aqueous humor bicarbonate variations could also modulate the secretion and cleavage of myocilin present in ocular tissues.

  14. Risk calculations in the manufacturing technology selection process

    DEFF Research Database (Denmark)

    Farooq, S.; O'Brien, C.

    2010-01-01

    Purpose - The purpose of this paper is to present result obtained from a developed technology selection framework and provide a detailed insight into the risk calculations and their implications in manufacturing technology selection process. Design/methodology/approach - The results illustrated...... in the paper are the outcome of an action research study that was conducted in an aerospace company. Findings - The paper highlights the role of risk calculations in manufacturing technology selection process by elaborating the contribution of risk associated with manufacturing technology alternatives...... in the shape of opportunities and threats in different decision-making environments. Practical implications - The research quantifies the risk associated with different available manufacturing technology alternatives. This quantification of risk crystallises the process of technology selection decision making...

  15. Electron-ion recombination in merged beams

    International Nuclear Information System (INIS)

    Wolf, A.; Habs, D.; Lampert, A.; Neumann, R.; Schramm, U.; Schuessler, T.; Schwalm, D.

    1993-01-01

    Detailed studies of recombination processes between electrons and highly charged ions have become possible by recent improvements of merged-beams experiments. We discuss in particular measurements with stored cooled ion beams at the Test Storage Ring (TSR) in Heidelberg. The cross section of dielectronic recombination was measured with high energy resolution for few-electron systems up to the nuclear charge of Cu at a relative energy up to 2.6 keV. At low energy (∼0.1 eV) total recombination rates of several ions were measured and compared with calculated radiative recombination rates. Laser-stimulated recombination of protons and of C 6+ ions was investigated as a function of the photon energy using visible radiation. Both the total recombination rates and the stimulated recombination spectra indicate that in spite of the short interaction time in merged beams, also collisional capture of electrons into weakly bound levels (related to three-body recombination) could be important

  16. Conserved Genetic Architecture Underlying Individual Recombination Rate Variation in a Wild Population of Soay Sheep (Ovis aries).

    Science.gov (United States)

    Johnston, Susan E; Bérénos, Camillo; Slate, Jon; Pemberton, Josephine M

    2016-05-01

    Meiotic recombination breaks down linkage disequilibrium (LD) and forms new haplotypes, meaning that it is an important driver of diversity in eukaryotic genomes. Understanding the causes of variation in recombination rate is important in interpreting and predicting evolutionary phenomena and in understanding the potential of a population to respond to selection. However, despite attention in model systems, there remains little data on how recombination rate varies at the individual level in natural populations. Here we used extensive pedigree and high-density SNP information in a wild population of Soay sheep (Ovis aries) to investigate the genetic architecture of individual autosomal recombination rates. Individual rates were high relative to other mammal systems and were higher in males than in females (autosomal map lengths of 3748 and 2860 cM, respectively). The heritability of autosomal recombination rate was low but significant in both sexes (h(2) = 0.16 and 0.12 in females and males, respectively). In females, 46.7% of the heritable variation was explained by a subtelomeric region on chromosome 6; a genome-wide association study showed the strongest associations at locus RNF212, with further associations observed at a nearby ∼374-kb region of complete LD containing three additional candidate loci, CPLX1, GAK, and PCGF3 A second region on chromosome 7 containing REC8 and RNF212B explained 26.2% of the heritable variation in recombination rate in both sexes. Comparative analyses with 40 other sheep breeds showed that haplotypes associated with recombination rates are both old and globally distributed. Both regions have been implicated in rate variation in mice, cattle, and humans, suggesting a common genetic architecture of recombination rate variation in mammals. Copyright © 2016 by the Genetics Society of America.

  17. Multiple barriers to recombination between divergent HIV-1 variants revealed by a dual-marker recombination assay

    DEFF Research Database (Denmark)

    Nikolaitchik, Olga A; Galli, Andrea; Moore, Michael D

    2011-01-01

    Recombination is a major force for generating human immunodeficiency virus type 1 (HIV-1) diversity and produces numerous recombinants circulating in the human population. We previously established a cell-based system using green fluorescent protein gene (gfp) as a reporter to study the mechanisms...... of HIV-1 recombination. We now report an improved system capable of detecting recombination using authentic viral sequences. Frameshift mutations were introduced into the gag gene so that parental viruses do not express full-length Gag; however, recombination can generate a progeny virus that expresses...

  18. Recombinant Lipoproteins as Novel Vaccines with Intrinsic Adjuvant.

    Science.gov (United States)

    Chong, Pele; Huang, Jui-Hsin; Leng, Chih-Hsiang; Liu, Shih-Jen; Chen, Hsin-Wei

    2015-01-01

    A core platform technology for high production of recombinant lipoproteins with built-in immunostimulator for novel subunit vaccine development has been established. This platform technology has the following advantages: (1) easily convert antigen into lipidated recombinant protein using a fusion sequence containing lipobox and express high level (50-150mg/L) in Escherichia coli; (2) a robust high-yield up- and downstream bioprocess for lipoprotein production is successfully developed to devoid endotoxin contamination; (3) the lipid moiety of recombinant lipoproteins, which is identical to that of bacterial lipoproteins is recognized as danger signals by the immune system (Toll-like receptor 2 agonist), so both innate and adaptive immune responses can be induced by lipoproteins; and (4) successfully demonstrate the feasibility and safety of this core platform technology in meningococcal group B subunit vaccine, dengue subunit vaccine, novel subunit vaccine against Clostridium difficile-associated diseases, and HPV-based immunotherapeutic vaccines in animal model studies. © 2015 Elsevier Inc. All rights reserved.

  19. Oxygen-hydrogen recombination system

    International Nuclear Information System (INIS)

    Sato, Shuichiro; Takejima, Masaki.

    1981-01-01

    Purpose: To avoid reduction in the performance of catalyst used for an oxygen-hydrogen recombiner in the off gas processing system of a nuclear reactor. Constitution: A thermometer is provided for the detection of temperature in an oxygen-hydrogen recombiner. A cooling pipe is provided in the recombiner and cooling medium is introduced externally. The cooling medium may be water or air. In accordance with the detection value from the thermometer, ON-OFF control is carried out for a valve to control the flow rate of the cooling medium thereby rendering the temperature in the recombiner to a predetermined value. This can prevent the catalyst from being exposed to high temperature and avoid the reduction in the performance of the catalyst. (Ikeda, J.)

  20. Potency Evaluation of Recombinant Human Erythropoietin in Brazil: Assessment of Reproducibility Using a Practical Approach

    Directory of Open Access Journals (Sweden)

    Michele Cardoso do Nascimento

    2015-08-01

    Full Text Available In this study, we compared the results of potency determination of recombinant human erythropoietin (rhEPO obtained between 2010 and 2012 by the National Institute of Quality Control in Health (INCQS/Fiocruz, i.e., the National Control Laboratory (NCL, and by a manufacturer of rhEPO. In total, 47 different batches of commercially prepared rhEPO (alpha isoform were analyzed. All results, including those of the control and warning limits, remained within the limits recommended by European Pharmacopoeia (Ph. Eur.. All relative error (RE values were less than ± 30%, wh ereas most were approximately ± 20%. Applying the Bland-Altman plot, only two of 47 values remained outside the limits of agreement (LA. In addition, agreement of potency determination between INCQS and the manufacturer coefficient of variation of reproducibility (% CVR was considered satisfactory. Taken together, our results demonstrate (i. the potency assay of rhEPO performed at INCQS, is standardized and controlled, (ii. the comparison of our results with those of the manufacturer, revealed an adequate inter-laboratory variation, and (iii. the critical appraisal proposed here appears to be a feasible tool to assess the reproducibility of biological activity, providing additional information regarding monitoring and production consistency to manufacturers and NCLs.

  1. Experimental evidence that RNA recombination occurs in the Japanese encephalitis virus

    International Nuclear Information System (INIS)

    Chuang, C.-K.; Chen, W.-J.

    2009-01-01

    Due to the lack of a proofreading function and error-repairing ability of genomic RNA, accumulated mutations are known to be a force driving viral evolution in the genus Flavivirus, including the Japanese encephalitis (JE) virus. Based on sequencing data, RNA recombination was recently postulated to be another factor associated with genomic variations in these viruses. We herein provide experimental evidence to demonstrate the occurrence of RNA recombination in the JE virus using two local pure clones (T1P1-S1 and CJN-S1) respectively derived from the local strains, T1P1 and CJN. Based on results from a restriction fragment length polymorphism (RFLP) assay on the C/preM junction comprising a fragment of 868 nucleotides (nt 10-877), the recombinant progeny virus was primarily formed in BHK-21 cells that had been co-infected with the two clones used in this study. Nine of 20 recombinant forms of the JE virus had a crossover in the nt 123-323 region. Sequencing data derived from these recombinants revealed that no nucleotide deletion or insertion occurred in this region favoring crossovers, indicating that precisely, not aberrantly, homologous recombination was involved. With site-directed mutagenesis, three stem-loop secondary structures were destabilized and re-stabilized in sequence, leading to changes in the frequency of recombination. This suggests that the conformation, not the free energy, of the secondary structure is important in modulating RNA recombination of the virus. It was concluded that because RNA recombination generates genetic diversity in the JE virus, this must be considered particularly in studies of viral evolution, epidemiology, and possible vaccine safety.

  2. Hydrogen jet recombination under postulated LMFBR accident conditions

    International Nuclear Information System (INIS)

    Wierman, R.W.

    1977-01-01

    Certain conditions may be postulated in LMFBR risk assessments for which the potential of hydrogen release to the reactor containment building needs to be evaluated. The inherent self-ignition characteristics of hydrogen jets entering the air atmosphere of the reactor containment building should be understood for such analyses. If hydrogen jets were to self-ignite (recombine) at the source where they enter the reactor containment building, then undesirable hydrogen accumulation would not occur. Therefore, experiments have been conducted investigating the phenomena associated with the recombination of hydrogen jets under conditions similar to those postulated for LMFBR studies. The data presented define the conditions required for self-ignition of the hydrogen jets

  3. Protocol for north of England and Scotland study of tonsillectomy and adeno-tonsillectomy in children (NESSTAC). A pragmatic randomised controlled trial comparing surgical intervention with conventional medical treatment in children with recurrent sore throats.

    Science.gov (United States)

    Bond, John; Wilson, Janet; Eccles, Martin; Vanoli, Alessandra; Steen, Nick; Clarke, Ray; Zarod, Andrew; Lock, Catherine; Brittain, Katie; Speed, Chris; Rousseau, Nikki

    2006-08-09

    Uncertainties surrounding the effectiveness and cost-effectiveness of childhood tonsillectomy for recurrent sore throat led the NHS Health Technology Assessment Programme to commission this research to evaluate the effectiveness and cost-effectiveness of tonsillectomy and adeno-tonsillectomy in comparison with standard non-surgical management in children aged under 16 with recurrent throat infections. The aim is to evaluate if tonsillectomy and adeno-tonsillectomy reduces the number of episodes of sore throats among children to a clinically significant extent. A simple prospective pragmatic randomised controlled trial with economic analysis and prospective cohort study of non-trial participants comparing surgical intervention with conventional medical treatment. The treatment arm will receive tonsillectomy and adeno-tonsillectomy while in the control arm non-surgical conventional medical treatment only will be used. The primary outcome measure will be reported number of episodes of sore throat over two years with secondary outcomes measures of reported number of episodes of sore throat, otitis media and upper respiratory tract infection which invoke a GP consultation; reported number of symptom-free days; reported severity of sore throats and surgical and anaesthetic morbidity. The study will take place in five hospitals in the UK. The trial population will be 406 children aged 4-15 on their last birthday with recurrent sore throat referred by primary care to the 5 otolaryngology departments. The duration of the study is seven years (July 2001-July 2008). As with all pragmatic randomised controlled trials it is impossible to control the external environment in which the research is taking place. Since this trial began a number of factors have arisen which could affect the outcome including; a reduction in the incidence of respiratory tract infections, marked socio-economic differences in consultation rates, the results from the National Prospective Tonsillectomy

  4. Protocol for north of England and Scotland study of tonsillectomy and adeno-tonsillectomy in children (NESSTAC. A pragmatic randomised controlled trial comparing surgical intervention with conventional medical treatment in children with recurrent sore throats

    Directory of Open Access Journals (Sweden)

    Lock Catherine

    2006-08-01

    Full Text Available Abstract Background Uncertainties surrounding the effectiveness and cost-effectiveness of childhood tonsillectomy for recurrent sore throat led the NHS Health Technology Assessment Programme to commission this research to evaluate the effectiveness and cost-effectiveness of tonsillectomy and adeno-tonsillectomy in comparison with standard non-surgical management in children aged under 16 with recurrent throat infections. The aim is to evaluate if tonsillectomy and adeno-tonsillectomy reduces the number of episodes of sore throats among children to a clinically significant extent. Methods/design A simple prospective pragmatic randomised controlled trial with economic analysis and prospective cohort study of non-trial participants comparing surgical intervention with conventional medical treatment. The treatment arm will receive tonsillectomy and adeno-tonsillectomy while in the control arm non-surgical conventional medical treatment only will be used. The primary outcome measure will be reported number of episodes of sore throat over two years with secondary outcomes measures of reported number of episodes of sore throat, otitis media and upper respiratory tract infection which invoke a GP consultation; reported number of symptom-free days; reported severity of sore throats and surgical and anaesthetic morbidity. The study will take place in five hospitals in the UK. The trial population will be 406 children aged 4–15 on their last birthday with recurrent sore throat referred by primary care to the 5 otolaryngology departments. The duration of the study is seven years (July 2001- July 2008. Discussion As with all pragmatic randomised controlled trials it is impossible to control the external environment in which the research is taking place. Since this trial began a number of factors have arisen which could affect the outcome including; a reduction in the incidence of respiratory tract infections, marked socio-economic differences in

  5. Automation and Integration in Semiconductor Manufacturing

    OpenAIRE

    Liao, Da-Yin

    2010-01-01

    Semiconductor automation originates from the prevention and avoidance of frauds in daily fab operations. As semiconductor technology and business continuously advance and grow, manufacturing systems must aggressively evolve to meet the changing technical and business requirements in this industry. Semiconductor manufacturing has been suffering pains from islands of automation. The problems associated with these systems are limited

  6. Recombination methods for boron neutron capture therapy dosimetry

    International Nuclear Information System (INIS)

    Golnik, N.; Tulik, P.; Zielczynski, M.

    2003-01-01

    The radiation effects of boron neutron capture therapy (BNCT) are associated with four-dose-compartment radiation field - boron dose (from 10 B(n,α) 7 Li) reaction), proton dose from 14 N(n,p) 14 C reaction, neutron dose (mainly fast and epithermal neutrons) and gamma-ray dose (external and from capture reaction 1 H(n,γ) 2 D). Because of this the relation between the absorbed dose and the biological effects is very complex and all the above mentioned absorbed dose components should be determined. From this point of view, the recombination chambers can be very useful instruments for characterization of the BNCT beams. They can be used for determination of gamma and high-LET dose components for the characterization of radiation quality of mixed radiation fields by recombination microdosimetric method (RMM). In present work, a graphite high-pressure recombination chamber filled with nitrogen, 10 BF 3 and tissue equivalent gas was used for studies on application of RMM for BNCT dosimetry. The use of these gases or their mixtures opens a possibility to design a recombination chamber for determination of the dose fractions due to gamma radiation, fast neutrons, neutron capture on nitrogen and high LET particles from (n, 10 B) reaction in simulated tissue with different content of 10 B. (author)

  7. Specific modifications of histone tails, but not DNA methylation, mirror the temporal variation of mammalian recombination hotspots.

    Science.gov (United States)

    Zeng, Jia; Yi, Soojin V

    2014-10-16

    Recombination clusters nonuniformly across mammalian genomes at discrete genomic loci referred to as recombination hotspots. Despite their ubiquitous presence, individual hotspots rapidly lose their activities, and the molecular and evolutionary mechanisms underlying such frequent hotspot turnovers (the so-called "recombination hotspot paradox") remain unresolved. Even though some sequence motifs are significantly associated with hotspots, multiple lines of evidence indicate that factors other than underlying sequences, such as epigenetic modifications, may affect the evolution of recombination hotspots. Thus, identifying epigenetic factors that covary with recombination at fine-scale is a promising step for this important research area. It was previously reported that recombination rates correlate with indirect measures of DNA methylation in the human genome. Here, we analyze experimentally determined DNA methylation and histone modification of human sperms, and show that the correlation between DNA methylation and recombination in long-range windows does not hold with respect to the spatial and temporal variation of recombination at hotspots. On the other hand, two histone modifications (H3K4me3 and H3K27me3) overlap extensively with recombination hotspots. Similar trends were observed in mice. These results indicate that specific histone modifications rather than DNA methylation are associated with the rapid evolution of recombination hotspots. Furthermore, many human recombination hotspots occupy "bivalent" chromatin regions that harbor both active (H3K4me3) and repressive (H3K27me3) marks. This may explain why human recombination hotspots tend to occur in nongenic regions, in contrast to yeast and Arabidopsis hotspots that are characterized by generally active chromatins. Our results highlight the dynamic epigenetic underpinnings of recombination hotspot evolution. © The Author(s) 2014. Published by Oxford University Press on behalf of the Society for

  8. Correlation of mutations and recombination with growth kinetics of poliovirus vaccine strains.

    Science.gov (United States)

    Pliaka, V; Kyriakopoulou, Z; Tsakogiannis, D; Ruether, I G A; Gartzonika, C; Levidiotou-Stefanou, S; Krikelis, A; Markoulatos, P

    2010-12-01

    Attenuated strains of Sabin poliovirus vaccine replicate in the human gut and, in rare cases, may cause vaccine-associated paralytic poliomyelitis (VAPP). The genetic instability of Sabin strains constitutes one of the main causes of VAPP, a disease that is most frequently associated with type 3 and type 2 Sabin strains, and more rarely with type 1 Sabin strains. In the present study, the growth phenotype of eight oral poliovirus vaccine (OPV) isolates (two non-recombinants and six recombinants), as well as of Sabin vaccine strains, was evaluated using two different assays, the reproductive capacity at different temperatures (Rct) test and the one-step growth curve test in Hep-2 cells at two different temperatures (37°C and 40°C). The growth phenotype of isolates was correlated with genomic modifications in order to identify the determinants and mechanisms of reversion towards neurovirulence. All of the recombinant OPV isolates showed a thermoresistant phenotype in the Rct test. Moreover, both recombinant Sabin-3 isolates showed significantly higher viral yield than Sabin 3 vaccine strain at 37°C and 40°C in the one-step growth curve test. All of the OPV isolates displayed mutations at specific sites of the viral genome, which are associated with the attenuated and temperature-sensitive phenotype of Sabin strains. The results showed that both mutations and recombination events could affect the phenotype traits of Sabin derivatives and may lead to the reversion of vaccinal strains to neurovirulent ones. The use of phenotypic markers along with the genomic analysis may shed additional light on the molecular determinants of the reversed neurovirulent phenotype of Sabin derivatives.

  9. On the relict recombination lines

    International Nuclear Information System (INIS)

    Bershtejn, I.N.; Bernshtejn, D.N.; Dubrovich, V.K.

    1977-01-01

    Accurate numerical calculation of intensities and profiles of hydrogen recombination lines of cosmological origin is made. Relie radiation distortions stipulated by recombination quantum release at the irrevocable recombination are investigated. Mean number calculation is given for guantums educing for one irrevocably-lost electron. The account is taken of the educed quantums interraction with matter. The main quantum-matter interrraction mechanisms are considered: electronic blow broadening; free-free, free-bound, bound-bound absorptions Recombination dynamics is investigated depending on hydrogen density and total density of all the matter kinds in the Universe

  10. The impact of fit manufacturing on green manufacturing: A review

    Science.gov (United States)

    Qi, Ang Nian; Sin, Tan Chan; Fathullah, M.; Lee, C. C.

    2017-09-01

    Fit manufacturing and Green manufacturing are a new trend principle and concept. They are getting popular in industrial. This paper is identifying the impact between Fit manufacturing and Green manufacturing. Besides Fit manufacturing, Lean manufacturing, Agile manufacturing and Sustainable manufacturing gives big impacts to Green Manufacturing. On top of that, this paper also discuss the benefits of applying Fit manufacturing and Green manufacturing in industrial as well as environment. Hence, applications of Fit manufacturing and Green Manufacturing are increasing year by year.

  11. Recombinational DNA repair and human disease

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, Larry H.; Schild, David

    2002-11-30

    We review the genes and proteins related to the homologous recombinational repair (HRR) pathway that are implicated in cancer through either genetic disorders that predispose to cancer through chromosome instability or the occurrence of somatic mutations that contribute to carcinogenesis. Ataxia telangiectasia (AT), Nijmegen breakage syndrome (NBS), and an ataxia-like disorder (ATLD), are chromosome instability disorders that are defective in the ataxia telangiectasia mutated (ATM), NBS, and Mre11 genes, respectively. These genes are critical in maintaining cellular resistance to ionizing radiation (IR), which kills largely by the production of double-strand breaks (DSBs). Bloom syndrome involves a defect in the BLM helicase, which seems to play a role in restarting DNA replication forks that are blocked at lesions, thereby promoting chromosome stability. The Werner syndrome gene (WRN) helicase, another member of the RecQ family like BLM, has very recently been found to help mediate homologous recombination. Fanconi anemia (FA) is a genetically complex chromosomal instability disorder involving seven or more genes, one of which is BRCA2. FA may be at least partially caused by the aberrant production of reactive oxidative species. The breast cancer-associated BRCA1 and BRCA2 proteins are strongly implicated in HRR; BRCA2 associates with Rad51 and appears to regulate its activity. We discuss in detail the phenotypes of the various mutant cell lines and the signaling pathways mediated by the ATM kinase. ATM's phosphorylation targets can be grouped into oxidative stress-mediated transcriptional changes, cell cycle checkpoints, and recombinational repair. We present the DNA damage response pathways by using the DSB as the prototype lesion, whose incorrect repair can initiate and augment karyotypic abnormalities.

  12. Recombinational DNA repair and human disease

    International Nuclear Information System (INIS)

    Thompson, Larry H.; Schild, David

    2002-01-01

    We review the genes and proteins related to the homologous recombinational repair (HRR) pathway that are implicated in cancer through either genetic disorders that predispose to cancer through chromosome instability or the occurrence of somatic mutations that contribute to carcinogenesis. Ataxia telangiectasia (AT), Nijmegen breakage syndrome (NBS), and an ataxia-like disorder (ATLD), are chromosome instability disorders that are defective in the ataxia telangiectasia mutated (ATM), NBS, and Mre11 genes, respectively. These genes are critical in maintaining cellular resistance to ionizing radiation (IR), which kills largely by the production of double-strand breaks (DSBs). Bloom syndrome involves a defect in the BLM helicase, which seems to play a role in restarting DNA replication forks that are blocked at lesions, thereby promoting chromosome stability. The Werner syndrome gene (WRN) helicase, another member of the RecQ family like BLM, has very recently been found to help mediate homologous recombination. Fanconi anemia (FA) is a genetically complex chromosomal instability disorder involving seven or more genes, one of which is BRCA2. FA may be at least partially caused by the aberrant production of reactive oxidative species. The breast cancer-associated BRCA1 and BRCA2 proteins are strongly implicated in HRR; BRCA2 associates with Rad51 and appears to regulate its activity. We discuss in detail the phenotypes of the various mutant cell lines and the signaling pathways mediated by the ATM kinase. ATM's phosphorylation targets can be grouped into oxidative stress-mediated transcriptional changes, cell cycle checkpoints, and recombinational repair. We present the DNA damage response pathways by using the DSB as the prototype lesion, whose incorrect repair can initiate and augment karyotypic abnormalities

  13. Late replicating domains are highly recombining in females but have low male recombination rates: implications for isochore evolution.

    Directory of Open Access Journals (Sweden)

    Catherine J Pink

    Full Text Available In mammals sequences that are either late replicating or highly recombining have high rates of evolution at putatively neutral sites. As early replicating domains and highly recombining domains both tend to be GC rich we a priori expect these two variables to covary. If so, the relative contribution of either of these variables to the local neutral substitution rate might have been wrongly estimated owing to covariance with the other. Against our expectations, we find that sex-averaged recombination rates show little or no correlation with replication timing, suggesting that they are independent determinants of substitution rates. However, this result masks significant sex-specific complexity: late replicating domains tend to have high recombination rates in females but low recombination rates in males. That these trends are antagonistic explains why sex-averaged recombination is not correlated with replication timing. This unexpected result has several important implications. First, although both male and female recombination rates covary significantly with intronic substitution rates, the magnitude of this correlation is moderately underestimated for male recombination and slightly overestimated for female recombination, owing to covariance with replicating timing. Second, the result could explain why male recombination is strongly correlated with GC content but female recombination is not. If to explain the correlation between GC content and replication timing we suppose that late replication forces reduced GC content, then GC promotion by biased gene conversion during female recombination is partly countered by the antagonistic effect of later replicating sequence tending increase AT content. Indeed, the strength of the correlation between female recombination rate and local GC content is more than doubled by control for replication timing. Our results underpin the need to consider sex-specific recombination rates and potential covariates in

  14. Smart sustainable bottle (SSB) system for E. coli based recombinant protein production.

    Science.gov (United States)

    Li, Zhaopeng; Carstensen, Bettina; Rinas, Ursula

    2014-11-05

    Recombinant proteins are usually required in laboratories interested in the protein but not in the production process itself. Thus, technical equipment which is easy to handle and straight forward protein production procedures are of great benefit to those laboratories. Companies selling single use cultivation bags and bioreactors are trying to satisfy at least part of these needs. However, single-use systems can contribute to major costs which might be acceptable when "good manufacturing practices" are required but not acceptable for most laboratories facing tight funding. The assembly and application of a simple self-made "smart sustainable bottle" (SSB) system for E. coli based protein production is presented. The core of the SSB system is a 2-L glass bottle which is operated at constant temperature, air flow, and stirrer speed without measurement and control of pH and dissolved oxygen. Oxygen transfer capacities are in the range as in conventional bioreactors operated at intermediate aeration rates and by far exceed those found in conventional shaking flasks and disposable bioreactors. The SSB system was applied for the production of various recombinant proteins using T7-based expression systems and a defined autoinduction medium. The production performance regarding amount and solubility of proteins with robust and delicate properties was as good as in state-of-the-art stirred tank commercial bioreactors. The SSB system represents a low cost protein production device applicable for easy, effective, and reproducible recombinant protein production.

  15. Thromboembolic risks of recombinant factor VIIa Use in warfarin-associated intracranial hemorrhage: a case–control study

    Directory of Open Access Journals (Sweden)

    H-Y Chou Sherry

    2012-12-01

    Full Text Available Abstract Background Recombinant factor VIIa (rFVIIa may be used for rapid hemostasis in life-threatening hemorrhage. In warfarin-associated intracerebral hemorrhage (wICH, FVIIa use is controversial and may carry significant thromboembolic risks. We compared incidence of baseline thromboembolic risk factors and thromboembolism rates in wICH patients treated with additional rFVIIa to those treated with standard therapy of fresh frozen plasma (FFP and vitamin K alone. Methods We identified 45 consecutive wICH patients treated with additional rFVIIa over 5-year period, and 34 consecutive wICH patients treated with standard therapy alone as comparison group. We compared the incidence of post-hemorrhage cardiac and extra-cardiac thromboembolic complications between two treatment groups, and used logistic regression to adjust for significant confounders such as baseline thromboembolic risk factors. We performed secondary analysis comparing the quantity of FFP transfused between two treatment cohorts. Results Both rFVIIa-treated and standard therapy-treated wICH patients had a high prevalence of pre-existing thromboembolic diseases including atrial fibrillation (73% vs 68%, deep venous thrombosis (DVT or pulmonary embolism (PE (22% vs 18%, coronary artery disease (CAD (38% vs 32%, and abnormal electrocardiogram (EKG (78% vs 85%. Troponin elevation following wICH was prevalent in both groups (47% vs 41%. Clinically significant myocardial infarction (MI, defined as troponin > 1.0 ng/dL, occurred in 13% of rFVIIa-treated and 6% of standard therapy-treated patients (p=0.52. Past history of CAD (p=0.0061 and baseline abnormal EKG (p=0.02 were independently associated with clinically significant MI following wICH while rFVIIa use was not. The incidences of DVT/PE (2% vs 9%; p=0.18 and ischemic stroke (2% vs 0%; p=0.38 were similar between two treatment groups. Recombinant FVIIa-treated patients had lower mean INR at 3 (p=0.0001 and 6 hours (p Conclusions Pre

  16. A simple Pichia pastoris fermentation and downstream processing strategy for making recombinant pandemic Swine Origin Influenza a virus Hemagglutinin protein.

    Science.gov (United States)

    Athmaram, T N; Singh, Anil Kumar; Saraswat, Shweta; Srivastava, Saurabh; Misra, Princi; Kameswara Rao, M; Gopalan, N; Rao, P V L

    2013-02-01

    The present Influenza vaccine manufacturing process has posed a clear impediment to initiation of rapid mass vaccination against spreading pandemic influenza. New vaccine strategies are therefore needed that can accelerate the vaccine production. Pichia offers several advantages for rapid and economical bulk production of recombinant proteins and, hence, can be attractive alternative for producing an effective influenza HA based subunit vaccine. The recombinant Pichia harboring the transgene was subjected to fed-batch fermentation at 10 L scale. A simple fermentation and downstream processing strategy is developed for high-yield secretory expression of the recombinant Hemagglutinin protein of pandemic Swine Origin Influenza A virus using Pichia pastoris via fed-batch fermentation. Expression and purification were optimized and the expressed recombinant Hemagglutinin protein was verified by sodium dodecyl sulfate polyacrylamide gel electrophoresis, Western blot and MALDI-TOF analysis. In this paper, we describe a fed-batch fermentation protocol for the secreted production of Swine Influenza A Hemagglutinin protein in the P. pastoris GS115 strain. We have shown that there is a clear relationship between product yield and specific growth rate. The fed-batch fermentation and downstream processing methods optimized in the present study have immense practical application for high-level production of the recombinant H1N1 HA protein in a cost effective way using P. pastoris.

  17. Overview of the purification of recombinant proteins.

    Science.gov (United States)

    Wingfield, Paul T

    2015-04-01

    When the first version of this unit was written in 1995, protein purification of recombinant proteins was based on a variety of standard chromatographic methods and approaches, many of which were described and mentioned throughout Current Protocols in Protein Science. In the interim, there has been a shift toward an almost universal usage of the affinity or fusion tag. This may not be the case for biotechnology manufacture where affinity tags can complicate producing proteins under regulatory conditions. Regardless of the protein expression system, questions are asked as to which and how many affinity tags to use, where to attach them in the protein, and whether to engineer a self-cleavage system or simply leave them on. We will briefly address some of these issues. Also, although this overview focuses on E.coli, protein expression and purification, other commonly used expression systems are mentioned and, apart from cell-breakage methods, protein purification methods and strategies are essentially the same. Copyright © 2015 John Wiley & Sons, Inc.

  18. Auger recombination in sodium iodide

    Science.gov (United States)

    McAllister, Andrew; Kioupakis, Emmanouil; Åberg, Daniel; Schleife, André

    2014-03-01

    Scintillators are an important tool used to detect high energy radiation - both in the interest of national security and in medicine. However, scintillator detectors currently suffer from lower energy resolutions than expected from basic counting statistics. This has been attributed to non-proportional light yield compared to incoming radiation, but the specific mechanism for this non-proportionality has not been identified. Auger recombination is a non-radiative process that could be contributing to the non-proportionality of scintillating materials. Auger recombination comes in two types - direct and phonon-assisted. We have used first-principles calculations to study Auger recombination in sodium iodide, a well characterized scintillating material. Our findings indicate that phonon-assisted Auger recombination is stronger in sodium iodide than direct Auger recombination. Computational resources provided by LLNL and NERSC. Funding provided by NA-22.

  19. Regulation of homologous recombination in eukaryotes

    OpenAIRE

    Heyer, Wolf-Dietrich; Ehmsen, Kirk T.; Liu, Jie

    2010-01-01

    Homologous recombination is required for accurate chromosome segregation during the first meiotic division and constitutes a key repair and tolerance pathway for complex DNA damage including DNA double-stranded breaks, interstrand crosslinks, and DNA gaps. In addition, recombination and replication are inextricably linked, as recombination recovers stalled and broken replication forks enabling the evolution of larger genomes/replicons. Defects in recombination lead to genomic instability and ...

  20. Composites Materials and Manufacturing Technologies for Space Applications

    Science.gov (United States)

    Vickers, J. H.; Tate, L. C.; Gaddis, S. W.; Neal, R. E.

    2016-01-01

    Composite materials offer significant advantages in space applications. Weight reduction is imperative for deep space systems. However, the pathway to deployment of composites alternatives is problematic. Improvements in the materials and processes are needed, and extensive testing is required to validate the performance, qualify the materials and processes, and certify components. Addressing these challenges could lead to the confident adoption of composites in space applications and provide spin-off technical capabilities for the aerospace and other industries. To address the issues associated with composites applications in space systems, NASA sponsored a Technical Interchange Meeting (TIM) entitled, "Composites Materials and Manufacturing Technologies for Space Applications," the proceedings of which are summarized in this Conference Publication. The NASA Space Technology Mission Directorate and the Game Changing Program chartered the meeting. The meeting was hosted by the National Center for Advanced Manufacturing (NCAM)-a public/private partnership between NASA, the State of Louisiana, Louisiana State University, industry, and academia, in association with the American Composites Manufacturers Association. The Louisiana Center for Manufacturing Sciences served as the coordinator for the TIM.

  1. Large-scale intersubspecific recombination in the plant-pathogenic bacterium Xylella fastidiosa is associated with the host shift to mulberry.

    Science.gov (United States)

    Nunney, Leonard; Schuenzel, Erin L; Scally, Mark; Bromley, Robin E; Stouthamer, Richard

    2014-05-01

    Homologous recombination plays an important role in the structuring of genetic variation of many bacteria; however, its importance in adaptive evolution is not well established. We investigated the association of intersubspecific homologous recombination (IHR) with the shift to a novel host (mulberry) by the plant-pathogenic bacterium Xylella fastidiosa. Mulberry leaf scorch was identified about 25 years ago in native red mulberry in the eastern United States and has spread to introduced white mulberry in California. Comparing a sequence of 8 genes (4,706 bp) from 21 mulberry-type isolates to published data (352 isolates representing all subspecies), we confirmed previous indications that the mulberry isolates define a group distinct from the 4 subspecies, and we propose naming the taxon X. fastidiosa subsp. morus. The ancestry of its gene sequences was mixed, with 4 derived from X. fastidiosa subsp. fastidiosa (introduced from Central America), 3 from X. fastidiosa subsp. multiplex (considered native to the United States), and 1 chimeric, demonstrating that this group originated by large-scale IHR. The very low within-type genetic variation (0.08% site polymorphism), plus the apparent inability of native X. fastidiosa subsp. multiplex to infect mulberry, suggests that this host shift was achieved after strong selection acted on genetic variants created by IHR. Sequence data indicate that a single ancestral IHR event gave rise not only to X. fastidiosa subsp. morus but also to the X. fastidiosa subsp. multiplex recombinant group which infects several hosts but is the only type naturally infecting blueberry, thus implicating this IHR in the invasion of at least two novel native hosts, mulberry and blueberry.

  2. Rapsodie first core manufacture. 1. part: processing plant

    International Nuclear Information System (INIS)

    Masselot, Y.; Bataller, S.; Ganivet, M.; Guillet, H.; Robillard, A.; Stosskopf, F.

    1968-01-01

    This report is the first in a series of three describing the processes, results and peculiar technical problems related to the manufacture of the first core of the fast reactor Rapsodie. A detailed study of manufacturing processes(pellets, pins, fissile sub-assemblies), the associated testings (raw materials, processed pellets and pins, sub-assemblies before delivery), manufacturing facilities and improvements for a second campaign are described. (author) [fr

  3. Production of recombinant proteins from Plasmodium falciparum in Escherichia coli.

    Science.gov (United States)

    Guerra, Ángela Patricia; Calvo, Eliana Patricia; Wasserman, Moisés; Chaparro-Olaya, Jacqueline

    2016-02-23

    The production of recombinant proteins is essential for the characterization and functional study of proteins from Plasmodium falciparum. However, the proteins of P. falciparum are among the most challenging to express, and when expression is achieved, the recombinant proteins usually fold incorrectly and lead to the formation of inclusion bodies.  To obtain and purify four recombinant proteins and to use them as antigens to produce polyclonal antibodies. The production efficiency and solubility were evaluated as the proteins were expressed in two genetically modified strains of Escherichia coli to favor the production of heterologous proteins (BL21-CodonPlus (DE3)-RIL and BL21-pG-KJE8).  The four recombinant P. falciparum proteins corresponding to partial sequences of PfMyoA (Myosin A) and PfGAP50 (gliding associated protein 50), and the complete sequences of PfMTIP (myosin tail interacting protein) and PfGAP45 (gliding associated protein 45), were produced as glutathione S-transferase-fusion proteins, purified and used for immunizing mice.  The protein expression was much more efficient in BL21-CodonPlus, the strain that contains tRNAs that are rare in wild-type E. coli, compared to the expression in BL21-pG-KJE8. In spite of the fact that BL21-pG-KJE8 overexpresses chaperones, this strain did not minimize the formation of inclusion bodies.  The use of genetically modified strains of E. coli was essential to achieve high expression levels of the four evaluated P. falciparum proteins and lead to improved solubility of two of them. The approach used here allowed us to obtain and purify four P. falciparum proteins in enough quantity to produce polyclonal antibodies in mice, and a fair amount of two pure and soluble recombinant proteins for future assays.

  4. Recombination coefficients in extrinsic n-InSb

    International Nuclear Information System (INIS)

    Schneider, W.; Groh, H.; Huebner, K.

    1976-01-01

    The bulk recombination coefficients for linear recombination via recombination centers as well as for direct recombination have been determined measuring the conductivity decay after two-photon absorption with a CO 2 laser. The Suhl effect was applied to measure the surface recombination velocity. The corresponding literature is discussed and compared with our results. We conclude that two different kinds of recombination centers are possible in n-InSb, with energy levels (0.1-0.12)eV above the valence band, or (0.14-0.2)eV respectively. (orig.) [de

  5. Peripheral subnuclear positioning suppresses Tcrb recombination and segregates Tcrb alleles from RAG2.

    Science.gov (United States)

    Chan, Elizabeth A W; Teng, Grace; Corbett, Elizabeth; Choudhury, Kingshuk Roy; Bassing, Craig H; Schatz, David G; Krangel, Michael S

    2013-11-26

    Allelic exclusion requires that the two alleles at antigen-receptor loci attempt to recombine variable (V), diversity (D), and joining (J) gene segments [V(D)J recombination] asynchronously in nuclei of developing lymphocytes. It previously was shown that T-cell receptor β (Tcrb) alleles frequently and stochastically associate with the nuclear lamina and pericentromeric heterochromatin in CD4(-)CD8(-) thymocytes. Moreover, rearranged alleles were underrepresented at these locations. Here we used 3D immunofluorescence in situ hybridization to identify recently rearranged Tcrb alleles based on the accumulation of the DNA-repair protein 53BP1. We found that Tcrb alleles recombine asynchronously in double-negative thymocytes and that V(D)J recombination is suppressed on peripheral as compared with central Tcrb alleles. Moreover, the recombination events that did take place at the nuclear periphery preferentially occurred on Tcrb alleles that were partially dissociated from the nuclear lamina. To understand better the mechanism by which V(D)J recombination is suppressed at the nuclear periphery, we evaluated the subnuclear distribution of recombination-activating gene 2 (RAG2) protein. We found that RAG2 abundance was reduced at the nuclear periphery. Moreover, RAG2 was distributed differently from RNA polymerase II and histone H3K4 trimethylation. Our data suggest that the nuclear periphery suppresses V(D)J recombination, at least in part, by segregating Tcrb alleles from RAG proteins.

  6. Electron-ion recombination rates for merged-beams experiments

    International Nuclear Information System (INIS)

    Pajek, M.

    1994-01-01

    Energy dependence of the electron-ion recombination rates are studied for different recombination processes (radiative recombination, three-body recombination, dissociative recombination) for Maxwellian relative velocity distribution of arbitrary asymmetry. The results are discussed in context of the electron-ion merged beams experiments in cooling ion storage rings. The question of indication of a possible contribution of the three-body recombination to the measured recombination rates versus relative energy is particularly addressed. Its influence on the electron beam temperature derived from the energy dependence of recombination rate is discussed

  7. The PCNA-associated protein PARI negatively regulates homologous recombination via the inhibition of DNA repair synthesis

    DEFF Research Database (Denmark)

    Burkovics, Peter; Dome, Lili; Juhasz, Szilvia

    2016-01-01

    to inhibit homologous recombination (HR) events. Here, we describe a biochemical mechanism in which PARI functions as an HR regulator after replication fork stalling and during double-strand break repair. In our reconstituted biochemical system, we show that PARI inhibits DNA repair synthesis during...... recombination events in a PCNA interaction-dependent way but independently of its UvrD-like helicase domain. In accordance, we demonstrate that PARI inhibits HR in vivo, and its knockdown suppresses the UV sensitivity of RAD18-depleted cells. Our data reveal a novel human regulatory mechanism that limits...

  8. Control systems engineering in continuous pharmaceutical manufacturing. May 20-21, 2014 Continuous Manufacturing Symposium.

    Science.gov (United States)

    Myerson, Allan S; Krumme, Markus; Nasr, Moheb; Thomas, Hayden; Braatz, Richard D

    2015-03-01

    drug manufacturing that are easily transportable to industry. Industry can facilitate the move to continuous manufacturing by working with universities on the conception of new continuous pharmaceutical manufacturing process unit operations that have the potential to make major improvements in product quality, controllability, or reduced capital and/or operating costs. Regulatory bodies should ensure that: (1) regulations and regulatory practices promote, and do not derail, the development and implementation of continuous manufacturing and control systems engineering approaches; (2) the individuals who approve specific regulatory filings are sufficiently trained to make good decisions regarding control systems approaches; (3) provide regulatory clarity and eliminate/reduce regulatory risks; (4) financially support the development of high-quality training materials for use of undergraduate students, graduate students, industrial employees, and regulatory staff; (5) enhance the training of their own technical staff by financially supporting joint research projects with universities in the development of continuous pharmaceutical manufacturing processes and the associated control systems engineering theory, numerical algorithms, and software; and (6) strongly encourage the federal agencies that support research to fund these research areas. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.

  9. Electron-ion recombination at low energy

    International Nuclear Information System (INIS)

    Andersen, L.H.

    1993-01-01

    The work is based on results obtained with a merged-beams experiment. A beam of electronics with a well characterized density and energy distribution was merged with a fast, monoenergetic ion beam. Results have been obtained for radiative recombination and dielectronic recombination at low relative energies (0 to ∼70eV). The obtained energy resolution was improved by about a factor of 30. High vacuum technology was used to suppress interactions with electrons from the environments. The velocity distribution of the electron beam was determined. State-selective dielectronic-recombination measurements were performable. Recombination processes were studied. The theoretical background for radiative recombination and Kramers' theory are reviewed. The quantum mechanical result and its relation to the semiclassical theory is discussed. Radiative recombination was also measured with several different non-bare ions, and the applicability of the semiclassical theory to non-bare ions was investigated. The use of an effective charge is discussed. For dielectronic recombination, the standard theoretical approach in the isolated resonance and independent-processes approximation is debated. The applicability of this method was tested. The theory was able to reproduce most of the experimental data except when the recombination process was sensitive to couplings between different electronic configurations. The influence of external perturbing electrostatic fields is discussed. (AB) (31 refs.)

  10. Recombinant Innovation and Endogenous Transitions

    OpenAIRE

    Koen Frenken; Luis R. Izquierdo; Paolo Zeppini

    2012-01-01

    We propose a model of technological transitions based on two different types of innovations. Branching innovations refer to technological improvements along a particular path, while recombinant innovations represent fusions of multiple paths. Recombinant innovations create “short-cuts” which reduce switching costs allowing agents to escape a technological lock-in. As a result, recombinant innovations speed up technological progress allowing transitions that are impossible with only branching ...

  11. Safety of recombinant human platelet-derived growth factor-BB in Augment® Bone Graft

    Directory of Open Access Journals (Sweden)

    Luis A Solchaga

    2012-12-01

    Full Text Available This article discusses nonclinical and clinical data regarding the safety of recombinant human platelet-derived growth factor-BB as a component of the Augment® Bone Graft (Augment. Augment is a bone graft substitute intended to be used as an alternative to autologous bone graft in the fusion of hindfoot and ankle joints. Nonclinical studies included assessment of the pharmacokinetic profile of intravenously administered recombinant human platelet-derived growth factor-BB in rat and dog, effects of intravenous administration of recombinant human platelet-derived growth factor-BB in a reproductive and development toxicity study in rats, and chronic toxicity and carcinogenicity of Augment in a 12-month implantation model. These studies showed that systemic exposure was brief and clearance was rapid. No signs of toxicity, carcinogenicity, or tumor promotion were observed even with doses far exceeding the maximum clinical dose. Results of clinical trials (605 participants and commercial use of recombinant human platelet-derived growth factor-BB containing products indicate that these products are not associated with increased incidence of adverse events or cancer. The safety data presented provide evidence that recombinant human platelet-derived growth factor-BB is a safe therapeutic when used in combination products as a single administration during surgical procedures for bone repair and fusion. There is no evidence associating use of recombinant human platelet-derived growth factor-BB in Augment with chronic toxicity, carcinogenicity, or tumor promotion.

  12. Interface recombination influence on carrier transport

    International Nuclear Information System (INIS)

    Konin, A

    2013-01-01

    A theory of interface recombination in the semiconductor–semiconductor junction is developed. The interface recombination rate dependence on the nonequilibrium carrier densities is derived on the basis of a model in which the interface recombination occurs through the mechanism of trapping. The general relation between the interface recombination parameters at small carrier density deviation from the equilibrium ones is obtained. The validity of this relation is proved considering the generation of the Hall electric field in the extrinsic semiconductor sample. The anomalous Hall electromotive force in a weak magnetic field was investigated and interpreted by means of a new interface recombination model. The experimental data corroborate the developed theory. (paper)

  13. Caenorhabditis briggsae recombinant inbred line genotypes reveal inter-strain incompatibility and the evolution of recombination.

    Directory of Open Access Journals (Sweden)

    Joseph A Ross

    2011-07-01

    Full Text Available The nematode Caenorhabditis briggsae is an emerging model organism that allows evolutionary comparisons with C. elegans and exploration of its own unique biological attributes. To produce a high-resolution C. briggsae recombination map, recombinant inbred lines were generated from reciprocal crosses between two strains and genotyped at over 1,000 loci. A second set of recombinant inbred lines involving a third strain was also genotyped at lower resolution. The resulting recombination maps exhibit discrete domains of high and low recombination, as in C. elegans, indicating these are a general feature of Caenorhabditis species. The proportion of a chromosome's physical size occupied by the central, low-recombination domain is highly correlated between species. However, the C. briggsae intra-species comparison reveals striking variation in the distribution of recombination between domains. Hybrid lines made with the more divergent pair of strains also exhibit pervasive marker transmission ratio distortion, evidence of selection acting on hybrid genotypes. The strongest effect, on chromosome III, is explained by a developmental delay phenotype exhibited by some hybrid F2 animals. In addition, on chromosomes IV and V, cross direction-specific biases towards one parental genotype suggest the existence of cytonuclear epistatic interactions. These interactions are discussed in relation to surprising mitochondrial genome polymorphism in C. briggsae, evidence that the two strains diverged in allopatry, the potential for local adaptation, and the evolution of Dobzhansky-Muller incompatibilities. The genetic and genomic resources resulting from this work will support future efforts to understand inter-strain divergence as well as facilitate studies of gene function, natural variation, and the evolution of recombination in Caenorhabditis nematodes.

  14. Recombination-Mediated Host Adaptation by Avian Staphylococcus aureus

    Science.gov (United States)

    Murray, Susan; Pascoe, Ben; Méric, Guillaume; Mageiros, Leonardos; Yahara, Koji; Hitchings, Matthew D.; Friedmann, Yasmin; Wilkinson, Thomas S.; Gormley, Fraser J.; Mack, Dietrich; Bray, James E.; Lamble, Sarah; Bowden, Rory; Jolley, Keith A.; Maiden, Martin C.J.; Wendlandt, Sarah; Schwarz, Stefan; Corander, Jukka; Fitzgerald, J. Ross

    2017-01-01

    Staphylococcus aureus are globally disseminated among farmed chickens causing skeletal muscle infections, dermatitis, and septicaemia. The emergence of poultry-associated lineages has involved zoonotic transmission from humans to chickens but questions remain about the specific adaptations that promote proliferation of chicken pathogens. We characterized genetic variation in a population of genome-sequenced S. aureus isolates of poultry and human origin. Genealogical analysis identified a dominant poultry-associated sequence cluster within the CC5 clonal complex. Poultry and human CC5 isolates were significantly distinct from each other and more recombination events were detected in the poultry isolates. We identified 44 recombination events in 33 genes along the branch extending to the poultry-specific CC5 cluster, and 47 genes were found more often in CC5 poultry isolates compared with those from humans. Many of these gene sequences were common in chicken isolates from other clonal complexes suggesting horizontal gene transfer among poultry associated lineages. Consistent with functional predictions for putative poultry-associated genes, poultry isolates showed enhanced growth at 42 °C and greater erythrocyte lysis on chicken blood agar in comparison with human isolates. By combining phenotype information with evolutionary analyses of staphylococcal genomes, we provide evidence of adaptation, following a human-to-poultry host transition. This has important implications for the emergence and dissemination of new pathogenic clones associated with modern agriculture. PMID:28338786

  15. The complexity and cost of vaccine manufacturing - An overview.

    Science.gov (United States)

    Plotkin, Stanley; Robinson, James M; Cunningham, Gerard; Iqbal, Robyn; Larsen, Shannon

    2017-07-24

    As companies, countries, and governments consider investments in vaccine production for routine immunization and outbreak response, understanding the complexity and cost drivers associated with vaccine production will help to inform business decisions. Leading multinational corporations have good understanding of the complex manufacturing processes, high technological and R&D barriers to entry, and the costs associated with vaccine production. However, decision makers in developing countries, donors and investors may not be aware of the factors that continue to limit the number of new manufacturers and have caused attrition and consolidation among existing manufacturers. This paper describes the processes and cost drivers in acquiring and maintaining licensure of childhood vaccines. In addition, when export is the goal, we describe the requirements to supply those vaccines at affordable prices to low-resource markets, including the process of World Health Organization (WHO) prequalification and supporting policy recommendation. By providing a generalized and consolidated view of these requirements we seek to build awareness in the global community of the benefits and costs associated with vaccine manufacturing and the challenges associated with maintaining consistent supply. We show that while vaccine manufacture may prima facie seem an economic growth opportunity, the complexity and high fixed costs of vaccine manufacturing limit potential profit. Further, for most lower and middle income countries a large majority of the equipment, personnel and consumables will need to be imported for years, further limiting benefits to the local economy. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  16. Molecular requirements for radiation-activated recombination

    International Nuclear Information System (INIS)

    Stevens, Craig W.; Zeng Ming; Stamato, Thomas; Cerniglia, George

    1997-01-01

    Purpose/Objective: The major stumbling block to successful gene therapy today is poor gene transfer. We hypothesized that ionizing radiation might activate cellular recombination, and so improve stable gene transfer. We further hypothesized that known DNA-damage-repair proteins might also be important in radiation-activated recombination. Materials and Methods: The effect of irradiation on stable gene transfer efficiency was determined in human (A549 and 39F) and rodent (NIH/3T3) cell lines. Continuous low dose rate and multiple radiation fractions were also tested. Nuclear extracts were made and the effect of irradiation on inter-plasmid recombination/ligation determined. Multiple DNA damage-repair deficient cell lines were tested for radiation-activated recombination. Results: A significant radiation dose-dependent improvement in stable plasmid transfection (by as much as 1300 fold) is demonstrated in neoplastic and primary cells. An improvement in transient plasmid transfection is also seen, with as much as 85% of cells transiently expressing b-galactosidase (20-50 fold improvement). Stable transfection is only improved for linearized or nicked plasmids. Cells have improved gene transfer for at least 96 hours after irradiation. Both fractionated and continuous low dose rate irradiation are effective at improving stable gene transfer in mammalian cells, thus making relatively high radiation dose delivery clinically feasible. Inter-plasmid recombination is radiation dose dependent in nuclear extract assays, and the type of overhang (3', 5' or blunt end) significantly affects recombination efficiency and the type of product. The most common end-joining activity involves filling-in of the overhang followed by blunt end ligation. Adenovirus is a linear, double stranded DNA virus. We demonstrate that adenoviral infection efficiency is increased by irradiation. The duration of transgene expression is lengthened because the virus integrates with high efficiency (∼10

  17. Recombinant pinoresinol/lariciresinol reductase, recombinant dirigent protein, and methods of use

    Science.gov (United States)

    Lewis, Norman G.; Davin, Laurence B.; Dinkova-Kostova, Albena T.; Fujita, Masayuki; Gang, David R.; Sarkanen, Simo; Ford, Joshua D.

    2001-04-03

    Dirigent proteins and pinoresinol/lariciresinol reductases have been isolated, together with cDNAs encoding dirigent proteins and pinoresinol/lariciresinol reductases. Accordingly, isolated DNA sequences are provided which code for the expression of dirigent proteins and pinoresinol/lariciresinol reductases. In other aspects, replicable recombinant cloning vehicles are provided which code for dirigent proteins or pinoresinol/lariciresinol reductases or for a base sequence sufficiently complementary to at least a portion of dirigent protein or pinoresinol/lariciresinol reductase DNA or RNA to enable hybridization therewith. In yet other aspects, modified host cells are provided that have been transformed, transfected, infected and/or injected with a recombinant cloning vehicle and/or DNA sequence encoding dirigent protein or pinoresinol/lariciresinol reductase. Thus, systems and methods are provided for the recombinant expression of dirigent proteins and/or pinoresinol/lariciresinol reductases.

  18. Manipulating or superseding host recombination functions: a dilemma that shapes phage evolvability.

    Directory of Open Access Journals (Sweden)

    Louis-Marie Bobay

    Full Text Available Phages, like many parasites, tend to have small genomes and may encode autonomous functions or manipulate those of their hosts'. Recombination functions are essential for phage replication and diversification. They are also nearly ubiquitous in bacteria. The E. coli genome encodes many copies of an octamer (Chi motif that upon recognition by RecBCD favors repair of double strand breaks by homologous recombination. This might allow self from non-self discrimination because RecBCD degrades DNA lacking Chi. Bacteriophage Lambda, an E. coli parasite, lacks Chi motifs, but escapes degradation by inhibiting RecBCD and encoding its own autonomous recombination machinery. We found that only half of 275 lambdoid genomes encode recombinases, the remaining relying on the host's machinery. Unexpectedly, we found that some lambdoid phages contain extremely high numbers of Chi motifs concentrated between the phage origin of replication and the packaging site. This suggests a tight association between replication, packaging and RecBCD-mediated recombination in these phages. Indeed, phages lacking recombinases strongly over-represent Chi motifs. Conversely, phages encoding recombinases and inhibiting host recombination machinery select for the absence of Chi motifs. Host and phage recombinases use different mechanisms and the latter are more tolerant to sequence divergence. Accordingly, we show that phages encoding their own recombination machinery have more mosaic genomes resulting from recent recombination events and have more diverse gene repertoires, i.e. larger pan genomes. We discuss the costs and benefits of superseding or manipulating host recombination functions and how this decision shapes phage genome structure and evolvability.

  19. Molecular anatomy of the recombination mediator function of Saccharomyces cerevisiae Rad52

    DEFF Research Database (Denmark)

    Seong, C.; Sehorn, M.G.; Plate, Iben

    2008-01-01

    A helical filament of Rad51 on single-strand DNA (ssDNA), called the presynaptic filament, catalyzes DNA joint formation during homologous recombination. Rad52 facilitates presynaptic filament assembly, and this recombination mediator activity is thought to rely on the interactions of Rad52...... with Rad51, the ssDNA-binding protein RPA, and ssDNA. The N-terminal region of Rad52, which has DNA binding activity and an oligomeric structure, is thought to be crucial for mediator activity and recombination. Unexpectedly, we find that the C-terminal region of Rad52 also harbors a DNA binding function....... Importantly, the Rad52 C-terminal portion alone can promote Rad51 presynaptic filament assembly. The middle portion of Rad52 associates with DNA-bound RPA and contributes to the recombination mediator activity. Accordingly, expression of a protein species that harbors the middle and C-terminal regions of Rad...

  20. Population inversion in recombining hydrogen plasma

    International Nuclear Information System (INIS)

    Furukane, Utaro; Yokota, Toshiaki; Oda, Toshiatsu.

    1978-11-01

    The collisional-radiative model is applied to a recombining hydrogen plasma in order to investigate the plasma condition in which the population inversion between the energy levels of hydrogen can be generated. The population inversion is expected in a plasma where the three body recombination has a large contribution to the recombining processes and the effective recombination rate is beyond a certain value for a given electron density and temperature. Calculated results are presented in figures and tables. (author)

  1. Consequences of recombination on traditional phylogenetic analysis

    DEFF Research Database (Denmark)

    Schierup, M H; Hein, J

    2000-01-01

    We investigate the shape of a phylogenetic tree reconstructed from sequences evolving under the coalescent with recombination. The motivation is that evolutionary inferences are often made from phylogenetic trees reconstructed from population data even though recombination may well occur (mt......DNA or viral sequences) or does occur (nuclear sequences). We investigate the size and direction of biases when a single tree is reconstructed ignoring recombination. Standard software (PHYLIP) was used to construct the best phylogenetic tree from sequences simulated under the coalescent with recombination....... With recombination present, the length of terminal branches and the total branch length are larger, and the time to the most recent common ancestor smaller, than for a tree reconstructed from sequences evolving with no recombination. The effects are pronounced even for small levels of recombination that may...

  2. Structural Variation Shapes the Landscape of Recombination in Mouse.

    Science.gov (United States)

    Morgan, Andrew P; Gatti, Daniel M; Najarian, Maya L; Keane, Thomas M; Galante, Raymond J; Pack, Allan I; Mott, Richard; Churchill, Gary A; de Villena, Fernando Pardo-Manuel

    2017-06-01

    Meiotic recombination is an essential feature of sexual reproduction that ensures faithful segregation of chromosomes and redistributes genetic variants in populations. Multiparent populations such as the Diversity Outbred (DO) mouse stock accumulate large numbers of crossover (CO) events between founder haplotypes, and thus present a unique opportunity to study the role of genetic variation in shaping the recombination landscape. We obtained high-density genotype data from [Formula: see text] DO mice, and localized 2.2 million CO events to intervals with a median size of 28 kb. The resulting sex-averaged genetic map of the DO population is highly concordant with large-scale (order 10 Mb) features of previously reported genetic maps for mouse. To examine fine-scale (order 10 kb) patterns of recombination in the DO, we overlaid putative recombination hotspots onto our CO intervals. We found that CO intervals are enriched in hotspots compared to the genomic background. However, as many as [Formula: see text] of CO intervals do not overlap any putative hotspots, suggesting that our understanding of hotspots is incomplete. We also identified coldspots encompassing 329 Mb, or [Formula: see text] of observable genome, in which there is little or no recombination. In contrast to hotspots, which are a few kilobases in size, and widely scattered throughout the genome, coldspots have a median size of 2.1 Mb and are spatially clustered. Coldspots are strongly associated with copy-number variant (CNV) regions, especially multi-allelic clusters, identified from whole-genome sequencing of 228 DO mice. Genes in these regions have reduced expression, and epigenetic features of closed chromatin in male germ cells, which suggests that CNVs may repress recombination by altering chromatin structure in meiosis. Our findings demonstrate how multiparent populations, by bridging the gap between large-scale and fine-scale genetic mapping, can reveal new features of the recombination

  3. Induction of atherosclerosis in mice and hamsters without germline genetic engineering

    DEFF Research Database (Denmark)

    Bjørklund, Martin Mæng; Hollensen, Anne Kruse; Hagensen, Mette Kallestrup

    2014-01-01

    RATIONALE: Atherosclerosis can be achieved in animals by germline genetic engineering, leading to hypercholesterolemia, but such models are constrained to few species and strains, and they are difficult to combine with other powerful techniques involving genetic manipulation or variation. OBJECTIVE......: To develop a method for induction of atherosclerosis without germline genetic engineering. METHODS AND RESULTS: Recombinant adeno-associated viral vectors were engineered to encode gain-of-function proprotein convertase subtilisin/kexin type 9 mutants, and mice were given a single intravenous vector...... injection followed by high-fat diet feeding. Plasma proprotein convertase subtilisin/kexin type 9 and total cholesterol increased rapidly and were maintained at high levels, and after 12 weeks, mice had atherosclerotic lesions in the aorta. Histology of the aortic root showed progression of lesions...

  4. Trial manufacture of an insulated amplifier

    International Nuclear Information System (INIS)

    Okuno, Shigeo; Matsuura, Kiyokata.

    1978-10-01

    Trial manufacture of an insulated amplifier was carried out. The input signals are divided by filters Th and Tl into high frequency component and low frequency component. The high frequency component drives a transformer T 1 , and secondary signals are induced. The low frequency component drives a transformer T 2 through a buffer and a modulator. The secondary signals from both transformers are recombined to make the output signals. Compensation for the frequency characteristics of the high frequency transformer and that for the effect of a filter in the demodulation circuit for low frequency component are considered. The time constant of output signals for rectangular input signals was 30 microsec, when only the low frequency part is operated. The drift of the direct current level is within 5 mV. The characteristic features of the high frequency part was also investigated. The overall characteristic features of this amplifier were good for the frequency range of 0 to 500 kHz. (Kato, T.)

  5. An Interoperability Framework and Capability Profiling for Manufacturing Software

    Science.gov (United States)

    Matsuda, M.; Arai, E.; Nakano, N.; Wakai, H.; Takeda, H.; Takata, M.; Sasaki, H.

    ISO/TC184/SC5/WG4 is working on ISO16100: Manufacturing software capability profiling for interoperability. This paper reports on a manufacturing software interoperability framework and a capability profiling methodology which were proposed and developed through this international standardization activity. Within the context of manufacturing application, a manufacturing software unit is considered to be capable of performing a specific set of function defined by a manufacturing software system architecture. A manufacturing software interoperability framework consists of a set of elements and rules for describing the capability of software units to support the requirements of a manufacturing application. The capability profiling methodology makes use of the domain-specific attributes and methods associated with each specific software unit to describe capability profiles in terms of unit name, manufacturing functions, and other needed class properties. In this methodology, manufacturing software requirements are expressed in terns of software unit capability profiles.

  6. False-Positive Results in a Recombinant Severe Acute Respiratory Syndrome-Associated Coronavirus (SARS-CoV) Nucleocapsid Enzyme-Linked Immunosorbent Assay Due to HCoV-OC43 and HCoV-229E Rectified by Western Blotting with Recombinant SARS-CoV Spike Polypeptide

    OpenAIRE

    Woo, Patrick C. Y.; Lau, Susanna K. P.; Wong, Beatrice H. L.; Chan, Kwok-Hung; Hui, Wai-Ting; Kwan, Grace S. W.; Peiris, J. S. Malik; Couch, Robert B.; Yuen, Kwok-Yung

    2004-01-01

    Using paired serum samples obtained from patients with illness associated with increases in anti-human coronavirus OC43 (HCoV-OC43) or anti-HCoV-229E antibodies, we examined the possibility of false-positive results detected in a recombinant severe acute respiratory syndrome (SARS)-associated coronavirus (SARS-CoV) nucleocapsid protein immunoglobulin G enzyme-linked immunosorbent assay (ELISA). Three of the 21 and 1 of the 7 convalescent-phase serum samples from persons with increases in anti...

  7. Transformation of Manufacturing Firms to Servitisation Firms

    DEFF Research Database (Denmark)

    Lin, Chih-Cheng; Ma, Zheng; Tanev, Stoyan

    2014-01-01

    It is crucial for the manufacturing SMEs to reconsider their business strategy in order to be able to launch customer-centric solutions. This ability is associated with a paradigm shift from a product-orientation to service-orientation. One of the major challenges to success in transforming...... a traditional manufacturing firm to service-oriented firms is the conspicuous lack of publications in this research stream. Applying a case study research approach, this study explores the transformation model for manufacturing SMEs to servitisation firms by adopting a network approach, and reveals...

  8. PRDM9 and Its Role in Genetic Recombination.

    Science.gov (United States)

    Paigen, Kenneth; Petkov, Petko M

    2018-04-01

    PRDM9 is a zinc finger protein that binds DNA at specific locations in the genome where it trimethylates histone H3 at lysines 4 and 36 at surrounding nucleosomes. During meiosis in many species, including humans and mice where PRDM9 has been most intensely studied, these actions determine the location of recombination hotspots, where genetic recombination occurs. In addition, PRDM9 facilitates the association of hotspots with the chromosome axis, the site of the programmed DNA double-strand breaks (DSBs) that give rise to genetic exchange between chromosomes. In the absence of PRDM9 DSBs are not properly repaired. Collectively, these actions determine patterns of genetic linkage and the possibilities for chromosome reorganization over successive generations. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Effects of mutagen-sensitive mus mutations on spontaneous mitotic recombination in Aspergillus.

    Science.gov (United States)

    Zhao, P; Kafer, E

    1992-04-01

    Methyl methane-sulfonate (MMS)-sensitive, radiation-induced mutants of Aspergillus were shown to define nine new DNA repair genes, musK to musS. To test mus mutations for effects on mitotic recombination, intergenic crossing over was assayed between color markers and their centromeres, and intragenic recombination between two distinguishable adE alleles. Of eight mutants analyzed, four showed significant deviations from mus+ controls in both tests. Two mutations, musK and musL, reduced recombination, while musN and musQ caused increases. In contrast, musO diploids produced significantly higher levels only for intragenic recombination. Effects were relatively small, but averages between hypo- and hyperrec mus differed 15-20-fold. In musL diploids, most of the rare color segregants resulted from mitotic malsegregation rather than intergenic crossing over. This indicates that the musL gene product is required for recombination and that DNA lesions lead to chromosome loss when it is deficient. In addition, analysis of the genotypes of intragenic (ad+) recombinants showed that the musL mutation specifically reduced single allele conversion but increased complex conversion types (especially recombinants homozygous for ad+). Similar analysis revealed differences between the effects of two hyperrec mutations; musN apparently caused high levels solely of mitotic crossing over, while musQ increased various conversion types but not reciprocal crossovers. These results suggest that mitotic gene conversion and crossing over, while generally associated, are affected differentially in some of the mus strains of Aspergillus nidulans.

  10. Multifaceted regulation of V(D)J recombination

    Science.gov (United States)

    Wang, Guannan

    examining the dynamic fluorescence changes during the RAG-mediated cleavage reactions, and by manipulating the reaction conditions, I was able to characterize some fundamental properties of RAG-DNA interactions before and after cleavage. Firstly, Mg 2+, known as a physiological cofactor at the excision step, also promotes the HP-CEs retention in the RAG complex after cleavage. Secondly, the structure of pre-cleavage complex may affect the subsequent collaborations with NHEJ for end resolution. Thirdly, the non-core region of RAG2 may have differential influences on the PCC retention of HP-CEs and SEs. Furthermore, I also provide the first evidence of RAG1-mediated regulation of RAG2. Our study provides important insights into the multilayered regulatory mechanisms, in modulating recombination events in developing lymphocytes and paves the way for possible development of detection and diagnotic markers for defective recombination events that are often associated immunodeficiency and/or lymphoid malignancy.

  11. Successful development of recombinant DNA-derived pharmaceuticals.

    Science.gov (United States)

    Werner, R G; Pommer, C H

    1990-11-01

    Successful development of recombinant DNA-derived pharmaceuticals, a new class of therapeutic agents, is determined by a variety of factors affecting the selection and positioning of the compound under development. For an efficient development it is of utmost importance that the mechanism of action of the compound selected be understood on a molecular level. The compound's potential therapeutical profile and a strong patent position are key positioning considerations, as well as vital elements in shortening the development phase and protecting innovation. Installation of an interdisciplinary project management team, along with a clear definition of team members' responsibilities, is required to avoid delays and improve communication during development. Selection of the organism to be used in production must take into consideration both the structure of the protein and the quality and safety of the final product. New technologies require a considerable investment in new manufacturing facilities and equipment. Often, the decision for such an investment must be made early and with a high degree of uncertainty. Desired product yield, expected dosage, and estimated market potential are the most important considerations in this decision. Following public disclosure of the plan to develop recombinant DNA-derived products, approval of the production plant and expansion or adaptation to the new process and technology may be delayed. For this reason, they should be considered as a critical step in the overall development phase. Recruitment of qualified staff is a time-consuming and critical element of the production process. Its impact on the product timeline should not be underestimated, especially if such technologies are new to the company. The entire production process must be validated in respect to identity, purity, and safety of the product to guarantee constant product quality, as well as for safety aspects in the environment. Adequate in-process and final product

  12. Treatment of anemia of nephrotic syndrome with recombinant erythropoietin

    NARCIS (Netherlands)

    Gansevoort, RT; Vaziri, ND; deJong, PE

    Nephrotic syndrome has been recently shown to cause erythropoietin (EPO) deficiency in humans and experimental models. However, efficacy and safety of recombinant EPO (rEPO) in the treatment of the associated anemia has not been previously investigated. We report a patient with nephrotic syndrome

  13. Density dependence of dielectronic recombination in selenium

    International Nuclear Information System (INIS)

    Hagelstein, P.L.; Rosen, M.D.; Jacobs, V.L.

    1986-01-01

    Dielectronic recombination has been found to be the dominant recombination process in the determination of the ionization balance of selenium near the Ne-like sequence under conditions relevant to the exploding-foil EUV laser plasmas. The dielectronic recombination process tends to populate excited levels, and these levels in turn are more susceptible to subsequent excitation and ionization than are the ground-state ions. If one defines an effective recombination rate which includes, in addition to the primary recombination, the subsequent excitation and ionization of the additional excited-state population due to the primary recombination, then this effective recombination rate can be density-sensitive at relatively low electron density. We present results for this effective dielectronic recombination rate at an electron density of 3 x 10/sup 20/ electrons/cm 3 for recombination from Ne-like to Na-like selenium and from F-like to Ne-like selenium. In the former case, the effective recombination rate coefficient is found to be 1.8 x 10/sup -11/ cm 3 /sec at 1.0 keV, which is to be compared with the zero-density value of 2.8 x 10/sup -11/ cm 3 /sec. In the latter case (F-like to Ne-like), the effective recombination rate coefficient is found to be 1.3 x 10/sup -11/ cm 3 /sec, which is substantially reduced from the zero-density result of 3.3 x 10/sup -11/ cm 3 /sec. We have examined the effects of dielectronic recombination on the laser gain of the dominant Ne-like 3p-3s transitions and have compared our results with those presented by Whitten et al. [Phys. Rev. A 33, 2171 (1986)

  14. Functional Coding Variation in Recombinant Inbred Mouse Lines Reveals Novel Serotonin Transporter-Associated Phenotypes

    Energy Technology Data Exchange (ETDEWEB)

    Carneiro, Ana [Vanderbilt University; Airey, David [University of Tennessee Health Science Center, Memphis; Thompson, Brent [Vanderbilt University; Zhu, C [Vanderbilt University; Rinchik, Eugene M [ORNL; Lu, Lu [University of Tennessee Health Science Center, Memphis; Chesler, Elissa J [ORNL; Erikson, Keith [University of North Carolina; Blakely, Randy [Vanderbilt University

    2009-01-01

    The human serotonin (5-hydroxytryptamine, 5-HT) transporter (hSERT, SLC6A4) figures prominently in the etiology or treatment of many prevalent neurobehavioral disorders including anxiety, alcoholism, depression, autism and obsessive-compulsive disorder (OCD). Here we utilize naturally occurring polymorphisms in recombinant inbred (RI) lines to identify novel phenotypes associated with altered SERT function. The widely used mouse strain C57BL/6J, harbors a SERT haplotype defined by two nonsynonymous coding variants (Gly39 and Lys152 (GK)). At these positions, many other mouse lines, including DBA/2J, encode Glu39 and Arg152 (ER haplotype), assignments found also in hSERT. Synaptosomal 5-HT transport studies revealed reduced uptake associated with the GK variant. Heterologous expression studies confirmed a reduced SERT turnover rate for the GK variant. Experimental and in silico approaches using RI lines (C57Bl/6J X DBA/2J=BXD) identifies multiple anatomical, biochemical and behavioral phenotypes specifically impacted by GK/ER variation. Among our findings are multiple traits associated with anxiety and alcohol consumption, as well as of the control of dopamine (DA) signaling. Further bioinformatic analysis of BXD phenotypes, combined with biochemical evaluation of SERT knockout mice, nominates SERT-dependent 5-HT signaling as a major determinant of midbrain iron homeostasis that, in turn, dictates ironregulated DA phenotypes. Our studies provide a novel example of the power of coordinated in vitro, in vivo and in silico approaches using murine RI lines to elucidate and quantify the system-level impact of gene variation.

  15. Social manufacturing

    OpenAIRE

    Hamalainen, Markko; Karjalainen, Jesse

    2017-01-01

    New business models harnessing the power of individuals have already revolutionized service industries and digital content production. In this study, we investigate whether a similar phenomenon is taking place in manufacturing industries. We start by conceptually defining two distinct forms of firm-individual collaboration in manufacturing industries: (1) social cloud manufacturing, in which firms outsource manufacturing to individuals, and (2) social platform manufacturing, in which firms pr...

  16. Practical Aspects of CALS in Design and Manufacturing of Sheet Metal Products

    DEFF Research Database (Denmark)

    Shpitalni, Moshe; Alting, Leo; Bilberg, Arne

    1998-01-01

    The transition from design to process planning and to the various stages of manufacturing is traditionally sequential. In many cases, practical problems associated with manufacturing cannot be resolved if only individual processes are examined. These problems can be overcome, however, by adopting...... with the design and manufacture of sheet metal parts. It is demonstrated that through implementation of the CALS approach, the overall process can be optimised and products can be manufactured significantly more accurately, faster and less expensively.......The transition from design to process planning and to the various stages of manufacturing is traditionally sequential. In many cases, practical problems associated with manufacturing cannot be resolved if only individual processes are examined. These problems can be overcome, however, by adopting...

  17. Spring 2008 Industry Study. Manufacturing Industry

    Science.gov (United States)

    2008-01-01

    Chamber of Commerce puts the number of U.S. manufacturing jobs lost to piracy at 750,000 (U.S. Chamber of Commerce , 2007). Interviews with...economy each year and puts millions at risk from counterfeit medicines and engine parts (U.S. Chamber of Commerce , 2007). There are, however, several...Association of Manufacturers (NAM) and the U.S. Chamber of Commerce advocate global changes to IP protection, calling for the “reform and harmonization

  18. TROUBLESHOOTING IN EXPRESSION AND PURIFICATION OF RECOMBINANT SEVERE ACUTE RESPIRATORY SYNDROME-ASSOCIATED CORONAVIRUS NUCLEOCAPSID PROTEIN IN Escherichia coli BL21

    Directory of Open Access Journals (Sweden)

    Budiman Bela

    2010-11-01

    Full Text Available Considering importance of N protein for study of viral pathogenesis or development of immunodiagnostic assay, wereported effects of several conditions on purity and homogeneity of recombinant SARS-CoV N protein expressed in E.coli BL21. The SARS-CoV N gene was reverse transcribed and amplified by the reverse transcription-polymerase chainreaction (RT-PCR technique. The amplicons were cloned into pGEX-6P1 and followed by subcloning of the targetgene into pQE-80L. After inserting the recombinant plasmid (pQE80-N into E. coli, the recombinant protein (6 x Histag-N protein fusion was expressed by inducing the bacterial cells with 0.1-0.5 mM isopropyl-1-thio-Dgalactopyranoside(IPTG for 1-5 h. The protein recombinant were extracted from the bacterial cells by NTT buffercontaining 0-20 mM imidazol, and followed by Ni-NTA affinity resin purification. The results showed that induction ofE. coli BL21 with 0.2 mM IPTG for 4 h and followed with lysis of bacterial cells in NTT buffer containing 10 mMimidazol were optimal conditions to obtain the pure recombinant SARS-CoV N protein.

  19. Comparison of Human Sodium/Iodide Symporter (hNIS) Gene Expressions between Lentiviral and Adenoviral Vectors in Rat Mesenchymal Stem Cells

    Energy Technology Data Exchange (ETDEWEB)

    Park, So Yeon; Lee, Won Woo; Kim, Hyun Joo; Chung, June Key; Kim, Sang Eun [Seoul National University College of Medicine, Seoul (Korea, Republic of); Kim, Sung Jin; Lee, Heui Ran [Medical Research Center, Seoul National University, Seoul (Korea, Republic of)

    2008-10-15

    Quantitative comparison of transgene expression within stem cells between lentivirus and adenovirusmediated delivery systems has not been reported. Here, we evaluated the human sodium iodide symporter (hNIS) gene expression in rat mesenchymal stem cell (rMSC) transduced by lentivirus or adenovirus, and compared the hNIS expression quantitatively between the two delivery systems. Lentiviral-mediated hNIS expressing rMSC (lenti-hNIS-rMSC) was constructed by cloning hNIS gene into pLenti6/UbC/V5-DEST (Invitrogen) to obtain pLenti-hNIS, transducing rMSC with the pLenti-hNIS, and selecting with blasticidin for 3 weeks. Recombinant adenovirus expressing hNIS gene (Rad-hNIS) was produced by homologous recombination and transduction efficiency of Rad-hNIS into rMSC evaluated by Rad-GFP was 19.1{+-}4.7%, 54.0{+-}6.4%, 85.7{+-}8.7%, and 98.4{+-}1.3% at MOI 1, 5, 20, and 100, respectively. The hNIS expressions in lenti-hNIS-rMSC or adeno-hNIS-rMSC were assessed by immunocytochemistry, western blot, and I-125 uptake. Immunocytochemistry and western blot analyses revealed that hNIS expressions in lenti-hNIS-rMSC were greater than those in adeno-hNIS-rMSC at MOI 20 but lower than at MOI 50. However in vitro I-125 uptake test demonstrated that iodide uptake in lenti-hNIS-rMSC (29,704{+-}6,659 picomole/10{sup 6} cells) was greater than that in adeno-hNIS-rMSC at MOI 100 (6,168{+-}2,134 picomole/10{sup 6} cells). Despite lower amount of expressed protein, hNIS function in rMSC was greater by lentivirus than by adenovirus mediated expression. Stem cell tracking using hNIS as a reporter gene should be conducted in consideration of relative vector efficiency for transgene expression.

  20. Centers for manufacturing technology: Industrial Advisory Committee Review

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-10-01

    An advisory committee, composed of senior managers form industrial- sector companies and major manufacturing trade associations and representatives from appropriate educational institutions, meets semi-annually to review and advise the Oak Ridge Centers for Manufacturing Technology (ORCMT) on its economic security program. Individual papers have been indexed separately for the database.

  1. The extent and importance of intragenic recombination

    Directory of Open Access Journals (Sweden)

    de Silva Eric

    2004-11-01

    Full Text Available Abstract We have studied the recombination rate behaviour of a set of 140 genes which were investigated for their potential importance in inflammatory disease. Each gene was extensively sequenced in 24 individuals of African descent and 23 individuals of European descent, and the recombination process was studied separately in the two population samples. The results obtained from the two populations were highly correlated, suggesting that demographic bias does not affect our population genetic estimation procedure. We found evidence that levels of recombination correlate with levels of nucleotide diversity. High marker density allowed us to study recombination rate variation on a very fine spatial scale. We found that about 40 per cent of genes showed evidence of uniform recombination, while approximately 12 per cent of genes carried distinct signatures of recombination hotspots. On studying the locations of these hotspots, we found that they are not always confined to introns but can also stretch across exons. An investigation of the protein products of these genes suggested that recombination hotspots can sometimes separate exons belonging to different protein domains; however, this occurs much less frequently than might be expected based on evolutionary studies into the origins of recombination. This suggests that evolutionary analysis of the recombination process is greatly aided by considering nucleotide sequences and protein products jointly.

  2. Widespread distribution and a new recombinant species of Brazilian virus associated with cotton blue disease

    Directory of Open Access Journals (Sweden)

    Silvie P

    2008-10-01

    Full Text Available Abstract Background Cotton blue disease (CBD, an important global cotton crop pathology responsible for major economic losses, is prevalent in the major cotton-producing states of Brazil. Typical CBD symptoms include stunting due to internodal shortening, leaf rolling, intense green foliage, and yellowing veins. Atypical CBD symptoms, including reddish and withered leaves, were also observed in Brazilian cotton fields in 2007. Recently, a Polerovirus named Cotton leafroll dwarf virus (CLRDV was shown to be associated with CBD. Results To understand the distribution and genetic diversity of CLRDV in Brazil, we analyzed 23 CBD-symptomatic plants from susceptible cotton varieties originating from five of the six most important cotton-growing states, from 2004–2007. Here, we report on CLRDV diversity in plants with typical or atypical CBD symptoms by comparing viral coat protein, RNA polymerase (RdRp, and intergenic region genomic sequences. Conclusion The virus had a widespread distribution with a low genetic diversity; however, three divergent isolates were associated with atypical CBD symptoms. These divergent isolates had a CLRDV-related coat protein but a distinct RdRp sequence, and probably arose from recombination events. Based on the taxonomic rules for the family Luteoviridae, we propose that these three isolates represent isolates of a new species in the genus Polerovirus.

  3. Widespread distribution and a new recombinant species of Brazilian virus associated with cotton blue disease.

    Science.gov (United States)

    Silva, T F; Corrêa, R L; Castilho, Y; Silvie, P; Bélot, J-L; Vaslin, M F S

    2008-10-20

    Cotton blue disease (CBD), an important global cotton crop pathology responsible for major economic losses, is prevalent in the major cotton-producing states of Brazil. Typical CBD symptoms include stunting due to internodal shortening, leaf rolling, intense green foliage, and yellowing veins. Atypical CBD symptoms, including reddish and withered leaves, were also observed in Brazilian cotton fields in 2007. Recently, a Polerovirus named Cotton leafroll dwarf virus (CLRDV) was shown to be associated with CBD. To understand the distribution and genetic diversity of CLRDV in Brazil, we analyzed 23 CBD-symptomatic plants from susceptible cotton varieties originating from five of the six most important cotton-growing states, from 2004-2007. Here, we report on CLRDV diversity in plants with typical or atypical CBD symptoms by comparing viral coat protein, RNA polymerase (RdRp), and intergenic region genomic sequences. The virus had a widespread distribution with a low genetic diversity; however, three divergent isolates were associated with atypical CBD symptoms. These divergent isolates had a CLRDV-related coat protein but a distinct RdRp sequence, and probably arose from recombination events. Based on the taxonomic rules for the family Luteoviridae, we propose that these three isolates represent isolates of a new species in the genus Polerovirus.

  4. Recombination epoch revisited

    International Nuclear Information System (INIS)

    Krolik, J.H.

    1989-01-01

    Previous studies of cosmological recombination have shown that this process produces as a by-product a highly superthermal population of Ly-alpha photons which retard completion of recombination. Cosmological redshifting was thought to determine the frequency distribution of the photons, while two-photon decay of hydrogen's 2s state was thought to control their numbers. It is shown here that frequency diffusion due to photon scattering dominate the cosmological redshift in the frequency range near line center which fixes the ratio of ground state to excited state population, while incoherent scattering into the far-red damping wing effectively destroys Ly-alpha photons as a rate which is competitive with two-photon decay. The former effect tends to hold back recombination, while the latter tends to accelerate it; the net results depends on cosmological parameters, particularly the combination Omega(b) h/sq rt (2q0), where Omega(b) is the fraction of the critical density provided by baryons. 18 references

  5. Recombination of Globally Circulating Varicella-Zoster Virus

    Science.gov (United States)

    Depledge, Daniel P.; Kundu, Samit; Atkinson, Claire; Brown, Julianne; Haque, Tanzina; Hussaini, Yusuf; MacMahon, Eithne; Molyneaux, Pamela; Papaevangelou, Vassiliki; Sengupta, Nitu; Koay, Evelyn S. C.; Tang, Julian W.; Underhill, Gillian S.; Grahn, Anna; Studahl, Marie; Breuer, Judith; Bergström, Tomas

    2015-01-01

    ABSTRACT Varicella-zoster virus (VZV) is a human herpesvirus, which during primary infection typically causes varicella (chicken pox) and establishes lifelong latency in sensory and autonomic ganglia. Later in life, the virus may reactivate to cause herpes zoster (HZ; also known as shingles). To prevent these diseases, a live-attenuated heterogeneous vaccine preparation, vOka, is used routinely in many countries worldwide. Recent studies of another alphaherpesvirus, infectious laryngotracheitis virus, demonstrate that live-attenuated vaccine strains can recombine in vivo, creating virulent progeny. These findings raised concerns about using attenuated herpesvirus vaccines under conditions that favor recombination. To investigate whether VZV may undergo recombination, which is a prerequisite for VZV vaccination to create such conditions, we here analyzed 115 complete VZV genomes. Our results demonstrate that recombination occurs frequently for VZV. It thus seems that VZV is fully capable of recombination if given the opportunity, which may have important implications for continued VZV vaccination. Although no interclade vaccine-wild-type recombinant strains were found, intraclade recombinants were frequently detected in clade 2, which harbors the vaccine strains, suggesting that the vaccine strains have already been involved in recombination events, either in vivo or in vitro during passages in cell culture. Finally, previous partial and complete genomic studies have described strains that do not cluster phylogenetically to any of the five established clades. The additional VZV strains sequenced here, in combination with those previously published, have enabled us to formally define a novel sixth VZV clade. IMPORTANCE Although genetic recombination has been demonstrated to frequently occur for other human alphaherpesviruses, herpes simplex viruses 1 and 2, only a few ancient and isolated recent recombination events have hitherto been demonstrated for VZV. In the

  6. BIOTECHNOLOGY OF RECOMBINANT HORMONES IN DOPING

    Directory of Open Access Journals (Sweden)

    Biljana Vitošević

    2011-09-01

    Full Text Available Recombinant DNA technology has allowed rapid progress in creating biosynthetic gene products for the treatment of many diseases. In this way it can produce large amounts of hormone, which is intended for the treatment of many pathological conditions. Recombinant hormones that are commonly used are insulin, growth hormone and erythropoietin. Precisely because of the availability of these recombinant hormones, it started their abuse by athletes. Experiments in animal models confirmed the potential effects of some of these hormones in increasing physical abilities, which attracted the attention of athletes who push the limits of their competitive capability by such manipulation. The risks of the use of recombinant hormones in doping include serious consequences for the health of athletes. Methods of detection of endogenous hormones from recombined based on the use of a monoclonal antibodies, capillary zone electrophoresis and protein biomarkers

  7. Precision manufacturing

    CERN Document Server

    Dornfeld, David

    2008-01-01

    Today there is a high demand for high-precision products. The manufacturing processes are now highly sophisticated and derive from a specialized genre called precision engineering. Precision Manufacturing provides an introduction to precision engineering and manufacturing with an emphasis on the design and performance of precision machines and machine tools, metrology, tooling elements, machine structures, sources of error, precision machining processes and precision process planning. As well as discussing the critical role precision machine design for manufacturing has had in technological developments over the last few hundred years. In addition, the influence of sustainable manufacturing requirements in precision processes is introduced. Drawing upon years of practical experience and using numerous examples and illustrative applications, David Dornfeld and Dae-Eun Lee cover precision manufacturing as it applies to: The importance of measurement and metrology in the context of Precision Manufacturing. Th...

  8. Evidence of recombination and positive selection in cetacean papillomaviruses

    International Nuclear Information System (INIS)

    Robles-Sikisaka, Refugio; Rivera, Rebecca; Nollens, Hendrik H.; St Leger, Judy; Durden, Wendy N.; Stolen, Megan; Burchell, Jennifer; Wellehan, James F.X.

    2012-01-01

    Papillomaviruses (PVs) are small DNA viruses that have been associated with increased epithelial proliferation. Over one hundred PV types have been identified in humans; however, only three have been identified in bottlenose dolphins (Tursiops truncatus) to date. Using rolling circle amplification and degenerate PCR, we identified four novel PV genomes of bottlenose dolphins. TtPV4, TtPV5 and TtPV6 were identified in genital lesions while TtPV7 was identified in normal genital mucosa. Bayesian analysis of the full-length L1 genes found that TtPV4 and TtPV7 group within the Upsilonpapillomavirus genus while TtPV5 and TtPV6 group with Omikronpapillomavirus. However, analysis of the E1 gene did not distinguish these genera, implying that these genes may not share a common history, consistent with recombination. Recombination analyses identified several probable events. Signals of positive selection were found mostly in the E1 and E2 genes. Recombination and diversifying selection pressures constitute important driving forces of cetacean PV evolution.

  9. Evidence of recombination and positive selection in cetacean papillomaviruses

    Energy Technology Data Exchange (ETDEWEB)

    Robles-Sikisaka, Refugio, E-mail: refugio.robles1@gmail.com [Hubbs-SeaWorld Research Institute, Center for Marine Veterinary Virology, 2595 Ingraham Street, San Diego, CA 92109 (United States); Rivera, Rebecca, E-mail: RRivera@hswri.org [Hubbs-SeaWorld Research Institute, Center for Marine Veterinary Virology, 2595 Ingraham Street, San Diego, CA 92109 (United States); Nollens, Hendrik H., E-mail: Hendrik.Nollens@SeaWorld.com [Hubbs-SeaWorld Research Institute, Center for Marine Veterinary Virology, 2595 Ingraham Street, San Diego, CA 92109 (United States); College of Veterinary Medicine, University of Florida, PO Box 110885, Gainesville, FL 32611 (United States); SeaWorld San Diego, 500 SeaWorld Drive, San Diego, CA 92109 (United States); St Leger, Judy, E-mail: Judy.St.Leger@SeaWorld.com [SeaWorld San Diego, 500 SeaWorld Drive, San Diego, CA 92109 (United States); Durden, Wendy N., E-mail: WNoke@hswri.org [Hubbs-SeaWorld Research Institute, 3830 South Highway A1A 4-181, Melbourne Beach, FL 32951 (United States); Stolen, Megan, E-mail: MStolen@hswri.org [Hubbs-SeaWorld Research Institute, 3830 South Highway A1A 4-181, Melbourne Beach, FL 32951 (United States); Burchell, Jennifer, E-mail: JBurchell@hswri.org [Hubbs-SeaWorld Research Institute, Center for Marine Veterinary Virology, 2595 Ingraham Street, San Diego, CA 92109 (United States); Wellehan, James F.X., E-mail: WellehanJ@ufl.edu [College of Veterinary Medicine, University of Florida, PO Box 110885, Gainesville, FL 32611 (United States)

    2012-06-05

    Papillomaviruses (PVs) are small DNA viruses that have been associated with increased epithelial proliferation. Over one hundred PV types have been identified in humans; however, only three have been identified in bottlenose dolphins (Tursiops truncatus) to date. Using rolling circle amplification and degenerate PCR, we identified four novel PV genomes of bottlenose dolphins. TtPV4, TtPV5 and TtPV6 were identified in genital lesions while TtPV7 was identified in normal genital mucosa. Bayesian analysis of the full-length L1 genes found that TtPV4 and TtPV7 group within the Upsilonpapillomavirus genus while TtPV5 and TtPV6 group with Omikronpapillomavirus. However, analysis of the E1 gene did not distinguish these genera, implying that these genes may not share a common history, consistent with recombination. Recombination analyses identified several probable events. Signals of positive selection were found mostly in the E1 and E2 genes. Recombination and diversifying selection pressures constitute important driving forces of cetacean PV evolution.

  10. Homologous genetic recombination in the yellow head complex of nidoviruses infecting Penaeus monodon shrimp.

    Science.gov (United States)

    Wijegoonawardane, Priyanjalie K M; Sittidilokratna, Nusra; Petchampai, Natthida; Cowley, Jeff A; Gudkovs, Nicholas; Walker, Peter J

    2009-07-20

    Yellow head virus (YHV) is a highly virulent pathogen of Penaeus monodon shrimp. It is one of six known genotypes in the yellow head complex of nidoviruses which also includes mildly pathogenic gill-associated virus (GAV, genotype 2) and four other genotypes (genotypes 3-6) that have been detected only in healthy shrimp. In this study, comparative phylogenetic analyses conducted on replicase- (ORF1b) and glycoprotein- (ORF3) gene amplicons identified 10 putative natural recombinants amongst 28 viruses representing all six genotypes from across the Indo-Pacific region. The approximately 4.6 kb genomic region spanning the two amplicons was sequenced for three putative recombinant viruses from Vietnam (genotype 3/5), the Philippines (genotype 5/2) and Indonesia (genotype 3/2). SimPlot analysis using these and representative parental virus sequences confirmed that each was a recombinant genotype and identified a recombination hotspot in a region just upstream of the ORF1b C-terminus. Maximum-likelihood breakpoint analysis predicted identical crossover positions in the Vietnamese and Indonesian recombinants, and a crossover position 12 nt upstream in the Philippine recombinant. Homologous genetic recombination in the same genome region was also demonstrated in recombinants generated experimentally in shrimp co-infected with YHV and GAV. The high frequency with which natural recombinants were identified indicates that genetic exchange amongst genotypes is occurring commonly in Asia and playing a significant role in expanding the genetic diversity in the yellow head complex. This is the first evidence of genetic recombination in viruses infecting crustaceans and has significant implications for the pathogenesis of infection and diagnosis of these newly emerging invertebrate pathogens.

  11. Delayed recombination and cosmic parameters

    International Nuclear Information System (INIS)

    Galli, Silvia; Melchiorri, Alessandro; Bean, Rachel; Silk, Joseph

    2008-01-01

    Current cosmological constraints from cosmic microwave background anisotropies are typically derived assuming a standard recombination scheme, however additional resonance and ionizing radiation sources can delay recombination, altering the cosmic ionization history and the cosmological inferences drawn from the cosmic microwave background data. We show that for recent observations of the cosmic microwave background anisotropy, from the Wilkinson microwave anisotropy probe satellite mission (WMAP) 5-year survey and from the arcminute cosmology bolometer array receiver experiment, additional resonance radiation is nearly degenerate with variations in the spectral index, n s , and has a marked effect on uncertainties in constraints on the Hubble constant, age of the universe, curvature and the upper bound on the neutrino mass. When a modified recombination scheme is considered, the redshift of recombination is constrained to z * =1078±11, with uncertainties in the measurement weaker by 1 order of magnitude than those obtained under the assumption of standard recombination while constraints on the shift parameter are shifted by 1σ to R=1.734±0.028. From the WMAP5 data we obtain the following constraints on the resonance and ionization sources parameters: ε α i <0.058 at 95% c.l.. Although delayed recombination limits the precision of parameter estimation from the WMAP satellite, we demonstrate that this should not be the case for future, smaller angular scales measurements, such as those by the Planck satellite mission.

  12. 21ST Century Manufacturing Enterprise Strategy Report

    Science.gov (United States)

    1992-01-01

    Association for Manufacturing Excellence, Wheeling, Illinois, 28 p. 142. Hamel, G.; Prahalad , C.K. (1989): " Strategic Intent ". Harvard Business...counsel of over 150 people from 77 companies and I1I professional organizations in developing their strategic enterprise plan. The group strongly...Understand the strategic implications of manufacturing technology for the corporation (4) Have a vision of the future competitiveness needs of industry in

  13. Scaled-up manufacturing of recombinant antibodies produced by plant cells in a 200-L orbitally-shaken disposable bioreactor

    NARCIS (Netherlands)

    Raven, N.; Rasche, F.; Kuehn, C.; Anderlei, T.; Klöckner, W.; Schuster, F.; Henquet, M.G.L.; Bosch, H.J.; Büchs, J.; Fischer, R.; Schillberg, S.

    2015-01-01

    Tobacco BY-2 cells have emerged as a promising platform for the manufacture of biopharmaceutical proteins, offering efficient protein secretion, favourable growth characteristics and cultivation in containment under a controlled environment. The cultivation of BY-2 cells in disposable bioreactors is

  14. Electron - ion recombination processes - an overview

    International Nuclear Information System (INIS)

    Hahn, Yukap

    1997-01-01

    Extensive theoretical and experimental studies have been carried out for the past 20 years on electron - ion recombination processes, as they are applied to the analysis of astrophysical and laboratory plasmas. We review the basic understanding gained through these efforts, with emphasis on some of the more recent progress made in recombination theory as the recombining system is affected by time-dependent electric fields and plasma particles at low temperature. Together with collisional ionization and excitation processes, recombination is important in determining ionization balance and excited-state population in non-equilibrium plasmas. The radiation emitted by plasmas is usually the principal medium with which to study the plasma condition, as it is produced mainly during the recombination and decay of excited states of ions inside the plasma. This is especially true when the plasma under study is not readily accessible by direct probes, as in astrophysical plasmas. Moreover, external probes may sometimes cause undesirable disturbances of the plasma. Electron-ion recombination proceeds in several different modes. The direct modes include three-body recombination (TBR) and one-step radiative recombination (RR), all to the ground- and singly-excited states of the target ions. By contrast, the indirect resonant mode is a two-step dielectronic recombination (DR), which proceeds first with the formation of doubly-excited states by radiationless excitation/capture. The resonant states thus formed may relax by autoionization and/or radiative cascades. For more exotic modes of recombination, we consider off-shell dielectronic recombination (radiative DR = RDR), in which an electron capture is accompanied by simultaneous radiative emission and excitation of the target ion. Some discussion on attachment of electrons to neutral atoms, resulting in the formation of negative ions, is also given. When resonance states involve one or more electrons in high Rydberg states

  15. Controlled Release from Recombinant Polymers

    Science.gov (United States)

    Price, Robert; Poursaid, Azadeh; Ghandehari, Hamidreza

    2014-01-01

    Recombinant polymers provide a high degree of molecular definition for correlating structure with function in controlled release. The wide array of amino acids available as building blocks for these materials lend many advantages including biorecognition, biodegradability, potential biocompatibility, and control over mechanical properties among other attributes. Genetic engineering and DNA manipulation techniques enable the optimization of structure for precise control over spatial and temporal release. Unlike the majority of chemical synthetic strategies used, recombinant DNA technology has allowed for the production of monodisperse polymers with specifically defined sequences. Several classes of recombinant polymers have been used for controlled drug delivery. These include, but are not limited to, elastin-like, silk-like, and silk-elastinlike proteins, as well as emerging cationic polymers for gene delivery. In this article, progress and prospects of recombinant polymers used in controlled release will be reviewed. PMID:24956486

  16. Live recombinant BHV/BRSV vaccine

    NARCIS (Netherlands)

    Keil, G.M.; Rijsewijk, F.A.M.

    1998-01-01

    The present invention refers to synthetic Bovine Respiratory Syncytium virus genes. Also the invention relates to live attenuated Bovine Herpesvirus recombinants carrying such synthetic genes. Furthermore, the invention relates to vaccines based on these live attenuated recombinants, for the

  17. Manufacturing of nuclear power components in CDM

    International Nuclear Information System (INIS)

    Krishnan, J.; Jawale, S.B.

    2002-01-01

    Full text: In the nuclear research programme in India, Dr. H.J. Bhabha, the architecture of the Indian Nuclear programme felt a need for proto-type development and precision manufacturing facility to fulfill the requirements of mechanical components in establishing the manufacturing capability for the successful and self sustained nuclear programme. Centre for Design and Manufacture (CDM) hitherto known as CWS was established in 1964 to cater to the specific requirements of DAE and other associated units like ISRO, DRDO. Since then CDM has made multiple technological achievements and changes towards high quality products. The acquisition of up-to-date machines during High-Tech facility under VIII Plan project and Advance Precision Fabrication facility under IX Plan project has changed the capability of CDM towards CAD, CAM, CAE and CNC machining centres. Considering the rapid growth in the design and manufacturing, it was renamed as Centre for Design and Manufacture in March 2002, with the mission of quality output through group effort and team work

  18. First-principles study of Frenkel pair recombination in tungsten

    International Nuclear Information System (INIS)

    Qin, Shi-Yao; Jin, Shuo; Li, Yu-Hao; Zhou, Hong-Bo; Zhang, Ying; Lu, Guang-Hong

    2017-01-01

    The recombination of one Frenkel pair in tungsten has been investigated through first-principles simulation. Two different recombination types have been identified: instantaneous and thermally activated. The small recombination barriers for thermally activated recombination cases indicate that recombination can occur easily with a slightly increased temperature. For both of the two recombination types, recombination occurs through the self-interstitial atom moving towards the vacancy. The recombination process can be direct or through replacement sequences, depending on the vertical distance between the vacancy and the 〈1 1 1〉 line of self-interstitial atom pair.

  19. Dielectronic recombination rate coefficients of initially rubidium-like tungsten

    International Nuclear Information System (INIS)

    Wu, Z.; Zhang, Y.; Fu, Y.; Dong, C.; Surzhykov, A.; Fritzsche, S.

    2015-01-01

    Dielectric recombination (DR) is a dominant electron recombination process in plasmas. Tungsten ions are expected to be prominent impurities in fusion plasmas so the knowledge of DR rate coefficient of tungsten ions is important to model fusion plasmas. Ab initio calculations of DR rate coefficients of initially rubidium-like W 37+ ions have been performed for the electron temperatures from 1 eV to 5*10 4 eV, by using the Flexible Atomic Code based on the relativistic configuration-interaction method. Special attention has been paid to the partial contributions to total DR rate coefficients as associated with the excitation of individual subshells. A detailed comparison of the calculations shows that the excitation from 4p subshell dominates total DR rate coefficients followed by the excitations from 4s and 4d subshells, while the contribution of excitations from 3l (l = s, p, d) subshells becomes important only at high temperatures. Besides, it is found that the electron excitations associated with Δn = 0, 1 dominate at low-temperature plasmas, however, the excitations associated with Δn ≥ 2 become non-negligible at high-temperature ones

  20. Recombination properties of dislocations in GaN

    Science.gov (United States)

    Yakimov, Eugene B.; Polyakov, Alexander Y.; Lee, In-Hwan; Pearton, Stephen J.

    2018-04-01

    The recombination activity of threading dislocations in n-GaN with different dislocation densities and different doping levels was studied using electron beam induced current (EBIC). The recombination velocity on a dislocation, also known as the dislocation recombination strength, was calculated. The results suggest that dislocations in n-GaN giving contrast in EBIC are charged and surrounded by a space charge region, as evidenced by the observed dependence of dislocation recombination strength on dopant concentration. For moderate (below ˜108 cm-2) dislocation densities, these defects do not primarily determine the average diffusion length of nonequilibrium charge carriers, although locally, dislocations are efficient recombination sites. In general, it is observed that the effect of the growth method [standard metalorganic chemical vapor deposition (MOCVD), epitaxial lateral overgrowth versions of MOCVD, and hydride vapor phase epitaxy] on the recombination activity of dislocations is not very pronounced, although the average diffusion lengths can widely differ for various samples. The glide of basal plane dislocations at room temperature promoted by low energy electron irradiation does not significantly change the recombination properties of dislocations.

  1. Isolation of recombinant antibodies directed against surface proteins of Clostridium difficile.

    Science.gov (United States)

    Shirvan, Ali Nazari; Aitken, Robert

    2016-01-01

    Clostridium difficile has emerged as an increasingly important nosocomial pathogen and the prime causative agent of antibiotic-associated diarrhoea and pseudomembranous colitis in humans. In addition to toxins A and B, immunological studies using antisera from patients infected with C. difficile have shown that a number of other bacterial factors contribute to the pathogenesis, including surface proteins, which are responsible for adhesion, motility and other interactions with the human host. In this study, various clostridial targets, including FliC, FliD and cell wall protein 66, were expressed and purified. Phage antibody display yielded a large panel of specific recombinant antibodies, which were expressed, purified and characterised. Reactions of the recombinant antibodies with their targets were detected by enzyme-linked immunosorbent assay; and Western blotting suggested that linear rather than conformational epitopes were recognised. Binding of the recombinant antibodies to surface-layer proteins and their components showed strain specificity, with good recognition of proteins from C. difficile 630. However, no reaction was observed for strain R20291-a representative of the 027 ribotype. Binding of the recombinant antibodies to C. difficile M120 extracts indicated that a component of a surface-layer protein of this strain might possess immunoglobulin-binding activities. The recombinant antibodies against FliC and FliD proteins were able to inhibit bacterial motility. Copyright © 2016. Published by Elsevier Editora Ltda.

  2. Manufacturing network evolution

    DEFF Research Database (Denmark)

    Yang, Cheng; Farooq, Sami; Johansen, John

    2011-01-01

    Purpose – This paper examines the effect of changes at the manufacturing plant level on other plants in the manufacturing network and also investigates the role of manufacturing plants on the evolution of a manufacturing network. Design/methodology/approach –The research questions are developed...... different manufacturing plants in the network and their impact on network transformation. Findings – The paper highlights the dominant role of manufacturing plants in the continuously changing shape of a manufacturing network. The paper demonstrates that a product or process change at one manufacturing...... by identifying the gaps in the reviewed literature. The paper is based on three case studies undertaken in Danish manufacturing companies to explore in detail their manufacturing plants and networks. The cases provide a sound basis for developing the research questions and explaining the interaction between...

  3. Oligonucleotide recombination enabled site-specific mutagenesis in bacteria

    Science.gov (United States)

    Recombineering refers to a strategy for engineering DNA sequences using a specialized mode of homologous recombination. This technology can be used for rapidly constructing precise changes in bacterial genome sequences in vivo. Oligo recombination is one type of recombineering that uses ssDNA olig...

  4. Recombination: the good, the bad and the variable.

    Science.gov (United States)

    Stapley, Jessica; Feulner, Philine G D; Johnston, Susan E; Santure, Anna W; Smadja, Carole M

    2017-12-19

    Recombination, the process by which DNA strands are broken and repaired, producing new combinations of alleles, occurs in nearly all multicellular organisms and has important implications for many evolutionary processes. The effects of recombination can be good , as it can facilitate adaptation, but also bad when it breaks apart beneficial combinations of alleles, and recombination is highly variable between taxa, species, individuals and across the genome. Understanding how and why recombination rate varies is a major challenge in biology. Most theoretical and empirical work has been devoted to understanding the role of recombination in the evolution of sex-comparing between sexual and asexual species or populations. How recombination rate evolves and what impact this has on evolutionary processes within sexually reproducing organisms has received much less attention. This Theme Issue focusses on how and why recombination rate varies in sexual species, and aims to coalesce knowledge of the molecular mechanisms governing recombination with our understanding of the evolutionary processes driving variation in recombination within and between species. By integrating these fields, we can identify important knowledge gaps and areas for future research, and pave the way for a more comprehensive understanding of how and why recombination rate varies. © 2017 The Authors.

  5. Bioprinting: an assessment based on manufacturing readiness levels.

    Science.gov (United States)

    Wu, Changsheng; Wang, Ben; Zhang, Chuck; Wysk, Richard A; Chen, Yi-Wen

    2017-05-01

    Over the last decade, bioprinting has emerged as a promising technology in the fields of tissue engineering and regenerative medicine. With recent advances in additive manufacturing, bioprinting is poised to provide patient-specific therapies and new approaches for tissue and organ studies, drug discoveries and even food manufacturing. Manufacturing Readiness Level (MRL) is a method that has been applied to assess manufacturing maturity and to identify risks and gaps in technology-manufacturing transitions. Technology Readiness Level (TRL) is used to evaluate the maturity of a technology. This paper reviews recent advances in bioprinting following the MRL scheme and addresses corresponding MRL levels of engineering challenges and gaps associated with the translation of bioprinting from lab-bench experiments to ultimate full-scale manufacturing of tissues and organs. According to our step-by-step TRL and MRL assessment, after years of rigorous investigation by the biotechnology community, bioprinting is on the cusp of entering the translational phase where laboratory research practices can be scaled up into manufacturing products specifically designed for individual patients.

  6. Limits for Recombination in a Low Energy Loss Organic Heterojunction

    KAUST Repository

    Menke, S. Matthew; Sadhanala, Aditya; Nikolka, Mark; Ran, Niva A.; Ravva, Mahesh Kumar; Abdel-Azeim, Safwat; Stern, Hannah L.; Wang, Ming; Sirringhaus, Henning; Nguyen, Thuc-Quyen; Bredas, Jean-Luc; Bazan, Guillermo C.; Friend, Richard H.

    2016-01-01

    Donor-acceptor organic solar cells often show high quantum yields for charge collection, but relatively low open-circuit voltages (VOC) limit power conversion efficiencies to around 12%. We report here the behavior of a system, PIPCP:PC61BM, that exhibits very low electronic disorder (Urbach energy less than 27 meV), very high carrier mobilities in the blend (field-effect mobility for holes >10-2 cm2 V-1 s-1), and a very low driving energy for initial charge separation (50 meV). These characteristics should give excellent performance, and indeed, the VOC is high relative to the donor energy gap. However, we find the overall performance is limited by recombination, with formation of lower-lying triplet excitons on the donor accounting for 90% of the recombination. We find this is a bimolecular process that happens on time scales as short as 100 ps. Thus, although the absence of disorder and the associated high carrier mobility speeds up charge diffusion and extraction at the electrodes, which we measure as early as 1 ns, this also speeds up the recombination channel, giving overall a modest quantum yield of around 60%. We discuss strategies to remove the triplet exciton recombination channel.

  7. Limits for Recombination in a Low Energy Loss Organic Heterojunction

    KAUST Repository

    Menke, S. Matthew

    2016-11-03

    Donor-acceptor organic solar cells often show high quantum yields for charge collection, but relatively low open-circuit voltages (VOC) limit power conversion efficiencies to around 12%. We report here the behavior of a system, PIPCP:PC61BM, that exhibits very low electronic disorder (Urbach energy less than 27 meV), very high carrier mobilities in the blend (field-effect mobility for holes >10-2 cm2 V-1 s-1), and a very low driving energy for initial charge separation (50 meV). These characteristics should give excellent performance, and indeed, the VOC is high relative to the donor energy gap. However, we find the overall performance is limited by recombination, with formation of lower-lying triplet excitons on the donor accounting for 90% of the recombination. We find this is a bimolecular process that happens on time scales as short as 100 ps. Thus, although the absence of disorder and the associated high carrier mobility speeds up charge diffusion and extraction at the electrodes, which we measure as early as 1 ns, this also speeds up the recombination channel, giving overall a modest quantum yield of around 60%. We discuss strategies to remove the triplet exciton recombination channel.

  8. BAG3 (Bcl-2-Associated Athanogene-3) Coding Variant in Mice Determines Susceptibility to Ischemic Limb Muscle Myopathy by Directing Autophagy.

    Science.gov (United States)

    McClung, Joseph M; McCord, Timothy J; Ryan, Terence E; Schmidt, Cameron A; Green, Tom D; Southerland, Kevin W; Reinardy, Jessica L; Mueller, Sarah B; Venkatraman, Talaignair N; Lascola, Christopher D; Keum, Sehoon; Marchuk, Douglas A; Spangenburg, Espen E; Dokun, Ayotunde; Annex, Brian H; Kontos, Christopher D

    2017-07-18

    Critical limb ischemia is a manifestation of peripheral artery disease that carries significant mortality and morbidity risk in humans, although its genetic determinants remain largely unknown. We previously discovered 2 overlapping quantitative trait loci in mice, Lsq-1 and Civq-1 , that affected limb muscle survival and stroke volume after femoral artery or middle cerebral artery ligation, respectively. Here, we report that a Bag3 variant (Ile81Met) segregates with tissue protection from hind-limb ischemia. We treated mice with either adeno-associated viruses encoding a control (green fluorescent protein) or 2 BAG3 (Bcl-2-associated athanogene-3) variants, namely Met81 or Ile81, and subjected the mice to hind-limb ischemia. We found that the BAG3 Ile81Met variant in the C57BL/6 (BL6) mouse background segregates with protection from tissue necrosis in a shorter congenic fragment of Lsq-1 (C.B6- Lsq1-3 ). BALB/c mice treated with adeno-associated virus encoding the BL6 BAG3 variant (Ile81; n=25) displayed reduced limb-tissue necrosis and increased limb tissue perfusion compared with Met81- (n=25) or green fluorescent protein- (n=29) expressing animals. BAG3 Ile81 , but not BAG3 Met81 , improved ischemic muscle myopathy and muscle precursor cell differentiation and improved muscle regeneration in a separate, toxin-induced model of injury. Systemic injection of adeno-associated virus-BAG3 Ile81 (n=9), but not BAG3 Met81 (n=10) or green fluorescent protein (n=5), improved ischemic limb blood flow and limb muscle histology and restored muscle function (force production). Compared with BAG3 Met81 , BAG3 Ile81 displayed improved binding to the small heat shock protein (HspB8) in ischemic skeletal muscle cells and enhanced ischemic muscle autophagic flux. Taken together, our data demonstrate that genetic variation in BAG3 plays an important role in the prevention of ischemic tissue necrosis. These results highlight a pathway that preserves tissue survival and muscle

  9. Lean Manufacturing Auto Cluster at Chennai

    Science.gov (United States)

    Bhaskaran, E.

    2012-10-01

    Due the presence of lot of automotive Industry, Chennai is known as Detroit of India, that producing over 40 % of the Indian vehicle and components. Lean manufacturing concepts have been widely recognized as an important tool in improving the competitiveness of industries. This is a continuous process involving everyone, starting from management to the shop floor. Automotive Component Industries (ACIs) in Ambattur Industrial Estate, Chennai has formed special purpose vehicle (SPV) society namely Ambattur Industrial Estate Manufacturers Association (AIEMA) Technology Centre (ATC) lean manufacturing cluster (ATC-LMC) during July 2010 under lean manufacturing competitiveness scheme, that comes under National Manufacturing Competitiveness Programme of Government of India. The Tripartite Agreement is taken place between National Productivity Council, consultants and cluster (ATC-LMC). The objective is to conduct diagnostic study, study on training and application of various lean manufacturing techniques and auditing in ten ACIs. The methodology adopted is collection of primary data/details from ten ACIs. In the first phase, diagnostic study is done and the areas for improvement in each of the cluster member companies are identified. In the second phase, training programs and implementation is done on 5S and other areas. In the third phase auditing is done and found that the lean manufacturing techniques implementation in ATC-LMC is sustainable and successful in every cluster companies, which will not only enhance competitiveness but also decrease cost, time and increase productivity. The technical efficiency of LMC companies also increases significantly.

  10. Genetic recombination of the hepatitis C virus: clinical implications.

    Science.gov (United States)

    Morel, V; Fournier, C; François, C; Brochot, E; Helle, F; Duverlie, G; Castelain, S

    2011-02-01

    Genetic recombination is a well-known feature of RNA viruses that plays a significant role in their evolution. Although recombination is well documented for Flaviviridae family viruses, the first natural recombinant strain of hepatitis C virus (HCV) was identified as recently as 2002. Since then, a few other natural inter-genotypic, intra-genotypic and intra-subtype recombinant HCV strains have been described. However, the frequency of recombination may have been underestimated because not all known HCV recombinants are screened for in routine practice. Furthermore, the choice of treatment regimen and its predictive outcome remain problematic as the therapeutic strategy for HCV infection is genotype dependent. HCV recombination also raises many questions concerning its mechanisms and effects on the epidemiological and physiopathological features of the virus. This review provides an update on recombinant HCV strains, the process that gives rise to recombinants and clinical implications of recombination. © 2010 Blackwell Publishing Ltd.

  11. Cell biology of mitotic recombination

    DEFF Research Database (Denmark)

    Lisby, Michael; Rothstein, Rodney

    2015-01-01

    Homologous recombination provides high-fidelity DNA repair throughout all domains of life. Live cell fluorescence microscopy offers the opportunity to image individual recombination events in real time providing insight into the in vivo biochemistry of the involved proteins and DNA molecules as w...

  12. Intersubspecific recombination in Xylella fastidiosa Strains native to the United States: infection of novel hosts associated with an unsuccessful invasion.

    Science.gov (United States)

    Nunney, Leonard; Hopkins, Donald L; Morano, Lisa D; Russell, Stephanie E; Stouthamer, Richard

    2014-02-01

    The bacterial pathogen Xylella fastidiosa infects xylem and causes disease in many plant species in the Americas. Different subspecies of this bacterium and different genotypes within subspecies infect different plant hosts, but the genetics of host adaptation are unknown. Here we examined the hypothesis that the introduction of novel genetic variation via intersubspecific homologous recombination (IHR) facilitates host shifts. We investigated IHR in 33 X. fastidiosa subsp. multiplex isolates previously identified as recombinant based on 8 loci (7 multilocus sequence typing [MLST] loci plus 1 locus). We found significant evidence of introgression from X. fastidiosa subsp. fastidiosa in 4 of the loci and, using published data, evidence of IHR in 6 of 9 additional loci. Our data showed that IHR regions in 2 of the 4 loci were inconsistent (12 mismatches) with X. fastidiosa subsp. fastidiosa alleles found in the United States but consistent with alleles from Central America. The other two loci were consistent with alleles from both regions. We propose that the recombinant forms all originated via genomewide recombination of one X. fastidiosa subsp. multiplex ancestor with one X. fastidiosa subsp. fastidiosa donor from Central America that was introduced into the United States but subsequently disappeared. Using all of the available data, 5 plant hosts of the recombinant types were identified, 3 of which also supported non-IHR X. fastidiosa subsp. multiplex, but 2 were unique to recombinant types from blueberry (7 isolates from Georgia, 3 from Florida); and blackberry (1 each from Florida and North Carolina), strongly supporting the hypothesis that IHR facilitated a host shift to blueberry and possibly blackberry.

  13. Experience with quality assurance in fuel design and manufacturing

    International Nuclear Information System (INIS)

    Holzer, R.; Nilson, F.

    1984-01-01

    The Quality Assurance/Quality Control activities for nuclear fuel design and manufacturing described here are coordinated under a common ''Quality Assurance System For Fuel Assemblies and Associated Core Components'' which regulates the QA-functions of the development, design and manufacturing of fuel assemblies independent of the organizational assignment of the contributing technical groups. Some essential characteristics of the system are shown, using examples from design control, procurement, manufacturing and qualification of special processes. The experience is very good, it allowed a flexible and well controlled implementation of design and manufacturing innovations and contributed to the overall good fuel behavior. (orig.)

  14. Test tube systems with cutting/recombination operations

    Energy Technology Data Exchange (ETDEWEB)

    Freund, R. [Technische Universitaet Wien (Austria); Csuhaj-Varju, E. [Computer and Automation Institute, Budapest (Hungary); Wachtler, F. [Universitaet Wien (Austria)

    1996-12-31

    We introduce test tube systems based on operations that are closely related to the splicing operations, i.e. we consider the operations of cutting a string at a specific site into two pieces with marking them at the cut ends and of recombining two strings with specifically marked endings. Whereas in the splicing of two strings these strings are cut at specific sites and the cut pieces are recombined immediately in a crosswise way, in CR(cutting/recombination)-schemes cutting can happen independently from recombining the cut pieces. Test tube systems based on these operations of cutting and recombination turn out to have maximal generative power even if only very restricted types of input filters for the test tubes are used for the redistribution of the contents of the test tubes after a period of cuttings and recombinations in the test tubes. 10 refs.

  15. Atomic excitation and recombination in external fields

    International Nuclear Information System (INIS)

    Nayfeh, M.H.; Clark, C.W.

    1985-01-01

    This volume offers a timely look at Rydberg states of atoms in external fields and dielectronic recombination. Each topic provides authoritative coverage, presents a fresh account of a flourishing field of current atomic physics and introduces new opportunities for discovery and development. Topics considered include electron-atom scattering in external fields; observations of regular and irregular motion as exemplified by the quadratic zeeman effect and other systems; Rydberg atoms in external fields and the Coulomb geometry; crossed-field effects in the absorption spectrum of lithium in a magnetic field; precise studies of static electric field ionization; widths and shapes of stark resonances in sodium above the saddle point; studies of electric field effects and barium autoionizing resonances; autoionization and dielectronic recombination in plasma electric microfields; dielectronic recombination measurements on multicharged ions; merged beam studies of dielectronic recombination; Rydberg atoms and dielectronic recombination in astrophysics; and observations on dielectronic recombination

  16. Exploiting translational coupling for the selection of cells producing toxic recombinant proteins from expression vectors.

    Science.gov (United States)

    Tagliavia, Marcello; Cuttitta, Angela

    2016-01-01

    High rates of plasmid instability are associated with the use of some expression vectors in Escherichia coli, resulting in the loss of recombinant protein expression. This is due to sequence alterations in vector promoter elements caused by the background expression of the cloned gene, which leads to the selection of fast-growing, plasmid-containing cells that do not express the target protein. This phenomenon, which is worsened when expressing toxic proteins, results in preparations containing very little or no recombinant protein, or even in clone loss; however, no methods to prevent loss of recombinant protein expression are currently available. We have exploited the phenomenon of translational coupling, a mechanism of prokaryotic gene expression regulation, in order to select cells containing plasmids still able to express recombinant proteins. Here we designed an expression vector in which the cloned gene and selection marker are co-expressed. Our approach allowed for the selection of the recombinant protein-expressing cells and proved effective even for clones encoding toxic proteins.

  17. Laser 3D micro-manufacturing

    International Nuclear Information System (INIS)

    Piqué, Alberto; Auyeung, Raymond C Y; Kim, Heungsoo; Charipar, Nicholas A; Mathews, Scott A

    2016-01-01

    Laser-based materials processing techniques are gaining widespread use in micro-manufacturing applications. The use of laser microfabrication techniques enables the processing of micro- and nanostructures from a wide range of materials and geometries without the need for masking and etching steps commonly associated with photolithography. This review aims to describe the broad applications space covered by laser-based micro- and nanoprocessing techniques and the benefits offered by the use of lasers in micro-manufacturing processes. Given their non-lithographic nature, these processes are also referred to as laser direct-write and constitute some of the earliest demonstrations of 3D printing or additive manufacturing at the microscale. As this review will show, the use of lasers enables precise control of the various types of processing steps—from subtractive to additive—over a wide range of scales with an extensive materials palette. Overall, laser-based direct-write techniques offer multiple modes of operation including the removal (via ablative processes) and addition (via photopolymerization or printing) of most classes of materials using the same equipment in many cases. The versatility provided by these multi-function, multi-material and multi-scale laser micro-manufacturing processes cannot be matched by photolithography nor with other direct-write microfabrication techniques and offer unique opportunities for current and future 3D micro-manufacturing applications. (topical review)

  18. Genetic evidence for inducibility of recombination competence in yeast

    International Nuclear Information System (INIS)

    Fabre, F.; Roman, H.

    1977-01-01

    Recombination between unirradiated chromosomes was induced by UV or x-ray irradiation of haploids followed by a mating with heteroallelic diploids of Saccharomyces cerevisiae. The selected event of intragenic recombination did not involve the participation of the irradiated chromosome and apparently was not caused by lesions introduced into the unirradiated chromosomes by some indirect process. The results favor the idea that recombination is repressed in the majority of vegetative cells and that one effect of radiation is the release of some factor(s) necessary for recombination. Consequently, the proportion of competent cells (i.e., cells able to recombine) in the population increases. This competent state seems necessary not only for the recombinational repair of radiation-induced lesions but also, since recombinants are produced in the absence of such lesions, for spontaneous recombination. Photoreactivation of the UV-irradiated haploids led to a decrease in the production of recombinants. Hence, lesions in the DNA appear to be responsible for the induction of the recombinational ability

  19. Implementing the South African additive manufacturing technology roadmap - the role of an additive manufacturing centre of competence

    Directory of Open Access Journals (Sweden)

    Du Preez, Willie Bouwer

    2015-08-01

    Full Text Available The Rapid Product Development Association of South Africa (RAPDASA expressed the need for a national Additive Manufacturing Roadmap. Consequentially, the South African Department of Science and Technology commissioned the development of a South African Additive Manufacturing Technology Roadmap. This was intended to guide role-players in identifying business opportunities, addressing technology gaps, focusing development programmes, and informing investment decisions that would enable local companies and industry sectors to become global leaders in selected areas of additive manufacturing. The challenge remains now for South Africa to decide on an implementation approach that will maximize the impact in the shortest possible time. This article introduces the concept of a national Additive Manufacturing Centre of Competence (AMCoC as a primary implementation vehicle for the roadmap. The support of the current leading players in additive manufacturing in South Africa for such a centre of competence is shared and their key roles are indicated. A summary of the investments that the leading players have already made in the focus areas of the AMCoC over the past two decades is given as confirmation of their commitment towards the advancement of the additive manufacturing technology. An exposition is given of how the AMCoC could indeed become the primary initiative for achieving the agreed national goals on additive manufacturing. The conclusion is that investment by public and private institutions in an AMCoC would be the next step towards ensuring South Africa’s continued progress in the field.

  20. Three-body recombination of cold fermionic atoms

    International Nuclear Information System (INIS)

    Suno, H; Esry, B D; Greene, Chris H

    2003-01-01

    Recombination of identical, spin-polarized fermions in cold three-body collisions is investigated. We parametrize the mechanisms for recombination in terms of the 'scattering volume' V p and another length scale r 0 . Model two-body interactions were used within the framework of the adiabatic hyperspherical representation. We examine the recombination rate K 3 as a function of the collision energy E for various values of V p . Not only do we consider the dominant J Π = 1 + case, but also the next-leading order contributions from J Π = 1 - and 3 - . We discuss the behaviour near a two-body resonance and the expected universality of fermionic recombination. Comparisons with boson recombination are considered in detail

  1. An Analysis of the Operational Environments of Manufacturing Firms ...

    African Journals Online (AJOL)

    Our efforts in this research have been geared towards analyzing the operational environments of manufacturing firms in Aba, South-East, Nigeria. Specifically, the case study was Manufacturers Association of Nigeria (MAN), Abia chapter. Eight five percent of MAN‟s membership was studied. Percentages and test of ...

  2. Recombinational repair: workshop summary

    International Nuclear Information System (INIS)

    Howard-Flanders, P.

    1983-01-01

    Recombinational repair may or may not be synonymous with postreplication repair. Considerable progress has been made in the study of the relevant enzymes, particularly those from bacteria. In this workshop we focus on the recombination enzyme RecA protein. What structural changes take place in the protein and in DNA during repair. How does homologous pairing take place. How is ATP hydrolysis coupled to the stand exchange reaction and the formation of heteroduplx DNA. Turning to another enzyme needed for certain kinds of bacterial recombination, we will ask whether the purified recB protein and recC protein complement each other and are sufficient for exonuclease V activity. In higher cells, we would like to know whether sister exchanges, which occur in bacteria after uv irradiation, are also seen in animal cells

  3. Implementation of hierarchical design for manufacture rules in manufacturing processes

    OpenAIRE

    Parvez, Masud

    2008-01-01

    In order to shorten the product development cycle time, minimise overall cost and smooth transition into production, early consideration of manufacturing processes is important. Design for Manufacture (DFM) is the practice of designing products with manufacturing issues using an intelligent system, which translates 3D solid models into manufacturable features. Many existing and potential applications, particularly in the field of manufacturing, require various aspects of features technology. ...

  4. Anxiolytic-like effects after vector-mediated overexpression of neuropeptide Y in the amygdala and hippocampus of mice

    DEFF Research Database (Denmark)

    Christiansen, Søren Hofman Oliveira; Olesen, Mikkel Vestergaard; Gøtzsche, Casper René

    2014-01-01

    , injections of rAAV-NPY caused significant anxiolytic-like effect in the open field, elevated plus maze, and light-dark transition tests. In the hippocampus, rAAV-NPY treatment was associated with anxiolytic-like effect only in the elevated plus maze. No additive effect was observed after combined r....... Using a recombinant adeno-associated viral (rAAV) vector, we addressed this idea by testing effects on anxiolytic- and depression-like behaviours in adult mice after overexpression of NPY transgene in the amygdala and/or hippocampus, two brain regions implicated in emotional behaviours. In the amygdala......AAV-NPY injection into both the amygdala and hippocampus where anxiolytic-like effect was found in the elevated plus maze and light-dark transition tests. Antidepressant-like effects were not detected in any of the rAAV-NPY injected groups. Immobility was even increased in the tail suspension and forced swim tests...

  5. Recombinant vaccines: experimental and applied aspects

    DEFF Research Database (Denmark)

    Lorenzen, Niels

    1999-01-01

    Development of vaccines for aquaculture fish represent an important applied functional aspect of fish immunology research. Particularly in the case of recombinant vaccines, where a single antigen is usually expected to induce immunity to a specific pathogen, knowledge of mechanisms involved...... in induction of a protective immune response may become vital. The few recombinant vaccines licensd so far, despite much research during the last decade, illustrate that this is not a straightforward matter. However, as vaccine technology as well as our knowledge of the fish immune system is steadily improved......, these fields will open up a number of interesting research objectives of mutual benefit. Recent aspects of recombinant protein vaccines, live recombinant vaccines and DNA vaccines are discussed....

  6. Sustainability Characterization for Additive Manufacturing.

    Science.gov (United States)

    Mani, Mahesh; Lyons, Kevin W; Gupta, S K

    2014-01-01

    Additive manufacturing (AM) has the potential to create geometrically complex parts that require a high degree of customization, using less material and producing less waste. Recent studies have shown that AM can be an economically viable option for use by the industry, yet there are some inherent challenges associated with AM for wider acceptance. The lack of standards in AM impedes its use for parts production since industries primarily depend on established standards in processes and material selection to ensure the consistency and quality. Inability to compare AM performance against traditional manufacturing methods can be a barrier for implementing AM processes. AM process sustainability has become a driver due to growing environmental concerns for manufacturing. This has reinforced the importance to understand and characterize AM processes for sustainability. Process characterization for sustainability will help close the gaps for comparing AM performance to traditional manufacturing methods. Based on a literature review, this paper first examines the potential environmental impacts of AM. A methodology for sustainability characterization of AM is then proposed to serve as a resource for the community to benchmark AM processes for sustainability. Next, research perspectives are discussed along with relevant standardization efforts.

  7. Adeno-tonsillectomy and rapid maxillary distraction in pre-pubertal children, a pilot study.

    Science.gov (United States)

    Guilleminault, Christian; Monteyrol, Pierre-Jean; Huynh, Nelly T; Pirelli, Paola; Quo, Stacey; Li, Kasey

    2011-05-01

    When both narrow maxilla and moderately enlarged tonsils are present in children with obstructive sleep apnea, the decision of which treatment to do first is unclear. A preliminary randomized study was done to perform a power analysis and determine the number of subjects necessary to have an appropriate response. Thirty-one children, 14 boys, diagnosed with OSA based on clinical symptoms and polysomnography (PSG) findings had presence of both narrow maxillary complex and enlarged tonsils. They were scheduled to have both adeno-tonsillectomy and RME for which the order of treatment was randomized: group 1 received surgery followed by orthodontics, while group 2 received orthodontics followed by surgery. Each child was seen by an ENT, an orthodontist, and a sleep medicine specialist. The validated pediatric sleep questionnaire and PSG were done at entry and after each treatment phase at time of PSG. Statistical analyses were ANOVA repeated measures and t tests. The mean age of the children at entry was 6.5 ± 0.2 years (mean ± SEM). Overall, even if children presented improvement of both clinical symptoms and PSG findings, none of the children presented normal results after treatment 1, at the exception of one case. There was no significant difference in the amount of improvement noted independently of the first treatment approach. Thirty children underwent treatment 2, with an overall significant improvement shown for PSG findings compared to baseline and compared to treatment 1, without any group differences. This preliminary study emphasizes the need to have more than subjective clinical scales for determination of sequence of treatments.

  8. Mitigating Mitochondrial Genome Erosion Without Recombination.

    Science.gov (United States)

    Radzvilavicius, Arunas L; Kokko, Hanna; Christie, Joshua R

    2017-11-01

    Mitochondria are ATP-producing organelles of bacterial ancestry that played a key role in the origin and early evolution of complex eukaryotic cells. Most modern eukaryotes transmit mitochondrial genes uniparentally, often without recombination among genetically divergent organelles. While this asymmetric inheritance maintains the efficacy of purifying selection at the level of the cell, the absence of recombination could also make the genome susceptible to Muller's ratchet. How mitochondria escape this irreversible defect accumulation is a fundamental unsolved question. Occasional paternal leakage could in principle promote recombination, but it would also compromise the purifying selection benefits of uniparental inheritance. We assess this tradeoff using a stochastic population-genetic model. In the absence of recombination, uniparental inheritance of freely-segregating genomes mitigates mutational erosion, while paternal leakage exacerbates the ratchet effect. Mitochondrial fusion-fission cycles ensure independent genome segregation, improving purifying selection. Paternal leakage provides opportunity for recombination to slow down the mutation accumulation, but always at a cost of increased steady-state mutation load. Our findings indicate that random segregation of mitochondrial genomes under uniparental inheritance can effectively combat the mutational meltdown, and that homologous recombination under paternal leakage might not be needed. Copyright © 2017 by the Genetics Society of America.

  9. Composites Manufacturing Education and Technology Facility Expedites Manufacturing Innovation

    Energy Technology Data Exchange (ETDEWEB)

    2017-01-01

    The Composites Manufacturing Education and Technology facility (CoMET) at the National Wind Technology Center at the National Renewable Energy Laboratory (NREL) paves the way for innovative wind turbine components and accelerated manufacturing. Available for use by industry partners and university researchers, the 10,000-square-foot facility expands NREL's composite manufacturing research capabilities by enabling researchers to design, prototype, and test composite wind turbine blades and other components -- and then manufacture them onsite. Designed to work in conjunction with NREL's design, analysis, and structural testing capabilities, the CoMET facility expedites manufacturing innovation.

  10. Manufacturing strategy issues in selected Indian manufacturing industry

    Directory of Open Access Journals (Sweden)

    Mahender Singh

    2013-03-01

    Full Text Available This paper presents some findings of Indian manufacturing sectors viz. automobile (especially two-wheeler, tractor and general manufacturing industry. Various manufacturing strategy issues such as competitive priorities, improvement activities, and performance measures, have been identified and assessed in Indian context. Sector wise comparison of competitive priorities, improvement activities i.e. advanced manufacturing technology (AMT, integrated information systems (IIS, and advanced management systems (AMS, and performance measure, is provided. Our results showed that most of the Indian companies are still emphasizing on quality. However, automobile sector has set to compete globally with high innovation rate, faster new product development, and continuous improvement. It is also observed that Indian companies are investing more in AMS as compared to IIS and AMT. Manufacturing competence index is also computed for each sector.

  11. Virtual Manufacturing Techniques Designed and Applied to Manufacturing Activities in the Manufacturing Integration and Technology Branch

    Science.gov (United States)

    Shearrow, Charles A.

    1999-01-01

    One of the identified goals of EM3 is to implement virtual manufacturing by the time the year 2000 has ended. To realize this goal of a true virtual manufacturing enterprise the initial development of a machinability database and the infrastructure must be completed. This will consist of the containment of the existing EM-NET problems and developing machine, tooling, and common materials databases. To integrate the virtual manufacturing enterprise with normal day to day operations the development of a parallel virtual manufacturing machinability database, virtual manufacturing database, virtual manufacturing paradigm, implementation/integration procedure, and testable verification models must be constructed. Common and virtual machinability databases will include the four distinct areas of machine tools, available tooling, common machine tool loads, and a materials database. The machine tools database will include the machine envelope, special machine attachments, tooling capacity, location within NASA-JSC or with a contractor, and availability/scheduling. The tooling database will include available standard tooling, custom in-house tooling, tool properties, and availability. The common materials database will include materials thickness ranges, strengths, types, and their availability. The virtual manufacturing databases will consist of virtual machines and virtual tooling directly related to the common and machinability databases. The items to be completed are the design and construction of the machinability databases, virtual manufacturing paradigm for NASA-JSC, implementation timeline, VNC model of one bridge mill and troubleshoot existing software and hardware problems with EN4NET. The final step of this virtual manufacturing project will be to integrate other production sites into the databases bringing JSC's EM3 into a position of becoming a clearing house for NASA's digital manufacturing needs creating a true virtual manufacturing enterprise.

  12. Ligand-receptor assay for evaluation of functional activity of human recombinant VEGF and VEGFR-1 extracellular fragment.

    Science.gov (United States)

    Leopol'd, A V; Baklaushev, V P; Korchagina, A A; Shein, S A; Grinenko, N F; Pavlov, K A; Ryabukhin, I A; Chekhonin, V P

    2012-04-01

    cDNA encoding VEGF and Ig-like extracellular domains 2-4 of VEGFR-1 (sFlt-1(2-4)) were cloned into prokaryotic expression vectors pET32a and pQE60. Recombinant proteins were purified (metal affinity chromatography) and renatured. Chemiluminescent study for the interaction of recombinant VEGF and sFlt-1(2-4) showed that biotinylated VEGF specifically binds to the polystyrene-immobilized receptor extracellular fragment. Biotinylated recombinant sFlt-1 interacts with immobilized VEGF. Analysis of the interaction of immobilized recombinant VEGFR-1 and VEGF with C6 glioma cells labeled with CFDA-SE (vital fluorescent dye) showed that recombinant VEGFR-1 also binds to native membrane-associated VEGF. Recombinant VEGF was shown to bind to specific receptors expressed on the surface of C6 glioma cells. Functional activity of these proteins was confirmed by ligand-receptor assay for VEGF and VEGFR-1 (sFlt-1) and quantitative chemiluminescent detection.

  13. The effect of a single recombination event

    DEFF Research Database (Denmark)

    Schierup, Mikkel Heide; Jensen, Thomas Mailund; Wiuf, Carsten

    We investigate the variance in how visible a single recombination event is in a SNP data set as a function of the type of recombination event and its age. Data is simulated under the coalescent with recombination and inference is by the popular composite likelihood methods. The major determinant...

  14. High-level transient expression of recombinant protein in lettuce.

    Science.gov (United States)

    Joh, Lawrence D; Wroblewski, Tadeusz; Ewing, Nicholas N; VanderGheynst, Jean S

    2005-09-30

    Transient expression following agroinfiltration of plant tissue was investigated as a system for producing recombinant protein. As a model system, Agrobacterium tumefaciens containing the beta-glucuronidase (GUS) gene was vacuum infiltrated into lettuce leaf disks. Infiltration with a suspension of 10(9) colony forming units/mL followed by incubation for 72 h at 22 degrees C in continuous darkness produced a maximum of 0.16% GUS protein based on dry tissue or 1.1% GUS protein based on total soluble protein. This compares favorably to expression levels for commercially manufactured GUS protein from transgenic corn seeds. A. tumefaciens culture medium pH between 5.6 and 7.0 and surfactant concentrations lettuce to produce GUS protein more rapidly, but final levels did not exceed the GUS production in leaves incubated in continuous darkness after 72 h at 22 degrees C. The kinetics of GUS expression during incubation in continuous light and dark were represented well using a logistic model, with rate constants of 0.30 and 0.29/h, respectively. To semi-quantitatively measure the GUS expression in large numbers of leaf disks, a photometric enhancement of the standard histochemical staining method was developed. A linear relationship with an R2 value of 0.90 was determined between log10 (% leaf darkness) versus log10 (GUS activity). Although variability in expression level was observed, agroinfiltration appears to be a promising technology that could potentially be scaled up to produce high-value recombinant proteins in planta. Copyright 2005 Wiley Periodicals, Inc

  15. Fourteen types of co-circulating recombinant enterovirus were associated with hand, foot, and mouth disease in children from Wenzhou, China.

    Science.gov (United States)

    Guo, Wen-Ping; Lin, Xian-Dan; Chen, Yi-Ping; Liu, Qi; Wang, Wen; Wang, Cai-Qiao; Li, Ming-Hui; Sun, Xiao-Yu; Shi, Mang; Holmes, Edward C; Zhang, Yong-Zhen

    2015-09-01

    Although hand, foot, and mouth disease (HFMD) is a major public concern in China, the prevalence and clinical symptoms associated with the different agents of HFMD in this country remain poorly understood. We investigated the clinical and molecular characteristics of enteroviruses in patients with HFMD from Wenzhou, China. Patients with laboratory-confirmed HFMD admitted to the Yuying Children's Hospital in Wenzhou, China during 2013 were included in this study. Viral RNA sequences were amplified using RT-PCR, determined by sequencing, and compared by phylogenetic analysis. A total of 955 clinically diagnosed HFMD cases were determined using PCR, with whole viral genomes obtained for each enterovirus type. 14 types of enterovirus belonging to two viral species were identified. Notably, Coxsackievirus A6 (CV-A6) was the most common species detected (77.8%), followed by EV-A71 (8.2%) and CV-A10 (8.1%). Phylogenetic analysis revealed multiple independent introductions of these viruses into Wenzhou. In addition, the enterovirus observed in Wenzhou had a recombinant history, with two or three recombination breakpoints. Although the illness associated with CV-A6 was milder than that of EV-A71, CV-A6 infection caused more widespread rash, larger blisters, and subsequent skin peeling and/or nail shedding. Our study revealed the co-circulation of 14 types of enteroviruses in a single location - Wenzhou, China - with CV-A6 virus the predominant agent of HFMD. This work highlights the need to perform larger-scale surveillance to fully understand the epidemiology of enteroviruses in China and the wider Asia-Pacific region. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Semiconductor Manufacturing equipment introduction

    International Nuclear Information System (INIS)

    Im, Jong Sun

    2001-02-01

    This book deals with semiconductor manufacturing equipment. It is comprised of nine chapters, which are manufacturing process of semiconductor device, history of semiconductor manufacturing equipment, kinds and role of semiconductor manufacturing equipment, construction and method of semiconductor manufacturing equipment, introduction of various semiconductor manufacturing equipment, spots of semiconductor manufacturing, technical elements of semiconductor manufacturing equipment, road map of technology of semiconductor manufacturing equipment and semiconductor manufacturing equipment in the 21st century.

  17. Recombination homeostasis of meiosis during spermatogenesis under nicotine treatment

    Directory of Open Access Journals (Sweden)

    Zhai Jingli

    2018-01-01

    Full Text Available Cigarette smoking can affect male fertility via the quality of semen. To explore the effects of nicotine, a major component of cigarettes, on meiotic recombination during spermatogenesis, C57BL/6J male mice were injected with nicotine at a dosage of 0.2 mg/100 g body weight daily for 35 days (nicotine-treated group; mice in the control group were injected with isopycnic normal saline. According to previous expression profiles of mouse sperm, a subset of meiosis-related genes was pooled using bioinformatic analysis. Protein expression was compared between the two groups using by Western blotting and immunohistochemistry. Recombination frequency during the meiosis phase of spermatogenesis was estimated by combined use of chromosome spread and immunofluorescence staining in mouse testes. Data mining analysis indicated that 4 genes that express meiotic topoisomerase-like protein SPO11, MutS protein homolog 4 (MSH4, strand exchange protein RAD51 and MutL protein homologue 1 (MLH1, were associated with the meiosis recombination process. The results of Western blotting and immunohistochemistry further showed that the protein expression of SPO11 (0.73-fold and MSH4 (0.73-fold was downregulated in murine testes after nicotine treatment, whereas the protein expression of both RAD51 (2.06-fold and MLH1 (1.40-fold was upregulated. Unexpectedly, we did not detect a significant difference in recombination frequency in meiosis during spermatogenesis in the nicotine-treated group as compared to the control. Taken together, these results indicate that nicotine can affect the expression profile of restructuring-related genes, but it does not significantly change the recombination frequency during male meiosis. These findings suggest there is a self-regulating mechanism during meiotic chromosome restructuring in male mice that responds to environmental stress.

  18. Epidemics and Frequent Recombination within Species in Outbreaks of Human Enterovirus B-Associated Hand, Foot and Mouth Disease in Shandong China in 2010 and 2011.

    Directory of Open Access Journals (Sweden)

    Ting Zhang

    Full Text Available The epidemiology and molecular characteristics of human enterovirus B (HEV-B associated with hand, foot and mouth disease (HFMD outbreaks in China are not well known. In the present study, we tested 201 HEV isolates from 233 clinical specimens from patients with severe HFMD during 2010-2011 in Linyi, Shandong, China. Of the 201 isolates, 189 were fully typed and 18 corresponded to HEV-B species (six serotypes CVA9, CVB1, CVB4, Echo 6, Echo 25 and Echo 30 using sensitive semi-nested polymerase chain reaction analysis of VP1 gene sequences. Phylogenetic analysis based on the VP1 region showed that eight E30SD belonged to a novel sub-genogroup D2; E25SD belonged to a novel sub-genogroup D6; E6SD belonged to sub-lineage C6 and five CVB1SD belonged to subgroup 4C; and B4SD belonged sub-lineage D2. The full viral genomes of the CVB1SD, E6SD, E25SD and E30SD isolates were sequenced. Analysis of phylogenetic and similarity plots indicated that E25SD recombined with E25-HN-2, E30FDJS03 and E4AUS250 at noncontiguous P2A-P3D regions, while E30SD, E30FDJ03, E25-HN-2 and E9 DM had shared sequences in discrete regions of P2 and P3. Both E6SD and B1SD shared sequences with E1-HN, B4/GX/10, B5-HN, and A9-Alberta in contiguous regions of most of P2 and P3. Genetic algorithm recombination detection analysis further confirmed the existence of multiple potential recombination points. In conclusion, analysis of the complete genomes of E25SD, E30SD, CVB1SD and E6SD isolated from HFMD patients revealed that they formed novel subgenogroup. Given the prevalence and recombination of these viruses in outbreaks of HFMD, persistent surveillance of HFMD-associated HEV-B pathogens is required to predict potential emerging viruses and related disease outbreaks.

  19. THE THEORETICAL AND PRACTICAL ASPECTS OF THE RECOMBINANT ANTIGENS FOR THE DIAGNOSIS OF BOVINE LEUKEMIA PRODUCTION

    Directory of Open Access Journals (Sweden)

    Shapovalova OV

    2016-12-01

    sequence construction. The efficiency of BLV gp51 and p24 encoding regions fusion-sequence integration was confirmed by the screening with the specially designed oligonucleotides. The recombinant antigen expression was induced by addition of IPTG. To isolate the antigen bacterial mass was destroyed by defrostation and ultrasonic disintegration in the experimentally selected modes. The activity and specificity of the antigen was determined by AGID with the use of the bovine fetal serum, positive and negative reference diagnostic serum by unified method in comparison with the standardized cultural BLV antigen in AGID. The antigen specificity was increased by adsorption with commercial anticolibacillosis serum. The antigen activity was confirmed by AGID. Conclusions. Nowadays the most promising BLV antigens expressing genetic constructions with E. coli and baculovirus. E. coli recombinant strains are the most available and effective using expressing system, which allows to get an active and specific antigenic product if an optimal vector constructions and commercially available systems of metal affinity chromatography purification and control with appropriate Mab are used. As an cultural and recombinant antigens alternative the mimicking critical BLV antigenic epitopes synthetic peptides were tested. In recent times many scientific works formed the basis for the bovine leukemia diagnostic test systems’ creation, which are now widely available on the biotechnological products market. Although the majority of manufacturers prefer the recombinant antigens of the pathogen, pilot studies on more improved and cheaper ways to obtain different diagnostic antigens preparations shall not lose relevance.

  20. Recombination rate plasticity: revealing mechanisms by design

    Science.gov (United States)

    Sefick, Stephen; Rushton, Chase

    2017-01-01

    For over a century, scientists have known that meiotic recombination rates can vary considerably among individuals, and that environmental conditions can modify recombination rates relative to the background. A variety of external and intrinsic factors such as temperature, age, sex and starvation can elicit ‘plastic’ responses in recombination rate. The influence of recombination rate plasticity on genetic diversity of the next generation has interesting and important implications for how populations evolve. Further, many questions remain regarding the mechanisms and molecular processes that contribute to recombination rate plasticity. Here, we review 100 years of experimental work on recombination rate plasticity conducted in Drosophila melanogaster. We categorize this work into four major classes of experimental designs, which we describe via classic studies in D. melanogaster. Based on these studies, we highlight molecular mechanisms that are supported by experimental results and relate these findings to studies in other systems. We synthesize lessons learned from this model system into experimental guidelines for using recent advances in genotyping technologies, to study recombination rate plasticity in non-model organisms. Specifically, we recommend (1) using fine-scale genome-wide markers, (2) collecting time-course data, (3) including crossover distribution measurements, and (4) using mixed effects models to analyse results. To illustrate this approach, we present an application adhering to these guidelines from empirical work we conducted in Drosophila pseudoobscura. This article is part of the themed issue ‘Evolutionary causes and consequences of recombination rate variation in sexual organisms’. PMID:29109222

  1. Recombination analysis based on the complete genome of bocavirus

    Directory of Open Access Journals (Sweden)

    Chen Shengxia

    2011-04-01

    Full Text Available Abstract Bocavirus include bovine parvovirus, minute virus of canine, porcine bocavirus, gorilla bocavirus, and Human bocaviruses 1-4 (HBoVs. Although recent reports showed that recombination happened in bocavirus, no systematical study investigated the recombination of bocavirus. The present study performed the phylogenetic and recombination analysis of bocavirus over the complete genomes available in GenBank. Results confirmed that recombination existed among bocavirus, including the likely inter-genotype recombination between HBoV1 and HBoV4, and intra-genotype recombination among HBoV2 variants. Moreover, it is the first report revealing the recombination that occurred between minute viruses of canine.

  2. FASEB Summer Research Conference. Genetic Recombination and Chromosome Rearrangements

    Energy Technology Data Exchange (ETDEWEB)

    Jinks-Robertson, Sue

    2002-02-01

    The 2001 meeting entitled ''Genetic Recombination and Genome Rearrangements'' was held July 21-26 in Snowmass, Colorado. The goal of the meeting was to bring together scientists using diverse approaches to study all aspects of genetic recombination. This goal was achieved by integrating talks covering the genetics, biochemistry and structural biology of homologous recombination, site-specific recombination, and nonhomologous recombination. The format of the meeting consisted of a keynote address on the opening evening, two formal plenary sessions on each of the four full meeting days, a single afternoon workshop consisting of short talks chosen from among submitted abstracts, and afternoon poster sessions on each of the four full meeting days. The eight plenary session were entitled: (1) Recombination Mechanisms, (2) Prokaryotic Recombination, (3) Repair and Recombination, (4) Site-specific Recombination and Transposition, (5) Eukaryotic Recombination I, (6) Genome Rearrangements, (7) Meiosis, and (8) Eukaryotic Recombination II. Each session included a mix of genetic, biochemical and structural talks; talks were limited to 20 minutes, followed by 10 minutes of very lively, general discussion. Much of the data presented in the plenary sessions was unpublished, thus providing attendees with the most up-to-date knowledge of this rapidly-moving field.

  3. Hadron Correlations and Parton Recombination

    Energy Technology Data Exchange (ETDEWEB)

    Fries, R.J. [School of Physics and Astronomy, University of Minnesota, Minneapolis, MN 55455 (United States)]. E-mail: rjfries@comp.tamu.edu

    2007-02-15

    Parton recombination has been found to be an extremely useful model to understand hadron production at the Relativistic Heavy Ion Collider. It is particularly important to explore its connections with hard processes. This article reviews some of the aspects of the quark recombination model and places particular emphasis on hadron correlations.

  4. Structure of Mycobacterium tuberculosis RuvA, a protein involved in recombination

    International Nuclear Information System (INIS)

    Prabu, J. Rajan; Thamotharan, S.; Khanduja, Jasbeer Singh; Alipio, Emily Zabala; Kim, Chang-Yub; Waldo, Geoffrey S.; Terwilliger, Thomas C.; Segelke, Brent; Lekin, Tim; Toppani, Dominique; Hung, Li-Wei; Yu, Minmin; Bursey, Evan; Muniyappa, K.; Chandra, Nagasuma R.; Vijayan, M.

    2006-01-01

    RuvA, a protein from M. tuberculosis H37Rv involved in recombination, has been cloned, expressed, purified and analysed by X-ray crystallography. The process of recombinational repair is crucial for maintaining genomic integrity and generating biological diversity. In association with RuvB and RuvC, RuvA plays a central role in processing and resolving Holliday junctions, which are a critical intermediate in homologous recombination. Here, the cloning, purification and structure determination of the RuvA protein from Mycobacterium tuberculosis (MtRuvA) are reported. Analysis of the structure and comparison with other known RuvA proteins reveal an octameric state with conserved subunit–subunit interaction surfaces, indicating the requirement of octamer formation for biological activity. A detailed analysis of plasticity in the RuvA molecules has led to insights into the invariant and variable regions, thus providing a framework for understanding regional flexibility in various aspects of RuvA function

  5. Three-particle recombination at low temperature: QED approach

    International Nuclear Information System (INIS)

    Bhattacharyya, S.; Roy, A.

    2001-01-01

    A theoretical study of three-body recombination of proton in presence of a spectator electron with electronic beam at near-zero temperature is presented using field theory and invariant Lorentz gauge. Contributions from the Feynman diagrams of different orders give an insight into the physics of the phenomena. Recombination rate coefficient is obtained for low lying principal quantum number n = 1 to 10. At a fixed ion beam temperature (300 K) recombination rate coefficient is found to increase in general with n, having a flat and a sharp peak at quantum states 3 to 5, respectively. In absence of any theoretical and experimental results for low temperature formation of H-atom by three-body recombination at low lying quantum states, we have presented the theoretical results of Stevefelt and group for three-body recombination of deuteron with electron along with the present results. Three-body recombination of antihydrogen in antiproton-positron plasma is expected to yield similar result as that for three-body recombination of hydrogen formation in proton-electron plasma. The necessity for experimental investigation of low temperature three-body recombination at low quantum states is stressed. (author)

  6. Advanced Manufacturing Technologies

    Science.gov (United States)

    Fikes, John

    2016-01-01

    Advanced Manufacturing Technologies (AMT) is developing and maturing innovative and advanced manufacturing technologies that will enable more capable and lower-cost spacecraft, launch vehicles and infrastructure to enable exploration missions. The technologies will utilize cutting edge materials and emerging capabilities including metallic processes, additive manufacturing, composites, and digital manufacturing. The AMT project supports the National Manufacturing Initiative involving collaboration with other government agencies.

  7. Efficiency of manufacturing processes energy and ecological perspectives

    CERN Document Server

    Li, Wen

    2015-01-01

     This monograph presents a reliable methodology for characterising the energy and eco-efficiency of unit manufacturing processes. The Specific Energy Consumption, SEC, will be identified as the key indicator for the energy efficiency of unit processes.  An empirical approach will be validated on different machine tools and manufacturing processes to depict the relationship between process parameters and energy consumptions. Statistical results and additional validation runs will corroborate the high level of accuracy in predicting the energy consumption. In relation to the eco-efficiency, the value and the associated environmental impacts of  manufacturing processes will also be discussed. The interrelationship between process parameters, process value and the associated environmental impact will be integrated in the evaluation of eco-efficiency. The book concludes with a further investigation of the results in order to develop strategies for further efficiency improvement. The target audience primarily co...

  8. Homologous recombination in mammalian cells: effect of p53 and Bcl-2 proteins, replication inhibition and ionizing radiations

    International Nuclear Information System (INIS)

    Saintigny, Yannick

    1999-01-01

    The control of cell cycle, associated with the mechanisms of replication, DNA repair/recombination allows the cells to maintain their genetic integrity. The p53 protein ensures the control of G1/S transition. Its inactivation would allow to initial replication on damaged matrix and lead to the block of replication forks followed by DNA strand breaks, good substrates for recombination. This work shows that the expression of mutant p53 protein stimulates both spontaneous and radio-induced homologous recombination, independently of the control of cell cycle. Moreover, the use of a set of replication inhibitors show that inhibition of the replication elongation stimulates recombination more strongly than the initiation inhibition. Replication arrest by these inhibitors also significantly increases the number of DNA strand breaks. These results highlighted a point of action of p53 protein on the ultimate stages of the homologous recombination mechanism. Lastly, the expression of Bcl-2 protein inhibits apoptosis and increases survival, but specifically inhibits conservative recombination, after radiation as well as in absence of apoptotic stress. The extinction of this mechanism of DNA repair is associated with an increase of mutagenesis. Taken together, these results allow ta consider the maintenance of the genetic stability as a cellular network involving different pathways. A multiple stages model for tumoral progression can be deduced. (author) [fr

  9. Slow Replication Fork Velocity of Homologous Recombination-Defective Cells Results from Endogenous Oxidative Stress

    Science.gov (United States)

    Magdalou, Indiana; Machon, Christelle; Dardillac, Elodie; Técher, Hervé; Guitton, Jérôme; Debatisse, Michelle; Lopez, Bernard S.

    2016-01-01

    Replications forks are routinely hindered by different endogenous stresses. Because homologous recombination plays a pivotal role in the reactivation of arrested replication forks, defects in homologous recombination reveal the initial endogenous stress(es). Homologous recombination-defective cells consistently exhibit a spontaneously reduced replication speed, leading to mitotic extra centrosomes. Here, we identify oxidative stress as a major endogenous source of replication speed deceleration in homologous recombination-defective cells. The treatment of homologous recombination-defective cells with the antioxidant N-acetyl-cysteine or the maintenance of the cells at low O2 levels (3%) rescues both the replication fork speed, as monitored by single-molecule analysis (molecular combing), and the associated mitotic extra centrosome frequency. Reciprocally, the exposure of wild-type cells to H2O2 reduces the replication fork speed and generates mitotic extra centrosomes. Supplying deoxynucleotide precursors to H2O2-exposed cells rescued the replication speed. Remarkably, treatment with N-acetyl-cysteine strongly expanded the nucleotide pool, accounting for the replication speed rescue. Remarkably, homologous recombination-defective cells exhibit a high level of endogenous reactive oxygen species. Consistently, homologous recombination-defective cells accumulate spontaneous γH2AX or XRCC1 foci that are abolished by treatment with N-acetyl-cysteine or maintenance at 3% O2. Finally, oxidative stress stimulated homologous recombination, which is suppressed by supplying deoxynucleotide precursors. Therefore, the cellular redox status strongly impacts genome duplication and transmission. Oxidative stress should generate replication stress through different mechanisms, including DNA damage and nucleotide pool imbalance. These data highlight the intricacy of endogenous replication and oxidative stresses, which are both evoked during tumorigenesis and senescence initiation

  10. Slow Replication Fork Velocity of Homologous Recombination-Defective Cells Results from Endogenous Oxidative Stress.

    Directory of Open Access Journals (Sweden)

    Therese Wilhelm

    2016-05-01

    Full Text Available Replications forks are routinely hindered by different endogenous stresses. Because homologous recombination plays a pivotal role in the reactivation of arrested replication forks, defects in homologous recombination reveal the initial endogenous stress(es. Homologous recombination-defective cells consistently exhibit a spontaneously reduced replication speed, leading to mitotic extra centrosomes. Here, we identify oxidative stress as a major endogenous source of replication speed deceleration in homologous recombination-defective cells. The treatment of homologous recombination-defective cells with the antioxidant N-acetyl-cysteine or the maintenance of the cells at low O2 levels (3% rescues both the replication fork speed, as monitored by single-molecule analysis (molecular combing, and the associated mitotic extra centrosome frequency. Reciprocally, the exposure of wild-type cells to H2O2 reduces the replication fork speed and generates mitotic extra centrosomes. Supplying deoxynucleotide precursors to H2O2-exposed cells rescued the replication speed. Remarkably, treatment with N-acetyl-cysteine strongly expanded the nucleotide pool, accounting for the replication speed rescue. Remarkably, homologous recombination-defective cells exhibit a high level of endogenous reactive oxygen species. Consistently, homologous recombination-defective cells accumulate spontaneous γH2AX or XRCC1 foci that are abolished by treatment with N-acetyl-cysteine or maintenance at 3% O2. Finally, oxidative stress stimulated homologous recombination, which is suppressed by supplying deoxynucleotide precursors. Therefore, the cellular redox status strongly impacts genome duplication and transmission. Oxidative stress should generate replication stress through different mechanisms, including DNA damage and nucleotide pool imbalance. These data highlight the intricacy of endogenous replication and oxidative stresses, which are both evoked during tumorigenesis and

  11. Slow Replication Fork Velocity of Homologous Recombination-Defective Cells Results from Endogenous Oxidative Stress.

    Science.gov (United States)

    Wilhelm, Therese; Ragu, Sandrine; Magdalou, Indiana; Machon, Christelle; Dardillac, Elodie; Técher, Hervé; Guitton, Jérôme; Debatisse, Michelle; Lopez, Bernard S

    2016-05-01

    Replications forks are routinely hindered by different endogenous stresses. Because homologous recombination plays a pivotal role in the reactivation of arrested replication forks, defects in homologous recombination reveal the initial endogenous stress(es). Homologous recombination-defective cells consistently exhibit a spontaneously reduced replication speed, leading to mitotic extra centrosomes. Here, we identify oxidative stress as a major endogenous source of replication speed deceleration in homologous recombination-defective cells. The treatment of homologous recombination-defective cells with the antioxidant N-acetyl-cysteine or the maintenance of the cells at low O2 levels (3%) rescues both the replication fork speed, as monitored by single-molecule analysis (molecular combing), and the associated mitotic extra centrosome frequency. Reciprocally, the exposure of wild-type cells to H2O2 reduces the replication fork speed and generates mitotic extra centrosomes. Supplying deoxynucleotide precursors to H2O2-exposed cells rescued the replication speed. Remarkably, treatment with N-acetyl-cysteine strongly expanded the nucleotide pool, accounting for the replication speed rescue. Remarkably, homologous recombination-defective cells exhibit a high level of endogenous reactive oxygen species. Consistently, homologous recombination-defective cells accumulate spontaneous γH2AX or XRCC1 foci that are abolished by treatment with N-acetyl-cysteine or maintenance at 3% O2. Finally, oxidative stress stimulated homologous recombination, which is suppressed by supplying deoxynucleotide precursors. Therefore, the cellular redox status strongly impacts genome duplication and transmission. Oxidative stress should generate replication stress through different mechanisms, including DNA damage and nucleotide pool imbalance. These data highlight the intricacy of endogenous replication and oxidative stresses, which are both evoked during tumorigenesis and senescence initiation

  12. Activated recombinant adenovirus proteinases

    Science.gov (United States)

    Anderson, Carl W.; Mangel, Walter F.

    1999-08-10

    This application describes methods and expression constructs for producing activatable recombinant adenovirus proteinases. Purified activatable recombinant adenovirus proteinases and methods of purification are described. Activated adenovirus proteinases and methods for obtaining activated adenovirus proteinases are further included. Isolated peptide cofactors of adenovirus proteinase activity, methods of purifying and identifying said peptide cofactors are also described. Antibodies immunoreactive with adenovirus proteinases, immunospecific antibodies, and methods for preparing them are also described. Other related methods and materials are also described.

  13. Hadron correlations from recombination

    Energy Technology Data Exchange (ETDEWEB)

    Fries, Rainer J [School of Physics and Astronomy, University of Minnesota, Minneapolis, MN 55455 (United States)

    2005-01-01

    Quark recombination is a successful model to describe the hadronization of a deconfined quark gluon plasma. Jet-like dihadron correlations measured at RHIC provide a challenge for this picture. We discuss how correlations between hadrons can arise from correlations between partons before hadronization. An enhancement of correlations through the recombination process, similar to the enhancement of elliptic flow is found. Hot spots from completely or partially quenched jets are a likely source of such parton correlations.

  14. X-ray- and TEM-induced mitotic recombination in Drosophila melanogaster: Unequal and sister-strand recombination

    International Nuclear Information System (INIS)

    Becker, H.J.

    1975-01-01

    Twin mosaic spots of dark-apricot and light-apricot ommatidia were found in the eyes of wsup(a)/wsup(a) females, of wsup(a) males, of females homozygous for In(1)sc 4 , wsup(a) and of attached-X females homozygous for wsup(a). The flies were raised from larvae which had been treated with 1,630 R of X-rays at the age of 48-52 hours. An additional group of wsup(a)/wsup(a) females and wsup(a) males came from larvae that had been fed with triethylene melamine (TEM) at the age of 22-24 hours. The twin spots apparently were the result of induced unequal mitotic recombination, i.e. from unequal sister-strand recombination in the males and from unequal sister-strand recombination as well as, possibly, unequal recombination between homologous strands in the females. That is, a duplication resulted in wsup(a)Dpwsup(a)/wsup(a) dark-apricto ommatidia and the corresponding deficiency in an adjacent area of wsup(a)/Dfwsup(a) light-apricot ommatidia. In an additional experiment sister-strand mitotic recombination in the ring-X chromosome of ring-X/rod-X females heterozygous for w and wsup(co) is believed to be the cause for X-ray induced single mosaic spots that show the phenotype of the rod-X marker. (orig.) [de

  15. Rapid generation of markerless recombinant MVA vaccines by en passant recombineering of a self-excising bacterial artificial chromosome.

    Science.gov (United States)

    Cottingham, Matthew G; Gilbert, Sarah C

    2010-09-01

    The non-replicating poxviral vector modified vaccinia virus Ankara (MVA) is currently a leading candidate for development of novel recombinant vaccines against globally important diseases. The 1980s technology for making recombinant MVA (and other poxviruses) is powerful and robust, but relies on rare recombination events in poxviral-infected cells. In the 21st century, it has become possible to apply bacterial artificial chromosome (BAC) technology to poxviruses, as first demonstrated by B. Moss' lab in 2002 for vaccinia virus. A similar BAC clone of MVA was subsequently derived, but while recombination-mediated genetic engineering for rapid production was used of deletion mutants, an alternative method was required for efficient insertion of transgenes. Furthermore "markerless" viruses, which carry no trace of the selectable marker used for their isolation, are increasingly required for clinical trials, and the viruses derived via the new method contained the BAC sequence in their genomic DNA. Two methods are adapted to MVA-BAC to provide more rapid generation of markerless recombinants in weeks rather than months. "En passant" recombineering is applied to the insertion of a transgene expression cassette and the removal of the selectable marker in bacteria; and a self-excising variant of MVA-BAC is constructed, in which the BAC cassette region is rapidly and efficiently lost from the viral genome following rescue of the BAC into infectious virus. These methods greatly facilitate and accelerate production of recombinant MVA, including markerless constructs. Copyright 2010 Elsevier B.V. All rights reserved.

  16. Industry 4.0 implies lean manufacturing: Research activities in industry 4.0 function as enablers for lean manufacturing

    Directory of Open Access Journals (Sweden)

    Adam Sanders

    2016-09-01

    Full Text Available Purpose: Lean Manufacturing is widely regarded as a potential methodology to improve productivity and decrease costs in manufacturing organisations. The success of lean manufacturing demands consistent and conscious efforts from the organisation, and has to overcome several hindrances. Industry 4.0 makes a factory smart by applying advanced information and communication systems and future-oriented technologies. This paper analyses the incompletely perceived link between Industry 4.0 and lean manufacturing, and investigates whether Industry 4.0 is capable of implementing lean. Executing Industry 4.0 is a cost-intensive operation, and is met with reluctance from several manufacturers. This research also provides an important insight into manufacturers’ dilemma as to whether they can commit into Industry 4.0, considering the investment required and unperceived benefits. Design/methodology/approach: Lean manufacturing is first defined and different dimensions of lean are presented. Then Industry 4.0 is defined followed by representing its current status in Germany. The barriers for implementation of lean are analysed from the perspective of integration of resources. Literatures associated with Industry 4.0 are studied and suitable solution principles are identified to solve the abovementioned barriers of implementing lean. Findings: It is identified that researches and publications in the field of Industry 4.0 held answers to overcome the barriers of implementation of lean manufacturing. These potential solution principles prove the hypothesis that Industry 4.0 is indeed capable of implementing lean. It uncovers the fact that committing into Industry 4.0 makes a factory lean besides being smart. Originality/value: Individual researches have been done in various technologies allied with Industry 4.0, but the potential to execute lean manufacturing was not completely perceived. This paper bridges the gap between these two realms, and identifies

  17. An inherited immunoglobulin class-switch recombination deficiency associated with a defect in the INO80 chromatin remodeling complex.

    Science.gov (United States)

    Kracker, Sven; Di Virgilio, Michela; Schwartzentruber, Jeremy; Cuenin, Cyrille; Forveille, Monique; Deau, Marie-Céline; McBride, Kevin M; Majewski, Jacek; Gazumyan, Anna; Seneviratne, Suranjith; Grimbacher, Bodo; Kutukculer, Necil; Herceg, Zdenko; Cavazzana, Marina; Jabado, Nada; Nussenzweig, Michel C; Fischer, Alain; Durandy, Anne

    2015-04-01

    Immunoglobulin class-switch recombination defects (CSR-D) are rare primary immunodeficiencies characterized by impaired production of switched immunoglobulin isotypes and normal or elevated IgM levels. They are caused by impaired T:B cooperation or intrinsic B cell defects. However, many immunoglobulin CSR-Ds are still undefined at the molecular level. This study's objective was to delineate new causes of immunoglobulin CSR-Ds and thus gain further insights into the process of immunoglobulin class-switch recombination (CSR). Exome sequencing in 2 immunoglobulin CSR-D patients identified variations in the INO80 gene. Functional experiments were performed to assess the function of INO80 on immunoglobulin CSR. We identified recessive, nonsynonymous coding variations in the INO80 gene in 2 patients affected by defective immunoglobulin CSR. Expression of wild-type INO80 in patients' fibroblastic cells corrected their hypersensitivity to high doses of γ-irradiation. In murine CH12-F3 cells, the INO80 complex accumulates at Sα and Eμ regions of the IgH locus, and downregulation of INO80 as well as its partners Reptin and Pontin impaired CSR. In addition, Reptin and Pontin were shown to interact with activation-induced cytidine deaminase. Finally, an abnormal separation of sister chromatids was observed upon INO80 downregulation in CH12-F3 cells, pinpointing its role in cohesin activity. INO80 deficiency appears to be associated with defective immunoglobulin CSR. We propose that the INO80 complex modulates cohesin function that may be required during immunoglobulin switch region synapsis. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  18. Evolution of cagA oncogene of Helicobacter pylori through recombination.

    Directory of Open Access Journals (Sweden)

    Yoshikazu Furuta

    Full Text Available Helicobacter pylori is a gastric pathogen that infects half the human population and causes gastritis, ulcers, and cancer. The cagA gene product is a major virulence factor associated with gastric cancer. It is injected into epithelial cells, undergoes phosphorylation by host cell kinases, and perturbs host signaling pathways. CagA is known for its geographical, structural, and functional diversity in the C-terminal half, where an EPIYA host-interacting motif is repeated. The Western version of CagA carries the EPIYA segment types A, B, and C, while the East Asian CagA carries types A, B, and D and shows higher virulence. Many structural variants such as duplications and deletions are reported. In this study, we gained insight into the relationships of CagA variants through various modes of recombination, by analyzing all known cagA variants at the DNA sequence level with the single nucleotide resolution. Processes that occurred were: (i homologous recombination between DNA sequences for CagA multimerization (CM sequence; (ii recombination between DNA sequences for the EPIYA motif; and (iii recombination between short similar DNA sequences. The left half of the EPIYA-D segment characteristic of East Asian CagA was derived from Western type EPIYA, with Amerind type EPIYA as the intermediate, through rearrangements of specific sequences within the gene. Adaptive amino acid changes were detected in the variable region as well as in the conserved region at sites to which no specific function has yet been assigned. Each showed a unique evolutionary distribution. These results clarify recombination-mediated routes of cagA evolution and provide a solid basis for a deeper understanding of its function in pathogenesis.

  19. CRISPR/Cas9-AAV Mediated Knock-in at NRL Locus in Human Embryonic Stem Cells

    Directory of Open Access Journals (Sweden)

    Xianglian Ge

    2016-01-01

    Full Text Available Clustered interspaced short palindromic repeats (CRISPR/CRISPR-associated protein 9 (Cas9-mediated genome engineering technologies are sparking a new revolution in biological research. This technology efficiently induces DNA double strand breaks at the targeted genomic sequence and results in indel mutations by the error-prone process of nonhomologous end joining DNA repair or homologous recombination with a DNA repair template. The efficiency of genome editing with CRISPR/Cas9 alone in human embryonic stem cells is still low. Gene targeting with adeno-associated virus (AAV vectors has been demonstrated in multiple human cell types with maximal targeting frequencies without engineered nucleases. However, whether CRISPR/Cas9-mediated double strand breaks and AAV based donor DNA mediated homologous recombination approaches could be combined to create a novel CRISPR/Cas9-AAV genetic tool for highly specific gene editing is not clear. Here we demonstrate that using CRISPR/Cas9-AAV, we could successfully knock-in a DsRed reporter gene at the basic motifleucine zipper transcription factor (NRL locus in human embryonic stem cells. For the first time, this study provides the proof of principle that these two technologies can be used together. CRISPR/Cas9-AAV, a new genome editing tool, offers a platform for the manipulation of human genome.

  20. Servitization in Danish Manufacturing Firms: A Strategy for Survival?

    DEFF Research Database (Denmark)

    Slepniov, Dmitrij; Wæhrens, Brian Vejrum; Johansen, John

    2010-01-01

    ) and by many traditional manufacturers is perceived as a strategy for survival. On the basis of multiple cases of Danish companies, this paper discusses the main reasons and strategic implications of servitization. Furthermore, it outlines the strategies of how traditional manufacturers can recoup the desired...... level of return from the developments associated with servitization....

  1. Secreted Klotho Attenuates Inflammation-Associated Aortic Valve Fibrosis in Senescence-Accelerated Mice P1.

    Science.gov (United States)

    Chen, Jianglei; Fan, Jun; Wang, Shirley; Sun, Zhongjie

    2018-05-01

    Senescence-accelerated mice P1 (SAMP1) is an aging model characterized by shortened lifespan and early signs of senescence. Klotho is an aging-suppressor gene. The purpose of this study is to investigate whether in vivo expression of secreted klotho ( Skl ) gene attenuates aortic valve fibrosis in SAMP1 mice. SAMP1 mice and age-matched (AKR/J) control mice were used. SAMP1 mice developed obvious fibrosis in aortic valves, namely fibrotic aortic valve disease. Serum level of Skl was decreased drastically in SAMP1 mice. Expression of MCP-1 (monocyte chemoattractant protein 1), ICAM-1 (intercellular adhesion molecule 1), F4/80, and CD68 was increased in aortic valves of SAMP1 mice, indicating inflammation. An increase in expression of α-smooth muscle actin (myofibroblast marker), transforming growth factorβ-1, and scleraxis (a transcription factor of collagen synthesis) was also found in aortic valves of SAMP1 mice, suggesting that accelerated aging is associated with myofibroblast transition and collagen gene activation. We constructed adeno-associated virus 2 carrying mouse Skl cDNA for in vivo expression of Skl. Skl gene delivery effectively increased serum Skl of SAMP1 mice to the control level. Skl gene delivery inhibited inflammation and myofibroblastic transition in aortic valves and attenuated fibrotic aortic valve disease in SAMP1 mice. It is concluded that senescence-related fibrotic aortic valve disease in SAMP1 mice is associated with a decrease in serum klotho leading to inflammation, including macrophage infiltration and transforming growth factorβ-1/scleraxis-driven myofibroblast differentiation in aortic valves. Restoration of serum Skl levels by adeno-associated virus 2 carrying mouse Skl cDNA effectively suppresses inflammation and myofibroblastic transition and attenuates aortic valve fibrosis. Skl may be a potential therapeutic target for fibrotic aortic valve disease. © 2018 American Heart Association, Inc.

  2. Mechanisms and factors that influence high frequency retroviral recombination

    DEFF Research Database (Denmark)

    Delviks-Frankenberry, Krista; Galli, Andrea; Nikolaitchik, Olga

    2011-01-01

    With constantly changing environmental selection pressures, retroviruses rely upon recombination to reassort polymorphisms in their genomes and increase genetic diversity, which improves the chances for the survival of their population. Recombination occurs during DNA synthesis, whereby reverse...... transcriptase undergoes template switching events between the two copackaged RNAs, resulting in a viral recombinant with portions of the genetic information from each parental RNA. This review summarizes our current understanding of the factors and mechanisms influencing retroviral recombination, fidelity...... of the recombination process, and evaluates the subsequent viral diversity and fitness of the progeny recombinant. Specifically, the high mutation rates and high recombination frequencies of HIV-1 will be analyzed for their roles in influencing HIV-1 global diversity, as well as HIV-1 diagnosis, drug treatment...

  3. The use of recombinant factor VIIa in a patient with Noonan syndrome and life-threatening bleeding.

    Science.gov (United States)

    Tofil, Nancy M; Winkler, Margaret K; Watts, Raymond G; Noonan, Jacqueline

    2005-05-01

    To present a case report of a patient with Noonan syndrome who developed life-threatening gastrointestinal bleeding shortly after cardiac surgery that was successfully treated with recombinant factor VIIa. Case report. Pediatric intensive care unit of a children's hospital. Ten-month-old with Noonan syndrome and massive gastrointestinal bleeding resulting in severe hypovolemic shock. Recombinant factor VIIa was used in this patient's severe bleeding associated with Noonan syndrome after no other supportive measures were successful. Recombinant Factor VIIa significantly decreased the patient's bleeding and allowed his hypovolemic shock to improve. Ultimately, the patient made a complete recovery. Noonan syndrome has a constellation of both cardiac and noncardiac malformations including an increased risk of bleeding, and recombinant factor VIIa is an important agent in the treatment of significant bleeding.

  4. Virulence evolution of the human pathogen Neisseria meningitidis by recombination in the core and accessory genome.

    Directory of Open Access Journals (Sweden)

    Biju Joseph

    Full Text Available BACKGROUND: Neisseria meningitidis is a naturally transformable, facultative pathogen colonizing the human nasopharynx. Here, we analyze on a genome-wide level the impact of recombination on gene-complement diversity and virulence evolution in N. meningitidis. We combined comparative genome hybridization using microarrays (mCGH and multilocus sequence typing (MLST of 29 meningococcal isolates with computational comparison of a subset of seven meningococcal genome sequences. PRINCIPAL FINDINGS: We found that lateral gene transfer of minimal mobile elements as well as prophages are major forces shaping meningococcal population structure. Extensive gene content comparison revealed novel associations of virulence with genetic elements besides the recently discovered meningococcal disease associated (MDA island. In particular, we identified an association of virulence with a recently described canonical genomic island termed IHT-E and a differential distribution of genes encoding RTX toxin- and two-partner secretion systems among hyperinvasive and non-hyperinvasive lineages. By computationally screening also the core genome for signs of recombination, we provided evidence that about 40% of the meningococcal core genes are affected by recombination primarily within metabolic genes as well as genes involved in DNA replication and repair. By comparison with the results of previous mCGH studies, our data indicated that genetic structuring as revealed by mCGH is stable over time and highly similar for isolates from different geographic origins. CONCLUSIONS: Recombination comprising lateral transfer of entire genes as well as homologous intragenic recombination has a profound impact on meningococcal population structure and genome composition. Our data support the hypothesis that meningococcal virulence is polygenic in nature and that differences in metabolism might contribute to virulence.

  5. Induction of homologous recombination in Saccharomyces cerevisiae.

    Science.gov (United States)

    Simon, J R; Moore, P D

    1988-09-01

    We have investigated the effects of UV irradiation of Saccharomyces cerevisiae in order to distinguish whether UV-induced recombination results from the induction of enzymes required for homologous recombination, or the production of substrate sites for recombination containing regions of DNA damage. We utilized split-dose experiments to investigate the induction of proteins required for survival, gene conversion, and mutation in a diploid strain of S. cerevisiae. We demonstrate that inducing doses of UV irradiation followed by a 6 h period of incubation render the cells resistant to challenge doses of UV irradiation. The effects of inducing and challenge doses of UV irradiation upon interchromosomal gene conversion and mutation are strictly additive. Using the yeast URA3 gene cloned in non-replicating single- and double-stranded plasmid vectors that integrate into chromosomal genes upon transformation, we show that UV irradiation of haploid yeast cells and homologous plasmid DNA sequences each stimulate homologous recombination approximately two-fold, and that these effects are additive. Non-specific DNA damage has little effect on the stimulation of homologous recombination, as shown by studies in which UV-irradiated heterologous DNA was included in transformation/recombination experiments. We further demonstrate that the effect of competing single- and double-stranded heterologous DNA sequences differs in UV-irradiated and unirradiated cells, suggesting an induction of recombinational machinery in UV-irradiated S. cerevisiae cells.

  6. Acylinder and freeform optical manufacturing

    Science.gov (United States)

    Fess, Edward; Wolfs, Frank; DeFisher, Scott; Ross, James

    2015-10-01

    Aspheric cylinders have the ability to improve optical performance over standard cylindrical surfaces. Over the last several years there has also been development into the application and functionality of utilizing freeform surfaces to improve optical performance. Freeforms have the ability to not only improve image quality over a greater field of view, but can open up the design space of an optical system making it more compact. Freeform geometries, much like aspheric cylinders, may not have an axis of rotation to spin the optic about during manufacturing. This leads to costly fabrication processes and custom metrology set ups, which may inhibit their use. Over the last several years, OptiPro Systems has developed and optimized our eSX grinding, UFF and USF polishing, UltraSurf metrology, and ProSurf software programming technologies to make the processing of these complex geometries much easier and deterministic. In this paper we will discuss the challenges associated with manufacturing complex shapes like aspheric cylinders as well as freeform geometries, and how several technologies working together can overcome them. The technologies focus on metrology feedback to a grinding and polishing machine that is controlled through an iterative computer aided manufacturing software system. We will also present examples of these hard to manufacture shapes with results.

  7. Development of Advanced Ceramic Manufacturing Technology; FINAL

    International Nuclear Information System (INIS)

    Pujari, V.K.

    2001-01-01

    Advanced structural ceramics are enabling materials for new transportation engine systems that have the potential for significantly reducing energy consumption and pollution in automobiles and heavy vehicles. Ceramic component reliability and performance have been demonstrated in previous U.S. DOE initiatives, but high manufacturing cost was recognized as a major barrier to commercialization. Norton Advanced Ceramics (NAC), a division of Saint-Gobain Industrial Ceramics, Inc. (SGIC), was selected to perform a major Advanced Ceramics Manufacturing Technology (ACMT) Program. The overall objectives of NAC's program were to design, develop, and demonstrate advanced manufacturing technology for the production of ceramic exhaust valves for diesel engines. The specific objectives were (1) to reduce the manufacturing cost by an order of magnitude, (2) to develop and demonstrate process capability and reproducibility, and (3) to validate ceramic valve performance, durability, and reliability. I n order to achieve these objectives, NAC, a leading U.S. advanced ceramics component manufacturer, assembled a multidisciplinary, vertically integrated team. This team included: a major diesel engine builder, Detroit Diesel Corporation (DDC); a corporate ceramics research division, SGIC's Northboro R and D Center; intelligent processing system developers, BDM Federal/MATSYS; a furnace equipment company, Centorr/Vacuum Industries; a sintering expert, Wittmer Consultants; a production OEM, Deco-Grand; a wheel manufacturer and grinding operation developer, Norton Company's Higgins Grinding Technology Center (HGTC); a ceramic machine shop, Chand Kare Technical Ceramics; and a manufacturing cost consultant, IBIS Associates. The program was divided into four major tasks: Component Design and Specification, Component Manufacturing Technology Development, Inspection and Testing, and Process Demonstration

  8. Vaccine escape recombinants emerge after pneumococcal vaccination in the United States.

    Science.gov (United States)

    Brueggemann, Angela B; Pai, Rekha; Crook, Derrick W; Beall, Bernard

    2007-11-01

    The heptavalent pneumococcal conjugate vaccine (PCV7) was introduced in the United States (US) in 2000 and has significantly reduced invasive pneumococcal disease; however, the incidence of nonvaccine serotype invasive disease, particularly due to serotype 19A, has increased. The serotype 19A increase can be explained in part by expansion of a genotype that has been circulating in the US prior to vaccine implementation (and other countries since at least 1990), but also by the emergence of a novel "vaccine escape recombinant" pneumococcal strain. This strain has a genotype that previously was only associated with vaccine serotype 4, but now expresses a nonvaccine serotype 19A capsule. Based on prior evidence for capsular switching by recombination at the capsular locus, the genetic event that resulted in this novel serotype/genotype combination might be identifiable from the DNA sequence of individual pneumococcal strains. Therefore, the aim of this study was to characterise the putative recombinational event(s) at the capsular locus that resulted in the change from a vaccine to a nonvaccine capsular type. Sequencing the capsular locus flanking regions of 51 vaccine escape (progeny), recipient, and putative donor pneumococci revealed a 39 kb recombinational fragment, which included the capsular locus, flanking regions, and two adjacent penicillin-binding proteins, and thus resulted in a capsular switch and penicillin nonsusceptibility in a single genetic event. Since 2003, 37 such vaccine escape strains have been detected, some of which had evolved further. Furthermore, two new types of serotype 19A vaccine escape strains emerged in 2005. To our knowledge, this is the first time a single recombinational event has been documented in vivo that resulted in both a change of serotype and penicillin nonsusceptibility. Vaccine escape by genetic recombination at the capsular locus has the potential to reduce PCV7 effectiveness in the longer term.

  9. Spectrum Recombination.

    Science.gov (United States)

    Greenslade, Thomas B., Jr.

    1984-01-01

    Describes several methods of executing lecture demonstrations involving the recombination of the spectrum. Groups the techniques into two general classes: bringing selected portions of the spectrum together using lenses or mirrors and blurring the colors by rapid movement or foreshortening. (JM)

  10. Recombination in Avian Gamma-Coronavirus Infectious Bronchitis Virus

    Directory of Open Access Journals (Sweden)

    Mark W. Jackwood

    2011-09-01

    Full Text Available Recombination in the family Coronaviridae has been well documented and is thought to be a contributing factor in the emergence and evolution of different coronaviral genotypes as well as different species of coronavirus. However, there are limited data available on the frequency and extent of recombination in coronaviruses in nature and particularly for the avian gamma-coronaviruses where only recently the emergence of a turkey coronavirus has been attributed solely to recombination. In this study, the full-length genomes of eight avian gamma-coronavirus infectious bronchitis virus (IBV isolates were sequenced and along with other full-length IBV genomes available from GenBank were analyzed for recombination. Evidence of recombination was found in every sequence analyzed and was distributed throughout the entire genome. Areas that have the highest occurrence of recombination are located in regions of the genome that code for nonstructural proteins 2, 3 and 16, and the structural spike glycoprotein. The extent of the recombination observed, suggests that this may be one of the principal mechanisms for generating genetic and antigenic diversity within IBV. These data indicate that reticulate evolutionary change due to recombination in IBV, likely plays a major role in the origin and adaptation of the virus leading to new genetic types and strains of the virus.

  11. Intra HLA-D/DR region recombinant detected by primed lymphocyte typing (PLT)

    DEFF Research Database (Denmark)

    Jakobsen, B K; Kristensen, T; Lamm, L U

    1983-01-01

    The chromosome 6 markers, HLA-ABC, D, DR, MT, properdin factor Bf, and complement factors 2 (C2) and 5 (C4), were studied in three families, each of which included two HLA identical siblings, one or both of whom were known to be HLA-B: GLO recombinants. The families were also typed with primed...... lymphocyte typing (PLT) for HLA-D/DR region associated DP antigens. None of these studies gave evidence that the recombinations had occurred within the HLA region. Mixed leucocyte culture (MLC) tests within the families showed no detectable stimulation between the HLA identical siblings in two...

  12. Historical Financial Data - Domestic Automobile Manufacturers

    Science.gov (United States)

    1979-01-01

    A historical financial data base was developed for the four major U.S. automobile manufacturers, focusing on the specific operations associated with production and marketing of automobiles and light trucks. The years subject to analysis were 1967-197...

  13. Micro-manufacturing: design and manufacturing of micro-products

    National Research Council Canada - National Science Library

    Koç, Muammer; Özel, Tuğrul

    2011-01-01

    .... After addressing the fundamentals and non-metallic-based micro-manufacturing processes in the semiconductor industry, it goes on to address specific metallic-based micro-manufacturing processes...

  14. SCHEMA computational design of virus capsid chimeras: calibrating how genome packaging, protection, and transduction correlate with calculated structural disruption.

    Science.gov (United States)

    Ho, Michelle L; Adler, Benjamin A; Torre, Michael L; Silberg, Jonathan J; Suh, Junghae

    2013-12-20

    Adeno-associated virus (AAV) recombination can result in chimeric capsid protein subunits whose ability to assemble into an oligomeric capsid, package a genome, and transduce cells depends on the inheritance of sequence from different AAV parents. To develop quantitative design principles for guiding site-directed recombination of AAV capsids, we have examined how capsid structural perturbations predicted by the SCHEMA algorithm correlate with experimental measurements of disruption in seventeen chimeric capsid proteins. In our small chimera population, created by recombining AAV serotypes 2 and 4, we found that protection of viral genomes and cellular transduction were inversely related to calculated disruption of the capsid structure. Interestingly, however, we did not observe a correlation between genome packaging and calculated structural disruption; a majority of the chimeric capsid proteins formed at least partially assembled capsids and more than half packaged genomes, including those with the highest SCHEMA disruption. These results suggest that the sequence space accessed by recombination of divergent AAV serotypes is rich in capsid chimeras that assemble into 60-mer capsids and package viral genomes. Overall, the SCHEMA algorithm may be useful for delineating quantitative design principles to guide the creation of libraries enriched in genome-protecting virus nanoparticles that can effectively transduce cells. Such improvements to the virus design process may help advance not only gene therapy applications but also other bionanotechnologies dependent upon the development of viruses with new sequences and functions.

  15. The unconventional xer recombination machinery of Streptococci/Lactococci

    NARCIS (Netherlands)

    Le Bourgeois, Pascal; Bugarel, Marie; Campo, Nathalie; Daveran-Mingot, Marie-Line; Labonte, Jessica; Lanfranchi, Daniel; Lautier, Thomas; Pages, Carine; Ritzenthaler, Paul

    Homologous recombination between circular sister chromosomes during DNA replication in bacteria can generate chromosome dimers that must be resolved into monomers prior to cell division. In Escherichia coli, dimer resolution is achieved by site-specific recombination, Xer recombination, involving

  16. Design and application of reconfigurable manufacturing systems in agile mass customization manufacturing environment.

    CSIR Research Space (South Africa)

    Xing, B

    2007-05-01

    Full Text Available processes. Many manufacturing techniques are based on the principles of Flexible Manufacturing and Dedicated Manufacturing for mass production. Reconfigurable Manufacturing System, (RMS), is a manufacturing system that can provide for Agile Manufacturing...

  17. Replicative age induces mitotic recombination in the ribosomal RNA gene cluster of Saccharomyces cerevisiae.

    Directory of Open Access Journals (Sweden)

    Derek L Lindstrom

    2011-03-01

    Full Text Available Somatic mutations contribute to the development of age-associated disease. In earlier work, we found that, at high frequency, aging Saccharomyces cerevisiae diploid cells produce daughters without mitochondrial DNA, leading to loss of respiration competence and increased loss of heterozygosity (LOH in the nuclear genome. Here we used the recently developed Mother Enrichment Program to ask whether aging cells that maintain the ability to produce respiration-competent daughters also experience increased genomic instability. We discovered that this population exhibits a distinct genomic instability phenotype that primarily affects the repeated ribosomal RNA gene array (rDNA array. As diploid cells passed their median replicative life span, recombination rates between rDNA arrays on homologous chromosomes progressively increased, resulting in mutational events that generated LOH at >300 contiguous open reading frames on the right arm of chromosome XII. We show that, while these recombination events were dependent on the replication fork block protein Fob1, the aging process that underlies this phenotype is Fob1-independent. Furthermore, we provide evidence that this aging process is not driven by mechanisms that modulate rDNA recombination in young cells, including loss of cohesion within the rDNA array or loss of Sir2 function. Instead, we suggest that the age-associated increase in rDNA recombination is a response to increasing DNA replication stress generated in aging cells.

  18. Graded Recombination Layers for Multijunction Photovoltaics

    KAUST Repository

    Koleilat, Ghada I.; Wang, Xihua; Sargent, Edward H.

    2012-01-01

    it to achieve multicolor and spectrally tunable behavior. In series-connected current-matched multijunction devices, the recombination layers must allow the hole current from one cell to recombine, with high efficiency and low voltage loss, with the electron

  19. Regulatory Perspectives on Continuous Pharmaceutical Manufacturing: Moving From Theory to Practice: September 26-27, 2016, International Symposium on the Continuous Manufacturing of Pharmaceuticals.

    Science.gov (United States)

    Nasr, Moheb M; Krumme, Markus; Matsuda, Yoshihiro; Trout, Bernhardt L; Badman, Clive; Mascia, Salvatore; Cooney, Charles L; Jensen, Keith D; Florence, Alastair; Johnston, Craig; Konstantinov, Konstantin; Lee, Sau L

    2017-11-01

    Continuous manufacturing plays a key role in enabling the modernization of pharmaceutical manufacturing. The fate of this emerging technology will rely, in large part, on the regulatory implementation of this novel technology. This paper, which is based on the 2nd International Symposium on the Continuous Manufacturing of Pharmaceuticals, describes not only the advances that have taken place since the first International Symposium on Continuous Manufacturing of Pharmaceuticals in 2014, but the regulatory landscape that exists today. Key regulatory concepts including quality risk management, batch definition, control strategy, process monitoring and control, real-time release testing, data processing and management, and process validation/verification are outlined. Support from regulatory agencies, particularly in the form of the harmonization of regulatory expectations, will be crucial to the successful implementation of continuous manufacturing. Collaborative efforts, among academia, industry, and regulatory agencies, are the optimal solution for ensuring a solid future for this promising manufacturing technology. Copyright © 2017 American Pharmacists Association®. All rights reserved.

  20. Advances in solid dosage form manufacturing technology.

    Science.gov (United States)

    Andrews, Gavin P

    2007-12-15

    Currently, the pharmaceutical and healthcare industries are moving through a period of unparalleled change. Major multinational pharmaceutical companies are restructuring, consolidating, merging and more importantly critically assessing their competitiveness to ensure constant growth in an ever-more demanding market where the cost of developing novel products is continuously increasing. The pharmaceutical manufacturing processes currently in existence for the production of solid oral dosage forms are associated with significant disadvantages and in many instances provide many processing problems. Therefore, it is well accepted that there is an increasing need for alternative processes to dramatically improve powder processing, and more importantly to ensure that acceptable, reproducible solid dosage forms can be manufactured. Consequently, pharmaceutical companies are beginning to invest in innovative processes capable of producing solid dosage forms that better meet the needs of the patient while providing efficient manufacturing operations. This article discusses two emerging solid dosage form manufacturing technologies, namely hot-melt extrusion and fluidized hot-melt granulation.