WorldWideScience

Sample records for mannosylated surface structures

  1. Surface modified liposomes by mannosylated conjugates anchored via the adamantyl moiety in the lipid bilayer.

    Science.gov (United States)

    Stimac, Adela; Segota, Suzana; Dutour Sikirić, Maja; Ribić, Rosana; Frkanec, Leo; Svetličić, Vesna; Tomić, Srđanka; Vranešić, Branka; Frkanec, Ruža

    2012-09-01

    The aim of the present study was to encapsulate mannosylated 1-aminoadamantane and mannosylated adamantyltripeptides, namely [(2R)-N-(adamant-1-yl)-3-(α,β-d-mannopyranosyloxy)-2-methylpropanamide and (2R)-N-[3-(α-d-mannopyranosyloxy)-2-methylpropanoyl]-d,l-(adamant-2-yl)glycyl-l-alanyl-d-isoglutamine] in liposomes. The characterization of liposomes, size and surface morphology was performed using dynamic light scattering (DLS) and atomic force microscopy (AFM). The results have revealed that the encapsulation of examined compounds changes the size and surface of liposomes. After the concanavalin A (ConA) was added to the liposome preparation, increase in liposome size and their aggregation has been observed. The enlargement of liposomes was ascribed to the specific binding of the ConA to the mannose present on the surface of the prepared liposomes. Thus, it has been shown that the adamantyl moiety from mannosylated 1-aminoadamantane and mannosylated adamantyltripeptides can be used as an anchor in the lipid bilayer for carbohydrate moiety exposed on the liposome surface. Copyright © 2012 Elsevier B.V. All rights reserved.

  2. Mannosyl Glycodendritic Structure Inhibits DC-SIGN-Mediated Ebola Virus Infection in cis and in trans

    OpenAIRE

    Lasala, Fátima; Arce, Eva; Otero, Joaquín R.; Rojo, Javier; Delgado, Rafael

    2003-01-01

    We have designed a glycodendritic structure, BH30sucMan, that blocks the interaction between dendritic cell-specific intercellular adhesion molecule 3-grabbing nonintegrin (DC-SIGN) and Ebola virus (EBOV) envelope. BH30sucMan inhibits DC-SIGN-mediated EBOV infection at nanomolar concentrations. BH30sucMan may counteract important steps of the infective process of EBOV and, potentially, of microorganisms shown to exploit DC-SIGN for cell entry and infection.

  3. Mannosyl Glycodendritic Structure Inhibits DC-SIGN-Mediated Ebola Virus Infection in cis and in trans

    Science.gov (United States)

    Lasala, Fátima; Arce, Eva; Otero, Joaquín R.; Rojo, Javier; Delgado, Rafael

    2003-01-01

    We have designed a glycodendritic structure, BH30sucMan, that blocks the interaction between dendritic cell-specific intercellular adhesion molecule 3-grabbing nonintegrin (DC-SIGN) and Ebola virus (EBOV) envelope. BH30sucMan inhibits DC-SIGN-mediated EBOV infection at nanomolar concentrations. BH30sucMan may counteract important steps of the infective process of EBOV and, potentially, of microorganisms shown to exploit DC-SIGN for cell entry and infection. PMID:14638512

  4. Regulation of granulocyte colony-stimulating factor receptor-mediated granulocytic differentiation by C-mannosylation.

    Science.gov (United States)

    Otani, Kei; Niwa, Yuki; Suzuki, Takehiro; Sato, Natsumi; Sasazawa, Yukiko; Dohmae, Naoshi; Simizu, Siro

    2018-04-06

    Granulocyte colony-stimulating factor (G-CSF) receptor (G-CSFR) is a type I cytokine receptor which is involved in hematopoietic cell maturation. G-CSFR has three putative C-mannosylation sites at W253, W318, and W446; however, it is not elucidated whether G-CSFR is C-mannosylated or not. In this study, we first demonstrated that G-CSFR was C-mannosylated at only W318. We also revealed that C-mannosylation of G-CSFR affects G-CSF-dependent downstream signaling through changing ligand binding capability but not cell surface localization. Moreover, C-mannosylation of G-CSFR was functional and regulated granulocytic differentiation in myeloid 32D cells. In conclusion, we found that G-CSFR is C-mannosylated at W318 and that this C-mannosylation has role(s) for myeloid cell differentiation through regulating downstream signaling. Copyright © 2018 Elsevier Inc. All rights reserved.

  5. Structures of C-mannosylated anti-adhesives bound to the type 1 fimbrial FimH adhesin

    Directory of Open Access Journals (Sweden)

    Jerome de Ruyck

    2016-05-01

    Full Text Available Selective inhibitors of the type 1 fimbrial adhesin FimH are recognized as attractive alternatives for antibiotic therapies and prophylaxes against Escherichia coli infections such as urinary-tract infections. To construct these inhibitors, the α-d-mannopyranoside of high-mannose N-glycans, recognized with exclusive specificity on glycoprotein receptors by FimH, forms the basal structure. A hydrophobic aglycon is then linked to the mannose by the O1 oxygen inherently present in the α-anomeric configuration. Substitution of this O atom by a carbon introduces a C-glycosidic bond, which may enhance the therapeutic potential of such compounds owing to the inability of enzymes to degrade C-glycosidic bonds. Here, the first crystal structures of the E. coli FimH adhesin in complex with C-glycosidically linked mannopyranosides are presented. These findings explain the role of the spacer in positioning biphenyl ligands for interactions by means of aromatic stacking in the tyrosine gate of FimH and how the normally hydrated C-glycosidic link is tolerated. As these new compounds can bind FimH, it can be assumed that they have the potential to serve as potent new antagonists of FimH, paving the way for the design of a new family of anti-adhesive compounds against urinary-tract infections.

  6. Ultrasound effects on brain-targeting mannosylated liposomes: in vitro and blood-brain barrier transport investigations.

    Science.gov (United States)

    Zidan, Ahmed S; Aldawsari, Hibah

    2015-01-01

    Delivering drugs to intracerebral regions can be accomplished by improving the capacity of transport through blood-brain barrier. Using sertraline as model drug for brain targeting, the current study aimed at modifying its liposomal vesicles with mannopyranoside. Box-Behnken design was employed to statistically optimize the ultrasound parameters, namely ultrasound amplitude, time, and temperature, for maximum mannosylation capacity, sertraline entrapment, and surface charge while minimizing vesicular size. Moreover, in vitro blood-brain barrier transport model was established to assess the transendothelial capacity of the optimized mannosylated vesicles. Results showed a dependence of vesicular size, mannosylation capacity, and sertraline entrapment on cavitation and bubble implosion events that were related to ultrasound power amplitude, temperature. However, short ultrasound duration was required to achieve >90% mannosylation with nanosized vesicles (ultrasound parameters of 65°C, 27%, and 59 seconds for ultrasound temperature, amplitude, and time were elucidated to produce 81.1%, 46.6 nm, and 77.6% sertraline entrapment, vesicular size, and mannosylation capacity, respectively. Moreover, the transendothelial ability was significantly increased by 2.5-fold by mannosylation through binding with glucose transporters. Hence, mannosylated liposomes processed by ultrasound could be a promising approach for manufacturing and scale-up of brain-targeting liposomes.

  7. Glycosylation with ribitol-phosphate in mammals: New insights into the O-mannosyl glycan.

    Science.gov (United States)

    Manya, Hiroshi; Endo, Tamao

    2017-10-01

    O-mannosyl glycans have been found in a limited number of glycoproteins of the brain, nerves, and skeletal muscles, particularly in α-dystroglycan (α-DG). Defects in O-mannosyl glycan on α-DG are the primary cause of a group of congenital muscular dystrophies, which are collectively termed α-dystroglycanopathy. Recent studies have revealed various O-mannosyl glycan structures, which can be classified as core M1, core M2, and core M3 glycans. Although many dystroglycanopathy genes are involved in core M3 processing, the structure and biosynthesis of core M3 glycan remains only partially understood. This review presents recent findings about the structure, biosynthesis, and pathology of O-mannosyl glycans. Recent studies have revealed that the entire structure of core M3 glycan, including ribitol-5-phosphate, is a novel structure in mammals; its unique biosynthetic pathway has been elucidated by the identification of new causative genes for α-dystroglycanopathies and their functions. O-mannosyl glycan has a novel, unique structure that is important for the maintenance of brain and muscle functions. These findings have opened up a new field in glycoscience. These studies will further contribute to the understanding of the pathomechanism of α-dystroglycanopathy and the development of glycotherapeutics. This article is part of a Special Issue entitled Neuro-glycoscience, edited by Kenji Kadomatsu and Hiroshi Kitagawa. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Ultrasound effects on brain-targeting mannosylated liposomes: in vitro and blood–brain barrier transport investigations

    Directory of Open Access Journals (Sweden)

    Zidan AS

    2015-07-01

    Full Text Available Ahmed S Zidan,1,2 Hibah Aldawsari1 1Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia; 2Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt Abstract: Delivering drugs to intracerebral regions can be accomplished by improving the capacity of transport through blood–brain barrier. Using sertraline as model drug for brain targeting, the current study aimed at modifying its liposomal vesicles with mannopyranoside. Box-Behnken design was employed to statistically optimize the ultrasound parameters, namely ultrasound amplitude, time, and temperature, for maximum mannosylation capacity, sertraline entrapment, and surface charge while minimizing vesicular size. Moreover, in vitro blood–brain barrier transport model was established to assess the transendothelial capacity of the optimized mannosylated vesicles. Results showed a dependence of vesicular size, mannosylation capacity, and sertraline entrapment on cavitation and bubble implosion events that were related to ultrasound power amplitude, temperature. However, short ultrasound duration was required to achieve >90% mannosylation with nanosized vesicles (<200 nm of narrow size distribution. Optimized ultrasound parameters of 65°C, 27%, and 59 seconds for ultrasound temperature, amplitude, and time were elucidated to produce 81.1%, 46.6 nm, and 77.6% sertraline entrapment, vesicular size, and mannosylation capacity, respectively. Moreover, the transendothelial ability was significantly increased by 2.5-fold by mannosylation through binding with glucose transporters. Hence, mannosylated liposomes processed by ultrasound could be a promising approach for manufacturing and scale-up of brain-targeting liposomes. Keywords: CNS delivery, sizing, lipid based formulations, quality by design, sertraline hydrochloride

  9. Alternative mannosylation method for nanomaterials: application to oxidized debris-free multiwalled carbon nanotubes

    International Nuclear Information System (INIS)

    Sousa, Marcelo de; Martinez, Diego Stéfani Teodoro; Alves, Oswaldo Luiz

    2016-01-01

    Mannosylation is a method commonly used to deliver nanomaterials to specific organs and tissues via cellular macrophage uptake. In this work, for the first time, we proposed a method that involves the binding of d-mannose to ethylenediamine to form mannosylated ethylenediamine, which is then coupled to oxidized and purified multiwalled carbon nanotubes. The advantage of this approach is that mannosylated ethylenediamine precipitates in methanol, which greatly facilitates the separation of this product in the synthesis process. Carbon nanotubes were oxidized using concentrated H_2SO_4 and HNO_3 by conventional reflux method. However, during this oxidation process, carbon nanotubes generated carboxylated carbonaceous fragments (oxidation debris). These by-products were removed from the oxidized carbon nanotubes to ensure that the functionalization would occur only on the carbon nanotube surface. The coupling of mannosylated ethylenediamine to debris-free carbon nanotubes was accomplished using n-(3-dimethylaminopropyl)-n-ethylcarbodiimide and n-hydroxysuccinimide. Deconvoluted N1s spectra obtained from X-ray photoelectron spectroscopy gave binding energies of 399.8 and 401.7 eV, which we attributed to the amide and amine groups, respectively, of carbon nanotubes functionalized with mannosylated ethylenediamine. Deconvoluted O1s spectra showed a binding energy of 532.4 eV, which we suggest is caused by an overlap in the binding energies of the aliphatic CO groups of d-mannose and the O=C group of the amide bond. The functionalization degree was approximately 3.4 %, according to the thermogravimetric analysis. Scanning electron microscopy demonstrated that an extended carbon nanotube morphology was preserved following the oxidation, purification, and functionalization steps.

  10. Alternative mannosylation method for nanomaterials: application to oxidized debris-free multiwalled carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Sousa, Marcelo de, E-mail: marcelosousap2@yahoo.com.br [University of Campinas (Unicamp), Solid State Chemistry Laboratory (LQES) and NanoBioss Laboratory, Institute of Chemistry (Brazil); Martinez, Diego Stéfani Teodoro, E-mail: diego.martinez@lnnano.cnpem.br [Brazilian Center for Research in Energy and Materials (CNPEM), Brazilian Nanotechnology National Laboratory (LNNano) (Brazil); Alves, Oswaldo Luiz, E-mail: oalves@iqm.unicamp.br [University of Campinas (Unicamp), Solid State Chemistry Laboratory (LQES) and NanoBioss Laboratory, Institute of Chemistry (Brazil)

    2016-06-15

    Mannosylation is a method commonly used to deliver nanomaterials to specific organs and tissues via cellular macrophage uptake. In this work, for the first time, we proposed a method that involves the binding of d-mannose to ethylenediamine to form mannosylated ethylenediamine, which is then coupled to oxidized and purified multiwalled carbon nanotubes. The advantage of this approach is that mannosylated ethylenediamine precipitates in methanol, which greatly facilitates the separation of this product in the synthesis process. Carbon nanotubes were oxidized using concentrated H{sub 2}SO{sub 4} and HNO{sub 3} by conventional reflux method. However, during this oxidation process, carbon nanotubes generated carboxylated carbonaceous fragments (oxidation debris). These by-products were removed from the oxidized carbon nanotubes to ensure that the functionalization would occur only on the carbon nanotube surface. The coupling of mannosylated ethylenediamine to debris-free carbon nanotubes was accomplished using n-(3-dimethylaminopropyl)-n-ethylcarbodiimide and n-hydroxysuccinimide. Deconvoluted N1s spectra obtained from X-ray photoelectron spectroscopy gave binding energies of 399.8 and 401.7 eV, which we attributed to the amide and amine groups, respectively, of carbon nanotubes functionalized with mannosylated ethylenediamine. Deconvoluted O1s spectra showed a binding energy of 532.4 eV, which we suggest is caused by an overlap in the binding energies of the aliphatic CO groups of d-mannose and the O=C group of the amide bond. The functionalization degree was approximately 3.4 %, according to the thermogravimetric analysis. Scanning electron microscopy demonstrated that an extended carbon nanotube morphology was preserved following the oxidation, purification, and functionalization steps.

  11. Dendritic cell targeted liposomes–protamine–DNA complexes mediated by synthetic mannosylated cholestrol as a potential carrier for DNA vaccine

    International Nuclear Information System (INIS)

    Li Pan; Chen Simu; Jiang Yuhong; Jiang Jiayu; Zhang Zhirong; Sun Xun

    2013-01-01

    To construct mannosylated liposomes/protamine/DNA (LPD) carriers for DNA vaccine targeting to dendritic cells (DCs), a mannosylated cholesterol derivative (Man-C6-Chol) was synthesized via simple ester linkage and amide bonds. Then, the Man-C6-Chol was applied to LPD formulation as a synthetic ligand. The physicochemical properties of mannosylated LPD (Man-LPD) were first evaluated, including the size and zeta potential, morphology and the ability to protect DNA against DNase I degradation. Man-LPD showed a small size with a stable viral-like structure. In comparison to non-mannose liposomes/LPD (Man-free liposomes/LPD), mannosylated liposomes/LPD (Man-liposomes/Man-LPD) exhibited higher efficiency in both intracellular uptake (2.3-fold) and transfection (4.5-fold) in vitro. Subsequent MTT assays indicated that the LPD carriers had low toxicity on the tested cells. Afterwards, the investigation into the maturation activation on primary bone marrow-derived DCs (BMDCs) showed that both Man-LPD and Man-free LPD induced remarkable up-regulation of CD80, CD86 and CD40 on BMDCs. Inspired by these studies, we can conclude that the synthetic mannosylated LPD targeting to DCs was a potential carrier for DNA vaccine. (paper)

  12. Protein O-Mannosylation in the Murine Brain: Occurrence of Mono-O-Mannosyl Glycans and Identification of New Substrates

    Science.gov (United States)

    Bartels, Markus F.; Winterhalter, Patrick R.; Yu, Jin; Liu, Yan; Lommel, Mark; Möhrlen, Frank; Hu, Huaiyu; Feizi, Ten; Westerlind, Ulrika; Ruppert, Thomas; Strahl, Sabine

    2016-01-01

    Protein O-mannosylation is a post-translational modification essential for correct development of mammals. In humans, deficient O-mannosylation results in severe congenital muscular dystrophies often associated with impaired brain and eye development. Although various O-mannosylated proteins have been identified in the recent years, the distribution of O-mannosyl glycans in the mammalian brain and target proteins are still not well defined. In the present study, rabbit monoclonal antibodies directed against the O-mannosylated peptide YAT(α1-Man)AV were generated. Detailed characterization of clone RKU-1-3-5 revealed that this monoclonal antibody recognizes O-linked mannose also in different peptide and protein contexts. Using this tool, we observed that mono-O-mannosyl glycans occur ubiquitously throughout the murine brain but are especially enriched at inhibitory GABAergic neurons and at the perineural nets. Using a mass spectrometry-based approach, we further identified glycoproteins from the murine brain that bear single O-mannose residues. Among the candidates identified are members of the cadherin and plexin superfamilies and the perineural net protein neurocan. In addition, we identified neurexin 3, a cell adhesion protein involved in synaptic plasticity, and inter-alpha-trypsin inhibitor 5, a protease inhibitor important in stabilizing the extracellular matrix, as new O-mannosylated glycoproteins. PMID:27812179

  13. Protein O-Mannosylation in the Murine Brain: Occurrence of Mono-O-Mannosyl Glycans and Identification of New Substrates.

    Directory of Open Access Journals (Sweden)

    Markus F Bartels

    Full Text Available Protein O-mannosylation is a post-translational modification essential for correct development of mammals. In humans, deficient O-mannosylation results in severe congenital muscular dystrophies often associated with impaired brain and eye development. Although various O-mannosylated proteins have been identified in the recent years, the distribution of O-mannosyl glycans in the mammalian brain and target proteins are still not well defined. In the present study, rabbit monoclonal antibodies directed against the O-mannosylated peptide YAT(α1-ManAV were generated. Detailed characterization of clone RKU-1-3-5 revealed that this monoclonal antibody recognizes O-linked mannose also in different peptide and protein contexts. Using this tool, we observed that mono-O-mannosyl glycans occur ubiquitously throughout the murine brain but are especially enriched at inhibitory GABAergic neurons and at the perineural nets. Using a mass spectrometry-based approach, we further identified glycoproteins from the murine brain that bear single O-mannose residues. Among the candidates identified are members of the cadherin and plexin superfamilies and the perineural net protein neurocan. In addition, we identified neurexin 3, a cell adhesion protein involved in synaptic plasticity, and inter-alpha-trypsin inhibitor 5, a protease inhibitor important in stabilizing the extracellular matrix, as new O-mannosylated glycoproteins.

  14. Identification of O-mannosylated virulence factors in Ustilago maydis.

    Directory of Open Access Journals (Sweden)

    Alfonso Fernández-Álvarez

    Full Text Available The O-mannosyltransferase Pmt4 has emerged as crucial for fungal virulence in the animal pathogens Candida albicans or Cryptococcus neoformans as well as in the phytopathogenic fungus Ustilago maydis. Pmt4 O-mannosylates specific target proteins at the Endoplasmic Reticulum. Therefore a deficient O-mannosylation of these target proteins must be responsible for the loss of pathogenicity in pmt4 mutants. Taking advantage of the characteristics described for Pmt4 substrates in Saccharomyces cerevisiae, we performed a proteome-wide bioinformatic approach to identify putative Pmt4 targets in the corn smut fungus U. maydis and validated Pmt4-mediated glycosylation of candidate proteins by electrophoretic mobility shift assays. We found that the signalling mucin Msb2, which regulates appressorium differentiation upstream of the pathogenicity-related MAP kinase cascade, is O-mannosylated by Pmt4. The epistatic relationship of pmt4 and msb2 showed that both are likely to act in the same pathway. Furthermore, constitutive activation of the MAP kinase cascade restored appressorium development in pmt4 mutants, suggesting that during the initial phase of infection the failure to O-mannosylate Msb2 is responsible for the virulence defect of pmt4 mutants. On the other hand we demonstrate that during later stages of pathogenic development Pmt4 affects virulence independently of Msb2, probably by modifying secreted effector proteins. Pit1, a protein required for fungal spreading inside the infected leaf, was also identified as a Pmt4 target. Thus, O-mannosylation of different target proteins affects various stages of pathogenic development in U. maydis.

  15. Mannosylated biodegradable polyethyleneimine for targeted DNA delivery to dendritic cells

    Directory of Open Access Journals (Sweden)

    Sun X

    2012-06-01

    Full Text Available Xun Sun, Simu Chen, Jianfeng Han, Zhirong ZhangKey Laboratory of Drug Targeting and Drug Delivery System, Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu, People’s Republic of ChinaBackground: To establish a potential gene-delivery system with the ability to deliver plasmid DNA to dendritic cells (DCs more efficiently and specifically, we designed and synthesized a low-molecular-weight polyethyleneimine and triethyleneglycol polymer (PEI–TEG and a series of its mannosylated derivatives.Methods: PEI–TEG was synthesized from PEI2000 and PEI600 with TEG as the cross-linker. PEI–TEG was then linked to mannose via a phenylisothiocyanate bridge to obtain man-PEI–TEG conjugates. The DNA conveyance abilities of PEI–TEG, man-PEI–TEG, as well as control PEI25k were evaluated by measuring their zeta potential, particle size, and DNA-binding abilities. The in vitro cytotoxicity, cell uptake, and transfection efficiency of these PEI/DNA complexes were examined on the DC2.4 cell line. Finally, a maturation experiment evaluated the effect of costimulatory molecules CD40, CD80, and CD86 on murine bone marrow-derived DCs (BMDCs using flow cytometry.Results: PEI–TEG and man-PEI–TEG were successfully synthesized and were shown to retain the excellent properties of PEI25k for condensing DNA. Compared with PEI–TEG as well as PEI25k, the man-PEI–TEG had less cytotoxicity and performed better in both cellular uptake and transfection assays in vitro. The results of the maturation experiment showed that all the PEI/DNA complexes induced an adequate upregulation of surface markers for DC maturation.Conclusion: These results demonstrated that man-PEI–TEG can be employed as a DC-targeting gene-delivery system.Keywords: dendritic cells, DCs, mannose, polyethyleneimine, PEI, gene delivery

  16. Crystallization and preliminary crystallographic analysis of mannosyl-3-phosphoglycerate synthase from Rubrobacter xylanophilus

    International Nuclear Information System (INIS)

    Sá-Moura, Bebiana; Albuquerque, Luciana; Empadinhas, Nuno; Costa, Milton S. da; Pereira, Pedro José Barbosa; Macedo-Ribeiro, Sandra

    2008-01-01

    The enzyme mannosyl-3-phosphoglycerate synthase from R. xylanophilus has been expressed, purified and crystallized. The crystals belong to the hexagonal space group P6 5 22 and diffract to 2.2 Å resolution. Rubrobacter xylanophilus is the only Gram-positive bacterium known to synthesize the compatible solute mannosylglycerate (MG), which is commonly found in hyperthermophilic archaea and some thermophilic bacteria. Unlike the salt-dependent pattern of accumulation observed in (hyper)thermophiles, in R. xylanophilus MG accumulates constitutively. The synthesis of MG in R. xylanophilus was tracked from GDP-mannose and 3-phosphoglycerate, but the genome sequence of the organism failed to reveal any of the genes known to be involved in this pathway. The native enzyme was purified and its N-terminal sequence was used to identify the corresponding gene (mpgS) in the genome of R. xylanophilus. The gene encodes a highly divergent mannosyl-3-phosphoglycerate synthase (MpgS) without relevant sequence homology to known mannosylphosphoglycerate synthases. In order to understand the specificity and enzymatic mechanism of this novel enzyme, it was expressed in Escherichia coli, purified and crystallized. The crystals thus obtained belonged to the hexagonal space group P6 5 22 and contained two protein molecules per asymmetric unit. The structure was solved by SIRAS using a mercury derivative

  17. A multifunctional mannosyltransferase family in Candida albicans determines cell wall mannan structure and host-fungus interactions.

    Science.gov (United States)

    Mora-Montes, Héctor M; Bates, Steven; Netea, Mihai G; Castillo, Luis; Brand, Alexandra; Buurman, Ed T; Díaz-Jiménez, Diana F; Jan Kullberg, Bart; Brown, Alistair J P; Odds, Frank C; Gow, Neil A R

    2010-04-16

    The cell wall proteins of fungi are modified by N- and O-linked mannosylation and phosphomannosylation, resulting in changes to the physical and immunological properties of the cell. Glycosylation of cell wall proteins involves the activities of families of endoplasmic reticulum and Golgi-located glycosyl transferases whose activities are difficult to infer through bioinformatics. The Candida albicans MNT1/KRE2 mannosyl transferase family is represented by five members. We showed previously that Mnt1 and Mnt2 are involved in O-linked mannosylation and are required for virulence. Here, the role of C. albicans MNT3, MNT4, and MNT5 was determined by generating single and multiple MnTDelta null mutants and by functional complementation experiments in Saccharomyces cerevisiae. CaMnt3, CaMnt4, and CaMnt5 did not participate in O-linked mannosylation, but CaMnt3 and CaMnt5 had redundant activities in phosphomannosylation and were responsible for attachment of approximately half of the phosphomannan attached to N-linked mannans. CaMnt4 and CaMnt5 participated in N-mannan branching. Deletion of CaMNT3, CaMNT4, and CaMNT5 affected the growth rate and virulence of C. albicans, affected the recognition of the yeast by human monocytes and cytokine stimulation, and led to increased cell wall chitin content and exposure of beta-glucan at the cell wall surface. Therefore, the MNT1/KRE2 gene family participates in three types of protein mannosylation in C. albicans, and these modifications play vital roles in fungal cell wall structure and cell surface recognition by the innate immune system.

  18. Influence of mannosylation on immunostimulating activity of adamant-1-yl tripeptide.

    Science.gov (United States)

    Ribić, Rosana; Habjanec, Lidija; Frkanec, Ruža; Vranešić, Branka; Tomić, Srđanka

    2012-07-01

    The mannosylated derivative of adamant-1-yl tripeptide (D-(Ad-1-yl)Gly-L-Ala-D-isoGln) was prepared to study the effects of mannosylation on adjuvant (immunostimulating) activity. Mannosylated adamant-1-yl tripeptide (Man-OCH(2) CH(Me)CO-D-(Ad-1-yl)Gly-L-Ala-D-isoGln) is a non-pyrogenic, H(2) O-soluble, and non-toxic compound. Adjuvant activity of mannosylated adamantyl tripeptide was tested in the mouse model with ovalbumin as an antigen and in comparison to the parent tripeptide and peptidoglycan monomer (PGM, β-D-GlcNAc-(1→4)-D-MurNAc-L-Ala-D-isoGln-mesoDAP(εNH(2) )-D-Ala-D-Ala), a well-known effective adjuvant. The mannosylation of adamantyl tripeptide caused the amplification of its immunostimulating activity in such a way that it was comparable to that of PGM. Copyright © 2012 Verlag Helvetica Chimica Acta AG, Zürich.

  19. The structure of stepped surfaces

    International Nuclear Information System (INIS)

    Algra, A.J.

    1981-01-01

    The state-of-the-art of Low Energy Ion Scattering (LEIS) as far as multiple scattering effects are concerned, is discussed. The ion fractions of lithium, sodium and potassium scattered from a copper (100) surface have been measured as a function of several experimental parameters. The ratio of the intensities of the single and double scattering peaks observed in ion scattering spectroscopy has been determined and ion scattering spectroscopy applied in the multiple scattering mode is used to determine the structure of a stepped Cu(410) surface. The average relaxation of the (100) terraces of this surface appears to be very small. The adsorption of oxygen on this surface has been studied with LEIS and it is indicated that oxygen absorbs dissociatively. (C.F.)

  20. Structure of the moon's surface

    CERN Document Server

    Fielder, Gilbert

    1961-01-01

    Structure of the Moon's Surface aims to assemble and marshal relevant matter, and to produce a largely unprejudiced text which brings lunar studies up to date and stresses the importance of certain features of the Moon which have frequently been disregarded in the past, largely because of lack of knowledge about them. The book contains 14 chapters organized into two parts. Part I reviews and summarizes important physical problems. These include the liberations of the moon; height determinations of points of the moon's surface; the figure of the moon; and the moon's temperature and atmosphere.

  1. C-Mannosylation of thrombopoietin receptor (c-Mpl) regulates thrombopoietin-dependent JAK-STAT signaling.

    Science.gov (United States)

    Sasazawa, Yukiko; Sato, Natsumi; Suzuki, Takehiro; Dohmae, Naoshi; Simizu, Siro

    The thrombopoietin receptor, also known as c-Mpl, is a member of the cytokine superfamily, which regulates the differentiation of megakaryocytes and formation of platelets by binding to its ligand, thrombopoietin (TPO), through Janus kinase (JAK)-signal transducer and activator of transcription (STAT) signaling. The loss-of-function mutations of c-Mpl cause severe thrombocytopenia due to impaired megakaryocytopoiesis, and gain-of-function mutations cause thrombocythemia. c-Mpl contains two Trp-Ser-Xaa-Trp-Ser (Xaa represents any amino acids) sequences, which are characteristic sequences of type I cytokine receptors, corresponding to C-mannosylation consensus sequences: Trp-Xaa-Xaa-Trp/Cys. C-mannosylation is a post-translational modification of tryptophan residue in which one mannose is attached to the first tryptophan residue in the consensus sequence via C-C linkage. Although c-Mpl contains some C-mannosylation sequences, whether c-Mpl is C-mannosylated or not has been uninvestigated. We identified that c-Mpl is C-mannosylated not only at Trp(269) and Trp(474), which are putative C-mannosylation site, but also at Trp(272), Trp(416), and Trp(477). Using C-mannosylation defective mutant of c-Mpl, the C-mannosylated tryptophan residues at four sites (Trp(269), Trp(272), Trp(474), and Trp(477)) are essential for c-Mpl-mediated JAK-STAT signaling. Our findings suggested that C-mannosylation of c-Mpl is a possible therapeutic target for platelet disorders. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Mannosylated thiolated polyethylenimine nanoparticles for the enhanced efficacy of antimonial drug against Leishmaniasis.

    Science.gov (United States)

    Sarwar, Hafiz S; Ashraf, Sehreen; Akhtar, Sohail; Sohail, Muhammad F; Hussain, Syed Z; Rafay, Muhammad; Yasinzai, Masoom; Hussain, Irshad; Shahnaz, Gul

    2018-01-01

    Our aim was to inhibit trypanothione reductase (TR) and P-gp efflux pump of Leishmania by the use of thiolated polymers. Thus, increasing the intracellular accumulation and therapeutic effectiveness of antimonial compounds. Mannosylated thiolated chitosan and mannosylated thiolated chitosan-polyethyleneimine graft were synthesized and characterized. Meglumine antimoniate-loaded nanoparticles were prepared and evaluated for TR and P-gp efflux pump inhibition, biocompatibility, macrophage uptake and antileishmanial potential. Thiomers inhibited TR with Ki 2.021. The macrophage uptake was 33.7- and 18.9-fold higher with mannosylated thiolated chitosan-polyethyleneimine graft and mannosylated thiolated chitosan nanoparticles, respectively, as compared with the glucantime. Moreover, the in vitro antileishmanial activity showed 14.41- and 7.4-fold improved IC 50 for M-TCS-g-PEI and M-TCS, respectively as compared with glucantime. These results encouraged the concept that TR and P-gp inhibition by the use of thiomers improves the therapeutic efficacy of antimonial drugs.

  3. Surface structure of AU3Cu(001)

    DEFF Research Database (Denmark)

    Eckstein, G.A.; Maupai, S.; Dakkouri, A.S.

    1999-01-01

    The surface morphology, composition, and structure of Au3Cu(001) as determined by scanning tunneling microscopy and surface x-ray diffraction are presented. Atomic resolution STM images reveal distinctive geometric features. The analysis of the surface x-ray diffraction data provides clear evidence...... for the surface structure. [S0163-1829(99)04535-X]....

  4. On real structures on rigid surfaces

    International Nuclear Information System (INIS)

    Kulikov, Vik S; Kharlamov, V M

    2002-01-01

    We construct examples of rigid surfaces (that is, surfaces whose deformation class consists of a unique surface) with a particular behaviour with respect to real structures. In one example the surface has no real structure. In another it has a unique real structure, which is not maximal with respect to the Smith-Thom inequality. These examples give negative answers to the following problems: the existence of real surfaces in each deformation class of complex surfaces, and the existence of maximal real surfaces in every complex deformation class that contains real surfaces. Moreover, we prove that there are no real surfaces among surfaces of general type with p g =q=0 and K 2 =9. These surfaces also provide new counterexamples to the 'Dif = Def' problem

  5. On real structures on rigid surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Kulikov, Vik S [Steklov Mathematical Institute, Russian Academy of Sciences (Russian Federation); Kharlamov, V M [Institut de Recherche Matematique Avanee Universite Louis Pasteur et CNRS 7 rue Rene Descartes (France)

    2002-02-28

    We construct examples of rigid surfaces (that is, surfaces whose deformation class consists of a unique surface) with a particular behaviour with respect to real structures. In one example the surface has no real structure. In another it has a unique real structure, which is not maximal with respect to the Smith-Thom inequality. These examples give negative answers to the following problems: the existence of real surfaces in each deformation class of complex surfaces, and the existence of maximal real surfaces in every complex deformation class that contains real surfaces. Moreover, we prove that there are no real surfaces among surfaces of general type with p{sub g}=q=0 and K{sup 2}=9. These surfaces also provide new counterexamples to the 'Dif = Def' problem.

  6. β-Selective mannosylation with a 4,6-silylene-tethered thiomannosyl donor

    DEFF Research Database (Denmark)

    Heuckendorff, Mads; Bendix, Jesper; Pedersen, Christian Marcus

    2014-01-01

    Mannosylations using the new conformationally restricted donor phenyl 2,3-di-O-benzyl-4,6-O-(di-tert-butylsilylene)-1-thio-α-D-mannopyranoside (6) have been found to be β-selective with a variety of activation conditions. The simplest activation conditions were NIS/TfOH, in which case it is propo......Mannosylations using the new conformationally restricted donor phenyl 2,3-di-O-benzyl-4,6-O-(di-tert-butylsilylene)-1-thio-α-D-mannopyranoside (6) have been found to be β-selective with a variety of activation conditions. The simplest activation conditions were NIS/TfOH, in which case...

  7. Design and syntheses of mono and multivalent mannosyl-lipoconjugates for targeted liposomal drug delivery.

    Science.gov (United States)

    Štimac, Adela; Cvitaš, Jelena TrmĿiĿ; Frkanec, Leo; Vugrek, Oliver; Frkanec, Ruža

    2016-09-10

    Multivalent mannosyl-lipoconjugates may be of interest for glycosylation of liposomes and targeted drug delivery because the mannose specifically binds to C-type lectin receptors on the particular cells. In this paper syntheses of two types of novel O-mannosides are presented. Conjugates 1 and 2 with a COOH- and NH2-functionalized spacer and the connection to a lysine and FmocNH-PEG-COOH, are described. The coupling reactions of prepared intermediates 6 and 4 with a PEGylated-DSPE or palmitic acid, respectively, are presented. Compounds 5, mono-, 8, di- and 12, tetravalent mannosyl-lipoconjugates, were synthesized. The synthesized compounds were incorporated into liposomes and liposomal preparations featuring exposed mannose units were characterized. Carbohydrate liposomal quartz crystal microbalance based assay has been established for studying carbohydrate-lectin binding. It was demonstrated that liposomes with incorporated mannosyl-lipoconjugates were effectively recognized by Con A and have great potential to be used for targeted liposomal drug delivery systems. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. The mannosylated extracellular domain of Her2/neu produced in P. pastoris induces protective antitumor immunity

    International Nuclear Information System (INIS)

    Dimitriadis, Alexios; Gontinou, Chrysanthi; Baxevanis, Constantin N; Mamalaki, Avgi

    2009-01-01

    Her2/neu is overexpressed in various human cancers of epithelial origin and is associated with increased metastatic potential and poor prognosis. Several attempts have been made using the extracellular domain of Her2/neu (ECD/Her2) as a prophylactic vaccine in mice with no success in tumor prevention. The extracellular domain of Her2/neu (ECD/Her2) was expressed in yeast P. pastoris, in a soluble highly mannosylated form. The immune response of the immunization with this recombinant ECD/Her2 was analyzed using immunoprecipitation and western blot analysis, proliferation and cytotoxicity assays as well as specific tumor growth assays. Mannosylated ECD/Her2 elicited a humoral response with HER2/neu specific antibodies in vaccinated mice, which were able to reduce the proliferation rate of cancer cells in vitro. Moreover, it elicited a cellular response with Her2/neu-specific CTL capable of lysing tumor cells, in vitro. When immunized Balb/c and HHD mice were challenged with Her2/neu-overexpressing cells, tumor growth was inhibited. Here we report on the efficacy of the extracellular domain of human Her2/neu produced in yeast P. pastoris, which confers mannosylation of the protein, to act as a potent anti-tumor vaccine against Her2/neu overexpressing tumors. Specific cellular and humoral responses were observed as well as efficacy

  9. MR imaging of brain surface structures: Surface anatomy scanning

    International Nuclear Information System (INIS)

    Katada, K.; Koga, S.; Asahina, M.; Kanno, T.; Asahina, K.

    1987-01-01

    Preoperative evaluation of brain surface anatomy, including cortical sulci and veins, relative to cerebral and cerebellar lesions is an important subject for surgeons. Until now, no imaging modality existed that allowed direct visualization of brain surface anatomy. A new MR imaging technique (surface anatomy scanning) was developed to visualize brain surface structures. The technique uses a spin-echo pulse sequence with long repetition and echo times, thick sections and a surface coil. Cortical sulci, fissures, veins, and intracranial lesions were clearly identified with this technique. Initial clinical results indicate that surface anatomy scanning is useful for lesion localization and for detailed evaluation of cortical and subcortical lesions

  10. Surface magnetic structures in amorphous ferromagnetic microwires

    Energy Technology Data Exchange (ETDEWEB)

    Usov, N.A., E-mail: usov@obninsk.ru [National University of Science and Technology «MISIS», 119049 Moscow (Russian Federation); Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation, Russian Academy of Sciences, IZMIRAN, 108840 Troitsk, Moscow (Russian Federation); Serebryakova, O.N.; Gudoshnikov, S.A. [National University of Science and Technology «MISIS», 119049 Moscow (Russian Federation); Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation, Russian Academy of Sciences, IZMIRAN, 108840 Troitsk, Moscow (Russian Federation); Tarasov, V.P. [National University of Science and Technology «MISIS», 119049 Moscow (Russian Federation)

    2017-05-01

    The spatial period of magnetization perturbations that occur near the surface of magnetic nanotube or nanowire under the influence of surface magnetic anisotropy is determined by means of numerical simulation as a function of the sample geometry and material parameters. The surface magnetization distribution obtained is then used to estimate the period of the surface magnetic texture in amorphous microwire of several micrometers in diameter by means of appropriate variational procedure. The period of the surface magnetic texture in amorphous microwire is found to be significantly smaller than the wire diameter. - Highlights: • Magnetic structure may arise near the magnetic nanotube surface under the influence of surface magnetic anisotropy. • The period of the surface magnetization pattern is calculated as a function of the sample geometry. • Similar magnetic structure may exist in amorphous microwire of several micrometers in diameter. • The period of the surface magnetic structure in amorphous wire is found to be significantly smaller than the wire diameter.

  11. The crystal structure of the interleukin 21 receptor bound to interleukin 21 reveals that a sugar chain interacting with the WSXWS motif is an integral part of the interleukin 21 receptor

    DEFF Research Database (Denmark)

    Hamming, Ole Jensen; Kang, Lishan; Svensson, Anders

    2012-01-01

    to be a consensus sequence for C-mannosylation. Here we present the crystal structure of IL-21 bound to IL-21R and reveal that the WSXWS motif of IL-21R is C-mannosylated on the first tryptophan. We furthermore demonstrate that a sugar chain bridge the two fibronectin domains which constitute the extracellular...

  12. Mannosylated Chitosan Nanoparticles Based Macrophage-Targeting Gene Delivery System Enhanced Cellular Uptake and Improved Transfection Efficiency.

    Science.gov (United States)

    Peng, Yixing; Yao, Wenjun; Wang, Bo; Zong, Li

    2015-04-01

    Gene transfer mediated by mannosylated chitosan (MCS) is a safe and promising approach for gene and vaccine delivery. MCS nanoparticles based gene delivery system showed high in vivo delivery efficiency and elicited strong immune responses in mice. However, little knowledge about the cell binding, transfection efficiency and intracellular trafficking of MCS nanoparticles had been acquired. In this study, using gastrin-releasing peptide as a model plasmid (pGRP), the binding of MCS/pGRP nanoparticles to macrophages and the intracellular trafficking of MCS/pGRP nanoparticles in macrophages were investigated. MCS-mediated transfection efficiency in macrophages was also evaluated using pGL-3 as a reporter gene. The results showed that the binding and transfection efficiency of MCS nanoparticles in macrophages was higher than that of CS, which was attributed to the interaction between mannose ligands in MCS and mannose receptors on the surface of macrophages. Observation with a confocal laser scanning microscope indicated the cellular uptake of MCS/pGRP nanoparticles were more than that of CS/pGRP nanoparticles in macrophages. MCS/pGRP nanoparticles were taken up by macrophages and most of them were entrapped in endosomal/lysosomal compartments. After the nanoparticles escaping from endosomal/lysosomal compartments, naked pGRP entered the nucleus, and a few MCS might enter the nucleus in terms of nanoparticles. Overall, MCS has the potential to be an excellent macrophage-targeting gene delivery carrier.

  13. Contact area measurements on structured surfaces

    DEFF Research Database (Denmark)

    Kücükyildiz, Ömer Can; Jensen, Sebastian Hoppe Nesgaard; De Chiffre, Leonardo

    In connection with the use of brass specimens featuring structured surfaces in a tribology test, an algorithm was developed for automatic measurement of the contact area by optical means.......In connection with the use of brass specimens featuring structured surfaces in a tribology test, an algorithm was developed for automatic measurement of the contact area by optical means....

  14. Photoelectric effect in surface-barrier structures

    International Nuclear Information System (INIS)

    Kononenko, V.K.; Tupenevich, P.A.

    1985-08-01

    Deviations from the Fowler law were observed when investigating photoelectric emission in p-type ZnTe surface-barrier structures. The revealed peculiarities of the structure photosensitivity spectrum are explained by the electron transitions involving surface states at the metal-semiconductor interface. (author)

  15. Impact damage reduction by structured surface geometry

    DEFF Research Database (Denmark)

    Kusano, Yukihiro; Fedorov, Vladimir; McGugan, Malcolm

    2018-01-01

    performance was observed for polyurethane-coated fibre composites with structured geometries at the back surfaces. Repeated impacts by rubber balls on the coated side caused damage and delamination of the coating. The laminates with structured back surfaces showed longer durability than those with a flat back...

  16. Moulding of Sub-micrometer Surface Structures

    DEFF Research Database (Denmark)

    Pranov, Henrik; Rasmussen, Henrik K.; Larsen, Niels Bent

    2006-01-01

    The experiments strongly suggest that the possibility to injection mould sub-micrometer surface structures in polymers mainly relates to the forces originating from the adhesive energy between polymer and shim.......The experiments strongly suggest that the possibility to injection mould sub-micrometer surface structures in polymers mainly relates to the forces originating from the adhesive energy between polymer and shim....

  17. Atomic and electronic structures of novel silicon surface structures

    Energy Technology Data Exchange (ETDEWEB)

    Terry, J.H. Jr.

    1997-03-01

    The modification of silicon surfaces is presently of great interest to the semiconductor device community. Three distinct areas are the subject of inquiry: first, modification of the silicon electronic structure; second, passivation of the silicon surface; and third, functionalization of the silicon surface. It is believed that surface modification of these types will lead to useful electronic devices by pairing these modified surfaces with traditional silicon device technology. Therefore, silicon wafers with modified electronic structure (light-emitting porous silicon), passivated surfaces (H-Si(111), Cl-Si(111), Alkyl-Si(111)), and functionalized surfaces (Alkyl-Si(111)) have been studied in order to determine the fundamental properties of surface geometry and electronic structure using synchrotron radiation-based techniques.

  18. The influence of the surface atomic structure on surface diffusion

    International Nuclear Information System (INIS)

    Ghaleb, Dominique

    1984-03-01

    This work represents the first quantitative study of the influence of the surface atomic structure on surface diffusion (in the range: 0.2 Tf up 0.5 Tf; Tf: melting temperature of the substrate). The analysis of our results on a microscopic scale shows low formation and migration energies for adatoms; we can describe the diffusion on surfaces with a very simple model. On (110) surfaces at low temperature the diffusion is controlled by the exchange mechanism; at higher temperature direct jumps of adatoms along the channels contribute also to the diffusion process. (author) [fr

  19. Diamond surface: atomic and electronic structure

    International Nuclear Information System (INIS)

    Pate, B.B.

    1984-01-01

    Experimental studies of the diamond surface (with primary emphasis on the (111) surface) are presented. Aspects of the diamond surface which are addressed include (1) the electronic structure, (2) the atomic structure, and (3) the effect of termination of the lattice by foreign atoms. Limited studies of graphite are discussed for comparison with the diamond results. Experimental results from valence band and core level photoemission spectroscopy (PES), Auger electron spectroscopy (AES), low energy electron diffraction (LEED), and carbon 1s near edge x-ray absorption fine structure (NEXAFS) spectroscopy (both the total electron yield (TEY) and Auger electron yield (AEY) techniques) are used to study and characterize both the clean and hydrogenated surface. In addition, the interaction of hydrogen with the diamond surface is examined using results from vibrational high resolution low energy electron loss spectroscopy (in collaboration with Waclawski, Pierce, Swanson, and Celotta at the National Bureau of Standards) and photon stimulated ion desorption (PSID) yield at photon energies near the carbon k-edge (hv greater than or equal to 280 eV). Both EELS and PSID verify that the mechanically polished 1 x 1 surface is hydrogen terminated and also that the reconstructed surface is hydrogen free. The (111) 2 x 2/2 x 1 reconstructed surface is obtained from the hydrogenated (111) 1 x 1:H surface by annealing to approx. = 1000 0 C. We observe occupied intrinsic surface states and a surface chemical shift (0.95 +- 0.1 eV) to lower binding energy of the carbon 1s level on the hydrogen-free reconstructed surface. Atomic hydrogen is found to be reactive with the reconstructed surface, while molecular hydrogen is relatively inert. Exposure of the reconstructed surface to atomic hydrogen results in chemisorption of hydrogen and removal of the intrinsic surface state emission in and near the band gap region

  20. Unoccupied surface electronic structure of Gd(0001)

    International Nuclear Information System (INIS)

    Li, D.; Dowben, P.A.; Ortega, J.E.; Himpsel, F.J.

    1994-01-01

    The unoccupied surface electronic structure of Gd(0001) was investigated with high-resolution inverse-photoemission spectroscopy. An empty surface state near E F is observed at bar Γ. Two other surface-sensitive features are also revealed at 1.2 and 3.1 eV above the Fermi level. Hydrogen adsorption on Gd surfaces was used to distinguish the surface-sensitive features from the bulk features. The unoccupied bulk-band critical points are determined to be Γ 3 + at 1.9 eV and A 1 at 0.8 eV

  1. Surface Chloride Levels in Colorado Structural Concrete

    Science.gov (United States)

    2018-01-01

    This project focused on the chloride-induced corrosion of reinforcing steel in structural concrete. The primary goal of this project is to analyze the surface chloride concentration level of the concrete bridge decks throughout Colorado. The study in...

  2. Architectural Surfaces and Structures from Circular Arcs

    KAUST Repository

    Shi, Ling

    2013-01-01

    the most attention from geometry researchers. In this thesis, we aim to realize this process with simple geometric primitives, circular arcs. We investigate architectural surfaces and structures consisting of circular arcs. Our focus is lying on how

  3. Designing visual appearance using a structured surface

    DEFF Research Database (Denmark)

    Johansen, Villads Egede; Thamdrup, Lasse Højlund; Smitrup, Christian

    2015-01-01

    followed by numerical and experimental verification. The approach comprises verifying all design and fabrication steps required to produce a desired appearance. We expect that the procedure in the future will yield structurally colored surfaces with appealing prescribed visual appearances.......We present an approach for designing nanostructured surfaces with prescribed visual appearances, starting at design analysis and ending with a fabricated sample. The method is applied to a silicon wafer structured using deep ultraviolet lithography and dry etching and includes preliminary design...

  4. The structure of reconstructed chalcopyrite surfaces

    Science.gov (United States)

    Thinius, Sascha; Islam, Mazharul M.; Bredow, Thomas

    2018-03-01

    Chalcopyrite (CuFeS2) surfaces are of major interest for copper exploitation in aqueous solution, called leaching. Since leaching is a surface process knowledge of the surface structure, bonding pattern and oxidation states is important for improving the efficiency. At present such information is not available from experimental studies. Therefore a detailed computational study of chalcopyrite surfaces is performed. The structures of low-index stoichiometric chalcopyrite surfaces {hkl} h, k, l ∈ {0, 1, 2} have been studied with density functional theory (DFT) and global optimization strategies. We have applied ab initio molecular dynamics (MD) in combination with simulated annealing (SA) in order to explore possible reconstructions via a minima hopping (MH) algorithm. In almost all cases reconstruction involving substantial rearrangement has occurred accompanied by reduction of the surface energy. The analysis of the change in the coordination sphere and migration during reconstruction reveals that S-S dimers are formed on the surface. Further it was observed that metal atoms near the surface move toward the bulk forming metal alloys passivated by sulfur. The obtained surface energies of reconstructed surfaces are in the range of 0.53-0.95 J/m2.

  5. 30 CFR 75.1708-1 - Surface structures; fireproof construction.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Surface structures; fireproof construction. 75... Surface structures; fireproof construction. Structures of fireproof construction is interpreted to mean structures with fireproof exterior surfaces. ...

  6. Sub-µm structured lotus surfaces manufacturing

    DEFF Research Database (Denmark)

    Worgull, Matthias; Heckele, Mathias; Mappes, Timo

    2009-01-01

    . Unlike to stochastic methods, patterning with a LIGA-mold insert it is possible to structure surfaces very uniformly or even with controlled variations (e.g., with gradients). In this paper we present the process chain to realize polymer sub-lm structures with minimum lateral feature size of 400 nm...

  7. Sub-µ structured Lotus Surfaces Manufacturing

    DEFF Research Database (Denmark)

    Worgull, Matthias; Heckele, Mathias; Mappes, Timo

    2008-01-01

    . Unlike to stochastic methods, patternin¬g with a LIGA-mold insert it is possible to structure surfaces very uniformly or even with controlled variations (e.g. with gradients). In this paper we present the process chain to realize polymer sub-micro structures with minimum lateral feature size of 400 nm...

  8. Autosomal recessive dilated cardiomyopathy due to DOLK mutations results from abnormal dystroglycan O-mannosylation.

    Directory of Open Access Journals (Sweden)

    Dirk J Lefeber

    2011-12-01

    Full Text Available Genetic causes for autosomal recessive forms of dilated cardiomyopathy (DCM are only rarely identified, although they are thought to contribute considerably to sudden cardiac death and heart failure, especially in young children. Here, we describe 11 young patients (5-13 years with a predominant presentation of dilated cardiomyopathy (DCM. Metabolic investigations showed deficient protein N-glycosylation, leading to a diagnosis of Congenital Disorders of Glycosylation (CDG. Homozygosity mapping in the consanguineous families showed a locus with two known genes in the N-glycosylation pathway. In all individuals, pathogenic mutations were identified in DOLK, encoding the dolichol kinase responsible for formation of dolichol-phosphate. Enzyme analysis in patients' fibroblasts confirmed a dolichol kinase deficiency in all families. In comparison with the generally multisystem presentation in CDG, the nonsyndromic DCM in several individuals was remarkable. Investigation of other dolichol-phosphate dependent glycosylation pathways in biopsied heart tissue indicated reduced O-mannosylation of alpha-dystroglycan with concomitant functional loss of its laminin-binding capacity, which has been linked to DCM. We thus identified a combined deficiency of protein N-glycosylation and alpha-dystroglycan O-mannosylation in patients with nonsyndromic DCM due to autosomal recessive DOLK mutations.

  9. MR imaging of brain surface structures

    International Nuclear Information System (INIS)

    Katada, Kazuhiro; Anno, Hirofumi; Takesita, Gen; Koga, Sukehiko; Kanno, Tetuo; Sakakibara, Tatuo; Yamada, Kazuhiro; Suzuki, Hirokazu; Saito, Sigeki.

    1989-01-01

    An imaging technique that permits direct and non-invasive visualization of brain surface structures was proposed. This technique (Surface anatomy scanning, SAS) consists of long TE-long TR spin echo sequence, thick slice and surface coil. Initial clinical trials in 31 patients with various cerebral pathology showed excellent visualization of sulci, gyri and major cortical veins on the lateral surface of the brain together with cortical and subcortical lesions. Our preliminary results indicate that the SAS is an effective method for the diagnosis and localization of cortical and subcortical pathology, and the possible application of SAS to the surgical and the radiation therapy planning is sugessted. (author)

  10. [99mTc]MAG3-mannosyl-dextran: a receptor-binding radiopharmaceutical for sentinel node detection

    International Nuclear Information System (INIS)

    Vera, David R.; Wallace, Anne M.; Hoh, Carl K.

    2001-01-01

    Technetium-99m-labeled benzoyl-mercaptoacetylglycylglycyl-glycine-mannosyl-dextran ([ 99m Tc]MAG 3 -mannosyl-dextran) is a receptor-binding radiotracer that binds to mannose-binding protein, a receptor expressed by reticuloendothelial tissue. This agent is composed of a 10.5-kilodalton molecule of dextran and multiple units of mannose, and benzoyl-mercaptoacetylglycylglycyl-glycine (BzMAG 3 ). The tetraflorophenol-activated ester of BzMAG 3 and the imidate of thiomannose were used to covalently attach BzMAG 3 and mannose to an amino-terminated conjugate of dextran. This yielded a 19-kilodalton macromolecule consisting of 3 BzMAG 3 and 21 mannose units per dextran. Dynamic light scattering was used to measure a mean diameter of 5.5 nanometers for BzMAG 3 -mannosyl-dextran and 0.28 microns for filtered Tc-99m sulfur colloid. A preliminary sentinel node detection study employing right fore and hind footpad injections of [ 99m Tc]MAG 3 -mannosyl-dextran and left fore and hind footpad injections of filtered Tc-99m sulfur colloid demonstrated greater sentinel lymph node uptake by the receptor-binding agent

  11. Projective and superconformal structures on surfaces

    International Nuclear Information System (INIS)

    Harvey, W.J.

    1990-01-01

    Much attention has recently been given to the study of super Riemann surfaces. Detailed accounts of these objects and their infinitesimal deformation theory are referenced where they are fitted into the framework of complex supermanifolds, superconformal structures and graded sheaves. One difficulty, which seems even more of a barrier than in the case of classical deformations of Riemann surface structure, is the lack of a good global description of super-moduli spaces. In this note, we outline an approach which places the theory in the classical setting of projective structures on variable Riemann surfaces. We explain how to construct a distribution (family of vector subspaces) inside the holomorphic cotangent space to the moduli space M g of Riemann surfaces with genus g and furnished with a level-4 homology structure, such that the corresponding rank-(2g-2) complex vector bundle models the soul deformations of a family of super-Riemann surfaces. The keystone in this construction is the existence of holomorphic sections for the space of non-singular odd theta characteristics on C g the universal curve over M g . (author)

  12. Surface band structures on Nb(001)

    International Nuclear Information System (INIS)

    Fang, B.; Lo, W.; Chien, T.; Leung, T.C.; Lue, C.Y.; Chan, C.T.; Ho, K.M.

    1994-01-01

    We report the joint studies of experimental and theoretical surface band structures of Nb(001). Angle-resolved photoelectron spectroscopy was used to determine surface-state dispersions along three high-symmetry axes bar Γ bar M, bar Γ bar X, and bar M bar X in the surface Brillouin zone. Ten surface bands have been identified. The experimental data are compared to self-consistent pseudopotential calculations for the 11-layer Nb(001) slabs that are either bulk terminated or fully relaxed (with a 12% contraction for the first interlayer spacing). The band calculations for a 12% surface-contracted slab are in better agreement with the experimental results than those for a bulk-terminated slab, except for a surface resonance near the Fermi level, which is related to the spin-orbit interaction. The charge profiles for all surface states or resonances have been calculated. Surface contraction effects on the charge-density distribution and the energy position of surface states and resonances will also be discussed

  13. Synthesis of 2-deoxy-2-[18F]-fluoro-β-mannosyl [18F]-fluoride as a potential imaging probe for glycosidases

    International Nuclear Information System (INIS)

    McCarter, J.D.; Withers, S.G.; Adam, M.J.

    1992-01-01

    The mechanism-based glycosidase inhibitor 2-deoxy-2-[ 18 F]-fluoro-Β-mannosyl 2-[ 18 F]-fluoride was synthesized and its covalent binding to Agrobacterium Β-glucosidase was demonstrated in vitro. (Author)

  14. ‘Action’ on structured freeform surfaces

    Science.gov (United States)

    Whitehouse, David J.

    2018-06-01

    Surfaces are becoming more complex partly due to the more complicated function required of them and partly due to the introduction of different manufacturing processes. These have thrown into relief the need to consider new ways of measuring and characterizing such surfaces and more importantly to make such characterization more relevant by tying together the geometry and the function more closely. The surfaces which have freeform and structure have been chosen to be a carrier for this investigation because so far there has been little work carried out in this neglected but potentially important area. This necessitates the development of a strategy for their characterization. In this article, some ways have been found of identifying possible strategies for tackling this characterization problem but also linking this characterization to performance and manufacture, based in part on the principles of least action and on the way that nature has evolved to solve the marriage of flexible freeform geometry, structure and function. Recommendations are made for the most suitable surface parameter to use which satisfies the requirement for characterizing structured freeform surfaces as well as utilizing ‘Action’ to predict functionality.

  15. Surface and mineral structure of ferrihydrite

    NARCIS (Netherlands)

    Hiemstra, T.

    2013-01-01

    Ferrihydrite (Fh) is an yet enigmatic nano Fe(III)-oxide material, omnipresent in nature that can bind ions in large quantities, regulating bioavailability and ion mobility. Although extensively studied, to date no proper view exists on the surface structure and composition, while it is of vital

  16. Multiresolution Computation of Conformal Structures of Surfaces

    Directory of Open Access Journals (Sweden)

    Xianfeng Gu

    2003-10-01

    Full Text Available An efficient multiresolution method to compute global conformal structures of nonzero genus triangle meshes is introduced. The homology, cohomology groups of meshes are computed explicitly, then a basis of harmonic one forms and a basis of holomorphic one forms are constructed. A progressive mesh is generated to represent the original surface at different resolutions. The conformal structure is computed for the coarse level first, then used as the estimation for that of the finer level, by using conjugate gradient method it can be refined to the conformal structure of the finer level.

  17. Craterlike structures on the laser cut surface

    Science.gov (United States)

    Shulyatyev, V. B.; Orishich, A. M.

    2017-10-01

    Analysis of the laser cut surface morphology remain topical. It is related with the fact that the surface roughness is the main index of the cut quality. The present paper deals with the experimental study of the relatively unstudied type of defects on the laser cut surface, dimples, or craters. According to the measurement results, amount of craters per unit of the laser cut surface area rises as the sheet thickness rises. The crater diameter rises together with the sheet thickness and distance from the upper sheet edge. The obtained data permit concluding that the defects like craters are observed predominantly in the case of thick sheets. The results agree with the hypothesis of crater formation as impact structures resulting from the melt drops getting on the cut channel walls upon separation from the cut front by the gas flow.

  18. Advances on surface structural determination by LEED

    International Nuclear Information System (INIS)

    Soares, Edmar A; De Carvalho, Vagner E; De Castilho, Caio M C

    2011-01-01

    In the last 40 years, low energy electron diffraction (LEED) has proved to be the most reliable quantitative technique for surface structural determination. In this review, recent developments related to the theory that gives support to LEED structural determination are discussed under a critical analysis of the main theoretical approximation-the muffin-tin calculation. The search methodologies aimed at identifying the best matches between theoretical and experimental intensity versus voltage curves are also considered, with the most recent procedures being reviewed in detail. (topical review)

  19. Nanoscale surface topographies for structural colors

    DEFF Research Database (Denmark)

    Clausen, Jeppe Sandvik

    The thesis describes and demonstrates the possibilities for utilization of structural colors in mass fabricated plastic products as replacement for or in combination with pigments and inks. The motivation is the possible advantages related to re-cycling and re-use of plastic by limiting the number......-polymer interface is suppressed. This improves the ability to see through a clear plastic in the presence of specular reflection. The tapered nanostructures are also utilized to enhance the chroma of pigmented polymers. Larger tapered structures fabricated in a similar manor are shown to work as color filters....... Through an experimental study is the color of the transmitted light linked directly to the random topography of the surface by use of diffraction theory. The color effects from periodic structures and how these might be employed to create bright colors are investigated. This is done both for opaque...

  20. Architectural Surfaces and Structures from Circular Arcs

    KAUST Repository

    Shi, Ling

    2013-12-01

    In recent decades, the popularity of freeform shapes in contemporary architecture poses new challenges to digital design. One of them is the process of rationalization, i.e. to make freeform skins or structures affordable to manufacture, which draws the most attention from geometry researchers. In this thesis, we aim to realize this process with simple geometric primitives, circular arcs. We investigate architectural surfaces and structures consisting of circular arcs. Our focus is lying on how to employ them nicely and repetitively in architectural design, in order to decrease the cost in manufacturing. Firstly, we study Darboux cyclides, which are algebraic surfaces of order ≤ 4. We provide a computational tool to identify all families of circles on a given cyclide based on the spherical model of M ̈obius geometry. Practical ways to design cyclide patches that pass through certain inputs are presented. In particular, certain triples of circle families on Darboux cyclides may be suitably arranged as 3-webs. We provide a complete classification of all possible 3-webs of circles on Darboux cyclides. We then investigate the circular arc snakes, which are smooth sequences of circu- lar arcs. We evolve the snakes such that their curvature, as a function of arc length, remains unchanged. The evolution of snakes is utilized to approximate given surfaces by circular arcs or to generated freeform shapes, and it is realized by a 2-step pro- cess. More interestingly, certain 6-arc snake with boundary constraints can produce a smooth self motion, which can be employed to build flexible structures. Another challenging topic is approximating smooth freeform skins with simple panels. We contribute to this problem area by approximating a negatively-curved 5 surface with a smooth union of rational bilinear patches. We provide a proof for vertex consistency of hyperbolic nets using the CAGD approach of the rational B ́ezier form. Moreover, we use Darboux transformations for the

  1. Neisserial surface lipoproteins: structure, function and biogenesis.

    Science.gov (United States)

    Hooda, Yogesh; Shin, Hyejin E; Bateman, Thomas J; Moraes, Trevor F

    2017-03-01

    The surface of many Gram-negative bacteria contains lipidated protein molecules referred to as surface lipoproteins or SLPs. SLPs play critical roles in host immune evasion, nutrient acquisition and regulation of the bacterial stress response. The focus of this review is on the SLPs present in Neisseria, a genus of bacteria that colonise the mucosal surfaces of animals. Neisseria contains two pathogens of medical interest, namely Neisseria meningitidis and N. gonorrhoeae. Several SLPs have been identified in Neisseria and their study has elucidated key strategies used by these pathogens to survive inside the human body. Herein, we focus on the identification, structure and function of SLPs that have been identified in Neisseria. We also survey the translocation pathways used by these SLPs to reach the cell surface. Specifically, we elaborate on the strategies used by neisserial SLPs to translocate across the outer membrane with an emphasis on Slam, a novel outer membrane protein that has been implicated in SLP biogenesis. Taken together, the study of SLPs in Neisseria illustrates the widespread roles played by this family of proteins in Gram-negative bacteria. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  2. The surface electronic structure of Y(0001)

    International Nuclear Information System (INIS)

    Searle, C.

    1998-12-01

    Yttrium has been grown epitaxially on W(110). The growth was monitored by using photoemission spectroscopy with a synchrotron radiation source. The film thickness has been gauged by the attenuation of the W 4f 7/2 bulk component. The films have been grown reproducibly and show a prominent surface state which is indicative of good order and low contamination. Angle-Resolved Ultra-Violet Photoemission Spectroscopy has been used to examine the valence band of these ultra-thin films. The films show a very different structure to the valence band of a bulk crystal of yttrium. The differences have been investigated by a series of model calculations using the LMASA-46 tight-binding LMTO program. The calculations suggest that the ultra-thin film surface state may be hybridised with a tungsten orbital having (x 2 - y 2 ) character. (author)

  3. Structured thermal surface for radiative camouflage.

    Science.gov (United States)

    Li, Ying; Bai, Xue; Yang, Tianzhi; Luo, Hailu; Qiu, Cheng-Wei

    2018-01-18

    Thermal camouflage has been successful in the conductive regime, where thermal metamaterials embedded in a conductive system can manipulate heat conduction inside the bulk. Most reported approaches are background-dependent and not applicable to radiative heat emitted from the surface of the system. A coating with engineered emissivity is one option for radiative camouflage, but only when the background has uniform temperature. Here, we propose a strategy for radiative camouflage of external objects on a given background using a structured thermal surface. The device is non-invasive and restores arbitrary background temperature distributions on its top. For many practical candidates of the background material with similar emissivity as the device, the object can thereby be radiatively concealed without a priori knowledge of the host conductivity and temperature. We expect this strategy to meet the demands of anti-detection and thermal radiation manipulation in complex unknown environments and to inspire developments in phononic and photonic thermotronics.

  4. Frequency Selective Surface for Structural Health Monitoring

    Science.gov (United States)

    Norlyana Azemi, Saidatul; Mustaffa, Farzana Hazira Wan; Faizal Jamlos, Mohd; Abdullah Al-Hadi, Azremi; Soh, Ping Jack

    2018-03-01

    Structural health monitoring (SHM) technologies have attained attention to monitor civil structures. SHM sensor systems have been used in various civil structures such as bridges, buildings, tunnels and so on. However the previous sensor for SHM is wired and encounter with problem to cover large areas. Therefore, wireless sensor was introduced for SHM to reduce network connecting problem. Wireless sensors for Structural Health monitoring are new technology and have many advantages to overcome the drawback of conventional and wired sensor. This project proposed passive wireless SHM sensor using frequency selective surface (FSS) as an alternative to conventional sensors. The electromagnetic wave characteristic of FSS will change by geometrical changes of FSS due to mechanical strain or structural failure. The changes feature is used as a sensing function without any connecting wires. Two type of design which are circular ring and square loop along with the transmission and reflection characteristics of SHM using FSS were discussed in this project. A simulation process has shown that incident angle characteristics can be use as a data for SHM application.

  5. Nanosecond Surface Microdischarges in Multilayer Structures

    Science.gov (United States)

    Dubinov, A. E.; Lyubimtseva, V. A.

    2018-05-01

    Multilayer structures in which nanosecond surface microdischarges are generated have been developed, fabricated, and investigated. In these structures, layers are made in the form of thin transparent films, and a plasma discharge channel is formed in thin spacings between the layers. Passage of the discharge channel from one layer into the neighboring layer is implemented via pre-fabricated microholes. Images of microdischarges were obtained which confirmed that their plasma channels are formed according to the route assigned by the holes. The route may follow a fairly complex scheme and have self-intersection points and portions in which the electrons are bound to move in opposition to the electric field. In studying the shape of channels in multilayer strictures, the authors have found a new physical effect which lies in the azimuthal self-orientation of the discharge channel as it passes from one microhole to another.

  6. Complementary structure for designer localized surface plasmons

    Science.gov (United States)

    Gao, Zhen; Gao, Fei; Zhang, Youming; Zhang, Baile

    2015-11-01

    Magnetic localized surface plasmons (LSPs) supported on metallic structures corrugated by very long and curved grooves have been recently proposed and demonstrated on an extremely thin metallic spiral structure (MSS) in the microwave regime. However, the mode profile for the magnetic LSPs was demonstrated by measuring only the electric field, not the magnetic field. Here, based on Babinet's principle, we propose a Babinet-inverted, or complementary MSS whose electric/magnetic mode profiles match the magnetic/electric mode profiles of MSS. This complementarity of mode profiles allows mapping the magnetic field distribution of magnetic LSP mode profile on MSS by measuring the electric field distribution of the corresponding mode on complementary MSS. Experiment at microwave frequencies also demonstrate the use of complementary MSS in sensing refractive-index change in the environment.

  7. Thermocapillary droplet actuation on structured solid surfaces

    Science.gov (United States)

    Karapetsas, George; Chamakos, Nikolaos T.; Papathanasiou, Athanasios G.

    2017-11-01

    The present work investigates, through 2D and 3D finite element simulations, the thermocapillary-driven flow inside a droplet which resides on a non-uniformly heated patterned surface. We employ a recently proposed sharp-interface scheme capable of efficiently modelling the flow over complicate surfaces and consider a wide range of substrate wettabilities, i.e. from hydrophilic to super-hydrophobic surfaces. Our simulations indicate that due to the presence of the solid structures and the induced effect of contact angle hysteresis, inherently predicted by our model, a critical thermal gradient arises beyond which droplet migration is possible, in line with previous experimental observations. The migration velocity as well as the direction of motion depends on the combined action of the net mechanical force along the contact line and the thermocapillary induced flow at the liquid-air interface. We also show that through a proper control and design of the substrate wettability, the contact angle hysteresis and the induced flow field it is possible to manipulate the droplet dynamics, e.g. controlling its motion along a predefined track or entrapping by a wetting defect a droplet based on its size as well as providing appropriate conditions for enhanced mixing inside the droplet. Funding from the European Research Council under the Europeans Community's Seventh Framework Programme (FP7/2007-2013)/ERC Grant agreement no. [240710] is acknowledged.

  8. Learning surface molecular structures via machine vision

    Science.gov (United States)

    Ziatdinov, Maxim; Maksov, Artem; Kalinin, Sergei V.

    2017-08-01

    Recent advances in high resolution scanning transmission electron and scanning probe microscopies have allowed researchers to perform measurements of materials structural parameters and functional properties in real space with a picometre precision. In many technologically relevant atomic and/or molecular systems, however, the information of interest is distributed spatially in a non-uniform manner and may have a complex multi-dimensional nature. One of the critical issues, therefore, lies in being able to accurately identify (`read out') all the individual building blocks in different atomic/molecular architectures, as well as more complex patterns that these blocks may form, on a scale of hundreds and thousands of individual atomic/molecular units. Here we employ machine vision to read and recognize complex molecular assemblies on surfaces. Specifically, we combine Markov random field model and convolutional neural networks to classify structural and rotational states of all individual building blocks in molecular assembly on the metallic surface visualized in high-resolution scanning tunneling microscopy measurements. We show how the obtained full decoding of the system allows us to directly construct a pair density function—a centerpiece in analysis of disorder-property relationship paradigm—as well as to analyze spatial correlations between multiple order parameters at the nanoscale, and elucidate reaction pathway involving molecular conformation changes. The method represents a significant shift in our way of analyzing atomic and/or molecular resolved microscopic images and can be applied to variety of other microscopic measurements of structural, electronic, and magnetic orders in different condensed matter systems.

  9. Mannosylated dextran nanoparticles: A pH-sensitive system engineered for immunomodulation through mannose targeting

    KAUST Repository

    Cui, Lina

    2011-05-18

    Biotherapeutic delivery is a rapidly growing field in need of new materials that are easy to modify, are biocompatible, and provide for triggered release of their encapsulated cargo. Herein, we report on a particulate system made of a polysaccharide-based pH-sensitive material that can be efficiently modified to display mannose-based ligands of cellsurface receptors. These ligands are beneficial for antigen delivery, as they enhance internalization and activation of APCs, and are thus capable of modulating immune responses. When compared to unmodified particles or particles modified with a nonspecific sugar residue used in the delivery of antigens to dendritic cells (DCs), themannosylated particles exhibited enhanced antigen presentation in the context of major histocompatibility complex (MHC) class I molecules. This represents the first demonstration of a mannosylated particulate system that enables enhancedMHC I antigen presentation by DCs in vitro. Our readily functionalized pH-sensitive material may also open new avenues in the development of optimally modulated vaccine delivery systems. © 2011 American Chemical Society.

  10. Mannosylated dextran nanoparticles: A pH-sensitive system engineered for immunomodulation through mannose targeting

    KAUST Repository

    Cui, Lina; Cohen, Joel A.; Broaders, Kyle E.; Beaudette, Tristan T.; Frechet, Jean

    2011-01-01

    Biotherapeutic delivery is a rapidly growing field in need of new materials that are easy to modify, are biocompatible, and provide for triggered release of their encapsulated cargo. Herein, we report on a particulate system made of a polysaccharide-based pH-sensitive material that can be efficiently modified to display mannose-based ligands of cellsurface receptors. These ligands are beneficial for antigen delivery, as they enhance internalization and activation of APCs, and are thus capable of modulating immune responses. When compared to unmodified particles or particles modified with a nonspecific sugar residue used in the delivery of antigens to dendritic cells (DCs), themannosylated particles exhibited enhanced antigen presentation in the context of major histocompatibility complex (MHC) class I molecules. This represents the first demonstration of a mannosylated particulate system that enables enhancedMHC I antigen presentation by DCs in vitro. Our readily functionalized pH-sensitive material may also open new avenues in the development of optimally modulated vaccine delivery systems. © 2011 American Chemical Society.

  11. THERMAL TOMOGRAPHY OF ASTEROID SURFACE STRUCTURE

    Energy Technology Data Exchange (ETDEWEB)

    Harris, Alan W.; Drube, Line, E-mail: alan.harris@dlr.de [German Aerospace Center (DLR) Institute of Planetary Research, Rutherfordstrasse 2, D-12489 Berlin (Germany)

    2016-12-01

    Knowledge of the surface thermal inertia of an asteroid can provide insight into its surface structure: porous material has a lower thermal inertia than rock. We develop a means to estimate thermal inertia values of asteroids and use it to show that thermal inertia appears to increase with spin period in the case of main-belt asteroids (MBAs). Similar behavior is found on the basis of thermophysical modeling for near-Earth objects (NEOs). We interpret our results in terms of rapidly increasing material density and thermal conductivity with depth, and provide evidence that thermal inertia increases by factors of 10 (MBAs) to 20 (NEOs) within a depth of just 10 cm. Our results are consistent with a very general picture of rapidly changing material properties in the topmost regolith layers of asteroids and have important implications for calculations of the Yarkovsky effect, including its perturbation of the orbits of potentially hazardous objects and those of asteroid family members after the break-up event. Evidence of a rapid increase of thermal inertia with depth is also an important result for studies of the ejecta-enhanced momentum transfer of impacting vehicles (“kinetic impactors”) in planetary defense.

  12. Protein-mediated surface structuring in biomembranes

    Directory of Open Access Journals (Sweden)

    Maggio B.

    2005-01-01

    Full Text Available The lipids and proteins of biomembranes exhibit highly dissimilar conformations, geometrical shapes, amphipathicity, and thermodynamic properties which constrain their two-dimensional molecular packing, electrostatics, and interaction preferences. This causes inevitable development of large local tensions that frequently relax into phase or compositional immiscibility along lateral and transverse planes of the membrane. On the other hand, these effects constitute the very codes that mediate molecular and structural changes determining and controlling the possibilities for enzymatic activity, apposition and recombination in biomembranes. The presence of proteins constitutes a major perturbing factor for the membrane sculpturing both in terms of its surface topography and dynamics. We will focus on some results from our group within this context and summarize some recent evidence for the active involvement of extrinsic (myelin basic protein, integral (Folch-Lees proteolipid protein and amphitropic (c-Fos and c-Jun proteins, as well as a membrane-active amphitropic phosphohydrolytic enzyme (neutral sphingomyelinase, in the process of lateral segregation and dynamics of phase domains, sculpturing of the surface topography, and the bi-directional modulation of the membrane biochemical reactivity.

  13. Photoelectron spectroscopy bulk and surface electronic structures

    CERN Document Server

    Suga, Shigemasa

    2014-01-01

    Photoelectron spectroscopy is now becoming more and more required to investigate electronic structures of various solid materials in the bulk, on surfaces as well as at buried interfaces. The energy resolution was much improved in the last decade down to 1 meV in the low photon energy region. Now this technique is available from a few eV up to 10 keV by use of lasers, electron cyclotron resonance lamps in addition to synchrotron radiation and X-ray tubes. High resolution angle resolved photoelectron spectroscopy (ARPES) is now widely applied to band mapping of materials. It attracts a wide attention from both fundamental science and material engineering. Studies of the dynamics of excited states are feasible by time of flight spectroscopy with fully utilizing the pulse structures of synchrotron radiation as well as lasers including the free electron lasers (FEL). Spin resolved studies also made dramatic progress by using higher efficiency spin detectors and two dimensional spin detectors. Polarization depend...

  14. Surface and interface electronic structure: Three year activity report

    International Nuclear Information System (INIS)

    Kevan, S.D.

    1992-01-01

    The 3-year activity report covers surface structure and phonon anomalies (surface reconstruction on W(001) and Mo(001), adsorbate lateral ordering, surface Fermi contours and phonon anomalies on Pt(111) and Pd(001)), adsorbate vibrational damping, charge transfer in momentum space: W(011)-K, surface states and resonances (relativistic effects ampersand computations, surface resonances)

  15. 30 CFR 75.1708 - Surface structures, fireproofing.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Surface structures, fireproofing. 75.1708... structures, fireproofing. [Statutory Provisions] After March 30, 1970, all structures erected on the surface within 100 feet of any mine opening shall be of fireproof construction. Unless structures existing on or...

  16. Elementary structural building blocks encountered in silicon surface reconstructions

    International Nuclear Information System (INIS)

    Battaglia, Corsin; Monney, Claude; Didiot, Clement; Schwier, Eike Fabian; Garnier, Michael Gunnar; Aebi, Philipp; Gaal-Nagy, Katalin; Onida, Giovanni

    2009-01-01

    Driven by the reduction of dangling bonds and the minimization of surface stress, reconstruction of silicon surfaces leads to a striking diversity of outcomes. Despite this variety even very elaborate structures are generally comprised of a small number of structural building blocks. We here identify important elementary building blocks and discuss their integration into the structural models as well as their impact on the electronic structure of the surface. (topical review)

  17. Atomic probes of surface structure and dynamics

    International Nuclear Information System (INIS)

    Heller, E.J.; Jonsson, H.

    1992-01-01

    The following were studied: New semiclassical method for scattering calculations, He atom scattering from defective Pt surfaces, He atom scattering from Xe overlayers, thermal dissociation of H 2 on Cu(110), spin flip scattering of atoms from surfaces, and Car-Parrinello simulations of surface processes

  18. Discovery of an O-mannosylation pathway selectively serving cadherins and protocadherins.

    Science.gov (United States)

    Larsen, Ida Signe Bohse; Narimatsu, Yoshiki; Joshi, Hiren Jitendra; Siukstaite, Lina; Harrison, Oliver J; Brasch, Julia; Goodman, Kerry M; Hansen, Lars; Shapiro, Lawrence; Honig, Barry; Vakhrushev, Sergey Y; Clausen, Henrik; Halim, Adnan

    2017-10-17

    The cadherin (cdh) superfamily of adhesion molecules carry O-linked mannose (O-Man) glycans at highly conserved sites localized to specific β-strands of their extracellular cdh (EC) domains. These O-Man glycans do not appear to be elongated like O-Man glycans found on α-dystroglycan (α-DG), and we recently demonstrated that initiation of cdh/protocadherin (pcdh) O-Man glycosylation is not dependent on the evolutionary conserved POMT1/POMT2 enzymes that initiate O-Man glycosylation on α-DG. Here, we used a CRISPR/Cas9 genetic dissection strategy combined with sensitive and quantitative O-Man glycoproteomics to identify a homologous family of four putative protein O-mannosyltransferases encoded by the TMTC1-4 genes, which were found to be imperative for cdh and pcdh O-Man glycosylation. KO of all four TMTC genes in HEK293 cells resulted in specific loss of cdh and pcdh O-Man glycosylation, whereas combined KO of TMTC1 and TMTC3 resulted in selective loss of O-Man glycans on specific β-strands of EC domains, suggesting that each isoenzyme serves a different function. In addition, O-Man glycosylation of IPT/TIG domains of plexins and hepatocyte growth factor receptor was not affected in TMTC KO cells, suggesting the existence of yet another O-Man glycosylation machinery. Our study demonstrates that regulation of O-mannosylation in higher eukaryotes is more complex than envisioned, and the discovery of the functions of TMTCs provide insight into cobblestone lissencephaly caused by deficiency in TMTC3.

  19. Atomic probes of surface structure and dynamics

    International Nuclear Information System (INIS)

    Heller, E.J.; Jonsson, H.

    1992-01-01

    Progress for the period Sept. 15, 1992 to Sept. 14, 1993 is discussed. Semiclassical methods that will allow much faster and more accurate three-dimensional atom--surface scattering calculations, both elastic and inelastic, are being developed. The scattering of He atoms from buckyballs is being investigated as a test problem. Somewhat more detail is given on studies of He atom scattering from defective Pt surfaces. Molecular dynamics simulations of He + and Ar + ion sputtering of Pt surfaces are also being done. He atom scattering from Xe overlayers on metal surfaces and the thermalized dissociation of H 2 on Cu(110) are being studied. (R.W.R.) 64 refs

  20. O-mannosylation of the Mycobacterium tuberculosis adhesin Apa is crucial for T cell antigenicity during infection but is expendable for protection.

    Science.gov (United States)

    Nandakumar, Subhadra; Kannanganat, Sunil; Dobos, Karen M; Lucas, Megan; Spencer, John S; Fang, Sunan; McDonald, Melissa A; Pohl, Jan; Birkness, Kristin; Chamcha, Venkateswarlu; Ramirez, Melissa V; Plikaytis, Bonnie B; Posey, James E; Amara, Rama Rao; Sable, Suraj B

    2013-01-01

    Glycosylation is the most abundant post-translational polypeptide chain modification in nature. Although carbohydrate modification of protein antigens from many microbial pathogens constitutes important components of B cell epitopes, the role in T cell immunity is not completely understood. Here, using ELISPOT and polychromatic flow cytometry, we show that O-mannosylation of the adhesin, Apa, of Mycobacterium tuberculosis (Mtb) is crucial for its T cell antigenicity in humans and mice after infection. However, subunit vaccination with both mannosylated and non-mannosylated Apa induced a comparable magnitude and quality of T cell response and imparted similar levels of protection against Mtb challenge in mice. Both forms equally improved waning BCG vaccine-induced protection in elderly mice after subunit boosting. Thus, O-mannosylation of Apa is required for antigenicity but appears to be dispensable for its immunogenicity and protective efficacy in mice. These results have implications for the development of subunit vaccines using post-translationally modified proteins such as glycoproteins against infectious diseases like tuberculosis.

  1. The structure of surface texture knowledge

    International Nuclear Information System (INIS)

    Yan Wang; Scott, Paul J; Jiang Xiangqian

    2005-01-01

    This research aims to create an intelligent knowledge-based system for engineering and bio-medical engineering surface texture, which will provide expert knowledge of surface texture to link surface function, specification of micro- and nano-geometry through manufacture, and verification. The intelligent knowledge base should be capable of incorporating knowledge from multiple sources (standards, books, experts, etc), adding new knowledge from these sources and still remain a coherent reliable system. A new data model based on category theory will be adopted to construct this system

  2. Coal surface structure and thermodynamics. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, J.W.; Wernett, P.C.; Glass, A.S.; Quay, D.; Roberts, J.

    1994-05-01

    Coals surfaces were studied using static surface adsorption measurements, low angle x-ray scattering (LAXS), inverse gas chromatography (IGC) and a new {sup 13}C NMR relaxation technique. A comparison of surface areas determined by hydrocarbon gas adsorption and LAXS led to the twin conclusions that the hydrocarbons had to diffuse through the solid to reach isolated pores and that the coal pores do not form interconnected networks, but are largely isolated. This conclusion was confirmed when IGC data for small hydrocarbons showed no discontinuities in their size dependence as usually observed with porous solids. IGC is capable of providing adsorption thermodynamics of gases on coal surfaces. The interactions of non-polar molecules and coal surfaces are directly proportioned to the gas molecular polarizability. For bases, the adsorption enthalpy is equal to the polarizability interaction plus the heat of hydrogen bond formation with phenol. Amphoteric molecules have more complex interactions. Mineral matter can have highly specific effects on surface interactions, but with most of the molecules studied is not an important factor.

  3. Controlled delivery of Gemcitabine Hydrochloride using mannosylated poly(propyleneimine) dendrimers

    International Nuclear Information System (INIS)

    Soni, Namrata; Jain, Keerti; Gupta, Umesh; Jain, N. K.

    2015-01-01

    The aim of the present investigation was to deliver Gemcitabine Hydrochloride (GmcH), an anticancer bioactive, specifically to lung tumor cells using mannosylated 4.0G poly(propyleneimine) dendrimers (M-PPI). 4.0G poly(propyleneimine) (PPI) dendrimers was synthesized using ethylenediamine as core and conjugated with mannose by ring opening reactions, followed by Schiff’s reaction in the presence of sodium acetate buffer (pH 4.0). Synthesized PPI dendrimers and mannose-conjugated dendrimers were characterized using IR, NMR spectroscopy, and scanning electron microscopy. GmcH was loaded into PPI and M-PPI dendrimers using equilibrium dialysis method to develop the formulations, GmcH-PPI and GmcH-M-PPI, respectively. The developed formulations were evaluated for drug loading, in vitro release kinetics, in vitro stability, hemolytic toxicity, cytotoxicity, pharmacokinetic, and biodistribution studies. The dendrimeric formulation of GmcH showed pH-sensitive release with faster release at acidic pH, i.e., pH 4.0 in comparison with physiological pH 7.4. M-PPI conjugate showed significant reduction in hemolytic toxicity as compared to plain 4.0G PPI dendrimers towards human erythrocytes. In the cytotoxicity studies with A-549 lung adenocarcinoma cell line, the GmcH-M-PPI formulation showed the lowest IC 50 value. Further, the pharmacokinetic and tissue distribution studies of free drug GmcH, GmcH-PPI, and GmcH-M-PPI in albino rats of Sprague–Dawley strain suggested the mean residence time of GmcH-M-PPI conjugate to be significantly higher (24.85 h) than free GmcH and GmcH-PPI. Deposition of drug (396.1 ± 4.7 after 2 h) in lung was found to be significantly higher with GmcH-M-PPI formulation in comparison with Gmch and GmcH-PPI

  4. Controlled delivery of Gemcitabine Hydrochloride using mannosylated poly(propyleneimine) dendrimers

    Energy Technology Data Exchange (ETDEWEB)

    Soni, Namrata; Jain, Keerti, E-mail: keertijain02@gmail.com; Gupta, Umesh, E-mail: umeshgupta175@gmail.com; Jain, N. K., E-mail: jnarendr@yahoo.co.in [Dr. H. S. Gour Central University, Pharmaceutics Research Laboratory, Department of Pharmaceutical Sciences (India)

    2015-11-15

    The aim of the present investigation was to deliver Gemcitabine Hydrochloride (GmcH), an anticancer bioactive, specifically to lung tumor cells using mannosylated 4.0G poly(propyleneimine) dendrimers (M-PPI). 4.0G poly(propyleneimine) (PPI) dendrimers was synthesized using ethylenediamine as core and conjugated with mannose by ring opening reactions, followed by Schiff’s reaction in the presence of sodium acetate buffer (pH 4.0). Synthesized PPI dendrimers and mannose-conjugated dendrimers were characterized using IR, NMR spectroscopy, and scanning electron microscopy. GmcH was loaded into PPI and M-PPI dendrimers using equilibrium dialysis method to develop the formulations, GmcH-PPI and GmcH-M-PPI, respectively. The developed formulations were evaluated for drug loading, in vitro release kinetics, in vitro stability, hemolytic toxicity, cytotoxicity, pharmacokinetic, and biodistribution studies. The dendrimeric formulation of GmcH showed pH-sensitive release with faster release at acidic pH, i.e., pH 4.0 in comparison with physiological pH 7.4. M-PPI conjugate showed significant reduction in hemolytic toxicity as compared to plain 4.0G PPI dendrimers towards human erythrocytes. In the cytotoxicity studies with A-549 lung adenocarcinoma cell line, the GmcH-M-PPI formulation showed the lowest IC{sub 50} value. Further, the pharmacokinetic and tissue distribution studies of free drug GmcH, GmcH-PPI, and GmcH-M-PPI in albino rats of Sprague–Dawley strain suggested the mean residence time of GmcH-M-PPI conjugate to be significantly higher (24.85 h) than free GmcH and GmcH-PPI. Deposition of drug (396.1 ± 4.7 after 2 h) in lung was found to be significantly higher with GmcH-M-PPI formulation in comparison with Gmch and GmcH-PPI.

  5. Importance of surface structure on dissolution of fluorite

    DEFF Research Database (Denmark)

    Godinho, Jose; Piazolo, Sandra; Balic Zunic, Tonci

    2014-01-01

    forming the initial surface and its inclination to the closest stable planes, which are specific for each surface orientation. During an initial dissolution regime dissolution rates decrease significantly, even though the total surface area increases. During a second dissolution regime, some surfaces...... by the relative stability of the planes and type of edges that constitute a surface needs to be considered. Significant differences between dissolution rates calculated based on surface area alone, and based on surface reactivity are expected for materials with the fluorite structure....

  6. Hydroxyl migration disorders the surface structure of hydroxyapatite nanoparticles

    Science.gov (United States)

    Cheng, Xiajie; Wu, Hong; Zhang, Li; Ma, Xingtao; Zhang, Xingdong; Yang, Mingli

    2017-09-01

    The surface structure of nano-hydroxyapatite (HAP) was investigated using a combined simulated annealing and molecular dynamics method. The stationary structures of nano-HAP with 4-7 nm in diameter and annealed under different temperatures were analyzed in terms of pair distribution function, structural factor, mean square displacement and atomic coordination number. The particles possess different structures from bulk crystal. A clear radial change in their atomic arrangements was noted. From core to surface the structures change from ordered to disordered. A three-shell model was proposed to describe the structure evolution of nano-HAP. Atoms in the core zone keep their arrangements as in crystal, while atoms in the surface shell are in short-range order and long-range disorder, adopting a typically amorphous structure. Atoms in the middle shell have small displacements and/or deflections but basically retain their original locations as in crystal. The disordered shell is about 1 nm in thickness, in agreement with experimental observations. The disordering mainly stems from hydroxyl migration during which hydroxyls move to the surface and bond with the exposed Ca ions, and their left vacancies bring about a rearrangement of nearby atoms. The disordering is to some extent different for particles unannealed under different temperatures, resulting from fewer number of migrated hydroxyls at lower temperatures. Particles with different sizes have similar surface structures, and their surface energy decreases with increasing size. Moreover, the surface energy is reduced by hydroxyl migration because the exposed Ca ions on the surface are ionically bonded with the migrated hydroxyls. Our calculations proposed a new structure model for nano-HAP, which indicates a surface structure with activities different from those without surface reorganization. This is particularly interesting because most bioactivities of biomaterials are dominated by their surface activity.

  7. Compression and Injection Moulding of Nano-Structured Polymer Surfaces

    DEFF Research Database (Denmark)

    Pranov, Henrik; Rasmussen, Henrik Koblitz

    2006-01-01

    In our research we investigate the non-isothermal replication of complex nano and micro surface structures in injection and compression moulding.......In our research we investigate the non-isothermal replication of complex nano and micro surface structures in injection and compression moulding....

  8. Surface modification method for reactor incore structural component

    International Nuclear Information System (INIS)

    Obata, Minoru; Sudo, Akira.

    1996-01-01

    A large number of metal or ceramic small spheres accelerated by pressurized air are collided against a surface of a reactor incore structures or a welded surface of the structural components, and then finishing is applied by polishing to form compression stresses on the surface. This can change residual stresses into compressive stress without increasing the strength of the surface. Accordingly, stress corrosion crackings of the incore structural components or welded portions thereof can be prevented thereby enabling to extend the working life of equipments. (T.M.)

  9. Characterization of technical surfaces by structure function analysis

    Science.gov (United States)

    Kalms, Michael; Kreis, Thomas; Bergmann, Ralf B.

    2018-03-01

    The structure function is a tool for characterizing technical surfaces that exhibits a number of advantages over Fourierbased analysis methods. So it is optimally suited for analyzing the height distributions of surfaces measured by full-field non-contacting methods. The structure function is thus a useful method to extract global or local criteria like e. g. periodicities, waviness, lay, or roughness to analyze and evaluate technical surfaces. After the definition of line- and area-structure function and offering effective procedures for their calculation this paper presents examples using simulated and measured data of technical surfaces including aircraft parts.

  10. Cluster structures influenced by interaction with a surface.

    Science.gov (United States)

    Witt, Christopher; Dieterich, Johannes M; Hartke, Bernd

    2018-05-30

    Clusters on surfaces are vitally important for nanotechnological applications. Clearly, cluster-surface interactions heavily influence the preferred cluster structures, compared to clusters in vacuum. Nevertheless, systematic explorations and an in-depth understanding of these interactions and how they determine the cluster structures are still lacking. Here we present an extension of our well-established non-deterministic global optimization package OGOLEM from isolated clusters to clusters on surfaces. Applying this approach to intentionally simple Lennard-Jones test systems, we produce a first systematic exploration that relates changes in cluster-surface interactions to resulting changes in adsorbed cluster structures.

  11. Fragmentation pathways of nanofractal structures on surfaces

    DEFF Research Database (Denmark)

    Dick, Veronika V.; Solov'yov, Ilia; Solov'yov, Andrey V.

    2011-01-01

    We present a theoretical analysis of the post-growth processes occurring in nanofractals grown on a surface. For this study we have developed a method that accounts for the internal dynamics of particles in a fractal. We demonstrate that the detachment of particles from the fractal and their diff...

  12. Electronic structure of incident carbon ions on a graphite surface

    International Nuclear Information System (INIS)

    Kiuchi, Masato; Takeuchi, Takae; Yamamoto, Masao.

    1997-01-01

    The electronic structure of an incident carbon ion on a graphite surface is discussed on the basis of ab initio molecular orbital calculations. A carbon cation forms a covalent bond with the graphite, and a carbon nonion is attracted to the graphite surface through van der Waals interaction. A carbon anion has no stable state on a graphite surface. The charge effects of incident ions become clear upon detailed examination of the electronic structure. (author)

  13. Facile fabrication of superhydrophobic surfaces with hierarchical structures.

    Science.gov (United States)

    Lee, Eunyoung; Lee, Kun-Hong

    2018-03-06

    Hierarchical structures were fabricated on the surfaces of SUS304 plates using a one-step process of direct microwave irradiation under a carbon dioxide atmosphere. The surface nanostructures were composed of chrome-doped hematite single crystals. Superhydrophobic surfaces with a water contact angle up to 169° were obtained by chemical modification of the hierarchical structures. The samples maintained superhydrophobicity under NaCl solution up to 2 weeks.

  14. Modulation of photonic structures by surface acoustic waves

    International Nuclear Information System (INIS)

    Mauricio M de Lima Jr; Santos, Paulo V

    2005-01-01

    This paper reviews the interaction between coherently stimulated acoustic phonons in the form of surface acoustic waves with light beams in semiconductor based photonic structures. We address the generation of surface acoustic wave modes in these structures as well as the technological aspects related to control of the propagation and spatial distribution of the acoustic fields. The microscopic mechanisms responsible for the interaction between light and surface acoustic modes in different structures are then reviewed. Particular emphasis is given to the acousto-optical interaction in semiconductor microcavities and its application in photon control. These structures exhibit high optical modulation levels under acoustic excitation and are compatible with integrated light sources and detectors

  15. LASER SURFACE CLADDING FOR STRUCTURAL REPAIR

    OpenAIRE

    SANTANU PAUL

    2018-01-01

    Laser cladding is a powder deposition technique, which is used to deposit layers of clad material on a substrate to improve its surface properties. It has widespread application in the repair of dies and molds used in the automobile industry. These molds and dies are subjected to cyclic thermo-mechanical loading and therefore undergo localized damage and wear. The final clad quality and integrity is influenced by various physical phenomena, namely, melt pool morphology, microst...

  16. Surface Structure of Aerobically Oxidized Diamond Nanocrystals

    Science.gov (United States)

    2014-10-27

    Diamond. Phys. Rev. Lett. 2000, 84, 5160−5163. (31) Ownby, P. D.; Yang, X.; Liu, J. Calculated X-Ray-Diffraction Data for Diamond Polytypes. J. Am. Ceram...Surfaces from Ab-Initio Calculations . Phys. Rev. B 1995, 51, 14669−14685. (39) Ferrari, A. C.; Robertson, J. Raman Spectroscopy of Amorphous, Nanostructured...Y.; Takami, S.; Kubo , M.; Belosludov, R. V.; Miyamoto, A.; Imamura, A.; Gamo, M. N.; Ando, T. First-Principle Study on Reactions of Diamond (100

  17. Structural and electronic properties of hydrosilylated silicon surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Baumer, A.

    2005-11-15

    The structural and electronic properties of alkyl-terminated Si surfaces prepared by thermallyinduced hydrosilylation have been studied in detail in the preceding chapters. Various surfaces have been used for the functionalization ranging from crystalline Si over amorphous hydrogenated Si to nanoscaled materials such as Si nanowires and nanoparticles. In each case, the alkyl-terminated surfaces have been compared to the native oxidized and H-terminated surfaces. (orig.)

  18. Compact complex surfaces with geometric structures related to split quaternions

    International Nuclear Information System (INIS)

    Davidov, Johann; Grantcharov, Gueo; Mushkarov, Oleg; Yotov, Miroslav

    2012-01-01

    We study the problem of existence of geometric structures on compact complex surfaces that are related to split quaternions. These structures, called para-hypercomplex, para-hyperhermitian and para-hyperkähler, are analogs of the hypercomplex, hyperhermitian and hyperkähler structures in the definite case. We show that a compact 4-manifold carries a para-hyperkähler structure iff it has a metric of split signature together with two parallel, null, orthogonal, pointwise linearly independent vector fields. Every compact complex surface admitting a para-hyperhermitian structure has vanishing first Chern class and we show that, unlike the definite case, many of these surfaces carry infinite-dimensional families of such structures. We provide also compact examples of complex surfaces with para-hyperhermitian structures which are not locally conformally para-hyperkähler. Finally, we discuss the problem of non-existence of para-hyperhermitian structures on Inoue surfaces of type S 0 and provide a list of compact complex surfaces which could carry para-hypercomplex structures.

  19. Synthesis, structural and surface morphological characterizations of ...

    African Journals Online (AJOL)

    Sulfated zirconia (SZ) nanoparticles (NPs) were successfully synthesized and deposited via chemical route called sol-gel technique. The structural, morphological, and optical properties the samples were investigated by X-ray diffraction (XRD), Energy Dispersive X-ray Spectrometry (EDX), Scanning Electron Microscopy ...

  20. Natural mannosylation of HIV-1 gp120 imposes no immunoregulatory effects in primary human plasmacytoid dendritic cells

    DEFF Research Database (Denmark)

    Søndergaard, Jonas Nørskov; Vinner, Lasse; Pedersen, Susanne Brix

    2014-01-01

    Plasmacytoid dendritic cells (pDCs) play a vital role in activation of anti-HIV-1 immunity, and suppression of pDCs might mitigate immune responses against HIV-1. HIV-1 gp120 high-mannose has been attributed immunosuppressive roles in human myeloid DCs, but no receptors for high-mannose have so far...... or viable HIV-1 particles with various degrees of mannosylation were cultured with pDCs. Activation of pDCs was determined by assaying secretion of IFN-alpha, viability, and upregulation of several pDC-activation markers: CD40, CD86, HLA-DR, CCR7, and PD-L1. The level of activation negatively correlated...

  1. Mammalian O-mannosylation of Cadherins and Plexins is Independent of Protein O-mannosyltransferase 1 and 2

    DEFF Research Database (Denmark)

    Larsen, Ida Signe Bohse; Narimatsu, Yoshiki; Joshi, Hiren Jitendra

    2017-01-01

    Protein O-mannosylation is found in yeast and metazoans and a family of conserved orthologous protein O-mannosyltransferases is believed to initiate this important post-translational modification. We recently discovered that the cadherin superfamily carries O-linked mannose (O-Man) glycans...... at highly conserved residues in specific extracellular cadherin domains, and it was suggested that the function of E-cadherin was dependent on the O-Man glycans. Deficiencies in enzymes catalyzing O-Man biosynthesis, including the two human protein O-mannosyltransferases, POMT1 and POMT2, underlie...... a subgroup of congenital muscular dystrophies (CMD) designated α-dystroglycanopathies, because deficient O-Man glycosylation of -dystroglycan disrupts laminin interaction with -dystroglycan and the extracellular matrix. In order to explore the functions of O-Man glycans on cadherins and protocadherins we...

  2. Surfaces of Microparticles in Colloids: Structure and Molecular Adsorption Kinetics

    Science.gov (United States)

    Dai, Hai-Lung

    2002-03-01

    Surfaces of micron and sub-micron size particles in liquid solution are probed by second harmonic generation (SHG) facilitated with femtosecond laser pulses. The particles probed include inorganic objects such as carbon black and color pigments, polymeric species like polystyrene beads, and biological systems such as blood cells and ecoli. In the experiments, dye molecules are first adsorbed onto the particle surface to allow generation of second harmonics upon light irradiation. Competition for adsorption between these surface dye molecules and the molecules of interest in the solution is then monitored by the SHG signal to reveal the molecular adsorption kinetics and surface structure. Specifically, surfactant adsorption on polymer surfaces, the structure of carbon black surface, and protein adsorption on biological surfaces, monitored by this technique, will be discussed.

  3. Structure of stable degeneration of K3 surfaces into pairs of rational elliptic surfaces

    OpenAIRE

    Kimura, Yusuke

    2018-01-01

    F-theory/heterotic duality is formulated in the stable degeneration limit of a K3 fibration on the F-theory side. In this note, we analyze the structure of the stable degeneration limit. We discuss whether stable degeneration exists for pairs of rational elliptic surfaces. We demonstrate that, when two rational elliptic surfaces have an identical complex structure, stable degeneration always exists. We provide an equation that systematically describes the stable degeneration of a K3 surface i...

  4. Characterization of polymer surface structure and surface mechanical behaviour by sum frequency generation surface vibrational spectroscopy and atomic force microscopy

    International Nuclear Information System (INIS)

    Opdahl, Aric; Koffas, Telly S; Amitay-Sadovsky, Ella; Kim, Joonyeong; Somorjai, Gabor A

    2004-01-01

    Sum frequency generation (SFG) vibrational spectroscopy and atomic force microscopy (AFM) have been used to study polymer surface structure and surface mechanical behaviour, specifically to study the relationships between the surface properties of polymers and their bulk compositions and the environment to which the polymer is exposed. The combination of SFG surface vibrational spectroscopy and AFM has been used to study surface segregation behaviour of polyolefin blends at the polymer/air and polymer/solid interfaces. SFG surface vibrational spectroscopy and AFM experiments have also been performed to characterize the properties of polymer/liquid and polymer/polymer interfaces, focusing on hydrogel materials. A method was developed to study the surface properties of hydrogel contact lens materials at various hydration conditions. Finally, the effect of mechanical stretching on the surface composition and surface mechanical behaviour of phase-separated polyurethanes, used in biomedical implant devices, has been studied by both SFG surface vibrational spectroscopy and AFM. (topical review)

  5. Structure of stable degeneration of K3 surfaces into pairs of rational elliptic surfaces

    Science.gov (United States)

    Kimura, Yusuke

    2018-03-01

    F-theory/heterotic duality is formulated in the stable degeneration limit of a K3 fibration on the F-theory side. In this note, we analyze the structure of the stable degeneration limit. We discuss whether stable degeneration exists for pairs of rational elliptic surfaces. We demonstrate that, when two rational elliptic surfaces have an identical complex structure, stable degeneration always exists. We provide an equation that systematically describes the stable degeneration of a K3 surface into a pair of isomorphic rational elliptic surfaces. When two rational elliptic surfaces have different complex structures, whether their sum glued along a smooth fiber admits deformation to a K3 surface can be determined by studying the structure of the K3 lattice. We investigate the lattice theoretic condition to determine whether a deformation to a K3 surface exists for pairs of extremal rational elliptic surfaces. In addition, we discuss the configurations of singular fibers under stable degeneration. The sum of two isomorphic rational elliptic surfaces glued together admits a deformation to a K3 surface, the singular fibers of which are twice that of the rational elliptic surface. For special situations, singular fibers of the resulting K3 surface collide and they are enhanced to a fiber of another type. Some K3 surfaces become attractive in these situations. We determine the complex structures and the Weierstrass forms of these attractive K3 surfaces. We also deduce the gauge groups in F-theory compactifications on these attractive K3 surfaces times a K3. E 6, E 7, E 8, SU(5), and SO(10) gauge groups arise in these compactifications.

  6. The Dynamics and Structures of Adsorbed Surfaces

    DEFF Research Database (Denmark)

    Nielsen, M; Ellenson, W. D.; McTague, J. P.

    1978-01-01

    . Elastic neutron diffraction measurements, determining the two-dimensional structural ordering of the adsorbed films, have been performed on layers of N2, Ar, H2, D2, O2, Kr, and He. Measurements on layers of larger molecules such as CD4 and ND3 have also been reported. Inelastic neutron scattering...... measurements, studying the dynamics of the adsorbed films are only possible in a few especially favourable cases such as 36Ar and D2 films, where the coherent phonon scattering cross-sections are very large. In other cases incoherent scattering from hydrogen can give information about e.g. the mobility...

  7. Surface structure analysis by means of Rutherford scattering: methods to study surface relaxation

    International Nuclear Information System (INIS)

    Turkenburg, W.C.; Soszka, W.; Saris, F.W.; Kersten, H.H.; Colenbrander, B.G.

    1976-01-01

    The use of Rutherford backscattering for structural analysis of single crystal surfaces is reviewed, and a new method is introduced. With this method, which makes use of the channeling and blocking phenomenon of light ions of medium energy, surface atoms can be located with a precision of 0.02 A. This is demonstrated in a measurement of surface relaxation for the Cu(110) surface. (Auth.)

  8. Structure sensitivity of CO dissociation on Rh surfaces

    DEFF Research Database (Denmark)

    Mavrikakis, Manos; Baumer, M.; Freund, H.J.

    2002-01-01

    than the flat surface, but the effect is considerably weaker than the effect of surface structure on the dissociation barrier. Our findings are compared with available experimental data, and the consequences for CO activation in methanation and Fischer-Tropsch reactions are discussed.......Using periodic self-consistent density functional calculations it is shown that the barrier for CO dissociation is similar to120 kJ/mol lower on the stepped Rh(211) surface than on the close-packed Rh(111) surface. The stepped surface binds molecular CO and the dissociation products more strongly...

  9. Surface structure investigations using noncontact atomic force microscopy

    International Nuclear Information System (INIS)

    Kolodziej, J.J.; Such, B.; Goryl, M.; Krok, F.; Piatkowski, P.; Szymonski, M.

    2006-01-01

    Surfaces of several A III B V compound semiconductors (InSb, GaAs, InP, InAs) of the (0 0 1) orientation have been studied with noncontact atomic force microscopy (NC-AFM). Obtained atomically resolved patterns have been compared with structural models available in the literature. It is shown that NC-AFM is an efficient tool for imaging complex surface structures in real space. It is also demonstrated that the recent structural models of III-V compound surfaces provide a sound base for interpretation of majority of features present in recorded patterns. However, there are also many new findings revealed by the NC-AFM method that is still new experimental technique in the context of surface structure determination

  10. Surface structure of polymer Gels and emerging functions

    CERN Document Server

    Kobiki, Y

    1999-01-01

    We report the surface structure of polymer gels on a submicrometer scale during the volume phase transition. Sponge-like domains with a mesoscopic scale were directly observed in water by using at atomic force microscope (AFM). The surface structure characterized by the domains is discussed in terms of the root-mean-square roughness and the auto-correlation function, which were calculated from the AFM images. In order to demonstrate the role of surface structure in determining the macroscopic properties of film-like poly (N-isopropylacrylamide: NIPA) gels. It was found that the temperature dependence, as well as the absolute values of the static contact angle, were strongly dependent on the bulk network inhomogeneities. The relation between the mesoscopic structure and the macroscopic properties is qualitatively discussed in terms of not only the changes in the chemical, but also in the physical, surface properties of the NIPA gels in response to a temperature change.

  11. Electronic structure of disordered alloys, surfaces and interfaces

    CERN Document Server

    Turek, Ilja; Kudrnovský, Josef; Šob, Mojmír; Weinberger, Peter

    1997-01-01

    At present, there is an increasing interest in the prediction of properties of classical and new materials such as substitutional alloys, their surfaces, and metallic or semiconductor multilayers. A detailed understanding based on a thus of the utmost importance for fu­ microscopic, parameter-free approach is ture developments in solid state physics and materials science. The interrela­ tion between electronic and structural properties at surfaces plays a key role for a microscopic understanding of phenomena as diverse as catalysis, corrosion, chemisorption and crystal growth. Remarkable progress has been made in the past 10-15 years in the understand­ ing of behavior of ideal crystals and their surfaces by relating their properties to the underlying electronic structure as determined from the first principles. Similar studies of complex systems like imperfect surfaces, interfaces, and mul­ tilayered structures seem to be accessible by now. Conventional band-structure methods, however, are of limited use ...

  12. Domain Structures in Nematic Liquid Crystals on a Polycarbonate Surface

    Directory of Open Access Journals (Sweden)

    Vasily F. Shabanov

    2013-08-01

    Full Text Available Alignment of nematic liquid crystals on polycarbonate films obtained with the use of solvents with different solvations is studied. Domain structures occurring during the growth on the polymer surface against the background of the initial thread-like or schlieren texture are demonstrated. It is established by optical methods that the domains are stable formations visualizing the polymer surface structures. In nematic droplets, the temperature-induced transition from the domain structure with two extinction bands to the structure with four bands is observed. This transition is shown to be caused by reorientation of the nematic director in the liquid crystal volume from the planar alignment to the homeotropic state with the pronounced radial configuration of nematic molecules on the surface. The observed textures are compared with different combinations of the volume LC orientations and the radial distribution of the director field and the disclination lines at the polycarbonate surface.

  13. Ion track membranes providing heat pipe surfaces with capillary structures

    International Nuclear Information System (INIS)

    Akapiev, G.N.; Dmitriev, S.N.; Erler, B.; Shirkova, V.V.; Schulz, A.; Pietsch, H.

    2003-01-01

    The microgalvanic method for metal filling of etched ion tracks in organic foils is of particular interest for the fabrication of microsized structures. Microstructures like copper whiskers with a high aspect ratio produced in ion track membranes are suitable for the generation of high-performance heat transfer surfaces. A surface with good heat transfer characteristics is defined as a surface on which a small temperature difference causes a large heat transfer from the surface material to the liquid. It is well-known that a porous surface layer transfers to an evaporating liquid a given quantity of heat at a smaller temperature difference than does a usual smooth surface. Copper whiskers with high aspect ratio and a density 10 5 per cm 2 form such a porous structure, which produces strong capillary forces and therefore a maximum of heat transfer coefficients

  14. A Surface Modeling Paradigm for Electromagnetic Applications in Aerospace Structures

    OpenAIRE

    Jha, RM; Bokhari, SA; Sudhakar, V; Mahapatra, PR

    1989-01-01

    A systematic approach has been developed to model the surfaces encountered in aerospace engineering for EM applications. The basis of this modeling is the quadric canonical shapes which are the coordinate surfaces of the Eisenhart Coordinate systems. The building blocks are visualized as sections of quadric cylinders and surfaces of revolution. These truncated quadrics can successfully model realistic aerospace structures which are termed a s hybrid quadrics, of which the satellite launch veh...

  15. Surface electron structure of short-period semiconductor superlattice

    International Nuclear Information System (INIS)

    Bartos, I.; Czech Academy Science, Prague,; Strasser, T.; Schattke, W.

    2004-01-01

    Full text: Semiconductor superlattices represent man-made crystals with unique physical properties. By means of the directed layer-by-layer molecular epitaxy growth their electric properties can be tailored (band structure engineering). Longer translational periodicity in the growth direction is responsible for opening of new electron energy gaps (minigaps) with surface states and resonances localized at superlattice surfaces. Similarly as for the electron structure of the bulk, a procedure enabling to modify the surface electron structure of superlattices is desirable. Short-period superlattice (GaAs) 2 (AlAs) 2 with unreconstructed (100) surface is investigated in detail. Theoretical description in terms of full eigenfunctions of individual components has to be used. The changes of electron surface state energies governed by the termination of a periodic crystalline potential, predicted on simple models, are confirmed for this system. Large surface state shifts are found in the lowest minigap of the superlattice when this is terminated in four different topmost layer configurations. The changes should be observable in angle resolved photoelectron spectroscopy as demonstrated in calculations based on the one step model of photoemission. Surface state in the center of the two dimensional Brillouin zone moves from the bottom of the minigap (for the superlattice terminated by two bilayers of GaAs) to its top (for the superlattice terminated by two bilayers of AlAs) where it becomes a resonance. No surface state/resonance is found for a termination with one bilayer of AlAs. The surface state bands behave similarly in the corresponding gaps of the k-resolved section of the electron band structure. The molecular beam epitaxy, which enables to terminate the superlattice growth with atomic layer precision, provides a way of tuning the superlattice surface electron structure by purely geometrical means. The work was supported by the Grant Agency of the Academy of Sciences

  16. Bionic Duplication of Fresh Navodon septentrionalis Fish Surface Structures

    Directory of Open Access Journals (Sweden)

    Bing Qu

    2011-01-01

    Full Text Available Biomimetic superhydrophobic surface was fabricated by replicating topography of the fresh fish skin surface of Navodon septentrionalis with polydimethylsiloxane (PDMS elastomer. A two-step replicating method was developed to make the surface structure of the fresh fish skin be replicated with high fidelity. After duplication, it was found that the static contact angle of the replica was as large as 173°. Theoretic analysis based on Young's and Cassie-Baxter (C-B model was performed to explain the relationship between structure and hydrophobicity.

  17. Solving complex and disordered surface structures with electron diffraction

    International Nuclear Information System (INIS)

    Van Hove, M.A.

    1987-10-01

    The past of surface structure determination with low-energy electron diffraction (LEED) will be briefly reviewed, setting the stage for a discussion of recent and future developments. The aim of these developments is to solve complex and disordered surface structures. Some efficient solutions to the theoretical and experimental problems will be presented. Since the theoretical problems dominate, the emphasis will be on theoretical approaches to the calculation of the multiple scattering of electrons through complex and disordered surfaces. 49 refs., 13 figs., 1 tab

  18. Influence of the atomic structure of crystal surfaces on the surface diffusion in medium temperature range

    International Nuclear Information System (INIS)

    Cousty, J.P.

    1981-12-01

    In this work, we have studied the influence of atomic structure of crystal surface on surface self-diffusion in the medium temperature range. Two ways are followed. First, we have measured, using a radiotracer method, the self-diffusion coefficient at 820 K (0.6 T melting) on copper surfaces both the structure and the cleanliness of which were stable during the experiment. We have shown that the interaction between mobile surface defects and steps can be studied through measurements of the anisotropy of surface self diffusion. Second, the behavior of an adatom and a surface vacancy is simulated via a molecular dynamics method, on several surfaces of a Lennard Jones crystal. An inventory of possible migration mechanisms of these surface defects has been drawn between 0.35 and 0.45 Tsub(m). The results obtained with both the methods point out the influence of the surface atomic structure in surface self-diffusion in the medium temperature range [fr

  19. Color effects from scattering on random surface structures in dielectrics

    DEFF Research Database (Denmark)

    Clausen, Jeppe; Christiansen, Alexander B; Garnæs, Jørgen

    2012-01-01

    We show that cheap large area color filters, based on surface scattering, can be fabricated in dielectric materials by replication of random structures in silicon. The specular transmittance of three different types of structures, corresponding to three different colors, have been characterized...

  20. Surface morphology and electronic structure of Ni/Ag(100)

    International Nuclear Information System (INIS)

    Hite, D. A.; Kizilkaya, O.; Sprunger, P. T.; Howard, M. M.; Ventrice, C. A. Jr.; Geisler, H.; Zehner, D. M.

    2000-01-01

    The growth morphology and electronic structure of Ni on Ag(100) has been studied with scanning tunneling microscopy (STM) and synchrotron based angle resolved photoemission spectroscopy. At deposition temperatures at or below 300 K, STM reveals Ni cluster growth on the surface along with some subsurface growth. Upon annealing to 420 K, virtually all Ni segregates into the subsurface region forming embedded nanoclusters. The electronic structure of Ni d bands in the unannealed surface shows dispersion only perpendicular to the surface whereas the annealed surface has Ni d bands that exhibit a three-dimensional-like structure. This is a result of the increased Ni d-Ag sp hybridization bonding and increased coordination of the embedded Ni nanoclusters. (c) 2000 American Vacuum Society

  1. Surface forces between rough and topographically structured interfaces

    DEFF Research Database (Denmark)

    Thormann, Esben

    2017-01-01

    Within colloidal science, direct or indirect measurements of surface forces represent an important tool for developing a fundamental understanding of colloidal systems, as well as for predictions of the stability of colloidal suspensions. While the general understanding of colloidal interactions...... and manufactured materials, which possess topographical variations. Further, with technological advances in nanotechnology, fabrication of nano- or micro-structured surfaces has become increasingly important for many applications, which calls for a better understanding of the effect of surface topography...... on the interaction between interfaces. This paper presents a review of the current state of understanding of the effect of surface roughness on DLVO forces, as well as on the interactions between topographically structured hydrophobic surfaces in water. While the first case is a natural choice because it represents...

  2. Structure of adsorbed monolayers. The surface chemical bond

    International Nuclear Information System (INIS)

    Somorjai, G.A.; Bent, B.E.

    1984-06-01

    This paper attempts to provide a summary of what has been learned about the structure of adsorbed monolayers and about the surface chemical bond from molecular surface science. While the surface chemical bond is less well understood than bonding of molecules in the gas phase or in the solid state, our knowledge of its properties is rapidly accumulating. The information obtained also has great impact on many surface science based technologies, including heterogeneous catalysis and electronic devices. It is hoped that much of the information obtained from studies at solid-gas interfaces can be correlated with molecular behavior at solid-liquid interfaces. 31 references, 42 figures, 1 table

  3. Identification of the Mycobacterium marinum Apa antigen O-mannosylation sites reveals important glycosylation variability with the M. tuberculosis Apa homologue.

    Science.gov (United States)

    Coddeville, Bernadette; Wu, Sz-Wei; Fabre, Emeline; Brassart, Colette; Rombouts, Yoann; Burguière, Adeline; Kremer, Laurent; Khoo, Kay-Hooi; Elass-Rochard, Elisabeth; Guérardel, Yann

    2012-10-22

    The 45/47 kDa Apa, an immuno-dominant antigen secreted by Mycobacterium tuberculosis is O-mannosylated at multiple sites. Glycosylation of Apa plays a key role in colonization and invasion of the host cells by M. tuberculosis through interactions of Apa with the host immune system C-type lectins. Mycobacterium marinum (M.ma) a fish pathogen, phylogenetically close to M. tuberculosis, induces a granulomatous response with features similar to those described for M. tuberculosis in human. Although M.ma possesses an Apa homologue, its glycosylation status is unknown, and whether this represents a crucial element in the pathophysiology induced by M.ma remains to be addressed. To this aim, we have identified two concanavalin A-reactive 45/47 kDa proteins from M.ma, which have been further purified by a two-step anion exchange chromatography process. Advanced liquid chromatography-nanoESI mass spectrometry-based proteomic analyses of peptides, derived from either tryptic digestion alone or in combination with the Asp-N endoproteinase, established that M.ma Apa possesses up to seven distinct O-mannosylated sites with mainly single mannose substitutions, which can be further extended at the Ser/Thr/Pro rich region near the N-terminus. This opens the way to further studies focussing on the involvement and biological functions of Apa O-mannosylation using the M.ma/zebrafish model. Copyright © 2012 Elsevier B.V. All rights reserved.

  4. Sliding surface searching method for slopes containing a potential weak structural surface

    Directory of Open Access Journals (Sweden)

    Aijun Yao

    2014-06-01

    Full Text Available Weak structural surface is one of the key factors controlling the stability of slopes. The stability of rock slopes is in general concerned with set of discontinuities. However, in soft rocks, failure can occur along surfaces approaching to a circular failure surface. To better understand the position of potential sliding surface, a new method called simplex-finite stochastic tracking method is proposed. This method basically divides sliding surface into two parts: one is described by smooth curve obtained by random searching, the other one is polyline formed by the weak structural surface. Single or multiple sliding surfaces can be considered, and consequently several types of combined sliding surfaces can be simulated. The paper will adopt the arc-polyline to simulate potential sliding surface and analyze the searching process of sliding surface. Accordingly, software for slope stability analysis using this method was developed and applied in real cases. The results show that, using simplex-finite stochastic tracking method, it is possible to locate the position of a potential sliding surface in the slope.

  5. Scale-adaptive surface modeling of vascular structures

    Directory of Open Access Journals (Sweden)

    Ma Xin

    2010-11-01

    Full Text Available Abstract Background The effective geometric modeling of vascular structures is crucial for diagnosis, therapy planning and medical education. These applications require good balance with respect to surface smoothness, surface accuracy, triangle quality and surface size. Methods Our method first extracts the vascular boundary voxels from the segmentation result, and utilizes these voxels to build a three-dimensional (3D point cloud whose normal vectors are estimated via covariance analysis. Then a 3D implicit indicator function is computed from the oriented 3D point cloud by solving a Poisson equation. Finally the vessel surface is generated by a proposed adaptive polygonization algorithm for explicit 3D visualization. Results Experiments carried out on several typical vascular structures demonstrate that the presented method yields both a smooth morphologically correct and a topologically preserved two-manifold surface, which is scale-adaptive to the local curvature of the surface. Furthermore, the presented method produces fewer and better-shaped triangles with satisfactory surface quality and accuracy. Conclusions Compared to other state-of-the-art approaches, our method reaches good balance in terms of smoothness, accuracy, triangle quality and surface size. The vessel surfaces produced by our method are suitable for applications such as computational fluid dynamics simulations and real-time virtual interventional surgery.

  6. Structure and optical properties of water covered Cu(110) surfaces

    International Nuclear Information System (INIS)

    Baghbanpourasl, A.

    2014-01-01

    In this thesis structural and optical properties of the water covered Cu(110) surface is studied using density functional theory within independent particle approximation. Several stable adsorption structures are studied such as water clusters (monomer, dimer, trimer, tetramer and pentamer), different hexagonal monolayers, partially dissociated water monolayers and three different types of chains among them a chain that consists of pentagon rings. For a copper surface in contact with water vapor, the energetically stable H 2 O/OH adsorbed structures are compared thermodynamically using adsorption free energy (change of free energy due to adsorption). Several phase diagrams with respect to temperature and pressure are calculated. It is found that among the large number of energetically stable structures (i.e. structures with positive adsorption energy ) only limited number of them are thermodynamically stable. These thermodynamically stable structures are the class of almost energetically degenerate hexagonal overlayers, one type of partially dissociated water structure that contains Bjerrum defect in the hydrogen bond network and pentagon chain. Since hydrogen atoms are light weight their vibrational effects can be considerable. Zero point vibration decreases the adsorption energy up to 0.1 eV and free energy of adsorbed molecules arising from vibrational degree of freedom can go up to -0.2 eV per adsorbed molecule at 500 Kelvin. However zero point energy and vibrational free energy of adsorbed molecules do not alter relative stability of the adsorbed structures. To account for the long range van der Waals interactions, a semi-empirical scheme is applied. Reflectance Anisotropy Spectroscopy (RAS) is a fast and non destructive optical method that can be used to prob the surface in different conditions such as vacuum and electro-chemical environment. Elasto-optic coeficients of bulk are calculated from first principles and the change of the RA spectrum of the bare Cu

  7. Atomic structure of the SbCu surface alloy: A surface X-ray diffraction study

    DEFF Research Database (Denmark)

    Meunier, I.; Gay, J.M.; Lapena, L.

    1999-01-01

    The dissolution at 400 degrees C of an antimony layer deposited at room temperature on a Cu(111) substrate leads to a surface alloy with a p(root 3x root 3)R 30 degrees x 30 degrees superstructure and a Sb composition of 1/3.We present here a structural study of this Sb-Cu compound by surface X...

  8. Superhydrophobicity of biological and technical surfaces under moisture condensation: stability in relation to surface structure.

    Science.gov (United States)

    Mockenhaupt, Bernd; Ensikat, Hans-Jürgen; Spaeth, Manuel; Barthlott, Wilhelm

    2008-12-02

    The stability of superhydrophobic properties of eight plants and four technical surfaces in respect to water condensation has been compared. Contact and sliding angles were measured after application of water drops of ambient temperature (20 degrees C) onto cooled surfaces. Water evaporating from the drops condensed, due to the temperature difference between the drops and the surface, on the cooled samples, forming "satellite droplets" in the vicinity of the drops. Surface cooling to 15, 10, and 5 degrees C showed a gradual decrease of superhydrophobicity. The decrease was dependent on the specific surface architecture of the sample. The least decrease was found on hierarchically structured surfaces with a combination of a coarse microstructure and submicrometer-sized structures, similar to that of the Lotus leaf. Control experiments with glycerol droplets, which show no evaporation, and thus no condensation, were carried out to verify that the effects with water were caused by condensation from the drop (secondary condensation). Furthermore, the superhydrophobic properties after condensation on cooled surfaces from a humid environment for 10 min were examined. After this period, the surfaces were covered with spherical water droplets, but most samples retained their superhydrophobicity. Again, the best stability of the water-repellent properties was found on hierarchically structured surfaces similar to that of the Lotus leaf.

  9. SurfCut: Surfaces of Minimal Paths From Topological Structures

    KAUST Repository

    Algarni, Marei Saeed Mohammed

    2018-03-05

    We present SurfCut, an algorithm for extracting a smooth, simple surface with an unknown 3D curve boundary from a noisy image and a seed point. Our method is built on the novel observation that certain ridge curves of a function defined on a front propagated using the Fast Marching algorithm lie on the surface. Our method extracts and cuts these ridges to form the surface boundary. Our surface extraction algorithm is built on the novel observation that the surface lies in a valley of the distance from Fast Marching. We show that the resulting surface is a collection of minimal paths. Using the framework of cubical complexes and Morse theory, we design algorithms to extract these critical structures robustly. Experiments on three 3D datasets show the robustness of our method, and that it achieves higher accuracy with lower computational cost than state-of-the-art.

  10. SurfCut: Surfaces of Minimal Paths From Topological Structures

    KAUST Repository

    Algarni, Marei Saeed Mohammed

    2017-04-30

    We present SurfCut, an algorithm for extracting a smooth, simple surface with an unknown 3D curve boundary from a noisy 3D image and a seed point. Our method is built on the novel observation that certain ridge curves of a function defined on a front propagated using the Fast Marching algorithm lie on the surface. Our method extracts and cuts these ridges to form the surface boundary. Our surface extraction algorithm is built on the novel observation that the surface lies in a valley of the distance from Fast Marching. We show that the resulting surface is a collection of minimal paths. Using the framework of cubical complexes and Morse theory, we design algorithms to extract these critical structures robustly. Experiments on three 3D datasets show the robustness of our method, and that it achieves higher accuracy with lower computational cost than state-of-the-art.

  11. SurfCut: Surfaces of Minimal Paths From Topological Structures

    KAUST Repository

    Algarni, Marei Saeed Mohammed; Sundaramoorthi, Ganesh

    2018-01-01

    We present SurfCut, an algorithm for extracting a smooth, simple surface with an unknown 3D curve boundary from a noisy image and a seed point. Our method is built on the novel observation that certain ridge curves of a function defined on a front propagated using the Fast Marching algorithm lie on the surface. Our method extracts and cuts these ridges to form the surface boundary. Our surface extraction algorithm is built on the novel observation that the surface lies in a valley of the distance from Fast Marching. We show that the resulting surface is a collection of minimal paths. Using the framework of cubical complexes and Morse theory, we design algorithms to extract these critical structures robustly. Experiments on three 3D datasets show the robustness of our method, and that it achieves higher accuracy with lower computational cost than state-of-the-art.

  12. Understanding surface structure and chemistry of single crystal lanthanum aluminate

    KAUST Repository

    Pramana, Stevin S.

    2017-03-02

    The surface crystallography and chemistry of a LaAlO3 single crystal, a material mainly used as a substrate to deposit technologically important thin films (e.g. for superconducting and magnetic devices), was analysed using surface X-ray diffraction and low energy ion scattering spectroscopy. The surface was determined to be terminated by Al-O species, and was significantly different from the idealised bulk structure. Termination reversal was not observed at higher temperature (600 °C) and chamber pressure of 10−10 Torr, but rather an increased Al-O occupancy occurred, which was accompanied by a larger outwards relaxation of Al from the bulk positions. Changing the oxygen pressure to 10−6 Torr enriched the Al site occupancy fraction at the outermost surface from 0.245(10) to 0.325(9). In contrast the LaO, which is located at the next sub-surface atomic layer, showed no chemical enrichment and the structural relaxation was lower than for the top AlO2 layer. Knowledge of the surface structure will aid the understanding of how and which type of interface will be formed when LaAlO3 is used as a substrate as a function of temperature and pressure, and so lead to improved design of device structures.

  13. Condensation and Wetting Dynamics on Micro/Nano-Structured Surfaces

    Science.gov (United States)

    Olceroglu, Emre

    Because of their adjustable wetting characteristics, micro/nanostructured surfaces are attractive for the enhancement of phase-change heat transfer where liquid-solid-vapor interactions are important. Condensation, evaporation, and boiling processes are traditionally used in a variety of applications including water harvesting, desalination, industrial power generation, HVAC, and thermal management systems. Although they have been studied by numerous researchers, there is currently a lack of understanding of the underlying mechanisms by which structured surfaces improve heat transfer during phase-change. This PhD dissertation focuses on condensation onto engineered surfaces including fabrication aspect, the physics of phase-change, and the operational limitations of engineered surfaces. While superhydrophobic condensation has been shown to produce high heat transfer rates, several critical issues remain in the field. These include surface manufacturability, heat transfer coefficient measurement limitations at low heat fluxes, failure due to surface flooding at high supersaturations, insufficient modeling of droplet growth rates, and the inherent issues associated with maintenance of non-wetted surface structures. Each of these issues is investigated in this thesis, leading to several contributions to the field of condensation on engineered surfaces. A variety of engineered surfaces have been fabricated and characterized, including nanostructured and hierarchically-structured superhydrophobic surfaces. The Tobacco mosaic virus (TMV) is used here as a biological template for the fabrication of nickel nanostructures, which are subsequently functionalized to achieve superhydrophobicity. This technique is simple and sustainable, and requires no applied heat or external power, thus making it easily extendable to a variety of common heat transfer materials and complex geometries. To measure heat transfer rates during superhydrophobic condensation in the presence of non

  14. Structural and vibrational studies of clean and chemisorbed metal surfaces

    International Nuclear Information System (INIS)

    Jiang, Qing-Tang.

    1992-01-01

    Using Medium Energy Ion Scattering, we have studied the structural and vibrational properties of a number of clean and chemisorbed metal surfaces. The work presented in this thesis is mainly of a fundamental nature. However, it is believed that an atomistic understanding of the forces that affect surface structural and vibrational properties can have a beneficial impact on a large number of areas of applied nature. We find that the surface structure of Cu(001) follows the common trend for metal surfaces, where a small oscillatory relaxation exists beginning with a slight contraction in the top layer. In addition, the surface vibrational amplitude is enhanced (as s usually the case) by ∼80%. A detailed analysis of our data shows an unexpected anisotropy of the vibrational amplitude, such that the out-of-plane vibrational amplitude is 30% smaller than the in-plane vibrational amplitude. The unexpected results may imply a large tensile stress on Cu(001). Upon adsorption of 1/4 of a monolayer of S, a p(2 x 2)-S/Cu(001) surface is created. This submonolayer amount of S atoms makes the surface bulk-like, in which the anisotropy of the surface vibrations is removed and the first interlayer contraction is lifted. By comparing our model to earlier contradictory results on this controversial system. We find excellent agreement with a recent LEED study. The presence of 0.1 monolayer of Ca atoms on the Au(113) surface induces a drastic atomic rearrangements, in which half of the top layer Au atoms are missing and a (1 x 2) symmetry results. In addition, the first interlayer spacing of Au(113) is significantly reduced. Our results are discussed in terms of the energy balance between competing surface electronic charge densities

  15. Surface and Core Electronic Structure of Oxidized Silicon Nanocrystals

    Directory of Open Access Journals (Sweden)

    Noor A. Nama

    2010-01-01

    Full Text Available Ab initio restricted Hartree-Fock method within the framework of large unit cell formalism is used to simulate silicon nanocrystals between 216 and 1000 atoms (1.6–2.65 nm in diameter that include Bravais and primitive cell multiples. The investigated properties include core and oxidized surface properties. Results revealed that electronic properties converge to some limit as the size of the nanocrystal increases. Increasing the size of the core of a nanocrystal resulted in an increase of the energy gap, valence band width, and cohesive energy. The lattice constant of the core and oxidized surface parts shows a decreasing trend as the nanocrystal increases in a size that converges to 5.28 Ǻ in a good agreement with the experiment. Surface and core convergence to the same lattice constant reflects good adherence of oxide layer at the surface. The core density of states shows highly degenerate states that split at the oxygenated (001-(1×1 surface due to symmetry breaking. The nanocrystal surface shows smaller gap and higher valence and conduction bands when compared to the core part, due to oxygen surface atoms and reduced structural symmetry. The smaller surface energy gap shows that energy gap of the nanocrystal is controlled by the surface part. Unlike the core part, the surface part shows a descending energy gap that proves its obedience to quantum confinement effects. Nanocrystal geometry proved to have some influence on all electronic properties including the energy gap.

  16. Crystallography and surface structure an introduction for surface scientists and nanoscientists

    CERN Document Server

    Hermann, Klaus

    2017-01-01

    A valuable learning tool as well as a reference, this book provides students and researchers in surface science and nanoscience with the theoretical crystallographic foundations, which are necessary to understand local structure and symmetry of bulk crystals, including ideal and real single crystal surfaces. The author deals with the subject at an introductory level, providing numerous graphic examples to illustrate the mathematical formalism. The book brings together and logically connects many seemingly disparate structural issues and notations used frequently by surface scientists and nanoscientists. Numerous exercises of varying difficulty, ranging from simple questions to small research projects, are included to stimulate discussions about the different subjects.

  17. TED analysis of the Si(113) surface structure

    Science.gov (United States)

    Suzuki, T.; Minoda, H.; Tanishiro, Y.; Yagi, K.

    1999-09-01

    We carried out a TED (transmission electron diffraction) analysis of the Si(113) surface structure. The TED patterns taken at room temperature showed reflections due to the 3×2 reconstructed structure. The TED pattern indicated that a glide plane parallel to the direction suggested in some models is excluded. We calculated the R-factors (reliability factors) for six surface structure models proposed previously. All structure models with energy-optimized atomic positions have large R-factors. After revision of the atomic positions, the R-factors of all the structure models decreased below 0.3, and the revised version of Dabrowski's 3×2 model has the smallest R-factor of 0.17.

  18. Basic reactions of osteoblasts on structured material surfaces

    Directory of Open Access Journals (Sweden)

    U. Meyer

    2005-04-01

    Full Text Available In order to assess how bone substitute materials determine bone formation in vivo it is useful to understand the mechanisms of the material surface/tissue interaction on a cellular level. Artificial materials are used in two applications, as biomaterials alone or as a scaffold for osteoblasts in a tissue engineering approach. Recently, many efforts have been undertaken to improve bone regeneration by the use of structured material surfaces. In vitro studies of bone cell responses to artificial materials are the basic tool to determine these interactions. Surface properties of materials surfaces as well as biophysical constraints at the biomaterial surface are of major importance since these features will direct the cell responses. Studies on osteoblast-like cell reactivity towards materials will have to focus on the different steps of protein and cell reactions towards defined surface properties. The introduction of new techniques allows nowadays the fabrication of materials with ordered surface structures. This paper gives a review of present knowledge on the various stages of osteoblast reactions on material surfaces, focused on basic cell events under in vitro conditions. Special emphasis is given to cellular reactions towards ordered nano-sized topographies.

  19. Sulfur-induced structural motifs on copper and gold surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Walen, Holly [Iowa State Univ., Ames, IA (United States)

    2016-01-01

    The interaction of sulfur with copper and gold surfaces plays a fundamental role in important phenomena that include coarsening of surface nanostructures, and self-assembly of alkanethiols. Here, we identify and analyze unique sulfur-induced structural motifs observed on the low-index surfaces of these two metals. We seek out these structures in an effort to better understand the fundamental interactions between these metals and sulfur that lends to the stability and favorability of metal-sulfur complexes vs. chemisorbed atomic sulfur. The experimental observations presented here—made under identical conditions—together with extensive DFT analyses, allow comparisons and insights into factors that favor the existence of metal-sulfur complexes, vs. chemisorbed atomic sulfur, on metal terraces. We believe this data will be instrumental in better understanding the complex phenomena occurring between the surfaces of coinage metals and sulfur.

  20. Electron backscatter diffraction characterization of laser-induced periodic surface structures on nickel surface

    Energy Technology Data Exchange (ETDEWEB)

    Sedao, Xxx, E-mail: sedao.xxx@gmail.com [Laboratoire Hubert Curien, Université Jean Monnet, 42000 St-Etienne (France); Maurice, Claire [Laboratoire Georges Friedel, Ecole Nationale Supérieure des Mines, 42023 St-Etienne (France); Garrelie, Florence; Colombier, Jean-Philippe; Reynaud, Stéphanie [Laboratoire Hubert Curien, Université Jean Monnet, 42000 St-Etienne (France); Quey, Romain; Blanc, Gilles [Laboratoire Georges Friedel, Ecole Nationale Supérieure des Mines, 42023 St-Etienne (France); Pigeon, Florent [Laboratoire Hubert Curien, Université Jean Monnet, 42000 St-Etienne (France)

    2014-05-01

    Graphical abstract: -- Highlight: •Lattice rotation and its distribution in laser-induced periodic surface structures (LIPSS) and the subsurface region on a nickel substrate are revealed using electron backscatter diffraction (EBSD). -- Abstract: We report on the structural investigation of laser-induced periodic surface structures (LIPSS) generated in polycrystalline nickel target after multi-shot irradiation by femtosecond laser pulses. Electron backscatter diffraction (EBSD) is used to reveal lattice rotation caused by dislocation storage during LIPSS formation. Localized crystallographic damages in the LIPSS are detected from both surface and cross-sectional EBSD studies. A surface region (up to 200 nm) with 1–3° grain disorientation is observed in localized areas from the cross-section of the LIPSS. The distribution of the local disorientation is inhomogeneous across the LIPSS and the subsurface region.

  1. Compact surface structures for the efficient excitation of surface plasmon-polaritons

    Energy Technology Data Exchange (ETDEWEB)

    De la Cruz, S.; Mendez, E.R. [Division de Fisica Applicada, Centro de Investigacion Cientifica y de Educacion Superior de Ensenada, Carretera Ensenada-Tijuana No. 3918, Ensenada 22860, BC (Mexico); Macias, D.; Salas-Montiel, R.; Adam, P.M. [Laboratoire de Nanotechnologie et d' Instrumentation Optique, Universite de Technologie de Troyes, 12 rue Marie Curie, BP-2060, 10010 Troyes Cedex (France)

    2012-06-15

    We present calculations of the efficiency of excitation of surface plasmon-polaritons (SPPs) with surface structures illuminated by focussed beams. First, it is shown that the low reflectivity observed with broad highly directional beams and periodic gratings does not necessarily imply an efficient coupling to SPPs. We then consider the coupling through surface features like steps, grooves and angled steps, and calculate efficiency maps for these structures as functions of the parameters that define them. Finally, we explore the possibilities of improving the coupling efficiency using periodic structures consisting of a small number of rectangular grooves. We find that a surface section with a length of about four wavelengths can couple as much as 45% of the incident light into a directional SPP. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  2. Robust biomimetic-structural superhydrophobic surface on aluminum alloy.

    Science.gov (United States)

    Li, Lingjie; Huang, Tao; Lei, Jinglei; He, Jianxin; Qu, Linfeng; Huang, Peiling; Zhou, Wei; Li, Nianbing; Pan, Fusheng

    2015-01-28

    The following facile approach has been developed to prepare a biomimetic-structural superhydrophobic surface with high stabilities and strong resistances on 2024 Al alloy that are robust to harsh environments. First, a simple hydrothermal treatment in a La(NO3)3 aqueous solution was used to fabricate ginkgo-leaf like nanostructures, resulting in a superhydrophilic surface on 2024 Al. Then a low-surface-energy compound, dodecafluoroheptyl-propyl-trimethoxylsilane (Actyflon-G502), was used to modify the superhydrophilic 2024 Al, changing the surface character from superhydrophilicity to superhydrophobicity. The water contact angle (WCA) of such a superhydrophobic surface reaches up to 160°, demonstrating excellent superhydrophobicity. Moreover, the as-prepared superhydrophobic surface shows high stabilities in air-storage, chemical and thermal environments, and has strong resistances to UV irradiation, corrosion, and abrasion. The WCAs of such a surface almost remain unchanged (160°) after storage in air for 80 days, exposure in 250 °C atmosphere for 24 h, and being exposed under UV irradiation for 24 h, are more than 144° whether in acidic or alkali medium, and are more than 150° after 48 h corrosion and after abrasion under 0.98 kPa for 1000 mm length. The remarkable durability of the as-prepared superhydrophobic surface can be attributed to its stable structure and composition, which are due to the existence of lanthanum (hydr)oxides in surface layer. The robustness of the as-prepared superhydrophobic surface to harsh environments will open their much wider applications. The fabricating approach for such robust superhydrophobic surface can be easily extended to other metals and alloys.

  3. Structure and properties of GMA surfaced armour plates

    OpenAIRE

    A. Klimpel; K. Luksa; M. Burda

    2010-01-01

    Purpose: In the combat vehicles many materials can be used for the armour. Application of the monolithic armour plates in light combat vehicles is limited by the high armour weigh. Introduction of the layered armour plates is a way to limit the vehicle weight. In the paper test results of graded and nanostructural GMA surfaced armour plates are presented.Design/methodology/approach: Metallographic structure, chemical composition and hardness of surfaced layers were investigated in order to ex...

  4. Global structural optimizations of surface systems with a genetic algorithm

    International Nuclear Information System (INIS)

    Chuang, Feng-Chuan

    2005-01-01

    Global structural optimizations with a genetic algorithm were performed for atomic cluster and surface systems including aluminum atomic clusters, Si magic clusters on the Si(111) 7 x 7 surface, silicon high-index surfaces, and Ag-induced Si(111) reconstructions. First, the global structural optimizations of neutral aluminum clusters Al n (n up to 23) were performed using a genetic algorithm coupled with a tight-binding potential. Second, a genetic algorithm in combination with tight-binding and first-principles calculations were performed to study the structures of magic clusters on the Si(111) 7 x 7 surface. Extensive calculations show that the magic cluster observed in scanning tunneling microscopy (STM) experiments consist of eight Si atoms. Simulated STM images of the Si magic cluster exhibit a ring-like feature similar to STM experiments. Third, a genetic algorithm coupled with a highly optimized empirical potential were used to determine the lowest energy structure of high-index semiconductor surfaces. The lowest energy structures of Si(105) and Si(114) were determined successfully. The results of Si(105) and Si(114) are reported within the framework of highly optimized empirical potential and first-principles calculations. Finally, a genetic algorithm coupled with Si and Ag tight-binding potentials were used to search for Ag-induced Si(111) reconstructions at various Ag and Si coverages. The optimized structural models of √3 x √3, 3 x 1, and 5 x 2 phases were reported using first-principles calculations. A novel model is found to have lower surface energy than the proposed double-honeycomb chained (DHC) model both for Au/Si(111) 5 x 2 and Ag/Si(111) 5 x 2 systems

  5. Surface plasmon polariton amplification in semiconductor-graphene-dielectric structure

    Energy Technology Data Exchange (ETDEWEB)

    Dadoenkova, Yuliya S. [Ulyanovsk State University, Ulyanovsk (Russian Federation); Novgorod State University, Veliky Novgorod (Russian Federation); Donetsk Institute for Physics and Technology, Donetsk (Ukraine); Moiseev, Sergey G. [Ulyanovsk State University, Ulyanovsk (Russian Federation); Kotelnikov Institute of Radio Engineering and Electronics, Russian Academy of Sciences, Ulyanovsk (Russian Federation); Abramov, Aleksei S. [Ulyanovsk State University, Ulyanovsk (Russian Federation); Kadochkin, Aleksei S.; Zolotovskii, Igor O. [Ulyanovsk State University, Ulyanovsk (Russian Federation); Institute of Nanotechnologies of Microelectronics of the Russian Academy of Sciences, 32A Leninskiy Prosp., 119991, Moscow (Russian Federation); Fotiadi, Andrei A. [Ulyanovsk State University, Ulyanovsk (Russian Federation); Universite de Mons (Belgium)

    2017-05-15

    A mechanism of amplification of surface plasmon polaritons due to the transfer of electromagnetic energy from a drift current wave into a far-infrared surface wave propagating along a semiconductor-dielectric boundary in waveguide geometry is proposed. A necessary condition of the interaction of these waves is phase matching condition, i. e., when the phase velocity of the surface wave approaches the drift velocity of charge carriers. It is shown that in the spectral region of the surface plasmon polariton slowing-down its amplification coefficient can reach values substantially exceeding the ohmic loss coefficient of the surface wave in the structure. (copyright 2017 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  6. Soil Structure - A Neglected Component of Land-Surface Models

    Science.gov (United States)

    Fatichi, S.; Or, D.; Walko, R. L.; Vereecken, H.; Kollet, S. J.; Young, M.; Ghezzehei, T. A.; Hengl, T.; Agam, N.; Avissar, R.

    2017-12-01

    Soil structure is largely absent in most standard sampling and measurements and in the subsequent parameterization of soil hydraulic properties deduced from soil maps and used in Earth System Models. The apparent omission propagates into the pedotransfer functions that deduce parameters of soil hydraulic properties primarily from soil textural information. Such simple parameterization is an essential ingredient in the practical application of any land surface model. Despite the critical role of soil structure (biopores formed by decaying roots, aggregates, etc.) in defining soil hydraulic functions, only a few studies have attempted to incorporate soil structure into models. They mostly looked at the effects on preferential flow and solute transport pathways at the soil profile scale; yet, the role of soil structure in mediating large-scale fluxes remains understudied. Here, we focus on rectifying this gap and demonstrating potential impacts on surface and subsurface fluxes and system wide eco-hydrologic responses. The study proposes a systematic way for correcting the soil water retention and hydraulic conductivity functions—accounting for soil-structure—with major implications for near saturated hydraulic conductivity. Modification to the basic soil hydraulic parameterization is assumed as a function of biological activity summarized by Gross Primary Production. A land-surface model with dynamic vegetation is used to carry out numerical simulations with and without the role of soil-structure for 20 locations characterized by different climates and biomes across the globe. Including soil structure affects considerably the partition between infiltration and runoff and consequently leakage at the base of the soil profile (recharge). In several locations characterized by wet climates, a few hundreds of mm per year of surface runoff become deep-recharge accounting for soil-structure. Changes in energy fluxes, total evapotranspiration and vegetation productivity

  7. Thermodynamics and structure of liquid surfaces investigated directly with surface analytical tools

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, Gunther [Flinders Univ., Adelaide, SA (Australia). Centre for NanoScale Science and Technology; Morgner, Harald [Leipzig Univ. (Germany). Wilhelm Ostwald Inst. for Physical and Theoretical Chemistry

    2017-06-15

    Measuring directly the composition, the distribution of constituents as function of the depth and the orientation of molecules at liquid surfaces is essential for determining physicochemical properties of liquid surfaces. While the experimental tools that have been developed for analyzing solid surfaces can in principal be applied to liquid surfaces, it turned out that they had to be adjusted to the particular challenges imposed by liquid samples, e.g. by the unavoidable vapor pressure and by the mobility of the constituting atoms/molecules. In the present work it is shown, how electron spectroscopy and ion scattering spectroscopy have been used for analyzing liquid surfaces. The emphasis of this review is on using the structural information gained for determining the physicochemical properties of liquid surfaces. (copyright 2017 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  8. Studies on electronic structure of GaN(0001) surface

    CERN Document Server

    Xie Chang Kun; Xu Fa Qiang; Deng Rui; Liu Feng; Yibulaxin, K

    2002-01-01

    An electronic structure investigation on GaN(0001) is reported. The authors employ a full-potential linearized augmented plane-wave (FPLAPW) approach to calculate the partial density of state, which is in agreement with previous experimental results. The effects of the Ga3d semi-core levels on the electronic structure of GaN are discussed. The valence-electronic structure of the wurtzite GaN(0001) surface is investigated using synchrotron radiation excited angle-resolved photoemission spectroscopy. The bulk bands dispersion along GAMMA A direction in the Brillouin zones is measured using normal-emission spectra by changing photon-energy. The band structure derived from authors' experimental data is compared well with the results of authors' FPLAPW calculation. Furthermore, off-normal emission spectra are also measured along the GAMMA K and GAMMA M directions. Two surface states are identified, and their dispersions are characterized

  9. Moduli spaces of convex projective structures on surfaces

    DEFF Research Database (Denmark)

    Fock, V. V.; Goncharov, A. B.

    2007-01-01

    We introduce explicit parametrisations of the moduli space of convex projective structures on surfaces, and show that the latter moduli space is identified with the higher Teichmüller space for defined in [V.V. Fock, A.B. Goncharov, Moduli spaces of local systems and higher Teichmüller theory, math.......AG/0311149]. We investigate the cluster structure of this moduli space, and define its quantum version....

  10. Structure and dynamics at the liquid surface of benzyl alcohol

    International Nuclear Information System (INIS)

    Dietter, J.; Morgner, H.

    1999-01-01

    A molecular dynamics simulation of a liquid layer of benzyl alcohol has been performed in order to compare the results with those obtained in experimental studies of our group. The main result of the experimental work was a strong orientational ordering of the benzyl alcohol molecules in the surface as well as an exceptionally large surface potential of ca. 0.6 V. According to the experiments the surface molecules orientate in such a way that the benzene ring points toward the vapor phase while the CH 2 group and the OH group are directed towards the bulk of the liquid. The simulation confirms this orientation of the surface molecules. The surface potential resulting from the simulation is 350 mV. The simulation reveals that the rather large surface potential can be understood as a consequence of the mean orientation of the molecular dipole moment in the surface region. The mean orientation of the molecules themselves in the surface is due to the tendency of the system to maintain the hydrogen bonding structure of the bulk in the surface region as well. The preferential orientation of the surface molecules causes a change of the dynamics of the individual components of the molecules when switching from bulk to surface which depends on the separation of these components from the polar group. This becomes most obvious in case of the reorientation dynamics of the molecular axes, e.g. the reorientation of the benzene ring is faster than the reorientation of the OH group. (Copyright (c) 1999 Elsevier Science B.V., Amsterdam. All rights reserved.)

  11. Refining femtosecond laser induced periodical surface structures with liquid assist

    International Nuclear Information System (INIS)

    Jiao, L.S.; Ng, E.Y.K.; Zheng, H.Y.

    2013-01-01

    Highlights: ► LIPSS on silicon wafer was made in air and in ethanol environment. ► Ethanol environment produce cleaner surface ripples. ► Ethanol environment decrease spatial wavelength of the LIPSS by 30%. ► More number of pulses produce smaller spatial wavelength in air. ► Number of pulses do not influence spatial wavelength in ethanol environment. - Abstract: Laser induced periodic surface structures were generated on silicon wafer using femtosecond laser. The medium used in this study is both air and ethanol. The laser process parameters such as wavelength, number of pulse, laser fluence were kept constant for both the mediums. The focus of the study is to analyze spatial wavelength. When generating surface structures with air as a medium and same process parameter of the laser, spatial wavelength results showed a 30% increase compared to ethanol. The cleanliness of the surface generated using ethanol showed considerably less debris than in air. The results observed from the above investigation showed that the medium plays a predominant role in the generation of surface structures.

  12. Microphase separated structure and surface properties of fluorinated polyurethane resin

    International Nuclear Information System (INIS)

    Sudaryanto; Nishino, T.; Hori, Y.; Nakamae, K.

    2000-01-01

    The effect of fluorination on microphase separation and surface properties of segmented polyurethane (PU) resin were investigated. A series of fluorinated polyurethane resin (FPU) was synthesized by reacting a fluorinated diol with aromatic diisocyanate. The microphase separated structure of FPU was studied by thermal analysis, and small angle X-ray scattering (SAXS) as well as wide angle X-ray diffraction (WAXD). The surface structure and properties were characterized by X-ray photoelectron spectroscopy (XPS) and dynamic contact angle measurement. The incorporation of fluorine into hard segment brings the FPU to have a higher hard domain cohesion and increase the phase separation, however localization of fluorine on the surface could not be observed. On the other hands, localization of fluorine on the surface could be achieved for soft segment fluorinated PU without any significant change in microphase separated structure. The result from this study give an important basic information for designing PU coating material with a low surface energy and strong adhesion as well as for development of release film on pressure sensitive adhesive tape. (author)

  13. Preventative vaccine-loaded mannosylated chitosan nanoparticles intended for nasal mucosal delivery enhance immune responses and potent tumor immunity.

    Science.gov (United States)

    Yao, Wenjun; Peng, Yixing; Du, Mingzhu; Luo, Juan; Zong, Li

    2013-08-05

    Chitosan (CS) has been extensively used as a protein drug and gene delivery carrier, but its delivery efficiency is unsatisfactory. In this study, a mannose ligand was used to modify CS, which could enhance the delivery efficiency of CS via mannose receptor-mediated endocytosis. A preventative anti-GRP DNA vaccine (pCR3.1-VS-HSP65-TP-GRP6-M2, pGRP) was condensed with mannosylated chitosan (MCS) to form MCS/pGRP nanoparticles. Nanoparticles were intranasally administered in a subcutaneous mice prostate carcinoma model to evaluate the efficacy on inhibition of the growth of tumor cells. The titers of anti-GRP IgG that lasted for 11 weeks were significantly higher than that for administration of CS/pGRP nanoparticles (p intramuscular administration of a pGRP solution (p nanoparticles could suppress the growth of tumor cells. The average tumor weight (0.79 ± 0.30 g) was significantly lower than that in the CS/pGRP nanoparticle group (1.69 ± 0.15 g) (p nanoparticles bound with C-type lectin receptors on macrophages. MCS was an efficient targeting gene delivery carrier and could be used in antitumor immunotherapy.

  14. Investigation of the Effects in ß-Mannosylation & Easy Access to L-Sugars via CH Activation

    DEFF Research Database (Denmark)

    Frihed, Tobias

    The overall themes of the research described in this PhD thesis includes effects in β-mannosylation (part I) and synthesis of L-sugars by C-H activation (part II). Part I: One of the most difficult glycosidic linkage to synthesize is the β-mannosides (Chapter 1). These are tricky to prepare due...... in the glycosylations it was concluded that the β-selectivity arise from a conformational effect induced by the 4,6-O-benzylidene. The stereoelectronic effect of the locked O6 in a tg position was less important. Part II: The rare but biologically important L-hexoses (and 6-deoxy-L-sugars) is not accesible from natural...... sources in large quantaties. Therefore, synthesis of the L-sugars must be prepared chemically in order to study them (Chapter 4). The synthesis of all eight 6-deoxy-L-hexoses as their thiodonors were achieved and is decribed (Chapter 5). The preparation was based on the only two common 6-deoxy...

  15. Towards friction control using laser-induced periodic surface structures

    NARCIS (Netherlands)

    Eichstädt, J.; Römer, Gerardus Richardus, Bernardus, Engelina; Huis in 't Veld, Bert; Schmidt, M.; Zaeh, M.

    2011-01-01

    This paper aims at contributing to the study of laser-induced periodic surface structures (LIPSS) and the description of their tribological properties in order to facilitate the knowledge for contact mechanical applications. To obtain laser parameters for LIPSS formation, we propose to execute two

  16. Fracture Resistance, Surface Defects and Structural Strength of Glass

    NARCIS (Netherlands)

    Rodichev, Y.M.; Veer, F.A.

    2010-01-01

    This paper poses the theory that the fracture resistance of basic float glass is dependent on it physicochemical properties and the surface defects fonned under the float glass production, glass processing and handling at the service conditions compose the aggregate basis for structural glass

  17. Surface Structures of Binary Mixture of Ionic Liquids.

    Czech Academy of Sciences Publication Activity Database

    Nakajima, K.; Nakanishi, S.; Lísal, Martin; Kimura, K.

    2017-01-01

    Roč. 230, MARCH (2017), s. 542-549 ISSN 0167-7322 R&D Projects: GA ČR(CZ) GA16-12291S Institutional support: RVO:67985858 Keywords : ionic liquids * mixture * surface structure Subject RIV: CF - Physical ; Theoretical Chemistry OBOR OECD: Physical chemistry Impact factor: 3.648, year: 2016

  18. Anomalous sea surface structures as an object of statistical topography

    Science.gov (United States)

    Klyatskin, V. I.; Koshel, K. V.

    2015-06-01

    By exploiting ideas of statistical topography, we analyze the stochastic boundary problem of emergence of anomalous high structures on the sea surface. The kinematic boundary condition on the sea surface is assumed to be a closed stochastic quasilinear equation. Applying the stochastic Liouville equation, and presuming the stochastic nature of a given hydrodynamic velocity field within the diffusion approximation, we derive an equation for a spatially single-point, simultaneous joint probability density of the surface elevation field and its gradient. An important feature of the model is that it accounts for stochastic bottom irregularities as one, but not a single, perturbation. Hence, we address the assumption of the infinitely deep ocean to obtain statistic features of the surface elevation field and the squared elevation gradient field. According to the calculations, we show that clustering in the absolute surface elevation gradient field happens with the unit probability. It results in the emergence of rare events such as anomalous high structures and deep gaps on the sea surface almost in every realization of a stochastic velocity field.

  19. Surface structure evolution in a homologous series of ionic liquids.

    Science.gov (United States)

    Haddad, Julia; Pontoni, Diego; Murphy, Bridget M; Festersen, Sven; Runge, Benjamin; Magnussen, Olaf M; Steinrück, Hans-Georg; Reichert, Harald; Ocko, Benjamin M; Deutsch, Moshe

    2018-02-06

    Interfaces of room temperature ionic liquids (RTILs) are important for both applications and basic science and are therefore intensely studied. However, the evolution of their interface structure with the cation's alkyl chain length [Formula: see text] from Coulomb to van der Waals interaction domination has not yet been studied for even a single broad homologous RTIL series. We present here such a study of the liquid-air interface for [Formula: see text], using angstrom-resolution X-ray methods. For [Formula: see text], a typical "simple liquid" monotonic surface-normal electron density profile [Formula: see text] is obtained, like those of water and organic solvents. For [Formula: see text], increasingly more pronounced nanoscale self-segregation of the molecules' charged moieties and apolar chains yields surface layering with alternating regions of headgroups and chains. The layering decays into the bulk over a few, to a few tens, of nanometers. The layering periods and decay lengths, their linear [Formula: see text] dependence, and slopes are discussed within two models, one with partial-chain interdigitation and the other with liquid-like chains. No surface-parallel long-range order is found within the surface layer. For [Formula: see text], a different surface phase is observed above melting. Our results also impact general liquid-phase issues like supramolecular self-aggregation and bulk-surface structure relations.

  20. Nanofluidic structures with complex three-dimensional surfaces

    International Nuclear Information System (INIS)

    Stavis, Samuel M; Gaitan, Michael; Strychalski, Elizabeth A

    2009-01-01

    Nanofluidic devices have typically explored a design space of patterns limited by a single nanoscale structure depth. A method is presented here for fabricating nanofluidic structures with complex three-dimensional (3D) surfaces, utilizing a single layer of grayscale photolithography and standard integrated circuit manufacturing tools. This method is applied to construct nanofluidic devices with numerous (30) structure depths controlled from ∼10 to ∼620 nm with an average standard deviation of 1 cm. A prototype 3D nanofluidic device is demonstrated that implements size exclusion of rigid nanoparticles and variable nanoscale confinement and deformation of biomolecules.

  1. Flow Structure and Surface Topology on a UCAV Planform

    Science.gov (United States)

    Elkhoury, Michel; Yavuz, Metin; Rockwell, Donald

    2003-11-01

    Flow past a X-45 UCAV planform involves the complex generation and interaction of vortices, their breakdown and occurrence of surface separation and stall. A cinema technique of high-image-density particle image velocimetry, in conjunction with dye visualization, allows characterization of the time-averaged and instantaneous states of the flow, in terms of critical points of the near-surface streamlines. These features are related to patterns of surface normal vorticity and velocity fluctuation. Spectral analysis of the naturally occurring unsteadiness of the flow allows definition of the most effective frequencies for small-amplitude perturbation of the wing, which leads to substantial alterations of the aforementioned patterns of flow structure and topology adjacent to the surface.

  2. Bio-Inspired Functional Surfaces Based on Laser-Induced Periodic Surface Structures.

    Science.gov (United States)

    Müller, Frank A; Kunz, Clemens; Gräf, Stephan

    2016-06-15

    Nature developed numerous solutions to solve various technical problems related to material surfaces by combining the physico-chemical properties of a material with periodically aligned micro/nanostructures in a sophisticated manner. The utilization of ultra-short pulsed lasers allows mimicking numerous of these features by generating laser-induced periodic surface structures (LIPSS). In this review paper, we describe the physical background of LIPSS generation as well as the physical principles of surface related phenomena like wettability, reflectivity, and friction. Then we introduce several biological examples including e.g., lotus leafs, springtails, dessert beetles, moth eyes, butterfly wings, weevils, sharks, pangolins, and snakes to illustrate how nature solves technical problems, and we give a comprehensive overview of recent achievements related to the utilization of LIPSS to generate superhydrophobic, anti-reflective, colored, and drag resistant surfaces. Finally, we conclude with some future developments and perspectives related to forthcoming applications of LIPSS-based surfaces.

  3. Bio-Inspired Functional Surfaces Based on Laser-Induced Periodic Surface Structures

    Directory of Open Access Journals (Sweden)

    Frank A. Müller

    2016-06-01

    Full Text Available Nature developed numerous solutions to solve various technical problems related to material surfaces by combining the physico-chemical properties of a material with periodically aligned micro/nanostructures in a sophisticated manner. The utilization of ultra-short pulsed lasers allows mimicking numerous of these features by generating laser-induced periodic surface structures (LIPSS. In this review paper, we describe the physical background of LIPSS generation as well as the physical principles of surface related phenomena like wettability, reflectivity, and friction. Then we introduce several biological examples including e.g., lotus leafs, springtails, dessert beetles, moth eyes, butterfly wings, weevils, sharks, pangolins, and snakes to illustrate how nature solves technical problems, and we give a comprehensive overview of recent achievements related to the utilization of LIPSS to generate superhydrophobic, anti-reflective, colored, and drag resistant surfaces. Finally, we conclude with some future developments and perspectives related to forthcoming applications of LIPSS-based surfaces.

  4. Local structural ordering in surface-confined liquid crystals

    Science.gov (United States)

    Śliwa, I.; Jeżewski, W.; Zakharov, A. V.

    2017-06-01

    The effect of the interplay between attractive nonlocal surface interactions and attractive pair long-range intermolecular couplings on molecular structures of liquid crystals confined in thin cells with flat solid surfaces has been studied. Extending the McMillan mean field theory to include finite systems, it has been shown that confining surfaces can induce complex orientational and translational ordering of molecules. Typically, local smectic A, nematic, and isotropic phases have been shown to coexist in certain temperature ranges, provided that confining cells are sufficiently thick, albeit finite. Due to the nonlocality of surface interactions, the spatial arrangement of these local phases can display, in general, an unexpected complexity along the surface normal direction. In particular, molecules located in the vicinity of surfaces can still be organized in smectic layers, even though nematic and/or isotropic order can simultaneously appear in the interior of cells. The resulting surface freezing of smectic layers has been confirmed to occur even for rather weak surface interactions. The surface interactions cannot, however, prevent smectic layers from melting relatively close to system boundaries, even when molecules are still arranged in layers within the central region of the system. The internal interfaces, separating individual liquid-crystal phases, are demonstrated here to form fronts of local finite-size transitions that move across cells under temperature changes. Although the complex molecular ordering in surface confined liquid-crystal systems can essentially be controlled by temperature variations, specific thermal properties of these systems, especially the nature of the local transitions, are argued to be strongly conditioned to the degree of molecular packing.

  5. Electronic structure of graphene on Ni surfaces with different orientation

    International Nuclear Information System (INIS)

    Pudikov, D.A.; Zhizhin, E.V.; Rybkin, A.G.; Rybkina, A.A.; Zhukov, Y.M.; Vilkov, O. Yu.; Shikin, A.M.

    2016-01-01

    An experimental study of the graphene, synthesized by propylene cracking on Ni surfaces with different orientation: (100) and (111), using angle-resolved photoemission, has been performed. It has been shown that graphene on Ni(111) had a perfect lateral structure due to consistency of their lattices, whereas graphene/Ni(100) consisted of a lot of domains. For both systems electronic structure was quite similar and demonstrated a strong bonding of graphene to the underlying Ni surface. After Au intercalation the electronic structure of graphene in both systems was shifted to the Fermi level and became linear in the vicinity of the K point of the Brillouin zone. - Highlights: • Graphene on Ni(111) is well-ordered, whereas on Ni(100) – multi-domain. • Graphene on Ni(111) and Ni(100) is strongly bonded with substrate. • Intercalation of Au atoms restores the linearity in dispersion and makes graphene quasi-free on both Ni(100) and Ni(111).

  6. Nanoscale array structures suitable for surface enhanced raman scattering and methods related thereto

    Science.gov (United States)

    Bond, Tiziana C.; Miles, Robin; Davidson, James C.; Liu, Gang Logan

    2014-07-22

    Methods for fabricating nanoscale array structures suitable for surface enhanced Raman scattering, structures thus obtained, and methods to characterize the nanoscale array structures suitable for surface enhanced Raman scattering. Nanoscale array structures may comprise nanotrees, nanorecesses and tapered nanopillars.

  7. Nanoscale array structures suitable for surface enhanced raman scattering and methods related thereto

    Science.gov (United States)

    Bond, Tiziana C; Miles, Robin; Davidson, James; Liu, Gang Logan

    2015-11-03

    Methods for fabricating nanoscale array structures suitable for surface enhanced Raman scattering, structures thus obtained, and methods to characterize the nanoscale array structures suitable for surface enhanced Raman scattering. Nanoscale array structures may comprise nanotrees, nanorecesses and tapered nanopillars.

  8. Nanoscale array structures suitable for surface enhanced raman scattering and methods related thereto

    Science.gov (United States)

    Bond, Tiziana C.; Miles, Robin; Davidson, James C.; Liu, Gang Logan

    2015-07-14

    Methods for fabricating nanoscale array structures suitable for surface enhanced Raman scattering, structures thus obtained, and methods to characterize the nanoscale array structures suitable for surface enhanced Raman scattering. Nanoscale array structures may comprise nanotrees, nanorecesses and tapered nanopillars.

  9. Structural coloration of metallic surfaces with micro/nano-structures induced by elliptical vibration texturing

    Science.gov (United States)

    Yang, Yang; Pan, Yayue; Guo, Ping

    2017-04-01

    Creating orderly periodic micro/nano-structures on metallic surfaces, or structural coloration, for control of surface apparent color and optical reflectivity has been an exciting research topic over the years. The direct applications of structural coloration include color marking, display devices, and invisibility cloak. This paper presents an efficient method to colorize metallic surfaces with periodic micro/nano-gratings using elliptical vibration texturing. When the tool vibration is coupled with a constant cutting velocity, controlled periodic ripples can be generated due to the overlapping tool trajectory. These periodic ripples with a wavelength near visible spectrum can act as micro-gratings to introduce iridescent colors. The proposed technique also provides a flexible method for color marking of metallic surfaces with arbitrary patterns and images by precise control of the spacing distance and orientation of induced micro/nano-ripples. Theoretical analysis and experimental results are given to demonstrate structural coloration of metals by a direct mechanical machining technique.

  10. Structural rearrangements in the C/W(001) surface system

    International Nuclear Information System (INIS)

    Lyman, P.F.; Mullins, D.R.

    1995-01-01

    We have investigated the surface structure of the C/W(001) surface system at submonolayer C coverages using Auger-electron spectroscopy and high-resolution core-level photoelectron spectroscopy. Core-level spectroscopy is a sensitive probe of an atom's local electronic environment; by examining the core levels of the W atoms in the selvedge region, we monitored the response of the substrate to C adsorption. The average shift of the 4f core-level binding energy provided evidence for a heretofore unknown surface reconstruction that occurs upon submonolayer C adsorption. We also performed line-shape analysis on these core-level spectra, and have thereby elucidated the mechanism by which the low-coverage (√2 x √2 )R45 degree structure evolves to a c(3 √2 x √2 )R45 degree arrangement upon further C adsorption. The line-shape analysis also provides corroborating evidence for a proposed model of the saturated C/W(001)-(5x1) surface structure, and suggests that the first two or three atomic W layers are perturbed by the C adsorption and attendant reconstruction

  11. Supramolecular structures on silica surfaces and their adsorptive properties.

    Science.gov (United States)

    Belyakov, Vladimir N; Belyakova, Lyudmila A; Varvarin, Anatoly M; Khora, Olexandra V; Vasilyuk, Sergei L; Kazdobin, Konstantin A; Maltseva, Tetyana V; Kotvitskyy, Alexey G; Danil de Namor, Angela F

    2005-05-01

    The study of adsorptive and chemical immobilization of beta-cyclodextrin on a surface of hydroxylated silicas with various porous structure is described. Using IR spectroscopy, thermal gravimetrical analysis with a programmed heating, and chemical analysis of the silica surface, it is shown that the process of adsorption-desorption of beta-cyclodextrin depends on the porous structure of the silica. The reaction of esterification was used for chemical grafting of beta-cyclodextrin on the surface of hydroxylated silicas. Hydrolytic stability of silicas chemically modified by beta-cyclodextrin apparently is explained by simultaneous formation of chemical and hydrogen bonds between surface silanol groups and hydroxyl groups of beta-cyclodextrin. The uptake of the cations Cu(II), Cd(II), and Pb(II) and the anions Cr(VI) and As(V) by silicas modified with beta-cyclodextrin is investigated as a function of equilibrium ion concentrations. The increase of ion uptake and selectivity of ion extraction in comparison with starting silicas is established. It is due to the formation of surface inclusion complexes of the "host-guest" type in which one molecule of beta-cyclodextrin interacts simultaneously with several ions.

  12. Language learners privilege structured meaning over surface frequency

    Science.gov (United States)

    Culbertson, Jennifer; Adger, David

    2014-01-01

    Although it is widely agreed that learning the syntax of natural languages involves acquiring structure-dependent rules, recent work on acquisition has nevertheless attempted to characterize the outcome of learning primarily in terms of statistical generalizations about surface distributional information. In this paper we investigate whether surface statistical knowledge or structural knowledge of English is used to infer properties of a novel language under conditions of impoverished input. We expose learners to artificial-language patterns that are equally consistent with two possible underlying grammars—one more similar to English in terms of the linear ordering of words, the other more similar on abstract structural grounds. We show that learners’ grammatical inferences overwhelmingly favor structural similarity over preservation of superficial order. Importantly, the relevant shared structure can be characterized in terms of a universal preference for isomorphism in the mapping from meanings to utterances. Whereas previous empirical support for this universal has been based entirely on data from cross-linguistic language samples, our results suggest it may reflect a deep property of the human cognitive system—a property that, together with other structure-sensitive principles, constrains the acquisition of linguistic knowledge. PMID:24706789

  13. On the interaction of Rayleigh surface waves with structures

    International Nuclear Information System (INIS)

    Simpson, I.C.

    1976-12-01

    A two-dimensional soil-structure interaction analysis is carried out for transient Rayleigh surface waves that are incident on a structure. The structure is modelled by a three-degree of freedom rigid basemat to which is attached a flexible superstructure, modelled by a single mass-spring system. The structural responses to a given Rayleigh wave train are compared with those that would have been obtained if the free-field acceleration-time history had been applied as a normally incident body wave. The results clearly exhibit the 'frequency filtering' effects of the rigid basemat on the incident Rayleigh waves. It is shown that, if seismic excitation of a structure is, in fact, due to Rayleigh surface waves, then an analysis assuming normally incident body waves can considerably over-estimate structural response, both at basemat level for horizontal and vertical oscillations of the superstructure. However, in the examples considered here, relatively large rocking effects were induced by the Rayleigh waves, thus giving maximum horizontal accelerations in the superstructure that were of comparable magnitude for Rayleigh and normally incident body waves. (author)

  14. Biomimetic surface structuring using cylindrical vector femtosecond laser beams

    Science.gov (United States)

    Skoulas, Evangelos; Manousaki, Alexandra; Fotakis, Costas; Stratakis, Emmanuel

    2017-03-01

    We report on a new, single-step and scalable method to fabricate highly ordered, multi-directional and complex surface structures that mimic the unique morphological features of certain species found in nature. Biomimetic surface structuring was realized by exploiting the unique and versatile angular profile and the electric field symmetry of cylindrical vector (CV) femtosecond (fs) laser beams. It is shown that, highly controllable, periodic structures exhibiting sizes at nano-, micro- and dual- micro/nano scales can be directly written on Ni upon line and large area scanning with radial and azimuthal polarization beams. Depending on the irradiation conditions, new complex multi-directional nanostructures, inspired by the Shark’s skin morphology, as well as superhydrophobic dual-scale structures mimicking the Lotus’ leaf water repellent properties can be attained. It is concluded that the versatility and features variations of structures formed is by far superior to those obtained via laser processing with linearly polarized beams. More important, by exploiting the capabilities offered by fs CV fields, the present technique can be further extended to fabricate even more complex and unconventional structures. We believe that our approach provides a new concept in laser materials processing, which can be further exploited for expanding the breadth and novelty of applications.

  15. Atomic structures of Cd Te and Cd Se (110) surfaces

    International Nuclear Information System (INIS)

    Watari, K.; Ferraz, A.C.

    1996-01-01

    Results are reported based on the self-consistent density-functional theory, within the local-density approximation using ab-initio pseudopotentials of clean Cd Te and Cd Se (110) surfaces. We analyzed the trends for the equilibrium atomic structures, and the variations of the bond angles at the II-VI (110). The calculations are sensitive to the ionicity of the materials and the results are in agreement with the arguments which predict that the relaxed zinc-blend (110) surfaces should depend on ionicity. (author). 17 refs., 1 figs., 3 tabs

  16. Electronic structure of epitaxial chalcopyrite surfaces and interfaces for photovoltaics

    International Nuclear Information System (INIS)

    Hofmann, Andreas

    2012-01-01

    This thesis constitutes a comprehensive study of the surface physics of epitaxial CuInSe 2 films. It comprises analyses of the surface morphology and reconstruction, electronic band structure as well as hetero-junctions relevant to photovoltaic applications. Therefore, especially the aspect of stoichiometry variation from the CuInSe 2 to the copper-deficient defect phases was considered. Preparation and analysis was completely performed under ultra-high vacuum conditions in order to ensure the investigation of well-defined samples free of contaminants. For some of the analysis techniques, single-crystalline samples are indispensable: They allow for the determination of surface periodicity by low-energy electron diffraction (LEED). In combination with concentration depth profiling by angle-resolved x-ray photoemission, to types of surface reconstructions could be distinguished for the near-stoichiometric CuInSe 2 (112) surface. In the copper-rich case, it is stabilized by Cu In anti-site defects and on the indium-rich side by 2 V Cu defects, as predicted by surface total energy calculations by Jaffe and Zunger. Both configurations correspond to a c(4 x 2) reconstruction of the zinc blende type (111) surface. For the defect compound CuIn 3 Se 5 , a sphalerite order of the surface was found, which points at a weakening or absence of the chalcopyrite order in the bulk of the material. The unusual stability of the (112) surface could also be proven by comparison with the reconstruction and surface order of (001) and (220) surfaces. The results from surface analysis were used to measure the valence band structure of the epitaxial samples by synchrotron-based angle-resolved photoelectron spectroscopy. The CuInSe 2 (001) surface gives access to the high symmetry directions Γ-T and Γ-N of momentum space. By contrasting the data obtained for the stoichiometric surface with the copper-poor defect compound, a reduction of the valence band dispersion and a broadening of

  17. Electrostatic cloaking of surface structure for dynamic wetting

    Science.gov (United States)

    Shiomi, Junichiro; Nita, Satoshi; Do-Quang, Minh; Wang, Jiayu; Chen, Yu-Chung; Suzuki, Yuji; Amberg, Gustav

    2017-11-01

    Dynamic wetting problems are fundamental to the understanding of the interaction between liquids and solids. Even in a superficially simple experimental situation, such as a droplet spreading over a dry surface, the result may depend not only on the liquid properties but also strongly on the substrate-surface properties; even for macroscopically smooth surfaces, the microscopic geometrical roughness can be important. In addition, as surfaces may often be naturally charged, or electric fields are used to manipulate fluids, electric effects are crucial components that influence wetting phenomena. Here we investigate the interplay between electric forces and surface structures in dynamic wetting. While surface microstructures can significantly hinder the spreading, we find that the electrostatics can ``cloak'' the microstructures, i.e. deactivate the hindering. We identify the physics in terms of reduction in contact-line friction, which makes the dynamic wetting inertial force dominant and insensitive to the substrate properties. This work was financially supported in part by, the Japan Society for the Promotion of Science, Swedish Governmental Agency for Innovation Systems, and the Japan Science and Technology Agency.

  18. Atomic and electronic structure of surfaces theoretical foundations

    CERN Document Server

    Lannoo, Michel

    1991-01-01

    Surfaces and interfaces play an increasingly important role in today's solid state devices. In this book the reader is introduced, in a didactic manner, to the essential theoretical aspects of the atomic and electronic structure of surfaces and interfaces. The book does not pretend to give a complete overview of contemporary problems and methods. Instead, the authors strive to provide simple but qualitatively useful arguments that apply to a wide variety of cases. The emphasis of the book is on semiconductor surfaces and interfaces but it also includes a thorough treatment of transition metals, a general discussion of phonon dispersion curves, and examples of large computational calculations. The exercises accompanying every chapter will be of great benefit to the student.

  19. Wetting on micro-structured surfaces: modelling and optimization

    DEFF Research Database (Denmark)

    Cavalli, Andrea

    -patterns, and suggests that there is a balance between optimal wetting properties and mechanical robustness of the microposts. We subsequently analyse liquid spreading on surfaces patterned with slanted microposts. Such a geometry induces unidirectional liquid spreading, as observed in several recent experiments. Our...... liquid spreading and spontaneous drop removal on superhydrophobic surfaces. We do this by applying different numerical techniques, suited for the specific topic. We first consider superhydrophobicity, a condition of extreme water repellency associated with very large static contact angles and low roll......The present thesis deals with the wetting of micro-structured surfaces by various fluids, and its goal is to elucidate different aspects of this complex interaction. In this work we address some of the most relevant topics in this field such as superhydrophobicity, oleophobicity, unidirectional...

  20. Nonlinear surface waves at ferrite-metamaterial waveguide structure

    Science.gov (United States)

    Hissi, Nour El Houda; Mokhtari, Bouchra; Eddeqaqi, Noureddine Cherkaoui; Shabat, Mohammed Musa; Atangana, Jacques

    2016-09-01

    A new ferrite slab made of a metamaterial (MTM), surrounded by a nonlinear cover cladding and a ferrite substrate, was shown to support unusual types of electromagnetic surface waves. We impose the boundary conditions to derive the dispersion relation and others necessary to formulate the proposed structure. We analyse the dispersion properties of the nonlinear surface waves and we calculate the associated propagation index and the film-cover interface nonlinearity. In the calculation, several sets of the permeability of the MTM are considered. Results show that the waves behaviour depends on the values of the permeability of the MTM, the thickness of the waveguide and the film-cover interface nonlinearity. It is also shown that the use of the singular solutions to the electric field equation allows to identify several new properties of surface waves which do not exist in conventional waveguide.

  1. Gradient limitation in accelerating structures imposed by surface melting

    International Nuclear Information System (INIS)

    Wilson, Perry B

    2003-01-01

    A rough picture is beginning to emerge of the physics behind the maximum gradient that can be sustained in an accelerating structure without producing surface damage at a level sufficient to cause a measurable change in the rf properties of the structure. Field emission sites are known to trigger the formation of so-called plasma spots in regions of high dc or rf surface electric fields. A single plasma spot has a finite lifetime (∼ 20-50ns) and leaves behind a single crater. In the rf case, some fraction of the electrons emitted from the spot pick up energy from the rf field and back-bombard the area around the spot. Depending on the gradient, pulse length and available rf energy, multiple spots can form in close proximity. The combined back-bombardment power density from such a spot cluster can be sufficient to raise the surface temperature to the melting point in tens of nanoseconds over an area on the order of 100 microns in diameter. This molten area can now support a plasma capable of emitting several kiloamperes of electrons with an average energy of 50-100kV. This is sufficient beam power to collapse the field in a travelling structure in 30 ns or so. The plasma also exerts a tremendous pressure on the molten surface, sufficient to cause a macroscopic amount of material to migrate toward a region of lower surface field. Over time, this process can modify the profile of the iris tip and produce an unacceptable change in the phase shift per cell

  2. Fracture Resistance, Surface Defects and Structural Strength of Glass

    OpenAIRE

    Rodichev, Y.M.; Veer, F.A.

    2010-01-01

    This paper poses the theory that the fracture resistance of basic float glass is dependent on it physicochemical properties and the surface defects fonned under the float glass production, glass processing and handling at the service conditions compose the aggregate basis for structural glass strength assessment. The effect of loading conditions, constructional and technological factors on the engineering strength of glass can be evaluated in certain cases using fracture mechanics with inform...

  3. An Algorithm for Investigating the Structure of Material Surfaces

    Directory of Open Access Journals (Sweden)

    M. Toman

    2003-01-01

    Full Text Available The aim of this paper is to summarize the algorithm and the experience that have been achieved in the investigation of grain structure of surfaces of certain materials, particularly from samples of gold. The main parts of the algorithm to be discussed are:1. acquisition of input data,2. localization of grain region,3. representation of grain size,4. representation of outputs (postprocessing.

  4. Effect of surface structure on catalytic reactions: A sum frequency generation surface vibrational spectroscopy study

    International Nuclear Information System (INIS)

    McCrea, Keith R.

    2001-01-01

    In the results discussed above, it is clear that Sum Frequency Generation (SFG) is a unique tool that allows the detection of vibrational spectra of adsorbed molecules present on single crystal surfaces under catalytic reaction conditions. Not only is it possible to detect active surface intermediates, it is also possible to detect spectator species which are not responsible for the measured turnover rates. By correlating high-pressure SFG spectra under reaction conditions and gas chromatography (GC) kinetic data, it is possible to determine which species are important under reaction intermediates. Because of the flexibility of this technique for studying surface intermediates, it is possible to determine how the structures of single crystal surfaces affect the observed rates of catalytic reactions. As an example of a structure insensitive reaction, ethylene hydrogenation was explored on both Pt(111) and Pt(100). The rates were determined to be essentially the same. It was observed that both ethylidyne and di-(sigma) bonded ethylene were present on the surface under reaction conditions on both crystals, although in different concentrations. This result shows that these two species are not responsible for the measured turnover rate, as it would be expected that one of the two crystals would be more active than the other, since the concentration of the surface intermediate would be different on the two crystals. The most likely active intermediates are weakly adsorbed molecules such as(pi)-bonded ethylene and ethyl. These species are not easily detected because their concentration lies at the detection limit of SFG. The SFG spectra and GC data essentially show that ethylene hydrogenation is structure insensitive for Pt(111) and Pt(100). SFG has proven to be a unique and excellent technique for studying adsorbed species on single crystal surfaces under high-pressure catalytic reactions. Coupled with kinetic data obtained from gas chromatography measurements, it can

  5. Intelligent sampling for the measurement of structured surfaces

    International Nuclear Information System (INIS)

    Wang, J; Jiang, X; Blunt, L A; Scott, P J; Leach, R K

    2012-01-01

    Uniform sampling in metrology has known drawbacks such as coherent spectral aliasing and a lack of efficiency in terms of measuring time and data storage. The requirement for intelligent sampling strategies has been outlined over recent years, particularly where the measurement of structured surfaces is concerned. Most of the present research on intelligent sampling has focused on dimensional metrology using coordinate-measuring machines with little reported on the area of surface metrology. In the research reported here, potential intelligent sampling strategies for surface topography measurement of structured surfaces are investigated by using numerical simulation and experimental verification. The methods include the jittered uniform method, low-discrepancy pattern sampling and several adaptive methods which originate from computer graphics, coordinate metrology and previous research by the authors. By combining the use of advanced reconstruction methods and feature-based characterization techniques, the measurement performance of the sampling methods is studied using case studies. The advantages, stability and feasibility of these techniques for practical measurements are discussed. (paper)

  6. Electronic structures near surfaces of perovskite type oxides

    International Nuclear Information System (INIS)

    Hara, Toru

    2005-01-01

    This work is intended to draw attention to the origin of the electronic structures near surfaces of perovskite type oxides. Deep states were observed by ultraviolet photoelectron spectroscopic measurements. The film thickness dependent electronic structures near surfaces of (Ba 0.5 Sr 0.5 )TiO 3 thin films were observed. As for the 117-308 nm thick (Ba 0.5 Sr 0.5 )TiO 3 films, deep states were lying at 0.20, 0.55, and 0.85 eV below the quasi-fermi level, respectively. However, as for the 40 nm thick (Ba 0.5 Sr 0.5 )TiO 3 film, the states were overlapped. The A-site doping affected electronic structures near surfaces of SrTiO 3 single crystals. No evolution of deep states in non-doped SrTiO 3 single crystal was observed. However, the evolution of deep states in La-doped SrTiO 3 single crystal was observed

  7. Application of response surfaces for reliability analysis of marine structures

    International Nuclear Information System (INIS)

    Leira, Bernt J.; Holmas, Tore; Herfjord, Kjell

    2005-01-01

    Marine structures subjected to multiple environmental loads (i.e. waves, current, wind) are considered. These loads are characterized by a set of corresponding parameters. The structural fatigue damage and long-term response are expressed in terms of these environmental parameters based on application of polynomial response surfaces. For both types of analysis, an integration across the range of variation for all the environmental parameters is required. The location of the intervals which give rise to the dominant contribution for these integrals depends on the relative magnitude of the coefficients defining the polynomials. The required degree of numerical subdivision in order to obtain accurate results is also of interest. These issues are studied on a non-dimensional form. The loss of accuracy which results when applying response surfaces of too low order is also investigated. Response surfaces with cut-off limits at specific lower-bound values for the environmental parameters are further investigated. Having obtained general expressions on non-dimensional form, examples which correspond to specific response quantities for marine structures are considered. Typical values for the polynomial coefficients, and for the statistical distributions representing the environmental parameters, are applied. Convergence studies are subsequently performed for the particular example response quantities in order to make comparison with the general formulation. For the extreme response, the application of 'extreme contours' obtained from the statistical distributions of the environmental parameters is explored

  8. Simple surface structure determination from Fourier transforms of angle-resolved photoemission extended fine structure

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Y. [Pennsylvania State Univ., University Park, PA (United States)]|[Lawrence Berkeley Lab., CA (United States); Shirley, D.A. [Pennsylvania State Univ., University Park, PA (United States)

    1995-02-01

    The authors show by Fourier analyses of experimental data, with no further treatment, that the positions of all the strong peaks in Fourier transforms of angle-resolved photoemission extended fine structure (ARPEFS) from adsorbed surfaces can be explicitly predicted from a trial structure with an accuracy of about {+-} 0.3 {angstrom} based on a single-scattering cluster model together with the concept of a strong backscattering cone, and without any additional analysis. This characteristic of ARPEFS Fourier transforms can be developed as a simple method for determining the structures of adsorbed surfaces to an accuracy of about {+-} 0.1 {angstrom}.

  9. Universal binding energy relation for cleaved and structurally relaxed surfaces

    International Nuclear Information System (INIS)

    Srirangarajan, Aarti; Datta, Aditi; Gandi, Appala Naidu; Ramamurty, U; Waghmare, U V

    2014-01-01

    The universal binding energy relation (UBER), derived earlier to describe the cohesion between two rigid atomic planes, does not accurately capture the cohesive properties when the cleaved surfaces are allowed to relax. We suggest a modified functional form of UBER that is analytical and at the same time accurately models the properties of surfaces relaxed during cleavage. We demonstrate the generality as well as the validity of this modified UBER through first-principles density functional theory calculations of cleavage in a number of crystal systems. Our results show that the total energies of all the relaxed surfaces lie on a single (universal) energy surface, that is given by the proposed functional form which contains an additional length-scale associated with structural relaxation. This functional form could be used in modelling the cohesive zones in crack growth simulation studies. We find that the cohesive law (stress–displacement relation) differs significantly in the case where cracked surfaces are allowed to relax, with lower peak stresses occurring at higher displacements. (paper)

  10. Universal binding energy relation for cleaved and structurally relaxed surfaces.

    Science.gov (United States)

    Srirangarajan, Aarti; Datta, Aditi; Gandi, Appala Naidu; Ramamurty, U; Waghmare, U V

    2014-02-05

    The universal binding energy relation (UBER), derived earlier to describe the cohesion between two rigid atomic planes, does not accurately capture the cohesive properties when the cleaved surfaces are allowed to relax. We suggest a modified functional form of UBER that is analytical and at the same time accurately models the properties of surfaces relaxed during cleavage. We demonstrate the generality as well as the validity of this modified UBER through first-principles density functional theory calculations of cleavage in a number of crystal systems. Our results show that the total energies of all the relaxed surfaces lie on a single (universal) energy surface, that is given by the proposed functional form which contains an additional length-scale associated with structural relaxation. This functional form could be used in modelling the cohesive zones in crack growth simulation studies. We find that the cohesive law (stress-displacement relation) differs significantly in the case where cracked surfaces are allowed to relax, with lower peak stresses occurring at higher displacements.

  11. Surface science study of selective ethylene epoxidation catalyzed by the Ag(110) surface: Structural sensitivity

    International Nuclear Information System (INIS)

    Campbell, C.T.

    1984-01-01

    The selective oxidation of ethylene to ethylene epoxide (C 2 H 4 +1/2O 2 →C 2 H 4 O) over Ag is the simplest example of kinetically controlled, selective heterogeneous catalysis. We have studied the steady-state kinetics and selectivity of this reaction for the first time on a clean, well-characterized Ag(110) surface by using a special apparatus which allows rapid (approx.20 s) transfer between a high-pressure catalytic microreactor and an ultrahigh vacuum surface analysis (AES, XPS, LEED, TDS) chamber. The effects of temperature and reactant pressures upon the rate and selectivity are virtually identical on Ag(110) and supported, high surface area Ag catalysts. The absolute specific rate (per Ag surface atom) is, however, some 100-fold higher for Ag(110) than for high surface area catalysts. This is related to the well-known structural sensitivity of this reaction. It is postulated that a small percentage of (110) planes (or [110]-like sites) are responsible for most of the catalytic activity of high surface area catalysts. The high activity of the (110) plane is attributed to its high sticking probability for dissociative oxygen adsorption, since the rate of ethylene epoxidation is shown in a related work [Ref. 1: C. T. Campbell and M. T. Paffett, Surf. Sci. (in press)] to be proportional to the coverage of atomically adsorbed oxygen at constant temperature and ethylene pressure

  12. Fouling of Structured Surfaces during Pool Boiling of Aqueous Solutions

    International Nuclear Information System (INIS)

    Esawy, M.

    2011-01-01

    Bubble characteristics in terms of density, size, frequency and motion are key factors that contribute to the superiority of nucleate pool boiling over the other modes of heat transfer. Nevertheless, if heat transfer occurs in an environment which is prone to fouling, the very same parameters may lead to accelerated deposit formation due to concentration effects beneath the growing bubbles. This has led heat exchanger designers frequently to maintain the surface temperature below the boiling point if fouling occurs, e.g. in thermal seawater desalination plants. The present study investigates the crystallization fouling of various structured surfaces during nucleate pool boiling of CaSO 4 solutions to shed light into their fouling behaviour compared with that of plain surfaces for the same operating conditions. As for the experimental part, a comprehensive set of clean and fouling experiments was performed rigorously. The structured tubes included low finned tubes of different fin densities, heights and materials and re-entrant cavity Turbo-B tube types.The fouling experiments were carried out at atmospheric pressure for different heat fluxes ranging from 100 to 300 k W/m 2 and CaSO 4 concentrations of 1.2 and 1.6 g/L. For the sake of comparison, similar runs were performed on plain stainless steel and copper tubes.Overall for the finned tubes, the experimental results showed a significant reduction of fouling resistances of up to 95% compared to those of the stainless steel and copper plain tubes. In addition, the scale formation that occurred on finned tubes was primarily a scattered and thin crystalline layer which differs significantly from those of plain tubes which suffered from a thick and homogenous layer of deposit with strong adhesion. Higher fin densities and lower fin heights always led to better antifouling performance for all investigated finned tubes. It was also shown that the surface material strongly affects the scale formation of finned tubes i

  13. Rupture of thin liquid films on structured surfaces.

    Science.gov (United States)

    Ajaev, Vladimir S; Gatapova, Elizaveta Ya; Kabov, Oleg A

    2011-10-01

    We investigate stability and breakup of a thin liquid film on a solid surface under the action of disjoining pressure. The solid surface is structured by parallel grooves. Air is trapped in the grooves under the liquid film. Our mathematical model takes into account the effect of slip due to the presence of menisci separating the liquid film from the air inside the grooves, the deformation of these menisci due to local variations of pressure in the liquid film, and nonuniformities of the Hamaker constant which measures the strength of disjoining pressure. Both linear stability and strongly nonlinear evolution of the film are analyzed. Surface structuring results in decrease of the fastest growing instability wavelength and the rupture time. It is shown that a simplified description of film dynamics based on the standard formula for effective slip leads to significant deviations from the behavior seen in our simulations. Self-similar decay over several orders of magnitude of the film thickness near the rupture point is observed. We also show that the presence of the grooves can lead to instability in otherwise stable films if the relative groove width is above a critical value, found as a function of disjoining pressure parameters.

  14. Surface structure and tribology of legless squamate reptiles.

    Science.gov (United States)

    Abdel-Aal, Hisham A

    2018-03-01

    Squamate reptiles (around 10,000 species of snakes and lizards) comprise a myriad of distinct terrestrial vertebrates. The diversity within this biological group offers a great opportunity for customized bio-inspired solutions that address a variety of current technological problems especially within the realm of surface engineering and tribology. One subgroup within squamata is of interest in that context, namely the legless reptiles (mainly snakes and few lizards). The promise of that group lies within their functional adaptation as manifested in optimized surface designs and locomotion that is distinguished by economy of effort even when functioning within hostile tribological environments. Legless reptiles are spread over a wide range in the planet, this geographical diversity demands customized response to local habitats. Customization, in turn, is facilitated through specialized surface design features. In legless reptiles, micro elements of texture, their geometry and topological layout advance mitigation of frictional effects both in locomotion and in general function. Lately, the synergy between functional traits and intrinsic surface features has emerged as focus of research across disciplines. Many investigations have sought to characterize the structural as well as the tribological response of legless species from an engineering point of view. Despite the sizable amount of data that have accumulated in the literature over the past two decades or so, no effort to review the available information, whence this review. This manuscript, therefore, endeavors to assess available data on surface metrology and tribological behavior of legless reptiles and to define aspects of that performance necessary to formulate an advanced paradigm for bio-inspired surface engineering. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Simultaneous measurements of top surface and its underlying film surfaces in multilayer film structure.

    Science.gov (United States)

    Ghim, Young-Sik; Rhee, Hyug-Gyo; Davies, Angela

    2017-09-19

    With the growth of 3D packaging technology and the development of flexible, transparent electrodes, the use of multilayer thin-films is steadily increasing throughout high-tech industries including semiconductor, flat panel display, and solar photovoltaic industries. Also, this in turn leads to an increase in industrial demands for inspection of internal analysis. However, there still remain many technical limitations to overcome for measurement of the internal structure of the specimen without damage. In this paper, we propose an innovative optical inspection technique for simultaneous measurements of the surface and film thickness corresponding to each layer of multilayer film structures by computing the phase and reflectance over a wide range of wavelengths. For verification of our proposed method, the sample specimen of multilayer films was fabricated via photolithography process, and the surface profile and film thickness of each layer were measured by two different techniques of a stylus profilometer and an ellipsometer, respectively. Comparison results shows that our proposed technique enables simultaneous measurements of the top surface and its underlying film surfaces with high precision, which could not be measured by conventional non-destructive methods.

  16. Laser-based structural sensing and surface damage detection

    Science.gov (United States)

    Guldur, Burcu

    Damage due to age or accumulated damage from hazards on existing structures poses a worldwide problem. In order to evaluate the current status of aging, deteriorating and damaged structures, it is vital to accurately assess the present conditions. It is possible to capture the in situ condition of structures by using laser scanners that create dense three-dimensional point clouds. This research investigates the use of high resolution three-dimensional terrestrial laser scanners with image capturing abilities as tools to capture geometric range data of complex scenes for structural engineering applications. Laser scanning technology is continuously improving, with commonly available scanners now capturing over 1,000,000 texture-mapped points per second with an accuracy of ~2 mm. However, automatically extracting meaningful information from point clouds remains a challenge, and the current state-of-the-art requires significant user interaction. The first objective of this research is to use widely accepted point cloud processing steps such as registration, feature extraction, segmentation, surface fitting and object detection to divide laser scanner data into meaningful object clusters and then apply several damage detection methods to these clusters. This required establishing a process for extracting important information from raw laser-scanned data sets such as the location, orientation and size of objects in a scanned region, and location of damaged regions on a structure. For this purpose, first a methodology for processing range data to identify objects in a scene is presented and then, once the objects from model library are correctly detected and fitted into the captured point cloud, these fitted objects are compared with the as-is point cloud of the investigated object to locate defects on the structure. The algorithms are demonstrated on synthetic scenes and validated on range data collected from test specimens and test-bed bridges. The second objective of

  17. Full surface inspection methods regarding reinforcement corrosion of concrete structures

    International Nuclear Information System (INIS)

    Reichling, K.; Raupach, M.; Broomfield, J.; Gulikers, J.; L'Hostis, Valerie

    2013-01-01

    For reinforced concrete structures a localisation of all significant critical areas can only be done by a full surface inspection. The economic advantages are obvious: uncritical areas have not to be repaired expensively.The first step of the assessment should always be a visual inspection. The range of deterioration causes can be limited and the degree of deterioration may be estimated roughly. The inspection program can be adjusted to the requirements. By means of a full surface potential mapping areas with a high risk for chloride induced reinforcement corrosion can be localised, although no deteriorations are visually detectable at the concrete surface. In combination with concrete cover depth and resistivity measurements areas with corrosion promoting exposure conditions can be localised even if the reinforcement is not yet de-passivated. The following publication gives an overview about the essential full surface investigation methods to localise critical areas regarding corrosion of steel in concrete. The selection of methods is based on the inspection procedure given in reference 2. (authors)

  18. Homogenization models for thin rigid structured surfaces and films.

    Science.gov (United States)

    Marigo, Jean-Jacques; Maurel, Agnès

    2016-07-01

    A homogenization method for thin microstructured surfaces and films is presented. In both cases, sound hard materials are considered, associated with Neumann boundary conditions and the wave equation in the time domain is examined. For a structured surface, a boundary condition is obtained on an equivalent flat wall, which links the acoustic velocity to its normal and tangential derivatives (of the Myers type). For a structured film, jump conditions are obtained for the acoustic pressure and the normal velocity across an equivalent interface (of the Ventcels type). This interface homogenization is based on a matched asymptotic expansion technique, and differs slightly from the classical homogenization, which is known to fail for small structuration thicknesses. In order to get insight into what causes this failure, a two-step homogenization is proposed, mixing classical homogenization and matched asymptotic expansion. Results of the two homogenizations are analyzed in light of the associated elementary problems, which correspond to problems of fluid mechanics, namely, potential flows around rigid obstacles.

  19. Structures and Functions of Pestivirus Glycoproteins: Not Simply Surface Matters

    Directory of Open Access Journals (Sweden)

    Fun-In Wang

    2015-06-01

    Full Text Available Pestiviruses, which include economically important animal pathogens such as bovine viral diarrhea virus and classical swine fever virus, possess three envelope glycoproteins, namely Erns, E1, and E2. This article discusses the structures and functions of these glycoproteins and their effects on viral pathogenicity in cells in culture and in animal hosts. E2 is the most important structural protein as it interacts with cell surface receptors that determine cell tropism and induces neutralizing antibody and cytotoxic T-lymphocyte responses. All three glycoproteins are involved in virus attachment and entry into target cells. E1-E2 heterodimers are essential for viral entry and infectivity. Erns is unique because it possesses intrinsic ribonuclease (RNase activity that can inhibit the production of type I interferons and assist in the development of persistent infections. These glycoproteins are localized to the virion surface; however, variations in amino acids and antigenic structures, disulfide bond formation, glycosylation, and RNase activity can ultimately affect the virulence of pestiviruses in animals. Along with mutations that are driven by selection pressure, antigenic differences in glycoproteins influence the efficacy of vaccines and determine the appropriateness of the vaccines that are currently being used in the field.

  20. Structures and Functions of Pestivirus Glycoproteins: Not Simply Surface Matters.

    Science.gov (United States)

    Wang, Fun-In; Deng, Ming-Chung; Huang, Yu-Liang; Chang, Chia-Yi

    2015-06-29

    Pestiviruses, which include economically important animal pathogens such as bovine viral diarrhea virus and classical swine fever virus, possess three envelope glycoproteins, namely Erns, E1, and E2. This article discusses the structures and functions of these glycoproteins and their effects on viral pathogenicity in cells in culture and in animal hosts. E2 is the most important structural protein as it interacts with cell surface receptors that determine cell tropism and induces neutralizing antibody and cytotoxic T-lymphocyte responses. All three glycoproteins are involved in virus attachment and entry into target cells. E1-E2 heterodimers are essential for viral entry and infectivity. Erns is unique because it possesses intrinsic ribonuclease (RNase) activity that can inhibit the production of type I interferons and assist in the development of persistent infections. These glycoproteins are localized to the virion surface; however, variations in amino acids and antigenic structures, disulfide bond formation, glycosylation, and RNase activity can ultimately affect the virulence of pestiviruses in animals. Along with mutations that are driven by selection pressure, antigenic differences in glycoproteins influence the efficacy of vaccines and determine the appropriateness of the vaccines that are currently being used in the field.

  1. Response surface reconciliation method of bolted joints structure

    Directory of Open Access Journals (Sweden)

    Yunus Mohd Azmi

    2017-01-01

    Full Text Available Structural joining methods such as bolted joints are commonly used for the assembly of structural components due to their simplicity and easy maintenance. Understandably, the dynamic characteristic of bolted joined structure is mainly influenced by the properties of their joints such as preload on the bolts and joints stiffness which alter the measured dynamics response of the structure. Therefore, the need to include the local effect of the bolted joints into the numerical model of the bolted joined structure is vitally important in order to represent the model accurately. In this paper, a few types of connector elements that can be used to represent the bolted joints such as CBAR, CBEAM and CELAS have been investigated numerically and experimentally. The initial numerical results of these element connectors are compared with the experimental results in term of natural frequencies and mode shapes. The comparative evaluation of numerical and the experimental data are performed in order to provide some insights of inaccuracies in the numerical model due to invalid assumption in the numerical modelling such as geometry, material properties, and boundary conditions. The discrepancies between both results (numerical and experimental data are then corrected using the response surface reconciliation method (RSRM through which the finite element model is altered in order to provide closer agreement with the measured data so that it can be used for subsequence analysis.

  2. A structural model for composite rotor blades and lifting surfaces

    Science.gov (United States)

    Rehfield, Lawrence W.; Atilgan, Ali R.

    1987-01-01

    Composite material systems are currently candidates for aerospace structures, primarily for the design flexibiity they offer i.e., it is possible to tailor the material and manufacturing approach to the application. Two notable examples are the wing of the Grumman/USAF/DARPA X-29 and rotor blades under development by the U.S.A. Aerostructures Directorate (AVSCOM), Langley Research Center. A working definition of elastic or structural tailoring is the use of structural concept, fiber orientation, ply stacking sequence, and a blend of materials to achieve specific performance goals. In the design process, choices of materials and dimensions are made which produce specific response characteristics which permit the selected goals to be achieved. Common choices for tailoring goals are preventing instabilities or vibration resonances or enhancing damage tolerance. An essential, enabling factor in the design of tailored composite structures is structural modeling that accurately, but simply, characterizes response. The objective of this paper is to improve the single-cell beam model for composite rotor blades or lifting surfaces and to demonstrate its usefullness in applications.

  3. Enhanced surface structuring by ultrafast XUV/NIR dual action

    Czech Academy of Sciences Publication Activity Database

    Jakubczak, Krzysztof; Mocek, Tomáš; Chalupský, Jaromír; Lee, G.H.; Kim, T.K.; Park, S.B.; Nam, Ch. H.; Hájková, Věra; Toufarová, Martina; Juha, Libor; Rus, Bedřich

    2011-01-01

    Roč. 13, č. 5 (2011), s. 1-12 ISSN 1367-2630 R&D Projects: GA AV ČR KAN300100702; GA MŠk(CZ) LC528; GA MŠk LA08024; GA ČR GC202/07/J008 Grant - others:AV ČR(CZ) M100100911 Institutional research plan: CEZ:AV0Z10100523 Keywords : XUV beam * ultrafast NIR laser pulses * high-order harmonics * laser-induced periodic surface structures Subject RIV: BH - Optics, Masers, Lasers Impact factor: 4.177, year: 2011 http://iopscience.iop.org/1367-2630/13/5/053049

  4. Structure determination by photoelectron diffraction of small molecules on surfaces

    International Nuclear Information System (INIS)

    Booth, N.A.

    1998-05-01

    The synchrotron radiation based technique of Photoelectron Diffraction (PhD) has been applied to three adsorption systems. Structure determinations, are presented for each system which involve the adsorption of small molecules on the low index {110} plane of single crystal Cu and Ni substrates. For the NH 3 -Cu(110) system PhD was successful in determining a N-Cu bondlength of 2.05 ± 0.03 A as well as values for the anisotropic vibrational amplitudes of the N and an expansion of the 1st to 2nd Cu substrate layer spacing from the bulk value of 0.08 ± 0.08 A. The most significant and surprising structural parameter determined for this system was that the N atom occupies an asymmetric adsorption site. Rather than being situated in the expected high symmetry atop site the N atom was found to be offset parallel to the surface by 0.37 ± 0.12 A in the [001] azimuth. In studying the glycine-Cu(110) system the adsorption structure of an amino-acid has been quantified. The local adsorption geometries of all the atoms involved in the molecule to surface bond have been determined. The glycine molecule is found to be bonded to the surface via both its amino and carboxylate functional groups. The molecule straddles two [11-bar0] rows of the Cu substrate. The two O atoms are found to be in identical sites both approximately atop Cu atoms on the [11-bar0] rows offset parallel to the surface by 0.80 ± 0.05 A in the [001] azimuth, the O-Cu bondlength was found to be 2.03 ± 0.05 A. The N atom was also found to adsorb in an approximately atop geometry but offset parallel to the surface by 0.24 ± 0.10A in the [11-bar0] direction, the N-Cu bondlength was found to be 2.05± 0.05 A. PhD was unsuccessful in determining the positions of the two C atoms that form a bridge between the two functional groups bonded to the surface due to difficulties in separating the two inequivalent contributions to the final intensity modulation function. For the CN-Ni(110) system both PhD and Near Edge

  5. Surface topographical and structural analysis of Ag+-implanted polymethylmethacrylate

    International Nuclear Information System (INIS)

    Arif, Shafaq; Rafique, M. Shahid; Saleemi, Farhat; Naab, Fabian; Toader, Ovidiu; Sagheer, Riffat; Bashir, Shazia; Zia, Rehana; Siraj, Khurram; Iqbal, Saman

    2016-01-01

    Specimens of polymethylmethacrylate (PMMA) were implanted with 400-keV Ag + ions at different ion fluences ranging from 1 × 10 14 to 5 × 10 15 ions/cm 2 using a 400-kV NEC ion implanter. The surface topographical features of the implanted PMMA were investigated by a confocal microscope. Modifications in the structural properties of the implanted specimens were analyzed in comparison with pristine PMMA by X-ray diffraction (XRD) and Raman spectroscopy. UV–Visible spectroscopy was applied to determine the effects of ion implantation on optical transmittance of the implanted PMMA. The confocal microscopic images revealed the formation of hillock-like microstructures along the ion track on the implanted PMMA surface. The increase in ion fluence led to more nucleation of hillocks. The XRD pattern confirmed the amorphous nature of pristine and implanted PMMA, while the Raman studies justified the transformation of Ag + -implanted PMMA into amorphous carbon at the ion fluence of ⩾5 × 10 14 ions/cm 2 . Moreover, the decrease in optical transmittance of PMMA is associated with the formation of hillocks and ion-induced structural modifications after implantation.

  6. Detection for flatness of large surface based on structured light

    Science.gov (United States)

    He, Wenyan; Cao, Xuedong; Long, Kuang; Peng, Zhang

    2016-09-01

    In order to get flatness of a large plane, this paper set up a measurement system, composed by Line Structured Light, imaging system, CCD, etc. Line Structured Light transmits parallel fringes at a proper angle onto the plane which is measured; the imaging system and CCD locate above the plane to catch the fringes. When the plane is perfect, CCD will catch straight fringes; however, the real plane is not perfect; according to the theory of projection, the fringes caught by CCD will be distorted by convex and concave. Extract the center of line fringes to obtain the distortion of the fringe, according to the functional relationship between the distortion of fringes and the height which is measured, then we will get flatness of the entire surface. Data from experiment approached the analysis of theory. In the simulation, the vertical resolution is 0.0075 mm per pixel when measuring a plane of 400mm×400mm, choosing the size of CCD 4096×4096, at the angle 85°. Helped by sub-pixel, the precision will get the level of submicron. There are two obvious advantages: method of surface sampling can increase the efficiency for auto-repairing of machines; considering the center of fringe is required mainly in this system, as a consequence, there is no serious demand for back light.

  7. Surface, structural and tensile properties of proton beam irradiated zirconium

    Energy Technology Data Exchange (ETDEWEB)

    Rafique, Mohsin; Chae, San; Kim, Yong-Soo, E-mail: yongskim@hanyang.ac.kr

    2016-02-01

    This paper reports the surface, structural and tensile properties of proton beam irradiated pure zirconium (99.8%). The Zr samples were irradiated by 3.5 MeV protons using MC-50 cyclotron accelerator at different doses ranging from 1 × 10{sup 13} to 1 × 10{sup 16} protons/cm{sup 2}. Both un-irradiated and irradiated samples were characterized using Field Emission Scanning Electron Microscope (FESEM), X-ray Diffraction (XRD) and Universal Testing Machine (UTM). The average surface roughness of the specimens was determined by using Nanotech WSxM 5.0 develop 7.0 software. The FESEM results revealed the formation of bubbles, cracks and black spots on the samples’ surface at different doses whereas the XRD results indicated the presence of residual stresses in the irradiated specimens. Williamson–Hall analysis of the diffraction peaks was carried out to investigate changes in crystallite size and lattice strain in the irradiated specimens. The tensile properties such as the yield stress, ultimate tensile stress and percentage elongation exhibited a decreasing trend after irradiation in general, however, an inconsistent behavior was observed in their dependence on proton dose. The changes in tensile properties of Zr were associated with the production of radiation-induced defects including bubbles, cracks, precipitates and simultaneous recovery by the thermal energy generated with the increase of irradiation dose.

  8. Surface, structural and tensile properties of proton beam irradiated zirconium

    Science.gov (United States)

    Rafique, Mohsin; Chae, San; Kim, Yong-Soo

    2016-02-01

    This paper reports the surface, structural and tensile properties of proton beam irradiated pure zirconium (99.8%). The Zr samples were irradiated by 3.5 MeV protons using MC-50 cyclotron accelerator at different doses ranging from 1 × 1013 to 1 × 1016 protons/cm2. Both un-irradiated and irradiated samples were characterized using Field Emission Scanning Electron Microscope (FESEM), X-ray Diffraction (XRD) and Universal Testing Machine (UTM). The average surface roughness of the specimens was determined by using Nanotech WSxM 5.0 develop 7.0 software. The FESEM results revealed the formation of bubbles, cracks and black spots on the samples' surface at different doses whereas the XRD results indicated the presence of residual stresses in the irradiated specimens. Williamson-Hall analysis of the diffraction peaks was carried out to investigate changes in crystallite size and lattice strain in the irradiated specimens. The tensile properties such as the yield stress, ultimate tensile stress and percentage elongation exhibited a decreasing trend after irradiation in general, however, an inconsistent behavior was observed in their dependence on proton dose. The changes in tensile properties of Zr were associated with the production of radiation-induced defects including bubbles, cracks, precipitates and simultaneous recovery by the thermal energy generated with the increase of irradiation dose.

  9. Surface molecular aggregation structure and surface physicochemical properties of poly(fluoroalkyl acrylate) thin films

    International Nuclear Information System (INIS)

    Honda, K; Yamaguchi, H; Takahara, A; Kobayashi, M; Morita, M

    2008-01-01

    Effect of side chain length on the molecular aggregation states and surface properties of poly(fluoroalkyl acrylate)s [PFA-C y , where y is fluoromethylene number in R f group] thin films were systematically investigated. Spin-coated PFA-C y thin films were characterized by static and dynamic contact angle measurements, X-ray photoelectron spectroscopy (XPS), and grazing- incidence X-ray diffraction (GIXD). The receding contact angles showed small values for PFA-C y with short side chain (y≤6) and increased above y≥8. GIXD revealed that fluoroalkyl side chain of PFA-C y with y≥8 was crystallized and formed ordered structures at the surface region as well as bulk one. These results suggest that water repellent mechanism of PFA-C y can be attributed to the presence of highly ordered fluoroalkyl side chains at the outermost surfaces. The results of XPS in the dry and hydrated states and contact angle measurement in water support the mechanism of lowering contact angle for water by exposure of carbonyl group to the water interface through reorientation of short fluoroalkyl chains. The surface nanotextured PFA-C 8 through imprinting of anodic aluminum oxide mold showed extremely high hydrophobicity as well as high oleophobicity

  10. The surface and deep structure of the waterfall illusion.

    Science.gov (United States)

    Wade, Nicholas J; Ziefle, Martina

    2008-11-01

    The surface structure of the waterfall illusion or motion aftereffect (MAE) is its phenomenal visibility. Its deep structure will be examined in the context of a model of space and motion perception. The MAE can be observed following protracted observation of a pattern that is translating, rotating, or expanding/contracting, a static pattern appears to move in the opposite direction. The phenomenon has long been known, and it continues to present novel properties. One of the novel features of MAEs is that they can provide an ideal visual assay for distinguishing local from global processes. Motion during adaptation can be induced in a static central grating by moving surround gratings; the MAE is observed in the static central grating but not in static surrounds. The adaptation phase is local and the test phase is global. That is, localised adaptation can be expressed in different ways depending on the structure of the test display. These aspects of MAEs can be exploited to determine a variety of local/global interactions. Six experiments on MAEs are reported. The results indicated that relational motion is required to induce an MAE; the region adapted extends beyond that stimulated; storage can be complete when the MAE is not seen during the storage period; interocular transfer (IOT) is around 30% of monocular MAEs with phase alternation; large field spiral patterns yield MAEs with characteristic monocular and binocular interactions.

  11. The structure of organic langmuir films on liquid metal surfaces

    International Nuclear Information System (INIS)

    Kraack, H.; Deutsch, M.; Ocko, B.M.; Pershan, P.S.

    2003-01-01

    Langmuir films (LFs) on water have long been studied for their interest for basic science and their numerous applications in chemistry, physics, materials science and biology. We present here A-resolution synchrotron X-ray studies of the structure of stearic acid LFs on a liquid mercury surface. At low coverage, ≥110 A 2 /mol, a 2D gas phase of flat-lying molecules is observed. At high coverage, ≤23 A 2 /mol, two different hexatic phases of standing-up molecules are observed. At intermediate coverage, 52≤A≤110 A 2 /mol, novel single- and double-layered phases of flat-lying molecular dimers are found, exhibiting a 1D in-layer order. Such flat-lying phases were not hitherto observed in any LF. Measurements on LFs of fatty acids of other chain lengths indicate that this structure is generic to chain molecules on mercury, although the existence of some of the flat-lying phases, and the observed phase sequence, depend on the chain length. Organic LFs on Hg, and in particular the new flat-lying phases, should provide a broader nano-structural tunability range for molecular electronic device construction than most solid-supported self-assembled monolayers used at present

  12. Calculation of surface acoustic waves in a multilayered piezoelectric structure

    International Nuclear Information System (INIS)

    Zhang Zuwei; Wen Zhiyu; Hu Jing

    2013-01-01

    The propagation properties of the surface acoustic waves (SAWs) in a ZnO—SiO 2 —Si multilayered piezoelectric structure are calculated by using the recursive asymptotic method. The phase velocities and the electromechanical coupling coefficients for the Rayleigh wave and the Love wave in the different ZnO—SiO 2 —Si structures are calculated and analyzed. The Love mode wave is found to be predominantly generated since the c-axis of the ZnO film is generally perpendicular to the substrate. In order to prove the calculated results, a Love mode SAW device based on the ZnO—SiO 2 —Si multilayered structure is fabricated by micromachining, and its frequency responses are detected. The experimental results are found to be mainly consistent with the calculated ones, except for the slightly larger velocities induced by the residual stresses produced in the fabrication process of the films. The deviation of the experimental results from the calculated ones is reduced by thermal annealing. (semiconductor physics)

  13. Surface and interface electronic structure: Third year progress report, December 1, 1988--November 30, 1989

    International Nuclear Information System (INIS)

    Kevan, S.D.

    1989-01-01

    This paper discusses the following topics: linewidths of surface states and resonances; surface bonds and fermi surface of Pd(001); state-resonance transition of Ta(011); and electronic structure of W(010)-2H. 5 figs

  14. Disruption of Protein Mannosylation Affects Candida guilliermondii Cell Wall, Immune Sensing, and Virulence

    Directory of Open Access Journals (Sweden)

    María J. Navarro-Arias

    2016-12-01

    Full Text Available The fungal cell wall contains glycoproteins that interact with the host immune system. In the prominent pathogenic yeast Candida albicans, Pmr1 acts as a Golgi-resident ion pump that provides cofactors to mannosyltransferases, regulating the synthesis of mannans attached to glycoproteins. To gain insight into a putative conservation of such a crucial process within opportunistic yeasts, we were particularly interested in studying the role of the PMR1 homolog in a low-virulent species that rarely causes candidiasis, Candida guilliermondii. We disrupted C. guilliermondii PMR1 and found that loss of Pmr1 affected cell growth and morphology, biofilm formation, susceptibility to cell wall perturbing agents, mannan levels, and the wall composition and organization. Despite there was a significant increment in the amount of β1,3-glucan exposed at the wall surface, this positively influenced only the ability of the mutant to stimulate IL-10 production by human monocytes, suggesting that recognition of both mannan and β1,3-glucan, is required to stimulate strong levels of pro-inflammatory cytokines. Accordingly, our results indicate C. guilliermondii sensing by monocytes was critically dependent on the recognition of N-linked mannans and β1,3-glucan, as reported in other Candida species. In addition, chemical remotion of cell wall O-linked mannans was found to positively influence the recognition of C. guilliermondii by human monocytes, suggesting that O-linked mannans mask other cell wall components from immune cells. This observation contrasts with that reported in C. albicans. Finally, mice infected with C. guilliermondii pmr1 null mutant cells had significantly lower fungal burdens compared to animals challenged with the parental strain. Accordingly, the null mutant showed inability to kill larvae in the Galleria mellonella infection model. This study thus demonstrates that mannans are relevant for the C. guilliermondii-host interaction, with

  15. Electronic structure of benzene adsorbed on Ni and Cu surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Weinelt, M.; Nilsson, A.; Wassdahl, N. [Uppsala Univ. (Sweden)] [and others

    1997-04-01

    Benzene has for a long time served as a prototype adsorption system of large molecules. It adsorbs with the molecular plane parallel to the surface. The bonding of benzene to a transition metal is typically viewed to involve the {pi} system. Benzene adsorbs weakly on Cu and strongly on Ni. It is interesting to study how the adsorption strength is reflected in the electronic structure of the adsorbate-substrate complex. The authors have used X-ray Emission (XE) and X-ray Absorption (XA) spectroscopies to selectively study the electronic states localized on the adsorbed benzene molecule. Using XES the occupied states can be studies and with XAS the unoccupied states. The authors have used beamline 8.0 and the Swedish endstation equipped with a grazing incidence x-ray spectrometer and a partial yield absorption detector. The resolution in the XES and XAS were 0.5 eV and 0.05 eV, respectively.

  16. Femtosecond laser surface structuring of molybdenum thin films

    Energy Technology Data Exchange (ETDEWEB)

    Kotsedi, L., E-mail: Kotsedi@tlabs.ac.za [UNESCO-UNISA Africa Chair in Nanosciences-Nanotechnology, College of Graduate Studies, University of South Africa, Muckleneuk ridge, PO Box 392, Pretoria (South Africa); Nanosciences African Network (NANOAFNET), iThemba LABS-National Research Foundation, 1 Old Faure Road, Somerset West 7129, PO Box 722, Somerset West, Western Cape Province (South Africa); Mthunzi, P. [Council for Scientific and Industrial Research (CSIR), Biophotonics Lab: National Laser Centre Pretoria, 0001 (South Africa); Nuru, Z.Y. [UNESCO-UNISA Africa Chair in Nanosciences-Nanotechnology, College of Graduate Studies, University of South Africa, Muckleneuk ridge, PO Box 392, Pretoria (South Africa); Nanosciences African Network (NANOAFNET), iThemba LABS-National Research Foundation, 1 Old Faure Road, Somerset West 7129, PO Box 722, Somerset West, Western Cape Province (South Africa); Eaton, S.M. [Physics Department, Politecnico di Milano, Piazza Leonardo Da Vinci, 32, 20133 Milano (Italy); Center for Nano Science and Technology, Istituto Italiano di Tecnologia, Via Pascoli 70/3, 20133 Milano, Itala (Italy); Sechoghela, P.; Mongwaketsi, N. [UNESCO-UNISA Africa Chair in Nanosciences-Nanotechnology, College of Graduate Studies, University of South Africa, Muckleneuk ridge, PO Box 392, Pretoria (South Africa); Nanosciences African Network (NANOAFNET), iThemba LABS-National Research Foundation, 1 Old Faure Road, Somerset West 7129, PO Box 722, Somerset West, Western Cape Province (South Africa); Ramponi, R. [Institute for Photonics and Nanotechnologies (IFN)–CNR, Piazza Leanardo Da Vinci, 32, 20133 Milano (Italy); Maaza, M. [UNESCO-UNISA Africa Chair in Nanosciences-Nanotechnology, College of Graduate Studies, University of South Africa, Muckleneuk ridge, PO Box 392, Pretoria (South Africa); Nanosciences African Network (NANOAFNET), iThemba LABS-National Research Foundation, 1 Old Faure Road, Somerset West 7129, PO Box 722, Somerset West, Western Cape Province (South Africa)

    2015-10-30

    Highlights: • Color change of the molybdenum thin film from shinny to violet–yellowish color after laser irradiation at various laser powers. • Formation of the molybdenum dioxide coating after laser exposure, as confirmed by the X-ray diffraction spectrometry. • Selective solar absorbing nature of the laser exposed films. • Study of the binding energies is presented in this contribution using the XPS spectrometry. - Abstract: This contribution reports on the femtosecond surface structuring of molybdenum thin coatings deposited by electron beam evaporation onto Corning glass substrates. The 1-D type periodic grating lines created by such an ablation showed that the widths of the shallow grooves followed a logarithmic dependence with the laser energy incident on the molybdenum film. The electronic valence “x” of the created oxide surface layer MoO{sub x} was found to be incident laser power dependent via Rutherford backscattering spectrometry, X-ray photoelectron spectroscopy and X-ray diffraction investigations. Such a photo-induced MoO{sub x}–Mo nanocomposite exhibited effective selective solar absorption in the UV–vis–IR spectral range.

  17. Andrew Liehr and the structure of Jahn-Teller surfaces

    International Nuclear Information System (INIS)

    Chibotaru, Liviu F.; Iwahara, Naoya

    2017-01-01

    The present article is an attempt to draw attention to a seminal work by Andrew Liehr “Topological aspects of conformational stability problem” [1, 2] issued more than half century ago. The importance of this work stems from two aspects of static Jahn-Teller and pseudo-Jahn-Teller problems fully developed by the author. First, the work of Liehr offers an almost complete overview of adiabatic potential energy surfaces for most known Jahn-Teller problems including linear, quadratic and higher-order vibronic couplings. Second, and most importantly, it identifies the factors defining the structure of Jahn-Teller surfaces. Among them, one should specially mention the minimax principle stating that the distorted Jahn-Teller systems tend to preserve the highest symmetry consistent with the loss of their orbital degeneracy. We believe that the present short reminiscence not only will introduce a key Jahn-Teller scientist to the young members of the community but also will serve as a vivid example of how a complete understanding of a complex problem, which the Jahn-Teller effect certainly was in the beginning of 1960s, can be achieved. (paper)

  18. Micropatterned Azopolymer Surfaces Modulate Cell Mechanics and Cytoskeleton Structure.

    Science.gov (United States)

    Rianna, Carmela; Ventre, Maurizio; Cavalli, Silvia; Radmacher, Manfred; Netti, Paolo A

    2015-09-30

    Physical and chemical characteristics of materials are important regulators of cell behavior. In particular, cell elasticity is a fundamental parameter that reflects the state of a cell. Surface topography finely modulates cell fate and function via adhesion mediated signaling and cytoskeleton generated forces. However, how topographies alter cell mechanics is still unclear. In this work we have analyzed the mechanical properties of peripheral and nuclear regions of NIH-3T3 cells on azopolymer substrates with different topographic patterns. Micrometer scale patterns in the form of parallel ridges or square lattices of surface elevations were encoded on light responsive azopolymer films by means of contactless optical methods. Cell mechanics was investigated by atomic force microscopy (AFM). Cells and consequently the cell cytoskeleton were oriented along the linear patterns affecting cytoskeletal structures, e.g., formation of actin stress fibers. Our data demonstrate that topographic substrate patterns are recognized by cells and mechanical information is transferred by the cytoskeleton. Furthermore, cytoskeleton generated forces deform the nucleus, changing its morphology that appears to be related to different mechanical properties in the nuclear region.

  19. Mining the O-mannose glycoproteome reveals cadherins as major O-mannosylated glycoproteins

    DEFF Research Database (Denmark)

    Vester-Christensen, Malene B; Halim, Adnan; Joshi, Hiren Jitendra

    2013-01-01

    The metazoan O-mannose (O-Man) glycoproteome is largely unknown. It has been shown that up to 30% of brain O-glycans are of the O-Man type, but essentially only alpha-dystroglycan (α-DG) of the dystrophin-glycoprotein complex is well characterized as an O-Man glycoprotein. Defects in O-Man...... glycosylation underlie congenital muscular dystrophies and considerable efforts have been devoted to explore this O-glycoproteome without much success. Here, we used our SimpleCell strategy using nuclease-mediated gene editing of a human cell line (MDA-MB-231) to reduce the structural heterogeneity of O-Man...... glycans and to probe the O-Man glycoproteome. In this breast cancer cell line we found that O-Man glycosylation is primarily found on cadherins and plexins on β-strands in extracellular cadherin and Ig-like, plexin and transcription factor domains. The positions and evolutionary conservation of O-Man...

  20. 30 CFR 57.4530 - Exits for surface buildings and structures.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Exits for surface buildings and structures. 57... Fire Prevention and Control Installation/construction/maintenance § 57.4530 Exits for surface buildings and structures. Surface buildings or structures in which persons work shall have a sufficient number...

  1. Reversible structural modulation of Fe-Pt bimetallic surfaces and its effect on reactivity.

    Science.gov (United States)

    Ma, Teng; Fu, Qiang; Su, Hai-Yan; Liu, Hong-Yang; Cui, Yi; Wang, Zhen; Mu, Ren-Tao; Li, Wei-Xue; Bao, Xin-He

    2009-05-11

    Tunable surface: The surface structure of the Fe-Pt bimetallic catalyst can be reversibly modulated between the iron-oxide-rich Pt surface and the Pt-skin structure with subsurface Fe via alternating reduction and oxidation treatments (see figure). The regenerated active Pt-skin structure is active in reactions involving CO and/or O.

  2. Multi-Dimensional Damage Detection for Surfaces and Structures

    Science.gov (United States)

    Williams, Martha; Lewis, Mark; Roberson, Luke; Medelius, Pedro; Gibson, Tracy; Parks, Steen; Snyder, Sarah

    2013-01-01

    Current designs for inflatable or semi-rigidized structures for habitats and space applications use a multiple-layer construction, alternating thin layers with thicker, stronger layers, which produces a layered composite structure that is much better at resisting damage. Even though such composite structures or layered systems are robust, they can still be susceptible to penetration damage. The ability to detect damage to surfaces of inflatable or semi-rigid habitat structures is of great interest to NASA. Damage caused by impacts of foreign objects such as micrometeorites can rupture the shell of these structures, causing loss of critical hardware and/or the life of the crew. While not all impacts will have a catastrophic result, it will be very important to identify and locate areas of the exterior shell that have been damaged by impacts so that repairs (or other provisions) can be made to reduce the probability of shell wall rupture. This disclosure describes a system that will provide real-time data regarding the health of the inflatable shell or rigidized structures, and information related to the location and depth of impact damage. The innovation described here is a method of determining the size, location, and direction of damage in a multilayered structure. In the multi-dimensional damage detection system, layers of two-dimensional thin film detection layers are used to form a layered composite, with non-detection layers separating the detection layers. The non-detection layers may be either thicker or thinner than the detection layers. The thin-film damage detection layers are thin films of materials with a conductive grid or striped pattern. The conductive pattern may be applied by several methods, including printing, plating, sputtering, photolithography, and etching, and can include as many detection layers that are necessary for the structure construction or to afford the detection detail level required. The damage is detected using a detector or

  3. The interior structure of Ceres as revealed by surface topography

    Science.gov (United States)

    Fu, Roger R.; Ermakov, Anton; Marchi, Simone; Castillo-Rogez, Julie C.; Raymond, Carol A.; Hager, Bradford; Zuber, Maria; King, Scott D.; Bland, Michael T.; De Sanctis, Maria Cristina; Preusker, Frank; Park, Ryan S.; Russell, Christopher T.

    2017-01-01

    Ceres, the largest body in the asteroid belt (940 km diameter), provides a unique opportunity to study the interior structure of a volatile-rich dwarf planet. Variations in a planetary body's subsurface rheology and density affect the rate of topographic relaxation. Preferential attenuation of long wavelength topography (≥150 km) on Ceres suggests that the viscosity of its crust decreases with increasing depth. We present finite element (FE) geodynamical simulations of Ceres to identify the internal structures and compositions that best reproduce its topography as observed by the NASA Dawn mission. We infer that Ceres has a mechanically strong crust with maximum effective viscosity ∼1025 Pa s. Combined with density constraints, this rheology suggests a crustal composition of carbonates or phyllosilicates, water ice, and at least 30 volume percent (vol.%) low-density, high-strength phases most consistent with salt and/or clathrate hydrates. The inference of these crustal materials supports the past existence of a global ocean, consistent with the observed surface composition. Meanwhile, we infer that the uppermost ≥60 km of the silicate-rich mantle is mechanically weak with viscosity <1021 Pa s, suggesting the presence of liquid pore fluids in this region and a low temperature history that avoided igneous differentiation due to late accretion or efficient heat loss through hydrothermal processes.

  4. Superhydrophobic hierarchically structured surfaces in biology: evolution, structural principles and biomimetic applications.

    Science.gov (United States)

    Barthlott, W; Mail, M; Neinhuis, C

    2016-08-06

    A comprehensive survey of the construction principles and occurrences of superhydrophobic surfaces in plants, animals and other organisms is provided and is based on our own scanning electron microscopic examinations of almost 20 000 different species and the existing literature. Properties such as self-cleaning (lotus effect), fluid drag reduction (Salvinia effect) and the introduction of new functions (air layers as sensory systems) are described and biomimetic applications are discussed: self-cleaning is established, drag reduction becomes increasingly important, and novel air-retaining grid technology is introduced. Surprisingly, no evidence for lasting superhydrophobicity in non-biological surfaces exists (except technical materials). Phylogenetic trees indicate that superhydrophobicity evolved as a consequence of the conquest of land about 450 million years ago and may be a key innovation in the evolution of terrestrial life. The approximate 10 million extant species exhibit a stunning diversity of materials and structures, many of which are formed by self-assembly, and are solely based on a limited number of molecules. A short historical survey shows that bionics (today often called biomimetics) dates back more than 100 years. Statistical data illustrate that the interest in biomimetic surfaces is much younger still. Superhydrophobicity caught the attention of scientists only after the extreme superhydrophobicity of lotus leaves was published in 1997. Regrettably, parabionic products play an increasing role in marketing.This article is part of the themed issue 'Bioinspired hierarchically structured surfaces for green science'. © 2016 The Author(s).

  5. Superhydrophobic hierarchically structured surfaces in biology: evolution, structural principles and biomimetic applications

    Science.gov (United States)

    Mail, M.; Neinhuis, C.

    2016-01-01

    A comprehensive survey of the construction principles and occurrences of superhydrophobic surfaces in plants, animals and other organisms is provided and is based on our own scanning electron microscopic examinations of almost 20 000 different species and the existing literature. Properties such as self-cleaning (lotus effect), fluid drag reduction (Salvinia effect) and the introduction of new functions (air layers as sensory systems) are described and biomimetic applications are discussed: self-cleaning is established, drag reduction becomes increasingly important, and novel air-retaining grid technology is introduced. Surprisingly, no evidence for lasting superhydrophobicity in non-biological surfaces exists (except technical materials). Phylogenetic trees indicate that superhydrophobicity evolved as a consequence of the conquest of land about 450 million years ago and may be a key innovation in the evolution of terrestrial life. The approximate 10 million extant species exhibit a stunning diversity of materials and structures, many of which are formed by self-assembly, and are solely based on a limited number of molecules. A short historical survey shows that bionics (today often called biomimetics) dates back more than 100 years. Statistical data illustrate that the interest in biomimetic surfaces is much younger still. Superhydrophobicity caught the attention of scientists only after the extreme superhydrophobicity of lotus leaves was published in 1997. Regrettably, parabionic products play an increasing role in marketing. This article is part of the themed issue ‘Bioinspired hierarchically structured surfaces for green science’. PMID:27354736

  6. Examination of the effect of blowing on the near-surface flow structure over a dimpled surface

    Science.gov (United States)

    Borchetta, C. G.; Martin, A.; Bailey, S. C. C.

    2018-03-01

    The near surface flow over a dimpled surface with flow injection through it was documented using time-resolved particle image velocimetry. The instantaneous flow structure, time-averaged statistics, and results from snapshot proper orthogonal decomposition were used to examine the coherent structures forming near the dimpled surface. In particular, the modifications made to the flow structures by the addition of flow injection through the surface were studied. It was observed that without flow injection, inclined flow structures with alternating vorticity from neighboring dimples are generated by the dimples and advect downstream. This behavior is coupled with fluid becoming entrained inside the dimples, recirculating and ejecting away from the surface. When flow injection was introduced through the surface, the flow structures became more disorganized, but some of the features of the semi-periodic structures observed without flow injection were preserved. The structures with flow injection appear in multiple wall-normal layers, formed from vortical structures shed from upstream dimples, with a corresponding increase in the size of the advecting structures. As a result of the more complex flow field observed with flow injection, there was an increase in turbulent kinetic energy and Reynolds shear stress, with the Reynolds shear stress representing an increase in vertical transport of momentum by sweeping and ejecting motions that were not present without flow injection.

  7. Upper Mantle Structure beneath Afar: inferences from surface waves.

    Science.gov (United States)

    Sicilia, D.; Montagner, J.; Debayle, E.; Lepine, J.; Leveque, J.; Cara, M.; Ataley, A.; Sholan, J.

    2001-12-01

    The Afar hotspot is related to one of the most important plume from a geodynamic point of view. It has been advocated to be the surface expression of the South-West African Superswell. Below the lithosphere, the Afar plume might feed other hotspots in central Africa (Hadiouche et al., 1989; Ebinger & Sleep, 1998). The processes of interaction between crust, lithosphere and plume are not well understood. In order to gain insight into the scientific issue, we have performed a surface-wave tomography covering the Horn of Africa. A data set of 1404 paths for Rayleigh waves and 473 paths for Love waves was selected in the period range 45-200s. They were collected from the permanent IRIS and GEOSCOPE networks and from the PASSCAL experiment, in Tanzania and Saudi Arabia. Other data come from the broadband stations deployed in Ethiopia and Yemen in the framework of the French INSU program ``Horn of Africa''. The results presented here come from a path average phase velocities obtained with a method based on a least-squares minimization (Beucler et al., 2000). The local phase velocity distribution and the azimuthal anisotropy were simultaneously retrieved by using the tomographic technique of Montagner (1986). A correction of the data is applied according to the crustal structure of the 3SMAC model (Nataf & Ricard, 1996). We find low velocities down to 200 km depth beneath the Red Sea, the Gulf of Aden, Afars, the Ethiopian Plateau and southern Arabia. High velocities are present in the eastern Arabia and the Tanzania Craton. The anisotropy beneath Afar seems to be complex, but enables to map the flow pattern at the interface lithosphere-asthenosphere. The results presented here are complementary to those obtained by Debayle et al. (2001) at upper-mantle transition zone depths using waveform inversion of higher Rayle igh modes.

  8. Osteoblast growth behavior on porous-structure titanium surface

    International Nuclear Information System (INIS)

    Tian Yuan; Ding Siyang; Peng Hui; Lu Shanming; Wang Guoping; Xia Lu; Wang Peizhi

    2012-01-01

    Highlights: ► Micro-arc oxidation technology formed a porous feature on titanium surface. ► This porous surface accelerated adhesion, proliferation and differentiation compared with smooth surface. ► Osteogenesis-related proteins and genes were up regulated by this porous surface. ► It is anticipated that micro-arc oxidation surface could enhance osteoblastic activity and bone regeneration. - Abstract: A bioavailable surface generated by nano-technology could accelerate implant osteointegration, reduce healing time and enable implants to bear early loading. In this study, a nano-porous surface of titanium wafers was modified using micro-arc oxidation technique; surface of smooth titanium was used as control group. Surface characteristic was evaluated by investigating morphology, roughness and hydrophilicity of titanium wafers. In vitro studies, osteoblastic adhesion, proliferation and ALP activity, as well as gene and protein expressions relative to mineralization were assayed. Our results showed that a crater-liked nano-porous surface with greater roughness and better hydrophilicity were fabricated by micro-arc oxidation. It was further indicated that nano-porous surface could enhance adhesion, proliferation and ALP activity of osteoblasts compared with smooth surfaces. In addition, gene and protein expression of collagen-I, osteocalcin and osteopontin were also obviously increased. In summary, micro-arc oxidized techniques could form an irregular nano-porous morphology on implant surface which is favorable to improve osteoblastic function and prospected to be a potent modification of dental implant.

  9. Electronic structure of the chromium dioxide (001) surface

    NARCIS (Netherlands)

    Leuken, H. van; Groot, R.A. de

    1995-01-01

    Local-density calculations on the CrO2 (001) surface are reported. The half-metallic character of the bulk is found to be maintained at the surface. Surface states of oxygen p character at the top of the valence band for the semiconducting spin direction are discussed.

  10. Atomic structure of the SnO2 (110) surface

    International Nuclear Information System (INIS)

    Godin, T.J.; LaFemina, J.P.

    1991-12-01

    Using a tight-binding, total-energy model, we examine atomic relaxations of the ideal stoichiometric and reduced tin oxide (11) surfaces. In both cases we find a nearly bond-length conserving rumple of the top layer, and a smaller counter-relaxation of the second layer. These calculations show no evidence of surface states in the band gap for either surface

  11. Comparison of 3 methods on fabricating micro- /nano- structured surface on 3D mold cavity

    DEFF Research Database (Denmark)

    Zhang, Yang; Hansen, Hans Nørgaard; Bissacco, Giuliano

    2015-01-01

    The methods to manufacture micro- or nano- structures on surfaces have been an area of intense investigation. Demands are shown for technologies for surface structuring on real 3D parts in many fields. However, most technologies for the fabrication of micro-structured functional surfaces are still...... limited to flat or simple shaped geometries. In this paper, 3 approaches for fabricating micro and nano- structured surfaces on a mold cavity for injection moulding are investigated and compared. The first approach is to use pre-fabricated plate with micro-structured surface as an insert for the mold......, in this way micro holes (Ø4 μm) was obtained. The second approach is to produce the cavity part using anodizing process chain, and in this way sub-micro structures can be obtained all over the cavity surface. The third approach is to machine the surface inside the cavity directly by femtosecond laser combined...

  12. Structure, biomimetics, and fluid dynamics of fish skin surfaces*

    Science.gov (United States)

    Lauder, George V.; Wainwright, Dylan K.; Domel, August G.; Weaver, James C.; Wen, Li; Bertoldi, Katia

    2016-10-01

    The interface between the fluid environment and the surface of the body in swimming fishes is critical for both physiological and hydrodynamic functions. The skin surface in most species of fishes is covered with bony scales or toothlike denticles (in sharks). Despite the apparent importance of fish surfaces for understanding aquatic locomotion and near-surface boundary layer flows, relatively little attention has been paid to either the nature of surface textures in fishes or possible hydrodynamic effects of variation in roughness around the body surface within an individual and among species. Fish surfaces are remarkably diverse and in many bony fishes scales can have an intricate surface texture with projections, ridges, and comblike extensions. Shark denticles (or scales) are toothlike and project out of the skin to form a complexly textured surface that interacts with free-stream flow. Manufacturing biomimetic foils with fishlike surfaces allows hydrodynamic testing and we emphasize here the importance of dynamic test conditions where the effect of surface textures is assessed under conditions of self-propulsion. We show that simple two-dimensional foils with patterned cuts do not perform as well as a smooth control surface, but that biomimetic shark skin foils can swim at higher self-propelled speeds than smooth controls. When the arrangement of denticles on the foil surface is altered, we find that a staggered-overlapped pattern outperforms other arrangements. Flexible foils made of real shark skin outperform sanded controls when foils are moved with a biologically realistic motion program. We suggest that focus on the mechanisms of drag reduction by fish surfaces has been too limiting and an additional role of fish surface textures may be to alter leading edge vortices and flow patterns on moving surfaces in a way that enhances thrust. Analysis of water flow over an artificial shark skin foil under both static and dynamic conditions shows that a shear layer

  13. Calcite surface structure and reactivity: molecular dynamics simulations and macroscopic surface modelling of the calcite-water interface

    NARCIS (Netherlands)

    Wolthers, M.; Di Tommaso, D.; Du, Z.; de Leeuw, N.H.

    2012-01-01

    Calcite–water interactions are important not only in carbon sequestration and the global carbon cycle, but also in contaminant behaviour in calcite-bearing host rock and in many industrial applications. Here we quantify the effect of variations in surface structure on calcite surface reactivity.

  14. The role of (sub)-surface oxygen on the surface electronic structure of hydrogen terminated (100) CVD diamond

    NARCIS (Netherlands)

    Deferme, W.; Tanasa, G.; Amir, J.; Haenen, K.; Nesladek, M.; Flipse, C.F.J.

    2006-01-01

    In this work, scanning tunnelling microscopy (STM) and scanning tunnelling spectroscopy (STS) were applied to investigate the surface morphol. and the surface electronic structure of plasma-treated (100)-oriented CVD diamond films. These films were hydrogenated using a conventional MWPE-CVD

  15. Propagation of liquid surface waves over finite graphene structured arrays of cylinders

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    Based on the multiple scattering method,this paper investigates a benchmark problem of the propagation of liquid surface waves over finite graphene (or honeycomb) structured arrays of cylinders.Comparing the graphene structured array with the square structured and with triangle structured arrays,it finds that the finite graphene structure can produce more complete band gaps than the other finite structures,and the finite graphene structure has less localized ability than the other finite structures.

  16. Osteoblast growth behavior on porous-structure titanium surface

    Energy Technology Data Exchange (ETDEWEB)

    Tian Yuan; Ding Siyang; Peng Hui; Lu Shanming; Wang Guoping [Research Institute of Stomatology, Nanjing Medical University, Nanjing 210029 (China); Xia Lu, E-mail: shelueia@yahoo.com.cn [Research Institute of Stomatology, Nanjing Medical University, Nanjing 210029 (China); Wang Peizhi, E-mail: wangpzi@sina.com [Research Institute of Stomatology, Nanjing Medical University, Nanjing 210029 (China)

    2012-11-15

    Highlights: Black-Right-Pointing-Pointer Micro-arc oxidation technology formed a porous feature on titanium surface. Black-Right-Pointing-Pointer This porous surface accelerated adhesion, proliferation and differentiation compared with smooth surface. Black-Right-Pointing-Pointer Osteogenesis-related proteins and genes were up regulated by this porous surface. Black-Right-Pointing-Pointer It is anticipated that micro-arc oxidation surface could enhance osteoblastic activity and bone regeneration. - Abstract: A bioavailable surface generated by nano-technology could accelerate implant osteointegration, reduce healing time and enable implants to bear early loading. In this study, a nano-porous surface of titanium wafers was modified using micro-arc oxidation technique; surface of smooth titanium was used as control group. Surface characteristic was evaluated by investigating morphology, roughness and hydrophilicity of titanium wafers. In vitro studies, osteoblastic adhesion, proliferation and ALP activity, as well as gene and protein expressions relative to mineralization were assayed. Our results showed that a crater-liked nano-porous surface with greater roughness and better hydrophilicity were fabricated by micro-arc oxidation. It was further indicated that nano-porous surface could enhance adhesion, proliferation and ALP activity of osteoblasts compared with smooth surfaces. In addition, gene and protein expression of collagen-I, osteocalcin and osteopontin were also obviously increased. In summary, micro-arc oxidized techniques could form an irregular nano-porous morphology on implant surface which is favorable to improve osteoblastic function and prospected to be a potent modification of dental implant.

  17. Modification on surface oxide layer structure and surface morphology of niobium by gas cluster ion beam treatments

    International Nuclear Information System (INIS)

    Wu, A.T.; Swenson, D.R.; Insepov, Z.

    2010-01-01

    Recently, it was demonstrated that significant reductions in field emission on Nb surfaces could be achieved by means of a new surface treatment technique called gas cluster ion beam (GCIB). Further study as shown in this paper revealed that GCIB treatments could modify surface irregularities and remove surface asperities leading to a smoother surface finish as demonstrated through measurements using a 3D profilometer, an atomic force microscope, and a scanning electron microscope. These experimental observations were supported by computer simulation via atomistic molecular dynamics and a phenomenological surface dynamics. Measurements employing a secondary ion mass spectrometry found that GCIB could also alter Nb surface oxide layer structure. Possible implications of the experimental results on the performance of Nb superconducting radio frequency cavities treated by GCIB will be discussed. First experimental results on Nb single cell superconducting radio frequency cavities treated by GCIB will be reported.

  18. Fabrication of Hierarchically Micro- and Nano-structured Mold Surfaces Using Laser Ablation for Mass Production of Superhydrophobic Surfaces

    Science.gov (United States)

    Noh, Jiwhan; Lee, Jae-Hoon; Na, Suckjoo; Lim, Hyuneui; Jung, Dae-Hwan

    2010-10-01

    Many studies have examined the formation of surfaces with mixed patterns of micro- and nano-sized lotus leaves that have hydrophobic properties. In this study, micro- and nano-shapes such as lotus leaves were fabricated on a metal mold surface using laser ablation and ripple formation. A microstructure on the mold surface was replicated onto poly(dimethylsiloxane) (PDMS) using the polymer casting method to manufacture low-cost hydrophobic surfaces. A PDMS surface with micro- and nano-structures that were the inverse image of a lotus leaf showed hydrophobic characteristics (water contact angle: 157°). From these results, we deduced that portions of the microstructures were wet and that air gaps existed between the microstructures and the water drops. In this paper we suggest the possibility of the mass production of hydrophobic plastic surfaces and the development of a methodology for the hydrophobic texturing of various polymer surfaces, using the polymer casting method with laser-processed molds.

  19. Reinforcement Toolbox, a Parametric Reinforcement Modelling Tool for Curved Surface Structures

    NARCIS (Netherlands)

    Lauppe, J.; Rolvink, A.; Coenders, J.L.

    2013-01-01

    This paper presents a computational strategy and parametric modelling toolbox which aim at enhancing the design- and production process of reinforcement in freeform curved surface structures. The computational strategy encompasses the necessary steps of raising an architectural curved surface model

  20. Scanning moiré and spatial-offset phase-stepping for surface inspection of structures

    Science.gov (United States)

    Yoneyama, S.; Morimoto, Y.; Fujigaki, M.; Ikeda, Y.

    2005-06-01

    In order to develop a high-speed and accurate surface inspection system of structures such as tunnels, a new surface profile measurement method using linear array sensors is studied. The sinusoidal grating is projected on a structure surface. Then, the deformed grating is scanned by linear array sensors that move together with the grating projector. The phase of the grating is analyzed by a spatial offset phase-stepping method to perform accurate measurement. The surface profile measurements of the wall with bricks and the concrete surface of a structure are demonstrated using the proposed method. The change of geometry or fabric of structures and the defects on structure surfaces can be detected by the proposed method. It is expected that the surface profile inspection system of tunnels measuring from a running train can be constructed based on the proposed method.

  1. The elastic-plastic failure assessment diagram of surface cracked structure

    International Nuclear Information System (INIS)

    Ning, J.; Gao, Q.

    1987-01-01

    The simplified NLSM is able to calculate the EPFM parameters and failure assessment curve for the surface cracked structure correctly and conveniently. The elastic-plastic failure assessment curve of surface crack is relevant to crack geometry, loading form and material deformation behaviour. It is necessary to construct the EPFM failure assessment curve of the surface crack for the failure assessment of surface cracked structure. (orig./HP)

  2. Imprinted and injection-molded nano-structured optical surfaces

    DEFF Research Database (Denmark)

    Christiansen, Alexander Bruun; Højlund-Nielsen, Emil; Clausen, Jeppe Sandvik

    2013-01-01

    . In this paper, nanostructured polymer surfaces suitable for up-scalable polymer replication methods, such as imprinting/embossing and injection-molding, are discussed. The limiting case of injection-moulding compatible designs is investigated. Anti-reflective polymer surfaces are realized by replication...

  3. Assessment of Wind Turbine Structural Integrity using Response Surface Methodology

    DEFF Research Database (Denmark)

    Toft, Henrik Stensgaard; Svenningsen, Lasse; Moser, Wolfgang

    2016-01-01

    Highlights •A new approach to assessment of site specific wind turbine loads is proposed. •The approach can be applied in both fatigue and ultimate limit state. •Two different response surface methodologies have been investigated. •The model uncertainty introduced by the response surfaces...

  4. Surface and interface electronic structure: Sixth year activity report

    International Nuclear Information System (INIS)

    Kevan, S.D.

    1992-01-01

    Several productive runs were made on beamline U4A at NSLS. An upgrade of angle-resolved photoemission spectrometer was largely completed on the beamline. Progress was made on studies of surface states and reconstruction on Mo(001) and W(001), and of surface states and resonances on Pt(111)

  5. Droplet impact on superheated micro-structured surfaces

    NARCIS (Netherlands)

    Tran, Tuan; Staat, Erik-Jan; Susarrey Arce, A.; Foertsch, T.C.; van Houselt, Arie; Gardeniers, Johannes G.E.; Prosperetti, Andrea; Lohse, Detlef; Sun, Chao

    2013-01-01

    When a droplet impacts upon a surface heated above the liquid's boiling point, the droplet either comes into contact with the surface and boils immediately (contact boiling), or is supported by a developing vapor layer and bounces back (film boiling, or Leidenfrost state). We study the transition

  6. 3D silicon breast surface mapping via structured light profilometry

    Science.gov (United States)

    Vairavan, R.; Ong, N. R.; Sauli, Z.; Kirtsaeng, S.; Sakuntasathien, S.; Shahimin, M. M.; Alcain, J. B.; Lai, S. L.; Paitong, P.; Retnasamy, V.

    2017-09-01

    Digital fringe projection technique is one of the promising optical methods for 3D surface imaging as it demonstrates non contact and non invasive characteristics. The potential of this technique matches the requirement for human body evaluation, as it is vital for disease diagnosis and for treatment option selection. Thus, the digital fringe projection has addressed this requirement with its wide clinical related application and studies. However, the application of this technique for 3D surface mapping of the breast is very minimal. Hence, in this work, the application of digital fringe projection for 3D breast surface mapping is reported. Phase shift fringe projection technique was utilized to perform the 3D breast surface mapping. Maiden results have confirmed the feasibility of using the digital fringe projection method for 3D surface mapping of the breast and it can be extended for breast cancer detection.

  7. Metrology of sub-micron structured polymer surfaces

    DEFF Research Database (Denmark)

    Quagliotti, Danilo; Tosello, Guido; Salaga, J.

    metal masters with different types of finish has been carried out.Four types of surface finish were considered: a) Diamond buff polishing. b) Grit paper polishing. c) Stone polishing. d) Dry blast polishing (see Fig. 1). Both master and replicated surfaces were measured using a laser scanning confocal...... of about 70 %. The worst amplitude replication was achieved for both diamond buff and grit paper polished surfaces with a replication fidelity around 50 %.The tendency is almost the same for slope replication but the replication fidelity values are lower: 70 % for stone polished surfaces. 50 % for dry...... evaluated according to ISO 15530-3:2011, adapted to optical measure-ments, and propagated to the replication fidelity.A good amplitude replication was achieved for stone polished surfaces with a replication fidelity larger than 90 %. The dry blast ones were evaluated with an amplitude replication fidelity...

  8. Surface structure determinations of crystalline ionic thin films grown on transition metal single crystal surfaces by low energy electron diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, Joel Glenn [Univ. of California, Berkeley, CA (United States)

    2000-05-01

    The surface structures of NaCl(100), LiF(100) and alpha-MgCl2(0001) adsorbed on various metal single crystals have been determined by low energy electron diffraction (LEED). Thin films of these salts were grown on metal substrates by exposing the heated metal surface to a molecular flux of salt emitted from a Knudsen cell. This method of investigating thin films of insulators (ionic salts) on a conducting substrate (metal) circumvents surface charging problems that plagued bulk studies, thereby allowing the use of electron-based techniques to characterize the surface.

  9. Fabrication and condensation characteristics of metallic superhydrophobic surface with hierarchical micro-nano structures

    Science.gov (United States)

    Chu, Fuqiang; Wu, Xiaomin

    2016-05-01

    Metallic superhydrophobic surfaces have various applications in aerospace, refrigeration and other engineering fields due to their excellent water repellent characteristics. This study considers a simple but widely applicable fabrication method using a two simultaneous chemical reactions method to prepare the acid-salt mixed solutions to process the metal surfaces with surface deposition and surface etching to construct hierarchical micro-nano structures on the surface and then modify the surface with low surface-energy materials. Al-based and Cu-based superhydrophobic surfaces were fabricated using this method. The Al-based superhydrophobic surface had a water contact angle of 164° with hierarchical micro-nano structures similar to the lotus leaves. The Cu-based surface had a water contact angle of 157° with moss-like hierarchical micro-nano structures. Droplet condensation experiments were also performed on these two superhydrophobic surfaces to investigate their condensation characteristics. The results show that the Al-based superhydrophobic surface has lower droplet density, higher droplet jumping probability, slower droplet growth rate and lower surface coverage due to the more structured hierarchical structures.

  10. Self-consistent electronic structure of the contracted tungsten (001) surface

    International Nuclear Information System (INIS)

    Posternak, M.; Krakauer, H.; Freeman, A.J.

    1982-01-01

    Self-consistent linearized-augmented-plane-wave energy-band studies using the warped muffin-tin approximation for a seven-layer W(001) single slab with the surface-layer separation contracted by 6% of the bulk interlayer spacing are reported. Surface electronic structure, local densities of states, generalized susceptibility for the surface, work function, and core-level shifts are found to have insignificant differences with corresponding results for the unrelaxed surface. Several differences in surface states between theory and recent angle-resolved photoemission experiments are discussed in the light of new proposed models of the actual unreconstructed surface structure at high temperatures

  11. Structural colours and applications to anodised aluminium surfaces

    DEFF Research Database (Denmark)

    Johansen, Villads Egede

    to solve the problem. The problem is investigated by first reviewing existing work within colouration and visual appearance. This includes a study on how colours are perceived by humans and an investigation of the characteristics with which a surface appearance is properly described. Subsequently......, nanostructures and surface profiles are investigated using optimisation and topology optimisation in order to understand the limitations and design freedom of colour engineering. This is then followed by a study of the effect of disorder on a nanoscale level in order to tailor surface reflections for a smooth...

  12. Design of structurally colored surfaces based on scalar diffraction theory

    DEFF Research Database (Denmark)

    Johansen, Villads Egede; Andkjær, Jacob Anders; Sigmund, Ole

    2014-01-01

    In this paper we investigate the possibility of controlling the color and appearance of surfaces simply by modifying the height profile of the surface on a nanoscale level. The applications for such methods are numerous: new design possibilities for high-end products, color engraving on any highly...... reflective surface, paint-free text and coloration, UV-resistant coloring, etc. In this initial study, the main focus is on finding a systematic way to obtain these results. For now the simulation and optimization is based on a simple scalar diffraction theory model. From the results, several design issues...

  13. Tensioned Fabric Structures with Surface in the Form of Chen-Gackstatter

    Directory of Open Access Journals (Sweden)

    Yee Hooi Min

    2016-01-01

    Full Text Available Form-finding has to be carried out for tensioned fabric structure in order to determine the initial equilibrium shape under prescribed support condition and prestress pattern. Tensioned fabric structures are normally designed to be in the form of equal tensioned surface. Tensioned fabric structure is highly suited to be used for realizing surfaces of complex or new forms. However, research study on a new form as a tensioned fabric structure has not attracted much attention. Another source of inspiration minimal surface which could be adopted as form for tensioned fabric structure is very crucial. The aim of this study is to propose initial equilibrium shape of tensioned fabric structures in the form of Chen-Gackstatter. Computational form-finding using nonlinear analysis method is used to determine the Chen-Gackstatter form of uniformly stressed surfaces. A tensioned fabric structure must curve equally in opposite directions to give the resulting surface a three dimensional stability. In an anticlastic doubly curved surface, the sum of all positive and all negative curvatures is zero. This study provides an alternative choice for structural designer to consider the Chen-Gackstatter applied in tensioned fabric structures. The results on factors affecting initial equilibrium shape can serve as a reference for proper selection of surface parameter for achieving a structurally viable surface.

  14. Structure of solid surfaces and of adsorbates by low-energy electron diffraction

    International Nuclear Information System (INIS)

    Somorjai, G.A.

    1977-01-01

    LEED theory has developed to the point where the diffraction beam intensities can be computed using the locations of the surface atoms as the only adjustable parameters. The position of atoms in many clean monatomic solid surfaces and the surface structures of ordered monolayers of adsorbed atoms have been determined this way. Surface crystallography studies are now extended to small hydrocarbon molecules that are adsorbed on metal surfaces. These studies are reviewed

  15. Surface morphology, structural and electrical properties of RF ...

    Indian Academy of Sciences (India)

    5

    electrical properties of RF sputtered ITO thin films deposited onto Si(100). .... scanning electron microscopy (SEM) surface images are shown along with the cross- ..... annealing effect”, J. of Alloys and Compounds 509, (2011) 6072-6076.

  16. Facile fabrication of dendritic silver structures and their surface ...

    Indian Academy of Sciences (India)

    have high sensitivity to surface enhanced Raman spectroscopy response. ... of interfaces and molecularly thin-films. SERS is a ... face plasmon polaritons, while the second is attributed ... 2.2 Fabrication and characterization of dendritic.

  17. Synthesis, Structure and Hirshfeld surface analysis, vibrational and ...

    Indian Academy of Sciences (India)

    3

    expression for dnorm, where two Hirshfeld surfaces touch, both will display a red spot identical in color intensity as well ... surface by using a red-blue-white color scheme: where red regions correspond to closer contacts and ..... A, Piskorz P, Komaromi I, Martin R L, Fox D J, Keith T, Al-Laham M A, Peng C Y,. 1. 2. 3. 4. 5. 6. 7.

  18. Ionic liquids at the surface of graphite: Wettability and structure

    Science.gov (United States)

    Bordes, Emilie; Douce, Laurent; Quitevis, Edward L.; Pádua, Agílio A. H.; Costa Gomes, Margarida

    2018-05-01

    The aim of this work is to provide a better understanding of the interface between graphite and different molecular and ionic liquids. Experimental measurements of the liquid surface tension and of the graphite-liquid contact angle for sixteen ionic liquids and three molecular liquids are reported. These experimental values allowed the calculation of the solid/liquid interfacial energy that varies, for the ionic liquids studied, between 14.5 mN m-1 for 1-ethyl-3-methylimidazolium dicyanamide and 37.8 mN m-1 for 3-dodecyl-1-(naphthalen-1-yl)-1H-imidazol-3-ium tetrafluoroborate. Imidazolium-based ionic liquids with large alkyl side-chains or functionalized with benzyl groups seem to interact more favourably with freshly peeled graphite surfaces. Even if the interfacial energy seems a good descriptor to assess the affinity of a liquid for a carbon-based solid material, we conclude that both the surface tension of the liquid and the contact angle between the liquid and the solid can be significant. Molecular dynamics simulations were used to investigate the ordering of the ions near the graphite surface. We conclude that the presence of large alkyl side-chains in the cations increases the ordering of ions at the graphite surface. Benzyl functional groups in the cations lead to a large affinity towards the graphite surface.

  19. Comparative study on two different seal surface structure for reactor pressure vessel sealing behavior

    International Nuclear Information System (INIS)

    Chen Jun; Xiong Guangming; Deng Xiaoyun

    2014-01-01

    The seal surface structure is very important to reactor pressure vessel (RPV) sealing behavior. In this paper, two 3-D RPV sealing analysis finite models have been established with different seal surface structures, in order to study the influence of two structures. The separation of RPV upper and lower flanges, bolt loads and etc. are obtained, which are used to evaluate the sealing behavior of the RPV. Meanwhile, the comparative analysis of safety margin of two seal surface structural had been done, which provides the theoretical basis for RPV seal structure design optimization. (authors)

  20. The O-mannosylation and production of recombinant APA (45/47 KDa protein from Mycobacterium tuberculosis in Streptomyces lividans is affected by culture conditions in shake flasks

    Directory of Open Access Journals (Sweden)

    Gamboa-Suasnavart Ramsés A

    2011-12-01

    Full Text Available Abstract Background The Ala-Pro-rich O-glycoprotein known as the 45/47 kDa or APA antigen from Mycobacterium tuberculosis is an immunodominant adhesin restricted to mycobacterium genus and has been proposed as an alternative candidate to generate a new vaccine against tuberculosis or for diagnosis kits. In this work, the recombinant O-glycoprotein APA was produced by the non-pathogenic filamentous bacteria Streptomyces lividans, evaluating three different culture conditions. This strain is known for its ability to produce heterologous proteins in a shorter time compared to M. tuberculosis. Results Three different shake flask geometries were used to provide different shear and oxygenation conditions; and the impact of those conditions on the morphology of S. lividans and the production of rAPA was characterized and evaluated. Small unbranched free filaments and mycelial clumps were found in baffled and coiled shake flasks, but one order of magnitude larger pellets were found in conventional shake flasks. The production of rAPA is around 3 times higher in small mycelia than in larger pellets, most probably due to difficulties in mass transfer inside pellets. Moreover, there are four putative sites of O-mannosylation in native APA, one of which is located at the carboxy-terminal region. The carbohydrate composition of this site was determined for rAPA by mass spectrometry analysis, and was found to contain different glycoforms depending on culture conditions. Up to two mannoses residues were found in cultures carried out in conventional shake flasks, and up to five mannoses residues were determined in coiled and baffled shake flasks. Conclusions The shear and/or oxygenation parameters determine the bacterial morphology, the productivity, and the O-mannosylation of rAPA in S. lividans. As demonstrated here, culture conditions have to be carefully controlled in order to obtain recombinant O-glycosylated proteins with similar "quality" in bacteria

  1. The O-mannosylation and production of recombinant APA (45/47 KDa) protein from Mycobacterium tuberculosis in Streptomyces lividans is affected by culture conditions in shake flasks.

    Science.gov (United States)

    Gamboa-Suasnavart, Ramsés A; Valdez-Cruz, Norma A; Cordova-Dávalos, Laura E; Martínez-Sotelo, José A; Servín-González, Luis; Espitia, Clara; Trujillo-Roldán, Mauricio A

    2011-12-20

    The Ala-Pro-rich O-glycoprotein known as the 45/47 kDa or APA antigen from Mycobacterium tuberculosis is an immunodominant adhesin restricted to mycobacterium genus and has been proposed as an alternative candidate to generate a new vaccine against tuberculosis or for diagnosis kits. In this work, the recombinant O-glycoprotein APA was produced by the non-pathogenic filamentous bacteria Streptomyces lividans, evaluating three different culture conditions. This strain is known for its ability to produce heterologous proteins in a shorter time compared to M. tuberculosis. Three different shake flask geometries were used to provide different shear and oxygenation conditions; and the impact of those conditions on the morphology of S. lividans and the production of rAPA was characterized and evaluated. Small unbranched free filaments and mycelial clumps were found in baffled and coiled shake flasks, but one order of magnitude larger pellets were found in conventional shake flasks. The production of rAPA is around 3 times higher in small mycelia than in larger pellets, most probably due to difficulties in mass transfer inside pellets. Moreover, there are four putative sites of O-mannosylation in native APA, one of which is located at the carboxy-terminal region. The carbohydrate composition of this site was determined for rAPA by mass spectrometry analysis, and was found to contain different glycoforms depending on culture conditions. Up to two mannoses residues were found in cultures carried out in conventional shake flasks, and up to five mannoses residues were determined in coiled and baffled shake flasks. The shear and/or oxygenation parameters determine the bacterial morphology, the productivity, and the O-mannosylation of rAPA in S. lividans. As demonstrated here, culture conditions have to be carefully controlled in order to obtain recombinant O-glycosylated proteins with similar "quality" in bacteria, particularly, if the protein activity depends on the

  2. Superhydrophobic Natural and Artificial Surfaces-A Structural Approach.

    Science.gov (United States)

    Avrămescu, Roxana-Elena; Ghica, Mihaela Violeta; Dinu-Pîrvu, Cristina; Prisada, Răzvan; Popa, Lăcrămioara

    2018-05-22

    Since ancient times humans observed animal and plants features and tried to adapt them according to their own needs. Biomimetics represents the foundation of many inventions from various fields: From transportation devices (helicopter, airplane, submarine) and flying techniques, to sports' wear industry (swimming suits, scuba diving gear, Velcro closure system), bullet proof vests made from Kevlar etc. It is true that nature provides numerous noteworthy models (shark skin, spider web, lotus leaves), referring both to the plant and animal kingdom. This review paper summarizes a few of "nature's interventions" in human evolution, regarding understanding of surface wettability and development of innovative special surfaces. Empirical models are described in order to reveal the science behind special wettable surfaces (superhydrophobic /superhydrophilic). Materials and methods used in order to artificially obtain special wettable surfaces are described in correlation with plants' and animals' unique features. Emphasis is placed on joining superhydrophobic and superhydrophilic surfaces, with important applications in cell culturing, microorganism isolation/separation and molecule screening techniques. Bio-inspired wettability is presented as a constitutive part of traditional devices/systems, intended to improve their characteristics and extend performances.

  3. A molecular surface science study of the structure of adsorbates on surfaces: Importance to lubrication

    International Nuclear Information System (INIS)

    Mate, C.M.

    1986-09-01

    The interaction and bonding of atoms and molecules on metal surfaces is explored under ultra-high vacuum conditions using a variety of surface science techniques: high resolution electron energy loss spectroscopy (HREELS), low energy electron diffraction (LEED), thermal desorption spectroscopy (TDS), Auger electron spectroscopy (AES), work function measurements, and second harmonic generation (SHG). 164 refs., 51 figs., 3 tabs

  4. Use of structured surfaces for friction and wear control on bearing surfaces

    International Nuclear Information System (INIS)

    Wang, Ling

    2014-01-01

    Surface texturing with purposely made regular micropatterns on flat or curved surfaces, as opposed to random roughness inherited from machining processes, has attracted significant attention in recent years. At the 2013 World Tribology Congress in Turin alone there were over 40 presentations related to surface texturing for tribological applications, from magnetic hard discs and hydrodynamic bearings to artificial joints. Although surface texturing has been reported being successfully applied in industrial applications such as seals, pistons, and thrust pad bearings, the demand for robust design is still high. Etsion has recently reviewed the modeling research mainly conducted by his group Etsion I (2013 Friction 1 195–209). This paper aims to review the state-of-the-art development of surface texturing made by a wider range of researchers. (topical review)

  5. Plasmonic nanopillar structures for surface-enhanced raman scattering applications

    DEFF Research Database (Denmark)

    Rindzevicius, Tomas; Schmidt, Michael Stenbæk; Wu, Kaiyu

    2016-01-01

    have been utilized in surfaceenhanced Raman spectroscopy (SERS) for biological and chemical sensing. We present Au nanopillar (NP) SERS structures that are excellent for molecular detection. The NP structures can be fabricated using a simple two-step process. We analyze NP optical properties...

  6. Proposal for Certifying Expandable Planetary Surface Habitation Structures

    Science.gov (United States)

    Dorsey, John T.

    2011-01-01

    A factor-of-safety (FS) of 4.0 is currently used to design habitation structures made from structural soft goods. This approach is inconsistent with using a FS of 2.0 for metallic and polymeric composite pressure vessels as well as soft good structures such as space suits and parachutes. This inconsistency arises by using the FS to improperly account for the unknown effects of a variety of environmental and loading uncertainties. Using a 4.0 FS not only results in additional structural mass, it also makes it difficult to gain insight into the limitations of the material and/or product form and thus, it becomes difficult to make improvements. In order to bring consistency to the design and certification of expandable habitat structures, the approach used by the Federal Aviation Administration (FAA) to certify polymeric composite aircraft structures is used as a model and point of departure. A draft certification plan for Expandable Habitat Structures is developed in this paper and offered as an option for placing habitats made from soft goods on an equal footing with other structural implementations.

  7. Analysis of the structural parameters that influence gas production from the Devonian shale. Annual progress report, 1979-1980. Volume II. Data repository and reports published during fiscal year 1979-1980: regional structure, surface structure, surface fractures, hydrology

    Energy Technology Data Exchange (ETDEWEB)

    Negus-De Wys, J.; Dixon, J. M.; Evans, M. A.; Lee, K. D.; Ruotsala, J. E.; Wilson, T. H.; Williams, R. T.

    1980-10-01

    This volume comprises appendices giving regional structure data, surface structure data, surface fracture data, and hydrology data. The fracture data covers oriented Devonian shale cores from West Virginia, Ohio, Virginia, Pennsylvania, and Kentucky. The subsurface structure of the Eastern Kentucky gas field is also covered. (DLC)

  8. Surface potential domains on lamellar P3OT structures

    Energy Technology Data Exchange (ETDEWEB)

    Perez-GarcIa, B [Departamento Fisica, Facultad de Quimica (Campus Espinardo), Universidad de Murcia, E-30100 Murcia (Spain); Abad, J [Departamento Fisica, Facultad de Quimica (Campus Espinardo), Universidad de Murcia, E-30100 Murcia (Spain); Urbina, A [Departamento Electronica, TecnologIa de Computadoras y Proyectos, Universidad Politecnica de Cartagena, E-30202 Cartagena (Spain); Colchero, J [Departamento Fisica, Facultad de Quimica (Campus Espinardo), Universidad de Murcia, E-30100 Murcia (Spain); Palacios-Lidon, E [Departamento Fisica, Facultad de Quimica (Campus Espinardo), Universidad de Murcia, E-30100 Murcia (Spain)

    2008-02-13

    In this work the electrostatic properties of poly(3-octylthiophene) thin films have been studied on a nanometer scale by means of electrostatic force microscopy and Kelvin probe microscopy (KPM). The KPM images reveal that different surface contact potential domains coexist on the polymer surface. This result, together with additional capacitance measurements, indicates that the potential domains are related to the existence of dipoles due to different molecular arrangements. Finally, capacitance measurements as a function of the tip-sample bias voltage show that in all regions large band bending effects take place.

  9. Photonic bandgap structures for long-range surface plasmon polaritons

    DEFF Research Database (Denmark)

    Bozhevolnyi, Sergey I.; Boltasseva, Alexandra; Søndergaard, Thomas

    2005-01-01

    Propagation of long-range surface plasmon polaritons (LR-SPPs) along periodically thickness-modulated metal stripes embedded in dielectric is studied both theoretically and experimentally for light wavelengths in the telecom range. We demonstrate that symmetric (with respect to the film surface) nm......-size thickness variations result in the pronounced band gap effect, and obtain very good agreement between measured and simulated (transmission and reflection) spectra. This effect is exploited to realize a compact wavelength add-drop filter with the bandwidth of -20 nm centered at 1550 nm. The possibilities...

  10. Surface potential domains on lamellar P3OT structures

    International Nuclear Information System (INIS)

    Perez-GarcIa, B; Abad, J; Urbina, A; Colchero, J; Palacios-Lidon, E

    2008-01-01

    In this work the electrostatic properties of poly(3-octylthiophene) thin films have been studied on a nanometer scale by means of electrostatic force microscopy and Kelvin probe microscopy (KPM). The KPM images reveal that different surface contact potential domains coexist on the polymer surface. This result, together with additional capacitance measurements, indicates that the potential domains are related to the existence of dipoles due to different molecular arrangements. Finally, capacitance measurements as a function of the tip-sample bias voltage show that in all regions large band bending effects take place

  11. Study of ultra-clean surfaces for accelerator structures

    International Nuclear Information System (INIS)

    Saito, K.; Noguchi, S.; Kako, E.

    1994-01-01

    For a TeV energy physics R and D on electron/positron linear colliders has been conducted hard at many laboratories from technologies of both normal conducting and superconducting. The high field gradient issue is a key to realize such a machine. Field emission limits seriously field gradient of rf cavities. Its cure is to eliminate particle contamination on cavity surfaces. It is a common issue in both normal conducting and superconducting cavities. We have started to study ultra-clean surfaces of niobium and copper applying semiconductor technologies. In this paper several results by various rinsing methods are presented and its relation with cavity performance is discussed. (author)

  12. Structured light optical microscopy for three-dimensional reconstruction of technical surfaces

    Science.gov (United States)

    Kettel, Johannes; Reinecke, Holger; Müller, Claas

    2016-04-01

    In microsystems technology quality control of micro structured surfaces with different surface properties is playing an ever more important role. The process of quality control incorporates three-dimensional (3D) reconstruction of specularand diffusive reflecting technical surfaces. Due to the demand on high measurement accuracy and data acquisition rates, structured light optical microscopy has become a valuable solution to solve this problem providing high vertical and lateral resolution. However, 3D reconstruction of specular reflecting technical surfaces still remains a challenge to optical measurement principles. In this paper we present a measurement principle based on structured light optical microscopy which enables 3D reconstruction of specular- and diffusive reflecting technical surfaces. It is realized using two light paths of a stereo microscope equipped with different magnification levels. The right optical path of the stereo microscope is used to project structured light onto the object surface. The left optical path is used to capture the structured illuminated object surface with a camera. Structured light patterns are generated by a Digital Light Processing (DLP) device in combination with a high power Light Emitting Diode (LED). Structured light patterns are realized as a matrix of discrete light spots to illuminate defined areas on the object surface. The introduced measurement principle is based on multiple and parallel processed point measurements. Analysis of the measured Point Spread Function (PSF) by pattern recognition and model fitting algorithms enables the precise calculation of 3D coordinates. Using exemplary technical surfaces we demonstrate the successful application of our measurement principle.

  13. Surface complexation of carbonate on goethite: IR spectroscopy, structure & charge distribution

    NARCIS (Netherlands)

    Hiemstra, T.; Rahnemaie, R.; Riemsdijk, van W.H.

    2004-01-01

    The adsorption of carbonate on goethite has been evaluated, focussing on the relation between the structure of the surface complex and corresponding adsorption characteristics, like pH dependency and proton co-adsorption. The surface structure of adsorbed CO3-2 has been assessed with (1) a

  14. Fractal structure formation on the surfaces of solids subjected to high intensity electron and ion treatment

    International Nuclear Information System (INIS)

    Altajskij, M.V.; Ivanov, V.V.; Korenev, S.A.; Orelovich, O.L.; Puzynin, I.V.; Chernik, V.V.

    1997-01-01

    We discuss the results of scanning electron microscopy of surfaces of the solids subjected to high intensity electron and ion beam treatment. The appearance of fractal structures on the modified surfaces is shown. The fractal dimensions of these structures were estimated by box-counting algorithm

  15. Surface Nano Structures Manufacture Using Batch Chemical Processing Methods for Tooling Applications

    DEFF Research Database (Denmark)

    Tosello, Guido; Calaon, Matteo; Gavillet, J.

    2011-01-01

    The patterning of large surface areas with nano structures by using chemical batch processes to avoid using highenergy intensive nano machining processes was investigated. The capability of different surface treatment methods of creating micro and nano structured adaptable mould inserts for subse...

  16. Structural investigation of the ZnSe(001)-c(2×2) surface

    DEFF Research Database (Denmark)

    Weigand, W.; Müller, A.; Kilian, L.

    2003-01-01

    Zinc selenide is a model system for II-VI compound semiconductors. The geometric structure of the clean (001)-c(2x2) surface has recently been the subject of intense debate. We report here a surface x-ray-diffraction study on the ZnSe(001)-c(2x2) surface performed under ultrahigh vacuum using...

  17. Submerged Fixed Floating Structure under the Action of Surface Current

    Directory of Open Access Journals (Sweden)

    Zhen Cui

    2018-01-01

    Full Text Available The implementation of floating structures has increased with the construction of new sluices for flood control. The overturning moment of floating structure and its influencing factors are the important parameters that determine the structural safety. It is essential to understand the overturning characteristics of these structures in currents. Based on hydrodynamic theory and equilibrium analysis, the hydraulic characteristics of a floating structure are discussed by means of theoretical analysis and experiments. A formula for the overturning moment is developed in terms of the time-averaged pressure on the structure. The corresponding parametric study aims to assess the effects of flow velocities, vertical positions, shape ratios and water levels on the overturning moment. The experimental results show that hydrodynamic factors have a significant influence on the overturning of the structure. Furthermore, a relationship is obtained between the overturning moment and the contributing parameters according to dimensional analysis and the linear fitting method of multidimensional ordinary least squares (OLS. The results predicted by the formula agree with the experimental results, demonstrating the potential for general applicability.

  18. Transcription of Small Surface Structures in Injection Moulding - An Experimental Study

    DEFF Research Database (Denmark)

    Arlø, Uffe Rolf; Kjær, Erik Michael

    2000-01-01

    The ability to replicate the surface roughness from mold wall to the plastic part in injection moldning has many functional and cosmetic important implications from medical use to designer products. Generally the understanding of surface transcription i.e the the replication of the surface...... structure from the mould to plastic part, also relates to micro injection moulding and moulding of parts with specific micro structures on the surface such as optical parts. The present study concerns transcription of surface roughness as a function of process parameters. The study is carried out...

  19. Transcription of Small Surface Structures in Injection Molding - an Experimental Study

    DEFF Research Database (Denmark)

    Arlø, Uffe Rolf; Kjær, Erik Michael

    2001-01-01

    The ability to replicate the surface roughness from mold wall to the plastic part in injection moldning has many functional and cosmetic important implications from medical use to designer products. Generally the understanding of surface transcription i.e the the replication of the surface...... structure from the mould to plastic part, also relates to micro injection moulding and moulding of parts with specific micro structures on the surface such as optical parts. The present study concerns transcription of surface roughness as a function of process parameters. The study is carried out...

  20. Structure Irregularity Impedes Drop Roll-Off at Superhydrophobic Surfaces

    DEFF Research Database (Denmark)

    Larsen, Simon Tylsgaard; Andersen, Nis Korsgaard; Søgaard, Emil

    2014-01-01

    -off angles is found to be caused by a decrease of the receding contact angle, which in turn is caused by an increase of the triple phase contact line of the drops for those more irregular surfaces. To understand the observation, we propose to treat the microdrops as rigid bodies and apply a torque balance...

  1. Surface structure of quark stars with magnetic fields

    Indian Academy of Sciences (India)

    We investigate the impact of magnetic fields on the electron distribution of the electrosphere of quark stars. For moderately strong magnetic fields of ∼ 1013 G, quantization effects are generally weak due to the large number density of electrons at surface, but can nevertheless affect the photon emission properties of quark ...

  2. Dynamic and Impure Perovskite Structured Metal Oxide Surfaces

    DEFF Research Database (Denmark)

    Hansen, Karin Vels; Norrman, Kion; Traulsen, Marie Lund

    2017-01-01

    Surfaces of LSF and LSCF perovskite model electrodes were investigated using a variety of analytical methods on flat model electrodes that were prepared as either pellets or as thin films on top of YSZ pellets in other to throw more light on the widely discussed segregation of layers and particles...

  3. Structure and energetics of bimetallic surface confined alloys

    Energy Technology Data Exchange (ETDEWEB)

    Bergbreiter, Andreas; Roetter, Ralf T.; Engstfeld, Albert K.; Hoster, Harry E.; Behm, R. Juergen [Institute of Surface Chemistry and Catalysis, Ulm University (Germany); Gross, Axel [Institute for Theoretical Chemistry, Ulm University (Germany)

    2009-07-01

    The atomic distribution in a number of A{sub x}B{sub 1-x}/B type surface alloys was determined by STM imaging with chemical contrast and statistically evaluated. Whereas in the systems Au{sub x}Pt{sub 1-x}/Pt(111), Ag{sub x}Pt{sub 1-x}/Pt(111), and Pd{sub x}Ru{sub 1-x}/Ru(0001) we find preferences for larger homoatomic aggregates, the atom distribution in Pt{sub x}Ru{sub 1-x}/Ru(0001) and Ag{sub x}Pd{sub 1-x}/Pd(111) is very close to a random one[1]. In Ag{sub x}Pd{sub 1-x}/Pd(111), our data show a small tendency towards clustering for x{sub Ag}<0.5, whereas at x{sub Ag}>0.5 this is reversed to a slight preference for heteroatomic neighborhoods. Based on these experimental results, we have derived effective cluster interaction energies for all surface alloys. These allow us to calculate phase diagrams for the surface alloys that we compare to predictions from theoretical work and to the behaviour of the corresponding bulk systems. We also discuss in how far the different atom distributions affect chemical and catalytic properties of the surface alloys.

  4. The creation of nanoscale structures on copper surfaces

    International Nuclear Information System (INIS)

    Parker, T.M.

    1997-11-01

    Epitaxial growth of metals onto the Cu(100) surface is shown to be controlled by the presence of c(2x2)N islands. At sub-saturation coverages the nitrogen islands have a very uniform size and shape. Deposition of metals such as Cu and Co onto the Cu(100)-c(2x2)N system results in epitaxial growth only on areas of the substrate left clean by the nitrogen islands. The nitrogen islands therefore act as a template to the epitaxially grown metal. The nature of the Cu(100)-c(2x2)N template is discussed in terms of the different preparation conditions. Two key factors are identified; the nitrogen coverage on the surface and the amount of annealing the surface receives after nitrogen dosing. A possible theoretical explanation for the unique properties of the Cu(100)-c(2x2)N system is also discussed. It is shown that the size and shape of epitaxially grown Cu and Co islands on the Cu(100)-c(2x2)N system are controlled by the template. Growth is controlled through a number of monolayers. As the amount of nitrogen on the surface is varied so the size and shape distributions of the epitaxially grown metal is changed. Finally, it is shown that sub-saturation coverages of oxygen on the Cu(110) surface also alters the growth mode of epitaxially grown Co. The island morphology is different depending on whether the island nucleates on the bare substrate or on an oxygen island. (author)

  5. The role of original surface roughness in laser-induced periodic surface structure formation process on poly-carbonate films

    International Nuclear Information System (INIS)

    Csete, M.; Hild, S.; Plettl, A.; Ziemann, P.; Bor, Zs.; Marti, O.

    2004-01-01

    Poly-carbonate films containing different types of original surface roughness were illuminated by a polarized ArF excimer laser beam having a fluence of 4 mJ/cm 2 . Atomic force microscopy was applied to study the laser-induced periodic surface structure formation process at 0 deg. , 30 deg. and 45 deg. angles of incidence. The effect of initial surface structures on the intensity distribution was investigated in cases of: (a) grains on oriented and amorphous thick films; (b) holes on thin spin-coated films; and (c) nanoparticles arranged along micrometer long sides of hexagons below the spin-coated films. The presence of the scattering objects caused symmetry breaking, if the samples were illuminated by oblique incident 's' polarized beam. The Fourier analysis of the AFM pictures has shown the competition of structures having different periods. The characteristic of the permanent surface patterns proved that the interference of the incoming beam and the beams scattered on previously existing structures is the LIPSS generating feedback process. Ring-shaped structures having 228 nm diameter were produced

  6. Characteristics of surface wind structure of tropical cyclones over the ...

    Indian Academy of Sciences (India)

    level environment like enhanced cross equatorial flow, lower/middle level relative .... structure due to lack of aircraft reconnaissance and ... onwards, if the system is expected to intensify into ...... (2010) examined some of the factors that control.

  7. Coronal Structures as Tracers of Sub-Surface Processes

    Indian Academy of Sciences (India)

    tribpo

    dramatic differences in appearance and physical processes, all these structures share a common ... mena that indicate a close relationship between coronal and sub-photo- spheric processes. .... 8) maintaining the same chirality. Large scale ...

  8. Surface morphology, structural and electrical properties of RF ...

    Indian Academy of Sciences (India)

    2018-05-19

    May 19, 2018 ... ITO thin films; sputtering; structure; electrical properties; AFM; Hall effect. 1. Introduction ... ness range (61–768 nm) and to see if this system present properties that .... using the Bragg equation, and the relation linking the inter-.

  9. Study of the local structure of binary surfaces by electron diffraction (XPS, LEED)

    OpenAIRE

    Gereová, Katarína

    2006-01-01

    Study of local structure of binary surface with usage of ultra-thin film of cerium deposited on a Pd (111) single-crystal surface is presented. X-ray photoelectron spectroscopy and diffraction (XPS, XPD), angle resolved UV photoemission spectroscopy (ARUPS) and low energy electron diffraction (LEED) was used for our investigations. LEED and X-ray excited photoemission intensities results represent a surface-geometrical structure. As well, mapping of ultra-violet photoelectron intensities as a...

  10. Manipulation of fluids in three-dimensional porous photonic structures with patterned surface properties

    Energy Technology Data Exchange (ETDEWEB)

    Aizenberg, Joanna; Burgess, Ian; Mishchenko, Lidiya; Hatton, Benjamin; Loncar, Marko

    2017-12-26

    A three-dimensional porous photonic structure, whose internal pore surfaces can be provided with desired surface properties in a spatially selective manner with arbitrary patterns, and methods for making the same are described. When exposed to a fluid (e.g., via immersion or wicking), the fluid can selectively penetrate the regions of the structure with compatible surface properties. Broad applications, for example in security, encryption and document authentication, as well as in areas such as simple microfluidics and diagnostics, are anticipated.

  11. Bending and splitting of spoof surface acoustic waves through structured rigid surface

    Directory of Open Access Journals (Sweden)

    Sujun Xie

    2018-03-01

    Full Text Available In this paper, we demonstrated that a 90°-bended imaging of spoof surface acoustic waves with subwavelength resolution of 0.316λ can be realized by a 45° prism-shaped surface phononic crystal (SPC, which is composed of borehole arrays with square lattice in a rigid plate. Furthermore, by combining two identical prism-shaped phononic crystal to form an interface (to form a line-defect, the excited spoof surface acoustic waves can be split into bended and transmitted parts. The power ratio between the bended and transmitted surface waves can be tuned arbitrarily by adjusting the defect size. This acoustic system is believed to have potential applications in various multifunctional acoustic solutions integrated by different acoustical devices.

  12. Electron acceleration by surface plasma waves in double metal surface structure

    Science.gov (United States)

    Liu, C. S.; Kumar, Gagan; Singh, D. B.; Tripathi, V. K.

    2007-12-01

    Two parallel metal sheets, separated by a vacuum region, support a surface plasma wave whose amplitude is maximum on the two parallel interfaces and minimum in the middle. This mode can be excited by a laser using a glass prism. An electron beam launched into the middle region experiences a longitudinal ponderomotive force due to the surface plasma wave and gets accelerated to velocities of the order of phase velocity of the surface wave. The scheme is viable to achieve beams of tens of keV energy. In the case of a surface plasma wave excited on a single metal-vacuum interface, the field gradient normal to the interface pushes the electrons away from the high field region, limiting the acceleration process. The acceleration energy thus achieved is in agreement with the experimental observations.

  13. SGFM applied to the calculation of surface band structure of V

    International Nuclear Information System (INIS)

    Baquero, R.; Velasco, V.R.; Garcia Moliner, F.

    1986-07-01

    The surface Green function matching (SGFM) method has been developed recently to deal with a great variety of problems in a unified way. The method was first developed for continuum systems. The recent advances for discrete structures can deal with surfaces, interfaces, quantum wells, superlattices, intercalated layered compounds, and other systems. Several applications of this formalism are being carried out. In the present note we will describe how the formalism applies to the calculation of the electronic surface band structure of vanadium which is a quite interesting transition metal with very active magnetic properties at the surface, in particular at the (100) surface. It is straightforward, on the basis of the calculation presented here, to obtain the magnetic moment on the surface, for example, through the method followed by G. Allan or the surface paramagnon density which should be particularly enhanced at this surface as compared to the bulk

  14. Structures of adsorbed CO on atomically smooth and on stepped sngle crystal surfaces

    International Nuclear Information System (INIS)

    Madey, T.E.; Houston, J.E.

    1980-01-01

    The structures of molecular CO adsorbed on atomically smooth surfaces and on surfaces containing monatomic steps have been studied using the electron stimulated desorption ion angular distribution (ESDIAD) method. For CO adsorbed on the close packed Ru(001) and W(110) surfaces, the dominant bonding mode is via the carbon atom, with the CO molecular axis perpendicular to the plane of the surface. For CO on atomicaly rough Pd(210), and for CO adsorbed at step sites on four different surfaces vicinal to W(110), the axis of the molecule is tilted or inclined away from the normal to the surface. The ESDIAD method, in which ion desorption angles are related to surface bond angles, provides a direct determination of the structures of adsorbed molecules and molecular complexes on surfaces

  15. Computer studies of surface structure of NiAl(111)

    International Nuclear Information System (INIS)

    Takeuchi, Wataru; Yamamura, Yasunori

    1994-01-01

    The 180 neutral impact-collision ion scattering spectroscopy (NICISS) data have been analyzed using the ACOCT program code based on the binary collision approximation (BCA). The computer simulations are performed for the case of 2 keV He + ions incident along the [ anti 12 anti 1] direction of a NiAl(111) surface. It is found that the experimental results are well reproduced by the ACOCT simulations including the inward relaxation of 40% of the first interlayer spacing on Ni terminated layer at the NiAl(111) surface and including the Moliere approximation of the Thomas-Fermi potential with a reduced Firsov screening length, multiplied by a factor of 0.60. (orig.)

  16. Facile method for preparing superoleophobic surfaces with hierarchical microcubic/nanowire structures

    Science.gov (United States)

    Kwak, Wonshik; Hwang, Woonbong

    2016-02-01

    To facilitate the fabrication of superoleophobic surfaces having hierarchical microcubic/nanowire structures (HMNS), even for low surface tension liquids including octane (surface tension = 21.1 mN m-1), and to understand the influences of surface structures on the oleophobicity, we developed a convenient method to achieve superoleophobic surfaces on aluminum substrates using chemical acid etching, anodization and fluorination treatment. The liquid repellency of the structured surface was validated through observable experimental results the contact and sliding angle measurements. The etching condition required to ensure high surface roughness was established, and an optimal anodizing condition was determined, as a critical parameter in building the superoleophobicity. The microcubic structures formed by acid etching are essential for achieving the formation of the hierarchical structure, and therefore, the nanowire structures formed by anodization lead to an enhancement of the superoleophobicity for low surface tension liquids. Under optimized morphology by microcubic/nanowire structures with fluorination treatment, the contact angle over 150° and the sliding angle less than 10° are achieved even for octane.

  17. Surface engineering of glazing materials and structures using plasma processes

    International Nuclear Information System (INIS)

    Anders, Andre; Monteiro, Othon R.

    2003-01-01

    A variety of coatings is commercially produced on a very large scale, including transparent conducting oxides and multi-layer silver-based low-emissivity and solar control coatings. A very brief review of materials and manufacturing process is presented and illustrated by ultrathin silver films and chevron copper films. Understanding the close relation between manufacturing processes and bulk and surface properties of materials is crucial for film growth and self-assembly processes

  18. Electronic structure, molecular bonding and potential energy surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Ruedenberg, K. [Ames Laboratory, IA (United States)

    1993-12-01

    By virtue of the universal validity of the generalized Born-Oppenheimer separation, potential energy surfaces (PES`) represent the central conceptual as well as quantitative entities of chemical physics and provide the basis for the understanding of most physicochemical phenomena in many diverse fields. The research in this group deals with the elucidation of general properties of PES` as well as with the quantitative determination of PES` for concrete systems, in particular pertaining to reactions involving carbon, oxygen, nitrogen and hydrogen molecules.

  19. Characterization of Boroaluminosilicate Glass Surface Structures by B k-edge NEXAFS

    Energy Technology Data Exchange (ETDEWEB)

    R Schaut; R Lobello; K Mueller; C Pantano

    2011-12-31

    Techniques traditionally used to characterize bulk glass structure (NMR, IR, etc.) have improved significantly, but none provide direct measurement of local atomic coordination of glass surface species. Here, we used Near-Edge X-ray Absorption Fine Structure (NEXAFS) as a direct measure of atomic structure at multicomponent glass surfaces. Focusing on the local chemical structure of boron, we address technique-related issues of calibration, quantification, and interactions of the beam with the material. We demonstrate that beam-induced adsorption and structural damage can occur within the timeframe of typical measurements. The technique is then applied to the study of various fracture surfaces where it is shown that adsorption and reaction of water with boroaluminosilicate glass surfaces induces structural changes in the local coordination of boron, favoring B{sup IV} species after reaction.

  20. The structure of spectral problems and geometry: hyperbolic surfaces in E sup 3

    CERN Document Server

    Cieslinski, J L

    2003-01-01

    Working in the framework of Sym's soliton surfaces approach we point out that some simple assumptions about the structure of linear (spectral) problems of the theory of solitons lead uniquely to the geometry of some special immersions. In this paper we consider general su(2) spectral problems. Under some very weak assumptions they turn out to be associated with hyperbolic surfaces (surfaces of negative Gaussian curvature) immersed in three-dimensional Euclidean space, and especially with the so-called Bianchi surfaces.

  1. Enhanced osteointegration of medical titanium implant with surface modifications in micro/nanoscale structures

    OpenAIRE

    Lin, Liwen; Wang, Hui; Ni, Ming; Rui, Yunfeng; Cheng, Tian-Yuan; Cheng, Cheng-Kung; Pan, Xiaohua; Li, Gang; Lin, Changjian

    2014-01-01

    Biomimetic design and substrate-based surface modification of medical implants will help to improve the integration of tissue to its material interfaces. Surface energy, composition, roughness, and topography all influence the biological responses of the implants, such as protein adsorption and cell adhesion, proliferation and differentiation. In the current study, different surface structures of Ti implants were constructed using facile surface techniques to create various micro-, nano-, and...

  2. Post-CMOS Micromachining of Surface and Bulk Structures

    Science.gov (United States)

    2002-05-06

    Structures iii Acknowledgements I would like to thank my advisors, Professor Gary K. Fedder and Professor Dave W. Greve, for their continuing support...Donnelly, Plasma Chem. Plasma Process, vol. 1, pp. 37, 1981. [54] J. L. Mauer, J. S. Logan, L. B. Zielinski , and G. S. Schwartz, J. Vac. Sci. Technol

  3. Effects of nitrogen annealing on surface structure, silicide formation ...

    Indian Academy of Sciences (India)

    Effects of nitrogen annealing on structural and magnetic properties of Co/Si (100) up to 700◦C has been studied in this ... are dictated by uniformity of interdiffusion parallel to inter- ..... AFM images confirmed increase in the nanocrystalline.

  4. Surface structure and oxidation reactivity of oil sand coke particles

    Energy Technology Data Exchange (ETDEWEB)

    Fairbridge, C.; Palmer, A.D.; Ng, S.H.; Furimsky, E.

    1987-05-01

    Fractions of particles of varying mean diameter were isolated from coke obtained from the fluid coking of Athabasca bitumen. Correlations were established between the rate of oxygen sorption and the apparent surface area as measured by carbon dioxide adsorption. The rate of oxygen sorption, r/sub o/, could be related to particle radius, R, by r/sub o/ varying with R/sup D/ T over a range of particle size where D is the fractal dimension of the coke. The existence of such correlations may be related to the iterative processes which form the particles. 14 refs., 5 figs., 2 tabs.

  5. Chromium surface alloying of structural steels during laser treatment

    International Nuclear Information System (INIS)

    Kurov, I.E.; Nagornykh, S.N.; Sivukhin, G.A.; Solenov, S.V.

    1987-01-01

    Results of matrix alloying from the surface layer and creation of considerably increased chromium concentration in the depth which permits to increase the efficiency of laser treatment of steels (12Kh18N10T and 38KhN3M) in the process of their further mechanical polishing, are presented. The treatment was realized by continuous CO 2 -laser at different power densities and scanning rates are presented. A model describing the creation of anomalous distributions of the alloying element in steels is plotted

  6. Electronic structure studies of a clock-reconstructed Al/Pd(1 0 0) surface alloy

    Science.gov (United States)

    Kirsch, Janet E.; Tainter, Craig J.

    We have employed solid-state Fenske-Hall band structure calculations to examine the electronic structure of Al/Pd(1 0 0), a surface alloy that undergoes a reconstruction, or rearrangement, of the atoms in the top few surface layers. Surface alloys are materials that consist primarily of a single elemental metal, but which have a bimetallic surface composition that is only a few atomic layers in thickness. The results of this study indicate that reconstruction into a clock configuration simultaneously optimizes the intralayer bonding within the surface plane and the bonding between the first and second atomic layers. These results also allow us to examine the fundamental relationship between the electronic and physical structures of this reconstructed surface alloy.

  7. Micro-nano hierarchically structured nylon 6,6 surfaces with unique wettability.

    Science.gov (United States)

    Zhang, Liang; Zhang, Xiaoyan; Dai, Zhen; Wu, Junjie; Zhao, Ning; Xu, Jian

    2010-05-01

    A micro-nano hierarchically structured nylon 6,6 surface was easily fabricated by phase separation. Nylon 6,6 plate was swelled by formic acid and then immersed in a coagulate bath to precipitate. Micro particles with nano protrusions were generated and linked together covering over the surface. After dried up, the as-formed surface showed superhydrophilic ability. Inspired by lotus only employing 2-tier structure and ordinary plant wax to maintain superhydrophobicity, paraffin wax, a low surface energy material, was used to modify the hierarchically structured nylon 6,6 surface. The resultant surface had water contact angle (CA) of 155.2+/-1.3 degrees and a low sliding angle. The whole process was carried on under ambient condition and only need a few minutes. Copyright 2010 Elsevier Inc. All rights reserved.

  8. Design of tunable surface mode waveguide based on photonic crystal composite structure using organic liquid*

    International Nuclear Information System (INIS)

    Zhang Lan-Lan; Liu Wei; Li Ping; Yang Xi; Cao Xu

    2017-01-01

    With the method of replacing the surface layer of photonic crystal with tubes, a novel photonic crystal composite structure used as a tunable surface mode waveguide is designed. The tubes support tunable surface states. The tunable propagation capabilities of the structure are investigated by using the finite-difference time-domain. Simulation results show that the beam transmission distributions of the composite structure are sensitive to the frequency range of incident light and the surface morphology which can be modified by filling the tubes with different organic liquids. By adjusting the filler in tubes, the T-shaped, Y-shaped, and L-shaped propagations can be realized. The property can be applied to the tunable surface mode waveguide. Compared with a traditional single function photonic crystal waveguide, our designed structure not only has a small size, but also is a tunable device. (paper)

  9. Water's Interfacial Hydrogen Bonding Structure Reveals the Effective Strength of Surface-Water Interactions.

    Science.gov (United States)

    Shin, Sucheol; Willard, Adam P

    2018-06-05

    We combine all-atom molecular dynamics simulations with a mean field model of interfacial hydrogen bonding to analyze the effect of surface-water interactions on the structural and energetic properties of the liquid water interface. We show that the molecular structure of water at a weakly interacting ( i.e., hydrophobic) surface is resistant to change unless the strength of surface-water interactions are above a certain threshold. We find that below this threshold water's interfacial structure is homogeneous and insensitive to the details of the disordered surface, however, above this threshold water's interfacial structure is heterogeneous. Despite this heterogeneity, we demonstrate that the equilibrium distribution of molecular orientations can be used to quantify the energetic component of the surface-water interactions that contribute specifically to modifying the interfacial hydrogen bonding network. We identify this specific energetic component as a new measure of hydrophilicity, which we refer to as the intrinsic hydropathy.

  10. Application of nitrogen plasma immersion ion implantation to titanium nasal implants with nanonetwork surface structure

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Ying-Sui; Yang, Wei-En [Department of Dentistry, National Yang-Ming University, Taipei 112, Taiwan (China); Zhang, Lan [State Key Laboratory for Mechanical Behavior of Materials, Xi' an Jiaotong University, Xi' an 710049 (China); Zhu, Hongqin [State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050 (China); Lan, Ming-Ying [Division of Rhinology, Department of Otolaryngology Head and Neck Surgery, Taipei Veterans General Hospital, Taipei 112, Taiwan and School of Medicine, National Yang-Ming University, Taipei 112, Taiwan (China); Lee, Sheng-Wei [Institute of Materials Science and Engineering, National Central University, Taoyuan 320, Taiwan (China); Huang, Her-Hsiung, E-mail: hhhuang@ym.edu.tw [Department of Dentistry, National Yang-Ming University, Taipei 112, Taiwan (China); Institute of Oral Biology, National Yang-Ming University, Taipei 112, Taiwan (China); Graduate Institute of Basic Medical Science, China Medical University, Taichung 404, Taiwan (China); Department of Medical Research, China Medical University Hospital, Taichung 407, Taiwan (China); Department of Bioinformatics and Medical Engineering, Asia University, Taichung 413, Taiwan (China); Department of Stomatology, Taipei Veterans General Hospital, Taipei 112, Taiwan (China)

    2016-07-15

    In nasal reconstruction, the response of cells to titanium (Ti) implants is mainly determined by surface features of the implant. In a pilot study, the authors applied electrochemical anodization to Ti surfaces in an alkaline solution to create a network of nanoscale surface structures. This nanonetwork was intended to enhance the responses of primary human nasal epithelial cell (HNEpC) to the Ti surface. In this study, the authors then treated the anodized, nanonetwork-structured Ti surface using nitrogen plasma immersion ion implantation (NPIII) in order to further improve the HNEpC response to the Ti surface. Subsequently, surface characterization was performed to elucidate morphology, roughness, wettability, and chemistry of specimens. Cytotoxicity, blood, and HNEpC responses were also evaluated. Our results demonstrate that NPIII treatment led to the formation of a noncytotoxic TiN-containing thin film (thickness <100 nm) on the electrochemically anodized Ti surface with a nanonetwork-structure. NPIII treatment was shown to improve blood clotting and the adhesion of platelets to the anodized Ti surface as well as the adhesion and proliferation of hNEpC. This research spreads our understanding of the fact that a TiN-containing thin film, produced using NPIII treatment, could be used to improve blood and HNEpC responses to anodized, nanonetwork-structured Ti surfaces in nasal implant applications.

  11. Surface Roughness and Morphology Customization of Additive Manufactured Open Porous Ti6Al4V Structures

    Directory of Open Access Journals (Sweden)

    Martine Wevers

    2013-10-01

    Full Text Available Additive manufacturing (AM is a production method that enables the building of porous structures with a controlled geometry. However, there is a limited control over the final surface of the product. Hence, complementary surface engineering strategies are needed. In this work, design of experiments (DoE was used to customize post AM surface treatment for 3D selective laser melted Ti6Al4V open porous structures for bone tissue engineering. A two-level three-factor full factorial design was employed to assess the individual and interactive effects of the surface treatment duration and the concentration of the chemical etching solution on the final surface roughness and beam thickness of the treated porous structures. It was observed that the concentration of the surface treatment solution was the most important factor influencing roughness reduction. The designed beam thickness decreased the effectiveness of the surface treatment. In this case study, the optimized processing conditions for AM production and the post-AM surface treatment were defined based on the DoE output and were validated experimentally. This allowed the production of customized 3D porous structures with controlled surface roughness and overall morphological properties, which can assist in more controlled evaluation of the effect of surface roughness on various functional properties.

  12. Surface Roughness and Morphology Customization of Additive Manufactured Open Porous Ti6Al4V Structures.

    Science.gov (United States)

    Pyka, Grzegorz; Kerckhofs, Greet; Papantoniou, Ioannis; Speirs, Mathew; Schrooten, Jan; Wevers, Martine

    2013-10-22

    Additive manufacturing (AM) is a production method that enables the building of porous structures with a controlled geometry. However, there is a limited control over the final surface of the product. Hence, complementary surface engineering strategies are needed. In this work, design of experiments (DoE) was used to customize post AM surface treatment for 3D selective laser melted Ti6Al4V open porous structures for bone tissue engineering. A two-level three-factor full factorial design was employed to assess the individual and interactive effects of the surface treatment duration and the concentration of the chemical etching solution on the final surface roughness and beam thickness of the treated porous structures. It was observed that the concentration of the surface treatment solution was the most important factor influencing roughness reduction. The designed beam thickness decreased the effectiveness of the surface treatment. In this case study, the optimized processing conditions for AM production and the post-AM surface treatment were defined based on the DoE output and were validated experimentally. This allowed the production of customized 3D porous structures with controlled surface roughness and overall morphological properties, which can assist in more controlled evaluation of the effect of surface roughness on various functional properties.

  13. CFD simulation of rotor aerodynamic performance when using additional surface structure array

    Science.gov (United States)

    Wang, Bing; Kong, Deyi

    2017-10-01

    The present work analyses the aerodynamic performance of the rotor with additional surface structure array in an attempt to maximize its performance in hover flight. The unstructured grids and the Reynolds Average Navier-Stokes equations were used to calculate the performance of the prototype rotor and the rotor with additional surface structure array in the air. The computational fluid dynamics software FLUENT was used to simulate the thrust of the rotors. The results of the calculations are in reasonable agreement with experimental data, which shows that the calculation model used in this work is useful in simulating the performance of the rotor with additional surface structure array. With this theoretical calculation model, the thrusts of the rotors with arrays of surface structure in three different shapes were calculated. According to the simulation results and the experimental data, the rotor with triangle surface structure array has better aerodynamic performance than the other rotors. In contrast with the prototype rotor, the thrust of the rotor with triangle surface structure array increases by 5.2% at the operating rotating speed of 3000r/min, and the additional triangle surface structure array has almost no influence on the efficiency of the rotor.

  14. Surface characterization and surface electronic structure of organic quasi-one-dimensional charge transfer salts

    DEFF Research Database (Denmark)

    Sing, M.; Schwingenschlögl, U.; Claessen, R.

    2003-01-01

    We have thoroughly characterized the surfaces of the organic charge-transfer salts TTF-TCNQ and (TMTSF)(2)PF6 which are generally acknowledged as prototypical examples of one-dimensional conductors. In particular x-ray-induced photoemission spectroscopy turns out to be a valuable nondestructive...

  15. Analysis of the skin surface and inner structure around pores on the face.

    Science.gov (United States)

    Mizukoshi, Koji; Takahashi, Kazuhiro

    2014-02-01

    Facial pores do not appear to close again in old skin. Therefore, the tissue structure around the pore has been speculated to keep the pore open. To elucidate the reason for pore enlargement, we examined the relationship between the skin surface and inner skin structural characteristics in the same regions especially around the pore. Samples of the skin surface were obtained from the cheek and examined using a laser image processor to obtain three-dimensional (3D) data. The inner structure of the skin was analyzed using in vivo confocal laser scanning microscopy (CLSM). The conspicuous pore not only had a concave structure but also a discontinuous convex structure on the skin surface surrounding the pore. Furthermore, CLSM image indicated that the skin inner structure developed a discontinuous dermal papilla structure and isotropic dermal fiber structure. There were structural changes in the skin surface around conspicuous pores, including not only a concave structure but also a convex structure with skin inner structure changing. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  16. Replication of micro structured surface by injection moulding of PEEK

    DEFF Research Database (Denmark)

    Zhang, Yang; Hansen, Hans Nørgaard; Sørensen, Søren

    A micro-structured Ni insert was investigated for PEEK injection moulding. The micro features are circular holes 4 μm in diameter and 2 μm deep, with a 2 μm edge-to-edge distance. 6000 moulding cycles was operated. Half of the insert was coated by 200nm CrN. PEEK parts produced by the coated side...

  17. Structure, Bonding and Surface Chemistry of Metal Oxide Nanoclusters

    Science.gov (United States)

    2015-06-23

    an electrospray ionization time-of-flight (ESI-TOF) mass spectrometer to the lab (PerSeptive Biosystems Mariner), which provides a different...with this Project Faculty: Professor Michael A. Duncan (one month summer salary) Prof. Heather Abbott -Lyons, summer visiting faculty and...Distribution approved for public release. 4. H. L. Abbott , A. D. Brathwaite and M. A. Duncan, "Infrared spectroscopy and structures of mass-selected

  18. Visualization of brain surface structures by weighted summation technique using multislice MR images

    International Nuclear Information System (INIS)

    Machida, Yoshio; Hatanaka, Masahiko; Hagiwara, Masayuki; Sugimoto, Hiroshi; Yoshida, Tadatoki; Katada, Kazuhiro.

    1991-01-01

    Surface anatomy scanning (SAS) technique which visualizes brain surface structures has been developed since 1987. In this paper, we propose a modified method called 'multislice SAS', which also generates such surface structure images, and has several advantages compared with conventional SAS technique. The conventional SAS technique uses a very long echo time sequence (e.g. SE(3000, 250)) with a thick slice and a surface coil to enhance CSF on the brain surface. Our modified technique also uses a long echo time sequence. But, added multislice images, each appropriately weighted, are used in stead of a thick slice and a surface coil. Our basic studies have shown that this modified method has the following advantage: Several surface images with slightly different summation directions are obtained, and they are used for stereographic display and cine display. This is very useful for visualizing the spatial relationship of brain surface structures. By choosing appropriate weighting, we can obtain clinically legible surface images. This technique dose not require a surface coil. It means that flexibility of selecting imaging direction is high. We can make a lot of modifications, because the original multislice images of weighted summation are arbitrary. And we also clarify some limitation or disadvantage of this modified method. In conclusion, we think that this technique is one of the practical approaches for surface anatomy imaging. (author)

  19. Structural features of the adsorption layer of pentacene on the graphite surface and the PMMA/graphite hybrid surface

    Science.gov (United States)

    Fadeeva, A. I.; Gorbunov, V. A.; Litunenko, T. A.

    2017-08-01

    Using the molecular dynamics and the Monte Carlo methods, we have studied the structural features and growth mechanism of the pentacene film on graphite and polymethylmethacrylate /graphite surfaces. Monolayer capacity and molecular area, optimal angles between the pentacene molecules and graphite and PMMA/graphite surfaces as well as the characteristic angles between the neighboring pentacene molecules in the adsorption layer were estimated. It is shown that the orientation of the pentacene molecules in the film is determined by a number of factors, including the surface concentration of the molecules, relief of the surface, presence or absence of the polymer layer and its thickness. The pentacene molecules adsorbed on the graphite surface keep a horizontal position relative to the long axis at any surface coverage/thickness of the film. In the presence of the PMMA layer on the graphite, the increase of the number of pentacene molecules as well as the thickness of the PMMA layer induce the change of molecular orientation from predominantly horizontal to vertical one. The reason for such behavior is supposed to be the roughness of the PMMA surface.

  20. HREEL study of c(53x9)rect-N structure on Ni(111) surface

    International Nuclear Information System (INIS)

    Papagno, M.; Pacile, D.; Giallombardo, C.; Cupolillo, A.; Papagno, L.

    2005-01-01

    In this work we have prepared and characterized by low energy electron diffraction (LEED) and high-resolution electron energy loss spectroscopy (HREELS) the Ni(111)-c(53x9)rect-N surface structure formed by saturating the Ni(111) surface with nitrogen atoms. This structure was obtained by the ion-gauge assisted N 2 exposure method. The loss spectra show features at 50 and 25meV assigned to the N-Ni vibration and to a phonon of the reconstructed surface, respectively. We also investigated the case in which the Ni(111) surface was covered with a low coverage of N atoms

  1. Surface Curvature in Island Groups and Discontinuous Cratonic Structures

    Science.gov (United States)

    McDowell, M. S.

    2002-05-01

    The Canadian Archipelago includes eight major islands and a host of smaller ones. They are separated by water bodies, of varying widths attributable to glacial activity and ocean currents. Land form varies from relatively rugged mountains (~2000 m) in eastern, glacial, islands, to low lying western, similar to the continental topography adjacent. The Arctic region is thought to have been low average elevation before the Pleistocene. To a picture puzzler, it all looks like it fit together. Experimentally cutting apart the islands from large scale maps shows that the rough edges match fairly well. However, when those independent pieces are sutured together, without restraint, as in free air, the fit is far better. Far more importantly, they consistently form a noticeably concave surface. This tendency is not at all apparent in flat surface or computer screen manipulation; the pieces need to be "hand joined" or on a molded surface to allow the assembly to freely form as it will. Fitting together the coastlines above 60 \\deg north, from 120 \\deg west to 45 \\deg east, and comparing the resulting contracted area to the original, obtains an 8 percent area reduction. The curvature "humps" a trial planar section of 15 cms by 1.6 cm, a substantial difference in the radius of curvature. If you rashly suggest applying that formula globally, the resulting sphere would have a surface area of 4.7 x108,(down from 5 x108), and therefore radius of 6117 km, down from 6400, which is a rather preposterous conclusion. As nobody would believe it, I tested the idea elsewhere. The Huronian succession of six named cratons is adjacent on the south. I cut this map apart, too, and fit it together, once again getting a curvature, this time more pronounced. I am trying it with the Indonesian Archipelago, although this area has volcanic complications, and with Precambrian Basins in western Australia and Nimibia, Africa. Indications are - an essentially similar pattern of fit, but non uniform

  2. Wetting and Dewetting Transitions on Submerged Superhydrophobic Surfaces with Hierarchical Structures.

    Science.gov (United States)

    Wu, Huaping; Yang, Zhe; Cao, Binbin; Zhang, Zheng; Zhu, Kai; Wu, Bingbing; Jiang, Shaofei; Chai, Guozhong

    2017-01-10

    The wetting transition on submersed superhydrophobic surfaces with hierarchical structures and the influence of trapped air on superhydrophobic stability are predicted based on the thermodynamics and mechanical analyses. The dewetting transition on the hierarchically structured surfaces is investigated, and two necessary thermodynamic conditions and a mechanical balance condition for dewetting transition are proposed. The corresponding thermodynamic phase diagram of reversible transition and the critical reversed pressure well explain the experimental results reported previously. Our theory provides a useful guideline for precise controlling of breaking down and recovering of superhydrophobicity by designing superhydrophobic surfaces with hierarchical structures under water.

  3. Surface structure and adsorption properties of ultrafine porous carbon fibers

    International Nuclear Information System (INIS)

    Song Xiaofeng; Wang Ce; Zhang Dejiang

    2009-01-01

    Ultrafine porous carbon fibers (UPCFs) were successfully synthesized by chemical activation of electrospun polyacrylonitrile fibers. In the current approach, potassium hydroxide was adopted as activation reagent. UPCFs were systematically evaluated by scanning electron microscope and nitrogen adsorption. The mass ratio of potassium hydroxide to preoxidized fibers, activation temperature and activation time are crucial for producing high quality UPCFs. The relationships between porous structure and process parameters are explored. UPCFs were applied as adsorbent for nitrogen monoxide to be compared with commercial porous carbon fibers.

  4. Use of low energy alkali ion scattering as a probe of surface structure

    International Nuclear Information System (INIS)

    Overbury, S.H.

    1986-01-01

    An overview is given of the use of low energy ion scattering as a probe of surface structure with emphasis on work done using alkali ions. Various schemes for extracting structural information from the ion energy and angle distributions are discussed in terms of advantages and disadvantages of each. The scattering potential which is the primary non-structural parameter needed for analysis, is discussed in terms of recent experimental results. The structure of clean and reconstructed surfaces are discussed, with examples of measurements of layer relaxations on the Mo(111) surface and missing row reconstructions on the Au(110) and Pt(110) surfaces. Studies of adsorbate covered surfaces are presented with respect to location of the adsorbate and its effect on the structure of the underlying substrate. Finally, examples are given which demonstrate the sensitivity of ion scattering to surface defects and disordering on reconstructed Au(110) and Pt(110) surfaces and unreconstructed Mo(111) surfaces, and to ordering of adsorbates on Mo(001). 47 refs., 12 figs

  5. Selective appearance of several laser-induced periodic surface structure patterns on a metal surface using structural colors produced by femtosecond laser pulses

    Energy Technology Data Exchange (ETDEWEB)

    Yao Jianwu; Zhang Chengyun; Liu Haiying; Dai Qiaofeng; Wu Lijun [Laboratory of Photonic Information Technology, School of Information and Optoelectronic Science and Engineering, South China Normal University, Guangzhou 510006 (China); Lan, Sheng, E-mail: slan@scnu.edu.cn [Laboratory of Photonic Information Technology, School of Information and Optoelectronic Science and Engineering, South China Normal University, Guangzhou 510006 (China); Gopal, Achanta Venu [Department of Condensed Matter Physics and Material Science, Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400005 (India); Trofimov, Vyacheslav A.; Lysak, Tatiana M. [Department of Computational Mathematics and Cybernetics, M. V. Lomonosov Moscow State University, Moscow 119992 (Russian Federation)

    2012-07-15

    Ripples with a subwavelength period were induced on the surface of a stainless steel (301 L) foil by femtosecond laser pulses. By optimizing the irradiation fluence of the laser pulses and the scanning speed of the laser beam, ripples with large amplitude ({approx}150 nm) and uniform period could be obtained, rendering vivid structural colors when illuminating the surface with white light. It indicates that these ripples act as a surface grating that diffracts light efficiently. The strong dependence of the ripple orientation on the polarization of laser light offers us the opportunity of decorating different regions of the surface with different types of ripples. As a result, different patterns can be selectively displayed with structural color when white light is irradiated on the surface from different directions. More interestingly, we demonstrated the possibility of decorating the same region with two or more types of ripples with different orientations. In this way, different patterns with spatial overlapping can be selectively displayed with structural color. This technique may find applications in the fields of anti-counterfeiting, color display, decoration, encryption and optical data storage.

  6. Fabrication of biomimetic resorption lacunae-like structure on titanium surface and its osteoblast responses

    Science.gov (United States)

    Huo, Fangjun; Guo, Weihua; Wu, Hao; Wang, Yueting; He, Gang; Xie, Li; Tian, Weidong

    2018-04-01

    Biomimetic specific surface structure could improve biological behaviors of specific cells and eventual tissue integration. Featuring titanium surface with structures resembling bone resorption lacunae (RL) can be a promising approach to improve the osteoblast responses and osseointegration of implants. As a most common used dental implant surface, sandblasting and acid etching (SLA) surface has micro-sized structures with dimensions similar to RL, but great differences exist when it comes to shape and contour. In this work, by anodizing titanium substrate in a novel HCOONa/CH3COONa electrolyte, RL-like crater structures were fabricated with highly similar size, shape and contour. Compared with SLA, it was much more similar to RL structure in shape and contour. Furthermore, through subsequent alkali-heat treatment, nano-sized structures that overlaid the whole surface were obtained, which further mimic undercuts features inside the RL. The as-prepared surface was consisted of crystalline titania and exhibited super-hydrophilicity with good stability. In vitro evaluation results showed that the surface could significantly improve adhesion, proliferation and differentiation of MG63 cells in comparison with SLA. This new method may be a promising candidate for biomimetic modification of titanium implant to promote osseointegration.

  7. Boiling performance and material robustness of modified surfaces with multi scale structures for fuel cladding development

    Energy Technology Data Exchange (ETDEWEB)

    Jo, HangJin; Kim, Jin Man [Division of Advanced Nuclear Engineering, POSTECH, Pohang 790-784, Gyungbuk (Korea, Republic of); Yeom, Hwasung [Department of Nuclear Engineering and Engineering physics, UW-Madison, Madison, WI 53706, Unities States (United States); Lee, Gi Cheol [Department of Mechanical Engineering, POSTECH, Pohang 790-784, Gyungbuk (Korea, Republic of); Park, Hyun Sun, E-mail: hejsunny@postech.ac.kr [Division of Advanced Nuclear Engineering, POSTECH, Pohang 790-784, Gyungbuk (Korea, Republic of); Kiyofumi, Moriyama; Kim, Moo Hwan [Division of Advanced Nuclear Engineering, POSTECH, Pohang 790-784, Gyungbuk (Korea, Republic of); Sridharan, Kumar; Corradini, Michael [Department of Nuclear Engineering and Engineering physics, UW-Madison, Madison, WI 53706, Unities States (United States)

    2015-09-15

    Highlights: • We improved boiling performance and material robustness using surface modification. • We combined micro/millimeter post structures and nanoparticles with heat treatments. • Compactly-arranged micrometer posts had improved boiling performance. • CHF increased significantly due to capillary pumping by the deposited NP layers. • Sintering procedure increased mechanical strength of the NP coating surface. - Abstract: By regulating the geometrical characteristics of multi-scale structures and by adopting heat treatment for protective layer of nanoparticles (NPs), we improved critical heat flux (CHF), boiling heat transfer (BHT), and mechanical robustness of the modified surface. We fabricated 1-mm and 100-μm post structures and deposited NPs on the structured surface as a nano-scale structured layer and protective layer at the same time, then evaluated the CHF and BHT and material robustness of the modified surfaces. On the structured surfaces without NPs, the surface with compactly-arranged micrometer posts had improved CHF (118%) and BHT (41%). On the surface with structures on which NPs had been deposited, CHF increased significantly (172%) due to capillary pumping by the deposited NP layers. The heat treatment improved robustness of coating layer in comparison to the one of before heat treatment. In particular, low-temperature sintering increased the hardness of the modified surface by 140%. The increased mechanical strength of the NP coating is attributed to reduction in coating porosity during sintering. The combination of micrometer posts structures and sintered NP coating can increase the safety, efficiency and reliability of advanced nuclear fuel cladding.

  8. Boiling performance and material robustness of modified surfaces with multi scale structures for fuel cladding development

    International Nuclear Information System (INIS)

    Jo, HangJin; Kim, Jin Man; Yeom, Hwasung; Lee, Gi Cheol; Park, Hyun Sun; Kiyofumi, Moriyama; Kim, Moo Hwan; Sridharan, Kumar; Corradini, Michael

    2015-01-01

    Highlights: • We improved boiling performance and material robustness using surface modification. • We combined micro/millimeter post structures and nanoparticles with heat treatments. • Compactly-arranged micrometer posts had improved boiling performance. • CHF increased significantly due to capillary pumping by the deposited NP layers. • Sintering procedure increased mechanical strength of the NP coating surface. - Abstract: By regulating the geometrical characteristics of multi-scale structures and by adopting heat treatment for protective layer of nanoparticles (NPs), we improved critical heat flux (CHF), boiling heat transfer (BHT), and mechanical robustness of the modified surface. We fabricated 1-mm and 100-μm post structures and deposited NPs on the structured surface as a nano-scale structured layer and protective layer at the same time, then evaluated the CHF and BHT and material robustness of the modified surfaces. On the structured surfaces without NPs, the surface with compactly-arranged micrometer posts had improved CHF (118%) and BHT (41%). On the surface with structures on which NPs had been deposited, CHF increased significantly (172%) due to capillary pumping by the deposited NP layers. The heat treatment improved robustness of coating layer in comparison to the one of before heat treatment. In particular, low-temperature sintering increased the hardness of the modified surface by 140%. The increased mechanical strength of the NP coating is attributed to reduction in coating porosity during sintering. The combination of micrometer posts structures and sintered NP coating can increase the safety, efficiency and reliability of advanced nuclear fuel cladding

  9. Computational mesh generation for vascular structures with deformable surfaces

    International Nuclear Information System (INIS)

    Putter, S. de; Laffargue, F.; Breeuwer, M.; Vosse, F.N. van de; Gerritsen, F.A.; Philips Medical Systems, Best

    2006-01-01

    Computational blood flow and vessel wall mechanics simulations for vascular structures are becoming an important research tool for patient-specific surgical planning and intervention. An important step in the modelling process for patient-specific simulations is the creation of the computational mesh based on the segmented geometry. Most known solutions either require a large amount of manual processing or lead to a substantial difference between the segmented object and the actual computational domain. We have developed a chain of algorithms that lead to a closely related implementation of image segmentation with deformable models and 3D mesh generation. The resulting processing chain is very robust and leads both to an accurate geometrical representation of the vascular structure as well as high quality computational meshes. The chain of algorithms has been tested on a wide variety of shapes. A benchmark comparison of our mesh generation application with five other available meshing applications clearly indicates that the new approach outperforms the existing methods in the majority of cases. (orig.)

  10. Imaging method of brain surface anatomy structures using conventional T2-weighted MR images

    International Nuclear Information System (INIS)

    Hatanaka, Masahiko; Machida, Yoshio; Yoshida, Tadatoki; Katada, Kazuhiro.

    1992-01-01

    As a non-invasive technique for visualizing the brain surface structure by MRI, surface anatomy scanning (SAS) and the multislice SAS methods have been developed. Both techniques require additional MRI scanning to obtain images for the brain surface. In this paper, we report an alternative method to obtain the brain surface image using conventional T2-weighted multislice images without any additional scanning. The power calculation of the image pixel values, which is incorporated in the routine processing, has been applied in order to enhance the cerebrospinal fluid (CSF) contrast. We think that this method is one of practical approaches for imaging the surface anatomy of the brain. (author)

  11. Detailed analysis of surface asperity deformation mechanism in diffusion bonding of steel hollow structural components

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, C. [School of Materials Science and Engineering, Northwestern Polytechnical University, Xi’an 710072 (China); Laboratoire de Mecanique des Contacts et des Structures (LaMCoS), INSA Lyon, 20 Avenue des Sciences, F-69621 Villeurbanne Cedex (France); Li, H. [School of Materials Science and Engineering, Northwestern Polytechnical University, Xi’an 710072 (China); Li, M.Q., E-mail: zc9997242256@126.com [School of Materials Science and Engineering, Northwestern Polytechnical University, Xi’an 710072 (China)

    2016-05-15

    Graphical abstract: This study focused on the detailed analysis of surface asperity deformation mechanism in diffusion bonding of steel hollow structural component. A special surface with regular patterns was processed to be joined so as to observe the extent of surface asperity deformation under different applied bonding pressures. Fracture surface characteristic combined with surface roughness profiles distinctly revealed the enhanced surface asperity deformation as the applied pressure increases. The influence of surface asperity deformation mechanism on joint formation was analyzed: (a) surface asperity deformation not only directly expanded the interfacial contact areas, but also released deformation heat and caused defects, indirectly accelerating atomic diffusion, then benefits to void shrinkage; (b) surface asperity deformation readily introduced stored energy difference between two opposite sides of interface grain boundary, resulting in strain induced interface grain boundary migration. In addition, the influence of void on interface grain boundary migration was analyzed in detail. - Highlights: • A high quality hollow structural component has been fabricated by diffusion bonding. • Surface asperity deformation not only expands the interfacial contact areas, but also causes deformation heat and defects to improve the atomic diffusion. • Surface asperity deformation introduces the stored energy difference between the two opposite sides of interface grain boundary, leading to strain induced interface grain boundary migration. • The void exerts a dragging force on the interface grain boundary to retard or stop interface grain boundary migration. - Abstract: This study focused on the detailed analysis of surface asperity deformation mechanism in similar diffusion bonding as well as on the fabrication of high quality martensitic stainless steel hollow structural components. A special surface with regular patterns was processed to be joined so as to

  12. Chemical, electronic, and magnetic structure of LaFeCoSi alloy: Surface and bulk properties

    Energy Technology Data Exchange (ETDEWEB)

    Lollobrigida, V. [Dipartimento di Scienze, Università Roma Tre, I-00146 Rome (Italy); Dipartimento di Matematica e Fisica, Università Roma Tre, I-00146 Rome (Italy); Basso, V.; Kuepferling, M.; Coïsson, M.; Olivetti, E. S.; Celegato, F. [Istituto Nazionale di Ricerca Metrologica (INRIM), I-10135 Torino (Italy); Borgatti, F. [CNR, Istituto per lo Studio dei Materiali Nanostrutturati (ISMN), I-40129 Bologna (Italy); Torelli, P.; Panaccione, G. [CNR, Istituto Officina dei Materiali (IOM), Lab. TASC, I-34149 Trieste (Italy); Tortora, L. [Laboratorio di Analisi di Superficie, Dipartimento di Matematica e Fisica, Università Roma Tre, I-00146 Rome (Italy); Dipartimento di Ingegneria Meccanica, Università Tor Vergata, I-00133 Rome (Italy); Stefani, G.; Offi, F. [Dipartimento di Scienze, Università Roma Tre, I-00146 Rome (Italy)

    2014-05-28

    We investigate the chemical, electronic, and magnetic structure of the magnetocaloric LaFeCoSi compound with bulk and surface sensitive techniques. We put in evidence that the surface retains a soft ferromagnetic behavior at temperatures higher than the Curie temperature of the bulk due to the presence of Fe clusters at the surface only. This peculiar magnetic surface effect is attributed to the exchange interaction between the ferromagnetic Fe clusters located at the surface and the bulk magnetocaloric alloy, and it is used here to monitor the magnetic properties of the alloy itself.

  13. Chemical, electronic, and magnetic structure of LaFeCoSi alloy: Surface and bulk properties

    Science.gov (United States)

    Lollobrigida, V.; Basso, V.; Borgatti, F.; Torelli, P.; Kuepferling, M.; Coïsson, M.; Olivetti, E. S.; Celegato, F.; Tortora, L.; Stefani, G.; Panaccione, G.; Offi, F.

    2014-05-01

    We investigate the chemical, electronic, and magnetic structure of the magnetocaloric LaFeCoSi compound with bulk and surface sensitive techniques. We put in evidence that the surface retains a soft ferromagnetic behavior at temperatures higher than the Curie temperature of the bulk due to the presence of Fe clusters at the surface only. This peculiar magnetic surface effect is attributed to the exchange interaction between the ferromagnetic Fe clusters located at the surface and the bulk magnetocaloric alloy, and it is used here to monitor the magnetic properties of the alloy itself.

  14. Chemical, electronic, and magnetic structure of LaFeCoSi alloy: Surface and bulk properties

    International Nuclear Information System (INIS)

    Lollobrigida, V.; Basso, V.; Kuepferling, M.; Coïsson, M.; Olivetti, E. S.; Celegato, F.; Borgatti, F.; Torelli, P.; Panaccione, G.; Tortora, L.; Stefani, G.; Offi, F.

    2014-01-01

    We investigate the chemical, electronic, and magnetic structure of the magnetocaloric LaFeCoSi compound with bulk and surface sensitive techniques. We put in evidence that the surface retains a soft ferromagnetic behavior at temperatures higher than the Curie temperature of the bulk due to the presence of Fe clusters at the surface only. This peculiar magnetic surface effect is attributed to the exchange interaction between the ferromagnetic Fe clusters located at the surface and the bulk magnetocaloric alloy, and it is used here to monitor the magnetic properties of the alloy itself.

  15. Atomic Scale Structure-Chemistry Relationships at Oxide Catalyst Surfaces and Interfaces

    Science.gov (United States)

    McBriarty, Martin E.

    Oxide catalysts are integral to chemical production, fuel refining, and the removal of environmental pollutants. However, the atomic-scale phenomena which lead to the useful reactive properties of catalyst materials are not sufficiently understood. In this work, the tools of surface and interface science and electronic structure theory are applied to investigate the structure and chemical properties of catalytically active particles and ultrathin films supported on oxide single crystals. These studies focus on structure-property relationships in vanadium oxide, tungsten oxide, and mixed V-W oxides on the surfaces of alpha-Al2O3 and alpha-Fe2O 3 (0001)-oriented single crystal substrates, two materials with nearly identical crystal structures but drastically different chemical properties. In situ synchrotron X-ray standing wave (XSW) measurements are sensitive to changes in the atomic-scale geometry of single crystal model catalyst surfaces through chemical reaction cycles, while X-ray photoelectron spectroscopy (XPS) reveals corresponding chemical changes. Experimental results agree with theoretical calculations of surface structures, allowing for detailed electronic structure investigations and predictions of surface chemical phenomena. The surface configurations and oxidation states of V and W are found to depend on the coverage of each, and reversible structural shifts accompany chemical state changes through reduction-oxidation cycles. Substrate-dependent effects suggest how the choice of oxide support material may affect catalytic behavior. Additionally, the structure and chemistry of W deposited on alpha-Fe 2O3 nanopowders is studied using X-ray absorption fine structure (XAFS) measurements in an attempt to bridge single crystal surface studies with real catalysts. These investigations of catalytically active material surfaces can inform the rational design of new catalysts for more efficient and sustainable chemistry.

  16. Durable and mass producible polymer surface structures with different combinations of micro–micro hierarchy

    International Nuclear Information System (INIS)

    Jiang, Yu; Suvanto, Mika; Pakkanen, Tapani A

    2016-01-01

    Extensive studies have been performed with the aim of fabricating hierarchical surface structures inspired by nature. However, synthetic hierarchical structures have to sacrifice mechanical resistance to functionality by introducing finer scaled structures. Therefore, surfaces are less durable. Surface micro–micro hierarchy has been proven to be effective in replacing micro–nano hierarchy in the sense of superhydrophobicity. However, less attention has been paid to the combined micro–micro hierarchies with surface pillars and pits incorporated together. The fabrication of this type of hierarchy may be less straightforward, with the possibility of being a complicated multi-step process. In this study, we present a simple yet mass producible fabrication method for hierarchical structures with different combinations of surface pillars and pits. The fabrication was based on only one aluminum (Al) mold with sequential mountings. The fabricated structures exhibit high mechanical durability and structural stabilities with a normal load up to 100 kg. In addition, the theoretical estimation of the wetting state shows a promising way of stabilizing a water droplet on the surface pit structures with a more stable Cassie–Baxter state. (paper)

  17. Spatiotemporal Structure of Aeolian Particle Transport on Flat Surface

    Science.gov (United States)

    Niiya, Hirofumi; Nishimura, Kouichi

    2017-05-01

    We conduct numerical simulations based on a model of blowing snow to reveal the long-term properties and equilibrium state of aeolian particle transport from 10-5 to 10 m above the flat surface. The numerical results are as follows. (i) Time-series data of particle transport are divided into development, relaxation, and equilibrium phases, which are formed by rapid wind response below 10 cm and gradual wind response above 10 cm. (ii) The particle transport rate at equilibrium is expressed as a power function of friction velocity, and the index of 2.35 implies that most particles are transported by saltation. (iii) The friction velocity below 100 µm remains roughly constant and lower than the fluid threshold at equilibrium. (iv) The mean particle speed above 300 µm is less than the wind speed, whereas that below 300 µm exceeds the wind speed because of descending particles. (v) The particle diameter increases with height in the saltation layer, and the relationship is expressed as a power function. Through comparisons with the previously reported random-flight model, we find a crucial problem that empirical splash functions cannot reproduce particle dynamics at a relatively high wind speed.

  18. Near-field flow structures about subcritical surface roughness

    Science.gov (United States)

    Doolittle, Charles J.; Drews, Scott D.; Goldstein, David B.

    2014-12-01

    Laminar flow over a periodic array of cylindrical surface roughness elements is simulated with an immersed boundary spectral method both to validate the method for subsequent studies and to examine how persistent streamwise vortices are introduced by a low Reynolds number roughness element. Direct comparisons are made with prior studies at a roughness-based Reynolds number Rek (=U(k) k/ν) of 205 and a diameter to spanwise spacing ratio d/λ of 1/3. Downstream velocity contours match present and past experiments very well. The shear layer developed over the top of the roughness element produces the downstream velocity deficit. Upstream of the roughness element, the vortex topology is found to be consistent with juncture flow experiments, creating three cores along the recirculation line. Streamtraces stemming from these upstream cores, however, have unexpectedly little effect on the downstream flowfield as lateral divergence of the boundary layer quickly dissipates their vorticity. Long physical relaxation time of the recirculating wake behind the roughness remains a prominent issue for simulating this type of flowfield.

  19. Ordered supramolecular oligothiophene structures on passivated silicon surfaces

    Science.gov (United States)

    Liu, Renjie

    Carbon nanotubes (CNTs) with extraordinary properties and thus many potential applications have been predicted to be the best reinforcements for the next-generation multifunctional composite materials. Difficulties exist in transferring the most use of the unprecedented properties of individual CNTs to macroscopic forms of CNT assemblies. Therefore, this thesis focuses on two main goals: 1) discussing the issues that influence the performance of bulk CNT products, and 2) fabricating high-performance dry CNT films and composite films with an understanding of the fundamental structure-property relationship in these materials. Dry CNT films were fabricated by a winding process using CNT arrays with heights of 230 mum, 300 im and 360 mum. The structures of the as-produced films, as well as their mechanical and electrical properties were examined in order to find out the effects of different CNT lengths. It was found that the shorter CNTs synthesized by shorter time in the CVD furnace exhibited less structural defects and amorphous carbon, resulting in more compact packing and better nanotube alignment when made into dry films, thus, having better mechanical and electrical performance. A novel microcombing approach was developed to mitigate the CNT waviness and alignment in the dry films, and ultrahigh mechanical properties and exceptional electrical performance were obtained. This method utilized a pair of sharp surgical blades with microsized features at the blade edges as micro-combs to, for the first time, disentangle and straighten the wavy CNTs in the dry-drawn CNT sheet at single-layer level. The as-combed CNT sheet exhibited high level of nanotube alignment and straightness, reduced structural defects, and enhanced nanotube packing density. The dry CNT films produced by microcombing had a very high Young's modulus of 172 GPa, excellent tensile strength of 3.2 GPa, and unprecedented electrical conductivity of 1.8x10 5 S/m, which were records for CNT films or

  20. Low-energy electron diffraction experiment, theory and surface structure determination

    CERN Document Server

    Hove, Michel A; Chan, Chi-Ming

    1986-01-01

    Surface crystallography plays the same fundamental role in surface science which bulk crystallography has played so successfully in solid-state physics and chemistry. The atomic-scale structure is one of the most important aspects in the understanding of the behavior of surfaces in such widely diverse fields as heterogeneous catalysis, microelectronics, adhesion, lubrication, cor­ rosion, coatings, and solid-solid and solid-liquid interfaces. Low-Energy Electron Diffraction or LEED has become the prime tech­ nique used to determine atomic locations at surfaces. On one hand, LEED has yielded the most numerous and complete structural results to date (almost 200 structures), while on the other, LEED has been regarded as the "technique to beat" by a variety of other surface crystallographic methods, such as photoemission, SEXAFS, ion scattering and atomic diffraction. Although these other approaches have had impressive successes, LEED has remained the most productive technique and has shown the most versatility...

  1. Porous silicon structures with high surface area/specific pore size

    Science.gov (United States)

    Northrup, M.A.; Yu, C.M.; Raley, N.F.

    1999-03-16

    Fabrication and use of porous silicon structures to increase surface area of heated reaction chambers, electrophoresis devices, and thermopneumatic sensor-actuators, chemical preconcentrates, and filtering or control flow devices. In particular, such high surface area or specific pore size porous silicon structures will be useful in significantly augmenting the adsorption, vaporization, desorption, condensation and flow of liquids and gases in applications that use such processes on a miniature scale. Examples that will benefit from a high surface area, porous silicon structure include sample preconcentrators that are designed to adsorb and subsequently desorb specific chemical species from a sample background; chemical reaction chambers with enhanced surface reaction rates; and sensor-actuator chamber devices with increased pressure for thermopneumatic actuation of integrated membranes. Examples that benefit from specific pore sized porous silicon are chemical/biological filters and thermally-activated flow devices with active or adjacent surfaces such as electrodes or heaters. 9 figs.

  2. Miniature photometric stereo system for textile surface structure reconstruction

    Science.gov (United States)

    Gorpas, Dimitris; Kampouris, Christos; Malassiotis, Sotiris

    2013-04-01

    In this work a miniature photometric stereo system is presented, targeting the three-dimensional structural reconstruction of various fabric types. This is a supportive module to a robot system, attempting to solve the well known "laundry problem". The miniature device has been designed for mounting onto the robot gripper. It is composed of a low-cost off-the-shelf camera, operating in macro mode, and eight light emitting diodes. The synchronization between image acquisition and lighting direction is controlled by an Arduino Nano board and software triggering. The ambient light has been addressed by a cylindrical enclosure. The direction of illumination is recovered by locating the reflection or the brightest point on a mirror sphere, while a flatfielding process compensates for the non-uniform illumination. For the evaluation of this prototype, the classical photometric stereo methodology has been used. The preliminary results on a large number of textiles are very promising for the successful integration of the miniature module to the robot system. The required interaction with the robot is implemented through the estimation of the Brenner's focus measure. This metric successfully assesses the focus quality with reduced time requirements in comparison to other well accepted focus metrics. Besides the targeting application, the small size of the developed system makes it a very promising candidate for applications with space restrictions, like the quality control in industrial production lines or object recognition based on structural information and in applications where easiness in operation and light-weight are required, like those in the Biomedical field, and especially in dermatology.

  3. Structures of simple liquids in contact with nanosculptured surfaces.

    Science.gov (United States)

    Singh, Swarn Lata; Schimmele, Lothar; Dietrich, S

    2015-03-01

    We present a density functional study of Lennard-Jones liquids in contact with a nanocorrugated wall. The corresponding substrate potential is taken to exhibit a repulsive hard core and a Van der Waals attraction. The corrugation is modeled by a periodic array of square nanopits. We have used the modified Rosenfeld density functional in order to study the interfacial structure of these liquids which with respect to their thermodynamic bulk state are considered to be deep inside their liquid phase. We find that already considerably below the packing fraction of bulk freezing of these liquids, inside the nanopits a three-dimensional-like density localization sets in. If the sizes of the pits are commensurate with the packing requirements, we observe high-density spots separated from each other in all spatial directions by liquid of comparatively very low density. The number, shape, size, and density of these high-density spots depend sensitively on the depth and width of the pits. Outside the pits, only layering is observed; above the pit openings these layers are distorted with the distortion reaching up to a few molecular diameters. We discuss quantitatively how this density localization is affected by the geometrical features of the pits and how it evolves upon increasing the bulk packing fraction. Our results are transferable to colloidal systems and pit dimensions corresponding to several diameters of the colloidal particles. For such systems the predicted unfolding of these structural changes can be studied experimentally on much larger length scales and more directly (e.g., optically) than for molecular fluids which typically call for sophisticated x-ray scattering.

  4. Novel structures of oxygen adsorbed on a Zr(0001) surface predicted from first principles

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Bo [State Key Laboratory of Superhard Materials, Jilin University, Changchun, 130012 (China); Beijing computational science research center, Beijing,100084 (China); Wang, Jianyun [State Key Laboratory of Superhard Materials, Jilin University, Changchun, 130012 (China); Lv, Jian [State Key Laboratory of Superhard Materials, Jilin University, Changchun, 130012 (China); College of Materials Science and Engineering, Jilin University, Changchun, 130012 (China); Gao, Xingyu [Laboratory of Computational Physics, Institute of Applied Physics and Computational Mathematics, Beijing, 100088 (China); CAEP Software Center for High Performance Numerical Simulation, Beijing, 100088 (China); Zhao, Yafan [CAEP Software Center for High Performance Numerical Simulation, Beijing, 100088 (China); Wang, Yanchao, E-mail: wyc@calypso.cn [State Key Laboratory of Superhard Materials, Jilin University, Changchun, 130012 (China); Beijing computational science research center, Beijing,100084 (China); College of Materials Science and Engineering, Jilin University, Changchun, 130012 (China); Song, Haifeng, E-mail: song_haifeng@iapcm.ac.cn [Laboratory of Computational Physics, Institute of Applied Physics and Computational Mathematics, Beijing, 100088 (China); CAEP Software Center for High Performance Numerical Simulation, Beijing, 100088 (China); Ma, Yanming [State Key Laboratory of Superhard Materials, Jilin University, Changchun, 130012 (China); Beijing computational science research center, Beijing,100084 (China)

    2017-01-30

    Highlights: • Two stable structures of O adsorbed on a Zr(0001) surface are predicted with SLAM. • A stable structure of O adsorbed on a Zr(0001) surface is proposed with MLAM. • The calculated work function change is agreement with experimental value. - Abstract: The structures of O atoms adsorbed on a metal surface influence the metal properties significantly. Thus, studying O chemisorption on a Zr surface is of great interest. We investigated O adsorption on a Zr(0001) surface using our newly developed structure-searching method combined with first-principles calculations. A novel structural prototype with a unique combination of surface face-centered cubic (SFCC) and surface hexagonal close-packed (SHCP) O adsorption sites was predicted using a single-layer adsorption model (SLAM) for a 0.5 and 1.0 monolayer (ML) O coverage. First-principles calculations based on the SLAM revealed that the new predicted structures are energetically favorable compared with the well-known SFCC structures for a low O coverage (0.5 and 1.0 ML). Furthermore, on basis of our predicted SFCC + SHCP structures, a new structure within multi-layer adsorption model (MLAM) was proposed to be more stable at the O coverage of 1.0 ML, in which adsorbed O atoms occupy the SFCC + SHCP sites and the substitutional octahedral sites. The calculated work functions indicate that the SFCC + SHCP configuration has the lowest work function of all known structures at an O coverage of 0.5 ML within the SLAM, which agrees with the experimental trend of work function with variation in O coverage.

  5. Identification of the c(10×6)-CN/Cu(001) surface structure

    KAUST Repository

    Shuttleworth, I.G.

    2014-01-01

    © 2014 Elsevier B.V. All rights reserved. A systematic survey of all possible c(10 x 6)-CN/Cu(0 0 1) structures has been performed using density functional theory (DFT). A group of four preferred structures is presented with one of the structures identified as optimal. An analysis of the bonding within the optimal structure has shown that a significant localisation of the surface Cu 4s bonds occurs in the saturated system.

  6. Identification of the c(10×6)-CN/Cu(001) surface structure

    KAUST Repository

    Shuttleworth, I.G.

    2014-12-01

    © 2014 Elsevier B.V. All rights reserved. A systematic survey of all possible c(10 x 6)-CN/Cu(0 0 1) structures has been performed using density functional theory (DFT). A group of four preferred structures is presented with one of the structures identified as optimal. An analysis of the bonding within the optimal structure has shown that a significant localisation of the surface Cu 4s bonds occurs in the saturated system.

  7. Effect of different surface treatments on bond strength, surface and microscopic structure of zirconia ceramic

    Directory of Open Access Journals (Sweden)

    Zeinab R. El-Shrkawy

    2016-06-01

    Conclusions: (1 Surface treatments of Y-TZP ceramic together with MDP primer and silane-coupling agent application improve the bond strength to resin cement. (2 Plasma-Silica coating and plasma-oxygen treatment, both are valuable methods that improve the bond strength of resin cement to Y-TZP ceramic. (3 Silica coating by plasma technology provides durable bond strength and can be a promising alternative pretreatment before silane application to enhance bonding with zirconia ceramic. (4 Tetragonal-monoclinic phase transformation had occurred in Y-TZP samples received both types of plasma treatment.

  8. Precision Hopping/Rolling Robotic Surface Probe Based on Tensegrity Structures

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to overcome the limitations of wheeled surface rovers by combining recent advances in ball-shaped soft-robots based on tensegrity structures (a tension...

  9. Surface electronic and structural properties of nanostructured titanium oxide grown by pulsed laser deposition

    NARCIS (Netherlands)

    Fusi, M.; Maccallini, E.; Caruso, T.; Casari, C. S.; Bassi, A. Li; Bottani, C. E.; Rudolf, P.; Prince, K. C.; Agostino, R. G.

    Titanium oxide nanostructured thin films synthesized by pulsed laser deposition (PLD) were here characterized with a multi-technique approach to investigate the relation between surface electronic, structural and morphological properties. Depending on the growth parameters, these films present

  10. Surface structures and dielectric response of ultrafine BaTiO3 particles

    International Nuclear Information System (INIS)

    Jiang, B.; Peng, J.L.; Bursill, L.A.

    1998-01-01

    Characteristic differences are observed for the dielectric response and microstructures of BaTiO 3 nanoscale fine powders prepared using sol gel (SG) and steric acid gel (SAG) methods. The former exhibit a critical size below which there is no paraelectric/ferroelectric phase transition whereas BaTiO 3 prepared via the SAG route remained cubic for all conditions. Atomic resolution images of both varieties showed a high density of interesting surface steps and facets. Computer simulated images of surface structure models showed that the outer (100) surface was typically a BaO layer and that at corners and ledges the steps are typically finished with Ba+2 ions; i.e. the surfaces and steps are Ba-rich. Otherwise the surfaces were typically clean and free of amorphous layers. The relationship between the observed surfaces structures and theoretical models for size effects on the dielectric properties is discussed. (authors)

  11. Magnetite Fe3O4 (111) Surfaces: Impact of Defects on Structure, Stability, and Electronic Properties

    KAUST Repository

    Noh, Jung Hyun

    2015-08-04

    We present a comprehensive investigation, via first-principles density functional theory (DFT) calculations, of various surface terminations of magnetite, Fe3O4 (111), a major iron oxide which has also a number of applications in electronics and spintronics. We compare the thermodynamic stability and electronic structure among the different surfaces terminations. Interestingly, we find that surfaces modified with point defects and adatoms can be more stable than bulk-like terminations. These surfaces show different surface chemistry, electronic structures and distinctive spin polarization features near the Fermi level from those previously considered in the literature. Our studies provide an atomic level insight for magnetite surfaces, which is a necessary step to understanding their interfaces with organic layers in OLED and spintronic devices.

  12. Magnetite Fe3O4 (111) Surfaces: Impact of Defects on Structure, Stability, and Electronic Properties

    KAUST Repository

    Noh, Jung Hyun; Osman, Osman I; Aziz, Saadullah G.; Winget, Paul; Bredas, Jean-Luc

    2015-01-01

    We present a comprehensive investigation, via first-principles density functional theory (DFT) calculations, of various surface terminations of magnetite, Fe3O4 (111), a major iron oxide which has also a number of applications in electronics and spintronics. We compare the thermodynamic stability and electronic structure among the different surfaces terminations. Interestingly, we find that surfaces modified with point defects and adatoms can be more stable than bulk-like terminations. These surfaces show different surface chemistry, electronic structures and distinctive spin polarization features near the Fermi level from those previously considered in the literature. Our studies provide an atomic level insight for magnetite surfaces, which is a necessary step to understanding their interfaces with organic layers in OLED and spintronic devices.

  13. Surface and Internal Waves due to a Moving Load on a Very Large Floating Structure

    Directory of Open Access Journals (Sweden)

    Taro Kakinuma

    2012-01-01

    Full Text Available Interaction of surface/internal water waves with a floating platform is discussed with nonlinearity of fluid motion and flexibility of oscillating structure. The set of governing equations based on a variational principle is applied to a one- or two-layer fluid interacting with a horizontally very large and elastic thin plate floating on the water surface. Calculation results of surface displacements are compared with the existing experimental data, where a tsunami, in terms of a solitary wave, propagates across one-layer water with a floating thin plate. We also simulate surface and internal waves due to a point load, such as an airplane, moving on a very large floating structure in shallow water. The wave height of the surface or internal mode is amplified when the velocity of moving point load is equal to the surface- or internal-mode celerity, respectively.

  14. Localized surface plasmon enhanced cellular imaging using random metallic structures

    Science.gov (United States)

    Son, Taehwang; Lee, Wonju; Kim, Donghyun

    2017-02-01

    We have studied fluorescence cellular imaging with randomly distributed localized near-field induced by silver nano-islands. For the fabrication of nano-islands, a 10-nm silver thin film evaporated on a BK7 glass substrate with an adhesion layer of 2-nm thick chromium. Micrometer sized silver square pattern was defined using e-beam lithography and then the film was annealed at 200°C. Raw images were restored using electric field distribution produced on the surface of random nano-islands. Nano-islands were modeled from SEM images. 488-nm p-polarized light source was set to be incident at 60°. Simulation results show that localized electric fields were created among nano-islands and that their average size was found to be 135 nm. The feasibility was tested using conventional total internal reflection fluorescence microscopy while the angle of incidence was adjusted to maximize field enhancement. Mouse microphage cells were cultured on nano-islands, and actin filaments were selectively stained with FITC-conjugated phalloidin. Acquired images were deconvolved based on linear imaging theory, in which molecular distribution was sampled by randomly distributed localized near-field and blurred by point spread function of far-field optics. The optimum fluorophore distribution was probabilistically estimated by repetitively matching a raw image. The deconvolved images are estimated to have a resolution in the range of 100-150 nm largely determined by the size of localized near-fields. We also discuss and compare the results with images acquired with periodic nano-aperture arrays in various optical configurations to excite localized plasmonic fields and to produce super-resolved molecular images.

  15. Influence of the crystallographic structure of the electrode surface on the structure of the electrical double layer and adsorption of organic molecules

    International Nuclear Information System (INIS)

    Kochorovski, Z.; Zagorska, I.; Pruzhkovska-Drakhal, R.; Trasatti, S.

    1995-01-01

    The results of systematic investigation of influence of crystal structure of Bi-, Sb- and Cd-electrode surfaces on regularities of double electric layer structure in aqueous and nonaqueous solutions of surface-nonactive electrolyte are given. Influence of electrode surface characteristics on adsorptive behaviour of different organic molecules has been studied. General regularities of of chemical nature influence and surface crystallographic structure on the double layer structure and on organic compounds adsorption have been established. 57 refs., 7 figs., 4 tabs

  16. Optimization of the Surface Structure on Black Silicon for Surface Passivation.

    Science.gov (United States)

    Jia, Xiaojie; Zhou, Chunlan; Wang, Wenjing

    2017-12-01

    Black silicon shows excellent anti-reflection and thus is extremely useful for photovoltaic applications. However, its high surface recombination velocity limits the efficiency of solar cells. In this paper, the effective minority carrier lifetime of black silicon is improved by optimizing metal-catalyzed chemical etching (MCCE) method, using an Al 2 O 3 thin film deposited by atomic layer deposition (ALD) as a passivation layer. Using the spray method to eliminate the impact on the rear side, single-side black silicon was obtained on n-type solar grade silicon wafers. Post-etch treatment with NH 4 OH/H 2 O 2 /H 2 O mixed solution not only smoothes the surface but also increases the effective minority lifetime from 161 μs of as-prepared wafer to 333 μs after cleaning. Moreover, adding illumination during the etching process results in an improvement in both the numerical value and the uniformity of the effective minority carrier lifetime.

  17. Structure of metal-rich (001) surfaces of III-V compound semiconductors

    DEFF Research Database (Denmark)

    Kumpf, C.; Smilgies, D.; Landemark, E.

    2001-01-01

    The atomic structure of the group-III-rich surface of III-V semiconductor compounds has been under intense debate for many years, yet none of the models agrees with the experimental data available. Here we present a model for the three-dimensional structure of the (001)-c(8x2) reconstruction on In......(8 x 2) reconstructions of III-V semiconductor surfaces contain the same essential building blocks....

  18. A Three-Dimensional Enormous Surface Area Aluminum Microneedle Array with Nanoporous Structure

    OpenAIRE

    Chen, Po Chun; Hsieh, Sheng Jen; Chen, Chien Chon; Zou, Jun

    2013-01-01

    We proposed fabricating an aluminum microneedle array with a nanochannel structure on the surface by combining micromachining, electrolyte polishing, and anodization methods. The microneedle array provides a three-dimensional (3D) structure that possesses several hundred times more surface area than a traditional nanochannel template. Therefore, the microneedle array can potentially be used in many technology applications. This 3D microneedle array device can not only be used for painless inj...

  19. Fabrication of Nano-Micro Hybrid Structures by Replication and Surface Treatment of Nanowires

    Directory of Open Access Journals (Sweden)

    Yeonho Jeong

    2017-07-01

    Full Text Available Nanowire structures have attracted attention in various fields, since new characteristics could be acquired in minute regions. Especially, Anodic Aluminum Oxide (AAO is widely used in the fabrication of nanostructures, which has many nanosized pores and well-organized nano pattern. Using AAO as a template for replication, nanowires with a very high aspect ratio can be fabricated. Herein, we propose a facile method to fabricate a nano-micro hybrid structure using nanowires replicated from AAO, and surface treatment. A polymer resin was coated between Polyethylene terephthalate (PET and the AAO filter, roller pressed, and UV-cured. After the removal of aluminum by using NaOH solution, the nanowires aggregated to form a micropattern. The resulting structure was subjected to various surface treatments to investigate the surface behavior and wettability. As opposed to reported data, UV-ozone treatment can enhance surface hydrophobicity because the UV energy affects the nanowire surface, thus altering the shape of the aggregated nanowires. The hydrophobicity of the surface could be further improved by octadecyltrichlorosilane (OTS coating immediately after UV-ozone treatment. We thus demonstrated that the nano-micro hybrid structure could be formed in the middle of nanowire replication, and then, the shape and surface characteristics could be controlled by surface treatment.

  20. A comparison of reflectance properties on polymer micro-structured functional surface

    DEFF Research Database (Denmark)

    Regi, Francesco; Li, Dongya; Nielsen, Jannik Boll

    In this study, a functional micro-structure surface [1] has been developed as a combination of arrays of micro ridges. The scope of the surface is to achieve specific directional optical properties: that is, under constrained lighting, maximizing the reflectance from a certain viewing direction, ...

  1. Tunable nano-wrinkling of chiral surfaces: Structure and diffraction optics

    International Nuclear Information System (INIS)

    Rofouie, P.; Rey, A. D.; Pasini, D.

    2015-01-01

    Periodic surface nano-wrinkling is found throughout biological liquid crystalline materials, such as collagen films, spider silk gland ducts, exoskeleton of beetles, and flower petals. These surface ultrastructures are responsible for structural colors observed in some beetles and plants that can dynamically respond to external conditions, such as humidity and temperature. In this paper, the formation of the surface undulations is investigated through the interaction of anisotropic interfacial tension, swelling through hydration, and capillarity at free surfaces. Focusing on the cellulosic cholesteric liquid crystal (CCLC) material model, the generalized shape equation for anisotropic interfaces using the Cahn-Hoffman capillarity vector and the Rapini-Papoular anchoring energy are applied to analyze periodic nano-wrinkling in plant-based plywood free surfaces with water-induced cholesteric pitch gradients. Scaling is used to derive the explicit relations between the undulations’ amplitude expressed as a function of the anchoring strength and the spatially varying pitch. The optical responses of the periodic nano-structured surfaces are studied through finite difference time domain simulations indicating that CCLC surfaces with spatially varying pitch reflect light in a wavelength higher than that of a CCLC’s surface with constant pitch. This structural color change is controlled by the pitch gradient through hydration. All these findings provide a foundation to understand structural color phenomena in nature and for the design of optical sensor devices

  2. Tunable nano-wrinkling of chiral surfaces: Structure and diffraction optics

    Energy Technology Data Exchange (ETDEWEB)

    Rofouie, P.; Rey, A. D., E-mail: alejandro.rey@mail.mcgill.ca [Department of Chemical Engineering, McGill University, 3610 University Street, Montreal, Quebec H3A 2B2 (Canada); Pasini, D. [Department of Mechanical Engineering, McGill University, 817 Sherbrook West, Montreal, Quebec H3A 0C3 (Canada)

    2015-09-21

    Periodic surface nano-wrinkling is found throughout biological liquid crystalline materials, such as collagen films, spider silk gland ducts, exoskeleton of beetles, and flower petals. These surface ultrastructures are responsible for structural colors observed in some beetles and plants that can dynamically respond to external conditions, such as humidity and temperature. In this paper, the formation of the surface undulations is investigated through the interaction of anisotropic interfacial tension, swelling through hydration, and capillarity at free surfaces. Focusing on the cellulosic cholesteric liquid crystal (CCLC) material model, the generalized shape equation for anisotropic interfaces using the Cahn-Hoffman capillarity vector and the Rapini-Papoular anchoring energy are applied to analyze periodic nano-wrinkling in plant-based plywood free surfaces with water-induced cholesteric pitch gradients. Scaling is used to derive the explicit relations between the undulations’ amplitude expressed as a function of the anchoring strength and the spatially varying pitch. The optical responses of the periodic nano-structured surfaces are studied through finite difference time domain simulations indicating that CCLC surfaces with spatially varying pitch reflect light in a wavelength higher than that of a CCLC’s surface with constant pitch. This structural color change is controlled by the pitch gradient through hydration. All these findings provide a foundation to understand structural color phenomena in nature and for the design of optical sensor devices.

  3. In situ diffraction studies of electrode surface structure during gold electrodeposition

    International Nuclear Information System (INIS)

    Magnussen, O.M.; Krug, K.; Ayyad, A.H.; Stettner, J.

    2008-01-01

    Surface X-ray scattering (SXS) in transmission geometry provides a valuable tool for in situ structural studies of electrochemical interfaces under reaction conditions, as illustrated here for homoepitaxial electrodeposition on Au(1 0 0) and Au(1 1 1) electrodes. Employing diffusion-limited deposition conditions to separate the effects of potential and deposition rate, a mutual interaction between the interface structure and the growth behavior is found. Time-dependent SXS measurements during Au(1 0 0) homoepitaxy show with decreasing potential transitions from step flow to layer-by-layer growth, then to multilayer growth, and finally back to layer-by-layer growth. This complex growth behavior can be explained within the framework of kinetic growth theory by the effect of potential, Cl adsorbates and the Au surface structure, specifically the presence of the surface reconstruction, on the Au surface mobility. Conversely, the electrodeposition process influences the structure of the reconstructed Au surface, as illustrated for Au(1 1 1), where a significant deposition-induced compression of the Au surface layer as compared to Au(1 1 1) surfaces under ultrahigh vacuum conditions or in Au-free electrolyte is found. This compression increases towards more negative potentials, which may be explained by a release of potential-induced surface stress

  4. Biomimetic superhydrophobic surface of high adhesion fabricated with micronano binary structure on aluminum alloy.

    Science.gov (United States)

    Liu, Yan; Liu, Jindan; Li, Shuyi; Liu, Jiaan; Han, Zhiwu; Ren, Luquan

    2013-09-25

    Triggered by the microstructure characteristics of the surfaces of typical plant leaves such as the petals of red roses, a biomimetic superhydrophobic surface with high adhesion is successfully fabricated on aluminum alloy. The essential procedure is that samples were processed by a laser, then immersed and etched in nitric acid and copper nitrate, and finally modified by DTS (CH3(CH2)11Si(OCH3)3). The obtained surfaces exhibit a binary structure consisting of microscale crater-like pits and nanoscale reticula. The superhydrophobicity can be simultaneously affected by the micronano binary structure and chemical composition of the surface. The contact angle of the superhydrophobic surface reaches up to 158.8 ± 2°. Especially, the surface with micronano binary structure is revealed to be an excellent adhesive property with petal-effect. Moreover, the superhydrophobic surfaces show excellent stability in aqueous solution with a large pH range and after being exposed long-term in air. In this way, the multifunctional biomimetic structural surface of the aluminum alloy is fabricated. Furthermore, the preparation technology in this article provides a new route for other metal materials.

  5. Bio-inspired micro-nano structured surface with structural color and anisotropic wettability on Cu substrate

    International Nuclear Information System (INIS)

    Liu, Yan; Li, Shuyi; Niu, Shichao; Cao, Xiaowen; Han, Zhiwu; Ren, Luquan

    2016-01-01

    Highlights: • We have prepared a biomimetic hydrophobic surface on copper substrate by one-step femtosecond laser technique. • The hydrophobicity mechanism relies on morphology and chemical component on surface. • The hydrophobic surfaces exhibit different structural colors and a anisotropic wettability. - Abstract: Inspired by the unique creatures in the nature, the femtosecond laser technology has been usually used to fabricate the periodic microstructures due to its advantages of rapidness, simplicity, ease of large-area fabrication, and simultaneously offering dual micro/nano-scale structures simply via one-step process for a wide variety of materials. By changing the experimental conditions, multi-functional surfaces which possess superhydrophobicity and structural colors could be achieved on copper substrate. In addition, the apparent contact angle can reach 144.3° without any further modification, which also exhibits the anisotropic wettability. Moreover, it can be inferred that higher laser fluence can lead to a larger CA within a certain range. At the same time, due to the change of laser processing parameters, the obtained surfaces present different structural colors. This study may expand the applications of bio-inspired functional materials because multiple colors and hydrophobicity are both important features in the real life and industrial applications, such as display, decoration, and anti-counterfeiting technology etc.

  6. Bio-inspired micro-nano structured surface with structural color and anisotropic wettability on Cu substrate

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yan [Key Laboratory of Bionic Engineering (Ministry of Education), Jilin University, Changchun 130022 (China); State Key Laboratory of Automotive Simulation and Control, Jilin University, Changchun 130022 (China); Li, Shuyi; Niu, Shichao [Key Laboratory of Bionic Engineering (Ministry of Education), Jilin University, Changchun 130022 (China); Cao, Xiaowen [Key Laboratory on Integrated Optoelectronics College of Electronic Science and Engineering, Jilin University, Changchun 130012 (China); Han, Zhiwu, E-mail: zwhan@jlu.edu.cn [Key Laboratory of Bionic Engineering (Ministry of Education), Jilin University, Changchun 130022 (China); Ren, Luquan [Key Laboratory of Bionic Engineering (Ministry of Education), Jilin University, Changchun 130022 (China)

    2016-08-30

    Highlights: • We have prepared a biomimetic hydrophobic surface on copper substrate by one-step femtosecond laser technique. • The hydrophobicity mechanism relies on morphology and chemical component on surface. • The hydrophobic surfaces exhibit different structural colors and a anisotropic wettability. - Abstract: Inspired by the unique creatures in the nature, the femtosecond laser technology has been usually used to fabricate the periodic microstructures due to its advantages of rapidness, simplicity, ease of large-area fabrication, and simultaneously offering dual micro/nano-scale structures simply via one-step process for a wide variety of materials. By changing the experimental conditions, multi-functional surfaces which possess superhydrophobicity and structural colors could be achieved on copper substrate. In addition, the apparent contact angle can reach 144.3° without any further modification, which also exhibits the anisotropic wettability. Moreover, it can be inferred that higher laser fluence can lead to a larger CA within a certain range. At the same time, due to the change of laser processing parameters, the obtained surfaces present different structural colors. This study may expand the applications of bio-inspired functional materials because multiple colors and hydrophobicity are both important features in the real life and industrial applications, such as display, decoration, and anti-counterfeiting technology etc.

  7. Different methods to alter surface morphology of high aspect ratio structures

    Energy Technology Data Exchange (ETDEWEB)

    Leber, M., E-mail: moritz.leber@utah.edu [Department of Electrical and Computer Engineering, University of Utah, Salt Lake City, UT (United States); Shandhi, M.M.H. [Department of Electrical and Computer Engineering, University of Utah, Salt Lake City, UT (United States); Hogan, A. [Blackrock Microsystems, Salt Lake City, UT (United States); Solzbacher, F. [Department of Electrical and Computer Engineering, University of Utah, Salt Lake City, UT (United States); Bhandari, R.; Negi, S. [Department of Electrical and Computer Engineering, University of Utah, Salt Lake City, UT (United States); Blackrock Microsystems, Salt Lake City, UT (United States)

    2016-03-01

    Graphical abstract: Surface engineering of high aspect ratio silicon structures. - Highlights: • Multiple roughening techniques for high aspect ratio devices were investigated. • Modification of surface morphology of high aspect ratio silicon devices (1:15). • Decrease of 76% in impedance proves significant increase in surface area. - Abstract: In various applications such as neural prostheses or solar cells, there is a need to alter the surface morphology of high aspect ratio structures so that the real surface area is greater than geometrical area. The change in surface morphology enhances the devices functionality. One of the applications of altering the surface morphology is of neural implants such as the Utah electrode array (UEA) that communicate with single neurons by charge injection induced stimulation or by recording electrical neural signals. For high selectivity between single cells of the nervous system, the electrode surface area is required to be as small as possible, while the impedance is required to be as low as possible for good signal to noise ratios (SNR) during neural recording. For stimulation, high charge injection and charge transfer capacities of the electrodes are required, which increase with the electrode surface. Traditionally, researchers have worked with either increasing the roughness of the existing metallization (platinum grey, black) or other materials such as Iridium Oxide and PEDOT. All of these previously investigated methods lead to more complicated metal deposition processes that are difficult to control and often have a critical impact on the mechanical properties of the metal films. Therefore, a modification of the surface underneath the electrode's coating will increase its surface area while maintaining the standard and well controlled metal deposition process. In this work, the surfaces of the silicon micro-needles were engineered by creating a defined microstructure on the electrodes surface using several

  8. Mesoscopic modeling of structural and thermodynamic properties of fluids confined by rough surfaces.

    Science.gov (United States)

    Terrón-Mejía, Ketzasmin A; López-Rendón, Roberto; Gama Goicochea, Armando

    2015-10-21

    The interfacial and structural properties of fluids confined by surfaces of different geometries are studied at the mesoscopic scale using dissipative particle dynamics simulations in the grand canonical ensemble. The structure of the surfaces is modeled by a simple function, which allows us to simulate readily different types of surfaces through the choice of three parameters only. The fluids we have modeled are confined either by two smooth surfaces or by symmetrically and asymmetrically structured walls. We calculate structural and thermodynamic properties such as the density, temperature and pressure profiles, as well as the interfacial tension profiles for each case and find that a structural order-disorder phase transition occurs as the degree of surface roughness increases. However, the magnitude of the interfacial tension is insensitive to the structuring of the surfaces and depends solely on the magnitude of the solid-fluid interaction. These results are important for modern nanotechnology applications, such as in the enhanced recovery of oil, and in the design of porous materials with specifically tailored properties.

  9. Bloch-Surface-Polariton-Based Hybrid Nanowire Structure for Subwavelength, Low-Loss Waveguiding

    Directory of Open Access Journals (Sweden)

    Weijing Kong

    2018-03-01

    Full Text Available Surface plasmon polaritons (SPPs have been thoroughly studied in the past decades for not only sensing but also waveguiding applications. Various plasmonic device structures have been explored due to their ability to confine their optical mode to the subwavelength level. However, with the existence of metal, the large ohmic loss limits the propagation distance of the SPP and thus the scalability of such devices. Therefore, different hybrid waveguides have been proposed to overcome this shortcoming. Through fine tuning of the coupling between the SPP and a conventional waveguide mode, a hybrid mode could be excited with decent mode confinement and extended propagation distance. As an effective alternative of SPP, Bloch surface waves have been re-investigated more recently for their unique advantages. As is supported in all-dielectric structures, the optical loss for the Bloch surface wave is much lower, which stands for a much longer propagating distance. Yet, the confinement of the Bloch surface wave due to the reflections and refractions in the multilayer structure is not as tight as that of the SPP. In this work, by integrating a periodic multilayer structure that supports the Bloch surface wave with a metallic nanowire structure, a hybrid Bloch surface wave polariton could be excited. With the proposed hybrid nanowire structure, a hybrid mode is demonstrated with the deep subwavelength mode confinement and a propagation distance of tens of microns.

  10. Numerical analysis of micro-/nanoscale gas-film lubrication of sliding surface with complicated structure

    International Nuclear Information System (INIS)

    Kawagoe, Yoshiaki; Isono, Susumu; Takeno, Takanori; Yonemura, Shigeru; Takagi, Toshiyuki; Miki, Hiroyuki

    2014-01-01

    It has been reported that the friction between a partially polished diamond-coated surface and a metal surface was drastically reduced to zero when they are slid at a few m/s. Since the sliding was noiseless, it seems that the diamond-coated surface was levitated over the counter surface and the sliding mechanism was the gas film lubrication. Recently, the mechanism of levitation of a slider with a micro/nanoscale surface structure on a rotating disk was theoretically clarified [S. Yonemura et al., Tribol. Lett., (2014), doi:10.1007/s11249-014-0368-2]. Probably, the partially polished diamond-coated surface may be levitated by high gas pressure generated by the micro/nanoscale surface structure on it. In this study, in order to verify our deduction, we performed numerical simulations of sliding of partially polished diamond-coated surface by reproducing its complicated surface structure using the data measured by an atomic force microscope (AFM). As a result, we obtained the lift force which is large enough to levitate the slider used in the experiment

  11. Numerical analysis of micro-/nanoscale gas-film lubrication of sliding surface with complicated structure

    Energy Technology Data Exchange (ETDEWEB)

    Kawagoe, Yoshiaki; Isono, Susumu; Takeno, Takanori [Department of Nanomechanics, Graduate School of Engineering, Tohoku University, 6-6-01 Aoba, Aramaki, Aoba-ku, Sendai 980-8579 (Japan); Yonemura, Shigeru; Takagi, Toshiyuki [Institute of Fluid Science, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577 (Japan); Miki, Hiroyuki [Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai 980-8578 (Japan)

    2014-12-09

    It has been reported that the friction between a partially polished diamond-coated surface and a metal surface was drastically reduced to zero when they are slid at a few m/s. Since the sliding was noiseless, it seems that the diamond-coated surface was levitated over the counter surface and the sliding mechanism was the gas film lubrication. Recently, the mechanism of levitation of a slider with a micro/nanoscale surface structure on a rotating disk was theoretically clarified [S. Yonemura et al., Tribol. Lett., (2014), doi:10.1007/s11249-014-0368-2]. Probably, the partially polished diamond-coated surface may be levitated by high gas pressure generated by the micro/nanoscale surface structure on it. In this study, in order to verify our deduction, we performed numerical simulations of sliding of partially polished diamond-coated surface by reproducing its complicated surface structure using the data measured by an atomic force microscope (AFM). As a result, we obtained the lift force which is large enough to levitate the slider used in the experiment.

  12. Fast protein tertiary structure retrieval based on global surface shape similarity.

    Science.gov (United States)

    Sael, Lee; Li, Bin; La, David; Fang, Yi; Ramani, Karthik; Rustamov, Raif; Kihara, Daisuke

    2008-09-01

    Characterization and identification of similar tertiary structure of proteins provides rich information for investigating function and evolution. The importance of structure similarity searches is increasing as structure databases continue to expand, partly due to the structural genomics projects. A crucial drawback of conventional protein structure comparison methods, which compare structures by their main-chain orientation or the spatial arrangement of secondary structure, is that a database search is too slow to be done in real-time. Here we introduce a global surface shape representation by three-dimensional (3D) Zernike descriptors, which represent a protein structure compactly as a series expansion of 3D functions. With this simplified representation, the search speed against a few thousand structures takes less than a minute. To investigate the agreement between surface representation defined by 3D Zernike descriptor and conventional main-chain based representation, a benchmark was performed against a protein classification generated by the combinatorial extension algorithm. Despite the different representation, 3D Zernike descriptor retrieved proteins of the same conformation defined by combinatorial extension in 89.6% of the cases within the top five closest structures. The real-time protein structure search by 3D Zernike descriptor will open up new possibility of large-scale global and local protein surface shape comparison. 2008 Wiley-Liss, Inc.

  13. Surface energy effect on free vibration of nano-sized piezoelectric double-shell structures

    Science.gov (United States)

    Fang, Xue-Qian; Zhu, Chang-Song; Liu, Jin-Xi; Liu, Xiang-Lin

    2018-01-01

    Combining Goldenveizer-Novozhilov shell theory, thin plate theory and electro-elastic surface theory, the size-dependent vibration of nano-sized piezoelectric double-shell structures under simply supported boundary condition is presented, and the surface energy effect on the natural frequencies is discussed. The displacement components of the cylindrical nano-shells and annular nano-plates are expanded as the superposition of standard Fourier series based on Hamilton's principle. The total stresses with consideration of surface energy effect are derived, and the total energy function is obtained by using Rayleigh-Ritz energy method. The free vibration equation is solved, and the natural frequency is analyzed. In numerical examples, it is found that the surface elastic constant, piezoelectric constant and surface residual stress show different effects on the natural frequencies. The effect of surface piezoelectric constant is the maximum. The effect of dimensions of the double-shell under different surface material properties is also examined.

  14. Adherence of human oral keratinocytes and gingival fibroblasts to nano-structured titanium surfaces.

    Science.gov (United States)

    Dorkhan, Marjan; Yücel-Lindberg, Tülay; Hall, Jan; Svensäter, Gunnel; Davies, Julia R

    2014-06-21

    A key element for long-term success of dental implants is integration of the implant surface with the surrounding host tissues. Modification of titanium implant surfaces can enhance osteoblast activity but their effects on soft-tissue cells are unclear. Adherence of human keratinocytes and gingival fibroblasts to control commercially pure titanium (CpTi) and two surfaces prepared by anodic oxidation was therefore investigated. Since implant abutments are exposed to a bacteria-rich environment in vivo, the effect of oral bacteria on keratinocyte adhesion was also evaluated. The surfaces were characterized using scanning electron microscopy (SEM). The number of adhered cells and binding strength, as well as vitality of fibroblasts and keratinocytes were evaluated using confocal scanning laser microscopy after staining with Live/Dead Baclight. To evaluate the effect of bacteria on adherence and vitality, keratinocytes were co-cultured with a four-species streptococcal consortium. SEM analysis showed the two anodically oxidized surfaces to be nano-structured with differing degrees of pore-density. Over 24 hours, both fibroblasts and keratinocytes adhered well to the nano-structured surfaces, although to a somewhat lesser degree than to CpTi (range 42-89% of the levels on CpTi). The strength of keratinocyte adhesion was greater than that of the fibroblasts but no differences in adhesion strength could be observed between the two nano-structured surfaces and the CpTi. The consortium of commensal streptococci markedly reduced keratinocyte adherence on all the surfaces as well as compromising membrane integrity of the adhered cells. Both the vitality and level of adherence of soft-tissue cells to the nano-structured surfaces was similar to that on CpTi. Co-culture with streptococci reduced the number of keratinocytes on all the surfaces to approximately the same level and caused cell damage, suggesting that commensal bacteria could affect adherence of soft-tissue cells to

  15. Synchronous scattering and diffraction from gold nanotextured surfaces with structure factors

    Science.gov (United States)

    Gu, Min-Jhong; Lee, Ming-Tsang; Huang, Chien-Hsun; Wu, Chi-Chun; Chen, Yu-Bin

    2018-05-01

    Synchronous scattering and diffraction were demonstrated using reflectance from gold nanotextured surfaces at oblique (θi = 15° and 60°) incidence of wavelength λ = 405 nm. Two samples of unique auto-correlation functions were cost-effectively fabricated. Multiple structure factors of their profiles were confirmed with Fourier expansions. Bi-directional reflectance function (BRDF) from these samples provided experimental proofs. On the other hand, standard deviation of height and unique auto-correlation function of each sample were used to generate surfaces numerically. Comparing their BRDF with those of totally random rough surfaces further suggested that structure factors in profile could reduce specular reflection more than totally random roughness.

  16. Frequency splitter based on the directional emission from surface modes in dielectric photonic crystal structures.

    Science.gov (United States)

    Tasolamprou, Anna C; Zhang, Lei; Kafesaki, Maria; Koschny, Thomas; Soukoulis, Costas M

    2015-06-01

    We demonstrate the numerical design and the experimental validation of frequency dependent directional emission from a dielectric photonic crystal structure. The wave propagates through a photonic crystal line-defect waveguide, while a surface layer at the termination of the photonic crystal enables the excitation of surface modes and a subsequent grating layer transforms the surface energy into outgoing propagating waves of the form of a directional beam. The angle of the beam is controlled by the frequency and the structure operates as a frequency splitter in the intermediate and far field region.

  17. Abrasive wear mechanisms and surface layer structure of refractory materials after mechanical working

    International Nuclear Information System (INIS)

    Milman, Y.V.; Lotsko, D.V.

    1989-01-01

    The mechanisms of abrasive wear and surface layer structure formation after different kinds of mechanical working are considered in terms of fracture and plastic deformation mechanisms for various refractory materials. The principles for classification of abrasive wear mechanisms are proposed, the four types of wear mechanisms are distinguished for various combinations of fractures and plastic deformation types. The concept of characteristic deformation temperature t * (knee temperature) is used. Detailed examples are given of investigating the surface layer structures in grinded crystals of sapphire and molybdenum. The amorphisation tendency of the thinnest surface layer while mechanical polishing is discussed separately. 19 refs., 11 figs., 2 tabs. (Author)

  18. Surface-structure dependence of healing radiation-damage mechanism in nanoporous tungsten

    Science.gov (United States)

    Duan, Guohua; Li, Xiangyan; Sun, Jingjing; Hao, Congyu; Xu, Yichun; Zhang, Yange; Liu, Wei; Liu, C. S.

    2018-01-01

    Under nuclear fusion environments, displacement damage in tungsten (W) is usually caused by neutrons irradiation through producing large quantities of vacancies (Vs) and self-interstitial atoms (SIAs). These defects not only affect the mechanical properties of W, but also act as the trap sites for implanted hydrogen isotopes and helium. Nano-porous (NP) W with a high fraction of free surfaces has been developed to mitigate the radiation damage. However, the mechanism of the surface reducing defects accumulation is not well understood. By using multi-scale simulation methods, we investigated the interaction of the SIA and V with different surfaces on across length and time scales. We found that, at a typical operation temperature of 1000 K, surface (1 1 0) preferentially heals radiation damage of W compared with surface (1 0 0) and boundary (3 1 0). On surface (1 1 0), the diffusion barrier for the SIA is only 0.68 eV. The annihilation of the SIA-V happens via the coupled motion of the V segregation towards the surface from the bulk and the two-dimensional diffusion of the SIA on the surface. Such mechanism makes the surface (1 1 0) owe better healing capability. On surface (1 0 0), the diffusion energy barrier for the SIA is 2.48 eV, higher than the diffusion energy barrier of the V in bulk. The annihilation of the SIA-V occurs via the V segregation and recombination. The SIA was found to migrate one-dimensionally along a boundary (3 1 0) with a barrier of 0.21 eV, leading to a lower healing efficiency in the boundary. This study suggested that the on-surface process plays an important role in healing radiation damage of NP W in addition to surface-enhanced diffusion and annihilation near the surface. A certain surface structure renders nano-structured W more radiation-tolerant.

  19. Improved protein surface comparison and application to low-resolution protein structure data

    Directory of Open Access Journals (Sweden)

    Kihara Daisuke

    2010-12-01

    Full Text Available Abstract Background Recent advancements of experimental techniques for determining protein tertiary structures raise significant challenges for protein bioinformatics. With the number of known structures of unknown function expanding at a rapid pace, an urgent task is to provide reliable clues to their biological function on a large scale. Conventional approaches for structure comparison are not suitable for a real-time database search due to their slow speed. Moreover, a new challenge has arisen from recent techniques such as electron microscopy (EM, which provide low-resolution structure data. Previously, we have introduced a method for protein surface shape representation using the 3D Zernike descriptors (3DZDs. The 3DZD enables fast structure database searches, taking advantage of its rotation invariance and compact representation. The search results of protein surface represented with the 3DZD has showngood agreement with the existing structure classifications, but some discrepancies were also observed. Results The three new surface representations of backbone atoms, originally devised all-atom-surface representation, and the combination of all-atom surface with the backbone representation are examined. All representations are encoded with the 3DZD. Also, we have investigated the applicability of the 3DZD for searching protein EM density maps of varying resolutions. The surface representations are evaluated on structure retrieval using two existing classifications, SCOP and the CE-based classification. Conclusions Overall, the 3DZDs representing backbone atoms show better retrieval performance than the original all-atom surface representation. The performance further improved when the two representations are combined. Moreover, we observed that the 3DZD is also powerful in comparing low-resolution structures obtained by electron microscopy.

  20. Improved protein surface comparison and application to low-resolution protein structure data.

    Science.gov (United States)

    Sael, Lee; Kihara, Daisuke

    2010-12-14

    Recent advancements of experimental techniques for determining protein tertiary structures raise significant challenges for protein bioinformatics. With the number of known structures of unknown function expanding at a rapid pace, an urgent task is to provide reliable clues to their biological function on a large scale. Conventional approaches for structure comparison are not suitable for a real-time database search due to their slow speed. Moreover, a new challenge has arisen from recent techniques such as electron microscopy (EM), which provide low-resolution structure data. Previously, we have introduced a method for protein surface shape representation using the 3D Zernike descriptors (3DZDs). The 3DZD enables fast structure database searches, taking advantage of its rotation invariance and compact representation. The search results of protein surface represented with the 3DZD has showngood agreement with the existing structure classifications, but some discrepancies were also observed. The three new surface representations of backbone atoms, originally devised all-atom-surface representation, and the combination of all-atom surface with the backbone representation are examined. All representations are encoded with the 3DZD. Also, we have investigated the applicability of the 3DZD for searching protein EM density maps of varying resolutions. The surface representations are evaluated on structure retrieval using two existing classifications, SCOP and the CE-based classification. Overall, the 3DZDs representing backbone atoms show better retrieval performance than the original all-atom surface representation. The performance further improved when the two representations are combined. Moreover, we observed that the 3DZD is also powerful in comparing low-resolution structures obtained by electron microscopy.

  1. Cells responding to surface structure of calcium phosphate ceramics for bone regeneration.

    Science.gov (United States)

    Zhang, Jingwei; Sun, Lanying; Luo, Xiaoman; Barbieri, Davide; de Bruijn, Joost D; van Blitterswijk, Clemens A; Moroni, Lorenzo; Yuan, Huipin

    2017-11-01

    Surface structure largely affects the inductive bone-forming potential of calcium phosphate (CaP) ceramics in ectopic sites and bone regeneration in critical-sized bone defects. Surface-dependent osteogenic differentiation of bone marrow stromal cells (BMSCs) partially explained the improved bone-forming ability of submicron surface structured CaP ceramics. In this study, we investigated the possible influence of surface structure on different bone-related cells, which may potentially participate in the process of improved bone formation in CaP ceramics. Besides BMSCs, the response of human brain vascular pericytes (HBVP), C2C12 (osteogenic inducible cells), MC3T3-E1 (osteogenic precursors), SV-HFO (pre-osteoblasts), MG63 (osteoblasts) and SAOS-2 (mature osteoblasts) to the surface structure was evaluated in terms of cell proliferation, osteogenic differentiation and gene expression. The cells were cultured on tricalcium phosphate (TCP) ceramics with either micron-scaled surface structure (TCP-B) or submicron-scaled surface structure (TCP-S) for up to 14 days, followed by DNA, alkaline phosphatase (ALP) and quantitative polymerase chain reaction gene assays. HBVP were not sensitive to surface structure with respect to cell proliferation and osteogenic differentiation, but had downregulated angiogenesis-related gene expression (i.e. vascular endothelial growth factor) on TCP-S. Without additional osteogenic inducing factors, submicron-scaled surface structure enhanced ALP activity and osteocalcin gene expression of human (h)BMSCs and C2C12 cells, favoured the proliferation of MC3T3-E1, MG63 and SAOS-2, and increased ALP activity of MC3T3-E1 and SV-HFO. The results herein indicate that cells with osteogenic potency (either osteogenic inducible cells or osteogenic cells) could be sensitive to surface structure and responded to osteoinductive submicron-structured CaP ceramics in cell proliferation, ALP production or osteogenic gene expression, which favour bone

  2. Hardness and structure changes at surface in electrical discharge machined steel C 3840

    International Nuclear Information System (INIS)

    Karastojkovic, Z.; Janjusevic, Z.

    2003-01-01

    The electrical discharge machining (EDM) of both hard and soft materials became an important technique in industrial applications. This technique has an advantage in producing of structural/tool parts of complex geometry. The EDM is based on electrical phenomena, when the treated surface undergoes to erosion. The first step in EDM, the melting of thin surface layer, frequently is neglected. In this paper the changes of hardness and structure at surface layer, after EDM is applied on steel C 3840, will be discussed. The steel C- 3840 was quenched and tempered to hardness of 63 HRC, at surface, and than machined by electrical discharging. The changed, white, layer is just a product of melting and decarburization processes. The white layer is registered at surface by using a metallographic investigation. Hardness profile is measured from surface to the interior of material. The achievement of local high temperatures during EDM is resulting on melt and erosion of material. Besides of these effects, during EDM were happened some minor but not a neglectible effects, primary on structure changes on treated surface. It would be expected that melting, even an evaporation of melted metal, and further the phase transformation have an important influence on the starting structure. (Original)

  3. Research on micro-structure and hemo-compatibility of the artificial heart valve surface

    International Nuclear Information System (INIS)

    Ye Xia; Shao Yunliang; Zhou Ming; Li Jian; Cai Lan

    2009-01-01

    In order to seek the method to improve the hemo-compatibility of artificial mechanical heart valve, the surface of rabbit's heart valve was observed using the scanning electron microscopy (SEM). The results showed that the dual-scale structure which consists of cobblestones-like structure of 8 μm in underside diameter and 3 μm in height, and the fine cilia of about 150 nm in diameter, was helpful to the hemo-compatibility of the heart valve. Therefore, the polydimethylsiloxane (PDMS) surface with hierarchical micro-structure was fabricated using femtosecond laser fabrication technique and soft lithography. At the same time, the tests of apparent contact angle and platelet adhesion on both smooth and textured PDMS surfaces were carried out to study their wettability and hemo-compatibility. The results demonstrated that the surface with textured structure displayed more excellent wettabililty and anti-coagulation property than that of smooth surface. The apparent contact angle of textured surface enhanced from 113.1 deg. to 163.6 deg. and the amount of adsorbed platelet on such surface was fewer, no distortion and no activation were found.

  4. Structural and electronic properties of low-index stoichiometric BiOI surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Dai, Wen-Wu; Zhao, Zong-Yan, E-mail: zzy@kmust.edu.cn

    2017-06-01

    As promising photocatalyst driven by visible-light, BiOI has attracted more and more attention in the past years. However, the surface structure and properties of BiOI that is the most important place for the photocatalytic have not been investigated in details. To this end, density functional theory was performed to calculate the structural and electronic properties of four low-index stoichiometric surfaces of BiOI. It is found that the relaxation of the low-index BiOI surfaces are relatively small, especially the (001) surface. Thus, the surface energies of BiOI are very relatively small. Moreover, there are a few surface states below the bottom of conduction band in the first layer except the (001) surface, which maybe capture the photo-excited carriers. In all of the most stable terminated planes, all the dangling bonds are cleaved from the broken Bi-O bonds. In the case of (001) surface, the dangling bond density of Bi atoms for the (001) surface is zero per square nano. Therefore, the (001) surface is thermodynamically lowest-energy surface of BiOI, and it is the predominant surface (51.4%). As a final remark, the dangling bonds density of bismuth atoms determines not only the surface energy, but also the surface relaxation. Finally, the equilibrium morphology of BiOI was also proposed and provided, which is determined through the Wulff construction. These results will help us to better understand the underlying photocatalytic mechanism that is related to BiOI surfaces, and provide theoretical support for some experimental studies about BiOI-based photocatalyst in future. - Highlights: • Four low-index BiOI surfaces have been calculated by DFT method. • The relaxations of the low-index BiOI surfaces are relatively small. • There are a few surface states below the bottom of conduction band in the first layer. • The dangling bonds density of bismuth atoms determines not only the surface energy, but also the surface relaxation. • The thermodynamic

  5. Process for growing a film epitaxially upon an oxide surface and structures formed with the process

    Science.gov (United States)

    McKee, Rodney A.; Walker, Frederick J.

    1995-01-01

    A process and structure wherein a film comprised of a perovskite or a spinel is built epitaxially upon a surface, such as an alkaline earth oxide surface, involves the epitaxial build up of alternating constituent metal oxide planes of the perovskite or spinel. The first layer of metal oxide built upon the surface includes a metal element which provides a small cation in the crystalline structure of the perovskite or spinel, and the second layer of metal oxide built upon the surface includes a metal element which provides a large cation in the crystalline structure of the perovskite or spinel. The layering sequence involved in the film build up reduces problems which would otherwise result from the interfacial electrostatics at the first atomic layers, and these oxides can be stabilized as commensurate thin films at a unit cell thickness or grown with high crystal quality to thicknesses of 0.5-0.7 .mu.m for optical device applications.

  6. Surface crystallographic structures of cellulose nanofiber films and overlayers of pentacene

    Science.gov (United States)

    Nakayama, Yasuo; Mori, Toshiaki; Tsuruta, Ryohei; Yamanaka, Soichiro; Yoshida, Koki; Imai, Kento; Koganezawa, Tomoyuki; Hosokai, Takuya

    2018-03-01

    Cellulose nanofibers or nanocellulose is a promising recently developed biomass and biodegradable material used for various applications. In order to utilize this material as a substrate in organic electronic devices, thorough understanding of the crystallographic structures of the surfaces of the nanocellulose composites and of their interfaces with organic semiconductor molecules is essential. In this work, surface crystallographic structures of nanocellulose films (NCFs) and overlayers of pentacene were investigated by two-dimensional grazing-incidence X-ray diffraction. The NCFs are found to crystallize on solid surfaces with the crystal lattice preserving the same structure of the known bulk phase, whereas distortion of interchain packing toward the surface normal direction is suggested. The pentacene overlayers on the NCFs are found to form the thin-film phase with an in-plane mean crystallite size of over 10 nm.

  7. Effect of Surface Pore Structure of Nerve Guide Conduit on Peripheral Nerve Regeneration

    Science.gov (United States)

    Oh, Se Heang; Kim, Jin Rae; Kwon, Gu Birm; Namgung, Uk; Song, Kyu Sang

    2013-01-01

    Polycaprolactone (PCL)/Pluronic F127 nerve guide conduits (NGCs) with different surface pore structures (nano-porous inner surface vs. micro-porous inner surface) but similar physical and chemical properties were fabricated by rolling the opposite side of asymmetrically porous PCL/F127 membranes. The effect of the pore structure on peripheral nerve regeneration through the NGCs was investigated using a sciatic nerve defect model of rats. The nerve fibers and tissues were shown to have regenerated along the longitudinal direction through the NGC with a nano-porous inner surface (Nanopore NGC), while they grew toward the porous wall of the NGC with a micro-porous inner surface (Micropore NGC) and, thus, their growth was restricted when compared with the Nanopore NGC, as investigated by immunohistochemical evaluations (by fluorescence microscopy with anti-neurofilament staining and Hoechst staining for growth pattern of nerve fibers), histological evaluations (by light microscopy with Meyer's modified trichrome staining and Toluidine blue staining and transmission electron microscopy for the regeneration of axon and myelin sheath), and FluoroGold retrograde tracing (for reconnection between proximal and distal stumps). The effect of nerve growth factor (NGF) immobilized on the pore surfaces of the NGCs on nerve regeneration was not so significant when compared with NGCs not containing immobilized NGF. The NGC system with different surface pore structures but the same chemical/physical properties seems to be a good tool that is used for elucidating the surface pore effect of NGCs on nerve regeneration. PMID:22871377

  8. Thermodynamic analysis on an anisotropically superhydrophobic surface with a hierarchical structure

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Jieliang [Division of Intelligent and Biomechanical Systems, State Key Laboratory of Tribology, Tsinghua University, Room 3407, Building 9003, 100084 Beijing (China); Su, Zhengliang [Division of Intelligent and Biomechanical Systems, State Key Laboratory of Tribology, Tsinghua University, Room 3407, Building 9003, 100084 Beijing (China); Department of Automotive Engineering, Tsinghua University, Beijing 100084 (China); Yan, Shaoze, E-mail: yansz@mail.tsinghua.edu.cn [Division of Intelligent and Biomechanical Systems, State Key Laboratory of Tribology, Tsinghua University, Room 3407, Building 9003, 100084 Beijing (China)

    2015-12-01

    Graphical abstract: - Highlights: • We model the superhydrophobic surface with anisotropic and hierarchical structure. • Anisotropic wetting only shows in noncomposite state (not in composite state). • Transition from noncomposite to composite state on dual-scale structure is hard. • Droplets tend to roll in the particular direction. • Droplets tend to stably remain in one preferred thermodynamic state. - Abstract: Superhydrophobic surfaces, which refer to the surfaces with contact angle higher than 150° and hysteresis less than 10°, have been reported in various studies. However, studies on the superhydrophobicity of anisotropic, hierarchical surfaces are limited and the corresponding thermodynamic mechanisms could not be explained thoroughly. Here we propose a simplified surface model of anisotropic patterned surface with dual scale roughness. Based on the thermodynamic method, we calculate the equilibrium contact angle (ECA) and the contact angle hysteresis (CAH) on the given surface. We show here that the hierarchical structure has much better anisotropic wetting properties than the single-scale one, and the results shed light on the potential application in controllable micro-/nano-fluidic systems. Our studies can be potentially applied for the fabrication of anisotropically superhydrophobic surfaces.

  9. Algorithms for singularities and real structures of weak Del Pezzo surfaces

    KAUST Repository

    Lubbes, Niels

    2014-08-01

    In this paper, we consider the classification of singularities [P. Du Val, On isolated singularities of surfaces which do not affect the conditions of adjunction. I, II, III, Proc. Camb. Philos. Soc. 30 (1934) 453-491] and real structures [C. T. C. Wall, Real forms of smooth del Pezzo surfaces, J. Reine Angew. Math. 1987(375/376) (1987) 47-66, ISSN 0075-4102] of weak Del Pezzo surfaces from an algorithmic point of view. It is well-known that the singularities of weak Del Pezzo surfaces correspond to root subsystems. We present an algorithm which computes the classification of these root subsystems. We represent equivalence classes of root subsystems by unique labels. These labels allow us to construct examples of weak Del Pezzo surfaces with the corresponding singularity configuration. Equivalence classes of real structures of weak Del Pezzo surfaces are also represented by root subsystems. We present an algorithm which computes the classification of real structures. This leads to an alternative proof of the known classification for Del Pezzo surfaces and extends this classification to singular weak Del Pezzo surfaces. As an application we classify families of real conics on cyclides. © World Scientific Publishing Company.

  10. The structure of the interface in the solvent mediated interaction of dipolar surfaces

    International Nuclear Information System (INIS)

    Dzhavakhidze, P.G.; Levadny, V.G.

    1987-08-01

    Interaction of two dipolar surfaces separated by a polar medium is considered within the framework of nonlocal electrostatics. The dipolar surface layers are modelled as regular lattices with fixed orientation of dipoles which are immersed into the solvent; solvent response is characterized by nonlocal dielectric function. The model is elaborated in order to reveal the role of the dipolar layer discreteness in the electric field produced by one surface and the interaction between two surfaces (which gives rise to the so called ''hydration'' or ''structural'' force acting between mineral surfaces and phospholipid bilayers). The discreteness effects are present only for commensurate lattices. Their special mutual arrangement then may lead to considerable reduction of structural forces, viz. the usual repulsion regime may change at short distances to attraction. Conditions are considered when repulsion is entirely replaced by attraction, i.e. the ''hydration barrier'' disappears. In appended note we discuss the role of solvation of surface dipolar groups. We propose an explanation of why two modes of decay (one with oscillative fine structure) may be present in the dependence of the force upon distance if the surface dipolar groups are immersed deep enough in the solvent and how the long-range oscillative mode disappears when the surface is but weakly solvated. (author). 35 refs, 5 figs

  11. Mimicking lizard-like surface structures upon ultrashort laser pulse irradiation of inorganic materials

    Science.gov (United States)

    Hermens, U.; Kirner, S. V.; Emonts, C.; Comanns, P.; Skoulas, E.; Mimidis, A.; Mescheder, H.; Winands, K.; Krüger, J.; Stratakis, E.; Bonse, J.

    2017-10-01

    Inorganic materials, such as steel, were functionalized by ultrashort laser pulse irradiation (fs- to ps-range) to modify the surface's wetting behavior. The laser processing was performed by scanning the laser beam across the surface of initially polished flat sample material. A systematic experimental study of the laser processing parameters (peak fluence, scan velocity, line overlap) allowed the identification of different regimes associated with characteristic surface morphologies (laser-induced periodic surface structures, grooves, spikes, etc.). Analyses of the surface using optical as well as scanning electron microscopy revealed morphologies providing the optimum similarity to the natural skin of lizards. For mimicking skin structures of moisture-harvesting lizards towards an optimization of the surface wetting behavior, additionally a two-step laser processing strategy was established for realizing hierarchical microstructures. In this approach, micrometer-scaled capillaries (step 1) were superimposed by a laser-generated regular array of small dimples (step 2). Optical focus variation imaging measurements finally disclosed the three dimensional topography of the laser processed surfaces derived from lizard skin structures. The functionality of these surfaces was analyzed in view of wetting properties.

  12. The structure of the interface in the solvent-mediated interaction of dipolar surfaces

    International Nuclear Information System (INIS)

    Dzhavakhidze, P.G.; Kornyshev, A.A.; Levadny, V.G.

    1988-01-01

    Interaction of two dipolar surfaces separated by a polar medium is considered within the framework of nonlocal electrostatics. The dipolar-surface layers are modelled as regular lattices with fixed orientation of dipoles which are immersed into the solvent; solvent response is characterized by nonlocal dielectric function. The model is elaborated in order to reveal the role of the dypolar-layer discreteness in the electric field produced by one surface and the interaction between two surfaces (which gives rise to the so-called ''hydration'' or ''structural'' force acting between mineral surfaces and phospholipid bilayers). The discreteness effects are present only for commensurate lattices. Their special mutual arrangement then may lead to considerable reduction of structural forces, viz. the usual repulsion regime may change at short distances to attraction. Conditions are considered when repulsion is entirely replaced by attraction, i.e. the ''hydration barrier'' disappears. In appended note it is discussed the role of solvation of surface dipolar groups. It is proposed an explanation of why two modes of decay (one with oscillative fine structure) may be present in the dependence of the force upon distance, if the surface dipolar groups are immersed deep enough in the solvent, and how the long-range oscillative mode disappears when the surface is but weakly solvated

  13. Thermodynamic analysis on an anisotropically superhydrophobic surface with a hierarchical structure

    International Nuclear Information System (INIS)

    Zhao, Jieliang; Su, Zhengliang; Yan, Shaoze

    2015-01-01

    Graphical abstract: - Highlights: • We model the superhydrophobic surface with anisotropic and hierarchical structure. • Anisotropic wetting only shows in noncomposite state (not in composite state). • Transition from noncomposite to composite state on dual-scale structure is hard. • Droplets tend to roll in the particular direction. • Droplets tend to stably remain in one preferred thermodynamic state. - Abstract: Superhydrophobic surfaces, which refer to the surfaces with contact angle higher than 150° and hysteresis less than 10°, have been reported in various studies. However, studies on the superhydrophobicity of anisotropic, hierarchical surfaces are limited and the corresponding thermodynamic mechanisms could not be explained thoroughly. Here we propose a simplified surface model of anisotropic patterned surface with dual scale roughness. Based on the thermodynamic method, we calculate the equilibrium contact angle (ECA) and the contact angle hysteresis (CAH) on the given surface. We show here that the hierarchical structure has much better anisotropic wetting properties than the single-scale one, and the results shed light on the potential application in controllable micro-/nano-fluidic systems. Our studies can be potentially applied for the fabrication of anisotropically superhydrophobic surfaces.

  14. A Lagrangian cylindrical coordinate system for characterizing dynamic surface geometry of tubular anatomic structures.

    Science.gov (United States)

    Lundh, Torbjörn; Suh, Ga-Young; DiGiacomo, Phillip; Cheng, Christopher

    2018-03-03

    Vascular morphology characterization is useful for disease diagnosis, risk stratification, treatment planning, and prediction of treatment durability. To quantify the dynamic surface geometry of tubular-shaped anatomic structures, we propose a simple, rigorous Lagrangian cylindrical coordinate system to monitor well-defined surface points. Specifically, the proposed system enables quantification of surface curvature and cross-sectional eccentricity. Using idealized software phantom examples, we validate the method's ability to accurately quantify longitudinal and circumferential surface curvature, as well as eccentricity and orientation of eccentricity. We then apply the method to several medical imaging data sets of human vascular structures to exemplify the utility of this coordinate system for analyzing morphology and dynamic geometric changes in blood vessels throughout the body. Graphical abstract Pointwise longitudinal curvature of a thoracic aortic endograft surface for systole and diastole, with their absolute difference.

  15. An Intelligent Method for Structural Reliability Analysis Based on Response Surface

    Institute of Scientific and Technical Information of China (English)

    桂劲松; 刘红; 康海贵

    2004-01-01

    As water depth increases, the structural safety and reliability of a system become more and more important and challenging. Therefore, the structural reliability method must be applied in ocean engineering design such as offshore platform design. If the performance function is known in structural reliability analysis, the first-order second-moment method is often used. If the performance function could not be definitely expressed, the response surface method is always used because it has a very clear train of thought and simple programming. However, the traditional response surface method fits the response surface of quadratic polynomials where the problem of accuracy could not be solved, because the true limit state surface can be fitted well only in the area near the checking point. In this paper, an intelligent computing method based on the whole response surface is proposed, which can be used for the situation where the performance function could not be definitely expressed in structural reliability analysis. In this method, a response surface of the fuzzy neural network for the whole area should be constructed first, and then the structural reliability can be calculated by the genetic algorithm. In the proposed method, all the sample points for the training network come from the whole area, so the true limit state surface in the whole area can be fitted. Through calculational examples and comparative analysis, it can be known that the proposed method is much better than the traditional response surface method of quadratic polynomials, because, the amount of calculation of finite element analysis is largely reduced, the accuracy of calculation is improved,and the true limit state surface can be fitted very well in the whole area. So, the method proposed in this paper is suitable for engineering application.

  16. Enhanced osteointegration of medical titanium implant with surface modifications in micro/nanoscale structures

    Directory of Open Access Journals (Sweden)

    Liwen Lin

    2014-01-01

    Full Text Available Biomimetic design and substrate-based surface modification of medical implants will help to improve the integration of tissue to its material interfaces. Surface energy, composition, roughness, and topography all influence the biological responses of the implants, such as protein adsorption and cell adhesion, proliferation and differentiation. In the current study, different surface structures of Ti implants were constructed using facile surface techniques to create various micro-, nano-, and nano/micro composite scale topography. We have fabricated three types of hierarchical structures of TiO2 coating on Ti implants, including nanotube structure, nano sponge-like structure, and nano/micro nest-like structure. The osteointegration and biomechanical performance of the coated Ti screws were evaluated by histology and removal of torque force test in vivo. We found that the nano/micro nest-like and nanotube structured surface possessed better osteointegration ability. It indicated that the alkaline hydrothermally treated Ti substrate was the best for bone-implant integration in terms of all in vitro and in vivo testing parameters. The alkaline hydrothermally treated surface displayed a hydrophilic (contact angle value 5.92 ± 1.2, higher roughness (Ra value 911.3 ± 33.8 nm, higher specific surface area (8.26 ± 1.051 m2/g, and greater apatite inductivity. The electrochemical surface modification may become a powerful approach to enhance metal implant to bone integration in orthopaedic applications.

  17. Tailored optical vector fields for ultrashort-pulse laser induced complex surface plasmon structuring.

    Science.gov (United States)

    Ouyang, J; Perrie, W; Allegre, O J; Heil, T; Jin, Y; Fearon, E; Eckford, D; Edwardson, S P; Dearden, G

    2015-05-18

    Precise tailoring of optical vector beams is demonstrated, shaping their focal electric fields and used to create complex laser micro-patterning on a metal surface. A Spatial Light Modulator (SLM) and a micro-structured S-waveplate were integrated with a picosecond laser system and employed to structure the vector fields into radial and azimuthal polarizations with and without a vortex phase wavefront as well as superposition states. Imprinting Laser Induced Periodic Surface Structures (LIPSS) elucidates the detailed vector fields around the focal region. In addition to clear azimuthal and radial plasmon surface structures, unique, variable logarithmic spiral micro-structures with a pitch Λ ∼1μm, not observed previously, were imprinted on the surface, confirming unambiguously the complex 2D focal electric fields. We show clearly also how the Orbital Angular Momentum(OAM) associated with a helical wavefront induces rotation of vector fields along the optic axis of a focusing lens and confirmed by the observed surface micro-structures.

  18. Electron beam irradiation impact on surface structure and wettability of ethylene-vinyl alcohol copolymer

    Science.gov (United States)

    El-Saftawy, A. A.; Ragheb, M. S.; Zakhary, S. G.

    2018-06-01

    In the present study, electron beam (EB) is utilized to tailor the surface structure and wetting behavior of ethylene-vinyl alcohol (EVOH) copolymer. The structural deformation is examined by x-ray diffractometer (XRD). The recorded patterns reveal the formation of disordered systems on the irradiated surface. Also, the surface crystallinity degree, crystallite size, and micro-strain are studied. The microstructure induced modifications of the irradiated samples are investigated by 1-dimensional proton nuclear magnetic resonance 1H NMR spectroscopic analysis. The recorded spectra showed that the hydroxyl group (O-H) absorption intensity, enhanced compared to that of methylene (-CH2) and methine (>C-H) groups. Likewise, the changes of the polymer surface chemistry are studied by Fourier transform infrared spectroscopy (FTIR) and showed that the surface polarity improved after irradiation. The contact angle method is used to prove the surface wettability improvements after irradiation. Additionally, the fucoidan-coated samples exhibit great enhancements in surface wettability and have a reduced recovery effect compared to the uncoated samples. The surface free energy and bonding adhesion are studied as well. The fucoidan-coated samples are found to have a larger adhesion strength than that of the EVOH samples (pristine and irradiated). Finally, surface morphology and roughness are traced by atomic force microscopy (AFM). The improvements in surface wettability and adhesion are attributed to the modified surface roughness and the increased surface polarity. To sum up, combining EB irradiation and fucoidan enhance the surface wettability of EVOH in a controlled way keeping the bulk properties unaffected.

  19. Volume and surface photoemission from tungsten. I. Calculation of band structure and emission spectra

    DEFF Research Database (Denmark)

    Christensen, N. Egede; Feuerbacher, B.

    1974-01-01

    is obtained from an ad hoc potential based on a Dirac-Slater atomic calculation for the ground-state configuration and with full Slater exchange in the atomic as well as in the crystal potential. The selection of this best potential is justified by comparing the calculated band structure to Fermi...... of states. The present work includes a crude estimate of this surface density of states, which is derived from the bulk band structure by narrowing the d bands according to an effective number of neighbors per surface atom. Estimates of surface relaxation effects are also included.......The electronic energy-band structure of tungsten has been calculated by means of the relativistic-augmented-plane-wave method. A series of mutually related potentials are constructed by varying the electronic configuration and the amount of Slater exchange included. The best band structure...

  20. Multiphase static droplet simulations in hierarchically structured super-hydrophobic surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jung Shin; Lee, Joon Sang [School of Mechanical Engineering, Yonsei University, Seoul (Korea, Republic of)

    2016-08-15

    The surface of first part of study is textured with microscopic pillars of prototypical top geometries as a rectangle. The second one is textured with a hierarchical structure, composed of secondary pillar structures added on the primary texture. The length ratio between two scales of texture is 1:16. We evaluated the non-wetting characteristics of two types of surfaces by measuring CAs as well as the transition from the Wenzel's to Cassie's regimes. We measure the Contact angles (CAs), using the Lattice Boltzmann model (LBM), for two different surface configurations. We evaluated the effect of the hierarchical structure; the robustness of the Cassie regime is enhanced and the apparent contact angle is increased by the secondary structures. This is achieved by increasing the energy barrier against the transition between wetting and non-wetting regimes.

  1. Structure and electronic properties of graphene on ferroelectric LiNbO{sub 3} surface

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Jun, E-mail: dingjun@haue.edu.cn [College of Science, Henan University of Engineering, Zhengzhou 451191 (China); Wen, LiWei; Li, HaiDong [College of Science, Henan University of Engineering, Zhengzhou 451191 (China); Zhang, Ying, E-mail: yingzhang@bnu.edu.cn [Department of Physics, Beijing Normal University, Beijing 100875 (China)

    2017-05-25

    Highlights: • Interface structure of graphene on O terminated LiNbO{sub 3} surface. • Asymmetry gap around Dirac point. • Berry phase calculations confirm a valley Hall effect. - Abstract: We investigate the structural and electronic properties of graphene on the O terminated LiNbO{sub 3}(001) surface by density functional theory simulations. We observe that the first graphene layer is covalent bonded with the surface O atoms and buckles a lot. While considering second layer graphene upon the first layer, it almost recovers the planar structure and the interface interaction breaks the AB sublattice symmetry which leads to a valley Hall effect. Our results reveal the interface structure of graphene-ferroelectric heterostructure and provide the way for valleytronic applications with graphene.

  2. Characterization and anti-settlement aspects of surface micro-structures from Cancer pagurus

    International Nuclear Information System (INIS)

    Sullivan, T; Regan, F; McGuinness, K; Connor, N E O’

    2014-01-01

    Tuning surface and material properties to inhibit or prevent settlement and attachment of microorganisms is of interest for applications such as antifouling technologies. Here, optimization of nano- and microscale structures on immersed surfaces can be utilized to improve cell removal while reducing adhesion strength and the likelihood of initial cellular attachment. Engineered surfaces capable of controlling cellular behaviour under natural conditions are challenging to design due to the diversity of attaching cell types in environments such as marine waters, where many variations in cell shape, size and adhesion strategy exist. Nevertheless, understanding interactions between a cell and a potential substrate for adhesion, including topographically driven settlement cues, offers a route to designing surfaces capable of controlling cell settlement. Biomimetic design of artificial surfaces, based upon microscale features from natural surfaces, can be utilized as model surfaces to understand cell–surface interactions. The microscale surface features of the carapace from the crustacean Cancer pagurus has been previously found to influence the rate of attachment of particular organisms when compared to smooth controls. However, the nature of microscale topographic features from C. pagurus have not been examined in sufficient detail to allow design of biomimetic surfaces. In this work, the spatial distribution, chemical composition, size and shape descriptors of microscale surface features from C. pagurus are characterized in detail for the first time. Additionally, the influence of topography from C. pagurus on the settlement of marine diatoms is examined under field conditions. (paper)

  3. The atomic structure of low-index surfaces of the intermetallic compound InPd

    Energy Technology Data Exchange (ETDEWEB)

    McGuirk, G. M.; Ledieu, J.; Gaudry, É.; Weerd, M.-C.; Fournée, V. de, E-mail: vincent.fournee@univ-lorraine.fr [Institut Jean Lamour (UMR 7198 CNRS-Université de Lorraine), Parc de Saurupt, F-54011 Nancy Cedex (France); Hahne, M.; Gille, P. [Department of Earth and Environmental Sciences, Crystallography Section, Ludwig-Maximilians-Universität München, Theresienstrasse 41, D-80333 München (Germany); Ivarsson, D. C. A.; Armbrüster, M. [Faculty of Natural Sciences, Institute of Chemistry, Materials for Innovative Energy Concepts, Technische Universität Chemnitz, D-09107 Chemnitz (Germany); Ardini, J.; Held, G. [Department of Chemistry, University of Reading, Reading RG6 6AD (United Kingdom); Diamond Light Source Ltd, Didcot OX11 0DE (United Kingdom); Maccherozzi, F. [Diamond Light Source Ltd, Didcot OX11 0DE (United Kingdom); Bayer, A. [Lehrstuhl für Physikalische Chemie II, Universität Erlangen-Nürnberg, Egerlandstraße 3, D-91058 Erlangen (Germany); Lowe, M. [Surface Science Research Centre and Department of Physics, The University of Liverpool, Liverpool L69 3BX (United Kingdom); Pussi, K. [Department of Mathematics and Physics, Lappeenranta University of Technology, P.O. Box 20, FIN-53851 Lappeenranta (Finland); Diehl, R. D. [Department of Physics, Penn State University, University Park, Pennsylvania 16802 (United States)

    2015-08-21

    The intermetallic compound InPd (CsCl type of crystal structure with a broad compositional range) is considered as a candidate catalyst for the steam reforming of methanol. Single crystals of this phase have been grown to study the structure of its three low-index surfaces under ultra-high vacuum conditions, using low energy electron diffraction (LEED), X-ray photoemission spectroscopy (XPS), and scanning tunneling microscopy (STM). During surface preparation, preferential sputtering leads to a depletion of In within the top few layers for all three surfaces. The near-surface regions remain slightly Pd-rich until annealing to ∼580 K. A transition occurs between 580 and 660 K where In segregates towards the surface and the near-surface regions become slightly In-rich above ∼660 K. This transition is accompanied by a sharpening of LEED patterns and formation of flat step-terrace morphology, as observed by STM. Several superstructures have been identified for the different surfaces associated with this process. Annealing to higher temperatures (≥750 K) leads to faceting via thermal etching as shown for the (110) surface, with a bulk In composition close to the In-rich limit of the existence domain of the cubic phase. The Pd-rich InPd(111) is found to be consistent with a Pd-terminated bulk truncation model as shown by dynamical LEED analysis while, after annealing at higher temperature, the In-rich InPd(111) is consistent with an In-terminated bulk truncation, in agreement with density functional theory (DFT) calculations of the relative surface energies. More complex surface structures are observed for the (100) surface. Additionally, individual grains of a polycrystalline sample are characterized by micro-spot XPS and LEED as well as low-energy electron microscopy. Results from both individual grains and “global” measurements are interpreted based on comparison to our single crystals findings, DFT calculations and previous literature.

  4. Process comparison for fracture-induced formation of surface structures on polymer films

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Yueh-Ying [Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan (China); Yang, Fuqian [Department of Chemical and Materials Engineering, University of Kentucky, Lexington, KY 40506 (United States); Chen, Chia-Chieh [Institute of Nuclear Energy Research, Longtan, Taoyuan 32546, Taiwan (China); Lee, Sanboh, E-mail: sblee@mx.nthu.edu.tw [Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan (China)

    2014-01-01

    Using three different splitting approaches such as point-load splitting, tension-splitting and peeling–splitting, different surface ripples were produced on poly(methyl methacrylate) (PMMA)-based polymer films. Independent of the splitting approaches, the spatial wavelength of the surface structures is a linear function of the film thickness with the approximately same differential ratio of the spatial wavelength to the film thickness. The apparent surface residual stress was calculated from the thickness dependence of the spatial frequency, and the magnitude of the apparent surface stress increased with the increase of the film thickness. After exposing the aged PMMA-based photoresist at liquid state to gamma-irradiation, the effects of aging and the gamma-irradiation were investigated on the splitting-induced formation of surface structures. For the peeling–splitting process, the differential ratio of the spatial wavelength to the film thickness for the aged samples is larger than that for non-aged samples. The point-load splitting could not produce any surface pattern on the gamma-irradiated films. None of the splitting approaches could form surface structures for polymer films exposed to irradiation of high dose. Both the spatial wavelength and the apparent surface stress increased with the film thickness for the irradiated polymer films. - Highlights: • Using splitting processes, surface ripples were formed on polymer films. • The surface ripples were induced by compressively apparent surface stress. • The spatial wavelength of the ripples is a linear function of the film thickness. • The spatial wavelength of the ripples is affected by gamma-ray irradiation. • The spatial wavelength of the ripples is affected by aging.

  5. Surface buckling of black phosphorus: Determination, origin, and influence on electronic structure

    Science.gov (United States)

    Dai, Zhongwei; Jin, Wencan; Yu, Jie-Xiang; Grady, Maxwell; Sadowski, Jerzy T.; Kim, Young Duck; Hone, James; Dadap, Jerry I.; Zang, Jiadong; Osgood, Richard M.; Pohl, Karsten

    2017-12-01

    The surface structure of black phosphorus materials is determined using surface-sensitive dynamical microspot low energy electron diffraction (μ LEED ) analysis using a high spatial resolution low energy electron microscopy (LEEM) system. Samples of (i) crystalline cleaved black phosphorus (BP) at 300 K and (ii) exfoliated few-layer phosphorene (FLP) of about 10 nm thickness which were annealed at 573 K in vacuum were studied. In both samples, a significant surface buckling of 0.22 Å and 0.30 Å, respectively, is measured, which is one order of magnitude larger than previously reported. As direct evidence for large buckling, we observe a set of (for the flat surface forbidden) diffraction spots. Using first-principles calculations, we find that the presence of surface vacancies is responsible for the surface buckling in both BP and FLP, and is related to the intrinsic hole doping of phosphoresce materials previously reported.

  6. Facile fabrication of superhydrophobic surface with nanowire structures on nickel foil

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xia, E-mail: zx@henu.edu.cn [Laboratory of Special Functional Materials, Henan University, Kaifeng 475001 (China); Guo, Yonggang [School of Mechanical and Electrical Engineering, Henan University of Technology, Zhengzhou 450007 (China); Liu, Yue; Yang, Xue; Pan, Jieqiong; Zhang, Pingyu [Laboratory of Special Functional Materials, Henan University, Kaifeng 475001 (China)

    2013-12-15

    A simple solution immersion method was developed for the preparation of superhydrophobic surface with nanowire structures on magnetic nickel substrate. The morphology feature, chemical composition and superhydrophobicity of the resultant surface were analyzed by means of scanning electron microscopy, X-ray powder diffraction, X-ray photoelectron spectrum and water contact angle measurements, respectively. The surface wettability could be easily changed from superhydrophilic to superhydrophobic by a simple chemical modification with stearic acid. It is confirmed that the synergic effect of the surface microstructure and surface free energy contribute to the unique water repellence. Interestingly, the superhydrophobic nickel foil can be used to fabricate a miniature magnetic boat with a controlled movement on water surface.

  7. Structure in a confined smectic liquid crystal with competing surface and sample elasticities

    International Nuclear Information System (INIS)

    Idziak, S.H.; Koltover, I.; Israelachvili, J.N.; Safinya, C.R.

    1996-01-01

    We report on studies using the x-ray surface forces apparatus (XSFA) to compare the structure of a liquid crystal confined between hard surfaces and, for the first time, between soft surfaces that can deform due to the stresses imposed by the confined fluid. We find that the alignment of smectic domains in confined films depends critically on both the shape and compliance of the confining walls or surfaces: open-quote open-quote Soft surfaces close-quote close-quote exhibit a critical gap thickness of 3.4 μm for the liquid crystal studied at which maximum alignment occurs, while open-quote open-quote hard surfaces close-quote close-quote do not exhibit gap-dependent alignment. copyright 1996 The American Physical Society

  8. Preparation, Surface and Pore Structure of High Surface Area Activated Carbon Fibers from Bamboo by Steam Activation

    Directory of Open Access Journals (Sweden)

    Xiaojun Ma

    2014-06-01

    Full Text Available High surface area activated carbon fibers (ACF have been prepared from bamboo by steam activation after liquefaction and curing. The influences of activation temperature on the microstructure, surface area and porosity were investigated. The results showed that ACF from bamboo at 850 °C have the maximum iodine and methylene blue adsorption values. Aside from the graphitic carbon, phenolic and carbonyl groups were the predominant functions on the surface of activated carbon fiber from bamboo. The prepared ACF from bamboo were found to be mainly type I of isotherm, but the mesoporosity presented an increasing trend after 700 °C. The surface area and micropore volume of samples, which were determined by application of the Brunauer-Emmett-Teller (BET and t-plot methods, were as high as 2024 m2/g and 0.569 cm3/g, respectively. It was also found that the higher activation temperature produced the more ordered microcrystalline structure of ACF from bamboo.

  9. Unraveling the oxygen vacancy structures at the reduced Ce O2(111 ) surface

    Science.gov (United States)

    Han, Zhong-Kang; Yang, Yi-Zhou; Zhu, Beien; Ganduglia-Pirovano, M. Verónica; Gao, Yi

    2018-03-01

    Oxygen vacancies at ceria (Ce O2 ) surfaces play an essential role in catalytic applications. However, during the past decade, the near-surface vacancy structures at Ce O2(111 ) have been questioned due to the contradictory results from experiments and theoretical simulations. Whether surface vacancies agglomerate, and which is the most stable vacancy structure for varying vacancy concentration and temperature, are being heatedly debated. By combining density functional theory calculations and Monte Carlo simulations, we proposed a unified model to explain all conflicting experimental observations and theoretical results. We find a novel trimeric vacancy structure which is more stable than any other one previously reported, which perfectly reproduces the characteristics of the double linear surface oxygen vacancy clusters observed by STM. Monte Carlo simulations show that at low temperature and low vacancy concentrations, vacancies prefer subsurface sites with a local (2 × 2) ordering, whereas mostly linear surface vacancy clusters do form with increased temperature and degree of reduction. These results well explain the disputes about the stable vacancy structure and surface vacancy clustering at Ce O2(111 ) , and provide a foundation for the understanding of the redox and catalytic chemistry of metal oxides.

  10. Structural changes of radial forging die surface during service under thermo-mechanical fatigue

    International Nuclear Information System (INIS)

    Nematzadeh, Fardin; Akbarpour, Mohammad Reza; Kokabi, Amir Hosein; Sadrnezhaad, Seyed Khatiboleslam

    2009-01-01

    Radial forging is one of the modern open die forging techniques and has a wide application in producing machine parts. During operation at high temperatures, severe temperature change associated with mechanical loads and the resultant wearing of the die surface lead to intense variation in strain on the die surface. Therefore, under this operating condition, thermo-mechanical fatigue (TMF) occurs on the surface of the radial forging die. TMF decreases the life of the die severely. In the present research, different layers were deposited on a 1.2714 steel die by SMAW and GTAW, with a weld wire of UDIMET 520. The microstructure of the radial forging die surface was investigated during welding and service using an optical microscope and scanning electron microscope. The results revealed that, after welding, the structure of the radial forging die surface includes the γ matrix with a homogeneous distribution of fine semi-spherical carbides. The weld structure consisted mostly of columnar dendrites with low grain boundaries. Also, microstructural investigation of the die surface during operation showed that the weld structure of the die surface has remained without any considerable change. Only dendrites were deformed and broken. Moreover, grain boundaries of the dendrites were revealed during service.

  11. Condensation on superhydrophobic surfaces: the role of local energy barriers and structure length scale.

    Science.gov (United States)

    Enright, Ryan; Miljkovic, Nenad; Al-Obeidi, Ahmed; Thompson, Carl V; Wang, Evelyn N

    2012-10-09

    Water condensation on surfaces is a ubiquitous phase-change process that plays a crucial role in nature and across a range of industrial applications, including energy production, desalination, and environmental control. Nanotechnology has created opportunities to manipulate this process through the precise control of surface structure and chemistry, thus enabling the biomimicry of natural surfaces, such as the leaves of certain plant species, to realize superhydrophobic condensation. However, this "bottom-up" wetting process is inadequately described using typical global thermodynamic analyses and remains poorly understood. In this work, we elucidate, through imaging experiments on surfaces with structure length scales ranging from 100 nm to 10 μm and wetting physics, how local energy barriers are essential to understand non-equilibrium condensed droplet morphologies and demonstrate that overcoming these barriers via nucleation-mediated droplet-droplet interactions leads to the emergence of wetting states not predicted by scale-invariant global thermodynamic analysis. This mechanistic understanding offers insight into the role of surface-structure length scale, provides a quantitative basis for designing surfaces optimized for condensation in engineered systems, and promises insight into ice formation on surfaces that initiates with the condensation of subcooled water.

  12. Durable Lotus-effect surfaces with hierarchical structure using micro- and nanosized hydrophobic silica particles.

    Science.gov (United States)

    Ebert, Daniel; Bhushan, Bharat

    2012-02-15

    Surfaces with a very high apparent water contact angle (CA) and low water contact angle hysteresis (CAH) exhibit many useful characteristics, among them extreme water repellency, low drag for fluid flow, and a self-cleaning effect. The leaf of the Lotus plant (Nelumbo nucifera) achieves these properties using a hierarchical structure with roughness on both the micro- and nanoscale. It is of great interest to create durable surfaces with the so-called "Lotus effect" for many important applications. In this study, hierarchically structured surfaces with Lotus-effect properties were fabricated using micro- and nanosized hydrophobic silica particles and a simple spray method. In addition, hierarchically structured surfaces were prepared by spraying a nanoparticulate coating over a micropatterned surface. To examine the similarities between surfaces using microparticles versus a uniform micropattern as the microstructure, CA and CAH were compared across a range of pitch values for the two types of microstructures. Wear experiments were performed using an atomic force microscope (AFM), a ball-on-flat tribometer, and a water jet apparatus to verify multiscale wear resistance. These surfaces have potential uses in engineering applications requiring Lotus-effect properties and high durability. Copyright © 2011 Elsevier Inc. All rights reserved.

  13. Light structures phototroph, bacterial and fungal communities at the soil surface.

    Directory of Open Access Journals (Sweden)

    Lawrence O Davies

    Full Text Available The upper few millimeters of soil harbour photosynthetic microbial communities that are structurally distinct from those of underlying bulk soil due to the presence of light. Previous studies in arid zones have demonstrated functional importance of these communities in reducing soil erosion, and enhancing carbon and nitrogen fixation. Despite being widely distributed, comparative understanding of the biodiversity of the soil surface and underlying soil is lacking, particularly in temperate zones. We investigated the establishment of soil surface communities on pasture soil in microcosms exposed to light or dark conditions, focusing on changes in phototroph, bacterial and fungal communities at the soil surface (0-3 mm and bulk soil (3-12 mm using ribosomal marker gene analyses. Microbial community structure changed with time and structurally similar phototrophic communities were found at the soil surface and in bulk soil in the light exposed microcosms suggesting that light can influence phototroph community structure even in the underlying bulk soil. 454 pyrosequencing showed a significant selection for diazotrophic cyanobacteria such as Nostoc punctiforme and Anabaena spp., in addition to the green alga Scenedesmus obliquus. The soil surface also harboured distinct heterotrophic bacterial and fungal communities in the presence of light, in particular, the selection for the phylum Firmicutes. However, these light driven changes in bacterial community structure did not extend to the underlying soil suggesting a discrete zone of influence, analogous to the rhizosphere.

  14. Laser-induced oxidation of titanium substrate: Analysis of the physicochemical structure of the surface and sub-surface layers

    Energy Technology Data Exchange (ETDEWEB)

    Antończak, Arkadiusz J., E-mail: arkadiusz.antonczak@pwr.edu.pl [Laser and Fiber Electronics Group, Faculty of Electrical Engineering, Wroclaw University of Technology, Wyb. Wyspianskiego 27, 50-370 Wroclaw (Poland); Skowroński, Łukasz; Trzcinski, Marek [Institute of Mathematics and Physics, University of Technology and Life Sciences, Kaliskiego 7, 85-789 Bydgoszcz (Poland); Kinzhybalo, Vasyl V. [Wroclaw Research Centre EIT+, Stabłowicka 147, 54-066 Wrocław (Poland); Institute of Low Temperature and Structure Research, Okólna 2, 50-422 Wrocław (Poland); Łazarek, Łukasz K.; Abramski, Krzysztof M. [Laser and Fiber Electronics Group, Faculty of Electrical Engineering, Wroclaw University of Technology, Wyb. Wyspianskiego 27, 50-370 Wroclaw (Poland)

    2015-01-15

    Highlights: • Chemical structure of the films induced by laser on titanium surface was analyzed. • It was shown that outer layer of this films consist of oxides doped with nitrogen. • The optical properties of the laser-induced oxynitride films were characterized. • We found that the films demonstrated significant absorption in the band of 300–580 nm. • The morphology of the layers as a function of the laser fluence was investigated. - Abstract: This paper presents the results of the analysis of the complex chemical structure of the layers made on titanium in the process of the heating of its surfaces in an atmospheric environment, by irradiating samples with a nanosecond-pulsed laser. The study was carried out for electroplated, high purity, polycrystalline titanium substrates using a Yb:glass fiber laser. All measurements were made for samples irradiated in a broad range of accumulated fluence, below the ablation threshold. It has been determined how the complex index of refraction of both the oxynitride layers and the substrate vary as a function of accumulated laser fluence. It was also shown that the top layer of the film produced on titanium, which is transparent, is not a pure TiO{sub 2} as had been supposed before. The XPS and XRD analyses confirmed the presence of nitrogen compounds and the existence of nonstoichiometric compounds. By sputtering of the sample's surface using an Ar{sup +} ion gun, the changes in the concentration of individual elements as a function of the layer's cross-section were determined. Lastly, an analysis of the surface morphology has also been carried out, explaining why the layers crack and exfoliate from their substrate.

  15. Laser machining micro-structures on diamond surface with a sub-nanosecond pulsed laser

    Science.gov (United States)

    Wu, Mingtao; Guo, Bing; Zhao, Qingliang

    2018-02-01

    Micro-structure surface on diamond material is widely used in a series of industrial and scientific applications, such as micro-electromechanical systems (MEMS), nanoelectromechanical systems (NEMS), microelectronics, textured or micro-structured diamond machining tools. The efficient machining of micro-structure on diamond surface is urgently demanded in engineering. In this paper, laser machining square micro-structure on diamond surface was studied with a sub-nanosecond pulsed laser. The influences of laser machining parameters, including the laser power, scanning speed, defocusing quantity and scanning pitch, were researched in view of the ablation depth, material removal rate and machined surface topography. Both the ablation depth and material removal rate increased with average laser power. A reduction of the growth rate of the two parameters was induced by the absorption of the laser plasma plume at high laser power. The ablation depth non-linearly decreased with the increasing of the scanning speed while the material removal rate showed an opposite tendency. The increasing of the defocusing quantity induced complex variation of the ablation depth and the material removal rate. The maximum ablation depth and material removal rate were achieved at a defocusing position. The ablation depth and material removal rate oppositely varied about the scanning pitch. A high overlap ratio was meaningful for achieving a smooth micro-structure surface topography. Laser machining with a large defocusing quantity, high laser power and small scanning pitch was helpful for acquiring the desired micro-structure which had a large depth and smooth micro-structure surface topography.

  16. Tribological properties of nanostripe surface structures-a design concept for improving tribological properties

    International Nuclear Information System (INIS)

    Miyake, K; Nakano, M; Korenaga, A; Mano, H; Ando, Y

    2010-01-01

    The tribological properties of nanostripe surface structures were investigated using a pin-on-plate tribometer in order to propose a design concept for improving the tribological properties. The authors used four kinds of nanostripe structures consisting of different combinations of materials (Fe-Au, C-SiC, Al-Al 2 O 3 and Al-Pt) fabricated by a process they had previously proposed. The frictional properties of the nanostripe structures depended on the materials that constituted the nanostripes. When the sliding direction in friction tests was parallel to the microgrooves, nanostripe structures remained on all surfaces even after friction tests. Based on the friction test results, the authors considered a design concept for nanostripe structures in tribological applications.

  17. Band-structure-based collisional model for electronic excitations in ion-surface collisions

    International Nuclear Information System (INIS)

    Faraggi, M.N.; Gravielle, M.S.; Alducin, M.; Silkin, V.M.; Juaristi, J.I.

    2005-01-01

    Energy loss per unit path in grazing collisions with metal surfaces is studied by using the collisional and dielectric formalisms. Within both theories we make use of the band-structure-based (BSB) model to represent the surface interaction. The BSB approach is based on a model potential and provides a precise description of the one-electron states and the surface-induced potential. The method is applied to evaluate the energy lost by 100 keV protons impinging on aluminum surfaces at glancing angles. We found that when the realistic BSB description of the surface is used, the energy loss obtained from the collisional formalism agrees with the dielectric one, which includes not only binary but also plasmon excitations. The distance-dependent stopping power derived from the BSB model is in good agreement with available experimental data. We have also investigated the influence of the surface band structure in collisions with the Al(100) surface. Surface-state contributions to the energy loss and electron emission probability are analyzed

  18. Controlling Gel Structure to Modulate Cell Adhesion and Spreading on the Surface of Microcapsules.

    Science.gov (United States)

    Zheng, Huizhen; Gao, Meng; Ren, Ying; Lou, Ruyun; Xie, Hongguo; Yu, Weiting; Liu, Xiudong; Ma, Xiaojun

    2016-08-03

    The surface properties of implanted materials or devices play critical roles in modulating cell behavior. However, the surface properties usually affect cell behaviors synergetically so that it is still difficult to separately investigate the influence of a single property on cell behavior in practical applications. In this study, alginate-chitosan (AC) microcapsules with a dense or loose gel structure were fabricated to understand the effect of gel structure on cell behavior. Cells preferentially adhered and spread on the loose gel structure microcapsules rather than on the dense ones. The two types of microcapsules exhibited nearly identical surface positive charges, roughness, stiffness, and hydrophilicity; thus, the result suggested that the gel structure was the principal factor affecting cell behavior. X-ray photoelectron spectroscopy analyses demonstrated that the overall percentage of positively charged amino groups was similar on both microcapsules. The different gel structures led to different states and distributions of the positively charged amino groups of chitosan, so we conclude that the loose gel structure facilitated greater cell adhesion and spreading mainly because more protonated amino groups remained unbound and exposed on the surface of these microcapsules.

  19. Strengthening of the RAFMS RUSFER-EK181 through nano structuring surface layers

    Energy Technology Data Exchange (ETDEWEB)

    Panin, A.; Melnikova, E.A. [Tomsk State Univ., lnstitute of Strength Physics and Materials Science, SB, RAS (Russian Federation); Chernov, V.M. [Bochvar Institute of Inorganic Materials, Moscow (Russian Federation); Leontieva-Smirnova, M.V. [A.A. Bochvar Research Institute of Inorganic Materials, Moscow (Russian Federation)

    2007-07-01

    Full text of publication follows: Surface nano-structuring increases yield point and strength of the reduced activation ferritic-martensitic steel (RAFMS ) RUSREF - EK181. Ultrasonic impact treatment was used to produce a nano-structure within the surface layers of the specimens. Using scanning tunnelling microscope reveals a new mechanism of mesoscale-level plastic deformation of nano-structured surface layers of the RAFMS RUSREF - EK181 as doubled spirals of localised-plastic deformation meso-bands. A linear dependence of their sizes on thickness of strengthened layer was obtained. The effect of localised deformation meso-bands on macro-mechanical properties of a material was demonstrated. A certain combination of thermal and mechanical treatment as well as optimum proportion of nano-structured surface layer thickness to thickness of a whole specimen are necessary to achieve maximum strength values. Tests performed at high temperatures in the range from 20 to 700 deg. C shows efficiency of the surface hardening of the RAFMS RUSREF - EK181. The effect of nano-structured surface layer on the character of plastic deformation and mechanical properties of the RAFMS RUSREF - EK181 was considered in the framework of a multilevel model in which loss of shear stability and generation of structural defects occur self-consistently at various scale levels such as nano-, micro-, meso-, and macro-Chessboard like distribution of stresses and misfit deformations was theoretical and experimentally shown to appear at the 'nano-structured surface layer - bulk of material' interface. Zones of compressive normal stresses alternates with zones of tensile normal stresses as on a chessboard. Plastic shear can generate only within local zones of tensile normal stresses. Critical meso-volume of non-equilibrium states required for local structure-phase transformation can be formed within these zones. Whereas within the zones of compressive normal stresses acting from both

  20. Visualization of soil structure and pore structure modifications by pioneering ground beetles (Cicindelidae) in surface sediments of an artificial catchment

    Science.gov (United States)

    Badorreck, Annika; Gerke, Horst H.; Weller, Ulrich; Vontobel, Peter

    2010-05-01

    An artificial catchment was constructed to study initial soil and ecosystem development. As a key process, the pore structure dynamics in the soil at the surface strongly influences erosion, infiltration, matter dynamics, and vegetation establishment. Little is known, however, about the first macropore formation in the very early stage. This presentation focuses on observations of soil pore geometry and its effect on water flow at the surface comparing samples from three sites in the catchment and in an adjacent "younger" site composed of comparable sediments. The surface soil was sampled in cylindrical plastic rings (10 cm³) down to 2 cm depth in three replicates each site and six where caves from pioneering ground-dwelling beetles Cicindelidae were found. The samples were scanned with micro-X-ray computed tomography (at UFZ-Halle, Germany) with a resolution of 0.084 mm. The infiltration dynamics were visualized with neutronradiography (at Paul-Scherer-Institute, Switzerland) on slab-type soil samples in 2D. The micro-tomographies exhibit formation of surface sealing whose thickness and intensity vary with silt and clay content. The CT images show several coarser- and finer-textured micro-layers at the sample surfaces that were formed as a consequence of repeated washing in of finer particles in underlying coarser sediment. In micro-depressions, the uppermost layers consist of sorted fine sand and silt due to wind erosion. Similar as for desert pavements, a vesicular pore structure developed in these sediments on top, but also scattered in fine sand- and silt-enriched micro-layers. The ground-dwelling activity of Cicindelidae beetles greatly modifies the soil structure through forming caves in the first centimetres of the soil. Older collapsed caves, which form isolated pores within mixed zones, were also found. The infiltration rates were severely affected both, by surface crusts and activity of ground-dwelling beetles. The observations demonstrate relatively

  1. Replication quality control of metal and polymer micro structured optical surfaces

    DEFF Research Database (Denmark)

    Gasparin, Stefania; Tosello, Guido; Hansen, Hans Nørgaard

    2011-01-01

    replication methods based on polymer casting. The replica method is used in order to avoid damages of the structures and make feasible the measurement of optical specimens with non-contact instruments. Results show a quality replication equal to 95 - 99%. In both investigations the uncertainty......Non contact measurements are preferred for the characterization of ultra-finely finished surfaces which is particularly challenging if damages of the structures should be avoided. However, it is not always possible to use these methods because low roughness in metallic materials, as optical...... surfaces, quite often results in mirror-like surfaces which scatter the light and invalidate the optical measurements. This paper focuses on an analysis of a micro-structured optical component and the corresponding mould. A first investigation leads to a control of the manufacturing process through...

  2. Fatigue behaviour of 304L steel welded structures: influence of residual stresses and surface mechanical finishing

    International Nuclear Information System (INIS)

    Magnier-Monin, L.

    2007-12-01

    This study focuses on the influence of residual stresses and surface mechanical finishing on lifetime of stainless steel 304L welded structures. Residual stresses are determined on specific specimens of three types: base-metal, as-welded and ground-welded specimens. Each type is submitted to fatigue tests in order to assess the influence of these parameters on the lifetime, and to determine their evolution. The experiments show that an important surface stress concentration is located in the weld root of as-welded structures, which has a negative effect on the fatigue life. The grinding operation generates high-level surface residual stresses but the lifetime is higher thanks to the reduction of the notch effect. The fatigue test results are compared to the nuclear industry best-fit S-N curves. This enables the determination of correction factors related to fatigue test results of polished specimens, and to assess the lifetime of structures. (author)

  3. Fabrication of semi-transparent super-hydrophobic surface based on silica hierarchical structures

    KAUST Repository

    Chen, Ping-Hei

    2011-01-01

    This study successfully develops a versatile method of producing superhydrophobic surfaces with micro/nano-silica hierarchical structures on glass surfaces. Optically transparent super hydrophobic silica thin films were prepared by spin-coating silica particles suspended in a precursor solution of silane, ethanol, and H2O with molar ratio of 1:4:4. The resulting super hydrophobic films were characterized by scanning electron microscopy (SEM), optical transmission, and contact angle measurements. The glass substrates in this study were modified with different particles: micro-silica particles, nano-silica particles, and hierarchical structures. This study includes SEM micrographs of the modified glass surfaces with hierarchical structures at different magnifications. © 2011 The Korean Society of Mechanical Engineers and Springer-Verlag Berlin Heidelberg.

  4. Structured surface reflector design for oblique incidence beam splitter at 610 GHz

    OpenAIRE

    Defrance , Fabien; Casaletti , Massimiliano; Sarrazin , Julien; Wiedner , Martina; Gibson , Hugh; Gay , Gregory; Lefevre , Roland; Delorme , Yan

    2016-01-01

    International audience; An iterative alternate projection-based algorithm is developed to design structured surface reflectors to operate as beam splitters at GHz and THz frequencies. To validate the method, a surface profile is determined to achieve a reflector at 610 GHz that generates four equal-intensity beams towards desired directions of ±12.6° with respect to the specular reflection axis. A prototype is fabricated and the beam splitter behavior is experimentally demonstrated. Measureme...

  5. Effect of ion irradiation on the structure and the surface topography of carbon fiber

    International Nuclear Information System (INIS)

    Ligacheva, E.A.; Galyaeva, L.V.; Gavrilov, N.V.; Belykh, T.A.; Ligachev, A.E.; Sokhoreva, V.V.

    2006-01-01

    The effect of C + ion irradiation (40 keV, 10 15 - 10 19 cm -2 ) on the structure and surface topography of high-module carbon fibers is investigated. Interplanar distance and internal stress values are found to be minimal at a radiation dose of 10 17 cm -2 , the height of a layer pack being practically unchanged. The relief of ion irradiated carbon fiber surface constitutes regularly repetitive valleys and ridges spaced parallel with the fiber axis [ru

  6. First principle study of structural, electronic and fermi surface properties of aluminum praseodymium

    Science.gov (United States)

    Shugani, Mani; Aynyas, Mahendra; Sanyal, S. P.

    2018-05-01

    We present a structural, Electronic and Fermi surface properties of Aluminum Praseodymium (AlPr) using First-principles density functional calculation by using full potential linearized augmented plane wave (FP-LAPW) method within generalized gradient approximation (GGA). The ground state properties along with electronic and Fermi surface properties are studied. It is found that AlPr is metallic and the bonding between Al and Pr is covalent.

  7. Surface Structures Formed by a Copper(II Complex of Alkyl-Derivatized Indigo

    Directory of Open Access Journals (Sweden)

    Akinori Honda

    2016-10-01

    Full Text Available Assembled structures of dyes have great influence on their coloring function. For example, metal ions added in the dyeing process are known to prevent fading of color. Thus, we have investigated the influence of an addition of copper(II ion on the surface structure of alkyl-derivatized indigo. Scanning tunneling microscope (STM analysis revealed that the copper(II complexes of indigo formed orderly lamellar structures on a HOPG substrate. These lamellar structures of the complexes are found to be more stable than those of alkyl-derivatized indigos alone. Furthermore, 2D chirality was observed.

  8. Structural Color Model Based on Surface Morphology of MORPHO Butterfly Wing Scale

    Science.gov (United States)

    Huang, Zhongjia; Cai, Congcong; Wang, Gang; Zhang, Hui; Huttula, Marko; Cao, Wei

    2016-05-01

    Color production through structural coloration is created by micrometer and sub-micrometer surface textures which interfere with visible light. The shiny blue of morpho menelaus is a typical example of structural coloring. Modified from morphology of the morpho scale, a structure of regular windows with two side offsets was constructed on glass substrates. Optical properties of the bioinspired structure were studied through numerical simulations of light scattering. Results show that the structure can generate monochromatic light scattering. Wavelength of scattered light is tunable via changing the spacing between window shelves. Compared to original butterfly model, the modified one possesses larger illumination scopes in azimuthal distributions despite being less in polar directions. Present bionic structure is periodically repeated and is easy to fabricate. It is hoped that the computational materials design work can inspire future experimental realizations of such a structure in photonics applications.

  9. Surface structure deduced differences of copper foil and film for graphene CVD growth

    Energy Technology Data Exchange (ETDEWEB)

    Tian, Junjun [School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044 (China); Hu, Baoshan, E-mail: hubaoshan@cqu.edu.cn [School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044 (China); Wei, Zidong; Jin, Yan [School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044 (China); Luo, Zhengtang [Department of Chemical and Biomolecular Engineering, The Hongkong University of Science and Technology, Kowloon (Hong Kong); Xia, Meirong [School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044 (China); Pan, Qingjiang [Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, Heilongjiang University, Harbin 150080 (China); Liu, Yunling [State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012 (China)

    2014-05-01

    Highlights: • We demonstrate the significant differences between Cu foil and film in the surface morphology and crystal orientation distribution. • The different surface structure leads to the distinctive influences of the CH₄ and H₂ concentrations on the thickness and quality of as-grown graphene. • Nucleation densities and growth rate differences at the initial growth stages on the Cu foil and film were investigated and discussed. Abstract: Graphene was synthesized on Cu foil and film by atmospheric pressure chemical vapor deposition (CVD) with CH₄ as carbon source. Electron backscattered scattering diffraction (EBSD) characterization demonstrates that the Cu foil surface after the H₂-assisted pre-annealing was almost composed of Cu(1 0 0) crystal facet with larger grain size of ~100 μm; meanwhile, the Cu film surface involved a variety of crystal facets of Cu(1 1 1), Cu(1 0 0), and Cu(1 1 0), with the relatively small grain size of ~10 μm. The different surface structure led to the distinctive influences of the CH₄ and H₂ concentrations on the thickness and quality of as-grown graphene. Further data demonstrate that the Cu foil enabled more nucleation densities and faster growth rates at the initial growth stages than the Cu film. Our results are beneficial for understanding the relationship between the metal surface structure and graphene CVD growth.

  10. Low energy ion scattering (LEIS) and the compositional and structural analysis of solid surfaces

    International Nuclear Information System (INIS)

    Berg, J.A. van den; Armour, D.G.

    1981-01-01

    The physics of Low Energy Ion Scattering (LEIS) and its application as a surface analytical technique are reviewed. It is shown that compositional and short-range structural information can be obtained by choosing experimental conditions which optimize the contributions of single and double (or multiple) collisions, respectively. The LEIS technique allows mass analysis in a straightforward way, possesses a high surface selectivity but is unable to provide quantitative information in isolation due to scattering cross-section uncertainties and not easily quantifiable charge exchange effects. Structural information regarding adsorbate positions on single crystal surfaces and the short-range substrate structure (including damaged and reconstructed surfaces) can be obtained by exploiting shadowing and/or multiple scattering phenomena. The progress made in recent years in this area is charted. It is shown that computer simulations often play an important role in this type of study. Effects, such as charge exchange, inelastic energy loss and ion beam surface perturbations, which complicate the use of low energy ion scattering for surface analysis are discussed in detail. The present status of the technique in the different areas of study is indicated. (author)

  11. Surface structure and properties of functionalized nanodiamonds: a first-principles study

    International Nuclear Information System (INIS)

    Datta, Aditi; Kirca, Mesut; Fu Yao; To, Albert C

    2011-01-01

    The goal of this work is to gain fundamental understanding of the surface and internal structure of functionalized detonation nanodiamonds (NDs) using quantum mechanics based density functional theory (DFT) calculations. The unique structure of ND assists in the binding of different functional groups to its surface which in turn facilitates binding with drug molecules. The ability to comprehensively model the surface properties, as well as drug-ND interactions during functionalization, is a challenge and is the problem of our interest. First, the structure of NDs of technologically relevant size (∼5 nm) was optimized using classical mechanics based molecular mechanics simulations. Quantum mechanics based density functional theory (DFT) was then employed to analyse the properties of smaller relevant parts of the optimized cluster further to address the effect of functionalization on the stability of the cluster and reactivity at its surface. It is found that functionalization is preferred over reconstruction at the (100) surface and promotes graphitization in the (111) surface for NDs functionalized with the carbonyl oxygen (C = O) group. It is also seen that the edges of ND are the preferred sites for functionalization with the carboxyl group (-COOH) vis-a-vis the corners of ND.

  12. Scanning Tunneling Microscopy Studies of Surface Structures of Icosahedral Al-Cu-Fe Quasicrystals

    Energy Technology Data Exchange (ETDEWEB)

    Cai, Tanhong [Iowa State Univ., Ames, IA (United States)

    2001-01-01

    Three papers are included in this dissertation. The first paper: ''Structural aspects of the fivefold quasicrystalline Al-Cu-Fe surface from STM and dynamical LEED studies'', is in press with ''Surface Science''. The second paper: ''An STM study of the atomic structure of the icosahedral Al-Cu-Fe fivefold surface'' is submitted to ''Physical Review B, Rapid Communication''. The third paper: ''Pseudomorphic starfish: arrangement of extrinsic metal atoms on a quasicrystalline substrate'' is submitted to ''Nature''. Following the third paper are general conclusions and appendices that document the published paper ''Structural aspects of the three-fold surface of icosahedral Al-Pd-Mn'' (appearing in volume 461, issue 1-3 of ''Surface Science'' on page L521-L527, 2000), the design as well as the specifications of the aluminum evaporator used in the aluminum deposition study in this dissertation, an extended discussion of the aluminum deposition on the quasicrystalline surface, and the STM database.

  13. Evaluation of surface-wave waveform modeling for lithosphere velocity structure

    Science.gov (United States)

    Chang, Tao-Ming

    Surface-waveform modeling methods will become standard tools for studying the lithosphere structures because they can place greater constraints on earth structure and because of interest in the three-dimensional earth. The purpose of this study is to begin to learn the applicabilities and limitations of these methods. A surface-waveform inversion method is implemented using generalized seismological data functional theory. The method has been tested using synthetic and real seismic data and show that this method is well suited for teleseismic and regional seismograms. Like other linear inversion problems, this method also requires a good starting model. To ease reliance on good starting models, a global search technique, the genetic algorithm, has been applied to surface waveform modeling. This method can rapidly find good models for explaining surface-wave waveform at regional distance. However, this implementation also reveals that criteria which are widely used in seismological studies are not good enough to indicate the goodness of waveform fit. These two methods with the linear waveform inversion method, and traditional surface wave dispersion inversion method have been applied to a western Texas earthquake to test their abilities. The focal mechanism of the Texas event has been reestimated using a grid search for surface wave spectral amplitudes. A comparison of these four algorithms shows some interesting seismic evidences for lithosphere structure.

  14. Waste-surface mapping of the Fernald K-65 silos using a structured light measurement system

    International Nuclear Information System (INIS)

    Burks, B.L.; DePiero, F.W.; Dinkins, M.A.; Rowe, J.C.; Selleck, C.B.; Jacoboski, D.L.

    1992-10-01

    A remotely operated surface-mapping measurement system was developed by the Robotics ampersand Process Systems Division at Oak Ridge National Laboratory for use in the K-65 waste-storage silos at Fernald, Ohio. The mapping system used three infrared line-generating laser diodes as illumination sources and three high-resolution, low-lux, calibrated, black-and-white, charge-coupled-device video cameras as receivers. These components were combined to form structured light source range and direction sensors with six different possible emitter-receiver pairs. A technology demonstration and predeployment tests were performed at Fernald using the empty Silo 4 into which was placed rectangular objects of known dimensions. These objects were scanned by the structured light sources to demonstrate functionality and verify that the system was giving sufficiently accurate range data in three dimensions. The structured light sources were deployed in Silos 1 and 2 to scan the waste surfaces. The resulting data were merged to create three-dimensional maps of those surfaces. A bentonite clay cap was placed over the waste surfaces and surface maps were obtained. The change in surface height before and after bentonite addition was utilized as a measure of clay cap thickness

  15. Surface structure and properties of functionalized nanodiamonds: a first-principles study

    Energy Technology Data Exchange (ETDEWEB)

    Datta, Aditi; Kirca, Mesut; Fu Yao; To, Albert C, E-mail: albertto@pitt.edu [Department of Mechanical Engineering and Materials Science and Department of Civil and Environmental Engineering, University of Pittsburgh, Pittsburgh, PA 15261 (United States)

    2011-02-11

    The goal of this work is to gain fundamental understanding of the surface and internal structure of functionalized detonation nanodiamonds (NDs) using quantum mechanics based density functional theory (DFT) calculations. The unique structure of ND assists in the binding of different functional groups to its surface which in turn facilitates binding with drug molecules. The ability to comprehensively model the surface properties, as well as drug-ND interactions during functionalization, is a challenge and is the problem of our interest. First, the structure of NDs of technologically relevant size ({approx}5 nm) was optimized using classical mechanics based molecular mechanics simulations. Quantum mechanics based density functional theory (DFT) was then employed to analyse the properties of smaller relevant parts of the optimized cluster further to address the effect of functionalization on the stability of the cluster and reactivity at its surface. It is found that functionalization is preferred over reconstruction at the (100) surface and promotes graphitization in the (111) surface for NDs functionalized with the carbonyl oxygen (C = O) group. It is also seen that the edges of ND are the preferred sites for functionalization with the carboxyl group (-COOH) vis-a-vis the corners of ND.

  16. Utilization threshold of surface water and groundwater based on the system optimization of crop planting structure

    Directory of Open Access Journals (Sweden)

    Qiang FU,Jiahong LI,Tianxiao LI,Dong LIU,Song CUI

    2016-09-01

    Full Text Available Based on the diversity of the agricultural system, this research calculates the planting structures of rice, maize and soybean considering the optimal economic-social-ecological aspects. Then, based on the uncertainty and randomness of the water resources system, the interval two-stage stochastic programming method, which introduces the uncertainty of the interval number, is used to calculate the groundwater exploitation and the use efficiency of surface water. The method considers the minimum cost of water as the objective of the uncertainty model for surface water and groundwater joint scheduling optimization for different planting structures. Finally, by calculating harmonious entropy, the optimal exploitation utilization interval of surface water and groundwater is determined for optimal cultivation in the Sanjiang Plain. The optimal matching of the planting structure under the economic system is suitable when the mining ratio of the surface is in 44.13%—45.45% and the exploitation utilization of groundwater is in 54.82%—66.86%, the optimal planting structure under the social system is suitable when surface water mining ratio is in 47.84%—48.04% and the groundwater exploitation threshold is in 67.07%—72.00%. This article optimizes the economic-social-ecological-water system, which is important for the development of a water- and food-conserving society and providing a more accurate management environment.

  17. An optimized surface plasmon photovoltaic structure using energy transfer between discrete nano-particles.

    Science.gov (United States)

    Lin, Albert; Fu, Sze-Ming; Chung, Yen-Kai; Lai, Shih-Yun; Tseng, Chi-Wei

    2013-01-14

    Surface plasmon enhancement has been proposed as a way to achieve higher absorption for thin-film photovoltaics, where surface plasmon polariton(SPP) and localized surface plasmon (LSP) are shown to provide dense near field and far field light scattering. Here it is shown that controlled far-field light scattering can be achieved using successive coupling between surface plasmonic (SP) nano-particles. Through genetic algorithm (GA) optimization, energy transfer between discrete nano-particles (ETDNP) is identified, which enhances solar cell efficiency. The optimized energy transfer structure acts like lumped-element transmission line and can properly alter the direction of photon flow. Increased in-plane component of wavevector is thus achieved and photon path length is extended. In addition, Wood-Rayleigh anomaly, at which transmission minimum occurs, is avoided through GA optimization. Optimized energy transfer structure provides 46.95% improvement over baseline planar cell. It achieves larger angular scattering capability compared to conventional surface plasmon polariton back reflector structure and index-guided structure due to SP energy transfer through mode coupling. Via SP mediated energy transfer, an alternative way to control the light flow inside thin-film is proposed, which can be more efficient than conventional index-guided mode using total internal reflection (TIR).

  18. Handling sticky Resin by Stingless Bees: Adhesive Properties of Surface Structures

    Directory of Open Access Journals (Sweden)

    MARKUS GASTAUER

    2013-09-01

    Full Text Available Many Stingless Bees (Hymenoptera: Meliponini like Tetragonisca angustula collect resin to defend their nests against intruders like ants or Robber Bees. Small portions of resin are attached to intruders bodies and extremities causing their immobilization. It has been observed that resin is removed easily from the bee's mandible but adheres strongly to the intruder's cuticle. We tested the hypothesis that resin sticks lesser to the mandibles of Stingless Bees than to the surface of intruders due to special surface structures or adhesive properties of these structures. The surface structures of the mandible of T. angustula and the trochanter of Camponotus sericeiventris were studied by scanning electron microscopy. To measure adhesion properties, selected surfaces were fixed on a fine glass pin and withdrawn from a glass tip covered with resin. The deformation of the glass pin indicates adhesion forces operating between the resin and the selective surface. The absolute value of the forces is computed from the glass pin's stiffness. It has been shown that resin sticks more to the smooth mandible of the bee than to the structured trochanter of the ant. A new hypothesis to be tested says that the bees might lubricate their mandibles with nectar or honey to reduce the resin's adhesion temporarily.

  19. Process optimization for ultrasonic vibration assisted polishing of micro-structured surfaces on super hard material

    Science.gov (United States)

    Sun, Zhiyuan; Guo, Bing; Rao, Zhimin; Zhao, Qingliang

    2014-08-01

    In consideration of the excellent property of SiC, the ground micro-structured surface quality is hard to meet the requirement - consequently the ultrasonic vibration assisted polishing (UVAP) of micro-structures of molds is proposed in this paper. Through the orthogonal experiment, the parameters of UVAP of micro-structures were optimized. The experimental results show that, abrasive polishing process, the effect of the workpiece feed rate on the surface roughness (Ra), groove tip radius (R) and material removal rate (MRR) of micro-structures is significant. While, the UVAP, the most significant effect factor for Ra, R and MRR is the ultrasonic amplitude of the ultrasonic vibration. In addition, within the scope of the polishing process parameters selected by preliminary experiments, ultrasonic amplitude of 2.5μm, polishing force of 0.5N, workpiece feed rate of 5 mm·min-1, polishing wheel rotational speed of 50rpm, polishing time of 35min, abrasive size of 100nm and the polishing liquid concentration of 15% is the best technology of UVAP of micro-structures. Under the optimal parameters, the ground traces on the micro-structured surface were removed efficiently and the integrity of the edges of the micro-structure after grinding was maintained efficiently.

  20. Quantitative characterization of the atomic-scale structure of oxyhydroxides in rusts formed on steel surfaces

    International Nuclear Information System (INIS)

    Saito, M.; Suzuki, S.; Kimura, M.; Suzuki, T.; Kihira, H.; Waseda, Y.

    2005-01-01

    Quantitative X-ray structural analysis coupled with anomalous X-ray scattering has been used for characterizing the atomic-scale structure of rust formed on steel surfaces. Samples were prepared from rust layers formed on the surfaces of two commercial steels. X-ray scattered intensity profiles of the two samples showed that the rusts consisted mainly of two types of ferric oxyhydroxide, α-FeOOH and γ-FeOOH. The amounts of these rust components and the realistic atomic arrangements in the components were estimated by fitting both the ordinary and the environmental interference functions with a model structure calculated using the reverse Monte Carlo simulation technique. The two rust components were found to be the network structure formed by FeO 6 octahedral units, the network structure itself deviating from the ideal case. The present results also suggest that the structural analysis method using anomalous X-ray scattering and the reverse Monte Carlo technique is very successful in determining the atomic-scale structure of rusts formed on the steel surfaces

  1. Investigation of the near-surface electronic structure of Cr(001)

    International Nuclear Information System (INIS)

    Klebanoff, L.E.; Robey, S.W.; Liu, G.; Shirley, D.A.

    1985-01-01

    An angle-resolved photoelectron spectroscopy (ARPES) study of Cr(001) near-surface electronic structure is presented. Measurements are reported for energy-band dispersions along the [010] direction parallel to the crystal surface. The periodicity of these band dispersions indicates that the valence electrons experience and self-consistently establish antiferromagnetism in the near-surface layers of Cr(001). We also present highly-surface-sensitive ARPES measurements of the energy-band dispersions along the [001] direction normal to the surface. The results suggest that the surface magnetic moments, which couple ferromagnetically to each other within the surface layer, couple antiferromagnetically to the moments of the atoms in the second layer. Temperature-dependent studies are presented that reveal the persistence of near-surface antiferromagnetic order for temperatures up to 2.5 times the bulk Neel temperature. The temperature dependence of this antiferromagnetic order suggests that its thermal stability derives in part from the stability of the Cr(001) ferromagnetic surface phase

  2. Thresholds of surface codes on the general lattice structures suffering biased error and loss

    International Nuclear Information System (INIS)

    Tokunaga, Yuuki; Fujii, Keisuke

    2014-01-01

    A family of surface codes with general lattice structures is proposed. We can control the error tolerances against bit and phase errors asymmetrically by changing the underlying lattice geometries. The surface codes on various lattices are found to be efficient in the sense that their threshold values universally approach the quantum Gilbert-Varshamov bound. We find that the error tolerance of the surface codes depends on the connectivity of the underlying lattices; the error chains on a lattice of lower connectivity are easier to correct. On the other hand, the loss tolerance of the surface codes exhibits an opposite behavior; the logical information on a lattice of higher connectivity has more robustness against qubit loss. As a result, we come upon a fundamental trade-off between error and loss tolerances in the family of surface codes with different lattice geometries

  3. Morphology of IR and UV Laser-induced Structural Changes on Silicon Surfaces

    International Nuclear Information System (INIS)

    Jimenez-Jarquin, J.; Haro-Poniatowski, E.; Fernandez-Guasti, M.; Hernandez-Pozos, J.L.

    2005-01-01

    Using scanning electronic microscopy, we analyze the structural changes induced in silicon (100) wafers by focused IR (1064 nm) and UV (355 nm) nanosecond laser pulses. The experiments were performed in the laser ablation regime. When a silicon surface is irradiated by laser pulses in an O2 atmosphere conical microstructures are obtained. The changes in silicon surface morphology depend both on the incident radiation wavelength and the environmental atmosphere. We have patterned Si surfaces with a single focused laser spot and, in doing the experiments with IR or UV this reveals significant differences in the initial surface cracking and pattern formation, however the final result consist of an array of microcones when the experiment is carried out in oxygen. We employ a random scanning technique to irradiate silicon surfaces over large areas. In this form we have obtained large patterned areas

  4. Thresholds of surface codes on the general lattice structures suffering biased error and loss

    Energy Technology Data Exchange (ETDEWEB)

    Tokunaga, Yuuki [NTT Secure Platform Laboratories, NTT Corporation, 3-9-11 Midori-cho, Musashino, Tokyo 180-8585, Japan and Japan Science and Technology Agency, CREST, 5 Sanban-cho, Chiyoda-ku, Tokyo 102-0075 (Japan); Fujii, Keisuke [Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531 (Japan)

    2014-12-04

    A family of surface codes with general lattice structures is proposed. We can control the error tolerances against bit and phase errors asymmetrically by changing the underlying lattice geometries. The surface codes on various lattices are found to be efficient in the sense that their threshold values universally approach the quantum Gilbert-Varshamov bound. We find that the error tolerance of the surface codes depends on the connectivity of the underlying lattices; the error chains on a lattice of lower connectivity are easier to correct. On the other hand, the loss tolerance of the surface codes exhibits an opposite behavior; the logical information on a lattice of higher connectivity has more robustness against qubit loss. As a result, we come upon a fundamental trade-off between error and loss tolerances in the family of surface codes with different lattice geometries.

  5. Xe ion beam induced rippled structures on differently oriented single-crystalline Si surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Hanisch, Antje; Grenzer, Joerg; Facsko, Stefan [Forschungszentrum Dresden-Rossendorf, Institut fuer Ionenstrahlphysik und Materialforschung, PO Box 510119, 01314 Dresden (Germany); Biermanns, Andreas; Pietsch, Ullrich, E-mail: A.Hanisch@fzd.d [Universitaet Siegen, Festkoerperphysik, 57068 Siegen (Germany)

    2010-03-24

    We report on Xe{sup +} induced ripple formation at medium energy on single-crystalline silicon surfaces of different orientations using substrates with an intentional miscut from the [0 0 1] direction and a [1 1 1] oriented wafer. The ion beam incidence angle with respect to the surface normal was kept fixed at 65{sup 0} and the ion beam projection was parallel or perpendicular to the [1 1 0] direction. By a combination of atomic force microscopy, x-ray diffraction and high-resolution transmission electron microscopy we found that the features of the surface and subsurface rippled structures such as ripple wavelength and amplitude and the degree of order do not depend on the surface orientation as assumed in recent models of pattern formation for semiconductor surfaces. (fast track communication)

  6. Surface modelling on heavy atom crystalline compounds: HfO2 and UO2 fluorite structures

    International Nuclear Information System (INIS)

    Evarestov, Robert; Bandura, Andrei; Blokhin, Eugeny

    2009-01-01

    The study of the bulk and surface properties of cubic (fluorite structure) HfO 2 and UO 2 was performed using the hybrid Hartree-Fock density functional theory linear combination of atomic orbitals simulations via the CRYSTAL06 computer code. The Stuttgart small-core pseudopotentials and corresponding basis sets were used for the core-valence interactions. The influence of relativistic effects on the structure and properties of the systems was studied. It was found that surface properties of Mott-Hubbard dielectric UO 2 differ from those found for other metal oxides with the closed-shell configuration of d-electrons

  7. Stress intensity factor analyses of surface cracks in three-dimensional structures

    International Nuclear Information System (INIS)

    Miyazaki, Noriyuki; Shibata, Katsuyuki; Watanabe, Takayuki; Tagata, Kazunori.

    1983-11-01

    The stress intensity factor analyses of surface cracks in various three-dimensional structures were performed using the finite element computer program EPAS-J1. The results obtained by EPAS-J1 were compared with other finite element solutions or results obtained by the simplified estimation methods. Among the simplified estimation methods, the equations proposed by Newman and Raju give the distributions of the stress intensity factor along a crack front, which were compared with the result obtained by EPAS-J1. It was confirmed by comparing the results that EPAS-J1 gives reasonable stress intensity factors of surface cracks in three-dimensional structures. (author)

  8. Structure of the Streptococcus pneumoniae Surface Protein and Adhesin PfbA

    OpenAIRE

    Suits, Michael D.; Boraston, Alisdair B.

    2013-01-01

    PfbA (plasmin- and fibronectin-binding protein A) is an extracellular Streptococcus pneumoniae cell-wall attached surface protein that binds to fibronectin, plasmin, and plasminogen. Here we present a structural analysis of the surface exposed domains of PfbA using a combined approach of X-ray crystallography and small-angle X-ray scattering (SAXS). The crystal structure of the PfbA core domain, here called PfbAβ, determined to 2.28 Å resolution revealed an elongated 12-stranded parallel β-he...

  9. Babinet's principle and the band structure of surface waves on patterned metal arrays

    Science.gov (United States)

    Edmunds, J. D.; Taylor, M. C.; Hibbins, A. P.; Sambles, J. R.; Youngs, I. J.

    2010-05-01

    The microwave response of an array of square metal patches and its complementary structure, an array of square holes, has been experimentally studied. The resonant phenomena, which yield either enhanced transmission or reflection, are attributed to the excitation of diffractively coupled surface waves. The band structure of these surface modes has been quantified for both p-(transverse magnetic) and s-(transverse electric) polarized radiation and is found to be dependent on the periodicity of the electric and magnetic fields on resonance. The results are in excellent accord with predictions from finite element method modeling and the electromagnetic form of Babinet's principle [Babinet, C. R. Acad. Sci. 4, 638 (1837)].

  10. Babinet's principle and the band structure of surface waves on patterned metal arrays

    International Nuclear Information System (INIS)

    Edmunds, J. D.; Taylor, M. C.; Hibbins, A. P.; Sambles, J. R.; Youngs, I. J.

    2010-01-01

    The microwave response of an array of square metal patches and its complementary structure, an array of square holes, has been experimentally studied. The resonant phenomena, which yield either enhanced transmission or reflection, are attributed to the excitation of diffractively coupled surface waves. The band structure of these surface modes has been quantified for both p-(transverse magnetic) and s-(transverse electric) polarized radiation and is found to be dependent on the periodicity of the electric and magnetic fields on resonance. The results are in excellent accord with predictions from finite element method modeling and the electromagnetic form of Babinet's principle [Babinet, C. R. Acad. Sci. 4, 638 (1837)].

  11. Surfaces of Minimal Paths from Topological Structures and Applications to 3D Object Segmentation

    KAUST Repository

    Algarni, Marei

    2017-10-24

    Extracting surfaces, representing boundaries of objects of interest, from volumetric images, has important applications in various scientific domains, from medicine to geology. In this thesis, I introduce novel mathematical, computational, and algorithmic machinery for extraction of sheet-like surfaces (with boundary), whose boundary is unknown a-priori, a particularly important case in applications that has no convenient methods. This case of a surface with boundaries has applications in extracting faults (among other geological structures) from seismic images in geological applications. Another application domain is in the extraction of structures in the lung from computed tomography (CT) images. Although many methods have been developed in computer vision for extraction of surfaces, including level sets, convex optimization approaches, and graph cut methods, none of these methods appear to be applicable to the case of surfaces with boundary. The novel methods for surface extraction, derived in this thesis, are built on the theory of Minimal Paths, which has been used primarily to extract curves in noisy or corrupted images and have had wide applicability in 2D computer vision. This thesis extends such methods to surfaces, and it is based on novel observations that surfaces can be determined by extracting topological structures from the solution of the eikonal partial differential equation (PDE), which is the basis of Minimal Path theory. Although topological structures are known to be difficult to extract from images, which are both noisy and discrete, this thesis builds robust methods based on Morse theory and computational topology to address such issues. The algorithms have run-time complexity O(NlogN), less complex than existing approaches. The thesis details the algorithms, theory, and shows an extensive experimental evaluation on seismic images and medical images. Experiments show out-performance in accuracy, computational speed, and user convenience

  12. Formation of surface nano-structures by plasma expansion induced by highly charged ions

    Energy Technology Data Exchange (ETDEWEB)

    Moslem, W. M. [Department of Physics, Faculty of Science, Port Said University, Port Said (Egypt); Centre for Theoretical Physics, The British University in Egypt (BUE), El-Shorouk City, Cairo (Egypt) and International Centre for Advanced Studies in Physical Sciences, Faculty of Physics and Astronomy, Ruhr University Bochum, D-44780 Bochum (Germany); El-Said, A. S. [Physics Department, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Nuclear and Radiation Physics Laboratory, Physics Department, Faculty of Science, Mansoura University, 35516 Mansoura (Egypt) and Institute of Ion Beam Physics and Materials Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Bautzner Landstr. 128, 01328 Dresden (Germany)

    2012-12-15

    Slow highly charged ions (HCIs) create surface nano-structures (nano-hillocks) on the quartz surface. The formation of hillocks was only possible by surpassing a potential energy threshold. By using the plasma expansion approach with suitable hydrodynamic equations, the creation mechanism of the nano-hillocks induced by HCIs is explained. Numerical analysis reveal that within the nanoscale created plasma region, the increase of the temperature causes an increase of the self-similar solution validity domain, and consequently the surface nano-hillocks become taller. Furthermore, the presence of the negative (positive) nano-dust particles would lead to increase (decrease) the nano-hillocks height.

  13. Modal analysis and cut-off conditions of multichannel surface-acoustic-waveguide structures.

    Science.gov (United States)

    Griffel, G; Golan, G; Ruschin, S; Seidman, A; Croitoru, N

    1988-01-01

    Multichannel guides for surface acoustic waves can improve the efficiency of SAW (surface acoustic-wave) devices significantly. Focusing, steering, and modulating the propagating acoustical modes can be achieved similarly to optical waveguided devices. A general formulation is presented for the analysis of the lateral waveguiding properties of Rayleigh modes in surfaces loaded with deposited strips of different materials. General expressions are obtained for the number of modes and cutoff conditions in these structures. As examples of applications, a simple directional coupler and an electrically controlled coupler are proposed.

  14. Biomimetic electroactive polyimide with rose petal-like surface structure for anticorrosive coating application

    Directory of Open Access Journals (Sweden)

    W. F. Ji

    2017-08-01

    Full Text Available In this work, an electroactive polyimide (EPI coating with biomimetic surface structure of rose petal used in anticorrosion application was first presented. First of all, amino-capped aniline trimer (ACAT was synthesized by oxidative coupling reaction, followed by characterized through Fourier transform infrared spectroscooy (FTIR, liquid chromatography – mass spcerometry (LC-MS and proton nuclear magnetic resonance (1H-NMR spectroscopy. Subsequently, as-prepared ACAT was reacted with isopropylidenediphenoxy-bis(phthalic anhydride (BPADA to give electroactive poly(amic acid (EPAA. Moreover, poly(dimethylsiloxane (PDMS was used to be the soft negative template for pattern transfer from the surface of rose petal to the surface of polymer coating. The EPI coating with biomimetic structure was obtained by programmed heating the EPAA slurry casting onto the negative PDMS template. The anticorrosive performance of as-prepared biomimetic EPI coating was demonstrated by performing a series of electrochemical measurements (Tafel, Nyquist, and Bode plots upon cold-rolled steel (CRS electrode in a NaCl aqueous solution. It should be noted that the biomimetic EPI coating with rose petal-like structure was found to exhibit better anticorrosion than that of EPI without biomimetic structure. Moreover, the surface contact angle of water droplets for biomimetic EPI coating was found to be ~150°, which is significantly higher than that of EPI coating with smooth structure (~87°, indicating that the EPI coating with biomimetic structure reveals better hydrophobicity. The apparent mechanism for improved anticorrosive properties is twofold: (1 the biomimetic structure of EPI coating can repel water droplets. (2 electroactivity of EPI coating promotes the formation of densely passive layer of metal oxide on metallic surface.

  15. Defect and structural imperfection effects on the electronic properties of BiTeI surfaces

    International Nuclear Information System (INIS)

    Fiedler, Sebastian; Seibel, Christoph; Lutz, Peter; Bentmann, Hendrik; Reinert, Friedrich; El-Kareh, Lydia; Bode, Matthias; Eremeev, Sergey V; Tereshchenko, Oleg E; Kokh, Konstantin A; Chulkov, Evgueni V; Kuznetsova, Tatyana V; Grebennikov, Vladimir I

    2014-01-01

    The surface electronic structure of the narrow-gap seminconductor BiTeI exhibits a large Rashba-splitting which strongly depends on the surface termination. Here we report on a detailed investigation of the surface morphology and electronic properties of cleaved BiTeI single crystals by scanning tunneling microscopy, photoelectron spectroscopy (ARPES, XPS), electron diffraction (SPA-LEED) and density functional theory calculations. Our measurements confirm a previously reported coexistence of Te- and I-terminated surface areas originating from bulk stacking faults and find a characteristic length scale of ∼100 nm for these areas. We show that the two terminations exhibit distinct types of atomic defects in the surface and subsurface layers. For electronic states resided on the I terminations we observe an energy shift depending on the time after cleavage. This aging effect is successfully mimicked by depositon of Cs adatoms found to accumulate on top of the I terminations. As shown theoretically on a microscopic scale, this preferential adsorbing behaviour results from considerably different energetics and surface diffusion lengths at the two terminations. Our investigations provide insight into the importance of structural imperfections as well as intrinsic and extrinsic defects on the electronic properties of BiTeI surfaces and their temporal stability. (paper)

  16. Experimental and numerical study of the high-temperature structure of copper single crystal surfaces

    International Nuclear Information System (INIS)

    Loisel, Bertrand

    1989-01-01

    The structure of copper single crystal surfaces has been investigated on an atomic scale using two complementary tools: helium beam diffraction experiments and computer simulations by molecular dynamics. In the case of stepped surfaces, the roughening transition occurs at low temperature. Our helium beam diffraction experiments in the range 70-1000 K reveal this transition at 650±50 K and 150±50 K respectively on the (331) and (310) surfaces. We emphasize the role of the terrace and step structure on the thermal roughness, which is ruled by microscopic energies related to the creation and interaction of defects on the step edges. Adsorbing oxygen on a rough (310) surface gives rise to ordered superstructures. In our computer simulations, the interatomic forces are derived from an empiric N-body potential which leads to a realistic description of the static and dynamical properties of the bulk metal and its surfaces. We analyze the results of high-temperature simulations on the (110) surface. Two types of disorder are distinguished: the creation of adatom-vacancy pairs and the enhancement of the vibrational amplitudes of the atoms near their equilibrium site. We establish that both phenomena take place in the same temperature range. These simulations also indicate the very anisotropic behaviour of the surface at high temperatures (> 1000 K). (author) [fr

  17. INTERNAL STRUCTURE OF ASTEROIDS HAVING SURFACE SHEDDING DUE TO ROTATIONAL INSTABILITY

    Energy Technology Data Exchange (ETDEWEB)

    Hirabayashi, Masatoshi [Research Associate, Colorado Center for Astrodynamics Research, Aerospace Engineering Sciences, University of Colorado Boulder (United States); Sánchez, Diego Paul [Senior Research Associate, Colorado Center for Astrodynamics Research, Aerospace Engineering Sciences, University of Colorado Boulder (United States); Scheeres, Daniel J., E-mail: masatoshi.hirabayashi@colorado.edu [Richard Seebass Chair, Professor, Colorado Center for Astrodynamics Research, Aerospace Engineering Sciences, University of Colorado Boulder (United States)

    2015-07-20

    Surface shedding of an asteroid is a failure mode where surface materials fly off due to strong centrifugal forces beyond the critical spin period, while the internal structure does not deform significantly. This paper proposes a possible structure of an asteroid interior that leads to surface shedding due to rapid rotation rates. A rubble pile asteroid is modeled as a spheroid composed of a surface shell and a concentric internal core, the entire assembly called the test body. The test body is assumed to be uniformly rotating around a constant rotation axis. We also assume that while the bulk density and the friction angle are constant, the cohesion of the surface shell is different from that of the internal core. First, developing an analytical model based on limit analysis, we provide the upper and lower bounds for the actual surface shedding condition. Second, we use a Soft-sphere Discrete Element Method (SSDEM) to study dynamical deformation of the test body due to a quasi-static spin-up. In this paper we show the consistency of both approaches. Additionally, the SSDEM simulations show that the initial failure always occurs locally and not globally. In addition, as the core becomes larger, the size of lofted components becomes smaller. These results imply that if there is a strong core in a progenitor body, surface shedding is the most likely failure mode.

  18. INTERNAL STRUCTURE OF ASTEROIDS HAVING SURFACE SHEDDING DUE TO ROTATIONAL INSTABILITY

    International Nuclear Information System (INIS)

    Hirabayashi, Masatoshi; Sánchez, Diego Paul; Scheeres, Daniel J.

    2015-01-01

    Surface shedding of an asteroid is a failure mode where surface materials fly off due to strong centrifugal forces beyond the critical spin period, while the internal structure does not deform significantly. This paper proposes a possible structure of an asteroid interior that leads to surface shedding due to rapid rotation rates. A rubble pile asteroid is modeled as a spheroid composed of a surface shell and a concentric internal core, the entire assembly called the test body. The test body is assumed to be uniformly rotating around a constant rotation axis. We also assume that while the bulk density and the friction angle are constant, the cohesion of the surface shell is different from that of the internal core. First, developing an analytical model based on limit analysis, we provide the upper and lower bounds for the actual surface shedding condition. Second, we use a Soft-sphere Discrete Element Method (SSDEM) to study dynamical deformation of the test body due to a quasi-static spin-up. In this paper we show the consistency of both approaches. Additionally, the SSDEM simulations show that the initial failure always occurs locally and not globally. In addition, as the core becomes larger, the size of lofted components becomes smaller. These results imply that if there is a strong core in a progenitor body, surface shedding is the most likely failure mode

  19. Femtosecond laser-induced periodic surface structures on steel and titanium alloy for tribological applications

    Science.gov (United States)

    Bonse, J.; Koter, R.; Hartelt, M.; Spaltmann, D.; Pentzien, S.; Höhm, S.; Rosenfeld, A.; Krüger, J.

    2014-10-01

    Laser-induced periodic surface structures (LIPSS, ripples) were generated on stainless steel (100Cr6) and titanium alloy (Ti6Al4V) surfaces upon irradiation with multiple femtosecond laser pulses (pulse duration 30 fs, central wavelength 790 nm). The experimental conditions (laser fluence, spatial spot overlap) were optimized in a sample-scanning geometry for the processing of large surface areas (5 × 5 mm2) covered homogeneously by the nanostructures. The irradiated surface regions were subjected to white light interference microscopy and scanning electron microscopy revealing spatial periods around 600 nm. The tribological performance of the nanostructured surface was characterized by reciprocal sliding against a ball of hardened steel in paraffin oil and in commercial engine oil as lubricants, followed by subsequent inspection of the wear tracks. For specific conditions, on the titanium alloy a significant reduction of the friction coefficient by a factor of more than two was observed on the laser-irradiated (LIPSS-covered) surface when compared to the non-irradiated one, indicating the potential benefit of laser surface structuring for tribological applications.

  20. The New Horizons Radio Science Experiment: Performance and Measurements of Pluto's Atmospheric Structure, Surface Pressure, and Surface Temperature

    Science.gov (United States)

    Linscott, I.; Hinson, D. P.; Bird, M. K.; Stern, A.; Weaver, H. A., Jr.; Olkin, C.; Young, L. A.; Ennico Smith, K.

    2015-12-01

    The New Horizons (NH) spacecraft payload contained the Radio Science Experiment (REX) for determining key characteristics of Pluto and Charon during the July 14, 2015, flyby of the Pluto/Charon system. The REX flight equipment augments the NH X-band radio transceiver by providing a high precision, narrow band recording of high power uplink transmissions from Earth stations, as well as a record of broadband radiometric power. This presentation will review the performance and initial results of two high- priority observations. First, REX received two pair of 20-kW signals, one pair per polarization, transmitted from the DSN at 4.2-cm wavelength during a diametric radio occultation by Pluto. REX recorded these uplink signals and determined precise measurement of the surface pressure, the temperature structure of the lower atmosphere, and the surface radius of Pluto. The ingress portion of one polarization was played back from the spacecraft in July and processed to obtain the pressure and temperature structure of Pluto's atmosphere. Second, REX measured the thermal emission from Pluto at 4.2- cm wavelength during two linear scans across the disk at close range when both the dayside and the night side are visible. Both scans extend from limb to limb with a resolution of one-tenth Pluto's disk and temperature resolution of 0.1 K. Occultation and radiometric temperature results presented here will encompass additional data scheduled for playback in September.

  1. Experimental evidence and structural modeling of nonstoichiometric (010) surfaces coexisting in hydroxyapatite nano-crystals.

    Science.gov (United States)

    Ospina, C A; Terra, J; Ramirez, A J; Farina, M; Ellis, D E; Rossi, A M

    2012-01-01

    High-resolution transmission electron microscopy (HRTEM) and ab initio quantum-mechanical calculations of electronic structure were combined to investigate the structure of the hydroxyapatite (HA) (010) surface, which plays an important role in HA interactions with biological media. HA was synthesized by in vitro precipitation at 37°C. HRTEM images revealed thin elongated rod nanoparticles with preferential growth along the [001] direction and terminations parallel to the (010) plane. The focal series reconstruction (FSR) technique was applied to develop an atomic-scale structural model of the high-resolution images. The HRTEM simulations identified the coexistence of two structurally distinct terminations for (010) surfaces: a rather flat Ca(II)-terminated surface and a zig-zag structure with open OH channels. Density functional theory (DFT) was applied in a periodic slab plane-wave pseudopotential approach to refine details of atomic coordination and bond lengths of Ca(I) and Ca(II) sites in hydrated HA (010) surfaces, starting from the HRTEM model. Copyright © 2011 Elsevier B.V. All rights reserved.

  2. Are turtleback fault surfaces common structural elements of highly extended terranes?

    Science.gov (United States)

    Çemen, Ibrahim; Tekeli, Okan; Seyitoğlu, Gűrol; Isik, Veysel

    2005-12-01

    The Death Valley region of the U.S.A. contains three topographic surfaces resembling the carapace of a turtle. These three surfaces are well exposed along the Black Mountain front and are named the Badwater, Copper Canyon, and Mormon Point Turtlebacks. It is widely accepted that the turtlebacks are also detachment surfaces that separate brittlely deformed Cenozoic volcanic and sedimentary rocks of the hanging wall from the strongly mylonitic, ductilely deformed pre-Cenozoic rocks of the footwall. We have found a turtleback-like detachment surface along the southern margin of the Alasehir (Gediz) Graben in western Anatolia, Turkey. This surface qualifies as a turtleback fault surface because it (a) is overall convex-upward and (b) separates brittlely deformed hanging wall Cenozoic sedimentary rocks from the ductilely to brittlely deformed, strongly mylonitic pre-Cenozoic footwall rocks. The surface, named here Horzum Turtleback, contains striations that overprint mylonitic stretching lineations indicating top to the NE sense of shear. This suggests that the northeasterly directed Cenozoic extension in the region resulted in a ductile deformation at depth and as the crust isostatically adjusted to the removal of the rocks in the hanging wall of the detachment fault, the ductilely deformed mylonitic rocks of the footwall were brought to shallower depths where they were brittlely deformed. The turtleback surfaces have been considered unique to the Death Valley region, although detachment surfaces, rollover folds, and other extensional structures have been well observed in other extended terranes of the world. The presence of a turtleback fault surface in western Anatolia, Turkey, suggests that the turtleback faults may be common structural features of highly extended terranes.

  3. Development of 68Ga-labeled mannosylated human serum albumin (MSA) as a lymph node imaging agent for positron emission tomography

    International Nuclear Information System (INIS)

    Choi, Jae Yeon; Jeong, Jae Min; Yoo, Byong Chul; Kim, Kyunggon; Kim, Youngsoo; Yang, Bo Yeun; Lee, Yun-Sang; Lee, Dong Soo; Chung, June-Key; Lee, Myung Chul

    2011-01-01

    Introduction: Although many sentinel lymph node (SLN) imaging agents labeled with 99m Tc have been developed, no positron-emitting agent has been specifically designed for SLN imaging. Furthermore, the development of the beta probe and the requirement for better image resolution have increased the need for a positron-emitting SLN imaging agent. Here, we describe the development of a novel positron-emitting SLN imaging agent labeled with 68 Ga. Methods: A mannosylated human serum albumin (MSA) was synthesized by conjugating α-D-mannopyranosylphenyl isothiocyanate to human serum albumin in sodium carbonate buffer (pH 9.5), and then 2-(p-isothiocyanatobenzyl)-1,4,7-triazacyclononane-1,4,7-triacetic acid was conjugated to synthesize NOTA-MSA. Numbers of mannose and NOTA units conjugated in NOTA-MSA were determined by matrix-assisted laser desorption ionization time-of-flight mass spectrometry. NOTA-MSA was labeled with 68 Ga at room temperature. The stability of 68 Ga-NOTA-MSA was checked in labeling medium at room temperature and in human serum at 37 o C. Biodistribution in normal ICR mice was investigated after tail vein injection, and micro-positron emission tomography (PET) images were obtained after injecting 68 Ga-NOTA-MSA into a tail vein or a footpad. Results: The numbers of conjugated α-D-mannopyranosylphenyl isothiocyanate and 2-(p-isothiocyanatobenzyl)-1,4,7-triazacyclononane-1,4,7-triacetic acid units in NOTA-MSA were 10.6 and 6.6, respectively. The labeling efficiency of 68 Ga-NOTA-MSA was greater than 99% at room temperature, and its stability was greater than 99% at 4 h. Biodistribution and micro-PET studies of 68 Ga-NOTA-MSA showed high liver and spleen uptakes after intravenous injection. 68 Ga-NOTA-MSA injected into a footpad rapidly migrated to the lymph node. Conclusions: 68 Ga-NOTA-MSA was successfully developed as a novel SLN imaging agent for PET. NOTA-MSA is easily labeled at high efficiency, and subcutaneously administered 68 Ga-NOTA-MSA was

  4. Development of {sup 68}Ga-labeled mannosylated human serum albumin (MSA) as a lymph node imaging agent for positron emission tomography

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Jae Yeon [Department of Nuclear Medicine, Institute of Radiation Medicine, Seoul National University College of Medicine, Seoul (Korea, Republic of); Cancer Research Institute, Seoul National University College of Medicine, Seoul (Korea, Republic of); Department of Radiation Applied Life Sciences, Seoul National University College of Medicine, Seoul (Korea, Republic of); Jeong, Jae Min, E-mail: jmjng@snu.ac.k [Department of Nuclear Medicine, Institute of Radiation Medicine, Seoul National University College of Medicine, Seoul (Korea, Republic of); Cancer Research Institute, Seoul National University College of Medicine, Seoul (Korea, Republic of); Department of Radiation Applied Life Sciences, Seoul National University College of Medicine, Seoul (Korea, Republic of); Yoo, Byong Chul [Research Institute, National Cancer Center, Goyang, Gyeonggi (Korea, Republic of); Kim, Kyunggon; Kim, Youngsoo [Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul (Korea, Republic of); Yang, Bo Yeun; Lee, Yun-Sang; Lee, Dong Soo [Department of Nuclear Medicine, Institute of Radiation Medicine, Seoul National University College of Medicine, Seoul (Korea, Republic of); Department of Radiation Applied Life Sciences, Seoul National University College of Medicine, Seoul (Korea, Republic of); Chung, June-Key [Department of Nuclear Medicine, Institute of Radiation Medicine, Seoul National University College of Medicine, Seoul (Korea, Republic of); Cancer Research Institute, Seoul National University College of Medicine, Seoul (Korea, Republic of); Department of Radiation Applied Life Sciences, Seoul National University College of Medicine, Seoul (Korea, Republic of); Lee, Myung Chul [Department of Nuclear Medicine, Institute of Radiation Medicine, Seoul National University College of Medicine, Seoul (Korea, Republic of)

    2011-04-15

    Introduction: Although many sentinel lymph node (SLN) imaging agents labeled with {sup 99m}Tc have been developed, no positron-emitting agent has been specifically designed for SLN imaging. Furthermore, the development of the beta probe and the requirement for better image resolution have increased the need for a positron-emitting SLN imaging agent. Here, we describe the development of a novel positron-emitting SLN imaging agent labeled with {sup 68}Ga. Methods: A mannosylated human serum albumin (MSA) was synthesized by conjugating {alpha}-D-mannopyranosylphenyl isothiocyanate to human serum albumin in sodium carbonate buffer (pH 9.5), and then 2-(p-isothiocyanatobenzyl)-1,4,7-triazacyclononane-1,4,7-triacetic acid was conjugated to synthesize NOTA-MSA. Numbers of mannose and NOTA units conjugated in NOTA-MSA were determined by matrix-assisted laser desorption ionization time-of-flight mass spectrometry. NOTA-MSA was labeled with {sup 68}Ga at room temperature. The stability of {sup 68}Ga-NOTA-MSA was checked in labeling medium at room temperature and in human serum at 37{sup o}C. Biodistribution in normal ICR mice was investigated after tail vein injection, and micro-positron emission tomography (PET) images were obtained after injecting {sup 68}Ga-NOTA-MSA into a tail vein or a footpad. Results: The numbers of conjugated {alpha}-D-mannopyranosylphenyl isothiocyanate and 2-(p-isothiocyanatobenzyl)-1,4,7-triazacyclononane-1,4,7-triacetic acid units in NOTA-MSA were 10.6 and 6.6, respectively. The labeling efficiency of {sup 68}Ga-NOTA-MSA was greater than 99% at room temperature, and its stability was greater than 99% at 4 h. Biodistribution and micro-PET studies of {sup 68}Ga-NOTA-MSA showed high liver and spleen uptakes after intravenous injection. {sup 68}Ga-NOTA-MSA injected into a footpad rapidly migrated to the lymph node. Conclusions: {sup 68}Ga-NOTA-MSA was successfully developed as a novel SLN imaging agent for PET. NOTA-MSA is easily labeled at high

  5. Preparation and Characterization of Surface Photocatalytic Activity with NiO/TiO2 Nanocomposite Structure

    Directory of Open Access Journals (Sweden)

    Jian-Zhi Chen

    2015-07-01

    Full Text Available This study achieved a nanocomposite structure of nickel oxide (NiO/titanium dioxide (TiO2 heterojunction on a TiO2 film surface. The photocatalytic activity of this structure evaluated by decomposing methylene blue (MB solution was strongly correlated to the conductive behavior of the NiO film. A p-type NiO film of high concentration in contact with the native n-type TiO2 film, which resulted in a strong inner electrical field to effectively separate the photogenerated electron-hole pairs, exhibited a much better photocatalytic activity than the controlled TiO2 film. In addition, the photocatalytic activity of the NiO/TiO2 nanocomposite structure was enhanced as the thickness of the p-NiO film decreased, which was beneficial for the migration of the photogenerated carriers to the structural surface.

  6. Preparation and Characterization of Surface Photocatalytic Activity with NiO/TiO₂ Nanocomposite Structure.

    Science.gov (United States)

    Chen, Jian-Zhi; Chen, Tai-Hong; Lai, Li-Wen; Li, Pei-Yu; Liu, Hua-Wen; Hong, Yi-You; Liu, Day-Shan

    2015-07-13

    This study achieved a nanocomposite structure of nickel oxide (NiO)/titanium dioxide (TiO₂) heterojunction on a TiO₂ film surface. The photocatalytic activity of this structure evaluated by decomposing methylene blue (MB) solution was strongly correlated to the conductive behavior of the NiO film. A p -type NiO film of high concentration in contact with the native n -type TiO₂ film, which resulted in a strong inner electrical field to effectively separate the photogenerated electron-hole pairs, exhibited a much better photocatalytic activity than the controlled TiO₂ film. In addition, the photocatalytic activity of the NiO/TiO₂ nanocomposite structure was enhanced as the thickness of the p -NiO film decreased, which was beneficial for the migration of the photogenerated carriers to the structural surface.

  7. Investigations on a nano-scale periodical waveguide structure taking surface plasmon polaritons into consideration

    International Nuclear Information System (INIS)

    Liu Weihao; Zhong Renbin; Zhou Jun; Zhang Yaxin; Hu Min; Liu Shenggang

    2012-01-01

    Detailed theoretical analysis and computer simulations on the electromagnetic characteristics of a nano-scale periodical waveguide structure, taking surface plasmon polaritons (SPPs) into consideration, are carried out in this paper. The results show that SPPs will significantly influence the electromagnetic characteristics of the structure. When the operation frequency is in a certain band—the ‘radial confinement band’, neither radial surface plasmon waves nor guided waves, which both will lead to radial energy loss, can be excited in the structure. And the electromagnetic waves are completely confined within the longitudinal waveguide and propagate along it with little attenuation. The radial energy loss is then significantly reduced. These results are of great significance not only for increasing the efficiency of the radiation sources based on the nano-scale periodical waveguide structure but also for the development of high-efficiency waveguides and wide-band filters in the infrared and visible light regimes. (paper)

  8. Replication fidelity assessment of large area sub-μm structured polymer surfaces using scatterometry

    International Nuclear Information System (INIS)

    Calaon, M; Hansen, H N; Tosello, G; Madsen, M H; Weirich, J; Hansen, P E; Garnaes, J; Tang, P T

    2015-01-01

    The present study addresses one of the key challenges in the product quality control of transparent structured polymer substrates, the replication fidelity of sub-μm structures over a large area. Additionally the work contributes to the development of new techniques focused on in-line characterization of large nanostructured surfaces using scatterometry. In particular an approach to quantify the replication fidelity of high volume manufacturing processes such as polymer injection moulding is presented. Both periodic channels and semi-spherical structures were fabricated on nickel shims used for later injection moulding of Cyclic-olefin-copolymer (COC) substrate were the sub-μm features where ultimately transferred. The scatterometry system was validated using calibrated atomic force microscopy measurements and a model based on scalar diffraction theory employed to calculate the expected angular distribution of the reflected and the transmitted intensity for the nickel surfaces and structured COC and, respectively. (paper)

  9. Fasciola hepatica Surface Coat Glycoproteins Contain Mannosylated and Phosphorylated N-glycans and Exhibit Immune Modulatory Properties Independent of the Mannose Receptor.

    Directory of Open Access Journals (Sweden)

    Alessandra Ravidà

    2016-04-01

    Full Text Available Fascioliasis, caused by the liver fluke Fasciola hepatica, is a neglected tropical disease infecting over 1 million individuals annually with 17 million people at risk of infection. Like other helminths, F. hepatica employs mechanisms of immune suppression in order to evade its host immune system. In this study the N-glycosylation of F. hepatica's tegumental coat (FhTeg and its carbohydrate-dependent interactions with bone marrow derived dendritic cells (BMDCs were investigated. Mass spectrometric analysis demonstrated that FhTeg N-glycans comprised mainly of oligomannose and to a lesser extent truncated and complex type glycans, including a phosphorylated subset. The interaction of FhTeg with the mannose receptor (MR was investigated. Binding of FhTeg to MR-transfected CHO cells and BMDCs was blocked when pre-incubated with mannan. We further elucidated the role played by MR in the immunomodulatory mechanism of FhTeg and demonstrated that while FhTeg's binding was significantly reduced in BMDCs generated from MR knockout mice, the absence of MR did not alter FhTeg's ability to induce SOCS3 or suppress cytokine secretion from LPS activated BMDCs. A panel of negatively charged monosaccharides (i.e. GlcNAc-4P, Man-6P and GalNAc-4S were used in an attempt to inhibit the immunoregulatory properties of phosphorylated oligosaccharides. Notably, GalNAc-4S, a known inhibitor of the Cys-domain of MR, efficiently suppressed FhTeg binding to BMDCs and inhibited the expression of suppressor of cytokine signalling (SOCS 3, a negative regulator the TLR and STAT3 pathway. We conclude that F. hepatica contains high levels of mannose residues and phosphorylated glycoproteins that are crucial in modulating its host's immune system, however the role played by MR appears to be limited to the initial binding event suggesting that other C-type lectin receptors are involved in the immunomodulatory mechanism of FhTeg.

  10. Renal Epithelial Cell Injury Induced by Calcium Oxalate Monohydrate Depends on their Structural Features: Size, Surface, and Crystalline Structure.

    Science.gov (United States)

    Sun, Xin-Yuan; Ouyang, Jian-Ming; Gan, Qiong-Zhi; Liu, Ai-Jie

    2016-11-01

    Urinary crystals in normal and kidney stone patients often differ in crystal sizes and surface structures, but the effects of different crystal properties on renal tubular epithelial cells remain unclear. This study aimed to compare the cytotoxicity of micron/nano-calcium oxalate monohydrate (COM) crystals with sizes of 50 nm, 200 nm, 1 μm, 3 μm, and 10 μm to African green monkey renal epithelial (Vero) cells, to reveal the effect of crystal size and surface structure on cell injury, and to investigate the pathological mechanism of calcium oxalate kidney stones. Cell viability, cellular biochemical parameters, and internalized crystal amount in Vero cells were closely associated with the size of COM crystals. At the same concentration (200 μg/mL), COM-1 μm induced the most serious injury to Vero cells and caused the most significant change to cellular biochemical parameters, which were related to the specific porous structure and highest internalized amount in Vero cells. By contrast, COM-50 nm and COM-200 nm crystals lost their small size effect because of serious aggregation and weakened their toxicity to cells. COM-3 μm and COM-10 μm crystals were too large for cells to completely internalize; these crystals also exhibited a low specific surface area and thus weakened their toxicity. The excessive expression of intracellular ROS and reduction of the free-radical scavenger SOD were the main reasons for cell injury and eventually caused necrotic cell death. Crystal size, surface structure, aggregation, and internalization amount were closely related to the cytotoxicity of COM crystals.

  11. Assembly, Structure, and Functionality of Metal-Organic Networks and Organic Semiconductor Layers at Surfaces

    Science.gov (United States)

    Tempas, Christopher D.

    Self-assembled nanostructures at surfaces show promise for the development of next generation technologies including organic electronic devices and heterogeneous catalysis. In many cases, the functionality of these nanostructures is not well understood. This thesis presents strategies for the structural design of new on-surface metal-organic networks and probes their chemical reactivity. It is shown that creating uniform metal sites greatly increases selectivity when compared to ligand-free metal islands. When O2 reacts with single-site vanadium centers, in redox-active self-assembled coordination networks on the Au(100) surface, it forms one product. When O2 reacts with vanadium metal islands on the same surface, multiple products are formed. Other metal-organic networks described in this thesis include a mixed valence network containing Pt0 and PtII and a network where two Fe centers reside in close proximity. This structure is stable to temperatures >450 °C. These new on-surface assemblies may offer the ability to perform reactions of increasing complexity as future heterogeneous catalysts. The functionalization of organic semiconductor molecules is also shown. When a few molecular layers are grown on the surface, it is seen that the addition of functional groups changes both the film's structure and charge transport properties. This is due to changes in both first layer packing structure and the pi-electron distribution in the functionalized molecules compared to the original molecule. The systems described in this thesis were studied using high-resolution scanning tunneling microscopy, non-contact atomic force microscopy, and X-ray photoelectron spectroscopy. Overall, this work provides strategies for the creation of new, well-defined on-surface nanostructures and adds additional chemical insight into their properties.

  12. The New Horizons Radio Science Experiment: Expected Performance in Measurements of Pluto's Atmospheric Structure, Surface Pressure, and Surface Temperature

    Science.gov (United States)

    Hinson, D. P.; Linscott, I.; Woods, W. W.; Tyler, G. L.; Bird, M. K.; Paetzold, M.; Strobel, D. F.

    2014-12-01

    The New Horizons (NH) payload includes a Radio Science Experiment (REX) for investigating key characteristics of Pluto and Charon during the upcoming flyby in July 2015. REX flight equipment augments the NH radio transceiver used for spacecraft communications and tracking. The REX hardware implementation requires 1.6 W and 160 g. This presentation will focus on the final design and the predicted performance of two high-priority observations. First, REX will receive signals from a pair of 70-m antennas on Earth - each transmitting 20 kW at 4.2-cm wavelength - during a diametric radio occultation by Pluto. The data recorded by REX will reveal the surface pressure, the temperature structure of the lower atmosphere, and the surface radius. Second, REX will measure the thermal emission from Pluto at 4.2-cm wavelength during two linear scans across the disk at close range when both the dayside and the nightside are visible, allowing the surface temperature and its spatial variations to be determined. Both scans extend from limb to limb with a resolution of about 10 pixels; one bisects Pluto whereas the second crosses the winter pole. We will illustrate the capabilities of REX by reviewing the method of analysis and the precision achieved in a lunar occultation observed by New Horizons in May 2011. Re-analysis of radio occultation measurements by Voyager 2 at Triton is also under way. More generally, REX objectives include a radio occultation search for Pluto's ionosphere; examination of Charon through both radio occultation and radiometry; a search for a radar echo from Pluto's surface; and improved knowledge of the Pluto system mass and the Pluto-Charon mass ratio from a combination of two-way and one-way Doppler frequency measurements.

  13. The power of joint application of LEED and DFT in quantitative surface structure determination

    International Nuclear Information System (INIS)

    Heinz, K; Hammer, L; Mueller, S

    2008-01-01

    It is demonstrated for several cases that the joint application of low-energy electron diffraction (LEED) and structural calculations using density functional theory (DFT) can retrieve the correct surface structure even though single application of both methods fails. On the experimental side (LEED) the failure can be due to the simultaneous presence of weak and very strong scatterers or to an insufficient data base leaving different structures with the same quality of fit between experimental data and calculated model intensities. On the theory side (DFT) it can be difficult to predict the coverage of an adsorbate or two different structures may own almost the same total energy, but only one of the structures is assumed in experiment due to formation kinetics. It is demonstrated how in the different cases the joint application of both methods-which yield about the same structural precision-offers a way out of the dilemma

  14. An Allergen Portrait Gallery: Representative Structures and an Overview of IgE Binding Surfaces

    Directory of Open Access Journals (Sweden)

    Ovidiu Ivanciuc

    2010-10-01

    Full Text Available Recent progress in the biochemical classification and structural determination of allergens and allergen–antibody complexes has enhanced our understanding of the molecular determinants of allergenicity. Databases of allergens and their epitopes have facilitated the clustering of allergens according to their sequences and, more recently, their structures. Groups of similar sequences are identified for allergenic proteins from diverse sources, and all allergens are classified into a limited number of protein structural families. A gallery of experimental structures selected from the protein classes with the largest number of allergens demonstrate the structural diversity of the allergen universe. Further comparison of these structures and identification of areas that are different from innocuous proteins within the same protein family can be used to identify features specific to known allergens. Experimental and computational results related to the determination of IgE binding surfaces and methods to define allergen-specific motifs are highlighted.

  15. Structure of Ge(100) surfaces for high-efficiency photovoltaic applications

    Energy Technology Data Exchange (ETDEWEB)

    Olson, J.M.; McMahon, W.E. [National Renewable Energy Lab., Golden, CO (United States)

    1998-09-01

    While much is known about the Ge(100) surface in a UHV/MBE environment, little has been published about this surface in an MOCVD environment. The main objective of this study is to determine the structure of the surface of Ge substrates in the typical MOCVD reactor immediately prior to and following the heteronucleation of GaAs and other lattice-matched III-V alloys, and to determine the conditions necessary for the growth of device-quality epilayers. In this paper the authors present the first STM images of the MOCVD-prepared Ge surfaces. Although many of the observed features are very similar to UHV- or MBE-prepared surfaces, there are distinct and important differences. For example, while the As-terminated surfaces for MBE-Ge and MOCVD-Ge are virtually identical, the AsH{sub 3}-treated surfaces in an MOCVD reactor are quite different. The terrace reconstruction is rotated by {pi}/2, and significant step bunching or faceting is also observed. Time-dependent RD kinetic studies also reveal, for the first time, several interesting features: the transition rate from an As-terminated (1 x 2) terrace reconstruction to a stable AsH{sub 3}-annealed surface is a function of the substrate temperature, substrate miscut from (100) and AsH{sub 3} partial pressure, and, for typical prenucleation conditions, is relatively slow. These results explain many of the empirically derived nucleation conditions that have been devised by numerous groups.

  16. Diversity of dermal denticle structure in sharks: Skin surface roughness and three-dimensional morphology.

    Science.gov (United States)

    Ankhelyi, Madeleine V; Wainwright, Dylan K; Lauder, George V

    2018-05-29

    Shark skin is covered with numerous placoid scales or dermal denticles. While previous research has used scanning electron microscopy and histology to demonstrate that denticles vary both around the body of a shark and among species, no previous study has quantified three-dimensional (3D) denticle structure and surface roughness to provide a quantitative analysis of skin surface texture. We quantified differences in denticle shape and size on the skin of three individual smooth dogfish sharks (Mustelus canis) using micro-CT scanning, gel-based surface profilometry, and histology. On each smooth dogfish, we imaged between 8 and 20 distinct areas on the body and fins, and obtained further comparative skin surface data from leopard, Atlantic sharpnose, shortfin mako, spiny dogfish, gulper, angel, and white sharks. We generated 3D images of individual denticles and measured denticle volume, surface area, and crown angle from the micro-CT scans. Surface profilometry was used to quantify metrology variables such as roughness, skew, kurtosis, and the height and spacing of surface features. These measurements confirmed that denticles on different body areas of smooth dogfish varied widely in size, shape, and spacing. Denticles near the snout are smooth, paver-like, and large relative to denticles on the body. Body denticles on smooth dogfish generally have between one and three distinct ridges, a diamond-like surface shape, and a dorsoventral gradient in spacing and roughness. Ridges were spaced on average 56 µm apart, and had a mean height of 6.5 µm, comparable to denticles from shortfin mako sharks, and with narrower spacing and lower heights than other species measured. We observed considerable variation in denticle structure among regions on the pectoral, dorsal, and caudal fins, including a leading-to-trailing edge gradient in roughness for each region. Surface roughness in smooth dogfish varied around the body from 3 to 42 microns. © 2018 Wiley Periodicals, Inc.

  17. Formation of organic layer on femtosecond laser-induced periodic surface structures

    Energy Technology Data Exchange (ETDEWEB)

    Yasumaru, Naoki, E-mail: yasuma@fukui-nct.ac.jp [National Institute of Technology, Fukui College, Sabae, Fukui 916-8507 (Japan); Sentoku, Eisuke [National Institute of Technology, Fukui College, Sabae, Fukui 916-8507 (Japan); Kiuchi, Junsuke [Eyetec Co., Ltd., Sabae, Fukui 916-0016 (Japan)

    2017-05-31

    Highlights: • Surface analyses of two types of femtosecond laser-induced periodic surface structures (LIPSS) on titanium were conducted. • The parallel-oriented ultrafine LIPSS showed the almost same roughness and chemical states as the non-irradiated Ti surface. • The well-known perpendicular-oriented LIPSS were typically covered with an organic layer similar to a cellulose derivative. - Abstract: Two types of laser-induced periodic surface structures (LIPSS) formed on titanium by femtosecond (fs) laser pulses (λ = 800 nm, τ = 180 fs, ν = 1 kHz) in air were investigated experimentally. At a laser fluence F above the ablation threshold, LIPSS with a minimum mean spacing of D < λ⁄2 were observed perpendicular to the laser polarization direction. In contrast, for F slightly below than the ablation threshold, ultrafine LIPSS with a minimum value of D < λ/10 were formed parallel to the polarization direction. The surface roughness of the parallel-oriented LIPSS was almost the same as that of the non-irradiated surface, unlike the high roughness of the perpendicular-oriented LIPSS. In addition, although the surface state of the parallel-oriented LIPSS was the same as that of the non-irradiated surface, the perpendicular-oriented LIPSS were covered with an organic thin film similar to a cellulose derivative that cannot be easily formed by conventional chemical synthesis. The results of these surface analyses indicate that these two types of LIPSS are formed through different mechanisms. This fs-laser processing technique may become a new technology for the artificial synthesis of cellulose derivatives.

  18. Superhydrophilic nanopillar-structured quartz surfaces for the prevention of biofilm formation in optical devices

    Science.gov (United States)

    Han, Soo; Ji, Seungmuk; Abdullah, Abdullah; Kim, Duckil; Lim, Hyuneui; Lee, Donghyun

    2018-01-01

    Bacterial biofilm formation on optical devices such as contact lenses, optical glasses, endoscopic devices, and microscopic slides and lenses are major concerns in the field of medicine and biomedical engineering. To solve these problems, here we present the first report of superhydrophilic transparent nanopillar-structured surfaces with bactericidal properties. To construct bactericidal surfaces, we imitated a topological mechanism found in nature in which nanopillar-structured surfaces cause a mechanical disruption of the outer cell membranes of bacteria, resulting in bacterial cell death. We used nanosphere lithography to fabricate nanopillars with various sharpnesses and heights on a quartz substrate. Water contact angle and light reflectance measurements revealed superhydrophilic, antifogging and antireflective properties, which are important for use in optical devices. To determine bactericidal efficiency, the fabricated surfaces were incubated and tested against two Gram-negative bacteria associated with biofilm formation and various diseases in humans, Pseudomonas aeruginosa and Escherichia coli. The highest bactericidal activity was achieved with nanopillars that measured 300 nm in height and 10 nm in apex diameter. Quartz substrates patterned with such nanopillars killed ∼38,000 P. aeruginosa and ∼27,000 E. coli cells cm-2 min-1, respectively. Thus, the newly designed nanopillar-structured bactericidal surfaces are suitable for use in the development of superhydrophilic and transparent optical devices.

  19. Effect of volume and surface charges on discharge structure of glow dielectric barrier discharge

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Shao-Wei; He, Feng; Wang, Yu; Li, Lulu; Ouyang, Ji-Ting [School of Physics, Beijing Institute of Technology, Beijing 100081 (China)

    2013-08-15

    The effect of volume and surface charges on the structure of glow dielectric barrier discharge (DBD) has been investigated numerically by using two-dimensional (2D) fluid modeling. The local increase of volume or surface charges induces a kind of activation-inhibition effect, which enhances the local volume discharge and inhibits the discharge in neighborhoods, resulting in non-uniform discharge. The activation-inhibition effect due to the non-uniform volume and/or surface charges depends on the non-uniformity itself and the applied voltage. The activation-inhibition of non-uniform charges has different effects on the volume charges and the accumulated surface charges. The distribution of remaining free charges (seed electrons) in volume at the beginning of voltage pulse plays a key role for the glow DBD structure, resulting in a patterned DBD, when the seed electrons are non-uniform at higher frequency and moderate voltage or uniform DBD, when the seed electrons are uniform at lower frequency or high voltage. The distribution of surface charges is not the determining factor but a result of the formed DBD structure.

  20. One-step controllable fabrication of superhydrophobic surfaces with special composite structure on zinc substrates.

    Science.gov (United States)

    Ning, Tao; Xu, Wenguo; Lu, Shixiang

    2011-09-01

    Stable superhydrophobic platinum surfaces have been effectively fabricated on the zinc substrates through one-step replacement deposition process without further modification or any other post-treatment procedures. The fabrication process was controllable, which could be testified by various morphologies and hydrophobic properties of different prepared samples. By conducting SEM and water CA analysis, the effects of reaction conditions on the surface morphology and hydrophobicity of the resulting surfaces were carefully studied. The results show that the optimum condition of superhydrophobic surface fabrication depends largely on the positioning of zinc plate and the concentrations of reactants. When the zinc plate was placed vertically and the concentration of PtCl(4) solution was 5 mmol/L, the zinc substrate would be covered by a novel and interesting composite structure. The structure was composed by microscale hexagonal cavities, densely packed nanoparticles layer and top micro- and nanoscale flower-like structures, which exhibit great surface roughness and porosity contributing to the superhydrophobicity. The maximal CA value of about 171° was obtained under the same reaction condition. The XRD, XPS and EDX results indicate that crystallite pure platinum nanoparticles were aggregated on the zinc substrates in accordance with a free deposition way. Copyright © 2011 Elsevier Inc. All rights reserved.

  1. Laser induced surface structuring of Cu for enhancement of field emission properties

    Science.gov (United States)

    Akram, Mahreen; Bashir, Shazia; Jalil, Sohail Abdul; Shahid Rafique, Muhammad; Hayat, Asma; Mahmood, Khaliq

    2018-02-01

    The effect of Nd:YAG (1064 nm, 10 ns, 10 Hz) laser induced surface structuring of copper (Cu) for enhancement of field emission (FE) properties has been investigated. X-ray diffraction analysis was employed to investigate the surface structural and compositional modifications. The surface structuring was explored by scanning electron microscope investigation. FE properties were studied under UHV conditions in a parallel plate configuration of planar un-irradiated Cu anode and laser irradiated Cu cathode. The Fowler-Nordheim plots were drawn to confirm the dominance of FE behavior of the measured I-V characteristics. The obtained values of turn-on field ‘E o’, field enhancement factor ‘β’ and maximum current density ‘J max’ come out to be to be in the range of 5.5-8.5 V μm-1, 1380-2730 and 147-375 μA cm-2 respectively for the Cu samples irradiated at laser irradiance ranging from 13 to 50 GW cm-2. The observed enhancement in the FE properties has been correlated with the growth of various surface structures such as ridged protrusions, cones and pores/tiny holes. The porous morphology is found to be responsible for a significant enhancement in the FE parameters.

  2. Heat waves measured with MODIS land surface temperature data predict changes in avian community structure

    Science.gov (United States)

    Thomas P. Albright; Anna M. Pidgeon; Chadwick D. Rittenhouse; Murray K. Clayton; Curtis H. Flather; Patrick D. Culbert; Volker C. Radeloff

    2011-01-01

    Heat waves are expected to become more frequent and severe as climate changes, with unknown consequences for biodiversity. We sought to identify ecologically-relevant broad-scale indicators of heat waves based on MODIS land surface temperature (LST) and interpolated air temperature data and assess their associations with avian community structure. Specifically, we...

  3. Laser irradiation effects on the surface, structural and mechanical properties of Al-Cu alloy 2024

    Science.gov (United States)

    Yousaf, Daniel; Bashir, Shazia; Akram, Mahreen; kalsoom, Umm-i.-; Ali, Nisar

    2014-02-01

    Laser irradiation effects on surface, structural and mechanical properties of Al-Cu-Mg alloy (Al-Cu alloy 2024) have been investigated. The specimens were irradiated for various fluences ranging from 3.8 to 5.5 J/cm2 using an Excimer (KrF) laser (248 nm, 18 ns, 30 Hz) under vacuum environment. The surface and structural modifications of the irradiated targets have been investigated by scanning electron microscope (SEM) and X-ray diffractometer (XRD), respectively. SEM analysis reveals the formation of micro-sized craters along the growth of periodic surface structures (ripples) at their peripheries. The size of the craters initially increases and then decreases by increasing the laser fluence. XRD analysis shows an anomalous trend in the peak intensity and crystallite size of the specimen irradiated for various fluences. A universal tensile testing machine and Vickers microhardness tester were employed in order to investigate the mechanical properties of the irradiated targets. The changes in yield strength, ultimate tensile strength and microhardness were found to be anomalous with increasing laser fluences. The changes in the surface and structural properties of Al-Cu alloy 2024 after laser irradiation have been associated with the changes in mechanical properties.

  4. Analysis of irradiation processes for laser-induced periodic surface structures

    NARCIS (Netherlands)

    Eichstädt, J.; Huis In 't Veld, A.J.

    2013-01-01

    The influence of errors on the irradiation process for laser-induced periodic surface structures (LIPSS) was studied theoretically with energy density simulations. Therefore an irradiation model has been extended by a selection of technical variations. The influence of errors has been found in a

  5. Probing Earth’s conductivity structure beneath oceans by scalar geomagnetic data: autonomous surface vehicle solution

    DEFF Research Database (Denmark)

    Kuvshinov, Alexey; Matzka, Jürgen; Poedjono, Benny

    2016-01-01

    to the conductivity structure beneath the ocean. We conclude that the sensitivity, depending on the bathymetry gradient, is typically largest near the coast offshore. We show that such sea-surface marine induction surveys can be performed with the Wave Glider, an easy-to-deploy, autonomous, energy-harvesting floating...

  6. Superconformal structures and holomorphic 1/2-superdifferentials on N=1 super Riemann surfaces

    International Nuclear Information System (INIS)

    Kachkachi, H.; Kachkachi, M.

    1992-07-01

    Using the Super Riemann-Roch theorem we give a local expression for a holomorphic 1/2-superdifferential in a superconformal structure parametrized by special isothermal coordinates on an N=1 Super Riemann Surface (SRS). This construction is done by choosing a suitable origin for these coordinates. The holomorphy of the latter with respect to super Beltrami differentials is proven. (author). 26 refs

  7. Superhydrophobic surface based on a coral-like hierarchical structure of ZnO.

    Directory of Open Access Journals (Sweden)

    Jun Wu

    2010-12-01

    Full Text Available Fabrication of superhydrophobic surfaces has attracted much interest in the past decade. The fabrication methods that have been studied are chemical vapour deposition, the sol-gel method, etching technique, electrochemical deposition, the layer-by-layer deposition, and so on. Simple and inexpensive methods for manufacturing environmentally stable superhydrophobic surfaces have also been proposed lately. However, work referring to the influence of special structures on the wettability, such as hierarchical ZnO nanostructures, is rare.This study presents a simple and reproducible method to fabricate a superhydrophobic surface with micro-scale roughness based on zinc oxide (ZnO hierarchical structure, which is grown by the hydrothermal method with an alkaline aqueous solution. Coral-like structures of ZnO were fabricated on a glass substrate with a micro-scale roughness, while the antennas of the coral formed the nano-scale roughness. The fresh ZnO films exhibited excellent superhydrophilicity (the apparent contact angle for water droplet was about 0°, while the ability to be wet could be changed to superhydrophobicity after spin-coating Teflon (the apparent contact angle greater than 168°. The procedure reported here can be applied to substrates consisting of other materials and having various shapes.The new process is convenient and environmentally friendly compared to conventional methods. Furthermore, the hierarchical structure generates the extraordinary solid/gas/liquid three-phase contact interface, which is the essential characteristic for a superhydrophobic surface.

  8. Oxygen Evolution at Hematite Surfaces: The Impact of Structure and Oxygen Vacancies on Lowering the Overpotential

    NARCIS (Netherlands)

    Zhang, X.; Klaver, P.; van Santen, R.; van de Sanden, M. C. M.; Bieberle, A.

    2016-01-01

    Simulations of the oxygen evolution reaction (OER) are essential for understanding the limitations of water splitting. Most research has focused so far on the OER at flat metal oxide surfaces. The structure sensitivity of the OER has, however, recently been highlighted as a promising research

  9. Production of specific structured lipids by enzymatic interesterification: optimization of the reaction by response surface design

    DEFF Research Database (Denmark)

    Xu, Xuebing; Skands, Anja Rebecca Havegaard; Adler-Nissen, Jens

    1998-01-01

    Rapeseed oil and capric acid were interesterified in solvent-free media catalyzed by Lipozyme IM (Rhizomucor miehei) to produce specific-structured lipids (SSLs). The process was optimized by response surface design concerning the effects of acyl migration and the by-products of diacylglycerols...

  10. Depression cathode structure for cathode ray tubes having surface smoothness and method for producing same

    International Nuclear Information System (INIS)

    Rychlewski, T.V.

    1984-01-01

    Depression cathode structures for cathode ray tubes are produced by dispensing liquid cathode material into the depression of a metallic supporting substrate, removing excess cathode material by passing a doctor blade across the substrate surface and over the depression, and drying the cathode layer to a substantially immobile state. The cathode layer may optionally be further shaped prior to substantially complete drying thereof

  11. Surface Electronic Structure of Hybrid Organo Lead Bromide Perovskite Single Crystals

    KAUST Repository

    Komesu, Takashi

    2016-08-24

    The electronic structure and band dispersion of methylammonium lead bromide, CH3NH3PbBr3, has been investigated through a combination of angle-resolved photoemission spectroscopy (ARPES) and inverse photoemission spectroscopy (IPES), as well as theoretical modeling based on density functional theory. The experimental band structures are consistent with the density functional calculations. The results demonstrate the presence of a dispersive valence band in MAPbBr3 that peaks at the M point of the surface Brillouin zone. The results also indicate that the surface termination of the CH3NH3PbBr3 is the methylammonium bromide (CH3NH3Br) layer. We find our results support models that predict a heavier hole effective mass in the region of -0.23 to -0.26 me, along the Γ (surface Brillouin center) to M point of the surface Brillouin zone. The surface appears to be n-type as a result of an excess of lead in the surface region. © 2016 American Chemical Society.

  12. Microwave effective surface impedance of structures including a high-Tc superconducting film

    International Nuclear Information System (INIS)

    Hartemann, P.

    1992-01-01

    The microwave effective surface impedances of different stacks made of high-temperature superconducting films, dielectric materials and bulk normal metals were computed. The calculations were based on the two-fluid model of superconductors and the conventional transmission line theory. These effective impedances are compared to the calculated intrinsic surface impedances of the stacked superconducting films. The considered superconducting material has been the oxide YBa 2 Cu 3 O 7 epitaxially grown on crystalline substrates (MgO, LaAlO 3 , SrTiO 3 ), the film thickness ranging from a few nm to 1μm. Discrepancies between the effective surface resistances or reactances and the corresponding intrinsic values were determined at 10 GHz for non resonant or resonant structures. At resonance the surface resistance discrepancy exhibits a sharp peak which reaches 10 4 or more in relative value according to the geometry and the used materials. Obviously the effective surface reactance shows also huge variations about the resonance and may be negative. Moreover geometries allowing to obtain an effective resistance smaller than the film intrinsic value have been found. The effects of the resonance phenomenon on the electromagnetic wave reflectivity and reflection phase shift are investigated. Therefore the reported theoretical results demonstrate that the effective surface impedance of YBCO films with a thickness smaller than 500 nm can be very different from the intrinsic film impedance according to the structures. (Author). 3 refs., 10 figs., 2 tabs

  13. Molecular polymorphism of a cell surface proteoglycan: distinct structures on simple and stratified epithelia.

    Science.gov (United States)

    Sanderson, R D; Bernfield, M

    1988-12-01

    Epithelial cells are organized into either a single layer (simple epithelia) or multiple layers (stratified epithelia). Maintenance of these cellular organizations requires distinct adhesive mechanisms involving many cell surface molecules. One such molecule is a cell surface proteoglycan, named syndecan, that contains both heparan sulfate and chondroitin sulfate chains. This proteoglycan binds cells to fibrillar collagens and fibronectin and thus acts as a receptor for interstitial matrix. The proteoglycan is restricted to the basolateral surface of simple epithelial cells, but is located over the entire surface of stratified epithelial cells, even those surfaces not contacting matrix. We now show that the distinct localization in simple and stratified epithelia correlates with a distinct proteoglycan structure. The proteoglycan from simple epithelia (modal molecular size, 160 kDa) is larger than that from stratified epithelia (modal molecular size, 92 kDa), but their core proteins are identical in size and immunoreactivity. The proteoglycan from simple epithelia has more and larger heparan sulfate and chondroitin sulfate chains than the proteoglycan from stratified epithelia. Thus, the cell surface proteoglycan shows a tissue-specific structural polymorphism due to distinct posttranslational modifications. This polymorphism likely reflects distinct proteoglycan functions in simple and stratified epithelia, potentially meeting the different adhesive requirements of the cells in these different organizations.

  14. Molecular Structure and Dynamics in Thin Water Films at the Silica and Graphite Surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Argyris, Dr. Dimitrios [University of Oklahoma; Tummala, Dr. Naga Rajesh [University of Oklahoma; StrioloDr., A [Vanderbilt University; Cole, David R [ORNL

    2008-01-01

    The structure and dynamic properties of interfacial water at the graphite and silica solid surfaces were investigated using molecular dynamics simulations. The effect of surface properties on the characteristics of interfacial water was quantified by computing density profiles, radial distribution functions, surface density distributions, orientation order parameters, and residence and reorientation correlation functions. In brief, our results show that the surface roughness, chemical heterogeneity, and surface heterogeneous charge distribution affect the structural and dynamic properties of the interfacial water molecules, as well as their rate of exchange with bulk water. Most importantly, our results indicate the formation of two distinct water layers at the SiO2 surface covered by a large density of hydroxyl groups. Further analysis of the data suggests a highly confined first layer where the water molecules assume preferential hydrogen-down orientation and a second layer whose behavior and characteristics are highly dependent on those of the first layer through a well-organized hydrogen bond network. The results suggest that water-water interactions, in particular hydrogen bonds, may be largely responsible for macroscopic interfacial properties such as adsorption and contact angle.

  15. Passive control of flow structure interaction between a sphere and free-surface

    Directory of Open Access Journals (Sweden)

    Akilli Huseyin

    2012-04-01

    Full Text Available Flow characteristics for both a smooth and a vented sphere such as velocity vectors, patterns of streamlines, vorticity contours, stream-wise fluctuations, cross-stream velocity fluctuations and Reynolds stress correlations between a sphere and free-surface for various submerged ratio at Re =5,000 are studied by using dye visualization and the particle image velocimetry technique. Passive control of flow structure interaction between sphere and free surface was examined by using a modified geometry which has a 15% sphere diameter hole passing through the sphere equator. Both of the spheres were separately placed beneath the free surface with different positions from touching to the free surface to two sphere diameters below the free surface. It is demonstrated that reattachment point of the separated flow to the free surface varies for both of the sphere cases as the sphere position alters vertically through the water flow while the flow structure for the vented sphere occurs considerably symmetrical due to forming of a pair of counter-rotating ring vortices.

  16. Reproducible and recyclable SERS substrates: Flower-like Ag structures with concave surfaces formed by electrodeposition

    Science.gov (United States)

    Bian, Juncao; Shu, Shiwei; Li, Jianfu; Huang, Chao; Li, Yang Yang; Zhang, Rui-Qin

    2015-04-01

    Direct synthesis of three-dimensional Ag structures on solid substrates for the purposes of producing reproducible and recyclable surface-enhanced Raman scattering (SERS) applications remains challenging. In this work, flower-like Ag structures with concave surfaces (FACS) were successfully electrodeposited onto ITO glass using the double-potentiostatic method. The FACS, with an enhancement factor of the order of 108, exhibited a SERS signal intensity 3.3 times stronger than that measured from Ag nanostructures without concave surfaces. A cleaning procedure involving lengthy immersion of the sample in ethanol and KNO3 was proposed to recycle the substrate and confirmed by using rhodamine 6G, adenine, and 4-aminothiophenol as target molecules. The findings can help to advance the practical applications of Ag nanostructure-based SERS substrates.

  17. STM study on surface relief, ultra-fine structure and transformation mechanism of bainite in steels

    International Nuclear Information System (INIS)

    Fang, H.S.; Yang, Z.G.; Wang, J.J.; Zheng, Y.K.

    1995-01-01

    The surface reliefs accompanying lower bainite transformation in steels have been studied by scanning tunneling microscopy (STM). With the exclusive vertical resolution of STM, we observed that the surface relief associated with bainite is a group of surface reliefs related to subplates, subunits and sub-subunits. From the bainite plate to the sub-subunit in it, the reliefs are in a tent shape, not of invariant plane strain (IPS) type. The fine structure of bainite in a steel has also been shown by STM and TEM that bainite plate is composed of subplates, subunits and sub-subunits. On the basis of the fine structure inside a bainitic ferrite plate observed under STM, sympathetic-ledgewise mechanism of bainite formation is proposed. (orig.)

  18. Fabrication of hierarchically structured superhydrophobic PDMS surfaces by Cu and CuO casting

    Science.gov (United States)

    Migliaccio, Christopher P.; Lazarus, Nathan

    2015-10-01

    Poly(dimethylsiloxane) (PDMS) films decorated with hierarchically structured pillars are cast from large area copper and copper oxide negative molds. The molds are fabricated using a single patterning step and electroplating. The process of casting structured PDMS films is simpler and cheaper than alternatives based on deep reactive ion etching or laser roughening of bulk silicone. Texture imparted to the pillars from the mold walls renders the PDMS films superhydrophobic, with the contact angle/hysteresis of the most non-wetting surfaces measuring 164°/9° and 158°/10° for surfaces with and without application of a low surface energy coating. The usefulness of patterned PDMS films as a "self-cleaning" solar cell module covering is demonstrated and other applications are discussed.

  19. Electronic structure of surface-supported bis(phthalocyaninato) terbium(III) single molecular magnets.

    Science.gov (United States)

    Vitali, Lucia; Fabris, Stefano; Conte, Adriano Mosca; Brink, Susan; Ruben, Mario; Baroni, Stefano; Kern, Klaus

    2008-10-01

    The electronic structure of isolated bis(phthalocyaninato) terbium(III) molecules, a novel single-molecular-magnet (SMM), supported on the Cu(111) surface has been characterized by density functional theory and scanning tunneling spectroscopy. These studies reveal that the interaction with the metal surface preserves both the molecular structure and the large spin magnetic moment of the metal center. The 4f electron states are not perturbed by the adsorption while a strong molecular/metal interaction can induce the suppression of the minor spin contribution delocalized over the molecular ligands. The calculations show that the inherent spin magnetic moment of the molecule is only weakly affected by the interaction with the surface and suggest that the SMM character might be preserved.

  20. Phase-shifting Real-time Holographic Microscopy applied in micro-structures surface analysis

    International Nuclear Information System (INIS)

    Brito, I V; Gesualdi, M R R; Muramatsu, M; Ricardo, J

    2011-01-01

    The microscopic real-time analysis of micro structured materials is of great importance in various domains of science and technology. For other hand, the holographic interferometry comprises a group of powerful optical methods for non-destructive testing in surface analysis. The holographic microscopy uses the holographic interferometric techniques to obtain quantitative intensity and phase information of the optical waves by microscopic systems. With the development of CCD cameras, computers (hardware and software), and new materials for holographic recording, these techniques can be used to replace the classical form of registration and became promising tools in surface analysis. In this work, we developed a prototype of Photorefractive and Digital Holographic Microscope for real-time analysis of micro-structured systems based on the phase-shifting real-time holographic interferometry techniques. Using this apparatus, we are made analysis of shapes and surfaces to obtain the phase maps and the 3D profiles of some samples.