WorldWideScience

Sample records for manned spacecraft design

  1. Manned Spacecraft

    Science.gov (United States)

    1989-09-14

    34 spacecraft. Improved were systems of conditioning and regeneration , and the system of soft landing, and there was provided high reliability of hermetic...ceramics, cermets or to cool them. 0 DOC = 89059215 PAGE :5Y (i)MeP ce71uneCKag oqKa 2ObtcoMorfle , epO - fi’loddD ueao tuu0 mnyp~aR U30J13NUU cmep

  2. Operational Philosophy Concerning Manned Spacecraft Cabin Leaks

    Science.gov (United States)

    DeSimpelaere, Edward

    2011-01-01

    The last thirty years have seen the Space Shuttle as the prime United States spacecraft for manned spaceflight missions. Many lessons have been learned about spacecraft design and operation throughout these years. Over the next few decades, a large increase of manned spaceflight in the commercial sector is expected. This will result in the exposure of commercial crews and passengers to many of the same risks crews of the Space Shuttle have encountered. One of the more dire situations that can be encountered is the loss of pressure in the habitable volume of the spacecraft during on orbit operations. This is referred to as a cabin leak. This paper seeks to establish a general cabin leak response philosophy with the intent of educating future spacecraft designers and operators. After establishing a relative definition for a cabin leak, the paper covers general descriptions of detection equipment, detection methods, and general operational methods for management of a cabin leak. Subsequently, all these items are addressed from the perspective of the Space Shuttle Program, as this will be of the most value to future spacecraft due to similar operating profiles. Emphasis here is placed upon why and how these methods and philosophies have evolved to meet the Space Shuttle s needs. This includes the core ideas of: considerations of maintaining higher cabin pressures vs. lower cabin pressures, the pros and cons of a system designed to feed the leak with gas from pressurized tanks vs. using pressure suits to protect against lower cabin pressures, timeline and consumables constraints, re-entry considerations with leaks of unknown origin, and the impact the International Space Station (ISS) has had to the standard Space Shuttle cabin leak response philosophy. This last item in itself includes: procedural management differences, hardware considerations, additional capabilities due to the presence of the ISS and its resource, and ISS docking/undocking considerations with a

  3. Mechanical Design of Spacecraft

    Science.gov (United States)

    1962-01-01

    In the spring of 1962, engineers from the Engineering Mechanics Division of the Jet Propulsion Laboratory gave a series of lectures on spacecraft design at the Engineering Design seminars conducted at the California Institute of Technology. Several of these lectures were subsequently given at Stanford University as part of the Space Technology seminar series sponsored by the Department of Aeronautics and Astronautics. Presented here are notes taken from these lectures. The lectures were conceived with the intent of providing the audience with a glimpse of the activities of a few mechanical engineers who are involved in designing, building, and testing spacecraft. Engineering courses generally consist of heavily idealized problems in order to allow the more efficient teaching of mathematical technique. Students, therefore, receive a somewhat limited exposure to actual engineering problems, which are typified by more unknowns than equations. For this reason it was considered valuable to demonstrate some of the problems faced by spacecraft designers, the processes used to arrive at solutions, and the interactions between the engineer and the remainder of the organization in which he is constrained to operate. These lecture notes are not so much a compilation of sophisticated techniques of analysis as they are a collection of examples of spacecraft hardware and associated problems. They will be of interest not so much to the experienced spacecraft designer as to those who wonder what part the mechanical engineer plays in an effort such as the exploration of space.

  4. The Space Environment Monitors of Shenzhou Manned Spacecrafts

    Institute of Scientific and Technical Information of China (English)

    XU Ying; WANG Chunqin; YE Haihua; JING Guiru; ZHU Guangwu; WANG Shijin; QIN Guotai; LIANG Jinbao; SUN Yueqiang; HUANG Xiuying; YANG Xiaochao; WANG Yue

    2004-01-01

    For the purpose of ensuring normal operations of Shenzhou (SZ) series of manned spacecrafts and cosmonauts' safety, Space Environment Monitors (SEM)are mounted on board SZ-2, 3, 4, 5. SEMs aim to detect the high energy particles, the low energy particles, charging potential, atmospheric desity and composition. Detection of SEMs enable us to understand better the space environment in the manned spacecraft's orbit, and to provide a good space environment services for the spacecraft and cosmonauts. In addition, by using the data from SEMs, we have achieved some scientific accomplishments, such as the energy spectra of precipitating electrons, the abnormal variety of atmospheric density and composition during geomagnetic disturbances, the electron angle distribution in the low orbit and so on.

  5. 载人航天器仪表系统红外触摸屏硬件电路设计%Hardware circuit design of infrared touch screen on instrument system of manned spacecraft

    Institute of Scientific and Technical Information of China (English)

    朱博; 董义鹏; 金锋

    2013-01-01

    为了设计一种满足载人航天器仪表系统具体要求的触摸屏,研究了触摸屏的基本工作原理,选取红外式触摸屏技术应用到载人航天器仪表系统。结合载人航天器仪表系统对触摸屏的设计指标及环境适应性要求,设计了一种全新的结构简单、抗干扰能力强,能适应载人航天器工况的红外触摸屏的硬件电路,并简单介绍了相应的软件算法。对载人航天器仪表系统的显示器分辨率与触摸屏的分辨能力问题进行了研究并进行实验分析,结果表明所选器件能够实现载人航天器仪表系统触摸屏的分辨能力要求。%To design a sort of touch screen,which satisfies the demand of manned spacecraft instrument system,the basic operating principle of touch screen was researched and the infrared touch screen technology was adopted on the manned space-craft instrument system. The resolution of display and the resolving power of touch screen in the manned spacecraft instrument system were researched and analyzed by some relevant experiments. The experimental results indicate that the chosen device can meet the requirements of resolving power of touch screen on the manned spacecraft instrument system. A new hardware circuit of infrared touch screen,which has simple structure and strong anti-interference ability,was designed according to the design in-dex of touch screen in the manned spacecraft instrument system. A corresponding software algorithm is introduced in this paper.

  6. Preliminary survivability analysis of manned spacecraft following orbital debris penetration

    Institute of Scientific and Technical Information of China (English)

    ZHANG Yong; HAN ZengYao; LIMing; ZHENG ShiGui

    2009-01-01

    Meteoroid and orbital debris (M/OD) may cause severe damages or even catastrophic failures for long-term manned spacecrafts in orbit due to the hypervelocity impact (HVI) destruction. It is essential to quantitatively assess the M/OD risk of manned spacecraft, in this paper, the catastrophic failure as-sessment function is successfully integrated into the Meteoroid & Orbital Debris Assessment and Op-timization System Tools (MODAOST), which is the M/OD risk assessment system developed by China Academy of Space Technology. The survivability assessment for the US Lab by MODAOST was con-sistent with that of the Manned Spacecraft Crew Survivability computer code (MSCSurv). Meanwhile,the simulation process showed that this function was more effective than MSCSurv for the application of the standard methodology of M/OD risk assessment instead of the Monte Carlo model. This function expands the ability of MODAOST in predicting the survivability of the typical catastrophic failure modes such as crew hypoxia and the critical cracking.

  7. Preliminary survivability analysis of manned spacecraft following orbital debris penetration

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Meteoroid and orbital debris(M/OD) may cause severe damages or even catastrophic failures for long-term manned spacecrafts in orbit due to the hypervelocity impact(HVI) destruction.It is essential to quantitatively assess the M/OD risk of manned spacecraft.In this paper,the catastrophic failure as-sessment function is successfully integrated into the Meteoroid & Orbital Debris Assessment and Op-timization System Tools(MODAOST),which is the M/OD risk assessment system developed by China Academy of Space Technology.The survivability assessment for the US Lab by MODAOST was con-sistent with that of the Manned Spacecraft Crew Survivability computer code(MSCSurv).Meanwhile,the simulation process showed that this function was more effective than MSCSurv for the application of the standard methodology of M/OD risk assessment instead of the Monte Carlo model.This function expands the ability of MODAOST in predicting the survivability of the typical catastrophic failure modes such as crew hypoxia and the critical cracking.

  8. Spacecraft Design Thermal Control Subsystem

    Science.gov (United States)

    Miyake, Robert N.

    2003-01-01

    This slide presentation reviews the functions of the thermal control subsystem engineers in the design of spacecraft. The goal of the thermal control subsystem that will be used in a spacecraft is to maintain the temperature of all spacecraft components, subsystems, and all the flight systems within specified limits for all flight modes from launch to the end of the mission. For most thermal control subsystems the mass, power and control and sensing systems must be kept below 10% of the total flight system resources. This means that the thermal control engineer is involved in all other flight systems designs. The two concepts of thermal control, passive and active are reviewed and the use of thermal modeling tools are explained. The testing of the thermal control is also reviewed.

  9. An Assessment of Environmental Health Needs for Manned Spacecraft

    Science.gov (United States)

    Macatangay, Ariel V.

    2013-01-01

    Environmental health fundamentally addresses the physical, chemical, and biological risks external to the human body that can impact the health of a person by assessing and controlling these risks in order to generate and maintain a health-supportive environment. Environmental monitoring coupled with other measures including active and passive controls and the implementation of environmental standards (SMACs, SWEGs, microbial and acoustics limits) are used to ensure environmental health in manned spacecraft. NASA scientists and engineers consider environmental monitoring a vital component to an environmental health management strategy for maintaining a healthy crew and achieving mission success. Environmental monitoring data confirms the health of ECLS systems, in addition to contributing to the management of the health of human systems. Crew health risks associated with the environment were reviewed by agency experts with the goal of determining risk-based environmental monitoring needs for future NASA manned missions. Once determined, gaps in knowledge and technology, required to address those risks, were identified for various types of Exploration missions. This agency-wide assessment of environmental health needs will help guide the activities/hardware development efforts to close those gaps and advance the knowledge required to meet NASA manned space exploration objectives. Details of this assessment and findings are presented in this paper.

  10. Air dehumidification by membrane with cold water for manned spacecraft environmental control

    Directory of Open Access Journals (Sweden)

    Shang Yonghong

    2017-01-01

    Full Text Available The traditional condensation dehumidification method requires additional gas-liquid separation and water recovery process in the manned spacecraft humidity control system, which would increase weight and complexity of systems. A new membrane dehumidification with cold water is proposed, which uses water vapor partial pressure difference to promote water vapor transmembrane mass transfer for dehumidification. The permeability of the membrane was measured and the experimental results agree well with the theoretical calculations. Based on the simulation of dehumidification process of cold water-membrane, the influence of module structure and working condition on dehumidification performance was analyzed, which provided reference for the design of membrane module construct. It can be seen from the simulation and experiments that the cold water-membrane dehumidification can effectively reduce the thermal load of the manned spacecraft.

  11. Multi-Objective Optimization for Solid Amine CO2 Removal Assembly in Manned Spacecraft

    Directory of Open Access Journals (Sweden)

    Rong A

    2017-07-01

    Full Text Available Carbon Dioxide Removal Assembly (CDRA is one of the most important systems in the Environmental Control and Life Support System (ECLSS for a manned spacecraft. With the development of adsorbent and CDRA technology, solid amine is increasingly paid attention due to its obvious advantages. However, a manned spacecraft is launched far from the Earth, and its resources and energy are restricted seriously. These limitations increase the design difficulty of solid amine CDRA. The purpose of this paper is to seek optimal design parameters for the solid amine CDRA. Based on a preliminary structure of solid amine CDRA, its heat and mass transfer models are built to reflect some features of the special solid amine adsorbent, Polyethylenepolyamine adsorbent. A multi-objective optimization for the design of solid amine CDRA is discussed further in this paper. In this study, the cabin CO2 concentration, system power consumption and entropy production are chosen as the optimization objectives. The optimization variables consist of adsorption cycle time, solid amine loading mass, adsorption bed length, power consumption and system entropy production. The Improved Non-dominated Sorting Genetic Algorithm (NSGA-II is used to solve this multi-objective optimization and to obtain optimal solution set. A design example of solid amine CDRA in a manned space station is used to show the optimal procedure. The optimal combinations of design parameters can be located on the Pareto Optimal Front (POF. Finally, Design 971 is selected as the best combination of design parameters. The optimal results indicate that the multi-objective optimization plays a significant role in the design of solid amine CDRA. The final optimal design parameters for the solid amine CDRA can guarantee the cabin CO2 concentration within the specified range, and also satisfy the requirements of lightweight and minimum energy consumption.

  12. Development status of solid polymer electrolyte water electrolysis for manned spacecraft life support systems

    Science.gov (United States)

    Nuttall, L. J.; Titterington, W. A.

    1974-01-01

    Details of the design and system verification test results are presented for a six-man-rated oxygen generation system. The system configuration incorporates components and instrumentation for computer-controlled operation with automatic start-up/shutdown sequencing, fault detection and isolation, and with self-contained sensors and controls for automatic safe emergency shutdown. All fluid and electrical components, sensors, and electronic controls are designed to be easily maintainable under zero-gravity conditions. On-board component spares are utilized in the system concept to sustain long-term operation (six months minimum) in a manned spacecraft application. The system is centered on a 27-cell solid polymer electrolyte water electrolysis module which, combined with the associated system components and controls, forms a total system envelope 40 in. high, 40 in. wide, and 30 in. deep.

  13. Advanced engineering software for in-space assembly and manned planetary spacecraft

    Science.gov (United States)

    Delaquil, Donald; Mah, Robert

    1990-01-01

    Meeting the objectives of the Lunar/Mars initiative to establish safe and cost-effective extraterrestrial bases requires an integrated software/hardware approach to operational definitions and systems implementation. This paper begins this process by taking a 'software-first' approach to systems design, for implementing specific mission scenarios in the domains of in-space assembly and operations of the manned Mars spacecraft. The technological barriers facing implementation of robust operational systems within these two domains are discussed, and preliminary software requirements and architectures that resolve these barriers are provided.

  14. Computerized atmospheric trace contaminant control simulation for manned spacecraft

    Science.gov (United States)

    Perry, J. L.

    1993-01-01

    Buildup of atmospheric trace contaminants in enclosed volumes such as a spacecraft may lead to potentially serious health problems for the crew members. For this reason, active control methods must be implemented to minimize the concentration of atmospheric contaminants to levels that are considered safe for prolonged, continuous exposure. Designing hardware to accomplish this has traditionally required extensive testing to characterize and select appropriate control technologies. Data collected since the Apollo project can now be used in a computerized performance simulation to predict the performance and life of contamination control hardware to allow for initial technology screening, performance prediction, and operations and contingency studies to determine the most suitable hardware approach before specific design and testing activities begin. The program, written in FORTRAN 77, provides contaminant removal rate, total mass removed, and per pass efficiency for each control device for discrete time intervals. In addition, projected cabin concentration is provided. Input and output data are manipulated using commercial spreadsheet and data graphing software. These results can then be used in analyzing hardware design parameters such as sizing and flow rate, overall process performance and program economics. Test performance may also be predicted to aid test design.

  15. Space Evaporator Absorber Radiator (SEAR) for Thermal Storage on Manned Spacecraft Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Future manned exploration spacecraft will need to operate in challenging thermal environments. State-of-the-art technology for active thermal control relies on...

  16. Spacecraft electronics design for radiation tolerance

    Science.gov (United States)

    Rasmussen, Robert D.

    1988-01-01

    Current design practices are described and future trends in spacecraft electronics which are likely to alter traditional approaches are discussed. A summary of radiation effects and radiation tolerance requirements typically levied on spacecraft designs is provided. Methods of dealing with radiation and testability issues are considered.

  17. Space Evaporator Absorber Radiator (SEAR) for Thermal Storage on Manned Spacecraft

    Science.gov (United States)

    Izenson, Michael G.; Chen, Weibo; Chepko, Ariane; Bue, Grant; Quinn, Gregory

    2014-01-01

    Future manned exploration spacecraft will need to operate in challenging thermal environments. State-of the- art technology for active thermal control relies on sublimating water ice and venting the vapor overboard in very hot environments. This approach can lead to large loss of water and a significant mass penalty for the spacecraft. This paper describes an innovative thermal control system that uses a Space Evaporator Absorber Radiator (SEAR) to control spacecraft temperatures in highly variable environments without venting water. SEAR uses heat pumping and energy storage by LiCl/water absorption to enable effective cooling during hot periods and regeneration during cool periods. The LiCl absorber technology has the potential to absorb over 800 kJ per kg of system mass, compared to phase change heat sink systems that typically achieve approx. 50 kJ/kg. The optimal system is based on a trade-off between the mass of water saved and extra power needed to regenerate the LiCl absorber. This paper describes analysis models and the predicted performance and optimize the size of the SEAR system, estimated size and mass of key components, and power requirements for regeneration. We also present a concept design for an ISS test package to demonstrate operation of a subscale system in zero gravity.

  18. Several key problems in automatic layout design of spacecraft modules

    Institute of Scientific and Technical Information of China (English)

    SUN Zhiguo; TENG Hongfei; LIU Zhanwei

    2003-01-01

    Computer-aided layout design of spacecraft modules, such as satellite modules and manned spaceship modules, is of great significance and egregious complexity. It is known as a combinatorial optimization and NPC problem in mathematics, a conceptual design and complex system in engineering. The main difficulties include representation and formulation of the problem in mathematics and the solution strategy and pragmatic approaches in engineering practice. After a brief survey of the state-of-the-art in relevant fields, this paper summarizes the research work of the authors' group on automatic layout design of spacecraft modules in the last 15 years, mainly focusing on 5 key problems. They are modeling and problem-solving algorithms, interference calculation, theory and applications of layout topological pattern, decision-making in layout design, and their pragmatic approaches in engineering practice.

  19. Spacecraft (Mobile Satellite) configuration design study

    Science.gov (United States)

    1985-01-01

    The relative costs to procure and operate a two-satellite mobile satellite system designed to operate either in the UHF band of the L Band, and with several antenna diameter options in each frequency band was investigated. As configured, the size of the spacecraft is limited to the current RCA Series 4000 Geosynchronous Communications Spacecraft bus, which spans the range from 4000 to 5800 pounds in the transfer orbit. The Series 4000 bus forms the basis around which the Mobile Satellite transponder and associated antennas were appended. Although the resultant configuration has little outward resemblance to the present Series 4000 microwave communications spacecraft, the structure, attitude control, thermal, power, and command and control subsystems of the Series 4000 spacecraft are all adapted to support the Mobile Satellite mission.

  20. Design and Verification of Critical Pressurised Windows for Manned Spaceflight

    Science.gov (United States)

    Lamoure, Richard; Busto, Lara; Novo, Francisco; Sinnema, Gerben; Leal, Mendes M.

    2014-06-01

    The Window Design for Manned Spaceflight (WDMS) project was tasked with establishing the state-of-art and explore possible improvements to the current structural integrity verification and fracture control methodologies for manned spacecraft windows.A critical review of the state-of-art in spacecraft window design, materials and verification practice was conducted. Shortcomings of the methodology in terms of analysis, inspection and testing were identified. Schemes for improving verification practices and reducing conservatism whilst maintaining the required safety levels were then proposed.An experimental materials characterisation programme was defined and carried out with the support of the 'Glass and Façade Technology Research Group', at the University of Cambridge. Results of the sample testing campaign were analysed, post-processed and subsequently applied to the design of a breadboard window demonstrator.Two Fused Silica glass window panes were procured and subjected to dedicated analyses, inspection and testing comprising both qualification and acceptance programmes specifically tailored to the objectives of the activity.Finally, main outcomes have been compiled into a Structural Verification Guide for Pressurised Windows in manned spacecraft, incorporating best practices and lessons learned throughout this project.

  1. Application of Vacuum Swing Adsorption for Carbon Dioxide and Water Vapor Removal from Manned Spacecraft Atmospheres

    Science.gov (United States)

    Knox, J.; Howard, D.

    2007-01-01

    In NASA's Vision for Space Exploration (Bush, 2004), (Griffin, 2007), humans will once again travel beyond the confines of earth's gravity, this time to remain there for extended periods. These forays will place unprecedented demands on launch systems. They must not only blast out of earth's gravity well as during the Apollo moon missions, but also liftoff the supplies needed to sustain a larger crew over much longer periods. Thus all spacecraft systems, including those for the separation of metabolic carbon dioxide and water from a crewed vehicle, must be minimized with respect to mass, power, and volume. Emphasis is also placed on system robustness both to minimize replacement parts and ensure crew safety when a quick return to earth is not possible. For short-term phases of manned space exploration, such as transit from the earth to the moon, venting of metabolic carbon dioxide and water to space is more efficient than the inclusion of large recycling systems on the spacecraft. The baseline system for the Orion spacecraft is an amine-based vacuum swing system (Smith, Perry et aI., 2006). As part of the development of an alternative approach, a sorbent-based CO2 and H2O removal system (Knox, Adams et aI., 2006), subscale testing was conducted to evaluate potential performance improvements obtainable by recuperating the heat of adsorption to aid in vacuum desorption. This bed design is shown in Figure 1, is depicted here with a lattice structure instead of reticulated foam for heat transfer. The slot widths are approximately 1.2 mm wide and 8.5 mm long. Bed depth is approximately 4.7 mm. Headers (not shown) were produced by the stereo lithography apparatus at MSFC.

  2. Five-Channel Infrared Laser Absorption Spectrometer for Combustion Product Monitoring Aboard Manned Spacecraft

    Science.gov (United States)

    Briggs, Ryan M.; Frez, Clifford; Borgentun, Carl E.; Bagheri, Mahmood; Forouhar, Siamak; May, Randy D.

    2014-01-01

    Continuous combustion product monitoring aboard manned spacecraft can prevent chronic exposure to hazardous compounds and also provides early detection of combustion events. As future missions extend beyond low-Earth orbit, analysis of returned environmental samples becomes impractical and safety monitoring should be performed in situ. Here, we describe initial designs of a five-channel tunable laser absorption spectrometer to continuously monitor combustion products with the goal of minimal maintenance and calibration over long-duration missions. The instrument incorporates dedicated laser channels to simultaneously target strong mid-infrared absorption lines of CO, HCl, HCN, HF, and CO2. The availability of low-power-consumption semiconductor lasers operating in the 2 to 5 micron wavelength range affords the flexibility to select absorption lines for each gas with maximum interaction strength and minimal interference from other gases, which enables the design of a compact and mechanically robust spectrometer with low-level sensitivity. In this paper, we focus primarily on absorption line selection based on the availability of low-power single-mode semiconductor laser sources designed specifically for the target wavelength range.

  3. RenderMan design principles

    Science.gov (United States)

    Apodaca, Tony; Porter, Tom

    1989-01-01

    The two worlds of interactive graphics and realistic graphics have remained separate. Fast graphics hardware runs simple algorithms and generates simple looking images. Photorealistic image synthesis software runs slowly on large expensive computers. The time has come for these two branches of computer graphics to merge. The speed and expense of graphics hardware is no longer the barrier to the wide acceptance of photorealism. There is every reason to believe that high quality image synthesis will become a standard capability of every graphics machine, from superworkstation to personal computer. The significant barrier has been the lack of a common language, an agreed-upon set of terms and conditions, for 3-D modeling systems to talk to 3-D rendering systems for computing an accurate rendition of that scene. Pixar has introduced RenderMan to serve as that common language. RenderMan, specifically the extensibility it offers in shading calculations, is discussed.

  4. The management approach to the NASA space station definition studies at the Manned Spacecraft Center

    Science.gov (United States)

    Heberlig, J. C.

    1972-01-01

    The overall management approach to the NASA Phase B definition studies for space stations, which were initiated in September 1969 and completed in July 1972, is reviewed with particular emphasis placed on the management approach used by the Manned Spacecraft Center. The internal working organizations of the Manned Spacecraft Center and its prime contractor, North American Rockwell, are delineated along with the interfacing techniques used for the joint Government and industry study. Working interfaces with other NASA centers, industry, and Government agencies are briefly highlighted. The controlling documentation for the study (such as guidelines and constraints, bibliography, and key personnel) is reviewed. The historical background and content of the experiment program prepared for use in this Phase B study are outlined and management concepts that may be considered for future programs are proposed.

  5. Spacecraft design project: High latitude communications satellite

    Science.gov (United States)

    Josefson, Carl; Myers, Jack; Cloutier, Mike; Paluszek, Steve; Michael, Gerry; Hunter, Dan; Sakoda, Dan; Walters, Wes; Johnson, Dennis; Bauer, Terry

    1989-01-01

    The spacecraft design project was part of AE-4871, Advanced Spacecraft Design. The project was intended to provide experience in the design of all major components of a satellite. Each member of the class was given primary responsibility for a subsystem or design support function. Support was requested from the Naval Research Laboratory to augment the Naval Postgraduate School faculty. Analysis and design of each subsystem was done to the extent possible within the constraints of an eleven week quarter and the design facilities (hardware and software) available. The project team chose to evaluate the design of a high latitude communications satellite as representative of the design issues and tradeoffs necessary for a wide range of satellites. The High-Latitude Communications Satellite (HILACS) will provide a continuous UHF communications link between stations located north of the region covered by geosynchronous communications satellites, i.e., the area above approximately 60 N latitude. HILACS will also provide a communications link to stations below 60 N via a relay Net Control Station (NCS), which is located with access to both the HILACS and geosynchronous communications satellites. The communications payload will operate only for that portion of the orbit necessary to provide specified coverage.

  6. Ergonomic ship brigde design supports minimum manning

    NARCIS (Netherlands)

    Punte, P.A.J.; Post, W.M.

    2001-01-01

    The Royal Netherlands Navy is planning to design a hydrographic survey vessel to replace the currently used vessels in order to extend the tasks of an Officer by reducing require manning. The design includes the arrangements of workspace and the detailed design of workplaces. Digital human models ar

  7. Orion Spacecraft MMOD Protection Design and Assessment

    Science.gov (United States)

    Bohl, William; Miller, Joshua; Deighton, Kevin; Foreman, Cory; Yasensky, John; Christiansen, Eric; Hyde, James; Nahra, Henry

    2009-01-01

    The Orion spacecraft will replace the Space Shuttle Orbiter for American and international partner access to the International Space Station by 2015 and, afterwards, for access to the moon for initial sorties and later for extend outpost visits as part of the Constellation Exploration Initiative. This work describes some of the efforts being undertaken to ensure that Orion design will meet or exceed the stringent MicroMeteoroid and Orbital Debris (MMOD) requirements set out by NASA when exposed to the environments encountered with these missions. This paper will provide a brief overview of the approaches being used to provide MMOD protection to the Orion vehicle and to assess the spacecraft for compliance to the Constellation Program s MMOD requirements.

  8. MAN-004 Design Standards Manual

    Energy Technology Data Exchange (ETDEWEB)

    Peterson, Timothy L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2014-07-01

    At Sandia National Laboratories in New Mexico (SNL/NM), the design, construction, operation, and maintenance of facilities is guided by industry standards, a graded approach, and the systematic analysis of life cycle benefits received for costs incurred. The design of the physical plant must ensure that the facilities are "fit for use," and provide conditions that effectively, efficiently, and safely support current and future mission needs. In addition, SNL/NM applies sustainable design principles, using an integrated whole-building design approach, from site planning to facility design, construction, and operation to ensure building resource efficiency and the health and productivity of occupants. The safety and health of the workforce and the public, any possible effects on the environment, and compliance with building codes take precedence over project issues, such as performance, cost, and schedule. These design standards generally apply to all disciplines on all SNL/NM projects. Architectural and engineering design must be both functional and cost-effective. Facility design must be tailored to fit its intended function, while emphasizing low-maintenance, energy-efficient, and energy-conscious design. Design facilities that can be maintained easily, with readily accessible equipment areas, low maintenance, and quality systems. To promote an orderly and efficient appearance, architectural features of new facilities must complement and enhance the existing architecture at the site. As an Architectural and Engineering (A/E) professional, you must advise the Project Manager when this approach is prohibitively expensive. You are encouraged to use professional judgment and ingenuity to produce a coordinated interdisciplinary design that is cost-effective, easily contractible or buildable, high-performing, aesthetically pleasing, and compliant with applicable building codes. Close coordination and development of civil, landscape, structural, architectural, fire

  9. NASA STD-4005: The LEO Spacecraft Charging Design Standard

    Science.gov (United States)

    Ferguson, Dale C.

    2006-01-01

    Power systems with voltages higher than about 55 volts may charge in Low Earth Orbit (LEO) enough to cause destructive arcing. The NASA STD-4005 LEO Spacecraft Charging Design Standard will help spacecraft designers prevent arcing and other deleterious effects on LEO spacecraft. The Appendices, an Information Handbook based on the popular LEO Spacecraft Charging Design Guidelines by Ferguson and Hillard, serve as a useful explanation and accompaniment to the Standard.

  10. Future trends in spacecraft design and qualification

    Science.gov (United States)

    Venneri, Samuel L.; Hanks, Brantley R.; Pinson, Larry D.

    1986-01-01

    Material and structures issues that must be resolved in order to develop the technology data base needed to design and qualify the next generation of large flexible spacecraft are discussed. This invoves the development of new ground test and analysis methods and the conduct of appropriate instrumented in-space flight experiments for final verification. A review of present understanding of material behavior in the space environment and identification of future needs is presented. The dynamic verification and subsequent qualification of a spacecraft structure currently rely heavily on ground-based tests, coupled with the verified analysis model. Future space structures, such as large antennas, Space Station and other large platforms, will be of sizes difficult to test using current ground test methods. In addition to size, other complex factors, such as low natural frequencies, lightweight construction and many structural joints, will also contribute significant problems to the test and qualification process in an Earth-gravity environment. These large spacecraft will also require new technology for controlling the configuration and dynamic deformations of the structures. Future trend in large flexible structures will also involve long-life design missions (10 to 20 years). In low earth orbit (LEO), materials will be subjected to repeated thermal cycles, ultraviolet radiation, atomic oxygen and vacuum. For high orbits such as geo-synchronous earth orbit (GEO), the materials will also be subjected to large doses of high energy electrons and protons. Understanding degradation and material stability over long-mission time periods will confront the designer with many issues that are unresolved today.

  11. National Aeronautics and Space Administration Manned Spacecraft Center data base requirements study

    Science.gov (United States)

    1971-01-01

    A study was conducted to evaluate the types of data that the Manned Spacecraft Center (MSC) should automate in order to make available essential management and technical information to support MSC's various functions and missions. In addition, the software and hardware capabilities to best handle the storage and retrieval of this data were analyzed. Based on the results of this study, recommendations are presented for a unified data base that provides a cost effective solution to MSC's data automation requirements. The recommendations are projected through a time frame that includes the earth orbit space station.

  12. Development and testing of a wet oxidation waste processing system. [for waste treatment aboard manned spacecraft

    Science.gov (United States)

    Weitzmann, A. L.

    1977-01-01

    The wet oxidation process is considered as a potential treatment method for wastes aboard manned spacecraft for these reasons: (1) Fecal and urine wastes are processed to sterile water and CO2 gas. However, the water requires post-treatment to remove salts and odor; (2) the residual ash is negligible in quantity, sterile and easily collected; and (3) the product CO2 gas can be processed through a reduction step to aid in material balance if needed. Reaction of waste materials with oxygen at elevated temperature and pressure also produces some nitrous oxide, as well as trace amounts of a few other gases.

  13. Development of an iodine generator for reclaimed water purification in manned spacecraft applications

    Science.gov (United States)

    Wynveen, R. A.; Powell, J. D.; Schubert, F. H.

    1973-01-01

    A successful 30-day test is described of a prototype Iodine Generating and Dispensing System (IGDS). The IGDS was sized to iodinate the drinking water nominally consumed by six men, 4.5 to 13.6 kg (10 to 30 lb) water per man-day with a + or - 10 to 20% variation with iodine (I2) levels of 0.5 to 20 parts per million (ppm). The I2 treats reclaimed water to prevent or eliminate microorganism contamination. Treatment is maintained with a residual of I2 within the manned spacecraft water supply. A simplified version of the chlorogen water disinfection concept, developed by life systems for on-site generation of chlorine (Cl2), was used as a basis for IGDS development. Potable water contaminated with abundant E. Coliform Group organisms was treated by electrolytically generated I2 at levels of 5 to 10 ppm. In all instances, the E. coli were eliminated.

  14. Man-machine dialogue design and challenges

    CERN Document Server

    Landragin, Frederic

    2013-01-01

    This book summarizes the main problems posed by the design of a man-machine dialogue system and offers ideas on how to continue along the path towards efficient, realistic and fluid communication between humans and machines. A culmination of ten years of research, it is based on the author's development, investigation and experimentation covering a multitude of fields, including artificial intelligence, automated language processing, man-machine interfaces and notably multimodal or multimedia interfaces. Contents Part 1. Historical and Methodological Landmarks 1. An Assessment of the Evolution

  15. Spacecraft design project: Low Earth orbit communications satellite

    Science.gov (United States)

    Moroney, Dave; Lashbrook, Dave; Mckibben, Barry; Gardener, Nigel; Rivers, Thane; Nottingham, Greg; Golden, Bill; Barfield, Bill; Bruening, Joe; Wood, Dave

    1991-01-01

    This is the final product of the spacecraft design project completed to fulfill the academic requirements of the Spacecraft Design and Integration 2 course (AE-4871) taught at the U.S. Naval Postgraduate School. The Spacecraft Design and Integration 2 course is intended to provide students detailed design experience in selection and design of both satellite system and subsystem components, and their location and integration into a final spacecraft configuration. The design team pursued a design to support a Low Earth Orbiting (LEO) communications system (GLOBALSTAR) currently under development by the Loral Cellular Systems Corporation. Each of the 14 team members was assigned both primary and secondary duties in program management or system design. Hardware selection, spacecraft component design, analysis, and integration were accomplished within the constraints imposed by the 11 week academic schedule and the available design facilities.

  16. Concurrent engineering: Spacecraft and mission operations system design

    Science.gov (United States)

    Landshof, J. A.; Harvey, R. J.; Marshall, M. H.

    1994-01-01

    Despite our awareness of the mission design process, spacecraft historically have been designed and developed by one team and then turned over as a system to the Mission Operations organization to operate on-orbit. By applying concurrent engineering techniques and envisioning operability as an essential characteristic of spacecraft design, tradeoffs can be made in the overall mission design to minimize mission lifetime cost. Lessons learned from previous spacecraft missions will be described, as well as the implementation of concurrent mission operations and spacecraft engineering for the Near Earth Asteroid Rendezvous (NEAR) program.

  17. A Survey of Research on Service-Spacecraft Orbit Design

    Institute of Scientific and Technical Information of China (English)

    LI Yue; ZHANG Jian-xin; ZHANG Qiang; WEI Xiao-peng

    2013-01-01

    On-orbit service spacecraft orbit problem has been addressed for decades. The research of on-orbit service spacecraft orbit can be roughly divided into orbit design and orbit optimization. The paper mainly focuses on the orbit design problem. We simply summarize of the previous works, and point out the main content of the on-orbit service spacecraft orbit design. We classify current on-orbit service spacecraft orbit design problem into parking-orbit design, maneuvering-orbit design and servicing-orbit design. Then, we give a detail description of the three specific orbits, and put forward our own ideas on the existed achievements. The paper will provide a meaningful reference for the on-orbit service spacecraft orbital design research.

  18. Influence of Natural Environments in Spacecraft Design, Development, and Operation

    Science.gov (United States)

    Edwards, Dave

    2013-01-01

    Spacecraft are growing in complexity and sensitivity to environmental effects. The spacecraft engineer must understand and take these effects into account in building reliable, survivable, and affordable spacecraft. Too much protections, however, means unnecessary expense while too little will potentially lead to early mission loss. The ability to balance cost and risk necessitates an understanding of how the environment impacts the spacecraft and is a critical factor in its design. This presentation is intended to address both the space environment and its effects with the intent of introducing the influence of the environment on spacecraft performance.

  19. So Man-yee’s Design Work

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    SO Man-yee started to learn Western painting in1971. In 1973 she graduated from the Linhai ArtSchool in Hong Kong after spending three yearsstudying commercial design. After leaving the schoolshe started work with advertisement agencies. Thatexperience prepared her for further development inthe design field. So founded her own design company in 1976 withher friend Han Binhua. Apart from this project, So isalso involved in art education. So is a member of theboard of the Hong Kong Zhengxing Design School,executive member of the Association of Designers inHong Kong, member of the board of Hong KongArtists, chief director of the board of Hong Kong’sKinggraphic Co. Ltd., and also chairperson of theHong Kong Women Painters Association. A famous watercolorist in Hong Kong, So has heldseveral eye-catching exhibitions there. Her exhibitionsinclude the one-woman show entitled "So Man-yee’sRhythm of Watercolors" held in 1987 at the HongKong Art Center. In 1996 a grand exhibition of HongKong artists hosted by the

  20. A Framework for Designing Optimal Spacecraft Formations

    Science.gov (United States)

    2002-09-01

    3 1. Reference Frame ..................................................................................6 B. SOLVING OPTIMAL CONTROL PROBLEMS ........................................7...spacecraft state. Depending on the model, there may be additional variables in the state, but there will be a minimum of these six. B. SOLVING OPTIMAL CONTROL PROBLEMS Until

  1. Spacecraft design project: High temperature superconducting infrared imaging satellite

    Science.gov (United States)

    1991-01-01

    The High Temperature Superconductor Infrared Imaging Satellite (HTSCIRIS) is designed to perform the space based infrared imaging and surveillance mission. The design of the satellite follows the black box approach. The payload is a stand alone unit, with the spacecraft bus designed to meet the requirements of the payload as listed in the statement of work. Specifications influencing the design of the spacecraft bus were originated by the Naval Research Lab. A description of the following systems is included: spacecraft configuration, orbital dynamics, radio frequency communication subsystem, electrical power system, propulsion, attitude control system, thermal control, and structural design. The issues of testing and cost analysis are also addressed. This design project was part of the course Advanced Spacecraft Design taught at the Naval Postgraduate School.

  2. Design and Construction of Manned Lunar Base

    Science.gov (United States)

    Li, Zhijie

    2016-07-01

    Building manned lunar base is one of the core aims of human lunar exploration project, which is also an important way to carry out the exploitation and utilization of lunar in situ resources. The most important part of manned lunar base is the design and construction of living habitation and many factors should be considered including science objective and site selection. Through investigating and research, the scientific goals of manned lunar base should be status and characteristics ascertainment of lunar available in situ resources, then developing necessary scientific experiments and utilization of lunar in situ resources by using special environment conditions of lunar surface. The site selection strategy of manned lunar base should rely on scientific goals according to special lunar surface environment and engineering capacity constraints, meanwhile, consulting the landing sites of foreign unmanned and manned lunar exploration, and choosing different typical regions of lunar surface and analyzing the landform and physiognomy, reachability, thermal environment, sunlight condition, micro meteoroids protection and utilization of in situ resources, after these steps, a logical lunar living habitation site should be confirmed. This paper brings out and compares three kinds of configurations with fabricating processes of manned lunar base, including rigid module, flexible and construction module manned lunar base. 1.The rigid habitation module is usually made by metal materials. The design and fabrication may consult the experience of space station, hence with mature technique. Because this configuration cannot be folded or deployed, which not only afford limit working and living room for astronauts, but also needs repetitious cargo transit between earth and moon for lunar base extending. 2. The flexible module habitation can be folded in fairing while launching. When deploying on moon, the configuration can be inflatable or mechanically-deployed, which means under

  3. Using a Genetic Algorithm to Design Nuclear Electric Spacecraft

    Science.gov (United States)

    Pannell, William P.

    2003-01-01

    The basic approach to to design nuclear electric spacecraft is to generate a group of candidate designs, see how "fit" the design are, and carry best design forward to the next generation. Some designs eliminated, some randomly modified and carried forward.

  4. Formation design and nonlinear control of spacecraft formation flying

    Science.gov (United States)

    Wong, Hong

    The fundamental control challenges associated with Spacecraft Formation Flying (SFF) can be classified into two categories: (i) trajectory design and (ii) trajectory tracking. In this research, we address these challenges for several different operating environments. The first part of this research focuses on providing a trajectory generation and an adaptive control design methodology to facilitate SFF missions near the Sun-Earth L2 Lagrange point. Specifically, we create a spacecraft formation by placing a leader spacecraft on a desired Halo orbit and a follower spacecraft on a desired quasi-periodic orbit surrounding the Halo orbit. We develop the nonlinear dynamics of the leader spacecraft and the follower spacecraft relative to the leader spacecraft, wherein the leader spacecraft is assumed to be on a desired Halo orbit trajectory. Finally, we design formation maintenance controllers such that the leader and follower spacecraft track desired trajectories. In particular, we design a set of adaptive position tracking controllers for the leader and follower spacecraft in the presence of unknown spacecraft mass. The proposed control laws are simulated for the case of the leader and follower spacecraft pair and are shown to yield asymptotic convergence of the position tracking errors. The second part of this research focuses on providing nonlinear trajectory tracking control designs for SFF missions near Earth. First, we address output feedback tracking control problems for the coupled translation and attitude motion of a leader and a follower spacecraft. It is assumed that the translation and angular velocity measurements of the two spacecraft are not available for feedback. Second, we address a periodic trajectory tracking problem arising in spacecraft formation flying. In particular, the nonlinear position dynamics of a follower spacecraft relative to a leader spacecraft are utilized to develop a learning controller which learns a periodic, unknown model

  5. A new landing impact attenuation seat in manned spacecraft biologically-inspired by felids

    Directory of Open Access Journals (Sweden)

    Yu Hui

    2015-04-01

    Full Text Available When manned spacecraft comes back to the earth, it relies on the impact attenuation seat to protect astronauts from injuries during landing phase. Hence, the seat needs to transfer impact load, as small as possible, to the crew. However, there is little room left for traditional seat to improve further. Herein, a new seat system biologically-inspired by felids’ landing is proposed. Firstly, a series of experiments was carried out on cats and tigers, in which they were trained to jump down voluntarily from different heights. Based on the ground reaction forces combined with kinematics, the experiment indicated that felids’ landing after self-initial jump was a multi-step impact attenuation process and the new seat was inspired by this. Then the construction and work process of new seat were redesigned to realize the multi-step impact attenuation. The dynamic response of traditional and new seat is analyzed under the identical conditions and the results show that the new concept seat can significantly weaken the occupant overload in two directions compared with that of traditional seat. As a consequence, the risk of injury evaluated for spinal and head is also lowered, meaning a higher level of protection which is especially beneficial to the debilitated astronaut.

  6. Trajectory Design for the Phobos and Deimos & Mars Environment Spacecraft

    Science.gov (United States)

    Genova, Anthony L.; Korsmeyer, David J.; Loucks, Michel E.; Yang, Fan Yang; Lee, Pascal

    2016-01-01

    The presented trajectory design and analysis was performed for the Phobos and Deimos & Mars Environment (PADME) mission concept as part of a NASA proposal submission managed by NASA Ames Research Center in the 2014-2015 timeframe. The PADME spacecraft would be a derivative of the successfully flown Lunar Atmosphere & Dust Environment Explorer (LADEE) spacecraft. While LADEE was designed to enter low-lunar orbit, the PADME spacecraft would instead enter an elliptical Mars orbit of 2-week period. This Mars orbit would pass by Phobos near periapsis on successive orbits and then raise periapsis to yield close approaches of Deimos every orbit thereafter.

  7. Conceptual Study of System Schemes of Manned Asteroid Exploration Spacecraft%载人小行星探测器系统方案概念研究

    Institute of Scientific and Technical Information of China (English)

    王开强; 张柏楠; 李志海

    2015-01-01

    On the basis of the mission mode of human asteroid exploration, the manned asteroid ex-ploration spacecraft was designed, which was comprised of a crew module, a landing module, a re-entry module and a propulsion module.The functions and main parameters of these modules in aster-oid exploration were described.Then, according to seriation principle, 4 different system schemes of the manned spacecraft were proposed in which only the crew modules were different.The character-istics and applicability of the system schemes were analyzed.Furthermore, the process of system scheme selection of manned spacecraft was introduced based on the principle of minimizing the weight of spacecraft, then a selection example was given, and the benefit from seriation design of crew module was discussed.Finally, system schemes and weights of manned asteroid exploration spacecraft which could explore a few asteroids were shown.Some conclusions were drawn as refer-ence for scheme design and demonstration of human asteroid exploration mission.%根据载人小行星探测的飞行任务模式,提出了载人小行星探测器的系统组成方案,探测器由乘员舱、登陆舱、返回舱、推进舱组成,描述了各舱段的主要功能及指标。对乘员舱进行了系列化的设计,并基于不同的乘员舱配置,提出了4种探测器系统方案。依照探测器总质量最小的原则,提出了探测器系统方案选择的流程,并举例对系统方案的选择进行了说明,对乘员舱系列化设计的优势进行了讨论。最后,给出了对部分小行星实施载人探测的探测器系统方案和总质量估计。研究结果可为我国载人小行星探测的方案设计与论证提供参考。

  8. Theory in the design of the man-machine engineering

    Institute of Scientific and Technical Information of China (English)

    季孟蒙

    2015-01-01

    the article to the man - machine - environment system of interconnected and ergonomics of the content on the investigation and analysis of the role of design in detail, and shows the man-machine engineering opens up a new train of thought for design disciplines; Designer to design the content of the ascension to the height of the humanized design, make the design in line with the ergonomics principle and characteristics of the real reflects the respect of the design aspects of people's listening.

  9. Maintainability design criteria for packaging of spacecraft replaceable electronic equipment.

    Science.gov (United States)

    Kappler, J. R.; Folsom, A. B.

    1972-01-01

    Maintainability must be designed into long-duration spacecraft and equipment to provide the required high probability of mission success with the least cost and weight. The ability to perform repairs quickly and easily in a space environment can be achieved by imposing specific maintainability design criteria on spacecraft equipment design and installation. A study was funded to investigate and define design criteria for electronic equipment that would permit rapid removal and replacement in a space environment. The results of the study are discussed together with subsequent simulated zero-g demonstration tests of a mockup with new concepts for packaging.

  10. Maintainability design criteria for packaging of spacecraft replaceable electronic equipment.

    Science.gov (United States)

    Kappler, J. R.; Folsom, A. B.

    1972-01-01

    Maintainability must be designed into long-duration spacecraft and equipment to provide the required high probability of mission success with the least cost and weight. The ability to perform repairs quickly and easily in a space environment can be achieved by imposing specific maintainability design criteria on spacecraft equipment design and installation. A study was funded to investigate and define design criteria for electronic equipment that would permit rapid removal and replacement in a space environment. The results of the study are discussed together with subsequent simulated zero-g demonstration tests of a mockup with new concepts for packaging.

  11. A Web Based Collaborative Design Environment for Spacecraft

    Science.gov (United States)

    Dunphy, Julia

    1998-01-01

    In this era of shrinking federal budgets in the USA we need to dramatically improve our efficiency in the spacecraft engineering design process. We have come up with a method which captures much of the experts' expertise in a dataflow design graph: Seamlessly connectable set of local and remote design tools; Seamlessly connectable web based design tools; and Web browser interface to the developing spacecraft design. We have recently completed our first web browser interface and demonstrated its utility in the design of an aeroshell using design tools located at web sites at three NASA facilities. Multiple design engineers and managers are now able to interrogate the design engine simultaneously and find out what the design looks like at any point in the design cycle, what its parameters are, and how it reacts to adverse space environments.

  12. Nuclear-powered Hysat spacecraft: comparative design study

    Energy Technology Data Exchange (ETDEWEB)

    Raab, B.

    1975-08-01

    The study shows that the all-nuclear spacecraft can have a substantial weight advantage over a hybrid (nuclear/solar) or all-solar spacecraft, owing to a further reduction in power requirement, and to the elimination of such equipment as the sensor gimbal and rotating joint assemblies. Because the need for a sun-oriented section is eliminated, the all-nuclear spacecraft can be designed as a monolithic structure, with the sensor and other payload firmly secured in a fixed position on the structure. This enhances attitude stability while minimizing structural weight and eliminating the need for flexible fluid lines. Sensor motion can be produced, varied, and controlled within the limits specified by the study contractors by moving the entire spacecraft in the prescribed pattern. A simple attitude control system using available hardware suffices to meet all requirements.

  13. Nuclear-Powered GPS Spacecraft Design Study

    Energy Technology Data Exchange (ETDEWEB)

    Raab, Bernard

    1977-05-01

    This is the final report of a study to investigate the potential benefits of a nuclear (radioisotope) - powered satellite for advanced phases of the Global Positioning System (GPS) program. The critical parameters were: power to user; mean mission duration; orbital predictability; thermal control of on-board frequency standards; and vulnerability. The reference design approach is described, and input data are given for two power systems that are under development: an organic Rankine system and a Brayton cycle system. Reference design details are provided and structural design and analysis are discussed, as well as thermal design and analysis. A higher altitude version is also considered.

  14. Probe interface design consideration. [for interplanetary spacecraft missions

    Science.gov (United States)

    Casani, E. K.

    1974-01-01

    Interface design between a probe and a spacecraft requires not only technical considerations but also management planning and mission analysis interactions. Two further aspects of importance are the flyby versus the probe trade-off, and the relay link design and data handling optimization.

  15. New Strategy of IPACS Design and Energy Management for Spacecrafts

    Institute of Scientific and Technical Information of China (English)

    ZHANG Jing-rui

    2006-01-01

    The design problem of an integrated power and attitude control system (IPACS) for spacecrafts is investigated. A Lyapunov-typed IPACS controller is designed for a spacecraft equipped with 4 flywheels (3 orthogonal + 1 skew). This controller keeps in the nonlinear properties of original systems, so the control result can be more precise. A control law of the flywheels is also proposed to accomplish the attitude control and energy storage simultaneously. Aiming at the limitations existing in the power conversion characteristic and the wheel's motor, a new strategy of energy management is proposed. The strategy can not only make the charged/discharged energy reaching balance in each orbital period, but also sufficiently utilize the power provided by the solar arrays. Therefore, the size and mass of solar arrays can be decreased, and the cost of spacecraft can be economized. A simulation example illustrates the validity of the designed IPACS.

  16. High Voltage Design Guide. Volume V. Spacecraft

    Science.gov (United States)

    1983-01-01

    connector are soldered, with the possible exception of very high voltage points. Even then rudimentary connectors such as that shown In figura 13 ar used...addition, large stresses will be imposed on the struc- tural (high resistance) member. This conductor movement will flex and stretch the conductors, placing...materials used for airplane systems provided they meet the electrical, chemical, and mechanical characteristic requirements imposed by the design

  17. Designing the Next Generation of Human Spacecraft

    Science.gov (United States)

    Simmons, Emily

    2016-01-01

    Lunar Space Station Common Module: A new concept for a module for a lunar space station attempts to reduce the module's mass by abandoning the traditional rack structure currently used on the ISS for the mounting of internal hardware and replacing it with a core structure. By using this design, the pressure shell will not have to carry the loads resulting from the internal mass. I worked with another intern to create the initial design for the module, with him focusing on the core and myself focusing on the pressure shell. To start, I was given the shell overall dimensions and material and tasked with sizing the wall thickness and placing stiffeners such that the shell could withstand the required loads. At the same time, I had to keep the mass to a minimum to keep the overall module within the allowable launch mass. Once I had done initial sizing based on pressure loads, I combined the pressure shell with the inner core to perform optimization of the design. Currently, the design involves circumferential stiffeners along the entire length of the pressure shell with longitudinal stiffeners on either end. In addition, extra wall thickness was added around each of the hatches. At this stage, the design shows a comparable mass to a more traditional design, but we are hopeful that, through optimization, we will be able to reduce the mass even further. There is currently a patent pending for the module design, for which I am listed as a co-inventor. ALON Material Testing: I was given samples of aluminum oxynitride (ALON) that had been impacted by a previous intern on which to perform residual strength tests as part of a plan to approve them for space use. Before testing, I measured the pucks and their damages using a ruler and optical micrometer in order to verify that the puck dimensions were within the tolerances set by the test guidelines and that the damages had not grown when the pucks were thinned. The test was a ring-ring test, which used two concentric rings to

  18. Conference on Manned Systems Design : New Methods and Equipment

    CERN Document Server

    Kraiss, K-F

    1981-01-01

    This volume contains the proceedings of a conference held in Freiburg, West Germany, September 22-25, 1980, entitled "Manned Systems Design, New Methods and Equipment". The conference was sponsored by the Special Programme Panel on Human Factors of the Scientific Affairs Division of NATO, and supported by Panel VIII, AC/243, on "Human and Biomedical Sciences". Their sponsorship and support are gratefully acknowledged. The contributions in the book are grouped according to the main themes of the conference with special emphasis on analytical approaches, measurement of performance, and simulator design and evaluat ion. The design of manned systems covers many and highly diversified areas. Therefore, a conference under the general title of "Manned Systems Design" is rather ambitious in itself. However, scientists and engineers engaged in the design of manned systems very often are confronted with problems that can be solved only by having several disciplines working together. So it was felt that knowledge about ...

  19. Spacecraft

    Science.gov (United States)

    Clark, John F.; Haggerty, James J.; Woodburn, John H.

    1961-01-01

    In this twentieth century, we are privileged to witness the first steps toward realization of an age-old dream: the exploration of space. Already, in the first few years of the Space Age, man has been able to penetrate the layer of atmosphere which surrounds his planet and to venture briefly into space. Scores of man-made objects have been thrust into space, some of them to roam the solar system forever. Behind each space mission are years of patient research, thousands of man-hours of labor, and large sums of money. Because the sums involved are so enormous, the question is frequently asked, "Is it worth it?" Many people want to know what return this huge investment will bring to mankind. The return on the investment is knowledge. The accumulation of knowledge over the centuries has made possible our advanced way of life. As we unlock more and more of the secrets of the universe through space exploration, we add new volumes to the encyclopedia of man's knowledge. This will be applied to the benefit of mankind. For the practical-minded, there are concrete benefits to our way of life. Although we are still in the Stone Age of space exploration, a number of immediate applications of space technology are already apparent. For instance, imagine the benefits of an absolutely perfect system of predicting the weather. Or, going a step further, even changing the weather. And wouldn't it be fascinating to watch the next Olympic games, telecast from Tokyo, on your TV set? These are just a few of the practical benefits made possible by space technology.

  20. Energy-based robust controller design for flexible spacecraft

    Institute of Scientific and Technical Information of China (English)

    Shuzhi Sam GE; Tong Heng LEE; Fan HONG; Cher Hiang GOH

    2004-01-01

    This paper presents a class of non-model-based position controllers for a kind of flexible spacecraft. With the controllers, one can achieve not only the closed-loop stability of the original distributed parameter system, but also the asymptotic stability of the truncated system, which is obtained through representing the deflection of the appendage by an arbitrary finite number of flexible modes. The system dynamics are not explicitly involved in the controller design and stability proof. Instead, only a very basic system energy relationship of the flexible spacecraft is utilized. The controllers possess several remarkable advantages over the traditional model-based ones. Numerical simulations are carded out on a kind of spacecraft with one flexible appendage and satisfactory results are obtained.

  1. Man-Machine Interface Design for Modeling and Simulation Software

    Directory of Open Access Journals (Sweden)

    Arnstein J. Borstad

    1986-07-01

    Full Text Available Computer aided design (CAD systems, or more generally interactive software, are today being developed for various application areas like VLSI-design, mechanical structure design, avionics design, cartographic design, architectual design, office automation, publishing, etc. Such tools are becoming more and more important in order to be productive and to be able to design quality products. One important part of CAD-software development is the man-machine interface (MMI design.

  2. Uncertainty-based Optimization Algorithms in Designing Fractionated Spacecraft

    Science.gov (United States)

    Ning, Xin; Yuan, Jianping; Yue, Xiaokui

    2016-03-01

    A fractionated spacecraft is an innovative application of a distributive space system. To fully understand the impact of various uncertainties on its development, launch and in-orbit operation, we use the stochastic missioncycle cost to comprehensively evaluate the survivability, flexibility, reliability and economy of the ways of dividing the various modules of the different configurations of fractionated spacecraft. We systematically describe its concept and then analyze its evaluation and optimal design method that exists during recent years and propose the stochastic missioncycle cost for comprehensive evaluation. We also establish the models of the costs such as module development, launch and deployment and the impacts of their uncertainties respectively. Finally, we carry out the Monte Carlo simulation of the complete missioncycle costs of various configurations of the fractionated spacecraft under various uncertainties and give and compare the probability density distribution and statistical characteristics of its stochastic missioncycle cost, using the two strategies of timing module replacement and non-timing module replacement. The simulation results verify the effectiveness of the comprehensive evaluation method and show that our evaluation method can comprehensively evaluate the adaptability of the fractionated spacecraft under different technical and mission conditions.

  3. MarcoPolo-R: Mission and Spacecraft Design

    Science.gov (United States)

    Peacocke, L.; Kemble, S.; Chapuy, M.; Scheer, H.

    2013-09-01

    The MarcoPolo-R mission is a candidate for the European Space Agency's medium-class Cosmic Vision programme, with the aim to obtain a 100 g sample of asteroid surface material and return it safely to the Earth. Astrium is one of two industrial contractors currently studying the mission to Phase A level, and the team has been working on the mission and spacecraft design since January 2012. Asteroids are some of the most primitive bodies in our solar system and are key to understanding the formation of the Earth, Sun and other planetary bodies. A returned sample would allow extensive analyses in the large laboratory-sized instruments here on Earth that are not possible with in-situ instruments. This analysis would also increase our understanding of the composition and structure of asteroids, and aid in plans for asteroid deflection techniques. In addition, the mission would be a valuable precursor for missions such as Mars Sample Return, demonstrating a high speed Earth re-entry and hard landing of an entry capsule. Following extensive mission analysis of both the baseline asteroid target 1996 FG3 and alternatives, a particularly favourable trajectory was found to the asteroid 2008 EV5 resulting in a mission duration of 4.5 to 6 years. In October 2012, the MarcoPolo-R baseline target was changed to 2008 EV5 due to its extremely primitive nature, which may pre-date the Sun. This change has a number of advantages: reduced DeltaV requirements, an orbit with a more benign thermal environment, reduced communications distances, and a reduced complexity propulsion system - all of which simplify the spacecraft design significantly. The single spacecraft would launch between 2022 and 2024 on a Soyuz-Fregat launch vehicle from Kourou. Solar electric propulsion is necessary for the outward and return transfers due to the DeltaV requirements, to minimise propellant mass. Once rendezvous with the asteroid is achieved, an observation campaign will begin to characterise the

  4. Design/Development of Spacecraft and Module Crew Compartments

    Science.gov (United States)

    Goodman, Jerry R.

    2010-01-01

    This slide presentation reviews the design and development of crew compartments for spacecraft and for modules. The Crew Compartment or Crew Station is defined as the spacecraft interior and all other areas the crewman interfaces inside the cabin, or may potentially interface.It uses examples from all of the human rated spacecraft. It includes information about the process, significant drivers for the design, habitability, definitions of models, mockups, prototypes and trainers, including pictures of each stage in the development from Apollo, pictures of the space shuttle trainers, and International Space Station trainers. It further reviews the size and shape of the Space Shuttle orbiter crew compartment, and the Apollo command module and the lunar module. It also has a chart which reviews the International Space Station (ISS) internal volume by stage. The placement and use of windows is also discussed. Interestingly according to the table presented, the number 1 rated piece of equipment for recreation was viewing windows. The design of crew positions and restraints, crew translation aids and hardware restraints is shown with views of the restraints and handholds used from the Apollo program through the ISS.

  5. Incorporating Uncertainty into Spacecraft Mission and Trajectory Design

    Science.gov (United States)

    Juliana D., Feldhacker

    The complex nature of many astrodynamic systems often leads to high computational costs or degraded accuracy in the analysis and design of spacecraft missions, and the incorporation of uncertainty into the trajectory optimization process often becomes intractable. This research applies mathematical modeling techniques to reduce computational cost and improve tractability for design, optimization, uncertainty quantication (UQ) and sensitivity analysis (SA) in astrodynamic systems and develops a method for trajectory optimization under uncertainty (OUU). This thesis demonstrates the use of surrogate regression models and polynomial chaos expansions for the purpose of design and UQ in the complex three-body system. Results are presented for the application of the models to the design of mid-eld rendezvous maneuvers for spacecraft in three-body orbits. The models are shown to provide high accuracy with no a priori knowledge on the sample size required for convergence. Additionally, a method is developed for the direct incorporation of system uncertainties into the design process for the purpose of OUU and robust design; these methods are also applied to the rendezvous problem. It is shown that the models can be used for constrained optimization with orders of magnitude fewer samples than is required for a Monte Carlo approach to the same problem. Finally, this research considers an application for which regression models are not well-suited, namely UQ for the kinetic de ection of potentially hazardous asteroids under the assumptions of real asteroid shape models and uncertainties in the impact trajectory and the surface material properties of the asteroid, which produce a non-smooth system response. An alternate set of models is presented that enables analytic computation of the uncertainties in the imparted momentum from impact. Use of these models for a survey of asteroids allows conclusions to be drawn on the eects of an asteroid's shape on the ability to

  6. 神舟七号载人飞船相关术语%Terms Relevant to Shenzhou Ⅶ Manned Spacecraft

    Institute of Scientific and Technical Information of China (English)

    舒宇

    2008-01-01

    @@ "载人飞船"不同于"航天飞机" 载人飞船(manned spacecraft)是一种可供一次性使用的往返飞行于地球与太空之间的载人航天器.俄罗斯的联盟系列飞船、美国的阿波罗号均属载人飞船.航天飞机(space shuttle)指往返于地面和近地轨道之间的可重复使用的太空飞行器.美国的哥伦比亚号、发现号和奋进号等都是航天飞机.航天飞机技术先进,载荷量大,但成本和维修费用远高于载人飞船,而且安全性能低于载人飞船,所以中国选择以载人飞船启动载人航天工程.

  7. The potential impact of new power system technology on the design of a manned Space Station

    Science.gov (United States)

    Fordyce, J. S.; Schwartz, H. J.

    1984-01-01

    Larger, more complex spacecraft of the future such as a manned Space Station will require electric power systems of 100 kW and more, orders of magnitude greater than the present state of the art. Power systems at this level will have a significant impact on the spacecraft design. Historically, long-lived spacecraft have relied on silicon solar cell arrays, a nickel-cadmium storage battery and operation at 28 V dc. These technologies lead to large array areas and heavy batteries for a Space Station application. This, in turn, presents orbit altitude maintenance, attitude control, energy management and launch weight and volume constraints. Size (area) and weight of such a power system can be reduced if new higher efficiency conversion and lighter weight storage technologies are used. Several promising technology options including concentrator solar photovoltaic arrays, solar thermal dynamic and ultimately nuclear dynamic systems to reduce area are discussed. Also, higher energy storage systems such as nickel-hydrogen and the regenerative fuel cell (RFC) and higher voltage power distribution which add system flexibility, simplicity and reduce weight are examined. Emphasis placed on the attributes and development status of emerging technologies that are sufficiently developed so that they could be available for flight use in the early to mid 1990's.

  8. Application of advanced electronics to a future spacecraft computer design

    Science.gov (United States)

    Carney, P. C.

    1980-01-01

    Advancements in hardware and software technology are summarized with specific emphasis on spacecraft computer capabilities. Available state of the art technology is reviewed and candidate architectures are defined.

  9. Phase Change Material Trade Study: A Comparison Between Wax and Water for Manned Spacecraft

    Science.gov (United States)

    Quinn, Gregory; Hodgson, Ed; Stephan, Ryan A,

    2011-01-01

    Phase change material heat sinks have been recognized as an important tool in optimizing thermal control systems for space exploration vehicles and habitats that must deal with widely varying thermal loads and environments. In order to better focus technology investment in this arena, NASA has supported a trade study with the objective of identifying where the best potential pay-off can be found among identified aqueous and paraffin wax phase change materials and phase change material heat sink design approaches. The study used a representative exploration mission with well understood parameters to support the trade. Additional sensitivity studies were performed to ensure the applicability of study results across varying systems and destinations. Results from the study indicate that replacing a wax PCM heat sink with a water ice PCM heat sink has the potential to decrease the equivalent system mass of the mission s vehicle through a combination of a smaller heat sink and a slight 5% increase in radiator size or the addition of a lightweight heat pump. An evaluation of existing and emerging PCM heat sink technologies indicates that further mass savings should be achievable through continued development of those technologies. The largest mass savings may be realized by eliminating the melting and freezing pressure of wax and water, respectively.

  10. Spacecraft Conceptual Design for Returning Entire Near-Earth Asteroids

    Science.gov (United States)

    Brophy, John R.; Oleson, Steve

    2012-01-01

    In situ resource utilization (ISRU) in general, and asteroid mining in particular are ideas that have been around for a long time, and for good reason. It is clear that ultimately human exploration beyond low-Earth orbit will have to utilize the material resources available in space. Historically, the lack of sufficiently capable in-space transportation has been one of the key impediments to the harvesting of near-Earth asteroid resources. With the advent of high-power (or order 40 kW) solar electric propulsion systems, that impediment is being removed. High-power solar electric propulsion (SEP) would be enabling for the exploitation of asteroid resources. The design of a 40-kW end-of-life SEP system is presented that could rendezvous with, capture, and subsequently transport a 1,000-metric-ton near-Earth asteroid back to cislunar space. The conceptual spacecraft design was developed by the Collaborative Modeling for Parametric Assessment of Space Systems (COMPASS) team at the Glenn Research Center in collaboration with the Keck Institute for Space Studies (KISS) team assembled to investigate the feasibility of an asteroid retrieval mission. Returning such an object to cislunar space would enable astronaut crews to inspect, sample, dissect, and ultimately determine how to extract the desired materials from the asteroid. This process could jump-start the entire ISRU industry.

  11. Design, Fabrication, and Testing of a Hopper Spacecraft Simulator

    Science.gov (United States)

    Mucasey, Evan Phillip Krell

    A robust test bed is needed to facilitate future development of guidance, navigation, and control software for future vehicles capable of vertical takeoff and landings. Specifically, this work aims to develop both a hardware and software simulator that can be used for future flight software development for extra-planetary vehicles. To achieve the program requirements of a high thrust to weight ratio with large payload capability, the vehicle is designed to have a novel combination of electric motors and a micro jet engine is used to act as the propulsion elements. The spacecraft simulator underwent several iterations of hardware development using different materials and fabrication methods. The final design used a combination of carbon fiber and fiberglass that was cured under vacuum to serve as the frame of the vehicle which provided a strong, lightweight platform for all flight components and future payloads. The vehicle also uses an open source software development platform, Arduino, to serve as the initial flight computer and has onboard accelerometers, gyroscopes, and magnetometers to sense the vehicles attitude. To prevent instability due to noise, a polynomial kalman filter was designed and this fed the sensed angles and rates into a robust attitude controller which autonomously control the vehicle' s yaw, pitch, and roll angles. In addition to the hardware development of the vehicle itself, both a software simulation and a real time data acquisition interface was written in MATLAB/SIMULINK so that real flight data could be taken and then correlated to the simulation to prove the accuracy of the analytical model. In result, the full scale vehicle was designed and own outside of the lab environment and data showed that the software model accurately predicted the flight dynamics of the vehicle.

  12. Man-Vehicle Systems Research Facility - Design and operating characteristics

    Science.gov (United States)

    Shiner, Robert J.; Sullivan, Barry T.

    1992-01-01

    This paper describes the full-mission flight simulation facility at the NASA Ames Research Center. The Man-Vehicle Systems Research Facility (MVSRF) supports aeronautical human factors research and consists of two full-mission flight simulators and an air-traffic-control simulator. The facility is used for a broad range of human factors research in both conventional and advanced aviation systems. The objectives of the research are to improve the understanding of the causes and effects of human errors in aviation operations, and to limit their occurrence. The facility is used to: (1) develop fundamental analytical expressions of the functional performance characteristics of aircraft flight crews; (2) formulate principles and design criteria for aviation environments; (3) evaluate the integration of subsystems in contemporary flight and air traffic control scenarios; and (4) develop training and simulation technologies.

  13. Spacecraft Conceptual Design for the 8-Meter Advanced Technology Large Aperture Space Telescope (ATLAST)

    Science.gov (United States)

    Hopkins, Randall C.; Capizzo, Peter; Fincher, Sharon; Hornsby, Linda S.; Jones, David

    2010-01-01

    The Advanced Concepts Office at Marshall Space Flight Center completed a brief spacecraft design study for the 8-meter monolithic Advanced Technology Large Aperture Space Telescope (ATLAST-8m). This spacecraft concept provides all power, communication, telemetry, avionics, guidance and control, and thermal control for the observatory, and inserts the observatory into a halo orbit about the second Sun-Earth Lagrange point. The multidisciplinary design team created a simple spacecraft design that enables component and science instrument servicing, employs articulating solar panels for help with momentum management, and provides precise pointing control while at the same time fast slewing for the observatory.

  14. Making Human Spaceflight Practical and Affordable: Spacecraft Designs and their Degree of Operability

    Science.gov (United States)

    Crocker, Alan R.

    2011-01-01

    As we push toward new and diverse space transportation capabilities, reduction in operations cost becomes increasingly important. Achieving affordable and safe human spaceflight capabilities will be the mark of success for new programs and new providers. The ability to perceive the operational implications of design decisions is crucial in developing safe yet cost competitive space transportation systems. Any human spaceflight program - government or commercial - must make countless decisions either to implement spacecraft system capabilities or adopt operational constraints or workarounds to account for the lack of such spacecraft capabilities. These decisions can benefit from the collective experience that NASA has accumulated in building and operating crewed spacecraft over the last five decades. This paper reviews NASA s history in developing and operating human rated spacecraft, reviewing the key aspects of spacecraft design and their resultant impacts on operations phase complexity and cost. Specific examples from current and past programs - including the Space Shuttle and International Space Station - are provided to illustrate design traits that either increase or increase cost and complexity associated with spacecraft operations. These examples address factors such as overall design performance margins, levels of redundancy, degree of automated failure response, type and quantity of command and telemetry interfaces, and the definition of reference scenarios for analysis and test. Each example - from early program requirements, design implementation and resulting real-time operations experience - to tell the end-to-end "story" Based on these experiences, specific techniques are recommended to enable earlier and more effective assessment of operations concerns during the design process. A formal method for the assessment of spacecraft operability is defined and results of such operability assessments for recent spacecraft designs are provided. Recent

  15. NASA-STD-4005 and NASA-HDBK-4006, LEO Spacecraft Solar Array Charging Design Standard

    Science.gov (United States)

    Ferguson, Dale C.

    2007-01-01

    Two new NASA Standards are now official. They are the NASA LEO Spacecraft Charging Design Standard (NASA-STD-4005) and the NASA LEO Spacecraft Charging Design Handbook (NASA-HDBK-4006). They give the background and techniques for controlling solar array-induced charging and arcing in LEO. In this paper, a brief overview of the new standards is given, along with where they can be obtained and who should be using them.

  16. The mechanical design and dynamic testing of the IBEX-H1 electrostatic analyzer spacecraft instrument

    Energy Technology Data Exchange (ETDEWEB)

    Bernardin, John D [Los Alamos National Laboratory; Baca, Allen G [SNL

    2009-01-01

    This paper presents the mechanical design, fabrication and dynamic testing of an electrostatic analyzer spacecraft instrument. The functional and environmental requirements combined with limited spacecraft accommodations, resulted in complex component geometries, unique material selections, and difficult fabrication processes. The challenging aspects of the mechanical design and several of the more difficult production processes are discussed. In addition, the successes, failures, and lessons learned from acoustic and random vibration testing of a full-scale prototype instrument are presented.

  17. Weight estimates and packaging techniques for the microwave radiometer spacecraft. [shuttle compatible design

    Science.gov (United States)

    Jensen, J. K.; Wright, R. L.

    1981-01-01

    Estimates of total spacecraft weight and packaging options were made for three conceptual designs of a microwave radiometer spacecraft. Erectable structures were found to be slightly lighter than deployable structures but could be packaged in one-tenth the volume. The tension rim concept, an unconventional design approach, was found to be the lightest and transportable to orbit in the least number of shuttle flights.

  18. New approaches to planetary exploration - Spacecraft and information systems design

    Science.gov (United States)

    Diaz, A. V.; Neugebauer, M.; Stuart, J.; Miller, R. B.

    1983-01-01

    Approaches are recommended for use by the NASA Solar System Exploration Committee (SSEC) in lowering the costs of planetary missions. The inclusion of off-the-shelf hardware, i.e., configurations currently in use for earth orbits and constructed on a nearly assembly-line basis, is suggested. Alterations would be necessary for the thermal control, power supply, telecommunications equipment, and attitude sensing in order to be serviceable as a planetary observer spacecraft. New technology can be developed only when cost reduction for the entire mission would be realized. The employment of lower-cost boost motors, or even integrated boost motors, for the transfer out of earth orbit is indicated, as is the development of instruments that do not redundantly gather the same data as previous planetary missions. Missions under consideration include a Mars geoscience climatology Orbiter, a lunar geoscience Orbiter, a near-earth asteroid rendezvous, a Mars aeronomy Orbiter, and a Venus atmospheric probe.

  19. Design and performance test of spacecraft test and operation software

    Science.gov (United States)

    Wang, Guohua; Cui, Yan; Wang, Shuo; Meng, Xiaofeng

    2011-06-01

    Main test processor (MTP) software is the key element of Electrical Ground Support Equipment (EGSE) for spacecraft test and operation used in the Chinese Academy of Space Technology (CAST) for years without innovation. With the increasing demand for a more efficient and agile MTP software, the new MTP software was developed. It adopts layered and plug-in based software architecture, whose core runtime server provides message queue management, share memory management and process management services and forms the framework for a configurable and open architecture system. To investigate the MTP software's performance, the test case of network response time, test sequence management capability and data-processing capability was introduced in detail. Test results show that the MTP software is common and has higher performance than the legacy one.

  20. Spacecraft Mission Design for the Mitigation of the 2017 PDC Hypothetical Asteroid Threat

    Science.gov (United States)

    Barbee, Brent W.; Sarli, Bruno V.; Lyzhoft, Josh; Chodas, Paul W.; Englander, Jacob A.

    2017-01-01

    This paper presents a detailed mission design analysis results for the 2017 Planetary Defense Conference (PDC) Hypothetical Asteroid Impact Scenario, documented at https:cneos.jpl.nasa.govpdcspdc17. The mission design includes campaigns for both reconnaissance (flyby or rendezvous) of the asteroid (to characterize it and the nature of the threat it poses to Earth) and mitigation of the asteroid, via kinetic impactor deflection, nuclear explosive device (NED) deflection, or NED disruption. Relevant scenario parameters are varied to assess the sensitivity of the design outcome, such as asteroid bulk density, asteroid diameter, momentum enhancement factor, spacecraft launch vehicle, and mitigation system type. Different trajectory types are evaluated in the mission design process from purely ballistic to those involving optimal midcourse maneuvers, planetary gravity assists, and/or low-thrust solar electric propulsion. The trajectory optimization is targeted around peak deflection points that were found through a novel linear numerical technique method. The optimization process includes constrain parameters, such as Earth departure date, launch declination, spacecraft, asteroid relative velocity and solar phase angle, spacecraft dry mass, minimum/maximum spacecraft distances from Sun and Earth, and Earth-spacecraft communications line of sight. Results show that one of the best options for the 2017 PDC deflection is solar electric propelled rendezvous mission with a single spacecraft using NED for the deflection.

  1. Research on Measurement Method of Continuous Noise in Manned Spacecraft%载人航天器稳态噪声测量试验方法研究

    Institute of Scientific and Technical Information of China (English)

    彭华康; 石泳; 贾世锦; 黄震; 苏令; 张振华

    2016-01-01

    Effective measurement of the continuous noise in the sealed cabin of manned spacecraft during ground test is an important way to reduce the on⁃orbit technical risks. The corrected value of the test result was gained by theoretical method. Based on the study of the experimental effect do⁃main, the noise source identification, the noise generation mechanism and the transmit paths, a measurement method of the continuous noise in the manned spacecraft was studied. The ground sim⁃ulation test and the on⁃orbit measurement were conducted in the orbit module of the manned space⁃ship. It is verified that the experimental results accord well with the data on orbit.%为在地面研制期间对载人航天器密封舱内稳态噪声进行有效测量以减小在轨技术风险,理论推导了背景噪声对测量结果的修正值,基于试验影响域、噪声源识别及噪声传播路径分析结果,提出了测量仪器要求,研究了稳态噪声测量方法和试验流程,经载人飞船地面模拟飞行试验验证,轨道舱内稳态噪声测量结果与在轨实测值相差1�4 dB,二者吻合较好。

  2. Long life assurance study for manned spacecraft long life hardware. Volume 2: Long life assurance studies of EEE parts and packaging

    Science.gov (United States)

    1972-01-01

    Guidelines for the design, development, and fabrication of electronic components and circuits for use in spacecraft construction are presented. The subjects discussed involve quality control procedures and test methodology for the following subjects: (1) monolithic integrated circuits, (2) hybrid integrated circuits, (3) transistors, (4) diodes, (5) tantalum capacitors, (6) electromechanical relays, (7) switches and circuit breakers, and (8) electronic packaging.

  3. Backscatter LIDAR signal simulation applied to spacecraft LIDAR instrument design

    Science.gov (United States)

    Fochesatto, J.; Ristori, P.; Flamant, P.; Machado, M. E.; Singh, U.; Quel, E.

    2004-01-01

    In the framework of the scientific cooperation between the CEILAP laboratory (Argentina) and IPSL Institut Pierre Simon Laplace (France), devoted to the development of LIDAR techniques for Atmospheric sciences, a new area of scientific research, involving LIDARs, is starting in Argentine space technology. This new research area is under consideration at CEILAP in a joint effort with CONAE, the Argentine space agency, responsible for the development of future space missions. The LIDAR technique is necessary to improve our knowledge of meteorological, dynamic, and radiative processes in the South American region, for the whole troposphere and the lower stratosphere. To study this future mission, a simple model for the prediction of backscatter LIDAR signal from a spacecraft platform has been used to determine dimensions and detection characteristics of the space borne LIDAR instrument. The backscatter signal was retrieved from a modeled atmosphere considering its molecular density profile and taking into account different aerosols and clouds conditions. Signal-to-noise consideration, within the interval of possible dimension of the instrument parameters, allows us to constrain the telescope receiving area and to derive maximum range achievable, integration time and the final spatial and temporal resolutions of backscatter profiles.

  4. A design for a reusable water-based spacecraft known as the spacecoach

    CERN Document Server

    McConnell, Brian

    2016-01-01

     Based on components already in existence, this manual details a reference design for an interplanetary spacecraft that is simple, durable, fully reusable and comprised mostly of water. Using such an accessible material leads to a spacecraft architecture that is radically simpler, safer and cheaper than conventional capsule based designs. If developed, the potential affordability of the design will substantially open all of the inner solar system to human exploration. A spacecraft that is comprised mostly of water will be much more like a living cell or a terrarium than a conventional rocket and capsule design. It will use water for many purposes before it is superheated in electric engines for propulsion, purposes which include radiation shielding, heat management, basic life support, crew consumption and comfort. The authors coined the term "spacecoaches" to describe them, as an allusion to the Prairie Schooners of the Old West, which were simple, rugged, and could live off the land.

  5. Electrical design for origami solar panels and a small spacecraft test mission

    Science.gov (United States)

    Drewelow, James; Straub, Jeremy

    2017-05-01

    Efficient power generation is crucial to the design of spacecraft. Mass, volume, and other limitations prevent the use of traditional spacecraft support structures from being suitable for the size of solar array required for some missions. Folding solar panel / panel array systems, however, present a number of design challenges. This paper considers the electrical design of an origami system. Specifically, it considers how to provide low impedance, durable channels for the generated power and the electrical aspects of the deployment system and procedure. The ability to dynamically reconfigure the electrical configuration of the solar cells is also discussed. Finally, a small satellite test mission to demonstrate the technology is proposed, before concluding.

  6. Progresses and prospect of manned spacecraft system-level thermal test technique%载人航天器系统级热试验技术现状与展望

    Institute of Scientific and Technical Information of China (English)

    魏传锋; 姚峰

    2013-01-01

    文章首先介绍了载人航天器较之卫星的特殊性,及其对热试验的需求,然后着重评述了国外载人航天器(包括空间站和载人飞船)和我国载人航天器的热试验技术发展和现状,展望了后续我国载人航天器尤其是大型空间站的热试验技术的发展方向,并提出建议。%The difference between manned spacecraft and satellite is discussed. The progresses of the thermal test technique for manned spacecraft (space station and manned spaceship) are reviewed, especially those made in China. The development trend of the spacecraft system-level thermal test technique is analyzed.

  7. Design and analysis study of a spacecraft optical transceiver package

    Science.gov (United States)

    Lambert, S. G.

    1985-01-01

    A detailed system level design of an Optical Transceiver Package (OPTRANSPAC) for a deep space vehicle whose mission is outer planet exploration is developed. In addition to the terminal design, this study provides estimates of the dynamic environments to be encountered by the transceiver throughout its mission life. Optical communication link analysis, optical thin lens design, electronic functional design and mechanical layout and packaging are employed in the terminal design. Results of the study describe an Optical Transceiver Package capable of communicating to an Earth Orbiting Relay Station at a distance of 10 Astronomical Units (AU) and data rates up to 100 KBPS. The transceiver is also capable of receiving 1 KBPS of command data from the Earth Relay. The physical dimensions of the terminal are contained within a 3.5' x 1.5' x 2.0' envelope and the transceiver weight and power are estimated at 52.2 Kg (115 pounds) and 57 watts, respectively.

  8. Combined energy production and waste management in manned spacecraft utilizing on-demand hydrogen production and fuel cells

    Science.gov (United States)

    Elitzur, Shani; Rosenband, Valery; Gany, Alon

    2016-11-01

    Energy supply and waste management are among the most significant challenges in human spacecraft. Great efforts are invested in managing solid waste, recycling grey water and urine, cleaning the atmosphere, removing CO2, generating and saving energy, and making further use of components and products. This paper describes and investigates a concept for managing waste water and urine to simultaneously produce electric and heat energies as well as fresh water. It utilizes an original technique for aluminum activation to react spontaneously with water at room temperature to produce hydrogen on-site and on-demand. This reaction has further been proven to be effective also when using waste water and urine. Applying the hydrogen produced in a fuel cell, one obtains electric energy as well as fresh (drinking) water. The method was compared to the traditional energy production technology of the Space Shuttle, which is based on storing the fuel cell reactants, hydrogen and oxygen, in cryogenic tanks. It is shown that the alternative concept presented here may provide improved safety, compactness (reduction of more than one half of the volume of the hydrogen storage system), and management of waste liquids for energy generation and drinking water production. Nevertheless, it adds mass compared to the cryogenic hydrogen technology. It is concluded that the proposed method may be used as an emergency and backup power system as well as an additional hydrogen source for extended missions in human spacecraft.

  9. Space Weather Impacts on Spacecraft Design and Operations in Auroral Charging Environments

    Science.gov (United States)

    Minow, Joseph I.; Parker, Linda N.

    2012-01-01

    Spacecraft in low altitude, high inclination (including sun-synchronous) orbits are widely used for remote sensing of the Earth s land surface and oceans, monitoring weather and climate, communications, scientific studies of the upper atmosphere and ionosphere, and a variety of other scientific, commercial, and military applications. These systems are episodically exposed to environments characterized by a high flux of energetic (approx.1 to 10 s kilovolt) electrons in regions of very low background plasma density which is similar in some ways to the space weather conditions in geostationary orbit responsible for spacecraft charging to kilovolt levels. While it is well established that charging conditions in geostationary orbit are responsible for many anomalies and even spacecraft failures, to date there have been relatively few such reports due to charging in auroral environments. This presentation first reviews the physics of the space environment and its interactions with spacecraft materials that control auroral charging rates and the anticipated maximum potentials that should be observed on spacecraft surfaces during disturbed space weather conditions. We then describe how the theoretical values compare to the observational history of extreme charging in auroral environments and discuss how space weather impacts both spacecraft design and operations for vehicles on orbital trajectories that traverse auroral charging environments.

  10. Conceptual Design of the FAST-D Formation Flying Spacecraft

    NARCIS (Netherlands)

    Maessen, D.C.; Guo, J.; Gill, E.; Gunter, B.; Chu, Q.P.; Bakker, G.; Laan, E.; Moon, S.; Kruijff, M.; Zheng, G.T.

    2009-01-01

    The paper presents the latest results in the design of FAST-D, the Dutch micro-satellite for the Dutch–Chinese FAST (Formation for Atmospheric Science and Technology demonstration) formation flying mission. Over the course of the 2.5 year mission, the two satellites, FAST-D and FAST-T, will demonstr

  11. Composite Design and Manufacturing Development for Human Spacecrafts

    Science.gov (United States)

    Litteken, Douglas; Lowry, David

    2013-01-01

    The Structural Engineering Division at the NASA Johnson Space Center (JSC) has begun work on lightweight, multi-functional pressurized composite structures. The first candidate vehicle for technology development is the Multi-Mission Space Exploration Vehicle (MMSEV) cabin, known as the Gen 2B cabin, which has been built at JSC by the Robotics Division. Of the habitable MMSEV vehicle prototypes designed to date, this is the first one specifically analyzed and tested to hold internal pressure and the only one made out of composite materials. This design uses a laminate base with zoned reinforcement and external stringers, intended to demonstrate certain capabilities, and to prepare for the next cabin design, which will be a composite sandwich panel construction with multi-functional capabilities. As part of this advanced development process, a number of new technologies were used to assist in the design and manufacturing process. One of the methods, new to JSC, was to build the Gen 2B cabin with Out of Autoclave technology to permit the creation of larger parts with fewer joints. An 8-ply pre-preg layup was constructed to form the cabin body. Prior to lay-up, a design optimization software called FiberSIM was used to create each ply pattern. This software is integrated with Pro/Engineer to allow for customized draping of each fabric ply over the complex tool surface. Slits and darts are made in the software model to create an optimal design that maintains proper fiber placement and orientation. The flat pattern of each ply is then exported and sent to an automated cutting table where the patterns are cut out of graphite material. Additionally, to assist in lay-up, a laser projection system (LPT) is used to project outlines of each ply directly onto the tool face for accurate fiber placement and ply build-up. Finally, as part of the OoA process, a large oven was procured to post-cure each part. After manufacturing complete, the cabin underwent modal and pressure

  12. Solar-C Conceptual Spacecraft Design Study: Final Review. Release 2

    Science.gov (United States)

    Hopkins, Randall; Baysinger, Mike; Thomas, Dan; Heaton, Andy; Stough, Rob; Hill, Spencer; Owens, Jerry; Young, Roy; Fabisinski, Leo; Thomas, Scott; Kim, Tony; Cirtain, Jonathan

    2010-01-01

    This briefing package contains the conceptual spacecraft design completed by the Advanced Concepts Office (ED04) in support of the Solar-C Study. The mission is to succeed Hinode (Solar B), and is designed to study the polar regions of the sun. Included in the slide presentation are sections that review the payload data, and overall ground rules and assumptions, mission analysis and trajectory design, the conceptual spacecraft design section includes: (1) Integrated Systems Design, (2) Mass Properties (3) Cost, (4) Solar Sail Systems, (6) Propulsion, (7) Structures, (8) Thermal (9) Power (10) Avionics / GN&C. There are also conclusions and follow-up work that must be done. In the Back-up section there is information about the JAXA H-11A Launch Vehicle, scalability and spiral development, Mass Projections, a comparison of the TRL assessment for two potential vendors of solar sails, and a chart with the mass properties,

  13. Computer Aided Design of Ka-Band Waveguide Power Combining Architectures for Interplanetary Spacecraft

    Science.gov (United States)

    Vaden, Karl R.

    2006-01-01

    Communication systems for future NASA interplanetary spacecraft require transmitter power ranging from several hundred watts to kilowatts. Several hybrid junctions are considered as elements within a corporate combining architecture for high power Ka-band space traveling-wave tube amplifiers (TWTAs). This report presents the simulated transmission characteristics of several hybrid junctions designed for a low loss, high power waveguide based power combiner.

  14. Taguchi statistical design and analysis of cleaning methods for spacecraft materials

    Science.gov (United States)

    Lin, Y.; Chung, S.; Kazarians, G. A.; Blosiu, J. O.; Beaudet, R. A.; Quigley, M. S.; Kern, R. G.

    2003-01-01

    In this study, we have extensively tested various cleaning protocols. The variant parameters included the type and concentration of solvent, type of wipe, pretreatment conditions, and various rinsing systems. Taguchi statistical method was used to design and evaluate various cleaning conditions on ten common spacecraft materials.

  15. NASA Engineering Design Challenges: Spacecraft Structures. EP-2008-09-121-MSFC

    Science.gov (United States)

    Haddad, Nick; McWilliams, Harold; Wagoner, Paul

    2007-01-01

    NASA (National Aeronautics and Space Administration) Engineers at Marshall Space Flight Center along with their partners at other NASA centers, and in private industry, are designing and beginning to develop the next generation of spacecraft to transport cargo, equipment, and human explorers to space. These vehicles are part of the Constellation…

  16. JEM-EUSO Design for Accommodation on the SpaceX Dragon Spacecraft

    Science.gov (United States)

    Christl, Mark

    2013-01-01

    The JEM-EUSO mission has been planned for launch on JAXA's H2 Launch Vehicle. Recently, the SpaceX Dragon spacecraft has emerged as an alternative payload carrier for JEM-EUSO. This paper will discuss a concept for the re-design of JEM-EUSO so that it can be launched on Dragon.

  17. Trajectory Design From GTO To Lunar Equatorial Orbit For The Dark Ages Radio Explorer (DARE) Spacecraft

    CERN Document Server

    Genova, Anthony L; Perez, Andres Dono; Galal, Ken F; Faber, Nicolas T; Mitchell, Scott; Landin, Brett; Datta, Abhirup; Burns, Jack O

    2015-01-01

    The trajectory design for the Dark Ages Radio Explorer (DARE) mission con-cept involves launching the DARE spacecraft into a geosynchronous transfer orbit (GTO) as a secondary payload. From GTO, the spacecraft then transfers to a lunar orbit that is stable (i.e., no station-keeping maneuvers are required with minimum perilune altitude always above 40 km) and allows for more than 1,000 cumulative hours for science measurements in the radio-quiet region located on the lunar farside.

  18. Direct Lyapunov-based control law design for spacecraft attitude maneuvers

    Institute of Scientific and Technical Information of China (English)

    HU Likun; ANG Qingchao

    2006-01-01

    A direct Lyapunov-based control law is presented to perform on-orbit stability for spacecraft attitude maneuvers. Spacecraft attitude kinematic equations and dynamic equations are coupled, nonlinear, multi-input multi-output(MIMO), which baffles controller design. Orbit angular rates are taken into account in kinematic equations and influence of gravity gradient moments and disturbance moments on the spacecraft attitude in dynamic equations is considered to approach the practical environment, which enhance the problem complexity to some extent. Based on attitude tracking errors and angular rates, a Lyapunov function is constructed, through which the stabilizing feedback control law is deduced via Lie derivation of the Lyapunov function. The proposed method can deal with the case that the spacecraft is subjected to mass property variations or centroidal inertia matrix variations due to fuel assumption or flexibility, and disturbance moments, which shows the proposed controller is robust for spacecraft attitude maneuvers. The unlimited controller and the limited controller are taken into account respectively in simulations. Simulation results are demonstrated to validate effectiveness and feasibility of the proposed method.

  19. Design and test of a flywheel energy storage unit for spacecraft application

    Science.gov (United States)

    Cormack, A., III; Notti, J. E., Jr.; Ruiz, M. L.

    1975-01-01

    This paper summarizes the design and test of a development flywheel energy storage device intended for spacecraft application. The flywheel unit is the prototype for the rotating assembly portion of an Integrated Power and Attitude Control System (IPACS). The paper includes a general description of the flywheel unit; specific design characteristics for the rotor and bearings, motor-generators, and electronics; an efficiency analysis; and test results for a research unit.

  20. Particulate Matter Filtration Design Considerations for Crewed Spacecraft Life Support Systems

    Science.gov (United States)

    Agui, Juan H.; Vijayakumar, R.; Perry, Jay L.

    2016-01-01

    Particulate matter filtration is a key component of crewed spacecraft cabin ventilation and life support system (LSS) architectures. The basic particulate matter filtration functional requirements as they relate to an exploration vehicle LSS architecture are presented. Particulate matter filtration concepts are reviewed and design considerations are discussed. A concept for a particulate matter filtration architecture suitable for exploration missions is presented. The conceptual architecture considers the results from developmental work and incorporates best practice design considerations.

  1. The Global Precipitation Measurement (GPM) Spacecraft Power System Design and Orbital Performance

    Science.gov (United States)

    Dakermanji, George; Burns, Michael; Lee, Leonine; Lyons, John; Kim, David; Spitzer, Thomas; Kercheval, Bradford

    2016-01-01

    The Global Precipitation Measurement (GPM) spacecraft was jointly developed by National Aeronautics and Space Administration (NASA) and Japan Aerospace Exploration Agency (JAXA). It is a Low Earth Orbit (LEO) spacecraft launched on February 27, 2014. The spacecraft is in a circular 400 Km altitude, 65 degrees inclination nadir pointing orbit with a three year basic mission life. The solar array consists of two sun tracking wings with cable wraps. The panels are populated with triple junction cells of nominal 29.5% efficiency. One axis is canted by 52 degrees to provide power to the spacecraft at high beta angles. The power system is a Direct Energy Transfer (DET) system designed to support 1950 Watts orbit average power. The batteries use SONY 18650HC cells and consist of three 8s x 84p batteries operated in parallel as a single battery. The paper describes the power system design details, its performance to date and the lithium ion battery model that was developed for use in the energy balance analysis and is being used to predict the on-orbit health of the battery.

  2. Genetic algorithm approaches for conceptual design of spacecraft systems including multi-objective optimization and design under uncertainty

    Science.gov (United States)

    Hassan, Rania A.

    In the design of complex large-scale spacecraft systems that involve a large number of components and subsystems, many specialized state-of-the-art design tools are employed to optimize the performance of various subsystems. However, there is no structured system-level concept-architecting process. Currently, spacecraft design is heavily based on the heritage of the industry. Old spacecraft designs are modified to adapt to new mission requirements, and feasible solutions---rather than optimal ones---are often all that is achieved. During the conceptual phase of the design, the choices available to designers are predominantly discrete variables describing major subsystems' technology options and redundancy levels. The complexity of spacecraft configurations makes the number of the system design variables that need to be traded off in an optimization process prohibitive when manual techniques are used. Such a discrete problem is well suited for solution with a Genetic Algorithm, which is a global search technique that performs optimization-like tasks. This research presents a systems engineering framework that places design requirements at the core of the design activities and transforms the design paradigm for spacecraft systems to a top-down approach rather than the current bottom-up approach. To facilitate decision-making in the early phases of the design process, the population-based search nature of the Genetic Algorithm is exploited to provide computationally inexpensive---compared to the state-of-the-practice---tools for both multi-objective design optimization and design optimization under uncertainty. In terms of computational cost, those tools are nearly on the same order of magnitude as that of standard single-objective deterministic Genetic Algorithm. The use of a multi-objective design approach provides system designers with a clear tradeoff optimization surface that allows them to understand the effect of their decisions on all the design objectives

  3. Estimation Model of Spacecraft Parameters and Cost Based on a Statistical Analysis of COMPASS Designs

    Science.gov (United States)

    Gerberich, Matthew W.; Oleson, Steven R.

    2013-01-01

    The Collaborative Modeling for Parametric Assessment of Space Systems (COMPASS) team at Glenn Research Center has performed integrated system analysis of conceptual spacecraft mission designs since 2006 using a multidisciplinary concurrent engineering process. The set of completed designs was archived in a database, to allow for the study of relationships between design parameters. Although COMPASS uses a parametric spacecraft costing model, this research investigated the possibility of using a top-down approach to rapidly estimate the overall vehicle costs. This paper presents the relationships between significant design variables, including breakdowns of dry mass, wet mass, and cost. It also develops a model for a broad estimate of these parameters through basic mission characteristics, including the target location distance, the payload mass, the duration, the delta-v requirement, and the type of mission, propulsion, and electrical power. Finally, this paper examines the accuracy of this model in regards to past COMPASS designs, with an assessment of outlying spacecraft, and compares the results to historical data of completed NASA missions.

  4. Control Structure Design for Man-Function Humanoid Robot

    Directory of Open Access Journals (Sweden)

    Yifeng Cui

    2013-07-01

    Full Text Available This paper presents a new humanoid robot control structure - Man-Function humanoid robot. The sensing devices worn on the human body, these devices will produce signals of joints’ change when people move. Computer of the control system receiving the signals and processing them, then issue control signals to the servos of the robot at the same time, control the robot’s behavior. For this reason, a control structure of human’s behavior to determine the robot’s behavior formed. The humanoid robot has 17 servos and two pressure sensors, the rotation of these servos’ steering gears lead to the robot’s behavior changes, and 12 servos corresponding to the human body sensing devices, other 5 servos used for the stability control of the robot combined with the pressure sensors. Based on this control structure, some pilot tests of the sensing device or servo have been done, the closed-loop position control mode has been chosen and the Kalman filter smoothing optimization method been used, the initial static walking control of the robot been realized.

  5. A Quantitative Human Spacecraft Design Evaluation Model for Assessing Crew Accommodation and Utilization

    Science.gov (United States)

    Fanchiang, Christine

    Crew performance, including both accommodation and utilization factors, is an integral part of every human spaceflight mission from commercial space tourism, to the demanding journey to Mars and beyond. Spacecraft were historically built by engineers and technologists trying to adapt the vehicle into cutting edge rocketry with the assumption that the astronauts could be trained and will adapt to the design. By and large, that is still the current state of the art. It is recognized, however, that poor human-machine design integration can lead to catastrophic and deadly mishaps. The premise of this work relies on the idea that if an accurate predictive model exists to forecast crew performance issues as a result of spacecraft design and operations, it can help designers and managers make better decisions throughout the design process, and ensure that the crewmembers are well-integrated with the system from the very start. The result should be a high-quality, user-friendly spacecraft that optimizes the utilization of the crew while keeping them alive, healthy, and happy during the course of the mission. Therefore, the goal of this work was to develop an integrative framework to quantitatively evaluate a spacecraft design from the crew performance perspective. The approach presented here is done at a very fundamental level starting with identifying and defining basic terminology, and then builds up important axioms of human spaceflight that lay the foundation for how such a framework can be developed. With the framework established, a methodology for characterizing the outcome using a mathematical model was developed by pulling from existing metrics and data collected on human performance in space. Representative test scenarios were run to show what information could be garnered and how it could be applied as a useful, understandable metric for future spacecraft design. While the model is the primary tangible product from this research, the more interesting outcome of

  6. The electrical power subsystem design for the high energy solar physics spacecraft concepts

    Science.gov (United States)

    Kulkarni, Milind

    1993-01-01

    This paper discusses the Electrical Power Subsystem (EPS) requirements, architecture, design description, performance analysis, and heritage of the components for two spacecraft concepts for the High Energy Solar Physics (HESP) Mission. It summarizes the mission requirements and the spacecraft subsystems and instrument power requirements, and it describes the EPS architecture for both options. A trade study performed on the selection of the solar cells - body mounted versus deployed panels - and the optimum number of panels is also presented. Solar cell manufacturing losses, array manufacturing losses, and the radiation and temperature effects on the GaAs/Ge and Si solar cells were considered part of the trade study and are included in this paper. Solar cell characteristics, cell circuit description, and the solar array area design are presented, as is battery sizing analysis performed based on the power requirements during launch and initial spacecraft operations. This paper discusses Earth occultation periods and the battery power requirements during this period as well as shunt control, battery conditioning, and bus regulation schemes. Design margins, redundancy philosophy, and predicted on-orbit battery and solar cell performance are summarized. Finally, the heritage of the components and technology risk assessment are provided.

  7. Design and control of multiple spacecraft formation flying in elliptical orbits

    Institute of Scientific and Technical Information of China (English)

    WANG Peng-ji; YANG Di

    2005-01-01

    Spacecraft formation flying is an attractive new concept in international aeronautic fields because of its powerful functions and low cost. In this paper, the formation design and PD closed-loop control of spacecraft formation flying in elliptical orbits are discussed. Based on two-body relative dynamics, the true anomaly is applied as independent variable instead of the variable of time. Since the apogee is considered as the starting point, the six integrating constants are calculated. Therefore, the algebraic solution is obtained for the relative motion in elliptical orbits. Moreover, the formation design is presented and both circular formation and line formation are provided in terms of an algebraic solution. This paper also discusses the PD-closed loop control for precise formation control in elliptical orbits. In this part, the error-type state equation is put forward and the linear quadratic regulator (LQR) method is used to calculate PD parameters. Though the gain matrix calculated from LQR is time-variable because the error-type state equation is time variable, the PD parameters are also considered as constants because of their small changes in simulation. Finally, taking circular formation as an example, the initial orbital elements are achieved for three secondary spacecraft. And the numerical simulation is analyzed under PD formation control with initial errors and J2 perturbation. The simulation results demonstrate the validity of PD closed-loop control scheme.

  8. Design and Analysis of the ST7 Disturbance Reduction System (DRS) Spacecraft Controller

    Science.gov (United States)

    Maghami, P. G.; Markley, F. L.; Houghton, M. B.; Dennehy, C. J.

    2003-01-01

    The Space Technology 7 experiment will perform an on-orbit system-level validation of two specific Disturbance Reduction System technologies: a gravitational reference sensor employing a free-floating test mass and a set of micronewton colloidal thrusters. The Disturbance Reduction System is designed to maintain a spacecraft's position with respect to the free-floating test mass to less than 10 nm/square root of Hz, over the frequency range 10(exp -3) Hz to 10(exp -2) Hz. This paper presents the design and analysis of the coupled drag-free and attitude control system that closes the loop between the gravitational reference sensor and the micronewton thrusters while incorporating star tracker data at low frequencies. The effects of actuation and measurement noise and disturbances on the spacecraft and test masses are evaluated in a seven-degree-of-freedom planar model incorporating two translational and one rotational degrees of freedom for the spacecraft and two translational degrees of freedom for each test mass.

  9. Design and calibration of a novel transient radiative heat flux meter for a spacecraft thermal test

    Science.gov (United States)

    Sheng, Chunchen; Hu, Peng; Cheng, Xiaofang

    2016-06-01

    Radiative heat flux measurement is significantly important for a spacecraft thermal test. To satisfy the requirements of both high accuracy and fast response, a novel transient radiative heat flux meter was developed. Its thermal receiver consists of a central thermal receiver and two thermal guarded annular plates, which ensure the temperature distribution of the central thermal receiver to be uniform enough for reasonably applying lumped heat capacity method in a transient radiative heat flux measurement. This novel transient radiative heat flux meter design can also take accurate measurements regardless of spacecraft surface temperature and incident radiation spectrum. The measurement principle was elaborated and the coefficients were calibrated. Experimental results from testing a blackbody furnace and an Xenon lamp show that this novel transient radiative heat flux meter can be used to measure transient radiative heat flux up to 1400 W/m2 with high accuracy and the response time of less than 10 s.

  10. Design and Spice Simulation of Coupling Circuits for Powerline Communications Onboard Spacecraft

    Science.gov (United States)

    Grassi, F.; Pignari, S. A.; Wolf, J.

    2012-05-01

    This paper deals with the design of coupling/decoupling circuits for application of the powerline communications (PLC) technology to spacecraft power buses. Particularly, the objective of this work is to investigate possible advantages deriving from connecting the PLC modems in series with the powerline (PL) instead of resorting to a parallel connection scheme. To this end, the channel frequency response and signal-to-noise ratio of the resulting PLC link are obtained by SPICE simulation in the frequency interval 1-20 MHz. Suitable design rules, aimed at optimizing transmission performance and warranting satisfactory immunity of the PLC link to the conducted noise affecting the PL, are derived and discussed.

  11. External Heat Flux on Manned Transport Spacecraft with Multiple Modes and Attitudes%载人运输飞船多模式和姿态的外热流

    Institute of Scientific and Technical Information of China (English)

    卢威; 黄家荣; 钟奇

    2011-01-01

    External heat flux analysis is not only the foundation of thermal control design and thermal analysis, but also the significant thermal boundary condition for ground thermal test.Based on theoretical analysis, a spacecraft external heat flux model was developed and the heat flux was calculated in different flight modes and attitudes.In addition, the heat flux characteristics was obtained in the extreme case.The results show that heat flux increases with the augmentation of percent time in sunlight when the spacecraft is in three-axis stabilized attitude, but decreases abruptly when it turns into the yaw maneuver, and then the heat flux will decrease with the augmentation of percent time in sunlight reversely.%在理论分析的基础上,建立了飞船外热流分析模型,解算出不同飞行姿态和模式下的外热流,分析得到外热流变化规律,得出极端外热流工况.分析结果表明:当姿态为三轴稳定时,外热流随受硒因子增大而增加;由三轴稳定转为偏航机动后外热流突然减小,且随受硒因子增大而减小.

  12. Study on Pressurized Mating Mechanisms of Manned Spacecraft%载人航天器加压连接机构研究

    Institute of Scientific and Technical Information of China (English)

    朱仁璋; 王鸿芳; 邹玲; 徐宇杰; 张楠; 李佼珊; 王冉

    2012-01-01

    The pressurized mating mechanisms of manned spacecraft can be divided into three kinds: docking mechanism, berthing mechanism, and unified docking/berthing mechanism. The pressurized mating mechanisms used presently in space include Russian probe/drogue docking mechanism, Russian hybrid docking mechanism, androgynous peripheral assembly system (APAS), and common berthing mechanism (CBM). And the unified docking/berthing mecha- nisms are being developed now, such as international berthing and docking mechanism (IBDM) and NASA docking system (NDS). The three kinds of mating mechanism are analyzed fully and the problem of the unification and standardization of mating mechanisms is also discussed in this paper.%载人航天器加压连接机构,按连接功能可分为对接机构、停靠机构与统一对接/停靠机构3类。目前空间应用的连接机构有俄罗斯杆锥对接机构,俄罗斯混合对接机构,导向瓣内翻式“雌雄同体(异体同构)周边装配系统”,以及美国的“通用停靠机构”。统一对接/停靠机构正在研制中,如欧洲的“国际停靠对接机构”与美国的“NASA对接系统”。文章全面、系统地分析了对接机构、停靠机构与统一对接/停靠机构的构型与特点,以及连接机构的统一性与标准化问题。

  13. 神舟载人飞船流体回路动态仿真研究%Study on Dynamic Simulationof Liquid Loop in Shenzhou Manned Spacecraft

    Institute of Scientific and Technical Information of China (English)

    付杨; 范宇峰; 于新刚; 曹剑峰

    2014-01-01

    以神舟载人飞船流体回路为物理模型,分析了各个部件的工作原理、流动和传热特性,建立起辐射器、泵、阀门、补偿器、冷板和换热器的部件模型。在此基础上建立了流体回路模型,并引入实际控制策略。模型的仿真数据与航天器热平衡试验数据进行对比,结果表明,模型对流体回路各点的温度、压力、系统的流量分配和液体体积变化的补偿都能较好的进行动态模拟,并能够模拟系统控制策略的动态执行情况,可用于流体回路系统控制算法和策略的优化分析。%In order to simulate the liquid loop in Shenzhou manned spacecraft , the models of the compo-nents were set up including the radiator , the pump, the valve, the accumulator, the cool plate and the heat-exchanger by analyzing the working principle , the flow and heat transfer performance of each com-ponents .Base on the present works and the control algorithm , a control model of the liquid loop was set up.The comparison with the test data demonstrates that the model can well simulate the dynamic charac-teristics of the liquid loop system , including the temperature , the flow distribution and the volume change of the liquid.The models can be used to optimize the control algorithm and control strategy .

  14. Design and research on a variable ballast system for deep-sea manned submersibles

    Institute of Scientific and Technical Information of China (English)

    QIU Zhong-liang

    2008-01-01

    Variable ballast systems are necessary for manned submersibles to adjust their buoyancy. In this paper,the design of a variable ballast system for a manned submersible is described. The variable ballast system uses a super high pressure hydraulic seawater system. A super high pressure seawater pump and a deep-sea brushless DC motor are used to pump seawater into or from the variable ballast tank,increasing or decreasing the weight of the manned submersible. A magnetostrictive linear displacement transducer can detect the seawater level in the variable ballast tank. Some seawater valves are used to control pumping direction and control on-off states. The design and testing procedure for the valves is described. Finally,the future development of variable ballast systems and seawater hydraulic systems is projected.

  15. The design of a multimegawatt heat pipe radiator for an inertial fusion rocket powered manned Mars mission

    Science.gov (United States)

    Murray, K. A.

    1988-01-01

    A system of heat pipe radiators has been designed to provide waste heat rejection for an inertial fusion powered spacecraft capable of manned missions to other planets. The radiators are arrays of unfinned, arterial heat pipes operating at 1500 and 900 K. Liquid metal coolant carries up to 8000 MW of waste heat through feed pipes from on-board components (laser drivers and coil shield). The radiators do not rely on armor for protection from micrometeoroid penetration. An armored radiator design for this application with a 99 percent survivability would have a specific mass of 0.06 to 0.11 kg/kW at 1500 K. Instead, a segmentation of heat pipes is used, and bumpers are utilized to protect the feed pipes. This design reduces the specific mass to 0.015 to 0.04 kg/kW for the coil shield radiator (1500 K) and 0.06 to 0.12 kg/kW for the laser driver radiator (900 K).

  16. Dynamic Isotope Power System (DIPS) Applications Study. Volume II. Nuclear Integrated Multimission Spacecraft (NIMS) design definition. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Prickett, W. Z.

    1979-11-01

    The design requirements for the Nuclear Integrated Multimission Spacecraft. (NIMS) are discussed in detail. The requirements are a function of mission specifications, payload, control system requirements, electric system specifications, and cost limitations. (LCL)

  17. Design Process of Flight Vehicle Structures for a Common Bulkhead and an MPCV Spacecraft Adapter

    Science.gov (United States)

    Aggarwal, Pravin; Hull, Patrick V.

    2015-01-01

    Design and manufacturing space flight vehicle structures is a skillset that has grown considerably at NASA during that last several years. Beginning with the Ares program and followed by the Space Launch System (SLS); in-house designs were produced for both the Upper Stage and the SLS Multipurpose crew vehicle (MPCV) spacecraft adapter. Specifically, critical design review (CDR) level analysis and flight production drawing were produced for the above mentioned hardware. In particular, the experience of this in-house design work led to increased manufacturing infrastructure for both Marshal Space Flight Center (MSFC) and Michoud Assembly Facility (MAF), improved skillsets in both analysis and design, and hands on experience in building and testing (MSA) full scale hardware. The hardware design and development processes from initiation to CDR and finally flight; resulted in many challenges and experiences that produced valuable lessons. This paper builds on these experiences of NASA in recent years on designing and fabricating flight hardware and examines the design/development processes used, as well as the challenges and lessons learned, i.e. from the initial design, loads estimation and mass constraints to structural optimization/affordability to release of production drawing to hardware manufacturing. While there are many documented design processes which a design engineer can follow, these unique experiences can offer insight into designing hardware in current program environments and present solutions to many of the challenges experienced by the engineering team.

  18. Dual shear plate power processor packaging design. [for Solar Electric Propulsion spacecraft

    Science.gov (United States)

    Franzon, A. O.; Fredrickson, C. D.; Ross, R. G.

    1975-01-01

    The use of solar electric propulsion (SEP) for spacecraft primary propulsion imposes an extreme range of operational and environmental design requirements associated with the diversity of missions for which solar electric primary propulsion is advantageous. One SEP element which is particularly sensitive to these environmental extremes is the power processor unit (PPU) which powers and controls the electric ion thruster. An improved power processor thermal-mechanical packaging approach, referred to as dual shear plate packaging, has been designed to accommodate these different requirements with minimum change to the power processor design. Details of this packaging design are presented together with test results obtained from thermal-vacuum and structural-vibration tests conducted with prototype hardware.

  19. Man-Machine Integrated Design and Analysis System (MIDAS): Functional Overview

    Science.gov (United States)

    Corker, Kevin; Neukom, Christian

    1998-01-01

    Included in the series of screen print-outs illustrates the structure and function of the Man-Machine Integrated Design and Analysis System (MIDAS). Views into the use of the system and editors are featured. The use-case in this set of graphs includes the development of a simulation scenario.

  20. Night vision imaging system design, integration and verification in spacecraft vacuum thermal test

    Science.gov (United States)

    Shang, Yonghong; Wang, Jing; Gong, Zhe; Li, Xiyuan; Pei, Yifei; Bai, Tingzhu; Zhen, Haijing

    2015-08-01

    The purposes of spacecraft vacuum thermal test are to characterize the thermal control systems of the spacecraft and its component in its cruise configuration and to allow for early retirement of risks associated with mission-specific and novel thermal designs. The orbit heat flux is simulating by infrared lamp, infrared cage or electric heater. As infrared cage and electric heater do not emit visible light, or infrared lamp just emits limited visible light test, ordinary camera could not operate due to low luminous density in test. Moreover, some special instruments such as satellite-borne infrared sensors are sensitive to visible light and it couldn't compensate light during test. For improving the ability of fine monitoring on spacecraft and exhibition of test progress in condition of ultra-low luminous density, night vision imaging system is designed and integrated by BISEE. System is consist of high-gain image intensifier ICCD camera, assistant luminance system, glare protect system, thermal control system and computer control system. The multi-frame accumulation target detect technology is adopted for high quality image recognition in captive test. Optical system, mechanical system and electrical system are designed and integrated highly adaptable to vacuum environment. Molybdenum/Polyimide thin film electrical heater controls the temperature of ICCD camera. The results of performance validation test shown that system could operate under vacuum thermal environment of 1.33×10-3Pa vacuum degree and 100K shroud temperature in the space environment simulator, and its working temperature is maintains at 5° during two-day test. The night vision imaging system could obtain video quality of 60lp/mm resolving power.

  1. Some trends in man-machine interface design for industrial process plants

    DEFF Research Database (Denmark)

    Rasmussen, Jens

    1980-01-01

    The demands for an efficient and reliable man-machine inter-face in industrial process plant are increasing due to the steadily growing size and complexity of installations. At the same time, computerized technology offers the possibility of powerful and effective solutions to designers....... In the paper, problems related to interface design, operator training and human reliability are discussed in the light of this technological development, and an integrated approach to system design based on a consistent model or framework describing the man-machine interaction is advocated.The work presented...... is part of a Scandinavian research project sponsored by the Board of Nordic Ministers, for the study of control room design and human reliability in nuclear power plants....

  2. Thermal Design, Test and Analysis of PharmaSat, a Small Class D Spacecraft with a Biological Experiment

    Science.gov (United States)

    Diaz-Aguado, Millan F.; VanOutryve, Cassandra; Ghassemiah, Shakib; Beasley, Christopher; Schooley, Aaron

    2009-01-01

    Small spacecraft have been increasing in popularity because of their low cost, short turnaround and relative efficiency. In the past, small spacecraft have been primarily used for technology demonstrations, but advances in technology have made the miniaturization of space science possible [1,2]. PharmaSat is a low cost, small three cube size spacecraft, with a biological experiment on board, built at NASA (National Aeronautics and Space Administration) Ames Research Center. The thermal design of small spacecraft presents challenges as their smaller surface areas translate into power and thermal constraints. The spacecraft is thermally designed to run colder in the Low Earth Orbit space environment, and heated to reach the temperatures required by the science payload. The limited power supply obtained from the solar panels on small surfaces creates a constraint in the power used to heat the payload to required temperatures. The pressurized payload is isolated with low thermally conductance paths from the large ambient temperature changes. The thermal design consists of different optical properties of section surfaces, Multi Layer Insulation (MLI), low thermal conductance materials, flexible heaters and thermal spreaders. The payload temperature is controlled with temperature sensors and flexible heaters. Finite Element Analysis (FEA) and testing were used to aid the thermal design of the spacecraft. Various tests were conducted to verify the thermal design. An infrared imager was used on the electronic boards to find large heat sources and eliminate any possible temperature runaways. The spacecraft was tested in a thermal vacuum chamber to optimize the thermal and power analysis and qualify the thermal design of the spacecraft for the mission.

  3. Thermal Design, Test and Analysis of PharmaSat, a Small Class D Spacecraft with a Biological Experiment

    Science.gov (United States)

    Diaz-Aguado, Millan F.; VanOutryve, Cassandra; Ghassemiah, Shakib; Beasley, Christopher; Schooley, Aaron

    2009-01-01

    Small spacecraft have been increasing in popularity because of their low cost, short turnaround and relative efficiency. In the past, small spacecraft have been primarily used for technology demonstrations, but advances in technology have made the miniaturization of space science possible [1,2]. PharmaSat is a low cost, small three cube size spacecraft, with a biological experiment on board, built at NASA (National Aeronautics and Space Administration) Ames Research Center. The thermal design of small spacecraft presents challenges as their smaller surface areas translate into power and thermal constraints. The spacecraft is thermally designed to run colder in the Low Earth Orbit space environment, and heated to reach the temperatures required by the science payload. The limited power supply obtained from the solar panels on small surfaces creates a constraint in the power used to heat the payload to required temperatures. The pressurized payload is isolated with low thermally conductance paths from the large ambient temperature changes. The thermal design consists of different optical properties of section surfaces, Multi Layer Insulation (MLI), low thermal conductance materials, flexible heaters and thermal spreaders. The payload temperature is controlled with temperature sensors and flexible heaters. Finite Element Analysis (FEA) and testing were used to aid the thermal design of the spacecraft. Various tests were conducted to verify the thermal design. An infrared imager was used on the electronic boards to find large heat sources and eliminate any possible temperature runaways. The spacecraft was tested in a thermal vacuum chamber to optimize the thermal and power analysis and qualify the thermal design of the spacecraft for the mission.

  4. Designing a Robust Nonlinear Dynamic Inversion Controller for Spacecraft Formation Flying

    Directory of Open Access Journals (Sweden)

    Inseok Yang

    2014-01-01

    Full Text Available The robust nonlinear dynamic inversion (RNDI control technique is proposed to keep the relative position of spacecrafts while formation flying. The proposed RNDI control method is based on nonlinear dynamic inversion (NDI. NDI is nonlinear control method that replaces the original dynamics into the user-selected desired dynamics. Because NDI removes nonlinearities in the model by inverting the original dynamics directly, it also eliminates the need of designing suitable controllers for each equilibrium point; that is, NDI works as self-scheduled controller. Removing the original model also provides advantages of ease to satisfy the specific requirements by simply handling desired dynamics. Therefore, NDI is simple and has many similarities to classical control. In real applications, however, it is difficult to achieve perfect cancellation of the original dynamics due to uncertainties that lead to performance degradation and even make the system unstable. This paper proposes robustness assurance method for NDI. The proposed RNDI is designed by combining NDI and sliding mode control (SMC. SMC is inherently robust using high-speed switching inputs. This paper verifies similarities of NDI and SMC, firstly. And then RNDI control method is proposed. The performance of the proposed method is evaluated by simulations applied to spacecraft formation flying problem.

  5. Initial Investigation of Reaction Control System Design on Spacecraft Handling Qualities for Earth Orbit Docking

    Science.gov (United States)

    Bailey, Randall E.; Jackson, E. Bruce; Goodrich, Kenneth H.; Ragsdale, W. Al; Neuhaus, Jason; Barnes, Jim

    2008-01-01

    A program of research, development, test, and evaluation is planned for the development of Spacecraft Handling Qualities guidelines. In this first experiment, the effects of Reaction Control System design characteristics and rotational control laws were evaluated during simulated proximity operations and docking. Also, the influence of piloting demands resulting from varying closure rates was assessed. The pilot-in-the-loop simulation results showed that significantly different spacecraft handling qualities result from the design of the Reaction Control System. In particular, cross-coupling between translational and rotational motions significantly affected handling qualities as reflected by Cooper-Harper pilot ratings and pilot workload, as reflected by Task-Load Index ratings. This influence is masked but only slightly by the rotational control system mode. While rotational control augmentation using Rate Command Attitude Hold can reduce the workload (principally, physical workload) created by cross-coupling, the handling qualities are not significantly improved. The attitude and rate deadbands of the RCAH introduced significant mental workload and control compensation to evaluate when deadband firings would occur, assess their impact on docking performance, and apply control inputs to mitigate that impact.

  6. Suitable experimental design for determination of auxin polar transport in space using a spacecraft.

    Science.gov (United States)

    Shimazu, T; Miyamoto, K; Hoson, T; Kamisaka, S; Ueda, J

    2000-03-01

    It is necessary to establish a suitable experimental design for the determination of auxin (indole-3-acetic acid: IAA) polar transport in space using a spacecraft in concerning with the role of gravity. Problems in space experiments are as follows: I) Selection of suitable plant species; II) Preservation of integrity of plant segments for activities of auxin polar transport; III) Stop of auxin polar transport of the segments after the transport experiment in space. Segments of etiolated pea epicotyls and etiolated maize coleoptiles showed relatively high activities of auxin polar transport among dicotyledonous and monocotyledonous plants tested, respectively. The activities decreased dramatically when the segments were pre-stored at 25 degrees C only for 1 day. On the other hand, the storage at low temperature (5 degrees C) in the presence of antioxidants or chelating agents, especially EGTA, maintained relatively high activities of auxin polar transport in pea epicotyl segments. Low temperature (5 degrees C) substantially inhibited the activity of auxin polar transport. Based on the results in this study, a suitable experimental design for the space experiment of auxin polar transport using a spacecraft is also proposed.

  7. The Evolution of Software and Its Impact on Complex System Design in Robotic Spacecraft Embedded Systems

    Science.gov (United States)

    Butler, Roy

    2013-01-01

    The growth in computer hardware performance, coupled with reduced energy requirements, has led to a rapid expansion of the resources available to software systems, driving them towards greater logical abstraction, flexibility, and complexity. This shift in focus from compacting functionality into a limited field towards developing layered, multi-state architectures in a grand field has both driven and been driven by the history of embedded processor design in the robotic spacecraft industry.The combinatorial growth of interprocess conditions is accompanied by benefits (concurrent development, situational autonomy, and evolution of goals) and drawbacks (late integration, non-deterministic interactions, and multifaceted anomalies) in achieving mission success, as illustrated by the case of the Mars Reconnaissance Orbiter. Approaches to optimizing the benefits while mitigating the drawbacks have taken the form of the formalization of requirements, modular design practices, extensive system simulation, and spacecraft data trend analysis. The growth of hardware capability and software complexity can be expected to continue, with future directions including stackable commodity subsystems, computer-generated algorithms, runtime reconfigurable processors, and greater autonomy.

  8. The combined ground simulation test technology of thermal vacuum for man-extravehicular space suits-spacecraft%人-船-服热真空联合试验技术

    Institute of Scientific and Technical Information of China (English)

    庞贺伟; 陈金明; 李春扬

    2007-01-01

    The combined thermal vacuum test of man-extravehicular space suits-spacecraft is necessary to guarantee the safety of astronaut and the success of flight operation. During the tests, the astronauts may get themselves familiarizing with the space environment;their psychological endurance may be increased; and the defects of design, manufacture and operation procedure of the manned spacecraft may be discovered. A successful test must be based on perfect and complete ground test facilities, correct test technologies, a well considered test plan, reasonable technology specifications and simulation procedures. In this paper, the principal objectives and the major components of the combined thermal vacuum test of men-extravehicular space suits-spacecraft conducted in KM6 are presented.Three schemes of test are described. The potential problems of safety are analyzed and the relevant countermeasures and security systems are put forward. The main technical specifications of the facility are given and ten key subsystems, namely, vacuum chamber, liquid uitrogen, gas nitrogen, re-pressurization, environment control, thermal flux simulation, telecommunication control and fire fighting, are discussed.%人-船-服热真空联合试验对于保证航天员的安全和飞行任务的成功非常重要.航天员可通过试验熟悉空间环境、增强心理承受力,通过试验还可暴露出载人飞船在设计、研制和制造过程中的缺陷.而试验的成功则与完善的地面试验设施、正确的试验技术、详细的试验大纲、合理的技术规范和试验程序密切相关.文章主要介绍了在KM6大型空间环境模拟设备中进行的人-船-服热真空联合试验,包括3个试验方案、潜在的安全问题的分析及相关对策、安全系统的介绍,详细介绍了设备的主要技术规范和10个主要的分系统:真空容器、液氮分系统、气氮分系统、复压分系统、环境控制分系统、热流模拟分系统、通

  9. Mission design study of an RTG powered, ion engine equipped interstellar spacecraft

    Science.gov (United States)

    Fogel, Joshua A.

    This research explores a variety of mission and system architectures for an unmanned Interstellar Precursor Mission (IPM) spacecraft with a Radioisotope Thermoelectric Generator (RTG) powered Ion Engine using Xenon propellant, traveling on a (direct) ballistic escape trajectory to the undisturbed Interstellar Medium (˜200 AU). The main goal of this work was to determine the relationship between the propulsion system design parameters and the ensuing escape trajectory. To do this, an orbit simulator was created in Matlab using a fourth order Runge-Kutta numerical integration method to propagate the thrusting spacecraft's trajectory through time. The accelerations due to the Sun's gravity and the Ion Engine thrust were modeled separately and then combined into a single total acceleration vector at each time step, with the thrust direction assumed to be in the direction of the spacecraft's instantaneous velocity vector. The propellant of the thruster was also designed to be completely consumed by the time of engine cut-off (ECO), meaning a constant propellant mass flow rate. Simulations were run for burn times of 5, 10 & 15 years, with heliocentric launch velocities of 0, 5, 7, 10 & 12 km/sec from a circular 1 AU Earth orbit, and with RTG supplied engine input powers of 1000, 1500 & 2000 W. A total of 45 simulations were run for the circular 1 AU case, as well as additional comparison simulations for launches from an elliptical Earth orbit at perihelion and aphelion. The results of these simulations yielded many interesting results on the total fly-out times to 200 AU, which ranged dramatically from ˜35 to ˜140 years depending on the propulsion system settings and orbital initial conditions, as well as descriptions of the ECO distances from the Sun for each mission. The simulations also revealed the inherent gravitational maneuver inefficiency felt by all low thrust spacecraft, which becomes more apparent under certain conditions. Relations between launch velocity

  10. Mechanical design and vibro-acoustic testing of ultrathin carbon foils for a spacecraft instrument

    Energy Technology Data Exchange (ETDEWEB)

    Bernardin, John D [Los Alamos National Laboratory; Baca, Allen G [SNL

    2009-01-01

    IBEX-Hi is an electrostatic analyzer spacecraft instrument designed to measure the energy and flux distribution of energetic neutral atoms (ENAs) emanating from the interaction zone between the Earth's solar system and the Milky Way galaxy. A key element to this electro-optic instrument is an array of fourteen carbon foils that are used to ionize the ENAs. The foils are comprised of an ultrathin (50-100 {angstrom} thick) layer of carbon suspended across the surface of an electroformed Nickel wire screen, which in turn is held taught by a metal frame holder. The electro formed orthogonal screen has square wire elements, 12.7 {micro}m thick, with a pitch of 131.1 wires/cm. Each foil holder has an open aperture approximately 5 cm by 2.5 cm. Designing and implementing foil holders with such a large surface area has not been attempted for spaceflight in the past and has proven to be extremely challenging. The delicate carbon foils are subject to fatigue failure from the large acoustic and vibration loads that they will be exposed to during launch of the spacecraft. This paper describes the evolution of the foil holder design from previous space instrument applications to a flight-like IBEX-Hi prototype. Vibro-acoustic qualification tests of the IBEX-Hi prototype instrument and the resulting failure of several foils are summarized. This is followed by a discussion of iterative foil holder design modifications and laser vibrometer modal testing to support future fatigue failure analyses, along with additional acoustic testing of the IBEX-Hi prototype instrument. The results of these design and testing activities are merged and the resulting flight-like foil holder assembly is proposed.

  11. Trajectory Design from GTO to Near-Equatorial Lunar Orbit for the Dark Ages Radio Explorer (DARE) Spacecraft

    Science.gov (United States)

    Genova, Anthony L.; Yang Yang, Fan; Perez, Andres Dono; Galal, Ken F.; Faber, Nicolas T.; Mitchell, Scott; Landin, Brett; Burns, Jack O.

    2015-01-01

    The trajectory design for the Dark Ages Radio Explorer (DARE) mission concept involves launching the DARE spacecraft into a geosynchronous transfer orbit (GTO) as a secondary payload. From GTO, the spacecraft then transfers to a lunar orbit that is stable (i.e., no station-keeping maneuvers are required with minimum perilune altitude always above 40 km) and allows for more than 1,000 cumulative hours for science measurements in the radio-quiet region located on the lunar farside.

  12. Modeling Temporal Processes in Early Spacecraft Design: Application of Discrete-Event Simulations for Darpa's F6 Program

    Science.gov (United States)

    Dubos, Gregory F.; Cornford, Steven

    2012-01-01

    While the ability to model the state of a space system over time is essential during spacecraft operations, the use of time-based simulations remains rare in preliminary design. The absence of the time dimension in most traditional early design tools can however become a hurdle when designing complex systems whose development and operations can be disrupted by various events, such as delays or failures. As the value delivered by a space system is highly affected by such events, exploring the trade space for designs that yield the maximum value calls for the explicit modeling of time.This paper discusses the use of discrete-event models to simulate spacecraft development schedule as well as operational scenarios and on-orbit resources in the presence of uncertainty. It illustrates how such simulations can be utilized to support trade studies, through the example of a tool developed for DARPA's F6 program to assist the design of "fractionated spacecraft".

  13. Intermediate experimental vehicle, ESA program aerodynamics-aerothermodynamics key technologies for spacecraft design and successful flight

    Science.gov (United States)

    Dutheil, Sylvain; Pibarot, Julien; Tran, Dac; Vallee, Jean-Jacques; Tribot, Jean-Pierre

    2016-07-01

    With the aim of placing Europe among the world's space players in the strategic area of atmospheric re-entry, several studies on experimental vehicle concepts and improvements of critical re-entry technologies have paved the way for the flight of an experimental space craft. The successful flight of the Intermediate eXperimental Vehicle (IXV), under ESA's Future Launchers Preparatory Programme (FLPP), is definitively a significant step forward from the Atmospheric Reentry Demonstrator flight (1998), establishing Europe as a key player in this field. The IXV project objectives were the design, development, manufacture and ground and flight verification of an autonomous European lifting and aerodynamically controlled reentry system, which is highly flexible and maneuverable. The paper presents, the role of aerodynamics aerothermodynamics as part of the key technologies for designing an atmospheric re-entry spacecraft and securing a successful flight.

  14. Spacecraft flight control system design selection process for a geostationary communication satellite

    Science.gov (United States)

    Barret, C.

    1992-01-01

    The Earth's first artificial satellite, Sputnik 1, slowly tumbled in orbit. The first U.S. satellite, Explorer 1, also tumbled out of control. Now, as we launch the Mars observer and the Cassini spacecraft, stability and control have become higher priorities. The flight control system design selection process is reviewed using as an example a geostationary communication satellite which is to have a life expectancy of 10 to 14 years. Disturbance torques including aerodynamic, magnetic, gravity gradient, solar, micrometeorite, debris, collision, and internal torques are assessed to quantify the disturbance environment so that the required compensating torque can be determined. Then control torque options, including passive versus active, momentum control, bias momentum, spin stabilization, dual spin, gravity gradient, magnetic, reaction wheels, control moment gyros, nutation dampers, inertia augmentation techniques, three-axis control, reactions control system (RCS), and RCS sizing, are considered. A flight control system design is then selected and preliminary stability criteria are met by the control gains selection.

  15. Preliminary Design of a Manned Nuclear Electric Propulsion Vehicle Using Genetic Algorithms

    Science.gov (United States)

    Irwin, Ryan W.; Tinker, Michael L.

    2005-01-01

    Nuclear electric propulsion (NEP) vehicles will be needed for future manned missions to Mars and beyond. Candidate designs must be identified for further detailed design from a large array of possibilities. Genetic algorithms have proven their utility in conceptual design studies by effectively searching a large design space to pinpoint unique optimal designs. This research combined analysis codes for NEP subsystems with a genetic algorithm. The use of penalty functions with scaling ratios was investigated to increase computational efficiency. Also, the selection of design variables for optimization was considered to reduce computation time without losing beneficial design search space. Finally, trend analysis of a reference mission to the asteroids yielded a group of candidate designs for further analysis.

  16. Toward a new spacecraft optimal design lifetime? Impact of marginal cost of durability and reduced launch price

    Science.gov (United States)

    Snelgrove, Kailah B.; Saleh, Joseph Homer

    2016-10-01

    The average design lifetime of satellites continues to increase, in part due to the expectation that the satellite cost per operational day decreases monotonically with increased design lifetime. In this work, we challenge this expectation by revisiting the durability choice problem for spacecraft in the face of reduced launch price and under various cost of durability models. We first provide a brief overview of the economic thought on durability and highlight its limitations as they pertain to our problem (e.g., the assumption of zero marginal cost of durability). We then investigate the merging influence of spacecraft cost of durability and launch price, and we identify conditions that give rise cost-optimal design lifetimes that are shorter than the longest lifetime technically achievable. For example, we find that high costs of durability favor short design lifetimes, and that under these conditions the optimal choice is relatively robust to reduction in launch prices. By contrast, lower costs of durability favor longer design lifetimes, and the optimal choice is highly sensitive to reduction in launch price. In both cases, reduction in launch prices translates into reduction of the optimal design lifetime. Our results identify a number of situations for which satellite operators would be better served by spacecraft with shorter design lifetimes. Beyond cost issues and repeat purchases, other implications of long design lifetime include the increased risk of technological slowdown given the lower frequency of purchases and technology refresh, and the increased risk for satellite operators that the spacecraft will be technologically obsolete before the end of its life (with the corollary of loss of value and competitive advantage). We conclude with the recommendation that, should pressure to extend spacecraft design lifetime continue, satellite manufacturers should explore opportunities to lease their spacecraft to operators, or to take a stake in the ownership

  17. Simplicity in command and control systems - A human factors consideration. [for man computer interfare design

    Science.gov (United States)

    Chafin, R. L.

    1980-01-01

    The importance of simplicity in the man computer interface (MCI) is stressed because of the effect it has on the system containing the MCI. Results are used from an MCI study at the Jet Propulsion Laboratory to find an area where the system MCIs can be simplified. The circumstances under which these simplifications are appropriate are listed. The concepts of cognitive simplicity and process simplicity are presented as design alternatives for the MCI. In addition, the concepts of understandability, operation, learnability, level of learning, and usability are presented as tools for the system designer. The use of these concepts in developing a systematic MCI design is discussed.

  18. Comparison of Models Needed for Conceptual Design of Man-Machine Systems in Different Application Domains

    DEFF Research Database (Denmark)

    Rasmussen, Jens

    1986-01-01

    For systematic and computer-aided design of man-machine systems, a consistent framework is needed, i. e. , a set of models which allows the selection of system characteristics which serve the individual user not only to satisfy his goal, but also to select mental processes that match his resource...... of other domains, such as emergency management, CAD/CAM/CIM, and office systems, and describes the characteristic differences in model requirements and requirements for model development....

  19. Controller Design and Analysis of Spacecraft Automatic Levelling and Equalizing Hoist Device based on Hanging Point Adjustment

    Directory of Open Access Journals (Sweden)

    Tang Laiying

    2016-01-01

    Full Text Available Spacecraft Automatic Levelling and Equalizing Hoist Device (SALEHD is a kind of hoisting device developed for eccentric spacecraft level-adjusting, based on hanging point adjustment by utilizing XY-workbench. To make the device automatically adjust the spacecraft to be levelling, the controller for SALEHD was designed in this paper. Through geometry and mechanics analysis for SALEHD and the spacecraft, the mathematical model of the controller is established. And then, the link of adaptive control and the link of variable structure control were added into the controller to adapt the unknown parameter and eliminate the interference of support vehicle. The stability of the controller was analysed, through constructing Lyapunov energy function. It was proved that the controller system is asymptotically stable, and converged to origin that is equilibrium point. So the controller can be applied in SALEHD availably and safely.

  20. Simplified spacecraft vulnerability assessments at component level in early design phase at the European Space Agency's Concurrent Design Facility

    Science.gov (United States)

    Kempf, Scott; Schäfer, Frank K.; Cardone, Tiziana; Ferreira, Ivo; Gerené, Sam; Destefanis, Roberto; Grassi, Lilith

    2016-12-01

    During recent years, the state-of-the-art risk assessment of the threat posed to spacecraft by micrometeoroids and space debris has been expanded to the analysis of failure modes of internal spacecraft components. This method can now be used to perform risk analyses for satellites to assess various failure levels - from failure of specific sub-systems to catastrophic break-up. This new assessment methodology is based on triple-wall ballistic limit equations (BLEs), specifically the Schäfer-Ryan-Lambert (SRL) BLE, which is applicable for describing failure threshold levels for satellite components following a hypervelocity impact. The methodology is implemented in the form of the software tool Particle Impact Risk and vulnerability Analysis Tool (PIRAT). During a recent European Space Agency (ESA) funded study, the PIRAT functionality was expanded in order to provide an interface to ESA's Concurrent Design Facility (CDF). The additions include a geometry importer and an OCDT (Open Concurrent Design Tool) interface. The new interface provides both the expanded geometrical flexibility, which is provided by external computer aided design (CAD) modelling, and an ease of import of existing data without the need for extensive preparation of the model. The reduced effort required to perform vulnerability analyses makes it feasible for application during early design phase, at which point modifications to satellite design can be undertaken with relatively little extra effort. The integration of PIRAT in the CDF represents the first time that vulnerability analyses can be performed in-session in ESA's CDF and the first time that comprehensive vulnerability studies can be applied cost-effectively in early design phase in general.

  1. Design concepts and performance of NASA X-band transponder (DST) for deep space spacecraft applications

    Science.gov (United States)

    Mysoor, Narayan R.; Perret, Jonathan D.; Kermode, Arthur W.

    1991-01-01

    The design concepts and measured performance characteristics of an X band (7162 MHz/8415 MHz) breadboard deep space transponder (DST) for future spacecraft applications, with the first use scheduled for the Comet Rendezvous Asteroid Flyby (CRAF) and Cassini missions in 1995 and 1996, respectively. The DST consists of a double conversion, superheterodyne, automatic phase tracking receiver, and an X band (8415 MHz) exciter to drive redundant downlink power amplifiers. The receiver acquires and coherently phase tracks the modulated or unmodulated X band (7162 MHz) uplink carrier signal. The exciter phase modulates the X band (8415 MHz) downlink signal with composite telemetry and ranging signals. The receiver measured tracking threshold, automatic gain control static phase error, and phase jitter characteristics of the breadboard DST are in good agreement with the expected performance. The measured results show a receiver tracking threshold of -158 dBm and a dynamic signal range of 88 dB.

  2. Spacecraft Orbit Design and Analysis (SODA), version 1.0 user's guide

    Science.gov (United States)

    Stallcup, Scott S.; Davis, John S.

    1989-01-01

    The Spacecraft Orbit Design and Analysis (SODA) computer program, Version 1.0 is described. SODA is a spaceflight mission planning system which consists of five program modules integrated around a common database and user interface. SODA runs on a VAX/VMS computer with an EVANS & SUTHERLAND PS300 graphics workstation. BOEING RIM-Version 7 relational database management system performs transparent database services. In the current version three program modules produce an interactive three dimensional (3D) animation of one or more satellites in planetary orbit. Satellite visibility and sensor coverage capabilities are also provided. One module produces an interactive 3D animation of the solar system. Another module calculates cumulative satellite sensor coverage and revisit time for one or more satellites. Currently Earth, Moon, and Mars systems are supported for all modules except the solar system module.

  3. Spacecraft Orbit Design and Analysis (SODA). Version 2.0: User's guide

    Science.gov (United States)

    Stallcup, Scott S.; Davis, John S.; Zsoldos, Jeffrey S.

    1991-01-01

    The Spacecraft Orbit Design and Analysis (SODA) computer program, Version 2.0, is discussed. SODA is a spaceflight mission planning system that consists of six program modules integrated around a common database and user interface. SODA runs on a VAX/VMS computer with an Evans and Sutherland PS300 graphics workstation. In the current version, three program modules produce an interactive three dimensional animation of one or more satellites in planetary orbit. Satellite visibility and sensor coverage capabilities are also provided. Circular and rectangular, off nadir, fixed and scanning sensors are supported. One module produces an interactive three dimensional animation of the solar system. Another module calculates cumulative satellite sensor coverage and revisit time for one or more satellites. Currently, Earth, Moon, and Mars systems are supported for all modules except the solar system module.

  4. Autonomous On-orbit Health Management Architecture and Key Technologies for Manned Spacecrafts%载人航天器在轨自主健康管理系统体系结构及关键技术探讨

    Institute of Scientific and Technical Information of China (English)

    梁克; 邓凯文; 丁锐; 张森

    2014-01-01

    The design complexity , mission diversity and the mission duration of the manned space-craft have increased over the years , so there is an urgent need for the autonomous on-orbit health management .A hierarchical architecture where Observe-Orient-Decide-Act ( OODA ) loop was used to model the interaction was proposed so as to realize the precise and efficient health management . Then space station was taken as an example to study the key technologies including service deploy -ment, fault diagnosis, fault mode configuration and the implementation method based on software component .%针对载人航天器复杂化、任务多样化、在轨运行长期化的发展趋势,及由此对航天器在轨自主健康管理的能力提出的更迫切的需求,提出了一种在轨自主健康管理系统分层体系结构,并采用Observe-Orient-Decide-Act循环描述健康管理子行为之间的交互模型,可实现准确、高效的自主健康管理。并以空间站系统为例,研究了分层分级的服务部署、分类故障诊断、故障模型配置、基于构件的软件实现等关键技术。

  5. Proof of Concept Study of Trade Space Configuration Tool for Spacecraft Design

    Science.gov (United States)

    Glidden, Geoffrey L.

    2009-01-01

    Spacecraft design is a very difficult and time consuming process because requirements and criteria are often changed or modified as the design is refined. Accounting for these adjustments in the design constraints plays a significant role in furthering the overall progress. There are numerous aspects and variables that hold significant influence on various characteristics of the design. This can be especially frustrating when attempting to conduct rapid trade space analysis on system configurations. Currently, the data and designs considered for trade space evaluations can only be displayed by using the traditional interfaces of Excel spreadsheets or CAD (Computer Aided Design) models. While helpful, these methods of analyzing the data from a systems engineering approach can be rather complicated and overwhelming. As a result, a proof of concept was conducted on a dynamic data visualization software called Thinkmap SDK (Software Developer Kit) to allow for better organization and understanding of the relationships between the various aspects that make up an entire design. The Orion Crew Module Aft Bay Subsystem was used as the test case for this study because the design and layout of many of the subsystem components will be significant in ensuring the overall center of gravity of the capsule is correct. A simplified model of this subsystem was created and programmed using Thinkmap SDK to create a preliminary prototype application of a Trade Space Configuration Tool. The completed application ensures that the core requirements for the Tool can be met. Further development is strongly suggested to produce a full prototype application to allow final evaluations and recommendations of the software capabilities.

  6. Analytical theories for spacecraft entry into planetary atmospheres and design of planetary probes

    Science.gov (United States)

    Saikia, Sarag J.

    This dissertation deals with the development of analytical theories for spacecraft entry into planetary atmospheres and the design of entry spacecraft or probes for planetary science and human exploration missions. Poincare's method of small parameters is used to develop an improved approximate analytical solution for Yaroshevskii's classical planetary entry equation for the ballistic entry of a spacecraft into planetary atmospheres. From this solution, other important expressions are developed including deceleration, stagnation-point heat rate, and stagnation-point integrated heat load. The accuracy of the solution is assessed via numerical integration of the exact equations of motion. The solution is also compared to the classical solutions of Yaroshevskii and Allen and Eggers. The new second-order analytical solution is more accurate than Yaroshevskii's fifth-order solution for a range of shallow (-3 deg) to steep (up to -90 deg) entry flight path angles, thereby extending the range of applicability of the solution as compared to the classical Yaroshevskii solution, which is restricted to an entry flight path of approximately -40 deg. Universal planetary entry equations are used to develop a new analytical theory for ballistic entry of spacecraft for moderate to large initial flight path angles. Chapman's altitude variable is used as the independent variable. Poincare's method of small parameters is used to develop an analytical solution for the velocity and the flight path angle. The new solution is used to formulate key expressions for range, time-of-flight, deceleration, and aerodynamic heating parameters (e.g., stagnation-point heat rate, total stagnation-point heat load, and average heat input). The classical approximate solution of Chapman's entry equation appears as the zero-order term in the new solution. The new solution represents an order of magnitude enhancement in the accuracy compared to existing analytical solutions for moderate to large entry

  7. The designing of SDH embedded with RPR and its applications in MAN

    Science.gov (United States)

    Zhang, Jijun; Li, Guangcheng

    2004-04-01

    This paper discusses and analyzes the designing of SDH embedded with RPR and its applications in MAN. The main contents of this paper include: First of all, we discuss the disadvantages of the traditional Ethernet module embedded in SDH node while it carrying dada service in perspective of network organization, of QoS guarantee and network security. Secondly, we introduce the designing of SDH embedded with RPR, which can resolve the above problems. And finally, this paper puts emphases on analyzing the application models of this kind of SDH nodes in the metro area transport network, and the performance optimization for data services provided by the nodes.

  8. Simulating spacecraft systems

    CERN Document Server

    Eickhoff, Jens

    2009-01-01

    This book on the application of functional system simulation in spacecraft development covers the entire process from spacecraft design to final verification. It offers the latest research in all relevant topics and includes numerous examples.

  9. Design and development of guidance navigation and control algorithms for spacecraft rendezvous and docking experimentation

    Science.gov (United States)

    Guglieri, Giorgio; Maroglio, Franco; Pellegrino, Pasquale; Torre, Liliana

    2014-01-01

    This paper presents the design of the GNC system of a ground test-bed for spacecraft rendezvous and docking experiments. The test-bed is developed within the STEPS project (Systems and Technologies for Space Exploration). The facility consists of a flat floor and two scaled vehicles, one active chaser and one “semi-active” target. Rendezvous and docking maneuvers are performed floating on the plane with pierced plates as lifting systems. The system is designed to work both with inertial and non-inertial reference frame, receiving signals from navigation sensors as: accelerometers, gyroscopes, laser meter, radio finder and video camera, and combining them with a digital filter. A Proportional-Integrative-Derivative control law and Pulse Width Modulators are used to command the cold gas thrusters of the chaser, and to follow an assigned trajectory with its specified velocity profile. The design and development of the guidance, navigation and control system and its architecture-including the software algorithms-are detailed in the paper, presenting a performance analysis based on a simulated environment. A complete description of the integrated subsystems is also presented.

  10. Using the Design for Demise Philosophy to Reduce Casualty Risk Due to Reentering Spacecraft

    Science.gov (United States)

    Kelley, R. L.

    2012-01-01

    Recently the reentry of a number of vehicles has garnered public attention due to their risk of human casualty due to fragments surviving reentry. In order to minimize this risk for their vehicles, a number of NASA programs have actively sought to minimize the number of components likely to survive reentry at the end of their spacecraft's life in order to meet and/or exceed NASA safety standards for controlled and uncontrolled reentering vehicles. This philosophy, referred to as "Design for Demise" or D4D, has steadily been adopted, to at least some degree, by numerous programs. The result is that many programs are requesting evaluations of components at the early stages of vehicle design, as they strive to find ways to reduce the number surviving components while ensuring that the components meet the performance requirements of their mission. This paper will discuss some of the methods that have been employed to ensure that the consequences of the vehicle s end-of-life are considered at the beginning of the design process. In addition this paper will discuss the technical challenges overcome, as well as some of the more creative solutions which have been utilized to reduce casualty risk.

  11. Man-machine interface in a submarine command and weapon control system: features and design experience

    Directory of Open Access Journals (Sweden)

    Johan H. Aas

    1989-01-01

    Full Text Available Important man-machine interface (MMI issues concerning a submarine command and weapon control system (CWCS such as crew organization, automation level and decision support are discussed in this paper. Generic submarine CWCS functions and operating conditions are outlined. Detailed, dynamic and real-time prototypes were used to support the MMI design. The prototypes are described and experience with detailed prototyping is discussed. Some of the main interaction principles are summarized and a restricted example of the resulting design is given. Our design experience and current work have been used to outline future perspectives of MMI design in naval CWCSs. The need for both formal and experimental approaches is emphasized.

  12. A modeling technique for active control design studies with application to spacecraft microvibrations.

    Science.gov (United States)

    Aglietti, G S; Gabriel, S B; Langley, R S; Rogers, E

    1997-10-01

    Microvibrations, at frequencies between 1 and 1000 Hz, generated by on board equipment, can propagate throughout a spacecraft structure and affect the performance of sensitive payloads. To investigate strategies to reduce these dynamic disturbances by means of active control systems, realistic yet simple structural models are necessary to represent the dynamics of the electromechanical system. In this paper a modeling technique which meets this requirement is presented, and the resulting mathematical model is used to develop some initial results on active control strategies. Attention is focused on a mass loaded panel subjected to point excitation sources, the objective being to minimize the displacement at an arbitrary output location. Piezoelectric patches acting as sensors and actuators are employed. The equations of motion are derived by using Lagrange's equation with vibration mode shapes as the Ritz functions. The number of sensors/actuators and their location is variable. The set of equations obtained is then transformed into state variables and some initial controller design studies are undertaken. These are based on standard linear systems optimal control theory where the resulting controller is implemented by a state observer. It is demonstrated that the proposed modeling technique is a feasible realistic basis for in-depth controller design/evaluation studies.

  13. The Electromagnetic Compatibility (EMC) Design Challenge for Scientific Spacecraft Powered by a Stirling Power Converter

    Science.gov (United States)

    Sargent, Noel B.

    2001-01-01

    A 55 We free-piston Stirling Technology Demonstration Convertor (TDC) has been tested as part of an evaluation to determine its feasibility as a means for significantly reducing the amount of radioactive material required compared to Radioisotope Thermoelectric Generators (RTGs) to support long-term space science missions. Measurements were made to quantify the low frequency magnetic and electric fields radiated from the Stirling's 80 Hertz (Hz) linear alternator and control electronics in order to determine the magnitude of reduction that will be required to protect sensitive field sensors aboard some science missions. One identified "Solar Probe" mission requires a 100 dB reduction in the low frequency magnetic field over typical military standard design limits, to protect its plasma wave sensor. This paper discusses the electromagnetic interference (EMI) control options relative to the physical design impacts for this power system, composed of 3 basic electrical elements. They are (1) the Stirling Power Convertor with its linear alternator, (2) the power switching and control electronics to convert the 90 V, 80 Hz alternator output to DC for the use of the spacecraft, and (3) the interconnecting wiring including any instrumentation to monitor and control items 1 and 2.

  14. Man-machine Integration Design and Analysis System (MIDAS) Task Loading Model (TLM) experimental and software detailed design report

    Science.gov (United States)

    Staveland, Lowell

    1994-01-01

    This is the experimental and software detailed design report for the prototype task loading model (TLM) developed as part of the man-machine integration design and analysis system (MIDAS), as implemented and tested in phase 6 of the Army-NASA Aircrew/Aircraft Integration (A3I) Program. The A3I program is an exploratory development effort to advance the capabilities and use of computational representations of human performance and behavior in the design, synthesis, and analysis of manned systems. The MIDAS TLM computationally models the demands designs impose on operators to aide engineers in the conceptual design of aircraft crewstations. This report describes TLM and the results of a series of experiments which were run this phase to test its capabilities as a predictive task demand modeling tool. Specifically, it includes discussions of: the inputs and outputs of TLM, the theories underlying it, the results of the test experiments, the use of the TLM as both stand alone tool and part of a complete human operator simulation, and a brief introduction to the TLM software design.

  15. 载人航天器密封舱微量有害气体质谱检测方法%Mass spectrometric detection of harmful trace gases in manned spacecraft capsule

    Institute of Scientific and Technical Information of China (English)

    陈联; 邱家稳; 王丽红; 张晓曦

    2011-01-01

    Detection of multi -component harmful trace gases in manned spacecraft capsule by miniature vacuum mass spectrometer was introduced. Online monitoring of a variety of harmful trace gases in the capsule was realized through detecting the gas concentration. Experimental data of relative sensitivity of some gases such as toluene, dimethylbenzene, dichloromethane, methane and acetone were given and the experiment also verified that the minimum detectable concentration of before -mentioned gases can reach lppm. The results indicated that monitoring of harmful trace gas concentration by miniature vacuum mass spectrometer in manned spacecraft capsule is feasible.%介绍了采用小型真空质谱计进行载人航天器密封舱内多组分微量有害气体的检测方法.通过测量微量气体浓度,实现密封舱内多种微量有害气体在线监测.给出了甲苯、二甲苯、二氯甲烷、甲烷、丙酮等5种气体的相对灵敏度试验数据,验证了现有小型真空质谱计最小可检浓度可以达到1ppm要求.研究结果表明,采用小型真空质谱计进行舱内微量有害气体浓度监测是可行的.

  16. Low Cost Rapid Response Spacecraft, (LCRRS): A Research Project in Low Cost Spacecraft Design and Fabrication in a Rapid Prototyping Environment

    Science.gov (United States)

    Spremo, Stevan; Bregman, Jesse; Dallara, Christopher D.; Ghassemieh, Shakib M.; Hanratty, James; Jackson, Evan; Kitts, Christopher; Klupar, Pete; Lindsay, Michael; Ignacio, Mas; hide

    2009-01-01

    The Low Cost Rapid Response Spacecraft (LCRRS) is an ongoing research development project at NASA Ames Research Center (ARC), Moffett Field, California. The prototype spacecraft, called Cost Optimized Test for Spacecraft Avionics and Technologies (COTSAT) is the first of what could potentially be a series of rapidly produced low-cost satellites. COTSAT has a target launch date of March 2009 on a SpaceX Falcon 9 launch vehicle. The LCRRS research system design incorporates use of COTS (Commercial Off The Shelf), MOTS (Modified Off The Shelf), and GOTS (Government Off The Shelf) hardware for a remote sensing satellite. The design concept was baselined to support a 0.5 meter Ritchey-Chretien telescope payload. This telescope and camera system is expected to achieve 1.5 meter/pixel resolution. The COTSAT team is investigating the possibility of building a fully functional spacecraft for $500,000 parts and $2,000,000 labor. Cost is dramatically reduced by using a sealed container, housing the bus and payload subsystems. Some electrical and RF designs were improved/upgraded from GeneSat-1 heritage systems. The project began in January 2007 and has yielded two functional test platforms. It is expected that a flight-qualified unit will be finished in December 2008. Flight quality controls are in place on the parts and materials used in this development with the aim of using them to finish a proto-flight satellite. For LEO missions the team is targeting a mission class requiring a minimum of six months lifetime or more. The system architecture incorporates several design features required by high reliability missions. This allows for a true skunk works environment to rapidly progress toward a flight design. Engineering and fabrication is primarily done in-house at NASA Ames with flight certifications on materials. The team currently employs seven Full Time Equivalent employees. The success of COTSATs small team in this effort can be attributed to highly cross trained

  17. Telemetry, Telecommand and Communication Subsystem Design for Small Spacecrafts using COTS

    Science.gov (United States)

    Subhani, Noman

    2016-07-01

    Universities collaborations with space industry has played a pivotal role in the development of student satellites. Student satellites are characterized by their small size, low weight, cheap design, short development periods and flexible launching. Given these features, young scientists with deep interests in spacecraft field can develop their own satellites by adhering to design methodology and restrictions observed in a student satellite. Numerous student satellite mission have flown in past and there are many missions coming in future that adopt cheap, reliable, Commercial-Off-The-Shelf (COTS) components to design and launch the student satellites. Multiple experiments are performed on these satellites in order to determine the space environmental characteristics through these small and low cost missions. Development of student satellite has brought space communication interest amongst the university students and young scientists and their innovative ideas bring the new technologies in the satellite industry field. Communication subsystem is an integral part of any satellite despite of the nature of mission. In this paper, reliable and cost efficient design of Telemetry, Telecommand and Communication subsystem for student satellite has been presented using (COTS) components. The link budget analysis for Telemetry downlink and Telecommand uplink is given for Global Education Network for Satellite Operations (GENSO) compatible small sized ground station. Keeping in view the nature of student satellite mission, all communications to and from ground station are in the UHF/ VHF amateur radio frequency band. Satellite TM/TC is compatible with any GENSO type ground receiving terminals. Circular Polarization with 4 pi radian coverage can be achieved by using the combination of Monopole wire antennas.

  18. Design and verification of a negative resistance electromagnetic shunt damper for spacecraft micro-vibration

    Science.gov (United States)

    Stabile, Alessandro; Aglietti, Guglielmo S.; Richardson, Guy; Smet, Geert

    2017-01-01

    Active control techniques are often required to mitigate the micro-vibration environment existing on board spacecraft. However, reliability issues and high power consumption are major drawbacks of active isolation systems that have limited their use for space applications. In the present study, an electromagnetic shunt damper (EMSD) connected to a negative-resistance circuit is designed, modelled and analysed. The negative resistance produces an overall reduction of the circuit resistance that results in an increase of the induced current in the closed circuit and thus the damping performance. This damper can be classified as a semi-active damper since the shunt does not require any control algorithm to operate. Additionally, the proposed EMSD is characterised by low required power, simplified electronics and small device mass, allowing it to be comfortably integrated on a satellite. This work demonstrates, both analytically and experimentally, that this technology is capable of effectively isolating typical satellite micro-vibration sources over the whole temperature range of interest.

  19. Design, construction and testing of the Communications Technology Satellite protection against spacecraft charging

    Science.gov (United States)

    Gore, J. V.

    1977-01-01

    Detailed discussions are presented of the measures taken on the Communications Technology Satellite (CTS or Hermes) which provide protection against the effects of spacecraft charging. These measures include: a comprehensive grounding philosophy and implementation; provision of command and data line transmitters and receivers for transient noise immunity; and a fairly restrictive EMI specification. Ground tests were made on materials and the impact of these tests on the CTS spacecraft is described. Hermes, launched on 17 January 1976 on a 2914 Delta vehicle, has successfully completed 10 months of operations. Anomalies observed are being assessed in relation to spacecraft charging, but no definite correlations have yet been established. A list of conclusions with regard to the CTS experience is given and recommendations for future spacecraft are also listed.

  20. Design and Simulation of a MEMS Control Moment Gyroscope for the Sub-Kilogram Spacecraft

    Directory of Open Access Journals (Sweden)

    Weizheng Yuan

    2010-04-01

    Full Text Available A novel design of a microelectromechanical systems (MEMS control moment gyroscope (MCMG was proposed in this paper in order to generate a torque output with a magnitude of 10-6 N∙m. The MCMG consists of two orthogonal angular vibration systems, i.e., the rotor and gimbal; the coupling between which is based on the Coriolis effect and will cause a torque output in the direction perpendicular to the two vibrations. The angular rotor vibration was excited by the in-plane electrostatic rotary comb actuators, while the angular gimbal vibration was driven by an out-of-plane electrostatic parallel plate actuator. A possible process flow to fabricate the structure was proposed and discussed step by step. Furthermore, an array configuration using four MCMGs as an effective element, in which the torque was generated with a phase difference of 90 degrees between every two MCMGs, was proposed to smooth the inherent fluctuation of the torque output for a vibrational MCMG. The parasitic torque was cancelled by two opposite MCMGs with a phase difference of 180 degrees. The designed MCMG was about 1.1 cm × 1.1 cm × 0.04 cm in size and 0.1 g in weight. The simulation results showed that the maximum torque output of a MCMG, the resonant frequency of which was approximately 1,000 Hz, was about 2.5 × 10-8 N∙m. The element with four MCMGs could generate a torque of 5 × 10-8 N∙m. The torque output could reach a magnitude of 10-6 N∙m when the frequency was improved from 1,000 Hz to 10,000 Hz. Using arrays of 4 × 4 effective elements on a 1 kg spacecraft with a standard form factor of 10 cm × 10 cm × 10 cm, a 10 degrees attitude change could be achieved in 26.96s.

  1. Design and simulation of a MEMS control moment gyroscope for the sub-kilogram spacecraft.

    Science.gov (United States)

    Chang, Honglong; Jiao, Wenlong; Fu, Qianyan; Xie, Jianbing; Yuan, Weizheng

    2010-01-01

    A novel design of a microelectromechanical systems (MEMS) control moment gyroscope (MCMG) was proposed in this paper in order to generate a torque output with a magnitude of 10(-6) N·m. The MCMG consists of two orthogonal angular vibration systems, i.e., the rotor and gimbal; the coupling between which is based on the Coriolis effect and will cause a torque output in the direction perpendicular to the two vibrations. The angular rotor vibration was excited by the in-plane electrostatic rotary comb actuators, while the angular gimbal vibration was driven by an out-of-plane electrostatic parallel plate actuator. A possible process flow to fabricate the structure was proposed and discussed step by step. Furthermore, an array configuration using four MCMGs as an effective element, in which the torque was generated with a phase difference of 90 degrees between every two MCMGs, was proposed to smooth the inherent fluctuation of the torque output for a vibrational MCMG. The parasitic torque was cancelled by two opposite MCMGs with a phase difference of 180 degrees. The designed MCMG was about 1.1 cm×1.1 cm×0.04 cm in size and 0.1 g in weight. The simulation results showed that the maximum torque output of a MCMG, the resonant frequency of which was approximately 1,000 Hz, was about 2.5×10(-8) N·m. The element with four MCMGs could generate a torque of 5×10(-8) N·m. The torque output could reach a magnitude of 10(-6) N·m when the frequency was improved from 1,000 Hz to 10,000 Hz. Using arrays of 4×4 effective elements on a 1 kg spacecraft with a standard form factor of 10 cm×10 cm×10 cm, a 10 degrees attitude change could be achieved in 26.96 s.

  2. Numerical Model of Flow and Heat Transfer for Manned Spacecraft Pressurized Cabin and Its Ground Verification%载人航天器密封舱流动和传热数值模型及其地面验证

    Institute of Scientific and Technical Information of China (English)

    卢威; 黄家荣; 范宇峰; 钟奇

    2011-01-01

    In order to solve the complex heat lransfer problem coupled with air flow, solid conduction and radiacion in a manned spacecraft pressurized cabin, a numerical model of flow and heat transfer for the manned spacecraft pressurized cabin is built. The simulation and analysis of air flow and heat transfer are performed under ground test conditions, and the numerical model is suhsequently validated by test results. The results indicate that the numerical model is reliable wiih a high fidelity, and the simulation results using this model are found to highly agree with the ground test data, which could be further used for performance assessment of thermal control system( TCS) , orbit support and failure management.%为求解载人航天器密封舱内复杂的空气对流、导热和辐射三者耦合的传热问题,本文建立了载人航天器密封舱的流动与传热数值模型,对地面试验状态下密封舱内的空气流动与传热进行了仿真分析,并利用试验结果对数值模型进行了验证.结果表明,建立的数值模型可靠且具有较高精度,仿真结果与地面试验数据吻合性较好,可进一步用于热控系统性能评估、在轨支持和故障处理.

  3. Design and Development of an Equipotential Voltage Reference (Grounding) System for a Low-Cost Rapid-Development Modular Spacecraft Architecture

    Science.gov (United States)

    Lukash, James A.; Daley, Earl

    2011-01-01

    This work describes the design and development effort to adapt rapid-development space hardware by creating a ground system using solutions of low complexity, mass, & cost. The Lunar Atmosphere and Dust Environment Explorer (LADEE) spacecraft is based on the modular common spacecraft bus architecture developed at NASA Ames Research Center. The challenge was building upon the existing modular common bus design and development work and improving the LADEE spacecraft design by adding an Equipotential Voltage Reference (EVeR) system, commonly referred to as a ground system. This would aid LADEE in meeting Electromagnetic Environmental Effects (E3) requirements, thereby making the spacecraft more compatible with itself and its space environment. The methods used to adapt existing hardware are presented, including provisions which may be used on future spacecraft.

  4. Evolved Design, Integration, and Test of a Modular, Multi-Link, Spacecraft-Based Robotic Manipulator

    Science.gov (United States)

    2016-06-01

    Astronautics ARFR Astronaut Reference Flying Robot ASCII American Standard Code for Information Interchange CAD computer -aided drafting ccp...Spacecraft Simulator GNC guidance, navigation, and control GUI graphic user interface ICATT International Conference on Astrodynamics Tools and Techniques...for implementing these pieces into a functional system ( mechatronics ). In areas that are inherently dangerous or inaccessible to humans, like outer

  5. Small Spacecraft System-Level Design and Optimization for Interplanetary Trajectories

    Science.gov (United States)

    Spangelo, Sara; Dalle, Derek; Longmier, Ben

    2014-01-01

    The feasibility of an interplanetary mission for a CubeSat, a type of miniaturized spacecraft, that uses an emerging technology, the CubeSat Ambipolar Thruster (CAT) is investigated. CAT is a large delta-V propulsion system that uses a high-density plasma source that has been miniaturized for small spacecraft applications. An initial feasibility assessment that demonstrated escaping Low Earth Orbit (LEO) and achieving Earth-escape trajectories with a 3U CubeSat and this thruster technology was demonstrated in previous work. We examine a mission architecture with a trajectory that begins in Earth orbits such as LEO and Geostationary Earth Orbit (GEO) which escapes Earth orbit and travels to Mars, Jupiter, or Saturn. The goal was to minimize travel time to reach the destinations and considering trade-offs between spacecraft dry mass, fuel mass, and solar power array size. Sensitivities to spacecraft dry mass and available power are considered. CubeSats are extremely size, mass, and power constrained, and their subsystems are tightly coupled, limiting their performance potential. System-level modeling, simulation, and optimization approaches are necessary to find feasible and optimal operational solutions to ensure system-level interactions are modeled. Thus, propulsion, power/energy, attitude, and orbit transfer models are integrated to enable systems-level analysis and trades. The CAT technology broadens the possible missions achievable with small satellites. In particular, this technology enables more sophisticated maneuvers by small spacecraft such as polar orbit insertion from an equatorial orbit, LEO to GEO transfers, Earth-escape trajectories, and transfers to other interplanetary bodies. This work lays the groundwork for upcoming CubeSat launch opportunities and supports future development of interplanetary and constellation CubeSat and small satellite mission concepts.

  6. Re-Design and Beat Testing of the Man-Machine Integration Design and Analysis System: MIDAS

    Science.gov (United States)

    Shively, R. Jay; Rutkowski, Michael (Technical Monitor)

    1999-01-01

    The Man-machine Design and Analysis System (MIDAS) is a human factors design and analysis system that combines human cognitive models with 3D CAD models and rapid prototyping and simulation techniques. MIDAS allows designers to ask 'what if' types of questions early in concept exploration and development prior to actual hardware development. The system outputs predictions of operator workload, situational awareness and system performance as well as graphical visualization of the cockpit designs interacting with models of the human in a mission scenario. Recently, MIDAS was re-designed to enhance functionality and usability. The goals driving the redesign include more efficient processing, GUI interface, advances in the memory structures, implementation of external vision models and audition. These changes were detailed in an earlier paper. Two Beta test sites with diverse applications have been chosen. One Beta test site is investigating the development of a new airframe and its interaction with the air traffic management system. The second Beta test effort will investigate 3D auditory cueing in conjunction with traditional visual cueing strategies including panel-mounted and heads-up displays. The progress and lessons learned on each of these projects will be discussed.

  7. System Critical Design Audit (CDA). Books 1, 2 and 3; [Small Satellite Technology Initiative (SSTI Lewis Spacecraft Program)

    Science.gov (United States)

    1995-01-01

    Small Satellite Technology Initiative (SSTI) Lewis Spacecraft Program is evaluated. Spacecraft integration, test, launch, and spacecraft bus are discussed. Payloads and technology demonstrations are presented. Mission data management system and ground segment are also addressed.

  8. Spacecraft operations

    CERN Document Server

    Sellmaier, Florian; Schmidhuber, Michael

    2015-01-01

    The book describes the basic concepts of spaceflight operations, for both, human and unmanned missions. The basic subsystems of a space vehicle are explained in dedicated chapters, the relationship of spacecraft design and the very unique space environment are laid out. Flight dynamics are taught as well as ground segment requirements. Mission operations are divided into preparation including management aspects, execution and planning. Deep space missions and space robotic operations are included as special cases. The book is based on a course held at the German Space Operation Center (GSOC).

  9. System design aspects and flight experience of the electrical interfaces across the Galileo spacecraft spin bearing assembly

    Science.gov (United States)

    Landano, Matthew R.

    1993-01-01

    The Galileo spacecraft design uses a dual-spin general configuration with spun and despun sections; the mechanical connection between the two sections is accomplished by means of a spin bearing assembly (SBA) whose electrical interfacing uses both slip rings/brushes and rotary transformers that are located within the SBA. Attention is presently given to the design features of the SBA, the electrical interface flight anomaly and investigation experience with Galileo to date, and the responses of the Galileo Flight Team to those anomalies.

  10. Preliminary vibration, acoustic, and shock design and test criteria for components on the HEAO-A spacecraft

    Science.gov (United States)

    1975-01-01

    These vibration, acoustic, and shock specifications provide the qualification test criteria for spacecraft components and subassemblies and for the High Energy Astronomy Observatory (HEAO-A) experiments. The HEAO-A was divided into zones and subzones to obtain simple component groupings. Zones are designated primarily to assist in determining the applicable specification. A Subzone is available for use when the location of the component is known but component design and weight are not well defined. When the location, weight, and mounting configuration of the component are known, the appropriate Subzone weight ranges are available. Experiment and specific component specifications are available.

  11. Preliminary vibration, acoustic, and shock design and test criteria for components on the HEAO-C spacecraft

    Science.gov (United States)

    1975-01-01

    The vibration, acoustic, and shock specification test criteria for spacecraft components and subassemblies and for the high Energy Astronomy Observatory (HEAO-C) experiments are presented. The HEAO-C was divided into zones and subzones to obtain simple component groupings. Zones are designated primarily to assist in determining the applicable specification. A subzone (general specification) is available for use when the location of the component is known but component design and weight are not well defined. When the location, weight, and mounting configuration of the component are known, the appropriate subzone weight ranges (-A, -B, etc. ) are available. Experiment and specific component specifications are available.

  12. Application of maximum entropy optimal projection design synthesis to the NASA Spacecraft Control Laboratory Experiment (SCOLE)

    Science.gov (United States)

    Hyland, Dave; Davis, Larry

    1984-01-01

    The scope of this study covered steady-state, continuous-time vibration control under disturbances applied to the Space Shuttle and continuous-time models of actuators, sensors, and disturbances. Focus was on a clear illustration of the methodology, therefore sensor/actuator dynamics were initially ignored, and a finite element model of the NASA Spacecraft Control Laboratory Experiment (SCOLE) was conducted, including products of inertia and offset of reflector CM from the mast tip.

  13. Pharmacological vs. classical approaches in the design of first in man clinical drug trials.

    Science.gov (United States)

    van den Bogert, Cornelis A; Cohen, Adam F; Leufkens, Hubert G M; van Gerven, Joop M A

    2017-10-04

    The aims of the present study were to investigate the role of pharmacology in the design of first-in-man (FIM) trials in the Netherlands, and to evaluate the change in design approaches between 2007 and 2015. All FIM drug trials approved by all Dutch Institutional Review Boards (IRBs) in 2007 and in 2015 were selected. The original trial protocols, investigator's brochures and investigational medicinal product dossiers were the data sources. The following four design elements were assessed on the justification of the chosen approaches: preclinical information, dose calculation, endpoints, and dose escalation. In 2007, the Dutch IRBs approved 21 FIM trials, and in 2015 they approved 34 FIM trials (55 in total). Seven out of 21 (33%) of the FIM trials from 2007, and 14 out of the 34 (41%) FIM trials from 2015 discussed only the no-observed-adverse-effect level or no-observed-effect level as preclinical information. Furthermore, five of the 21 (24%) 2007 FIM trials and 12 of the 34 (35%) 2015 FIM trials used unexplained allometric scaling. Pharmacodynamic (PD) parameters were measured in 15 of the 21 (71%) 2007 FIM trials and in 31 of the 34 (91%) of the 2015 FIM trials, and allometric scaling was only guided by safety/tolerability in 11 of the 20 (55%) dose escalation trials in 2007 and in nine of the 33 (27%) dose escalation trials in 2015. Trial protocols and investigator's brochures commonly lack pharmacokinetic/PD approaches. Investigators, sponsors and IRBs should require an upfront consideration of pharmacology in these aspects for all FIM trials. © 2017 The British Pharmacological Society.

  14. Google Calendar: A single case experimental design study of a man with severe memory problems.

    Science.gov (United States)

    Baldwin, Victoria N; Powell, Theresa

    2015-01-01

    A single case experimental design across behaviours was utilised to explore the effectiveness of Google Calendar text alerts delivered to a mobile phone as a memory aid. The participant was a 43-year-old man (JA) with severe memory problems and executive difficulties caused by a traumatic brain injury (TBI). JA was initially very unwilling to use any memory aid and so a detailed assessment of his beliefs about memory aids, his cognitive difficulties and his social context was performed and a set of specifications for an aid was produced collaboratively. Six weeks of baseline data and six weeks of intervention data were collected for three target memory behaviours and three control memory behaviours. Results were analysed using nonoverlap of all pairs (NAP) analysis which showed a reduction in forgetting in the three target behaviours and no change in two of the three control behaviours. A subjective measure (the revised Everyday Memory Questionnaire) also suggested improvement. This study illustrates that Google Calendar is a highly effective memory aid and emphasises the importance of choosing a memory aid to suit the person's lifestyle and beliefs.

  15. Architecture for space habitats. Role of architectural design in planning artificial environment for long time manned space missions

    Science.gov (United States)

    Martinez, Vera

    2007-02-01

    The paper discusses concepts about the role of architecture in the design of space habitats and the development of a general evaluation criteria of architectural design contribution. Besides the existing feasibility studies, the general requisites, the development studies, and the critical design review which are mainly based on the experience of human space missions and the standards of the NASA-STD-3000 manual and which analyze and evaluate the relation between man and environment and between man and machine mainly in its functionality, there is very few material about design of comfort and wellbeing of man in space habitat. Architecture for space habitat means the design of an artificial environment with much comfort in an "atmosphere" of wellbeing. These are mainly psychological effects of human factors which are very important in the case of a long time space mission. How can the degree of comfort and "wellbeing atmosphere" in an artificial environment be measured? How can the quality of the architectural contribution in space design be quantified? Definition of a criteria catalogue to reach a larger objectivity in architectural design evaluation. Definition of constant parameters as a result of project necessities to quantify the quality of the design. Architectural design analysis due the application and verification within the parameters and consequently overlapping and evaluating results. Interdisciplinary work between architects, astronautics, engineers, psychologists, etc. All the disciplines needed for planning a high quality habitat for humans in space. Analysis of the principles of well designed artificial environment. Good quality design for space architecture is the result of the interaction and interrelation between many different project necessities (technological, environmental, human factors, transportation, costs, etc.). Each of this necessities is interrelated in the design project and cannot be evaluated on its own. Therefore, the design

  16. NASA-STD-6016 Standard Materials and Processes Requirements for Spacecraft

    Science.gov (United States)

    Hirsch, David B.

    2009-01-01

    The standards for materials and processes surrounding spacecraft are discussed. Presentation focused on minimum requirements for Materials and Processes (M&P) used in design, fabrication, and testing of flight components for NASA manned, unmanned, robotic, launch vehicle, lander, in-space and surface systems, and spacecraft program/project hardware elements.Included is information on flammability, offgassing, compatibility requirements, and processes; both metallic and non-metallic materials are mentioned.

  17. Applications of high thermal conductivity composites to electronics and spacecraft thermal design

    Science.gov (United States)

    Sharp, G. Richard; Loftin, Timothy A.

    1990-01-01

    Recently, high thermal conductivity graphite fiber-reinforced metal matrix composites (MMCs) have become available that can save weight over present methods of heat conduction. Another significant advantage is that these materials can be used without the plumbing and testing complexities that accompany the use of liquid heat pipes. A spinoff of this research was the development of other MMCs as electronic device heat sinks. These use particulates rather than fibers and are formulated to match the coefficient of thermal expansion of electronic substrates in order to alleviate thermally induced stresses. The development of both types of these materials as viable weight-saving substitutes for the traditional methods of thermal control for electronics packaging and also for spacecraft thermal control applications are the subjects of this report.

  18. Research on Spacecraft Illumination

    Directory of Open Access Journals (Sweden)

    Bo Cai

    2011-07-01

    Full Text Available Illumination analysis of spacecraft is very important. This paper firstly introduces the importance of spacecraft illumination analysis in aerospace fields and points out that illumination conditions will influence the design of shape of spacecraft body and the installation of spacecraft equipments. Then, it discusses two methods for analyzing spacecraft solar-panel shadow and illumination conditions: ray tracing illumination algorithm and polyhedral mesh contour edge projection algorithm and compares their efficiency and feasibility. Shadow area and solar area are computed of every cell on solar panels. We designed solar panel single-axis rotation experiment to validate the proposed algorithm. The experimental results show that contour edge projection algorithm has fine accuracy and costs less time. For detailed illumination information, we apply a practical segment clipping algorithm after some comparisons.

  19. Army-NASA aircrew/aircraft integration program: Phase 4 A(3)I Man-Machine Integration Design and Analysis System (MIDAS) software detailed design document

    Science.gov (United States)

    Banda, Carolyn; Bushnell, David; Chen, Scott; Chiu, Alex; Constantine, Betsy; Murray, Jerry; Neukom, Christian; Prevost, Michael; Shankar, Renuka; Staveland, Lowell

    1991-01-01

    The Man-Machine Integration Design and Analysis System (MIDAS) is an integrated suite of software components that constitutes a prototype workstation to aid designers in applying human factors principles to the design of complex human-machine systems. MIDAS is intended to be used at the very early stages of conceptual design to provide an environment wherein designers can use computational representations of the crew station and operator, instead of hardware simulators and man-in-the-loop studies, to discover problems and ask 'what if' questions regarding the projected mission, equipment, and environment. This document is the Software Product Specification for MIDAS. Introductory descriptions of the processing requirements, hardware/software environment, structure, I/O, and control are given in the main body of the document for the overall MIDAS system, with detailed discussion of the individual modules included in Annexes A-J.

  20. Relation between man and water: the awareness of living water for sustainable design

    OpenAIRE

    Barbero, Silvia; Pallaro, Agnese

    2015-01-01

    Water is the most precious and one of the most threatened resources on earth: environmental, economic, social and management factors are posing at risk this precious resource. The roots of these problems can be traced in the loss of relation between man and water: from being a vital element with a spiritual character, water has become seen as just a commodity over which to make profit. Through the analysis of how the changing relation between man and water in history has been translated in th...

  1. Fast spacecraft adaptive attitude tracking control through immersion and invariance design

    Science.gov (United States)

    Wen, Haowei; Yue, Xiaokui; Li, Peng; Yuan, Jianping

    2017-10-01

    This paper presents a novel non-certainty-equivalence adaptive control method for the attitude tracking control problem of spacecraft with inertia uncertainties. The proposed immersion and invariance (I&I) based adaptation law provides a more direct and flexible approach to circumvent the limitations of the basic I&I method without employing any filter signal. By virtue of the adaptation high-gain equivalence property derived from the proposed adaptive method, the closed-loop adaptive system with a low adaptation gain could recover the high adaptation gain performance of the filter-based I&I method, and the resulting control torque demands during the initial transient has been significantly reduced. A special feature of this method is that the convergence of the parameter estimation error has been observably improved by utilizing an adaptation gain matrix instead of a single adaptation gain value. Numerical simulations are presented to highlight the various benefits of the proposed method compared with the certainty-equivalence-based control method and filter-based I&I control schemes.

  2. UARS spacecraft recorder

    Science.gov (United States)

    1987-01-01

    The objective was the design, development, and fabrication of UARS spacecraft recorders. The UARS recorder is a tailored configuration of the RCA Standard Tape recorder STR-108. The specifications and requirements are reviewed.

  3. Lunar Module 5 mated with Spacecraft Lunar Module Adapter (SLA)

    Science.gov (United States)

    1969-01-01

    Interior view of the Kennedy Space Center's (KSC) Manned Spacecraft Operations Building showing Lunar Module 5 mated to its Spacecraft Lunar Module Adapter (SLA). LM-5 is scheduled to be flown on the Apollo 11 lunar landing mission.

  4. Theory-Based Design and Development of a Socially Connected, Gamified Mobile App for Men About Breastfeeding (Milk Man)

    Science.gov (United States)

    White, Becky K; Martin, Annegret; White, James A; Burns, Sharyn K; Maycock, Bruce R; Giglia, Roslyn C

    2016-01-01

    Background Despite evidence of the benefits of breastfeeding, babies are exclusively breastfed to the recommended 6 months. The support of the father is one of the most important factors in breastfeeding success, and targeting breastfeeding interventions to the father has been a successful strategy in previous research. Mobile technology offers unique opportunities to engage and reach populations to enhance health literacy and healthy behavior. Objective The objective of our study was to use previous research, formative evaluation, and behavior change theory to develop the first evidence-based breastfeeding app targeted at men. We designed the app to provide men with social support and information aiming to increase the support men can offer their breastfeeding partners. Methods We used social cognitive theory to design and develop the Milk Man app through stages of formative research, testing, and iteration. We held focus groups with new and expectant fathers (n=18), as well as health professionals (n=16), and used qualitative data to inform the design and development of the app. We tested a prototype with fathers (n=4) via a think-aloud study and the completion of the Mobile Application Rating Scale (MARS). Results Fathers and health professionals provided input through the focus groups that informed the app development. The think-aloud walkthroughs identified 6 areas of functionality and usability to be addressed, including the addition of a tutorial, increased size of text and icons, and greater personalization. Testers rated the app highly, and the average MARS score for the app was 4.3 out of 5. Conclusions To our knowledge, Milk Man is the first breastfeeding app targeted specifically at men. The development of Milk Man followed a best practice approach, including the involvement of a multidisciplinary team and grounding in behavior change theory. It tested well with end users during development. Milk Man is currently being trialed as part of the Parent

  5. Reliability considerations in long-life outer planet spacecraft system design

    Science.gov (United States)

    Casani, E. K.

    1975-01-01

    A Mariner Jupiter/Saturn mission has been planned for 1977. System reliability questions are discussed, taking into account the actual and design lifetime, causes of mission termination, in-flight failures and their consequences for the mission, and the use of redundancy to avoid failures. The design process employed optimizes the use of proven subsystem and system designs and then makes the necessary improvements to increase the lifetime as required.

  6. Artificial Neural Networks Applications: from Aircraft Design Optimization to Orbiting Spacecraft On-board Environment Monitoring

    Science.gov (United States)

    Jules, Kenol; Lin, Paul P.

    2002-01-01

    This paper reviews some of the recent applications of artificial neural networks taken from various works performed by the authors over the last four years at the NASA Glenn Research Center. This paper focuses mainly on two areas. First, artificial neural networks application in design and optimization of aircraft/engine propulsion systems to shorten the overall design cycle. Out of that specific application, a generic design tool was developed, which can be used for most design optimization process. Second, artificial neural networks application in monitoring the microgravity quality onboard the International Space Station, using on-board accelerometers for data acquisition. These two different applications are reviewed in this paper to show the broad applicability of artificial intelligence in various disciplines. The intent of this paper is not to give in-depth details of these two applications, but to show the need to combine different artificial intelligence techniques or algorithms in order to design an optimized or versatile system.

  7. Design and implementation of distributed system simulation platform for spacecraft%航天器分布式系统仿真验证平台设计与实现

    Institute of Scientific and Technical Information of China (English)

    邢涛; 周晖; 魏传锋

    2015-01-01

    The characteristics and the requirements of the distributed system simulation platform for spacecraft are analyzed, including the characteristics of the multi-operation system, the hybrid architecture and the distributed structure, the model management, the experimental and simulation runs, the data management, and the design of the entire simulation platform. The proposed platform can be used under both the numerical and semi-physical simulation conditions. Comprehensive simulation validation requirements for the schematic design of the spacecraft are satisfied. And the commercial or proprietary software can be conveniently accessed to the platform. A simulation example of manned spacecraft is demonstrated to validate the functions of the platform and to its generality.%文章分析了航天器分布式系统仿真平台的特点和需求,根据分布式集成仿真平台多操作系统、混合架构、分布式结构、模型管理、试验设计、仿真运行、数据管理的技术特点和功能需求,对相应关键技术进行了攻关,制定了实施方案,在此基础上完成了相关设计和实现.平台能够适应全数学与半物理 2 种仿真工况,满足航天器系统方案设计全面仿真验证需求,并可方便接入商业或自研软件.最后通过仿真实例对平台的功能性能及通用性进行了验证.

  8. MSDT - A Central Executive to Coordinate Rapid Mission and Spacecraft Design Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The integrated design centers currently in place at the Goddard and Ames research institutions are highly productive infrastructures, allowing a group of domain...

  9. Radiation Belt Modeling for Spacecraft Design: Model Comparisons for Common Orbits

    Science.gov (United States)

    Lauenstein, J.-M.; Barth, J. L.

    2005-01-01

    We present the current status of radiation belt modeling, providing model details and comparisons with AP-8 and AE-8 for commonly used orbits. Improved modeling of the particle environment enables smarter space system design.

  10. Design Methods and Practices for Fault Prevention and Management in Spacecraft

    Science.gov (United States)

    Tumer, Irem Y.

    2005-01-01

    Integrated Systems Health Management (ISHM) is intended to become a critical capability for all space, lunar and planetary exploration vehicles and systems at NASA. Monitoring and managing the health state of diverse components, subsystems, and systems is a difficult task that will become more challenging when implemented for long-term, evolving deployments. A key technical challenge will be to ensure that the ISHM technologies are reliable, effective, and low cost, resulting in turn in safe, reliable, and affordable missions. To ensure safety and reliability, ISHM functionality, decisions and knowledge have to be incorporated into the product lifecycle as early as possible, and ISHM must be considered as an essential element of models developed and used in various stages during system design. During early stage design, many decisions and tasks are still open, including sensor and measurement point selection, modeling and model-checking, diagnosis, signature and data fusion schemes, presenting the best opportunity to catch and prevent potential failures and anomalies in a cost-effective way. Using appropriate formal methods during early design, the design teams can systematically explore risks without committing to design decisions too early. However, the nature of ISHM knowledge and data is detailed, relying on high-fidelity, detailed models, whereas the earlier stages of the product lifecycle utilize low-fidelity, high-level models of systems and their functionality. We currently lack the tools and processes necessary for integrating ISHM into the vehicle system/subsystem design. As a result, most existing ISHM-like technologies are retrofits that were done after the system design was completed. It is very expensive, and sometimes futile, to retrofit a system health management capability into existing systems. Last-minute retrofits result in unreliable systems, ineffective solutions, and excessive costs (e.g., Space Shuttle TPS monitoring which was considered

  11. Design Methods and Practices for Fault Prevention and Management in Spacecraft

    Science.gov (United States)

    Tumer, Irem Y.

    2005-01-01

    Integrated Systems Health Management (ISHM) is intended to become a critical capability for all space, lunar and planetary exploration vehicles and systems at NASA. Monitoring and managing the health state of diverse components, subsystems, and systems is a difficult task that will become more challenging when implemented for long-term, evolving deployments. A key technical challenge will be to ensure that the ISHM technologies are reliable, effective, and low cost, resulting in turn in safe, reliable, and affordable missions. To ensure safety and reliability, ISHM functionality, decisions and knowledge have to be incorporated into the product lifecycle as early as possible, and ISHM must be considered as an essential element of models developed and used in various stages during system design. During early stage design, many decisions and tasks are still open, including sensor and measurement point selection, modeling and model-checking, diagnosis, signature and data fusion schemes, presenting the best opportunity to catch and prevent potential failures and anomalies in a cost-effective way. Using appropriate formal methods during early design, the design teams can systematically explore risks without committing to design decisions too early. However, the nature of ISHM knowledge and data is detailed, relying on high-fidelity, detailed models, whereas the earlier stages of the product lifecycle utilize low-fidelity, high-level models of systems and their functionality. We currently lack the tools and processes necessary for integrating ISHM into the vehicle system/subsystem design. As a result, most existing ISHM-like technologies are retrofits that were done after the system design was completed. It is very expensive, and sometimes futile, to retrofit a system health management capability into existing systems. Last-minute retrofits result in unreliable systems, ineffective solutions, and excessive costs (e.g., Space Shuttle TPS monitoring which was considered

  12. Man-Machine Integration Design and Analysis System (MIDAS) v5: Augmentations, Motivations, and Directions for Aeronautics Applications

    Science.gov (United States)

    Gore, Brian F.

    2011-01-01

    As automation and advanced technologies are introduced into transport systems ranging from the Next Generation Air Transportation System termed NextGen, to the advanced surface transportation systems as exemplified by the Intelligent Transportations Systems, to future systems designed for space exploration, there is an increased need to validly predict how the future systems will be vulnerable to error given the demands imposed by the assistive technologies. One formalized approach to study the impact of assistive technologies on the human operator in a safe and non-obtrusive manner is through the use of human performance models (HPMs). HPMs play an integral role when complex human-system designs are proposed, developed, and tested. One HPM tool termed the Man-machine Integration Design and Analysis System (MIDAS) is a NASA Ames Research Center HPM software tool that has been applied to predict human-system performance in various domains since 1986. MIDAS is a dynamic, integrated HPM and simulation environment that facilitates the design, visualization, and computational evaluation of complex man-machine system concepts in simulated operational environments. The paper will discuss a range of aviation specific applications including an approach used to model human error for NASA s Aviation Safety Program, and what-if analyses to evaluate flight deck technologies for NextGen operations. This chapter will culminate by raising two challenges for the field of predictive HPMs for complex human-system designs that evaluate assistive technologies: that of (1) model transparency and (2) model validation.

  13. The Global Precipitation Measurement (GPM Spacecraft Power System Design and Orbital Performance

    Directory of Open Access Journals (Sweden)

    Dakermanji George

    2017-01-01

    The paper describes the power system design details, its performance to date and the lithium ion battery model that was developed for use in the energy balance analysis and is being used to predict the on-orbit health of the battery.

  14. The New Horizons Spacecraft

    Science.gov (United States)

    Fountain, Glen H.; Kusnierkiewicz, David Y.; Hersman, Christopher B.; Herder, Timothy S.; Coughlin, Thomas B.; Gibson, William C.; Clancy, Deborah A.; Deboy, Christopher C.; Hill, T. Adrian; Kinnison, James D.; Mehoke, Douglas S.; Ottman, Geffrey K.; Rogers, Gabe D.; Stern, S. Alan; Stratton, James M.; Vernon, Steven R.; Williams, Stephen P.

    2008-10-01

    The New Horizons spacecraft was launched on 19 January 2006. The spacecraft was designed to provide a platform for seven instruments designated by the science team to collect and return data from Pluto in 2015. The design meets the requirements established by the National Aeronautics and Space Administration (NASA) Announcement of Opportunity AO-OSS-01. The design drew on heritage from previous missions developed at The Johns Hopkins University Applied Physics Laboratory (APL) and other missions such as Ulysses. The trajectory design imposed constraints on mass and structural strength to meet the high launch acceleration consistent with meeting the AO requirement of returning data prior to the year 2020. The spacecraft subsystems were designed to meet tight resource allocations (mass and power) yet provide the necessary control and data handling finesse to support data collection and return when the one-way light time during the Pluto fly-by is 4.5 hours. Missions to the outer regions of the solar system (where the solar irradiance is 1/1000 of the level near the Earth) require a radioisotope thermoelectric generator (RTG) to supply electrical power. One RTG was available for use by New Horizons. To accommodate this constraint, the spacecraft electronics were designed to operate on approximately 200 W. The travel time to Pluto put additional demands on system reliability. Only after a flight time of approximately 10 years would the desired data be collected and returned to Earth. This represents the longest flight duration prior to the return of primary science data for any mission by NASA. The spacecraft system architecture provides sufficient redundancy to meet this requirement with a probability of mission success of greater than 0.85. The spacecraft is now on its way to Pluto, with an arrival date of 14 July 2015. Initial in-flight tests have verified that the spacecraft will meet the design requirements.

  15. Designing evaluation plans for health promotion mHealth interventions: a case study of the Milk Man mobile app.

    Science.gov (United States)

    White, Becky K; Burns, Sharyn K; Giglia, Roslyn C; Scott, Jane A

    2016-10-26

    Evaluating complex health promotion interventions that use mobile apps requires comprehensive and adaptive evaluation plans. As mobile usage becomes increasingly sophisticated and personalised, broad evaluation plans are important in determining the impact and efficacy of a mobile health (mHealth) app. Evaluation should consider user feedback and outcome measures, as well as examine elements such as the robustness of the technology, the intervention principles and engagement strategies, and the interaction of the user with the technology. This paper introduces four mHealth evaluation models and tools and describes the evaluation plan that has been developed for Milk Man, a breastfeeding app targeting new and expectant fathers. Milk Man is a socially connected, gamified app that is being tested in a large Randomised Control Trial (RCT). While there is a need for mobile apps to be evaluated in adequately powered RCTs, trialling mobile apps over a long period of time presents challenges. Incorporating robust evaluation design will help ensure that technological performance, app intervention principles, as well as health and behavioural outcomes are measured. The detail and scope of the Milk Man app evaluation plan will ensure the findings add to the evidence base and have broad relevance to health promotion practitioners.So what? Evidence about the efficacy of mHealth interventions is an emerging area and appropriate evaluation skills are needed. This paper illustrates an evaluation planning approach for mHealth interventions that could be adapted for use by health promotion practitioners and researchers.

  16. Memories and NASA Spacecraft: A Description of Memories, Radiation Failure Modes, and System Design Considerations

    Science.gov (United States)

    LaBel, Kenneth A.; Ladbury, Ray; Oldhamm, Timothy

    2010-01-01

    As NASA has evolved it's usage of spaceflight computing, memory applications have followed as well. In this slide presentation, the history of NASA's memories from magnetic core and tape recorders to current semiconductor approaches is discussed. There is a brief description of current functional memory usage in NASA space systems followed by a description of potential radiation-induced failure modes along with considerations for reliable system design.

  17. Advanced earth observation spacecraft computer-aided design software: Technical, user and programmer guide

    Science.gov (United States)

    Farrell, C. E.; Krauze, L. D.

    1983-01-01

    The IDEAS computer of NASA is a tool for interactive preliminary design and analysis of LSS (Large Space System). Nine analysis modules were either modified or created. These modules include the capabilities of automatic model generation, model mass properties calculation, model area calculation, nonkinematic deployment modeling, rigid-body controls analysis, RF performance prediction, subsystem properties definition, and EOS science sensor selection. For each module, a section is provided that contains technical information, user instructions, and programmer documentation.

  18. Characteristic analysis and design of near moon abort trajectory for manned lunar landing mission

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    The safety of astronauts would be severely threatened if the lunar-landing spacecraft were under an emergency during the near moon phase of flight, which was far from the Earth. For the problem of mission abort caused by the main engine (service propulsion system, SPS) failure during lunar orbit insertion, firstly, the family of trajectories resulted from SPS premature shutdown and corresponding abort trajectories were analyzed; then an algorithm that can be applied to the near moon abort trajectories was proposed using patched-conic technique. The characteristics of the abort trajectory, such as energy consumption and return time of flight, were analyzed and presented. Finally, simulation examples were given to demonstrate various cases of near moon SPS failure. The results of the simulation have validated the approach proposed.

  19. 载人航天用TC-5A和TC-13X分子筛的研制及评价%Development and Evaluation of TC-5A and TC-13X Molecular Sieve in Manned Spacecraft

    Institute of Scientific and Technical Information of China (English)

    胡宏杰; 冯安生; 韩永强; 董文平; 刘宏召; 金梅; 张秀峰; 郭庆宏

    2013-01-01

    Objective To develop molecular sieves for manned spacecraft and evaluate their effectiveness.Methods Shaping,drying,baking,recrystalization,re-exchange and re-baking were adopted in the development of the molecular sieves.The static and dynamic behavior were tested by isothermal adsorption and by four-bed molecular sieves system.Results The TC-5A CO2 adsorption capacity was 19.7% and TC-13X moisture capacity was 29.15%.The kinetic experiments in four-bed molecular sieve system (4BMS) showed that the dew point at the outlet of drying bed was kept below-40 ℃ and the CO2 removal capacity was 2.17 ~6.17 kg/d when the regeneration temperatures of adsorption bed and drying bed were 280 ℃ and 120 ℃ respectively.Conclusion TC-5A and TC-13X can be used in 4BMS to remove CO2 effectively in a space capsule with three crew members.%目的 研制载人航天专用分子筛,并进行应用效果评价.方法 分子筛产品的研制采用造粒、烘干、焙烧、二次晶化、二次交换和二次焙烧技术,并通过等温吸附和4床分子筛试验进行静态动态性能评价.结果 研制的TC-5A和TC-13X分子筛产品,CO2和H2O的静态吸附能力分别达到19.7%和29.15%,在4床分子筛动态试验中,吸附床再生温度280℃,干燥床达120℃,干燥床出口空气露点小于-40℃,吸附床CO2动态处理能力为2.17 ~6.17 kg/d.结论 TC-5A和TC-13X分子筛应用于4床分子筛CO2处理系统,能够保证系统稳定运转,CO2处理量可满足3人密闭生存空间对CO2浓度控制的需要.

  20. Design Considerations for Spacecraft Operations During Uncrewed Dormant Phases of Human Exploration Missions

    Science.gov (United States)

    Williams-Byrd, Julie; Antol, Jeff; Jefferies, Sharon; Goodliff, Kandyce; Williams, Phillip; Ambrose, Rob; Sylvester, Andre; Anderson, Molly; Dinsmore, Craig; Hoffman, Stephen; Lawrence, James; Seibert, Marc; Schier, Jim; Frank, Jeremy; Alexander, Leslie; Ruff, Gary; Soeder, Jim; Guinn, Joseph; Stafford, Matthew

    2016-01-01

    NASA is transforming human spaceflight. The Agency is shifting from an exploration-based program with human activities in low Earth orbit (LEO) and targeted robotic missions in deep space to a more sustainable and integrated pioneering approach. However, pioneering space involves daunting technical challenges of transportation, maintaining health, and enabling crew productivity for long durations in remote, hostile, and alien environments. Subject matter experts from NASA's Human Exploration and Operations Mission Directorate (HEOMD) are currently studying a human exploration campaign that involves deployment of assets for planetary exploration. This study, called the Evolvable Mars Campaign (EMC) study, explores options with solar electric propulsion as a central component of the transportation architecture. This particular in-space transportation option often results in long duration transit to destinations. The EMC study is also investigating deployed human rated systems like landers, habitats, rovers, power systems and ISRU system to the surface of Mars, which also will involve long dormant periods when these systems are staged on the surface. In order to enable the EMC architecture, campaign and element design leads along with system and capability development experts from HEOMD's System Maturation Team (SMT) have identified additional capabilities, systems and operation modes that will sustain these systems especially during these dormant phases of the mission. Dormancy is defined by the absence of crew and relative inactivity of the systems. For EMC missions, dormant periods could range from several months to several years. Two aspects of uncrewed dormant operations are considered herein: (1) the vehicle systems that are placed in a dormant state and (2) the autonomous vehicle systems and robotic capabilities that monitor, maintain, and repair the vehicle and systems. This paper describes the mission stages of dormancy operations, phases of dormant

  1. Design, Analysis, and Spacecraft Integration of RTGs for CRAF and Cassini Missions

    Energy Technology Data Exchange (ETDEWEB)

    Schock, Alfred; Or, Chuen T; Noravian, Heros

    1991-04-02

    This report consists of two parts. Part 1 describes the development of novel analytical methods needed to predict the BOM performance and the subsequent performance degradation of the mutually obstructed RTGs for the CRAF and Cassini missions. Part II applies those methods to the two missions, presents the resultant predictions, and discusses their programmatic implications.; The results indicate that JPL's original power demand goals could have been met with two standard GPHS RTGs for each mission. However, JPL subsequently raised both the power demand profile and the duration for both missions, to the point where two standard RTGs could no longer provide the desired power margin. Each mission can be satisfied by adding a third RTG, and in the case of the Cassini mission the use of three RTGs appears to be unavoidable. In the case of the CRAF mission, there appears to be a possibility that modest modifications of the RTGs' design and/or operating scheme and meet the missions' power demand without the addition of a third RTG. The potential saving in cost and schedule pressure prompted Fairchild to undertake a study of various obvious and not-so-obvious stratagems, either singly or in combination, to determine whether they would make it possible to meet the specified power demand with two RTSs.; The various stratagems investigated by Fairchild and their effect on performance are presented. The analytical results indicate that a combination of relatively modest RTG modifications could come very close to meeting the JPL-specified CRAF power demand goals. However, since even with the modifications the two RTGs did not provide sufficient margin for possible further growth in power demand, the JPL project team ultimately decided to use three RTGs for the CRAF mission also. This had the decisive advantage of eliminating the need for load switching to reduce the power demand peaks. The report documents the various power enhancement schemes and their computed

  2. Design, Analysis, and Spacecraft Integration of RTGs for CRAF and Cassini Missions

    Energy Technology Data Exchange (ETDEWEB)

    Schock, Alfred; Or, Chuen T; Noravian, Heros

    1991-07-10

    This report consists of two parts. Part 1 describes the development of novel analytical methods needed to predict the BOM performance and the subsequent performance degradation of the mutually obstructed RTGs for the CRAF and Cassini missions. Part II applies those methods to the two missions, presents the resultant predictions, and discusses their programmatic implications.; The results indicate that JPL's original power demand goals could have been met with two standard GPHS RTGs for each mission. However, JPL subsequently raised both the power demand profile and the duration for both missions, to the point where two standard RTGs could no longer provide the desired power margin. Each mission can be satisfied by adding a third RTG, and in the case of the Cassini mission the use of three RTGs appears to be unavoidable. In the case of the CRAF mission, there appears to be a possibility that modest modifications of the RTGs' design and/or operating scheme and meet the missions' power demand without the addition of a third RTG. The potential saving in cost and schedule pressure prompted Fairchild to undertake a study of various obvious and not-so-obvious stratagems, either singly or in combination, to determine whether they would make it possible to meet the specified power demand with two RTGs.; The various stratagems investigated by Fairchild and their effect on performance are presented. The analytical results indicate that a combination of relatively modest RTG modifications could come very close to meeting the JPL-specified CRAF power demand goals. However, since even with the modifications the two RTGs did not provide sufficient margin for possible further growth in power demand, the JPL project team ultimately decided to use three RTGs for the CRAF mission also. This had the decisive advantage of eliminating the need for load switching to reduce the power demand peaks. The report documents the various power enhancement schemes and their computed

  3. Design, Analysis, and Spacecraft Integration of RTGs for CRAF and Cassini Missions

    Energy Technology Data Exchange (ETDEWEB)

    Schock, Alfred; Or, Chuen T; Noravian, Heros

    1991-04-02

    This report consists of two parts. Part 1 describes the development of novel analytical methods needed to predict the BOM performance and the subsequent performance degradation of the mutually obstructed RTGs for the CRAF and Cassini missions. Part II applies those methods to the two missions, presents the resultant predictions, and discusses their programmatic implications. The results indicate that JPL's original power demand goals could have been met with two standard GPHS RTGs for each mission. However, JPL subsequently raised both the power demand profile and the duration for both missions, to the point where two standard RTGs could no longer provide the desired power margin. Each mission can be satisfied by adding a third RTG, and in the case of the Cassini mission the use of three RTGs appears to be unavoidable. In the case of the CRAF mission, there appears to be a possibility that modest modifications of the RTGs' design and/or operating scheme and meet the missions' power demand without the addition of a third RTG. The potential saving in cost and schedule pressure prompted Fairchild to undertake a study of various obvious and not-so-obvious stratagems, either singly or in combination, to determine whether they would make it possible to meet the specified power demand with two RTSs. The various stratagems investigated by Fairchild and their effect on performance are presented. The analytical results indicate that a combination of relatively modest RTG modifications could come very close to meeting the JPL-specified CRAF power demand goals. However, since even with the modifications the two RTGs did not provide sufficient margin for possible further growth in power demand, the JPL project team ultimately decided to use three RTGs for the CRAF mission also. This had the decisive advantage of eliminating the need for load switching to reduce the power demand peaks. The report documents the various power enhancement schemes and their computed

  4. Feasibility Study of Two Candidate Reaction Wheel/thruster Hybrid Control Architecture Designs for the Cassini Spacecraft

    Science.gov (United States)

    Macala, Glenn A.; Lee, Allan Y.; Wang, Eric K.

    2012-01-01

    As the first spacecraft to achieve orbit at Saturn in 2004, Cassini has collected science data throughout its four-year prime mission (2004-08), and has since been approved for a first and second extended mission through 2017. Cassini carries a set of three "fixed" reaction wheels and a backup reaction wheel (reaction wheel #4) is mounted on top of an articulable platform. If necessary, this platform could be articulated to orient the backup reaction wheel with the degraded wheel. The reaction wheels are used primarily for attitude control when precise and stable pointing of a science instrument such as the narrow angle camera is required. In 2001-02, reaction wheel #3 exhibited signs of bearing cage instability. As a result, reaction wheel #4 was articulated to align with reaction wheel #3. Beginning in July 2003, Cassini was controlled using wheel #1, #2, and #4. From their first use in the spring of 2000 until today, reaction wheels #1 and #2 have accumulated more than3.5 billions revolutions each. As such, in spite of very carefully management of the wheel spin rates by the mission operation team, there are some observed increases in the drag torque of the wheels' bearings. Hence, the mission operations team must prepare for the contingency scenario in which the reaction wheel #1 (in addition to wheel #3) had degraded. In this hypothetical fault scenario, the two remaining reaction wheels (#2 and #4) will not be able to provide precise and stable three-axis control of the spacecraft. In this study, we evaluate the feasibility of controlling Cassini using the two remaining reaction wheels and four thrusters to meet the science pointing requirements for two key science operational modes: the Optical Remote Sensing and Downlink, Fields, Particles, & Waves operation modes. The performance (e.g., pointing control error, pointing stability, hydrazine consumption rate, etc.) of the hybrid controllers in both operations scenarios will be compared with those achieved

  5. Feasibility Study of Two Candidate Reaction Wheel/thruster Hybrid Control Architecture Designs for the Cassini Spacecraft

    Science.gov (United States)

    Macala, Glenn A.; Lee, Allan Y.; Wang, Eric K.

    2012-01-01

    As the first spacecraft to achieve orbit at Saturn in 2004, Cassini has collected science data throughout its four-year prime mission (2004-08), and has since been approved for a first and second extended mission through 2017. Cassini carries a set of three "fixed" reaction wheels and a backup reaction wheel (reaction wheel #4) is mounted on top of an articulable platform. If necessary, this platform could be articulated to orient the backup reaction wheel with the degraded wheel. The reaction wheels are used primarily for attitude control when precise and stable pointing of a science instrument such as the narrow angle camera is required. In 2001-02, reaction wheel #3 exhibited signs of bearing cage instability. As a result, reaction wheel #4 was articulated to align with reaction wheel #3. Beginning in July 2003, Cassini was controlled using wheel #1, #2, and #4. From their first use in the spring of 2000 until today, reaction wheels #1 and #2 have accumulated more than3.5 billions revolutions each. As such, in spite of very carefully management of the wheel spin rates by the mission operation team, there are some observed increases in the drag torque of the wheels' bearings. Hence, the mission operations team must prepare for the contingency scenario in which the reaction wheel #1 (in addition to wheel #3) had degraded. In this hypothetical fault scenario, the two remaining reaction wheels (#2 and #4) will not be able to provide precise and stable three-axis control of the spacecraft. In this study, we evaluate the feasibility of controlling Cassini using the two remaining reaction wheels and four thrusters to meet the science pointing requirements for two key science operational modes: the Optical Remote Sensing and Downlink, Fields, Particles, & Waves operation modes. The performance (e.g., pointing control error, pointing stability, hydrazine consumption rate, etc.) of the hybrid controllers in both operations scenarios will be compared with those achieved

  6. Design Integration of Man-Machine Interface (MMI) Display Drawings and MMI Database

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yong Jun; Seo, Kwang Rak; Song, Jeong Woog; Kim, Dae Ho; Han, Jung A [KEPCO Engineering and Construction Co., Deajeon (Korea, Republic of)

    2016-10-15

    The conventional Main Control Room (MCR) was designed using hardwired controllers and analog indications mounted on control boards for control and acquisition of plant information. This is compared with advanced MCR design where Flat Panel Displays (FPDs) with soft controls and mimic displays are used. The advanced design needs MMI display drawings replacing the conventional control board layout drawings and component lists. The data is linked to related object of the MMI displays. Compilation of the data into the DB is generally done manually, which tends to introduce errors and discrepancies. Also, updating and managing is difficult due to a huge number of entries in the DB and the update must closely track the changes in the associated drawing. Therefore, automating the DB update whenever a related drawing is updated would be quite beneficial. An attempt is made to develop a new method to integrate the MMIS display drawing design and the DB management. This would significantly reduce the amount of errors and improve design quality. The design integration of the MMI Display drawing and MMI DB is explained briefly but concisely in this paper. The existing method involved individually and separately inputting design data for the MMI display drawings. This caused to the potential problem of data discrepancies and errors as well as the update time lag between related drawings and the DB. This led to development of an integration of design process which automates the design data input activity.

  7. Spacecraft dielectric material properties and spacecraft charging

    Science.gov (United States)

    Frederickson, A. R.; Wall, J. A.; Cotts, D. B.; Bouquet, F. L.

    1986-01-01

    The physics of spacecraft charging is reviewed, and criteria for selecting and testing semiinsulating polymers (SIPs) to avoid charging are discussed and illustrated. Chapters are devoted to the required properties of dielectric materials, the charging process, discharge-pulse phenomena, design for minimum pulse size, design to prevent pulses, conduction in polymers, evaluation of SIPs that might prevent spacecraft charging, and the general response of dielectrics to space radiation. SIPs characterized include polyimides, fluorocarbons, thermoplastic polyesters, poly(alkanes), vinyl polymers and acrylates, polymers containing phthalocyanine, polyacene quinones, coordination polymers containing metal ions, conjugated-backbone polymers, and 'metallic' conducting polymers. Tables summarizing the results of SIP radiation tests (such as those performed for the NASA Galileo Project) are included.

  8. Previous experience in manned space flight: A survey of human factors lessons learned

    Science.gov (United States)

    Chandlee, George O.; Woolford, Barbara

    1993-01-01

    Previous experience in manned space flight programs can be used to compile a data base of human factors lessons learned for the purpose of developing aids in the future design of inhabited spacecraft. The objectives are to gather information available from relevant sources, to develop a taxonomy of human factors data, and to produce a data base that can be used in the future for those people involved in the design of manned spacecraft operations. A study is currently underway at the Johnson Space Center with the objective of compiling, classifying, and summarizing relevant human factors data bearing on the lessons learned from previous manned space flights. The research reported defines sources of data, methods for collection, and proposes a classification for human factors data that may be a model for other human factors disciplines.

  9. Development and application of the Manned Maneuvering Unit, work restraint system, stowage container and return line tether

    Science.gov (United States)

    Bergonz, F. H.; Okelly, J. K.; Whitsett, C. W.; Petynia, W. W.

    1981-01-01

    The Manned Maneuvering Unit (MMU), a self-contained zero-gravity backpack designed for astronaut extravehicular activity, is discussed with reference to the system requirements and characteristics, and potential near-term and future uses. Attention is given to the MMU man-machine interfaces, propulsion capability, attitude control, crew restraint hardware, donning, doffing, activation, and deactivation. Specific applications discussed include: spacecraft inspection and servicing, assembly of large space systems, payload deployment/retrieval, and crew rescue.

  10. The New Horizons Spacecraft

    CERN Document Server

    Fountain, Glen H; Hersman, Christopher B; Herder, Timothy S; Coughlin, Thomas B; Gibson, William C; Clancy, Deborah A; DeBoy, Christopher C; Hill, T Adrian; Kinnison, James D; Mehoke, Douglas S; Ottman, Geffrey K; Rogers, Gabe D; Stern, S Alan; Stratton, James M; Vernon, Steven R; Williams, Stephen P

    2007-01-01

    The New Horizons spacecraft was launched on 19 January 2006. The spacecraft was designed to provide a platform for seven instruments that will collect and return data from Pluto in 2015. The design drew on heritage from previous missions developed at The Johns Hopkins University Applied Physics Laboratory (APL) and other missions such as Ulysses. The trajectory design imposed constraints on mass and structural strength to meet the high launch acceleration needed to reach the Pluto system prior to the year 2020. The spacecraft subsystems were designed to meet tight mass and power allocations, yet provide the necessary control and data handling finesse to support data collection and return when the one-way light time during the Pluto flyby is 4.5 hours. Missions to the outer solar system require a radioisotope thermoelectric generator (RTG) to supply electrical power, and a single RTG is used by New Horizons. To accommodate this constraint, the spacecraft electronics were designed to operate on less than 200 W....

  11. Conceptual design of a water treatment system to support a manned Mars colony

    Science.gov (United States)

    1988-01-01

    The initial tasks addressed by the Prairie View A&M University team were the conceptual design of a breathable-air manufacturing system, a means of drilling for underground water, and a method for storing water for future use. Subsequently, the design objective of the team for the 1987-1988 academic year was the conceptual design of an integrated system for the supply of quality water for biological consumption, farming, residential and industrial use. The source of water for these applications is assumed to be artesian or subsurface. The first step of the project was to establish design criteria and major assumptions. The second step of the effort was to generate a block diagram of the expected treatment system and assign tasks to individual students. The list of processes for water purification and wastewater treatment given above suggests that there will be a need for on-site chemicals manufacturing for ion-exchange regeneration and disinfection. The third step of the project was to establish a basis for the design capacity of the system. A total need of 10,000 gal/day was assumed to be required. It was also assumed that 30,000 gallon raw-water intake volume is needed to produce the desired effluent volume.

  12. Conceptual design of a water treatment system to support a manned Mars colony

    Science.gov (United States)

    1988-01-01

    The initial tasks addressed by the Prairie View A&M University team were the conceptual design of a breathable-air manufacturing system, a means of drilling for underground water, and a method for storing water for future use. Subsequently, the design objective of the team for the 1987-1988 academic year was the conceptual design of an integrated system for the supply of quality water for biological consumption, farming, residential and industrial use. The source of water for these applications is assumed to be artesian or subsurface. The first step of the project was to establish design criteria and major assumptions. The second step of the effort was to generate a block diagram of the expected treatment system and assign tasks to individual students. The list of processes for water purification and wastewater treatment given above suggests that there will be a need for on-site chemicals manufacturing for ion-exchange regeneration and disinfection. The third step of the project was to establish a basis for the design capacity of the system. A total need of 10,000 gal/day was assumed to be required. It was also assumed that 30,000 gallon raw-water intake volume is needed to produce the desired effluent volume.

  13. Man-machine interactive system simplifies computer-aided circuit design

    Science.gov (United States)

    Bavuso, S. J.

    1970-01-01

    Langley interactive computerized circuit analysis capability /LICCA/ enables designer to draw electronic circuit diagrams on cathode ray tube screen. This information is submitted as input to user-selected circuit analysis program. LICCA accommodates binary logic circuits and circuits with discrete components, and monitors operator's instructions to detect errors.

  14. Requirements Definition and Design Guidelines for Man-Machine Interface in C3 System Acquisition.

    Science.gov (United States)

    1980-06-01

    the American Society for Information Science, 1971, 22, 361-373. Uber , G. T., Williams, P. E. and Hisey, B. L. The organization and formatting of...guidelines should be examined through extended debate and in broad-ranging application before they can be adopted as a general design standard. Some rules

  15. The Spacecraft Materials Selector: An Artificial Intelligence System for Preliminary Design Trade Studies, Materials Assessments, and Estimates of Environments Present

    Science.gov (United States)

    Pippin, H. G.; Woll, S. L. B.

    2000-01-01

    Institutions need ways to retain valuable information even as experienced individuals leave an organization. Modern electronic systems have enough capacity to retain large quantities of information that can mitigate the loss of experience. Performance information for long-term space applications is relatively scarce and specific information (typically held by a few individuals within a single project) is often rather narrowly distributed. Spacecraft operate under severe conditions and the consequences of hardware and/or system failures, in terms of cost, loss of information, and time required to replace the loss, are extreme. These risk factors place a premium on appropriate choice of materials and components for space applications. An expert system is a very cost-effective method for sharing valuable and scarce information about spacecraft performance. Boeing has an artificial intelligence software package, called the Boeing Expert System Tool (BEST), to construct and operate knowledge bases to selectively recall and distribute information about specific subjects. A specific knowledge base to evaluate the on-orbit performance of selected materials on spacecraft has been developed under contract to the NASA SEE program. The performance capabilities of the Spacecraft Materials Selector (SMS) knowledge base are described. The knowledge base is a backward-chaining, rule-based system. The user answers a sequence of questions, and the expert system provides estimates of optical and mechanical performance of selected materials under specific environmental conditions. The initial operating capability of the system will include data for Kapton, silverized Teflon, selected paints, silicone-based materials, and certain metals. For situations where a mission profile (launch date, orbital parameters, mission duration, spacecraft orientation) is not precisely defined, the knowledge base still attempts to provide qualitative observations about materials performance and likely

  16. Single reusable spacecraft

    Data.gov (United States)

    National Aeronautics and Space Administration — Design of a my single person reusable spacecraft. It can carry one person and it has to be dropped from an aircraft at an altitude of 40,000 - 45,000 feet. Can be...

  17. 航天器器一地对应仪表显示系统软件的设计与实现%Design and realization of software for spacecraft instrument display system

    Institute of Scientific and Technical Information of China (English)

    黄连兵; 陈晓光; 赵攀

    2011-01-01

    The instrument display system for spacecraft, as the window for monitoring the performance parameters, navigation parameters and astronaut's man-machine interactions, plays an important role in space missions. The traditional method to monitor the state of spacecraft is to monitor the engineering telemetry sound code, which is inconvenient for the ground control because of its poor audio-visual quality. In this paper, an instrument display software based on VC++ and OpenGL is designed and analyzed. This software simulates the multifunctional instrument display to realize the instrument's functions of displaying the parameter information, the warning message and the device operating information. The software has been successfully applied in the ground control center.%仪表显示系统作为航天器性能参数、导航参数显示及航天员人机交互的窗口,在航天飞行任务中发挥着重要作用.针对依据工程遥测源码值监视航天器状态的传统方法直观性差、不便于地面人员监控的特点,文章设计并开发了一套基于VC++和OpenGL的航天器器一地对应仪表显示系统软件,并对其实现进行了分析和说明.该软件仿真了多功能仪表显示器,实现了航天器仪表参数、报警信息及设备操作信息的显示等诸多功能,已成功应用于航天器在轨飞行时的地面监控.

  18. Service Oriented Spacecraft Modeling Environment Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The I-Logix team proposes development of the Service Oriented Spacecraft Modeling Environment (SOSME) to allow faster and more effective spacecraft system design...

  19. Quick Spacecraft Thermal Analysis Tool Project

    Data.gov (United States)

    National Aeronautics and Space Administration — For spacecraft design and development teams concerned with cost and schedule, the Quick Spacecraft Thermal Analysis Tool (QuickSTAT) is an innovative software suite...

  20. An overview of United States manned space flight from Mercury to the Shuttle

    Science.gov (United States)

    Faget, M. A.

    1981-01-01

    Technical considerations in the design, development and operation of United States manned spacecraft from Project Mercury to the Space Shuttle are reviewed. The design and mission philosophies, launch vehicle and spacecraft characteristics, mode of operation, flight results and influence on later programs are discussed for Project Mercury, and Gemini Apollo and Skylab programs, the Apollo-Soyuz Test Project and the Space Shuttle program. The Space Shuttle is shown to represent a major departure from the trend established in previous programs, requiring major advancements in the fields of flight control, thermal protection, and liquid-propellant rocket technology.

  1. Putting Man in the Machine: Exploiting Expertise to Enhance Multiobjective Design of Water Supply Monitoring Network

    Science.gov (United States)

    Bode, F.; Nowak, W.; Reed, P. M.; Reuschen, S.

    2016-12-01

    Drinking-water well catchments need effective early-warning monitoring networks. Groundwater water supply wells in complex urban environments are in close proximity to a myriad of potential industrial pollutant sources that could irreversibly damage their source aquifers. These urban environments pose fiscal and physical challenges to designing monitoring networks. Ideal early-warning monitoring networks would satisfy three objectives: to detect (1) all potential contaminations within the catchment (2) as early as possible before they reach the pumping wells, (3) while minimizing costs. Obviously, the ideal case is nonexistent, so we search for tradeoffs using multiobjective optimization. The challenge of this optimization problem is the high number of potential monitoring-well positions (the search space) and the non-linearity of the underlying groundwater flow-and-transport problem. This study evaluates (1) different ways to effectively restrict the search space in an efficient way, with and without expert knowledge, (2) different methods to represent the search space during the optimization and (3) the influence of incremental increases in uncertainty in the system. Conductivity, regional flow direction and potential source locations are explored as key uncertainties. We show the need and the benefit of our methods by comparing optimized monitoring networks for different uncertainty levels with networks that seek to effectively exploit expert knowledge. The study's main contributions are the different approaches restricting and representing the search space. The restriction algorithms are based on a point-wise comparison of decision elements of the search space. The representation of the search space can be either binary or continuous. For both cases, the search space must be adjusted properly. Our results show the benefits and drawbacks of binary versus continuous search space representations and the high potential of automated search space restriction

  2. 空间时间生物学:航天器近日节律控制设计的研究进展%Space chronobiology: the research development on the control of circadian rhythm in spacecraft design

    Institute of Scientific and Technical Information of China (English)

    苏洪余; 王志魁; 李建辉

    2009-01-01

    Objective To summarize the research development on the control of circadian rhythm in spacecraft design and to discuss the dependent shjects in designing zeitgeber of spacecraft. Literature resource and selection The professional reports, articles and books that published at home and abroad. Literature quotation Thirty-eight references were cited. Literature synthesis Space chronobiology is a rising subject on the biological rhythm, time structure, rhythm entrainment and engineering in spaceflight. The changes of space environment can affect the biological rhythm especially the circadian rhythm of astronaut's in space flight, and would be more serious with the prolonged stay in space. This article begins with the chronobiology basic knowledge in space flight, then discusses the unique environment time clue, cabin environment and zeitgeber, and further concludes with the corresponding design principles of circadian rhythm control of manned spacecraft engineering. Conclusion The control design of circadian rhythm is summarized according to the rule and characteristics of photic and other nonphotic zeitgeber of spacecraft.%目的 综述空间时间生物学航天飞行近日节律控制设计的研究进展,并探讨飞行器设计中授时因子的设计问题.资料来源与选择 国内外相关研究领域的科技报告、学术论文和学术论著等.资料引用引用文献资料38篇.资料综合 空间时间生物学是揭示生物体在空间时间条件下生物节律、时间结构、节律导引及工程的一门新兴学科.在航天飞行时,空间环境的改变可以影响航天乘员的生物节律尤其是近日节律,影响程度会随着航天飞行时间的延长而加重.本文综述了航天中近日节律的时间生物学问题和航天飞行中座舱内环境特有的时间环境暗示和授时因子,进而有针对性地提出了载人航天器近日节律控制的工程设计原则.结论 根据空间飞行光-暗与非光时间暗示条

  3. Spacecraft Cabin Particulate Monitor Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to design, build and test an optical extinction monitor for the detection of spacecraft cabin particulates. This monitor will be sensitive to particle...

  4. Man-Machine Interaction Design and Analysis System (MIDAS): Memory Representation and Procedural Implications for Airborne Communication Modalities

    Science.gov (United States)

    Corker, Kevin M.; Pisanich, Gregory M.; Lebacqz, Victor (Technical Monitor)

    1996-01-01

    The Man-Machine Interaction Design and Analysis System (MIDAS) has been under development for the past ten years through a joint US Army and NASA cooperative agreement. MIDAS represents multiple human operators and selected perceptual, cognitive, and physical functions of those operators as they interact with simulated systems. MIDAS has been used as an integrated predictive framework for the investigation of human/machine systems, particularly in situations with high demands on the operators. Specific examples include: nuclear power plant crew simulation, military helicopter flight crew response, and police force emergency dispatch. In recent applications to airborne systems development, MIDAS has demonstrated an ability to predict flight crew decision-making and procedural behavior when interacting with automated flight management systems and Air Traffic Control. In this paper we describe two enhancements to MIDAS. The first involves the addition of working memory in the form of an articulatory buffer for verbal communication protocols and a visuo-spatial buffer for communications via digital datalink. The second enhancement is a representation of multiple operators working as a team. This enhanced model was used to predict the performance of human flight crews and their level of compliance with commercial aviation communication procedures. We show how the data produced by MIDAS compares with flight crew performance data from full mission simulations. Finally, we discuss the use of these features to study communications issues connected with aircraft-based separation assurance.

  5. man enough

    Institute of Scientific and Technical Information of China (English)

    徐若炫

    2011-01-01

    Are you man enough? Are you brave enough? Can you pick me up when I fall down? 当这首《man enough》再一次在耳畔回鸣时,你想到些什么? 伊斯坦布尔奇迹、伯纳乌之夜、梅西的记录……亦或是一幕幕经典的画面——男人的画面.

  6. The Cities for No Man

    Directory of Open Access Journals (Sweden)

    Marat Nevlyutov

    2016-10-01

    Full Text Available Contemporary urban concept asserts the need to create spaces for man. However, the idea of a "man" transformed radically from the moment of its appearance. The book by the famous Danish architect and consultant in urban design Jan Gehl, "Cities for people", is a key example to demonstrate the ambiguity of this position. The book focuses on the concept of "man", which was abandoned in modernism. And modernism is criticized by the author. But in reality, it is not about the return to the "man", but about designing "new man". Gehl describes a new urban ideology, in which his understanding of "man" coincides with the postmodernist understanding of its absence. The "man" is multiple functions, actors of the city, and it refers to the bodies that are indistinguishable in their anonymity.

  7. Small Solar Electric Propulsion Spacecraft Concept for Near Earth Object and Inner Solar System Missions

    Science.gov (United States)

    Lang, Jared J.; Randolph, Thomas M.; McElrath, Timothy P.; Baker, John D.; Strange, Nathan J.; Landau, Damon; Wallace, Mark S.; Snyder, J. Steve; Piacentine, Jamie S.; Malone, Shane; Bury, Kristen M.; Tracy, William H.

    2011-01-01

    Near Earth Objects (NEOs) and other primitive bodies are exciting targets for exploration. Not only do they provide clues to the early formation of the universe, but they also are potential resources for manned exploration as well as provide information about potential Earth hazards. As a step toward exploration outside Earth's sphere of influence, NASA is considering manned exploration to Near Earth Asteroids (NEAs), however hazard characterization of a target is important before embarking on such an undertaking. A small Solar Electric Propulsion (SEP) spacecraft would be ideally suited for this type of mission due to the high delta-V requirements, variety of potential targets and locations, and the solar energy available in the inner solar system.Spacecraft and mission trades have been performed to develop a robust spacecraft design that utilizes low cost, off-the-shelf components that could accommodate a suite of different scientific payloads for NEO characterization. Mission concepts such as multiple spacecraft each rendezvousing with different NEOs, single spacecraft rendezvousing with separate NEOs, NEO landers, as well as other inner solar system applications (Mars telecom orbiter) have been evaluated. Secondary launch opportunities using the Expendable Secondary Payload Adapter (ESPA) Grande launch adapter with unconstrained launch dates have also been examined.

  8. Data management and communication networks for man-machine interface system in Korea Advanced LIquid MEtal Reactor : Its functionality and design requirements

    Energy Technology Data Exchange (ETDEWEB)

    Cha, Kyung Ho; Park, Gun Ok; Suh, Sang Moon; Kim, Jang Yeol; Kwon, Kee Choon [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1998-12-31

    The DAta management and COmmunication NETworks(DACONET), which it is designed as a subsystem for Man-Machine Interface System of Korea Advanced LIquid MEtal Reactor (KALIMER MMIS) and advanced design concept is approached, is described. The DACONET has its roles of providing the real-time data transmission and communication paths between MMIS systems, providing the quality data for protection, monitoring and control of KALIMER and logging the static and dynamic behavioral data during KALIMER operation. The DACONET is characterized as the distributed real-time system architecture with high performance. Future direction, in which advanced technology is being continually applied to Man-Machine Interface System development of Nuclear Power Plants, will be considered for designing data management and communication networks of KALIMER MMIS. 9 refs., 1 fig. (Author)

  9. Joe Zhang, Party Man, Company Man

    DEFF Research Database (Denmark)

    Brødsgaard, Kjeld Erik

    2014-01-01

    Book review of: Joe Zhang: Party Man, Company Man. Honolulu: Enrich Professional Publishing, 2014. 234 pp.......Book review of: Joe Zhang: Party Man, Company Man. Honolulu: Enrich Professional Publishing, 2014. 234 pp....

  10. 挠性飞行器飞轮姿态控制系统设计%Flexible Spacecraft Attitude Control System Design Using Wheels

    Institute of Scientific and Technical Information of China (English)

    耿云海; 崔祜涛; 崔海英; 杨涤

    2001-01-01

    针对带有大型太阳帆板的挠性空间飞行器动力学特性十分复杂的特点,通过合理的假设,采用单轴解耦分析姿态控制系统稳定性问题。采用极点配置法,按照刚体卫星设计系统PID参数,利用根轨迹,确定按刚体卫星参数设计的系统能使挠性空间飞行器控制系统具有渐近稳定性的充分条件;推导系统参数间的关系式,分析挠性空间飞行器主轴姿态控制系统稳定性问题。最后,通过仿真验证了系统的性能。%Because the dynamics' property of the flexible spacecraft with large solar panels is very complex, decoupling method is adopted to study the stability of the attitude control system for single axis through suitable assumption. The system PID parameters are designed using polar assignment according to rigid satellite. Then with root locus method, the sufficient condition is determined that the system designed by rigid satellite parameter ensures the stability of flexible spacecraft control system. The relation among parameters is derived and the stability of single axis flexible spacecraft attitude control system is studied. At last, the system performance is verified by simulation.

  11. Proof-of-Concept Trajectory Designs for a Multi-Spacecraft, Low-Thrust Heliocentric Solar Weather Buoy Mission

    Science.gov (United States)

    Muller, Ronald; Franz, Heather; Roberts, Craig; Folta, Dave

    2005-01-01

    A new solar weather mission has been proposed, involving a dozen or more small spacecraft spaced at regular, constant intervals in a mutual heliocentric circular orbit between the orbits of Earth and Venus. These solar weather buoys (SWBs) would carry instrumentation to detect and measure the material in solar flares, solar energetic particle events, and coronal mass ejections as they flowed past the buoys, serving both as science probes and as a radiation early warning system for the Earth and interplanetary travelers to Mars. The baseline concept involves placing a mothercraft carrying the SWBs into a staging orbit at the Sun-Earth L1 libration point. The mothercraft departs the L1 orbit at the proper time to execute a trailing-edge lunar flyby near New Moon, injecting it into a heliocentric orbit with its perihelion interior to Earth s orbit. An alternative approach would involve the use of a Double Lunar Swingby (DLS) orbit, rather than the L1 orbit, for staging prior to this flyby. After injection into heliocentric orbit, the mothercraft releases the SWBs-all equipped with low-thrust pulsed plasma thrusters (PPTs)-whereupon each SWB executes a multi-day low-thrust finite bum around perihelion, lowering aphelion such that each achieves an elliptical phasing orbit of different orbital period from its companions. The resulting differences in angular rates of motion cause the spacecraft to separate. While the lead SWB achieves the mission orbit following an insertion burn at its second perihelion passage, the remaining SWBs must complete several revolutions in their respective phasing orbits to establish them in the mission orbit with the desired longitudinal spacing. The complete configuration for a 14 SWB scenario using a single mothercraft is achieved in about 8 years, and the spacing remains stable for at least a further 6 years. Flight operations can be simplified, and mission risk reduced, by employing two mothercraft instead of one. In this scenario: the

  12. Advanced Portable Fine Water Mist Fire Extinguisher for Spacecraft Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Fine water mist (FWM) is a promising replacement technology for fire suppression on the next generation of manned spacecraft. It offers advantages in performance,...

  13. A Self-Regulating Freezable Heat Exchanger for Spacecraft Project

    Data.gov (United States)

    National Aeronautics and Space Administration — A spacecraft thermal control system must keep the cabin (both air and its structure if manned) and electronic equipment within a narrow temperature range even though...

  14. Validation of Modified Wine-Rack Thermal Design for Nickel-Hydrogen Batteries in Landsat-7 Spacecraft Thermal Vacuum Test and in Flight

    Science.gov (United States)

    Choi, Michael K.

    1999-01-01

    A heritage wine-rack thermal/mechanical design for the nickel-hydrogen batteries was the baseline at the Landsat-7 Preliminary Design Review. An integrated thermal and power analysis of the batteries performed by the author in 1994 revealed that the maximum cell-to-cell gradient was 6.6 C. The author proposed modifying the heritage wine-rack design by enhancing heat conduction from cells to cells, and from cells to battery frame. At the 1995 Intersociety Energy Conversion Engineering Conference (IECEC), the author presented a paper on methods of modifying the wine-rack design. It showed that the modified wine-rack option, which uses a metallic filler, could reduce the maximum cell-to-cell temperature gradient to 1.30 C, and could also reduce the maximum cell temperature by as much as 80 C. That design concept was adopted by the Landsat7 Project Office, and a design change was made at the Critical Design Review. Results of the spacecraft thermal vacuum and thermal balance tests, and temperature data in flight show that the temperatures of the battery cells are very uniform. The maximum cell-to-cell gradient is 1.50 C. They validate the modified wine-rack thermal design.

  15. Strategies for Ground Based Testing of Manned Lunar Surface Systems

    Science.gov (United States)

    Beyer, Jeff; Peacock, Mike; Gill, Tracy

    2009-01-01

    Integrated testing (such as Multi-Element Integrated Test (MEIT)) is critical to reducing risks and minimizing problems encountered during assembly, activation, and on-orbit operation of large, complex manned spacecraft. Provides the best implementation of "Test Like You Fly:. Planning for integrated testing needs to begin at the earliest stages of Program definition. Program leadership needs to fully understand and buy in to what integrated testing is and why it needs to be performed. As Program evolves and design and schedules mature, continually look for suitable opportunities to perform testing where enough components are together in one place at one time. The benefits to be gained are well worth the costs.

  16. Large Scale Experiments on Spacecraft Fire Safety

    DEFF Research Database (Denmark)

    Urban, David L.; Ruff, Gary A.; Minster, Olivier

    2012-01-01

    Full scale fire testing complemented by computer modelling has provided significant knowhow about the risk, prevention and suppression of fire in terrestrial systems (cars, ships, planes, buildings, mines, and tunnels). In comparison, no such testing has been carried out for manned spacecraft due...

  17. Manned remote work station development article. Volume 1, book 2, appendix B: Trade and design definition studies

    Science.gov (United States)

    1979-01-01

    System trades, evaluations, and selection were organized under the appropriate manned remote work station roles and subsystems. Those trades/evaluations that have an impact on simulator fidelity were given emphasis in terms of identifying alternate concepts, making a selection, and defining the system approach. Those trades that do not impact simulator fidelity have the issues delineated and future study requirements identified.

  18. Study on Digital Collaborative Design Technology for Spacecraft%航天器数字化协同设计技术研究

    Institute of Scientific and Technical Information of China (English)

    李飞; 章乐平; 王志勇; 李广志; 闫美辰

    2013-01-01

    As the tasks of aerospace products development increase rapidly, traditional design mode can hardly meet the demand of research. Therefore a new research mode, which can shorten development period and cut cost, is needed urgently. The technology of digital design is developing under this background. The collaborative digital design can realize an effective communication between spacecraft system design and subsystem design, which can improve the design efficiency, the product processability, the assembly ability and the competitiveness of products.%  随着航天产品型号研制任务量的增加,传统的设计模式已很难满足研制需求,迫切需要更新研制模式,缩短研制周期,减少研制成本。数字化设计正是在这种背景下产生并发展起来的。通过数字化协同设计,实现总体与分系统之间的有效沟通,可大幅提高设计效率、产品的工艺性、可装配性及产品的竞争力。

  19. 基于TD-SCDMA的全业务城域网设计研究%Design and Research of Fall-service MAN Based on TD-SCDMA

    Institute of Scientific and Technical Information of China (English)

    李晨; 李国民

    2011-01-01

    为了解决现有城域网存在的问题,满足中国移动向全亚务运营演进的要求.采用分析全主务城城网所承载的业务的类型、特征与发展变化的方法.对未来的全业务城域网架构与演进策略进行讨论和研究,同对平衡现有网络设备与资源及演进过程中传统业务的需求.发挥几种光网络技术在应用上互补的优势,研究OTN,PTN,PON等光网络技术在全业务城域网中的应用,得出全业务城域网的设计模型和建设方案.%In order to solve the problems existed in MAN and fulfill the requirement on full-service operation from China Mobile, the service types-, characteristics and development of a MAN in full-service network are analyzed. The future evolution strategy and structure of the full-service of MAN are discussed, while balancing the existing network equipment, resources and the traditional business of evolution. The complementary strengths in the application of several optical network technologies are developed, the application of PTN (packet transport network), PON (passive optical network) and other optical network technology in the full-service MAN is studied. A design model and construction scheme of the full-service MAN can be established.

  20. The MESSENGER Spacecraft

    Science.gov (United States)

    Leary, James C.; Conde, Richard F.; Dakermanji, George; Engelbrecht, Carl S.; Ercol, Carl J.; Fielhauer, Karl B.; Grant, David G.; Hartka, Theodore J.; Hill, Tracy A.; Jaskulek, Stephen E.; Mirantes, Mary A.; Mosher, Larry E.; Paul, Michael V.; Persons, David F.; Rodberg, Elliot H.; Srinivasan, Dipak K.; Vaughan, Robin M.; Wiley, Samuel R.

    2007-08-01

    The MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft was designed and constructed to withstand the harsh environments associated with achieving and operating in Mercury orbit. The system can be divided into eight subsystems: structures and mechanisms (e.g., the composite core structure, aluminum launch vehicle adapter, and deployables), propulsion (e.g., the state-of-the-art titanium fuel tanks, thruster modules, and associated plumbing), thermal (e.g., the ceramic-cloth sunshade, heaters, and radiators), power (e.g., solar arrays, battery, and controlling electronics), avionics (e.g., the processors, solid-state recorder, and data handling electronics), software (e.g., processor-supported code that performs commanding, data handling, and spacecraft control), guidance and control (e.g., attitude sensors including star cameras and Sun sensors integrated with controllers including reaction wheels), radio frequency telecommunications (e.g., the spacecraft antenna suites and supporting electronics), and payload (e.g., the science instruments and supporting processors). This system architecture went through an extensive (nearly four-year) development and testing effort that provided the team with confidence that all mission goals will be achieved.

  1. Design of Four Axis Spacecraft Attitude Control System%四轴飞行器姿态控制系统设计

    Institute of Scientific and Technical Information of China (English)

    常敏; 崔永进; 何蓓薇; 张学典; 钱研华; 王戈

    2015-01-01

    On the basis of the full study structural characteristics and dynamic characteristics of four axis spacecraft, this paper designed a flight control system with STM32F303 MCU and MPU6050 IMU sensor,the software running on the flight control system which is based on ChibiOS RTOS and the software running on handset which is based on Android OS. At the end of the paper,the designed flight control system has carried on the real machine test flights and debugging,the flight test show that the design of attitude control system for four axis spacecraft can control the unmanned aerial vehicles (UAV)flight smoothly.%文章在充分研究四轴飞行器的结构特点和动力学特性的基础上,设计并实现了以 STM32F303微控制器为核心,MPU6050为惯性测量单元的飞行控制系统硬件,基于 ChibiOS 实时操作系统的飞行控制软件,以及基于 Android 操作系统的手持端软件。最后对本文所设计的飞行器控制系统进行了真机飞行试验和调试,飞行试验表明,所设计的四轴飞行器姿态控制系统,能够很好的控制四轴飞行器实现半自主平稳飞行。

  2. Design of Generic FPSS-Oriented NandFlash Storage for Spacecraft%面向FPSS的通用星载NandFlash存储器设计

    Institute of Scientific and Technical Information of China (English)

    徐勇; 曾连连

    2012-01-01

    With increasing amount of on-board telemetry data and application requirements, traditional storage-playback storage mode no longer meets new application requirements in specifications and functions. This paper proposes a design of generic FPSS (File and Packet Store Service)-oriented NandFlash storage for future spacecraft in compliance with CCSDS (Consultative Committee for Space Data Systems) FPSS recommendations following analysis of NandFlash storage, YAFFS (Yet Another Flash File System) file system and FPSS service in SOIS (Spacecraft Onboard Interface Service). The design provides application software of upper layers with file/packet storage service and provides other subsystems with bus-based network file/packet storage service. With a hierarchical and modular architecture, the design can be used as a generic storage platform to meet requirements of diversified spacecraft using SOIS service in the future.%由于星上遥测数据量及应用需求的增加,传统的简单存储回放存储模式满足不了新指标、新功能的应用要求.因此面向CCSDS(空间数据系统咨询委员会)中的FPSS(文件和包存储服务)要求,通过研究NandFlash存储、YAFFS(Yet Another Flash File System)文件系统及SOIS(航天器星载接口业务)的FPSS服务等技术,提出面向FPSS服务的未来卫星平台通用星载NandFlash存储器设计方案.该方案为上层应用软件提供文件/包存储服务,为其他分系统提供基于总线的网络文件/包存储服务.具有层次化、模块化的特点,可以作为通用存储平台满足未来采用SOIS业务的各种卫星的应用需求.

  3. Nowhere Man

    Institute of Scientific and Technical Information of China (English)

    冯曼曼

    2008-01-01

    <正>He’s a real nowhere man,sitting in his nowhere land,making all his nowhere plans for nobody.时间晃晃悠悠地停留在我的十七岁,如同岁月里的河流,曲折轮回。我抬头看看那个让我感到苍白无力的天,回想着所有的故事。

  4. Replacing a piece of loop-structure in the substrate-binding groove of Aspergillus usamii β-mannanase, AuMan5A, to improve its enzymatic properties by rational design.

    Science.gov (United States)

    Dong, Yun Hai; Li, Jian Fang; Hu, Die; Yin, Xin; Wang, Chun Juan; Tang, Shi Han; Wu, Min Chen

    2016-05-01

    To perfect the enzymatic properties of AuMan5A, a mesophilic glycoside hydrolase (GH) family 5 β-mannanase from Aspergillus usamii, its loop-structure substitution was carried out by rational design and followed by megaprimer PCR. Based on the structural analysis and enzymatic property comparison of various β-mannanases, a piece of loop-structure with seven amino acids between two β-strands (βD and βE) in the substrate-binding groove, named "Loop DE," was speculated to be correlative to the thermostability and catalytic efficiency of GH family 5 β-mannanases. Therefore, three AuMan5A's mutants, AuMan5A-Af, AuMan5A-An, and AuMan5A-Th, were designed by substituting a Loop DE sequence ((316)KSPDGGN(322)) of AuMan5A with the corresponding sequences of other three family 5 β-mannanases, respectively. Then, the mutant-encoding genes, Auman5A-Af, Auman5A-An, and Auman5A-Th, were constructed as designed theoretically and then expressed in Pichia pastoris GS115. The expressed recombinant AuMan5A-Af (re-AuMan5A-Af) displayed the temperature optimum (T opt) of 75 °C, T m value of 76.6 °C and half-life (t 1/2) of 480 min at 70 °C, which were 10 and 12.1 °C higher and 48-fold longer than those of re-AuMan5A, respectively. Its catalytic efficiency (k cat/K m) was 12.7-fold that of re-AuMan5A. What is more, the site-directed mutagenesis of D320G in AuMan5A-Af was performed. The T opt and t 1/2 of expressed re-AuMan5A-Af(D320G) decreased to 70 °C and 40 min, respectively, while its k cat/K m was only 35 % of that of re-AuMan5A-Af. These results demonstrated that the mutation of G320 (in AuMan5A) into D320 (in AuMan5A-Af) through Loop DE substitution was mainly responsible for the thermostability and catalytic efficiency improvement of AuMan5A-Af.

  5. Intercultural design of man-machine systems: Machine design for the Chinese market; Interkulturelles Design fuer Mensch-Maschine-Systeme: Maschinendesign fuer den chinesischen Markt

    Energy Technology Data Exchange (ETDEWEB)

    Roese, K.; Zuehlke, D.; Liu, L. [Kaiserslautern Univ. (Germany)

    2002-07-01

    The ongoing globalization trend has imposed great needs on culture-specific machine design. For the expected business success on the foreign market the target user's special requirements should be well addressed. This paper proposes an effective approach to elicit user's culture-specific requirements on different machine design issues, which bases on the analysis of cultural environment and mentality. The approach was practically implemented in one project to elicit the user's requirements on machine design for the Chinese market. The investigation methods are briefly described and some most important culture specific design features for Mainland China are summarized. (orig.)

  6. Design and analysis of low-loss linear analog phase modulator for deep space spacecraft X-band transponder (DST) application

    Science.gov (United States)

    Mysoor, Narayan R.; Mueller, Robert O.

    1991-01-01

    This paper summarizes the design concepts, analyses, and the development of an X-band transponder low-loss linear phase modulator for deep space spacecraft applications. A single section breadboard circulator-coupled reflection phase modulator has been analyzed, fabricated, and evaluated. Two- and three-cascaded sections have been modeled and simulations performed to provide an X-band DST phase modulator with +/- 2.5 radians of peak phase deviation to accommodate down-link signal modulation with composite telemetry data and ranging with a deviation linearity tolerance +/- 8 percent and insertion loss of less than 10 +/- 0.5 dB. A two-section phase modulator using constant gamma hyperabrupt varactors and an efficient modulator driver circuit was breadboarded. The measured results satisfy the DST phase modulator requirements, and excellent agreement with the predicted results.

  7. Design and analysis of low-loss linear analog phase modulator for deep space spacecraft X-band transponder (DST) application

    Science.gov (United States)

    Mysoor, Narayan R.; Mueller, Robert O.

    1991-01-01

    This paper summarizes the design concepts, analyses, and the development of an X-band transponder low-loss linear phase modulator for deep space spacecraft applications. A single section breadboard circulator-coupled reflection phase modulator has been analyzed, fabricated, and evaluated. Two- and three-cascaded sections have been modeled and simulations performed to provide an X-band DST phase modulator with +/- 2.5 radians of peak phase deviation to accommodate down-link signal modulation with composite telemetry data and ranging with a deviation linearity tolerance +/- 8 percent and insertion loss of less than 10 +/- 0.5 dB. A two-section phase modulator using constant gamma hyperabrupt varactors and an efficient modulator driver circuit was breadboarded. The measured results satisfy the DST phase modulator requirements, and excellent agreement with the predicted results.

  8. System and Software Design for the Man Machine Interface System for Shin-Hanul Nuclear Power Plant Units 1 and 2

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Woong Seock; Kim, Chang Ho; Lee, Yoon Hee; Sohn, Se Do; Baek, Seung Min [KEPCO E and C, Daejeon (Korea, Republic of)

    2015-10-15

    The design of the safety MMIS(Man Machine Interface System) system has been performed using POSAFE-Q Programmable Logic Controller (PLC). The design of the non-safety MMIS has been performed using OPERASYSTEM Distributed Control System (DCS). This paper describes the design experiences from the design work of the MMIS using these new platforms. The SHN 1 and 2 MMIS has been developed using POSAFE-Q platform for safety and OPERASYSTEM for non-safety system. Through the utilization of the standardized platform, the safety system was developed using the above hardware and software blocks resulting in efficient safety system development. An integrated CASE tool has been setup for reliable software development. The integrated development environment has been setup formally resulting in consistent work. Even we have setup integrated development environment, the independent verification and validation including testing environment needs to be setup for more advanced environment which will be used for future plant.

  9. Attitude coordination for spacecraft formation with multiple communication delays

    Directory of Open Access Journals (Sweden)

    Guo Yaohua

    2015-04-01

    Full Text Available Communication delays are inherently present in information exchange between spacecraft and have an effect on the control performance of spacecraft formation. In this work, attitude coordination control of spacecraft formation is addressed, which is in the presence of multiple communication delays between spacecraft. Virtual system-based approach is utilized in case that a constant reference attitude is available to only a part of the spacecraft. The feedback from the virtual systems to the spacecraft formation is introduced to maintain the formation. Using backstepping control method, input torque of each spacecraft is designed such that the attitude of each spacecraft converges asymptotically to the states of its corresponding virtual system. Furthermore, the backstepping technique and the Lyapunov–Krasovskii method contribute to the control law design when the reference attitude is time-varying and can be obtained by each spacecraft. Finally, effectiveness of the proposed methodology is illustrated by the numerical simulations of a spacecraft formation.

  10. Power Subsystem Design for Tiangong-1 Target Spacecraft%天宫一号目标飞行器电源分系统设计

    Institute of Scientific and Technical Information of China (English)

    陈启忠; 马季军; 王娜; 黄应春; 黄峥; 王振绪

    2011-01-01

    The sketch and main performances of the power subsystem of Tiangong-1 target spacecraft were introduced in this paper. The key technologies in domestic such as the bus with the voltage 100 V applied on low orbit spacecraft, large-scale nickel-metal hybrid batteries, triple-junction gallium arsenide solar cells and semi-rigid solar wings were given out. The main job of the high voltage device system establishing, the semi-rigid solar dynamics and space environment design and verification, the life time and reliability of the nickel-metal hybrid battery, and the reliability and safety of the high voltage power system were reviewed. The operation on orbit was given out. The research of the power subsystem of Tiangong-1 target spacecraft would establish the foundation for the China's next space technology.%介绍了天宫一号(TG1)目标飞行器电源分系统的组成和主要技术指标。分析了国内在低轨飞行器上采用100V高压母线、大批量使用国产氢镍电池、三结砷化镓太阳电池片和半刚性基板等关键技术。回顾了电源分系统研制过程中高电压元器件体系建立、半刚性帆板力学及空间环境设计与验证、氢镍电池在轨寿命和可靠性研究,以及高压电源系统可靠性及安全性研究等主要工作。给出了在轨运行情况。TG-1目标飞行器电源分系统的研制为我国后续空间技术的发展打下了基础。

  11. Design considerations for a Space Station radiation shield for protection from both man-made and natural sources

    Science.gov (United States)

    Bolch, Wesley E.; Peddicord, K. Lee; Felsher, Harry; Smith, Simon

    1994-12-01

    This study was conducted to analyze scenarios involving the use of nuclear-power vehicles in the vicinity of a manned Space Station (SS) in low-earth-orbit (LEO) to quantify their radiological impact to the station crew. In limiting the radiant dose to crew members, mission planners may (1) shut the reactor down prior to reentry, (2) position the vehicle at a prescribed parking distance, and (3) deploy radiation shield about the shutdown reactor. The current report focuses on the third option in which point-kernel gamma-ray shielding calculations were performed for a variety of shield configurations for both nuclear electric propulsion (NEP) and nuclear thermal rocket (NTR) vehicles. For a returning NTR vehicle, calculations indicate that a 14.9 MT shield would be needed to limit the integrated crew exposure to no more than 0.05 Sv over a period of six months (25 percent of the allowable exposure to man-made radiation sources). During periods of low vehicular activity in LEO, the shield may be redeployed about the SS habitation module in order to decrease crew exposures to trapped proton radiations by approximately a factor of 10. The corresponding shield mass required for deployment at a returning NEP vehicle is 2.21 MT. Additional scenarios examined include the radioactivation of various metals as might be found in tools used in EVA activities.

  12. An Architecture to Enable Autonomous Control of Spacecraft

    Science.gov (United States)

    May, Ryan D.; Dever, Timothy P.; Soeder, James F.; George, Patrick J.; Morris, Paul H.; Colombano, Silvano P.; Frank, Jeremy D.; Schwabacher, Mark A.; Wang, Liu; LawLer, Dennis

    2014-01-01

    Autonomy is required for manned spacecraft missions distant enough that light-time communication delays make ground-based mission control infeasible. Presently, ground controllers develop a complete schedule of power modes for all spacecraft components based on a large number of factors. The proposed architecture is an early attempt to formalize and automate this process using on-vehicle computation resources. In order to demonstrate this architecture, an autonomous electrical power system controller and vehicle Mission Manager are constructed. These two components are designed to work together in order to plan upcoming load use as well as respond to unanticipated deviations from the plan. The communication protocol was developed using "paper" simulations prior to formally encoding the messages and developing software to implement the required functionality. These software routines exchange data via TCP/IP sockets with the Mission Manager operating at NASA Ames Research Center and the autonomous power controller running at NASA Glenn Research Center. The interconnected systems are tested and shown to be effective at planning the operation of a simulated quasi-steady state spacecraft power system and responding to unexpected disturbances.

  13. A Sustainable Spacecraft Component Database Solution Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Numerous spacecraft component databases have been developed to support NASA, DoD, and contractor design centers and design tools. Despite the clear utility of...

  14. Spacecraft Electrostatic Radiation Shielding

    Science.gov (United States)

    2008-01-01

    This project analyzed the feasibility of placing an electrostatic field around a spacecraft to provide a shield against radiation. The concept was originally proposed in the 1960s and tested on a spacecraft by the Soviet Union in the 1970s. Such tests and analyses showed that this concept is not only feasible but operational. The problem though is that most of this work was aimed at protection from 10- to 100-MeV radiation. We now appreciate that the real problem is 1- to 2-GeV radiation. So, the question is one of scaling, in both energy and size. Can electrostatic shielding be made to work at these high energy levels and can it protect an entire vehicle? After significant analysis and consideration, an electrostatic shield configuration was proposed. The selected architecture was a torus, charged to a high negative voltage, surrounding the vehicle, and a set of positively charged spheres. Van de Graaff generators were proposed as the mechanism to move charge from the vehicle to the torus to generate the fields necessary to protect the spacecraft. This design minimized complexity, residual charge, and structural forces and resolved several concerns raised during the internal critical review. But, it still is not clear if such a system is costeffective or feasible, even though several studies have indicated usefulness for radiation protection at energies lower than that of the galactic cosmic rays. Constructing such a system will require power supplies that can generate voltages 10 times that of the state of the art. Of more concern is the difficulty of maintaining the proper net charge on the entire structure and ensuring that its interaction with solar wind will not cause rapid discharge. Yet, if these concerns can be resolved, such a scheme may provide significant radiation shielding to future vehicles, without the excessive weight or complexity of other active shielding techniques.

  15. NASA-STD-(I)-6016, Standard Materials and Processes Requirements for Spacecraft

    Science.gov (United States)

    Pedley, Michael; Griffin, Dennis

    2006-01-01

    This document is directed toward Materials and Processes (M&P) used in the design, fabrication, and testing of flight components for all NASA manned, unmanned, robotic, launch vehicle, lander, in-space and surface systems, and spacecraft program/project hardware elements. All flight hardware is covered by the M&P requirements of this document, including vendor designed, off-the-shelf, and vendor furnished items. Materials and processes used in interfacing ground support equipment (GSE); test equipment; hardware processing equipment; hardware packaging; and hardware shipment shall be controlled to prevent damage to or contamination of flight hardware.

  16. Human-Centered Design for the Personal Satellite Assistant

    Science.gov (United States)

    Bradshaw, Jeffrey M.; Sierhuis, Maarten; Gawdiak, Yuri; Thomas, Hans; Greaves, Mark; Clancey, William J.; Swanson, Keith (Technical Monitor)

    2000-01-01

    The Personal Satellite Assistant (PSA) is a softball-sized flying robot designed to operate autonomously onboard manned spacecraft in pressurized micro-gravity environments. We describe how the Brahms multi-agent modeling and simulation environment in conjunction with a KAoS agent teamwork approach can be used to support human-centered design for the PSA.

  17. Army-NASA aircrew/aircraft integration program. Phase 5: A3I Man-Machine Integration Design and Analysis System (MIDAS) software concept document

    Science.gov (United States)

    Banda, Carolyn; Bushnell, David; Chen, Scott; Chiu, Alex; Neukom, Christian; Nishimura, Sayuri; Prevost, Michael; Shankar, Renuka; Staveland, Lowell; Smith, Greg

    1992-01-01

    This is the Software Concept Document for the Man-machine Integration Design and Analysis System (MIDAS) being developed as part of Phase V of the Army-NASA Aircrew/Aircraft Integration (A3I) Progam. The approach taken in this program since its inception in 1984 is that of incremental development with clearly defined phases. Phase 1 began in 1984 and subsequent phases have progressed at approximately 10-16 month intervals. Each phase of development consists of planning, setting requirements, preliminary design, detailed design, implementation, testing, demonstration and documentation. Phase 5 began with an off-site planning meeting in November, 1990. It is expected that Phase 5 development will be complete and ready for demonstration to invited visitors from industry, government and academia in May, 1992. This document, produced during the preliminary design period of Phase 5, is intended to record the top level design concept for MIDAS as it is currently conceived. This document has two main objectives: (1) to inform interested readers of the goals of the MIDAS Phase 5 development period, and (2) to serve as the initial version of the MIDAS design document which will be continuously updated as the design evolves. Since this document is written fairly early in the design period, many design issues still remain unresolved. Some of the unresolved issues are mentioned later in this document in the sections on specific components. Readers are cautioned that this is not a final design document and that, as the design of MIDAS matures, some of the design ideas recorded in this document will change. The final design will be documented in a detailed design document published after the demonstrations.

  18. Remeasuring man.

    Science.gov (United States)

    Weisberg, Michael

    2014-05-01

    Samuel George Morton (1799-1851) was the most highly regarded American scientist of the early and middle 19th century. Thanks largely to Stephen Jay Gould's book The Mismeasure of Man, Morton's cranial capacity measurements of different races is now held up as a prime example of and cautionary tale against scientific racism. A team of anthropologists recently reevaluated Morton's work and argued that it was Gould, not Morton, who was biased in his analysis. This article is a reexamination of the Morton and Gould controversy. It argues that most of Gould's arguments against Morton are sound. Although Gould made some errors and overstated his case in a number of places, he provided prima facia evidence, as yet unrefuted, that Morton did indeed mismeasure his skulls in ways that conformed to 19th century racial biases. Gould's critique of Morton ought to remain as an illustration of implicit bias in science.

  19. Design and analysis of a low-loss linear analog phase modulator for deep space spacecraft X-band transponder applications

    Science.gov (United States)

    Mysoor, N. R.; Mueller, R. O.

    1991-01-01

    This article summarizes the design concepts, analyses, and development of an X-band (8145 MHz) transponder low-loss linear phase modulator for deep space spacecraft applications. A single-section breadboard circulator-coupled reflection phase modulator has been analyzed, fabricated, and evaluated. A linear phase deviation of 92 deg with a linearity tolerance of +/- 8 percent was measured for this modulator from 8257 MHz to 8634 MHz over the temperature range -20 to 75 C. The measured insertion loss and the static delay variation with temperature were 2 +/- 0.3 dB and 0.16 psec/ C, respectively. Based on this design, cascaded sections have been modeled, and simulations were performed to provide an X-band deep space transponder (DST) phase modulator with +/- 2.5 radians (+/- 143 deg) of peak phase deviation to accommodate downlink signal modulation with composite telemetry data and ranging, with a deviation linearity tolerance of +/- 8 percent and insertion loss of less than 10 +/- 0.5 dB. A two-section phase modulator using constant gamma hyperabrupt varactors and an efficient modulator driver circuit was breadboarded. The measured results satisfy the DST phase-modulator requirements and show excellent agreement with the predicted results.

  20. Architectural and Behavioral Systems Design Methodology and Analysis for Optimal Habitation in a Volume-Limited Spacecraft for Long Duration Flights

    Science.gov (United States)

    Kennedy, Kriss J.; Lewis, Ruthan; Toups, Larry; Howard, Robert; Whitmire, Alexandra; Smitherman, David; Howe, Scott

    2016-01-01

    As our human spaceflight missions change as we reach towards Mars, the risk of an adverse behavioral outcome increases, and requirements for crew health, safety, and performance, and the internal architecture, will need to change to accommodate unprecedented mission demands. Evidence shows that architectural arrangement and habitability elements impact behavior. Net habitable volume is the volume available to the crew after accounting for elements that decrease the functional volume of the spacecraft. Determination of minimum acceptable net habitable volume and associated architectural design elements, as mission duration and environment varies, is key to enabling, maintaining, andor enhancing human performance and psychological and behavioral health. Current NASA efforts to derive minimum acceptable net habitable volumes and study the interaction of covariates and stressors, such as sensory stimulation, communication, autonomy, and privacy, and application to internal architecture design layouts, attributes, and use of advanced accommodations will be presented. Furthermore, implications of crew adaptation to available volume as they transfer from Earth accommodations, to deep space travel, to planetary surface habitats, and return, will be discussed.

  1. Hybrid uncertainty-based design optimization and its application to hybrid rocket motors for manned lunar landing

    Directory of Open Access Journals (Sweden)

    Hao Zhu

    2017-04-01

    Full Text Available Design reliability and robustness are getting increasingly important for the general design of aerospace systems with many inherently uncertain design parameters. This paper presents a hybrid uncertainty-based design optimization (UDO method developed from probability theory and interval theory. Most of the uncertain design parameters which have sufficient information or experimental data are classified as random variables using probability theory, while the others are defined as interval variables with interval theory. Then a hybrid uncertainty analysis method based on Monte Carlo simulation and Taylor series interval analysis is developed to obtain the uncertainty propagation from the design parameters to system responses. Three design optimization strategies, including deterministic design optimization (DDO, probabilistic UDO and hybrid UDO, are applied to the conceptual design of a hybrid rocket motor (HRM used as the ascent propulsion system in Apollo lunar module. By comparison, the hybrid UDO is a feasible method and can be effectively applied to the general design of aerospace systems.

  2. Design, construction and integration of hybrid drive components in commercial vehicles. The MAN hybrid drive truck TGL 12.220; Auslegung, Aufbau und Integration von Hybrid-Antriebskomponenten im Nutzfahrzeug. Der MAN Hybrid-Verteiler-Lkw TGL 12.220

    Energy Technology Data Exchange (ETDEWEB)

    Kerschl, Stefan; Hipp, Eberhand; Doebereiner, Rolf [MAN Nutzfahrzeuge AG, Muenchen (Germany)

    2009-07-01

    In contrast to the passenger car the drive train of commercial vehicles is designed basically in view of a maximum efficiency, because the fuel consumption has a determining portion in the vehicle operating expenses of the operators. The pay load of the vehicle also has a high value, in particular in the small and middle segment from 8 t of total weight. In view of pollutant issues the environmental zones which may be also driven by commercial vehicles only from a certain pollutant class were already furnished by many local authority districts. Additional demands for a purely, emission free electric short distance operation can result from suitable emission editions in bigger towns in future. MAN Nutzfahrzeuge AG meet these topical challenges with the development of a hybriddelivery truck of the 12 t - class. At this the aim is to meet to the demands after low CO{sub 2} issue and purely electric operation by a powerful battery system and the recuperation of brake energy. For the integration of the hybrid components in the vehicle it was respected to preserve the pay load of the vehicle without limiting the functionality. The dimensioning of the hybrid drive train for a delivery truck vehicle, the vehicle integration and the effects on the lifecycle economics are lighted up in the following. (orig.)

  3. Rapid Spacecraft Development: Results and Lessons Learned

    Science.gov (United States)

    Watson, William A.

    2002-01-01

    The Rapid Spacecraft Development Office (RSDO) at NASA's Goddard Space Flight Center is responsible for the management and direction of a dynamic and versatile program for the definition, competition, and acquisition of multiple indefinite delivery and indefinite quantity contracts - resulting in a catalog of spacecraft buses. Five spacecraft delivery orders have been placed by the RSDO and one spacecraft has been launched. Numerous concept and design studies have been performed, most with the intent of leading to a future spacecraft acquisition. A collection of results and lessons learned is recorded to highlight management techniques, methods and processes employed in the conduct of spacecraft acquisition. Topics include working relationships under fixed price delivery orders, price and value, risk management, contingency reserves, and information restrictions.

  4. The Centauri project: Manned interstellar travel

    Science.gov (United States)

    Ciesla, Thomas M.

    1990-01-01

    The development of antimatter engines for spacecraft propulsion will allow man to expand to the nearest stellar neighbors such as the Alpha Centuri system. Compared to chemically powered rockets like the Apollo mission class which would take 50,000 years to reach the Centauri system, antimatter propulsion would reduce one way trip time to 30 years or less. The challenges encountered by manned interstellar travel are formidable. The spacecraft must be a combination of sublight speed transportation system and a traveling microplanet serving an expanding population. As the population expands from the initial 100 people to approximately 300, the terraformed asteroid, enclosed by a man-made shell will allow for expansion over its surface in the fashion of a small terrestrial town. All aspects of human life - birth; death; physical, emotional, and educational needs; and government and law must be met by the structure, systems, and institutions on-board.

  5. Big Man

    Institute of Scientific and Technical Information of China (English)

    郑秀文

    2012-01-01

    <正>梁炳"Edmond"说他演唱会后会跟太太去旅行。无论飞机降落在地球的哪角,有伴在旁就是幸福。他的concert名字是big man,初时我看错是big mac演唱会:心想干吗是大汉堡演唱会?嘻!后来才知看错。但其实细想,在成长路上,谁不曾是活得像个傻傻的面包,一团面粉暴露在这大千世界,时间和各式人生经历就是酵母,多少年月日,你我都会发酵成长。友情也是激发彼此成长的酵母,看到对方早已经从男仔成了男人,我都原来一早已不再能够以"女仔"称呼自己。在我眼中,他的改变是大的,爱玩外向的个性收窄了,现在的我们,

  6. Printed Spacecraft Separation System

    Energy Technology Data Exchange (ETDEWEB)

    Holmans, Walter [Planetary Systems Corporation, Silver Springs, MD (United States); Dehoff, Ryan [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-10-01

    In this project Planetary Systems Corporation proposed utilizing additive manufacturing (3D printing) to manufacture a titanium spacecraft separation system for commercial and US government customers to realize a 90% reduction in the cost and energy. These savings were demonstrated via “printing-in” many of the parts and sub-assemblies into one part, thus greatly reducing the labor associated with design, procurement, assembly and calibration of mechanisms. Planetary Systems Corporation redesigned several of the components of the separation system based on additive manufacturing principles including geometric flexibility and the ability to fabricate complex designs, ability to combine multiple parts of an assembly into a single component, and the ability to optimize design for specific mechanical property targets. Shock absorption was specifically targeted and requirements were established to attenuate damage to the Lightband system from shock of initiation. Planetary Systems Corporation redesigned components based on these requirements and sent the designs to Oak Ridge National Laboratory to be printed. ORNL printed the parts using the Arcam electron beam melting technology based on the desire for the parts to be fabricated from Ti-6Al-4V based on the weight and mechanical performance of the material. A second set of components was fabricated from stainless steel material on the Renishaw laser powder bed technology due to the improved geometric accuracy, surface finish, and wear resistance of the material. Planetary Systems Corporation evaluated these components and determined that 3D printing is potentially a viable method for achieving significant cost and savings metrics.

  7. Spacecraft Modularity for Serviceable Satellites

    Science.gov (United States)

    Rossetti, Dino; Keer, Beth; Panek, John; Reed, Benjamin; Cepollina, Frank; Ritter, Robert

    2015-01-01

    Satellite servicing has been a proven capability of NASA since the first servicing missions in the 1980s with astronauts on the space shuttle. This capability enabled the on-orbit assembly of the International Space Station (ISS) and saved the Hubble Space Telescope (HST) mission following the discovery of the flawed primary mirror. The effectiveness and scope of servicing opportunities, especially using robotic servicers, is a function of how cooperative a spacecraft is. In this paper, modularity will be presented as a critical design aspect for a spacecraft that is cooperative from a servicing perspective. Different features of modularity are discussed using examples from HST and the Multimission Modular Spacecraft (MMS) program from the 1980s and 1990s. The benefits of modularity will be presented including those directly related to servicing and those outside of servicing including reduced costs and increased flexibility. The new Reconfigurable Operational spacecraft for Science and Exploration (ROSE) concept is introduced as an affordable implementation of modularity that provides cost savings and flexibility. Key aspects of the ROSE architecture are discussed such as the module design and the distributed avionics architecture. The ROSE concept builds on the experience from MMS and due to its modularity, would be highly suitable as a future client for on-orbit servicing.

  8. A Probabilistic Approach of Incorporating Safety and Reliability in System Designs for a Manned Mission to Mars

    Science.gov (United States)

    Railsback, Jan W.; Simion, George P.; Himel, Malcolm (Technical Monitor)

    1999-01-01

    Conceptual stages in mission design often lack the input of quantitative safety and reliability assessments, simply because failure rates or other data are not yet available for systems that have not yet been designed. Absence of such data should not, however, prevent the development of a quantitative risk models with placeholders for missing data. Functions (that is, actions the systems must perform) in mission design will eventually require system probabilities of success, and there could be much learned from surrogate data, adequately bounded in uncertainty, used in a large event tree model of a complex mission.

  9. Spacecraft Design of VSOP-2

    OpenAIRE

    Murata, Y.; Hirabayashi, H.; Group, Next Generation Space VLBI Working

    2004-01-01

    As presented by Hirabayashi et al. (2004) these proceedings, the VSOP-2 mission is currently being planned. Various kinds of developments are being made for the misson, and here we introduce the large antenna, fast switching scheme using CMG, low noise receivers, gigabit data transmission, and high data rate sampling on-board. We are also studying the system configuration of the VSOP-2 satellite and the orbit appropriate for the expected launch vehicle, the M-V rocket. VSOP-2 science goals in...

  10. Design of the Man-machine Interface Used in Photovoltaic Grid-connected Inverter%光伏并网逆变器人机界面设计

    Institute of Scientific and Technical Information of China (English)

    余峰; 张志华; 张鹏; 梁星星

    2011-01-01

    Abstract: In this paper, the technology of the soft and the hardware used in photovoltaic grid-connected inverter is stated. The man-machine interface collects parameter of running state, and transfers data to upper computer monitor system. The designs of%本文阐述了用于光伏并网逆变器的人机界面的软硬件设计技术。该人机界面的主要功能是对系统的运行参数进行采集和监控,并向上位机上传数据。并详细介绍了液晶显示、触摸屏及通讯接口的设计。

  11. Comparison of spacecraft crew escape systems through dynamic optimization

    Science.gov (United States)

    Hart, William G., III

    Crew escape systems have been a vital component of ensuring safety onboard manned spacecraft. Although there have been only a few aborts involving their use, their operation helps decrease risk in what is known to be a hazardous field. But despite their high reliability, crew escape systems typically suffer from heavy weight, lack of control and hazardous chemical propellants. Hybrid propulsion systems could be a viable solution to all of these problems. With their inert components, ability to throttle and higher specific impulse than solids, hybrids have obtained interest in recent years. This dissertation presents a method that can be used to compare solid and hybrid propulsion systems for the crew escape systems of spacecraft. The concepts of dynamic optimization, Monte Carlo simulation and propulsion system design are combined to produce a tool which can predict the probability of survival for a given abort scenario. The method can also determine the effect of uncertain variables, such as reaction time or the payload of the vehicle, in the safety of the crew. The method is then used to compare crew escape systems for two separate vehicles: a separable crew cabin proposed for the Space Shuttle Launch Vehicle and the Launch Escape System for the Crew Exploration Vehicle scheduled to begin operation in 2012. The effects of uncertain parameters are also studied. The results show the utility of this method and the objective function, and how it could be used in the design process for future space vehicles.

  12. Spacecraft Spin Test Facility

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: Provides the capability to correct unbalances of spacecraft by using dynamic measurement techniques and static/coupled measurements to provide products of...

  13. 航天器连续非光滑姿态控制律设计%Design of Continuous Non-Smooth Attitude Control Laws for Spacecraft

    Institute of Scientific and Technical Information of China (English)

    马克茂

    2012-01-01

    为了提高航天器姿态控制系统的鲁棒性和动态特性,应用非光滑控制方法设计了连续的姿态控制律,使闭环姿态控制系统具有齐次性,且齐次度为负,实现了姿态控制系统的有限时间稳定,以保证系统状态的动态特性.分别针对标称系统渗数不确定性和外部扰动等情形进行了仿真验证,仿真结果表明所设计的控制律在保证标称系统有限时间稳定性的同时,针对系统的不确定性和扰动具有鲁棒性.%For the attitude control system of a spacecraft, non-smooth control technique is utilized to improve the robustness and dynamic performance. A continuous attitude control law is given to ensure the homogeneity of the closed-loop attitude control system with a negative degree of homogeneity. The resulting attitude control system is finite-time stable, thus guaranteeing the dynamic performance of state variables. Simulation is carried out under the cases of the nominal system and the systems with parameter uncertainties and external disturbances, respectively. The simulation results show that, under the designed control law, the nominal system is finite-time stable, and uncertain systems are robust against uncertainties and disturbances.

  14. 航天器综合电子系统通用测试系统设计%Universal test system design for the spacecraft electronic system

    Institute of Scientific and Technical Information of China (English)

    李姗; 骆培; 安军社

    2014-01-01

    This paper proposes a scalable, reconfigurable, general test system design oriented the spacecraft electronic system. The design employs open flexible test system design method. Common test interfaces are integrated into classified modules with FPGA as control core, which ensures the reconfigurability of hardware. Software utilizes modularized pattern. Application program interacts with the operating system through transfer layer which ensures reusability of software. All modules can be combined into three local testing machine models using the PC/104 PLUS and Ethernet. The optical fiber transmission technology is employed to combine all the local testing machine models into a distributed testing system. This system is compatible, universal, and secure. Vacuum tank test and multi-device joint test show that the system is competent for all kinds of electronic system testing in different scenarios.%提出了一种接口丰富、可重构扩展的模块化通用测试系统方案。引入开放式柔性测试系统设计方法,基础测试模块使用FPGA作为控制核心,以保证系统硬件柔性化;系统软件采用分层模块化方法设计,通过转换层统一操作系统的接口,以保证系统软件柔性化。并应用PC/104 PLUS与以太网两种总线技术,将测试模块灵活组合成3种本地测试节点模型。本地测试设备以节点的形式通过光纤网络接入测试系统,实现分布式测试系统网络,增强系统兼容性与应用范围,同时保证数据传输安全。真空罐测试和多设备联合测试实验表明该系统有能力适应不同型号任务、不同阶段、不同测试场景的综合电子系统测试工作。

  15. Spacecraft command and control using expert systems

    Science.gov (United States)

    Norcross, Scott; Grieser, William H.

    1994-11-01

    This paper describes a product called the Intelligent Mission Toolkit (IMT), which was created to meet the changing demands of the spacecraft command and control market. IMT is a command and control system built upon an expert system. Its primary functions are to send commands to the spacecraft and process telemetry data received from the spacecraft. It also controls the ground equipment used to support the system, such as encryption gear, and telemetry front-end equipment. Add-on modules allow IMT to control antennas and antenna interface equipment. The design philosophy for IMT is to utilize available commercial products wherever possible. IMT utilizes Gensym's G2 Real-time Expert System as the core of the system. G2 is responsible for overall system control, spacecraft commanding control, and spacecraft telemetry analysis and display. Other commercial products incorporated into IMT include the SYBASE relational database management system and Loral Test and Integration Systems' System 500 for telemetry front-end processing.

  16. Spacecraft Dynamics and Control Program at AFRPL

    Science.gov (United States)

    Das, A.; Slimak, L. K. S.; Schloegel, W. T.

    1986-01-01

    A number of future DOD and NASA spacecraft such as the space based radar will be not only an order of magnitude larger in dimension than the current spacecraft, but will exhibit extreme structural flexibility with very low structural vibration frequencies. Another class of spacecraft (such as the space defense platforms) will combine large physical size with extremely precise pointing requirement. Such problems require a total departure from the traditional methods of modeling and control system design of spacecraft where structural flexibility is treated as a secondary effect. With these problems in mind, the Air Force Rocket Propulsion Laboratory (AFRPL) initiated research to develop dynamics and control technology so as to enable the future large space structures (LSS). AFRPL's effort in this area can be subdivided into the following three overlapping areas: (1) ground experiments, (2) spacecraft modeling and control, and (3) sensors and actuators. Both the in-house and contractual efforts of the AFRPL in LSS are summarized.

  17. 轮椅人机系统设计与分析%Design and Analysis of Man-machine System about Wheelchair

    Institute of Scientific and Technical Information of China (English)

    吴晓莉; 刘君清; 黄迎亚

    2012-01-01

    通过对轮椅各部分的阐述,提出了目前轮椅设计的不合理性,并从轮椅结构及人体尺寸2方面进行了人机工程分析.结合中国成年人坐姿标准尺寸,从人体测量学角度,进行了轮椅尺寸的设计,并按照功能修正的方法,设定了轮椅的主要设计尺寸,绘出了标准尺寸的轮椅视图.根据残疾人、老年人对其舒适的需求,以靠背、坐垫、脚踏、手推柄为例进行了一系列的舒适性设计.%It describes structure of the wheelchair, puts forward that the current wheelchair design is not reasonable. Based on analysis of the man -machine for human body posture and wheelchair structure, it combines our country's adult sitting standard size with the anthropometry angle, designs the wheelchair size, proposes the function correction method, draws the standard size of the wheelchair view. According to the disabled and senior citizens, the comfortable demand to back of a chair, cushion, foot, hand push handle, it shows a series of comfort design.

  18. Study and Development of a Simulation System for Dynamic Evaluation on Man-machine Interface Design of Advanced Main Control Rooms of Nuclear Power Plants

    Institute of Scientific and Technical Information of China (English)

    YangXiaojing; ZhouZhiwei; ChenXiaoming; MaYuanle; LiFu; DongYujie; WuWei; OhiTadashi

    2005-01-01

    Since the man-machine interfaces (MMI) of a main control room provide the control platform of a nuclear power plant (NPP),the development of the design quality of MMIs plays a very important role in the operation of a NPP. With the development of digital technology, the development of the advanced main control rooms (AMCRs) has become an inexorable trend. Therefore, the positive and the negative effects of AMCRs on human factors engineering need to be evaluated. For this p~, a simulation system has been studied and developed to quantitatively evaluate a MMI design from the viewpoint of human factors. The simulation system takes advantage of computer simulation technology to simulate an operating process of an interaction between operators and a MMI design under an instruction of an operation procedure of the AMCR of a NPP. Meanwhile, the necessary data are recorded for evaluation. It integrates two editors and one simulator. In the paper, the simulation system is presented in detail. Furthermore, one sample is given to show the results of each of these three subsystems.

  19. Galactic cosmic ray radiation levels in spacecraft on interplanetary missions

    Science.gov (United States)

    Shinn, J. L.; Nealy, J. E.; Townsend, L. W.; Wilson, J. W.; Wood, J.S.

    1994-01-01

    Using the Langley Research Center Galactic Cosmic Ray (GCR) transport computer code (HZETRN) and the Computerized Anatomical Man (CAM) model, crew radiation levels inside manned spacecraft on interplanetary missions are estimated. These radiation-level estimates include particle fluxes, LET (Linear Energy Transfer) spectra, absorbed dose, and dose equivalent within various organs of interest in GCR protection studies. Changes in these radiation levels resulting from the use of various different types of shield materials are presented.

  20. Dynamics and control of underactuated multibody spacecraft

    Science.gov (United States)

    Cho, Sangbum

    In this dissertation, we develop equations of motion for a class of multibody spacecraft consisting of a rigid base body and multiple rigid appendages connected to the base body. There has been much prior research on this topic; however, much of this research is not appropriate for nonlinear control design purposes. The motion of a multibody spacecraft is described by the position and attitude of a base body in an inertial frame and by the relative position and attitude of the attached bodies with respect to the base body; these latter quantities define the shape of the multibody spacecraft. Our aim is to develop equations of motion that reveal important nonlinear coupling effects between the translation, rotation and shape dynamics, but are simple enough for control design purposes. A rotation matrix is used to represent the attitude of the spacecraft. This allows us to avoid complexity related to the use of parameter representations such as Euler angles. Hamilton's variational principle gives three sets of nonlinear equations of motion. The latter part of this dissertation presents results of control problems for several underactuated multibody spacecraft examples. These include spacecraft with an unactuated internal sliding mass, spacecraft with unactuated fuel slosh dynamics, tethered spacecraft with attachment point actuation and the triaxial attitude control testbed with two proof mass actuation devices. These examples illustrate important features related to the dynamics and control of various underactuated multibody spacecraft. Differences in geometries of the spacecraft and gravitational assumptions require adoption of different types of control schemes. We use the multibody equations in this dissertation to formulate control equations for the models and to construct feedback controllers that achieves asymptotic stability (or convergence) to the desired (relative) equilibrium manifolds. Computer simulations demonstrate the effectiveness of the controllers.

  1. Study on the Modular Design and Analysis Platform for Spacecraft Deployable On-orbit%可在轨展开的航天器模块化结构设计分析平台研究

    Institute of Scientific and Technical Information of China (English)

    罗浩; 刘更; 马尚君; 王海伟

    2012-01-01

    In order to explore the analysis methods of modular spacecraft,based on the concept of modular design for spacecraft structure,a deployable on-orbit spacecraft modular configuration was established.The influence of simultaneously deployment solar panel and modular structures under the circumstance of weightlessness on the spacecraft′s gesture was simulated and analyzed with the assistance of virtual prototype technology.The simulated results show that the deployment of module structures is vital to the angle and velocity of spacecraft′s gesture.Within the Eclipse environment,a structural design and analysis platform for spacecraft was developed with J2EE.The structure design,assembly and dynamics analysis of spacecraft were well integrated,and the rapid response of structural design and digital prototype assembly to dynamics analysis of spacecraft was consequently achieved in this simulation platform.%为了探索模块化航天器的分析问题,基于航天器结构的模块化设计概念,建立了一种支持在轨展开的航天器模块化构型,并基于虚拟样机技术,对其在空间失重状态下,太阳帆板和模块化本体同时展开对航天器姿态的影响进行仿真,发现本体各模块的展开对航天器姿态角和姿态角速度影响起决定性作用;以Eclipse为开发环境,基于J2EE技术开发了航天器结构设计分析平台,将航天器结构设计、装配和动力学分析集成在一起,以实现航天器从模块化结构设计、数字样机装配到力学分析的快速响应。

  2. Autonomous spacecraft rendezvous and docking

    Science.gov (United States)

    Tietz, J. C.; Almand, B. J.

    A storyboard display is presented which summarizes work done recently in design and simulation of autonomous video rendezvous and docking systems for spacecraft. This display includes: photographs of the simulation hardware, plots of chase vehicle trajectories from simulations, pictures of the docking aid including image processing interpretations, and drawings of the control system strategy. Viewgraph-style sheets on the display bulletin board summarize the simulation objectives, benefits, special considerations, approach, and results.

  3. Spacecraft Pointing and Position Control,

    Science.gov (United States)

    1981-11-01

    Automatic Control, Vol. AC-16, No. 6, December 1971. [8] HEIMBOLD, G. Dynamisches Modell eines dreiachsstabilisierten, geostation&- ren Satelliten mit...the error in the star and scanner slit normal orthogonality. This spacecraft attitude also provides intermittent updates for the gyro propagated...attitude determination has been designed and successfully implemented in various earth- orbiting satellites [Ref. 1-4]. It involves a star scanner

  4. 浅析人机交互界面“显性”版式设计%On the "Dominant" Format Design of Man-machine Interface

    Institute of Scientific and Technical Information of China (English)

    耿凌艳

    2011-01-01

    The man-machine interface is an emerging carrier of information communication,the media between virtual environment and people,and the point of penetration in which the clients sense and operate computer technology.The "dominant" format design of man-machine interface aims at making people grasp well the operation menu and mode between people and machine technology.Their models must strictly be followed so that the meaning can be understood,the process of interface can be clear and simple,the work process can be understandable,and anyone can make use of new-model interface,receive and convey information just depending on their existing common sense.%人机交互界面是新兴的信息传播的承载物,是虚拟环境与人之间的媒介,界面是用户感知、操作计算机技术的切入点。人机交互界面的"显性"版式设计的目的便是使得人们掌控这个处于人与机器技术之间精通机器运作菜单和模式的操作。必须严格按照它们的模式办事,说它们能听懂的话,才能使一切交互过程都变得简单明了,工作流程简单易懂,任何人都可以仅仅依靠已有的常识,有效率地使用新型界面,接收与传达信息。

  5. An Ecological Man-Machine Interface for Temporal Visualization

    DEFF Research Database (Denmark)

    Jensen, Lars Peter; Koch, P.

    1993-01-01

    This paper concerns design of man-machine systems, especially the interface between man and machine (MMI). Three different models of human information processing are used to extract theoretical guidelines for designing MMI's to support human mental activity.....

  6. A Survey of Recent APL Spacecraft Power Systems

    OpenAIRE

    1987-01-01

    During the last 25 years APL has designed and built more than 50 small spacecraft, many being unique designs. The Power Systems of these spacecraft take many forms but almost all use a solar cell array and a Nickel-Cadmium battery. An overview of seven spacecraft power systems is presented. Four of the spacecraft are gravity gradient stabilized in a near-polar Low Earth Orbit (LEO). The remaining three spacecraft are spin stabilized, two with near-equatorial orbits. Both dissipative and nondi...

  7. One Shot to an Asteroid- MASCOT and the Design of an Exclusively Primary Battery Powered Small Spacecraft in Hardware Design Examples and Operations Considerations

    Science.gov (United States)

    Grundmann, Jan Thimo; Biele, Jens; Findlay, Ross; Fredon, Stephane; Ho, Tra-Mi; Krause, Christian; Ulamec, Stephan; Ziach, Christian

    2014-08-01

    The Mobile Asteroid Surface Scout, MASCOT, is a small, 11 kg mobile asteroid lander for the Japanese space probe HAYABUSA-2. It carries four science instruments, a redundant command chain, and a mobility mechanism. On-asteroid power is provided by a Li-SOCl2 primary battery, interplanetary cruise power and thermal control by umbilical connection. The power subsystem manages the activation of MASCOT. It uses a mixed configuration of isolated and non-isolated, redundant and non-redundant supply lines to stay within tight system constraints. Due to the short project timeline, extensive and early testing of integrated hardware was used, often combining off-the-shelf available designs and units of different maturity levels. An overview, progress and lessons learned are shown.

  8. An Ecological Man-Machine Interface for Temporal Visualization

    DEFF Research Database (Denmark)

    Jensen, Lars Peter; Koch, P.

    1993-01-01

    This paper concerns design of man-machine systems, especially the interface between man and machine (MMI). Three different models of human information processing are used to extract theoretical guidelines for designing MMI's to support human mental activity........This paper concerns design of man-machine systems, especially the interface between man and machine (MMI). Three different models of human information processing are used to extract theoretical guidelines for designing MMI's to support human mental activity.....

  9. Biomedical support of man in space

    Science.gov (United States)

    Pendergast, D. R.; Olszowka, A. J.; Rokitka, M. A.; Farhi, L. E.

    In its broadest sense, biomedical support of man in space must not be limited to assisting spacecraft crew during the mission; such support should also ensure that flight personnel be able to perform properly during landing and after leaving the craft. Man has developed mechanisms that allow him to cope with specific stresses in his normal habitat; there is indisputable evidence that, in some cases, the space environment, by relieving these stresses, has also allowed the adaptive mechanisms to lapse, causing serious problems after re-entry. Inflight biomedical support must therefore include means to simulate some of the normal stresses of the Earth environment. In the area of cardiovascular performance, we have come to rely heavily on complex feedback mechanisms to cope with two stresses, often combined: postural changes, which alter the body axis along which gravitational acceleration acts, and physical exercise, which increases the total load on the system. Unless the appropriate responses are reinforced continuously during flight, crew members may be incapacitated upon return. The first step in the support process must be a study of the way in which changes in g, even of short duration, affect these responses. In particular we should learn more about effects of g on the "on" and "off" dynamics, using a variety of approaches: increased acceleration on one hand at recumbency, immersion, lower body positive pressure, and other means of simulating some of the effects of low g, on the other. Once we understand this, we will have to determine the minimal exposure dose required to maintain the response mechanisms. Finally, we shall have to design stresses that simulate Earth environment and can be imposed in the space vehicle. Some of the information is already at hand; we know that several aspects of the response to exercise are affected by posture. Results from a current series of studies on the kinetics of tilt and on the dynamics of readjustment to exercise in

  10. Test of Advanced Fine Water Mist Nozzles in a Representative Spacecraft Atmosphere Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Fine water mist is being considered as a replacement technology for fire suppression on the next generation of manned spacecraft. It offers advantages in...

  11. CaseMIDAS - A reactive planning architecture for the man-machine integration design and analysis system

    Science.gov (United States)

    Pease, R. Adam

    1995-01-01

    MIDAS is a set of tools which allow a designer to specify the physical and functional characteristics of a complex system such as an aircraft cockpit, and analyze the system with regard to human performance. MIDAS allows for a number of static analyses such as military standard reach and fit analysis, display legibility analysis, and vision polars. It also supports dynamic simulation of mission segments with 3d visualization. MIDAS development has incorporated several models of human planning behavior. The CaseMIDAS effort has been to provide a simplified and unified approach to modeling task selection behavior. Except for highly practiced, routine procedures, a human operator exhibits a cognitive effort while determining what step to take next in the accomplishment of mission tasks. Current versions of MIDAS do not model this effort in a consistent and inclusive manner. CaseMIDAS also attempts to address this issue. The CaseMIDAS project has yielded an easy to use software module for case creation and execution which is integrated with existing MIDAS simulation components.

  12. A Ross-Stirling spacecraft refrigerator

    Science.gov (United States)

    Walker, G.; Scott, M.; Zylstra, S.

    A spacecraft refrigerator was investigated capable of providing cooling for storage of food and biological samples in the temperature range 0-20 F with cooling capacity in the range of 1 to 2 kW, operating for long periods with great reliability. The system operated on the Stirling refrigeration cycle using the spacecraft life-support gases as the working fluid. A prototype spacecraft Stirling refrigerator was designed, built, and tested with air as the working fluid. The system performance was satisfactory, meeting the requirements specified above. Potential applications for the prototype unit are mentioned.

  13. Energy Storage Flywheels on Spacecraft

    Science.gov (United States)

    Bartlett, Robert O.; Brown, Gary; Levinthal, Joel; Brodeur, Stephen (Technical Monitor)

    2002-01-01

    With advances in carbon composite material, magnetic bearings, microprocessors, and high-speed power switching devices, work has begun on a space qualifiable Energy Momentum Wheel (EMW). An EMW is a device that can be used on a satellite to store energy, like a chemical battery, and manage angular momentum, like a reaction wheel. These combined functions are achieved by the simultaneous and balanced operation of two or more energy storage flywheels. An energy storage flywheel typically consists of a carbon composite rotor driven by a brushless DC motor/generator. Each rotor has a relatively large angular moment of inertia and is suspended on magnetic bearings to minimize energy loss. The use of flywheel batteries on spacecraft will increase system efficiencies (mass and power), while reducing design-production time and life-cycle cost. This paper will present a discussion of flywheel battery design considerations and a simulation of spacecraft system performance utilizing four flywheel batteries to combine energy storage and momentum management for a typical LEO satellite. A proposed set of control laws and an engineering animation will also be presented. Once flight qualified and demonstrated, space flywheel batteries may alter the architecture of most medium and high-powered spacecraft.

  14. Design of vacuum leak testing management system for spacecraft component test%航天器部件真空检漏试验管理系统的设计

    Institute of Scientific and Technical Information of China (English)

    汪力; 郑江滨; 闫荣鑫; 张海英

    2012-01-01

    The design method of the vacuum leak testing management system for spacecraft components is discussed in this paper.The vacuum leak testing management system for spacecraft components is an essential subsystem of the special environment test management system for spacecraft components.According to the requirements of the vacuum leak testing management system for spacecraft components and the software development process, the test processes are analyzed and the overall structure and various functionality modules are designed.The testing management system is divided into three mutually supporting levels: the user service tier, the business logic tier and the data resources tier.There are seven functional modules in the spacecraft component vacuum leak testing management system, including the test task management, the personal task management, the test data management, the test file management, the test resource management, the configuration management and the system management.This system would be helpful to a more efficient and reasonable management of vacuum leak testing for spacecraft components.%航天器部件真空检漏试验管理系统是航天器件特殊环境试验管理系统的一个重要组成部分.文章根据航天器部件真空检漏试验管理的需求,结合软件设计开发流程规范,对试验技术流程进行了分析,设计出系统总体框架和功能模块:系统总体框架分为数据资源层、业务逻辑层和客户层;功能模块分为试验任务管理模块、个人任务管理模块、试验数据管理模块、试验归档管理模块、试验资源管理模块、基础配置管理模块和系统管理模块.该试验管理系统将使航天器部件真空检漏试验管理工作更加高效、合理.

  15. Nondestructive Evaluation of Aircraft and Spacecraft Wiring

    Science.gov (United States)

    White, John E.; Tucholski, Edward J.; Green, Robert E., Jr.

    2004-01-01

    Spacecraft, and especially aircraft, often fry well past their original design lives and, therefore, the need to develop nondestructive evaluation procedures for inspection of vital structures in these craft is extremely important. One of the more recent problems is the degradation of wiring and wiring insulation. The present paper describes several nondestructive characterization methods which afford the possibility to detect wiring and insulation degradation in-situ prior to major problems with the safety of aircraft and spacecraft.

  16. Spacecraft momentum control systems

    CERN Document Server

    Leve, Frederick A; Peck, Mason A

    2015-01-01

    The goal of this book is to serve both as a practical technical reference and a resource for gaining a fuller understanding of the state of the art of spacecraft momentum control systems, specifically looking at control moment gyroscopes (CMGs). As a result, the subject matter includes theory, technology, and systems engineering. The authors combine material on system-level architecture of spacecraft that feature momentum-control systems with material about the momentum-control hardware and software. This also encompasses material on the theoretical and algorithmic approaches to the control of space vehicles with CMGs. In essence, CMGs are the attitude-control actuators that make contemporary highly agile spacecraft possible. The rise of commercial Earth imaging, the advances in privately built spacecraft (including small satellites), and the growing popularity of the subject matter in academic circles over the past decade argues that now is the time for an in-depth treatment of the topic. CMGs are augmented ...

  17. Spacecraft Material Outgassing Data

    Data.gov (United States)

    National Aeronautics and Space Administration — This compilation of outgassing data of materials intended for spacecraft use were obtained at the Goddard Space Flight Center (GSFC), utilizing equipment developed...

  18. Spacecraft Power Monitor Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This SBIR Phase I project will develop the Spacecraft Power Monitor (SPM) which will use non-intrusive electrical monitoring (NEMO). NEMO transforms the power...

  19. Autonomous Spacecraft Communication Interface for Load Planning

    Science.gov (United States)

    Dever, Timothy P.; May, Ryan D.; Morris, Paul H.

    2014-01-01

    Ground-based controllers can remain in continuous communication with spacecraft in low Earth orbit (LEO) with near-instantaneous communication speeds. This permits near real-time control of all of the core spacecraft systems by ground personnel. However, as NASA missions move beyond LEO, light-time communication delay issues, such as time lag and low bandwidth, will prohibit this type of operation. As missions become more distant, autonomous control of manned spacecraft will be required. The focus of this paper is the power subsystem. For present missions, controllers on the ground develop a complete schedule of power usage for all spacecraft components. This paper presents work currently underway at NASA to develop an architecture for an autonomous spacecraft, and focuses on the development of communication between the Mission Manager and the Autonomous Power Controller. These two systems must work together in order to plan future load use and respond to unanticipated plan deviations. Using a nominal spacecraft architecture and prototype versions of these two key components, a number of simulations are run under a variety of operational conditions, enabling development of content and format of the messages necessary to achieve the desired goals. The goals include negotiation of a load schedule that meets the global requirements (contained in the Mission Manager) and local power system requirements (contained in the Autonomous Power Controller), and communication of off-plan disturbances that arise while executing a negotiated plan. The message content is developed in two steps: first, a set of rapid-prototyping "paper" simulations are preformed; then the resultant optimized messages are codified for computer communication for use in automated testing.

  20. An Overview of the Orbital Debris and Meteoroid Environments, Their Effects on Spacecraft, and What Can We Do About It?

    Science.gov (United States)

    Matney, Mark

    2017-01-01

    Because of the high speeds needed for orbital space flight, hypervelocity impacts with objects in space are a constant risk to spacecraft. This includes natural debris - meteoroids - and the debris remnants of our own activities in space. A number of space surveillance assets are used to measure and track spacecraft, used upper stages, and breakup debris. However, much of the debris and meteoroids encountered by spacecraft in Earth orbit is not easily measured or tracked. For every man-made object that we can track, there are hundreds of small debris that are too small to be tracked but still large enough to damage spacecraft. In addition, even if we knew today's environment with perfect knowledge, the debris environment is dynamic and would change tomorrow. This means that much of the risk from both meteoroids and anthropogenic debris is statistical in nature. NASA uses and maintains a number of instruments to statistically monitor the meteoroid and orbital debris environments, and uses this information to compute statistical models for use by spacecraft designers and operators. Because orbital debris is a result of human activities, NASA has led the US government in formulating national and international strategies that space users can employ to limit the growth of debris in the future. This talk will summarize the history and current state of meteoroid and space debris measurements and modeling, how the environment influences spacecraft design and operations, how we are designing the experiments of tomorrow to improve our knowledge, and how we are working internationally to preserve the space environment for the future.

  1. Manned space stations - A perspective

    Science.gov (United States)

    Disher, J. H.

    1981-09-01

    The findings from the Skylab missions are discussed as they relate to the operations planning of future space stations such as Spacelab and the proposed Space Operations Center. Following a brief description of the Skylab spacecraft, the significance of the mission as a demonstration of the possibility of effecting emergency repairs in space is pointed out. Specific recommendations made by Skylab personnel concerning capabilities for future in-flight maintenance are presented relating to the areas of spacecraft design criteria, tool selection and spares carried. Attention is then given to relevant physiological findings, and to habitability considerations in the areas of sleep arrangements, hygiene, waste management, clothing, and food. The issue of contamination control is examined in detail as a potential major system to be integrated into future design criteria. The importance of the Skylab results to the designers of future space stations is emphasized.

  2. Spacecraft Alignment Determination and Control for Dual Spacecraft Precision Formation Flying

    Science.gov (United States)

    Calhoun, Philip C.; Novo-Gradac, Anne-Marie; Shah, Neerav

    2017-01-01

    Many proposed formation flying missions seek to advance the state of the art in spacecraft science imaging by utilizing precision dual spacecraft formation flying to enable a virtual space telescope. Using precision dual spacecraft alignment, very long focal lengths can be achieved by locating the optics on one spacecraft and the detector on the other. Proposed science missions include astrophysics concepts with spacecraft separations from 1000 km to 25,000 km, such as the Milli-Arc-Second Structure Imager (MASSIM) and the New Worlds Observer, and Heliophysics concepts for solar coronagraphs and X-ray imaging with smaller separations (50m 500m). All of these proposed missions require advances in guidance, navigation, and control (GNC) for precision formation flying. In particular, very precise astrometric alignment control and estimation is required for precise inertial pointing of the virtual space telescope to enable science imaging orders of magnitude better than can be achieved with conventional single spacecraft instruments. This work develops design architectures, algorithms, and performance analysis of proposed GNC systems for precision dual spacecraft astrometric alignment. These systems employ a variety of GNC sensors and actuators, including laser-based alignment and ranging systems, optical imaging sensors (e.g. guide star telescope), inertial measurement units (IMU), as well as micro-thruster and precision stabilized platforms. A comprehensive GNC performance analysis is given for Heliophysics dual spacecraft PFF imaging mission concept.

  3. Spacecraft Attitude Determination

    DEFF Research Database (Denmark)

    Bak, Thomas

    This thesis describes the development of an attitude determination system for spacecraft based only on magnetic field measurements. The need for such system is motivated by the increased demands for inexpensive, lightweight solutions for small spacecraft. These spacecraft demands full attitude...... determination based on simple, reliable sensors. Meeting these objectives with a single vector magnetometer is difficult and requires temporal fusion of data in order to avoid local observability problems. In order to guaranteed globally nonsingular solutions, quaternions are generally the preferred attitude...... is a detailed study of the influence of approximations in the modeling of the system. The quantitative effects of errors in the process and noise statistics are discussed in detail. The third contribution is the introduction of these methods to the attitude determination on-board the Ørsted satellite...

  4. Coffee-can-sized spacecraft

    Science.gov (United States)

    Jones, Ross M.

    1988-01-01

    The current status and potential scientific applications of intelligent 1-5-kg projectiles being developed by SDIO and DARPA for military missions are discussed. The importance of advanced microelectronics for such small spacecraft is stressed, and it is pointed out that both chemical rockets and EM launchers are currently under consideration for these lightweight exoatmospheric projectiles (LEAPs). Long-duration power supply is identified as the primary technological change required if LEAPs are to be used for interplanetary scientific missions, and the design concept of a solar-powered space-based railgun to accelerate LEAPs on such missions is considered.

  5. Advanced antennas for SAR spacecraft

    Science.gov (United States)

    Gail, William B.

    1993-01-01

    Single and multi-frequency antenna concepts were developed to evaluate the feasibility of building large aperture polarimetric synthetic aperture radar (SAR) systems to be launched in low cost vehicles such as the Delta 2. The antennas are 18.9 m long by 2.6 m wide (L-band) and achieve single polarization imaging to an incidence angle of 55 degrees and dual/quad imaging to 42 degrees. When combined with strawman spacecraft designs, both concepts meet the mass and volume constraints imposed by a Delta 2 launch.

  6. Intelligent spacecraft module

    Science.gov (United States)

    Oungrinis, Konstantinos-Alketas; Liapi, Marianthi; Kelesidi, Anna; Gargalis, Leonidas; Telo, Marinela; Ntzoufras, Sotiris; Paschidi, Mariana

    2014-12-01

    The paper presents the development of an on-going research project that focuses on a human-centered design approach to habitable spacecraft modules. It focuses on the technical requirements and proposes approaches on how to achieve a spatial arrangement of the interior that addresses sufficiently the functional, physiological and psychosocial needs of the people living and working in such confined spaces that entail long-term environmental threats to human health and performance. Since the research perspective examines the issue from a qualitative point of view, it is based on establishing specific relationships between the built environment and its users, targeting people's bodily and psychological comfort as a measure toward a successful mission. This research has two basic branches, one examining the context of the system's operation and behavior and the other in the direction of identifying, experimenting and formulating the environment that successfully performs according to the desired context. The latter aspect is researched upon the construction of a scaled-model on which we run series of tests to identify the materiality, the geometry and the electronic infrastructure required. Guided by the principles of sensponsive architecture, the ISM research project explores the application of the necessary spatial arrangement and behavior for a user-centered, functional interior where the appropriate intelligent systems are based upon the existing mechanical and chemical support ones featured on space today, and especially on the ISS. The problem is set according to the characteristics presented at the Mars500 project, regarding the living quarters of six crew-members, along with their hygiene, leisure and eating areas. Transformable design techniques introduce spatial economy, adjustable zoning and increased efficiency within the interior, securing at the same time precise spatial orientation and character at any given time. The sensponsive configuration is

  7. Revamping Spacecraft Operational Intelligence

    Science.gov (United States)

    Hwang, Victor

    2012-01-01

    The EPOXI flight mission has been testing a new commercial system, Splunk, which employs data mining techniques to organize and present spacecraft telemetry data in a high-level manner. By abstracting away data-source specific details, Splunk unifies arbitrary data formats into one uniform system. This not only reduces the time and effort for retrieving relevant data, but it also increases operational visibility by allowing a spacecraft team to correlate data across many different sources. Splunk's scalable architecture coupled with its graphing modules also provide a solid toolset for generating data visualizations and building real-time applications such as browser-based telemetry displays.

  8. Distributed parameter modelling of flexible spacecraft: Where's the beef?

    Science.gov (United States)

    Hyland, D. C.

    1994-01-01

    This presentation discusses various misgivings concerning the directions and productivity of Distributed Parameter System (DPS) theory as applied to spacecraft vibration control. We try to show the need for greater cross-fertilization between DPS theorists and spacecraft control designers. We recommend a shift in research directions toward exploration of asymptotic frequency response characteristics of critical importance to control designers.

  9. Design of nano- and microfiber combined scaffolds by electrospinning of collagen onto starch-based fiber meshes: a man-made equivalent of natural extracellular matrix.

    Science.gov (United States)

    Tuzlakoglu, Kadriye; Santos, Marina I; Neves, Nuno; Reis, Rui L

    2011-02-01

    Mimicking the structural organization and biologic function of natural extracellular matrix has been one of the main goals of tissue engineering. Nevertheless, the majority of scaffolding materials for bone regeneration highlights biochemical functionality in detriment of mechanical properties. In this work we present a rather innovative construct that combines in the same structure electrospun type I collagen nanofibers with starch-based microfibers. These combined structures were obtained by a two-step methodology and structurally consist in a type I collagen nano-network incorporated on a macro starch-based support. The morphology of the developed structures was assessed by several microscopy techniques and the collagenous nature of the nano-network was confirmed by immunohistochemistry. In addition, and especially regarding the requirements of large bone defects, we also successfully introduced the concept of layer by layer, as a way to produce thicker structures. In an attempt to recreate bone microenvironment, the design and biochemical composition of the combined structures also envisioned bone-forming cells and endothelial cells (ECs). The inclusion of a type I collagen nano-network induced a stretched morphology and improved the metabolic activity of osteoblasts. Regarding ECs, the presence of type I collagen on the combined structures provided adhesive support and obviated the need of precoating with fibronectin. It was also importantly observed that ECs on the nano-network organized into circular structures, a three-dimensional arrangement distinct from that observed for osteoblasts and resembling the microcappillary-like organizations formed during angiogenesis. By providing simultaneously physical and chemical cues for cells, the herein-proposed combined structures hold a great potential in bone regeneration as a man-made equivalent of extracellular matrix.

  10. Design of guidance law for lunar ascent phase of manned lunar module%载人登月舱上升入轨段的制导律设计

    Institute of Scientific and Technical Information of China (English)

    李鑫; 刘莹莹; 周军

    2011-01-01

    针对载人登月任务中,登月舱上升级从月球表面上升入轨的制导问题,用显式制导法设计一种闭环的制导律.首先对共面发射入轨和异面发射入轨两种情形分别建立模型;然后,假设发动机推力固定,分别推导了显式制导律和基于极大值原理的燃料最优制导律,并进行了对比分析.以阿波罗飞船的参数进行仿真,结果表明显式制导法在综合考虑节省燃料、抗干扰和保证精度等因素后更具有优势,并且能很好地解决小角度异面发射的问题.因此,显式制导法具有更高的可靠性和灵活性,适合工程应用.%A closed-loop guidance law based on explicit guidance is designed for ascent from moon surface and injection of lunar module in manned lunar landing mission. Both coplanar and noncoplanar injection dynamics are presented. Under the condition of constant thrust , both explicit guidance and fuel-optimal guidance based on Pontryagin maximum principle are derived and compared. The numerical simulation is conducted under the condition of the given parameters of Apollo lunar module. The results indicate that explicit guidance is better comprehensively considering saving fuel, anti-interference? Ensuring accuracy etc. And it can well solve the problem of noncoplanar injection with a small angle. Therefore, explicit guidance is more suitable for engineering application due to its higher reliability and flexibility.

  11. Robot Design and Realization Based on SoftMan%基于软件人架构的机器人设计与实现

    Institute of Scientific and Technical Information of China (English)

    左敏; 涂序彦

    2012-01-01

    Patrol robot in unattended substation was used as our application object. Based on the theory of Soft-Man, we investigate further in Robot system with SoftMan architecture. On one hand, virtual SoftMan was adopted to build the software model of physical robot. Making full use of the humanized features of SoftMan, we constructed the parallel system to fulfill cooperative interaction, fusion, intergrowth of Robot and SoftMan. Parallel evolution algorithm was utilized to complete online, real-time, and automatic paraller evolution between SoftMan and robot, which can improve robot' s performance gradually. On the other hand, some intelligent algorithms, which are difficult to accomplish in embedded robot systems, are able to realize in SoftMan platform. The parallel, online, and real-time simulations of physical robot can also be acheieved on the SoftMan platform. In this paper, we extended and expanded the robot function and security features through intelligent coordination, parallel evolution, and cooperative simulation of Robot and SoftMan. The work in this project is helpful to improve the intelligence, flexibility, and practicality of patrol robot in unattended substation.%以无人变电站移动巡检机器人为应用对象,运用“软件人”理论方法开展基于“软件人”架构的机器人系统设计:一方面,利用虚拟“软件人”为实体机器人建立软件模型,充分发挥“软件人”的拟人特性,构建“软件人”和机器人协同交互、融合共生的平行系统,通过“软件人”和机器人平行进化的智能算法实现“软件人”和机器人在线、实时、自动平行进化,在运行过程中不断提高机器人的性能;另一方面,利用“软件人”运行平台的高处理能力完成在机器人嵌入式系统中无法完成的一些智能算法,实现对实体机器人的实时作业并行、在线、实时地仿真.

  12. A New Feature Points Reconstruction Method in Spacecraft Vision Navigation

    Directory of Open Access Journals (Sweden)

    Bing Hua

    2015-01-01

    Full Text Available The important applications of monocular vision navigation in aerospace are spacecraft ground calibration tests and spacecraft relative navigation. Regardless of the attitude calibration for ground turntable or the relative navigation between two spacecraft, it usually requires four noncollinear feature points to achieve attitude estimation. In this paper, a vision navigation system based on the least feature points is designed to deal with fault or unidentifiable feature points. An iterative algorithm based on the feature point reconstruction is proposed for the system. Simulation results show that the attitude calculation of the designed vision navigation system could converge quickly, which improves the robustness of the vision navigation of spacecraft.

  13. Practical Applications of Cosmic Ray Science: Spacecraft, Aircraft, Ground Based Computation and Control Systems and Human Health and Safety

    Science.gov (United States)

    Atwell, William; Koontz, Steve; Normand, Eugene

    2012-01-01

    In this paper we review the discovery of cosmic ray effects on the performance and reliability of microelectronic systems as well as on human health and safety, as well as the development of the engineering and health science tools used to evaluate and mitigate cosmic ray effects in earth surface, atmospheric flight, and space flight environments. Three twentieth century technological developments, 1) high altitude commercial and military aircraft; 2) manned and unmanned spacecraft; and 3) increasingly complex and sensitive solid state micro-electronics systems, have driven an ongoing evolution of basic cosmic ray science into a set of practical engineering tools (e.g. ground based test methods as well as high energy particle transport and reaction codes) needed to design, test, and verify the safety and reliability of modern complex electronic systems as well as effects on human health and safety. The effects of primary cosmic ray particles, and secondary particle showers produced by nuclear reactions with spacecraft materials, can determine the design and verification processes (as well as the total dollar cost) for manned and unmanned spacecraft avionics systems. Similar considerations apply to commercial and military aircraft operating at high latitudes and altitudes near the atmospheric Pfotzer maximum. Even ground based computational and controls systems can be negatively affected by secondary particle showers at the Earth's surface, especially if the net target area of the sensitive electronic system components is large. Accumulation of both primary cosmic ray and secondary cosmic ray induced particle shower radiation dose is an important health and safety consideration for commercial or military air crews operating at high altitude/latitude and is also one of the most important factors presently limiting manned space flight operations beyond low-Earth orbit (LEO).

  14. Manned in Situ Confirmation of Lunar Ice

    Science.gov (United States)

    Gerené, S. P. B.; Hummeling, R. W. J.; Ockels, W. J.

    A study is performed to investigate the feasibility of a manned expedition to the Moon using the European Ariane-5 launcher. The primary objective of this lunar mission is to confirm the presence of water at the South-Pole craters. It is believed that these permanently shadowed craters contain water in the form of ice. Secondary objective is to perform lunar surface science and making a first step towards a lunar outpost. Early results show that a minimum of two Ariane-5 launches is required. In this `two Ariane' scenario the first launch will bring a Lunar Landing Vehicle (LLV) into low lunar orbit. The second will launch two astronauts in a Crew Transfer Vehicle into a rendez- vous trajectory with the LLV. Arrived at the Moon, the astronauts will enter the LLV, undock from the CTV and land at the designated site located near the rim of the South-Pole Shackleton crater. The transfer strategy for both spacecraft will be the so-called direct transfer, taking about four days. At arrival the LLV will start mapping the landing site at a ground resolution of one meter. As a consequence of the polar orbit, the CTV has to arrive fourteen days later and surface operations can take about twelve days, accumulating in a total mission-duration of 36 days. 32 days for the CTV and 22 days for the LLV. In case a `two Ariane' flight does not posses sufficient capabilities also a `three Ariane' scenario is developed, in which the LLV is split-up into two stages and launched separately. These two will dock at the Moon forming a descent stage and an ascent stage. The third launch will be a CTV. During surface operations, astronauts will set up a solar power unit, install the sample retrieval system and carry out surface science. Samples of the crater floor will be retrieved by means of a probe or robot guided along a cable suspended over the crater rim. Also, this paper shows the way in which European astronauts can be brought to the Moon for other future missions, like the

  15. 基于人机工程学的机械操作面板设计研究%The machinery operation panel design and study based on man-machine engineering

    Institute of Scientific and Technical Information of China (English)

    孟庆强

    2011-01-01

    Staring from the man-machine interface design concept, fully consider people's factors, the mechanical operation interface design principles and human environment relationship is studied. The operation panel maximum limit match with human body structure. For the operator to create a safe, healthy and comfortable environment. Makes the man-machine system to play out maximum efficiency.%从人机界面设计的概念入手,充分考虑人的因素,对机械操作界面的设计原则和人机环境关系进行了研究,最终使操作面板最大限度地与人体结构相匹配,为操作者创造一个安全、健康、舒适的操作环境,使人机系统发挥出最大的效率.

  16. Hybrid spacecraft attitude control system

    Directory of Open Access Journals (Sweden)

    Renuganth Varatharajoo

    2016-02-01

    Full Text Available The hybrid subsystem design could be an attractive approach for futurespacecraft to cope with their demands. The idea of combining theconventional Attitude Control System and the Electrical Power System ispresented in this article. The Combined Energy and Attitude ControlSystem (CEACS consisting of a double counter rotating flywheel assemblyis investigated for small satellites in this article. Another hybrid systemincorporating the conventional Attitude Control System into the ThermalControl System forming the Combined Attitude and Thermal ControlSystem (CATCS consisting of a "fluid wheel" and permanent magnets isalso investigated for small satellites herein. The governing equationsdescribing both these novel hybrid subsystems are presented and theironboard architectures are numerically tested. Both the investigated novelhybrid spacecraft subsystems comply with the reference missionrequirements.The hybrid subsystem design could be an attractive approach for futurespacecraft to cope with their demands. The idea of combining theconventional Attitude Control System and the Electrical Power System ispresented in this article. The Combined Energy and Attitude ControlSystem (CEACS consisting of a double counter rotating flywheel assemblyis investigated for small satellites in this article. Another hybrid systemincorporating the conventional Attitude Control System into the ThermalControl System forming the Combined Attitude and Thermal ControlSystem (CATCS consisting of a "fluid wheel" and permanent magnets isalso investigated for small satellites herein. The governing equationsdescribing both these novel hybrid subsystems are presented and theironboard architectures are numerically tested. Both the investigated novelhybrid spacecraft subsystems comply with the reference missionrequirements.

  17. Developing Sustainable Spacecraft Water Management Systems

    Science.gov (United States)

    Thomas, Evan A.; Klaus, David M.

    2009-01-01

    It is well recognized that water handling systems used in a spacecraft are prone to failure caused by biofouling and mineral scaling, which can clog mechanical systems and degrade the performance of capillary-based technologies. Long duration spaceflight applications, such as extended stays at a Lunar Outpost or during a Mars transit mission, will increasingly benefit from hardware that is generally more robust and operationally sustainable overtime. This paper presents potential design and testing considerations for improving the reliability of water handling technologies for exploration spacecraft. Our application of interest is to devise a spacecraft wastewater management system wherein fouling can be accommodated by design attributes of the management hardware, rather than implementing some means of preventing its occurrence.

  18. Large-Scale Spacecraft Fire Safety Tests

    Science.gov (United States)

    Urban, David; Ruff, Gary A.; Ferkul, Paul V.; Olson, Sandra; Fernandez-Pello, A. Carlos; T'ien, James S.; Torero, Jose L.; Cowlard, Adam J.; Rouvreau, Sebastien; Minster, Olivier; Toth, Balazs; Legros, Guillaume; Eigenbrod, Christian; Smirnov, Nickolay; Fujita, Osamu; Jomaas, Grunde

    2014-01-01

    An international collaborative program is underway to address open issues in spacecraft fire safety. Because of limited access to long-term low-gravity conditions and the small volume generally allotted for these experiments, there have been relatively few experiments that directly study spacecraft fire safety under low-gravity conditions. Furthermore, none of these experiments have studied sample sizes and environment conditions typical of those expected in a spacecraft fire. The major constraint has been the size of the sample, with prior experiments limited to samples of the order of 10 cm in length and width or smaller. This lack of experimental data forces spacecraft designers to base their designs and safety precautions on 1-g understanding of flame spread, fire detection, and suppression. However, low-gravity combustion research has demonstrated substantial differences in flame behavior in low-gravity. This, combined with the differences caused by the confined spacecraft environment, necessitates practical scale spacecraft fire safety research to mitigate risks for future space missions. To address this issue, a large-scale spacecraft fire experiment is under development by NASA and an international team of investigators. This poster presents the objectives, status, and concept of this collaborative international project (Saffire). The project plan is to conduct fire safety experiments on three sequential flights of an unmanned ISS re-supply spacecraft (the Orbital Cygnus vehicle) after they have completed their delivery of cargo to the ISS and have begun their return journeys to earth. On two flights (Saffire-1 and Saffire-3), the experiment will consist of a flame spread test involving a meter-scale sample ignited in the pressurized volume of the spacecraft and allowed to burn to completion while measurements are made. On one of the flights (Saffire-2), 9 smaller (5 x 30 cm) samples will be tested to evaluate NASAs material flammability screening tests

  19. The design and realization of an information system for mass property test of spacecraft%航天器质量特性测试信息系统设计与实现

    Institute of Scientific and Technical Information of China (English)

    赵科; 王洪鑫; 徐在峰

    2011-01-01

    Based on a review of the information flowing and data analysis during the whole lifespan of the mass property test(MPT)for spacecraft,this paper presents an information model for the MPT information system,and discusses the frame design of the system. A prototype system to verify the design method is developed. This information system can integrate all separated and dispersive data generated during the whole lifespan of the spacecraft mass property measurement in a logical and systematic way.%文章通过对现有航天器质量特性测试工作流程的研究,对测试过程数据分析归纳,给出了信息系统的数据库模型,提出了系统架构设计思路,并在此基础上开发了原型系统,对设计思路进行验证.质量特性测试信息系统的建立将整个测试周期中的所有独立、分散的信息有机地统一起来.

  20. The oldest man ever?

    DEFF Research Database (Denmark)

    Wilmoth, J; Skytthe, A; Friou, D

    1996-01-01

    This article summarizes recent findings in a case study of exceptional longevity. CM, a resident of San Rafael, California, was 114 years old in August 1996. He is the first properly verified case of a 114-year-old man in human history (although a few women have been known to live longer). Our...... is accurate. Based on the available information, it also seems a reasonable conjecture that he may be the oldest man alive today and perhaps the oldest man who has ever lived. This study documents an extreme example of human longevity and records characteristics of the man's life that may provide clues about...

  1. Building the future of WaferSat spacecraft for relativistic spacecraft

    Science.gov (United States)

    Brashears, Travis; Lubin, Philip; Rupert, Nic; Stanton, Eric; Mehta, Amal; Knowles, Patrick; Hughes, Gary B.

    2016-09-01

    Recently, there has been a dramatic change in the way space missions are viewed. Large spacecraft with massive propellant-filled launch stages have dominated the space industry since the 1960's, but low-mass CubeSats and low-cost rockets have enabled a new approach to space exploration. In recent work, we have built upon the idea of extremely low mass (sub 1 kg), propellant-less spacecraft that are accelerated by photon propulsion from dedicated directed-energy facilities. Advanced photonics on a chip with hybridized electronics can be used to implement a laser-based communication system on board a sub 1U spacecraft that we call a WaferSat. WaferSat spacecraft are equipped with reflective sails suitable for propulsion by directed-energy beams. This low-mass spacecraft design does not require onboard propellant, creating significant new opportunities for deep space exploration at a very low cost. In this paper, we describe the design of a prototype WaferSat spacecraft, constructed on a printed circuit board. The prototype is envisioned as a step toward a design that could be launched on an early mission into Low Earth Orbit (LEO), as a key milestone in the roadmap to interstellar flight. In addition to laser communication, the WaferSat prototype includes subsystems for power source, attitude control, digital image acquisition, and inter-system communications.

  2. Spacecraft formation flying: Dynamics, control and navigation

    Science.gov (United States)

    Alfriend, Kyle Terry; Vadali, Srinivas Rao; Gurfil, Pini; How, Jonathan; Breger, Louis S.

    2009-12-01

    Space agencies are now realizing that much of what has previously been achieved using hugely complex and costly single platform projects - large unmanned and manned satellites (including the present International Space Station) - can be replaced by a number of smaller satellites networked together. The key challenge of this approach, namely ensuring the proper formation flying of multiple craft, is the topic of this second volume in Elsevier's Astrodynamics Series, Spacecraft Formation Flying: Dynamics, control and navigation. In this unique text, authors Alfriend et al. provide a coherent discussion of spacecraft relative motion, both in the unperturbed and perturbed settings, explain the main control approaches for regulating relative satellite dynamics, using both impulsive and continuous maneuvers, and present the main constituents required for relative navigation. The early chapters provide a foundation upon which later discussions are built, making this a complete, standalone offering. Intended for graduate students, professors and academic researchers in the fields of aerospace and mechanical engineering, mathematics, astronomy and astrophysics, Spacecraft Formation Flying is a technical yet accessible, forward-thinking guide to this critical area of astrodynamics.

  3. Development of an integrated, zero-G pneumatic transporter/rotating-paddle incinerator/catalytic afterburner subsystem for processing human waste on board spacecraft

    Science.gov (United States)

    Fields, S. F.; Labak, L. J.; Honegger, R. J.

    1974-01-01

    A baseline laboratory prototype of an integrated, six man, zero-g subsystem for processing human wastes onboard spacecraft was investigated, and included the development of an operational specification for the baseline subsystem, followed by design and fabrication. The program was concluded by performing a series of six tests over a period of two weeks to evaluate the performance of the subsystem. The results of the tests were satisfactory, however, several changes in the design of the subsystem are required before completely satisfactory performance can be achieved.

  4. Development of integrated, zero-G pneumatic transporter/rotating paddle incinerator/catalytic afterburner subsystem for processing human wastes on board spacecraft

    Science.gov (United States)

    Fields, S. F.; Labak, L. J.; Honegger, R. J.

    1974-01-01

    A four component system was developed which consists of a particle size reduction mechanism, a pneumatic waste transport system, a rotating-paddle incinerator, and a catalytic afterburner to be integrated into a six-man, zero-g subsystem for processing human wastes on board spacecraft. The study included the development of different concepts or functions, the establishment of operational specifications, and a critical evaluation for each of the four components. A series of laboratory tests was run, and a baseline subsystem design was established. An operational specification was also written in preparation for detailed design and testing of this baseline subsystem.

  5. Future Developments of the Next Generation Manned Space Platforms (European and Russian Space Students Perspectives)

    Science.gov (United States)

    Robinson, Douglas K. R.

    2002-01-01

    The opportunities for research made available by in-orbit manned space platforms is extensive. Research topics from space life science and biotechnology to material science and structural mechanics, from Astrophysics to the Low Earth Orbit environment to name a few. The list is long and has been growing steadily since the launch of Salyut 1 in 1971 till the present day ISS. With the construction of the ISS now into its final phase, what is the future of such research platforms? What will the "Next Generation" space station comprise of? What of manned research platforms beyond LEO and what constraints are foreseen after ISS. This paper presents current issues concerning the conceptual design of the "Next Generation" manned space platforms, the obstacles that are predicted concerning major subsystems of such platforms and also predictions of where the foci of research will concentrate. Future developments of the next generation manned space platforms presents research by the author in both his previous academic institutions1, personal opinions and the opinions of other young space research students and space professionals including Super Aero (France), Leicester University and Space Research Centre (UK) and Moscow State University (Russia). Here the author will detail the areas in which the contributors (representing the next generation space professionals) believe manned space platform architectures will be evolved, new technological developments and barriers to be overcome. In addition, new methods of Spacecraft design will also be presented, referring in the main to the Space Station Design Workshop 2002 (ESTEC Concurrent Design Facility) a week long workshop where a group of 30 young space professionals where brought together to design a conceptual space station. Future developments of the next generation manned space platforms has been composed with two aims. Firstly, to convey to both young space enthusiasts and more mature space professionals the ideas

  6. "Det man siger er man selv..."

    DEFF Research Database (Denmark)

    Næsby, Torben; Nørgaard, Britta; Uddholm, Mats

    forhold, der er hermeneutisk, strukturelt og relationelt bestemt. Praksisviden kan ikke være objektiv i gængs forstand, men det behøver ikke at diskvalificere denne viden. Forståelse er altid knyttet til den sag og bundet til den situation man står overfor og i som professionel og som menneske....

  7. AN OVERVIEW OF STRUCTURAL STRENGTH DESIGN METHODS FOR SPACECRAFTS IN RANDOM VIBRATION ENVIRONMENT%随机振动环境下航天器结构强度设计方法综述

    Institute of Scientific and Technical Information of China (English)

    张玉梅; 韩增尧; 邹元杰

    2012-01-01

    Random vibration is an important part of spacecraft structure design. Now, the main method used in the structural strength design of spacecrafts is equivalent static design method. Its equivalent princi- ples include equivalent acceleration response, equivalent displacement response and equivalent stress response. Respective theories, methods, domestic and overseas research status, advantages and disadvantages and engi- neering applications are presented. The design method based on the peak values of displacement and stress response is recommended. And the problems in need of further research are finally suggested.%随机振动环境是航天器结构强度设计重点考虑的因素之一.目前,在随机振动环境条件下,航天器结构强度设计采取的方法主要为等效的准静态设计方法,其等效原则可分为加速度响应等效、位移响应等效以及应力响应等效.本文重点介绍了3种等效原则的基本原理、处理方法、国内外发展现状及工程应用情况,并在综合分析的基础上推荐使用基于位移和应力峰值响应等效的设计方法.最后针对需进一步开展的研究工作提出了建议.

  8. The Green Man

    Science.gov (United States)

    Watson-Newlin, Karen

    2010-01-01

    The Jolly Green Giant. Robin Hood. The Bamberg Cathedral. Tales of King Arthur. Ecology. What do they have in common? What legends and ancient myths are shrouded in the tales of the Green Man? Most often perceived as an ancient Celtic symbol as the god of spring and summer, the Green Man disappears and returns year after year, century after…

  9. Man of Fire.

    Science.gov (United States)

    Phipps, Helene Juarez

    1993-01-01

    The themes of Jose Clemente Orozco's murals, several of which are found on U.S. college campuses, are as relevant today as they were during the Mexican Revolution. Orozco (1883-1949) painted the world as he saw it, portraying corruption, violence, and man's inhumanity to man. (LP)

  10. Man's Role in Nature

    Science.gov (United States)

    Peterson, Roger Tory

    1975-01-01

    Presents a viewpoint that the civilized man, the humane man, accepts not only the humane ethic but also the conservationist's philosophy and the environmentalist's point of view because all these views are overlapping, interlocking and essential to a better and more civilized world. (BR)

  11. THE MAN NATIONALITY WOMEN

    Institute of Scientific and Technical Information of China (English)

    1997-01-01

    The Man nationality,with a population of 9,821,180,live in northeast China,mainly in Liaoning Province.They have their own language,but now most of the Man nationality people use Mandarin Chinese except for a few elderly people in the remote villages of Heilongjiang Province.

  12. The Green Man

    Science.gov (United States)

    Watson-Newlin, Karen

    2010-01-01

    The Jolly Green Giant. Robin Hood. The Bamberg Cathedral. Tales of King Arthur. Ecology. What do they have in common? What legends and ancient myths are shrouded in the tales of the Green Man? Most often perceived as an ancient Celtic symbol as the god of spring and summer, the Green Man disappears and returns year after year, century after…

  13. Spacecraft Attitude Control in Hamiltonian Framework

    DEFF Research Database (Denmark)

    Wisniewski, Rafal

    2000-01-01

    The objective of this paper is to give a design scheme for attitude control algorithms of a generic spacecraft. Along with the system model formulated in the Hamilton's canonical form the algorithm uses information about a required potential energy and a dissipative term. The control action...

  14. 高速矿井架空人车液压系统的设计与分析%Design and Analysis of Hydraulic System for High-speed Coal-mining Manned-ropeway

    Institute of Scientific and Technical Information of China (English)

    李锐; 侯友夫

    2012-01-01

    设计一种高速矿井架空人车液压系统的主回路以及制动回路,采用电液比例技术实现系统软启动、软制动以及调速.分析矿井架空人车在启动、制动、调速等不同工况下,液压系统各元器件的动作要求和控制机制,为高速矿井架空人车液压系统的选择提供了参考.%A kind of main loop and braking loop were designed for high-speed coal-mining manned-ropeway hydraulic system. Electro-hydraulic proportional technology was adopted to realize soft start, soft brake and speed regulation. The motion requirements and controlling mechanism of each component in coal-mining manned-ropeway hydraulic system were analyzed when the system was starting, braking or speed regulation. It provides reference for design of high-speed coal-mining manned-ropeway hydraulic system.

  15. REQUIREMENTS FOR IMAGE QUALITY OF EMERGENCY SPACECRAFTS

    Directory of Open Access Journals (Sweden)

    A. I. Altukhov

    2015-05-01

    Full Text Available The paper deals with the method for formation of quality requirements to the images of emergency spacecrafts. The images are obtained by means of remote sensing of near-earth space orbital deployment in the visible range. of electromagnetic radiation. The method is based on a joint taking into account conditions of space survey, characteristics of surveillance equipment, main design features of the observed spacecrafts and orbital inspection tasks. Method. Quality score is the predicted linear resolution image that gives the possibility to create a complete view of pictorial properties of the space image obtained by electro-optical system from the observing satellite. Formulation of requirements to the numerical value of this indicator is proposed to perform based on the properties of remote sensing system, forming images in the conditions of outer space, and the properties of the observed emergency spacecraft: dimensions, platform construction of the satellite, on-board equipment placement. For method implementation the authors have developed a predictive model of requirements to a linear resolution for images of emergency spacecrafts, making it possible to select the intervals of space shooting and get the satellite images required for quality interpretation. Main results. To verify the proposed model functionality we have carried out calculations of the numerical values for the linear resolution of the image, ensuring the successful task of determining the gross structural damage of the spacecrafts and identifying changes in their spatial orientation. As input data were used with dimensions and geometric primitives corresponding to the shape of deemed inspected spacecrafts: Resurs-P", "Canopus-B", "Electro-L". Numerical values of the linear resolution images have been obtained, ensuring the successful task solution for determining the gross structural damage of spacecrafts.

  16. Spacecraft Attitude Control in Hamiltonian Framework

    DEFF Research Database (Denmark)

    Wisniewski, Rafal

    2000-01-01

    The objective of this paper is to give a design scheme for attitude control algorithms of a generic spacecraft. Along with the system model formulated in the Hamilton's canonical form the algorithm uses information about a required potential energy and a dissipative term. The control action...... is the sum of the gradient of the potential energy and the dissipative force. It is shown that this control law makes the system uniformly asymptotically stable to the desired reference point. Three problems were addressed in the paper: spacecraft stabilization in the inertial frame, libration damping...

  17. Studies of Fission Fragment Rocket Engine Propelled Spacecraft

    Science.gov (United States)

    Werka, Robert O.; Clark, Rodney; Sheldon, Rob; Percy, Thomas K.

    2014-01-01

    The NASA Office of Chief Technologist has funded from FY11 through FY14 successive studies of the physics, design, and spacecraft integration of a Fission Fragment Rocket Engine (FFRE) that directly converts the momentum of fission fragments continuously into spacecraft momentum at a theoretical specific impulse above one million seconds. While others have promised future propulsion advances if only you have the patience, the FFRE requires no waiting, no advances in physics and no advances in manufacturing processes. Such an engine unequivocally can create a new era of space exploration that can change spacecraft operation. The NIAC (NASA Institute for Advanced Concepts) Program Phase 1 study of FY11 first investigated how the revolutionary FFRE technology could be integrated into an advanced spacecraft. The FFRE combines existent technologies of low density fissioning dust trapped electrostatically and high field strength superconducting magnets for beam management. By organizing the nuclear core material to permit sufficient mean free path for escape of the fission fragments and by collimating the beam, this study showed the FFRE could convert nuclear power to thrust directly and efficiently at a delivered specific impulse of 527,000 seconds. The FY13 study showed that, without increasing the reactor power, adding a neutral gas to the fission fragment beam significantly increased the FFRE thrust through in a manner analogous to a jet engine afterburner. This frictional interaction of gas and beam resulted in an engine that continuously produced 1000 pound force of thrust at a delivered impulse of 32,000 seconds, thereby reducing the currently studied DRM 5 round trip mission to Mars from 3 years to 260 days. By decreasing the gas addition, this same engine can be tailored for much lower thrust at much higher impulse to match missions to more distant destinations. These studies created host spacecraft concepts configured for manned round trip journeys. While the

  18. A Comparison of Learning Technologies for Teaching Spacecraft Software Development

    Science.gov (United States)

    Straub, Jeremy

    2014-01-01

    The development of software for spacecraft represents a particular challenge and is, in many ways, a worst case scenario from a design perspective. Spacecraft software must be "bulletproof" and operate for extended periods of time without user intervention. If the software fails, it cannot be manually serviced. Software failure may…

  19. A Comparison of Learning Technologies for Teaching Spacecraft Software Development

    Science.gov (United States)

    Straub, Jeremy

    2014-01-01

    The development of software for spacecraft represents a particular challenge and is, in many ways, a worst case scenario from a design perspective. Spacecraft software must be "bulletproof" and operate for extended periods of time without user intervention. If the software fails, it cannot be manually serviced. Software failure may…

  20. Advanced transportation system study: Manned launch vehicle concepts for two way transportation system payloads to LEO

    Science.gov (United States)

    Duffy, James B.

    1993-12-01

    The purpose of the Advanced Transportation System Study (ATSS) task area 1 study effort is to examine manned launch vehicle booster concepts and two-way cargo transfer and return vehicle concepts to determine which of the many proposed concepts best meets NASA's needs for two-way transportation to low earth orbit. The study identified specific configurations of the normally unmanned, expendable launch vehicles (such as the National Launch System family) necessary to fly manned payloads. These launch vehicle configurations were then analyzed to determine the integrated booster/spacecraft performance, operations, reliability, and cost characteristics for the payload delivery and return mission. Design impacts to the expendable launch vehicles which would be required to perform the manned payload delivery mission were also identified. These impacts included the implications of applying NASA's man-rating requirements, as well as any mission or payload unique impacts. The booster concepts evaluated included the National Launch System (NLS) family of expendable vehicles and several variations of the NLS reference configurations to deliver larger manned payload concepts (such as the crew logistics vehicle (CLV) proposed by NASA JSC). Advanced, clean sheet concepts such as an F-1A engine derived liquid rocket booster (LRB), the single stage to orbit rocket, and a NASP-derived aerospace plane were also included in the study effort. Existing expendable launch vehicles such as the Titan 4, Ariane 5, Energia, and Proton were also examined. Although several manned payload concepts were considered in the analyses, the reference manned payload was the NASA Langley Research Center's HL-20 version of the personnel launch system (PLS). A scaled up version of the PLS for combined crew/cargo delivery capability, the HL-42 configuration, was also included in the analyses of cargo transfer and return vehicle (CTRV) booster concepts. In addition to strictly manned payloads, two-way cargo

  1. Handling Qualities Implications for Crewed Spacecraft Operations

    Science.gov (United States)

    Bailey, Randall E.; Jackson, E. Bruce; Arthur, J. J.

    2012-01-01

    Abstract Handling qualities embody those qualities or characteristics of an aircraft that govern the ease and precision with which a pilot is able to perform the tasks required in support of an aircraft role. These same qualities are as critical, if not more so, in the operation of spacecraft. A research, development, test, and evaluation process was put into effect to identify, understand, and interpret the engineering and human factors principles which govern the pilot-vehicle dynamic system as they pertain to space exploration missions and tasks. Toward this objective, piloted simulations were conducted at the NASA Langley Research Center and Ames Research Center for earth-orbit proximity operations and docking and lunar landing. These works provide broad guidelines for the design of spacecraft to exhibit excellent handling characteristics. In particular, this work demonstrates how handling qualities include much more than just stability and control characteristics of a spacecraft or aircraft. Handling qualities are affected by all aspects of the pilot-vehicle dynamic system, including the motion, visual and aural cues of the vehicle response as the pilot performs the required operation or task. A holistic approach to spacecraft design, including the use of manual control, automatic control, and pilot intervention/supervision is described. The handling qualities implications of design decisions are demonstrated using these pilot-in-the-loop evaluations of docking operations and lunar landings.

  2. Bounding Extreme Spacecraft Charging in the Lunar Environment

    Science.gov (United States)

    Minow, Joseph I.; Parker, Linda N.

    2008-01-01

    Robotic and manned spacecraft from the Apollo era demonstrated that the lunar surface in daylight will charge to positive potentials of a few tens of volts because the photoelectron current dominates the charging process. In contrast, potentials of the lunar surface in darkness which were predicted to be on the order of a hundred volts negative in the Apollo era have been shown more recently to reach values of a few hundred volts negative with extremes on the order of a few kilovolts. The recent measurements of night time lunar surface potentials are based on electron beams in the Lunar Prospector Electron Reflectometer data sets interpreted as evidence for secondary electrons generated on the lunar surface accelerated through a plasma sheath from a negatively charged lunar surface. The spacecraft potential was not evaluated in these observations and therefore represents a lower limit to the magnitude of the lunar negative surface potential. This paper will describe a method for obtaining bounds on the magnitude of lunar surface potentials from spacecraft measurements in low lunar orbit based on estimates of the spacecraft potential. We first use Nascap-2k surface charging analyses to evaluate potentials of spacecraft in low lunar orbit and then include the potential drops between the ambient space environment and the spacecraft to the potential drop between the lunar surface and the ambient space environment to estimate the lunar surface potential from the satellite measurements.

  3. NEAR Shoemaker spacecraft mission operations

    Science.gov (United States)

    Holdridge, Mark E.

    2002-01-01

    On 12 February 2001, Near Earth Asteroid Rendezvous (NEAR) Shoemaker became the first spacecraft to land on a small body, 433 Eros. Prior to that historic event, NEAR was the first-ever orbital mission about an asteroid. The mission presented general challenges associated with other planetary space missions as well as challenges unique to an inaugural mission around a small body. The NEAR team performed this operations feat with processes and tools developed during the 4-year-long cruise to Eros. Adding to the success of this historic mission was the cooperation among the NEAR science, navigation, guidance and control, mission design, and software teams. With clearly defined team roles, overlaps in responsibilities were minimized, as were the associated costs. This article discusses the processes and systems developed at APL that enabled the success of NEAR mission operations.

  4. Spacecraft Water Exposure Guidelines (SWEGs)

    Science.gov (United States)

    James, John T.

    2008-01-01

    As the protection of crew health is a primary focus of the National Aeronautics and Space Administration, the Space and Life Sciences Directorate (SLSD) is vigilant in setting potable water limits for spaceflight that are health protective. Additional it is important that exposure limits not be set so stringently that water purification systems are unnecessarily over designed. With these considerations in mind, NASA has partnered with the National Research Council on Toxicology (NRCCOT) to develop spacecraft water exposure guidelines (SWEGs) for application in spaceflight systems. Based on documented guidance (NRC, 2000) NASA has established 28 SWEGs for chemical components that are particularly relevant to water systems on the International Space Station, the Shuttle and looking forward to Constellation.

  5. Manned Flight Simulator (MFS)

    Data.gov (United States)

    Federal Laboratory Consortium — The Aircraft Simulation Division, home to the Manned Flight Simulator (MFS), provides real-time, high fidelity, hardware-in-the-loop flight simulation capabilities...

  6. Manned systems technology discipline

    Science.gov (United States)

    Bretoi, Remus

    1990-01-01

    Viewgraphs on manned systems technology discipline for Space Station Freedom are presented. Topics covered include: crew-systems interfaces and interactions; crew training; on-board systems maintenance and support; habitability and environment; and computational human factors.

  7. Rekordhind Man Ray eest

    Index Scriptorium Estoniae

    1998-01-01

    Ameerika sürrealistliku fotograafi Man Ray 1926. a. Pariisis pildistatud foto 'Must ja valge, Pariis (positiiv ja negatiiv)', mis kujutab Ray armukese Kiki de Montparnasse'i portreed, maksis New Yorgi fotooksjonil 7, 3 miljonit Eesti krooni

  8. Rekordhind Man Ray eest

    Index Scriptorium Estoniae

    1998-01-01

    Ameerika sürrealistliku fotograafi Man Ray 1926. a. Pariisis pildistatud foto 'Must ja valge, Pariis (positiiv ja negatiiv)', mis kujutab Ray armukese Kiki de Montparnasse'i portreed, maksis New Yorgi fotooksjonil 7, 3 miljonit Eesti krooni

  9. Man & Sound Environment 2010.

    OpenAIRE

    2010-01-01

    Proceedings to the conference "Man and Sound Environment 2010" arranged by The sound Envirnment Center at Lund university. Ulf Landström, Swedish Noise Research Network & Frans Mossberg The Sound Environment Centre at Lund university. CONTENTS: Preface – Symposium “Man and Sound Environment 2010” The prevalence of noise problems. Gunn Marit Aasvang, Norwegian Institute of Public Health, Department of Environmental Medicine, Nydalen, Oslo, Norway Effects of ...

  10. 曼型储气柜的防雷接地设计%Lightning Protection & grounding Design of M.A.N Gasholder

    Institute of Scientific and Technical Information of China (English)

    侯彪

    2015-01-01

    That the M.A.N gasholder belongs to the second lightning protection building was clarified, lightning protection parameters and countermeasures introduced, and the reason that the internal piston does not produce and accumulate static electricity has been given as well.%明确了曼型储气柜属于第二类防雷建筑物,介绍了相应的雷电参数和防雷措施,并给出了曼型储气柜内部活塞不会产生和积聚静电的理由。

  11. The Near Earth Object Scout Spacecraft: A Low Cost Approach to in-situ Characterization of the NEO Population

    Science.gov (United States)

    Koontz, Steven L.; Condon, Gerald; Graham, Lee; Bevilacqua, Ricardo

    2014-01-01

    In this paper we describe a micro/nano satellite spacecraft and a supporting mission profile and architecture designed to enable preliminary in-situ characterization of a significant number of Near Earth Objects (NEOs) at reasonable cost. The spacecraft will be referred to as the NEO Scout. NEO Scout spacecraft are to be placed in GTO, GEO, or cis-lunar space as secondary payloads on launch vehicles headed for GTO or beyond and will begin their mission after deployment from the launcher. A distinguishing key feature of the NEO scout system is to design the mission timeline and spacecraft to rendezvous with and land on the target NEOs during close approach to the Earth-Moon system using low-thrust/high- impulse propulsion systems. Mission feasibility and preliminary design analysis are presented along with detailed trajectory calculations. The use of micro/nano satellites in low-cost interplanetary exploration is attracting increasing attention and is the subject of several annual workshops and published design studies (1-4). The NEO population consists of those asteroids and short period comets orbiting the Sun with a perihelion of 1.3 astronomical units or less (5-8). As of July 30, 2013 10065 Near-Earth objects have been discovered. The spin rate, mass, density, surface physical (especially mechanical) properties, composition, and mineralogy of the vast majority of these objects are highly uncertain and the limited available telescopic remote sensing data imply a very diverse population (5-8). In-situ measurements by robotic spacecraft are urgently needed to provide the characterization data needed to support hardware and mission design for more ambitious human and robotic NEO operations. Large numbers of NEOs move into close proximity with the Earth-Moon system every year (9). The JPL Near-Earth Object Human Space Flight Accessible Targets Study (NHATS) (10) has produced detailed mission profile and delta V requirements for various NEO missions ranging from 30

  12. TALON and CRADLE: Systems for the rescue of tumbling spacecraft and astronauts

    Science.gov (United States)

    Idle, Dunning, V

    1991-01-01

    Advanced pressure suit and tool designs are beginning to allow extravehicular astronauts to repair space vehicles and so increase mission life and system reliability. A common spacecraft failure that is a severe challenge to the rescue mission planner is loss of attitude control resulting in tumbling motion. If an extravehicular astronaut flying the Manned Maneuvering Unit (MMU) 'falls' into a tumble, the result could be loss of life. TALON (Tumble Arresting Large Oscillation Nullifier) is a device capable of capturing a target in an uncontrolled three-axis tumble. CRADLE (Concentric Rotating Astronaut Detumble Lifesaving Equipment) is a similar device sized to rescue a suited astronaut. The two rescue vehicles work on the same basic principle. They are structural shells with articulated limbs which can surround a tumbling target and thus align both the chaser and target centers of mass (CM).

  13. An Educational Multimedia Presentation on the Introduction to Spacecraft Charging

    Science.gov (United States)

    Lin, E.; dePayrebrune, M.

    2004-01-01

    Over the last few decades, significant knowledge has been gained in how to protect spacecraft from charging; however, the continuing technical advancement in the design and build of satellites requires on-going effort in the study of spacecraft charging. A situation that we have encountered is that not all satellite designers and builders are familiar with the problem of spacecraft charging. The design of a satellite involves many talented people with diverse backgrounds, ranging from manufacturing and assembly to engineering and program management. The complex design and build of a satellite system requires people with highly specialized skills such that cross-specialization is often not achievable. As a result, designers and builders of satellites are not usually familiar with the problems outside their specialization. This is also true for spacecraft charging. Not everyone is familiar with the definition of spacecraft charging and the damage that spacecraft charging can cause. Understanding the problem is an important first step in getting everyone involved in addressing the appropriate spacecraft charging issues during the satellite design and build phases. To address this important first step, an educational multimedia presentation has been created to inform the general engineering community about the basics of spacecraft charging. The content of this educational presentation is based on relevant published technical papers. The presentation was developed using Macromedia Flash. This software produces a more dynamic learning environment than a typical slide show , resulting in a more effective learning experience. The end result is that the viewer will have learned about the basics of spacecraft charging. This presentation is available to the public through our website, www.dplscience.com, free of charge. Viewers are encouraged to pass this presentation to colleagues within their own work environment. This paper describes the content of the multimedia

  14. 巧用三菱MX Component工具进行三菱PLC-PC人机界面设计%How to ingeniously use the Mitsubishi MX Component tools to design the Mitsubishi PLC-PC man-machine interface

    Institute of Scientific and Technical Information of China (English)

    宋爱民; 刘春莲

    2012-01-01

    With no need to know the details of Mitsubishi PLC communication protocol, the text briefly introduces how to design man-machine interface conveniently by text and picture with the help of the Mitsubishi MX Component and Microsoft Visual Studio tool.%通过文字、图片,简述在不需要详细了解三菱PLC通信协议的情况下,借助三菱MX Component和微软Visual Studio工具,如何很方便地设计出人机界面.

  15. Life in the spacecraft and planetary station.

    Science.gov (United States)

    Adamovich, B A; Nefyodov, Y G; Ushakov, A S; Chizhov, S V

    1968-01-01

    Further exploration of outer space and the solar system, performance of interplanetary flights and establishment of planetary stations necessitate extensive physiological studies and development of reliable life-support systems. When developing the systems, particular attention should be paid to the concept and testing of new processes which can provide a highly efficient regeneration of vitally important materials and decrease the weight of expendables. Of great significance is the establishment of optimal parameters of the environment for long-term manned spaceflights and selection of facilities securing them. The development of new life-support systems should be based on a thorough study of the particular environment, proper selection and physiological and hygienical evaluation of their components. Long duration space missions can be planned from studies on the effects of space flight factors upon the human body to reveal its variability limits under peculiar conditions of the spacecraft or planetary station.

  16. The Simulation Software Development for the ergonomical design of Geographical Position Showing Instrument in Manned Spacecraft%载人航天器地理位置指示器工效学设计仿真软件的研制

    Institute of Scientific and Technical Information of China (English)

    周前祥; 郭华岭; 廖德智

    2000-01-01

    地理位置指示器是载人航天器中重要的控制类显示仪表,对其进行工效学设计使之符合人的信息感知能力和特性,已成为充分发挥航天员作用可靠的技术途径.本文在查阅国内外相关文献的基础上,首先阐述了地理位置指示器的研究现状,基于该仿真软件所在系统的结构,提出其基本设计思想和实现方法.最终研制的地理位置指示器仪表显示界面仿真软件可为实际的工程设计提供一种工效学实验评价手段.

  17. CAS Experiments Onboard Spacecraft Successful

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    @@ The descent module of China's Shenzhou 3 spacecraft returned to Earth on April 1, 2002, one week after the spacecraft was launched at the Jiuquan Satellite Launching Center in Gansu Province. It was the third test flight of a prototype spacecraft expected to carry taikonauts (stemming from the Chinese words for outer space) into space in the near future since the first launch of the Shenzhou (Divine Vessel) series on November 20,1999.

  18. Low-Impact Mating System for Docking Spacecraft

    Science.gov (United States)

    Lewis, James L.; Robertson, Brandan; Carroll, Monty B.; Le, Thang; Morales, Ray

    2008-01-01

    A document describes a low-impact mating system suitable for both docking (mating of two free-flying spacecraft) and berthing (in which a robot arm in one spacecraft positions an object for mating with either spacecraft). The low-impact mating system is fully androgynous: it mates with a copy of itself, i.e., all spacecraft and other objects to be mated are to be equipped with identical copies of the system. This aspect of the design helps to minimize the number of unique parts and to standardize and facilitate mating operations. The system includes a closed-loop feedback control subsystem that actively accommodates misalignments between mating spacecraft, thereby attenuating spacecraft dynamics and mitigating the need for precise advance positioning of the spacecraft. The operational characteristics of the mating system can be easily configured in software, during operation, to enable mating of spacecraft having various masses, center-of-gravity offsets, and closing velocities. The system design provides multi-fault tolerance for critical operations: for example, to ensure unmating at a critical time, a redundant unlatching mechanism and two independent pyrotechnic release subsystems are included.

  19. Distributed Control Architectures for Precision Spacecraft Formations Project

    Data.gov (United States)

    National Aeronautics and Space Administration — LaunchPoint Technologies, Inc. (LaunchPoint) proposes to develop synthesis methods and design architectures for distributed control systems in precision spacecraft...

  20. Passive Devices for Advanced Fluid Management aboard Spacecraft Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Acute challenges are faced by the designers of fluid systems for spacecraft because of the persistently unfamiliar and unforgiving low-g environment. For example,...

  1. Wireless Data and Power Transfer on Small Spacecraft Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Achieving low-cost space missions implies lowering all phases of mission development, including spacecraft design, assembly, integration and test. The concept of the...

  2. Aerogel Insulation for the Thermal Protection of Venus Spacecraft Project

    Data.gov (United States)

    National Aeronautics and Space Administration — One of NASA's primary goals for the next decade is the design, development and launch of a spacecraft aimed at the in-situ exploration of the deep atmosphere and...

  3. Aerogel Insulation for the Thermal Protection of Venus Spacecraft Project

    Data.gov (United States)

    National Aeronautics and Space Administration — One of NASA's primary goals for the next decade is the design, development and launch of a spacecraft aimed at the in-situ exploration of the deep atmosphere and...

  4. Det man hører, er man selv

    DEFF Research Database (Denmark)

    Svømmekjær, Heidi Frank

    2012-01-01

    Katalog til udstillingen "Det man hører, er man selv" på Mediemuseet i Odense 7. september 2012 - 15. januar 2013.......Katalog til udstillingen "Det man hører, er man selv" på Mediemuseet i Odense 7. september 2012 - 15. januar 2013....

  5. Operationally Responsive Spacecraft Subsystem Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Saber Astronautics proposes spacecraft subsystem control software which can autonomously reconfigure avionics for best performance during various mission conditions....

  6. Human Spacecraft Structures Internship

    Science.gov (United States)

    Bhakta, Kush

    2017-01-01

    DSG will be placed in halo orbit around themoon- Platform for international/commercialpartners to explore lunar surface- Testbed for technologies needed toexplore Mars• Habitat module used to house up to 4crew members aboard the DSG- Launched on EM-3- Placed inside SLS fairing Habitat Module - Task Habitat Finite Element Model Re-modeled entire structure in NX2) Used Beam and Shell elements torepresent the pressure vessel structure3) Created a point cloud of centers of massfor mass components- Can now inspect local moments andinertias for thrust ring application8/ Habitat Structure – Docking Analysis Problem: Artificial Gravity may be necessary forastronaut health in deep spaceGoal: develop concepts that show how artificialgravity might be incorporated into a spacecraft inthe near term Orion Window Radiant Heat Testing.

  7. Spacecraft rendezvous and docking

    DEFF Research Database (Denmark)

    Jørgensen, John Leif

    1999-01-01

    The phenomenons and problems encountered when a rendezvous manoeuvre, and possible docking, of two spacecrafts has to be performed, have been the topic for numerous studies, and, details of a variety of scenarios has been analysed. So far, all solutions that has been brought into realization has...... been based entirely on direct human supervision and control. This paper describes a vision-based system and methodology, that autonomously generates accurate guidance information that may assist a human operator in performing the tasks associated with both the rendezvous and docking navigation...... relative pose information to assist the human operator during the docking phase. The closed loop and operator assistance performance of the system have been assessed using a test bench including human operator, navigation module and high fidelity visualization module. The tests performed verified...

  8. Requirements for the appearance and basic design parameters of a micro-rocket system meant for launching nano-, pico, and femtoscale spacecraft

    Science.gov (United States)

    Daniluk, A. Yu.; Klyushnikov, V. Yu.; Kuznetsov, I. I.; Osadchenko, A. S.

    2016-12-01

    The paper proposes a concept of a microrocket system meant for the injection of nano-, pico-, and femtoscale satellites into near-Earth orbit. Requirements for the appearance and basic design parameters of the micro-rocket system are substantiated. Characteristics of possible prototypes and analogues of this system are analyzed.

  9. 单粒子效应对飞行器的影响分析及防护技术%Single event effect analysis on the spacecraft and the technique designed in the protection

    Institute of Scientific and Technical Information of China (English)

    冯颖; 刘忠健

    2011-01-01

    This paper introduced the space environment conditions faced by the spacecraft when it is flying,and analyzed the effect to security of flying aircraft from earth radiation belt, Milky Way universal line and the sun universal line in the high energy particle radiation environment; we analyzed the type of single particle failure theory of the micro-electricity component parts such as single particle invert, Single particle lucking, single particle functional discontinue and single particle instantaneous impulse, etc. The paper pointed the method to improve the protection technique of the spacecraft, and applied a reference for the related technical design and test carried out,%阐述了航天飞行器运行过程中面临的空间环境条件,分析了高能粒子辐射环境中的地球辐射带、银河宇宙线和太阳宇宙线对飞行器运行安全的影响;对单粒子翻转、单粒子锁定、单粒子功能中断、单粒子烧毁事件、单粒子瞬态脉冲等类型的微电子器件单粒子效应失效机理进行了分析,提出了提高飞行器抗空间单粒子效应的防护技术,为开展相关技术设计和试验提供参考.

  10. Computer memory power control for the Galileo spacecraft

    Science.gov (United States)

    Detwiler, R. C.

    1983-01-01

    The developmental history, major design drives, and final topology of the computer memory power system on the Galileo spacecraft are described. A unique method of generating memory backup power directly from the fault current drawn during a spacecraft power overload or fault condition allows this system to provide continuous memory power. This concept provides a unique solution to the problem of volatile memory loss without the use of a battery of other large energy storage elements usually associated with uninterrupted power supply designs.

  11. 轮腿式可移动载人月面着陆器概念设想%Conceptual Design of Manned Lunar Lander with Wheel-Legged Mobile System

    Institute of Scientific and Technical Information of China (English)

    张志贤; 梁鲁; 果琳丽; 叶培建

    2016-01-01

    In order to expend the maneuvering range and enhance the capability of lunar explora⁃tion, the conceptual design of manned lunar lander with wheel⁃legged mobile system was presented. The design combined the capabilities of lunar lander and lunar rover, and it had the advantages of wheeled mobile system to move fast and legged mobile system to cross obstacle effectively. It could perform the missions of lunar landing, ascending, long⁃distance movement, construction and mainte⁃nance of lunar base, so as to meet the needs of manned lunar exploration and lunar base. The key technologies of manned lunar lander with wheel⁃legged mobile system were presented to provide ref⁃erence for further study in the future.%为提高月面探测的机动范围和探测能力,提出了一种新型轮腿式可移动载人月面着陆器方案设想,综合载人月面着陆器和月球车的能力,具备轮式高速移动和腿式高效避障的优点,支持月面着陆和起飞任务的执行,支持较大范围的机动作业,支持月球基地构建和运营,满足载人登月以及月球基地任务的应用需求;提出了轮腿式可移动载人月面着陆器所涉及的关键技术,可作为后续开展深入研究的参考。

  12. Analysis of IP MAN Group Customers Design and Evolution of Multi-service Bearer Technology:Taking Jinan MAN Design as an Example%IP城域网对集团客户多业务承载的设计和演进技术浅析——以济南城域网设计为例

    Institute of Scientific and Technical Information of China (English)

    韩子岩

    2013-01-01

    本文将就集团客户多业务在IP化的城域网这一运营商最为倚重的业务传送平台的承载以及管理为切入点进行分析和论述,研究一种在运营商转型期的IP城域网重点客户综合业务运营的新方式.通过对当前城域网的客户群进行宏观分析,提出了城域网客户群定位思路;同时,在对当前城域网市场业务需求进行宏观分析后,提出了比较清晰的业务定位,对转型期电信运营商宽带城域网规划建设具有较强的策略指导意义.%This article presents a Group customers multiservice in IP MAN which the operators most rely on the business transfer platform for carrying as well as management, and studies a new way of IP MAN key customers in operators transition. By macroscopic analysis of the current MAN customer groups, the positioning ideas of MAN customer groups were presented, meanwhile, business positioning was proposed after analyzing macroscopic analysis of MAN market business needs, which has a stronger strategic significance for telecom operators broadband MAN planning and construction of transitional period.

  13. Safety and mission capabilities of manned launch vehicles

    Science.gov (United States)

    Utz, H.; Hornik, A.; Sax, H.; Loetzerich, K.

    In this paper we compare and discuss the safety of vertical launched manned spacecraft: capsules as well as winged vehicles. As examples we use HERMES and a manned capsule suitable for ARIANE 5. In the calculations we use ARIANE 5 as launcher for the compared vehicles. The installation of safety and rescue systems like ejection seats or rescue capsules always leads to additional weight and usually causes a reduction of payload capability. Due to relatively low launching rates it is hard to obtain exact safety data of manned space vehicles and launchers. Therefore we discuss the relative safety gains of different rescue systems by investigating their properties, such as mission capabilities, weight and operational aspects. We also consider the advantages of these rescue systems for the safety of manned spacecraft. The main criterion of our comparison is the payload that each type of manned vehicle is able to transport in LEO under nearly equal safety conditions during ascent - i.e., by installing comparable rescue systems. Capsules offer a better payload capability then winged launch vehicles. The advantages of winged launch vehicles must be paid for by essential loss of margins for additional safety equipment. Operational aspects like mision abort during ascent and payload accommodation are also included in this comparison.

  14. The Problem Most Be Over Looked in the Man Walking Residential Design%上人住宅设计容易忽略的一个问题

    Institute of Scientific and Technical Information of China (English)

    郑玉庆

    2012-01-01

      The man walking roof is very common in a multi-storey residential. The reversed beams are the structural measures of roofing waterproofing.But the mismatch between the height of the reversed beam and the roof insulation layer may lead to the failure of the reversed beam, and thus resulting in residential water seepage.%  上人屋面在多层住宅中常见,反梁是屋面防水的构造措施,但反梁高度和屋面保温层的不协调可能导致反梁失效,从而造成住宅渗水。

  15. Designing a zero emissions power switch locomotive

    Energy Technology Data Exchange (ETDEWEB)

    Shapiro, J.; Hines, J. [National Instruments, Austin, TX (United States)

    2009-07-01

    In addition to providing electric power and drinking water in manned spacecraft, fuel cell power plants have provided safe, clean electric power to hospitals, universities and other facilities since the early 1990s. This paper described a zero emissions hydrogen and battery-powered hybrid switching locomotive designed for use in rail, port and military base applications. Designed in partnership with a consortium, the prototype hybrid switching locomotive is comprised of a number of proven commercial technologies and includes a control system developed by National Instruments. New applications for hydrogen fuel cell use in industrial vehicles were also discussed. The new design was scheduled for field testing at the end of 2008.

  16. 交会对接手控工效实验系统设计与实现%Design and Implement of Manned Rendezvous and Docking Ergonomics Experimental System.

    Institute of Scientific and Technical Information of China (English)

    王宝智; 姜国华; 晁建刚; 王宪民; 王羽; 王春慧; 连顺国

    2011-01-01

    Objective To study the influence of graphic, data and drone image displaying character to the precision of manned operation and the influence to the apperceive ability of space and velocity and to the matching of spacecraft control property and manned control ability, an experimental environment is developed.Methods The experimental environment was established with the modeling and simulation of GNC, dynamics, docking mechanism, instrumentation, TV video, and cabin environment, with the configuration of experiment scheme and initial parameters disposal, with the dynamic control of the experiment, as well as with the record and replay of experimental data and video.Results The elements with close relation to RVD ergonomics experimental system were established, consisting of cabin, TV video, motion control, instrumentation display, experiment control human-machine interface and communication stakeout assistant.Conclusion The capability and technical indices of experimental system can satisfy the requirement of ergonomics experiment and has been applied in experiments.%目的 为研究图形、数字和靶标图像显示特征对手控操作精度的影响以及对距离速度感知能力的影响、追踪飞行器控制特性与手控能力匹配性等问题提供实验环境.方法 通过GNC和动力学、对接机构、仪表、电视图像的建模与仿真,座舱及舱载环境模拟,实验方案和初始化信息的可配置、实验动态控制,实验数据图像信息的记录和回放等方法构建实验环境.结果 建立了与交会对接工效学研究紧密相关的座舱及舱载环境、电视图像、运动控制、仪表显示界面、实验控制人机界面和实验通话监视辅助支持等实验系统.结论 实验系统经测试和工效实验验证,各项性能和技术指标达到了研制技术要求和工效学实验要求,已在实验中得到应用.

  17. How Spacecraft Fly Spaceflight Without Formulae

    CERN Document Server

    Swinerd, Graham

    2009-01-01

    About half a century ago a small satellite, Sputnik 1, was launched. The satellite did very little other than to transmit a radio signal to announce its presence in orbit. However, this humble beginning heralded the dawn of the Space Age. Today literally thousands of robotic spacecraft have been launched, many of which have flown to far-flung regions of the Solar System carrying with them the human spirit of scientific discovery and exploration. Numerous other satellites have been launched in orbit around the Earth providing services that support our technological society on the ground. How Spacecraft Fly: Spaceflight Without Formulae by Graham Swinerd focuses on how these spacecraft work. The book opens with a historical perspective of how we have come to understand our Solar System and the Universe. It then progresses through orbital flight, rocket science, the hostile environment within which spacecraft operate, and how they are designed. The concluding chapters give a glimpse of what the 21st century may ...

  18. Symbolism in prehistoric man.

    Science.gov (United States)

    Facchini, F

    2000-12-01

    The aptitude for symbolization, characteristic of man, is revealed not only in artistic representations and funerary practices. It is exhibited by every manifestation of human activity or representation of natural phenomena that assumes or refers to a meaning. We can recognize functional symbolism (tool-making, habitative or food technology), social symbolism, (language and social communication) and spiritual symbolism (funerary practices and artistic expressions). On the basis of these concepts, research into symbolism in prehistoric man allows us to recognize forms of symbolism already in the manifestations of the most ancient humans, starting with Homo habilis (or rudolfensis). Toolmaking, social organization and organization of the territory are oriented toward survival and the life of the family group. They attest to symbolic behaviors and constitute symbolic systems by means of which man expresses himself, lives and transmits his symbolic world. The diverse forms of symbolism are discussed with reference to the different phases of prehistoric humanity.

  19. Man-machine Interface Design for Three Phase Secondary Rectifying Spot Welding Touch Screen%三相次级整流点焊触摸屏人机界面设计

    Institute of Scientific and Technical Information of China (English)

    胡德安; 周勇奇; 陈益平; 缪明学

    2012-01-01

    设计了一种三相次级整流点焊触摸屏人机交互界面,介绍了三相次级整流点焊控制系统结构、触摸屏系统软硬件设计.根据点焊的焊接工艺过程和三相次级整流点焊的特点,通过画图软件CORELDRAW制做了四个触摸屏人机界面,通过触摸屏界面制作软件、串口调试助理软件和程序控制,能方便的对参数进行设置和系统的实时监控.%A three phase secondary rectifying spot welding touch screen man-machine interface was designed, three phase secondary rectifying spot welding control system structure, software and hardware design of touch screen system were introduced. According to the spot welding process and phase secondary rectifying spot welding characteristics, by drawing software CORELDRAW producing four touch screen man-machine interface, by the touch screen interface and manufacturing software, serial debugging assistant software and program control, convenient parameter setting and system monitoring were realized.

  20. Small Spacecraft for Planetary Science

    Science.gov (United States)

    Baker, John; Castillo-Rogez, Julie; Bousquet, Pierre-W.; Vane, Gregg; Komarek, Tomas; Klesh, Andrew

    2016-07-01

    As planetary science continues to explore new and remote regions of the Solar system with comprehensive and more sophisticated payloads, small spacecraft offer the possibility for focused and more affordable science investigations. These small spacecraft or micro spacecraft (electronics, advanced manufacturing for lightweight structures, and innovative propulsion are making it possible to fly much more capable micro spacecraft for planetary exploration. While micro spacecraft, such as CubeSats, offer significant cost reductions with added capability from advancing technologies, the technical challenges for deep space missions are very different than for missions conducted in low Earth orbit. Micro spacecraft must be able to sustain a broad range of planetary environments (i.e., radiations, temperatures, limited power generation) and offer long-range telecommunication performance on a par with science needs. Other capabilities needed for planetary missions, such as fine attitude control and determination, capable computer and data handling, and navigation are being met by technologies currently under development to be flown on CubeSats within the next five years. This paper will discuss how micro spacecraft offer an attractive alternative to accomplish specific science and technology goals and what relevant technologies are needed for these these types of spacecraft. Acknowledgements: Part of this work is being carried out at the Jet Propulsion Laboratory, California Institute of Technology under contract to NASA. Government sponsorship acknowledged.

  1. A Low Cost Spacecraft Architecture for Robotic Lunar Exploration Projects

    Science.gov (United States)

    Lemke, Lawrence G.; Gonzales, Andrew A.

    2006-01-01

    A program of frequent, capable, but affordable lunar robotic missions prior to return of humans to the moon can contribute to the Vision for Space Exploration (VSE) NASA is tasked to execute. The Lunar Reconnaissance Orbiter (LRO) and its secondary payload are scheduled to orbit the moon, and impact it, respectively, in 2008. It is expected that the sequence of missions occurring for approximately the decade after 2008 will place an increasing emphasis on soft landed payloads. These missions are requited to explore intrinsic characteristics of the moon, such as hydrogen distribution in the regolith, and levitated dust, to demonstrate the ability to access and process in-situ resources, and to demonstrate functions critical to supporting human presence, such as automated precision navigation and landing. Additional factors governing the design of spacecraft to accomplish this diverse set of objectives are: operating within a relatively modest funding profile, the need tb visit multiple sites (both polar and equatorial) repeatedly, and to use the current generation of launch vehicles. In the US, this implies use of the Evolved Expendable Launch Vehicles, or EELVs, although this design philosophy may be extended to launch vehicles of other nations, as well. Many of these factors are seemingly inconsistent with each other. For example, the cost of a spacecraft usually increases with mass; therefore the desire to fly frequent, modestly priced spacecraft seems to imply small spacecraft (autonomous navigation and soft landing) also usually increases cost. A strategy for spacecraft design that meets these conflicting requirements is presented. Taken together, spacecraft structure and propulsion subsystems constitute the majority of spacecraft mass; saving development and integration cost on these elements is critical to controlling cost. Therefore, a low cost, modular design for spacecraft structure and propulsion subsystems is presented which may be easily scaled up or

  2. Man - Machine Communication

    CERN Document Server

    Petersen, Peter; Nielsen, Henning

    1984-01-01

    This report describes a Man-to-Machine Communication module which together with a STAC can take care of all operator inputs from the touch-screen, tracker balls and mechanical buttons. The MMC module can also contain a G64 card which could be a GPIB driver but many other G64 cards could be used. The soft-ware services the input devices and makes the results accessible from the CAMAC bus. NODAL functions for the Man Machine Communication is implemented in the STAC and in the ICC.

  3. Bulletproof Black Man

    DEFF Research Database (Denmark)

    Højer, Henrik

    2016-01-01

    Netflix’ kommende serie om den sorte Marvel-helt Luke Cage lander snart – midt i de aktuelle racekonflikter i USA. I GIF-anatomien "Bulletproof Black Man" sætter Henrik Højer serien ind i dens amerikanske kontekst.......Netflix’ kommende serie om den sorte Marvel-helt Luke Cage lander snart – midt i de aktuelle racekonflikter i USA. I GIF-anatomien "Bulletproof Black Man" sætter Henrik Højer serien ind i dens amerikanske kontekst....

  4. Nonlinear Robust Control for Spacecraft Attitude

    Directory of Open Access Journals (Sweden)

    Wang Lina

    2013-07-01

    Full Text Available Nonlinear robust control of the spacecraft attitude with the existence of external disturbances is considered. A robust attitude controller is designed based on the passivity approach the quaternion representation, which introduces the suppression vector of external disturbance into the control law and does not need angular velocity measurement. Stability conditions of the robust attitude controller are given. And the numerical simulation results show the effectiveness of the attitude controller.

  5. Generalized Analysis Tools for Multi-Spacecraft Missions

    Science.gov (United States)

    Chanteur, G. M.

    2011-12-01

    Analysis tools for multi-spacecraft missions like CLUSTER or MMS have been designed since the end of the 90's to estimate gradients of fields or to characterize discontinuities crossed by a cluster of spacecraft. Different approaches have been presented and discussed in the book "Analysis Methods for Multi-Spacecraft Data" published as Scientific Report 001 of the International Space Science Institute in Bern, Switzerland (G. Paschmann and P. Daly Eds., 1998). On one hand the approach using methods of least squares has the advantage to apply to any number of spacecraft [1] but is not convenient to perform analytical computation especially when considering the error analysis. On the other hand the barycentric approach is powerful as it provides simple analytical formulas involving the reciprocal vectors of the tetrahedron [2] but appears limited to clusters of four spacecraft. Moreover the barycentric approach allows to derive theoretical formulas for errors affecting the estimators built from the reciprocal vectors [2,3,4]. Following a first generalization of reciprocal vectors proposed by Vogt et al [4] and despite the present lack of projects with more than four spacecraft we present generalized reciprocal vectors for a cluster made of any number of spacecraft : each spacecraft is given a positive or nul weight. The non-coplanarity of at least four spacecraft with strictly positive weights is a necessary and sufficient condition for this analysis to be enabled. Weights given to spacecraft allow to minimize the influence of some spacecraft if its location or the quality of its data are not appropriate, or simply to extract subsets of spacecraft from the cluster. Estimators presented in [2] are generalized within this new frame except for the error analysis which is still under investigation. References [1] Harvey, C. C.: Spatial Gradients and the Volumetric Tensor, in: Analysis Methods for Multi-Spacecraft Data, G. Paschmann and P. Daly (eds.), pp. 307-322, ISSI

  6. Analyzing Spacecraft Telecommunication Systems

    Science.gov (United States)

    Kordon, Mark; Hanks, David; Gladden, Roy; Wood, Eric

    2004-01-01

    Multi-Mission Telecom Analysis Tool (MMTAT) is a C-language computer program for analyzing proposed spacecraft telecommunication systems. MMTAT utilizes parameterized input and computational models that can be run on standard desktop computers to perform fast and accurate analyses of telecommunication links. MMTAT is easy to use and can easily be integrated with other software applications and run as part of almost any computational simulation. It is distributed as either a stand-alone application program with a graphical user interface or a linkable library with a well-defined set of application programming interface (API) calls. As a stand-alone program, MMTAT provides both textual and graphical output. The graphs make it possible to understand, quickly and easily, how telecommunication performance varies with variations in input parameters. A delimited text file that can be read by any spreadsheet program is generated at the end of each run. The API in the linkable-library form of MMTAT enables the user to control simulation software and to change parameters during a simulation run. Results can be retrieved either at the end of a run or by use of a function call at any time step.

  7. Low-Temperature Spacecraft: Challenges/Opportunities

    Science.gov (United States)

    Dickman, J. E.; Patterson, R. L.; Overton, E.; Hammoud, A. N.; Gerber, S. S.

    2001-01-01

    Imagine sending a spacecraft into deep space that operates at the ambient temperature of its environment rather than hundreds of degrees Kelvin warmer. The average temperature of a spacecraft warmed only by the sun drops from 279 K near the Earth's orbit to 90 K near the orbit of Saturn, and to 44 K near Pluto's orbit. At present, deep space probes struggle to maintain an operating temperature near 300 K for the onboard electronics. To warm the electronics without consuming vast amounts of electrical energy, radioisotope heater units (RHUs) are used in vast numbers. Unfortunately, since RHU are always 'on', an active thermal management system is required to reject the excess heat. A spacecraft designed to operate at cryogenic temperatures and shielded from the sun by a large communication dish or solar cell array could be less complex, lighter, and cheaper than current deep space probes. Before a complete low-temperature spacecraft becomes a reality, there are several challenges to be met. Reliable cryogenic power electronics is one of the major challenges. The Low-Temperature Power Electronics Research Group at NASA Glenn Research Center (GRC) has demonstrated the ability of some commercial off the shelf power electronic components to operate at temperatures approaching that of liquid nitrogen (77 K). Below 77 K, there exists an opportunity for the development of reliable semiconductor power switching technologies other than bulk silicon CMOS. This paper will report on the results of NASA GRC's Low-Temperature Power Electronics Program and discuss the challenges to (opportunities for) the creation of a low-temperature spacecraft.

  8. Play the Man!

    DEFF Research Database (Denmark)

    Edelberg, Peter

    as opposites towards a heterosexual matrimonial ideal wherein men could try to establish a masculine identity. This tendency created new frontiers where homosexuals, 'perverts', 'misfits' and 'freaks' were seen as opposites of the 'real man' in the symbolic world of the early twentieth century....

  9. Hunting the Wild Man

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    Scientists and volunteers plan a new Shennongjia exploration for Bigfoot After being shelved for many years, a plan to search for the wild man in the Shennongjia forestry district is once again under way. This time, scientists want to raise as much as 10 million yuan ($1.6 million) to employ advanced technology and recruit staff worldwide for the project.

  10. Ethology and Man

    Science.gov (United States)

    Biology and Human Affairs, 1971

    1971-01-01

    Reviews four texts and compilations of papers in an effort to assess the relevance of animal behavior studies to anthropology and sociology. Concludes that where a basic element of behavior occurs widely throughout the animal kingdom, especially in the higher mammals and primates, we may expect to find a manifestation in man." Limitations of the…

  11. AUTO PARTS MAN, WORKBOOK.

    Science.gov (United States)

    DOVER, BUEL H.

    THE INFORMATION IN THIS STUDY GUIDE WAS DEVELOPED FOR USE IN THE RELATED TECHNICAL CLASSROOM INSTRUCTION PHASE OF THE AUTO PARTS MAN APPRENTICE TRAINING PROGRAM. THE MATERIAL WAS PLANNED UNDER THE DIRECTION OF THE STATE EDUCATIONAL ADVISORY COMMITTEE FOR THE AUTOMOTIVE TRADE. THE UNITS ARE (1) SCOPE AND OPPORTUNITY, (2) AREAS OF RESPONSIBILITY,…

  12. Reference Man anatomical model

    Energy Technology Data Exchange (ETDEWEB)

    Cristy, M.

    1994-10-01

    The 70-kg Standard Man or Reference Man has been used in physiological models since at least the 1920s to represent adult males. It came into use in radiation protection in the late 1940s and was developed extensively during the 1950s and used by the International Commission on Radiological Protection (ICRP) in its Publication 2 in 1959. The current Reference Man for Purposes of Radiation Protection is a monumental book published in 1975 by the ICRP as ICRP Publication 23. It has a wealth of information useful for radiation dosimetry, including anatomical and physiological data, gross and elemental composition of the body and organs and tissues of the body. The anatomical data includes specified reference values for an adult male and an adult female. Other reference values are primarily for the adult male. The anatomical data include much data on fetuses and children, although reference values are not established. There is an ICRP task group currently working on revising selected parts of the Reference Man document.

  13. Man--Society--Technology.

    Science.gov (United States)

    Taxis, Linda A., Ed.

    The 32nd annual American Industrial Arts Association (AIAA) Convention was held in Louisville in 1970. Topics for the AIAA general session addresses were: (1) "Industrial Arts--The Blender Between Social Form and Technical Function," (2) "Technology and Society: Present and Future Challenges," (3) "A Student-Oriented Industrial Arts," (4) "Man:…

  14. Constructing EuroMan

    DEFF Research Database (Denmark)

    Sandberg, Marie; Andersen, Dorte

    2008-01-01

    Regionalism. In the first two parts of the article, this connection is analysed in detail. In the last part, we will illustrate how EuroMan is enacted in the Spanish region Catalonia and in the border town Görlitz-Zgorzelec in the Polish-German borderland. These two examples have been made possible...

  15. TTEthernet for Integrated Spacecraft Networks

    Science.gov (United States)

    Loveless, Andrew

    2015-01-01

    Aerospace projects have traditionally employed federated avionics architectures, in which each computer system is designed to perform one specific function (e.g. navigation). There are obvious downsides to this approach, including excessive weight (from so much computing hardware), and inefficient processor utilization (since modern processors are capable of performing multiple tasks). There has therefore been a push for integrated modular avionics (IMA), in which common computing platforms can be leveraged for different purposes. This consolidation of multiple vehicle functions to shared computing platforms can significantly reduce spacecraft cost, weight, and design complexity. However, the application of IMA principles introduces significant challenges, as the data network must accommodate traffic of mixed criticality and performance levels - potentially all related to the same shared computer hardware. Because individual network technologies are rarely so competent, the development of truly integrated network architectures often proves unreasonable. Several different types of networks are utilized - each suited to support a specific vehicle function. Critical functions are typically driven by precise timing loops, requiring networks with strict guarantees regarding message latency (i.e. determinism) and fault-tolerance. Alternatively, non-critical systems generally employ data networks prioritizing flexibility and high performance over reliable operation. Switched Ethernet has seen widespread success filling this role in terrestrial applications. Its high speed, flexibility, and the availability of inexpensive commercial off-the-shelf (COTS) components make it desirable for inclusion in spacecraft platforms. Basic Ethernet configurations have been incorporated into several preexisting aerospace projects, including both the Space Shuttle and International Space Station (ISS). However, classical switched Ethernet cannot provide the high level of network

  16. An Advanced Neutron Spectrometer for Future Manned Exploration Missions

    Science.gov (United States)

    Christl, Mark; Apple, Jeffrey A.; Cox, Mark D.; Dietz, Kurtis L.; Dobson, Christopher C.; Gibson, Brian F.; Howard, David E.; Jackson, Amanda C.; Kayatin, Mathew J.; Kuznetsov, Evgeny N.; Norwood, Joseph K.; Merril, Garrick W.; Watts, John W.; Sabra, Mohammad S.; Smith, Dennis A.; Rodriquez-Otero, Miguel A.

    2014-01-01

    An Advanced Neutron Spectrometer (ANS) is being developed to support future manned exploration missions. This new instrument uses a refined gate and capture technique that significantly improves the identification of neutrons in mixed radiation fields found in spacecraft, habitats and on planetary surfaces. The new instrument is a composite scintillator comprised of PVT loaded with litium-6 glass scintillators. We will describe the detection concept and show preliminary results from laboratory tests and exposures at particle accelerators

  17. An embedded man-machine interface design of full digital resistance welding machine%一种嵌入式全数字化电阻焊机人机界面的设计

    Institute of Scientific and Technical Information of China (English)

    张振法; 王剑; 吴玉香; 田联房

    2012-01-01

    The design of man -machine interface was an important part of the full -digital high -current intermediate -frequency inverter resistance welding machine. For the development needs of current domestic welding machine, a visualization graphical man-machine interaction interface system was designed based on WinCE embedded operating system in the paper. The MFC of EVC++4.0 and SQLite database was used to overall development design and unified management of the welding machine data in the interface system, and it also could communicate with the lower machine DSP via RS232 or network. Extensive testing showed that the interface system could achieve user rights management, multiple welding controller management, basic specifications and parameter settings, spot control and real-time monitoring sampling etc. Also, it could be easy to operate and had powerful function and strong real-time. A new method was provided for the man-machine interface design of welding machine with embedded WinCE system.%人机交互界面设计是全数字化大电流中频逆变电阻焊机研究的一个重要组成部分.针对当前国内电焊机的发展需求,设计了一款基于WinCE嵌入式操作系统的可视化图形人杌交互界面系统.该界面系统采用EVC++4.0中的MFC进行总体开发设计,利用数椐库SQLite对焊机数据进行统一管理,并能通过RS232或网络与下位机DSP进行通信.通过大量的测试表明,界面能很好地实现焊机用户权限管理、多焊机控制器管理、基本规范与参数设置、打点控制及实时监控采样等功能,操作方便、功能强大、实时性强.采用嵌入式WinCE系统,为电焊杌人机界面的设计提供了一种新方法.

  18. Streamlined Modeling for Characterizing Spacecraft Anomalous Behavior

    Science.gov (United States)

    Klem, B.; Swann, D.

    2011-09-01

    Anomalous behavior of on-orbit spacecraft can often be detected using passive, remote sensors which measure electro-optical signatures that vary in time and spectral content. Analysts responsible for assessing spacecraft operational status and detecting detrimental anomalies using non-resolved imaging sensors are often presented with various sensing and identification issues. Modeling and measuring spacecraft self emission and reflected radiant intensity when the radiation patterns exhibit a time varying reflective glint superimposed on an underlying diffuse signal contribute to assessment of spacecraft behavior in two ways: (1) providing information on body component orientation and attitude; and, (2) detecting changes in surface material properties due to the space environment. Simple convex and cube-shaped spacecraft, designed to operate without protruding solar panel appendages, may require an enhanced level of preflight characterization to support interpretation of the various physical effects observed during on-orbit monitoring. This paper describes selected portions of the signature database generated using streamlined signature modeling and simulations of basic geometry shapes apparent to non-imaging sensors. With this database, summarization of key observable features for such shapes as spheres, cylinders, flat plates, cones, and cubes in specific spectral bands that include the visible, mid wave, and long wave infrared provide the analyst with input to the decision process algorithms contained in the overall sensing and identification architectures. The models typically utilize baseline materials such as Kapton, paints, aluminum surface end plates, and radiators, along with solar cell representations covering the cylindrical and side portions of the spacecraft. Multiple space and ground-based sensors are assumed to be located at key locations to describe the comprehensive multi-viewing aspect scenarios that can result in significant specular reflection

  19. Time Frequency Analysis of Spacecraft Propellant Tank Spinning Slosh

    Science.gov (United States)

    Green, Steven T.; Burkey, Russell C.; Sudermann, James

    2010-01-01

    Many spacecraft are designed to spin about an axis along the flight path as a means of stabilizing the attitude of the spacecraft via gyroscopic stiffness. Because of the assembly requirements of the spacecraft and the launch vehicle, these spacecraft often spin about an axis corresponding to a minor moment of inertia. In such a case, any perturbation of the spin axis will cause sloshing motions in the liquid propellant tanks that will eventually dissipate enough kinetic energy to cause the spin axis nutation (wobble) to grow further. This spinning slosh and resultant nutation growth is a primary design problem of spinning spacecraft and one that is not easily solved by analysis or simulation only. Testing remains the surest way to address spacecraft nutation growth. This paper describes a test method and data analysis technique that reveal the resonant frequency and damping behavior of liquid motions in a spinning tank. Slosh resonant frequency and damping characteristics are necessary inputs to any accurate numerical dynamic simulation of the spacecraft.

  20. Conceptual design of a crewed reusable space transportation system aimed at parabolic flights: stakeholder analysis, mission concept selection, and spacecraft architecture definition

    Science.gov (United States)

    Fusaro, Roberta; Viola, Nicole; Fenoglio, Franco; Santoro, Francesco

    2017-03-01

    This paper proposes a methodology to derive architectures and operational concepts for future earth-to-orbit and sub-orbital transportation systems. In particular, at first, it describes the activity flow, methods, and tools leading to the generation of a wide range of alternative solutions to meet the established goal. Subsequently, the methodology allows selecting a small number of feasible options among which the optimal solution can be found. For the sake of clarity, the first part of the paper describes the methodology from a theoretical point of view, while the second part proposes the selection of mission concepts and of a proper transportation system aimed at sub-orbital parabolic flights. Starting from a detailed analysis of the stakeholders and their needs, the major objectives of the mission have been derived. Then, following a system engineering approach, functional analysis tools as well as concept of operations techniques allowed generating a very high number of possible ways to accomplish the envisaged goals. After a preliminary pruning activity, aimed at defining the feasibility of these concepts, more detailed analyses have been carried out. Going on through the procedure, the designer should move from qualitative to quantitative evaluations, and for this reason, to support the trade-off analysis, an ad-hoc built-in mission simulation software has been exploited. This support tool aims at estimating major mission drivers (mass, heat loads, manoeuverability, earth visibility, and volumetric efficiency) as well as proving the feasibility of the concepts. Other crucial and multi-domain mission drivers, such as complexity, innovation level, and safety have been evaluated through the other appropriate analyses. Eventually, one single mission concept has been selected and detailed in terms of layout, systems, and sub-systems, highlighting also logistic, safety, and maintainability aspects.

  1. Spacecraft redesign to reduce microphonic response of a VCO component

    Science.gov (United States)

    Strain, J. C.; Mittal, S.

    1988-01-01

    Reaction wheel vibration was found to induce out of specification sidebands on the carrier frequencies of some spacecraft components containing mechanical voltage control oscillators (VCOs). Concurrent investigations were performed to redesign the VCOs to reduce their response to the wheel vibration, and to design a reaction wheel isolation system to reduce the vibration input to the affected components. Component level tests indicated that both efforts provided viable solutions. The redesigned VCO will be incorporated into future spacecraft in the series, while affected spacecraft already in production will be retrofitted with the reaction wheel isolation system.

  2. Instrumentation Requirements for the Engineering Evaluation of Nuclear-Electric Spacecraft

    Science.gov (United States)

    Apel, W. C.

    1961-01-01

    Spacecraft employing nuclear-electric propulsion are being proposed for missions to Venus and distances beyond. These spacecraft utilize a nuclear reactor to provide thermal energy to a turboalternator which generates electric power for an ion motor and the other spacecraft systems. This Report discusses the instrumentation and communications system needed to evaluate a nuclear-electric spacecraft in flight, along with the problems expected. A representative spacecraft design is presented, which leads to a discussion of the instrumentation needed to evaluate such a spacecraft. A basic communications system is considered for transmitting the spacecraft data to Earth. The instrumentation and communications system, as well as all electronic systems on a nuclear-electric spacecraft, will be operating in high temperature and nuclear-radiation environments. The problems caused by these environments are discussed, and possible solutions are offered.

  3. Instrumentation Requirements for the Engineering Evaluation of Nuclear-Electric Spacecraft

    Science.gov (United States)

    Apel, W. C.

    1961-01-01

    Spacecraft employing nuclear-electric propulsion are being proposed for missions to Venus and distances beyond. These spacecraft utilize a nuclear reactor to provide thermal energy to a turboalternator which generates electric power for an ion motor and the other spacecraft systems. This Report discusses the instrumentation and communications system needed to evaluate a nuclear-electric spacecraft in flight, along with the problems expected. A representative spacecraft design is presented, which leads to a discussion of the instrumentation needed to evaluate such a spacecraft. A basic communications system is considered for transmitting the spacecraft data to Earth. The instrumentation and communications system, as well as all electronic systems on a nuclear-electric spacecraft, will be operating in high temperature and nuclear-radiation environments. The problems caused by these environments are discussed, and possible solutions are offered.

  4. Software for Automated Generation of Reduced Thermal Models for Spacecraft Thermal Control Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Thermal analysis is increasingly used in thermal engineering of spacecrafts in every stage, including design, test, and ground-operation simulation. Current...

  5. Spacecraft charging requirements and engineering issues

    Science.gov (United States)

    Garrett, Henry B.; Whittlesey, Albert C.

    2006-01-01

    An effort is currently underway to recast and combine two NASA guidelines for mitigating the effects of spacecraft charging and electrostatic discharge on spacecraft. The task has the goal of taking the existing NASA guidelines for preventing surface electrostatic charging, NASA-TP-2361 (Purvis et al., 1984), and internal electrostatic charging, NASAHDBK 4002 (Whittlesey, 1999), and bringing them up to date with recent laboratory and onorbit findings. This paper will describe the status of those on-going efforts to combine and update the two guidelines. Reasons for the upgrades will be presented, including new subject material for which there is now a greater understanding or a greater need which changes satellite design procedures, or both. There will be an emphasis on the proposed contents and on the differences and similarities between surface and internal charging mitigation techniques. In addition, the mitigation requirements that can be derived from the combined handbook will be discussed with emphasis on how they might affect the engineering design and testing of future spacecraft.

  6. Spacecraft charging requirements and engineering issues

    Science.gov (United States)

    Garrett, Henry B.; Whittlesey, Albert C.

    2006-01-01

    An effort is currently underway to recast and combine two NASA guidelines for mitigating the effects of spacecraft charging and electrostatic discharge on spacecraft. The task has the goal of taking the existing NASA guidelines for preventing surface electrostatic charging, NASA-TP-2361 (Purvis et al., 1984), and internal electrostatic charging, NASAHDBK 4002 (Whittlesey, 1999), and bringing them up to date with recent laboratory and onorbit findings. This paper will describe the status of those on-going efforts to combine and update the two guidelines. Reasons for the upgrades will be presented, including new subject material for which there is now a greater understanding or a greater need which changes satellite design procedures, or both. There will be an emphasis on the proposed contents and on the differences and similarities between surface and internal charging mitigation techniques. In addition, the mitigation requirements that can be derived from the combined handbook will be discussed with emphasis on how they might affect the engineering design and testing of future spacecraft.

  7. Submarines, spacecraft and exhaled breath.

    Science.gov (United States)

    Pleil, Joachim D; Hansel, Armin

    2012-03-01

    Foreword The International Association of Breath Research (IABR) meetings are an eclectic gathering of researchers in the medical, environmental and instrumentation fields; our focus is on human health as assessed by the measurement and interpretation of trace chemicals in human exhaled breath. What may have escaped our notice is a complementary field of research that explores the creation and maintenance of artificial atmospheres practised by the submarine air monitoring and air purification (SAMAP) community. SAMAP is comprised of manufacturers, researchers and medical professionals dealing with the engineering and instrumentation to support human life in submarines and spacecraft (including shuttlecraft and manned rockets, high-altitude aircraft, and the International Space Station (ISS)). Here, the immediate concerns are short-term survival and long-term health in fairly confined environments where one cannot simply 'open the window' for fresh air. As such, one of the main concerns is air monitoring and the main sources of contamination are CO(2) and other constituents of human exhaled breath. Since the inaugural meeting in 1994 in Adelaide, Australia, SAMAP meetings have been held every two or three years alternating between the North American and European continents. The meetings are organized by Dr Wally Mazurek (a member of IABR) of the Defense Systems Technology Organization (DSTO) of Australia, and individual meetings are co-hosted by the navies of the countries in which they are held. An overriding focus at SAMAP is life support (oxygen availability and carbon dioxide removal). Certainly, other air constituents are also important; for example, the closed environment of a submarine or the ISS can build up contaminants from consumer products, cooking, refrigeration, accidental fires, propulsion and atmosphere maintenance. However, the most immediate concern is sustaining human metabolism: removing exhaled CO(2) and replacing metabolized O(2). Another

  8. Large-Scale Spacecraft Fire Safety Experiments in ISS Resupply Vehicles

    Science.gov (United States)

    Ruff, Gary A.; Urban, David

    2013-01-01

    Our understanding of the fire safety risk in manned spacecraft has been limited by the small scale of the testing we have been able to conduct in low-gravity. Fire growth and spread cannot be expected to scale linearly with sample size so we cannot make accurate predictions of the behavior of realistic scale fires in spacecraft based on the limited low-g testing to date. As a result, spacecraft fire safety protocols are necessarily very conservative and costly. Future crewed missions are expected to be longer in duration than previous exploration missions outside of low-earth orbit and accordingly, more complex in terms of operations, logistics, and safety. This will increase the challenge of ensuring a fire-safe environment for the crew throughout the mission. Based on our fundamental uncertainty of the behavior of fires in low-gravity, the need for realistic scale testing at reduced gravity has been demonstrated. To address this concern, a spacecraft fire safety research project is underway to reduce the uncertainty and risk in the design of spacecraft fire safety systems by testing at nearly full scale in low-gravity. This project is supported by the NASA Advanced Exploration Systems Program Office in the Human Exploration and Operations Mission Directorate. The activity of this project is supported by an international topical team of fire experts from other space agencies to maximize the utility of the data and to ensure the widest possible scrutiny of the concept. The large-scale space flight experiment will be conducted on three missions; each in an Orbital Sciences Corporation Cygnus vehicle after it has deberthed from the ISS. Although the experiment will need to meet rigorous safety requirements to ensure the carrier vehicle does not sustain damage, the absence of a crew allows the fire products to be released into the cabin. The tests will be fully automated with the data downlinked at the conclusion of the test before the Cygnus vehicle reenters the

  9. Fundamentals of spacecraft attitude determination and control

    CERN Document Server

    Markley, F Landis

    2014-01-01

    This book explores topics that are central to the field of spacecraft attitude determination and control. The authors provide rigorous theoretical derivations of significant algorithms accompanied by a generous amount of qualitative discussions of the subject matter. The book documents the development of the important concepts and methods in a manner accessible to practicing engineers, graduate-level engineering students and applied mathematicians. It includes detailed examples from actual mission designs to help ease the transition from theory to practice, and also provides prototype algorithms that are readily available on the author’s website. Subject matter includes both theoretical derivations and practical implementation of spacecraft attitude determination and control systems. It provides detailed derivations for attitude kinematics and dynamics, and provides detailed description of the most widely used attitude parameterization, the quaternion. This title also provides a thorough treatise of attitu...

  10. Potential Spacecraft-to-Spacecraft Radio Observations with EJSM: Wave of the Future? (Invited)

    Science.gov (United States)

    Marouf, E. A.; Tortora, P.; Asmar, S. W.; Folkner, W. M.; Hinson, D.; Iess, L.; Linscott, I. R.; Lorenz, R. D.; Mueller-Wodarg, I. C.

    2010-12-01

    Future active radio observations of planetary and satellite atmospheres and surfaces could significantly benefit form the presence of two or more spacecraft in orbit around a target object. Traditionally, radio occultation and bistatic surface scattering experiments have been conducted using a single spacecraft operating in the Downlink (DL) configuration, with the spacecraft transmitting and at least one Earth-based station receiving. The configuration has the advantage of using powerful ground-based receivers for down-conversion, digitization, and digital recording of large bandwidth data for later off-line processing and analysis. It has the disadvantage of an available free-space signal-to-noise ratio (SNR) limited by the relatively small carrier power (10-20 W) a spacecraft can practically transmit. Recent technological advances in designing small-mass and small-power spacecraft-based digital receivers capable of on-board signal processing could open the door for significant performance improvement compared with the DL configuration. For example, with two spacecraft in orbit instead of one, the smaller distance D between the two spacecraft compared with the distance to Earth can boost achievable free-space SNR by one to three orders of magnitude, depending on D. In addition, richer variability in observation geometry can be captured using spacecraft-to-spacecraft (SC-to-SC) radio occultations and surface scattering. By their nature, traditional DL occultations are confined to the morning and evening terminators. Availability of on-board processing capability also opens the door for conducting Uplink (UL) occultation and bistatic observations, where very large power (> 20 kW) can be transmitted from an Earth-based station, potentially boasting achievable free-space SNR by orders of magnitude, comparable to the SC-to-SC case and much higher than the DL case. The Europa Jupiter System Mission (EJSM) will likely be the first planetary mission to benefit from the

  11. Dynamics and control of Lorentz-augmented spacecraft relative motion

    CERN Document Server

    Yan, Ye; Yang, Yueneng

    2017-01-01

    This book develops a dynamical model of the orbital motion of Lorentz spacecraft in both unperturbed and J2-perturbed environments. It explicitly discusses three kinds of typical space missions involving relative orbital control: spacecraft hovering, rendezvous, and formation flying. Subsequently, it puts forward designs for both open-loop and closed-loop control schemes propelled or augmented by the geomagnetic Lorentz force. These control schemes are entirely novel and represent a significantly departure from previous approaches.

  12. Space Environments and Spacecraft Effects Organization Concept

    Science.gov (United States)

    Edwards, David L.; Burns, Howard D.; Miller, Sharon K.; Porter, Ron; Schneider, Todd A.; Spann, James F.; Xapsos, Michael

    2012-01-01

    The National Aeronautics and Space Administration (NASA) is embarking on a course to expand human presence beyond Low Earth Orbit (LEO) while also expanding its mission to explore the solar system. Destinations such as Near Earth Asteroids (NEA), Mars and its moons, and the outer planets are but a few of the mission targets. Each new destination presents an opportunity to increase our knowledge of the solar system and the unique environments for each mission target. NASA has multiple technical and science discipline areas specializing in specific space environments disciplines that will help serve to enable these missions. To complement these existing discipline areas, a concept is presented focusing on the development of a space environments and spacecraft effects (SENSE) organization. This SENSE organization includes disciplines such as space climate, space weather, natural and induced space environments, effects on spacecraft materials and systems and the transition of research information into application. This space environment and spacecraft effects organization will be composed of Technical Working Groups (TWG). These technical working groups will survey customers and users, generate products, and provide knowledge supporting four functional areas: design environments, engineering effects, operational support, and programmatic support. The four functional areas align with phases in the program mission lifecycle and are briefly described below. Design environments are used primarily in the mission concept and design phases of a program. Engineering effects focuses on the material, component, sub-system and system-level selection and the testing to verify design and operational performance. Operational support provides products based on real time or near real time space weather to mission operators to aid in real time and near-term decision-making. The programmatic support function maintains an interface with the numerous programs within NASA, other federal

  13. Spacecraft Cabin Particulate Monitor Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We have built and tested an optical extinction monitor for the detection of spacecraft cabin particulates. This sensor sensitive to particle sizes ranging from a few...

  14. Spacecraft attitude dynamics and control

    Science.gov (United States)

    Chobotov, Vladimir A.

    This overview of spacecraft dynamics encompasses the fundamentals of kinematics, rigid-body dynamics, linear control theory, orbital environmental effects, and the stability of motion. The theoretical treatment of each issue is complemented by specific references to spacecraft control systems based on spin, dual-spin, three-axis-active, and reaction-wheel methodologies. Also examined are control-moment-gyro, gravity-gradient, and magnetic control systems with attention given to key issues such as nutation damping, separation dynamics of spinning bodies, and tethers. Environmental effects that impinge on the application of spacecraft-attitude dynamics are shown to be important, and consideration is given to gravitation, solar radiation, aerodynamics, and geomagnetics. The publication gives analytical methods for examining the practical implementation of the control techniques as they apply to spacecraft.

  15. Advanced Spacecraft Thermal Modeling Project

    Data.gov (United States)

    National Aeronautics and Space Administration — For spacecraft developers who spend millions to billions of dollars per unit and require 3 to 7 years to deploy, the LoadPath reduced-order (RO) modeling thermal...

  16. Radiation shielding aspects for long manned mission to space: Criteria, survey study, and preliminary model

    Directory of Open Access Journals (Sweden)

    Sztejnberg Manuel

    2006-01-01

    Full Text Available The prospect of manned space missions outside Earth's orbit is limited by the travel time and shielding against cosmic radiation. The chemical rockets currently used in the space program have no hope of propelling a manned vehicle to a far away location such as Mars due to the enormous mass of fuel that would be required. The specific energy available from nuclear fuel is a factor of 106 higher than chemical fuel; it is therefore obvious that nuclear power production in space is a must. On the other hand, recent considerations to send a man to the Moon for a long stay would require a stable, secured and safe source of energy (there is hardly anything beyond nuclear power that would provide a useful and reliably safe sustainable supply of energy. National Aeronautics and Space Administration (NASA anticipates that the mass of a shielding material required for long travel to Mars is the next major design driver. In 2006 NASA identified a need to assess and evaluate potential gaps in existing knowledge and understanding of the level and types of radiation critical to astronauts' health during the long travel to Mars and to start a comprehensive study related to the shielding design of a spacecraft finding the conditions for the mitigation of radiation components contributing to the doses beyond accepted limits. In order to reduce the overall space craft mass, NASA is looking for the novel, multi-purpose and multi-functional materials that will provide effective shielding of the crew and electronics on board. The Laboratory for Neutronics and Geometry Computation in the School of Nuclear Engineering at Purdue University led by Prof. Tatjana Jevremović began in 2004 the analytical evaluations of different lightweight materials. The preliminary results of the design survey study are presented in this paper.

  17. Man Is a Paradox

    Institute of Scientific and Technical Information of China (English)

    王茂娟

    2009-01-01

    In the poem "Always", the author Pablo Neruda employs the first person narration to incisively reveal the paradoxical traits in human nature by exploring man in relation to love. "I" play a role shifting from a calm narrator to a furious one, and the last recovering to a mild one, which offers a multiple visual angle to observe humanity. In sum, by means of continuous changes of my inner feelings in the poem, Pablo Neruda reveals the paradoxical humanity .

  18. First dose in man

    DEFF Research Database (Denmark)

    2011-01-01

    Du er blevet ansat som læge i et lægemiddelfirma med ansvar for planlægning og sikkerhed i fase 1 forsøg. Firmaet har udviklet tre dopamin D2-receptor antagonister til behandling af skizofreni. Lægemidlerne har undergået et omfattende farmakologisk, toksikologisk og farmaceutisk afprøvningsprogra...... fase 1 forsøg alias »First dose in man«....

  19. Biological Individuality of Man

    Science.gov (United States)

    1974-12-01

    RECIPIENT’S CAT * LOO NUMBER Biological Individuality of Man 5 TlrPE OF REPORT a PERIOD COVERED Technical « PERFORMING ORO REPORT...Variability 13 A. Background , 13 B. Slatistictl Approaches to Biological Variability 13 C. Genetic Aspects of Biological Variability . 14 III...ioiological determinants of individuality. Only recently, have genetic infaienccs been investigated and the potentialities for future control of bio

  20. EMMI-Electric solar wind sail facilitated Manned Mars Initiative

    Science.gov (United States)

    Janhunen, Pekka; Merikallio, Sini; Paton, Mark

    2015-08-01

    The novel propellantless electric solar wind sail concept promises efficient low thrust transportation in the Solar System outside Earth's magnetosphere. Combined with asteroid mining to provide water and synthetic cryogenic rocket fuel in orbits of Earth and Mars, possibilities for affordable continuous manned presence on Mars open up. Orbital fuel and water enable reusable bidirectional Earth-Mars vehicles for continuous manned presence on Mars and allow smaller fuel fraction of spacecraft than what is achievable by traditional means. Water can also be used as radiation shielding of the manned compartment, thus reducing the launch mass further. In addition, the presence of fuel in the orbit of Mars provides the option for an all-propulsive landing, thus potentially eliminating issues of heavy heat shields and augmenting the capability of pinpoint landing. With this E-sail enabled scheme, the recurrent cost of continuous bidirectional traffic between Earth and Mars might ultimately approach the recurrent cost of running the International Space Station, ISS.

  1. Teaching Rousseau: Natural Man and Present Existence.

    Science.gov (United States)

    Rice, Daryl H.

    1989-01-01

    Offers an interpretation of Jean-Jacques Rousseau's "Discourse on the Origin and Foundations of Inequality" and provides examples of classroom exercises designed to make Rousseau's ideas and writings accessible to undergraduates. Stresses Rousseau's philosophy on natural man, language, ethics, and society. Includes interpretive…

  2. Teaching Rousseau: Natural Man and Present Existence.

    Science.gov (United States)

    Rice, Daryl H.

    1989-01-01

    Offers an interpretation of Jean-Jacques Rousseau's "Discourse on the Origin and Foundations of Inequality" and provides examples of classroom exercises designed to make Rousseau's ideas and writings accessible to undergraduates. Stresses Rousseau's philosophy on natural man, language, ethics, and society. Includes interpretive references to…

  3. Applying a cloud computing approach to storage architectures for spacecraft

    Science.gov (United States)

    Baldor, Sue A.; Quiroz, Carlos; Wood, Paul

    As sensor technologies, processor speeds, and memory densities increase, spacecraft command, control, processing, and data storage systems have grown in complexity to take advantage of these improvements and expand the possible missions of spacecraft. Spacecraft systems engineers are increasingly looking for novel ways to address this growth in complexity and mitigate associated risks. Looking to conventional computing, many solutions have been executed to solve both the problem of complexity and heterogeneity in systems. In particular, the cloud-based paradigm provides a solution for distributing applications and storage capabilities across multiple platforms. In this paper, we propose utilizing a cloud-like architecture to provide a scalable mechanism for providing mass storage in spacecraft networks that can be reused on multiple spacecraft systems. By presenting a consistent interface to applications and devices that request data to be stored, complex systems designed by multiple organizations may be more readily integrated. Behind the abstraction, the cloud storage capability would manage wear-leveling, power consumption, and other attributes related to the physical memory devices, critical components in any mass storage solution for spacecraft. Our approach employs SpaceWire networks and SpaceWire-capable devices, although the concept could easily be extended to non-heterogeneous networks consisting of multiple spacecraft and potentially the ground segment.

  4. Fourth-order gravity gradient torque of spacecraft orbiting asteroids

    CERN Document Server

    Wang, Yue; Xu, Shijie

    2014-01-01

    The dynamical behavior of spacecraft around asteroids is a key element in design of such missions. An asteroid's irregular shape, non-spherical mass distribution and its rotational sate make the dynamics of spacecraft quite complex. This paper focuses on the gravity gradient torque of spacecraft around non-spherical asteroids. The gravity field of the asteroid is approximated as a 2nd degree and order-gravity field with harmonic coefficients C20 and C22. By introducing the spacecraft's higher-order inertia integrals, a full fourth-order gravity gradient torque model of the spacecraft is established through the gravitational potential derivatives. Our full fourth-order model is more precise than previous fourth-order model due to the consideration of higher-order inertia integrals of the spacecraft. Some interesting conclusions about the gravity gradient torque model are reached. Then a numerical simulation is carried out to verify our model. In the numerical simulation, a special spacecraft consisted of 36 po...

  5. Attitude Analysis and Robust Adaptive Backstepping Sliding Mode Control of Spacecrafts Orbiting Irregular Asteroids

    Directory of Open Access Journals (Sweden)

    Chunhui Liang

    2014-01-01

    Full Text Available Attitude stability analysis and robust control algorithms for spacecrafts orbiting irregular asteroids are investigated in the presence of model uncertainties and external disturbances. Rigid spacecraft nonlinear attitude models are considered and detailed attitude stability analysis of spacecraft subjected to the gravity gradient torque in an irregular central gravity field is included in retrograde orbits and direct orbits using linearized system model. The robust adaptive backstepping sliding mode control laws are designed to make the attitude of the spacecrafts stabilized and responded accurately to the expectation in the presence of disturbances and parametric uncertainties. Numerical simulations are included to illustrate the spacecraft performance obtained using the proposed control laws.

  6. An ultrasonic array sensor for spacecraft leak direction finding.

    Science.gov (United States)

    Holland, Stephen D; Roberts, Ron; Chimenti, D E; Song, Jun Ho

    2006-12-01

    We have developed an ultrasonic array sensor useable for locating air leaks in manned spacecraft and have found that this sensor locates leaks in a 1-m(2) plate to within 2 cm. The sensor consists of a 63-element multiplexed array plus a reference element, all constructed from a single PZT disc and a printed circuit board. Cross-correlations of signals from the array elements with signals from the single reference element provide a measurement of the leak noise passing through the spacecraft skin under the array. A spatial Fourier transform reveals the dominant direction of propagation. Triangulation from multiple sensor locations can be used to find the source of the leak.

  7. Space Weathering Experiments on Spacecraft Materials

    Science.gov (United States)

    Engelhart, D. P.; Cooper, R.; Cowardin, H.; Maxwell, J.; Plis, E.; Ferguson, D.; Barton, D.; Schiefer, S.; Hoffmann, R.

    2017-01-01

    A project to investigate space environment effects on specific materials with interest to remote sensing was initiated in 2016. The goal of the project is to better characterize changes in the optical properties of polymers found in multi-layered spacecraft insulation (MLI) induced by electron bombardment. Previous analysis shows that chemical bonds break and potentially reform when exposed to high energy electrons like those seen in orbit. These chemical changes have been shown to alter a material's optical reflectance, among other material properties. This paper presents the initial experimental results of MLI materials exposed to various fluences of high energy electrons, designed to simulate a portion of the geosynchronous Earth orbit (GEO) space environment. It is shown that the spectral reflectance of some of the tested materials changes as a function of electron dose. These results provide an experimental benchmark for analysis of aging effects on satellite systems which can be used to improve remote sensing and space situational awareness. They also provide preliminary analysis on those materials that are most likely to comprise the high area-to-mass ratio (HAMR) population of space debris in the geosynchronous orbit environment. Finally, the results presented in this paper serve as a proof of concept for simulated environmental aging of spacecraft polymers that should lead to more experiments using a larger subset of spacecraft materials.

  8. Internet Distribution of Spacecraft Telemetry Data

    Science.gov (United States)

    Specht, Ted; Noble, David

    2006-01-01

    Remote Access Multi-mission Processing and Analysis Ground Environment (RAMPAGE) is a Java-language server computer program that enables near-real-time display of spacecraft telemetry data on any authorized client computer that has access to the Internet and is equipped with Web-browser software. In addition to providing a variety of displays of the latest available telemetry data, RAMPAGE can deliver notification of an alarm by electronic mail. Subscribers can then use RAMPAGE displays to determine the state of the spacecraft and formulate a response to the alarm, if necessary. A user can query spacecraft mission data in either binary or comma-separated-value format by use of a Web form or a Practical Extraction and Reporting Language (PERL) script to automate the query process. RAMPAGE runs on Linux and Solaris server computers in the Ground Data System (GDS) of NASA's Jet Propulsion Laboratory and includes components designed specifically to make it compatible with legacy GDS software. The client/server architecture of RAMPAGE and the use of the Java programming language make it possible to utilize a variety of competitive server and client computers, thereby also helping to minimize costs.

  9. Study on Performance of Integration Control by Man and Machine in Stage of Final Approaching for Spaceship Rendezvous and Docking

    Science.gov (United States)

    Zhou, Qianxiang; Liu, Zhongqi

    With the development of manned space technology, space rendezvous and docking (RVD) technology will play a more and more important role. The astronauts’ participation in a final close period of man-machine combination control is an important way of RVD technology. Spacecraft RVD control involves control problem of a total of 12 degrees of freedom (location) and attitude which it relative to the inertial space the orbit. Therefore, in order to reduce the astronauts’ operation load and reduce the security requirements to the ground station and achieve an optimal performance of the whole man-machine system, it is need to study how to design the number of control parameters of astronaut or aircraft automatic control system. In this study, with the laboratory conditions on the ground, a method was put forward to develop an experimental system in which the performance evaluation of spaceship RVD integration control by man and machine could be completed. After the RVD precision requirements were determined, 26 male volunteers aged 20-40 took part in the performance evaluation experiments. The RVD integration control success rates and total thruster ignition time were chosen as evaluation indices. Results show that if less than three RVD parameters control tasks were finished by subject and the rest of parameters control task completed by automation, the RVD success rate would be larger than eighty-eight percent and the fuel consumption would be optimized. In addition, there were two subjects who finished the whole six RVD parameters control tasks by enough train. In conclusion, if the astronauts' role should be integrated into the RVD control, it was suitable for them to finish the heading, pitch and roll control in order to assure the man-machine system high performance. If astronauts were needed to finish all parameter control, two points should be taken into consideration, one was enough fuel and another was enough long operation time.

  10. A multi-spacecraft formation approach to space debris surveillance

    Science.gov (United States)

    Felicetti, Leonard; Emami, M. Reza

    2016-10-01

    This paper proposes a new mission concept devoted to the identification and tracking of space debris through observations made by multiple spacecraft. Specifically, a formation of spacecraft has been designed taking into account the characteristics and requirements of the utilized optical sensors as well as the constraints imposed by sun illumination and visibility conditions. The debris observations are then shared among the team of spacecraft, and processed onboard of a "hosting leader" to estimate the debris motion by means of Kalman filtering techniques. The primary contribution of this paper resides on the application of a distributed coordination architecture, which provides an autonomous and robust ability to dynamically form spacecraft teams once the target has been detected, and to dynamically build a processing network for the orbit determination of space debris. The team performance, in terms of accuracy, readiness and number of the detected objects, is discussed through numerical simulations.

  11. Best Geosynchronous Earth Orbit Daytime Spacecraft Charging Index

    Science.gov (United States)

    Ferguson, D.; Hilmer, R. V.; Davis, V. A.

    2016-12-01

    Recently, the debate on what is the best daytime Geosynchronous Earth Orbit spacecraft charging index has beenreopened. In this paper, the conclusions of one of the recent papers on the subject are verified by comparing Nascap-2k results with charging and fluxes measured on the Spacecraft Charging at the High Altitudes, Intelsat, DefenseSatellite Communications System, and Los Alamos National Laboratory Geosynchronous Earth Orbit satellites. Inaddition, a refined measure of charging is presented as the total thermal electron flux above a certainminimumenergythat is well above the second crossover point in secondary electron emission. The use of this type of index is justified bycorrelations between Nascap-2k simulation results and total fluxes above a range of energies. The best minimumenergy to use is determined for spacecraft of different design and surface materials. Finally, the optimumGeosynchronous Earth Orbit daytime spacecraft charging index is obtained, and its use for predicting and resolvingspacecraft anomalies in real time is justified.

  12. Standardization and Economics of Nuclear Spacecraft, Final Report, Phase I, Sense Study

    Energy Technology Data Exchange (ETDEWEB)

    1973-03-01

    Feasibility and cost benefits of nuclear-powered standardized spacecraft are investigated. The study indicates that two shuttle-launched nuclear-powered spacecraft should be able to serve the majority of unmanned NASA missions anticipated for the 1980's. The standard spacecraft include structure, thermal control, power, attitude control, some propulsion capability and tracking, telemetry, and command subsystems. One spacecraft design, powered by the radioisotope thermoelectric generator, can serve missions requiring up to 450 watts. The other spacecraft design, powered by similar nuclear heat sources in a Brayton-cycle generator, can serve missions requiring up to 21000 watts. Design concepts and trade-offs are discussed. The conceptual designs selected are presented and successfully tested against a variety of missions. The thermal design is such that both spacecraft are capable of operating in any earth orbit and any orientation without modification. Three-axis stabilization is included. Several spacecraft can be stacked in the shuttle payload compartment for multi-mission launches. A reactor-powered thermoelectric generator system, operating at an electric power level of 5000 watts, is briefly studied for applicability to two test missions of divers requirements. A cost analysis indicates that use of the two standardized spacecraft offers sizable savings in comparison with specially designed solar-powered spacecraft. There is a duplicate copy.

  13. 有人/无人机编队三位可视化系统的软件设计与实现%Design and implementation of manned/unmanned aircraft formations in 3D visualization

    Institute of Scientific and Technical Information of China (English)

    李一波; 王仓库; 姬晓飞

    2016-01-01

    针对未来有人/无人机混合编队的作战模式和增强三维可视化虚拟实现效果的需求,设计了在某无人机真实的Simulink模型的基础上结合FlightGear和MFC的有人/无人机编队三维可视化系统。系统充分利用FlightGear的强大视景系统、MATLAB⁃Simulink快速解算控制算法的能力、MFC开发的应用程序以及各个功能模块结构化,使得三维可视化系统的飞行数据和飞行视景具有时序性、可视性,各模拟模块可以根据不同的需求进行更改、升级和替代。经过多次仿真实验,该系统占用资源少,实现了有人/无人机混合编队的编队飞行和空战演示的整个过程的三维可视化显示,具有很好的三维可视化效果,达到了有人/无人机编队三维可视化系统项目的要求。%For future war modes requiring cooperative engagements that mix manned aircrafts with unmanned auto⁃motive vehicles ( UAVs) and for enhancing the 3D visualized virtual realization effect, a manned/unmanned aircraft formation 3D visualization system based on Simulink model, FlightGear, and MFC was designed. The system makes full use of FlightGear′s powerful visual system, the control algorithm′s fast calculating ability on MATLAB Simu⁃link, the application procedure developed by MFC, and the structuring of each functional module to make the flight data and flight vision sequential and visible and to enable each simulation module to be renewable, updatable, and exchangeable. Numerous simulation experiments indicate that this system requires a small amount of resources to implement a series of 3D visual displays of the entire process, including formation flight simulation, air combat demonstrations, weather conditions, and geographical environments. The system has a good 3D visualization effect and satisfies the requirements for a 3D visualization system for manned/unmanned aircraft formations.

  14. 载人登月舱概念设计阶段多方案比较方法初探%Study on Alternatives Comparison Method of Manned Lunar Module in Concept Design Stage

    Institute of Scientific and Technical Information of China (English)

    王平; 梁鲁; 果琳丽

    2013-01-01

    Manned lunar module is a key element in a manned moon mission and the core of a lunar sys-tem. Because more than 70%of the total mass of the lunar module is propellant, in the conceptual design stage, alternatives should focus on comparing and analysing propellant types and module configuration. In this paper, firstly the basic idea of the alternatives comparison is given and then, by using the Altair lunar lander as an example, of the basic flow of the method is put forward: to carry out analysis of the moon landing options, choice of propellant, and to complete the ascent stage, descent stage of two stages program, brake stage of three stage configuration analyses according to the selected propellant and airlock layout analysis. Finally, a variety of possible options are combined and evaluated comprehensively to obtain a final selected program, which can lay the foundation for the subsequent manned lunar module definition.%载人登月舱是完成载人登月任务的关键环节,也是登月飞行器系统的核心部分。由于登月舱推进剂占总质量的70%以上,因此在概念设计阶段,多方案比较应重点针对推进剂类型及其对应的构型开展对比分析,从而明确总体方案的深入方向。文章给出了该多方案比较的基本思路,并利用美国Altair登月舱作为实例具体说明该方法的基本流程,首先开展月面着陆器的分级方案选择分析、多种推进剂选择分析,并根据推进剂选择分析的结果,完成上升级、二级方案下降级、三级方案制动级的构型方案分析以及气闸舱的布局分析,最后给出组合多种可行方案,并对多种方案进行综合评价,开展比较分析,获得最终对比方案,为后续载人登月舱的论证工作打下了基础。

  15. Design of Touch Screen Man-Machine Interface Test Bench for Vehicle Power Steering Pump%汽车动力转向油泵试验台触摸屏人-机界面设计

    Institute of Scientific and Technical Information of China (English)

    王玉琳; 王运; 刘光复

    2013-01-01

    传统的汽车动力转向油泵试验台采用键盘输入和LED显示实现人机交互,这种操作界面对人员的素质要求比较高,操作不直观也不方便,降低了产品的测试速率.触摸屏具有坚固耐用、反应速度快、节省空间、易于交流等诸多优点,使人与机交互更为直截了当.基于以上原因,采用MODBUS通信协议编写单片机通信程序,实现触摸屏和单片机的通信.根据试验大纲流程设计人-机界面的画面,该界面包含手动和自动两种方式,可以实现数据显示、参数设置、自动测试、报警提示等功能.使用结果表明,该人-机界面友好,测控精度高,操作简单方便,应用前景广阔.%Keyboard input and LED display are used in traditional vehicle power steering pump test bench to achieve man-machine interaction, in this interface, a high quality of personnel is required, and operation is neither visualized nor convenient, hence the rate of product testing is reduced. Touch screen has such advantages as a rugged-endurable in use, fast response, space-saving and easy to communicate, and many others, so the interaction between human and machine are made more straightforward. Based on above matters, by using MODBUS communication protocol to write single-chip communication program, the purpose of communication between the touch screen and single-chip was realized. According to the test outline process to design the man-machine interface screen, in the interface, the two modes; manual and automatic operation was contained, and data showing, parameter setting, automatic testing, alarm and other functions could be achieved. The usage results show that this man-machine interface possesses the attributes of friendliness, highly-precision in monitoring, convenient and simple in operation, therefore it has a broad application prospect.

  16. Time and man

    CERN Document Server

    Elton, LRB

    2014-01-01

    Time and Man focuses on the endeavors of humans to probe the mysteries of time and to elucidate its properties. The discussions are both philosophical and factual in nature and encompass science as well as the physical sciences, biology and related disciplines (for example, evolution), and the humanities (for example, religion). Factual information is presented to help the reader gain a better understanding of the concepts associated with time.Comprised of nine chapters, this volume first considers the passage of time and the experiences which humans associate with the concept of time before r

  17. Spider-man

    Institute of Scientific and Technical Information of China (English)

    路遇

    2002-01-01

    Spider-Man was first introduced in the comic(连环画) Amazing Fantasy #15(August 1962).Peter Parker,a Senior at Midtown High School,receives his powers when bitten by a exhibition(转基因) spider in a science demonstration(展览).This bite endowed(赋予) him with the proportional(相应的) strength and agility(敏捷) of a spider along with a keen “spider sense”.

  18. Time and man

    CERN Document Server

    Elton, L. R. B

    1978-01-01

    Time and Man focuses on the endeavors of humans to probe the mysteries of time and to elucidate its properties. The discussions are both philosophical and factual in nature and encompass science as well as the physical sciences, biology and related disciplines (for example, evolution), and the humanities (for example, religion). Factual information is presented to help the reader gain a better understanding of the concepts associated with time.Comprised of nine chapters, this volume first considers the passage of time and the experiences which humans associate with the concept of time before r

  19. Radiation Shielding for Manned Deep Space Missions

    Science.gov (United States)

    Adams, James H., Jr.

    2003-01-01

    The arrival of the Expedition 1 Crew at the International Space Station represents the beginning of the continuous presence of man in space. Already we are deploying astronauts and cosmonauts for missions of approx. 6 months onboard the ISS. In the future we can anticipate that more people will be in space and they will be there for longer periods. Even with 6-months deployments to the ISS, the radiation exposure that crew members receive is approaching the exposure limits imposed by the governments of the space- faring nations. In the future we can expect radiation protection to be a dominant consideration for long manned missions. Recognizing this, NASA has expanded their research program on radiation health. This program has three components, bioastronautics, fundamental biology and radiation shielding materials. Bioastronautics is concerned with the investigating the effects of radiation on humans. Fundamental biology investigates the basic mechanisms of radiation damage to tissue. Radiation shielding materials research focuses on developing accurate computational tools to predict the radiation shielding effectiveness of materials. It also investigates new materials that can be used for spacecraft. The radiation shielding materials program will be described and examples of results from the ongoing research will be shown.

  20. Simulating Flexible-Spacecraft Dynamics and Control

    Science.gov (United States)

    Fedor, Joseph

    1987-01-01

    Versatile program applies to many types of spacecraft and dynamical problems. Flexible Spacecraft Dynamics and Control program (FSD) developed to aid in simulation of large class of flexible and rigid spacecraft. Extremely versatile and used in attitude dynamics and control analysis as well as in-orbit support of deployment and control of spacecraft. Applicable to inertially oriented spinning, Earth-oriented, or gravity-gradient-stabilized spacecraft. Written in FORTRAN 77.

  1. Spacecraft Surface Charging Handbook

    Science.gov (United States)

    1992-11-01

    Briet, and A. L. Vampola of Aerospace Corporation , H. R. Anderson, A. Holman, and J. Manderesse of SAIC, L. Levy of CERT, R. Viswanathan, G. Barbay, P...camWat a8n truss piece comnat Proper truss to not possible, so eftend res and en OCYA"O axis 0 0 0 0 0 1 width 6 side 2 surface teflon surftce - teflon...p. 62, 1974. Rudie, N. J., et a]., Design Support Guide fior Radiation Hardening oif Space Electronics Svsitems. I RT Corporation , I RT 6409-001, 198

  2. Autonomous Spacecraft Navigation With Pulsars

    CERN Document Server

    Becker, Werner; Jessner, Axel

    2013-01-01

    An external reference system suitable for deep space navigation can be defined by fast spinning and strongly magnetized neutron stars, called pulsars. Their beamed periodic signals have timing stabilities comparable to atomic clocks and provide characteristic temporal signatures that can be used as natural navigation beacons, quite similar to the use of GPS satellites for navigation on Earth. By comparing pulse arrival times measured on-board a spacecraft with predicted pulse arrivals at a reference location, the spacecraft position can be determined autonomously and with high accuracy everywhere in the solar system and beyond. The unique properties of pulsars make clear already today that such a navigation system will have its application in future astronautics. In this paper we describe the basic principle of spacecraft navigation using pulsars and report on the current development status of this novel technology.

  3. Status of the JWST sunshield and spacecraft

    Science.gov (United States)

    Arenberg, J.; Flynn, J.; Cohen, A.; Lynch, R.; Cooper, J.

    2016-07-01

    This paper reports on the development, manufacture and integration of the James Webb Space Telescope's sunshield and spacecraft. Both of these JWST elements have completed design and development testing. This paper will review basic architecture and roles of these systems. Also to be presented is the current state of manufacture, assembly integration and test. This paper will conclude with a look at the road ahead for each subsystem prior to integration with the integrated telescope and instrument elements at Northrop Grumman's Space Park facility in late 2017.

  4. Interplanetary spacecraft navigation using pulsars

    CERN Document Server

    Deng, X P; You, X P; Li, M T; Keith, M J; Shannon, R M; Coles, W; Manchester, R N; Zheng, J H; Yu, X Z; Gao, D; Wu, X; Chen, D

    2013-01-01

    We demonstrate how observations of pulsars can be used to help navigate a spacecraft travelling in the solar system. We make use of archival observations of millisecond pulsars from the Parkes radio telescope in order to demonstrate the effectiveness of the method and highlight issues, such as pulsar spin irregularities, which need to be accounted for. We show that observations of four millisecond pulsars every seven days using a realistic X-ray telescope on the spacecraft throughout a journey from Earth to Mars can lead to position determinations better than approx. 20km and velocity measurements with a precision of approx. 0.1m/s.

  5. Roll stabilizer bars' design for solar-sail spacecraft attitude control%太阳帆航天器姿态控制滚转轴稳定机设计

    Institute of Scientific and Technical Information of China (English)

    马鑫; 杨萱; 杨辰; 钱航; 郑龙飞

    2014-01-01

    key design parameters and design conditions for the solar-sail spacecraft attitude control system design, and the optimization results have reference value for practical engineering applications.

  6. SPACeMAN -a Satellite to Actively Reduce Sub-Centimeter Debris

    Science.gov (United States)

    Knirsch, Uli

    In-orbit fragmentation events, whether accidental or intentional, are bound to increase the population of space debris. "Critical debris" ranging between 1 and 10mm are numerous and can be lethal to both satellites and inhabited structures. This in turn creates further debris, potentially leading to a chain reaction ("Kessler syndrome"). In first approximation, collecting sub-centimeter debris appears impractical since rendezvous maneuvers are prohibitively expensive in terms of delta v and hardware complexity. One possible solution is to fly a spacecraft with a small constant vertical thrust. As a result, it will move somewhat faster than other, passive objects in its orbit -such as space debris. This "non-Keplerian orbit" thus creates a small chance of accidental collision. The sPACeMAN is designed to withstand impacts, capturing the debris. Since the probability of capture is low, some active control, particularly of the vertical thrust, can be instituted. The sPACeMAN concept was developed to reduce the population of NaK droplets in critical orbits. However, it can be extended to other debris as well. Since its effectiveness is greatest in areas of relatively high population densities of space debris, it would be best suited for quick responses, such as after a fragmentation event.

  7. The Primal Exploration of Space launch and Manned Lunar-landing

    Institute of Scientific and Technical Information of China (English)

    Zhang Zeming; Jiang Yi; Fu Debin

    2006-01-01

    The lunar-landing is the continuity of manned spaceflight engineering. Comparing with the manned spacecraft engineering, it requires more reliability , larger scale, and more funds. On the basis of China's achievements and the experiences of foreign countries, the paper brings forward the idea that using the existing transportation technology to send the launch vehicles and cosmonauts to the near-earth orbit in batches,assembling the components together on the space-launch platform, and then launching them to the moon to fulfill our dream of manned landing on the moon. The paper also discusses the space launch platform and the launching ways.

  8. A Comparison of Photocatalytic Oxidation Reactor Performance for Spacecraft Cabin Trace Contaminant Control Applications

    Science.gov (United States)

    Perry, Jay L.; Frederick, Kenneth R.; Scott, Joseph P.; Reinermann, Dana N.

    2011-01-01

    Photocatalytic oxidation (PCO) is a maturing process technology that shows potential for spacecraft life support system application. Incorporating PCO into a spacecraft cabin atmosphere revitalization system requires an understanding of basic performance, particularly with regard to partial oxidation product production. Four PCO reactor design concepts have been evaluated for their effectiveness for mineralizing key trace volatile organic com-pounds (VOC) typically observed in crewed spacecraft cabin atmospheres. Mineralization efficiency and selectivity for partial oxidation products are compared for the reactor design concepts. The role of PCO in a spacecraft s life support system architecture is discussed.

  9. A Detailed Impact Risk Assessment of Possible Protection Enhancements to two LEO Spacecraft

    Science.gov (United States)

    Stokes, H.; Cougnet, C.; David, M.; Gelhaus, J.; Rothlingshofer, M.

    2013-08-01

    The SHIELD3 impact risk analysis tool has been used to compute the impact-induced probability of no failure (PNF) of two different spacecraft - a radar satellite and an optical satellite - operating in the 2020-2030 low Earth orbit debris environment. Based on this assessment, potential vulnerabilities were identified in the spacecraft designs, and several solutions were proposed for enhancing protection. The effectiveness of each shielding solution was determined by recalculating the spacecraft PNFs. Significant improvements in PNF were achieved, indicating that effective levels of extra protection can be implemented in spacecraft designs within constraints such as cost, mass and volume.

  10. The use of molecular adsorbers for spacecraft contamination control

    Energy Technology Data Exchange (ETDEWEB)

    Thomson, S.; Chen, P. [NASA Goddard Space Flight Center, Greenbelt, Maryland 20771 (United States); Triolo, J.; Carosso, N. [Swales and Associates, Inc., 5050 Powder Mill Road, Beltsville, Maryland 20705 (United States)

    1996-03-01

    In recent years, the technologies associated with contamination control in space environments have grown increasingly more sophisticated, due to the ever expanding need for improving and enhancing optical and thermal control systems for spacecraft. The presence of contaminants in optical and thermal control systems can cause serious degradation of performance and/or impact the lifetime of a spacecraft. It has been a goal of the global contamination community to develop new and more effective means for controlling contamination for spacecraft. This paper describes an innovative method for controlling molecular contaminants in space environments, via the utilization of Molecular Adsorbers. It has been found that the incorporation of appropriate molecular adsorbing materials within spacecraft volumes will decrease the overall contamination level within the cavity, thereby decreasing the potential for contaminants to migrate to more critical areas. In addition, it has been found that the placement of a Molecular Adsorber at a vent location actually serves as a molecular {open_quote}{open_quote}trap{close_quote}{close_quote} for the contaminants that would have otherwise been vented into the external spacecraft environment. This paper summarizes the theory, basic design, planned applications and significant results already obtained during the investigation of using Molecular Adsorbers for spacecraft contamination control purposes. {copyright} {ital 1996 American Institute of Physics.}

  11. Mesh Network Architecture for Enabling Inter-Spacecraft Communication

    Science.gov (United States)

    Becker, Christopher; Merrill, Garrick

    2017-01-01

    To enable communication between spacecraft operating in a formation or small constellation, a mesh network architecture was developed and tested using a time division multiple access (TDMA) communication scheme. The network is designed to allow for the exchange of telemetry and other data between spacecraft to enable collaboration between small spacecraft. The system uses a peer-to-peer topology with no central router, so that it does not have a single point of failure. The mesh network is dynamically configurable to allow for addition and subtraction of new spacecraft into the communication network. Flight testing was performed using an unmanned aerial system (UAS) formation acting as a spacecraft analogue and providing a stressing environment to prove mesh network performance. The mesh network was primarily devised to provide low latency, high frequency communication but is flexible and can also be configured to provide higher bandwidth for applications desiring high data throughput. The network includes a relay functionality that extends the maximum range between spacecraft in the network by relaying data from node to node. The mesh network control is implemented completely in software making it hardware agnostic, thereby allowing it to function with a wide variety of existing radios and computing platforms..

  12. Paraquat poisoning in man.

    Science.gov (United States)

    Douze, J M; van Heyst, A N; van Dijk, A; Maes, R A; Drost, R H

    1975-10-20

    In three cases of intoxication by Gramoxone¿, the concentration of paraquat dichloride in blood, dialysate, feces, and urine was determined spectrophotometrically after a clean-up of the biological material by means of ion exchange chromatography (with Dowex 50W-X12 or Zeo-Karb 225). Although good results were obtained after clean-up with Dowex 50W-X12, Zeo-Karb was preferred as ion exchange resin, especially when large sample volumes were needed for the determination. The reported findings indicate that: only 5 to 10% of an ingested dose of paraquat dichloride is absorbed in man, Fullers' earth is very useful, and that primary, e.g. immediate, hemodialysis is necessary.

  13. Caribou and Man

    Directory of Open Access Journals (Sweden)

    Serge Couturier

    2003-04-01

    Full Text Available From April 23 to 27, 2001, more than 230 caribou experts migrated to the 9th North American Caribou Workshop, held at the tree-line in the Inuit town of Kuujjuaq, Nunavik, Québec. This community of about 1800 people near Ungava Bay was chosen over larger cities in southern Québec following a survey of potential workshop participants. Holding the conference in such a particularly appropriate location was made possible by the sustained efforts of the Organizing and Scientific Committees, by the help of the sponsors, and, above all, by the tremendous support of the people of Kuujjuaq. Keeping in mind the importance of caribou to the local people and the fact that development and other fast-growing human activities have today reached the North—for many southerners, the last frontier—the theme chosen for the 9th North American Caribou Workshop was also particularly appropriate: Caribou and Man.

  14. Optimal Reorientation Of Spacecraft Orbit

    Directory of Open Access Journals (Sweden)

    Chelnokov Yuriy Nikolaevich

    2014-06-01

    Full Text Available The problem of optimal reorientation of the spacecraft orbit is considered. For solving the problem we used quaternion equations of motion written in rotating coordinate system. The use of quaternion variables makes this consideration more efficient. The problem of optimal control is solved on the basis of the maximum principle. An example of numerical solution of the problem is given.

  15. A unified approach to computer analysis and modeling of spacecraft environmental interactions

    Science.gov (United States)

    Katz, I.; Mandell, M. J.; Cassidy, J. J.

    1986-01-01

    A new, coordinated, unified approach to the development of spacecraft plasma interaction models is proposed. The objective is to eliminate the unnecessary duplicative work in order to allow researchers to concentrate on the scientific aspects. By streamlining the developmental process, the interchange between theories and experimentalists is enhanced, and the transfer of technology to the spacecraft engineering community is faster. This approach is called the UNIfied Spacecraft Interaction Model (UNISIM). UNISIM is a coordinated system of software, hardware, and specifications. It is a tool for modeling and analyzing spacecraft interactions. It will be used to design experiments, to interpret results of experiments, and to aid in future spacecraft design. It breaks a Spacecraft Ineraction analysis into several modules. Each module will perform an analysis for some physical process, using phenomenology and algorithms which are well documented and have been subject to review. This system and its characteristics are discussed.

  16. Propulsion Challenges for Small Spacecraft: 2005

    Institute of Scientific and Technical Information of China (English)

    Vadim Zakirov; LI Luming

    2006-01-01

    Small (<100 kg) spacecrafts are being developed in many countries but their propulsion systems still have many challenges. Although there is demand for small spacecraft propulsion, the number of missions at present is small due to several commercial and technical reasons. Poor performance of existing small spacecraft propulsion systems is one of the main reasons for the small number of missions. Several reasons are given for the poor performance of existing small spacecraft propulsion. Suggested improvements focus on small spacecraft and propulsion hardware mass optimization rather than on specific impulse enhancement. Propellantless propulsion systems are also recommended for small spacecraft interplanetary missions.

  17. Rich Man, Poor Man: Developmental Differences in Attributions and Perceptions

    Science.gov (United States)

    Sigelman, Carol K.

    2012-01-01

    In an examination guided by cognitive developmental and attribution theory of how explanations of wealth and poverty and perceptions of rich and poor people change with age and are interrelated, 6-, 10-, and 14-year-olds (N = 88) were asked for their causal attributions and trait judgments concerning a rich man and a poor man. First graders, like…

  18. Rich Man, Poor Man: Developmental Differences in Attributions and Perceptions

    Science.gov (United States)

    Sigelman, Carol K.

    2012-01-01

    In an examination guided by cognitive developmental and attribution theory of how explanations of wealth and poverty and perceptions of rich and poor people change with age and are interrelated, 6-, 10-, and 14-year-olds (N = 88) were asked for their causal attributions and trait judgments concerning a rich man and a poor man. First graders, like…

  19. The Finite Elements Method (FEM versus traditional Methods (TM, in the estimation of settlement and modulus of soil reaction for foundation slabs design on soils with natural or man-made cavities

    Directory of Open Access Journals (Sweden)

    Escolano-Sánchez, F.

    2015-03-01

    Full Text Available Direct foundations with continuous elements, such as slabs, provide more advantages than direct foundations with isolated elements, such as footings, and deep foundations, such as piles, in the case of soil with natural or man-made cavities. The slabs are usually designed by two-dimensional models which show their shape on the plant, on a lineal elastic support, represented by a modulus of soil reaction. Regarding the settlement estimation, the following article compares the Finite Elements Method (FEM versus the classical Method (CM to select the modulus of soil reaction used to design foundations slabs in sensitive soils and sites with possible cavities or collapses. This analysis includes one of these cavities in the design to evaluate the risk of fail.Las cimentaciones directas con elementos continuos «losas», tienen ventajas sobre las cimentaciones directas con elementos aislados «zapatas» y sobre las cimentaciones profundas «pilotes», frente a la presencia de terrenos problemáticos. Las losas se diseñan de forma habitual con modelos bidimensionales que representan su forma en planta, apoyada en un medio elástico y lineal, representado por un módulo de balasto. En el presente artículo se realiza un análisis comparativo, para la estimación de asientos, entre el Método de Elementos Finitos (FEM y el Método Clásico (MC, para la elección de los módulos de balasto que se utilizan en el diseño de losas de cimentación en terrenos con blandones y cavidades naturales o antrópicas. Este análisis considera el peligro de la presencia de una de estas cavidades dentro de su diseño, de esta forma, el riesgo de fallo puede ser valorado por ambos métodos.

  20. 基于ARM和Linux的埋弧焊自动控制系统人机界面设计%Design of Man-machine Interface of SAW Control System Based on ARM and Linux

    Institute of Scientific and Technical Information of China (English)

    张文明; 鞠洪涛; 刘鸿钧

    2011-01-01

    The disadvantages of traditional SAW control system was analyzed. A new kind of man-machine interface for them was designed The control core of the system is S3C2440A, a kind of ARM 9 processor which is made by Samsung Electronics Co.Ltd, and a 640*480 TFT LCD was used. This design transplanted an embedded Linux on the basis of hardware, and how to develop a GUI (Graphical User Interface) with the help of Qt and its C++ class library was introduced. The operators can input the welding parameters, control and even monitor the welding process. This design can achieve the functions such as saving parameters, drawing parameters graphics, abnormalities alarm and outputting VGA signals.%分析了传统埋弧焊控制系统的弊端,并设计了一种新型的埋弧焊控制系统的人机界面.控制核心采用了三星公司的ARM9处理器S3C2440A,使用640*480的TFT液晶显示器.在硬件的基础上移植了嵌入式Linux操作系统,并详细介绍了使用Qt提供的C++类库设计图形用户界面的方法.操作人员可以通过菜单和对话框等形式对焊接过程进行参数输入、过程控制和监视.可以实现焊接参数的保存、监视、绘制参数变化图像、出差报警、VGA输出等功能.

  1. Design and Implementation of Solar-Sail Spacecraft 3-Dimensional Animation Visual Simulation Platform%太阳帆航天器三维动画可视化仿真平台的设计与实现

    Institute of Scientific and Technical Information of China (English)

    楼赣菲; 王克刚; 吴夏来; 贾灵伟

    2014-01-01

    For the better analysis and design of the solar sail spacecraft's flight control system, a 3-dimensional animation visual simulation platform for solar-sail aircraft is developed. The platform is programmed by Visual C++6.0, the main interface is developed with MFC, the solar sail model and flight environment are created by Creator, and simulating performance is implemented by using Vega technology. By using the multi-channels multi-viewpoint technology and the viewpoint control technology, the solar sail's flight trajectory and the posture change are observed, separately in the different channels. By using MATLAB and the VC++interactive programming, the MAT document simulated data are used to drive many objects to move at the same time. Using Vega and OpenGL hybrid programming technology, the display function of the freight orbit display and text information is added. This article successfully demonstrates the 3-dimensional animation visualization simulation of solar sail aircraft transferring from the earth-synchronous orbit to Mars synchronous orbit, confirms this simulation platform's validity and advancement.%为了更好地分析和设计太阳帆航天器飞行控制系统,文章开发了太阳帆航天器三维动画可视化仿真平台。文章通过Visual C++6.0编程,MFC开发软件主界面,Creator建立太阳帆模型和飞行环境及利用Vega实现三维可视化显示。通过多通道多视点技术及视点控制技术,实现在不同的通道中分别观察太阳帆的飞行轨迹和姿态变化;通过MATLAB和VC++的交互编程,利用MAT文件仿真数据驱动多个运动体同时运动;利用Vega和OpenGL混合编程,增加了飞行轨迹及文字信息显示的功能。本文成功地演示了太阳帆航天器从地球同步轨道转移到火星同步轨道的三维动画可视化仿真,验证了本仿真平台的有效性和先进性。

  2. Robust and optimal attitude control of spacecraft with disturbances

    Science.gov (United States)

    Park, Yonmook

    2015-05-01

    In this paper, a robust and optimal attitude control design that uses the Euler angles and angular velocities feedback is presented for regulation of spacecraft with disturbances. In the control design, it is assumed that the disturbance signal has the information of the system state. In addition, it is assumed that the disturbance signal tries to maximise the same performance index that the control input tries to minimise. After proposing a robust attitude control law that can stabilise the complete attitude motion of spacecraft with disturbances, the optimal attitude control problem of spacecraft is formulated as the optimal game-theoretic problem. Then it is shown that the proposed robust attitude control law is the optimal solution of the optimal game-theoretic problem. The stability of the closed-loop system for the proposed robust and optimal control law is proven by the LaSalle invariance principle. The theoretical results presented in this paper are illustrated by a numerical example.

  3. Development of Large-Scale Spacecraft Fire Safety Experiments

    DEFF Research Database (Denmark)

    Ruff, Gary A.; Urban, David L.; Fernandez-Pello, A. Carlos

    2013-01-01

    The status is presented of a spacecraft fire safety research project that is being developed to reduce the uncertainty and risk in the design of spacecraft fire safety systems by testing at nearly full scale in low-gravity. Future crewed missions are expected to be longer in duration than previous...... of the spacecraft fire safety risk. The activity of this project is supported by an international topical team of fire experts from other space agencies who conduct research that is integrated into the overall experiment design. The large-scale space flight experiment will be conducted in an Orbital Sciences...... Corporation Cygnus vehicle after it has deberthed from the ISS. Although the experiment will need to meet rigorous safety requirements to ensure the carrier vehicle does not sustain damage, the absence of a crew removes the need for strict containment of combustion products. The tests will be fully automated...

  4. Model of spacecraft atomic oxygen and solar exposure microenvironments

    Science.gov (United States)

    Bourassa, R. J.; Pippin, H. G.

    1993-01-01

    Computer models of environmental conditions in Earth orbit are needed for the following reasons: (1) derivation of material performance parameters from orbital test data, (2) evaluation of spacecraft hardware designs, (3) prediction of material service life, and (4) scheduling spacecraft maintenance. To meet these needs, Boeing has developed programs for modeling atomic oxygen (AO) and solar radiation exposures. The model allows determination of AO and solar ultraviolet (UV) radiation exposures for spacecraft surfaces (1) in arbitrary orientations with respect to the direction of spacecraft motion, (2) overall ranges of solar conditions, and (3) for any mission duration. The models have been successfully applied to prediction of experiment environments on the Long Duration Exposure Facility (LDEF) and for analysis of selected hardware designs for deployment on other spacecraft. The work on these models has been reported at previous LDEF conferences. Since publication of these reports, a revision has been made to the AO calculation for LDEF, and further work has been done on the microenvironments model for solar exposure.

  5. Reciprocal inhibition in man.

    Science.gov (United States)

    Crone, C

    1993-11-01

    Reciprocal inhibition is the automatic antagonist alpha motor neurone inhibition which is evoked by contraction of the agonist muscle. This so-called natural reciprocal inhibition is a ubiquitous and pronounced phenomenon in man and must be suspected of playing a major role in the control of voluntary movements. The spinal pathways underlying this inhibitory phenomenon were studied. The disynaptic reciprocal Ia inhibitory pathway between the tibial anterior muscle and the soleus alpha motor neurones was identified and described in man. It was shown that the inhibition can be evoked in most healthy subjects at rest, but the degree of inhibition varies considerably from one subject to another. It was concluded that it corresponds to the disynaptic reciprocal Ia inhibitory pathway which has been extensively described in animal experiments. The disynaptic reciprocal inhibition was shown to increase during the dynamic phase of a dorsiflexion movement of the foot, but not during the tonic phase. However, when the peripheral afferent feedback from the contracting muscle was blocked by ischaemia, an increase of the inhibition was revealed also during the tonic phase of the dorsiflexion. The concealment of this increase during unrestrained peripheral feedback from the muscle was thought to be due to the post-activation depression mechanism; a mechanism which was described further and which probably involves reduced transmitter release at Ia afferent terminals as a result of previous activation of these afferent fibers. Hence the hypothesis was supported that alpha motor neurones and the corresponding inhibitory interneurones, which project reciprocal inhibition to the antagonist motor neurones, are activated in parallel during voluntary contraction of agonist muscles. An additional reciprocal inhibitory mechanism, the long latency reciprocal inhibition, was described between the tibial anterior muscle and the soleus alpha motor neurones. It was shown to be evoked by group I

  6. Necessity and Design for Seismic Experiment of China Future Manned Moon Landing Missions%中国未来载人登月月震实验必要性和方案设计

    Institute of Scientific and Technical Information of China (English)

    赵娜; 朱培民; 袁悦锋; 金丹

    2012-01-01

    Since Apollo passive seismic network just covers a relatively limited area on the lunar nearside, the internal structure of whole Moon can not be detected accurately. It is necessary to perform seismic experiments in future Chinese manned Moon landing missions. According to technological condition of space investigation and the future missions of manned Moon landing in our country, we design two schemes of lunar seismic network. The first is a basic scheme which can basically meet the demand for detecting the internal structure. The second is an optimizing scheme which can obtain high-resolution internal structure of the Moon. Both seismic networks cover nearside, farside, south and north poles, which can detect internal structure of the whole Moon. In addition, this paper also provides possible technological parameters, instruments and appropriate sites for deployment of seismic experiments.%Apollo被动月震台站仅覆盖了月球正面有限的面积,不能对全月球的内部结构进行精细分析,因此在我国未来的载人登月中继续开展月震探测是非常必要的.基于我国现有的空间探测技术条件,并针对未来载人登月的探测任务,设计了两种月震观测网络方案:一是基本方案,可以基本满足对月球内部结构进行探测的要求;二是优化方案,可满足较高分辨率的月球内部结构探测.两种方案中的月震仪网络在月球正面、背面和南北极均有覆盖,可对全月球的内部结构进行探测.最后对月震观测的基本技术参数、设备及布置地点提出了相应的要求.

  7. The new V8 diesel engine from MAN; Der neue V8-Dieselmotor von MAN

    Energy Technology Data Exchange (ETDEWEB)

    Oehler, Georg; Vogel, Werner; Moeller, Inge; Tuerk, Jens [MAN Nutzfahrzeuge Motorenwerk Nuernberg AG, Nuernberg (Germany); Raup, Markus [MAN Nutzfahrzeuge, Steyr (Austria)

    2008-09-15

    MAN has developed a new V8 engine for the 16-l class with an output of 500 kW and 3,000 Nm of torque for its TGX and TGS ranges of heavy trucks. To reduce NO{sub x}, MAN has applied an SCR system with AdBlue injection. This article describes the engine concept, the design of the main components, the development of vehicle-specific add-on parts and the work carried out to optimise the combustion system and exhaust aftertreatment. (orig.)

  8. Man-machine interface for the MFTF

    Energy Technology Data Exchange (ETDEWEB)

    Speckert, G.C.

    1979-11-09

    In any complex system, the interesting problems occur at the interface of dissimilar subsystems. Control of the Mirror Fusion Test Facility (MFTF) begins with the US Congress, which controls the dollars, which control the people, who control the nine top-level minicomputers, which control the 65 microprocessors, which control the hardware that controls the physics experiment. There are many interesting boundaries across which control must pass, and the one that this paper addresses is the man-machine one. For the MFTF, the man-machine interface consists of a system of seven control consoles, each allowing one operator to communicate with one minicomputer. These consoles are arranged in a hierarchical manner, and both hardware and software were designed in a top-down fashion. This paper describes the requirements and the design of the console system as a whole, as well as the design and operation of the hardware and software of each console, and examines the possible form of a future man-machine interface.

  9. Light in man's environment.

    Science.gov (United States)

    Marshall, J

    2016-02-01

    Light in the form of solar radiation influenced early civilisations and resulted in the independent development of a number of sun-worshipping dieties. These were of particular importance as hunter gatherers transformed into settled agricultural societies. All artificial light sources were synonymous with fire, and early civilisations began to expand their visual day by burning brands, oil, and candles. Fire-based light sources extended for thousands of years and were still present in the era of gas lighting. Light meant fire risk. The advent of incandescent bulbs and the era of electric lighting really only expanded in the early part of the twentieth century. Fluorescent lighting became available in the 1940s, and today the drive for low energy has resulted in a plethora of novel light sources-in particular, light-emitting diodes (LEDs). Evolution governed the development of the eye in relation to roughly 12 h of light gradually changing to 12 h of darkness. Today almost daylight levels can be achieved abruptly at the flick of a switch. Many studies have demonstrated the spectral dependence of eye health, with the retinal hazard zone associated with wavelengths in the blue, peaking at 441 nm- many of today's low-energy sources peak in this region. Given the increased longevity and artificial light sources emitting at biologically unfriendly wavelengths, attention has to be directed towards light in man's environment as a risk factor in age-related ocular diseases.

  10. Of Man and Matter

    CERN Multimedia

    Brookhaven National Laboratory

    1962-01-01

    Filmed at Brookhaven. AGS and 20 inch bubble chamber. After a rather standard introduction, there is a 3 minute lecture by a man in a bow tie who is sitting in front of a chart with the names of particles. Presentation of Brookhaven and AGS. Explanation of how AGS works. Lecture continues for another 4 minutes. Explanation of separated beam transport system, to give particular particles to the experiments. 20 inch bubble chamber. Anti Psi minus particle discovered. Start of a "typical experiment". Nice verbal play between people in different control rooms to get the beam and images of the beam on oscilloscopes. Conversation among physicists at lunch about the anti-psi minus particle discovery at Brookhaven and at CERN "I guess someone really aught to write to them to compare notes." Discussion about the analysis. Explanation of how the analysis is done, for an event to go from a candidate to established fact. Scanning room. If a photo is of significant interest a pencil tracing is done. Measuring the interest...

  11. Meteoroids are Dangerous to Spacecraft

    Science.gov (United States)

    Moorhead, Althea V.

    2017-01-01

    Meteoroids put dents in Shuttle windows much like bouncing gravel puts dents in your car's windshield. However, meteoroids move at such high speeds that they can partly vaporize the surfaces they strike! A dust particle (smaller than a meteoroid) hit the STEREO spacecraft and produced this fountain of smaller particles. When a meteoroid breaks up, its "shrapnel" can also be dangerous. Even when meteoroids don't damage a spacecraft, they can cause problems. Here, a small meteoroid bumped a camera on the Lunar Reconnaissance Orbiter (LRO), causing wiggles in this scan of the lunar surface. Meteoroids and pieces of space junk create rough edges on the outside of the Space Station that can damage space suits. The astronauts' gloves had to be thickened to help prevent them from ripping.

  12. Attitude Fusion Techniques for Spacecraft

    DEFF Research Database (Denmark)

    Bjarnø, Jonas Bækby

    Spacecraft platform instability constitutes one of the most significant limiting factors in hyperacuity pointing and tracking applications, yet the demand for accurate, timely and reliable attitude information is ever increasing. The PhD research project described within this dissertation has...... served to investigate the solution space for augmenting the DTU μASC stellar reference sensor with a miniature Inertial Reference Unit (IRU), thereby obtaining improved bandwidth, accuracy and overall operational robustness of the fused instrument. Present day attitude determination requirements are met...... of the instrument, and affecting operations during agile and complex spacecraft attitude maneuvers. As such, there exists a theoretical foundation for augmenting the high frequency performance of the μASC instrument, by harnessing the complementary nature of optical stellar reference and inertial sensor technology...

  13. Spacecraft Tests of General Relativity

    Science.gov (United States)

    Anderson, John D.

    1997-01-01

    Current spacecraft tests of general relativity depend on coherent radio tracking referred to atomic frequency standards at the ground stations. This paper addresses the possibility of improved tests using essentially the current system, but with the added possibility of a space-borne atomic clock. Outside of the obvious measurement of the gravitational frequency shift of the spacecraft clock, a successor to the suborbital flight of a Scout D rocket in 1976 (GP-A Project), other metric tests would benefit most directly by a possible improved sensitivity for the reduced coherent data. For purposes of illustration, two possible missions are discussed. The first is a highly eccentric Earth orbiter, and the second a solar-conjunction experiment to measure the Shapiro time delay using coherent Doppler data instead of the conventional ranging modulation.

  14. Flywheel energy storage for spacecraft

    Science.gov (United States)

    Gross, S.

    1984-01-01

    Flywheel energy storage systems have been studied to determine their potential for use in spacecraft. This system was found to be superior to alkaline secondary batteries and regenerative fuel cells in most of the areas that are important in spacecraft applications. Of special importance, relative to batteries, are lighter weight, longer cycle and operating life, and high efficiency which minimizes solar array size and the amount of orbital makeup fuel required. In addition, flywheel systems have a long shelf life, give a precise state of charge indication, have modest thermal control needs, are capable of multiple discharges per orbit, have simple ground handling needs, and have the capability of generating extremely high power for short durations.

  15. Spacecraft Tests of General Relativity

    Science.gov (United States)

    Anderson, John D.

    1997-01-01

    Current spacecraft tests of general relativity depend on coherent radio tracking referred to atomic frequency standards at the ground stations. This paper addresses the possibility of improved tests using essentially the current system, but with the added possibility of a space-borne atomic clock. Outside of the obvious measurement of the gravitational frequency shift of the spacecraft clock, a successor to the suborbital flight of a Scout D rocket in 1976 (GP-A Project), other metric tests would benefit most directly by a possible improved sensitivity for the reduced coherent data. For purposes of illustration, two possible missions are discussed. The first is a highly eccentric Earth orbiter, and the second a solar-conjunction experiment to measure the Shapiro time delay using coherent Doppler data instead of the conventional ranging modulation.

  16. Multiple spacecraft Michelson stellar interferometer

    Science.gov (United States)

    Stachnik, R. V.; Arnold, D.; Melroy, P.; Mccormack, E. F.; Gezari, D. Y.

    1984-01-01

    Results of an orbital analysis and performance assessment of SAMSI (Spacecraft Array for Michelson Spatial Interferometry) are presented. The device considered includes two one-meter telescopes in orbits which are identical except for slightly different inclinations; the telescopes achieve separations as large as 10 km and relay starlight to a central station which has a one-meter optical delay line in one interferometer arm. It is shown that a 1000-km altitude, zero mean inclination orbit affords natural scanning of the 10-km baseline with departures from optical pathlength equality which are well within the corrective capacity of the optical delay line. Electric propulsion is completely adequate to provide the required spacecraft motions, principally those needed for repointing. Resolution of 0.00001 arcsec and magnitude limits of 15 to 20 are achievable.

  17. Laser Diagnostics for Spacecraft Propulsion

    Science.gov (United States)

    2015-10-13

    AFTC/PA Clearance No. XXXX 8 Ion Engines & Hall Thrusters Operation Ion engines and Hall thrusters are electrostatic propulsion devices • Ion Engines... Hall thrusters are gridless electrostatic thrusters – Propellant ionized by electrons trapped in magnetic field – Ions accelerated by an electric field...Briefing Charts 3. DATES COVERED (From - To) 21 September 2015 – 13 October 2015 4. TITLE AND SUBTITLE Laser Diagnostics for Spacecraft Propulsion 5a

  18. Manning Centered Design in The Netherlands

    NARCIS (Netherlands)

    Post, W.M.

    2010-01-01

    All navies, when taking initiative to build a new platform, have difficulties with determining in an early phase the number of people that are needed to sail the planned ship. How do you approach this problem? Where do you start? How can you reduce the complexity of it? Later on, at planning a desig

  19. New Approach to Total Dose Specification for Spacecraft Electronics

    Science.gov (United States)

    Xapsos, Michael

    2017-01-01

    Variability of the space radiation environment is investigated with regard to total dose specification for spacecraft electronics. It is shown to have a significant impact. A new approach is developed for total dose requirements that replaces the radiation design margin concept with failure probability during a mission.

  20. The Global Positioning System and its application in spacecraft navigation

    Science.gov (United States)

    Van Leeuwen, A.; Rosen, E.; Carrier, L. M.

    1979-01-01

    The paper presents an overview of the Global Positioning System (GPS) as well as a discussion of the user system parameters govering the design of a low-earth-orbit spacecraft GPS navigation system. A specific application, the Space Shuttle orbiter GPS navigation system, is discussed with particular attention given to its receiver/processor.

  1. Merits of flywheels for spacecraft energy storage

    Science.gov (United States)

    Gross, S.

    1984-01-01

    Flywheel energy storage systems which have a very good potential for use in spacecraft are discussed. This system can be superior to alkaline secondary batteries and regenerable fuel cells in most of the areas that are important in spacecraft applications. Of special importance, relative to batteries, are lighter weight, longer cycle and operating life, and high efficiency which minimizes solar array size and the amount of orbital makeup fuel required. Flywheel systems have a long shelf life, give a precise state of charge indication, have modest thermal control needs, are capable of multiple discharges per orbit, have simple ground handling needs, and have characteristics which would be useful for military applications. The major disadvantages of flywheel energy storage systems are that: power is not available during the launch phase without special provisions; and in flight failure of units may force shutdown of good counter rotating units, amplifying the effects of failure and limiting power distribution system options; no inherent emergency power capability unless specifically designed for, and a high level of complexity compared with batteries. The potential advantages of the flywheel energy storage system far outweigh the disadvantages.

  2. Electrodeless plasma thrusters for spacecraft: A review

    Science.gov (United States)

    Bathgate, S. N.; Bilek, M. M. M.; McKenzie, D. R.

    2017-08-01

    The physics of electrodeless electric thrusters that use directed plasma to propel spacecraft without employing electrodes subject to plasma erosion is reviewed. Electrodeless plasma thrusters are potentially more durable than presently deployed thrusters that use electrodes such as gridded ion, Hall thrusters, arcjets and resistojets. Like other plasma thrusters, electrodeless thrusters have the advantage of reduced fuel mass compared to chemical thrusters that produce the same thrust. The status of electrodeless plasma thrusters that could be used in communications satellites and in spacecraft for interplanetary missions is examined. Electrodeless thrusters under development or planned for deployment include devices that use a rotating magnetic field; devices that use a rotating electric field; pulsed inductive devices that exploit the Lorentz force on an induced current loop in a plasma; devices that use radiofrequency fields to heat plasmas and have magnetic nozzles to accelerate the hot plasma and other devices that exploit the Lorentz force. Using metrics of specific impulse and thrust efficiency, we find that the most promising designs are those that use Lorentz forces directly to expel plasma and those that use magnetic nozzles to accelerate plasma.

  3. Effects of directed and kinetic energy weapons on spacecraft

    Energy Technology Data Exchange (ETDEWEB)

    Fraas, A P

    1986-12-01

    The characteristics of the various directed energy beams are reviewed, and their damaging effects on typical materials are examined for a wide range of energy pulse intensities and durations. Representative cases are surveyed, and charts are presented to indicate regions in which damage to spacecraft structures, particularly radiators for power plants, would be likely. The effects of kinetic energy weapons, such as bird-shot, are similarly examined. The charts are then applied to evaluate the effectiveness of various measures designed to reduce the vulnerability of spacecraft components, particularly nuclear electric power plants.

  4. Adaptive control for autonomous rendezvous of spacecraft on elliptical orbit

    Institute of Scientific and Technical Information of China (English)

    Shan Lu; Shijie Xu

    2009-01-01

    A strategy for spacecraft autonomous rendezvous on an elliptical orbit in situation of no orbit information is developed. Lawden equation is used to describe relative motion of two spacecraft. Then an adaptive gain factor is introduced, and an adaptive control law for autonomous rendezvous on the elliptical orbit is designed using Lyapunov approach. The relative motion is proved to be ultimately bounded under this control law, and the final relative position error can achieve the expected magnitude. Simulation results indicate that the adaptive control law can realize autonomous rendezvous on the elliptical orbit with relative state information only.

  5. Corrugation Stuffed Shield for Spacecraft and Its Performance

    Institute of Scientific and Technical Information of China (English)

    LIU You-ying; WANG Hai-fu

    2006-01-01

    A corrugation stuffed shield system protecting spacecrafts against meteoroid and orbital debris (M/OD) is presented. The semi-empirical ballistic limit equations (BLEs)defining the protection capability of the shield system are given, an d the shielding performance is also discussed. The corrugation stuffed shield (CSS) is more effective than stuffed Whipple shield for M/OD protection,and its shielding performance will be improved significantly as increasing the impact angle. Orbital debris up to 1cm in diameter can be shielded effectively as increasing the impact angle to 25° at the corrugated angle of 30°. The results are significant to spacecraft design.

  6. Salt materials testing for a spacecraft adiabatic demagnetization refrigerator

    Science.gov (United States)

    Savage, M. L.; Kittel, P.; Roellig, T.

    As part of a technology development effort to qualify adiabatic demagnetization refrigerators for use in a NASA spacecraft, such as the Space Infrared Telescope Facility, a study of low temperature characteristics, heat capacity and resistance to dehydration was conducted for different salt materials. This report includes results of testing with cerrous metaphosphate, several synthetic rubies, and chromic potassium alum (CPA). Preliminary results show that CPA may be suitable for long-term spacecraft use, provided that the salt is property encapsulated. Methods of salt pill construction and testing for all materials are discussed, as well as reliability tests. Also, the temperature regulation scheme and the test cryostat design are briefly discussed.

  7. "Det man hører, er man selv"

    DEFF Research Database (Denmark)

    Bonde, Lars Ole

    2015-01-01

    ”Det man hører, er man selv” er Danmarks Radios P3s yderst velkendte slogan. Det dukkede op i begyndelsen af (20)00erne som opfindsom og populær afspejling af en moderne forståelse af den rolle musik og medieforbrug spiller for den voksne dansker. Denne artikel handler ikke om P3 som musikkanal...

  8. "Det man hører, er man selv"

    DEFF Research Database (Denmark)

    Bonde, Lars Ole

    2015-01-01

    ”Det man hører, er man selv” er Danmarks Radios P3s yderst velkendte slogan. Det dukkede op i begyndelsen af (20)00erne som opfindsom og populær afspejling af en moderne forståelse af den rolle musik og medieforbrug spiller for den voksne dansker. Denne artikel handler ikke om P3 som musikkanal...

  9. Changing Analysis Approach on COSMO SKYMED Second Generation Spacecraft

    Science.gov (United States)

    Galgani, G.; Antonelli, M.; Bandinelli, M.; Scione, E.; Scorzafava, E.

    2016-05-01

    The interaction of a space system with its orbital environment is a major consideration in the design of any space system, since a variety of hazards are associated with the operation of spacecraft in the harsh space environment. The COSMO second generation satellites cross the Low Earth Orbit (LEO) that is usually considered less hazardous than high altitude geosynchronous (GEO) satellites, except when crossing the auroral oval where high energy low density plasma is encountered [1]. In this paper a prediction activity aimed to estimate the surface potentials of the COSMO 2nd generation satellite during the polar orbit is described. The free, open-source Spacecraft Plasma Interaction Software (SPIS) available for Spacecraft Plasma Interaction Network in Europe (SPINE) community [2] was applied to model satellite structures and materials, as well plasma environment and finally to evaluate the surfaces potentials.

  10. Attitude synchronization for multiple spacecraft with input constraints

    Directory of Open Access Journals (Sweden)

    Lyu Jianting

    2014-04-01

    Full Text Available The attitude synchronization problem for multiple spacecraft with input constraints is investigated in this paper. Two distributed control laws are presented and analyzed. First, by introducing bounded function, a distributed asymptotically stable control law is proposed. Such a control scheme can guarantee attitude synchronization and the control inputs of each spacecraft can be a priori bounded regardless of the number of its neighbors. Then, based on graph theory, homogeneous method, and Lyapunov stability theory, a distributed finite-time control law is designed. Rigorous proof shows that attitude synchronization of multiple spacecraft can be achieved in finite time, and the control scheme satisfies input saturation requirement. Finally, numerical simulations are presented to demonstrate the effectiveness and feasibility of the proposed schemes.

  11. Dynamics and Controls of a Conceptual Jovian Moon Tour Spacecraft

    Science.gov (United States)

    Quadrelli, Marco B.; Mettler, Edward; Langmaier, Jerry K.

    2004-01-01

    The dynamics and control challenges presented by a conceptual Jovian Moon Tour spacecraft are summarized in this paper. Attitude and orbital dynamics interactions are present due to the designed low-thrust trajectory, and controls structure interactions are also present due to the non-collocated sensor-actuator pairs on board the flexible spacecraft. A finite-element based simulation model is described which is capable of handling the complex orbital and attitude dynamics arising during the low-thrust spiraling maneuvers of the spacecraft. A few numerical simulations demonstrate that some of the challenges hitherto identified can be faced via integrated dynamics and control analysis, and that reasonable assessments of the pointing performance can be made.

  12. Kalman Filter Estimation of Spinning Spacecraft Attitude using Markley Variables

    Science.gov (United States)

    Sedlak, Joseph E.; Harman, Richard

    2004-01-01

    There are several different ways to represent spacecraft attitude and its time rate of change. For spinning or momentum-biased spacecraft, one particular representation has been put forward as a superior parameterization for numerical integration. Markley has demonstrated that these new variables have fewer rapidly varying elements for spinning spacecraft than other commonly used representations and provide advantages when integrating the equations of motion. The current work demonstrates how a Kalman filter can be devised to estimate the attitude using these new variables. The seven Markley variables are subject to one constraint condition, making the error covariance matrix singular. The filter design presented here explicitly accounts for this constraint by using a six-component error state in the filter update step. The reduced dimension error state is unconstrained and its covariance matrix is nonsingular.

  13. Practical Applications of Cosmic Ray Science: Spacecraft, Aircraft, Ground-Based Computation and Control Systems, and Human Health and Safety

    Science.gov (United States)

    Atwell, William; Koontz, Steve; Normand, Eugene

    2012-01-01

    Three twentieth century technological developments, 1) high altitude commercial and military aircraft; 2) manned and unmanned spacecraft; and 3) increasingly complex and sensitive solid state micro-electronics systems, have driven an ongoing evolution of basic cosmic ray science into a set of practical engineering tools needed to design, test, and verify the safety and reliability of modern complex technological systems. The effects of primary cosmic ray particles and secondary particle showers produced by nuclear reactions with the atmosphere, can determine the design and verification processes (as well as the total dollar cost) for manned and unmanned spacecraft avionics systems. Similar considerations apply to commercial and military aircraft operating at high latitudes and altitudes near the atmospheric Pfotzer maximum. Even ground based computational and controls systems can be negatively affected by secondary particle showers at the Earth s surface, especially if the net target area of the sensitive electronic system components is large. Finally, accumulation of both primary cosmic ray and secondary cosmic ray induced particle shower radiation dose is an important health and safety consideration for commercial or military air crews operating at high altitude/latitude and is also one of the most important factors presently limiting manned space flight operations beyond low-Earth orbit (LEO). In this paper we review the discovery of cosmic ray effects on the performance and reliability of microelectronic systems as well as human health and the development of the engineering and health science tools used to evaluate and mitigate cosmic ray effects in ground-based atmospheric flight, and space flight environments. Ground test methods applied to microelectronic components and systems are used in combinations with radiation transport and reaction codes to predict the performance of microelectronic systems in their operating environments. Similar radiation transport

  14. Spacecraft Internal Acoustic Environment Modeling

    Science.gov (United States)

    Chu, S. Reynold; Allen, Chris

    2009-01-01

    The objective of the project is to develop an acoustic modeling capability, based on commercial off-the-shelf software, to be used as a tool for oversight of the future manned Constellation vehicles. The use of such a model will help ensure compliance with acoustic requirements. Also, this project includes modeling validation and development feedback via building physical mockups and conducting acoustic measurements to compare with the predictions.

  15. Thermal Management Architecture for Future Responsive Spacecraft

    Science.gov (United States)

    Bugby, D.; Zimbeck, W.; Kroliczek, E.

    2009-03-01

    This paper describes a novel thermal design architecture that enables satellites to be conceived, configured, launched, and operationally deployed very quickly. The architecture has been given the acronym SMARTS for Satellite Modular and Reconfigurable Thermal System and it involves four basic design rules: modest radiator oversizing, maximum external insulation, internal isothermalization and radiator heat flow modulation. The SMARTS philosophy is being developed in support of the DoD Operationally Responsive Space (ORS) initiative which seeks to drastically improve small satellite adaptability, deployability, and design flexibility. To illustrate the benefits of the philosophy for a prototypical multi-paneled small satellite, the paper describes a SMARTS thermal control system implementation that uses: panel-to-panel heat conduction, intra-panel heat pipe isothermalization, radiator heat flow modulation via a thermoelectric cooler (TEC) cold-biased loop heat pipe (LHP) and maximum external multi-layer insulation (MLI). Analyses are presented that compare the traditional "cold-biasing plus heater power" passive thermal design approach to the SMARTS approach. Plans for a 3-panel SMARTS thermal test bed are described. Ultimately, the goal is to incorporate SMARTS into the design of future ORS satellites, but it is also possible that some aspects of SMARTS technology could be used to improve the responsiveness of future NASA spacecraft. [22 CFR 125.4(b)(13) applicable

  16. Rapid Electrochemical Detection and Identification of Microbiological and Chemical Contaminants for Manned Spaceflight Project

    Science.gov (United States)

    Pierson, Duane; Botkin, Douglas; Gazda, Daniel

    2014-01-01

    Microbial control in the spacecraft environment is a daunting task, especially in the presence of human crew members. Currently, assessing the potential crew health risk associated with a microbial contamination event requires return of representative environmental samples that are analyzed in a ground-based laboratory. It is therefore not currently possible to quickly identify microbes during spaceflight. This project addresses the unmet need for spaceflight-compatible microbial identification technology. The electrochemical detection and identification platform is expected to provide a sensitive, specific, and rapid sample-to-answer capability for in-flight microbial monitoring that can distinguish between related microorganisms (pathogens and non-pathogens) as well as chemical contaminants. This will dramatically enhance our ability to monitor the spacecraft environment and the health risk to the crew. Further, the project is expected to eliminate the need for sample return while significantly reducing crew time required for detection of multiple targets. Initial work will focus on the optimization of bacterial detection and identification. The platform is designed to release nucleic acids (DNA and RNA) from microorganisms without the use of harmful chemicals. Bacterial DNA or RNA is captured by bacteria-specific probe molecules that are bound to a microelectrode, and that capture event can generate a small change in the electrical current (Lam, et al. 2012. Anal. Chem. 84(1): 21-5.). This current is measured, and a determination is made whether a given microbe is present in the sample analyzed. Chemical detection can be accomplished by directly applying a sample to the microelectrode and measuring the resulting current change. This rapid microbial and chemical detection device is designed to be a low-cost, low-power platform anticipated to be operated independently of an external power source, characteristics optimal for manned spaceflight and areas where power

  17. Spacecraft loads methodology - Transient vs. shock spectra method

    Science.gov (United States)

    Chen, J. C.; Garba, J. A.; Trubert, M. R.

    1980-01-01

    The methodology for the establishment of spacecraft loads is strongly influenced by project constraints which include the cost, schedule and allowable weight. The most rigorous approach is the transient loads analysis which requires a composite mathematical model of the spacecraft and launch vehicle. The structural member loads for the entire composite structure are computed by applying the forcing functions, which represent various dynamic environments during the mission, to the composite model. Although this method ideally leads to a lightweight design, it is costly and time consuming due to complex interfaces involving many organizations. To reduce complexity and cost a shock spectra method has been used to design spacecraft structures. This method utilizes envelopes of shock spectra of launch vehicle accelerations obtained from analysis and/or flight measurements. Since only limited information on the launch vehicle model is involved in this process the design loads iteration cycle can be rapidly performed within the payload organization. In the present paper, these two methods will be evaluated by comparing the loads for several spacecraft. Flight measured loads will also be used in the evaluation.

  18. Design of man-machine interface for high power medium frequency inverting resistance welder%大功率中频逆变电阻焊机人机界面设计

    Institute of Scientific and Technical Information of China (English)

    万超; 王剑; 田联房

    2012-01-01

    针对基于ARM、DSP和CPLD相结合控制的大功率中频逆变电阻焊机,选择PIC24FJ128GA010单片机、键盘输入和液晶显示,采用上、下位机的方式,设计了数字化人机界面系统.该系统能实现焊接参数、规范的读取和设置,具有通信失败原因显示、故障复位、报警复位等功能,有三种用户类型可供选择,具有不同的操作权限,采用RS232方式与下位机通信.下位机反应时间的协调是影响系统稳定可靠操作的关键.实验证明,该系统运行稳定,操作灵活,界面友好,抗干扰能力强.%Aiming at high power medium frequency inverting resistance welder based on ARM,DSP and CPLD.a digital man-machine interface which is consisted of PIC24FJ128GA010, keyboard entry,LCD display and employs upper-lower computer mode is designed.This system realizes reading and setting for welding parameters and norms, displaying cause of communication failure, fault reset,alarm reset etc.There are three types of users which have different operation authority and it communicates with lower computer by RS232.The cooperation of reaction time of lower computer is the key to influence the stability and reliability of operation.lt proves reliable,flexible,friendly and compatible.

  19. Vancomycin induced Red Man Syndrome

    Directory of Open Access Journals (Sweden)

    Drisyamol K.A

    2016-04-01

    Full Text Available Vancomycin is a glycoprotein antibiotic that has been associated with an anaphylactoid reaction termed the Red-man syndrome. It usually consists of erythema, flushing and pruritis of the face and upper torso and occasionally progresses to include dyspnoea, chest pain and hypotension. Red man syndrome (RMS is also known as “red neck syndrome. Discontinuation of the vancomycin infusion and administration of diphenhydramine can abort most of the reactions. Slow intravenous administration of vancomycin should minimize the risk of infusion-related adverse effects. Antibiotics such as ciprofloxacin, amphotericin B, rifampcin and teicoplanin can potentially cause red man syndrome. The effects of red man syndrome can be relieved by antihistamines.

  20. Human factors issues for interstellar spacecraft

    Science.gov (United States)

    Cohen, Marc M.; Brody, Adam R.

    1991-01-01

    Developments in research on space human factors are reviewed in the context of a self-sustaining interstellar spacecraft based on the notion of traveling space settlements. Assumptions about interstellar travel are set forth addressing costs, mission durations, and the need for multigenerational space colonies. The model of human motivation by Maslow (1970) is examined and directly related to the design of space habitat architecture. Human-factors technology issues encompass the human-machine interface, crew selection and training, and the development of spaceship infrastructure during transtellar flight. A scenario for feasible instellar travel is based on a speed of 0.5c, a timeframe of about 100 yr, and an expandable multigenerational crew of about 100 members. Crew training is identified as a critical human-factors issue requiring the development of perceptual and cognitive aids such as expert systems and virtual reality.