WorldWideScience

Sample records for manned earth orbital

  1. Earth observation from the manned low Earth orbit platforms

    Science.gov (United States)

    Guo, Huadong; Dou, Changyong; Zhang, Xiaodong; Han, Chunming; Yue, Xijuan

    2016-05-01

    The manned low Earth orbit platforms (MLEOPs), e.g., the U.S. and Russia's human space vehicles, the International Space Station (ISS) and Chinese Tiangong-1 experimental space laboratory not only provide laboratories for scientific experiments in a wide range of disciplines, but also serve as exceptional platforms for remote observation of the Earth, astronomical objects and space environment. As the early orbiting platforms, the MLEOPs provide humans with revolutionary accessibility to the regions on Earth never seen before. Earth observation from MLEOPs began in early 1960s, as a part of manned space flight programs, and will continue with the ISS and upcoming Chinese Space Station. Through a series of flight missions, various and a large amount of Earth observing datasets have been acquired using handheld cameras by crewmembers as well as automated sophisticated sensors onboard these space vehicles. Utilizing these datasets many researches have been conducted, demonstrating the importance and uniqueness of studying Earth from a vantage point of MLEOPs. For example, the first, near-global scale digital elevation model (DEM) was developed from data obtained during the shuttle radar topography mission (SRTM). This review intends to provide an overview of Earth observations from MLEOPs and present applications conducted by the datasets collected by these missions. As the ISS is the most typical representative of MLEOPs, an introduction to it, including orbital characteristics, payload accommodations, and current and proposed sensors, is emphasized. The advantages and challenges of Earth observation from MLEOPs, using the ISS as an example, is also addressed. At last, a conclusive note is drawn.

  2. Man-Made Debris In and From Lunar Orbit

    Science.gov (United States)

    Johnson, Nicholas L.; McKay, Gordon A. (Technical Monitor)

    1999-01-01

    During 1966-1976, as part of the first phase of lunar exploration, 29 manned and robotic missions placed more than 40 objects into lunar orbit. Whereas several vehicles later successfully landed on the Moon and/or returned to Earth, others were either abandoned in orbit or intentionally sent to their destruction on the lunar surface. The former now constitute a small population of lunar orbital debris; the latter, including four Lunar Orbiters and four Lunar Module ascent stages, have contributed to nearly 50 lunar sites of man's refuse. Other lunar satellites are known or suspected of having fallen from orbit. Unlike Earth satellite orbital decays and deorbits, lunar satellites impact the lunar surface unscathed by atmospheric burning or melting. Fragmentations of lunar satellites, which would produce clouds of numerous orbital debris, have not yet been detected. The return to lunar orbit in the 1990's by the Hagoromo, Hiten, Clementine, and Lunar Prospector spacecraft and plans for increased lunar exploration early in the 21st century, raise questions of how best to minimize and to dispose of lunar orbital debris. Some of the lessons learned from more than 40 years of Earth orbit exploitation can be applied to the lunar orbital environment. For the near-term, perhaps the most important of these is postmission passivation. Unique solutions, e.g., lunar equatorial dumps, may also prove attractive. However, as with Earth satellites, debris mitigation measures are most effectively adopted early in the concept and design phase, and prevention is less costly than remediation.

  3. Guidance system operations plan for manned cm earth orbital and lunar missions using program Colossus 3. Section 2: Data links

    Science.gov (United States)

    Hamilton, M. H.

    1971-01-01

    The data links for use with the guidance system operations plan for manned command module earth orbital and lunar missions using program Colossus 3 are presented. The subjects discussed are: (1) digital uplink to CMC, (2) command module contiguous block update, (3) CMC retrofire external data update, (4) CMC digital downlink, and (5) CMC entry update.

  4. A Brief History of Meteoroid and Orbital Debris Shielding Technology for US Manned Spacecraft

    Science.gov (United States)

    Bjorkman, Michael D.; Hyde, James L.

    2008-01-01

    Meteoroid and orbital debris shielding has played an important role from the beginning of manned spaceflight. During the early 60 s, meteoroid protection drove requirements for new meteor and micrometeoroid impact science. Meteoroid protection also stimulated advances in the technology of hypervelocity impact launchers and impact damage assessment methodologies. The first phase of meteoroid shielding assessments closed in the early 70 s with the end of the Apollo program. The second phase of meteoroid protection technology began in the early 80 s when it was determined that there is a manmade Earth orbital debris belt that poses a significant risk to LEO manned spacecraft. The severity of the Earth orbital debris environment has dictated changes in Space Shuttle and ISS operations as well as driven advances in shielding technology and assessment methodologies. A timeline of shielding technology and assessment methodology advances is presented along with a summary of risk assessment results.

  5. A Synthetic Biology Tool Kit for Manned Missions Outside Low Earth Orbit

    Data.gov (United States)

    National Aeronautics and Space Administration — Our goal is to make human missions outside low earth orbit safer and better able to handle the unexpected through the use of synthetic biology as an enabling...

  6. Apollo guidance, navigation and control: Guidance system operations plan for manned CM earth orbital and lunar missions using Program COLOSSUS 3. Section 3: Digital autopilots (revision 14)

    Science.gov (United States)

    1972-01-01

    Digital autopilots for the manned command module earth orbital and lunar missions using program COLOSSUS 3 are discussed. Subjects presented are: (1) reaction control system digital autopilot, (2) thrust vector control autopilot, (3) entry autopilot and mission control programs, (4) takeover of Saturn steering, and (5) coasting flight attitude maneuver routine.

  7. Improved model for solar cosmic ray exposure in manned Earth orbital flights

    International Nuclear Information System (INIS)

    Wilson, J.W.; Nealy, J.E.; Atwell, W.; Cucinotta, F.A.; Shinn, J.L.; Townsend, L.W.

    1990-06-01

    A calculational model is derived for use in estimating Solar cosmic ray exposure to critical body organs in low-Earth orbit at the center of a large spherical shield of fixed thickness. The effects of the Earth's geomagnetic field and the astronauts' self-shielding are evaluated explicitly. The geomagnetic field model is an approximate tilted eccentric dipole with geomagnetic storms represented as a uniform-impressed field. The storm field is related to the planetary geomagnetic index K(sub p). The code is applied to the Shuttle geometry using the Shuttle mass distribution surrounding two locations on the flight deck. The Shuttle is treated as pure aluminum and the astronaut as soft tissue. Short-term, average fluence over a single orbit is calculated as a function of the location of the lines of nodes or long-term averages over all lines of nodes for a fixed inclination

  8. Orbital Dynamics of Low-Earth Orbit Laser-Propelled Space Vehicles

    International Nuclear Information System (INIS)

    Yamakawa, Hiroshi; Funaki, Ikkoh; Komurasaki, Kimiya

    2008-01-01

    Trajectories applicable to laser-propelled space vehicles with a laser station in low-Earth orbit are investigated. Laser vehicles are initially located in the vicinity of the Earth-orbiting laser station in low-earth orbit at an altitude of several hundreds kilometers, and are accelerated by laser beaming from the laser station. The laser-propelled vehicles start from low-earth orbit and finally escape from the Earth gravity well, enabling interplanetary trajectories and planetary exploration

  9. Introducing Earth's Orbital Eccentricity

    Science.gov (United States)

    Oostra, Benjamin

    2015-01-01

    Most students know that planetary orbits, including Earth's, are elliptical; that is Kepler's first law, and it is found in many science textbooks. But quite a few are mistaken about the details, thinking that the orbit is very eccentric, or that this effect is somehow responsible for the seasons. In fact, the Earth's orbital eccentricity is…

  10. Permanent Habitats in Earth-Sol/Mars-Sol Orbit Positions

    Science.gov (United States)

    Greenspon, J.

    Project Outpost is a manned Earth-Sol/Mars-Sol platform that enables permanent occupation in deep space. In order to develop the program elements for this complex mission, Project Outpost will rely primarily on existing/nearterm technology and hardware for the construction of its components. For the purposes of this study, four mission requirements are considered: 1. Outpost - Man's 1st purpose-produced effort of space engineering, in which astructure is developed/constructed in an environment completely alien to currentpractices for EVA guidelines. 2. Newton - a concept study developed at StarGate Research, for the development ofa modified Hohmann personnel orbital transport operating between Earth andMars. Newton would serve as the primary crew delivery apparatus throughrepeatable transfer scheduling for all Earth-Lpoint-Mars activities. Thispermanent "transit system" would establish the foundations for Solar systemcolonization. 3. Cruis - a concept study developed at StarGate Research, for the development of amodified Hohmann cargo orbital transport operating between Earth and Mars.Cruis would serve as the primary equipment delivery apparatus throughrepeatable transfer scheduling for all Earth-Lpoint-Mars activities. Thispermanent "transit system" would establish the foundations for Solar systemcolonization, and 4. Ares/Diana - a more conventional space platform configuration for Lunar andMars orbit is included as a construction baseline. The operations of these assetsare supported, and used for the support, of the outpost. Outpost would be constructed over a 27-year period of launch opportunities into Earth-Sol or Mars-Sol Lagrange orbit (E-S/M-S L1, 4 or 5). The outpost consists of an operations core with a self-contained power generation ability, a docking and maintenance structure, a Scientific Research complex and a Habitation Section. After achieving initial activation, the core will provide the support and energy required to operate the outpost in a 365

  11. The Gaia Catalogue Second Data Release and Its Implications to Optical Observations of Man-Made Earth Orbiting Objects

    Science.gov (United States)

    Frith, James M.; Buckalew, Brent A.; Cowardin, Heather M.; Lederer, Susan M.

    2018-01-01

    The Gaia catalogue second data release and its implications to optical observations of man-made Earth orbiting objects. Abstract and not the Final Paper is attached. The Gaia spacecraft was launched in December 2013 by the European Space Agency to produce a three-dimensional, dynamic map of objects within the Milky Way. Gaia's first year of data was released in September 2016. Common sources from the first data release have been combined with the Tycho-2 catalogue to provide a 5 parameter astrometric solution for approximately 2 million stars. The second Gaia data release is scheduled to come out in April 2018 and is expected to provide astrometry and photometry for more than 1 billion stars, a subset of which with a the full 6 parameter astrometric solution (adding radial velocity) and positional accuracy better than 0.002 arcsec (2 mas). In addition to precise astrometry, a unique opportunity exists with the Gaia catalogue in its production of accurate, broadband photometry using the Gaia G filter. In the past, clear filters have been used by various groups to maximize likelihood of detection of dim man-made objects but these data were very difficult to calibrate. With the second release of the Gaia catalogue, a ground based system utilizing the G band filter will have access to 1.5 billion all-sky calibration sources down to an accuracy of 0.02 magnitudes or better. In this talk, we will discuss the advantages and practicalities of implementing the Gaia filters and catalogue into data pipelines designed for optical observations of man-made objects.

  12. The problems of cosmic ray particle simulation for the near-Earth orbital and interplanetary flight conditions

    International Nuclear Information System (INIS)

    Nymmik, R.A.

    1999-01-01

    A wide range of the galactic cosmic ray and SEP event flux simulation problems for the near-Earth satellite and manned spacecraft orbits and for the interplanetary mission trajectories are discussed. The models of the galactic cosmic ray and SEP events in the Earth orbit beyond the Earth's magnetosphere are used as a basis. The particle fluxes in the near-Earth orbits should be calculated using the transmission functions. To calculate the functions, the dependences of the cutoff rigidities on the magnetic disturbance level and on magnetic local time have to be known. In the case of space flights towards the Sun and to the boundary of the solar system, particular attention is paid to the changes in the SEP event occurrence frequency and size. The particle flux gradients are applied in this case to galactic cosmic ray fluxes

  13. Capturing asteroids into bound orbits around the earth: Massive early return on an asteroid terminal defense system

    International Nuclear Information System (INIS)

    Hills, J.G.

    1992-01-01

    Nuclear explosives may be used to capture small asteroids (e.g., 20--50 meters in diameter) into bound orbits around the earth. The captured objects could be used for construction material for manned and unmanned activity in Earth orbit. Asteroids with small approach velocities, which are the ones most likely to have close approaches to the Earth, require the least energy for capture. They are particularly easy to capture if they pass within one Earth radius of the surface of the Earth. They could be intercepted with intercontinental missiles if the latter were retrofit with a more flexible guiding and homing capability. This asteroid capture-defense system could be implemented in a few years at low cost by using decommissioned ICMs. The economic value of even one captured asteroid is many times the initial investment. The asteroid capture system would be an essential part of the learning curve for dealing with larger asteroids that can hit the earth

  14. Periodic orbit-attitude solutions along planar orbits in a perturbed circular restricted three-body problem for the Earth-Moon system

    Science.gov (United States)

    Bucci, Lorenzo; Lavagna, Michèle; Guzzetti, Davide; Howell, Kathleen C.

    2018-06-01

    Interest on Large Space Structures (LSS), orbiting in strategic and possibly long-term stable locations, is nowadays increasing in the space community. LSS can serve as strategic outpost to support a variety of manned and unmanned mission, or may carry scientific payloads for astronomical observations. The paper focuses on analysing LSS in the Earth-Moon system, exploring dynamical structures that are available within a multi-body gravitational environment. Coupling between attitude and orbital dynamics is investigated, with particular interest on the gravity gradient torque exerted by the two massive attractors. First, natural periodic orbit-attitude solutions are obtained; a LSS that exploits such solutions would benefit of a naturally periodic body rotation synchronous with the orbital motion, easing the effort of the attitude control system to satisfy pointing requirements. Then, the solar radiation pressure is introduced into the fully coupled dynamical model and its effects investigated, discovering novel periodic attitude solutions. Benefits of periodic behaviours that incorporate solar radiation pressure are discussed, and analysed via the variation of some parameters (e.g reflection/absorption coefficients, position of the centre of pressure). As a final step to refine the current perturbed orbit-attitude model, a structure flexibility is also superimposed to a reference orbit-attitude rigid body motion via a simple, yet effective model. The coupling of structural vibrations and attitude motion is preliminarily explored, and allows identification of possible challenges, that may be faced to position a LSS in a periodic orbit within the Earth-Moon system.

  15. Impacts on Explorer 46 from an Earth orbiting population

    Science.gov (United States)

    Kessler, D. J.

    1985-01-01

    Explorer 46 was launched into Earth orbit in August 1972 to evaluate the effectiveness of using double-wall structures to protect against meteoroids. The data from the Meteoroid Bumper Experiment on Explorer 46 is reexamined and it is concluded that most of the impacts originated from an Earth orbiting population. The probable source of this orbiting population is solid rocket motors fired in Earth orbit.

  16. Guidance system operations plan for manned CM earth orbital missions using program Skylark 1. Section 2: Data links

    Science.gov (United States)

    Hamilton, M. H.

    1972-01-01

    A computer program to define the digital uplink and downlink for use in manned command module orbital missions is presented. The subjects discussed are: (1) digital uplink to command module, (2) CMC digital downlink, (3) downlist formats, (4) description of telemetered qualities, (5) flagbits, and (6) effects of Fresh Start (V36) and Hardware Restart on flagword and channel bits.

  17. Unique Non-Keplerian Orbit Vantage Locations for Sun-Earth Connection and Earth Science Vision Roadmaps

    Science.gov (United States)

    Folta, David; Young, Corissa; Ross, Adam

    2001-01-01

    The purpose of this investigation is to determine the feasibility of attaining and maintaining unique non-Keplerian orbit vantage locations in the Earth/Moon environment in order to obtain continuous scientific measurements. The principal difficulty associated with obtaining continuous measurements is the temporal nature of astrodynamics, i.e., classical orbits. This investigation demonstrates advanced trajectory designs to meet demanding science requirements which cannot be met following traditional orbital mechanic logic. Examples of continuous observer missions addressed include Earth pole-sitters and unique vertical libration orbits that address Sun-Earth Connection and Earth Science Vision roadmaps.

  18. Spatial analysis of galactic cosmic ray particles in low earth orbit/near equator orbit using SPENVIS

    International Nuclear Information System (INIS)

    Suparta, W; Zulkeple, S K

    2014-01-01

    The space environment has grown intensively harmful to spacecraft and astronauts. Galactic cosmic rays (GCRs) are one of the radiation sources that composed of high energetic particles originated from space and capable of damaging electronic systems through single event upset (SEU) process. In this paper, we analyzed GCR fluxes at different altitudes by using Space Environment Information System (SPENVIS) software and the results are compared to determine their intensities with respect to distance in the Earth's orbit. The altitudes are set at low earth orbit (400 km and 685 km), medium earth orbit (19,100 km and 20,200 km) and high earth orbit (35,793 km and 1,000,000 km). Then, within Low Earth Orbit (LEO) near the equator (NEqO), we used altitude of 685 km to compare GCRs with the intensities of solar particles and trapped particles in the radiation belt to determine the significance of GCRs in the orbit itself.

  19. An optimum organizational structure for a large earth-orbiting multidisciplinary Space Base

    Science.gov (United States)

    Ragusa, J. M.

    1973-01-01

    The purpose of this exploratory study was to identify an optimum hypothetical organizational structure for a large earth-orbiting multidisciplinary research and applications (R&A) Space Base manned by a mixed crew of technologists. Since such a facility does not presently exist, in situ empirical testing was not possible. Study activity was, therefore, concerned with the identification of a desired organizational structural model rather than the empirical testing of it. The essential finding of this research was that a four-level project type 'total matrix' model will optimize the efficiency and effectiveness of Space Base technologists.

  20. A high-orbit collimating infrared earth simulator

    International Nuclear Information System (INIS)

    Zhang Guoyu; Jiang Huilin; Fang Yang; Yu Huadong; Xu Xiping; Wang, Lingyun; Liu Xuli; Huang Lan; Yue Shixin; Peng Hui

    2007-01-01

    The earth simulator is the most important testing equipment ground-based for the infrared earth sensor, and it is also a key component in the satellite controlling system. for three orbit heights 18000Km, 35786Km and 42000Km, in this paper we adopt a project of collimation and replaceable earth diaphragm and develop a high orbit collimation earth simulator. This simulator can afford three angles 15.19 0 , 17.46 0 and 30.42 0 , resulting simulating the earth on the ground which can be seen in out space by the satellite. In this paper we introduce the components, integer structure, and the earth's field angles testing method of the earth simulator in detail. Germanium collimation lens is the most important component in the earth simulator. According to the optical configuration parameter of Germanium collimation lens, we find the location and size of the earth diaphragm and the hot earth by theoretical analyses and optics calculation, which offer foundation of design in the study of the earth simulator. The earth angle is the index to scale the precision of earth simulator. We test the three angles by experiment and the results indicate that three angles errors are all less than ±0.05 0

  1. Magnetoshell Aerocapture for Manned Missions and Planetary Deep Space Orbiters

    Data.gov (United States)

    National Aeronautics and Space Administration — It is clear from past mission studies that a manned Mars mission, as well as deep space planetary orbiters will require aerobraking and aerocapture which use...

  2. Earth Orbiting Support Systems for commercial low Earth orbit data relay: Assessing architectures through tradespace exploration

    Science.gov (United States)

    Palermo, Gianluca; Golkar, Alessandro; Gaudenzi, Paolo

    2015-06-01

    As small satellites and Sun Synchronous Earth Observation systems are assuming an increased role in nowadays space activities, including commercial investments, it is of interest to assess how infrastructures could be developed to support the development of such systems and other spacecraft that could benefit from having a data relay service in Low Earth Orbit (LEO), as opposed to traditional Geostationary relays. This paper presents a tradespace exploration study of the architecture of such LEO commercial satellite data relay systems, here defined as Earth Orbiting Support Systems (EOSS). The paper proposes a methodology to formulate architectural decisions for EOSS constellations, and enumerate the corresponding tradespace of feasible architectures. Evaluation metrics are proposed to measure benefits and costs of architectures; lastly, a multicriteria Pareto criterion is used to downselect optimal architectures for subsequent analysis. The methodology is applied to two case studies for a set of 30 and 100 customer-spacecraft respectively, representing potential markets for LEO services in Exploration, Earth Observation, Science, and CubeSats. Pareto analysis shows how increased performance of the constellation is always achieved by an increased node size, as measured by the gain of the communications antenna mounted on EOSS spacecraft. On the other hand, nonlinear trends in optimal orbital altitude, number of satellites per plane, and number of orbital planes, are found in both cases. An upward trend in individual node memory capacity is found, although never exceeding 256 Gbits of onboard memory for both cases that have been considered, assuming the availability of a polar ground station for EOSS data downlink. System architects can use the proposed methodology to identify optimal EOSS constellations for a given service pricing strategy and customer target, thus identifying alternatives for selection by decision makers.

  3. Pervasive orbital eccentricities dictate the habitability of extrasolar earths.

    Science.gov (United States)

    Kita, Ryosuke; Rasio, Frederic; Takeda, Genya

    2010-09-01

    The long-term habitability of Earth-like planets requires low orbital eccentricities. A secular perturbation from a distant stellar companion is a very important mechanism in exciting planetary eccentricities, as many of the extrasolar planetary systems are associated with stellar companions. Although the orbital evolution of an Earth-like planet in a stellar binary system is well understood, the effect of a binary perturbation on a more realistic system containing additional gas-giant planets has been very little studied. Here, we provide analytic criteria confirmed by a large ensemble of numerical integrations that identify the initial orbital parameters leading to eccentric orbits. We show that an extrasolar earth is likely to experience a broad range of orbital evolution dictated by the location of a gas-giant planet, which necessitates more focused studies on the effect of eccentricity on the potential for life.

  4. An Earth-mass planet orbiting α Centauri B.

    Science.gov (United States)

    Dumusque, Xavier; Pepe, Francesco; Lovis, Christophe; Ségransan, Damien; Sahlmann, Johannes; Benz, Willy; Bouchy, François; Mayor, Michel; Queloz, Didier; Santos, Nuno; Udry, Stéphane

    2012-11-08

    Exoplanets down to the size of Earth have been found, but not in the habitable zone--that is, at a distance from the parent star at which water, if present, would be liquid. There are planets in the habitable zone of stars cooler than our Sun, but for reasons such as tidal locking and strong stellar activity, they are unlikely to harbour water-carbon life as we know it. The detection of a habitable Earth-mass planet orbiting a star similar to our Sun is extremely difficult, because such a signal is overwhelmed by stellar perturbations. Here we report the detection of an Earth-mass planet orbiting our neighbour star α Centauri B, a member of the closest stellar system to the Sun. The planet has an orbital period of 3.236 days and is about 0.04 astronomical units from the star (one astronomical unit is the Earth-Sun distance).

  5. Guidance system operations plan for manned LM earth orbital and lunar missions using program luminary 1E. Section 2: Data links

    Science.gov (United States)

    Hamilton, M. H.

    1972-01-01

    Data links for the guidance system of manned lunar module orbital and lunar missions are presented. Subjects discussed are: (1) digital uplink to lunar module, (2) lunar module liftoff time increment, (3) lunar module contiguous block update, (4) lunar module scatter update, (5) lunar module digital downlink, and (6) absolute addresses for update program.

  6. Orbit Propagation and Determination of Low Earth Orbit Satellites

    Directory of Open Access Journals (Sweden)

    Ho-Nien Shou

    2014-01-01

    Full Text Available This paper represents orbit propagation and determination of low Earth orbit (LEO satellites. Satellite global positioning system (GPS configured receiver provides position and velocity measures by navigating filter to get the coordinates of the orbit propagation (OP. The main contradictions in real-time orbit which is determined by the problem are orbit positioning accuracy and the amount of calculating two indicators. This paper is dedicated to solving the problem of tradeoffs. To plan to use a nonlinear filtering method for immediate orbit tasks requires more precise satellite orbit state parameters in a short time. Although the traditional extended Kalman filter (EKF method is widely used, its linear approximation of the drawbacks in dealing with nonlinear problems was especially evident, without compromising Kalman filter (unscented Kalman Filter, UKF. As a new nonlinear estimation method, it is measured at the estimated measurements on more and more applications. This paper will be the first study on UKF microsatellites in LEO orbit in real time, trying to explore the real-time precision orbit determination techniques. Through the preliminary simulation results, they show that, based on orbit mission requirements and conditions using UKF, they can satisfy the positioning accuracy and compute two indicators.

  7. Analysis of orbit determination from Earth-based tracking for relay satellites in a perturbed areostationary orbit

    Science.gov (United States)

    Romero, P.; Pablos, B.; Barderas, G.

    2017-07-01

    Areostationary satellites are considered a high interest group of satellites to satisfy the telecommunications needs of the foreseen missions to Mars. An areostationary satellite, in an areoequatorial circular orbit with a period of 1 Martian sidereal day, would orbit Mars remaining at a fixed location over the Martian surface, analogous to a geostationary satellite around the Earth. This work addresses an analysis of the perturbed orbital motion of an areostationary satellite as well as a preliminary analysis of the aerostationary orbit estimation accuracy based on Earth tracking observations. First, the models for the perturbations due to the Mars gravitational field, the gravitational attraction of the Sun and the Martian moons, Phobos and Deimos, and solar radiation pressure are described. Then, the observability from Earth including possible occultations by Mars of an areostationary satellite in a perturbed areosynchronous motion is analyzed. The results show that continuous Earth-based tracking is achievable using observations from the three NASA Deep Space Network Complexes in Madrid, Goldstone and Canberra in an occultation-free scenario. Finally, an analysis of the orbit determination accuracy is addressed considering several scenarios including discontinuous tracking schedules for different epochs and different areoestationary satellites. Simulations also allow to quantify the aerostationary orbit estimation accuracy for various tracking series durations and observed orbit arc-lengths.

  8. Space station orbit maintenance

    Science.gov (United States)

    Kaplan, D. I.; Jones, R. M.

    1983-01-01

    The orbit maintenance problem is examined for two low-earth-orbiting space station concepts - the large, manned Space Operations Center (SOC) and the smaller, unmanned Science and Applications Space Platform (SASP). Atmospheric drag forces are calculated, and circular orbit altitudes are selected to assure a 90 day decay period in the event of catastrophic propulsion system failure. Several thrusting strategies for orbit maintenance are discussed. Various chemical and electric propulsion systems for orbit maintenance are compared on the basis of propellant resupply requirements, power requirements, Shuttle launch costs, and technology readiness.

  9. A Free-Return Earth-Moon Cycler Orbit for an Interplanetary Cruise Ship

    Science.gov (United States)

    Genova, Anthony L.; Aldrin, Buzz

    2015-01-01

    A periodic circumlunar orbit is presented that can be used by an interplanetary cruise ship for regular travel between Earth and the Moon. This Earth-Moon cycler orbit was revealed by introducing solar gravity and modest phasing maneuvers (average of 39 m/s per month) which yields close-Earth encounters every 7 or 10 days. Lunar encounters occur every 26 days and offer the chance for a smaller craft to depart the cycler and enter lunar orbit, or head for a Lagrange point (e.g., EM-L2 halo orbit), distant retrograde orbit (DRO), or interplanetary destination such as a near-Earth object (NEO) or Mars. Additionally, return-to-Earth abort options are available from many points along the cycling trajectory.

  10. A low cost automatic detection and ranging system for space surveillance in the medium Earth orbit region and beyond.

    Science.gov (United States)

    Danescu, Radu; Ciurte, Anca; Turcu, Vlad

    2014-02-11

    The space around the Earth is filled with man-made objects, which orbit the planet at altitudes ranging from hundreds to tens of thousands of kilometers. Keeping an eye on all objects in Earth's orbit, useful and not useful, operational or not, is known as Space Surveillance. Due to cost considerations, the space surveillance solutions beyond the Low Earth Orbit region are mainly based on optical instruments. This paper presents a solution for real-time automatic detection and ranging of space objects of altitudes ranging from below the Medium Earth Orbit up to 40,000 km, based on two low cost observation systems built using commercial cameras and marginally professional telescopes, placed 37 km apart, operating as a large baseline stereovision system. The telescopes are pointed towards any visible region of the sky, and the system is able to automatically calibrate the orientation parameters using automatic matching of reference stars from an online catalog, with a very high tolerance for the initial guess of the sky region and camera orientation. The difference between the left and right image of a synchronized stereo pair is used for automatic detection of the satellite pixels, using an original difference computation algorithm that is capable of high sensitivity and a low false positive rate. The use of stereovision provides a strong means of removing false positives, and avoids the need for prior knowledge of the orbits observed, the system being able to detect at the same time all types of objects that fall within the measurement range and are visible on the image.

  11. FROM ORDER TO CHAOS IN EARTH SATELLITE ORBITS

    Energy Technology Data Exchange (ETDEWEB)

    Gkolias, Ioannis; Gachet, Fabien [Department of Mathematics, University of Rome Tor Vergata, I-00133 Rome (Italy); Daquin, Jérôme [IMCCE/Observatoire de Paris, Université Lille1, F-59000 Lille (France); Rosengren, Aaron J., E-mail: gkolias@mat.uniroma2.it [IFAC-CNR, 50019 Sesto Fiorentino, Florence (Italy)

    2016-11-01

    We consider Earth satellite orbits in the range of semimajor axes where the perturbing effects of Earth’s oblateness and lunisolar gravity are of comparable order. This range covers the medium-Earth orbits (MEO) of the Global Navigation Satellite Systems and the geosynchronous orbits (GEO) of the communication satellites. We recall a secular and quadrupolar model, based on the Milankovitch vector formulation of perturbation theory, which governs the long-term orbital evolution subject to the predominant gravitational interactions. We study the global dynamics of this two-and-a-half degrees-of-freedom Hamiltonian system by means of the fast Lyapunov indicator (FLI), used in a statistical sense. Specifically, we characterize the degree of chaoticity of the action space using angle-averaged normalized FLI maps, thereby overcoming the angle dependencies of the conventional stability maps. Emphasis is placed upon the phase-space structures near secular resonances, which are of primary importance to the space debris community. We confirm and quantify the transition from order to chaos in MEO, stemming from the critical inclinations and find that highly inclined GEO orbits are particularly unstable. Despite their reputed normality, Earth satellite orbits can possess an extraordinarily rich spectrum of dynamical behaviors and, from a mathematical perspective, have all the complications that make them very interesting candidates for testing the modern tools of chaos theory.

  12. Orbital and Landing Operations at Near-Earth

    Science.gov (United States)

    Scheeres, D. J.

    1995-01-01

    Orbital and landing operations about near-Earth asteroids are different than classical orbital operations about large bodies. The major differences lie with the small mass of the asteroid, the lower orbital velocities, the larger Solar tide and radiation pressure perturbations, the irregular shape of the asteroid and the potential for non-uniform rotation of the asteroid. These differences change the nature of orbits about an asteroid to where it is often common to find trajectories that evolve from stable, near-circular orbits to crashing or escaping orbits in a matter of days. The understanding and control of such orbits is important if a human or robotic presence at asteroids is to be commonplace in the future.

  13. Accelerated simulation of near-Earth-orbit polymer degradation

    Science.gov (United States)

    Laue, Eric

    1992-01-01

    There is a need to simulate the near-Earth-orbit environmental conditions, and it is useful to be able to monitor the changes in physical properties of spacecraft materials. Two different methods for simulating the vacuum-ultraviolet (VUV) and soft X-ray near-Earth-orbit flux are presented. Also, methods for monitoring the changes in optical ultraviolet transmission and mass loss are presented. The results of exposures to VUV photons and charged particles on these materials are discussed.

  14. PRODUCTION OF NEAR-EARTH ASTEROIDS ON RETROGRADE ORBITS

    International Nuclear Information System (INIS)

    Greenstreet, S.; Gladman, B.; Ngo, H.; Granvik, M.; Larson, S.

    2012-01-01

    While computing an improved near-Earth object (NEO) steady-state orbital distribution model, we discovered in the numerical integrations the unexpected production of retrograde orbits for asteroids that had originally exited from the accepted main-belt source regions. Our model indicates that ∼0.1% (a factor of two uncertainty) of the steady-state NEO population (perihelion q < 1.3 AU) is on retrograde orbits. These rare outcomes typically happen when asteroid orbits flip to a retrograde configuration while in the 3:1 mean-motion resonance with Jupiter and then live for ∼0.001 to 100 Myr. The model predicts, given the estimated near-Earth asteroid (NEA) population, that a few retrograde 0.1-1 km NEAs should exist. Currently, there are two known MPC NEOs with asteroidal designations on retrograde orbits which we therefore claim could be escaped asteroids instead of devolatilized comets. This retrograde NEA population may also answer a long-standing question in the meteoritical literature regarding the origin of high-strength, high-velocity meteoroids on retrograde orbits.

  15. Regional positioning using a low Earth orbit satellite constellation

    Science.gov (United States)

    Shtark, Tomer; Gurfil, Pini

    2018-02-01

    Global and regional satellite navigation systems are constellations orbiting the Earth and transmitting radio signals for determining position and velocity of users around the globe. The state-of-the-art navigation satellite systems are located in medium Earth orbits and geosynchronous Earth orbits and are characterized by high launching, building and maintenance costs. For applications that require only regional coverage, the continuous and global coverage that existing systems provide may be unnecessary. Thus, a nano-satellites-based regional navigation satellite system in Low Earth Orbit (LEO), with significantly reduced launching, building and maintenance costs, can be considered. Thus, this paper is aimed at developing a LEO constellation optimization and design method, using genetic algorithms and gradient-based optimization. The preliminary results of this study include 268 LEO constellations, aimed at regional navigation in an approximately 1000 km × 1000 km area centered at the geographic coordinates [30, 30] degrees. The constellations performance is examined using simulations, and the figures of merit include total coverage time, revisit time, and geometric dilution of precision (GDOP) percentiles. The GDOP is a quantity that determines the positioning solution accuracy and solely depends on the spatial geometry of the satellites. Whereas the optimization method takes into account only the Earth's second zonal harmonic coefficient, the simulations include the Earth's gravitational field with zonal and tesseral harmonics up to degree 10 and order 10, Solar radiation pressure, drag, and the lunisolar gravitational perturbation.

  16. Mitigating Climate Change with Earth Orbital Sunshades

    Science.gov (United States)

    Coverstone, Victoria; Johnson, Les

    2015-01-01

    An array of rotating sunshades based on emerging solar sail technology will be deployed in a novel Earth orbit to provide near-continuous partial shading of the Earth, reducing the heat input to the atmosphere by blocking a small percentage of the incoming sunlight, and mitigating local weather effects of anticipated climate change over the next century. The technology will provide local cooling relief during extreme heat events (and heating relief during extreme cold events) thereby saving human lives, agriculture, livestock, water and energy needs. A synthesis of the solar sail design, the sails' operational modes, and the selected orbit combine to provide local weather modification.

  17. Specialized Finite Set Statistics (FISST)-Based Estimation Methods to Enhance Space Situational Awareness in Medium Earth Orbit (MEO) and Geostationary Earth Orbit (GEO)

    Science.gov (United States)

    2016-08-17

    Specialized Finite Set Statistics (FISST)-based Estimation Methods to Enhance Space Situational Awareness in Medium Earth Orbit (MEO) and Geostationary...terms of specialized Geostationary Earth Orbit (GEO) elements to estimate the state of resident space objects in the geostationary regime. Justification...AFRL-RV-PS- AFRL-RV-PS- TR-2016-0114 TR-2016-0114 SPECIALIZED FINITE SET STATISTICS (FISST)- BASED ESTIMATION METHODS TO ENHANCE SPACE SITUATIONAL

  18. Assessing the Impact of Earth Radiation Pressure Acceleration on Low-Earth Orbit Satellites

    Science.gov (United States)

    Vielberg, Kristin; Forootan, Ehsan; Lück, Christina; Kusche, Jürgen; Börger, Klaus

    2017-04-01

    The orbits of satellites are influenced by several external forces. The main non-gravitational forces besides thermospheric drag, acting on the surface of satellites, are accelerations due to the Earth and Solar Radiation Pres- sure (SRP and ERP, respectively). The sun radiates visible and infrared light reaching the satellite directly, which causes the SRP. Earth also emits and reflects the sunlight back into space, where it acts on satellites. This is known as ERP acceleration. The influence of ERP increases with decreasing distance to the Earth, and for low-earth orbit (LEO) satellites ERP must be taken into account in orbit and gravity computations. Estimating acceler- ations requires knowledge about energy emitted from the Earth, which can be derived from satellite remote sensing data, and also by considering the shape and surface material of a satellite. In this sensitivity study, we assess ERP accelerations based on different input albedo and emission fields and their modelling for the satellite missions Challenging Mini-Satellite Payload (CHAMP) and Gravity Recovery and Climate Experiment (GRACE). As input fields, monthly 1°x1° products of Clouds and the Earth's Radiant En- ergy System (CERES), L3 are considered. Albedo and emission models are generated as latitude-dependent, as well as in terms of spherical harmonics. The impact of different albedo and emission models as well as the macro model and the altitude of satellites on ERP accelerations will be discussed.

  19. THE NASA-UC ETA-EARTH PROGRAM. III. A SUPER-EARTH ORBITING HD 97658 AND A NEPTUNE-MASS PLANET ORBITING Gl 785

    International Nuclear Information System (INIS)

    Howard, Andrew W.; Marcy, Geoffrey W.; Isaacson, Howard; Johnson, John Asher; Fischer, Debra A.; Wright, Jason T.; Henry, Gregory W.; Valenti, Jeff A.; Anderson, Jay; Piskunov, Nikolai E.

    2011-01-01

    We report the discovery of planets orbiting two bright, nearby early K dwarf stars, HD 97658 and Gl 785. These planets were detected by Keplerian modeling of radial velocities measured with Keck-HIRES for the NASA-UC Eta-Earth Survey. HD 97658 b is a close-in super-Earth with minimum mass Msin i = 8.2 ± 1.2 M + , orbital period P = 9.494 ± 0.005 days, and an orbit that is consistent with circular. Gl 785 b is a Neptune-mass planet with Msin i = 21.6 ± 2.0 M + , P = 74.39 ± 0.12 days, and orbital eccentricity e = 0.30 ± 0.09. Photometric observations with the T12 0.8 m automatic photometric telescope at Fairborn Observatory show that HD 97658 is photometrically constant at the radial velocity period to 0.09 mmag, supporting the existence of the planet.

  20. Retrieval of RTG'S in earth orbit

    International Nuclear Information System (INIS)

    Raab, B.; Frieder, M.A.; Skrabek, A.

    1982-01-01

    Since 1961, some ten Radioisotope Thermoelectric Generators (RTG's) have been placed into a variety of spacecraft which are now in earth orbit. All of these spacecraft are in orbits with lifetimes in excess of 100 years and pose no risk. However, since most of these spacecraft are no longer being actively used, these may be subject to an active removal program to reduce the population of objects in space. Therefore, a study was undertaken to evaluate the feasibility of retrieving or disposing of spacecraft with RTGs on board. Intervention scenarios are developed and an orbital rendezvous vehicle is conceptualized. The costs of RTG retrieval are derived and compared to the costs of RTG disposal, i.e., boost to a higher, multi-millenium-lifetime orbit, and are found to be not significantly different

  1. Orbit Determination of Spacecraft in Earth-Moon L1 and L2 Libration Point Orbits

    Science.gov (United States)

    Woodard, Mark; Cosgrove, Daniel; Morinelli, Patrick; Marchese, Jeff; Owens, Brandon; Folta, David

    2011-01-01

    The ARTEMIS mission, part of the THEMIS extended mission, is the first to fly spacecraft in the Earth-Moon Lissajous regions. In 2009, two of the five THEMIS spacecraft were redeployed from Earth-centered orbits to arrive in Earth-Moon Lissajous orbits in late 2010. Starting in August 2010, the ARTEMIS P1 spacecraft executed numerous stationkeeping maneuvers, initially maintaining a lunar L2 Lissajous orbit before transitioning into a lunar L1 orbit. The ARTEMIS P2 spacecraft entered a L1 Lissajous orbit in October 2010. In April 2011, both ARTEMIS spacecraft will suspend Lissajous stationkeeping and will be maneuvered into lunar orbits. The success of the ARTEMIS mission has allowed the science team to gather unprecedented magnetospheric measurements in the lunar Lissajous regions. In order to effectively perform lunar Lissajous stationkeeping maneuvers, the ARTEMIS operations team has provided orbit determination solutions with typical accuracies on the order of 0.1 km in position and 0.1 cm/s in velocity. The ARTEMIS team utilizes the Goddard Trajectory Determination System (GTDS), using a batch least squares method, to process range and Doppler tracking measurements from the NASA Deep Space Network (DSN), Berkeley Ground Station (BGS), Merritt Island (MILA) station, and United Space Network (USN). The team has also investigated processing of the same tracking data measurements using the Orbit Determination Tool Kit (ODTK) software, which uses an extended Kalman filter and recursive smoother to estimate the orbit. The orbit determination results from each of these methods will be presented and we will discuss the advantages and disadvantages associated with using each method in the lunar Lissajous regions. Orbit determination accuracy is dependent on both the quality and quantity of tracking measurements, fidelity of the orbit force models, and the estimation techniques used. Prior to Lissajous operations, the team determined the appropriate quantity of tracking

  2. Prevalence of Earth-size planets orbiting Sun-like stars.

    Science.gov (United States)

    Petigura, Erik A; Howard, Andrew W; Marcy, Geoffrey W

    2013-11-26

    Determining whether Earth-like planets are common or rare looms as a touchstone in the question of life in the universe. We searched for Earth-size planets that cross in front of their host stars by examining the brightness measurements of 42,000 stars from National Aeronautics and Space Administration's Kepler mission. We found 603 planets, including 10 that are Earth size ( ) and receive comparable levels of stellar energy to that of Earth (1 - 2 R[Symbol: see text] ). We account for Kepler's imperfect detectability of such planets by injecting synthetic planet-caused dimmings into the Kepler brightness measurements and recording the fraction detected. We find that 11 ± 4% of Sun-like stars harbor an Earth-size planet receiving between one and four times the stellar intensity as Earth. We also find that the occurrence of Earth-size planets is constant with increasing orbital period (P), within equal intervals of logP up to ~200 d. Extrapolating, one finds 5.7(-2.2)(+1.7)% of Sun-like stars harbor an Earth-size planet with orbital periods of 200-400 d.

  3. Management of Bilateral Orbital Cellulitis in a 41-Year-Old Man

    African Journals Online (AJOL)

    tulyasys

    A 41-year-old man presented to us with an inability to open both eyes, blurring ... age groups and males are more prone to the disease. It is a unilateral disease ... of Class 5 orbital cellulitis according to Chandler's classification. His laboratory ...

  4. Collisional cascading - The limits of population growth in low earth orbit

    Science.gov (United States)

    Kessler, Donald J.

    1991-01-01

    Random collisions between made-made objects in earth orbit will lead to a significant source of orbital debris, but there are a number of uncertainties in these models, and additional analysis and data are required to fully characterize the future environment. However, the nature of these uncertainties are such that while the future environment is uncertain, the fact that collisions will control the future environment is less uncertain. The data that already exist is sufficient to show that cascading collisions will control the future debris environment with no, or very minor increases in the current low-earth-orbit population. Two populations control this process: explosion fragments and expended rocket bodies and payloads. Practices are already changing to limit explosions in low earth orbit; it is necessary to begin limiting the number of expended rocket bodies and payloads in orbit.

  5. The Lunar Space Tug: A sustainable bridge between low Earth orbits and the Cislunar Habitat

    Science.gov (United States)

    Mammarella, M.; Paissoni, C. A.; Viola, N.; Denaro, A.; Gargioli, E.; Massobrio, F.

    2017-09-01

    The International Space Station is the first space human outpost and over the last 15 years, it has represented a peculiar environment where science, technology and human innovation converge together in a unique microgravity and space research laboratory. With the International Space Station entering the second part of its life and its operations running steadily at nominal pace, the global space community is starting planning how the human exploration could move further, beyond Low-Earth-Orbit. According to the Global Exploration Roadmap, the Moon represents the next feasible path-way for advances in human exploration towards the nal goal, Mars. Based on the experience of the ISS, one of the most widespread ideas is to develop a Cislunar Station in preparation of long duration missions in a deep space environment. Cislunar space is de ned as the area of deep space under the influence of Earth-Moon system, including a set of special orbits, e.g. Earth-Moon Libration points and Lunar Retrograde Orbit. This habitat represents a suitable environment for demonstrating and testing technologies and capabilities in deep space. In order to achieve this goal, there are several crucial systems and technologies, in particular related to transportation and launch systems. The Orion Multi-Purpose Crew Vehicle is a reusable transportation capsule designed to provide crew transportation in deep space missions, whereas NASA is developing the Space Launch System, the most powerful rocket ever built, which could provide the necessary heavy-lift launch capability to support the same kind of missions. These innovations would allow quite-fast transfers from Earth to the Cislunar Station and vice versa, both for manned and unmanned missions. However, taking into account the whole Concept of Operations for both the growth and sustainability of the Cislunar Space Station, the Lunar Space Tug can be considered as an additional, new and fundamental element for the mission architecture. The

  6. Sustained Manned Mars Presence Enabled by E-sail Technology and Asteroid Water Mining

    Science.gov (United States)

    Janhunen, Pekka; Merikallio, Sini; Toivanen, Petri; Envall, M. Jouni

    The Electric Solar Wind Sail (E-sail) can produce 0.5-1 N of inexhaustible and controllable propellantless thrust [1]. The E-sail is based on electrostatic Coulomb interaction between charged thin tethers and solar wind ions. It was invented in 2006, was developed to TRL 4-5 in 2011-2013 with ESAIL FP7 project (http://www.electric-sailing.fi/fp7) and a CubeSat small-scale flight test is in course (ESTCube-1). The E-sail provides a flexible and efficient way of moving 0-2 tonne sized cargo payloads in the solar system without consuming propellant. Given the E-sail, one could use it to make manned exploration of the solar system more affordable by combining it with asteroid water mining. One first sends a miner spacecraft to an asteroid or asteroids, either by E-sail or traditional means. Many asteroids are known to contain water and liberating it only requires heating the material one piece at a time in a leak tight container. About 2 tonne miner can produce 50 tonnes of water per year which is sufficient to sustain continuous manned traffic between Earth and Mars. If the ice-bearing asteroid resides roughly at Mars distance, it takes 3 years for a 0.7 N E-sailer to transport a 10 tonne water/ice payload to Mars orbit or Earth C3 orbit. Thus one needs a fleet of 15 E-sail transport spacecraft plus replacements to ferry 50 tonnes of water yearly to Earth C3 (1/3) and Mars orbit (2/3). The mass of one transporter is 300 kg [2]. One needs to launch max 1.5 tonne mass of new E-sail transporters per year and in practice much less since it is simple to reuse them. This infrastructure is enough to supply 17 tonnes of water yearly at Earth C3 and 33 tonnes in Mars orbit. Orbital water can be used by manned exploration in three ways: (1) for potable water and for making oxygen, (2) for radiation shielding, (3) for LH2/LOX propellant. Up to 75 % of the wet mass of the manned module could be water (50 % propellant and 25 % radiation shield water). On top of this the total mass

  7. GALILEO ORBITER EARTH POS EARTH2 FLYBY TRAJ V1.0

    Data.gov (United States)

    National Aeronautics and Space Administration — Galileo Orbiter 60 second sampled trajectory data from the Earth-2 flyby in GSE and GSM coordinates. These data cover the interval 1992-11-03 to 1992-12-20.

  8. GALILEO ORBITER EARTH POS EARTH1 FLYBY TRAJ V1.0

    Data.gov (United States)

    National Aeronautics and Space Administration — Galileo Orbiter 60 second sampled trajectory data from the Earth-1 flyby in GSE and GSM coordinates. These data cover the interval 1990-11-05 to 1990-12-31.

  9. Advanced Earth-to-orbit propulsion technology information, dissemination and research

    Science.gov (United States)

    Wu, S. T.

    1995-01-01

    In this period of performance a conference (The 1994 Conference on Advanced Earth-to-Orbit Propulsion Technology) was organized and implemented by the University of Alabama in Huntsville and held May 15-17 to assemble and disseminate the current information on Advanced Earth-to-Orbit Propulsion Technology. The results were assembled for publication as NASA-CP-3282, Volume 1 and 2 and NASA-CP-3287.

  10. Space Tourism: Orbital Debris Considerations

    Science.gov (United States)

    Mahmoudian, N.; Shajiee, S.; Moghani, T.; Bahrami, M.

    2002-01-01

    Space activities after a phase of research and development, political competition and national prestige have entered an era of real commercialization. Remote sensing, earth observation, and communication are among the areas in which this growing industry is facing competition and declining government money. A project like International Space Station, which draws from public money, has not only opened a window of real multinational cooperation, but also changed space travel from a mere fantasy into a real world activity. Besides research activities for sending man to moon and Mars and other outer planets, space travel has attracted a considerable attention in recent years in the form of space tourism. Four countries from space fairing nations are actively involved in the development of space tourism. Even, nations which are either in early stages of space technology development or just beginning their space activities, have high ambitions in this area. This is worth noting considering their limited resources. At present, trips to space are available, but limited and expensive. To move beyond this point to generally available trips to orbit and week long stays in LEO, in orbital hotels, some of the required basic transportations, living requirements, and technological developments required for long stay in orbit are already underway. For tourism to develop to a real everyday business, not only the price has to come down to meaningful levels, but also safety considerations should be fully developed to attract travelers' trust. A serious hazard to space activities in general and space tourism in particular is space debris in earth orbit. Orbiting debris are man-made objects left over by space operations, hazardous to space missions. Since the higher density of debris population occurs in low earth orbit, which is also the same orbit of interest to space tourism, a careful attention should be paid to the effect of debris on tourism activities. In this study, after a

  11. A MATLAB based Distributed Real-time Simulation of Lander-Orbiter-Earth Communication for Lunar Missions

    Science.gov (United States)

    Choudhury, Diptyajit; Angeloski, Aleksandar; Ziah, Haseeb; Buchholz, Hilmar; Landsman, Andre; Gupta, Amitava; Mitra, Tiyasa

    communication. The DRTS setup thus developed serves as an important and inexpensive test bench for trying out remote controlled applications on the rover, for example, from an earth station. The simulation is modular and the system is composable. Each of the processes can be aug-mented with relevant simulation modules that handle the events to simulate specific function-alities. With stringent energy saving requirements on most rovers, such a simulation set up, for example, can be used to design optimal rover movement control strategies from the orbiter in conjunction with autonomous systems on the rover itself. References 1. Lunar and Planetary Department, Moscow University, Lunokhod 1, "http://selena.sai.msu.ru/Home/Spa 2. NASA History Office, Guidelines for Advanced Manned Space Vehicle Program, "http://history.nasa.gov 35ann/AMSVPguidelines/top.htm" 3. Consultative Committee For Space Data Systems, "Proximity-1 Space Link Protocol" CCSDS 211.0-B-1 Blue Book. October 2002. 4. Segui, J. and Jennings, E., "Delay Tolerant Networking-Bundle Protocol Simulation", in Proceedings of the 2nd IEEE International Conference on Space Mission Challenges for Infor-mation Technology, 2006.

  12. Environmental studies using earth orbital photography

    Energy Technology Data Exchange (ETDEWEB)

    Wobber, F J

    1969-01-01

    Orbital remote sensing, and particularly orbital photography, can provide immediately useful data for scientists familiar with applying aerial photographic techniques to environmental problems. Despite the expansion of analytical techniques in the earth sciences, the environmental data base has remained relatively static compared with increased information needs because of the difficulty of effective worldwide surveys and the high cost of timely data collection. Color, color infrared and black and white space photographs obtained incident to the Gemini and Apollo programs provide unique synoptic tools for analyzing modern environments and processes, and data that cannot be duplicated by aerial photographic mosaics. Principal advantages of orbital surveys include repetitious worldwide coverage promising environmental synthesis within the full spectrum of seasonal contrasts, and synoptic observations on a scale generally impossible from aircraft. The general categories of environmental data that can be extracted from orbital photography are summarized. 26 references, 37 figures, 3 tables.

  13. Investigating fundamental physics and space environment with a dedicated Earth-orbiting spacecraft

    Science.gov (United States)

    Peron, Roberto

    The near-Earth environment is a place of first choice for performing fundamental physics experiments, given its proximity to Earth and at the same time being relatively quiet dynamically for particular orbital arrangements. This environment also sees a rich phenomenology for what concerns gravitation. In fact, the general theory of relativity is an incredibly accurate description of gravitational phenomenology. However, its overall validity is being questioned by the theories that aim at reconciling it with the microscopic domain. Challenges come also from the ‘mysteries’ of Dark Matter and Dark Energy, though mainly at scales from the galactic up to the cosmological. It is therefore important to precisely test the consequences of the theory -- as well as those of competing ones -- at all the accessible scales. At the same time, the development of high-precision experimental space techniques, which are needed for tests in fundamental physics, opens the way to complementary applications. The growth of the (man-made) orbital debris population is creating problems to the future development of space. The year 2009 witnessed the first accidental collision between two satellites in orbit (Iridium and Cosmos) that led to the creation of more debris. International and national agencies are intervening by issuing and/or adopting guidelines to mitigate the growth of orbital debris. A central tenet of these guidelines requires a presence in space shorter than 25 years to satellites in low Earth orbit (LEO) after the conclusion of their operational lives. However, the determination of the natural lifetime of a satellite in LEO is very uncertain due to a large extent to the short-term and long-term variability of the atmospheric density in LEO and the comparatively low-accuracy of atmospheric density models. Many satellites orbiting in the 500-1200 km region with circular or elliptical orbits will be hard pressed to establish before flight whether or not they meet the 25

  14. Fuel Optimization for Low Earth Orbit Maintenance

    Directory of Open Access Journals (Sweden)

    Yong Jae Park

    2008-06-01

    Full Text Available The resolution of Earth images taken from a satellite has close relation with satellite's altitude. If a satellite has lower altitude, it gets a picture having better resolution. However the satellite will be exposed to heavier air drag and will spend more fuel to maintain its altitude for a desired mission. Therefore, in this study, the required fuel to maintain very low earth orbit(LEO with severe air drag is analyzed using optimization method such as collocation method. The required fuel to maintain the low altitude has significantly increased as the mission altitude is lowered and the solar activity is maximized. This study also shows that the fuel reduced by increasing the period of the satellite maneuver is very small, and that slightly increasing the satellite's mission altitude is much effective in reducing the amount of fuel to maintain its altitude. The calculated fuel to maintain very low earth orbit in this study would give useful information in planning the budget of fuel and cost for LEO satellites.

  15. Management of bilateral orbital cellulitis in a 41-year-old man ...

    African Journals Online (AJOL)

    We report a case of a bilateral disease in a healthy middle-aged man who presented with fevers, diminished vision, eye pains, lid swellings, severe ptosis, axial proptosis and ophthalmoplegia in both eyes. Our impression was that of Class 5 orbital cellulitis according to Chandler's classifi cation. His laboratory investigations ...

  16. Manned spaceflight log II—2006–2012

    CERN Document Server

    Shayler, David J

    2013-01-01

    April 12, 1961 "Attention! This is Radio Moscow speaking...The world's first satellite spaceship, Vostock, with a man aboard, was put into orbit round the Earth." Soviet Union cosmonaut Yuri A. Gagarin becomes the first person to fly in space, completing one orbit in 108 minutes. April 5, 2001 As NASA prepares to fly the final Shuttle missions to the International Space Station, Russia launches Soyuz TMA 21 (code-named 'Yuri Gagarin') with the 28th ISS Expedition crew aboard, celebrating 50 years of manned spaceflight. Meanwhile, in China, preparations continue for launching the nation's first Space Station (called Tiangong 1 - or Heavenly Palace 1) later in the year. The sixth decade of manned spaceflight orbital operations has truly began. At this point in the history of human space exploration, it is timely to review the first five decades of adventure and look forward to the next decade and what it might bring. Several notable anniversaries celebrated in 2011 make it the right time to reflect and pay homa...

  17. Thermal and orbital analysis of Earth monitoring Sun-synchronous space experiments

    Science.gov (United States)

    Killough, Brian D.

    1990-01-01

    The fundamentals of an Earth monitoring Sun-synchronous orbit are presented. A Sun-synchronous Orbit Analysis Program (SOAP) was developed to calculate orbital parameters for an entire year. The output from this program provides the required input data for the TRASYS thermal radiation computer code, which in turn computes the infrared, solar and Earth albedo heat fluxes incident on a space experiment. Direct incident heat fluxes can be used as input to a generalized thermal analyzer program to size radiators and predict instrument operating temperatures. The SOAP computer code and its application to the thermal analysis methodology presented, should prove useful to the thermal engineer during the design phases of Earth monitoring Sun-synchronous space experiments.

  18. Approximately analytical solutions of the Manning-Rosen potential with the spin-orbit coupling term and spin symmetry

    International Nuclear Information System (INIS)

    Wei Gaofeng; Dong Shihai

    2008-01-01

    In this Letter the approximately analytical bound state solutions of the Dirac equation with the Manning-Rosen potential for arbitrary spin-orbit coupling quantum number k are carried out by taking a properly approximate expansion for the spin-orbit coupling term. In the case of exact spin symmetry, the associated two-component spinor wave functions of the Dirac equation for arbitrary spin-orbit quantum number k are presented and the corresponding bound state energy equation is derived. We study briefly two special cases; the general s-wave problem and the equal scalar and vector Manning-Rosen potential

  19. An optimum organizational structure for a large earth-orbiting multidisciplinary space base. Ph.D. Thesis - Fla. State Univ., 1973

    Science.gov (United States)

    Ragusa, J. M.

    1975-01-01

    An optimum hypothetical organizational structure was studied for a large earth-orbiting, multidisciplinary research and applications space base manned by a crew of technologists. Because such a facility does not presently exist, in situ empirical testing was not possible. Study activity was, therefore, concerned with the identification of a desired organizational structural model rather than with the empirical testing of the model. The essential finding of this research was that a four-level project type total matrix model will optimize the efficiency and effectiveness of space base technologists.

  20. Size Dependence of Dust Distribution around the Earth Orbit

    Energy Technology Data Exchange (ETDEWEB)

    Ueda, Takahiro; Takeuchi, Taku [Department of Earth and Planetary Sciences, Tokyo Institute of Technology, Meguro, Tokyo, 152-8551 (Japan); Kobayashi, Hiroshi; Ishihara, Daisuke; Kondo, Toru; Kaneda, Hidehiro, E-mail: t.ueda@geo.titech.ac.jp [Graduate School of Science, Nagoya University, Nagoya, Aichi, 464-8602 (Japan)

    2017-05-01

    In the solar system, interplanetary dust particles (IDPs) originating mainly from asteroid collisions and cometary activities drift to Earth orbit due to Poynting–Robertson drag. We analyzed the thermal emission from IDPs that was observed by the first Japanese infrared astronomical satellite, AKARI . The observed surface brightness in the trailing direction of the Earth orbit is 3.7% greater than that in the leading direction in the 9 μ m band and 3.0% in the 18 μ m band. In order to reveal dust properties causing leading–trailing surface brightness asymmetry, we numerically integrated orbits of the Sun, the Earth, and a dust particle as a restricted three-body problem including radiation from the Sun. The initial orbits of particles are determined according to the orbits of main-belt asteroids or Jupiter-family comets. Orbital trapping in mean motion resonances results in a significant leading–trailing asymmetry so that intermediate sized dust (∼10–100 μ m) produces a greater asymmetry than zodiacal light. The leading–trailing surface brightness difference integrated over the size distribution of the asteroidal dust is obtained to be 27.7% and 25.3% in the 9 μ m and 18 μ m bands, respectively. In contrast, the brightness difference for cometary dust is calculated as 3.6% and 3.1% in the 9 μ m and 18 μ m bands, respectively, if the maximum dust radius is set to be s {sub max} = 3000 μ m. Taking into account these values and their errors, we conclude that the contribution of asteroidal dust to the zodiacal infrared emission is less than ∼10%, while cometary dust of the order of 1 mm mainly accounts for the zodiacal light in infrared.

  1. Size Dependence of Dust Distribution around the Earth Orbit

    International Nuclear Information System (INIS)

    Ueda, Takahiro; Takeuchi, Taku; Kobayashi, Hiroshi; Ishihara, Daisuke; Kondo, Toru; Kaneda, Hidehiro

    2017-01-01

    In the solar system, interplanetary dust particles (IDPs) originating mainly from asteroid collisions and cometary activities drift to Earth orbit due to Poynting–Robertson drag. We analyzed the thermal emission from IDPs that was observed by the first Japanese infrared astronomical satellite, AKARI . The observed surface brightness in the trailing direction of the Earth orbit is 3.7% greater than that in the leading direction in the 9 μ m band and 3.0% in the 18 μ m band. In order to reveal dust properties causing leading–trailing surface brightness asymmetry, we numerically integrated orbits of the Sun, the Earth, and a dust particle as a restricted three-body problem including radiation from the Sun. The initial orbits of particles are determined according to the orbits of main-belt asteroids or Jupiter-family comets. Orbital trapping in mean motion resonances results in a significant leading–trailing asymmetry so that intermediate sized dust (∼10–100 μ m) produces a greater asymmetry than zodiacal light. The leading–trailing surface brightness difference integrated over the size distribution of the asteroidal dust is obtained to be 27.7% and 25.3% in the 9 μ m and 18 μ m bands, respectively. In contrast, the brightness difference for cometary dust is calculated as 3.6% and 3.1% in the 9 μ m and 18 μ m bands, respectively, if the maximum dust radius is set to be s max  = 3000 μ m. Taking into account these values and their errors, we conclude that the contribution of asteroidal dust to the zodiacal infrared emission is less than ∼10%, while cometary dust of the order of 1 mm mainly accounts for the zodiacal light in infrared.

  2. AAFE man-made noise experiment project. Volume 1: Introduction experiment definition and requirements

    Science.gov (United States)

    1974-01-01

    An experiment was conducted to measure and map the man-made radio frequency emanations which exist at earth orbital altitudes. The major objectives of the program are to develop a complete conceptual experiment and developmental hardware for the collection and processing of data required to produce meaningful statistics on man-made noise level variations as functions of time, frequency, and geographic location. A wide dispersion measurement receiver mounted in a spacecraft operating in a specialized orbit is used to obtain the data. A summary of the experiment designs goals and constraints is provided. The recommended orbit for the spacecraft is defined. The characteristics of the receiver and the antennas are analyzed.

  3. The Effect of Air Drag in Optimal Power-Limited Rendezvous Between Coplanar Low-Earth Orbits

    Directory of Open Access Journals (Sweden)

    Gil-Young Maeng

    1998-06-01

    Full Text Available The effect of air drag was researched when a low-earth orbit spacecraft using power-limited thruster rendezvoused another low-earth orbit spacecraft. The air density was assumed to decrease exponentially. The radius of parking orbit was 6655.935 km and that of target orbit was 7321.529 km. From the trajectories of active vehicles, the fuel consumption and the magnitude of thrust acceleration, we could conclude that the effect of air drag had to be considered in fuel optimal rendezvous problem between low-earth orbit spacecrafts. In multiple-revolution rendezvous case, the air drag was more effective.

  4. Global optimum spacecraft orbit control subject to bounded thrust in presence of nonlinear and random disturbances in a low earth orbit

    Directory of Open Access Journals (Sweden)

    Tamer Mekky Ahmed Habib

    2012-06-01

    Full Text Available The primary objective of this work is to develop an effective spacecraft orbit control algorithm suitable for spacecraft orbital maneuver and/or rendezvous. The actual governing equation of a spacecraft orbiting the earth is merely nonlinear. Disturbance forces resulting from aerodynamic drag, oblateness of the earth till the fourth order (i.e. J4, and random disturbances are modeled for the initial and target orbits. These disturbances increase the complexity of nonlinear governing equations. Global optimum solutions of the control algorithm parameters are determined throughout real coded genetic algorithms such that the steady state difference between the actual and desired trajectories is minimized. The resulting solutions are constrained to avoid spacecraft collision with the surface of the earth taking into account limited thrust budget.

  5. Astrometric detectability of systems with unseen companions: effects of the Earth orbital motion

    Science.gov (United States)

    Butkevich, Alexey G.

    2018-06-01

    The astrometric detection of an unseen companion is based on an analysis of the apparent motion of its host star around the system's barycentre. Systems with an orbital period close to 1 yr may escape detection if the orbital motion of their host stars is observationally indistinguishable from the effects of parallax. Additionally, an astrometric solution may produce a biased parallax estimation for such systems. We examine the effects of the orbital motion of the Earth on astrometric detectability in terms of a correlation between the Earth's orbital position and the position of the star relative to its system barycentre. The χ2 statistic for parallax estimation is calculated analytically, leading to expressions that relate the decrease in detectability and accompanying parallax bias to the position correlation function. The impact of the Earth's motion critically depends on the exoplanet's orbital period, diminishing rapidly as the period deviates from 1 yr. Selection effects against 1-yr-period systems is, therefore, expected. Statistical estimation shows that the corresponding loss of sensitivity results in a typical 10 per cent increase in the detection threshold. Consideration of eccentric orbits shows that the Earth's motion has no effect on detectability for e≳ 0.5. The dependence of the detectability on other parameters, such as orbital phases and inclination of the orbital plane to the ecliptic, are smooth and monotonic because they are described by simple trigonometric functions.

  6. Summary results of the first United States manned orbital space flight

    Science.gov (United States)

    Glenn, J. H. Jr

    1963-01-01

    This paper describes the principal findings of the first United States manned orbital space flight in light of the flight mission. Consideration is given to the coordinated tracking network, recovery forces and to the spacecraft and its several functional systems. These include mechanisms for heat protection, escape maneuvers, spacecraft control, power supply, communications, life support and landing. A few difficulties encountered in the flight and deviations from the planned sequence are described. Craft preparation, aeromedical studies, flight plan and particularly flight observations--including the color, light, horizon visibility by day and by night, cloud formations and sunrise and sunset effects are given in some detail. The general conclusion from the MA-6 flight is that man can adapt well to new conditions encountered in space flight and that man can contribute importantly to mission reliability and toward mission achievement through his capacities to control the spacecraft and its multiple systems contribute to decision making and adaptation of programming as well as to direct exploratory and experimental observations.

  7. Dynamic and reduced-dynamic precise orbit determination of satellites in low earth orbits

    International Nuclear Information System (INIS)

    Swatschina, P.

    2009-01-01

    The precise positioning of satellites in Low Earth Orbits (LEO) has become a key technology for advanced space missions. Dedicated satellite missions, such as CHAMP, GRACE and GOCE, that aim to map the Earths gravity field and its variation over time with unprecedented accuracy, initiated the demand for highly precise orbit solutions of LEO satellites. Furthermore, a wide range of additional science opportunities opens up with the capability to generate accurate LEO orbits. For all considered satellite missions, the primary measurement system for navigation is a spaceborne GPS receiver. The goal of this thesis is to establish and implement methods for Precise Orbit Determination (POD) of LEO satellites using GPS. Striving for highest precision using yet efficient orbit generation strategies, the attained orbit solutions are aimed to be competitive with the most advanced solutions of other institutions. Dynamic and reduced-dynamic orbit models provide the basic concepts of this work. These orbit models are subsequently adjusted to the highly accurate GPS measurements. The GPS measurements are introduced at the zero difference level in the ionosphere free linear combination. Appropriate procedures for GPS data screening and editing are established to detect erroneous data and to employ measurements of good quality only. For the dynamic orbit model a sophisticated force model, especially designed for LEO satellites, has been developed. In order to overcome the limitations that are induced by the deficiencies of the purely dynamical model, two different types of empirical parameters are introduced into the force model. These reduced-dynamic orbit models allow for the generation of much longer orbital arcs while preserving the spacecraft dynamics to the most possible extent. The two methods for reduced-dynamic orbit modeling are instantaneous velocity changes (pulses) or piecewise constant accelerations. For both techniques highly efficient modeling algorithms are

  8. On the lunar node resonance of the orbital plane evolution of the Earth's satellite orbits

    Science.gov (United States)

    Zhu, Ting-Lei

    2018-06-01

    This paper aims to investigate the effects of lunar node resonance on the circular medium Earth orbits (MEO). The dynamical model is established in classical Hamiltonian systems with the application of Lie transform to remove the non-resonant terms. Resonant condition, stability and phase structures are studied. The lunar node resonance occurs when the secular changing rates of the orbital node (with respect to the equator) and the lunar node (with respect to the ecliptic) form a simple integer ratio. The resonant conditions are satisfied for both inclined and equatorial orbits. The orbital plane would have long period (with typical timescales of several centuries) fluctuation due to the resonance.

  9. Efficiency in Carrying Cargo to Earth Orbits: Spaceports Repositioning

    Directory of Open Access Journals (Sweden)

    Jakub Hospodka

    2016-10-01

    Full Text Available Space flights are in these days not any more question of technology, but more question of costs. One way how to decrease cost of launch is change of home spaceport. Change of home spaceport for different rockets is a way to achieve more efficient launches to space. The reason is different acceleration achieved from Earth rotation. We added several mathematical calculations of missions to Low Earth Orbit and Geostationary Earth Orbit to show bonuses from Earth rotation and effect of atmospheric drag on specific rockets used these days. We discussed only already used space vessels. Namely Arianne 5, Delta 4 heavy, Proton-M, Zenit and Falcon9. For reaching GEO we discuss possibility of using Hohmman transfer, because none of aforementioned vessels is available for direct GEO entry. As possible place for launch we discussed spaceports Baikonur, Kennedy Space center, Guyana Space center and Sea Launch platform. We present results in form of additional acceleration for each spaceport, and we also project this additional acceleration in means payload increase. In conclusion we find important differences between vessel effectivity based on spaceport used for launch. Change of launch location may bring significant cost decrease for operators.

  10. Space tourism: from earth orbit to the moon

    Science.gov (United States)

    Collins, P.

    Travel to and from the lunar surface has been known to be feasible since it was first achieved 34 years ago. Since that time there has been enormous progress in related engineering fields such as rocket propulsion, materials and avionics, and about 1 billion has been spent on lunar science and engineering research. Consequently there are no fundamental technical problems facing the development of lunar tourism - only business and investment problems. The outstanding problem is to reduce the cost of launch to low Earth orbit. Recently there has been major progress towards overturning the myth that launch costs are high because of physical limits. Several "X Prize" competitor vehicles currently in test-flight are expected to be able to perform sub-orbital flights at approximately 1/1,000 of the cost of Alan Shepard's similar flight in 1961. This activity could have started 30 years ago if space agencies had had economic rather than political objectives. A further encouraging factor is that the demand for space tourism seems potentially limitless. Starting with sub-orbital flights and growing through orbital activities, travel to the Moon will offer further unique attractions. In every human culture there is immense interest in the Moon arising from millennia of myths. In addition, bird-like flying sports, first described by Robert Heinlein, will become another powerful demand factor. Roundtrips of 1 to 2 weeks are very convenient for travel companies; and the radiation environment will permit visitors several days of surface activity without significant health risks. The paper also discusses economic aspects of lunar tourism, including the benefits it will have for those on Earth. Lunar economic development based on tourism will have much in common with economic development on Earth based on tourism: starting from the fact that many people spontaneously wish to visit popular places, companies in the tourism industry invest to sell a growing range of services to ever

  11. The problem of space nuclear power sources collisions with artificial space objects in near-earth orbits

    International Nuclear Information System (INIS)

    Gafarov, A.A.

    1993-01-01

    Practically all space objects with onboard nuclear power sources stay in earth satellite orbits with an orbital lifetime long enough to reduce their radioactivity to levels presenting no danger for the Earth population. One of the reasons for orbit lifetime reduction can be collisions with other space objects in near-earth orbits. The possible consequence of collisions can be partial, or even complete, destruction of the spacecraft with an onboard nuclear power source; as well as delivery of additional impulse both to the spacecraft and its fragments. It is shown that collisions in orbit do not cause increase of radiation hazard for the Earth population if there is aerodynamic breakup of nuclear power sources into fragments of safe sizes during atmospheric reentry

  12. UV SURFACE ENVIRONMENT OF EARTH-LIKE PLANETS ORBITING FGKM STARS THROUGH GEOLOGICAL EVOLUTION

    Energy Technology Data Exchange (ETDEWEB)

    Rugheimer, S.; Sasselov, D. [Harvard Smithsonian Center for Astrophysics, 60 Garden st., 02138 MA Cambridge (United States); Segura, A. [Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, México (Mexico); Kaltenegger, L., E-mail: srugheimer@cfa.harvard.edu [Carl Sagan Institute, Cornell University, Ithaca, NY 14853 (United States)

    2015-06-10

    The UV environment of a host star affects the photochemistry in the atmosphere, and ultimately the surface UV environment for terrestrial planets and therefore the conditions for the origin and evolution of life. We model the surface UV radiation environment for Earth-sized planets orbiting FGKM stars in the circumstellar Habitable Zone for Earth through its geological evolution. We explore four different types of atmospheres corresponding to an early-Earth atmosphere at 3.9 Gyr ago and three atmospheres covering the rise of oxygen to present-day levels at 2.0 Gyr ago, 0.8 Gyr ago, and modern Earth. In addition to calculating the UV flux on the surface of the planet, we model the biologically effective irradiance, using DNA damage as a proxy for biological damage. We find that a pre-biotic Earth (3.9 Gyr ago) orbiting an F0V star receives 6 times the biologically effective radiation as around the early Sun and 3520 times the modern Earth–Sun levels. A pre-biotic Earth orbiting GJ 581 (M3.5 V) receives 300 times less biologically effective radiation, about 2 times modern Earth–Sun levels. The UV fluxes calculated here provide a grid of model UV environments during the evolution of an Earth-like planet orbiting a range of stars. These models can be used as inputs into photo-biological experiments and for pre-biotic chemistry and early life evolution experiments.

  13. UV SURFACE ENVIRONMENT OF EARTH-LIKE PLANETS ORBITING FGKM STARS THROUGH GEOLOGICAL EVOLUTION

    International Nuclear Information System (INIS)

    Rugheimer, S.; Sasselov, D.; Segura, A.; Kaltenegger, L.

    2015-01-01

    The UV environment of a host star affects the photochemistry in the atmosphere, and ultimately the surface UV environment for terrestrial planets and therefore the conditions for the origin and evolution of life. We model the surface UV radiation environment for Earth-sized planets orbiting FGKM stars in the circumstellar Habitable Zone for Earth through its geological evolution. We explore four different types of atmospheres corresponding to an early-Earth atmosphere at 3.9 Gyr ago and three atmospheres covering the rise of oxygen to present-day levels at 2.0 Gyr ago, 0.8 Gyr ago, and modern Earth. In addition to calculating the UV flux on the surface of the planet, we model the biologically effective irradiance, using DNA damage as a proxy for biological damage. We find that a pre-biotic Earth (3.9 Gyr ago) orbiting an F0V star receives 6 times the biologically effective radiation as around the early Sun and 3520 times the modern Earth–Sun levels. A pre-biotic Earth orbiting GJ 581 (M3.5 V) receives 300 times less biologically effective radiation, about 2 times modern Earth–Sun levels. The UV fluxes calculated here provide a grid of model UV environments during the evolution of an Earth-like planet orbiting a range of stars. These models can be used as inputs into photo-biological experiments and for pre-biotic chemistry and early life evolution experiments

  14. Earth to Orbit Beamed Energy Experiment

    Science.gov (United States)

    Johnson, Les; Montgomery, Edward E.

    2017-01-01

    As a means of primary propulsion, beamed energy propulsion offers the benefit of offloading much of the propulsion system mass from the vehicle, increasing its potential performance and freeing it from the constraints of the rocket equation. For interstellar missions, beamed energy propulsion is arguably the most viable in the near- to mid-term. A near-term demonstration showing the feasibility of beamed energy propulsion is necessary and, fortunately, feasible using existing technologies. Key enabling technologies are large area, low mass spacecraft and efficient and safe high power laser systems capable of long distance propagation. NASA is currently developing the spacecraft technology through the Near Earth Asteroid Scout solar sail mission and has signed agreements with the Planetary Society to study the feasibility of precursor laser propulsion experiments using their LightSail-2 solar sail spacecraft. The capabilities of Space Situational Awareness assets and the advanced analytical tools available for fine resolution orbit determination now make it possible to investigate the practicalities of an Earth-to-orbit Beamed Energy eXperiment (EBEX) - a demonstration at delivered power levels that only illuminate a spacecraft without causing damage to it. The degree to which this can be expected to produce a measurable change in the orbit of a low ballistic coefficient spacecraft is investigated. Key system characteristics and estimated performance are derived for a near term mission opportunity involving the LightSail-2 spacecraft and laser power levels modest in comparison to those proposed previously. While the technology demonstrated by such an experiment is not sufficient to enable an interstellar precursor mission, if approved, then it would be the next step toward that goal.

  15. Satellite laser ranging to low Earth orbiters: orbit and network validation

    Science.gov (United States)

    Arnold, Daniel; Montenbruck, Oliver; Hackel, Stefan; Sośnica, Krzysztof

    2018-04-01

    Satellite laser ranging (SLR) to low Earth orbiters (LEOs) provides optical distance measurements with mm-to-cm-level precision. SLR residuals, i.e., differences between measured and modeled ranges, serve as a common figure of merit for the quality assessment of orbits derived by radiometric tracking techniques. We discuss relevant processing standards for the modeling of SLR observations and highlight the importance of line-of-sight-dependent range corrections for the various types of laser retroreflector arrays. A 1-3 cm consistency of SLR observations and GPS-based precise orbits is demonstrated for a wide range of past and present LEO missions supported by the International Laser Ranging Service (ILRS). A parameter estimation approach is presented to investigate systematic orbit errors and it is shown that SLR validation of LEO satellites is not only able to detect radial but also along-track and cross-track offsets. SLR residual statistics clearly depend on the employed precise orbit determination technique (kinematic vs. reduced-dynamic, float vs. fixed ambiguities) but also reveal pronounced differences in the ILRS station performance. Using the residual-based parameter estimation approach, corrections to ILRS station coordinates, range biases, and timing offsets are derived. As a result, root-mean-square residuals of 5-10 mm have been achieved over a 1-year data arc in 2016 using observations from a subset of high-performance stations and ambiguity-fixed orbits of four LEO missions. As a final contribution, we demonstrate that SLR can not only validate single-satellite orbit solutions but also precise baseline solutions of formation flying missions such as GRACE, TanDEM-X, and Swarm.

  16. Weights assessment for orbit-on-demand vehicles

    Science.gov (United States)

    Macconochie, I. O.; Martin, J. A.; Breiner, C. A.; Cerro, J. A.

    1985-01-01

    Future manned, reusable earth-to-orbit vehicles may be required to reach orbit within hours or even minutes of a mission decision. A study has been conducted to consider vehicles with such a capability. In the initial phase of the study, 11 vehicles were sized for deployment of 5000 lbs to a polar orbit. From this matrix, two of the most promising concepts were resized for a modified mission and payload. A key feature of the study was the use of consistent mass estimating techniques for a broad range of concepts, allowing direct comparisons of sizes and weights.

  17. Magnus Effect on a Spinning Satellite in Low Earth Orbit

    Science.gov (United States)

    Ramjatan, Sahadeo; Fitz-Coy, Norman; Yew, Alvin Garwai

    2016-01-01

    A spinning body in a flow field generates an aerodynamic lift or Magnus effect that displaces the body in a direction normal to the freestream flow. Earth orbiting satellites with substantial body rotation in appreciable atmospheric densities may generate a Magnus force to perturb orbital dynamics. We investigate the feasibility of using this effect for spacecraft at a perigee of 80km using the Systems Tool Kit (STK). Results show that for a satellite of reasonable properties, the Magnus effect doubles the amount of time in orbit. Orbital decay was greatly mitigated for satellites spinning at 10000 and 15000RPM. This study demonstrates that the Magnus effect has the potential to sustain a spacecraft's orbit at a low perigee altitude and could also serve as an orbital maneuver capability.

  18. Using The Global Positioning System For Earth Orbiter and Deep Space Network

    Science.gov (United States)

    Lichten, Stephen M.; Haines, Bruce J.; Young, Lawrence E.; Dunn, Charles; Srinivasan, Jeff; Sweeney, Dennis; Nandi, Sumita; Spitzmesser, Don

    1994-01-01

    The Global Positioning System (GPS) can play a major role in supporting orbit and trajectory determination for spacecraft in a wide range of applications, including low-Earth, high-earth, and even deep space (interplanetary) tracking.

  19. An LDEF 2 dust instrument for discrimination between orbital debris and natural particles in near-Earth space

    Science.gov (United States)

    Tuzzolino, A. J.; Simpson, J. A.; Mckibben, R. B.; Voss, H. D.; Gursky, H.

    1993-01-01

    The characteristics of a space dust instrument which would be ideally suited to carry out near-Earth dust measurements on a possible Long Duraction Exposure Facility reflight mission (LDEF 2) is discussed. As a model for the trajectory portion of the instrument proposed for LDEF 2, the characteristics of a SPAce DUSt instrument (SPADUS) currently under development for flight on the USA ARGOS mission to measure the flux, mass, velocity, and trajectory of near-Earth dust is summarized. Since natural (cosmic) dust and man-made dust particles (orbital debris) have different velocity and trajectory distributions, they are distinguished by means of the SPADUS velocity/trajectory information. The SPADUS measurements will cover the dust mass range approximately 5 x 10(exp -12) g (2 microns diameter) to approximately 1 x 10(exp -5) g (200 microns diameter), with an expected mean error in particle trajectory of approximately 7 deg (isotropic flux). Arrays of capture cell devices positioned behind the trajectory instrumentation would provide for Earth-based chemical and isotopic analysis of captured dust. The SPADUS measurement principles, characteristics, its role in the ARGOS mission, and its application to an LDEF 2 mission are summarized.

  20. GPS Based Reduced-Dynamic Orbit Determination for Low Earth Orbiters with Ambiguity Fixing

    Directory of Open Access Journals (Sweden)

    Yang Yang

    2015-01-01

    Full Text Available With the ever-increasing number of satellites in Low Earth Orbit (LEO for scientific missions, the precise determination of the position and velocity of the satellite is a necessity. GPS (Global Positioning System based reduced-dynamic orbit determination (RPOD method is commonly used in the post processing with high precision. This paper presents a sequential RPOD strategy for LEO satellite in the framework of Extended Kalman Filter (EKF. Precise Point Positioning (PPP technique is used to process the GPS observations, with carrier phase ambiguity resolution using Integer Phase Clocks (IPCs products. A set of GRACE (Gravity Recovery And Climate Experiment mission data is used to test and validate the RPOD performance. Results indicate that orbit determination accuracy could be improved by 15% in terms of 3D RMS error in comparison with traditional RPOD method with float ambiguity solutions.

  1. Orbital Noise in the Earth System and Climate Fluctuations

    Science.gov (United States)

    Liu, Han-Shou; Smith, David E. (Technical Monitor)

    2001-01-01

    Frequency noise in the variations of the Earth's obliquity (tilt) can modulate the insolation signal for climate change. Including this frequency noise effect on the incoming solar radiation, we have applied an energy balance climate model to calculate the climate fluctuations for the past one million years. Model simulation results are in good agreement with the geologically observed paleoclimate data. We conclude that orbital noise in the Earth system may be the major cause of the climate fluctuation cycles.

  2. Interaction between subdaily Earth rotation parameters and GPS orbits

    Science.gov (United States)

    Panafidina, Natalia; Seitz, Manuela; Hugentobler, Urs

    2013-04-01

    In processing GPS observations the geodetic parameters like station coordinates and ERPs (Earth rotation parameters) are estimated w.r.t. the celestial reference system realized by the satellite orbits. The interactions/correlations between estimated GPS orbis and other parameters may lead to numerical problems with the solution and introduce systematic errors in the computed values: the well known correlations comprise 1) the correlation between the orbital parameters determining the orientation of the orbital plane in inertial space and the nutation and 2) in the case of estimating ERPs with subdaily resolution the correlation between retrograde diurnal polar motion and nutation (and so the respective orbital elements). In this contribution we study the interaction between the GPS orbits and subdaily model for the ERPs. Existing subdaily ERP model recommended by the IERS comprises ~100 terms in polar motion and ~70 terms in Universal Time at diurnal and semidiurnal tidal periods. We use a long time series of daily normal equation systems (NEQ) obtaine from GPS observations from 1994 till 2007 where the ERPs with 1-hour resolution are transformed into tidal terms and the influence of the tidal terms with different frequencies on the estimated orbital parameters is considered. We found that although there is no algebraic correlation in the NEQ between the individual orbital parameters and the tidal terms, the changes in the amplitudes of tidal terms with periods close to 24 hours can be better accmodated by systematic changes in the orbital parameters than for tidal terms with other periods. Since the variation in Earth rotation with the period of siderial day (23.93h, tide K1) in terrestrial frame has in inertial space the same period as the period of revolution of GPS satellites, the K1 tidal term in polar motion is seen by the satellites as a permanent shift. The tidal terms with close periods (from ~24.13h to ~23.80h) are seen as a slow rotation of the

  3. Chinese Manned Space Utility Project

    Science.gov (United States)

    Gu, Y.

    Since 1992 China has been carrying out a conspicuous manned space mission A utility project has been defined and created during the same period The Utility Project of the Chinese Manned Space Mission involves wide science areas such as earth observation life science micro-gravity fluid physics and material science astronomy space environment etc In the earth observation area it is focused on the changes of global environments and relevant exploration technologies A Middle Revolution Image Spectrometer and a Multi-model Micro-wave Remote Sensor have been developed The detectors for cirrostratus distribution solar constant earth emission budget earth-atmosphere ultra-violet spectrum and flux have been manufactured and tested All of above equipment was engaged in orbital experiments on-board the Shenzhou series spacecrafts Space life science biotechnologies and micro-gravity science were much concerned with the project A series of experiments has been made both in ground laboratories and spacecraft capsules The environmental effect in different biological bodies in space protein crystallization electrical cell-fusion animal cells cultural research on separation by using free-low electrophoresis a liquid drop Marangoni migration experiment under micro-gravity as well as a set of crystal growth and metal processing was successfully operated in space The Gamma-ray burst and high-energy emission from solar flares have been explored A set of particle detectors and a mass spectrometer measured

  4. Lageos orbit decay due to infrared radiation from earth

    Science.gov (United States)

    Rubincam, David Parry

    1987-01-01

    Infrared radiation from the earth may be the principal reason for the decay of Lageos' orbit. The radiation heats up the laser retroreflectors embedded in Lageos' aluminum surface. This creates a north-south temperature gradient on the satellite. The gradient in turn causes a force to be exerted on Lageos because of recoil from photons leaving its surface. The delayed heating of the retroreflectors due to their thermal inertia gives the force a net along-track component which always acts like drag. A simple thermal model for the retroreflectors indicates that this thermal drag accounts for about half the observed average along-track acceleration of -3.3 x 10 to the -10th power m/sec squared. The contribution from the aluminum surface to this effect is negligible. The infrared effect cannot explain the large observed fluctuations in drag which occur mainly when the orbit intersects the earth's shadow.

  5. Supporting a Deep Space Gateway with Free-Return Earth-Moon Periodic Orbits

    Science.gov (United States)

    Genova, A. L.; Dunham, D. W.; Hardgrove, C.

    2018-02-01

    Earth-Moon periodic orbits travel between the Earth and Moon via free-return circumlunar segments and can host a station that can provide architecture support to other nodes near the Moon and Mars while enabling science return from cislunar space.

  6. Low cost manned Mars mission based on indigenous propellant production

    Science.gov (United States)

    Bruckner, A. P.; Cinnamon, M.; Hamling, S.; Mahn, K.; Phillips, J.; Westmark, V.

    1993-01-01

    The paper describes a low-cost approach to the manned exploration of Mars (which involves an unmanned mission followed two years later by a manned mission) based on near-term technologies and in situ propellant production. Particular attention is given to the basic mission architecture and its major components, including the orbital analysis, the unmanned segment, the Earth Return Vehicle, the aerobrake design, life sciences, guidance, communications, power, propellant production, the surface rovers, and Mars science. Also discussed are the cost per mission over an assumed 8-yr initiative.

  7. THE NASA-UC ETA-EARTH PROGRAM. I. A SUPER-EARTH ORBITING HD 7924

    International Nuclear Information System (INIS)

    Howard, Andrew W.; Marcy, Geoffrey W.; Johnson, John Asher; Fischer, Debra A.; Giguere, Matthew J.; Isaacson, Howard; Wright, Jason T.; Henry, Gregory W.; Valenti, Jeff A.; Anderson, Jay; Piskunov, Nikolai E.

    2009-01-01

    We report the discovery of the first low-mass planet to emerge from the NASA-UC Eta-Earth Program, a super-Earth orbiting the K0 dwarf HD 7924. Keplerian modeling of precise Doppler radial velocities reveals a planet with minimum mass M P sin i = 9.26 M + in a P = 5.398 d orbit. Based on Keck-HIRES measurements from 2001 to 2008, the planet is robustly detected with an estimated false alarm probability of less than 0.001. Photometric observations using the Automated Photometric Telescopes at Fairborn Observatory show that HD 7924 is photometrically constant over the radial velocity period to 0.19 mmag, supporting the existence of the planetary companion. No transits were detected down to a photometric limit of ∼0.5 mmag, eliminating transiting planets with a variety of compositions. HD 7924b is one of only eight planets detected by the radial velocity technique with M P sin i + and as such is a member of an emerging family of low-mass planets that together constrain theories of planet formation.

  8. Total-dose hardness assurance for low earth orbit

    International Nuclear Information System (INIS)

    Maurer, R.H.; Suter, J.J.

    1987-01-01

    The Low Earth Orbit radiation environment has two significant characteristics that make laboratory simulation exposures difficult: (1) a low dose rate and (2) many cycles of low dose accumulation followed by dose-free annealing. Hardness assurance considerations for this environment are discussed and related to data from the testing of Advanced Low Power Schottky and High-speed CMOS devices

  9. A 3D Visualization and Analysis Model of the Earth Orbit, Milankovitch Cycles and Insolation.

    Science.gov (United States)

    Kostadinov, Tihomir; Gilb, Roy

    2013-04-01

    Milankovitch theory postulates that periodic variability of Earth's orbital elements is a major climate forcing mechanism. Although controversies remain, ample geologic evidence supports the major role of the Milankovitch cycles in climate, e.g. glacial-interglacial cycles. There are three Milankovitch orbital parameters: orbital eccentricity (main periodicities of ~100,000 and ~400,000 years), precession (quantified as the longitude of perihelion, main periodicities 19,000-24,000 years) and obliquity of the ecliptic (Earth's axial tilt, main periodicity 41,000 years). The combination of these parameters controls the spatio-temporal patterns of incoming solar radiation (insolation) and the timing of the seasons with respect to perihelion, as well as season duration. The complex interplay of the Milankovitch orbital parameters on various time scales makes assessment and visualization of Earth's orbit and insolation variability challenging. It is difficult to appreciate the pivotal importance of Kepler's laws of planetary motion in controlling the effects of Milankovitch cycles on insolation patterns. These factors also make Earth-Sun geometry and Milankovitch theory difficult to teach effectively. Here, an astronomically precise and accurate Earth orbit visualization model is presented. The model offers 3D visualizations of Earth's orbital geometry, Milankovitch parameters and the ensuing insolation forcings. Both research and educational uses are envisioned for the model, which is developed in Matlab® as a user-friendly graphical user interface (GUI). We present the user with a choice between the Berger et al. (1978) and Laskar et al. (2004) astronomical solutions for eccentricity, obliquity and precession. A "demo" mode is also available, which allows the three Milankovitch parameters to be varied independently of each other (and over much larger ranges than the naturally occurring ones), so the user can isolate the effects of each parameter on orbital geometry

  10. The O/OREOS Mission - Astrobiology in Low Earth Orbit. [Astrobiology in Low Earth Orbit

    Science.gov (United States)

    Ehrenfreund, P.; Ricco, A. J.; Squires, D.; Kitts, C.; Agasid, E.; Bramall, N.; Bryson, K.; Chittenden, J.; Conley, C.; Cook, A.; hide

    2014-01-01

    The O/OREOS (Organism/Organic Exposure to Orbital Stresses) nanosatellite is the first science demonstration spacecraft and flight mission of the NASA Astrobiology Small- Payloads Program (ASP). O/OREOS was launched successfully on November 19, 2010, to a high-inclination (72 deg), 650-km Earth orbit aboard a US Air Force Minotaur IV rocket from Kodiak, Alaska. O/OREOS consists of 3 conjoined cubesat (each 1000 cu cm) modules: (i) a control bus; (ii) the Space Environment Survivability of Living Organisms (SESLO) experiment; and (iii) the Space Environment Viability of Organics (SEVO) experiment. Among the innovative aspects of the O/OREOS mission are a real-time analysis of the photostability of organics and biomarkers and the collection of data on the survival and metabolic activity for microorganisms at 3 times during the 6-month mission. We report on the spacecraft characteristics, payload capabilities, and present operational phase and flight data from the O/OREOS mission. The science and technology rationale of O/OREOS supports NASA0s scientific exploration program by investigating the local space environment as well as space biology relevant to Moon and Mars missions. It also serves as a precursor for experiments on small satellites, the International Space Station (ISS), future free-flyers and lunar surface exposure facilities.

  11. On the atmospheric drag in orbit determination for low Earth orbit

    Science.gov (United States)

    Tang, Jingshi; Liu, Lin; Miao, Manqian

    2012-07-01

    The atmosphere model is always a major limitation for low Earth orbit (LEO) in orbit prediction and determination. The accelerometer can work around the non-gravitational perturbations in orbit determination, but it helps little to improve the atmosphere model or to predict the orbit. For certain satellites, there may be some specific software to handle the orbit problem. This solution can improve the orbit accuracy for both prediction and determination, yet it always contains empirical terms and is exclusive for certain satellites. This report introduces a simple way to handle the atmosphere drag for LEO, which does not depend on instantaneous atmosphere conditions and improves accuracy of predicted orbit. This approach, which is based on mean atmospheric density, is supported by two reasons. One is that although instantaneous atmospheric density is very complicated with time and height, the major pattern is determined by the exponential variation caused by hydrostatic equilibrium and periodic variation caused by solar radiation. The mean density can include the major variations while neglect other minor details. The other reason is that the predicted orbit is mathematically the result from integral and the really determinant factor is the mean density instead of instantaneous density for every time and spot. Using the mean atmospheric density, which is mainly determined by F10.7 solar flux and geomagnetic index, can be combined into an overall parameter B^{*} = C_{D}(S/m)ρ_{p_{0}}. The combined parameter contains several less accurate parameters and can be corrected during orbit determination. This approach has been confirmed in various LEO computations and an example is given below using Tiangong-1 spacecraft. Precise orbit determination (POD) is done using one-day GPS positioning data without any accurate a-priori knowledge on spacecraft or atmosphere conditions. Using the corrected initial state vector of the spacecraft and the parameter B^* from POD, the

  12. THE SYNERGY OF DIRECT IMAGING AND ASTROMETRY FOR ORBIT DETERMINATION OF EXO-EARTHS

    International Nuclear Information System (INIS)

    Shao, Michael; Catanzarite, Joseph; Pan Xiaopei

    2010-01-01

    The holy grail of exoplanet searches is an exo-Earth, an Earth mass planet in the habitable zone (HZ) around a nearby star. Mass is one of the most important characteristics of a planet and can only be measured by observing the motion of the star around the planet-star center of gravity. The planet's orbit can be measured either by imaging the planet at multiple epochs or by measuring the position of the star at multiple epochs by space-based astrometry. The measurement of an exoplanet's orbit by direct imaging is complicated by a number of factors. One is the inner working angle (IWA). A space coronagraph or interferometer imaging an exo-Earth can separate the light from the planet from the light from the star only when the star-planet separation is larger than the IWA. Second, the apparent brightness of a planet depends on the orbital phase. A single image of a planet cannot tell us whether the planet is in the HZ or distinguish whether it is an exo-Earth or a Neptune-mass planet. Third is the confusion that may arise from the presence of multiple planets. With two images of a multiple planet system, it is not possible to assign a dot to a planet based only on the photometry and color of the planet. Finally, the planet-star contrast must exceed a certain minimum value in order for the planet to be detected. The planet may be unobservable even when it is outside the IWA, such as when the bright side of the planet is facing away from us in a 'crescent' phase. In this paper we address the question: 'Can a prior astrometric mission that can identify which stars have Earth-like planets significantly improve the science yield of a mission to image exo-Earths?' In the case of the Occulting Ozone Observatory, a small external occulter mission that cannot measure spectra, we find that the occulter mission could confirm the orbits of ∼4 to ∼5 times as many exo-Earths if an astrometric mission preceded it to identify which stars had such planets. In the case of an

  13. Solar radiation pressure resonances in Low Earth Orbits

    Science.gov (United States)

    Alessi, Elisa Maria; Schettino, Giulia; Rossi, Alessandro; Valsecchi, Giovanni B.

    2018-01-01

    The aim of this work is to highlight the crucial role that orbital resonances associated with solar radiation pressure can have in Low Earth Orbit. We review the corresponding literature, and provide an analytical tool to estimate the maximum eccentricity which can be achieved for well-defined initial conditions. We then compare the results obtained with the simplified model with the results obtained with a more comprehensive dynamical model. The analysis has important implications both from a theoretical point of view, because it shows that the role of some resonances was underestimated in the past, and also from a practical point of view in the perspective of passive deorbiting solutions for satellites at the end-of-life.

  14. Trapped Proton Environment in Medium-Earth Orbit (2000-2010)

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yue [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Friedel, Reinhard Hans [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Kippen, Richard Marc [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-03-31

    This report describes the method used to derive fluxes of the trapped proton belt along the GPS orbit (i.e., a Medium-Earth Orbit) during 2000 – 2010, a period almost covering a solar cycle. This method utilizes a newly developed empirical proton radiation-belt model, with the model output scaled by GPS in-situ measurements, to generate proton fluxes that cover a wide range of energies (50keV- 6MeV) and keep temporal features as well. The new proton radiation-belt model is developed based upon CEPPAD proton measurements from the Polar mission (1996 – 2007). Comparing to the de-facto standard empirical model of AP8, this model is not only based upon a new data set representative of the proton belt during the same period covered by GPS, but can also provide statistical information of flux values such as worst cases and occurrence percentiles instead of solely the mean values. The comparison shows quite different results from the two models and suggests that the commonly accepted error factor of 2 on the AP8 flux output over-simplifies and thus underestimates variations of the proton belt. Output fluxes from this new model along the GPS orbit are further scaled by the ns41 in-situ data so as to reflect the dynamic nature of protons in the outer radiation belt at geomagnetically active times. Derived daily proton fluxes along the GPS ns41 orbit, whose data files are delivered along with this report, are depicted to illustrate the trapped proton environment in the Medium-Earth Orbit. Uncertainties on those daily proton fluxes from two sources are evaluated: One is from the new proton-belt model that has error factors < ~3; the other is from the in-situ measurements and the error factors could be ~ 5.

  15. Using the Global Positioning System for Earth Orbiter and Deep Space Tracking

    Science.gov (United States)

    Lichten, Stephen M.

    1994-01-01

    The Global Positioning System (GPS) can play a major role in supporting orbit and trajectory determination for spacecraft in a wide range of applications, including low-Earth, high-Earth, and even deep space (interplanetary) tracking. This paper summarizes recent results demonstrating these unique and far-ranging applications of GPS.

  16. An algorithm for enhanced formation flying of satellites in low earth orbit

    Science.gov (United States)

    Folta, David C.; Quinn, David A.

    1998-01-01

    With scientific objectives for Earth observation programs becoming more ambitious and spacecraft becoming more autonomous, the need for innovative technical approaches on the feasibility of achieving and maintaining formations of spacecraft has come to the forefront. The trend to develop small low-cost spacecraft has led many scientists to recognize the advantage of flying several spacecraft in formation to achieve the correlated instrument measurements formerly possible only by flying many instruments on a single large platform. Yet, formation flying imposes additional complications on orbit maintenance, especially when each spacecraft has its own orbit requirements. However, advances in automation and technology proposed by the Goddard Space Flight Center (GSFC) allow more of the burden in maneuver planning and execution to be placed onboard the spacecraft, mitigating some of the associated operational concerns. The purpose of this paper is to present GSFC's Guidance, Navigation, and Control Center's (GNCC) algorithm for Formation Flying of the low earth orbiting spacecraft that is part of the New Millennium Program (NMP). This system will be implemented as a close-loop flight code onboard the NMP Earth Orbiter-1 (EO-1) spacecraft. Results of this development can be used to determine the appropriateness of formation flying for a particular case as well as operational impacts. Simulation results using this algorithm integrated in an autonomous `fuzzy logic' control system called AutoCon™ are presented.

  17. Measurement of particle directions in low earth orbit with a Timepix

    International Nuclear Information System (INIS)

    Gohl, St.; Bergmann, B.; Granja, C.; Pichotka, M.; Polansky, S.; Pospisil, S.; Owens, A.

    2016-01-01

    In Low Earth Orbit (LEO) in space electronic equipment aboard satellites and space crews are exposed to high ionizing radiation levels. To reduce radiation damage and the exposure of astronauts, to improve shielding and to assess dose levels, it is valuable to know the composition of the radiation fields and particle directions. The presented measurements are carried out with the Space Application of Timepix Radiation Monitor (SATRAM). There, a Timepix detector (300 μm thick silicon sensor, pixel pitch 55 μm, 256 × 256 pixels) is attached to the Proba-V, an earth observing satellite of the European Space Agency (ESA). The Timepix detector's capability was used to determine the directions of energetic charged particles and their corresponding stopping powers. Data are continuously taken at an altitude of 820 km on a sun-synchronous orbit. The particles pitch angles with respect to the sensor layer were measured and converted to an Earth Centred Earth Fixed (ECEF) coordinate system. Deviations from an isotropic field are extracted by normalization of the observed angular distributions by a Geant4 Monte Carlo simulation —taking the systematics of the reconstruction algorithm and the pixelation into account.

  18. Effects of DeOrbitSail as applied to Lifetime predictions of Low Earth Orbit Satellites

    Science.gov (United States)

    Afful, Andoh; Opperman, Ben; Steyn, Herman

    2016-07-01

    Orbit lifetime prediction is an important component of satellite mission design and post-launch space operations. Throughout its lifetime in space, a spacecraft is exposed to risk of collision with orbital debris or operational satellites. This risk is especially high within the Low Earth Orbit (LEO) region where the highest density of space debris is accumulated. This paper investigates orbital decay of some LEO micro-satellites and accelerating orbit decay by using a deorbitsail. The Semi-Analytical Liu Theory (SALT) and the Satellite Toolkit was employed to determine the mean elements and expressions for the time rates of change. Test cases of observed decayed satellites (Iridium-85 and Starshine-1) are used to evaluate the predicted theory. Results for the test cases indicated that the theory fitted observational data well within acceptable limits. Orbit decay progress of the SUNSAT micro-satellite was analysed using relevant orbital parameters derived from historic Two Line Element (TLE) sets and comparing with decay and lifetime prediction models. This paper also explored the deorbit date and time for a 1U CubeSat (ZACUBE-01). The use of solar sails as devices to speed up the deorbiting of LEO satellites is considered. In a drag sail mode, the deorbitsail technique significantly increases the effective cross-sectional area of a satellite, subsequently increasing atmospheric drag and accelerating orbit decay. The concept proposed in this study introduced a very useful technique of orbit decay as well as deorbiting of spacecraft.

  19. Two Earth-sized planets orbiting Kepler-20.

    Science.gov (United States)

    Fressin, Francois; Torres, Guillermo; Rowe, Jason F; Charbonneau, David; Rogers, Leslie A; Ballard, Sarah; Batalha, Natalie M; Borucki, William J; Bryson, Stephen T; Buchhave, Lars A; Ciardi, David R; Désert, Jean-Michel; Dressing, Courtney D; Fabrycky, Daniel C; Ford, Eric B; Gautier, Thomas N; Henze, Christopher E; Holman, Matthew J; Howard, Andrew; Howell, Steve B; Jenkins, Jon M; Koch, David G; Latham, David W; Lissauer, Jack J; Marcy, Geoffrey W; Quinn, Samuel N; Ragozzine, Darin; Sasselov, Dimitar D; Seager, Sara; Barclay, Thomas; Mullally, Fergal; Seader, Shawn E; Still, Martin; Twicken, Joseph D; Thompson, Susan E; Uddin, Kamal

    2011-12-20

    Since the discovery of the first extrasolar giant planets around Sun-like stars, evolving observational capabilities have brought us closer to the detection of true Earth analogues. The size of an exoplanet can be determined when it periodically passes in front of (transits) its parent star, causing a decrease in starlight proportional to its radius. The smallest exoplanet hitherto discovered has a radius 1.42 times that of the Earth's radius (R(⊕)), and hence has 2.9 times its volume. Here we report the discovery of two planets, one Earth-sized (1.03R(⊕)) and the other smaller than the Earth (0.87R(⊕)), orbiting the star Kepler-20, which is already known to host three other, larger, transiting planets. The gravitational pull of the new planets on the parent star is too small to measure with current instrumentation. We apply a statistical method to show that the likelihood of the planetary interpretation of the transit signals is more than three orders of magnitude larger than that of the alternative hypothesis that the signals result from an eclipsing binary star. Theoretical considerations imply that these planets are rocky, with a composition of iron and silicate. The outer planet could have developed a thick water vapour atmosphere.

  20. MoonBEAM: A Beyond Earth-Orbit Gamma-Ray Burst Detector for Gravitational-Wave Astronomy

    Science.gov (United States)

    Hui, C. M.; Briggs, M. S.; Goldstein, A. M.; Jenke, P. A.; Kocevski, D.; Wilson-Hodge, C. A.

    2018-01-01

    Moon Burst Energetics All-sky Monitor (MoonBEAM) is a CubeSat concept of deploying gamma-ray detectors in cislunar space to improve localization precision for gamma-ray bursts by utilizing the light travel time difference between different orbits. We present here a gamma-ray SmallSat concept in Earth-Moon L3 halo orbit that is capable of rapid response and provide a timing baseline for localization improvement when partnered with an Earth-orbit instrument. Such an instrument would probe the extreme processes in cosmic collision of compact objects and facilitate multi-messenger time-domain astronomy to explore the end of stellar life cycles and black hole formations.

  1. Transverse and Longitudinal Doppler Effects of the Sunbeam Spectra and Earth-Self Rotation and Orbital Velocities, the Mass of the Sun and Others

    OpenAIRE

    Nam, Sang Boo

    2009-01-01

    The transverse and longitudinal Doppler effects of the sunbeam spectra are shown to result in the earth parameters such as the earth-self rotation and revolution velocities, the earth orbit semi-major axis, the earth orbital angular momentum, the earth axial tilt, the earth orbit eccentricity, the local latitude and the mass of the sun. The sunbeam global positioning scheme is realized, including the earth orbital position. PACS numbers: 91.10.Fc, 95.10.Km, 91.10.Da, 91.10.Jf.

  2. Project Minerva: A low-cost manned Mars mission based on indigenous propellant production

    Science.gov (United States)

    Bruckner, Adam P.; Anderson, Hobie; Caviezel, Kelly; Daggert, Todd; Folkers, Mike; Fornia, Mark; Hamling, Steven; Johnson, Bryan; Kalberer, Martin; Machula, Mike

    1992-01-01

    Project Minerva is a low-cost manned Mars mission designed to deliver a crew of four to the Martian surface, using only two sets of two launches. Key concepts which make this mission realizable are the use of near-term technologies and in-situ propellant production, following the senario originally proposed by R. Zubrin of Martin Marietta. The first set of launches delivers two unmanned payloads into low earth orbit (LEO): one consists of an Earth Return Vehicle (ERV), a propellant production plant, and a set of robotic vehicles, and the second consists of the upper stage/trans-Mars injection (TMI) booster. In LEO, the two payloads are joined and inserted into a Mars transfer orbit. The landing on Mars is performed with the aid of multiple aerobraking maneuvers. On the Martian surface, the propellant production plant uses a Sabatier/electrolysis-type process to combine six tons of hydrogen brought from earth with carbon dioxide from the Martian atmosphere to produce 100 tons of liquid oxygen and methane, which are later used as the propellants for the rover expeditions and the manned return journey of the ERV. Once the in-situ propellant production is completed, approximately two years after the first set of launches, the manned portion of the mission leaves earth. This set of two launches is similar to that of the unmanned vehicles; the two payloads are the Manned Transfer Vehicle (MTV) and the upper stage/TMI booster. The MTV contains the manned rover and the habitat which houses the astronauts enroute to Mars and on the Martian surface. During the 180-day trip to Mars, artificial gravity is created by tethering the MTV to the TMI booster and inducing rotation. Upon arrival the MTV performs aerobraking maneuvers to land near the fully-fueled ERV, which will be used by the crew a year and a half later to return to earth. The mission entails moderate travel times with relatively low-energy conjunction-class trajectories and allows ample time for scientific

  3. Near-Earth Object Orbit Linking with the Large Synoptic Survey Telescope

    Science.gov (United States)

    Vereš, Peter; Chesley, Steven R.

    2017-07-01

    We have conducted a detailed simulation of the ability of the Large Synoptic Survey Telescope (LSST) to link near-Earth and main belt asteroid detections into orbits. The key elements of the study were a high-fidelity detection model and the presence of false detections in the form of both statistical noise and difference image artifacts. We employed the Moving Object Processing System (MOPS) to generate tracklets, tracks, and orbits with a realistic detection density for one month of the LSST survey. The main goals of the study were to understand whether (a) the linking of near-Earth objects (NEOs) into orbits can succeed in a realistic survey, (b) the number of false tracks and orbits will be manageable, and (c) the accuracy of linked orbits would be sufficient for automated processing of discoveries and attributions. We found that the overall density of asteroids was more than 5000 per LSST field near opposition on the ecliptic, plus up to 3000 false detections per field in good seeing. We achieved 93.6% NEO linking efficiency for H< 22 on tracks composed of tracklets from at least three distinct nights within a 12 day interval. The derived NEO catalog was comprised of 96% correct linkages. Less than 0.1% of orbits included false detections, and the remainder of false linkages stemmed from main belt confusion, which was an artifact of the short time span of the simulation. The MOPS linking efficiency can be improved by refined attribution of detections to known objects and by improved tuning of the internal kd-tree linking algorithms.

  4. Advantage of Animal Models with Metabolic Flexibility for Space Research Beyond Low Earth Orbit

    Science.gov (United States)

    Griko, Yuri V.; Rask, Jon C.; Raychev, Raycho

    2017-01-01

    As the worlds space agencies and commercial entities continue to expand beyond Low Earth Orbit (LEO), novel approaches to carry out biomedical experiments with animals are required to address the challenge of adaptation to space flight and new planetary environments. The extended time and distance of space travel along with reduced involvement of Earth-based mission support increases the cumulative impact of the risks encountered in space. To respond to these challenges, it becomes increasingly important to develop the capability to manage an organisms self-regulatory control system, which would enable survival in extraterrestrial environments. To significantly reduce the risk to animals on future long duration space missions, we propose the use of metabolically flexible animal models as pathfinders, which are capable of tolerating the environmental extremes exhibited in spaceflight, including altered gravity, exposure to space radiation, chemically reactive planetary environments and temperature extremes.In this report we survey several of the pivotal metabolic flexibility studies and discuss the importance of utilizing animal models with metabolic flexibility with particular attention given to the ability to suppress the organism's metabolism in spaceflight experiments beyond LEO. The presented analysis demonstrates the adjuvant benefits of these factors to minimize damage caused by exposure to spaceflight and extreme planetary environments. Examples of microorganisms and animal models with dormancy capabilities suitable for space research are considered in the context of their survivability under hostile or deadly environments outside of Earth. Potential steps toward implementation of metabolic control technology in spaceflight architecture and its benefits for animal experiments and manned space exploration missions are discussed.

  5. Limitations of Electromagnetic Ion Cyclotron Wave Observations in Low Earth Orbit

    Directory of Open Access Journals (Sweden)

    Junga Hwang

    2018-03-01

    Full Text Available Pc1 pulsations are geomagnetic fluctuations in the frequency range of 0.2 to 5 Hz. There have been several observations of Pc1 pulsations in low earth orbit by MAGSAT, DE-2, Viking, Freja, CHAMP, and SWARM satellites. However, there has been a clear limitation in resolving the spatial and temporal variations of the pulsation by using a single-point observation by a single satellite. To overcome such limitations of previous observations, a new space mission was recently initiated, using the concept of multi-satellites, named the Small scale magNetospheric and Ionospheric Plasma Experiments (SNIPE. The SNIPE mission consists of four nanosatellites (~10 kg, which will be launched into a polar orbit at an altitude of 600 km (TBD in 2020. Four satellites will be deployed in orbit, and the distances between each satellite will be controlled from 10 to 1,000 km by a high-end formation-flying algorithm. One of the possible science targets of the SNIPE mission is observing electromagnetic ion cyclotron (EMIC waves. In this paper, we report on examples of observations, showing the limitations of previous EMIC observations in low earth orbit, and suggest possibilities to overcome those limitations through a new mission.

  6. Risk assessment and late effects of radiation in low-earth orbits

    International Nuclear Information System (INIS)

    Fry, R.J.M.

    1989-01-01

    The radiation dose rates in low-earth orbits are dependent on the altitude and orbital inclination. The doses to which the crews of space vehicles are exposed is governed by the duration of the mission and the shielding, and in low-earth orbit missions protons are the dominant particles encountered. The risk of concern with the low dose rates and the relatively low total doses of radiation that will be incurred on the space station is excess cancer. The National Council on Radiation Protection and Measurements has recently recommended career dose-equivalent limits that take into account sex and age. The new recommendations for career limits range from 1.0 Sv to 4 Sv, depending on sex and on the age at the time of their first space mission, compared to a single career limit of 4.0 Sv previously used by NASA. Risk estimates for radiated-induced cancer are evolving and changes in the current guidance may be required in the next few years. 10 refs., 1 fig., 3 tabs

  7. The Ph-D project: Manned expedition to the Moons of Mars

    Science.gov (United States)

    Singer, S. Fred

    2000-01-01

    The Ph-D (Phobos-Deimos) mission involves the transfer of six to eight men (and women), including two medical scientists, from Earth orbit to Deimos, the outer satellite of Mars. There follows a sequential program of unmanned exploration of the surface of Mars by means of some ten to twenty unmanned rover vehicles, each of which returns Mars samples to the Deimos laboratory. A two-man sortie descends to the surface of Mars to gain a direct geological perspective and develop priorities in selecting samples. At the same time, other astronauts conduct a coordinated program of exploration (including sample studies) of Phobos and Deimos. Bringing men close to Mars to control exploration is shown to have scientific and other advantages over either (i) (manned) control from the Earth, or (ii) manned operations from Mars surface. The mission is envisaged to take place after 2010, and to last about two years (including a three-to six-month stay at Deimos). Depending on then-available technology, take-off weight from Earth orbit is of the order of 300 tons. A preferred mission scheme may preposition propellants and equipment at Deimos by means of ``slow freight,'' possibly using a ``gravity boost'' from Venus. It is then followed by a ``manned express'' that conveys the astronauts more rapidly to Deimos. Both chemical and electric propulsion are used in this mission, as appropriate. Electric power is derived from solar and nuclear sources. Assuming that certain development costs can be shared with space-station programs, the incremental cost of the project is estimated as less than $40 billion (in 1998 dollars), expended over a 15-year period. The potential scientific returns are both unique and important: (i) Establishing current or ancient existence of life-forms on Mars; (ii) Understanding the causes of climate change by comparing Earth and Mars; (iii) Martian planetary history; (iv) Nature and origin of the Martian moons. Beyond the Ph-D Project, many advanced programs

  8. Autonomous Mars ascent and orbit rendezvous for earth return missions

    Science.gov (United States)

    Edwards, H. C.; Balmanno, W. F.; Cruz, Manuel I.; Ilgen, Marc R.

    1991-01-01

    The details of tha assessment of autonomous Mars ascent and orbit rendezvous for earth return missions are presented. Analyses addressing navigation system assessments, trajectory planning, targeting approaches, flight control guidance strategies, and performance sensitivities are included. Tradeoffs in the analysis and design process are discussed.

  9. Tidal Heating of Earth-like Exoplanets around M Stars: Thermal, Magnetic, and Orbital Evolutions.

    Science.gov (United States)

    Driscoll, P E; Barnes, R

    2015-09-01

    The internal thermal and magnetic evolution of rocky exoplanets is critical to their habitability. We focus on the thermal-orbital evolution of Earth-mass planets around low-mass M stars whose radiative habitable zone overlaps with the "tidal zone," where tidal dissipation is expected to be a significant heat source in the interior. We develop a thermal-orbital evolution model calibrated to Earth that couples tidal dissipation, with a temperature-dependent Maxwell rheology, to orbital circularization and migration. We illustrate thermal-orbital steady states where surface heat flow is balanced by tidal dissipation and cooling can be stalled for billions of years until circularization occurs. Orbital energy dissipated as tidal heat in the interior drives both inward migration and circularization, with a circularization time that is inversely proportional to the dissipation rate. We identify a peak in the internal dissipation rate as the mantle passes through a viscoelastic state at mantle temperatures near 1800 K. Planets orbiting a 0.1 solar-mass star within 0.07 AU circularize before 10 Gyr, independent of initial eccentricity. Once circular, these planets cool monotonically and maintain dynamos similar to that of Earth. Planets forced into eccentric orbits can experience a super-cooling of the core and rapid core solidification, inhibiting dynamo action for planets in the habitable zone. We find that tidal heating is insignificant in the habitable zone around 0.45 (or larger) solar-mass stars because tidal dissipation is a stronger function of orbital distance than stellar mass, and the habitable zone is farther from larger stars. Suppression of the planetary magnetic field exposes the atmosphere to stellar wind erosion and the surface to harmful radiation. In addition to weak magnetic fields, massive melt eruption rates and prolonged magma oceans may render eccentric planets in the habitable zone of low-mass stars inhospitable for life.

  10. FLUKA Calculation of the Neutron Albedo Encountered at Low Earth Orbits

    CERN Document Server

    Claret, Arnaud; Combier, Natacha; Ferrari, Alfredo; Laurent, Philippe

    2014-01-01

    This paper presents Monte-Carlo simulations based on the Fluka code aiming to calculate the contribution of the neutron albedo at a given date and altitude above the Earth chosen by the user. The main input parameters of our model are the solar modulation affecting the spectra of cosmic rays, and the date of the Earth’s geomagnetic fi eld. The results consist in a two-parameter distribution, the neutron energy and the angle to the tangent plane of the sphere containing the orbi t of interest, and are provided by geographical position above the E arth at the chosen altitude. This model can be used to predict the te mporal variation of the neutron fl ux encountered along the orbit, and thus constrain the determination of the instrumental backg round noise of space experiments in low earth orbit.

  11. Extrasolar Giant Planet in Earth-like Orbit

    Science.gov (United States)

    1999-07-01

    companion . iota Hor b has an orbital period of 320 days. From this period, the known mass of the central star (1.03 solar masses) and the amplitude of the velocity changes, a mass of at least 2.26 times that of planet Jupiter is deduced for the planet. It revolves around the host star in a somewhat elongated orbit (the eccentricity is 0.16). If it were located in our own solar system, this orbit would stretch from just outside the orbit of Venus (at 117 million km or 0.78 Astronomical Units from the Sun) to just outside the orbit of the Earth (the point farthest from the Sun, at 162 million km or 1.08 Astronomical Units) The new giant planet is thus moving in an orbit not unlike that of the Earth. In fact, of all the planets discovered so far, the orbit of iota Hor b is the most Earth-like. Also, with a spectral type of G0 V , its host star is quite similar to the Sun (G2 V). iota Hor b is, however, at least 720 times more massive than the Earth and it is probably more similar to planet Jupiter in our own solar system. While the radial velocity technique described above only determines a minimum value for the planet's mass, an analysis of the velocity with which the star turns around its own axis suggests that the true mass of iota Hor b is unlikely to be much higher. A difficult case Natural phenomena with periods near one solar year always present a particular challenge to astronomers. This is one of the reasons why it has been necessary to observe the iota Hor system for such a long time to be absolutely sure about the present result. First, special care must be taken to verify that the radial velocity variations found in the data are not an artefact of the Earth's movement around the Sun. In any case, the effect of this movement on the measurements must be accurately accounted for; it reaches about ± 30 km/sec over one year, i.e. much larger than the effect of the new planet. In the present case of iota Hor , this was thoroughly tested and any residual influence of

  12. Air-Cored Linear Induction Motor for Earth-to-Orbit Systems

    Science.gov (United States)

    Zabar, Zivan; Levi, Enrico; Birenbaum, Leo

    1996-01-01

    The need for lowering the cost of Earth-to-Orbit (ETO) launches has prompted consideration of electromagnetic launchers. A preliminary design based on the experience gained in an advanced type of coilgun and on innovative ideas shows that such a launcher is technically feasible with almost off-the-shelf components.

  13. Dynamics of Orbits near 3:1 Resonance in the Earth-Moon System

    Science.gov (United States)

    Dichmann, Donald J.; Lebois, Ryan; Carrico, John P., Jr.

    2013-01-01

    The Interstellar Boundary Explorer (IBEX) spacecraft is currently in a highly elliptical orbit around Earth with a period near 3:1 resonance with the Moon. Its orbit is oriented so that apogee does not approach the Moon. Simulations show this orbit to be remarkably stable over the next twenty years. This article examines the dynamics of such orbits in the Circular Restricted 3-Body Problem (CR3BP). We look at three types of periodic orbits, each exhibiting a type of symmetry of the CR3BP. For each of the orbit types, we assess the local stability using Floquet analysis. Although not all of the periodic solutions are stable in the mathematical sense, any divergence is so slow as to produce practical stability over several decades. We use Poincare maps with twenty-year propagations to assess the nonlinear stability of the orbits, where the perturbation magnitudes are related to the orbit uncertainty for the IBEX mission. Finally we show that these orbits belong to a family of orbits connected in a bifurcation diagram that exhibits exchange of stability. The analysis of these families of period orbits provides a valuable starting point for a mission orbit trade study.

  14. Propulsive options for a manned Mars transportation system

    International Nuclear Information System (INIS)

    Braun, R.D.; Blersch, D.J.

    1989-01-01

    In this investigation, five potential manned Mars transportation systems are compared. These options include: (1) a single vehicle, chemically propelled (CHEM) option, (2) a single vehicle, nuclear thermal propulsion (NTP) option, (3) a single vehicle solar electric propulsion (SEP) option, (4) a single vehicle hybrid nuclear electric propulsion (NEP)/CHEM option, and (5) a dual vehicle option (NEP cargo spacecraft and CHEM manned vehicle). In addition to utilizing the initial vehicle weight in low-earth orbit as a measure of mission feasibility, this study addresses the major technological barriers each propulsive scenario must surpass. It is shown that instead of a single clearly superior propulsion system, each means of propulsion may be favored depending upon the specified program policy and the extent of the desired manned flight time. Furthermore, the effect which aerobraking and multiple transfer cycles have upon mission feasibility is considered. 18 refs

  15. Comprehensive NASA Cis-Lunar Earth Moon Libration Orbit Reference and Web Application

    Data.gov (United States)

    National Aeronautics and Space Administration — This work will provide research and trajectory design analysis to develop a NASA Cis-Lunar / Earth-Moon Libration Orbit Reference and Web Application. A compendium...

  16. A model perspective on orbital forcing of monsoons and Mediterranean climate using EC-Earth

    NARCIS (Netherlands)

    Bosmans, J.H.C.

    2014-01-01

    This thesis focuses on orbitally forced changes of monsoons and Mediterranean climate. Changes in the shape of the Earths orbit around the Sun and its rotational axis govern the seasonal and latitudinal distribution of incoming solar radiation on time scales of thousands to millions of years. The

  17. K-Band Phased Array Developed for Low- Earth-Orbit Satellite Communications

    Science.gov (United States)

    Anzic, Godfrey

    1999-01-01

    Future rapid deployment of low- and medium-Earth-orbit satellite constellations that will offer various narrow- to wide-band wireless communications services will require phased-array antennas that feature wide-angle and superagile electronic steering of one or more antenna beams. Antennas, which employ monolithic microwave integrated circuits (MMIC), are perfectly suited for this application. Under a cooperative agreement, an MMIC-based, K-band phased-array antenna is being developed with 50/50 cost sharing by the NASA Lewis Research Center and Raytheon Systems Company. The transmitting array, which will operate at 19 gigahertz (GHz), is a state-of-the-art design that features dual, independent, electronically steerable beam operation ( 42 ), a stand-alone thermal management, and a high-density tile architecture. This array can transmit 622 megabits per second (Mbps) in each beam from Earth orbit to small Earth terminals. The weight of the total array package is expected to be less than 8 lb. The tile integration technology (flip chip MMIC tile) chosen for this project represents a major advancement in phased-array engineering and holds much promise for reducing manufacturing costs.

  18. A Small Spacecraft Swarm Deployment and Stationkeeping Strategy for Sun-Earth L1 Halo Orbits

    Science.gov (United States)

    Renea Conn, Tracie; Bookbinder, Jay

    2018-01-01

    Spacecraft orbits about the Sun-Earth librarian point L1 have been of interest since the 1950s. An L1 halo orbit was first achieved with the International Sun-Earth Explorer-3 (ISEE-3) mission, and similar orbits around Sun-Earth L1 were achieved in the Solar and Heliospheric Observatory (SOHO), Advanced Composition Explorer (ACE), Genesis, and Deep Space Climate Observatory (DSCOVR) missions. With recent advancements in CubeSat technology, we envision that it will soon be feasible to deploy CubeSats at L1. As opposed to these prior missions where one large satellite orbited alone, a swarm of CubeSats at L1 would enable novel science data return, providing a topology for intersatellite measurements of heliophysics phenomena both spatially and temporally, at varying spatial scales.The purpose of this iPoster is to present a flight dynamics strategy for a swarm of numerous CubeSats orbiting Sun-Earth L1. The presented method is a coupled, two-part solution. First, we present a deployment strategy for the CubeSats that is optimized to produce prescribed, time-varying intersatellite baselines for the purposes of collecting magnetometer data as well as radiometric measurements from cross-links. Second, we employ a loose control strategy that was successfully applied to SOHO and ACE for minimized stationkeeping propellant expenditure. We emphasize that the presented solution is practical within the current state-of-the-art and heritage CubeSat technology, citing capabilities of CubeSat designs that will launch on the upcoming Exploration Mission 1 (EM-1) to lunar orbits and beyond. Within this iPoster, we present animations of the simulated deployment strategy and resulting spacecraft trajectories. Mission design parameters such as total Δv required for long-term station keeping and minimum/maximum/mean spacecraft separation distances are also presented.

  19. Application of X-Ray Pulsar Navigation: A Characterization of the Earth Orbit Trade Space

    Science.gov (United States)

    Yu, Wayne Hong

    2016-01-01

    The potential for pulsars as a navigation source has been studied since their discovery in 1967. X-ray pulsar navigation (XNAV) is a celestial navigation system that uses the consistent timing nature of x-ray photons from millisecond pulsars (MSP) to perform space navigation. By comparing the detected arrival of x-ray photons to a reference database of expected pulsar light-curve timing models, one can infer a range and range rate measurement based on light time delay. Much of the challenge of XNAV comes from the faint signal, availability, and distant nature of pulsars. This is a study of potential pulsar XNAV measurements to measure extended Kalman filter (EKF) tracking performance with a wide trade space of bounded Earth orbits, using a simulation of existing x-ray detector space hardware. An example of an x-ray detector for XNAV is the NASA Station Explorer for X-ray Timing and Navigation (SEXTANT) mission, a technology demonstration of XNAV set to perform on the International Space Station (ISS) in late 2016early 2017. XNAV hardware implementation is driven by trajectory and environmental influences which add noise to the x-ray pulse signal. In a closed Earth orbit, the radiation environment can exponentially increase the signal noise from x-ray pulsar sources, decreasing the quality and frequency of measurements. The SEXTANT mission in particular improves on the signal to noise ratio by focusing an array of 56 x-ray silicon drift detectors at one pulsar target at a time. This reduces timing glitches and other timing noise contributions from ambient x-ray sources to within a 100 nanosecond resolution. This study also considers the SEXTANT scheduling challenges inherent in a single target observation. Finally, as the navigation sources are now relatively inertial targets, XNAV measurements are also subject to periods of occultation from various celestial bodies. This study focuses on the characterization of these drivers in closed Earth orbits and is not a

  20. Mechanical properties of silicate glasses exposed to a low-Earth orbit

    Science.gov (United States)

    Wiedlocher, David E.; Tucker, Dennis S.; Nichols, Ron; Kinser, Donald L.

    1992-01-01

    The effects of a 5.8 year exposure to low earth orbit environment upon the mechanical properties of commercial optical fused silica, low iron soda-lime-silica, Pyrex 7740, Vycor 7913, BK-7, and the glass ceramic Zerodur were examined. Mechanical testing employed the ASTM-F-394 piston on 3-ball method in a liquid nitrogen environment. Samples were exposed on the Long Duration Exposure Facility (LDEF) in two locations. Impacts were observed on all specimens except Vycor. Weibull analysis as well as a standard statistical evaluation were conducted. The Weibull analysis revealed no differences between control samples and the two exposed samples. We thus concluded that radiation components of the Earth orbital environment did not degrade the mechanical strength of the samples examined within the limits of experimental error. The upper bound of strength degradation for meteorite impacted samples based upon statistical analysis and observation was 50 percent.

  1. Orbital Debris and NASA's Measurement Program

    Science.gov (United States)

    Africano, J. L.; Stansbery, E. G.

    2002-05-01

    Since the launch of Sputnik in 1957, the number of manmade objects in orbit around the Earth has dramatically increased. The United States Space Surveillance Network (SSN) tracks and maintains orbits on over nine thousand objects down to a limiting diameter of about ten centimeters. Unfortunately, active spacecraft are only a small percentage ( ~ 7%) of this population. The rest of the population is orbital debris or ``space junk" consisting of expended rocket bodies, dead payloads, bits and pieces from satellite launches, and fragments from satellite breakups. The number of these smaller orbital debris objects increases rapidly with decreasing size. It is estimated that there are at least 130,000 orbital debris objects between one and ten centimeters in diameter. Most objects smaller than 10 centimeters go untracked! As the orbital debris population grows, the risk to other orbiting objects, most importantly manned space vehicles, of a collision with a piece of debris also grows. The kinetic energy of a solid 1 cm aluminum sphere traveling at an orbital velocity of 10 km/sec is equivalent to a 400 lb. safe traveling at 60 mph. Fortunately, the volume of space in which the orbiting population resides is large, collisions are infrequent, but they do occur. The Space Shuttle often returns to earth with its windshield pocked with small pits or craters caused by collisions with very small, sub-millimeter-size pieces of debris (paint flakes, particles from solid rocket exhaust, etc.), and micrometeoroids. To get a more complete picture of the orbital-debris environment, NASA has been using both radar and optical techniques to monitor the orbital debris environment. This paper gives an overview of the orbital debris environment and NASA's measurement program.

  2. Radiation shielding aspects for long manned mission to space: Criteria, survey study, and preliminary model

    OpenAIRE

    Sztejnberg Manuel; Xiao Shanjie; Satvat Nader; Limón Felisa; Hopkins John; Jevremović Tatjana

    2006-01-01

    The prospect of manned space missions outside Earth's orbit is limited by the travel time and shielding against cosmic radiation. The chemical rockets currently used in the space program have no hope of propelling a manned vehicle to a far away location such as Mars due to the enormous mass of fuel that would be required. The specific energy available from nuclear fuel is a factor of 106 higher than chemical fuel; it is therefore obvious that nuclear power production in space is a must. On th...

  3. 78 FR 19172 - Earth Stations Aboard Aircraft Communicating with Fixed-Satellite Service Geostationary-Orbit...

    Science.gov (United States)

    2013-03-29

    ... FEDERAL COMMUNICATIONS COMMISSION 47 CFR Parts 2 and 25 [IB Docket No. 12-376; FCC 12-161] Earth Stations Aboard Aircraft Communicating with Fixed-Satellite Service Geostationary-Orbit Space Stations... the Federal Register of March 8, 2013. The document proposed rules for Earth Stations Aboard Aircraft...

  4. A Geostationary Earth Orbit Satellite Model Using Easy Java Simulation

    Science.gov (United States)

    Wee, Loo Kang; Goh, Giam Hwee

    2013-01-01

    We develop an Easy Java Simulation (EJS) model for students to visualize geostationary orbits near Earth, modelled using a Java 3D implementation of the EJS 3D library. The simplified physics model is described and simulated using a simple constant angular velocity equation. We discuss four computer model design ideas: (1) a simple and realistic…

  5. Radiolarian abundance - A monsoon proxy responding to the Earth`s orbital forcing: Inferences on the mid-Brunhes climate shift

    Digital Repository Service at National Institute of Oceanography (India)

    Gupta, S.M.

    stream_size 32348 stream_content_type text/plain stream_name Earth_Sci_India_2_1.pdf.txt stream_source_info Earth_Sci_India_2_1.pdf.txt Content-Encoding UTF-8 Content-Type text/plain; charset=UTF-8 Gupta http://www....earthscienceindia.info/Gupta.htm 1 of 8 1/28/2009 3:14 PM Earth Science India Vol.2 (I),January, 2009, pp. 1-20 http://www.earthscienceindia.info/ Radiolarian abundance - a monsoon proxy responding to the Earth’s orbital forcing: Inferences on the mid-Brunhes climate shift Shyam...

  6. Three Super-Earths Orbiting HD 7924

    Science.gov (United States)

    Fulton, Benjamin J.; Weiss, Lauren M.; Sinukoff, Evan; Isaacson, Howard; Howard, Andrew W.; Marcy, Geoffrey W.; Henry, Gregory W.; Holden, Bradford P.; Kibrick, Robert I.

    2015-06-01

    We report the discovery of two super-Earth-mass planets orbiting the nearby K0.5 dwarf HD 7924, which was previously known to host one small planet. The new companions have masses of 7.9 and 6.4 {{M}\\oplus }, and orbital periods of 15.3 and 24.5 days. We perform a joint analysis of high-precision radial velocity data from Keck/HIRES and the new Automated Planet Finder Telescope (APF) to robustly detect three total planets in the system. We refine the ephemeris of the previously known planet using 5 yr of new Keck data and high-cadence observations over the last 1.3 yr with the APF. With this new ephemeris, we show that a previous transit search for the inner-most planet would have covered 70% of the predicted ingress or egress times. Photometric data collected over the last eight years using the Automated Photometric Telescope shows no evidence for transits of any of the planets, which would be detectable if the planets transit and their compositions are hydrogen-dominated. We detect a long-period signal that we interpret as the stellar magnetic activity cycle since it is strongly correlated with the Ca ii H and K activity index. We also detect two additional short-period signals that we attribute to rotationally modulated starspots and a one-month alias. The high-cadence APF data help to distinguish between the true orbital periods and aliases caused by the window function of the Keck data. The planets orbiting HD 7924 are a local example of the compact, multi-planet systems that the Kepler Mission found in great abundance. Based on observations obtained at the W. M. Keck Observatory, which is operated jointly by the University of California and the California Institute of Technology. Keck time was granted for this project by the University of Hawai‘i, the University of California, and NASA.

  7. Two planetary systems with transiting Earth-size and super-Earth planets orbiting late-type dwarf stars

    Science.gov (United States)

    Alonso, E. Díez; Hernández, J. I. González; Suárez Gómez, S. L.; Aguado, D. S.; González Gutiérrez, C.; Suárez Mascareño, A.; Cabrera-Lavers, A.; González-Nuevo, J.; Toledo-Padrón, B.; Gracia, J.; de Cos Juez, F. J.; Rebolo, R.

    2018-06-01

    We present two new planetary systems found around cool dwarf stars with data from the K2 mission. The first system was found in K2-XX1 (EPIC 248545986), characterized in this work as M3.0V and observed in the 14th campaign of K2. It consists of three Earth-size transiting planets with radii of 1.1, 1.0 and 1.1 R⊕, showing a compact configuration with orbital periods of 5.24, 7.78 and 10.1 days, close to 2:3:4 resonance. The second was found in K2-XX2 (EPIC 249801827), characterized in this work as M0.5V and observed in the 15th campaign. It consists of two transiting super-Earths with radii 2.0 and 1.8 R⊕ and orbital periods of 6.03 and 20.5 days. The equilibrium temperatures of the atmospheres of these planets are estimated to be in the range of 380-600 K and the amplitudes of signals in transmission spectroscopy are estimated at ˜ 10 ppm.

  8. Comprehensive evaluation of attitude and orbit estimation using real earth magnetic field data

    Science.gov (United States)

    Deutschmann, Julie; Bar-Itzhack, Itzhack

    1997-01-01

    A single, augmented extended Kalman filter (EKF) which simultaneously and autonomously estimates spacecraft attitude and orbit was developed and tested with simulated and real magnetometer and rate data. Since the earth's magnetic field is a function of time and position, and since time is accurately known, the differences between the computed and measured magnetic field components, as measured by the magnetometers throughout the entire spacecraft's orbit, are a function of orbit and attitude errors. These differences can be used to estimate the orbit and attitude. The test results of the EKF with magnetometer and gyro data from three NASA satellites are presented and evaluated.

  9. Extension of Earth-Moon libration point orbits with solar sail propulsion

    NARCIS (Netherlands)

    Heiligers, M.J.; Macdonald, Malcolm; Parker, Jeffrey S.

    2016-01-01

    This paper presents families of libration point orbits in the Earth-Moon system that originate from complementing the classical circular restricted three-body problem with a solar sail. Through the use of a differential correction scheme in combination with a continuation on the solar sail

  10. Targeting Ballistic Lunar Capture Trajectories Using Periodic Orbits in the Sun-Earth CRTBP

    Science.gov (United States)

    Cooley, D.S.; Griesemer, Paul Ricord; Ocampo, Cesar

    2009-01-01

    A particular periodic orbit in the Earth-Sun circular restricted three body problem is shown to have the characteristics needed for a ballistic lunar capture transfer. An injection from a circular parking orbit into the periodic orbit serves as an initial guess for a targeting algorithm. By targeting appropriate parameters incrementally in increasingly complicated force models and using precise derivatives calculated from the state transition matrix, a reliable algorithm is produced. Ballistic lunar capture trajectories in restricted four body systems are shown to be able to be produced in a systematic way.

  11. Earth's external magnetic fields at low orbital altitudes

    Science.gov (United States)

    Klumpar, D. M.

    1990-01-01

    Under our Jun. 1987 proposal, Magnetic Signatures of Near-Earth Distributed Currents, we proposed to render operational a modeling procedure that had been previously developed to compute the magnetic effects of distributed currents flowing in the magnetosphere-ionosphere system. After adaptation of the software to our computing environment we would apply the model to low altitude satellite orbits and would utilize the MAGSAT data suite to guide the analysis. During the first year, basic computer codes to run model systems of Birkeland and ionospheric currents and several graphical output routines were made operational on a VAX 780 in our research facility. Software performance was evaluated using an input matchstick ionospheric current array, field aligned currents were calculated and magnetic perturbations along hypothetical satellite orbits were calculated. The basic operation of the model was verified. Software routines to analyze and display MAGSAT satellite data in terms of deviations with respect to the earth's internal field were also made operational during the first year effort. The complete set of MAGSAT data to be used for evaluation of the models was received at the end of the first year. A detailed annual report in May 1989 described these first year activities completely. That first annual report is included by reference in this final report. This document summarizes our additional activities during the second year of effort and describes the modeling software, its operation, and includes as an attachment the deliverable computer software specified under the contract.

  12. Multi-Terrain Earth Landing Systems Applicable for Manned Space Capsules

    Science.gov (United States)

    Fasanella, Edwin L.

    2008-01-01

    A key element of the President's Vision for Space Exploration is the development of a new space transportation system to replace the Shuttle that will enable manned exploration of the moon, Mars, and beyond. NASA has tasked the Constellation Program with the development of this architecture, which includes the Ares launch vehicle and Orion manned spacecraft. The Orion spacecraft must carry six astronauts and its primary structure should be reusable, if practical. These requirements led the Constellation Program to consider a baseline land landing on return to earth. To assess the landing system options for Orion, a review of current operational parachute landing systems such as those used for the F-111 escape module and the Soyuz is performed. In particular, landing systems with airbags and retrorockets that would enable reusability of the Orion capsule are investigated. In addition, Apollo tests and analyses conducted in the 1960's for both water and land landings are reviewed. Finally, tests and dynamic finite element simulations to understand land landings for the Orion spacecraft are also presented.

  13. Solar Effects of Low-Earth Orbit objects in ORDEM 3.0

    Science.gov (United States)

    Vavrin, A. B.; Anz-Meador, P.; Kelley, R. L.

    2014-01-01

    Variances in atmospheric density are directly related to the variances in solar flux intensity between 11- year solar cycles. The Orbital Debris Engineering Model (ORDEM 3.0) uses a solar flux table as input for calculating orbital lifetime of intact and debris objects in Low-Earth Orbit. Long term projections in solar flux activity developed by the NASA Orbital Debris Program Office (ODPO) extend the National Oceanic and Atmospheric Administration Space Environment Center (NOAA/SEC) daily historical flux values with a 5-year projection. For purposes of programmatic scheduling, the Q2 2009 solar flux table was chosen for ORDEM 3.0. Current solar flux activity shows that the current solar cycle has entered a period of lower solar flux intensity than previously forecasted in 2009. This results in a deviation of the true orbital debris environment propagation in ORDEM 3.0. In this paper, we present updated orbital debris populations in LEO using the latest solar flux values. We discuss the effects on recent breakup events such as the FY-1C anti-satellite test and the Iridium 33 / Cosmos 2251 accidental collision. Justifications for chosen solar flux tables are discussed.

  14. Magnetically levitated space elevator to low-earth orbit

    International Nuclear Information System (INIS)

    Hull, J. R.; Mulcahy, T. M.

    2001-01-01

    The properties of currently available NbTi superconductor and carbon-fiber structural materials enable the possibility of constructing a magnetically levitated space elevator from the earth's surface up to an altitude of(approx) 200 km. The magnetic part of the elevator consists of a long loop of current-carrying NbTi, composed of one length that is attached to the earth's surface in an east-west direction and a levitated-arch portion. The critical current density of NbTi is sufficiently high that these conductors will stably levitate in the earth's magnetic field. The magnetic self-field from the loop increases the levitational force and for some geometries assists levitational stability. The 200-km maximum height of the levitated arch is limited by the allowable stresses of the structural material. The loop is cryogenically cooled with helium, and the system utilizes intermediate pumping and cooling stations along both the ground and the levitated portion of the loop, similar to other large terrestrial cryogenic systems. Mechanically suspended from the basic loop is an elevator structure, upon which mass can be moved between the earth's surface and the top of the loop by a linear electric motor or other mechanical or electrical means. At the top of the loop, vehicles may be accelerated to orbital velocity or higher by rocket motors, electromagnetic propulsion, or hybrid methods

  15. Confirmation of Earth-Mass Planets Orbiting the Millisecond Pulsar PSR B1257 + 12.

    Science.gov (United States)

    Wolszczan, A

    1994-04-22

    The discovery of two Earth-mass planets orbiting an old ( approximately 10(9) years), rapidly spinning neutron star, the 6.2-millisecond radio pulsar PSR B1257+12, was announced in early 1992. It was soon pointed out that the approximately 3:2 ratio of the planets' orbital periods should lead to accurately predictable and possibly measurable gravitational perturbations of their orbits. The unambiguous detection of this effect, after 3 years of systematic timing observations of PSR B1257+12 with the 305-meter Arecibo radiotelescope, as well as the discovery of another, moon-mass object in orbit around the pulsar, constitutes irrefutable evidence that the first planetary system around a star other than the sun has been identified.

  16. Potable water supply in U.S. manned space missions

    Science.gov (United States)

    Sauer, Richard L.; Straub, John E., II

    1992-01-01

    A historical review of potable water supply systems used in the U.S. manned flight program is presented. This review provides a general understanding of the unusual challenges these systems have presented to the designers and operators of the related flight hardware. The presentation concludes with the projection of how water supply should be provided in future space missions - extended duration earth-orbital and interplanetary missions and lunar and Mars habitation bases - and the challenges to the biomedical community that providing these systems can present.

  17. Orbital Noise in the Earth System is a Common Cause of Climate and Greenhouse-Gas Fluctuation

    Science.gov (United States)

    Liu, H. S.; Kolenkiewicz, R.; Wade, C., Jr.; Smith, David E. (Technical Monitor)

    2002-01-01

    The mismatch between fossil isotopic data and climate models known as the cool-tropic paradox implies that either the data are flawed or we understand very little about the climate models of greenhouse warming. Here we question the validity of the climate models on the scientific background of orbital noise in the Earth system. Our study shows that the insolation pulsation induced by orbital noise is the common cause of climate change and atmospheric concentrations of carbon dioxide and methane. In addition, we find that the intensity of the insolation pulses is dependent on the latitude of the Earth. Thus, orbital noise is the key to understanding the troubling paradox in climate models.

  18. Results from On-Orbit Testing of the Fram Memory Test Experiment on the Fastsat Micro-Satellite

    Science.gov (United States)

    MacLeod, Todd C.; Sims, W. Herb; Varnavas, Kosta A.; Ho, Fat D.

    2011-01-01

    NASA is planning on going beyond Low Earth orbit with manned exploration missions. The radiation environment for most Low Earth orbit missions is harsher than at the Earth's surface but much less harsh than deep space. Development of new electronics is needed to meet the requirements of high performance, radiation tolerance, and reliability. The need for both Volatile and Non-volatile memory has been identified. Emerging Non-volatile memory technologies (FRAM, C-RAM,M-RAM, R-RAM, Radiation Tolerant FLASH, SONOS, etc.) need to be investigated for use in Space missions. An opportunity arose to fly a small memory experiment on a high inclination satellite (FASTSAT). An off-the-shelf 512K Ramtron FRAM was chosen to be tested in the experiment.

  19. Mission requirements for a manned earth observatory. Task 2: Reference mission definition and analyiss, volume 2

    Science.gov (United States)

    1973-01-01

    The mission requirements and conceptual design of manned earth observatory payloads for the 1980 time period are discussed. Projections of 1980 sensor technology and user data requirements were used to formulate typical basic criteria pertaining to experiments, sensor complements, and reference missions. The subjects discussed are: (1) mission selection and prioritization, (2) baseline mission analysis, (3) earth observation data handling and contingency plans, and (4) analysis of low cost mission definition and rationale.

  20. Low earth orbit environmental effects on the space station photovoltaic power generation systems

    International Nuclear Information System (INIS)

    Nahra, H.K.

    1977-01-01

    A summary of the Low Earth Orbital Environment, its impact on the photovoltaic power systems of the space station and the solutions implemented to resolve the environmental concerns or issues are described. Low Earth Orbital Environment (LEO) presents several concerns to the photovoltaic power systems of the space station. These concerns include atomic oxygen interaction with the polymeric substrate of the solar arrays, ionized environment effects on the array operating voltage, the effects of the meteoroids and debris impacts and penetration through the different layers of the solar cells and their circuits, and the high energy particle and radiation effects on the overall solar array performance. Potential solutions to some of the degrading environmental interactions that will provide the photovoltaic power system of the space station with the desired life are also summarized

  1. Spectral properties of near-Earth asteroids on cometary orbits

    Science.gov (United States)

    Popescu, M.; Vaduvescu, O.; de Leon, J.; Boaca, I. L.; Gherase, R. M.; Nedelcu, D. A.; INT students, I. N. G.

    2017-09-01

    We studied the spectral distributions of near-Earth asteroids on cometary orbits (NEACOs) in order to identify potential dormant or extinct comets among these objects. We present the spectral observations for 19 NEACOs obtained with Isaac Newton Telescope and Infrared Telescope Facility (IRTF). Although initially classified as asteroid, one of our targets - 2007 VA85 was confirmed to be active comet 333P/LINEAR on its 2016 appearance. We found that the NEACOs population is a mixing of different compositional classes.

  2. Magnetically levitated space elevator to low-earth orbit.

    Energy Technology Data Exchange (ETDEWEB)

    Hull, J. R.; Mulcahy, T. M.

    2001-07-02

    The properties of currently available NbTi superconductor and carbon-fiber structural materials enable the possibility of constructing a magnetically levitated space elevator from the earth's surface up to an altitude of {approx} 200 km. The magnetic part of the elevator consists of a long loop of current-carrying NbTi, composed of one length that is attached to the earth's surface in an east-west direction and a levitated-arch portion. The critical current density of NbTi is sufficiently high that these conductors will stably levitate in the earth's magnetic field. The magnetic self-field from the loop increases the levitational force and for some geometries assists levitational stability. The 200-km maximum height of the levitated arch is limited by the allowable stresses of the structural material. The loop is cryogenically cooled with helium, and the system utilizes intermediate pumping and cooling stations along both the ground and the levitated portion of the loop, similar to other large terrestrial cryogenic systems. Mechanically suspended from the basic loop is an elevator structure, upon which mass can be moved between the earth's surface and the top of the loop by a linear electric motor or other mechanical or electrical means. At the top of the loop, vehicles may be accelerated to orbital velocity or higher by rocket motors, electromagnetic propulsion, or hybrid methods.

  3. Space radiation dosimetry in low-Earth orbit and beyond

    International Nuclear Information System (INIS)

    Benton, E.R.; Benton, E.V.

    2001-01-01

    Space radiation dosimetry presents one of the greatest challenges in the discipline of radiation protection. This is a result of both the highly complex nature of the radiation fields encountered in low-Earth orbit (LEO) and interplanetary space and of the constraints imposed by spaceflight on instrument design. This paper reviews the sources and composition of the space radiation environment in LEO as well as beyond the Earth's magnetosphere. A review of much of the dosimetric data that have been gathered over the last four decades of human space flight is presented. The different factors affecting the radiation exposures of astronauts and cosmonauts aboard the International Space Station (ISS) are emphasized. Measurements made aboard the Mir Orbital Station have highlighted the importance of both secondary particle production within the structure of spacecraft and the effect of shielding on both crew dose and dose equivalent. Roughly half the dose on ISS is expected to come from trapped protons and half from galactic cosmic rays (GCRs). The dearth of neutron measurements aboard LEO spacecraft and the difficulty inherent in making such measurements have led to large uncertainties in estimates of the neutron contribution to total dose equivalent. Except for a limited number of measurements made aboard the Apollo lunar missions, no crew dosimetry has been conducted beyond the Earth's magnetosphere. At the present time we are forced to rely on model-based estimates of crew dose and dose equivalent when planning for interplanetary missions, such as a mission to Mars. While space crews in LEO are unlikely to exceed the exposure limits recommended by such groups as the NCRP, dose equivalents of the same order as the recommended limits are likely over the course of a human mission to Mars

  4. Study on networking issues of medium earth orbit satellite communications systems

    Science.gov (United States)

    Araki, Noriyuki; Shinonaga, Hideyuki; Ito, Yasuhiko

    1993-01-01

    Two networking issues of communications systems with medium earth orbit (MEO) satellites, namely network architectures and location determination and registration methods for hand-held terminals, are investigated in this paper. For network architecture, five candidate architectures are considered and evaluated in terms of signaling traffic. For location determination and registration, two methods are discussed and evaluated.

  5. Life on a warmer earth: Possible climatic consequences of man-made global warming. Executive report 3

    Energy Technology Data Exchange (ETDEWEB)

    Flohn, H

    1981-01-01

    This Executive Report derives from IIASA Research Report RR-80-30, Possible Climatic Consequences of a Man-Made Global Warming, by H. Flohn and published separately. It is based on research undertaken to explore the interaction between energy and climate, including the impact on the global climate of three main energy sources: solar, nuclear, and fossil fuels. Its findings describe the global warming effects caused by carbon dioxide released by burning fossil fuels and by other trace gases released into the atmosphere. The approach is paleoclimatic; it provides insight into what global warming will produce by considering what is known about past periods of the earth's history when the global average surface temperature was higher than it is now. The purpose of this report is to put the research findings into layman's language and add related information to provide a general introduction to the global warming problem. Information is presented under the following chapter titles: the scenario in brief; the climatic system; changes in ice cover; changes in atmosphere and oceans; man's effect on climate; taking the earth's temperature; what a hotter earth might mean; beyond immediate prospects; and, today's mixed signals. (JGB)

  6. A novel emergency system for low earth orbit satellites using Galileo GNSS

    NARCIS (Netherlands)

    Gill, E.K.A.; Helderweirt, A.

    2010-01-01

    Low Earth Orbit (LEO) satellites have a limited direct contact time with the stations of their ground segment. This fundamentally constraints a timeliness reaction of the mission control center in case of emergency situations onboard the LEO spacecraft. To enable such a rapid reaction to emergency

  7. Analysis of Periodic Orbits about the Triangular Solutions of the Restricted Sum-Jupiter and Earth-Moon Problem

    Directory of Open Access Journals (Sweden)

    Sang-Young Park

    1988-12-01

    Full Text Available Using the numerical solution in the plane restricted problem of three bodies, about 490 periodic orbits are computed numerically around the L5 of Sun-Jupiter and about 1600 periodic orbits also be done around the L5 of Earth-Moon system. As period increase, the energy and the shape of periodic orbits increase around the L5 of Sun-Jupiter system. But, in Earth-Moon system, the complex shapes and dents appear around the L5 and periodic orbits intersect one another in the place where dents are shown. And there is a region that three different periodic orbits exist with the same period in this region. The regions can exist around the L5 of Sun-Jupiter system where periodic orbit can be unstable by perturbation of other force besides the gravitational force of Jupiter. These regions which is close to L5 are a ~5.12 AU and a ~5.29 AU. The Trojan asteroids that have a small eccentricity and inclination can not exist in this region.

  8. Physics at the edge of the earth

    International Nuclear Information System (INIS)

    Allen, J.P.

    1988-01-01

    The author recounts experiences he had as an astronaut, and the ways this allowed him to practice physics in a very applied manner. He describes some of the phenomena observed in the zero gravity of space flight which are very different, and hard to imagine, by minds immersed in the images and experiences of normal gravity. Most of the paper is devoted to a description of the task of recovering lost communication satellites and returning them to earth for repair and potential redeployment. From his perspective as a physicist and astronaut he explains briefly the orbital mechanics experienced in earth orbit, and the problems in compensating for these effects which maneuvering in space untethered to the shuttle. This presents hard practical problems to be met and solved in order to accomplish the task. Using a manned maneuvering unit his mission was able to successfully couple to the satellite and bring it to the shuttle. This involved a lot of practice of the classical physics principles of orbital dynamics, and the influence that perception in a space environment has upon these laws

  9. Comprehensive Evaluation of Attitude and Orbit Estimation Using Actual Earth Magnetic Field Data

    Science.gov (United States)

    Deutschmann, Julie K.; Bar-Itzhack, Itzhack Y.

    2000-01-01

    A single, augmented Extended Kalman Filter (EKF), which simultaneously and autonomously estimates spacecraft attitude and orbit has been developed and successfully tested with real magnetometer and gyro data only. Because the earth magnetic field is a function of time and position, and because time is known quite precisely, the differences between the computed and measured magnetic field components, as measured by the magnetometers throughout the entire spacecraft orbit, are a function of both orbit and attitude errors. Thus, conceivably these differences could be used to estimate both orbit and attitude; an observability study validated this assumption. The results of testing the EKF with actual magnetometer and gyro data, from four satellites supported by the NASA Goddard Space Flight Center (GSFC) Guidance, Navigation, and Control Center, are presented and evaluated. They confirm the assumption that a single EKF can estimate both attitude and orbit when using gyros and magnetometers only.

  10. Target selection and mass estimation for manned NEO exploration using a baseline mission design

    Science.gov (United States)

    Boden, Ralf C.; Hein, Andreas M.; Kawaguchi, Junichiro

    2015-06-01

    In recent years Near-Earth Objects (NEOs) have received an increased amount of interest as a target for human exploration. NEOs offer scientifically interesting targets, and at the same time function as a stepping stone for achieving future Mars missions. The aim of this research is to identify promising targets from the large number of known NEOs that qualify for a manned sample-return mission with a maximum duration of one year. By developing a baseline mission design and a mass estimation model, mission opportunities are evaluated based on on-orbit mass requirements, safety considerations, and the properties of the potential targets. A selection of promising NEOs is presented and the effects of mission requirements and restrictions are discussed. Regarding safety aspects, the use of free-return trajectories provides the lowest on-orbit mass, when compared to an alternative design that uses system redundancies to ensure return of the spacecraft to Earth. It is discovered that, although a number of targets are accessible within the analysed time frame, no NEO offers both easy access and high incentive for its exploration. Under the discussed aspects a first human exploration mission going beyond the vicinity of Earth will require a trade off between targets that provide easy access and those that are of scientific interest. This lack of optimal mission opportunities can be seen in the small number of only 4 NEOs that meet all requirements for a sample-return mission and remain below an on-orbit mass of 500 metric Tons (mT). All of them require a mass between 315 and 492 mT. Even less ideal, smaller asteroids that are better accessible require an on-orbit mass that exceeds the launch capability of future heavy lift vehicles (HLV) such as SLS by at least 30 mT. These mass requirements show that additional efforts are necessary to increase the number of available targets and reduce on-orbit mass requirements through advanced mission architectures. The need for on-orbit

  11. Ground Track Acquisition and Maintenance Maneuver Modeling for Low-Earth Orbit Satellite

    Directory of Open Access Journals (Sweden)

    Byoung-Sun Lee

    1997-12-01

    Full Text Available This paper presents a comprehensive analytical approach for determining key maneuver parameters associated with the acquisition and maintenance of the ground track for a low-earth orbit. A livearized model relating changes in the drift rate of the ground track directly to changes in the orbital semi-major axis is also developed. The effect of terrestrial atmospheric drag on the semi-major axis is also explored, being quantified through an analytical expression for the decay rate as a function of density. The non-singular Lagrange planetary equations, further simplified for nearly circular orbits, provide the desired relationships between the corrective in-plane impulsive velocity increments and the corresponding effects on the orbit elements. The resulting solution strategy offers excellent insight into the dynamics affecting the timing, magnitude, and frequency of these maneuvers. Simulations are executed for the ground track acquisition and maintenance maneuver as a pre-flight planning and analysis.

  12. Periodic orbits of solar sail equipped with reflectance control device in Earth-Moon system

    Science.gov (United States)

    Yuan, Jianping; Gao, Chen; Zhang, Junhua

    2018-02-01

    In this paper, families of Lyapunov and halo orbits are presented with a solar sail equipped with a reflectance control device in the Earth-Moon system. System dynamical model is established considering solar sail acceleration, and four solar sail steering laws and two initial Sun-sail configurations are introduced. The initial natural periodic orbits with suitable periods are firstly identified. Subsequently, families of solar sail Lyapunov and halo orbits around the L1 and L2 points are designed with fixed solar sail characteristic acceleration and varying reflectivity rate and pitching angle by the combination of the modified differential correction method and continuation approach. The linear stabilities of solar sail periodic orbits are investigated, and a nonlinear sliding model controller is designed for station keeping. In addition, orbit transfer between the same family of solar sail orbits is investigated preliminarily to showcase reflectance control device solar sail maneuver capability.

  13. Trade Study for Neutron Transport at Low Earth Orbit: Adding Fidelity to DIORAMA

    Energy Technology Data Exchange (ETDEWEB)

    McClanahan, Tucker Caden [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Wakeford, Daniel Tyler [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-08-22

    The Distributed Infrastructure Offering Real-Time Access to Modeling and Analysis (DIORAMA) software provides performance modeling capabilities of the United States Nuclear Detonation Detection System (USNDS) with a focus on the characterization of Space-Based Nuclear Detonation Detection (SNDD) instrument performance [1]. A case study was done to add the neutron propagation capabilities of DIORAMA to low earth orbit (LEO), and compare the back-calculated incident energy from the time-of- ight (TOF) spectrum with the scored incident energy spectrum. As the scoring altitude lowers, the time increase due to scattering takes up much more of the fraction of total TOF; whereas at geosynchronous earth orbit (GEO), the time increase due to scattering is a negligible fraction of the total TOF [2]. The scattering smears out the TOF enough to make the back-calculation of the initial energy spectrum from the TOF spectrum very convoluted.

  14. Design Concepts for a Small Space-Based GEO Relay Satellite for Missions Between Low Earth and near Earth Orbits

    Science.gov (United States)

    Bhasin, Kul B.; Warner, Joseph D.; Oleson, Steven; Schier, James

    2014-01-01

    The main purpose of the Small Space-Based Geosynchronous Earth orbiting (GEO) satellite is to provide a space link to the user mission spacecraft for relaying data through ground networks to user Mission Control Centers. The Small Space Based Satellite (SSBS) will provide services comparable to those of a NASA Tracking Data Relay Satellite (TDRS) for the same type of links. The SSBS services will keep the user burden the same or lower than for TDRS and will support the same or higher data rates than those currently supported by TDRS. At present, TDRSS provides links and coverage below GEO; however, SSBS links and coverage capability to above GEO missions are being considered for the future, especially for Human Space Flight Missions (HSF). There is also a rising need for the capability to support high data rate links (exceeding 1 Gbps) for imaging applications. The communication payload on the SSBS will provide S/Ka-band single access links to the mission and a Ku-band link to the ground, with an optical communication payload as an option. To design the communication payload, various link budgets were analyzed and many possible operational scenarios examined. To reduce user burden, using a larger-sized antenna than is currently in use by TDRS was considered. Because of the SSBS design size, it was found that a SpaceX Falcon 9 rocket could deliver three SSBSs to GEO. This will greatly reduce the launch costs per satellite. Using electric propulsion was also evaluated versus using chemical propulsion; the power system size and time to orbit for various power systems were also considered. This paper will describe how the SSBS will meet future service requirements, concept of operations, and the design to meet NASA users' needs for below and above GEO missions. These users' needs not only address the observational mission requirements but also possible HSF missions to the year 2030. We will provide the trade-off analysis of the communication payload design in terms of

  15. Preparation, analysis, and release of simulated interplanetary grains into low earth orbit

    International Nuclear Information System (INIS)

    Stephens, J.R.; Strong, I.B.; Kunkle, T.D.

    1985-01-01

    Astronomical observations which reflect the optical and dynamical properties of interstellar and interplanetary grains are the primary means of identifying the shape, size, and the chemistry of extraterrestrial grain materials and is a major subject of this workshop. Except for recent samplings of extraterrestrial particles in near-Earth orbit and in the stratosphere, observations have been the only method of deducing the properties of extraterrestrial particles. Terrestrial laboratory experiments typically seek not to reproduce astrophysical conditions but to illuminate fundamental dust processes and properties which must be extrapolated to interesting astrophysical conditions. In this report, we discuss the formation and optical characterization of simulated interstellar and interplanetary dust with particular emphasis on studying the properties on irregularly shaped particles. We also discuss efforts to develop the techniques to allow dust experiments to be carried out in low-Earth orbit, thus extending the conditions under which dust experiments may be performed. The objectives of this study are threefold: (1) Elucidate the optical properties, including scattering and absorption, of simulated interstellar grains including SiC, silicates, and carbon grains produced in the laboratory. (2) Develop the capabilities to release grains and volatile materials into the near-Earth environment and study their dynamics and optical properties. (3) Study the interaction of released materials with the near-Earth environment to elucidate grain behavior in astrophysical environments. Interaction of grains with their environment may, for example, lead to grain alignment or coagulation, which results in observable phenomena such as polarization of lighter or a change of the scattering properties of the grains

  16. Impacts of Earth rotation parameters on GNSS ultra-rapid orbit prediction: Derivation and real-time correction

    Science.gov (United States)

    Wang, Qianxin; Hu, Chao; Xu, Tianhe; Chang, Guobin; Hernández Moraleda, Alberto

    2017-12-01

    Analysis centers (ACs) for global navigation satellite systems (GNSSs) cannot accurately obtain real-time Earth rotation parameters (ERPs). Thus, the prediction of ultra-rapid orbits in the international terrestrial reference system (ITRS) has to utilize the predicted ERPs issued by the International Earth Rotation and Reference Systems Service (IERS) or the International GNSS Service (IGS). In this study, the accuracy of ERPs predicted by IERS and IGS is analyzed. The error of the ERPs predicted for one day can reach 0.15 mas and 0.053 ms in polar motion and UT1-UTC direction, respectively. Then, the impact of ERP errors on ultra-rapid orbit prediction by GNSS is studied. The methods for orbit integration and frame transformation in orbit prediction with introduced ERP errors dominate the accuracy of the predicted orbit. Experimental results show that the transformation from the geocentric celestial references system (GCRS) to ITRS exerts the strongest effect on the accuracy of the predicted ultra-rapid orbit. To obtain the most accurate predicted ultra-rapid orbit, a corresponding real-time orbit correction method is developed. First, orbits without ERP-related errors are predicted on the basis of ITRS observed part of ultra-rapid orbit for use as reference. Then, the corresponding predicted orbit is transformed from GCRS to ITRS to adjust for the predicted ERPs. Finally, the corrected ERPs with error slopes are re-introduced to correct the predicted orbit in ITRS. To validate the proposed method, three experimental schemes are designed: function extrapolation, simulation experiments, and experiments with predicted ultra-rapid orbits and international GNSS Monitoring and Assessment System (iGMAS) products. Experimental results show that using the proposed correction method with IERS products considerably improved the accuracy of ultra-rapid orbit prediction (except the geosynchronous BeiDou orbits). The accuracy of orbit prediction is enhanced by at least 50

  17. Project Minerva: A low cost manned Mars mission based on indigenous propellant production

    Science.gov (United States)

    Beder, David; Bryan, Richard; Bui, Tuyen; Caviezel, Kelly; Cinnamon, Mark; Daggert, Todd; Folkers, Mike; Fornia, Mark; Hanks, Natasha; Hamilton, Steve

    1992-01-01

    Project Minerva is a low-cost manned Mars mission designed to deliver a crew of four to the Martian surface using only two sets of two launches from the Kennedy Space Center. Key concepts which make this mission realizable are the use of near-term technologies and in-situ propellant production, following the scenario originally proposed by R. Zubrin. The first set of launches delivers two unmanned payloads into low Earth orbit (LEO): the first payload consists of an Earth Return Vehicle (ERV), a propellant production plant, and a set of robotic vehicles; the second payload consists of the trans-Mars injection (TMI) upper stage. In LEO, the two payloads are docked and the configuration is injected into a Mars transfer orbit. The landing on Mars is performed with the aid of multiple aerobraking maneuvers. On the Martian surface, the propellant production plant uses a Sabatier/electrolysis type process to combine nine tons of hydrogen with carbon dioxide from the Martian atmosphere to produce over a hundred tons of liquid oxygen and liquid methane, which are later used as the propellants for the rover expeditions and the manned return journey of the ERV. The systems necessary for the flights to and from Mars, as well as those needed for the stay on Mars, are discussed. These systems include the transfer vehicle design, life support, guidance and communications, rovers and telepresence, power generation, and propellant manufacturing. Also included are the orbital mechanics, the scientific goals, and the estimated mission costs.

  18. A SUPER-EARTH-SIZED PLANET ORBITING IN OR NEAR THE HABITABLE ZONE AROUND A SUN-LIKE STAR

    Energy Technology Data Exchange (ETDEWEB)

    Barclay, Thomas; Burke, Christopher J.; Howell, Steve B.; Rowe, Jason F.; Huber, Daniel; Jenkins, Jon M.; Quintana, Elisa V.; Still, Martin; Twicken, Joseph D.; Bryson, Stephen T.; Borucki, William J.; Caldwell, Douglas A.; Clarke, Bruce D.; Christiansen, Jessie L; Coughlin, Jeffrey L. [NASA Ames Research Center, M/S 244-30, Moffett Field, CA 94035 (United States); Isaacson, Howard; Kolbl, Rea; Marcy, Geoffrey W. [Department of Astronomy, University of California at Berkeley, Berkeley, CA 94720 (United States); Ciardi, David [NASA Exoplanet Science Institute, California Institute of Technology, 770 South Wilson Avenue, Pasadena, CA 91125 (United States); Fischer, Debra A. [Department of Astronomy, Yale University, New Haven, CT 06520 (United States); and others

    2013-05-10

    We present the discovery of a super-Earth-sized planet in or near the habitable zone of a Sun-like star. The host is Kepler-69, a 13.7 mag G4V-type star. We detect two periodic sets of transit signals in the 3-year flux time series of Kepler-69, obtained with the Kepler spacecraft. Using the very high precision Kepler photometry, and follow-up observations, our confidence that these signals represent planetary transits is >99.3%. The inner planet, Kepler-69b, has a radius of 2.24{sup +0.44}{sub -0.29} R{sub Circled-Plus} and orbits the host star every 13.7 days. The outer planet, Kepler-69c, is a super-Earth-sized object with a radius of 1.7{sup +0.34}{sub -0.23} R{sub Circled-Plus} and an orbital period of 242.5 days. Assuming an Earth-like Bond albedo, Kepler-69c has an equilibrium temperature of 299 {+-} 19 K, which places the planet close to the habitable zone around the host star. This is the smallest planet found by Kepler to be orbiting in or near the habitable zone of a Sun-like star and represents an important step on the path to finding the first true Earth analog.

  19. Analytical investigation of the dynamics of tethered constellations in Earth orbit, phase 2

    Science.gov (United States)

    Lorenzini, Enrico C.; Gullahorn, Gordon E.; Cosmo, Mario L.; Estes, Robert D.; Grossi, Mario D.

    1994-01-01

    This final report covers nine years of research on future tether applications and on the actual flights of the Small Expendable Deployment System (SEDS). Topics covered include: (1) a description of numerical codes used to simulate the orbital and attitude dynamics of tethered systems during station keeping and deployment maneuvers; (2) a comparison of various tethered system simulators; (3) dynamics analysis, conceptual design, potential applications and propagation of disturbances and isolation from noise of a variable gravity/microgravity laboratory tethered to the Space Station; (4) stability of a tethered space centrifuge; (5) various proposed two-dimensional tethered structures for low Earth orbit for use as planar array antennas; (6) tethered high gain antennas; (7) numerical calculation of the electromagnetic wave field on the Earth's surface on an electrodynamically tethered satellite; (8) reentry of tethered capsules; (9) deployment dynamics of SEDS-1; (10) analysis of SEDS-1 flight data; and (11) dynamics and control of SEDS-2.

  20. Orbital Noise of the Earth Causes Intensity Fluctuation in the Geomagnetic Field

    Science.gov (United States)

    Liu, Han-Shou; Kolenkiewicz, R.; Wade, C., Jr.

    2003-01-01

    Orbital noise of Earth's obliquity can provide an insight into the core of the Earth that causes intensity fluctuations in the geomagnetic field. Here we show that noise spectrum of the obliquity frequency have revealed a series of frequency periods centered at 250-, 1OO-, 50-, 41-, 30-, and 26-kyr which are almost identical with the observed spectral peaks from the composite curve of 33 records of relative paleointensity spanning the past 800 kyr (Sint-800 data). A continuous record for the past two million years also reveals the presence of the major 100 kyr periodicity in obliquity noise and geomagnetic intensity fluctuations. These results of correlation suggest that obliquity noise may power the dynamo, located in the liquid outer core of the Earth, which generates the geomagnetic field.

  1. Precipitation regions on the Earth of high energy electrons, injected by a point source moving along a circular Earth orbit

    Science.gov (United States)

    Kolesnikov, E. K.; Klyushnikov, G. N.

    2018-05-01

    In the paper we continue the study of precipitation regions of high-energy charged particles, carried out by the authors since 2002. In contrast to previous papers, where a stationary source of electrons was considered, it is assumed that the source moves along a low circular near-earth orbit with a constant velocity. The orbit position is set by the inclination angle of the orbital plane to the equatorial plane and the longitude of the ascending node. The total number of injected electrons is determined by the source strength and the number of complete revolutions that the source makes along the circumference. Construction of precipitation regions is produced using the computational algorithm based on solving of the system of ordinary differential equations. The features of the precipitation regions structure for the dipole approximation of the geomagnetic field and the symmetrical arrangement of the orbit relative to the equator are noted. The dependencies of the precipitation regions on different orbital parametres such as the incline angle, the ascending node position and kinetic energy of injected particles have been considered.

  2. Space as a Tool for Astrobiology: Review and Recommendations for Experimentations in Earth Orbit and Beyond

    Science.gov (United States)

    Cottin, Hervé; Kotler, Julia Michelle; Billi, Daniela; Cockell, Charles; Demets, René; Ehrenfreund, Pascale; Elsaesser, Andreas; d'Hendecourt, Louis; van Loon, Jack J. W. A.; Martins, Zita; Onofri, Silvano; Quinn, Richard C.; Rabbow, Elke; Rettberg, Petra; Ricco, Antonio J.; Slenzka, Klaus; de la Torre, Rosa; de Vera, Jean-Pierre; Westall, Frances; Carrasco, Nathalie; Fresneau, Aurélien; Kawaguchi, Yuko; Kebukawa, Yoko; Nguyen, Dara; Poch, Olivier; Saiagh, Kafila; Stalport, Fabien; Yamagishi, Akihiko; Yano, Hajime; Klamm, Benjamin A.

    2017-07-01

    The space environment is regularly used for experiments addressing astrobiology research goals. The specific conditions prevailing in Earth orbit and beyond, notably the radiative environment (photons and energetic particles) and the possibility to conduct long-duration measurements, have been the main motivations for developing experimental concepts to expose chemical or biological samples to outer space, or to use the reentry of a spacecraft on Earth to simulate the fall of a meteorite. This paper represents an overview of past and current research in astrobiology conducted in Earth orbit and beyond, with a special focus on ESA missions such as Biopan, STONE (on Russian FOTON capsules) and EXPOSE facilities (outside the International Space Station). The future of exposure platforms is discussed, notably how they can be improved for better science return, and how to incorporate the use of small satellites such as those built in cubesat format.

  3. Characteristic of the radiation field in low earth orbit and in deep space

    International Nuclear Information System (INIS)

    Reitz, Guenther

    2008-01-01

    The radiation exposure in space by cosmic radiation can be reduced through careful mission planning and constructive measures as example the provision of a radiation shelter, but it cannot be completely avoided. The reason for that are the extreme high energies of particles in this field and the herewith connected high penetration depth in matter. For missions outside the magnetosphere ionizing radiation is recognized as the key factor through its impact on crew health and performance. In absence of sporadic solar particle events the radiation exposure in Low Earth orbit (LEO) inside Spacecraft is determined by the galactic cosmic radiation (protons and heavier ions) and by the protons inside the South Atlantic Anomaly (SAA), an area where the radiation belt comes closer to the earth surface due to a displacement of the magnetic dipole axes from the Earth's center. In addition there is an albedo source of neutrons produced as interaction products of the primary galactic particles with the atoms of the earth atmosphere. Outside the spacecraft the dose is dominated by the electrons of the horns of the radiation belt located at about 60 latitude in Polar Regions. The radiation field has spatial and temporal variations in dependence of the Earth magnetic field and the solar cycle. The complexity of the radiation field inside a spacecraft is further increased through the interaction of the high energy components with the spacecraft shielding material and with the body of the astronauts. In interplanetary missions the radiation belt will be crossed in a couple of minutes and therefore its contribution to their radiation exposure is quite small, but subsequently the protection by the Earth magnetic field is lost, leaving only shielding measures as exposure reduction means. The report intends to describe the radiation field in space, the interaction of the particles with the magnetic field and shielding material and give some numbers on the radiation exposure in low earth

  4. Characteristic of the radiation field in low Earth orbit and in deep space.

    Science.gov (United States)

    Reitz, Guenther

    2008-01-01

    The radiation exposure in space by cosmic radiation can be reduced through careful mission planning and constructive measures as example the provision of a radiation shelter, but it cannot be completely avoided. The reason for that are the extreme high energies of particles in this field and the herewith connected high penetration depth in matter. For missions outside the magnetosphere ionizing radiation is recognized as the key factor through its impact on crew health and performance. In absence of sporadic solar particle events the radiation exposure in Low Earth orbit (LEO) inside Spacecraft is determined by the galactic cosmic radiation (protons and heavier ions) and by the protons inside the South Atlantic Anomaly (SAA), an area where the radiation belt comes closer to the earth surface due to a displacement of the magnetic dipole axes from the Earth's center. In addition there is an albedo source of neutrons produced as interaction products of the primary galactic particles with the atoms of the earth atmosphere. Outside the spacecraft the dose is dominated by the electrons of the horns of the radiation belt located at about 60" latitude in Polar Regions. The radiation field has spatial and temporal variations in dependence of the Earth magnetic field and the solar cycle. The complexity of the radiation field inside a spacecraft is further increased through the interaction of the high energy components with the spacecraft shielding material and with the body of the astronauts. In interplanetary missions the radiation belt will be crossed in a couple of minutes and therefore its contribution to their radiation exposure is quite small, but subsequently the protection by the Earth magnetic field is lost, leaving only shielding measures as exposure reduction means. The report intends to describe the radiation field in space, the interaction of the particles with the magnetic field and shielding material and give some numbers on the radiation exposure in low earth

  5. Analytic model for the long-term evolution of circular Earth satellite orbits including lunar node regression

    Science.gov (United States)

    Zhu, Ting-Lei; Zhao, Chang-Yin; Zhang, Ming-Jiang

    2017-04-01

    This paper aims to obtain an analytic approximation to the evolution of circular orbits governed by the Earth's J2 and the luni-solar gravitational perturbations. Assuming that the lunar orbital plane coincides with the ecliptic plane, Allan and Cook (Proc. R. Soc. A, Math. Phys. Eng. Sci. 280(1380):97, 1964) derived an analytic solution to the orbital plane evolution of circular orbits. Using their result as an intermediate solution, we establish an approximate analytic model with lunar orbital inclination and its node regression be taken into account. Finally, an approximate analytic expression is derived, which is accurate compared to the numerical results except for the resonant cases when the period of the reference orbit approximately equals the integer multiples (especially 1 or 2 times) of lunar node regression period.

  6. Dynamics and stability of a tethered centrifuge in low earth orbit

    Science.gov (United States)

    Quadrelli, B. M.; Lorenzini, E. C.

    1992-01-01

    The three-dimensional attitude dynamics of a spaceborne tethered centrifuge for artificial gravity experiments in low earth orbit is analyzed using two different methods. First, the tethered centrifuge is modeled as a dumbbell with a straight viscoelastic tether, point tip-masses, and sophisticated environmental models such as nonspherical gravity, thermal perturbations, and a dynamic atmospheric model. The motion of the centrifuge during spin-up, de-spin, and steady-rotation is then simulated. Second, a continuum model of the tether is developed for analyzing the stability of lateral tether oscillations. Results indicate that the maximum fluctuation about the 1-g radial acceleration level is less than 0.001 g; the time required for spin-up and de-spin is less than one orbit; and lateral oscillations are stable for any practical values of the system parameters.

  7. THE HABITABILITY AND DETECTION OF EARTH-LIKE PLANETS ORBITING COOL WHITE DWARFS

    Energy Technology Data Exchange (ETDEWEB)

    Fossati, L.; Haswell, C. A.; Patel, M. R.; Busuttil, R. [Department of Physical Sciences, Open University, Walton Hall, Milton Keynes MK7 6AA (United Kingdom); Bagnulo, S. [Armagh Observatory, College Hill, Armagh BT61 9DG (United Kingdom); Kowalski, P. M. [GFZ German Research Centre for Geosciences, Telegrafenberg, D-14473 Potsdam (Germany); Shulyak, D. V. [Institute of Astrophysics, Georg-August-University, Friedrich-Hund-Platz 1, D-37077 Goettingen (Germany); Sterzik, M. F., E-mail: l.fossati@open.ac.uk, E-mail: C.A.Haswell@open.ac.uk, E-mail: M.R.Patel@open.ac.uk, E-mail: r.busuttil@open.ac.uk, E-mail: sba@arm.ac.uk, E-mail: kowalski@gfz-potsdam.de, E-mail: denis.shulyak@gmail.com, E-mail: msterzik@eso.org [European Southern Observatory, Casilla 19001, Santiago 19 (Chile)

    2012-09-20

    Since there are several ways planets can survive the giant phase of the host star, we examine the habitability and detection of planets orbiting white dwarfs. As a white dwarf cools from 6000 K to 4000 K, a planet orbiting at 0.01 AU would remain in the continuous habitable zone (CHZ) for {approx}8 Gyr. We show that photosynthetic processes can be sustained on such planets. The DNA-weighted UV radiation dose for an Earth-like planet in the CHZ is less than the maxima encountered on Earth, and hence non-magnetic white dwarfs are compatible with the persistence of complex life. Polarization due to a terrestrial planet in the CHZ of a cool white dwarf (CWD) is 10{sup 2} (10{sup 4}) times larger than it would be in the habitable zone of a typical M-dwarf (Sun-like star). Polarimetry is thus a viable way to detect close-in rocky planets around white dwarfs. Multi-band polarimetry would also allow us to reveal the presence of a planet atmosphere, providing a first characterization. Planets in the CHZ of a 0.6 M{sub Sun} white dwarf will be distorted by Roche geometry, and a Kepler-11d analog would overfill its Roche lobe. With current facilities a super-Earth-sized atmosphereless planet is detectable with polarimetry around the brightest known CWD. Planned future facilities render smaller planets detectable, in particular by increasing the instrumental sensitivity in the blue.

  8. The Near-Earth Orbital Debris Problem and the Challenges for Environment Remediation

    Science.gov (United States)

    Liou, Jer-Chyi

    2012-01-01

    The near-Earth space environment has been gradually polluted with orbital debris (OD) since the beginning of space activities 55 years ago. Although this problem has been known to the research community for decades, the public was, in general, unaware of the issue until the anti-satellite test conducted by China in 2007 and the collision between Cosmos 2251 and the operational Iridium 33 in 2009. The latter also underlined the potential of an ongoing collision cascade effect (the "Kessler Syndrome") in the low Earth orbit (LEO, the region below 2000 km altitude). Recent modeling results have indicated that mitigation measures commonly adopted by the international space community will be insufficient to stabilize the LEO debris population. To better limit the OD population increase, more aggressive actions must be considered. There are three options for OD environment remediation-removal of large/massive intact objects to address the root cause of the OD population growth problem, removal of 5-mm-to-1 cm debris to mitigate the main mission-ending threats for the majority of operational spacecraft, and prevention of major debris-generating collisions as a temporary means to slow down the OD population increase. The technology, engineering, and cost challenges to carry out any of these three options are monumental. It will require innovative ideas, game-changing technologies, and major collaborations at the international level to address the OD problem and preserve the near-Earth environment for future generations.

  9. THE HABITABILITY AND DETECTION OF EARTH-LIKE PLANETS ORBITING COOL WHITE DWARFS

    International Nuclear Information System (INIS)

    Fossati, L.; Haswell, C. A.; Patel, M. R.; Busuttil, R.; Bagnulo, S.; Kowalski, P. M.; Shulyak, D. V.; Sterzik, M. F.

    2012-01-01

    Since there are several ways planets can survive the giant phase of the host star, we examine the habitability and detection of planets orbiting white dwarfs. As a white dwarf cools from 6000 K to 4000 K, a planet orbiting at 0.01 AU would remain in the continuous habitable zone (CHZ) for ∼8 Gyr. We show that photosynthetic processes can be sustained on such planets. The DNA-weighted UV radiation dose for an Earth-like planet in the CHZ is less than the maxima encountered on Earth, and hence non-magnetic white dwarfs are compatible with the persistence of complex life. Polarization due to a terrestrial planet in the CHZ of a cool white dwarf (CWD) is 10 2 (10 4 ) times larger than it would be in the habitable zone of a typical M-dwarf (Sun-like star). Polarimetry is thus a viable way to detect close-in rocky planets around white dwarfs. Multi-band polarimetry would also allow us to reveal the presence of a planet atmosphere, providing a first characterization. Planets in the CHZ of a 0.6 M ☉ white dwarf will be distorted by Roche geometry, and a Kepler-11d analog would overfill its Roche lobe. With current facilities a super-Earth-sized atmosphereless planet is detectable with polarimetry around the brightest known CWD. Planned future facilities render smaller planets detectable, in particular by increasing the instrumental sensitivity in the blue.

  10. A low earth orbit dynamic model for the proton anisotropy validation

    Science.gov (United States)

    Badavi, Francis F.

    2011-11-01

    Ionizing radiation measurements at low earth orbit (LEO) form the ideal tool for the experimental validation of radiation environmental models, nuclear transport code algorithms and nuclear reaction cross sections. Indeed, prior measurements on the space transportation system (STS; shuttle) have provided vital information impacting both the environmental models and the nuclear transport code development by requiring dynamic models of the LEO environment. Previous studies using computer aided design (CAD) models of the international space station (ISS) have demonstrated that the dosimetric prediction for a spacecraft at LEO requires the description of an environmental model with accurate anisotropic as well as dynamic behavior. This paper describes such a model for the trapped proton. The described model is a component of a suite of codes collectively named GEORAD (GEOmagnetic RADiation) which computes cutoff rigidity, trapped proton and trapped electron environments. The web version of GEORAD is named OLTARIS (On-line Tool for the Assessment of Radiation in Space). GEORAD suite is applicable to radiation environment prediction at LEO, medium earth orbit (MEO) and geosynchronous earth orbit (GEO) at quiet solar periods. GEORAD interest is in the study of long term effect of the trapped environment and therefore it does not account for any short term external field contribution due to solar activity. With the concentration of the paper on the LEO protons only, the paper presents the validation of the trapped proton model within GEORAD with reported measurements from the compact environment anomaly sensor (CEASE) science instrument package, flown onboard the tri-service experiment-5 (TSX-5) satellite during the period of June 2000 to July 2006. The spin stabilized satellite was flown in a 410 × 1710 km, 69° inclination elliptical orbit, allowing it to be exposed to a broad range of the LEO regime. The paper puts particular emphasize on the validation of the

  11. THE OCCURRENCE RATE OF EARTH ANALOG PLANETS ORBITING SUN-LIKE STARS

    International Nuclear Information System (INIS)

    Catanzarite, Joseph; Shao, Michael

    2011-01-01

    Kepler is a space telescope that searches Sun-like stars for planets. Its major goal is to determine η Earth , the fraction of Sun-like stars that have planets like Earth. When a planet 'transits' or moves in front of a star, Kepler can measure the concomitant dimming of the starlight. From analysis of the first four months of those measurements for over 150,000 stars, Kepler's Science Team has determined sizes, surface temperatures, orbit sizes, and periods for over a thousand new planet candidates. In this paper, we characterize the period probability distribution function of the super-Earth and Neptune planet candidates with periods up to 132 days, and find three distinct period regimes. For candidates with periods below 3 days, the density increases sharply with increasing period; for periods between 3 and 30 days, the density rises more gradually with increasing period, and for periods longer than 30 days, the density drops gradually with increasing period. We estimate that 1%-3% of stars like the Sun are expected to have Earth analog planets, based on the Kepler data release of 2011 February. This estimate of η Earth is based on extrapolation from a fiducial subsample of the Kepler planet candidates that we chose to be nominally 'complete' (i.e., no missed detections) to the realm of the Earth-like planets, by means of simple power-law models. The accuracy of the extrapolation will improve as more data from the Kepler mission are folded in. Accurate knowledge of η Earth is essential for the planning of future missions that will image and take spectra of Earth-like planets. Our result that Earths are relatively scarce means that a substantial effort will be needed to identify suitable target stars prior to these future missions.

  12. National Aeronautics and Space Administration Manned Spacecraft Center data base requirements study

    Science.gov (United States)

    1971-01-01

    A study was conducted to evaluate the types of data that the Manned Spacecraft Center (MSC) should automate in order to make available essential management and technical information to support MSC's various functions and missions. In addition, the software and hardware capabilities to best handle the storage and retrieval of this data were analyzed. Based on the results of this study, recommendations are presented for a unified data base that provides a cost effective solution to MSC's data automation requirements. The recommendations are projected through a time frame that includes the earth orbit space station.

  13. TRAPPED PROTON FLUXES AT LOW EARTH ORBITS MEASURED BY THE PAMELA EXPERIMENT

    Energy Technology Data Exchange (ETDEWEB)

    Adriani, O.; Bongi, M. [Department of Physics and Astronomy, University of Florence, I-50019 Sesto Fiorentino, Florence (Italy); Barbarino, G. C. [Department of Physics, University of Naples " Federico II," I-80126 Naples (Italy); Bazilevskaya, G. A. [Lebedev Physical Institute, RU-119991 Moscow (Russian Federation); Bellotti, R.; Bruno, A. [Department of Physics, University of Bari, I-70126 Bari (Italy); Boezio, M.; Bonvicini, V.; Carbone, R. [INFN, Sezione di Trieste, I-34149 Trieste (Italy); Bogomolov, E. A. [Ioffe Physical Technical Institute, RU-194021 St. Petersburg (Russian Federation); Bottai, S. [INFN, Sezione di Florence, I-50019 Sesto Fiorentino, Florence (Italy); Cafagna, F. [INFN, Sezione di Bari, I-70126 Bari (Italy); Campana, D. [INFN, Sezione di Naples, I-80126 Naples (Italy); Carlson, P. [KTH, Department of Physics, and the Oskar Klein Centre for Cosmoparticle Physics, AlbaNova University Centre, SE-10691 Stockholm (Sweden); Casolino, M.; De Donato, C.; De Santis, C.; De Simone, N.; Felice, V. Di [INFN, Sezione di Rome " Tor Vergata," I-00133 Rome (Italy); Castellini, G., E-mail: alessandro.bruno@ba.infn.it [IFAC, I-50019 Sesto Fiorentino, Florence (Italy); and others

    2015-01-20

    We report an accurate measurement of the geomagnetically trapped proton fluxes for kinetic energy above ∼70 MeV performed by the PAMELA mission at low Earth orbits (350 ÷ 610 km). Data were analyzed in the frame of the adiabatic theory of charged particle motion in the geomagnetic field. Flux properties were investigated in detail, providing a full characterization of the particle radiation in the South Atlantic Anomaly region, including locations, energy spectra, and pitch angle distributions. PAMELA results significantly improve the description of the Earth's radiation environment at low altitudes, placing important constraints on the trapping and interaction processes, and can be used to validate current trapped particle radiation models.

  14. The relationship between orbital, earth-based, and sample data for lunar landing sites

    Science.gov (United States)

    Clark, P. E.; Hawke, B. R.; Basu, A.

    1990-01-01

    Results are reported of a detailed examination of data available for the Apollo lunar landing sites, including the Apollo orbital measurements of six major elements derived from XRF and gamma-ray instruments and geochemical parameters derived from earth-based spectral reflectivity data. Wherever orbital coverage for Apollo landing sites exist, the remote data were correlated with geochemical data derived from the soil sample averages for major geological units and the major rock components associated with these units. Discrepancies were observed between the remote and the soil-anlysis elemental concentration data, which were apparently due to the differences in the extent of exposure of geological units, and, hence, major rock eomponents, in the area sampled. Differences were observed in signal depths between various orbital experiments, which may provide a mechanism for explaining differences between the XRF and other landing-site data.

  15. The BioSentinel Bioanalytical Microsystem: Characterizing DNA Radiation Damage in Living Organisms Beyond Earth Orbit

    Science.gov (United States)

    Ricco, A. J.; Hanel, R.; Bhattacharya, S.; Boone, T.; Tan, M.; Mousavi, A.; Rademacher, A.; Schooley, A.; Klamm, B.; Benton, J.; hide

    2016-01-01

    We will present details and initial lab test results from an integrated bioanalytical microsystem designed to conduct the first biology experiments beyond low Earth orbit (LEO) since Apollo 17 (1972). The 14-kg, 12x24x37-cm BioSentinel spacecraft (Figure 1) assays radiation-responsive yeast in its science payload by measuring DNA double-strand breaks (DSBs) repaired via homologous recombination, a mechanism common to all eukaryotes including humans. S. cerevisiae (brewer's yeast) in 288 microwells are provided with nutrient and optically assayed for growth and metabolism via 3-color absorptimetry monthly during the 18-month mission. BioSentinel is one of several secondary payloads to be deployed by NASA's Exploration Mission 1 (EM-1) launch vehicle into approximately 0.95 AU heliocentric orbit in July 2018; it will communicate with Earth from up to 100 million km.

  16. Earth Observatory Satellite system definition study. Report no. 1: Orbit/launch vehicle tradeoff studies and recommendations

    Science.gov (United States)

    1974-01-01

    A study was conducted to determine the recommended orbit for the Earth Observatory Satellite (EOS) Land Resources Mission. It was determined that a promising sun synchronous orbit is 366 nautical miles when using an instrument with a 100 nautical mile swath width. The orbit has a 17 day repeat cycle and a 14 nautical mile swath overlap. Payloads were developed for each mission, EOS A through F. For each mission, the lowest cost booster that was capable of lifting the payload to the EOS orbit was selected. The launch vehicles selected for the missions are identified on the basis of tradeoff studies and recommendations. The reliability aspects of the launch vehicles are analyzed.

  17. Greenhouse effect and climate: the man impact; Effet de serre et climat: l'influence humaine

    Energy Technology Data Exchange (ETDEWEB)

    Fouquart, Y. [Universite des Sciences et technologies de Lille, Lab. d' Optique Atmospherique, 59 - Villeneuve d' Ascq (France)

    2001-04-01

    In this article the author describes the different mechanisms that are involved in the setting of the earth climate. The main natural causes of climate variations are reviewed: - the variations in the orbit of the earth around the sun, - the interactions between oceans and the atmosphere, and - the volcanic eruptions. It is shown that mean earth temperature has continuously increased for the last 150 years. The impact of man activities on climate changes will not be scientifically proved before at least 10 years, but computerized simulations based on models taking into account industrial emissions of aerosols agree with temperatures values recorded since the beginning of the industrial era. This article supports the current opinion that climate is changing beyond natural variations. (A.C.)

  18. A Delphi-Based Framework for systems architecting of in-orbit exploration infrastructure for human exploration beyond Low Earth Orbit

    Science.gov (United States)

    Aliakbargolkar, Alessandro; Crawley, Edward F.

    2014-01-01

    The current debate in the U.S. Human Spaceflight Program focuses on the development of the next generation of man-rated heavy lift launch vehicles. While launch vehicle systems are of critical importance for future exploration, a comprehensive analysis of the entire exploration infrastructure is required to avoid costly pitfalls at early stages of the design process. This paper addresses this need by presenting a Delphi-Based Systems Architecting Framework for integrated architectural analysis of future in-orbit infrastructure for human space exploration beyond Low Earth Orbit. The paper is structured in two parts. The first part consists of an expert elicitation study to identify objectives for the in-space transportation infrastructure. The study was conducted between November 2011 and January 2012 with 15 senior experts involved in human spaceflight in the United States and Europe. The elicitation study included the formation of three expert panels representing exploration, science, and policy stakeholders engaged in a 3-round Delphi study. The rationale behind the Delphi approach, as imported from social science research, is discussed. Finally, a novel version of the Delphi method is presented and applied to technical decision-making and systems architecting in the context of human space exploration. The second part of the paper describes a tradespace exploration study of in-orbit infrastructure coupled with a requirements definition exercise informed by expert elicitation. The uncertainties associated with technical requirements and stakeholder goals are explicitly considered in the analysis. The outcome of the expert elicitation process portrays an integrated view of perceived stakeholder needs within the human spaceflight community. Needs are subsequently converted into requirements and coupled to the system architectures of interest to analyze the correlation between exploration, science, and policy goals. Pareto analysis is used to identify architectures

  19. Modeling Earth Albedo for Satellites in Earth Orbit

    DEFF Research Database (Denmark)

    Bhanderi, Dan; Bak, Thomas

    2005-01-01

    Many satellite are influences by the Earthøs albedo, though very few model schemes exist.in order to predict this phenomenon. Earth albedo is often treated as noise, or ignored completely. When applying solar cells in the attitude hardware, Earth albedo can cause the attitude estimate to deviate...... with as much as 20 deg. Digital Sun sensors with Earth albedo correction in hardware exist, but are expensive. In addition, albedo estimates are necessary in thermal calculations and power budgets. We present a modeling scheme base4d on Eartht reflectance, measured by NASA's Total Ozone Mapping Spectrometer......, in which the Earth Probe Satellite has recorded reflectivity data daily since mid 1996. The mean of these data can be used to calculate the Earth albedo given the positions of the satellite and the Sun. Our results show that the albedo varies highly with the solar angle to the satellite's field of view...

  20. Angles-only relative orbit determination in low earth orbit

    Science.gov (United States)

    Ardaens, Jean-Sébastien; Gaias, Gabriella

    2018-06-01

    The paper provides an overview of the angles-only relative orbit determination activities conducted to support the Autonomous Vision Approach Navigation and Target Identification (AVANTI) experiment. This in-orbit endeavor was carried out by the German Space Operations Center (DLR/GSOC) in autumn 2016 to demonstrate the capability to perform spaceborne autonomous close-proximity operations using solely line-of-sight measurements. The images collected onboard have been reprocessed by an independent on-ground facility for precise relative orbit determination, which served as ultimate instance to monitor the formation safety and to characterize the onboard navigation and control performances. During two months, several rendezvous have been executed, generating a valuable collection of images taken at distances ranging from 50 km to only 50 m. Despite challenging experimental conditions characterized by a poor visibility and strong orbit perturbations, angles-only relative positioning products could be continuously derived throughout the whole experiment timeline, promising accuracy at the meter level during the close approaches. The results presented in the paper are complemented with former angles-only experience gained with the PRISMA satellites to better highlight the specificities induced by different orbits and satellite designs.

  1. An analysis of the low-earth-orbit communications environment

    Science.gov (United States)

    Diersing, Robert Joseph

    Advances in microprocessor technology and availability of launch opportunities have caused interest in low-earth-orbit satellite based communications systems to increase dramatically during the past several years. In this research the capabilities of two low-cost, store-and-forward LEO communications satellites operating in the public domain are examined--PACSAT-1 (operated by the Radio Amateur Satellite Corporation) and UoSAT-3 (operated by the University of Surrey, England, Electrical Engineering Department). The file broadcasting and file transfer facilities are examined in detail and a simulation model of the downlink traffic pattern is developed. The simulator will aid the assessment of changes in design and implementation for other systems. The development of the downlink traffic simulator is based on three major parts. First, is a characterization of the low-earth-orbit operating environment along with preliminary measurements of the PACSAT-1 and UoSAT-3 systems including: satellite visibility constraints on communications, monitoring equipment configuration, link margin computations, determination of block and bit error rates, and establishing typical data capture rates for ground stations using computer-pointed directional antennas and fixed omni-directional antennas. Second, arrival rates for successful and unsuccessful file server connections are established along with transaction service times. Downlink traffic has been further characterized by measuring: frame and byte counts for all data-link layer traffic; 30-second interval average response time for all traffic and for file server traffic only; file server response time on a per-connection basis; and retry rates for information and supervisory frames. Finally, the model is verified by comparison with measurements of actual traffic not previously used in the model building process. The simulator is then used to predict operation of the PACSAT-1 satellite with modifications to the original design.

  2. The effect of lunarlike satellites on the orbital infrared light curves of Earth-analog planets.

    Science.gov (United States)

    Moskovitz, Nicholas A; Gaidos, Eric; Williams, Darren M

    2009-04-01

    We have investigated the influence of lunarlike satellites on the infrared orbital light curves of Earth-analog extrasolar planets. Such light curves will be obtained by NASA's Terrestrial Planet Finder (TPF) and ESA's Darwin missions as a consequence of repeat observations to confirm the companion status of a putative planet and determine its orbit. We used an energy balance model to calculate disk-averaged infrared (bolometric) fluxes from planet-satellite systems over a full orbital period (one year). The satellites are assumed to lack an atmosphere, have a low thermal inertia like that of the Moon, and span a range of plausible radii. The planets are assumed to have thermal and orbital properties that mimic those of Earth, while their obliquities and orbital longitudes of inferior conjunction remain free parameters. Even if the gross thermal properties of the planet can be independently constrained (e.g., via spectroscopy or visible-wavelength detection of specular glint from a surface ocean), only the largest (approximately Mars-sized) lunarlike satellites can be detected by light curve data from a TPF-like instrument (i.e., one that achieves a photometric signal-to-noise ratio of 10 to 20 at infrared wavelengths). Nondetection of a lunarlike satellite can obfuscate the interpretation of a given system's infrared light curve so that it may resemble a single planet with high obliquity, different orbital longitude of vernal equinox relative to inferior conjunction, and in some cases drastically different thermal characteristics. If the thermal properties of the planet are not independently established, then the presence of a lunarlike satellite cannot be inferred from infrared data, which would thus demonstrate that photometric light curves alone can only be used for preliminary study, and the addition of spectroscopic data will be necessary.

  3. 78 FR 14920 - Earth Stations Aboard Aircraft Communicating With Fixed-Satellite Service Geostationary-Orbit...

    Science.gov (United States)

    2013-03-08

    ... Consumer and Governmental Affairs Bureau, Reference Information Center shall send a copy of this Report and... ground, ESAAs shall not be authorized for transmission at angles less than 5[deg] measured from the plane..., in the plane of the geostationary satellite orbit (GSO) as it appears at the particular earth station...

  4. Examination of returned solar-max surfaces for impacting orbital debris and meteoroids

    Science.gov (United States)

    Kessler, D. J.; Zook, H. A.; Potter, A. E.; Mckay, D. S.; Clanton, U. S.; Warren, J. L.; Watts, L. A.; Schultz, R. A.; Schramm, L. S.; Wentworth, S. J.

    1985-01-01

    Previous theoretical studies predicted that in certain regions of earth orbit, the man-made earth orbiting debris environment will soon exceed the interplanetary meteoroid environment for sizes smaller than 1 cm. The surfaces returned from the repaired Solar Max Mission (SMM) by STS 41-C on April 12, 1984, offered an excellent opportunity to examine both the debris and meteoroid environments. To date, approximately 0.7 sq. met. of the thermal insulation and 0.05 sq. met of the aluminum louvers have been mapped by optical microscope for crater diameters larger than 40 microns. Craters larger in diameter than about 100 microns found on the initial 75 micron thick Kapton first sheet on the MEB (Main Electronics Box) blanket are actually holes and constitute perforations through that blanket. The following populations have been found to date in impact sites on these blankets: (1) meteoritic material; (2) thermal paint particles; (3) aluminum droplets; and (4) waste particles.

  5. Use and Protection of GPS Sidelobe Signals for Enhanced Navigation Performance in High Earth Orbit

    Science.gov (United States)

    Parker, Joel J. K.; Valdez, Jennifer E.; Bauer, Frank H.; Moreau, Michael C.

    2016-01-01

    GPS (Global Positioning System) Space Service Volume (SSV) signal environment is from 3,000-36,000 kilometers altitude. Current SSV specifications only capture performance provided by signals transmitted within 23.5(L1) or 26(L2-L5) off-nadir angle. Recent on-orbit data lessons learned show significant PNT (Positioning, Navigation and Timing) performance improvements when the full aggregate signal is used. Numerous military civil operational missions in High Geosynchronous Earth Orbit (HEOGEO) utilize the full signal to enhance vehicle PNT performance

  6. A Framework for Orbital Performance Evaluation in Distributed Space Missions for Earth Observation

    Science.gov (United States)

    Nag, Sreeja; LeMoigne-Stewart, Jacqueline; Miller, David W.; de Weck, Olivier

    2015-01-01

    Distributed Space Missions (DSMs) are gaining momentum in their application to earth science missions owing to their unique ability to increase observation sampling in spatial, spectral and temporal dimensions simultaneously. DSM architectures have a large number of design variables and since they are expected to increase mission flexibility, scalability, evolvability and robustness, their design is a complex problem with many variables and objectives affecting performance. There are very few open-access tools available to explore the tradespace of variables which allow performance assessment and are easy to plug into science goals, and therefore select the most optimal design. This paper presents a software tool developed on the MATLAB engine interfacing with STK, for DSM orbit design and selection. It is capable of generating thousands of homogeneous constellation or formation flight architectures based on pre-defined design variable ranges and sizing those architectures in terms of predefined performance metrics. The metrics can be input into observing system simulation experiments, as available from the science teams, allowing dynamic coupling of science and engineering designs. Design variables include but are not restricted to constellation type, formation flight type, FOV of instrument, altitude and inclination of chief orbits, differential orbital elements, leader satellites, latitudes or regions of interest, planes and satellite numbers. Intermediate performance metrics include angular coverage, number of accesses, revisit coverage, access deterioration over time at every point of the Earth's grid. The orbit design process can be streamlined and variables more bounded along the way, owing to the availability of low fidelity and low complexity models such as corrected HCW equations up to high precision STK models with J2 and drag. The tool can thus help any scientist or program manager select pre-Phase A, Pareto optimal DSM designs for a variety of science

  7. Earth Observatory Satellite system definition study. Report 1: Orbit/launch vehicle trade-off studies and recommendations

    Science.gov (United States)

    1974-01-01

    A summary of the constraints and requirements on the Earth Observatory Satellite (EOS-A) orbit and launch vehicle analysis is presented. The propulsion system (hydrazine) and the launch vehicle (Delta 2910) selected for EOS-A are examined. The rationale for the selection of the recommended orbital altitude of 418 nautical miles is explained. The original analysis was based on the EOS-A mission with the Thematic Mapper and the High Resolution Pointable Imager. The impact of the revised mission model is analyzed to show how the new mission model affects the previously defined propulsion system, launch vehicle, and orbit. A table is provided to show all aspects of the EOS multiple mission concepts. The subjects considered include the following: (1) mission orbit analysis, (2) spacecraft parametric performance analysis, (3) launch system performance analysis, and (4) orbits/launch vehicle selection.

  8. Active Debris Removal mission design in Low Earth Orbit

    Science.gov (United States)

    Martin, Th.; Pérot, E.; Desjean, M.-Ch.; Bitetti, L.

    2013-03-01

    Active Debris Removal (ADR) aims at removing large sized intact objects ― defunct satellites, rocket upper-stages ― from space crowded regions. Why? Because they constitute the main source of the long-term debris environment deterioration caused by possible future collisions with fragments and worse still with other intact but uncontrolled objects. In order to limit the growth of the orbital debris population in the future (referred to as the Kessler syndrome), it is now highly recommended to carry out such ADR missions, together with the mitigation measures already adopted by national agencies (such as postmission disposal). At the French Space Agency, CNES, and in the frame of advanced studies, the design of such an ADR mission in Low Earth Orbit (LEO) is under evaluation. A two-step preliminary approach has been envisaged. First, a reconnaissance mission based on a small demonstrator (˜500 kg) rendezvousing with several targets (observation and in-flight qualification testing). Secondly, an ADR mission based on a larger vehicle (inherited from the Orbital Transfer Vehicle (OTV) concept) being able to capture and deorbit several preselected targets by attaching a propulsive kit to these targets. This paper presents a flight dynamics level tradeoff analysis between different vehicle and mission concepts as well as target disposal options. The delta-velocity, times, and masses required to transfer, rendezvous with targets and deorbit are assessed for some propelled systems and propellant less options. Total mass budgets are then derived for two end-to-end study cases corresponding to the reconnaissance and ADR missions mentioned above.

  9. A high-fidelity N-body ephemeris generator for satellites in Earth orbit

    Science.gov (United States)

    Simmons, David R.

    1991-10-01

    A program is currently used for mission planning called the Analytic Satellite Ephemeris Program (ASEP), which produces projected data for orbits that remain fairly close to Earth. Lunar and solar perturbations are taken into account in another program called GRAVE. This project is a revision of GRAVE which incorporates more flexible means of input for initial data, provides additional kinds of output information, and makes use of structured programming techniques to make the program more understandable and reliable. The computer program ORBIT was tested against tracking data for the first 313 days of operation of the CRRES satellite. A sample graph is given comparing the semi-major axis calculated by the program with the values supplied by NORAD. When calculated for points at which CRRES passes through the ascending node, the argument of perigee, the right ascension of the ascending node, and the mean anomaly all stay within about a degree of the corresponding values from NORAD; the inclination of the orbital plane is much closer. The program value of the eccentricity is in error by no more than 0.0002.

  10. Spacecraft design project: Low Earth orbit communications satellite

    Science.gov (United States)

    Moroney, Dave; Lashbrook, Dave; Mckibben, Barry; Gardener, Nigel; Rivers, Thane; Nottingham, Greg; Golden, Bill; Barfield, Bill; Bruening, Joe; Wood, Dave

    1991-01-01

    This is the final product of the spacecraft design project completed to fulfill the academic requirements of the Spacecraft Design and Integration 2 course (AE-4871) taught at the U.S. Naval Postgraduate School. The Spacecraft Design and Integration 2 course is intended to provide students detailed design experience in selection and design of both satellite system and subsystem components, and their location and integration into a final spacecraft configuration. The design team pursued a design to support a Low Earth Orbiting (LEO) communications system (GLOBALSTAR) currently under development by the Loral Cellular Systems Corporation. Each of the 14 team members was assigned both primary and secondary duties in program management or system design. Hardware selection, spacecraft component design, analysis, and integration were accomplished within the constraints imposed by the 11 week academic schedule and the available design facilities.

  11. Low-Cost Propellant Launch to Earth Orbit from a Tethered Balloon

    Science.gov (United States)

    Wilcox, Brian H.

    2006-01-01

    Propellant will be more than 85% of the mass that needs to be lofted into Low Earth Orbit (LEO) in the planned program of Exploration of the Moon, Mars, and beyond. This paper describes a possible means for launching thousands of tons of propellant per year into LEO at a cost 15 to 30 times less than the current launch cost per kilogram. The basic idea is to mass-produce very simple, small and relatively low-performance rockets at a cost per kilogram comparable to automobiles, instead of the 25X greater cost that is customary for current launch vehicles that are produced in small quantities and which are manufactured with performance near the limits of what is possible. These small, simple rockets can reach orbit because they are launched above 95% of the atmosphere, where the drag losses even on a small rocket are acceptable, and because they can be launched nearly horizontally with very simple guidance based primarily on spin-stabilization. Launching above most of the atmosphere is accomplished by winching the rocket up a tether to a balloon. A fuel depot in equatorial orbit passes over the launch site on every orbit (approximately every 90 minutes). One or more rockets can be launched each time the fuel depot passes overhead, so the launch rate can be any multiple of 6000 small rockets per year, a number that is sufficient to reap the benefits of mass production.

  12. Do slow orbital periodicities appear in the record of earth's magnetic reversals?

    Science.gov (United States)

    Stothers, Richard B.

    1987-01-01

    Time-series spectral analysis has been performed on the dates of geomagnetic reversals of the last 20 Myr BP and earlier. Possible evidence is found from the presence of high spectral peaks for two very long periodicities, 0.4 Myr and 1.3 Myr, that may be associated with slow variations of the earth's orbital eccentricity as predicted by Berger. However, statistical significance tests and a number of other arguments do not confirm the two detections.

  13. TEST BED FOR THE SIMULATION OF MAGNETIC FIELD MEASUREMENTS OF LOW EARTH ORBIT SATELLITES

    Directory of Open Access Journals (Sweden)

    Alberto Gallina

    2018-03-01

    Full Text Available The paper presents a test bed designed to simulate magnetic environment experienced by a spacecraft on low Earth orbit. It consists of a spherical air bearing located inside a Helmholtz cage. The spherical air bearing is used for simulating microgravity conditions of orbiting bodies while the Helmholtz cage generates a controllable magnetic field resembling the one surrounding a satellite during its motion. Dedicated computer software is used to initially calculate the magnetic field on an established orbit. The magnetic field data is then translated into current values and transmitted to programmable power supplies energizing the cage. The magnetic field within the cage is finally measured by a test article mounted on the air bearing. The paper provides a description of the test bed and the test article design. An experimental test proves the good performance of the entire system.

  14. Design and "As Flown" Radiation Environments for Materials in Low Earth Orbit

    Science.gov (United States)

    Minow, Joseph; McWilliams, Brett; Altstatt, Richard; Koontz, Steven

    2006-01-01

    A conservative design approach was adopted by the International Space Station Program for specifying total ionizing radiation dose requirements for use in selecting and qualifying materials for construction of the International Space Station. The total ionizing dose design environment included in SSP 30512 Space Station Ionizing Radiation Design Environment is based on trapped proton and electron fluence derived from the solar maximum versions of the AE-8 and AP-8 models, respectively, specified for a circular orbit at 500 km altitude and 51.7 degree inclination. Since launch, the range of altitudes utilized for Space Station operations vary from a minimum of approximately 330 km to a maximum of approximately 405 km with a mean operational altitude less than 400 km. The design environment, therefore, overestimates the radiation environment because the particle flux in the South Atlantic Anomaly is the primary contributor to radiation dose in low Earth orbit and flux within the Anomaly is altitude dependent. In addition, a 2X multiplier is often applied to the design environment to cover effects from the contributions of galactic cosmic rays, solar energetic particle events, geomagnetic storms, and uncertainties in the trapped radiation models which are not explicitly included in the design environment. Application of this environment may give radiation dose overestimates on the order of 1OX to 30X for materials exposed to the space environment, suggesting that materials originally qualified for ten year exposures on orbit may be used for longer periods without replacement. In this paper we evaluate the "as flown" radiation environments derived from historical records of the ISS flight trajectory since launch and compare the results with the SSP 30512 design environment to document the magnitude of the radiation dose overestimate provided by the design environment. "As flown" environments are obtained from application of the AE-8/AP-8 trapped particle models along

  15. A Wide Field Auroral Imager (WFAI for low Earth orbit missions

    Directory of Open Access Journals (Sweden)

    N. P. Bannister

    2007-03-01

    Full Text Available A comprehensive understanding of the solar wind interaction with Earth's coupled magnetosphere-ionosphere system requires an ability to observe the charged particle environment and auroral activity from the same platform, generating particle and photon image data which are matched in time and location. While unambiguous identification of the particles giving rise to the aurora requires a Low Earth Orbit satellite, obtaining adequate spatial coverage of aurorae with the relatively limited field of view of current space bourne auroral imaging systems requires much higher orbits. A goal for future satellite missions, therefore, is the development of compact, wide field-of-view optics permitting high spatial and temporal resolution ultraviolet imaging of the aurora from small spacecraft in low polar orbit. Microchannel plate optics offer a method of achieving the required performance. We describe a new, compact instrument design which can observe a wide field-of-view with the required spatial resolution. We report the focusing of 121.6 nm radiation using a spherically-slumped, square-pore microchannel plate with a focal length of 32 mm and an F number of 0.7. Measurements are compared with detailed ray-trace simulations of imaging performance. The angular resolution is 2.7±0.2° for the prototype, corresponding to a footprint ~33 km in diameter for an aurora altitude of 110 km and a spacecraft altitude of 800 km. In preliminary analysis, a more recent optic has demonstrated a full width at half maximum of 5.0±0.3 arcminutes, corresponding to a footprint of ~1 km from the same spacecraft altitude. We further report the imaging properties of a convex microchannel plate detector with planar resistive anode readout; this detector, whose active surface has a radius of curvature of only 100 mm, is shown to meet the spatial resolution and sensitivity requirements of the new wide field auroral imager (WFAI.

  16. Degradation of Spacesuit Fabrics in Low Earth Orbit

    Science.gov (United States)

    Gaier, James R.; Baldwin, Sammantha M.; Folz, Angela D.; Waters, Deborah L.; McCue, Terry R.; Jaworske, Donald A.; Clark, Gregory W.; Rogers, Kerry J.; Batman, Brittany; Bruce, John; hide

    2012-01-01

    Six samples of pristine and dust-abraded outer layer spacesuit fabrics were included in the Materials International Space Station Experiment-7, in which they were exposed to the wake-side low Earth orbit environment on the International Space Station (ISS) for 18 months in order to determine whether abrasion by lunar dust increases radiation degradation. The fabric samples were characterized using optical microscopy, optical spectroscopy, field emission scanning electron microscopy, atomic force microscopy, and tensile testing before and after exposure on the ISS. Comparison of pre- and post-flight characterizations showed that the environment darkened and reddened all six fabrics, increasing their integrated solar absorptance by 7 to 38 percent. There was a decrease in the ultimate tensile strength and elongation to failure of lunar dust abraded Apollo spacesuit fibers by a factor of four and an increase in the elastic modulus by a factor of two.

  17. The Orbital Distribution of Earth-crossing Asteroids and Meteoroids

    Science.gov (United States)

    Benoit, P. H.; Sears, D. W. G.

    1993-07-01

    The relationship between meteorites and Earth-crossing asteroids and between individual meteorites and meteor showers has been the subject of debate for some time. Recently, links have been claimed between certain meteorites and meteoroid complexes [e.g., 1] and it has been suggested that some meteorites are members of orbital "streams" [2]. It is difficult to evaluate these ideas because of the lack of appropriate measureable properties in the meteorites themselves. Cosmic ray exposure ages provide one approach but most cosmogenic nuclides have large halflives and hence generally reflect the long term radiation exposure of the body rather than the short term orbital evolution leading up to Earth impact. Here we use natural thermoluminescence (TL) data to determine the "average" perihelion of ordinary chondrites among the modern falls over periods of time of less than 10^3-10^5 years prior to Earth impact. The level of natural TL of a meteorite (at a given glow curve temperature) is a function of buildup through radiation dose (which, in turn, is a function of depth or "shielding" and external cosmic ray flux) and decay through thermal draining [3]. The shallow TL vs. depth profile observed in lunar cores [4] can, after correction for irradiation geometry, be used to to calculate TL profiles in meteoroid-sized bodies. Our new calculations indicate a range of natural TL of only about 15% in large meteoroid-sized bodies and an even smaller range in smaller bodies. The "half-life" of TL is far greater than the solar/cosmic ray flux cycle and hence variations in the external flux over time are expected to have only very minor effects. It is thus possible to calculate an "irradiation temperature" for a meteorite using its natural TL level, which can be shown through decay calculations to largely reflect the perihelion of the meteoroid body. The time period over which this irradiation temperature is averaged is a function of the temperature (perihelion); the period is 1

  18. Development of constraint algorithm for the number of electrons in molecular orbitals consisting mainly 4f atomic orbitals of rare-earth elements and its introduction to tight-binding quantum chemical molecular dynamics method

    International Nuclear Information System (INIS)

    Endou, Akira; Onuma, Hiroaki; Jung, Sun-ho

    2007-01-01

    Our original tight-binding quantum chemical molecular dynamics code, Colors', has been successfully applied to the theoretical investigation of complex materials including rare-earth elements, e.g., metal catalysts supported on a CeO 2 surface. To expand our code so as to obtain a good convergence for the electronic structure of a calculation system including a rare-earth element, we developed a novel algorithm to provide a constraint condition for the number of electrons occupying the selected molecular orbitals that mainly consist of 4f atomic orbitals of the rare-earth element. This novel algorithm was introduced in Colors. Using Colors, we succeeded in obtaining the classified electronic configurations of the 4f atomic orbitals of Ce 4+ and reduced Ce ions in a CeO 2 bulk model with one oxygen defect, which makes it difficult to obtain a good convergence using a conventional first-principles quantum chemical calculation code. (author)

  19. Simulation of Micron-Sized Debris Populations in Low Earth Orbit

    Science.gov (United States)

    Xu, Y.-L.; Matney, M.; Liou, J.-C.; Hyde, J. L.; Prior, T. G.

    2010-01-01

    The update of ORDEM2000, the NASA Orbital Debris Engineering Model, to its new version . ORDEM2010, is nearly complete. As a part of the ORDEM upgrade, this paper addresses the simulation of micro-debris (greater than 10 micron and smaller than 1 mm in size) populations in low Earth orbit. The principal data used in the modeling of the micron-sized debris populations are in-situ hypervelocity impact records, accumulated in post-flight damage surveys on the space-exposed surfaces of returned spacecrafts. The development of the micro-debris model populations follows the general approach to deriving other ORDEM2010-required input populations for various components and types of debris. This paper describes the key elements and major steps in the statistical inference of the ORDEM2010 micro-debris populations. A crucial step is the construction of a degradation/ejecta source model to provide prior information on the micron-sized objects (such as orbital and object-size distributions). Another critical step is to link model populations with data, which is rather involved. It demands detailed information on area-time/directionality for all the space-exposed elements of a shuttle orbiter and damage laws, which relate impact damage with the physical properties of a projectile and impact conditions such as impact angle and velocity. Also needed are model-predicted debris fluxes as a function of object size and impact velocity from all possible directions. In spite of the very limited quantity of the available shuttle impact data, the population-derivation process is satisfactorily stable. Final modeling results obtained from shuttle window and radiator impact data are reasonably convergent and consistent, especially for the debris populations with object-size thresholds at 10 and 100 micron.

  20. AMS_02 Particle Physics Detector Technologies Orbiting the Earth (2/2)

    CERN Multimedia

    CERN. Geneva

    2012-01-01

    AMS-02 has taken the high performance technologies used in particle physics and implemented them for use in low Earth orbit. Safety aspects for the Space Shuttle flight, that carried AMS_02 to the International Space Station, Space environment and inaccessibility during the life of AMS_02 are some of the aspects which have driven the design of the experiment. The technical challenges to build such a detector have been surmounted through the close collaboration amongst the AMS scientists and industries around the world. Their efforts have resulted in the development of new technologies and higher standards of precision.

  1. AMS_02 Particle Physics Detector Technologies Orbiting the Earth (1/2)

    CERN Multimedia

    CERN. Geneva

    2012-01-01

    AMS-02 has taken the high performance technologies used in particle physics and implemented them for use in low Earth orbit. Safety aspects for the Space Shuttle flight, that carried AMS_02 to the International Space Station, Space environment and inaccessibility during the life of AMS_02 are some of the aspects which have driven the design of the experiment. The technical challenges to build such a detector have been surmounted through the close collaboration amongst the AMS scientists and industries around the world. Their efforts have resulted in the development of new technologies and higher standards of precision.

  2. Earth's Trojan asteroid.

    Science.gov (United States)

    Connors, Martin; Wiegert, Paul; Veillet, Christian

    2011-07-27

    It was realized in 1772 that small bodies can stably share the same orbit as a planet if they remain near 'triangular points' 60° ahead of or behind it in the orbit. Such 'Trojan asteroids' have been found co-orbiting with Jupiter, Mars and Neptune. They have not hitherto been found associated with Earth, where the viewing geometry poses difficulties for their detection, although other kinds of co-orbital asteroid (horseshoe orbiters and quasi-satellites) have been observed. Here we report an archival search of infrared data for possible Earth Trojans, producing the candidate 2010 TK(7). We subsequently made optical observations which established that 2010 TK(7) is a Trojan companion of Earth, librating around the leading Lagrange triangular point, L(4). Its orbit is stable over at least ten thousand years.

  3. Contamination Examples and Lessons from Low Earth Orbit Experiments and Operational Hardware

    Science.gov (United States)

    Pippin, Gary; Finckenor, Miria M.

    2009-01-01

    Flight experiments flown on the Space Shuttle, the International Space Station, Mir, Skylab, and free flyers such as the Long Duration Exposure Facility, the European Retrievable Carrier, and the EFFU, provide multiple opportunities for the investigation of molecular contamination effects. Retrieved hardware from the Solar Maximum Mission satellite, Mir, and the Hubble Space Telescope has also provided the means gaining insight into contamination processes. Images from the above mentioned hardware show contamination effects due to materials processing, hardware storage, pre-flight cleaning, as well as on-orbit events such as outgassing, mechanical failure of hardware in close proximity, impacts from man-made debris, and changes due to natural environment factors.. Contamination effects include significant changes to thermal and electrical properties of thermal control surfaces, optics, and power systems. Data from several flights has been used to develop a rudimentary estimate of asymptotic values for absorptance changes due to long-term solar exposure (4000-6000 Equivalent Sun Hours) of silicone-based molecular contamination deposits of varying thickness. Recommendations and suggestions for processing changes and constraints based on the on-orbit observed results will be presented.

  4. A Reflight of the Explorer-1 Science Mission: The Montana EaRth Orbiting Pico Explorer (MEROPE)

    Science.gov (United States)

    Klumpar, D. M.; Obland, M.; Hunyadi, G.; Jepsen, S.; Larsen, B.; Kankelborg, C.; Hiscock, W.

    2001-05-01

    Montana State University's interdisciplinary Space Science and Engineering Laboratory (SSEL) under support from the Montana NASA Space Grant Consortium is engaged in an earth orbiting satellite student design and flight project. The Montana EaRth Orbiting Pico Explorer (MEROPE) will carry a modern-day reproduction of the scientific payload carried on Explorer-1. On February 1, 1958 the United States launched its first earth orbiting satellite carrying a 14 kg scientific experiment built by Professor James Van Allen's group at the State University of Iowa (now The University of Iowa). The MEROPE student satellite will carry a reproduction, using current-day technology, of the scientific payload flown on Explorer-1. The CubeSat-class satellite will use currently available, low cost technologies to produce a payload-carrying satellite with a total orbital mass of 1 kg in a volume of 1 cubic liter. The satellite is to be launched in late 2001 into a 600 km, 65° inclination orbit. MEROPE will utilize passive magnetic orientation for 2-axis attitude control. A central microprocessor provides timing, controls on-board operations and switching, and enables data storage. Body mounted GaAs solar arrays are expected to provide in excess of 1.5 W. to maintain battery charge and operate the bus and payload. The Geiger counter will be operated at approximately 50% duty cycle, primarily during transits of the earth's radiation belts. Data will be stored on board and transmitted approximately twice per day to a ground station located on the Bozeman campus of the Montana State University. Owing to the 65° inclination, the instrument will also detect the higher energy portion of the electron spectrum responsible for the production of the Aurora Borealis. This paper describes both the technical implementation and design of the satellite and its payload as well as the not inconsiderable task of large team organization and management. As of March 2001, the student team consists of

  5. the unsung earth: man's regeneration and rediscovery of the earth

    African Journals Online (AJOL)

    User

    position of comfortable apathy with a topic that has much relevance in ... towards man's selfishness and reckless defiance of nature that Corona channels and .... tap into their technological appliances, turn to their forgotten God more in anger ...

  6. Low-energy near Earth asteroid capture using Earth flybys and aerobraking

    Science.gov (United States)

    Tan, Minghu; McInnes, Colin; Ceriotti, Matteo

    2018-04-01

    Since the Sun-Earth libration points L1 and L2 are regarded as ideal locations for space science missions and candidate gateways for future crewed interplanetary missions, capturing near-Earth asteroids (NEAs) around the Sun-Earth L1/L2 points has generated significant interest. Therefore, this paper proposes the concept of coupling together a flyby of the Earth and then capturing small NEAs onto Sun-Earth L1/L2 periodic orbits. In this capture strategy, the Sun-Earth circular restricted three-body problem (CRTBP) is used to calculate target Lypaunov orbits and their invariant manifolds. A periapsis map is then employed to determine the required perigee of the Earth flyby. Moreover, depending on the perigee distance of the flyby, Earth flybys with and without aerobraking are investigated to design a transfer trajectory capturing a small NEA from its initial orbit to the stable manifolds associated with Sun-Earth L1/L2 periodic orbits. Finally, a global optimization is carried out, based on a detailed design procedure for NEA capture using an Earth flyby. Results show that the NEA capture strategies using an Earth flyby with and without aerobraking both have the potential to be of lower cost in terms of energy requirements than a direct NEA capture strategy without the Earth flyby. Moreover, NEA capture with an Earth flyby also has the potential for a shorter flight time compared to the NEA capture strategy without the Earth flyby.

  7. A numerical model of the electrodynamics of plasma within the contaminant gas cloud of the space shuttle orbiter at low Earth orbit

    International Nuclear Information System (INIS)

    Eccles, J.V.; Raitt, W.J.; Banks, P.M.

    1989-01-01

    This paper presents results from a two-dimensional, finite-difference model used to solve for the time evolution of low beta plasma within the neutral contaminant cloud in the vicinity of space platforms in low earth orbit. The model of the ambient and contaminant plasma dynamics takes into account the effects of the geomagnetic field, electric fields, background ionosphere, ion-neutral collisions, chemistry, and both Pederson and Hall currents. Net ionization and charge exchange source terms are included in the fluid equations to study electrodynamic effects of chemistry within a moving neutral cloud in the low earth orbit ionosphere. The model is then used with complete water cloud chemistry to simulate the known outgassing situation of the space shuttle Orbiter. A comparison is made of the model results with plasma observations made during daytime on OSS-1/STS-3 mission. The reported density enhancements of the OSS-1 mission are unattainable with normal photoionization and charge exchange rates of simple water cloud chemistry used in the two-dimensional model. The enhanced densities are only attained by a generic chemistry model if a net ionization rate 1,000 times higher than the photoionization rate of water is used. It is also shown that significant plasma buildup at the front of the contaminant neutral cloud can occur due to momentum transfer from the neutral outgas cloud to the plasma through elastic collisions and charge exchange. The currents caused by elastic and reactive collisions result in the generation of a small polarization electric field within the outgas cloud

  8. A Method of Trajectory Design for Manned Asteroids Exploration

    Science.gov (United States)

    Gan, Q. B.; Zhang, Y.; Zhu, Z. F.; Han, W. H.; Dong, X.

    2014-11-01

    A trajectory optimization method of the nuclear propulsion manned asteroids exploration is presented. In the case of launching between 2035 and 2065, based on the Lambert transfer orbit, the phases of departure from and return to the Earth are searched at first. Then the optimal flight trajectory in the feasible regions is selected by pruning the flight sequences. Setting the nuclear propulsion flight plan as propel-coast-propel, and taking the minimal mass of aircraft departure as the index, the nuclear propulsion flight trajectory is separately optimized using a hybrid method. With the initial value of the optimized local parameters of each three phases, the global parameters are jointedly optimized. At last, the minimal departure mass trajectory design result is given.

  9. Particle-in-Cell Simulation Study on the Floating Potential of Spacecraft in the Low Earth Orbit

    International Nuclear Information System (INIS)

    Tang Daotan; Yang Shengsheng; Zheng Kuohai; Qin Xiaogang; Li Detian; Liu Qing; Zhao Chengxuan; Du Shanshan

    2015-01-01

    In order to further understand the characteristics of the floating potential of low earth orbit spacecraft, the effects of the electron current collection area, background electron temperature, photocurrent emission, spacecraft wake, and the shape of spacecraft on spacecraft floating potential were studied here by particle-in-cell simulation in the low earth orbit. The simulation results show that the electron current collection area and background electron temperature impact on the floating potential by changing the electron current collection of spacecraft. By increasing the electron current collection area or background electron temperature, the spacecraft will float at a lower electric potential with respect to the surrounding plasma. However, the spacecraft wake affects the floating potential by increasing the ion current collected by spacecraft. The emission of the photocurrent from the spacecraft surface, which compensates for the electrons collected from background plasma, causes the floating potential to increase. The shape of the spacecraft is also an important factor influencing the floating potential. (paper)

  10. METRIC: A Dedicated Earth-Orbiting Spacecraft for Investigating Gravitational Physics and the Space Environment

    Directory of Open Access Journals (Sweden)

    Roberto Peron

    2017-07-01

    Full Text Available A dedicated mission in low Earth orbit is proposed to test predictions of gravitational interaction theories and to directly measure the atmospheric density in a relevant altitude range, as well as to provide a metrological platform able to tie different space geodesy techniques. The concept foresees a small spacecraft to be placed in a dawn-dusk eccentric orbit between 450 and 1200 km of altitude. The spacecraft will be tracked from the ground with high precision, and a three-axis accelerometer package on-board will measure the non-gravitational accelerations acting on its surface. Estimates of parameters related to fundamental physics and geophysics should be obtained by a precise orbit determination, while the accelerometer data will be instrumental in constraining the atmospheric density. Along with the mission scientific objectives, a conceptual configuration is described together with an analysis of the dynamical environment experienced by the spacecraft and the accelerometer.

  11. International Space Station as a Base Camp for Exploration Beyond Low Earth Orbit

    Science.gov (United States)

    Raftery, Michael; Hoffman, Jeffrey

    2011-01-01

    The idea for using the International Space Station (ISS) as platform for exploration has matured in the past year and the concept continues to gain momentum. ISS provides a robust infrastructure which can be used to test systems and capabilities needed for missions to the Moon, Mars, asteroids and other potential destinations. International cooperation is a critical enabler and ISS has already demonstrated successful management of a large multi-national technical endeavor. Systems and resources needed for expeditions can be aggregated and thoroughly tested at ISS before departure thus providing wide operational flexibility and the best assurance of mission success. A small part of ISS called an Exploration Platform (ISS-EP) can be placed at Earth-Moon Libration point 1 (EML1) providing immediate benefits and flexibility for future exploration missions. We will show how ISS and the ISS-EP can be used to reduce risk and improve the operational flexibility for missions beyond low earth orbit. Life support systems and other technology developed for ISS can be evolved and adapted to the ISS-EP and other exploration spacecraft. New technology, such as electric propulsion and advanced life support systems can be tested and proven at ISS as part of an incremental development program. Commercial companies who are introducing transportation and other services will benefit with opportunities to contribute to the mission since ISS will serve as a focal point for the commercialization of low earth orbit services. Finally, we will show how use of ISS provides immediate benefits to the scientific community because its capabilities are available today and certain critical aspects of exploration missions can be simulated.

  12. MOM-E: Moon-Orbiting Mothership Explorer

    Science.gov (United States)

    Murphy, Gloria A.

    2010-01-01

    The National Aeronautics and Space Administration proposed that a new class of robotic space missions and spacecrafts be introduced to "ensure that future missions are safe, sustainable and affordable". Indeed, the United States space program aims for a return to manned space missions beyond Earth orbit, and robotic explorers are intended to pave the way. This vision requires that all future missions become less costly, provide a sustainable business plan, and increase in safety. Over the course of several fast feasibility studies that considered the 3 drivers above, the small-scale, consumer-driven Moon-Orbiting Mothership Explorer (MOM-E) mission was born. MOM-E's goals are to enable space exploration by offering a scaled down platform which carries multiple small space explorers to the Moon. Each payload will be dropped at their desired destination, offering a competitive price to customers. MOM-E's current scope of operations is limited to the Moon and will be used as a proof of concept mission. However, MOM-E is specifically designed with the idea that the platform is scalable.

  13. Preliminary results on the dynamics of large and flexible space structures in Halo orbits

    Science.gov (United States)

    Colagrossi, Andrea; Lavagna, Michèle

    2017-05-01

    The global exploration roadmap suggests, among other ambitious future space programmes, a possible manned outpost in lunar vicinity, to support surface operations and further astronaut training for longer and deeper space missions and transfers. In particular, a Lagrangian point orbit location - in the Earth- Moon system - is suggested for a manned cis-lunar infrastructure; proposal which opens an interesting field of study from the astrodynamics perspective. Literature offers a wide set of scientific research done on orbital dynamics under the Three-Body Problem modelling approach, while less of it includes the attitude dynamics modelling as well. However, whenever a large space structure (ISS-like) is considered, not only the coupled orbit-attitude dynamics should be modelled to run more accurate analyses, but the structural flexibility should be included too. The paper, starting from the well-known Circular Restricted Three-Body Problem formulation, presents some preliminary results obtained by adding a coupled orbit-attitude dynamical model and the effects due to the large structure flexibility. In addition, the most relevant perturbing phenomena, such as the Solar Radiation Pressure (SRP) and the fourth-body (Sun) gravity, are included in the model as well. A multi-body approach has been preferred to represent possible configurations of the large cis-lunar infrastructure: interconnected simple structural elements - such as beams, rods or lumped masses linked by springs - build up the space segment. To better investigate the relevance of the flexibility effects, the lumped parameters approach is compared with a distributed parameters semi-analytical technique. A sensitivity analysis of system dynamics, with respect to different configurations and mechanical properties of the extended structure, is also presented, in order to highlight drivers for the lunar outpost design. Furthermore, a case study for a large and flexible space structure in Halo orbits around

  14. Geo-oculus: high resolution multi-spectral earth imaging mission from geostationary orbit

    Science.gov (United States)

    Vaillon, L.; Schull, U.; Knigge, T.; Bevillon, C.

    2017-11-01

    Geo-Oculus is a GEO-based Earth observation mission studied by Astrium for ESA in 2008-2009 to complement the Sentinel missions, the space component of the GMES (Global Monitoring for Environment & Security). Indeed Earth imaging from geostationary orbit offers new functionalities not covered by existing LEO observation missions, like real-time monitoring and fast revisit capability of any location within the huge area in visibility of the satellite. This high revisit capability is exploited by the Meteosat meteorogical satellites, but with a spatial resolution (500 m nadir for the third generation) far from most of GMES needs (10 to 100 m). To reach such ground resolution from GEO orbit with adequate image quality, large aperture instruments (> 1 m) and high pointing stability (challenges of such missions. To address the requirements from the GMES user community, the Geo-Oculus mission is a combination of routine observations (daily systematic coverage of European coastal waters) with "on-demand" observation for event monitoring (e.g. disasters, fires and oil slicks). The instrument is a large aperture imaging telescope (1.5 m diameter) offering a nadir spatial sampling of 10.5 m (21 m worst case over Europe, below 52.5°N) in a PAN visible channel used for disaster monitoring. The 22 multi-spectral channels have resolutions over Europe ranging from 40 m in UV/VNIR (0.3 to 1 μm) to 750 m in TIR (10-12 μm).

  15. Stellar orbits in the Galaxy and mass extinctions on the Earth: a connection?

    Science.gov (United States)

    Porto de Mello, G. F.; Dias, W. S.; Lepine, J.; Lorenzo-Oliveira, D.; Kazu, R. S.

    2014-03-01

    The orbits of the stars in the disk of the Galaxy, and their passages through the Galactic spiral arms, are a rarely mentioned factor of biosphere stability which might be important for long-term planetary climate evolution, with a possible bearing on mass extinctions. The Sun lies very near the co-rotation radius, where stars revolve around the Galaxy in the same period as the density wave perturbations of the spiral arms (Dias & Lepine 2005). Conventional wisdom generally considers that this status makes for few passages through the spiral arms. Controversy still surrounds whether time spent inside or around spiral arms is dangerous to biospheres and conducive to mass extinctions (Bailer-Jones 2009). Possible threats include giant molecular clouds disturbing the Oort comet cloud and provoking heavy bombardment (Clube & Napier 1982); a higher exposure to cosmic rays near star forming regions triggering increased cloudiness in Earth's atmosphere and ice ages (Gies & Helsel 2005); and the destruction of Earth's ozone layer posed by supernova explosions (Gehrels et al 2003). We present detailed calculations of the history of spiral arm passages for all 212 solartype stars nearer than 20 parsecs, including the total time spent inside the spiral arms in the last 500 million years, when the spiral arm position can be traced with good accuracy. There is a very large diversity of stellar orbits amongst solar neighborhood solar-type stars, and the time fraction spent inside spiral arms can vary from a few percent to nearly half the time. The Sun, despite its proximity to the galactic co-rotation radius, has exceptionally low eccentricity and a low vertical velocity component, and therefore spends 40% of its lifetime crossing the spiral arms, more than nearly all nearby stars. We discuss the possible implications of this fact to the long-term habitability of the Earth, and possible correlations of the Sun's passage through the spiral arms with the five great mass

  16. High temperature heat pipe experiments in low earth orbit

    International Nuclear Information System (INIS)

    Woloshun, K.; Merrigan, M.A.; Sena, J.T.; Critchley, E.

    1993-01-01

    Although high temperature, liquid metal heat pipe radiators have become a standard component on most high power space power system designs, there is no experimental data on the operation of these heat pipes in a zero gravity or micro-gravity environment. Experiments to benchmark the transient and steady state performance of prototypical heat pipe space radiator elements are in preparation for testing in low earth orbit. It is anticipated that these heat pipes will be tested aborad the Space Shuttle in 1995. Three heat pipes will be tested in a cargo bay Get Away Special (GAS) canister. The heat pipes are SST/potassium, each with a different wick structure; homogeneous, arterial, and annular gap, the heat pipes have been designed, fabricated, and ground tested. In this paper, the heat pipe designs are specified, and transient and steady-state ground test data are presented

  17. Effect of rare earth metal on the spin-orbit torque in magnetic heterostructures

    Energy Technology Data Exchange (ETDEWEB)

    Ueda, Kohei; Pai, Chi-Feng; Tan, Aik Jun; Mann, Maxwell; Beach, Geoffrey S. D., E-mail: gbeach@mit.edu [Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States)

    2016-06-06

    We report the effect of the rare earth metal Gd on current-induced spin-orbit torques (SOTs) in perpendicularly magnetized Pt/Co/Gd heterostructures, characterized using harmonic measurements and spin-torque ferromagnetic resonance (ST-FMR). By varying the Gd metal layer thickness from 0 nm to 8 nm, harmonic measurements reveal a significant enhancement of the effective fields generated from the Slonczewski-like and field-like torques. ST-FMR measurements confirm an enhanced effective spin Hall angle and show a corresponding increase in the magnetic damping constant with increasing Gd thickness. These results suggest that Gd plays an active role in generating SOTs in these heterostructures. Our finding may lead to spin-orbitronics device application such as non-volatile magnetic random access memory, based on rare earth metals.

  18. New dimensions for man. [human functions in future space missions

    Science.gov (United States)

    Louviere, A. J.

    1978-01-01

    The functions of man in space have been in a state of constant change since the first manned orbital flight. Initially, the onboard crewmen performed those tasks essential to piloting and navigating the spacecraft. The time devoted to these tasks has steadily decreased and the crewman's time is being allotted to functions other than orbital operations. The evolving functions include added orbital operational capabilities, experimentation, spacecraft maintenance, and fabrication of useful end items. The new functions will include routine utilization of the crewman to extend mission life, satellite retrieval and servicing, remote manipulator systems operations, and piloting of free-flying teleoperator systems. The most demanding tasks are anticipated to be associated with construction of large space structures. The projected changes will introduce innovative designs and revitalize the concepts for utilizing man in space.

  19. The International Space Station: A Low-Earth Orbit (LEO) Test Bed for Advancements in Space and Environmental Medicine

    Science.gov (United States)

    Ruttley, Tara M.; Robinson, Julie A.

    2010-01-01

    Ground-based space analog projects such as the NASA Extreme Environment Mission Operations (NEEMO) can be valuable test beds for evaluation of experimental design and hardware feasibility before actually being implemented on orbit. The International Space Station (ISS) is an closed-system laboratory that orbits 240 miles above the Earth, and is the ultimate extreme environment. Its inhabitants spend hours performing research that spans from fluid physics to human physiology, yielding results that have implications for Earth-based improvements in medicine and health, as well as those that will help facilitate the mitigation of risks to the human body associated with exploration-class space missions. ISS health and medical experiments focus on pre-flight and in-flight prevention, in-flight treatment, and postflight recovery of health problems associated with space flight. Such experiments include those on enhanced medical monitoring, bone and muscle loss prevention, cardiovascular health, immunology, radiation and behavior. Lessons learned from ISS experiments may not only be applicable to other extreme environments that face similar capability limitations, but also serve to enhance standards of care for everyday use on Earth.

  20. Econometric comparisons of liquid rocket engines for dual-fuel advanced earth-to-orbit shuttles

    Science.gov (United States)

    Martin, J. A.

    1978-01-01

    Econometric analyses of advanced Earth-to-orbit vehicles indicate that there are economic benefits from development of new vehicles beyond the space shuttle as traffic increases. Vehicle studies indicate the advantage of the dual-fuel propulsion in single-stage vehicles. This paper shows the economic effect of incorporating dual-fuel propulsion in advanced vehicles. Several dual-fuel propulsion systems are compared to a baseline hydrogen and oxygen system.

  1. Prospective Ukrainian lunar orbiter mission

    Science.gov (United States)

    Shkuratov, Y.; Litvinenko, L.; Shulga, V.; Yatskiv, Y.; Kislyuk, V.

    Ukraine has launch vehicles that are able to deliver about 300 kg to the lunar orbit. Future Ukrainian lunar program may propose a polar orbiter. This orbiter should fill principal information gaps in our knowledge about the Moon after Clementine and Lunar Prospector missions and the future missions, like Smart-1, Lunar-A, and Selene. We consider that this can be provided by radar studies of the Moon with supporting optical polarimetric observations from lunar polar orbit. These experiments allow one to better understand global structure of the lunar surface in a wide range of scales, from microns to kilometers. We propose three instruments for the prospective lunar orbiter. They are: a synthetic aperture imaging radar (SAR), ground-penetrating radar (GPR), and imaging polarimeter (IP). The main purpose of SAR is to study with high resolution (50 m) the permanently shadowed sites in the lunar polar regions. These sites are cold traps for volatiles, and have a potential of resource utilization. Possible presence of water ice in the regolith in the sites makes them interesting for permanent manned bases on the Moon. Radar imaging and mapping of other interesting regions could be also planned. Multi-frequencies multi-polarization soun d ing of the lunar surface with GPR can provide information about internal structure of the lunar surface from meters to several hundred meters deep. GPR can be used for measuring the megaregolith layer properties, detection of cryptomaria, and studies of internal structure of the largest craters. IP will be a CCD camera with an additional suite of polarizers. Modest spatial resolution (100 m) should provide a total coverage or a large portion of the lunar surface in oblique viewing basically at large phase angles. Polarization degree at large (>90°) phase angles bears information about characteristic size of the regolith particles. Additional radiophysical experiments are considered with the use of the SAR system, e.g., bistatic radar

  2. A Survey of Ballistic Transfers to Low Lunar Orbit

    Science.gov (United States)

    Parker, Jeffrey S.; Anderson, Rodney L.; Peterson, Andrew

    2011-01-01

    A simple strategy is identified to generate ballistic transfers between the Earth and Moon, i.e., transfers that perform two maneuvers: a trans-lunar injection maneuver to depart the Earth and a Lunar Orbit Insertion maneuver to insert into orbit at the Moon. This strategy is used to survey the performance of numerous transfers between varying Earth parking orbits and varying low lunar target orbits. The transfers surveyed include short 3-6 day direct transfers, longer 3-4 month low energy transfers, and variants that include Earth phasing orbits and/or lunar flybys.

  3. Observations on the reliability of COTS-device-based solid state data recorders operating in low-earth orbit

    International Nuclear Information System (INIS)

    Underwood, C.I.

    1999-01-01

    This paper presents the results of Surrey Space Centre's experience in using different coding schemes and hardware configurations to protect data and protect data and software stored in COTS-device (Commercial-Off-The-Shelf) based memories on-board operational spacecraft in low Earth orbit. (author)

  4. IPv6 and IPsec Tests of a Space-Based Asset, the Cisco Router in Low Earth Orbit (CLEO)

    Science.gov (United States)

    Ivancic, William; Stewart, David; Wood, Lloyd; Jackson, Chris; Northam, James; Wilhelm, James

    2008-01-01

    This report documents the design of network infrastructure to support testing and demonstrating network-centric operations and command and control of space-based assets, using IPv6 and IPsec. These tests were performed using the Cisco router in Low Earth Orbit (CLEO), an experimental payload onboard the United Kingdom--Disaster Monitoring Constellation (UK-DMC) satellite built and operated by Surrey Satellite Technology Ltd (SSTL). On Thursday, 29 March 2007, NASA Glenn Research Center, Cisco Systems and SSTL performed the first configuration and demonstration of IPsec and IPv6 onboard a satellite in low Earth orbit. IPv6 is the next generation of the Internet Protocol (IP), designed to improve on the popular IPv4 that built the Internet, while IPsec is the protocol used to secure communication across IP networks. This demonstration was made possible in part by NASA s Earth Science Technology Office (ESTO) and shows that new commercial technologies such as mobile networking, IPv6 and IPsec can be used for commercial, military and government space applications. This has direct application to NASA s Vision for Space Exploration. The success of CLEO has paved the way for new spacebased Internet technologies, such as the planned Internet Routing In Space (IRIS) payload at geostationary orbit, which will be a U.S. Department of Defense Joint Capability Technology Demonstration. This is a sanitized report for public distribution. All real addressing has been changed to psueco addressing.

  5. Multi-spacecraft observations of ICMEs propagating beyond Earth orbit during MSL/RAD flight and surface phases

    Science.gov (United States)

    von Forstner, J.; Guo, J.; Wimmer-Schweingruber, R. F.; Hassler, D.; Temmer, M.; Vrsnak, B.; Čalogović, J.; Dumbovic, M.; Lohf, H.; Appel, J. K.; Heber, B.; Steigies, C. T.; Zeitlin, C.; Ehresmann, B.; Jian, L. K.; Boehm, E.; Boettcher, S. I.; Burmeister, S.; Martin-Garcia, C.; Brinza, D. E.; Posner, A.; Reitz, G.; Matthiae, D.; Rafkin, S. C.; weigle, G., II; Cucinotta, F.

    2017-12-01

    The propagation of interplanetary coronal mass ejections (ICMEs) between Earth's orbit (1 AU) and Mars ( 1.5 AU) has been studied with their propagation speed estimated from both measurements and simulations. The enhancement of the magnetic fields related to ICMEs and their shock fronts cause so-called Forbush decreases, which can be detected as a reduction of galactic cosmic rays measured on-ground or on a spacecraft. We have used galactic cosmic ray (GCR) data from in-situ measurements at Earth, from both STEREO A and B as well as the GCR measurement by the Radiation Assessment Detector (RAD) instrument onboard Mars Science Laboratory (MSL) on the surface of Mars as well as during its flight to Mars in 2011-2012. A set of ICME events has been selected during the periods when Earth (or STEREO A or B) and MSL locations were nearly aligned on the same side of the Sun in the ecliptic plane (so-called opposition phase). Such lineups allow us to estimate the ICMEs' transit times between 1 AU and the MSL location by estimating the delay time of the corresponding Forbush decreases measured at each location. We investigate the evolution of their propagation speeds after passing Earth's orbit and find that the deceleration of ICMEs due to their interaction with the ambient solar wind continues beyond 1 AU. The results are compared to simulation data obtained from two CME propagation models, namely the Drag-Based Model (DBM) and the WSA-ENLIL plus cone model.

  6. Solar radiation pressure application for orbital motion stabilization near the Sun-Earth collinear libration point

    Science.gov (United States)

    Polyakhova, Elena; Shmyrov, Alexander; Shmyrov, Vasily

    2018-05-01

    Orbital maneuvering in a neighborhood of the collinear libration point L1 of Sun-Earth system has specific properties, primarily associated with the instability L1. For a long stay in this area of space the stabilization problem of orbital motion requires a solution. Numerical experiments have shown that for stabilization of motion it is requires very small control influence in comparison with the gravitational forces. On the other hand, the stabilization time is quite long - months, and possibly years. This makes it highly desirable to use solar pressure forces. In this paper we illustrate the solar sail possibilities for solving of stabilization problem in a neighborhood L1 with use of the model example.

  7. Tracking target objects orbiting earth using satellite-based telescopes

    Science.gov (United States)

    De Vries, Willem H; Olivier, Scot S; Pertica, Alexander J

    2014-10-14

    A system for tracking objects that are in earth orbit via a constellation or network of satellites having imaging devices is provided. An object tracking system includes a ground controller and, for each satellite in the constellation, an onboard controller. The ground controller receives ephemeris information for a target object and directs that ephemeris information be transmitted to the satellites. Each onboard controller receives ephemeris information for a target object, collects images of the target object based on the expected location of the target object at an expected time, identifies actual locations of the target object from the collected images, and identifies a next expected location at a next expected time based on the identified actual locations of the target object. The onboard controller processes the collected image to identify the actual location of the target object and transmits the actual location information to the ground controller.

  8. Capturing near-Earth asteroids around Earth

    Science.gov (United States)

    Hasnain, Zaki; Lamb, Christopher A.; Ross, Shane D.

    2012-12-01

    The list of detected near-Earth asteroids (NEAs) is constantly growing. NEAs are likely targets for resources to support space industrialization, as they may be the least expensive source of certain needed raw materials. The limited supply of precious metals and semiconducting elements on Earth may be supplemented or even replaced by the reserves floating in the form of asteroids around the solar system. Precious metals make up a significant fraction NEAs by mass, and even one metallic asteroid of ˜1km size and fair enrichment in platinum-group metals would contain twice the tonnage of such metals already harvested on Earth. There are ˜1000 NEAs with a diameter of greater than 1 km. Capturing these asteroids around the Earth would expand the mining industry into an entirely new dimension. Having such resources within easy reach in Earth's orbit could provide an off-world environmentally friendly remedy for impending terrestrial shortages, especially given the need for raw materials in developing nations. In this paper, we develop and implement a conceptually simple algorithm to determine trajectory characteristics necessary to move NEAs into capture orbits around the Earth. Altered trajectories of asteroids are calculated using an ephemeris model. Only asteroids of eccentricity less than 0.1 have been studied and the model is restricted to the ecliptic plane for simplicity. We constrain the time of retrieval to be 10 years or less, based on considerations of the time to return on investment. For the heliocentric phase, constant acceleration is assumed. The acceleration required for transporting these asteroids from their undisturbed orbits to the sphere of influence of the Earth is the primary output, along with the impulse or acceleration necessary to effect capture to a bound orbit once the Earth's sphere of influence is reached. The initial guess for the constant acceleration is provided by a new estimation method, similar in spirit to Edelbaum's. Based on the

  9. Hyperbolic orbits of Earth flybys and effects of ungravity-inspired conservative potentials

    International Nuclear Information System (INIS)

    Bertolami, O; Francisco, F; Gil, P J S

    2016-01-01

    In this work we take a critical look at the available data on the flyby anomaly and on the current limitations of attempts to develop an explanation. We aim to verify how conservative corrections to gravity could affect the hyperbolic trajectories of Earth flybys. We use ungravity-inspired potentials as illustrative examples and show how the resulting orbital simulations differ from the observed anomaly. We also get constraints on the model parameters from the observed flyby velocity shifts. The conclusion is that no kind of conservative potential can be the cause of the flyby anomaly. (paper)

  10. A Dynamic/Anisotropic Low Earth Orbit (LEO) Ionizing Radiation Model

    Science.gov (United States)

    Badavi, Francis F.; West, Katie J.; Nealy, John E.; Wilson, John W.; Abrahms, Briana L.; Luetke, Nathan J.

    2006-01-01

    The International Space Station (ISS) provides the proving ground for future long duration human activities in space. Ionizing radiation measurements in ISS form the ideal tool for the experimental validation of ionizing radiation environmental models, nuclear transport code algorithms, and nuclear reaction cross sections. Indeed, prior measurements on the Space Transportation System (STS; Shuttle) have provided vital information impacting both the environmental models and the nuclear transport code development by requiring dynamic models of the Low Earth Orbit (LEO) environment. Previous studies using Computer Aided Design (CAD) models of the evolving ISS configurations with Thermo Luminescent Detector (TLD) area monitors, demonstrated that computational dosimetry requires environmental models with accurate non-isotropic as well as dynamic behavior, detailed information on rack loading, and an accurate 6 degree of freedom (DOF) description of ISS trajectory and orientation.

  11. Ultrafast demagnetization in rare-earth alloys: the role of spin-orbit coupling

    Energy Technology Data Exchange (ETDEWEB)

    Le Guyader, Loic; Solopow, Sergej; Radu, Florin; Holldack, Karsten; Mitzner, Rolf; Kachel, Torsten; Pontius, Niko; Foehlisch, Alexander; Radu, Ilie [Helmholtz-Zentrum Berlin fuer Materialien und Energie GmbH, Berlin (Germany); Abrudan, Radu [Helmholtz-Zentrum Berlin fuer Materialien und Energie GmbH, Berlin (Germany); Institut fuer Experimentalphysik/Festkoerperphysik, Ruhr-Universitaet Bochum (Germany)

    2015-07-01

    Understanding the ultrafast demagnetization occurring upon femtosecond laser excitation of a magnetic material is a fundamental problem of modern magnetism and its microscopic origin remains highly elusive and intensely debated. Particularly, the spin-orbit coupling mediating the spin-lattice interaction is one of the key ingredients. An intriguing case of tunable parallel to anti-parallel LS coupling can be realized in rare-earth (RE) alloys. For instance, Gd60Sm40 and Gd60Dy40 alloys have similar absolute S and L, but exhibit opposite LS coupling while displaying the same ferromagnetic ordering temperature of 250 K. They constitute thus an ideal case to investigate the particular role of the LS coupling on the ultrafast demagnetization. Here we report on the properties of such RE thin film alloys using X-ray Magnetic Circular Dichroism (XMCD) with the spin and orbit sum rules at M5,4 edges. Femtosecond time-resolved transmission XMCD measurements performed at the slicing beamline reveal the element-specific demagnetization time constant in these alloys. Funding from European Union through FEMTOSPIN is gratefully acknowledged.

  12. Space environment effects on polymers in low earth orbit

    International Nuclear Information System (INIS)

    Grossman, E.; Gouzman, I.

    2003-01-01

    Polymers are widely used in space vehicles and systems as structural materials, thermal blankets, thermal control coatings, conformal coatings, adhesives, lubricants, etc. The low earth orbit (LEO) space environment includes hazards such as atomic oxygen, UV radiation, ionizing radiation (electrons, protons), high vacuum, plasma, micrometeoroids and debris, as well as severe temperature cycles. Exposure of polymers and composites to the space environment may result in different detrimental effects via modification of their chemical, electrical, thermal, optical and mechanical properties as well as surface erosion. The high vacuum induces material outgassing (e.g. low-molecular weight residues, plasticizers and additives) and consequent contamination of nearby surfaces. The present work reviews the LEO space environment constituents and their interactions with polymers. Examples of degradation of materials exposed in ground simulation facilities are presented. The issues discussed include the erosion mechanisms of polymers, formation of contaminants and their interaction with the space environment, and protection of materials from the harsh space environment

  13. Optical Orbit Determination of a Geosynchronous Earth Orbit Satellite Effected by Baseline Distances between Various Ground-based Tracking Stations Ⅱ: COMS Case with Analysis of Actual Observation Data

    Directory of Open Access Journals (Sweden)

    Ju Young Son

    2015-09-01

    Full Text Available We estimated the orbit of the Communication, Ocean and Meteorological Satellite (COMS, a Geostationary Earth Orbit (GEO satellite, through data from actual optical observations using telescopes at the Sobaeksan Optical Astronomy Observatory (SOAO of the Korea Astronomy and Space Science Institute (KASI, Optical Wide field Patrol (OWL at KASI, and the Chungbuk National University Observatory (CNUO from August 1, 2014, to January 13, 2015. The astrometric data of the satellite were extracted from the World Coordinate System (WCS in the obtained images, and geometrically distorted errors were corrected. To handle the optically observed data, corrections were made for the observation time, light-travel time delay, shutter speed delay, and aberration. For final product, the sequential filter within the Orbit Determination Tool Kit (ODTK was used for orbit estimation based on the results of optical observation. In addition, a comparative analysis was conducted between the precise orbit from the ephemeris of the COMS maintained by the satellite operator and the results of orbit estimation using optical observation. The orbits estimated in simulation agree with those estimated with actual optical observation data. The error in the results using optical observation data decreased with increasing number of observatories. Our results are useful for optimizing observation data for orbit estimation.

  14. Spin-Orbit Qubits of Rare-Earth-Metal Ions in Axially Symmetric Crystal Fields

    Science.gov (United States)

    Bertaina, S.; Shim, J. H.; Gambarelli, S.; Malkin, B. Z.; Barbara, B.

    2009-11-01

    Contrary to the well-known spin qubits, rare-earth-metal qubits are characterized by a strong influence of crystal field due to large spin-orbit coupling. At low temperature and in the presence of resonance microwaves, it is the magnetic moment of the crystal-field ground state which nutates (for several μs) and the Rabi frequency ΩR is anisotropic. Here, we present a study of the variations of ΩR(H→0) with the magnitude and direction of the static magnetic field H→0 for the odd Er167 isotope in a single crystal CaWO4:Er3+. The hyperfine interactions split the ΩR(H→0) curve into eight different curves which are fitted numerically and described analytically. These “spin-orbit qubits” should allow detailed studies of decoherence mechanisms which become relevant at high temperature and open new ways for qubit addressing using properly oriented magnetic fields.

  15. Cosmic radiation monitoring at low-Earth orbit by means of thermoluminescence and plastic nuclear track detectors

    Czech Academy of Sciences Publication Activity Database

    Ambrožová, Iva; Pachnerová Brabcová, Kateřina; Kubančák, Ján; Šlegl, Jakub; Tolochek, R. V.; Ivanova, O. A.; Shurshakov, V. A.

    2017-01-01

    Roč. 106, č. 12 (2017), s. 262-266 ISSN 1350-4487 R&D Projects: GA ČR GJ15-16622Y Institutional support: RVO:61389005 Keywords : BION-M1 * cosmic radiation * low earth orbit * passive detector * thermoluminescent detector * plastic nuclear track detector Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders OBOR OECD: Nuclear physics Impact factor: 1.442, year: 2016

  16. Global-scale Observations of the Limb and Disk (GOLD) Mission -Ultraviolet Remote Sensing of Earth's Space Environment from Geostationary Orbit

    Science.gov (United States)

    Burns, A. G.; Eastes, R.

    2017-12-01

    The GOLD mission of opportunity will fly a far ultraviolet imaging spectrograph in geostationary (GEO) orbit as a hosted payload. The mission is scheduled for launch in late January 2018 on SES-14, a commercial communications satellite that will be stationed over eastern South America at 47.5 degrees west longitude. GOLD is on schedule to be the first NASA science mission to fly as a hosted payload on a commercial communications satellite. The GOLD imager has two identical channels. Each channel can scan the full disk at a 30 minute cadence, making spectral images of Earth's UV emission from 132 to 162 nm, as well as make a measurement on the Earth's limb. Remote sensing techniques that have been proven on previous Low Earth Orbit (LEO) missions will be used to derive fundamental parameters for the neutral and ionized space environment. Parameters that will be derived include composition (O/N2 ratio) and temperature of the neutral atmosphere on the dayside disk. On the nightside, peak electron densities will be obtained in the low latitude ionosphere. Many of the algorithms developed for the mission are extensions of ones used on previous earth and planetary missions, with modifications for observations from geostationary orbit. All the algorithms have been tested using simulated observations based on the actual instrument performance. From geostationary orbit, GOLD can repeatedly image the same geographic locations over most of the hemisphere at a cadence comparable to that of the T-I system (order of an hour). Such time resolution and spatial coverage will allow the mission to track the changes due to geomagnetic storms, variations in solar extreme ultraviolet radiation, and forcing from the lower atmosphere. In addition to providing a new perspective by being able to repeatedly remotely sense the same hemisphere at a high cadence, GOLD's simultaneous measurements of not only composition but also temperatures across the disk will provide a valuable, new parameter

  17. Pseudo Last Useful Instant Queuing Strategy for Handovers in Low Earth Orbit Mobile Satellite Networks

    OpenAIRE

    W. Kiamouche; M. Benslama

    2008-01-01

    This paper presents an alternative strategy of queuing handover called Pseudo Last Useful Instant PLUI scheme for Low Earth Orbit Mobile Satellite Systems LEO MSSs. The PLUI scheme uses the same approach as the Last Useful Instant LUI scheme previously proposed in literature, with less complex implementation. Simulation tests were carried out using Dynamic Channel Allocation DCA in order to evaluate the performance of this scheme and also an analytical approach has been p...

  18. The Deep Space Gateway Lightning Mapper (DLM) - Monitoring Global Change and Thunderstorm Processes Through Observations of Earth's High-Latitude Lightning from Cis-Lunar Orbit

    Science.gov (United States)

    Lang, Timothy; Blakeslee, R. J.; Cecil, D. J.; Christian, H. J.; Gatlin, P. N.; Goodman, S. J.; Koshak, W. J.; Petersen, W. A.; Quick, M.; Schultz, C. J.; hide

    2018-01-01

    Function: Monitor global change and thunderstorm processes through observations of Earth's high-latitude lightning. This instrument will combine long-lived sampling of individual thunderstorms with long-term observations of lightning at high latitudes: How is global change affecting thunderstorm patterns; How do high-latitude thunderstorms differ from low-latitude? Why is the Gateway the optimal facility for this instrument / research: Expected DSG (Deep Space Gateway) orbits will provide nearly continuous viewing of the Earth's high latitudes (50 degrees latitude and poleward); These regions are not well covered by existing lightning mappers (e.g., Lightning Imaging Sensor / LIS, or Geostationary Lightning Mapper / GLM); Polar, Molniya, Tundra, etc. Earth orbits have significant drawbacks related to continuous coverage and/or stable FOVs (Fields of View).

  19. Teacher Resource Book for Population Pressure in Indonesia, Problems of Industrialization in Eurasia, Power Blocs in Eurasia. Man on the Earth Series.

    Science.gov (United States)

    Gunn, Angus

    This teacher's resource book is a guide to three intermediate texts about Eurasia entitled Population Pressure in Indonesia, Problems of Industrialization in Eurasia, and Power Blocs in Eurasia. The texts are part of the series, Man on the Earth, which probes broad-based issues confronting mankind. The resource book distinguishes 18 major concepts…

  20. The Eccentric Behavior of Nearly Frozen Orbits

    Science.gov (United States)

    Sweetser, Theodore H.; Vincent, Mark A.

    2013-01-01

    Frozen orbits are orbits which have only short-period changes in their mean eccentricity and argument of periapse, so that they basically keep a fixed orientation within their plane of motion. Nearly frozen orbits are those whose eccentricity and argument of periapse have values close to those of a frozen orbit. We call them "nearly" frozen because their eccentricity vector (a vector whose polar coordinates are eccentricity and argument of periapse) will stay within a bounded distance from the frozen orbit eccentricity vector, circulating around it over time. For highly inclined orbits around the Earth, this distance is effectively constant over time. Furthermore, frozen orbit eccentricity values are low enough that these orbits are essentially eccentric (i.e., off center) circles, so that nearly frozen orbits around Earth are bounded above and below by frozen orbits.

  1. Possible Outcomes of Coplanar High-eccentricity Migration: Hot Jupiters, Close-in Super-Earths, and Counter-orbiting Planets

    Energy Technology Data Exchange (ETDEWEB)

    Xue, Yuxin; Masuda, Kento; Suto, Yasushi, E-mail: yuxin@utap.phys.s.u-tokyo.ac.jp [Department of Physics, The University of Tokyo, Tokyo 113-0033 (Japan)

    2017-02-01

    We investigate the formation of close-in planets in near-coplanar eccentric hierarchical triple systems via the secular interaction between an inner planet and an outer perturber (Coplanar High-eccentricity Migration; CHEM). We generalize the previous work on the analytical condition for successful CHEM for point masses interacting only through gravity by taking into account the finite mass effect of the inner planet. We find that efficient CHEM requires that the systems should have m {sub 1}≪m {sub 0} and m {sub 1} ≪ m {sub 2}. In addition to the gravity for point masses, we examine the importance of the short-range forces, and provide an analytical estimate of the migration timescale. We perform a series of numerical simulations in CHEM for systems consisting of a Sun-like central star, giant gas inner planet, and planetary outer perturber, including the short-range forces and stellar and planetary dissipative tides. We find that most of such systems end up with a tidal disruption; a small fraction of the systems produce prograde hot Jupiters (HJs), but no retrograde HJ. In addition, we extend CHEM to super-Earth mass range, and show that the formation of close-in super-Earths in prograde orbits is also possible. Finally, we carry out CHEM simulation for the observed hierarchical triple and counter-orbiting HJ systems. We find that CHEM can explain a part of the former systems, but it is generally very difficult to reproduce counter-orbiting HJ systems.

  2. Cost-effective and robust mitigation of space debris in low earth orbit

    Science.gov (United States)

    Walker, R.; Martin, C.

    It is predicted that the space debris population in low Earth orbit (LEO) will continue to grow and in an exponential manner in the long-term due to an increasing rate of collisions between large objects, unless internationally-accepted space debris mitigation measures are adopted soon. Such measures are aimed at avoiding the future generation of space debris objects and primarily need to be effective in preventing significant long-term growth in the debris population, even in the potential scenario of an increase in future space activity. It is also important that mitigation measures can limit future debris population levels, and therefore the underlying collision risk to space missions, to the lowest extent possible. However, for their wide acceptance, the cost of implementation associated with mitigation measures needs to be minimised as far as possible. Generally, a lower collision risk will cost more to achieve and vice versa, so it is necessary to strike a balance between cost and risk in order to find a cost-effective set of mitigation measures. In this paper, clear criteria are established in order to assess the cost-effectiveness of space debris mitigation measures. A full cost-risk-benefit trade-off analysis of numerous mitigation scenarios is presented. These scenarios consider explosion prevention and post-mission disposal of space systems, including de-orbiting to limited lifetime orbits and re-orbiting above the LEO region. The ESA DELTA model is used to provide long-term debris environment projections for these scenarios as input to the benefit and risk parts of the trade-off analysis. Manoeuvre requirements for the different post-mission disposal scenarios were also calculated in order to define the cost-related element. A 25-year post-mission lifetime de-orbit policy, combined with explosion prevention and mission-related object limitation, was found to be the most cost-effective solution to the space debris problem in LEO. This package would also

  3. On the effects of solar storms to the decaying orbital space debris

    International Nuclear Information System (INIS)

    Herdiwijaya, Dhani; Rachman, Abdul

    2014-01-01

    Any man-made object in Earth's orbit that no longer serves a useful purpose is classified as orbital debris. Debris objects come from a variety of sources. The majority is related to satellite fragmentation. Other major sources of debris are propulsion systems, and fragmentation of spent upper stages, payload and mission related debris. Serious concern about orbital debris has been growing. Knowledge of the future debris environment is important to both satellite designers, and mission planners, who need to know what hazards a satellite might encounter during the course of its mission. Therefore, it is important to know how much debris is in orbit, where it is located, and when it will decay. The debris environment is complex and dynamically evolving. Objects of different shape and size behave differently in orbit. The geoeffectiveness space environments include solar flux at 10.7 cm, solar energetic particles flux or speed, solar wind flow pressure, electric field, and geomagnetic indices. We study the decaying orbital debris from Tracking and Impact Prediction (TIP) messages in conjuction with geoeffectiveness space environments through time epoch correlation. We found that the decaying and reentry orbital debris are triggered by space environment enhancement within at least one week before reentry. It is not necessary a transient or high energetic and severe solar storm events are needed in decaying processes. We propose that the gradual enhancement processes of space environment will cause satellite surface charging due to energetic electron and enhance drag force

  4. On the effects of solar storms to the decaying orbital space debris

    Energy Technology Data Exchange (ETDEWEB)

    Herdiwijaya, Dhani, E-mail: dhani@as.itb.ac.id [Astronomy Division and Bosscha Observatory, Faculty of Mathematics and Natural Sciences, Bandung Institute of Technology, Ganesha 10, Bandung 40132 (Indonesia); Rachman, Abdul [Space Science Center, National Institute of Aeronautics and Space, Junjunan 133, Bandung 40173 (Indonesia)

    2014-03-24

    Any man-made object in Earth's orbit that no longer serves a useful purpose is classified as orbital debris. Debris objects come from a variety of sources. The majority is related to satellite fragmentation. Other major sources of debris are propulsion systems, and fragmentation of spent upper stages, payload and mission related debris. Serious concern about orbital debris has been growing. Knowledge of the future debris environment is important to both satellite designers, and mission planners, who need to know what hazards a satellite might encounter during the course of its mission. Therefore, it is important to know how much debris is in orbit, where it is located, and when it will decay. The debris environment is complex and dynamically evolving. Objects of different shape and size behave differently in orbit. The geoeffectiveness space environments include solar flux at 10.7 cm, solar energetic particles flux or speed, solar wind flow pressure, electric field, and geomagnetic indices. We study the decaying orbital debris from Tracking and Impact Prediction (TIP) messages in conjuction with geoeffectiveness space environments through time epoch correlation. We found that the decaying and reentry orbital debris are triggered by space environment enhancement within at least one week before reentry. It is not necessary a transient or high energetic and severe solar storm events are needed in decaying processes. We propose that the gradual enhancement processes of space environment will cause satellite surface charging due to energetic electron and enhance drag force.

  5. Exotic Optical Fibers and Glasses: Innovative Material Processing Opportunities in Earth's Orbit.

    Science.gov (United States)

    Cozmuta, Ioana; Rasky, Daniel J

    2017-09-01

    Exotic optical fibers and glasses are the platform material for photonics applications, primarily due to their superior signal transmission (speed, low attenuation), with extending bandwidth deep into the infrared, exceeding that of silica fibers. Gravitational effects (convection sedimentation) have a direct impact on the phase diagram of these materials and influence melting properties, crystallization temperatures, and viscosity of the elemental mix during the manufacturing process. Such factors constitute limits to the yield, transmission quality, and strength and value of these fibers; they also constrain the range of applications. Manufacturing in a gravity-free environment such as the Earth's Orbit also helps with other aspects of the fabrication process (i.e., improved form factor of the manufacturing unit, sustainability). In this article, revolutionary developments in the field of photonics over the past decade merge with the paradigm shift in the privatization of government-owned capabilities supporting a more diverse infrastructure (parabolic, suborbital, orbital), reduced price, and increased frequency to access space and the microgravity environment. With the increased dependence on data (demand, bandwidth, efficiency), space and the microgravity environment provide opportunities for optimized performance of these exotic optical fibers and glasses underlying the development of enabling technologies to meet future data demand. Existing terrestrial markets (Internet, telecommunications, market transactions) and emerging space markets (on-orbit satellite servicing, space manufacturing, space resources, space communications, etc.) seem to converge, and this innovative material processing opportunity of exotic optical fibers and glasses might just be that "killer app": technologically competitive, economically viable, and with the ability to close the business case.

  6. Compendium of Single Event Effects (SEE) Test Results for COTS and Standard Electronics for Low Earth Orbit and Deep Space Applications

    Science.gov (United States)

    Reddell, Brandon; Bailey, Chuck; Nguyen, Kyson; O'Neill, Patrick; Gaza, Razvan; Patel, Chirag; Cooper, Jaime; Kalb, Theodore

    2017-01-01

    We present the results of SEE testing with high energy protons and with low and high energy heavy ions. This paper summarizes test results for components considered for Low Earth Orbit and Deep Space applications.

  7. Contamination of optical surfaces in Earth orbit

    Science.gov (United States)

    Kinser, Donald L.; Weller, Robert A.; Mendenhall, M. H.; Wiedlocher, D. E.; Nichols, R.; Tucker, D.; Whitaker, A.

    1992-01-01

    Glass and glass ceramic samples exposed to the low earth orbit environment for approximately 5.5 years on the Long Duration Exposure Facility (LDEF) were found to display limited degradation in optical transmission. Commercial optical quality fused silica samples display decreases in transmission in the 200 to 400 nm wavelength region, and this degradation appears to be a consequence of surface contamination. The contamination, found only on internal surfaces of samples, was measured by medium energy backscattering spectrometry and found to be primarily carbon. Additional thin film contamination by a species with atomic mass near 64, which was present at the level of about 8 x 10 exp 14/sq. cm has not been identified. These observations are consistent with the interpretation that organic binders used in the black absorbing paint (Chem Glaze Z-306) inside the sample holding tray were concentrated in the vicinity of the samples and photolytically cracked by solar UV radiation. The resulting decomposition products were deposited on the interior sample surface and gave rise to the optical transmission loss. No detectable contamination was observed on the external or space exposed surface of the samples. No measurable damage was detected which could be attributed to the direct action of gamma or UV radiation on the glass samples. These results emphasize the need for special precautions in the preparation of spacecraft carrying precision optical components on long duration missions.

  8. Laboratory investigations: Low Earth orbit environment chemistry with spacecraft surfaces

    Science.gov (United States)

    Cross, Jon B.

    1990-01-01

    Long-term space operations that require exposure of material to the low earth orbit (LEO) environment must take into account the effects of this highly oxidative atmosphere on material properties and the possible contamination of the spacecraft surroundings. Ground-based laboratory experiments at Los Alamos using a newly developed hyperthermal atomic oxygen (AO) source have shown that not only are hydrocarbon based materials effected but that inorganic materials such as MoS2 are also oxidized and that thin protective coatings such as Al2O3 can be breached, producing oxidation of the underlying substrate material. Gas-phase reaction products, such as SO2 from oxidation of MoS2 and CO and CO2 from hydrocarbon materials, have been detected and have consequences in terms of spacecraft contamination. Energy loss through gas-surface collisions causing spacecraft drag has been measured for a few select surfaces and has been found to be highly dependent on the surface reactivity.

  9. Plasma flow measurements in a simulated low earth orbit plasma

    International Nuclear Information System (INIS)

    Gabriel, S.B.; Mccoy, J.E.; Carruth, M.R. Jr.

    1982-01-01

    The employment of large, higher power solar arrays for space operation has been considered, taking into account a utilization of high operating voltages. In connection with the consideration of such arrays, attention must be given to the fact that the ambient environment of space contains a tenuous low energy plasma which can interact with the high voltage array causing power 'leakage' and arcing. An investigation has been conducted with the aim to simulate the behavior of such an array in low-earth-orbit (LEO). During the experiments, local concentrations of the 'leakage' current were observed when the panel was at a high voltage. These concentrations could overload or damage a small area of cells in a large string. It was hypothesized that this effect was produced by electrostatic focusing of the particles by the sheath fields. To verify this experimentally, an end-effect Langmuir probe was employed. The obtained results are discussed

  10. The Earth System Science Pathfinder Orbiting Carbon Observatory (OCO) Mission

    Science.gov (United States)

    Crisp, David

    2003-01-01

    A viewgraph presentation describing the Earth System Science Pathfinder Orbiting Carbon Observatory (OCO) Mission is shown. The contents include: 1) Why CO2?; 2) What Processes Control CO2 Sinks?; 3) OCO Science Team; 4) Space-Based Measurements of CO2; 5) Driving Requirement: Precise, Bias-Free Global Measurements; 6) Making Precise CO2 Measurements from Space; 7) OCO Spatial Sampling Strategy; 8) OCO Observing Modes; 9) Implementation Approach; 10) The OCO Instrument; 11) The OCO Spacecraft; 12) OCO Will Fly in the A-Train; 13) Validation Program Ensures Accuracy and Minimizes Spatially Coherent Biases; 14) Can OCO Provide the Required Precision?; 15) O2 Column Retrievals with Ground-based FTS; 16) X(sub CO2) Retrieval Simulations; 17) Impact of Albedo and Aerosol Uncertainty on X(sub CO2) Retrievals; 18) Carbon Cycle Modeling Studies: Seasonal Cycle; 19) Carbon Cycle Modeling Studies: The North-South Gradient in CO2; 20) Carbon Cycle Modeling Studies: Effect of Diurnal Biases; 21) Project Status and Schedule; and 22) Summary.

  11. Project ARGO: The design and analysis of an all-propulsive and an aeroassisted version of a manned space transportation vehicle

    Science.gov (United States)

    Wang, H.; Seifert, D.; Waidelich, J.; Mileski, M.; Herr, D.; Wilks, M.; Law, G.; Folz, A.

    1989-01-01

    The Senior Aerospace System Design class at the University of Michigan undertook the design of a manned space transportation vehicle (STV) that would transport payloads between low earth orbit (LEO) and geosynchronous earth orbit (GEO). Designated ARGO after the ship of the Greek adventurer Jason, two different versions of an STV that would be based, refueled, and serviced at the Space Station Freedom were designed and analyzed by the class. With the same 2-man/7-day nominal mission of transporting a 10,000-kg payload up to GEO and bringing a 5000-kg payload back to LEO, the two versions of ARGO differ in the manner in which the delta V is applied to insert the vehicle into LEO upon return from GEO. The all-propulsive ARGO (or CSTV for chemical STV) uses thrust from its LH2/LOX rocket engines to produce the delta V during all phases of its mission. While the aeroassisted ARGO (or ASTV for aeroassisted STV) also uses the same engines for the majority of the mission, the final delta V used to insert the ASTV into LEO is produced by skimming the Earth's atmosphere and using the drag on the vehicle to apply the required delta V. This procedure allows for large propellant, and thus cost, savings, but creates many design problems such as the high heating rates and decelerations experienced by a vehicle moving through the atmosphere at hypersonic velocities. The design class, consisting of 43 senior aerospace engineering students, was divided into one managerial and eight technical groups. The technical groups consisted of spacecraft configuration and integration, mission analysis, atmospheric flight, propulsion, power and communications, life support and human factors, logistics and support, and systems analysis. Two committees were set up with members from each group to create the scale models of the STV's and to produce the final report.

  12. Man-Made Climatic Changes

    Science.gov (United States)

    Landsberg, Helmut E.

    1970-01-01

    Reviews environmental studies which show that national climatic fluctuations vary over a wide range. Solar radiation, earth temperatures, precipitation, atmospheric gases and suspended particulates are discussed in relation to urban and extraurban effects. Local weather modifications and attempts at climate control by man seem to have substantial…

  13. Man with a Swollen Eye: Nonspecific Orbital Inflammation in an Adult in the Emergency Department.

    Science.gov (United States)

    Zhang, Xiao Chi; Statler, Brittney; Suner, Selim; Lloyd, Maureen; Curley, David; Migliori, Michael E

    2018-07-01

    Nonspecific orbital inflammation (NSOI) is a rare idiopathic ocular pathology characterized by unilateral, painful orbital swelling without identifiable infectious or systemic disorders, which can be complicated by optic nerve compromise. A 50-year-old man presented to the Emergency Department with recurring, progressive painless left eye swelling, decreased visual acuity, and binocular diplopia in the absence of trauma, infection, or known malignancy. His physical examination was notable for left-sided decreased visual acuity, an afferent pupillary defect, severe left eye proptosis and chemosis, and restricted extraocular movements; his dilatated funduscopic examination was notable for ipsilateral retinal folds within the macula, concerning for a disruption between the sclera and the retina. Ocular examination of the right eye was unremarkable. Laboratory data were unrevealing. Gadolinium-enhanced magnetic resonance imaging showed marked thickening of the left extraocular muscles associated with proptosis, dense inflammatory infiltration of the orbital fat, and characteristics consistent with perineuritis. The patient was diagnosed with NSOI with optic neuritis and admitted for systemic steroid therapy; he was discharged on hospital day 2 after receiving high-dose intravenous (i.v.) methylprednisolone with significant improvement. WHY SHOULD AN EMERGENCY PHYSICIAN BE AWARE OF THIS?: NSOI is a rare and idiopathic ocular emergency, with clinical mimicry resembling a broad spectrum of systemic diseases such as malignancy, autoimmune diseases, endocrine disorders, and infection. Initial work-up for new-onset ocular proptosis should include comprehensive laboratory testing and gadolinium-enhanced magnetic resonance imaging. Timely evaluation by an ophthalmologist is crucial to assess for optic nerve involvement. Signs of optic nerve compromise include decreased visual acuity, afferent pupillary defect, or decreased color saturation. Patients with optic nerve compromise

  14. An orbit determination algorithm for small satellites based on the magnitude of the earth magnetic field

    Science.gov (United States)

    Zagorski, P.; Gallina, A.; Rachucki, J.; Moczala, B.; Zietek, S.; Uhl, T.

    2018-06-01

    Autonomous attitude determination systems based on simple measurements of vector quantities such as magnetic field and the Sun direction are commonly used in very small satellites. However, those systems always require knowledge of the satellite position. This information can be either propagated from orbital elements periodically uplinked from the ground station or measured onboard by dedicated global positioning system (GPS) receiver. The former solution sacrifices satellite autonomy while the latter requires additional sensors which may represent a significant part of mass, volume, and power budget in case of pico- or nanosatellites. Hence, it is thought that a system for onboard satellite position determination without resorting to GPS receivers would be useful. In this paper, a novel algorithm for determining the satellite orbit semimajor-axis is presented. The methods exploit only the magnitude of the Earth magnetic field recorded onboard by magnetometers. This represents the first step toward an extended algorithm that can determine all orbital elements of the satellite. The method is validated by numerical analysis and real magnetic field measurements.

  15. Conditions for oceans on Earth-like planets orbiting within the habitable zone: importance of volcanic CO2 degassing

    International Nuclear Information System (INIS)

    Kadoya, S.; Tajika, E.

    2014-01-01

    Earth-like planets in the habitable zone (HZ) have been considered to have warm climates and liquid water on their surfaces if the carbonate-silicate geochemical cycle is working as on Earth. However, it is known that even the present Earth may be globally ice-covered when the rate of CO 2 degassing via volcanism becomes low. Here we discuss the climates of Earth-like planets in which the carbonate-silicate geochemical cycle is working, with focusing particularly on insolation and the CO 2 degassing rate. The climate of Earth-like planets within the HZ can be classified into three climate modes (hot, warm, and snowball climate modes). We found that the conditions for the existence of liquid water should be largely restricted even when the planet is orbiting within the HZ and the carbonate-silicate geochemical cycle is working. We show that these conditions should depend strongly on the rate of CO 2 degassing via volcanism. It is, therefore, suggested that thermal evolution of the planetary interiors will be a controlling factor for Earth-like planets to have liquid water on their surface.

  16. A computer graphics system for visualizing spacecraft in orbit

    Science.gov (United States)

    Eyles, Don E.

    1989-01-01

    To carry out unanticipated operations with resources already in space is part of the rationale for a permanently manned space station in Earth orbit. The astronauts aboard a space station will require an on-board, spatial display tool to assist the planning and rehearsal of upcoming operations. Such a tool can also help astronauts to monitor and control such operations as they occur, especially in cases where first-hand visibility is not possible. A computer graphics visualization system designed for such an application and currently implemented as part of a ground-based simulation is described. The visualization system presents to the user the spatial information available in the spacecraft's computers by drawing a dynamic picture containing the planet Earth, the Sun, a star field, and up to two spacecraft. The point of view within the picture can be controlled by the user to obtain a number of specific visualization functions. The elements of the display, the methods used to control the display's point of view, and some of the ways in which the system can be used are described.

  17. The SPQR experiment: detecting damage to orbiting spacecraft with ground-based telescopes

    Science.gov (United States)

    Paolozzi, Antonio; Porfilio, Manfredi; Currie, Douglas G.; Dantowitz, Ronald F.

    2007-09-01

    The objective of the Specular Point-like Quick Reference (SPQR) experiment was to evaluate the possibility of improving the resolution of ground-based telescopic imaging of manned spacecraft in orbit. The concept was to reduce image distortions due to atmospheric turbulence by evaluating the Point Spread Function (PSF) of a point-like light reference and processing the spacecraft image accordingly. The target spacecraft was the International Space Station (ISS) and the point-like reference was provided by a laser beam emitted by the ground station and reflected back to the telescope by a Cube Corner Reflector (CCR) mounted on an ISS window. The ultimate objective of the experiment was to demonstrate that it is possible to image spacecraft in Low Earth Orbit (LEO) with a resolution of 20 cm, which would have probably been sufficient to detect the damage which caused the Columbia disaster. The experiment was successfully performed from March to May 2005. The paper provides an overview of the SPQR experiment.

  18. Gemini flies! unmanned flights and the first manned mission

    CERN Document Server

    Shayler, David J

    2018-01-01

    In May 1961, President John F. Kennedy committed the United States to landing a man on the moon before the end of the decade. With just a handful of years to pull it off, NASA authorized the Project Gemini space program, which gathered vital knowledge needed to achieve the nation’s goal. This book introduces the crucial three-step test program employed by the Gemini system, covering:  The short unmanned orbital flight of Gemini 1 that tested the compatibility of launch vehicle, spacecraft and ground systems.  The unmanned suborbital flight of Gemini 2 to establish the integrity of the reentry system and protective heat shield.  The three-orbit manned evaluation flight of Gemini 3, christened ‘Molly Brown’ by her crew. A mission recalled orbit by orbit, using mission transcripts, post-flight reports and the astronauts’ own account of their historic journey. The missions of Project Gemini was the pivotal steppingstone between Project Mercury and the Apollo Program. Following the success of its fi...

  19. A Numerical Examination of the Long-Term Coherency of Meteoroid Streams in Near-Earth Orbit

    Science.gov (United States)

    Grazier, K. R.; Lipschutz, M. E.

    2000-05-01

    The statement that some small bodies in the Solar System--asteroids, comets, meteors (of cometary origin)--travel in co-orbital streams, would be accepted by planetary scientists without argument. After all, streams have been observed of fragments of at least one comet (Scotti and Melosh, 1993; Weaver et al., 1993), asteroids (Drummond, 1991; Rabinowitz et al., 1993; Binzel and Xu, 1993) and meteoroids of asteroidal origin, like Innisfree (Halliday et al., 1990; cf. Drummond, 1991). Whether members of a stream can be recognized from compositional studies of meteorites recovered on Earth and linked to a common source is more controversial since such linkage would imply variations in the Earth's sampling of extraterrestrial material that persist for tens of Myr. The dates of fall of H chondrites show that many - including Clusters in May, 1855-1895, September, 1812-1831 and Sept.-Oct., 1843-1992 -- apparently derive from specific meteoroids (Lipschutz et al., 1997). Contents of highly volatile elements in these 3 Clusters (selected by one criterion, fall circumstances), when analyzed using multivariate statistical techniques demonstrate that members of each Cluster (i.e. stream) are recognizable by a totally different characteristic criterion: a thermal history distinguishable from those of random H chondrite falls (cf. Lipschutz et al., 1997, for specific references). Antarctic H chondrites with terrestrial ages 50 Myr (Michlovich et al., 1995) also show this. Metallographic and thermoluminescence data for these H chondrites also reflect their thermal histories, and support the existence of such meteoroid streams (Sears et al., 1991; Benoit and Sears, 1993), but cosmogenic noble gas contents do not (Loeken et al., 1993; Schultz and Weber, 1996). Important unanswered orbital dynamic questions are how long a meteoroid stream should be recognizable and what dynamic conditions are implied by Clusters, whose members have cosmic ray exposure ages of some Myr. To begin to

  20. Thermal Orbital Environmental Parameter Study on the Propulsive Small Expendable Deployer System (ProSEDS) Using Earth Radiation Budget Experiment (ERBE) Data

    Science.gov (United States)

    Sharp, John R.; McConnaughey, Paul K. (Technical Monitor)

    2002-01-01

    The natural thermal environmental parameters used on the Space Station Program (SSP 30425) were generated by the Space Environmental Effects Branch at NASA's Marshall Space Flight Center (MSFC) utilizing extensive data from the Earth Radiation Budget Experiment (ERBE), a series of satellites which measured low earth orbit (LEO) albedo and outgoing long-wave radiation. Later, this temporal data was presented as a function of averaging times and orbital inclination for use by thermal engineers in NASA Technical Memorandum TM 4527. The data was not presented in a fashion readily usable by thermal engineering modeling tools and required knowledge of the thermal time constants and infrared versus solar spectrum sensitivity of the hardware being analyzed to be used properly. Another TM was recently issued as a guideline for utilizing these environments (NASA/TM-2001-211221) with more insight into the utilization by thermal analysts. This paper gives a top-level overview of the environmental parameters presented in the TM and a study of the effects of implementing these environments on an ongoing MSFC project, the Propulsive Small Expendable Deployer System (ProSEDS), compared to conventional orbital parameters that had been historically used.

  1. A methodology for selective removal of orbital debris

    Science.gov (United States)

    Ash, R. L.; Odonoghue, P. J.; Chambers, E. J.; Raney, J. P.

    1992-01-01

    Earth-orbiting objects, large enough to be tracked, were surveyed for possible systematic debris removal. Based upon the statistical collision studies of others, it was determined that objects in orbits approximately 1000 km above the Earth's surface are at greatest collisional risk. Russian C-1B boosters were identified as the most important target of opportunity for debris removal. Currently, more than 100 in tact boosters are orbiting the Earth with apogees between 950 km and 1050 km. Using data provided by Energia USA, specific information on the C-1B booster, in terms of rendezvous and capture strategies, was discussed.

  2. Determination of Eros Physical Parameters for Near Earth Asteroid Rendezvous Orbit Phase Navigation

    Science.gov (United States)

    Miller, J. K.; Antreasian, P. J.; Georgini, J.; Owen, W. M.; Williams, B. G.; Yeomans, D. K.

    1995-01-01

    Navigation of the orbit phase of the Near Earth steroid Rendezvous (NEAR) mission will re,quire determination of certain physical parameters describing the size, shape, gravity field, attitude and inertial properties of Eros. Prior to launch, little was known about Eros except for its orbit which could be determined with high precision from ground based telescope observations. Radar bounce and light curve data provided a rough estimate of Eros shape and a fairly good estimate of the pole, prime meridian and spin rate. However, the determination of the NEAR spacecraft orbit requires a high precision model of Eros's physical parameters and the ground based data provides only marginal a priori information. Eros is the principal source of perturbations of the spacecraft's trajectory and the principal source of data for determining the orbit. The initial orbit determination strategy is therefore concerned with developing a precise model of Eros. The original plan for Eros orbital operations was to execute a series of rendezvous burns beginning on December 20,1998 and insert into a close Eros orbit in January 1999. As a result of an unplanned termination of the rendezvous burn on December 20, 1998, the NEAR spacecraft continued on its high velocity approach trajectory and passed within 3900 km of Eros on December 23, 1998. The planned rendezvous burn was delayed until January 3, 1999 which resulted in the spacecraft being placed on a trajectory that slowly returns to Eros with a subsequent delay of close Eros orbital operations until February 2001. The flyby of Eros provided a brief glimpse and allowed for a crude estimate of the pole, prime meridian and mass of Eros. More importantly for navigation, orbit determination software was executed in the landmark tracking mode to determine the spacecraft orbit and a preliminary shape and landmark data base has been obtained. The flyby also provided an opportunity to test orbit determination operational procedures that will be

  3. Monte Carlo simulations of the secondary neutron ambient and effective dose equivalent rates from surface to suborbital altitudes and low Earth orbit.

    Science.gov (United States)

    El-Jaby, Samy; Richardson, Richard B

    2015-07-01

    Occupational exposures from ionizing radiation are currently regulated for airline travel (Earth orbit (∼300-400 km). Aircrew typically receive between 1 and 6 mSv of occupational dose annually, while aboard the International Space Station, the area radiation dose equivalent measured over just 168 days was 106 mSv at solar minimum conditions. It is anticipated that space tourism vehicles will reach suborbital altitudes of approximately 100 km and, therefore, the annual occupational dose to flight crew during repeated transits is expected to fall somewhere between those observed for aircrew and astronauts. Unfortunately, measurements of the radiation environment at the high altitudes reached by suborbital vehicles are sparse, and modelling efforts have been similarly limited. In this paper, preliminary MCNPX radiation transport code simulations are developed of the secondary neutron flux profile in air from surface altitudes up to low Earth orbit at solar minimum conditions and excluding the effects of spacecraft shielding. These secondary neutrons are produced by galactic cosmic radiation interacting with Earth's atmosphere and are among the sources of radiation that can pose a health risk. Associated estimates of the operational neutron ambient dose equivalent, used for radiation protection purposes, and the neutron effective dose equivalent that is typically used for estimates of stochastic health risks, are provided in air. Simulations show that the neutron radiation dose rates received at suborbital altitudes are comparable to those experienced by aircrew flying at 7 to 14 km. We also show that the total neutron dose rate tails off beyond the Pfotzer maximum on ascension from surface up to low Earth orbit. Crown Copyright © 2015. Published by Elsevier Ltd. All rights reserved.

  4. Apollo 11 Earth Training Exercises

    Science.gov (United States)

    1969-01-01

    In preparation of the nation's first lunar landing mission, Apollo 11 crew members underwent training to practice activities they would be performing during the mission. In this photograph, taken at the Manned Spacecraft Center in Houston, Texas, an engineer, Bob Mason, donned in a space suit, goes through some of those training exercises on the mock lunar surface. He performed activites similar to those planned for astronauts Neil Armstrong and Edwin Aldrin during their moon walk. The Apollo 11 mission launched from the Kennedy Space Center (KSC) in Florida via the Marshall Space Flight Center (MSFC) developed Saturn V launch vehicle on July 16, 1969 and safely returned to Earth on July 24, 1969. Aboard the space craft were astronauts Neil A. Armstrong, commander; Michael Collins, Command Module (CM) pilot; and Edwin E. (Buzz) Aldrin Jr., Lunar Module (LM) pilot. The CM, 'Columbia', piloted by Collins, remained in a parking orbit around the Moon while the LM, 'Eagle'', carrying astronauts Armstrong and Aldrin, landed on the Moon. On July 20, 1969, Armstrong was the first human to ever stand on the lunar surface, followed by Aldrin. During 2½ hours of surface exploration, the crew collected 47 pounds of lunar surface material for analysis back on Earth. With the success of Apollo 11, the national objective to land men on the Moon and return them safely to Earth had been accomplished.

  5. Advanced transportation system study: Manned launch vehicle concepts for two way transportation system payloads to LEO

    Science.gov (United States)

    Duffy, James B.

    1993-01-01

    The purpose of the Advanced Transportation System Study (ATSS) task area 1 study effort is to examine manned launch vehicle booster concepts and two-way cargo transfer and return vehicle concepts to determine which of the many proposed concepts best meets NASA's needs for two-way transportation to low earth orbit. The study identified specific configurations of the normally unmanned, expendable launch vehicles (such as the National Launch System family) necessary to fly manned payloads. These launch vehicle configurations were then analyzed to determine the integrated booster/spacecraft performance, operations, reliability, and cost characteristics for the payload delivery and return mission. Design impacts to the expendable launch vehicles which would be required to perform the manned payload delivery mission were also identified. These impacts included the implications of applying NASA's man-rating requirements, as well as any mission or payload unique impacts. The booster concepts evaluated included the National Launch System (NLS) family of expendable vehicles and several variations of the NLS reference configurations to deliver larger manned payload concepts (such as the crew logistics vehicle (CLV) proposed by NASA JSC). Advanced, clean sheet concepts such as an F-1A engine derived liquid rocket booster (LRB), the single stage to orbit rocket, and a NASP-derived aerospace plane were also included in the study effort. Existing expendable launch vehicles such as the Titan 4, Ariane 5, Energia, and Proton were also examined. Although several manned payload concepts were considered in the analyses, the reference manned payload was the NASA Langley Research Center's HL-20 version of the personnel launch system (PLS). A scaled up version of the PLS for combined crew/cargo delivery capability, the HL-42 configuration, was also included in the analyses of cargo transfer and return vehicle (CTRV) booster concepts. In addition to strictly manned payloads, two-way cargo

  6. Near-Earth Objects. Chapter 27

    Science.gov (United States)

    Harris, Alan W.; Drube, Line; McFadden, Lucy A.; Binzel, Richard P.

    2014-01-01

    A near-Earth object (NEO) is an asteroid or comet orbiting the Sun with a perihelion distance of less than 1.3 Astronomical Units (AU) (1 AU, an astronomical unit, is the mean distance between the Earth and the Sun, around 150 million kilometers). If the orbit of an NEO can bring it to within 0.05 AU of the Earth's orbit, and it is larger than about 120 meters, it is termed a potentially hazardous object (PHO); an object of this size is likely to survive passage through the atmosphere and cause extensive damage on impact. (The acronyms NEA and PHO are used when referring specifically to asteroids.)

  7. Space Network IP Services (SNIS): An Architecture for Supporting Low Earth Orbiting IP Satellite Missions

    Science.gov (United States)

    Israel, David J.

    2005-01-01

    The NASA Space Network (SN) supports a variety of missions using the Tracking and Data Relay Satellite System (TDRSS), which includes ground stations in White Sands, New Mexico and Guam. A Space Network IP Services (SNIS) architecture is being developed to support future users with requirements for end-to-end Internet Protocol (IP) communications. This architecture will support all IP protocols, including Mobile IP, over TDRSS Single Access, Multiple Access, and Demand Access Radio Frequency (RF) links. This paper will describe this architecture and how it can enable Low Earth Orbiting IP satellite missions.

  8. A Novel Double Cluster and Principal Component Analysis-Based Optimization Method for the Orbit Design of Earth Observation Satellites

    Directory of Open Access Journals (Sweden)

    Yunfeng Dong

    2017-01-01

    Full Text Available The weighted sum and genetic algorithm-based hybrid method (WSGA-based HM, which has been applied to multiobjective orbit optimizations, is negatively influenced by human factors through the artificial choice of the weight coefficients in weighted sum method and the slow convergence of GA. To address these two problems, a cluster and principal component analysis-based optimization method (CPC-based OM is proposed, in which many candidate orbits are gradually randomly generated until the optimal orbit is obtained using a data mining method, that is, cluster analysis based on principal components. Then, the second cluster analysis of the orbital elements is introduced into CPC-based OM to improve the convergence, developing a novel double cluster and principal component analysis-based optimization method (DCPC-based OM. In DCPC-based OM, the cluster analysis based on principal components has the advantage of reducing the human influences, and the cluster analysis based on six orbital elements can reduce the search space to effectively accelerate convergence. The test results from a multiobjective numerical benchmark function and the orbit design results of an Earth observation satellite show that DCPC-based OM converges more efficiently than WSGA-based HM. And DCPC-based OM, to some degree, reduces the influence of human factors presented in WSGA-based HM.

  9. INTERACTION OF CLOSE-IN PLANETS WITH THE MAGNETOSPHERE OF THEIR HOST STARS. II. SUPER-EARTHS AS UNIPOLAR INDUCTORS AND THEIR ORBITAL EVOLUTION

    International Nuclear Information System (INIS)

    Laine, Randy O.; Lin, Douglas N. C.

    2012-01-01

    Planets with several Earth masses and orbital periods of a few days have been discovered through radial velocity and transit surveys. Regardless of their formation mechanism, an important evolution issue is the efficiency of their retention in the proximity of their host stars. If these 'super-Earths' attained their present-day orbits during or shortly after the T Tauri phase of their host stars, a large fraction of these planets would have encountered an intense stellar magnetic field. These rocky planets have a higher conductivity than the atmosphere of their host stars and, therefore, the magnetic flux tube connecting them would slip though the envelope of the host stars faster than across the planets. The induced electromotive force across the planet's diameter leads to a potential drop which propagates along a flux tube away from the planet with an Alfvén speed. The foot of the flux tube would sweep across the stellar surface and the potential drop across the field lines drives a DC current analogous to that proposed for the electrodynamics of the Io-Jupiter system. The ohmic dissipation of this current produces potentially observable hot spots in the star envelope. It also heats the planet and leads to a torque which drives the planet's orbit to evolve toward both circularization and a state of synchronization with the spin of the star. The net effect is the damping of the planet's orbital eccentricity. Around slowly (or rapidly) spinning stars, this process also causes rocky planets with periods less than a few days to undergo orbital decay (or expansion/stagnation) within a few Myr. In principle, this effect can determine the retention efficiency of short-period hot Earths. We also estimate the ohmic dissipation interior to these planets and show that it can lead to severe structure evolution and potential loss of volatile material in them. However, these effects may be significantly weakened by the reconnection of the induced field.

  10. Probable Rotation States of Rocket Bodies in Low Earth Orbit

    Science.gov (United States)

    Ojakangas, Gregory W.; Anz-Meador, P.; Cowardin, H.

    2012-01-01

    In order for Active Debris Removal to be accomplished, it is critically important to understand the probable rotation states of orbiting, spent rocket bodies. As compared to the question of characterizing small unresolved debris, in this problem there are several advantages: (1) objects are of known size, mass, shape and color, (2) they have typically been in orbit for a known period of time, (3) they are large enough that resolved images may be obtainable for verification of predicted orientation, and (4) the dynamical problem is simplified to first order by largely cylindrical symmetry. It is also nearly certain for realistic rocket bodies that internal friction is appreciable in the case where residual liquid or, to a lesser degree, unconsolidated solid fuels exist. Equations of motion have been developed for this problem in which internal friction as well as torques due to solar radiation, magnetic induction, and gravitational gradient are included. In the case of pure cylindrical symmetry, the results are compared to analytical predictions patterned after the standard approach for analysis of symmetrical tops. This is possible because solar radiation and gravitational torques may be treated as conservative. Agreement between results of both methods ensures their mutual validity. For monotone symmetric cylinders, solar radiation torque vanishes if the center of mass resides at the geometric center of the object. Results indicate that in the absence of solar radiation effects, rotation states tend toward an equilibrium configuration in which rotation is about the axis of maximum inertia, with the axis of minimum inertia directed toward the center of the earth. Solar radiation torque introduces a modification to this orientation. The equilibrium state is asymptotically approached within a characteristic timescale given by a simple ratio of relevant characterizing parameters for the body in question. Light curves are simulated for the expected asymptotic final

  11. Technical-economic feasibility of orbiting sunlight reflectors

    Science.gov (United States)

    Alferov, Z.; Minin, V.

    1986-02-01

    The use of deflectors in orbit as a means of providing artificial illumination is examined. Considerations of technical and economic feasibility are addressed. Three main areas of application are distinguished: reflecting sunlight onto the surface of the Earth; concentration of the flow of solar energy on an orbiting receiver; and retransmission of optical radiation. The advantages of the artificial Earth illumination application of the orbiting reflector scheme in terms of energy savings in lighting cities, and additional daylight time for critical periods of farming operations are discussed.

  12. Conditions for oceans on Earth-like planets orbiting within the habitable zone: importance of volcanic CO{sub 2} degassing

    Energy Technology Data Exchange (ETDEWEB)

    Kadoya, S. [Department of Earth and Planetary Science, The University of Tokyo, Kiban Bldg. 408, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561 (Japan); Tajika, E., E-mail: kadoya@astrobio.k.u-tokyo.ac.jp, E-mail: tajika@astrobio.k.u-tokyo.ac.jp [Department of Complexity Science and Engineering, The University of Tokyo, Kiban Bldg. 409, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561 (Japan)

    2014-08-01

    Earth-like planets in the habitable zone (HZ) have been considered to have warm climates and liquid water on their surfaces if the carbonate-silicate geochemical cycle is working as on Earth. However, it is known that even the present Earth may be globally ice-covered when the rate of CO{sub 2} degassing via volcanism becomes low. Here we discuss the climates of Earth-like planets in which the carbonate-silicate geochemical cycle is working, with focusing particularly on insolation and the CO{sub 2} degassing rate. The climate of Earth-like planets within the HZ can be classified into three climate modes (hot, warm, and snowball climate modes). We found that the conditions for the existence of liquid water should be largely restricted even when the planet is orbiting within the HZ and the carbonate-silicate geochemical cycle is working. We show that these conditions should depend strongly on the rate of CO{sub 2} degassing via volcanism. It is, therefore, suggested that thermal evolution of the planetary interiors will be a controlling factor for Earth-like planets to have liquid water on their surface.

  13. Service Life Extension of the Propulsion System of Long-Term Manned Orbital Stations

    Science.gov (United States)

    Kamath, Ulhas; Kuznetsov, Sergei; Spencer, Victor

    2014-01-01

    One of the critical non-replaceable systems of a long-term manned orbital station is the propulsion system. Since the propulsion system operates beginning with the launch of station elements into orbit, its service life determines the service life of the station overall. Weighing almost a million pounds, the International Space Station (ISS) is about four times as large as the Russian space station Mir and about five times as large as the U.S. Skylab. Constructed over a span of more than a decade with the help of over 100 space flights, elements and modules of the ISS provide more research space than any spacecraft ever built. Originally envisaged for a service life of fifteen years, this Earth orbiting laboratory has been in orbit since 1998. Some elements that have been launched later in the assembly sequence were not yet built when the first elements were placed in orbit. Hence, some of the early modules that were launched at the inception of the program were already nearing the end of their design life when the ISS was finally ready and operational. To maximize the return on global investments on ISS, it is essential for the valuable research on ISS to continue as long as the station can be sustained safely in orbit. This paper describes the work performed to extend the service life of the ISS propulsion system. A system comprises of many components with varying failure rates. Reliability of a system is the probability that it will perform its intended function under encountered operating conditions, for a specified period of time. As we are interested in finding out how reliable a system would be in the future, reliability expressed as a function of time provides valuable insight. In a hypothetical bathtub shaped failure rate curve, the failure rate, defined as the number of failures per unit time that a currently healthy component will suffer in a given future time interval, decreases during infant-mortality period, stays nearly constant during the service

  14. Orientering og banelægning med Google Earth og Condes

    DEFF Research Database (Denmark)

    Jørgensen, Henrik Taarsted; Piaster, Thomas Gabriel

    2011-01-01

    Et e-læringsmodul på Danmarks undervisningsportal, som handler om hvordan man kan arbejde med banelægning indenfor o-løb. Med udgangspunkt i de to gratisprogrammer Google Earth og Condes lærer man gennem modulet, hvordan man indtegner poster og hvordan eleverne kan gøre det samme.......Et e-læringsmodul på Danmarks undervisningsportal, som handler om hvordan man kan arbejde med banelægning indenfor o-løb. Med udgangspunkt i de to gratisprogrammer Google Earth og Condes lærer man gennem modulet, hvordan man indtegner poster og hvordan eleverne kan gøre det samme....

  15. Utilizing Solar Power Technologies for On-Orbit Propellant Production

    Science.gov (United States)

    Fikes, John C.; Howell, Joe T.; Henley, Mark W.

    2006-01-01

    The cost of access to space beyond low Earth orbit may be reduced if vehicles can refuel in orbit. The cost of access to low Earth orbit may also be reduced by launching oxygen and hydrogen propellants in the form of water. To achieve this reduction in costs of access to low Earth orbit and beyond, a propellant depot is considered that electrolyzes water in orbit, then condenses and stores cryogenic oxygen and hydrogen. Power requirements for such a depot require Solar Power Satellite technologies. A propellant depot utilizing solar power technologies is discussed in this paper. The depot will be deployed in a 400 km circular equatorial orbit. It receives tanks of water launched into a lower orbit from Earth, converts the water to liquid hydrogen and oxygen, and stores up to 500 metric tons of cryogenic propellants. This requires a power system that is comparable to a large Solar Power Satellite capable of several 100 kW of energy. Power is supplied by a pair of solar arrays mounted perpendicular to the orbital plane, which rotates once per orbit to track the Sun. The majority of the power is used to run the electrolysis system. Thermal control is maintained by body-mounted radiators; these also provide some shielding against orbital debris. The propellant stored in the depot can support transportation from low Earth orbit to geostationary Earth orbit, the Moon, LaGrange points, Mars, etc. Emphasis is placed on the Water-Ice to Cryogen propellant production facility. A very high power system is required for cracking (electrolyzing) the water and condensing and refrigerating the resulting oxygen and hydrogen. For a propellant production rate of 500 metric tons (1,100,000 pounds) per year, an average electrical power supply of 100 s of kW is required. To make the most efficient use of space solar power, electrolysis is performed only during the portion of the orbit that the Depot is in sunlight, so roughly twice this power level is needed for operations in sunlight

  16. High Temporal and Spatial Resolution Coverage of Earth from Commercial AVSTAR Systems in Geostationary Orbit

    Science.gov (United States)

    Lecompte, M. A.; Heaps, J. F.; Williams, F. H.

    Imaging the earth from Geostationary Earth Orbit (GEO) allows frequent updates of environmental conditions within an observable hemisphere at time and spatial scales appropriate to the most transient observable terrestrial phenomena. Coverage provided by current GEO Meteorological Satellites (METSATS) fails to fully exploit this advantage due primarily to obsolescent technology and also institutional inertia. With the full benefit of GEO based imaging unrealized, rapidly evolving phenomena, occurring at the smallest spatial and temporal scales that frequently have significant environmental impact remain unobserved. These phenomena may be precursors for the most destructive natural processes that adversely effect society. Timely distribution of information derived from "real-time" observations thus may provide opportunities to mitigate much of the damage to life and property that would otherwise occur. AstroVision International's AVStar Earth monitoring system is designed to overcome the current limitations if GEO Earth coverage and to provide real time monitoring of changes to the Earth's complete atmospheric, land and marine surface environments including fires, volcanic events, lightning and meteoritic events on a "live," true color, and multispectral basis. The understanding of severe storm dynamics and its coupling to the earth's electro-sphere will be greatly enhanced by observations at unprecedented sampling frequencies and spatial resolution. Better understanding of these natural phenomena and AVStar operational real-time coverage may also benefit society through improvements in severe weather prediction and warning. AstroVision's AVStar system, designed to provide this capability with the first of a constellation of GEO- based commercial environmental monitoring satellites to be launched in late 2003 will be discussed, including spatial and temporal resolution, spectral coverage with applications and an inventory of the potential benefits to society

  17. GLONASS Orbits in Teqc: Methodology and Future Extension for Using SP3 Orbits

    Science.gov (United States)

    Estey, L.; Wier, S.

    2011-12-01

    UNAVCO's teqc software package provides translation of a wide variety of GNSS receiver formats, metadata editing (either during translation to RINEX or on existing RINEX files), time-windowing and epoch decimation editing, and quality check (qc) analysis. Teqc is used extensively in GNSS pre-processing, and is designed to handle mixed satellite constellations, such as GPS, GLONASS, Galileo, and SBAS. The latest release of teqc adds GLONASS orbit calculations using GLONASS broadcast navigation messages, read from RINEX file format, during qc. The ephemerides for each GLONASS SV have time and orbit position in Earth-centered, Earth-fixed x, y, and z coordinates. Following Schenewerk [2003], we use trigonometric interpolation, essentially a fit of a partial sum of the Fourier series for each time-varying cartesian orbital component, allowing estimates of orbit positions at most GLONASS observation times. Tests show the interpolated GLONASS orbits made from the broadcast messages diverge from final orbits little more than the same differences using GPS orbits computed from their broadcast messages. Since GLONASS ephemerides do not use Keplerian orbital elements, GLONASS SV orbits can only be interpolated using this method for time intervals when an adequate sequence of ephemerides are available. For typical daily navigation messages collected at a single sit, when a GLONASS SV is in view less than three hours, that SV's signals are generally not used by teqc due to less precise orbit positions. Teqc quality control including SV position can now use GPS alone, GLONASS alone, or the joint solution. Future work will extend teqc to use SP3 format files, such as the IGS final orbit files, and SBAS data, which have broadcast ephemerides with elements similar to GLONASS.

  18. The size and shape of the near-Earth asteroid belt

    Science.gov (United States)

    Rabinowitz, David L.

    1994-01-01

    Evidence was recently reported for the existence of a near-Earth belt of small, Earth-approaching asteroids (SEAs) with diameters less than approximately 50 m. This result was based upon observations made with the Spacewatch Telescope of the University of Arizona during the course of an ongoing search for Earth-approaching asteroids. Using a model to describe the effects of observational bias, it was shown that the orbits observed for SEAs are inconsistent with the orbits of Earth approaches larger than approximately 1 km, and imply a relatively high fraction of Earth-like orbits among the SEAs. In this paper, new observations are included and the bias model is extended in order to quantify the number of SEAs within the near-Earth belt and to further constrain their orbital distribution. The calculation shows that relative to larger Earth approachers. SEAs are deficient in Aten-type orbits for which the semimajor axis is less than 1.0 AU. Instead, nearly all SEAs with aphelia less than 1.4 AU (5 +/- 3% of the total population) have perihelia between 0.9 and 1.1 AU, thus defining a near-Earth belt. Those SEAs with aphelia greater than 1.4 AU, however, have a distribution of orbits that are indistinguishable from the orbits of larger Earth approachers. Taking the near-Earth belt into account does not significantly alter the previously determined enhancement in the number of SEAs the previously determined enhancement in the number of SEAs compared to an extrapolation of the number of larger Earth approachers. At approximately 10 m, the enhancement factor is 40 to within a factor of 2. Also, the RMS impact velocity of SEAs with Earth (17 km/sec) is nearly the same as for larger Earth approachers (18 km/sec).

  19. Diagnosing low earth orbit satellite anomalies using NOAA-15 electron data associated with geomagnetic perturbations

    Science.gov (United States)

    Ahmad, Nizam; Herdiwijaya, Dhani; Djamaluddin, Thomas; Usui, Hideyuki; Miyake, Yohei

    2018-05-01

    A satellite placed in space is constantly affected by the space environment, resulting in various impacts from temporary faults to permanent failures depending on factors such as satellite orbit, solar and geomagnetic activities, satellite local time, and satellite construction material. Anomaly events commonly occur during periods of high geomagnetic activity that also trigger plasma variation in the low Earth orbit (LEO) environment. In this study, we diagnosed anomalies in LEO satellites using electron data from the Medium Energy Proton and Electron Detector onboard the National Oceanic and Atmospheric Administration (NOAA)-15 satellite. In addition, we analyzed the fluctuation of electron flux in association with geomagnetic disturbances 3 days before and after the anomaly day. We selected 20 LEO anomaly cases registered in the Satellite News Digest database for the years 2000-2008. Satellite local time, an important parameter for anomaly diagnosis, was determined using propagated two-line element data in the SGP4 simplified general perturbation model to calculate the longitude of the ascending node of the satellite through the position and velocity vectors. The results showed that the majority of LEO satellite anomalies are linked to low-energy electron fluxes of 30-100 keV and magnetic perturbations that had a higher correlation coefficient ( 90%) on the day of the anomaly. The mean local time calculation for the anomaly day with respect to the nighttime migration of energetic electrons revealed that the majority of anomalies (65%) occurred on the night side of Earth during the dusk-to-dawn sector of magnetic local time.

  20. Environmental Durability Issues for Solar Power Systems in Low Earth Orbit

    Science.gov (United States)

    Degroh, Kim K.; Banks, Bruce A.; Smith, Daniela C.

    1994-01-01

    Space solar power systems for use in the low Earth orbit (LEO) environment experience a variety of harsh environmental conditions. Materials used for solar power generation in LEO need to be durable to environmental threats such as atomic oxygen, ultraviolet (UV) radiation, thermal cycling, and micrometeoroid and debris impact. Another threat to LEO solar power performance is due to contamination from other spacecraft components. This paper gives an overview of these LEO environmental issues as they relate to space solar power system materials. Issues addressed include atomic oxygen erosion of organic materials, atomic oxygen undercutting of protective coatings, UV darkening of ceramics, UV embrittlement of Teflon, effects of thermal cycling on organic composites, and contamination due to silicone and organic materials. Specific examples of samples from the Long Duration Exposure Facility (LDEF) and materials returned from the first servicing mission of the Hubble Space Telescope (HST) are presented. Issues concerning ground laboratory facilities which simulate the LEO environment are discussed along with ground-to-space correlation issues.

  1. Characterization of the K2-18 multi-planetary system with HARPS. A habitable zone super-Earth and discovery of a second, warm super-Earth on a non-coplanar orbit

    Science.gov (United States)

    Cloutier, R.; Astudillo-Defru, N.; Doyon, R.; Bonfils, X.; Almenara, J.-M.; Benneke, B.; Bouchy, F.; Delfosse, X.; Ehrenreich, D.; Forveille, T.; Lovis, C.; Mayor, M.; Menou, K.; Murgas, F.; Pepe, F.; Rowe, J.; Santos, N. C.; Udry, S.; Wünsche, A.

    2017-12-01

    Aims: The bright M2.5 dwarf K2-18 (Ms = 0.36 M⊙, Rs = 0.41 R⊙) at 34 pc is known to host a transiting super-Earth-sized planet orbiting within the star's habitable zone; K2-18b. Given the superlative nature of this system for studying an exoplanetary atmosphere receiving similar levels of insolation as the Earth, we aim to characterize the planet's mass which is required to interpret atmospheric properties and infer the planet's bulk composition. Methods: We have obtained precision radial velocity measurements with the HARPS spectrograph. We then coupled those measurements with the K2 photometry to jointly model the observed radial velocity variation with planetary signals and a correlated stellar activity model based on Gaussian process regression. Results: We measured the mass of K2-18b to be 8.0 ± 1.9M⊕ with a bulk density of 3.3 ± 1.2 g/cm3 which may correspond to a predominantly rocky planet with a significant gaseous envelope or an ocean planet with a water mass fraction ≳50%. We also find strong evidence for a second, warm super-Earth K2-18c (mp,csinic = 7.5 ± 1.3 M⊕) at approximately nine days with a semi-major axis 2.4 times smaller than the transiting K2-18b. After re-analyzing the available light curves of K2-18 we conclude that K2-18c is not detected in transit and therefore likely has an orbit that is non-coplanar with the orbit of K2-18b although only a small mutual inclination is required for K2-18c to miss a transiting configuration; | Δi| 1-2°. A suite of dynamical integrations are performed to numerically confirm the system's dynamical stability. By varying the simulated orbital eccentricities of the two planets, dynamical stability constraints are used as an additional prior on each planet's eccentricity posterior from which we constrain eb multi-planet systems around M dwarfs. The characterization of the density of K2-18b reveals that the planet likely has a thick gaseous envelope which, along with its proximity to the solar

  2. Numerical orbit generators of artificial earth satellites

    Science.gov (United States)

    Kugar, H. K.; Dasilva, W. C. C.

    1984-04-01

    A numerical orbit integrator containing updatings and improvements relative to the previous ones that are being utilized by the Departmento de Mecanica Espacial e Controle (DMC), of INPE, besides incorporating newer modellings resulting from the skill acquired along the time is presented. Flexibility and modularity were taken into account in order to allow future extensions and modifications. Characteristics of numerical accuracy, processing quickness, memory saving as well as utilization aspects were also considered. User's handbook, whole program listing and qualitative analysis of accuracy, processing time and orbit perturbation effects were included as well.

  3. Orbital Metastasis of Hepatocellular Carcinoma: A Case Report ...

    African Journals Online (AJOL)

    Background: Hepatocellular carcinoma is one of the commonest malignancies in Nigeria, however metastasis to the orbit is a rare presentation. Objective: To present a rare case of orbital metastasis of hepatocellular carcinoma. Case Report: A 25-year-old man presented with a 3-month history of pain, progressive swelling ...

  4. NASA Orbital Debris Baseline Populations

    Science.gov (United States)

    Krisko, Paula H.; Vavrin, A. B.

    2013-01-01

    The NASA Orbital Debris Program Office has created high fidelity populations of the debris environment. The populations include objects of 1 cm and larger in Low Earth Orbit through Geosynchronous Transfer Orbit. They were designed for the purpose of assisting debris researchers and sensor developers in planning and testing. This environment is derived directly from the newest ORDEM model populations which include a background derived from LEGEND, as well as specific events such as the Chinese ASAT test, the Iridium 33/Cosmos 2251 accidental collision, the RORSAT sodium-potassium droplet releases, and other miscellaneous events. It is the most realistic ODPO debris population to date. In this paper we present the populations in chart form. We describe derivations of the background population and the specific populations added on. We validate our 1 cm and larger Low Earth Orbit population against SSN, Haystack, and HAX radar measurements.

  5. Large-size space debris flyby in low earth orbits

    Science.gov (United States)

    Baranov, A. A.; Grishko, D. A.; Razoumny, Y. N.

    2017-09-01

    the analysis of NORAD catalogue of space objects executed with respect to the overall sizes of upper-stages and last stages of carrier rockets allows the classification of 5 groups of large-size space debris (LSSD). These groups are defined according to the proximity of orbital inclinations of the involved objects. The orbits within a group have various values of deviations in the Right Ascension of the Ascending Node (RAAN). It is proposed to use the RAANs deviations' evolution portrait to clarify the orbital planes' relative spatial distribution in a group so that the RAAN deviations should be calculated with respect to the concrete precessing orbital plane of the concrete object. In case of the first three groups (inclinations i = 71°, i = 74°, i = 81°) the straight lines of the RAAN relative deviations almost do not intersect each other. So the simple, successive flyby of group's elements is effective, but the significant value of total Δ V is required to form drift orbits. In case of the fifth group (Sun-synchronous orbits) these straight lines chaotically intersect each other for many times due to the noticeable differences in values of semi-major axes and orbital inclinations. The intersections' existence makes it possible to create such a flyby sequence for LSSD group when the orbit of one LSSD object simultaneously serves as the drift orbit to attain another LSSD object. This flyby scheme requiring less Δ V was called "diagonal." The RAANs deviations' evolution portrait built for the fourth group (to be studied in the paper) contains both types of lines, so the simultaneous combination of diagonal and successive flyby schemes is possible. The value of total Δ V and temporal costs were calculated to cover all the elements of the 4th group. The article is also enriched by the results obtained for the flyby problem solution in case of all the five mentioned LSSD groups. The general recommendations are given concerned with the required reserve of total

  6. Compendium of Single Event Effects Test Results for Commercial Off-The-Shelf and Standard Electronics for Low Earth Orbit and Deep Space Applications

    Science.gov (United States)

    Reddell, Brandon D.; Bailey, Charles R.; Nguyen, Kyson V.; O'Neill, Patrick M.; Wheeler, Scott; Gaza, Razvan; Cooper, Jaime; Kalb, Theodore; Patel, Chirag; Beach, Elden R.; hide

    2017-01-01

    We present the results of Single Event Effects (SEE) testing with high energy protons and with low and high energy heavy ions for electrical components considered for Low Earth Orbit (LEO) and for deep space applications.

  7. Analysis of the Effect of UTI-UTC to High Precision Orbit

    Science.gov (United States)

    Shin, Dongseok; Kwak, Sunghee; Kim, Tag-Gon

    1999-12-01

    As the spatial resolution of remote sensing satellites becomes higher, very accurate determination of the position of a LEO (Low Earth Orbit) satellite is demanding more than ever. Non-symmetric Earth gravity is the major perturbation force to LEO satellites. Since the orbit propagation is performed in the celestial frame while Earth gravity is defined in the terrestrial frame, it is required to convert the coordinates of the satellite from one to the other accurately. Unless the coordinate conversion between the two frames is performed accurately the orbit propagation calculates incorrect Earth gravitational force at a specific time instant, and hence, causes errors in orbit prediction. The coordinate conversion between the two frames involves precession, nutation, Earth rotation and polar motion. Among these factors, unpredictability and uncertainty of Earth rotation, called UTI-UTC, is the largest error source. In this paper, the effect of UTI-UTC on the accuracy of the LEO propagation is introduced, tested and analzed. Considering the maximum unpredictability of UTI-UTC, 0.9 seconds, the meaningful order of non-spherical Earth harmonic functions is derived.

  8. Medical Implications of Space Radiation Exposure Due to Low-Altitude Polar Orbits.

    Science.gov (United States)

    Chancellor, Jeffery C; Auñon-Chancellor, Serena M; Charles, John

    2018-01-01

    Space radiation research has progressed rapidly in recent years, but there remain large uncertainties in predicting and extrapolating biological responses to humans. Exposure to cosmic radiation and solar particle events (SPEs) may pose a critical health risk to future spaceflight crews and can have a serious impact on all biomedical aspects of space exploration. The relatively minimal shielding of the cancelled 1960s Manned Orbiting Laboratory (MOL) program's space vehicle and the high inclination polar orbits would have left the crew susceptible to high exposures of cosmic radiation and high dose-rate SPEs that are mostly unpredictable in frequency and intensity. In this study, we have modeled the nominal and off-nominal radiation environment that a MOL-like spacecraft vehicle would be exposed to during a 30-d mission using high performance, multicore computers. Projected doses from a historically large SPE (e.g., the August 1972 solar event) have been analyzed in the context of the MOL orbit profile, providing an opportunity to study its impact to crew health and subsequent contingencies. It is reasonable to presume that future commercial, government, and military spaceflight missions in low-Earth orbit (LEO) will have vehicles with similar shielding and orbital profiles. Studying the impact of cosmic radiation to the mission's operational integrity and the health of MOL crewmembers provides an excellent surrogate and case-study for future commercial and military spaceflight missions.Chancellor JC, Auñon-Chancellor SM, Charles J. Medical implications of space radiation exposure due to low-altitude polar orbits. Aerosp Med Hum Perform. 2018; 89(1):3-8.

  9. Analysis on coverage ability of BeiDou navigation satellite system for manned spacecraft

    Science.gov (United States)

    Zhao, Sihao; Yao, Zheng; Zhuang, Xuebin; Lu, Mingquan

    2014-12-01

    To investigate the service ability of the BeiDou Navigation Satellite System (BDS) for manned spacecraft, both the current regional and the future-planned global constellations of BDS are introduced and simulated. The orbital parameters of the International Space Station and China's Tiangong-1 spacelab are used to create the simulation scenario and evaluate the performance of the BDS constellations. The number of visible satellites and the position dilution (PDOP) of precision at the spacecraft-based receiver are evaluated. Simulation and analysis show quantitative results on the coverage ability and time percentages of both the current BDS regional and future global constellations for manned-space orbits which can be a guideline to the applications and mission design of BDS receivers on manned spacecraft.

  10. SSC Tenant Meeting: NASA Near Earth Network (NEN) Overview

    Science.gov (United States)

    Carter, David; Larsen, David; Baldwin, Philip; Wilson, Cristy; Ruley, LaMont

    2018-01-01

    The Near Earth Network (NEN) consists of globally distributed tracking stations that are strategically located throughout the world which provide Telemetry, Tracking, and Commanding (TTC) services support to a variety of orbital and suborbital flight missions, including Low Earth Orbit (LEO), Geosynchronous Earth Orbit (GEO), highly elliptical, and lunar orbits. Swedish Space Corporation (SSC), which is one of the NEN Commercial Service Provider, has provided the NEN with TTC services support from its Alaska, Hawaii, Chile and Sweden. The presentation will give an overview of the NEN and its support from SSC.

  11. Radiation analysis for manned missions to the Jupiter system.

    Science.gov (United States)

    De Angelis, G; Clowdsley, M S; Nealy, J E; Tripathi, R K; Wilson, J W

    2004-01-01

    An analysis for manned missions targeted to the Jovian system has been performed in the framework of the NASA RASC (Revolutionary Aerospace Systems Concepts) program on Human Exploration beyond Mars. The missions were targeted to the Jupiter satellite Callisto. The mission analysis has been divided into three main phases, namely the interplanetary cruise, the Jupiter orbital insertion, and the surface landing and exploration phases. The interplanetary phase is based on departure from the Earth-Moon L1 point. Interplanetary trajectories based on the use of different propulsion systems have been considered, with resulting overall cruise phase duration varying between two and five years. The Jupiter-approach and the orbital insertion trajectories are considered in detail, with the spacecraft crossing the Jupiter radiation belts and staying around the landing target. In the surface exploration phase the stay on the Callisto surface is considered. The satellite surface composition has been modeled based on the most recent results from the GALILEO spacecraft. In the transport computations the surface backscattering has been duly taken into account. Particle transport has been performed with the HZETRN heavy ion code for hadrons and with an in-house developed transport code for electrons and bremsstrahlung photons. The obtained doses have been compared to dose exposure limits. c2004 COSPAR. Published by Elsevier Ltd. All rights reserved.

  12. Psychological considerations of man in space: Problems & solutions

    Science.gov (United States)

    Kass, J.; Kass, R.; Samaltedinov, I.

    With concrete plans for long duration flight taking form a new impetus is lent to preparing man for this hostile and unnatural environment. Cramped conditions, isolation from family and loved ones, work stress, fear, and incompatibility with fellow crew, are but a few of the problems suffered by astronauts and cosmonauts during their long missions in orbit about the earth. Although criteria for selection of crew is one aspect of attacking the problem, it has not solved it Notwithstanding good selection, team combination, and counselling before flight, problems have still occurred with unwanted consequences. Incompatibility of team members, far from being the exception, has been frequent. This has been detrímental both physiologically and psychologically for the individual as well as for the operational success and safety of the missions. Because problems will inevitably occur in future long duration missions, especially when they are of international and multi-cultural nature, the importance of dealing with them is underlined. This paper takes a different approach towards ameliorating these problems, namely that of psychological group training before a mission.

  13. Microwave Power Beaming Infrastructure for Manned Lightcraft Operations: Part 2

    International Nuclear Information System (INIS)

    Myrabo, Leik N.

    2008-01-01

    In the past ∼7 years, microwave gyrotron technology has rapidly evolved to a critical threshold wherein ultra-energetic space launch missions based on beamed energy propulsion (BEP) now appear eminently feasible. Over the next 20 years, hundred megawatt-class microwave power-beaming stations could be prototyped on high deserts and 3- to 4 km mountain peaks before migrating into low Earth orbit, along with their passive microwave relay satellites. Described herein is a 20 GW rechargeable nuclear power satellite and microwave power-beaming infrastructure designed for manned space launch operations in the year 2025. The technological readiness of 2500 GJ superconducting magnetic energy storage 'batteries', 433-m ultralight space structures, 100 MW liquid droplet radiators, 1-6+ MW gyrotron sources, and mega-scale arrays (e.g., 3000 phase-locked units) is addressed. Microwave BEP is 'breakthrough' technology with the very real potential to radically reduce space access costs by factors of 100 to 1000 in the forseeable future

  14. Glial heterotopia in an adult: A rare orbital mass.

    Science.gov (United States)

    Sundaresh, Divya Dabir; Mangala Gouri, S R

    2016-11-01

    Heterotopic glial tissue is very rare in the orbit. Our case was an adult, which is unique since most cases reported in literature involve children. We describe a case of a 60-year-old man who presented with an orbital mass, which histopathologically revealed heterotopic glial tissue.

  15. Solar cycle variation of interstellar neutral He, Ne, O density and pick-up ions along the Earth's orbit

    Science.gov (United States)

    Sokół, Justyna M.; Bzowski, Maciej; Kubiak, Marzena A.; Möbius, Eberhard

    2016-06-01

    We simulated the modulation of the interstellar neutral (ISN) He, Ne, and O density and pick-up ion (PUI) production rate and count rate along the Earth's orbit over the solar cycle (SC) from 2002 to 2013 to verify if SC-related effects may modify the inferred ecliptic longitude of the ISN inflow direction. We adopted the classical PUI model with isotropic distribution function and adiabatic cooling, modified by time- and heliolatitude-dependent ionization rates and non-zero injection speed of PUIs. We found that the ionization losses have a noticeable effect on the derivation of the ISN inflow longitude based on the Gaussian fit to the crescent and cone peak locations. We conclude that the non-zero radial velocity of the ISN flow and the energy range of the PUI distribution function that is accumulated are of importance for a precise reproduction of the PUI count rate along the Earth orbit. However, the temporal and latitudinal variations of the ionization in the heliosphere, and particularly their variation on the SC time-scale, may significantly modify the shape of PUI cone and crescent and also their peak positions from year to year and thus bias by a few degrees the derived longitude of the ISN gas inflow direction.

  16. Abort Options for Human Missions to Earth-Moon Halo Orbits

    Science.gov (United States)

    Jesick, Mark C.

    2013-01-01

    Abort trajectories are optimized for human halo orbit missions about the translunar libration point (L2), with an emphasis on the use of free return trajectories. Optimal transfers from outbound free returns to L2 halo orbits are numerically optimized in the four-body ephemeris model. Circumlunar free returns are used for direct transfers, and cislunar free returns are used in combination with lunar gravity assists to reduce propulsive requirements. Trends in orbit insertion cost and flight time are documented across the southern L2 halo family as a function of halo orbit position and free return flight time. It is determined that the maximum amplitude southern halo incurs the lowest orbit insertion cost for direct transfers but the maximum cost for lunar gravity assist transfers. The minimum amplitude halo is the most expensive destination for direct transfers but the least expensive for lunar gravity assist transfers. The on-orbit abort costs for three halos are computed as a function of abort time and return time. Finally, an architecture analysis is performed to determine launch and on-orbit vehicle requirements for halo orbit missions.

  17. NASA's Space Launch System: A Flagship for Exploration Beyond Earth's Orbit

    Science.gov (United States)

    May, Todd A.

    2012-01-01

    The National Aeronautics and Space Administration's (NASA) Space Launch System (SLS) Program, managed at the Marshall Space Flight Center, is making progress toward delivering a new capability for exploration beyond Earth orbit in an austere economic climate. This fact drives the SLS team to find innovative solutions to the challenges of designing, developing, fielding, and operating the largest rocket in history. To arrive at the current SLS plan, government and industry experts carefully analyzed hundreds of architecture options and arrived at the one clear solution to stringent requirements for safety, affordability, and sustainability over the decades that the rocket will be in operation. This paper will explore ways to fit this major development within the funding guidelines by using existing engine assets and hardware now in testing to meet a first launch by 2017. It will explain the SLS Program s long-range plan to keep the budget within bounds, yet evolve the 70 metric ton (t) initial lift capability to 130-t lift capability after the first two flights. To achieve the evolved configuration, advanced technologies must offer appropriate return on investment to be selected through a competitive process. For context, the SLS will be larger than the Saturn V that took 12 men on 6 trips for a total of 11 days on the lunar surface over 4 decades ago. Astronauts train for long-duration voyages on the International Space Station, but have not had transportation to go beyond Earth orbit in modern times, until now. NASA is refining its mission manifest, guided by U.S. Space Policy and the Global Exploration Roadmap. Launching the Orion Multi-Purpose Crew Vehicle s (MPCV s) first autonomous certification flight in 2017, followed by a crewed flight in 2021, the SLS will offer a robust way to transport international crews and the air, water, food, and equipment they need for extended trips to asteroids, Lagrange Points, and Mars. In addition, the SLS will accommodate

  18. Preliminary investigations on a NTP cargo shuttle for earth to moon orbit payload transfer based on a particle bed reactor

    International Nuclear Information System (INIS)

    Raepsaet, X.; Proust, E.; Gervaise, F.; Baraer, L.; Naury, S.; Linet, F.L.

    1995-01-01

    MAPS, a 3-year study program on NTP has recently been launched at CEA following the conclusions of a preliminary scoping study of an NTP system for earth to moon orbit cargo shuttle missions. This paper presents the main results of this scoping study, and gives an outline of the MAPS program. (authors). 5 figs., 11 tabs., 7 refs

  19. Preliminary investigations on a NTP cargo shuttle for earth to moon orbit payload transfer based on a particle bed reactor

    Energy Technology Data Exchange (ETDEWEB)

    Raepsaet, X; Proust, E; Gervaise, F; Baraer, L; Naury, S; Linet, F L [CEA Centre d` Etudes de Saclay, 91 - Gif-sur-Yvette (France). Dept. de Mecanique et de Technologie; Bresson, C F; Coriolis, C.C. de; Bergeron, I T.A.; Bourquin, L V; Clech, L V; Devaux, L V; Chevillot, L V; Augier, E V [EAMEA, 50 - Cherbourg (France)

    1995-12-01

    MAPS, a 3-year study program on NTP has recently been launched at CEA following the conclusions of a preliminary scoping study of an NTP system for earth to moon orbit cargo shuttle missions. This paper presents the main results of this scoping study, and gives an outline of the MAPS program. (authors). 5 figs., 11 tabs., 7 refs.

  20. Earth Satellite Population Instability: Underscoring the Need for Debris Mitigation

    Science.gov (United States)

    Liou, Jer-chyi; Johnson, N. L.

    2006-01-01

    A recent study by NASA indicates that the implementation of international orbital debris mitigation measures alone will not prevent a significant increase in the artificial Earth satellite population, beginning in the second half of this century. Whereas the focus of the aerospace community for the past 25 years has been on the curtailment of the generation of long-lived orbital debris, active remediation of the current orbital debris population should now be reconsidered to help preserve near-Earth space for future generations. In particular, we show in this paper that even if launch operations were to cease today, the population of space debris would continue to grow. Further, proposed remediation techniques do not appear to offer a viable solution. We therefore recommend that, while the aerospace community maintains the current debris-limiting mission regulations and postmission disposal procedures, future emphasis should be placed on finding new remediation technologies for solving this growing problem. Since the launch of Sputnik 1, space activities have created an orbital debris environment that poses increasing impact risks to existing space systems, including human space flight and robotic missions (1, 2). Currently, more than 9,000 Earth orbiting man-made objects (including many breakup fragments), with a combined mass exceeding 5 million kilograms, are tracked by the US Space Surveillance Network and maintained in the US satellite catalog (3-5). Three accidental collisions between cataloged satellites during the period from late 1991 to early 2005 have already been documented (6), although fortunately none resulted in the creation of large, trackable debris clouds. Several studies conducted during 1991-2001 demonstrated, with assumed future launch rates, the unintended growth potential of the Earth satellite population, resulting from random, accidental collisions among resident space objects (7-13). In some low Earth orbit (LEO) altitude regimes where

  1. Meteoroid Orbits from Observations

    Science.gov (United States)

    Campbell-Brown, Margaret

    2018-04-01

    Millions of orbits of meteoroids have been measured over the last few decades, and they comprise the largest sample of orbits of solar system bodies which exists. The orbits of these objects can shed light on the distribution and evolution of comets and asteroids in near-Earth space (e.g. Neslusan et al. 2016). If orbits can be measured at sufficiently high resolution, individual meteoroids can be traced back to their parent bodies and, in principle, even to their ejection time (Rudawska et al. 2012). Orbits can be measured with multi-station optical observations or with radar observations.The most fundamental measured quantities are the speed of the meteor and the two angles of the radiant, or point in the sky from which the meteor appears to come. There are many methods used to determine these from observations, but not all produce the most accurate results (Egal et al. 2017). These three measured quantities, along with the time and location of the observation, are sufficient to obtain an orbit (see, e.g., Clark & Wiegert 2011), but the measurements must be corrected for the deceleration of the meteoroid in the atmosphere before it was detected, the rotation of the Earth, and the gravitational attraction of the Earth (including higher order moments if great precision is necessary).Once meteor orbits have been determined, studies of the age and origin of meteor showers (Bruzzone et al., 2015), the parent bodies of sporadic sources (Pokorny et al. 2014), and the dynamics of the meteoroid complex as a whole can be constrained.Bruzzone, J. S., Brown, P., Weryk, R., Campbell-Brown, M., 2015. MNRAS 446, 1625.Clark, D., Wiegert, P., 2011. M&PS 46, 1217.Egal, A., Gural, P., Vaubaillon, J., Colas, F., Thuillot, W., 2017. Icarus 294, 43.Neslusan, L., Vaubaillon, J., Hajdukova, M., 2016. A&A 589, id.A100.Pokorny, P., Vokrouhlicky, D., Nesvorny, D., Campbell-Brown, M., Brown, P., 2014. ApJ 789, id.25.Rudawska, R., Vaubaillon, J., Atreya, P., 2012. A&A 541, id.A2

  2. NASA's Newest Orbital Debris Ground-based Telescope Assets: MCAT and UKIRT

    Science.gov (United States)

    Lederer, S.; Frith, J.; Pace, L. F.; Cowardin, H. M.; Hickson, P.; Glesne, T.; Maeda, R.; Buckalew, B.; Nishimoto, D.; Douglas, D.; Stansbery, E. G.

    2014-09-01

    these ground-based telescope assets will yield spectral coverage ranging from 0.3 25 microns, allowing orbital debris to be studied in depth across a wider wavelength range in the visible and IR than ever previously studied by ODPO. Located on opposite sides of the world and in opposite hemispheres, they offer access to nearly the entire GEO belt on any given night, allowing immediate coverage of nearly any time-critical break-up event. By expanding the methods for surveying, detecting, and characterizing orbital debris, we can better model the debris environment and ultimately gain insight into how to mitigate potential collisions for future missions. Acknowledgments: Special thanks to Matt Bold, Rick Kendrick, the UKIRT staff, the Joint Astronomy Centre, Lockheed Martin, and the University of Arizona, for their collaborative efforts toward modifying UKIRT to boldly venture inward in space to track tiny man-made objects orbiting the Earth.

  3. The spectacle of conservation. Doñana National Park in Man and the Earth (1979

    Directory of Open Access Journals (Sweden)

    Mònica Alcalá-Lorente

    2017-02-01

    Full Text Available By the end of the 1970s, four documentaries about Doñana National Park were broadcast within the National Spanish Television series Man and the Earth, directed by Félix Rodríguez de la Fuente. Through the account of the Park’s life cycle –each chapter matched each one of the year’s seasons–, these chapters were a celebration of the struggle to conserve the natural heritage, whose meaning was established in relation to a beautifully-produced representation of both nature and the natural sciences. This paper analyzes how, in a quite complex historical and political context, and through the spectacle of the success and fragility of Doñana National Park, Rodríguez de la Fuente represented sensitivity towards nature and the natural heritage, acquired through the study of the natural sciences, as a key element of modernization.

  4. Unexplored biophysical problem of manned flight to Mars

    Science.gov (United States)

    Avakyan, Sergey; Voronin, Nikolai; Kovalenok, Vladimir; Trchounian, Armen

    The presentation discusses so far unexplored biophysical problem of manned flight to the Mars, scheduled for the next decade. In long-term manned space flights on the orbital stations "Salyut-6" Soviet cosmonaut crews under the command of one of the co-authors (cosmonaut V.V. Kovalenok) had repeatedly observed the effect of certain geophysical conditions on the psychological state of each crew. These effects were coinciding with the increased intensity of global illumination in the upper ionosphere space on flight altitudes (300-360 km). It is important that, during all these periods, the geomagnetic pulsation's were completely absent. Previously a new but very important for long interplanetary expeditions problem of psychophysical state of the crew in the absence of alternating electromagnetic fields and radiation, including the ionosphere one, was first raised for evolutionarily adapted humanity. However, up to date, this subject, particularly during the long simulation experiments such as "Mars 500", which eliminates much of their value and contribution to the Mars mission, has almost no attention. Indeed, the obtained results have clearly shown that the cosmonaut crews in orbital flight, even deep one within geomagnetic sphere, might experience severe psychological discomfort, the nature of which is fully defined. This is the appearance of such rather unusual geophysical periods of different durations (from minutes to days) those are in the form of an almost complete lack of geomagnetic pulsations on the Earth. The aim is to confirm the need of considering possible pathological effects of the complete lack of rhythm forming, inherent for terrestrial environment geomagnetic pulsation's on psychological and physical state of the cosmonaut crew. This is important for the preparation and conducting the manned flights beyond the Earth's magnetosphere, particularly to the Mars. The influence of the presence of different types of geomagnetic pulsation's recorded by

  5. The feasibility and application of using gravitational energy to allow efficient travel between earth and Mars

    Science.gov (United States)

    King, O. L.; Avvento, Gennaro J.

    This paper discusses the feasibility and application of using gravitational energy attained in a planetary swing-by to control the trajectory of an interplanetary transfer vehicle (IPTV) - establishing nonstop round trip orbits between earth and Mars. Energy supplied by the swing-by process and supplemented by minor correction burns will allow efficient nonstop round trip travel between earth and Mars. The IPTV will have all the necessary support equipment to maintain the cargo (manned/unmanned) during transit. At the planetary 'landfall' points, the IPTV will not decelerate but will perform a swing-by maneuver returning to the planet of origin. Cargo elements will either depart or dock with the IPTV at the planetary approach asymptote. This will be the only component of the system to undergo propulsive maneuvers.

  6. Biosafety in manned space flight

    International Nuclear Information System (INIS)

    De Boever, P.

    2006-01-01

    The main goal of manned exploration is to achieve a prolonged stay in space, for example in an orbital station (such as the International Space Station (ISS)) or in planetary bases on the Moon and/or Mars. It goes without saying that such missions can only be realized when the astronaut's health and well-being is secured. In this respect, the characterization of the microbiological contamination on board spacecraft and orbital stations and the influence of cosmic radiation and microgravity are of paramount importance. Microbial contamination may originate from different sources and includes the initial contamination of space flight materials during manufacturing and assembly, the delivery of supplies to the orbital station, the supplies themselves, secondary contamination during the lifetime of the orbital station, the crew and any other biological material on board e.g. animals, plants, micro-organisms used in scientific experiments. Although most microorganisms do not threaten human health, it has been reported that in a confined environment, such as a space cabin, microorganisms may produce adverse effects on the optimal performance of the space crew and the integrity of the spacecraft or habitat. These effects range from infections, allergies, and toxicities to degradation of air and water supplies. Biodegradation of critical materials may result in system failure and this may jeopardize the crew. The research aims at monitoring the biological airborne and surface contamination during manned space flight. The ISS has been selected as primary test bed for this study. The majority of the investigations are being done by the Russian Institute of Biomedical Problems (IBMP), which is responsible for monitoring the biological contamination in the habitable compartments of the ISS for safety and hygienic reasons. Within the frame of a collaboration between IBMP and the European Space Agency (ESA), SCK-CEN is able to participate in the analyses

  7. Objectives of a prospective Ukrainian orbiter mission to the moon

    Science.gov (United States)

    Shkuratov, Yu. G.; Lytvynenko, L. M.; Shulga, V. M.; Yatskiv, Ya. S.; Vidmachenko, A. P.; Kislyulk, V. S.

    2003-06-01

    Ukraine has launch vehicles that are able to deliver about 300 kg to lunar orbit. A future Ukrainian lunar program may propose a polar orbiter. This orbiter should fill principal information gaps in our knowledge about the Moon after the Clementine and Lunar Prospector missions and future missions like Smart-1, Lunar-A, and Selene. We consider that this can be provided by radar studies of the Moon with supporting optical photopolarimetric observations from lunar polar orbit. These experiments allow one to better understand global structure of the lunar surface at a wide range of scales, from microns to kilometers. We propose three instruments for the prospective lunar orbiter. They are a synthetic aperture imaging radar, ground-penetrating radar, and imaging UV-spectropolarimeter. The main purpose of the synthetic aperture imaging radar experiment is to study with high-resolution (50 m) permanently shadowed sites in the lunar polar regions. These sites are cold traps for volatiles, and have a potential for resource utilization. Possible presence of water ice in the regolith in the sites makes them interesting for long-term manned bases on the Moon. Radar and optical imaging and mapping of other interesting regions could be also planned. Multi-frequency, multi-polarization sounding of the lunar surface with ground-penetrating radar can provide data about internal structure of the lunar surface from meters to several hundred meters deep. The ground-penetrating radar can be used for measuring megaregolith properties, detection of cryptomaria, and studies of internal structure of the largest craters. Modest spatial resolution (50 m) of the imaging UV-spectropolarimeter should provide total coverage (or coverage of a large portion) of the lunar surface in oblique viewing at large phase angles. Polarization degree at large (>90°) phase angles bears information about characteristic size of the regolith particles. Additional experiments could use the synthetic aperture

  8. The population of natural Earth satellites

    Science.gov (United States)

    Granvik, Mikael; Vaubaillon, Jeremie; Jedicke, Robert

    2012-03-01

    We have for the first time calculated the population characteristics of the Earth’s irregular natural satellites (NESs) that are temporarily captured from the near-Earth-object (NEO) population. The steady-state NES size-frequency and residence-time distributions were determined under the dynamical influence of all the massive bodies in the Solar System (but mainly the Sun, Earth, and Moon) for NEOs of negligible mass. To this end, we compute the NES capture probability from the NEO population as a function of the latter’s heliocentric orbital elements and combine those results with the current best estimates for the NEO size-frequency and orbital distribution. At any given time there should be at least one NES of 1-m diameter orbiting the Earth. The average temporarily-captured orbiter (TCO; an object that makes at least one revolution around the Earth in a co-rotating coordinate system) completes (2.88 ± 0.82) rev around the Earth during a capture event that lasts (286 ± 18) d. We find a small preference for capture events starting in either January or July. Our results are consistent with the single known natural TCO, 2006 RH120, a few-meter diameter object that was captured for about a year starting in June 2006. We estimate that about 0.1% of all meteors impacting the Earth were TCOs.

  9. Analysis of the Effect of UTI-UTC to High Precision Orbit Propagation

    Directory of Open Access Journals (Sweden)

    Dongseok Shin

    1999-12-01

    Full Text Available As the spatial resolution of remote sensing satellites becomes higher, very accurate determination of the position of a LEO (Low Earth Orbit satellite is demanding more than ever. Non-symmetric Earth gravity is the major perturbation force to LEO satellites. Since the orbit propagation is performed in the celestial frame while Earth gravity is defined in the terrestrial frame, it is required to convert the coordinates of the satellite from one to the other accurately. Unless the coordinate conversion between the two frames is performed accurately the orbit propagation calculates incorrect Earth gravitational force at a specific time instant, and hence, causes errors in orbit prediction. The coordinate conversion between the two frames involves precession, nutation, Earth rotation and polar motion. Among these factors, unpredictability and uncertainty of Earth rotation, called UTI-UTC, is the largest error source. In this paper, the effect of UTI-UTC on the accuracy of the LEO propagation is introduced, tested and analzed. Considering the maximum unpredictability of UTI-UTC, 0.9 seconds, the meaningful order of non-spherical Earth harmonic functions is derived.

  10. Orbiting objective lens telescope system and method

    International Nuclear Information System (INIS)

    Crooks, J.W. Jr.

    1984-01-01

    A large objective lens is placed in a highly eccentric orbit about the earth. The orbit and orientation of the lens are carefully chosen so that it focuses light or other radiation from a preselected astronomical object into an image which slowly moves across the surface of the earth. A row of optical sensing units is located on the surface of the earth so that the image focused by the orbiting objective lens will travel substantially perpendicularly across the row during an observation. Output data generated from the sensing units may be multiplexed and fed to a real time processor which produces display signals. Each of the sensing units provides one scan line of the image being observed. The display signals are fed to a suitable display device which produces a picture of the preselected astronomical object. The objective lens may comprise a large flexible Fresnel zone plate or a flexible convex lens carried by a bicycle wheel-type supporting structure. The lens and supporting structure may be unfolded from compact cargo configurations and rotated after being placed into orbit

  11. A man from planet earth a scientific novel

    CERN Document Server

    Genta, Giancarlo

    2016-01-01

    Sometime in the not-too-distant future ... unbeknownst to Earth, the Galaxy is home to a number of spacefaring societies. This confederation enforces a strict protocol forbidding any contact with civilizations that have not yet achieved both a substantial spacefaring capability and sufficient maturity to control the technology explosion before triggering their own extinction.   While this policy is intended to only bring in peaceful new members, matters change entirely when the confederation is threatened by some unknown entity - is the menace real or imagined?  The confederation decides to break with the rules and sends a delegate to Earth to hire one of the supposedly belligerent Earthlings to investigate and to revive the confederation’s long-unused starfleet. The Earthman agrees, but demands a high price: should he succeed, the confederation will have to accept Earth as a new member. As the threat becomes ever more acute, the question soon becomes which mission will prove harder - saving the confedera...

  12. EFFECT OF UV RADIATION ON THE SPECTRAL FINGERPRINTS OF EARTH-LIKE PLANETS ORBITING M STARS

    Energy Technology Data Exchange (ETDEWEB)

    Rugheimer, S. [Harvard Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Kaltenegger, L. [Carl Sagan Institute, Cornell University, Ithaca, NY 14853 (United States); Segura, A. [Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, México (Mexico); Linsky, J. [JILA, University of Colorado and NIST, 440 UCB, Boulder, CO 80309-0440 (United States); Mohanty, S. [Imperial College London, 1010 Blackett Lab, Prince Consort Road, London SW7 2AZ (United Kingdom)

    2015-08-10

    We model the atmospheres and spectra of Earth-like planets orbiting the entire grid of M dwarfs for active and inactive stellar models with T{sub eff} = 2300 K to T{sub eff} = 3800 K and for six observed MUSCLES M dwarfs with UV radiation data. We set the Earth-like planets at the 1 AU equivalent distance and show spectra from the visible to IR (0.4–20 μm) to compare detectability of features in different wavelength ranges with the James Webb Space Telescope and other future ground- and spaced-based missions to characterize exo-Earths. We focus on the effect of UV activity levels on detectable atmospheric features that indicate habitability on Earth, namely, H{sub 2}O, O{sub 3}, CH{sub 4}, N{sub 2}O, and CH{sub 3}Cl. To observe signatures of life—O{sub 2}/O{sub 3} in combination with reducing species like CH{sub 4}—we find that early and active M dwarfs are the best targets of the M star grid for future telescopes. The O{sub 2} spectral feature at 0.76 μm is increasingly difficult to detect in reflected light of later M dwarfs owing to low stellar flux in that wavelength region. N{sub 2}O, another biosignature detectable in the IR, builds up to observable concentrations in our planetary models around M dwarfs with low UV flux. CH{sub 3}Cl could become detectable, depending on the depth of the overlapping N{sub 2}O feature. We present a spectral database of Earth-like planets around cool stars for directly imaged planets as a framework for interpreting future light curves, direct imaging, and secondary eclipse measurements of the atmospheres of terrestrial planets in the habitable zone to design and assess future telescope capabilities.

  13. EFFECT OF UV RADIATION ON THE SPECTRAL FINGERPRINTS OF EARTH-LIKE PLANETS ORBITING M STARS

    International Nuclear Information System (INIS)

    Rugheimer, S.; Kaltenegger, L.; Segura, A.; Linsky, J.; Mohanty, S.

    2015-01-01

    We model the atmospheres and spectra of Earth-like planets orbiting the entire grid of M dwarfs for active and inactive stellar models with T eff = 2300 K to T eff = 3800 K and for six observed MUSCLES M dwarfs with UV radiation data. We set the Earth-like planets at the 1 AU equivalent distance and show spectra from the visible to IR (0.4–20 μm) to compare detectability of features in different wavelength ranges with the James Webb Space Telescope and other future ground- and spaced-based missions to characterize exo-Earths. We focus on the effect of UV activity levels on detectable atmospheric features that indicate habitability on Earth, namely, H 2 O, O 3 , CH 4 , N 2 O, and CH 3 Cl. To observe signatures of life—O 2 /O 3 in combination with reducing species like CH 4 —we find that early and active M dwarfs are the best targets of the M star grid for future telescopes. The O 2 spectral feature at 0.76 μm is increasingly difficult to detect in reflected light of later M dwarfs owing to low stellar flux in that wavelength region. N 2 O, another biosignature detectable in the IR, builds up to observable concentrations in our planetary models around M dwarfs with low UV flux. CH 3 Cl could become detectable, depending on the depth of the overlapping N 2 O feature. We present a spectral database of Earth-like planets around cool stars for directly imaged planets as a framework for interpreting future light curves, direct imaging, and secondary eclipse measurements of the atmospheres of terrestrial planets in the habitable zone to design and assess future telescope capabilities

  14. Glial heterotopia in an adult: A rare orbital mass

    Directory of Open Access Journals (Sweden)

    Divya Dabir Sundaresh

    2016-01-01

    Full Text Available Heterotopic glial tissue is very rare in the orbit. Our case was an adult, which is unique since most cases reported in literature involve children. We describe a case of a 60-year-old man who presented with an orbital mass, which histopathologically revealed heterotopic glial tissue.

  15. Reference Japanese man

    International Nuclear Information System (INIS)

    Tanaka, G.-I.; Kawamura, H.; Nakahara, Y.

    1979-01-01

    The weight of organs from autopsy cases of normal Japanese adults, children, and infants is presented for the purpose of approaching a Reference Japanese Man. The skeletal content and the daily intake of alkaline earth elements are given. A lower rate of transfer (K 2 ) to the thyroid gland of ingested radioiodine, as well as a remarkably shorter biological half-life than the data adopted by ICRP, is also proved as a result of this study. (author)

  16. The Viking Orbiter and its Mariner inheritance

    Science.gov (United States)

    Wolfe, A. E.; Norris, H. W.

    1975-01-01

    The orbiter system of the Viking spacecraft performs the functions of transporting the lander into orbit around Mars, surveying the proposed landing sites, relaying lander data to earth, and conducting independent scientific observations of Mars. The orbiter system is a semiautomatic, solar-powered, triaxially stabilized platform capable of making trajectory corrections and communicating with earth on S-band. Its instruments for visual imaging, detecting water vapor, and thermal mapping are mounted on a separate two-degree-of-freedom scan platform. Radio science is conducted at three frequencies, using the main S-band system, a separate X-band derived from the S-band, and the UHF one-way link with the lander.

  17. Prevalence of Earth-size planets orbiting Sun-like stars

    OpenAIRE

    Petigura, Erik A.; Howard, Andrew W.; Marcy, Geoffrey W.

    2013-01-01

    Determining whether Earth-like planets are common or rare looms as a touchstone in the question of life in the universe. We searched for Earth-size planets that cross in front of their host stars by examining the brightness measurements of 42,000 stars from National Aeronautics and Space Administration's Kepler mission. We found 603 planets, including 10 that are Earth size (1-2 Earth-radii) and receive comparable levels of stellar energy to that of Earth (within a factor of four). We account...

  18. Around 1500 near-Earth-asteroid orbits improved via EURONEAR

    Science.gov (United States)

    Vaduvescu, O.; Hudin, L.; Birlan, M.; Popescu, M.; Tudorica, A.; Toma, R.

    2014-07-01

    Born in 2006 in Paris, the European Near Earth Asteroids Research project (EURONEAR, euronear.imcce.fr) aims ''to study NEAs and PHAs using existing telescopes available to its network and hopefully in the future some automated dedicated 1--2 m facilities''. Although we believe the first aim is fulfilled, the second was not achieved yet, requiring serious commitment from the European NEA researchers and funding agencies. Mainly using free labor by about 30 students and amateur astronomers (from Romania, Chile, UK, France, etc), the PI backed up by his associates M. Birlan (IMCCE Paris) and J. Licandro (IAC Tenerife) and a few other astronomers of the EURONEAR network having access to a few telescopes are approaching around 1,500 observed NEAs whose orbits were improved based on our astrometric contributions. To achive this milestone, we used two main resources and a total of 15 facilities: i) Observing time obtained at 11 professional 1--4 m class telescopes (Chile, La Palma, France, Germany) plus 3 smaller 30--50 cm educational/public outreach telescopes (Romania and Germany) adding about 1,000 observed NEAs; and ii) astrometry obtained from data mining of 4 major image archives (ESO/MPG WFI, INT WFC, CFHTLS Megacam and Subaru SuprimeCam) adding about 500 NEAs recovered in archival images. Among the highlights, about 100 NEAs, PHAs and VIs were observed, recovered or precovered in archives at their second opposition (up to about 15 years away from discovery) or have their orbital arc much extended, and a few VIs and PHAs were eliminated. Incidentally, about 15,000 positions of almost 2,000 known MBAs were reported (mostly in the INT, ESO/MPG and Blanco large fields). About 40 new (one night) NEO candidates and more than 2,000 (one night) unknown MBAs were reported, including about 150 MBAs credited as EURONEAR discoveries. Based on the INT and Blanco data we derived some statistics about the MBA and NEA population observable with 2m and 4m telescopes, proposing a

  19. TELEMETRY AND TELECOMMAND SYSTEM OF LOW-EARTH-ORBIT MICROSATELLITE, KITSAT-1 AND 2

    Directory of Open Access Journals (Sweden)

    Sungheon Kim

    1996-06-01

    Full Text Available The telecommand system of KITSAT micorsatellite receives commands from ground stations or on-board computers. It decodes, validates and delivers commands to sub-system. The telemetry system is to collect, process and format satellite housekeeping and mission data for use by on-board computer and ground station. It is crucial for the telemetry and telecommand system to have high reliability since the spacecraft operation is mostly based on the function of this system. The telemetry and telecommand(TTC systems for KITSAT-1 and 2 had been developed under the consideratin of the space environment of Low-Earth-Orbit and the limited mass, volume and power of micorsatellite. Since both satellites were launched in August 1992 and September 1993 respectively, the have shown to be working successfully as well as the TTC systems on-board both satellites.

  20. Congenital orbital encephalocele, orbital dystopia, and exophthalmos.

    Science.gov (United States)

    Hwang, Kun; Kim, Han Joon

    2012-07-01

    We present here an exceedingly rare variant of a nonmidline basal encephalocele of the spheno-orbital type, and this was accompanied with orbital dystopia in a 56-year-old man. On examination, his left eye was located more inferolaterally than his right eye, and the patient said this had been this way since his birth. The protrusion of his left eye was aggravated when he is tired. His naked visual acuity was 0.7/0.3, and the ocular pressure was 14/12 mm Hg. The exophthalmometry was 10/14 to 16 mm. His eyeball motion was not restricted, yet diplopia was present in all directions. The distance from the midline to the medial canthus was 20/15 mm. The distance from the midline to the midpupillary line was 35/22 mm. The vertical dimension of the palpebral fissure was 12/9 mm. The height difference of the upper eyelid margin was 11 mm, and the height difference of the lower eyelid margin was 8 mm. Facial computed tomography and magnetic resonance imaging showed left sphenoid wing hypoplasia and herniation of the left anterior temporal pole and dura mater into the orbit, and this resulted into left exophthalmos and encephalomalacia in the left anterior temporal pole. To the best of our knowledge, our case is the second case of basal encephalocele and orbital dystopia.

  1. Solar cycle variation of interstellar neutral He, Ne, O density and pick-up ions along the Earth's orbit

    OpenAIRE

    Sokół, Justyna M.; Bzowski, Maciej; Kubiak, Marzena A.; Möbius, Eberhard

    2016-01-01

    We simulated the modulation of the interstellar neutral (ISN) He, Ne, and O density and pick-up ion (PUI) production rate and count rate along the Earth's orbit over the solar cycle from 2002 to 2013 to verify if solar cycle-related effects may modify the inferred ecliptic longitude of the ISN inflow direction. We adopted the classical PUI model with isotropic distribution function and adiabatic cooling, modified by time- and heliolatitude-dependent ionization rates and non-zero injection spe...

  2. THE NASA-UC ETA-EARTH PROGRAM. II. A PLANET ORBITING HD 156668 WITH A MINIMUM MASS OF FOUR EARTH MASSES

    International Nuclear Information System (INIS)

    Howard, Andrew W.; Marcy, Geoffrey W.; Isaacson, Howard; Johnson, John Asher; Fischer, Debra A.; Wright, Jason T.; Henry, Gregory W.; Valenti, Jeff A.; Anderson, Jay; Piskunov, Nikolai E.

    2011-01-01

    We report the discovery of HD 156668 b, an extrasolar planet with a minimum mass of M P sin i = 4.15 M + . This planet was discovered through Keplerian modeling of precise radial velocities from Keck-HIRES and is the second super-Earth to emerge from the NASA-UC Eta-Earth Survey. The best-fit orbit is consistent with circular and has a period of P = 4.6455 days. The Doppler semi-amplitude of this planet, K = 1.89 m s -1 , is among the lowest ever detected, on par with the detection of GJ 581 e using HARPS. A longer period (P ∼ 2.3 years), low-amplitude signal of unknown origin was also detected in the radial velocities and was filtered out of the data while fitting the short-period planet. Additional data are required to determine if the long-period signal is due to a second planet, stellar activity, or another source. Photometric observations using the Automated Photometric Telescopes at Fairborn Observatory show that HD 156668 (an old, quiet K3 dwarf) is photometrically constant over the radial velocity period to 0.1 mmag, supporting the existence of the planet. No transits were detected down to a photometric limit of ∼3 mmag, ruling out transiting planets dominated by extremely bloated atmospheres, but not precluding a transiting solid/liquid planet with a modest atmosphere.

  3. Exposure of phototrophs to 548 days in low Earth orbit: microbial selection pressures in outer space and on early earth.

    Science.gov (United States)

    Cockell, Charles S; Rettberg, Petra; Rabbow, Elke; Olsson-Francis, Karen

    2011-10-01

    An epilithic microbial community was launched into low Earth orbit, and exposed to conditions in outer space for 548 days on the European Space Agency EXPOSE-E facility outside the International Space Station. The natural phototroph biofilm was augmented with akinetes of Anabaena cylindrica and vegetative cells of Nostoc commune and Chroococcidiopsis. In space-exposed dark controls, two algae (Chlorella and Rosenvingiella spp.), a cyanobacterium (Gloeocapsa sp.) and two bacteria associated with the natural community survived. Of the augmented organisms, cells of A. cylindrica and Chroococcidiopsis survived, but no cells of N. commune. Only cells of Chroococcidiopsis were cultured from samples exposed to the unattenuated extraterrestrial ultraviolet (UV) spectrum (>110 nm or 200 nm). Raman spectroscopy and bright-field microscopy showed that under these conditions the surface cells were bleached and their carotenoids were destroyed, although cell morphology was preserved. These experiments demonstrate that outer space can act as a selection pressure on the composition of microbial communities. The results obtained from samples exposed to >200 nm UV (simulating the putative worst-case UV exposure on the early Earth) demonstrate the potential for epilithic colonization of land masses during that time, but that UV radiation on anoxic planets can act as a strong selection pressure on surface-dwelling organisms. Finally, these experiments have yielded new phototrophic organisms of potential use in biomass and oxygen production in space exploration.

  4. NASA's Earth Science Flight Program overview

    Science.gov (United States)

    Neeck, Steven P.; Volz, Stephen M.

    2011-11-01

    NASA's Earth Science Division (ESD) conducts pioneering work in Earth system science, the interdisciplinary view of Earth that explores the interaction among the atmosphere, oceans, ice sheets, land surface interior, and life itself that has enabled scientists to measure global and climate changes and to inform decisions by governments, organizations, and people in the United States and around the world. The ESD makes the data collected and results generated by its missions accessible to other agencies and organizations to improve the products and services they provide, including air quality indices, disaster management, agricultural yield projections, and aviation safety. In addition to four missions now in development and 14 currently operating on-orbit, the ESD is now developing the first tier of missions recommended by the 2007 Earth Science Decadal Survey and is conducting engineering studies and technology development for the second tier. Furthermore, NASA's ESD is planning implementation of a set of climate continuity missions to assure availability of key data sets needed for climate science and applications. These include a replacement for the Orbiting Carbon Observatory (OCO), OCO-2, planned for launch in 2013; refurbishment of the SAGE III atmospheric chemistry instrument to be hosted by the International Space Station (ISS) as early as 2014; and the Gravity Recovery and Climate Experiment Follow-On (GRACE FO) mission scheduled for launch in 2016. The new Earth Venture (EV) class of missions is a series of uncoupled, low to moderate cost, small to medium-sized, competitively selected, full orbital missions, instruments for orbital missions of opportunity, and sub-orbital projects.

  5. Resistance of CFRP structures to environmental degradation in low Earth orbit

    Science.gov (United States)

    Suliga, Agnieszka

    Within this study, a development of a protection strategy for ultra-thin CFRP structures from degrading effects of low Earth orbit (LEO) is presented. The proposed strategy involves an application of a modified epoxy resin system on outer layers of the structure, which is cycloaliphatic in its chemical character and reinforced with POSS nanoparticles. The core of the CFRP structure is manufactured using a highly aromatic epoxy resin system which provides excellent mechanical properties, however, its long-term ageing performance in space is not satisfactory, and hence a surface treatment is required to improve its longevity. The developed resin system presented in this thesis is a hybrid material, designed in such a way that its individual constituents each contribute to combating the detrimental effects of radiation, atomic oxygen (AO), temperature extremes and vacuum induced outgassing of exposed material surfaces while operating in LEO. The cycloaliphatic nature of the outer epoxy increases UV resistance and the embedded silicon nanoparticles improve AO and thermal stability. During the study, a material characterization of the developed cycloaliphatic epoxy resins was performed including the effects of nanoparticles on morphology, curing behaviour, thermal-mechanical properties and surface chemistry. Following on that, the efficacy of the modified resin system on space-like resistance was studied. It was found that when the ultra-thin CFRP structures are covered with the developed resin system, their AO resistance is approximately doubled, UV susceptibility decreased by 80% and thermal stability improved by 20%. Following on the successful launch of the InflateSail mission earlier this year, which demonstrated a sail deployment and a controlled de-orbiting, the findings of this study are of importance for the future generation of similar, but significantly longer missions. Ensuring resistance of CFRP structures in a highly corrosive LEO environment is a critical

  6. Feasibility Study for a Near Term Demonstration of Laser-Sail Propulsion from the Ground to Low Earth Orbit

    Science.gov (United States)

    Montgomery, Edward E., IV; Johnson, Les; Thomas, Herbert D.

    2016-01-01

    This paper adds to the body of research related to the concept of propellant-less in-space propulsion utilizing an external high energy laser (HEL) to provide momentum to an ultra-lightweight (gossamer) spacecraft. It has been suggested that the capabilities of Space Situational Awareness assets and the advanced analytical tools available for fine resolution orbit determination make it possible to investigate the practicalities of a ground to Low Earth Orbit (LEO) demonstration at delivered power levels that only illuminate a spacecraft without causing damage to it. The degree to which this can be expected to produce a measurable change in the orbit of a low ballistic coefficient spacecraft is investigated. Key system characteristics and estimated performance are derived for a near term mission opportunity involving the LightSail 2 spacecraft and laser power levels modest in comparison to those proposed previously by Forward, Landis, or Marx. [1,2,3] A more detailed investigation of accessing LightSail 2 from Santa Rosa Island on Eglin Air Force Base on the United States coast of the Gulf of Mexico is provided to show expected results in a specific case.

  7. On a model simulating lack of hydraulic connection between a man ...

    Indian Academy of Sciences (India)

    The idea that a direct hydraulic connection between a man-made reservoir and the foci of postimpoundment earthquakes may not exist at all sites is eminently credible on geological grounds. Our aim is to provide a simple earth model and related theory for use during investigations of earthquakes near new man-made ...

  8. Global communication using a constellation of low earth meridian orbits

    Science.gov (United States)

    Oli, P. V. S.; Nagarajan, N.; Rayan, H. R.

    1993-07-01

    The concept of 'meridian orbits' is briefly reviewed. It is shown that, if a satellite in the meridian orbit makes an odd number of revolutions per day, then the satellite passes over the same set of meridians twice a day. Satellites in such orbits pass over the same portion of the sky twice a day and every day. This enables a user to adopt a programmed mode of tracking, thereby avoiding a computational facility for orbit prediction, look angle generation, and auto tracking. A constellation of 38 or more satellites placed in a 1200 km altitude circular orbit is favorable for global communications due to various factors. It is shown that appropriate phasing in right ascension of the ascending node and mean anomaly results in a constellation, wherein each satellite appears over the user's horizon one satellite after another. Visibility and coverage plots are provided to verify the continuous coverage.

  9. Astronaut John Glenn Enters Friendship 7

    Science.gov (United States)

    1962-01-01

    Astronaut John Glenn enters the Mercury spacecraft, Friendship 7, prior to the launch of MA-6 on February 20, 1961 and became the first American who orbited the Earth. The MA-6 mission was the first manned orbital flight boosted by the Mercury-Atlas vehicle, a modified Atlas ICBM (Intercontinental Ballistic Missile), lasted for five hours, and orbited the Earth three times.

  10. Feasibility analysis of cislunar flight using the Shuttle Orbiter

    Science.gov (United States)

    Haynes, Davy A.

    1991-01-01

    A first order orbital mechanics analysis was conducted to examine the possibility of utilizing the Space Shuttle Orbiter to perform payload delivery missions to lunar orbit. In the analysis, the earth orbit of departure was constrained to be that of Space Station Freedom. Furthermore, no enhancements of the Orbiter's thermal protection system were assumed. Therefore, earth orbit insertion maneuvers were constrained to be all propulsive. Only minimal constraints were placed on the lunar orbits and no consideration was given to possible landing sites for lunar surface payloads. The various phases and maneuvers of the mission are discussed for both a conventional (Apollo type) and an unconventional mission profile. The velocity impulses needed, and the propellant masses required are presented for all of the mission maneuvers. Maximum payload capabilities were determined for both of the mission profiles examined. In addition, other issues relating to the feasibility of such lunar shuttle missions are discussed. The results of the analysis indicate that the Shuttle Orbiter would be a poor vehicle for payload delivery missions to lunar orbit.

  11. Health management and controls for Earth-to-orbit propulsion systems

    Science.gov (United States)

    Bickford, R. L.

    1995-03-01

    Avionics and health management technologies increase the safety and reliability while decreasing the overall cost for Earth-to-orbit (ETO) propulsion systems. New ETO propulsion systems will depend on highly reliable fault tolerant flight avionics, advanced sensing systems and artificial intelligence aided software to ensure critical control, safety and maintenance requirements are met in a cost effective manner. Propulsion avionics consist of the engine controller, actuators, sensors, software and ground support elements. In addition to control and safety functions, these elements perform system monitoring for health management. Health management is enhanced by advanced sensing systems and algorithms which provide automated fault detection and enable adaptive control and/or maintenance approaches. Aerojet is developing advanced fault tolerant rocket engine controllers which provide very high levels of reliability. Smart sensors and software systems which significantly enhance fault coverage and enable automated operations are also under development. Smart sensing systems, such as flight capable plume spectrometers, have reached maturity in ground-based applications and are suitable for bridging to flight. Software to detect failed sensors has reached similar maturity. This paper will discuss fault detection and isolation for advanced rocket engine controllers as well as examples of advanced sensing systems and software which significantly improve component failure detection for engine system safety and health management.

  12. Myoepithelial carcinoma of the orbit: a clinicopathological and histopathological study

    DEFF Research Database (Denmark)

    Tran, Thuy Linh; Broholm, H; Daugaard, Søren

    2010-01-01

    Two cases of invasive myoepithelial carcinoma arising from the paranasal sinuses and invading the orbit are presented. Patient 1, a 53-year-old man, had a 3-month history of proptosis, pain and epiphora of the right eye. The second patient, a 24-year-old man, had for a week been complaining of pr...

  13. Stable orbits for lunar landing assistance

    Science.gov (United States)

    Condoleo, Ennio; Cinelli, Marco; Ortore, Emiliano; Circi, Christian

    2017-10-01

    To improve lunar landing performances in terms of mission costs, trajectory determination and visibility the use of a single probe located over an assistance orbit around the Moon has been taken into consideration. To this end, the properties of two quasi-circular orbits characterised by a stable behaviour of semi-major axis, eccentricity and inclination have been investigated. The analysis has demonstrated the possibility of using an assistance probe, located over one of these orbits, as a relay satellite between lander and Earth, even in the case of landings on the far side of the Moon. A comparison about the accuracy in retrieving the lander's state with respect to the use of a probe located in the Lagrangian point L2 of the Earth-Moon system has also been carried out.

  14. On a model simulating lack of hydraulic connection between a man ...

    Indian Academy of Sciences (India)

    The idea that a direct hydraulic connection between a man-made reservoir and the foci of post- impoundment earthquakes may not exist at all sites is eminently credible on geological grounds. Our aim is to provide a simple earth model and related theory for use during investigations of earthquakes near new man-made ...

  15. Ariane Transfer Vehicle in service of man in orbit

    Science.gov (United States)

    Deutscher, N.; Schefold, K.; Cougnet, C.

    1988-10-01

    The Ariane Transfer Vehicle (ATV), an unmanned propulsion system that is designed to be carried by the Ariane 5 launch vehicle, will undertake the logistical support required by the International Space Station and the Man-Tended Free Flyer, carrying both pressurized and unpressurized cargo to these spacecraft and carrying away wastes. The ATV is an expendable vehicle, disposed of by burn-up during reentry, and will be available for initial operations in 1996. In order to minimize development costs and recurrent costs, the ATV design will incorporate existing hardware and software.

  16. STS-39 Earth observation of Earth's limb at sunset shows atmospheric layers

    Science.gov (United States)

    1991-01-01

    STS-39 Earth observation taken aboard Discovery, Orbiter Vehicle (OV) 103, shows the Earth's limb at sunset with numerous atmospheric scattering layers highlighted. The layers consist of fine particles suspended in very stable layers of the atmosphere. The layers act as a prism for the sunlight.

  17. Relativity mission with two counter-orbiting polar satellites

    International Nuclear Information System (INIS)

    Van Patten, R.A.; Everitt, C.W.F.

    1975-01-01

    In 1918, J. Lense and H. Thirring calculated that a moon in orbit around a massive rotating planet would experience a nodal dragging effect due to general relativity. An experiment to measure this effect with two counter-orbiting drag-free satellites in polar earth orbit is described. For a 2 1 / 2 year experiment, the measurement accuracy should approach 1 percent. In addition to precision tracking data from existing ground stations, satellite-to-satellite Doppler ranging data are taken at points of passing near the poles. New geophysical information on both earth harmonics and tidal effects is inherent in the polar ranging data. (auth)

  18. Ground Contact Analysis for Korea’s Fictitious Lunar Orbiter Mission

    Directory of Open Access Journals (Sweden)

    Young-Joo Song

    2013-12-01

    Full Text Available In this research, the ground contact opportunity for the fictitious low lunar orbiter is analyzed to prepare for a future Korean lunar orbiter mission. The ground contact opportunity is basically derived from geometrical relations between the typical ground stations at the Earth, the relative positions of the Earth and Moon, and finally, the lunar orbiter itself. Both the cut-off angle and the orbiter’s Line of Sight (LOS conditions (weather orbiter is located at near or far side of the Moon seen from the Earth are considered to determine the ground contact opportunities. Four KOMPSAT Ground Stations (KGSs are assumed to be Korea’s future Near Earth Networks (NENs to support lunar missions, and world-wide separated Deep Space Networks (DSNs are also included during the contact availability analysis. As a result, it is concluded that about 138 times of contact will be made between the orbiter and the Daejeon station during 27.3 days of prediction time span. If these contact times are converted into contact duration, the duration is found to be about 8.55 days, about 31.31% of 27.3 days. It is discovered that selected four KGSs cannot provide continuous tracking of the lunar orbiter, meaning that international collaboration is necessary to track Korea’s future lunar orbiter effectively. Possible combinations of world-wide separated DSNs are also suggested to compensate for the lack of contact availability with only four KGSs, as with primary and backup station concepts. The provided algorithm can be easily modified to support any type of orbit around the Moon, and therefore, the presented results could aid further progress in the design field of Korea’s lunar orbiter missions.

  19. Emblem for the third manned Skylab mission - Skylab 4

    Science.gov (United States)

    1973-01-01

    This is the emblem for the third manned Skylab mission. It will be a mission of up to 56 days. The symbols in the patch refer to the three major areas of investigation proposed in the mission. The tree represents man's natural environment and relates directly to the Skylab mission objectives of advancing the study of Earth resources. The hydrogen atom, as the basic building block of the universe, represents man's exploration of the physical world, his application of knowledge, and his development of technology. Since the Sun is composed primarily of hydrogen, it is appropriate that the symbol refers to the solar physics mission objectives. The human silhouette represents mankind and the human capacity to direct technology with a wisdom tempered by regard for his natural environment. It also directly relates to the Skylab medical studies of man himself. The rainbow, adopted from the Biblical story of the flood, symbolizes the promise that is offered man. It embraces man and extends to t

  20. Two-craft Coulomb formation study about circular orbits and libration points

    Science.gov (United States)

    Inampudi, Ravi Kishore

    This dissertation investigates the dynamics and control of a two-craft Coulomb formation in circular orbits and at libration points; it addresses relative equilibria, stability and optimal reconfigurations of such formations. The relative equilibria of a two-craft tether formation connected by line-of-sight elastic forces moving in circular orbits and at libration points are investigated. In circular Earth orbits and Earth-Moon libration points, the radial, along-track, and orbit normal great circle equilibria conditions are found. An example of modeling the tether force using Coulomb force is discussed. Furthermore, the non-great-circle equilibria conditions for a two-spacecraft tether structure in circular Earth orbit and at collinear libration points are developed. Then the linearized dynamics and stability analysis of a 2-craft Coulomb formation at Earth-Moon libration points are studied. For orbit-radial equilibrium, Coulomb forces control the relative distance between the two satellites. The gravity gradient torques on the formation due to the two planets help stabilize the formation. Similar analysis is performed for along-track and orbit-normal relative equilibrium configurations. Where necessary, the craft use a hybrid thrusting-electrostatic actuation system. The two-craft dynamics at the libration points provide a general framework with circular Earth orbit dynamics forming a special case. In the presence of differential solar drag perturbations, a Lyapunov feedback controller is designed to stabilize a radial equilibrium, two-craft Coulomb formation at collinear libration points. The second part of the thesis investigates optimal reconfigurations of two-craft Coulomb formations in circular Earth orbits by applying nonlinear optimal control techniques. The objective of these reconfigurations is to maneuver the two-craft formation between two charged equilibria configurations. The reconfiguration of spacecraft is posed as an optimization problem using the

  1. Wind and Temperature Spectrometry of the Upper Atmosphere in Low-Earth Orbit

    Science.gov (United States)

    Herrero, Federico

    2011-01-01

    Wind and Temperature Spectrometry (WATS) is a new approach to measure the full wind vector, temperature, and relative densities of major neutral species in the Earth's thermosphere. The method uses an energy-angle spectrometer moving through the tenuous upper atmosphere to measure directly the angular and energy distributions of the air stream that enters the spectrometer. The angular distribution gives the direction of the total velocity of the air entering the spectrometer, and the energy distribution gives the magnitude of the total velocity. The wind velocity vector is uniquely determined since the measured total velocity depends on the wind vector and the orbiting velocity vector. The orbiting spectrometer moves supersonically, Mach 8 or greater, through the air and must point within a few degrees of its orbital velocity vector (the ram direction). Pointing knowledge is critical; for example, pointing errors 0.1 lead to errors of about 10 m/s in the wind. The WATS method may also be applied without modification to measure the ion-drift vector, ion temperature, and relative ion densities of major ionic species in the ionosphere. In such an application it may be called IDTS: Ion-Drift Temperature Spectrometry. A spectrometer-based coordinate system with one axis instantaneously pointing along the ram direction makes it possible to transform the Maxwellian velocity distribution of the air molecules to a Maxwellian energy-angle distribution for the molecular flux entering the spectrometer. This implementation of WATS is called the gas kinetic method (GKM) because it is applied to the case of the Maxwellian distribution. The WATS method follows from the recognition that in a supersonic platform moving at 8,000 m/s, the measurement of small wind velocities in the air on the order of a few 100 m/s and less requires precise knowledge of the angle of incidence of the neutral atoms and molecules. The same is true for the case of ion-drift measurements. WATS also

  2. The Characterization of Non-Gravitational Perturbations That Act on Near-Earth Asteroid Orbits

    Science.gov (United States)

    Margot, Jean-Luc; Greenberg, Adam H.; Verma, Ashok K.; Taylor, Patrick A.

    2017-10-01

    The Yarkovsky effect is a thermal process acting upon the orbits of small celestial bodies which can cause these orbits to slowly expand or contract with time. The effect is subtle -- typical drift rates lie near 1e-4 au/My for a ~1 km diameter object -- and is thus generally difficult to measure. However, objects with long observation intervals, as well as objects with radar detections, serve as excellent candidates for the observation of this effect.We analyzed both optical and radar astrometry for all numbered Near-Earth Asteroids (NEAs), as well as several un-numbered NEAs. In order to quantify the likelihood of Yarkovsky detections, we developed a metric based on the quality of Yarkovsky fits as compared to that of gravity-only fits. Based on the metric results, we report 167 objects with measured Yarkovsky drifts.Our Yarkovsky sample is the largest published set of such detections, and presents an opportunity to examine the physical properties of these NEAs and the Yarkovsky effect in a statistical manner. In particular, we confirm the Yarkovsky effect's theoretical size dependence of 1/D, where D is diameter. We also examine the efficiency with which this effect converts absorbed light into orbital drift. Using our set of 167 objects, we find typical efficiences of around 5%. This efficiency can be used to place bounds on spin and thermal properties. We report the ratio of positive to negative drift rates and interpret this ratio in terms of prograde/retrograde rotators and main belt escape mechanisms. The observed ratio has a probability of 1 in 9 million of occurring by chance, which confirms the presence of a non-gravitational influence. We examine how the presence of radar data affect the strength and precision of our detections. We find that, on average, the precision of radar+optical detections improves by a factor of approximately 1.6 for each additional apparition with ranging data compared to that of optical-only solutions.

  3. Near-Earth asteroids: Metals occurrence, extraction, and fabrication

    Science.gov (United States)

    Westfall, Richard

    Near-earth asteroids occur in three principle types of orbits: Amor, Apollo, and Aten. Amor asteroids make relatively close (within 0.3 AU) approaches to the earth's orbit, but do not actually overlap it. Apollo asteroids spend most of their time outside the earth's orbital path, but at some point of close approach to the sun, they cross the orbit of the earth. Aten asteroids are those whose orbits remain inside the earth's path for the majority of their time, with semi-major axes less than 0.1 AU. Near-earth orbit asteroids include: stones, stony-irons, irons, carbonaceous, and super-carbonaceous. Metals within these asteroids include: iron, nickel, cobalt, the platinum group, aluminum, titanium, and others. Focus is on the extraction of ferrous and platinum group metals from the stony-iron asteroids, and the iron asteroids. Extraction of the metal fraction can be accomplished through the use of tunnel-boring-machines (TBM) in the case of the stony-irons. The metals within the story-iron asteroids occur as dispersed granules, which can be separated from the stony fraction through magnetic and gaseous digestion separation techniques. The metal asteroids are processes by drilling and gaseous digestion or by gaseous digestion alone. Manufacturing of structures, housings, framing networks, pressure vessels, mirrors, and other products is accomplished through the chemical vapor deposition (CVD) of metal coating on advanced composites and on the inside of contour-defining inflatables (CDI). Metal coatings on advanced composites provide: resistance to degradation in the hostile environments of space; superior optical properties; superior heat dissipation; service as wear coatings; and service as evidential coatings. Metal coatings on the inside of CDI produce metal load-bearing products. Fibers such as graphite, kevlar, glass, ceramic, metal, etc., can be incorporated in the metal coatings on the inside of CDI producing metal matrix products which exhibit high strength

  4. Terrestrial planet formation in the presence of migrating super-Earths

    International Nuclear Information System (INIS)

    Izidoro, André; Morbidelli, Alessandro; Raymond, Sean N.

    2014-01-01

    Super-Earths with orbital periods less than 100 days are extremely abundant around Sun-like stars. It is unlikely that these planets formed at their current locations. Rather, they likely formed at large distances from the star and subsequently migrated inward. Here we use N-body simulations to study the effect of super-Earths on the accretion of rocky planets. In our simulations, one or more super-Earths migrate inward through a disk of planetary embryos and planetesimals embedded in a gaseous disk. We tested a wide range of migration speeds and configurations. Fast-migrating super-Earths (τ mig ∼ 0.01-0.1 Myr) only have a modest effect on the protoplanetary embryos and planetesimals. Sufficient material survives to form rocky, Earth-like planets on orbits exterior to the super-Earths'. In contrast, slowly migrating super-Earths shepherd rocky material interior to their orbits and strongly deplete the terrestrial planet-forming zone. In this situation any Earth-sized planets in the habitable zone are extremely volatile-rich and are therefore probably not Earth-like.

  5. Theory and design methods of special space orbits

    CERN Document Server

    Zhang, Yasheng; Zhou, Haijun

    2017-01-01

    This book focuses on the theory and design of special space orbits. Offering a systematic and detailed introduction to the hovering orbit, spiral cruising orbit, multi-target rendezvous orbit, initiative approaching orbit, responsive orbit and earth pole-sitter orbit, it also discusses the concept, theory, design methods and application of special space orbits, particularly the design and control method based on kinematics and astrodynamics. In addition the book presents the latest research and its application in space missions. It is intended for researchers, engineers and postgraduates, especially those working in the fields of orbit design and control, as well as space-mission planning and research.

  6. Migration-driven diversity of super-Earth compositions

    Science.gov (United States)

    Raymond, Sean N.; Boulet, Thibault; Izidoro, Andre; Esteves, Leandro; Bitsch, Bertram

    2018-06-01

    A leading model for the origin of super-Earths proposes that planetary embryos migrate inward and pile up on close-in orbits. As large embryos are thought to preferentially form beyond the snow line, this naively predicts that most super-Earths should be very water-rich. Here we show that the shortest-period planets formed in the migration model are often purely rocky. The inward migration of icy embryos through the terrestrial zone accelerates the growth of rocky planets via resonant shepherding. We illustrate this process with a simulation that provided a match to the Kepler-36 system of two planets on close orbits with very different densities. In the simulation, two super-Earths formed in a Kepler-36-like configuration; the inner planet was pure rock while the outer one was ice-rich. We conclude from a suite of simulations that the feeding zones of close-in super-Earths are likely to be broad and disconnected from their final orbital radii.

  7. Production of activation products in space-craft components by protons in low earth orbit

    International Nuclear Information System (INIS)

    Normand, E.; Johnson, M.L.

    1986-01-01

    A spacecraft orbiting the Earth through trapped radiation belts will be subject to an induced effect as well as to the direct irradiation by the protons and electrons of the trapped belts. This induced effect is activation of the spacecraft materials by the trapped belt protons. This activation will produce many radioisotopes having half-lives ranging from seconds to millions of years, and emitting various types of radiation. Of primary concern are radioisotopes that emit gamma rays and have half-lives of several years or less. Cross-section data sets are currently being compiled for proton-induced activation products by the Los Alamos National Laboratory. Despite uncertainties in cross-section data, it is instructive to illustrate the magnitude of activation levels and the resulting dose rates calculated in an approximate manner. A number of simplifying assumptions are made

  8. Handover aspects for a Low Earth Orbit (LEO) CDMA Land Mobile Satellite (LMS) system

    Science.gov (United States)

    Carter, P.; Beach, M. A.

    1993-01-01

    This paper addresses the problem of handoff in a land mobile satellite (LMS) system between adjacent satellites in a low earth orbit (LEO) constellation. In particular, emphasis is placed on the application of soft handoff in a direct sequence code division multiple access (DS-CDMA) LMS system. Soft handoff is explained in terms of terrestrial macroscopic diversity, in which signals transmitted via several independent fading paths are combined to enhance the link quality. This concept is then reconsidered in the context of a LEO LMS system. A two-state Markov channel model is used to simulate the effects of shadowing on the communications path from the mobile to each satellite during handoff. The results of the channel simulation form a platform for discussion regarding soft handoff, highlighting the potential merits of the scheme when applied in a LEO LMS environment.

  9. Cephalic Tetanus from Penetrating Orbital Wound

    Directory of Open Access Journals (Sweden)

    Eloïse Guyennet

    2009-01-01

    Full Text Available Tetanus is a neurologic disorder caused by tetanospasmin, a protein toxin elaborated by Clostridium tetani. Cephalic tetanus is a localized form of the disease causing trismus and dysfunction of cranial nerves. We report the case of a man who presented with facial trauma, complete ophthalmoplegia, exophthalmos, areactive mydriasis, and periorbital hematoma. An orbital CT revealed air bubbles in the right orbital apex. The patient was given a tetanus toxoid booster and antibiotherapy. After extraction of a wooden foreign body, the patient developed right facial nerve palsy, disorders of swallowing, contralateral III cranial nerve palsy, and trismus. Only one case of cephalic tetanus from penetrating orbital wound has been reported in literature 20 years ago. When a patient presents with an orbital wound with ophthalmoplegia and signs of anaerobic infection, cephalic tetanus should be ruled out.

  10. The Cost of Jointness: Insights from Environmental Monitoring Systems in Low-Earth Orbit

    Energy Technology Data Exchange (ETDEWEB)

    Dwyer, Morgan Maeve [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2014-09-01

    This report summarizes the results of doctoral research that explored the cost impact of acquiring complex government systems jointly. The report begins by reviewing recent evidence that suggests that joint programs experience greater cost growth than non-joint programs. It continues by proposing an alternative approach for studying cost growth on government acquisition programs and demonstrates the utility of this approach by applying it to study the cost of jointness on three past programs that developed environmental monitoring systems for low-Earth orbit. Ultimately, the report concludes that joint programs' costs grow when the collaborating government agencies take action to retain or regain their autonomy. The report provides detailed qualitative and quantitative data in support of this conclusion and generalizes its findings to other joint programs that were not explicitly studied here. Finally, it concludes by presenting a quantitative model that assesses the cost impacts of jointness and by demonstrating how government agencies can more effectively architect joint programs in the future.

  11. Modelling the near-Earth space environment using LDEF data

    Science.gov (United States)

    Atkinson, Dale R.; Coombs, Cassandra R.; Crowell, Lawrence B.; Watts, Alan J.

    1992-01-01

    Near-Earth space is a dynamic environment, that is currently not well understood. In an effort to better characterize the near-Earth space environment, this study compares the results of actual impact crater measurement data and the Space Environment (SPENV) Program developed in-house at POD, to theoretical models established by Kessler (NASA TM-100471, 1987) and Cour-Palais (NASA SP-8013, 1969). With the continuing escalation of debris there will exist a definite hazard to unmanned satellites as well as manned operations. Since the smaller non-trackable debris has the highest impact rate, it is clearly necessary to establish the true debris environment for all particle sizes. Proper comprehension of the near-Earth space environment and its origin will permit improvement in spacecraft design and mission planning, thereby reducing potential disasters and extreme costs. Results of this study directly relate to the survivability of future spacecraft and satellites that are to travel through and/or reside in low Earth orbit (LEO). More specifically, these data are being used to: (1) characterize the effects of the LEO micrometeoroid an debris environment on satellite designs and components; (2) update the current theoretical micrometeoroid and debris models for LEO; (3) help assess the survivability of spacecraft and satellites that must travel through or reside in LEO, and the probability of their collision with already resident debris; and (4) help define and evaluate future debris mitigation and disposal methods. Combined model predictions match relatively well with the LDEF data for impact craters larger than approximately 0.05 cm, diameter; however, for smaller impact craters, the combined predictions diverge and do not reflect the sporadic clouds identified by the Interplanetary Dust Experiment (IDE) aboard LDEF. The divergences cannot currently be explained by the authors or model developers. The mean flux of small craters (approximately 0.05 cm diameter) is

  12. Resonant Orbital Dynamics in LEO Region: Space Debris in Focus

    Directory of Open Access Journals (Sweden)

    J. C. Sampaio

    2014-01-01

    Full Text Available The increasing number of objects orbiting the earth justifies the great attention and interest in the observation, spacecraft protection, and collision avoidance. These studies involve different disturbances and resonances in the orbital motions of these objects distributed by the distinct altitudes. In this work, objects in resonant orbital motions are studied in low earth orbits. Using the two-line elements (TLE of the NORAD, resonant angles and resonant periods associated with real motions are described, providing more accurate information to develop an analytical model that describes a certain resonance. The time behaviors of the semimajor axis, eccentricity, and inclination of some space debris are studied. Possible irregular motions are observed by the frequency analysis and by the presence of different resonant angles describing the orbital dynamics of these objects.

  13. Multi-layered foil capture of micrometeoroids and orbital debris in low Earth orbit

    Science.gov (United States)

    Kearsley, A.; Graham, G.

    Much of our knowledge concerning the sub-millimetre orbital debris population that poses a threat to orbiting satellites has been gleaned from examination of surfaces retrieved and subsequently analysed as part of post-flight investigations. The preservation of the hypervelocity impact-derived remnants located on these surfaces is very variable, whether of space debris or micrometeoroid origin. Whilst glass and metallic materials show highly visible impact craters when examined using optical and electron microscopes, complex mixing between the target material and the impacting particle may make unambiguous interpretation of the impactor origin difficult or impossible. Our recent detailed examination of selected multi-layered insulation (MLI) foils from the ISAS Space Flyer Unit (SFU), and our preliminary study of NASA's Trek blanket, exposed on the Mir station, show that these constructions have the potential to preserve abundant residue material of a quality sufficient for detailed analysis. Although there are still limitations on the recognition of certain sources of orbital debris, the foils complement the metal and glass substrates. We suggest that a purpose-built multi-layered foil structure may prove to be extremely effective for rapid collection and unambiguous analysis of impact- derived residues. Such a collector could be used an environmental monitor for ISS, as it would have low mass, high durability, easy deployment, recovery and storage, making it an economically viable and attractive option.

  14. Deep-space and near-Earth optical communications by coded orbital angular momentum (OAM) modulation.

    Science.gov (United States)

    Djordjevic, Ivan B

    2011-07-18

    In order to achieve multi-gigabit transmission (projected for 2020) for the use in interplanetary communications, the usage of large number of time slots in pulse-position modulation (PPM), typically used in deep-space applications, is needed, which imposes stringent requirements on system design and implementation. As an alternative satisfying high-bandwidth demands of future interplanetary communications, while keeping the system cost and power consumption reasonably low, in this paper, we describe the use of orbital angular momentum (OAM) as an additional degree of freedom. The OAM is associated with azimuthal phase of the complex electric field. Because OAM eigenstates are orthogonal the can be used as basis functions for N-dimensional signaling. The OAM modulation and multiplexing can, therefore, be used, in combination with other degrees of freedom, to solve the high-bandwidth requirements of future deep-space and near-Earth optical communications. The main challenge for OAM deep-space communication represents the link between a spacecraft probe and the Earth station because in the presence of atmospheric turbulence the orthogonality between OAM states is no longer preserved. We will show that in combination with LDPC codes, the OAM-based modulation schemes can operate even under strong atmospheric turbulence regime. In addition, the spectral efficiency of proposed scheme is N2/log2N times better than that of PPM.

  15. Preliminary feasibility assessment for Earth-to-space electromagnetic (Railgun) launchers

    Science.gov (United States)

    Rice, E. E.; Miller, L. A.; Earhart, R. W.

    1982-01-01

    An Earth to space electromagnetic (railgun) launcher (ESRL) for launching material into space was studied. Potential ESRL applications were identified and initially assessed to formulate preliminary system requirements. The potential applications included nuclear waste disposal in space, Earth orbital applications, deep space probe launchers, atmospheric research, and boost of chemical rockets. The ESRL system concept consisted of two separate railgun launcher tubes (one at 20 deg from the horizontal for Earth orbital missions, the other vertical for solar system escape disposal missions) powered by a common power plant. Each 2040 m launcher tube is surrounded by 10,200 homopolar generator/inductor units to transmit the power to the walls. Projectile masses are 6500 kg for Earth orbital missions and 2055 kg for nuclear waste disposal missions. For the Earth orbital missions, the projectile requires a propulsion system, leaving an estimated payload mass of 650 kg. For the nuclear waste disposal in space mission, the high level waste mass was estimated at 250 kg. This preliminary assessment included technical, environmental, and economic analyses.

  16. Cost Per Pound From Orbit

    Science.gov (United States)

    Merriam, M. L.

    2002-01-01

    Traditional studies of Reusable Launch Vehicle (RLV) designs have focused on designs that are completely reusable except for the fuel. This may not be realistic with current technology . An alternate approach is to look at partially reusable launch vehicles. This raises the question of which parts should be reused and which parts should be expendable. One approach is to consider the cost/pound of returning these parts from orbit. With the shuttle, this cost is about three times the cost/pound of launching payload into orbit. A subtle corollary is that RLVs are much less practical for higher orbits, such as the one on which the International Space Station resides, than they are for low earth orbits.

  17. Herpes Zoster Ophthalmicus Presenting as Acute Orbital Myositis Preceding a Skin Rash: A Case Report

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Ha Yeun; Cho, Seong Whi [Dept. of Radiology, Kangwon National University Hospital, Chuncheon (Korea, Republic of); Kim, Sung Hun [Dept. of Neurology, Kangwon National University Hospital, Chuncheon (Korea, Republic of)

    2012-03-15

    Herpes zoster ophthalmicus, in which orbital symptoms and signs appear before the onset of a skin rash, is very rare. We experienced such a case and therefore report on it via magnetic resonance imaging. A 48-year-old man with pain and swelling of left eye and headache presented 2 days before onset of a zoster skin rash. On orbit-al MRI, edematous thickening of the left lateral rectus muscle with high signal intensity was revealed. After contrast injection, the lateral rectus muscle demonstrated heterogenous enhancement. Also, diffuse contrast enhancement was noted at left preseptal space, lacrimal gland and periorbital soft tissue. The man was treated with antiviral agents and prednisolone. Two weeks later, he recovered from the skin manifestations and most of the orbital manifestations except for the diplopia and restricted lateral movement.

  18. Water Recovery System Design to Accommodate Dormant Periods for Manned Missions

    Science.gov (United States)

    Tabb, David; Carter, Layne

    2015-01-01

    Future manned missions beyond lower Earth orbit may include intermittent periods of extended dormancy. Under the NASA Advanced Exploration System (AES) project, NASA personnel evaluated the viability of the ISS Water Recovery System (WRS) to support such a mission. The mission requirement includes the capability for life support systems to support crew activity, followed by a dormant period of up to one year, and subsequently for the life support systems to come back online for additional crewed missions. Dormancy could be a critical issue due to concerns with microbial growth or chemical degradation that might prevent water systems from operating properly when the crewed mission began. As such, it is critical that the water systems be designed to accommodate this dormant period. This paper details the results of this evaluation, which include identification of dormancy issues, results of testing performed to assess microbial stability of pretreated urine during dormancy periods, and concepts for updating to the WRS architecture and operational concepts that will enable the ISS WRS to support the dormancy requirement.

  19. An Earth-sized planet with an Earth-like density.

    Science.gov (United States)

    Pepe, Francesco; Cameron, Andrew Collier; Latham, David W; Molinari, Emilio; Udry, Stéphane; Bonomo, Aldo S; Buchhave, Lars A; Charbonneau, David; Cosentino, Rosario; Dressing, Courtney D; Dumusque, Xavier; Figueira, Pedro; Fiorenzano, Aldo F M; Gettel, Sara; Harutyunyan, Avet; Haywood, Raphaëlle D; Horne, Keith; Lopez-Morales, Mercedes; Lovis, Christophe; Malavolta, Luca; Mayor, Michel; Micela, Giusi; Motalebi, Fatemeh; Nascimbeni, Valerio; Phillips, David; Piotto, Giampaolo; Pollacco, Don; Queloz, Didier; Rice, Ken; Sasselov, Dimitar; Ségransan, Damien; Sozzetti, Alessandro; Szentgyorgyi, Andrew; Watson, Christopher A

    2013-11-21

    Recent analyses of data from the NASA Kepler spacecraft have established that planets with radii within 25 per cent of the Earth's (R Earth symbol) are commonplace throughout the Galaxy, orbiting at least 16.5 per cent of Sun-like stars. Because these studies were sensitive to the sizes of the planets but not their masses, the question remains whether these Earth-sized planets are indeed similar to the Earth in bulk composition. The smallest planets for which masses have been accurately determined are Kepler-10b (1.42 R Earth symbol) and Kepler-36b (1.49 R Earth symbol), which are both significantly larger than the Earth. Recently, the planet Kepler-78b was discovered and found to have a radius of only 1.16 R Earth symbol. Here we report that the mass of this planet is 1.86 Earth masses. The resulting mean density of the planet is 5.57 g cm(-3), which is similar to that of the Earth and implies a composition of iron and rock.

  20. Sunlight effects on the 3D polar current system determined from low Earth orbit measurements

    DEFF Research Database (Denmark)

    Laundal, Karl M.; Finlay, Chris; Olsen, Nils

    2016-01-01

    Interaction between the solar wind and the Earth’s magnetosphere is associated with large-scale currents in the ionosphere at polar latitudes that flow along magnetic field lines (Birkeland currents) and horizontally. These current systems are tightly linked, but their global behaviors are rarely...... analyzed together. In this paper, we present estimates of the average global Birkeland currents and horizontal ionospheric currents from the same set of magnetic field measurements. The magnetic field measurements, from the low Earth orbiting Swarm and CHAMP satellites, are used to co-estimate poloidal...... and toroidal parts of the magnetic disturbance field, represented in magnetic apex coordinates. The use of apex coordinates reduces effects of longitudinal and hemispheric variations in the Earth’s main field. We present global currents from both hemispheres during different sunlight conditions. The results...

  1. International research laboratory on the moon: a proposal for a national commitment

    Energy Technology Data Exchange (ETDEWEB)

    Keaton, P.W.; Gelfand, E.M.

    1982-01-01

    To demonstrate its leadership in space, the US could focus its space program on an exciting and achievable goal: to establish a self-sustaining international research laboratory on the Moon before the year 2000. Scientists from all over the world would use the laboratory for basic and applied programs in natural and social sciences. The knowledge gained would benefit everyone. The lunar research facility would be built with a broadly based infrastructure of stations, vehicles, and programs that can be envisioned as a pyramid resting on the Earth and reaching to the Moon. The first element of the infrastructure is the reusable Space Shuttle; the second is a manned low-Earth-orbit platform. Next is an orbital transfer vehicle for hauling cargoes between low Earth orbit and low lunar orbit. The final element is the manned self-sustaining international research laboratory. A key feature of this proposal is that each element can be economically useful at the same time as it is promoting international cooperation on Earth. A vigorous civilian program like that proposed here is our best guarantee that outer space will be used to strengthen our economy and address basic problems on Earth.

  2. Future earth orbit transportation systems/technology implications

    Science.gov (United States)

    Henry, B. Z.; Decker, J. P.

    1976-01-01

    Assuming Space Shuttle technology to be state-of-the-art, projected technological advances to improve the capabilities of single-stage-to-orbit (SSTO) derivatives are examined. An increase of about 30% in payload performance can be expected from upgrading the present Shuttle system through weight and drag reductions and improvements in the propellants and engines. The ODINEX (Optimal Design Integration Executive Computer Program) program has been used to explore design options. An advanced technology SSTO baseline system derived from ODINEX analysis has a conventional wing-body configuration using LOX/LH engines, three with two-position nozzles with expansion ratios of 40 and 200 and four with fixed nozzles with an expansion ratio of 40. Two assisted-takeoff approaches are under consideration in addition to a concept in which the orbital vehicle takes off empty using airbreathing propulsion and carries out a rendezvous with two large cryogenic tankers carrying propellant at an altitude of 6100 m. Further approaches under examination for propulsion, aerothermodynamic design, and design integration are described.

  3. Pseudospin symmetry in the relativistic Manning-Rosen potential including a Pekeris-type approximation to the pseudo-centrifugal term

    International Nuclear Information System (INIS)

    Wei Gaofeng; Dong Shihai

    2010-01-01

    Based on the Sturm-Liouville theorem and shape invariance formalism, we study by applying a Pekeris-type approximation to the pseudo-centrifugal term the pseudospin symmetry of a Dirac nucleon subjected to scalar and vector Manning-Rosen potentials including the spin-orbit coupling term. A quartic energy equation and spinor wave functions with arbitrary spin-orbit coupling quantum number k are presented. The bound states are calculated numerically. The relativistic Manning-Rosen potential could not trap a Dirac nucleon in the limit case β→∞.

  4. The Space Launch System -The Biggest, Most Capable Rocket Ever Built, for Entirely New Human Exploration Missions Beyond Earth's Orbit

    Science.gov (United States)

    Shivers, C. Herb

    2012-01-01

    NASA is developing the Space Launch System -- an advanced heavy-lift launch vehicle that will provide an entirely new capability for human exploration beyond Earth's orbit. The Space Launch System will provide a safe, affordable and sustainable means of reaching beyond our current limits and opening up new discoveries from the unique vantage point of space. The first developmental flight, or mission, is targeted for the end of 2017. The Space Launch System, or SLS, will be designed to carry the Orion Multi-Purpose Crew Vehicle, as well as important cargo, equipment and science experiments to Earth's orbit and destinations beyond. Additionally, the SLS will serve as a backup for commercial and international partner transportation services to the International Space Station. The SLS rocket will incorporate technological investments from the Space Shuttle Program and the Constellation Program in order to take advantage of proven hardware and cutting-edge tooling and manufacturing technology that will significantly reduce development and operations costs. The rocket will use a liquid hydrogen and liquid oxygen propulsion system, which will include the RS-25D/E from the Space Shuttle Program for the core stage and the J-2X engine for the upper stage. SLS will also use solid rocket boosters for the initial development flights, while follow-on boosters will be competed based on performance requirements and affordability considerations.

  5. Mission to Planet Earth

    International Nuclear Information System (INIS)

    Wilson, G.S.; Backlund, P.W.

    1992-01-01

    Mission to Planet Earth (MTPE) is NASA's concept for an international science program to produce the understanding needed to predict changes in the earth's environment. NASA and its interagency and international partners will place satellites carrying advanced sensors in strategic earth orbits to gather multidisciplinary data. A sophisticated data system will process and archive an unprecedented amount of information about the earth and how it works as a system. Increased understanding of the earth system is a basic human responsibility, a prerequisite to informed management of the planet's resources and to the preservation of the global environment. 8 refs

  6. Mission to Planet Earth

    Science.gov (United States)

    Tilford, Shelby G.; Asrar, Ghassem; Backlund, Peter W.

    1994-01-01

    Mission to Planet Earth (MTPE) is NASA's concept for an international science program to produce the understanding needed to predict changes in the Earth's environment. NASA and its interagency and international partners will place satellites carrying advanced sensors in strategic Earth orbits to gather multidisciplinary data. A sophisticated data system will process and archive an unprecedented amount of information about the Earth and how it works as a system. Increased understanding of the Earth system is a basic human responsibility, a prerequisite to informed management of the planet's resources and to the preservation of the global environment.

  7. JSC Orbital Debris Website Description

    Science.gov (United States)

    Johnson, Nicholas L.

    2006-01-01

    Purpose: The website provides information about the NASA Orbital Debris Program Office at JSC, which is the lead NASA center for orbital debris research. It is recognized world-wide for its leadership in addressing orbital debris issues. The NASA Orbital Debris Program Office has taken the international lead in conducting measurements of the environment and in developing the technical consensus for adopting mitigation measures to protect users of the orbital environment. Work at the center continues with developing an improved understanding of the orbital debris environment and measures that can be taken to control its growth. Major Contents: Orbital Debris research is divided into the following five broad efforts. Each area of research contains specific information as follows: 1) Modeling - NASA scientists continue to develop and upgrade orbital debris models to describe and characterize the current and future debris environment. Evolutionary and engineering models are described in detail. Downloadable items include a document in PDF format and executable software. 2) Measurements - Measurements of near-Earth orbital debris are accomplished by conducting ground-based and space-based observations of the orbital debris environment. The data from these sources provide validation of the environment models and identify the presence of new sources. Radar, optical and surface examinations are described. External links to related topics are provided. 3) Protection - Orbital debris protection involves conducting hypervelocity impact measurements to assess the risk presented by orbital debris to operating spacecraft and developing new materials and new designs to provide better protection from the environment with less weight penalty. The data from this work provides the link between the environment defined by the models and the risk presented by that environment to operating spacecraft and provides recommendations on design and operations procedures to reduce the risk as

  8. Performance enhancement using power beaming for electric propulsion earth orbital transporters

    International Nuclear Information System (INIS)

    Dagle, J.E.

    1991-01-01

    An electric propulsion Earth orbital transport vehicle (EOTV) can effectively deliver large payloads using much less propellant than chemical transfer methods. By using an EOTV instead of a chemical upper stage, either a smaller launch vehicle can be used for the same satellite mass or a larger satellite can be deployed using the same launch vehicle. However, the propellant mass savings from using the higher specific impulse of electric propulsion may not be enough to overcome the disadvantage of the added mass and cost of the electric propulsion power source. Power system limitations have been a major factor delaying the acceptance and use of electric propulsion. This paper outlines the power requirements of electric propulsion technology being developed today, including arcjets, magnetoplasmadynamic (MPD) thrusters, and ion engines. Power supply characteristics are discussed for nuclear, solar, and power-beaming systems. Operational characteristics are given for each, as are the impacts of the power supply alternative on the overall craft performance. Because of its modular nature, the power-beaming approach is able to meet the power requirements of all three electric propulsion types. Also, commonality of approach allows different electric propulsion approaches to be powered by a single power supply approach. Power beaming exhibits better flexibility and performance than on-board nuclear or solar power systems

  9. Robustness analysis method for orbit control

    Science.gov (United States)

    Zhang, Jingrui; Yang, Keying; Qi, Rui; Zhao, Shuge; Li, Yanyan

    2017-08-01

    Satellite orbits require periodical maintenance due to the presence of perturbations. However, random errors caused by inaccurate orbit determination and thrust implementation may lead to failure of the orbit control strategy. Therefore, it is necessary to analyze the robustness of the orbit control methods. Feasible strategies which are tolerant to errors of a certain magnitude can be developed to perform reliable orbit control for the satellite. In this paper, first, the orbital dynamic model is formulated by Gauss' form of the planetary equation using the mean orbit elements; the atmospheric drag and the Earth's non-spherical perturbations are taken into consideration in this model. Second, an impulsive control strategy employing the differential correction algorithm is developed to maintain the satellite trajectory parameters in given ranges. Finally, the robustness of the impulsive control method is analyzed through Monte Carlo simulations while taking orbit determination error and thrust error into account.

  10. Orbital transport

    International Nuclear Information System (INIS)

    Oertel, H. Jr.; Koerner, H.

    1993-01-01

    The Third Aerospace Symposium in Braunschweig presented, for the first time, the possibility of bringing together the classical disciplines of aerospace engineering and the natural science disciplines of meteorology and air chemistry in a european setting. In this way, aspects of environmental impact on the atmosphere could be examined quantitatively. An essential finding of the european conference, is the unrestricted agreement of the experts that the given launch frequencies of the present orbital transport result in a negligible amount of pollutants being released in the atmosphere. The symposium does, however, call attention to the increasing need to consider the effect of orbital and atmospheric environmental impact of a future increase in launch frequencies of orbital transport in connection with future space stations. The Third Aerospace Symposium, 'Orbital Transport, Technical, Meteorological and Chemical Aspects', constituted a first forum of discussion for engineers and scientists. Questions of new orbital transport technologies and their environmental impact were to be discussed towards a first consensus. Through the 34 reports and articles, the general problems of space transportation and environmental protection were addressed, as well as particular aspects of high temperatures during reentry in the atmosphere of the earth, precision navigation of flight vehicles or flow behavior and air chemistry in the stratosphere. (orig./CT). 342 figs

  11. A standard library for modeling satellite orbits on a microcomputer

    Science.gov (United States)

    Beutel, Kenneth L.

    1988-03-01

    Introductory students of astrodynamics and the space environment are required to have a fundamental understanding of the kinematic behavior of satellite orbits. This thesis develops a standard library that contains the basic formulas for modeling earth orbiting satellites. This library is used as a basis for implementing a satellite motion simulator that can be used to demonstrate orbital phenomena in the classroom. Surveyed are the equations of orbital elements, coordinate systems and analytic formulas, which are made into a standard method for modeling earth orbiting satellites. The standard library is written in the C programming language and is designed to be highly portable between a variety of computer environments. The simulation draws heavily on the standards established by the library to produce a graphics-based orbit simulation program written for the Apple Macintosh computer. The simulation demonstrates the utility of the standard library functions but, because of its extensive use of the Macintosh user interface, is not portable to other operating systems.

  12. Emblem for the first manned Skylab mission

    Science.gov (United States)

    1972-01-01

    This is the emblem for the first manned Skylab mission. It wil be a mission of up to 28 days. The patch, designed by artist Kelly Freas, shows the Skylab silhouetted against the earth's globe, which in turn is eclipsing the Sun - showing the brilliant signet-ring pattern of the instant before total eclipse.

  13. Mars Molniya Orbit Atmospheric Resource Mining

    Science.gov (United States)

    Mueller, Robert P.; Braun, Robert D.; Sibille, Laurent; Sforzo, Brandon; Gonyea, Keir; Ali, Hisham

    2016-01-01

    This NIAC (NASA Advanced Innovative Concepts) work will focus on Mars and will build on previous efforts at analyzing atmospheric mining at Earth and the outer solar system. Spacecraft systems concepts will be evaluated and traded, to assess feasibility. However the study will primarily examine the architecture and associated missions to explore the closure, constraints and critical parameters through sensitivity studies. The Mars atmosphere consists of 95.5 percent CO2 gas which can be converted to methane fuel (CH4) and Oxidizer (O2) for chemical rocket propulsion, if hydrogen is transported from electrolyzed water on the Mars surface or from Earth. By using a highly elliptical Mars Molniya style orbit, the CO2 atmosphere can be scooped, ram-compressed and stored while the spacecraft dips into the Mars atmosphere at periapsis. Successive orbits result in additional scooping of CO2 gas, which also serves to aerobrake the spacecraft, resulting in a decaying Molniya orbit.

  14. Orbit determination for ISRO satellite missions

    Science.gov (United States)

    Rao, Ch. Sreehari; Sinha, S. K.

    Indian Space Research Organisation (ISRO) has been successful in using the in-house developed orbit determination and prediction software for satellite missions of Bhaskara, Rohini and APPLE. Considering the requirements of satellite missions, software packages are developed, tested and their accuracies are assessed. Orbit determination packages developed are SOIP, for low earth orbits of Bhaskara and Rohini missions, ORIGIN and ODPM, for orbits related to all phases of geo-stationary missions and SEGNIP, for drift and geo-stationary orbits. Software is tested and qualified using tracking data of SIGNE-3, D5-B, OTS, SYMPHONIE satellites with the help of software available with CNES, ESA and DFVLR. The results match well with those available from these agencies. These packages have supported orbit determination successfully throughout the mission life for all ISRO satellite missions. Member-Secretary

  15. Examples of the nonlinear dynamics of ballistic capture and escape in the earth-moon system

    Science.gov (United States)

    Belbruno, Edward A.

    1990-01-01

    An example of a trajectory is given which is initially captured in an elliptic resonant orbit about the earth and then ballistically escapes the earth-moon system. This is demonstrated by a numerical example in three-dimensions using a planetary ephemeris. Another example shows a mechanism of how an elliptic orbit about the earth can increase its energy by performing a complex nonlinear transition to an elliptic orbit of a larger semi-major axis. Capture is also considered. An application of ballistic capture at the moon via an unstable periodic orbit using the four-body sun-earth-moon-S/C interaction is described.

  16. Free Space Laser Communication Experiments from Earth to the Lunar Reconnaissance Orbiter in Lunar Orbit

    Science.gov (United States)

    Sun, Xiaoli; Skillman, David R.; Hoffman, Evan D.; Mao, Dandan; McGarry, Jan F.; Zellar, Ronald S.; Fong, Wai H; Krainak, Michael A.; Neumann, Gregory A.; Smith, David E.

    2013-01-01

    Laser communication and ranging experiments were successfully conducted from the satellite laser ranging (SLR) station at NASA Goddard Space Flight Center (GSFC) to the Lunar Reconnaissance Orbiter (LRO) in lunar orbit. The experiments used 4096-ary pulse position modulation (PPM) for the laser pulses during one-way LRO Laser Ranging (LR) operations. Reed-Solomon forward error correction codes were used to correct the PPM symbol errors due to atmosphere turbulence and pointing jitter. The signal fading was measured and the results were compared to the model.

  17. Plants and their microbial assistants: Nature's answer to Earth's environmental pollution problems

    Science.gov (United States)

    Wolverton, B. C.

    1990-01-01

    The utilization of higher plants and their associated microorganisms to solve environmental pollution problems on Earth and in future space applications is briefly reviewed. If man is sealed inside closed facilities, he becomes a polluter of the environment. It is also common knowledge to most people that man cannot survive on Earth without green photosynthesizing plants and microorganisms. Therefore, it is vitally important to have a better understanding of the interactions of man with plants and microorganisms. Biosphere 2 and other related studies presently being conducted or planned, hopefully, will supply data that will help save planet Earth from impending environmental disaster. The development of means to utilize both air and water pollution as a nutrient source for growing green plants is examined.

  18. Transconjunctival orbital emphysema caused by compressed air injury: a case report.

    Science.gov (United States)

    Mathew, Sunu; Vasu, Usha; Francis, Febson; Nazareth, Colin

    2008-01-01

    Orbital emphysema following conjunctival tear in the absence of orbital wall fracture, caused by air under pressure is rare. Usually orbital emphysema is seen in facial trauma associated with damage to the adjacent paranasal sinuses or facial bones. To the best of our knowledge, there have been only eight reports of orbital emphysema following use of compressed air during industrial work. The air under pressure is pushed through the subconjunctival space into the subcutaneous and retrobulbar spaces. We present here a rare cause of orbital emphysema in a young man working with compressed air gun. Although the emphysema was severe, there were no orbital bone fracture and the visual recovery of the patient was complete without attendant complications.

  19. OGLE-2017-BLG-0482Lb: A Microlensing Super-Earth Orbiting a Low-mass Host Star

    Science.gov (United States)

    Han, C.; Hirao, Y.; Udalski, A.; Lee, C.-U.; Bozza, V.; Gould, A.; and; Abe, F.; Barry, R.; Bond, I. A.; Bennett, D. P.; Bhattacharya, A.; Donachie, M.; Evans, P.; Fukui, A.; Itow, Y.; Kawasaki, K.; Koshimoto, N.; Li, M. C. A.; Ling, C. H.; Matsubara, Y.; Miyazaki, S.; Munakata, H.; Muraki, Y.; Nagakane, M.; Ohnishi, K.; Ranc, C.; Rattenbury, N.; Saito, T.; Sharan, A.; Sullivan, D. J.; Sumi, T.; Suzuki, D.; Tristram, P. J.; Yamada, T.; Yonehara, A.; The MOA Collaboration; Mróz, P.; Poleski, R.; Kozłowski, S.; Soszyński, I.; Pietrukowicz, P.; Skowron, J.; Szymański, M. K.; Ulaczyk, K.; Pawlak, M.; Rybicki, K.; Iwanek, P.; The OGLE Collaboration; Albrow, M. D.; Chung, S.-J.; Hwang, K.-H.; Jung, Y. K.; Kim, D.; Kim, W.-T.; Kim, H.-W.; Ryu, Y.-H.; Shin, I.-G.; Shvartzvald, Y.; Yee, J. C.; Zhu, W.; Cha, S.-M.; Kim, S.-L.; Kim, D.-J.; Lee, D.-J.; Lee, Y.; Park, B.-G.; Pogge, R. W.; The KMTNet Collaboration

    2018-05-01

    We report the discovery of a planetary system in which a super-Earth orbits a late M-dwarf host. The planetary system was found from the analysis of the microlensing event OGLE-2017-BLG-0482, wherein the planet signal appears as a short-term anomaly to the smooth lensing light curve produced by the host. Despite its weak signal and short duration, the planetary signal was firmly detected from the dense and continuous coverage by three microlensing surveys. We find a planet/host mass ratio of q ∼ 1.4 × 10‑4. We measure the microlens parallax {π }{{E}} from the long-term deviation in the observed lensing light curve, but the angular Einstein radius {θ }{{E}} cannot be measured because the source trajectory did not cross the planet-induced caustic. Using the measured event timescale and the microlens parallax, we find that the masses of the planet and the host are {M}{{p}}={9.0}-4.5+9.0 {M}\\oplus and {M}host}={0.20}-0.10+0.20 {M}ȯ , respectively, and the projected separation between them is {a}\\perp ={1.8}-0.7+0.6 au. The estimated distance to the lens is {D}{{L}}={5.8}-2.1+1.8 kpc. The discovery of the planetary system demonstrates that microlensing provides an important method to detect low-mass planets orbiting low-mass stars.

  20. Benefits of high aerodynamic efficiency to orbital transfer vehicles

    Science.gov (United States)

    Andrews, D. G.; Norris, R. B.; Paris, S. W.

    1984-01-01

    The benefits and costs of high aerodynamic efficiency on aeroassisted orbital transfer vehicles (AOTV) are analyzed. Results show that a high lift to drag (L/D) AOTV can achieve significant velocity savings relative to low L/D aerobraked OTV's when traveling round trip between low Earth orbits (LEO) and alternate orbits as high as geosynchronous Earth orbit (GEO). Trajectory analysis is used to show the impact of thermal protection system technology and the importance of lift loading coefficient on vehicle performance. The possible improvements in AOTV subsystem technologies are assessed and their impact on vehicle inert weight and performance noted. Finally, the performance of high L/D AOTV concepts is compared with the performances of low L/D aeroassisted and all propulsive OTV concepts to assess the benefits of aerodynamic efficiency on this class of vehicle.

  1. Histologic features of mesotherapy-induced orbital fat inflammation.

    Science.gov (United States)

    Nabavi, Cameron B; Minckler, Donald S; Tao, Jeremiah P

    2009-01-01

    A 67-year-old man developed acute orbital inflammation after receiving cosmetic mesotherapy (Lipo-Dissolve) to the inferior orbital fat compartments. The injection was intended to cause lipolysis and shrinkage of fat lobules with subsequent cosmetic improvement. Injections of a mixture of bile salts, phospholipid, and alcohol preservative bilaterally in inferior orbital fat lobules led to an acute inflammatory reaction characterized histologically 12 days later by mild lymphocytic infiltration, fat necrosis, and fibrosis in the target areas. Benign proliferation of peripheral nerve trunks consistent with a traumatic neuroma was also noted histologically on one side. Inflammation including fat necrosis and traumatic neuroma are all possible consequences of mesotherapy.

  2. Exo-Milankovitch Cycles. I. Orbits and Rotation States

    Science.gov (United States)

    Deitrick, Russell; Barnes, Rory; Quinn, Thomas R.; Armstrong, John; Charnay, Benjamin; Wilhelm, Caitlyn

    2018-02-01

    The obliquity of the Earth, which controls our seasons, varies by only ∼2.°5 over ∼40,000 years, and its eccentricity varies by only ∼0.05 over 100,000 years. Nonetheless, these small variations influence Earth’s ice ages. For exoplanets, however, variations can be significantly larger. Previous studies of the habitability of moonless Earth-like exoplanets have found that high obliquities, high eccentricities, and dynamical variations can extend the outer edge of the habitable zone by preventing runaway glaciation (snowball states). We expand upon these studies by exploring the orbital dynamics with a semianalytic model that allows us to map broad regions of parameter space. We find that, in general, the largest drivers of obliquity variations are secular spin–orbit resonances. We show how the obliquity varies in several test cases, including Kepler-62 f, across a wide range of orbital and spin parameters. These obliquity variations, alongside orbital variations, will have a dramatic impact on the climates of such planets.

  3. Comparison of technologies for deorbiting spacecraft from low-earth-orbit at end of mission

    Science.gov (United States)

    Sánchez-Arriaga, G.; Sanmartín, J. R.; Lorenzini, E. C.

    2017-09-01

    An analytical comparison of four technologies for deorbiting spacecraft from Low-Earth-Orbit at end of mission is presented. Basic formulas based on simple physical models of key figures of merit for each device are found. Active devices - rockets and electrical thrusters - and passive technologies - drag augmentation devices and electrodynamic tethers - are considered. A basic figure of merit is the deorbit device-to-spacecraft mass ratio, which is, in general, a function of environmental variables, technology development parameters and deorbit time. For typical state-of-the-art values, equal deorbit time, middle inclination and initial altitude of 850 km, the analysis indicates that tethers are about one and two orders of magnitude lighter than active technologies and drag augmentation devices, respectively; a tether needs a few percent mass-ratio for a deorbit time of a couple of weeks. For high inclination, the performance drop of the tether system is moderate: mass ratio and deorbit time increase by factors of 2 and 4, respectively. Besides collision risk with other spacecraft and system mass considerations, such as main driving factors for deorbit space technologies, the analysis addresses other important constraints, like deorbit time, system scalability, manoeuver capability, reliability, simplicity, attitude control requirement, and re-entry and multi-mission capability (deorbit and re-boost) issues. The requirements and constraints are used to make a critical assessment of the four technologies as functions of spacecraft mass and initial orbit (altitude and inclination). Emphasis is placed on electrodynamic tethers, including the latest advances attained in the FP7/Space project BETs. The superiority of tape tethers as compared to round and multi-line tethers in terms of deorbit mission performance is highlighted, as well as the importance of an optimal geometry selection, i.e. tape length, width, and thickness, as function of spacecraft mass and initial

  4. The PH-D proposal - A manned mission to PHOBOS and Deimos

    Science.gov (United States)

    Singer, S. F.

    The rationale for a manned mission to the satellites of Mars is discussed. The view has been expressed that NASA must define a major program to follow the Shuttle and to utilize it. However, such a program could not be initiated and proceed without public support, and to obtain this support, public interest would have to be excited. It is shown that, of a number of possible targets for manned exploration in the solar system, Mars appears to be the only possible candidate. Attention is given to a comparison of three Mars missions, a Mars 1984 mission, a manned landing on Mars surface, a manned landing on Phobos and Deimos (Ph-D project), putting men in Mars orbit, the capabilities of the Ph-D mission, a description of the spacecraft, a Ph-D project operations plan, and aspects of timing, technology, and costs.

  5. Modeling of Non-Gravitational Forces for Precise and Accurate Orbit Determination

    Science.gov (United States)

    Hackel, Stefan; Gisinger, Christoph; Steigenberger, Peter; Balss, Ulrich; Montenbruck, Oliver; Eineder, Michael

    2014-05-01

    Remote sensing satellites support a broad range of scientific and commercial applications. The two radar imaging satellites TerraSAR-X and TanDEM-X provide spaceborne Synthetic Aperture Radar (SAR) and interferometric SAR data with a very high accuracy. The precise reconstruction of the satellite's trajectory is based on the Global Positioning System (GPS) measurements from a geodetic-grade dual-frequency Integrated Geodetic and Occultation Receiver (IGOR) onboard the spacecraft. The increasing demand for precise radar products relies on validation methods, which require precise and accurate orbit products. An analysis of the orbit quality by means of internal and external validation methods on long and short timescales shows systematics, which reflect deficits in the employed force models. Following the proper analysis of this deficits, possible solution strategies are highlighted in the presentation. The employed Reduced Dynamic Orbit Determination (RDOD) approach utilizes models for gravitational and non-gravitational forces. A detailed satellite macro model is introduced to describe the geometry and the optical surface properties of the satellite. Two major non-gravitational forces are the direct and the indirect Solar Radiation Pressure (SRP). The satellite TerraSAR-X flies on a dusk-dawn orbit with an altitude of approximately 510 km above ground. Due to this constellation, the Sun almost constantly illuminates the satellite, which causes strong across-track accelerations on the plane rectangular to the solar rays. The indirect effect of the solar radiation is called Earth Radiation Pressure (ERP). This force depends on the sunlight, which is reflected by the illuminated Earth surface (visible spectra) and the emission of the Earth body in the infrared spectra. Both components of ERP require Earth models to describe the optical properties of the Earth surface. Therefore, the influence of different Earth models on the orbit quality is assessed. The scope of

  6. Manned spacecraft electrical power systems

    Science.gov (United States)

    Simon, William E.; Nored, Donald L.

    1987-01-01

    A brief history of the development of electrical power systems from the earliest manned space flights illustrates a natural trend toward a growth of electrical power requirements and operational lifetimes with each succeeding space program. A review of the design philosophy and development experience associated with the Space Shuttle Orbiter electrical power system is presented, beginning with the state of technology at the conclusion of the Apollo Program. A discussion of prototype, verification, and qualification hardware is included, and several design improvements following the first Orbiter flight are described. The problems encountered, the scientific and engineering approaches used to meet the technological challenges, and the results obtained are stressed. Major technology barriers and their solutions are discussed, and a brief Orbiter flight experience summary of early Space Shuttle missions is included. A description of projected Space Station power requirements and candidate system concepts which could satisfy these anticipated needs is presented. Significant challenges different from Space Shuttle, innovative concepts and ideas, and station growth considerations are discussed. The Phase B Advanced Development hardware program is summarized and a status of Phase B preliminary tradeoff studies is presented.

  7. M2K. II. A TRIPLE-PLANET SYSTEM ORBITING HIP 57274

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, Debra A.; Giguere, Matthew J.; Moriarty, John; Brewer, John; Spronck, Julien F. P.; Schwab, Christian; Szymkowiak, Andrew [Department of Astronomy, Yale University, New Haven, CT 06511 (United States); Gaidos, Eric [Department of Geology and Geophysics, University of Hawaii, Honolulu, HI 96822 (United States); Howard, Andrew W.; Marcy, Geoffrey W. [Department of Astronomy, University of California at Berkeley, Berkeley, CA 94720 (United States); Johnson, John A. [Department of Astronomy, California Institute of Technology, Pasadena, CA 91125 (United States); Wright, Jason T. [Center for Exoplanets and Habitable Worlds, 525 Davey Lab, The Pennsylvania State University, University Park, PA 16803 (United States); Valenti, Jeff A. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Piskunov, Nikolai [Department of Astronomy and Space Physics, Uppsala University, Box 515, 751 20 Uppsala (Sweden); Clubb, Kelsey I.; Isaacson, Howard [Pufendorf Institute for Advanced Studies, Lund University, Lund (Sweden); Apps, Kevin [75B Cheyne Walk, Surrey RH6 7LR (United Kingdom); Lepine, Sebastien [American Museum of Natural History, New York, NY 10023 (United States); Mann, Andrew, E-mail: debra.fischer@yale.edu [Institute for Astronomy, University of Hawaii, Honolulu, HI 96822 (United States)

    2012-01-20

    Doppler observations from Keck Observatory have revealed a triple-planet system orbiting the nearby K4V star, HIP 57274. The inner planet, HIP 57274b, is a super-Earth with Msin i = 11.6 M{sub Circled-Plus} (0.036 M{sub Jup}), an orbital period of 8.135 {+-} 0.004 days, and slightly eccentric orbit e = 0.19 {+-} 0.1. We calculate a transit probability of 6.5% for the inner planet. The second planet has Msin i = 0.4 M{sub Jup} with an orbital period of 32.0 {+-} 0.02 days in a nearly circular orbit (e = 0.05 {+-} 0.03). The third planet has Msin i = 0.53 M{sub Jup} with an orbital period of 432 {+-} 8 days (1.18 years) and an eccentricity e = 0.23 {+-} 0.03. This discovery adds to the number of super-Earth mass planets with M sin i < 12 M{sub Circled-Plus} that have been detected with Doppler surveys. We find that 56% {+-} 18% of super-Earths are members of multi-planet systems. This is certainly a lower limit because of observational detectability limits, yet significantly higher than the fraction of Jupiter mass exoplanets, 20% {+-} 8%, that are members of Doppler-detected, multi-planet systems.

  8. M2K. II. A TRIPLE-PLANET SYSTEM ORBITING HIP 57274

    International Nuclear Information System (INIS)

    Fischer, Debra A.; Giguere, Matthew J.; Moriarty, John; Brewer, John; Spronck, Julien F. P.; Schwab, Christian; Szymkowiak, Andrew; Gaidos, Eric; Howard, Andrew W.; Marcy, Geoffrey W.; Johnson, John A.; Wright, Jason T.; Valenti, Jeff A.; Piskunov, Nikolai; Clubb, Kelsey I.; Isaacson, Howard; Apps, Kevin; Lepine, Sebastien; Mann, Andrew

    2012-01-01

    Doppler observations from Keck Observatory have revealed a triple-planet system orbiting the nearby K4V star, HIP 57274. The inner planet, HIP 57274b, is a super-Earth with Msin i = 11.6 M ⊕ (0.036 M Jup ), an orbital period of 8.135 ± 0.004 days, and slightly eccentric orbit e = 0.19 ± 0.1. We calculate a transit probability of 6.5% for the inner planet. The second planet has Msin i = 0.4 M Jup with an orbital period of 32.0 ± 0.02 days in a nearly circular orbit (e = 0.05 ± 0.03). The third planet has Msin i = 0.53 M Jup with an orbital period of 432 ± 8 days (1.18 years) and an eccentricity e = 0.23 ± 0.03. This discovery adds to the number of super-Earth mass planets with M sin i ⊕ that have been detected with Doppler surveys. We find that 56% ± 18% of super-Earths are members of multi-planet systems. This is certainly a lower limit because of observational detectability limits, yet significantly higher than the fraction of Jupiter mass exoplanets, 20% ± 8%, that are members of Doppler-detected, multi-planet systems.

  9. Reconstructive and rehabilitation challenges following a cranio-orbital gunshot wound.

    Science.gov (United States)

    Pawar, Sachin S; Rhee, John S; Wells, Timothy S

    2015-01-01

    We present a case of a 26-year-old man who sustained a close-range gunshot wound to the head. His injuries included significant left orbital injury resulting in a ruptured, blind eye and severely comminuted fractures of the left orbital roof, superior and inferior orbital rims, and orbital floor. Associated injuries included left frontal lobe injury, anterior and posterior table fractures of the left frontal sinus, and a comminuted left zygomaticomaxillary complex fracture. We employed an interdisciplinary surgical approach with collaboration among the Otolaryngology, Neurosurgery, and Oculoplastic Surgery services performed in two stages. Management of such extensive craniofacial injuries can be challenging and requires a coordinated, interdisciplinary approach.

  10. Man between cosmos and chaos. Mensch zwischen Kosmos und Chaos. Lebensspendende oder todbringende Strahlen

    Energy Technology Data Exchange (ETDEWEB)

    Felder, A

    1981-01-01

    The author investigates the radiation coming from the universe (cosmic radiation, solar, wind, X-ray, ultraviolet radiation, visible light, infrared radiation, high-frequency and low-frequency wave radiation), the radiation coming from the earth itself and its immediate atmosphere, and, finally, the radiation from the environment caused by man himself (dust, exhaust gases, low-frequency currents, etc.) which has an influence on the health of man that is still controversial among scientists. Therefore the author demands that radioesthesia be employed more in everyday life in the future and that people deal more with the biological effects of radiation on earth.

  11. 21st century early mission concepts for Mars delivery and earth return

    Science.gov (United States)

    Cruz, Manuel I.; Ilgen, Marc R.

    1990-01-01

    In the 21st century, the early missions to Mars will entail unmanned Rover and Sample Return reconnaissance missions to be followed by manned exploration missions. High performance leverage technologies will be required to reach Mars and return to earth. This paper describes the mission concepts currently identified for these early Mars missions. These concepts include requirements and capabilities for Mars and earth aerocapture, Mars surface operations and ascent, and Mars and earth rendezvous. Although the focus is on the unmanned missions, synergism with the manned missions is also discussed.

  12. High-Definition Television (HDTV) Images for Earth Observations and Earth Science Applications

    Science.gov (United States)

    Robinson, Julie A.; Holland, S. Douglas; Runco, Susan K.; Pitts, David E.; Whitehead, Victor S.; Andrefouet, Serge M.

    2000-01-01

    As part of Detailed Test Objective 700-17A, astronauts acquired Earth observation images from orbit using a high-definition television (HDTV) camcorder, Here we provide a summary of qualitative findings following completion of tests during missions STS (Space Transport System)-93 and STS-99. We compared HDTV imagery stills to images taken using payload bay video cameras, Hasselblad film camera, and electronic still camera. We also evaluated the potential for motion video observations of changes in sunlight and the use of multi-aspect viewing to image aerosols. Spatial resolution and color quality are far superior in HDTV images compared to National Television Systems Committee (NTSC) video images. Thus, HDTV provides the first viable option for video-based remote sensing observations of Earth from orbit. Although under ideal conditions, HDTV images have less spatial resolution than medium-format film cameras, such as the Hasselblad, under some conditions on orbit, the HDTV image acquired compared favorably with the Hasselblad. Of particular note was the quality of color reproduction in the HDTV images HDTV and electronic still camera (ESC) were not compared with matched fields of view, and so spatial resolution could not be compared for the two image types. However, the color reproduction of the HDTV stills was truer than colors in the ESC images. As HDTV becomes the operational video standard for Space Shuttle and Space Station, HDTV has great potential as a source of Earth-observation data. Planning for the conversion from NTSC to HDTV video standards should include planning for Earth data archiving and distribution.

  13. On the Mitigation of Solar Index Variability for High Precision Orbit Determination in Low Earth Orbit

    Science.gov (United States)

    2016-09-16

    spacecraft state, or solve for an orbit using a Kalman Filter -Smoother (KFS) or Weighted Least Squares Orbit Determination (WLS-OD) process. Early...1 Researchers at the NRL developed the NRLMSISE-00 model in 2002 to better calculate at- mospheric temperature and density profiles for a number of...spectrometer and incoherent scatter data MSIS, 1. N2 density and temperature ,” Journal of Geophysical Research, Vol. 82, No. 16, 1977, pp. 2139–2147

  14. The K-1 Active Dispenser for Orbit Transfer

    Science.gov (United States)

    Lai, G.; Cochran, D.; Curtis, R.

    2002-01-01

    Kistler Aerospace Corporation is building the K-1, the world's first fully reusable launch vehicle. The two-stage K- 1 is designed primarily to service the market for low-earth orbit (LEO) missions, due to Kistler's need to recover both stages. For customers requiring payload delivery to high-energy orbits, Kistler can outfit the payload with a K- 1 Active Dispenser (an expendable third stage). The K-1 second stage will deploy the Active Dispenser mated with its payload into a 200 km circular LEO parking orbit. From this orbit, the Active Dispenser would use its own propulsion to place its payload into the final desired drop-off orbit or earth-escape trajectory. This approach allows Kistler to combine the low-cost launch services offered by the reusable two-stage K-1 with the versatility of a restartable, expendable upper stage. Enhanced with an Active Dispenser, the K-1 will be capable of delivering 1,500 kg to a geosynchronous transfer orbit or up to approximately 1,000 kg into a Mars rendezvous trajectory. The list price of a K-1 Active Dispenser launch is 25 million (plus the price of mission unique integration services) significantly less than the price of any launch vehicle service in the world with comparable capability.

  15. Military Applications of High-Altitude Satellite Orbits in a Multi-Body Dynamical Environment Using Numerical Methods and Dynamical Systems Theory

    Science.gov (United States)

    2016-03-01

    around a libration point in the Earth -Moon system are used as unpredictable transfer pathways when traveling from one Earth orbit to another...spacecraft traveling from one Earth orbit to another in a multi- body environment, as well as characterizing the potential motions in the vicinity of...an inspiring account of how using the gravity of the Moon assisted in placing the satellite in a favorable Earth orbit after a rocket malfunction left

  16. Detection of Earth-rotation Doppler shift from Suomi National Polar-Orbiting Partnership Cross-Track Infrared Sounder.

    Science.gov (United States)

    Chen, Yong; Han, Yong; Weng, Fuzhong

    2013-09-01

    The Cross-Track Infrared Sounder (CrIS) on the Suomi National Polar-Orbiting Partnership Satellite is a Fourier transform spectrometer and provides a total of 1305 channels for sounding the atmosphere. Quantifying the CrIS spectral accuracy, which is directly related to radiometric accuracy, is crucial for improving its data assimilation in numerical weather prediction. In this study, a cross-correlation method is used for detecting the effect of Earth-rotation Doppler shift (ERDS) on CrIS observations. Based on a theoretical calculation, the ERDS can be as large as about 1.3 parts in 10(6) (ppm) near Earth's equator and at the satellite scan edge for a field of regard (FOR) of 1 or 30. The CrIS observations exhibit a relative Doppler shift as large as 2.6 ppm for a FOR pair of 1 and 30 near the equator. The variation of the ERDS with latitude and scan position detected from CrIS observations is similar to that derived theoretically, which indicates that the spectral stability of the CrIS instrument is very high. To accurately calibrate CrIS spectral accuracy, the ERDS effect should be removed. Since the ERDS is easily predictable, the Doppler shift is correctable in the CrIS spectra.

  17. Rotation of a Moonless Earth

    Science.gov (United States)

    Lissauer, Jack J.; Barnes, Jason W.; Chambers, John E.

    2013-01-01

    We numerically explore the obliquity (axial tilt) variations of a hypothetical moonless Earth. Previous work has shown that the Earth's Moon stabilizes Earth's obliquity such that it remains within a narrow range, between 22.1 deg and 24.5 deg. Without lunar influence, a frequency-map analysis by Laskar et al. showed that the obliquity could vary between 0 deg. and 85 deg. This has left an impression in the astrobiology community that a large moon is necessary to maintain a habitable climate on an Earth-like planet. Using a modified version of the orbital integrator mercury, we calculate the obliquity evolution for moonless Earths with various initial conditions for up to 4 Gyr. We find that while obliquity varies significantly more than that of the actual Earth over 100,000 year timescales, the obliquity remains within a constrained range, typically 20-25 deg. in extent, for timescales of hundreds of millions of years. None of our Solar System integrations in which planetary orbits behave in a typical manner show obliquity accessing more than 65% of the full range allowed by frequency-map analysis. The obliquities of moonless Earths that rotate in the retrograde direction are more stable than those of pro-grade rotators. The total obliquity range explored for moonless Earths with rotation periods shorter than 12 h is much less than that for slower-rotating moonless Earths. A large moon thus does not seem to be needed to stabilize the obliquity of an Earth-like planet on timescales relevant to the development of advanced life.

  18. Accounting of fundamental components of the rotation parameters of the Earth in the formation of a high-accuracy orbit of navigation satellites

    Science.gov (United States)

    Markov, Yu. G.; Mikhailov, M. V.; Pochukaev, V. N.

    2012-07-01

    An analysis of perturbing factors influencing the motion of a navigation satellite (NS) is carried out, and the degree of influence of each factor on the GLONASS orbit is estimated. It is found that fundamental components of the Earth's rotation parameters (ERP) are one substantial factor commensurable with maximum perturbations. Algorithms for the calculation of orbital perturbations caused by these parameters are given; these algorithms can be implemented in a consumer's equipment. The daily prediction of NS coordinates is performed on the basis of real GLONASS satellite ephemerides transmitted to a consumer, using the developed prediction algorithms taking the ERP into account. The obtained accuracy of the daily prediction of GLONASS ephemerides exceeds by tens of times the accuracy of the daily prediction performed using algorithms recommended in interface control documents.

  19. Use of libration-point orbits for space observatories

    Science.gov (United States)

    Farquhar, Robert W.; Dunham, David W.

    1990-01-01

    The sun-earth libration points, L1 and L2, are located 1.5 million kilometers from the earth toward and away from the sun. Halo orbits about these points have significant advantages for space observatories in terms of viewing geometry, thermal and radiation environment, and delta-V expediture.

  20. HABEBEE: habitability of eyeball-exo-Earths.

    Science.gov (United States)

    Angerhausen, Daniel; Sapers, Haley; Citron, Robert; Bergantini, Alexandre; Lutz, Stefanie; Queiroz, Luciano Lopes; da Rosa Alexandre, Marcelo; Araujo, Ana Carolina Vieira

    2013-03-01

    Extrasolar Earth and super-Earth planets orbiting within the habitable zone of M dwarf host stars may play a significant role in the discovery of habitable environments beyond Earth. Spectroscopic characterization of these exoplanets with respect to habitability requires the determination of habitability parameters with respect to remote sensing. The habitable zone of dwarf stars is located in close proximity to the host star, such that exoplanets orbiting within this zone will likely be tidally locked. On terrestrial planets with an icy shell, this may produce a liquid water ocean at the substellar point, one particular "Eyeball Earth" state. In this research proposal, HABEBEE: exploring the HABitability of Eyeball-Exo-Earths, we define the parameters necessary to achieve a stable icy Eyeball Earth capable of supporting life. Astronomical and geochemical research will define parameters needed to simulate potentially habitable environments on an icy Eyeball Earth planet. Biological requirements will be based on detailed studies of microbial communities within Earth analog environments. Using the interdisciplinary results of both the physical and biological teams, we will set up a simulation chamber to expose a cold- and UV-tolerant microbial community to the theoretically derived Eyeball Earth climate states, simulating the composition, atmosphere, physical parameters, and stellar irradiation. Combining the results of both studies will enable us to derive observable parameters as well as target decision guidance and feasibility analysis for upcoming astronomical platforms.

  1. Projectile Motion in the "Language" of Orbital Motion

    Science.gov (United States)

    Zurcher, Ulrich

    2011-01-01

    We consider the orbit of projectiles launched with arbitrary speeds from the Earth's surface. This is a generalization of Newton's discussion about the transition from parabolic to circular orbits, when the launch speed approaches the value [image omitted]. We find the range for arbitrary launch speeds and angles, and calculate the eccentricity of…

  2. Nuclear reactor power for an electrically powered orbital transfer vehicle

    Science.gov (United States)

    Jaffe, L.; Beatty, R.; Bhandari, P.; Chow, E.; Deininger, W.; Ewell, R.; Fujita, T.; Grossman, M.; Kia, T.; Nesmith, B.

    1987-01-01

    To help determine the systems requirements for a 300-kWe space nuclear reactor power system, a mission and spacecraft have been examined which utilize electric propulsion and this nuclear reactor power for multiple transfers of cargo between low earth orbit (LEO) and geosynchronous earth orbit (GEO). A propulsion system employing ion thrusters and xenon propellant was selected. Propellant and thrusters are replaced after each sortie to GEO. The mass of the Orbital Transfer Vehicle (OTV), empty and dry, is 11,000 kg; nominal propellant load is 5000 kg. The OTV operates between a circular orbit at 925 km altitude, 28.5 deg inclination, and GEO. Cargo is brought to the OTV by Shuttle and an Orbital Maneuvering Vehicle (OMV); the OTV then takes it to GEO. The OTV can also bring cargo back from GEO, for transfer by OMV to the Shuttle. OTV propellant is resupplied and the ion thrusters are replaced by the OMV before each trip to GEO. At the end of mission life, the OTV's electric propulsion is used to place it in a heliocentric orbit so that the reactor will not return to earth. The nominal cargo capability to GEO is 6000 kg with a transit time of 120 days; 1350 kg can be transferred in 90 days, and 14,300 kg in 240 days. These capabilities can be considerably increased by using separate Shuttle launches to bring up propellant and cargo, or by changing to mercury propellant.

  3. Nuclear reactor power for an electrically powered orbital transfer vehicle

    International Nuclear Information System (INIS)

    Jaffe, L.; Beatty, R.; Bhandari, P.

    1987-01-01

    To help determine the systems requirements for a 300-kWe space nuclear reactor power system, a mission and spacecraft have been examined which utilize electric propulsion and this nuclear reactor power for multiple transfers of cargo between low Earth orbit (LEO) and geosynchronous Earth orbit (GEO). A propulsion system employing ion thrusters and xenon propellant was selected. Propellant and thrusters are replaced after each sortie to GEO. The mass of the Orbital Transfer Vehicle (OTV), empty and dry, is 11,000 kg; nominal propellant load is 5000 kg. The OTV operates between a circular orbit at 925 km altitude, 28.5 deg inclination, and GEO. Cargo is brought to the OTV by Shuttle and an Orbital Maneuvering Vehicle (OMV); the OTV then takes it to GEO. The OTV can also bring cargo back from GEO, for transfer by OMV to the Shuttle. OTV propellant is resupplied and the ion thrusters are replaced by the OMV before each trip to GEO. At the end of mission life, the OTV's electric propulsion is used to place it in a heliocentric orbit so that the reactor will not return to Earth. The nominal cargo capability to GEO is 6000 kg with a transit time of 120 days; 1350 kg can be transferred in 90 days, and 14,300 kg in 240 days. These capabilities can be considerably increased by using separate Shuttle launches to bring up propellant and cargo, or by changing to mercury propellant

  4. Emblem for the second manned Skylab mission, Skylab 3

    Science.gov (United States)

    1973-01-01

    This is the emblem for the second manned Skylab mission. It will be a mission of up to 56 days. The patch symbolizes the main objectives of the flight. The central figure, adapted from one by Leonardo da Vinci, illustrates the proportions of the human form and suggests the many studies of man himself to be conducted in the zero-gravity environment of space. This drawing is superimposed on two hemispheres representing the two additional main areas of research - studies of the Sun and the development of techniques for survey of the Earth's resources. The left hemisphere show the Sun as it will be seen in the red light radiated by hydrogen atoms in the solar atmosphere. The right hemisphere is intended to suggest the studies of Earth resources to be conducted on Skylab. Although the patch denotes this mission as Skylab II, it is actually consided to be the Skylab III mission.

  5. High Fidelity Non-Gravitational Force Models for Precise and Accurate Orbit Determination of TerraSAR-X

    Science.gov (United States)

    Hackel, Stefan; Montenbruck, Oliver; Steigenberger, -Peter; Eineder, Michael; Gisinger, Christoph

    Remote sensing satellites support a broad range of scientific and commercial applications. The two radar imaging satellites TerraSAR-X and TanDEM-X provide spaceborne Synthetic Aperture Radar (SAR) and interferometric SAR data with a very high accuracy. The increasing demand for precise radar products relies on sophisticated validation methods, which require precise and accurate orbit products. Basically, the precise reconstruction of the satellite’s trajectory is based on the Global Positioning System (GPS) measurements from a geodetic-grade dual-frequency receiver onboard the spacecraft. The Reduced Dynamic Orbit Determination (RDOD) approach utilizes models for the gravitational and non-gravitational forces. Following a proper analysis of the orbit quality, systematics in the orbit products have been identified, which reflect deficits in the non-gravitational force models. A detailed satellite macro model is introduced to describe the geometry and the optical surface properties of the satellite. Two major non-gravitational forces are the direct and the indirect Solar Radiation Pressure (SRP). Due to the dusk-dawn orbit configuration of TerraSAR-X, the satellite is almost constantly illuminated by the Sun. Therefore, the direct SRP has an effect on the lateral stability of the determined orbit. The indirect effect of the solar radiation principally contributes to the Earth Radiation Pressure (ERP). The resulting force depends on the sunlight, which is reflected by the illuminated Earth surface in the visible, and the emission of the Earth body in the infrared spectra. Both components of ERP require Earth models to describe the optical properties of the Earth surface. Therefore, the influence of different Earth models on the orbit quality is assessed within the presentation. The presentation highlights the influence of non-gravitational force and satellite macro models on the orbit quality of TerraSAR-X.

  6. A novel orbiter mission concept for venus with the EnVision proposal

    Science.gov (United States)

    de Oliveira, Marta R. R.; Gil, Paulo J. S.; Ghail, Richard

    2018-07-01

    In space exploration, planetary orbiter missions are essential to gain insight into planets as a whole, and to help uncover unanswered scientific questions. In particular, the planets closest to the Earth have been a privileged target of the world's leading space agencies. EnVision is a mission proposal designed for Venus and competing for ESA's next launch opportunity with the objective of studying Earth's closest neighbor. The main goal is to study geological and atmospheric processes, namely surface processes, interior dynamics and atmosphere, to determine the reasons behind Venus and Earth's radically different evolution despite the planets' similarities. To achieve these goals, the operational orbit selection is a fundamental element of the mission design process. The design of an orbit around Venus faces specific challenges, such as the impossibility of choosing Sun-synchronous orbits. In this paper, an innovative genetic algorithm optimization was applied to select the optimal orbit based on the parameters with more influence in the mission planning, in particular the mission duration and the coverage of sites of interest on the Venusian surface. The solution obtained is a near-polar circular orbit with an altitude of 259 km that enables the coverage of all priority targets almost two times faster than with the parameters considered before this study.

  7. Scout: orbit analysis and hazard assessment for NEOCP objects

    Science.gov (United States)

    Farnocchia, Davide; Chesley, Steven R.; Chamberlin, Alan B.

    2016-10-01

    It typically takes a few days for a newly discovered asteroid to be officially recognized as a real object. During this time, the tentative discovery is published on the Minor Planet Center's Near-Earth Object Confirmation Page (NEOCP) until additional observations confirm that the object is a real asteroid rather than an observational artifact or an artificial object. Also, NEOCP objects could have a limited observability window and yet be scientifically interesting, e.g., radar and lightcurve targets, mini-moons (temporary Earth captures), mission accessible targets, close approachers or even impactors. For instance, the only two asteroids discovered before an impact, 2008 TC3 and 2014 AA, both reached the Earth less than a day after discovery. For these reasons we developed Scout, an automated system that provides an orbital and hazard assessment for NEOCP objects within minutes after the observations are available. Scout's rapid analysis increases the chances of securing the trajectory of interesting NEOCP objects before the ephemeris uncertainty grows too large or the observing geometry becomes unfavorable. The generally short observation arcs, perhaps only a few hours or even less, lead severe degeneracies in the orbit estimation process. To overcome these degeneracies Scout relies on systematic ranging, a technique that derives possible orbits by scanning a grid in the poorly constrained space of topocentric range and range rate, while the plane-of-sky position and motion are directly tied to the recorded observations. This scan allows us to derive a distribution of the possible orbits and in turn identify the NEOCP objects of most interest to prioritize followup efforts. In particular, Scout ranks objects according to the likelihood of an impact, estimates the close approach distance, the Earth-relative minimum orbit intersection distance and v-infinity, and computes scores to identify objects more likely to be an NEO, a km-sized NEO, a Potentially

  8. Metastatic neuroendocrine tumor with initial presentation of orbital apex syndrome

    Directory of Open Access Journals (Sweden)

    Yen-Yu Huang

    2017-03-01

    Full Text Available The possible etiologies of orbital apex syndrome range from inflammatory, infectious, neoplastic, iatrogenic/traumatic, to vascular processes. In patients without obvious infection or systemic cancer history, judicious use of corticosteroids is a reasonable strategy. We describe a 64-year-old man who presented with orbital apex syndrome and had progressed to total visual loss in three days after admission. Radiological imaging and pathological studies were consistent with a neuroendocrine tumor with multiple metastases. We recommend that a biopsy-proven specimen is warranted in patient with orbital apex syndrome even without a cancer history.

  9. NASA Safety Standard: Guidelines and Assessment Procedures for Limiting Orbital Debris

    Science.gov (United States)

    1995-01-01

    Collision with orbital debris is a hazard of growing concern as historically accepted practices and procedures have allowed man-made objects to accumulate in orbit. To limit future debris generation, NASA Management Instruction (NMI) 1700.8, 'Policy to Limit Orbital Debris Generation,' was issued in April of 1993. The NMI requires each program to conduct a formal assessment of the potential to generate orbital debris. This document serves as a companion to NMI 1700.08 and provides each NASA program with specific guidelines and assessment methods to assure compliance with the NMI. Each main debris assessment issue (e.g., Post Mission Disposal) is developed in a separate chapter.

  10. [Anthropogenic sources of radiation hazard in the near-Earth space].

    Science.gov (United States)

    Fedoseev, G A

    2004-01-01

    All plausible artificial radioactive sources entering the near-Earth space (NES) were systematized and consequences of various large radiation accidents and catastrophes to Earth and NES were analyzed. Aggressive "population" of near-Earth orbits by space stations with rotating crews, unmanned research platforms and observatories extends "borderlines" of the noosphere raising at the same time concerns about the noosphere radiation safety and global radioecology. Specifically, consideration is given to the facts of negative effects of space power reactor facilities on results of orbital astrophysical investigations.

  11. An atomic gravitational wave interferometric sensor in low earth orbit (AGIS-LEO)

    Science.gov (United States)

    Hogan, Jason M.; Johnson, David M. S.; Dickerson, Susannah; Kovachy, Tim; Sugarbaker, Alex; Chiow, Sheng-Wey; Graham, Peter W.; Kasevich, Mark A.; Saif, Babak; Rajendran, Surjeet; Bouyer, Philippe; Seery, Bernard D.; Feinberg, Lee; Keski-Kuha, Ritva

    2011-07-01

    We propose an atom interferometer gravitational wave detector in low Earth orbit (AGIS-LEO). Gravitational waves can be observed by comparing a pair of atom interferometers separated by a 30 km baseline. In the proposed configuration, one or three of these interferometer pairs are simultaneously operated through the use of two or three satellites in formation flight. The three satellite configuration allows for the increased suppression of multiple noise sources and for the detection of stochastic gravitational wave signals. The mission will offer a strain sensitivity of {<10^{-18}/sqrt{Hz}} in the 50mHz-10Hz frequency range, providing access to a rich scientific region with substantial discovery potential. This band is not currently addressed with the LIGO, VIRGO, or LISA instruments. We analyze systematic backgrounds that are relevant to the mission and discuss how they can be mitigated at the required levels. Some of these effects do not appear to have been considered previously in the context of atom interferometry, and we therefore expect that our analysis will be broadly relevant to atom interferometric precision measurements. Finally, we present a brief conceptual overview of shorter-baseline ({lesssim100 m}) atom interferometer configurations that could be deployed as proof-of-principle instruments on the International Space Station (AGIS-ISS) or an independent satellite.

  12. Properties of an Earth-like planet orbiting a Sun-like star: Earth observed by the EPOXI mission.

    Science.gov (United States)

    Livengood, Timothy A; Deming, L Drake; A'hearn, Michael F; Charbonneau, David; Hewagama, Tilak; Lisse, Carey M; McFadden, Lucy A; Meadows, Victoria S; Robinson, Tyler D; Seager, Sara; Wellnitz, Dennis D

    2011-11-01

    NASA's EPOXI mission observed the disc-integrated Earth and Moon to test techniques for reconnoitering extrasolar terrestrial planets, using the Deep Impact flyby spacecraft to observe Earth at the beginning and end of Northern Hemisphere spring, 2008, from a range of ∼1/6 to 1/3 AU. These observations furnish high-precision and high-cadence empirical photometry and spectroscopy of Earth, suitable as "ground truth" for numerically simulating realistic observational scenarios for an Earth-like exoplanet with finite signal-to-noise ratio. Earth was observed at near-equatorial sub-spacecraft latitude on 18-19 March, 28-29 May, and 4-5 June (UT), in the range of 372-4540 nm wavelength with low visible resolving power (λ/Δλ=5-13) and moderate IR resolving power (λ/Δλ=215-730). Spectrophotometry in seven filters yields light curves at ∼372-948 nm filter-averaged wavelength, modulated by Earth's rotation with peak-to-peak amplitude of ≤20%. The spatially resolved Sun glint is a minor contributor to disc-integrated reflectance. Spectroscopy at 1100-4540 nm reveals gaseous water and carbon dioxide, with minor features of molecular oxygen, methane, and nitrous oxide. One-day changes in global cloud cover resulted in differences between the light curve beginning and end of ≤5%. The light curve of a lunar transit of Earth on 29 May is color-dependent due to the Moon's red spectrum partially occulting Earth's relatively blue spectrum. The "vegetation red edge" spectral contrast observed between two long-wavelength visible/near-IR bands is ambiguous, not clearly distinguishing between the verdant Earth diluted by cloud cover versus the desolate mineral regolith of the Moon. Spectrophotometry in at least one other comparison band at short wavelength is required to distinguish between Earth-like and Moon-like surfaces in reconnaissance observations. However, measurements at 850 nm alone, the high-reflectance side of the red edge, could be sufficient to

  13. Improvement in the radial accuracy of altimeter-satellite orbits due to the geopotential

    Czech Academy of Sciences Publication Activity Database

    Klokočník, Jaroslav; Kostelecký, J.; Wagner, C. A.

    2008-01-01

    Roč. 91, 1-4 (2008), s. 106-120 ISSN 0012-8252 R&D Projects: GA AV ČR IAA3003407; GA MŠk(CZ) LC506 Institutional research plan: CEZ:AV0Z10030501 Keywords : orbits of Earth artificial satellites * gravity field of the Earth * radial orbit error Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 6.558, year: 2008

  14. Review on abort trajectory for manned lunar landing mission

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Abort trajectory is a passage that ensures the astronauts to return safely to the earth when an emergency occurs. Firstly,the essential elements of mission abort are analyzed entirely based on summarizing the existing studies. Then,abort trajectory requirement and rational selection for different flight phases of typical manned lunar mission are discussed specifically. Considering a trade-off between the two primary constrains of an abort,the return time of flight and energy requirement,a general optimizing method for mission abort is proposed. Finally,some suggestions are given for China’s future manned lunar landing mission.

  15. Inversion of the Earth spherical albedo from radiation-pressure

    Science.gov (United States)

    Wilkman, Olli; Herranen, Joonas; Näränen, Jyri; Virtanen, Jenni; Koivula, Hannu; Poutanen, Markku; Penttilä, Antti; Gritsevich, Maria; Muinonen, Karri

    2017-04-01

    We are studying the retrieval of the spherical albedo and net radiation of the Earth from the perturbations caused by the planet's radiation on the dynamics of its satellites. The spherical or Bond albedo gives the ratio of the fluxes incident on and scattered by the planet. The net radiation represents the net heat input into the planet's climate system and drives changes in its atmospheric, surface, and ocean temperatures. The ultimate aim of the study is inverting the problem and estimating the Earth albedo based on observations of satellites, simultaneously improving the space-geodetic positioning accuracy. Here we investigate the effect of the spherical albedo on satellite orbits with the help of a simplified model. We simulate the propagation of satellite orbits using a new simulation software. The simulation contains the main perturbing forces on medium and high Earth orbits, used by, e.g., navigation satellites, including the radiation pressure of reflected sunlight from the Earth. An arbitrary satellite shape model can be used, and the rotation of the satellite is modeled. In this first study, we use a box-wing satellite model with a simple surface BRDF. We also assume a diffusely reflecting Earth with a single global albedo value. We vary the Earth albedo and search for systematic effects on different orbits. Thereafter, we estimate the dependence of the albedo accuracy on the satellite positioning and timing data available. We show that the inversion of the spherical albedo with reasonable accuracy is feasible from the current space-geodetic measurements.

  16. Magnetic field and its influence on man

    International Nuclear Information System (INIS)

    Golovin, N.I.; Kurik, M.V.

    2001-01-01

    Positive effects of the Earth magnetic field (MF) on bacteria and animals are demonstrated. The same beneficial effect was found for man: screening of MF leads to blood vessel contraction and violation of exchange processes in organism. Effects of MF are considered as similar to that of catalysts. A correlation between MF values and various human diseases was found. Different methods of magnetotherapy are proposed

  17. Orbiting low frequency array for radio astronomy

    NARCIS (Netherlands)

    Rajan, Rai Thilak; Rajan, Raj; Engelen, Steven; Bentum, Marinus Jan; Verhoeven, Chris

    2011-01-01

    Recently new and interesting science drivers have emerged for very low frequency radio astronomy from 0.3 MHz to 30 MHz. However Earth bound radio observations at these wavelengths are severely hampered by ionospheric distortions, man made interference, solar flares and even complete reflection

  18. Options for Staging Orbits in Cis-Lunar Space

    Science.gov (United States)

    Martinez, Roland; Whitley, Ryan

    2016-01-01

    NASA has been studying options to conduct missions beyond Low Earth Orbit, but within the Earth-Moon system, in preparation for deep space exploration including human missions to Mars. Referred to as the Proving Ground, this arena of exploration activities will enable the development of human spaceflight systems and operations to satisfy future exploration objectives beyond the cis-lunar environment. One option being considered includes the deployment of a habitable element or elements, which could be used as a central location for aggregation of supplies and resources for human missions in cis-lunar space and beyond. Characterizing candidate orbit locations for this asset and the impacts on system design and mission operations is important in the overall assessment of the options being considered. The orbits described in this paper were initially selected by taking advantage of previous studies conducted by NASA and the work of other authors. In this paper orbits are assessed for their relative attractiveness based on various factors. A set of constraints related to the capability of the combined Orion and SLS system to deliver humans and cargo to and from the orbit are evaluated. Deployed assets intended to spend multiple years in the Proving Ground would ideally require minimal station keeping costs to reduce the mass budget allocated to this function. Additional mission design drivers include eclipse frequency, potential for uninterrupted communication with deployed assets, thermal, attitude control, communications, and other operational implications. Also the ability to support potential lunar surface activities and excursion missions beyond Earth-Moon space is considered. The results of the characterization and evaluation of the selected orbits indicate a Near Rectilinear Orbit (NRO) is an attractive candidate as an aggregation point or staging location for operations. In this paper, the NRO is further described in terms which balance a number of key

  19. The RoPES project with HARPS and HARPS-N. I. A system of super-Earths orbiting the moderately active K-dwarf HD 176986

    Science.gov (United States)

    Suárez Mascareño, A.; González Hernández, J. I.; Rebolo, R.; Velasco, S.; Toledo-Padrón, B.; Udry, S.; Motalebi, F.; Ségrasan, D.; Wyttenbach, A.; Mayor, M.; Pepe, F.; Lovis, C.; Santos, N. C.; Figueira, P.; Esposito, M.

    2018-04-01

    We report the discovery of a system of two super-Earths orbiting the moderately active K-dwarf HD 176986. This work is part of the RoPES RV program of G- and K-type stars, which combines radial velocities (RVs) from the HARPS and HARPS-N spectrographs to search for short-period terrestrial planets. HD 176986 b and c are super-Earth planets with masses of 5.74 and 9.18 M⊕, orbital periods of 6.49 and 16.82 days, and distances of 0.063 and 0.119 AU in orbits that are consistent with circular. The host star is a K2.5 dwarf, and despite its modest level of chromospheric activity (log10 (RHK' = -4.90 ± 0.04), it shows a complex activity pattern. Along with the discovery of the planets, we study the magnetic cycle and rotation of the star. HD 176986 proves to be suitable for testing the available RV analysis technique and further our understanding of stellar activity. Full Table A.1 is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/612/A41Based on observations made with the Italian Telescopio Nazionale Galileo (TNG), operated on the island of La Palma by the INAF - Fundación Galileo Galilei at the Roche de Los Muchachos Observatory of the Instituto de Astrofísica de Canarias (IAC); observations made with the HARPS instrument on the ESO 3.6-m telescope at La Silla Observatory (Chile).

  20. Orbits of the inner satellites of Neptune

    Science.gov (United States)

    Brozovic, Marina; Showalter, Mark R.; Jacobson, Robert Arthur; French, Robert S.; de Pater, Imke; Lissauer, Jack

    2018-04-01

    We report on the numerically integrated orbits of seven inner satellites of Neptune, including S/2004 N1, the last moon of Neptune to be discovered by the Hubble Space Telescope (HST). The dataset includes Voyager imaging data as well as the HST and Earth-based astrometric data. The observations span time period from 1989 to 2016. Our orbital model accounts for the equatorial bulge of Neptune, perturbations from the Sun and the planets, and perturbations from Triton. The initial orbital integration assumed that the satellites are massless, but the residuals improved significantly as the masses adjusted toward values that implied that the density of the satellites is in the realm of 1 g/cm3. We will discuss how the integrated orbits compare to the precessing ellipses fits, mean orbital elements, current orbital uncertainties, and the need for future observations.

  1. Atomic Oxygen Erosion Yield Predictive Tool for Spacecraft Polymers in Low Earth Orbit

    Science.gov (United States)

    Bank, Bruce A.; de Groh, Kim K.; Backus, Jane A.

    2008-01-01

    A predictive tool was developed to estimate the low Earth orbit (LEO) atomic oxygen erosion yield of polymers based on the results of the Polymer Erosion and Contamination Experiment (PEACE) Polymers experiment flown as part of the Materials International Space Station Experiment 2 (MISSE 2). The MISSE 2 PEACE experiment accurately measured the erosion yield of a wide variety of polymers and pyrolytic graphite. The 40 different materials tested were selected specifically to represent a variety of polymers used in space as well as a wide variety of polymer chemical structures. The resulting erosion yield data was used to develop a predictive tool which utilizes chemical structure and physical properties of polymers that can be measured in ground laboratory testing to predict the in-space atomic oxygen erosion yield of a polymer. The properties include chemical structure, bonding information, density and ash content. The resulting predictive tool has a correlation coefficient of 0.914 when compared with actual MISSE 2 space data for 38 polymers and pyrolytic graphite. The intent of the predictive tool is to be able to make estimates of atomic oxygen erosion yields for new polymers without requiring expensive and time consumptive in-space testing.

  2. The viscoelastic characterization of polymer materials exposed to the low-Earth orbit environment

    International Nuclear Information System (INIS)

    Strganac, T.; Letton, A.

    1992-01-01

    Recent accomplishments in our research efforts have included the successful measurement of the thermal mechanical properties of polymer materials exposed to the low-earth orbit environment. In particular, viscoelastic properties were recorded using the Rheometrics Solids Analyzer (RSA 2). Dynamic moduli (E', the storage component of the elastic modulus, and E'', the loss component of the elastic modulus) were recorded over three decades of frequency (0.1 to 100 rad/sec) for temperatures ranging from -150 to 150 C. Although this temperature range extends beyond the typical use range of the materials, measurements in this region are necessary in the development of complete viscoelastic constitutive models. The experimental results were used to provide the stress relaxation and creep compliance performance characteristics through viscoelastic correspondence principles. Our results quantify the differences between exposed and control polymer specimens. The characterization is specifically designed to elucidate a constitutive model that accurately predicts the change in behavior of these materials due to exposure. The constitutive model for viscoelastic behavior reflects the level of strain, the rate of strain, and the history of strain as well as the thermal history of the material

  3. The Effect of Improved Sub-Daily Earth Rotation Models on Global GPS Data Processing

    Science.gov (United States)

    Yoon, S.; Choi, K. K.

    2017-12-01

    Throughout the various International GNSS Service (IGS) products, strong periodic signals have been observed around the 14 day period. This signal is clearly visible in all IGS time-series such as those related to orbit ephemerides, Earth rotation parameters (ERP) and ground station coordinates. Recent studies show that errors in the sub-daily Earth rotation models are the main factors that induce such noise. Current IGS orbit processing standards adopted the IERS 2010 convention and its sub-daily Earth rotation model. Since the IERS convention had published, recent advances in the VLBI analysis have made contributions to update the sub-daily Earth rotation models. We have compared several proposed sub-daily Earth rotation models and show the effect of using those models on orbit ephemeris, Earth rotation parameters and ground station coordinates generated by the NGS global GPS data processing strategy.

  4. Early Paleogene Orbital Variations in Atmospheric CO2 and New Astronomical Solutions

    Science.gov (United States)

    Zeebe, R. E.

    2017-12-01

    Geologic records across the globe show prominent variations on orbital time scales during numerous epochs going back hundreds of millions of years. The origin of the Milankovic cycles are variations in orbital parameters of the bodies of the Solar System. On long time scales, the orbital variations can not be computed analytically because of the chaotic nature of the Solar System. Thus, numerical solutions are used to estimate changes in, e.g., Earth's orbital parameters in the past. The orbital solutions represent the backbone of cyclostratigraphy and astrochronology, now widely used in geology and paleoclimatology. Hitherto only two solutions for Earth's eccentricity appear to be used in paleoclimate studies, provided by two different groups that integrated the full Solar System equations over the past >100 Myr. In this presentation, I will touch on the basic physics behind, and present new results of, accurate Solar System integrations for Earth's eccentricity over the past hundred million years. I will discuss various limitations within the framework of the present simulations and compare the results to existing solutions. Furthermore, I will present new results from practical applications of such orbital solutions, including effects of orbital forcing on coupled climate- and carbon cycle variations. For instance, we have recently revealed a mechanism for a large lag between changes in carbon isotope ratios and eccentricity at the 400-kyr period, which has been observed in Paleocene, Oligocene, and Miocene sections. Finally, I will present the first estimates of orbital-scale variations in atmospheric CO2 during the early Paleogene.

  5. Tidal Friction in the Earth-Moon System and Laplace Planes: Darwin Redux

    Science.gov (United States)

    Rubincam, David P.

    2015-01-01

    The dynamical evolution of the Earth-Moon system due to tidal friction is treated here. George H. Darwin used Laplace planes (also called proper planes) in his study of tidal evolution. The Laplace plane approach is adapted here to the formalisms of W.M. Kaula and P. Goldreich. Like Darwin, the approach assumes a three-body problem: Earth, Moon, and Sun, where the Moon and Sun are point-masses. The tidal potential is written in terms of the Laplace plane angles. The resulting secular equations of motion can be easily integrated numerically assuming the Moon is in a circular orbit about the Earth and the Earth is in a circular orbit about the Sun. For Earth-Moon distances greater than 10 Earth radii, the Earth's approximate tidal response can be characterized with a single parameter, which is a ratio: a Love number times the sine of a lag angle divided by another such product. For low parameter values it can be shown that Darwin's low-viscosity molten Earth, M. Ross's and G. Schubert's model of an Earth near melting, and Goldreich's equal tidal lag angles must all give similar histories. For higher parameter values, as perhaps has been the case at times with the ocean tides, the Earth's obliquity may have decreased slightly instead of increased once the Moon's orbit evolved further than 50 Earth radii from the Earth, with possible implications for climate. This is contrast to the other tidal friction models mentioned, which have the obliquity always increasing with time. As for the Moon, its orbit is presently tilted to its Laplace plane by 5.2deg. The equations do not allow the Moon to evolve out of its Laplace plane by tidal friction alone, so that if it was originally in its Laplace plane, the tilt arose with the addition of other mechanisms, such as resonance passages.

  6. Economic analysis requirements in support of orbital debris regulatory policy

    Science.gov (United States)

    Greenberg, Joel S.

    1996-10-01

    As the number of Earth orbiting objects increases so does the potential for generating orbital debris with the consequent increase in the likelihood of impacting and damaging operating satellites. Various debris remediation approaches are being considered that encompass both in-orbit and return-to-Earth schema and have varying degrees of operations, cost, international competitiveness, and safety implications. Because of the diversity of issues, concerns and long-term impacts, there is a clear need for the setting of government policies that will lead to an orderly abatement of the potential orbital debris hazards. These policies may require the establishment of a supportive regulatory regime. The Department of Transportation is likely to have regulatory responsibilities relating to orbital debris stemming from its charge to protect the public health and safety, safety of property, and national security interests and foreign policy interests of the United States. This paper describes DOT's potential regulatory role relating to orbital debris remediation, the myriad of issues concerning the need for establishing government policies relating to orbital debris remediation and their regulatory implications, the proposed technological solutions and their economic and safety implications. Particular emphasis is placed upon addressing cost-effectiveness and economic analyses as they relate to economic impact analysis in support of regulatory impact analysis.

  7. Heliotropic dust rings for Earth climate engineering

    Science.gov (United States)

    Bewick, R.; Lücking, C.; Colombo, C.; Sanchez, J. P.; McInnes, C. R.

    2013-04-01

    This paper examines the concept of a Sun-pointing elliptical Earth ring comprised of dust grains to offset global warming. A new family of non-Keplerian periodic orbits, under the effects of solar radiation pressure and the Earth's J2 oblateness perturbation, is used to increase the lifetime of the passive cloud of particles and, thus, increase the efficiency of this geoengineering strategy. An analytical model is used to predict the orbit evolution of the dust ring due to solar-radiation pressure and the J2 effect. The attenuation of the solar radiation can then be calculated from the ring model. In comparison to circular orbits, eccentric orbits yield a more stable environment for small grain sizes and therefore achieve higher efficiencies when the orbit decay of the material is considered. Moreover, the novel orbital dynamics experienced by high area-to-mass ratio objects, influenced by solar radiation pressure and the J2 effect, ensure the ring will maintain a permanent heliotropic shape, with dust spending the largest portion of time on the Sun facing side of the orbit. It is envisaged that small dust grains can be released from a circular generator orbit with an initial impulse to enter an eccentric orbit with Sun-facing apogee. Finally, a lowest estimate of 1 × 1012 kg of material is computed as the total mass required to offset the effects of global warming.

  8. Environmental control and life support technologies for advanced manned space missions

    Science.gov (United States)

    Powell, F. T.; Wynveen, R. A.; Lin, C.

    1986-01-01

    Regenerative environmental control and life support system (ECLSS) technologies are found by the present evaluation to have reached a degree of maturity that recommends their application to long duration manned missions. The missions for which regenerative ECLSSs are attractive in virtue of the need to avoid expendables and resupply requirements have been identified as that of the long duration LEO Space Station, long duration stays at GEO, a permanently manned lunar base (or colony), manned platforms located at the earth-moon libration points L4 or L5, a Mars mission, deep space exploration, and asteroid exploration. A comparison is made between nonregenerative and regenerative ECLSSs in the cases of 10 essential functions.

  9. Single Stage To Orbit Minimum Requirements Through Numerical Simulation

    Science.gov (United States)

    Teixeira, E.

    It is widely known that producing a single stage to orbit spacecraft is no easy task. It is also understood that it will be the first steady step towards spacecraft that operate in much the same way as today's airliners. This, in turn is believed to decrease the economical cost of reaching space through more efficient use of a single vehicle and higher launch rates. Space is then open to the common man, either through tourism or as a transportation medium. This paper is yet another study on the physical requirements of a SSTO spacecraft. It will begin with simple assumptions and gradually build up accuracy until reaching the use of a numerical simulation tool, so as to provide the necessary insight into it. The curvature of the Earth, its gravitational field, the exhaust pressure loss and atmospheric drag are a few of the considerations that the simulation takes into account. No attention was give to the actual details of the spacecraft such as propulsion type(s), winged or lifting body (aerodynamics), active or passive cooling (thermodynamics), stability and control. All these subsystems are considered to be included into the construction mass. The drag model is a simple textbook approximation and the propulsion force is given by a hypothetical propellant and engine so as to produce the assumed range of specific impulse. Even the construction mass is supposed to be futuristic so as to reach the lowest specified values. Not only vertical take-off will be simulated but also horizontal launching from altitude (from a towing aircraft, for example). The result of the paper shows the relationship between the construction mass and the specific impulse of a given spacecraft if it is to reach low earth orbit. This paper thus aims at bringing some light to the controversial discussion of how to make these vehicles a reality. The simulation program (Matlab) is available to students.

  10. Middle Man Concept for In-Orbit Collision Risks Mitigation, CAESAR and CARA Examples

    Science.gov (United States)

    Moury, Monique; Newman, Lauri K.; Laporte, Francois

    2014-01-01

    This paper describes the conjunction analysis which has to be performed using data provided by JSpOC. This description not only demonstrates that Collision Avoidance is a 2- step process (close approach detection followed by risk evaluation for collision avoidance decision) but also leads to the conclusion that there is a need for a Middle Man role. After describing the Middle Man concept, this paper introduces two examples with their similarities and particularities: the American civil space effort delivered by the NASA CARA team (Conjunction Assessment Risk Analysis) and the French response CAESAR (Conjunction Assessment and Evaluation Service: Alerts and Recommendations). For both, statistics are presented and feedbacks discussed. All together, around 80 satellites are served by CARA and/or CAESAR. Both processes regularly evolve in order either to follow JSpOC upgrades or to improve analysis according to experience acquired during the past years.

  11. Evaluation of thermal control coatings for use on solar dynamic radiators in low earth orbit

    Science.gov (United States)

    Dever, Joyce A.; Rodriguez, Elvin; Slemp, Wayne S.; Stoyack, Joseph E.

    1991-01-01

    Thermal control coatings with high thermal emittance and low solar absorptance are needed for Space Station Freedom (SSF) solar dynamic power module radiator (SDR) surfaces for efficient heat rejection. Additionally, these coatings must be durable to low earth orbital (LEO) environmental effects of atomic oxygen, ultraviolet radiation and deep thermal cycles which occur as a result of start-up and shut-down of the solar dynamic power system. Eleven candidate coatings were characterized for their solar absorptance and emittance before and after exposure to ultraviolet (UV) radiation (200 to 400 nm), vacuum UV (VUV) radiation (100 to 200 nm) and atomic oxygen. Results indicated that the most durable and best performing coatings were white paint thermal control coatings Z-93, zinc oxide pigment in potassium silicate binder, and YB-71, zinc orthotitanate pigment in potassium silicate binder. Optical micrographs of these materials exposed to the individual environmental effects of atomic oxygen and vacuum thermal cycling showed that no surface cracking occurred.

  12. Forecasting the impact of an 1859-caliber superstorm on geosynchronous Earth-orbiting satellites: Transponder resources

    Science.gov (United States)

    Odenwald, Sten F.; Green, James L.

    2007-06-01

    We calculate the economic impact on the existing geosynchronous Earth-orbiting satellite population of an 1859-caliber superstorm event were it to occur between 2008 and 2018 during the next solar activity cycle. From a detailed model for transponder capacity and leasing, we have investigated the total revenue loss over the entire solar cycle, as a function of superstorm onset year and intensity. Our Monte Carlo simulations of 1000 possible superstorms, of varying intensity and onset year, suggest that the minimum revenue loss could be of the order of 30 billion. The losses would be larger than this if more that 20 satellites are disabled, if future launch rates do not keep up with the expected rate of retirements, or if the number of spare transponders falls below ˜30%. Consequently, revenue losses can be significantly reduced below 30 billion if the current satellite population undergoes net growth beyond 300 units during Solar Cycle 24 and a larger margin of unused transponders is maintained.

  13. Requirements for Designing Life Support System Architectures for Crewed Exploration Missions Beyond Low-Earth Orbit

    Science.gov (United States)

    Howard, David; Perry,Jay; Sargusingh, Miriam; Toomarian, Nikzad

    2016-01-01

    NASA's technology development roadmaps provide guidance to focus technological development on areas that enable crewed exploration missions beyond low-Earth orbit. Specifically, the technology area roadmap on human health, life support and habitation systems describes the need for life support system (LSS) technologies that can improve reliability and in-situ maintainability within a minimally-sized package while enabling a high degree of mission autonomy. To address the needs outlined by the guiding technology area roadmap, NASA's Advanced Exploration Systems (AES) Program has commissioned the Life Support Systems (LSS) Project to lead technology development in the areas of water recovery and management, atmosphere revitalization, and environmental monitoring. A notional exploration LSS architecture derived from the International Space has been developed and serves as the developmental basis for these efforts. Functional requirements and key performance parameters that guide the exploration LSS technology development efforts are presented and discussed. Areas where LSS flight operations aboard the ISS afford lessons learned that are relevant to exploration missions are highlighted.

  14. Maintaining Aura's Orbit Requirements While Performing Orbit Maintenance Maneuvers Containing an Orbit Normal Delta-V Component

    Science.gov (United States)

    Johnson, Megan R.; Petersen, Jeremy D.

    2014-01-01

    The Earth Observing System (EOS) Afternoon Constellation consists of five member missions (GCOM-W1, Aqua, CALIPSO, CloudSat, and Aura), each of which maintain a frozen, sun-synchronous orbit with a 16-day repeating ground track that follows the Worldwide Reference System-2 (WRS-2). Under nominal science operations for Aura, the propulsion system is oriented such that the resultant thrust vector is aligned 13.493 degrees away from the velocity vector along the yaw axis. When performing orbit maintenance maneuvers, the spacecraft performs a yaw slew to align the thrust vector in the appropriate direction. A new Drag Make Up (DMU) maneuver operations scheme has been implemented for Aura alleviating the need for the 13.493 degree yaw slew. The focus of this investigation is to assess the impact that no-slew DMU maneuver operations will have on Aura's Mean Local Time (MLT) which drives the required along track separation between Aura and the constellation members, as well as Aura's frozen orbit properties, eccentricity and argument of perigee. Seven maneuver strategies were analyzed to determine the best operational approach. A mirror pole strategy, with maneuvers alternating at the North and South poles, was implemented operationally to minimize impact to the MLT. Additional analysis determined that the mirror pole strategy could be further modified to include frozen orbit maneuvers and thus maintain both MLT and the frozen orbit properties under noslew operations.

  15. Astronaut Glenn in the Friendship 7

    Science.gov (United States)

    1962-01-01

    Astronaut John Glenn in the Friendship 7 capsule during the first manned orbital flight, the MA-6 mission. Boosted by the Mercury-Atlas vehicle, a modified Atlas (intercontinental ballistic missile), the MA-6 mission lasted for 5 hours and orbited the Earth three times.

  16. Climate of an Earth-Like World with Changing Eccentricity

    Science.gov (United States)

    Kohler, Susanna

    2017-02-01

    Having a giant planet like Jupiter next door can really wreak havoc on your orbit! A new study examines what such a bad neighbor might mean for the long-term climate of an Earth-like planet.Influence of a Bad NeighborThe presence of a Jupiter-like giant planet in a nearby orbit can significantly affect how terrestrial planets evolve dynamically, causing elements like the planets orbital eccentricities and axial tilts to change over time. Earth is saved this inconvenience Jupiter isnt close enough to significantly influence us, and our large moon stabilizes our orbit against Jupiters tugs.Top panels: Authors simulationoutcomes for Case1, in which the planets eccentricity varies from 0 to 0.283 over 6500 years. Bottom panels: Outcomes for Case 2, in which the planets eccentricity varies from 0 to 0.066 over 4500 years. The highereccentricities reached in Case 1 causes the climate parameters to vary more widely. Click for a better look! [Way Georgakarakos 2017]Mars, on the other hand, isnt as lucky: its possible that Jupiters gravitational pull causes Marss axial tilt, for instance, to evolve through a range as large as 0 to 60 degrees on timescales of millions of years! Marss orbital eccentricity is similarly thought to vary due to Jupiters influence, and both of these factors play a major role in determining Marss climate.As exoplanet missions discover more planets many of which are Earth-like we must carefully consider which among these are most likely to be capable of sustaining life. If having a nearby neighbor like a Jupiter can tug an Earth-like world into an orbit with varying eccentricity, how does this affect the planets climate? Will the planet remain temperate? Or will it develop a runaway heating or cooling effect as it orbits, rendering it uninhabitable?Oceans and OrbitsTo examine these questions, two scientists have built the first ever 3D global climate model simulations of an Earth-like world using a fully coupled ocean (necessary for understanding

  17. Technology Development to Support Human Health and Performance in Exploration Beyond Low Earth Orbit

    Science.gov (United States)

    Kundrot, C.E.; Steinberg, S. L.; Charles, J. B.

    2011-01-01

    In the course of defining the level of risks and mitigating the risks for exploration missions beyond low Earth orbit, NASA s Human Research Program (HRP) has identified the need for technology development in several areas. Long duration missions increase the risk of serious medical conditions due to limited options for return to Earth; no resupply; highly limited mass, power, volume; and communication delays. New space flight compatible medical capabilities required include: diagnostic imaging, oxygen concentrator, ventilator, laboratory analysis (saliva, blood, urine), kidney stone diagnosis & treatment, IV solution preparation and delivery. Maintenance of behavioral health in such an isolated, confined and extreme environment requires new sensory stimulation (e.g., virtual reality) technology. Unobtrusive monitoring of behavioral health and treatment methods are also required. Prolonged exposure to weightlessness deconditions bone, muscle, and the cardiovascular system. Novel exercise equipment or artificial gravity are necessary to prevent deconditioning. Monitoring of the degree of deconditioning is required to ensure that countermeasures are effective. New technologies are required in all the habitable volumes (e.g., suit, capsule, habitat, exploration vehicle, lander) to provide an adequate food system, and to meet human environmental standards for air, water, and surface contamination. Communication delays require the crew to be more autonomous. Onboard decision support tools that assist crew with real-time detection and diagnosis of vehicle and habitat operational anomalies will enable greater autonomy. Multi-use shield systems are required to provide shielding from solar particle events. The HRP is pursuing the development of these technologies in laboratories, flight analog environments and the ISS so that the human health and performance risks will be acceptable with the available resources.

  18. Review of current activities to model and measure the orbital debris environment in low-earth orbit

    Science.gov (United States)

    Reynolds, R. C.

    A very active orbital debris program is currently being pursued at the NASA/Johnson Space Center (JSC), with projects designed to better define the current environment, to project future environments, to model the processes contributing to or constraining the growth of debris in the environment, and to gather supporting data needed to improve the understanding of the orbital debris problem and the hazard it presents to spacecraft. This paper is a review of the activity being conducted at JSC, by NASA, Lockheed Engineering and Sciences Company, and other support contractors, and presents a review of current activity, results of current research, and a discussion of directions for future development.

  19. Pathways of evolution for man and machine

    Science.gov (United States)

    Mclaughlin, W. I.

    1983-01-01

    A simplified model of the future is introduced in order to examine the relations between man, machine, and extraterrestrial intelligence. The observed lack of extraterrestrials on earth is used as a boundary condition for the model. Two exobiological conclusions are obtained: (1) advanced extraterrestrials exist but are difficult to observe or to distinguish from natural phenomena, (2) lower level, man-like extraterrestrials, which are potentially observable, are rare in the Universe because they are rapidly replaced in the evolutinary sequence by the intelligent machines which they create. The decline of man is inferred and may take place as soon as 100 years from now or as long as 100,000 years from the present time. Thus, we are a short-lived species, having a life expectancy of only a million years. A note is appended on the rationale and methods of the search for extraterrestrial intelligence in light of the above calculations. The Tau Ceti and Epsilon Eridani systems present favourable opportunities for a radio-search experiment in 1987 and 1988, respectively.

  20. "Galileo Calling Earth..."

    Science.gov (United States)

    National Aeronautics and Space Administration, Washington, DC.

    This guide presents an activity for helping students understand how data from the Galileo spacecraft is sent to scientists on earth. Students are asked to learn about the concepts of bit-rate and resolution and apply them to the interpretation of images from the Galileo Orbiter. (WRM)

  1. Cardiovascular, renal, electrolyte, and hormonal changes in man during gravitational stress, weightlessness, and simulated weightlessness: Lower body positive pressure applied by the antigravity suit. Thesis - Oslo Univ.

    Science.gov (United States)

    Kravik, Stein E.

    1989-01-01

    Because of their erect posture, humans are more vulnerable to gravitational changes than any other animal. During standing or walking man must constantly use his antigravity muscles and his two columns, his legs, to balance against the force of gravity. At the same time, blood is surging downward to the dependent portions of the body, draining blood away from the brain and heart, and requiring a series of complex cardiovascular adjustments to maintain the human in a bipedal position. It was not until 12 April 1961, when Yuri Gagarin became the first human being to orbit Earth, that we could confirm man's ability to maintain vital functions in space -- at least for 90 min. Nevertheless, man's adaptation to weightlessness entails the deconditioning of various organs in the body. Muscles atrophy, and calcium loss leads to loss of bone strength as the demands on the musculoskeletal system are almost nonexistent in weightlessness. Because of the lack of hydrostatic pressures in space, blood rushes to the upper portions of the body, initiating a complex series of cardioregulatory responses. Deconditioning during spaceflight, however, first becomes a potentially serious problem in humans returning to Earth, when the cardiovascular system, muscles and bones are suddenly exposed to the demanding counterforce of gravity -- weight. One of the main purposes of our studies was to test the feasibility of using Lower Body Positive Pressure, applied with an antigravity suit, as a new and alternative technique to bed rest and water immersion for studying cardioregulatory, renal, electrolyte, and hormonal changes in humans. The results suggest that Lower Body Positive Pressure can be used as an analog of microgravity-induced physiological responses in humans.

  2. Achieving Climate Change Absolute Accuracy in Orbit

    Science.gov (United States)

    Wielicki, Bruce A.; Young, D. F.; Mlynczak, M. G.; Thome, K. J; Leroy, S.; Corliss, J.; Anderson, J. G.; Ao, C. O.; Bantges, R.; Best, F.; hide

    2013-01-01

    The Climate Absolute Radiance and Refractivity Observatory (CLARREO) mission will provide a calibration laboratory in orbit for the purpose of accurately measuring and attributing climate change. CLARREO measurements establish new climate change benchmarks with high absolute radiometric accuracy and high statistical confidence across a wide range of essential climate variables. CLARREO's inherently high absolute accuracy will be verified and traceable on orbit to Système Internationale (SI) units. The benchmarks established by CLARREO will be critical for assessing changes in the Earth system and climate model predictive capabilities for decades into the future as society works to meet the challenge of optimizing strategies for mitigating and adapting to climate change. The CLARREO benchmarks are derived from measurements of the Earth's thermal infrared spectrum (5-50 micron), the spectrum of solar radiation reflected by the Earth and its atmosphere (320-2300 nm), and radio occultation refractivity from which accurate temperature profiles are derived. The mission has the ability to provide new spectral fingerprints of climate change, as well as to provide the first orbiting radiometer with accuracy sufficient to serve as the reference transfer standard for other space sensors, in essence serving as a "NIST [National Institute of Standards and Technology] in orbit." CLARREO will greatly improve the accuracy and relevance of a wide range of space-borne instruments for decadal climate change. Finally, CLARREO has developed new metrics and methods for determining the accuracy requirements of climate observations for a wide range of climate variables and uncertainty sources. These methods should be useful for improving our understanding of observing requirements for most climate change observations.

  3. Orbital lymphoma masquerading as thyroid ophthalmopathy.

    Science.gov (United States)

    Boyce, P J

    1998-10-01

    Lymphoid tumors are known to originate within the lacrimal gland and orbital fat. Ocular findings commonly seen are a palpable mass with proptosis and downward displacement of the globe. Graves' ophthalmopathy is the most common orbital pathology occurring in the general population. Signs and symptoms of Graves' ophthalmopathy, such as unilateral or bilateral proptosis, double vision, limitation of movement of the extraocular muscles, are not specific for this condition. A 57-year-old man came to us with a chief symptom of "eye swelling" for the last 3 years. He had been diagnosed with hyperthyroidism and had received three surgical procedures for orbital decompression. Clinical findings included limitation of upward and downward gaze, exophthalmometry readings of 30 1/2 mm O.D. and 31 mm O.S. (with a base of 112), and profound proptosis with fatty tissue prolapse. Subsequent thyroid testing revealed euthyroid status and computed tomography scan revealed orbital lymphoma. Orbital involvement from a malignant nodular histiocytic lymphoma resulted in a proptosis similar to that observed in Graves' ophthalmopathy. This very unusual presentation of orbital lymphoma mimicked Graves' disease so closely that the true cause was overlooked. This case emphasizes the need to include space-occupying lesions in the differential diagnosis of proptosis and gaze restrictions. The disease process and controversial management strategies are discussed.

  4. Orbiting Depot and Reusable Lander for Lunar Transportation

    Science.gov (United States)

    Petro, Andrew

    2009-01-01

    A document describes a conceptual transportation system that would support exploratory visits by humans to locations dispersed across the surface of the Moon and provide transport of humans and cargo to sustain one or more permanent Lunar outpost. The system architecture reflects requirements to (1) minimize the amount of vehicle hardware that must be expended while maintaining high performance margins and (2) take advantage of emerging capabilities to produce propellants on the Moon while also enabling efficient operation using propellants transported from Earth. The system would include reusable single- stage lander spacecraft and a depot in a low orbit around the Moon. Each lander would have descent, landing, and ascent capabilities. A crew-taxi version of the lander would carry a pressurized crew module; a cargo version could carry a variety of cargo containers. The depot would serve as a facility for storage and for refueling with propellants delivered from Earth or propellants produced on the Moon. The depot could receive propellants and cargo sent from Earth on a variety of spacecraft. The depot could provide power and orbit maintenance for crew vehicles from Earth and could serve as a safe haven for lunar crews pending transport back to Earth.

  5. Optimizing the Earth-LISA 'rendezvous'

    International Nuclear Information System (INIS)

    De Marchi, Fabrizio; Pucacco, Giuseppe; Bassan, Massimo

    2012-01-01

    We present a general survey of heliocentric LISA orbits, hoping that it might help in the exercise of rescoping the mission. We try to semi-analytically optimize the orbital parameters in order to minimize the disturbances coming from the Earth-LISA interaction. In a set of numerical simulations, we include non-autonomous perturbations and provide an estimate of Doppler shift and breathing as a function of the trailing angle. (paper)

  6. High energy-intensity atomic oxygen beam source for low earth orbit materials degradation studies

    International Nuclear Information System (INIS)

    Cross, J.B.; Blais, N.C.

    1988-01-01

    A high intensity (10 19 O-atoms/s-sr) high energy (5 eV) source of oxygen atoms has been developed that produces a total fluence of 10 22 O-atoms/cm 2 in less than 100 hours of continuous operation at a distance of 15 cm from the source. The source employs a CW CO 2 laser sustained discharge to form a high temperature (15,000 K) plasma in the throat of a 0.3-mm diameter nozzle using 3--8 atmospheres of rare gas/O 2 mixtures. Visible and infrared photon flux levels of 1 watt/cm 2 have been measured 15 cm downstream of the source while vacuum UV (VUV) fluxes are comparable to that measured in low earth orbit. The reactions of atomic oxygen with kapton, Teflon, silver, and various coatings have been studied. The oxidation of kapton (reaction efficiency = 3 /times/ 10/sup /minus/24/ cm /+-/ 50%) has an activation energy of 0.8 Kcal/mole over the temperature range of 25/degree/C to 100/degree/C at a beam energy of 1.5 eV and produces low molecular weight gas phase reaction products (H 2 O, NO, CO 2 ). Teflon reacts with ∼0.1--0.2 efficiency to that of kapton at 25/degree/C and both surfaces show a rug-like texture after exposure to the O-atom beam. Angular scattering distribution measurements of O-atoms show a near cosine distribution from reactive surfaces indicating complete accommodation of the translational energy with the surface while a nonreactive surface (nickel oxide) shows specular-like scattering with 50% accommodation of the translational energy with the surface. A technique for simple on orbit chemical experiments using resistance measurements of coated silver strips is described. 9 figs

  7. Mars Sample Return - Launch and Detection Strategies for Orbital Rendezvous

    Science.gov (United States)

    Woolley, Ryan C.; Mattingly, Richard L.; Riedel, Joseph E.; Sturm, Erick J.

    2011-01-01

    This study sets forth conceptual mission design strategies for the ascent and rendezvous phase of the proposed NASA/ESA joint Mars Sample Return Campaign. The current notional mission architecture calls for the launch of an acquisition/cache rover in 2018, an orbiter with an Earth return vehicle in 2022, and a fetch rover and ascent vehicle in 2024. Strategies are presented to launch the sample into a coplanar orbit with the Orbiter which facilitate robust optical detection, orbit determination, and rendezvous. Repeating ground track orbits exist at 457 and 572 km which provide multiple launch opportunities with similar geometries for detection and rendezvous.

  8. Mars Sample Return: Launch and Detection Strategies for Orbital Rendezvous

    Science.gov (United States)

    Woolley, Ryan C.; Mattingly, Richard L.; Riedel, Joseph E.; Sturm, Erick J.

    2011-01-01

    This study sets forth conceptual mission design strategies for the ascent and rendezvous phase of the proposed NASA/ESA joint Mars Sample Return Campaign. The current notional mission architecture calls for the launch of an acquisition/ caching rover in 2018, an Earth return orbiter in 2022, and a fetch rover with ascent vehicle in 2024. Strategies are presented to launch the sample into a nearly coplanar orbit with the Orbiter which would facilitate robust optical detection, orbit determination, and rendezvous. Repeating ground track orbits existat 457 and 572 km which would provide multiple launch opportunities with similar geometries for detection and rendezvous.

  9. Propulsion Aspects of Unmanned and Manned Lunar Landings

    Directory of Open Access Journals (Sweden)

    D. S. CARTON

    1963-06-01

    Full Text Available Direct vertical descent and descent from an intermediate
    lunar parking orbit are discussed. The difference in philosophy between
    langing a payload of instruments and of humans is considered in some
    detail. The " human return to eartli " problem is separated from the
    " mission success-failure " criteria.
    Some anticipated performances are given in terms of payload ratio
    for various propulsion-cehicle vcaling constants for botli forms of descent.
    Manned descent from parking orbit is discussed with respect to the
    general problem of maximising the probability of human return. .Minimum
    impulse, high safety and long low approaches are mentioned. In conclusion
    the problem of abort during the final powered descent is considered for
    fixed and variable geometry vehicles.

  10. Lunar orbiter photographic atlas of the near side of the Moon

    CERN Document Server

    Byrne, Charles

    2005-01-01

    In 1967, Lunar Orbiter Mission 4 sent back to Earth a superb series of photographs of the surface of the Moon. Using 21st century computer techniques, Charles Byrne - previously System Engineer of the Apollo Program for Lunar Orbiter Photography - has removed the scanning artifacts and transmission imperfections to produce a most comprehensive and beautifully detailed set of images of the lunar surface. To help practical astronomers, all the photographs are systematically related to an Earth-based view. The book has been organized to make it easy for astronomers to use, enabling ground-based images and views to be compared with the Orbiter photographs. Every astronomer - amateur and professional - who is interested in the Moon will want this book in his library!.

  11. NASA Advanced Concepts Office, Earth-To-Orbit Team Design Process and Tools

    Science.gov (United States)

    Waters, Eric D.; Garcia, Jessica; Threet, Grady E., Jr.; Phillips, Alan

    2013-01-01

    The Earth-to-Orbit Team (ETO) of the Advanced Concepts Office (ACO) at NASA Marshall Space Flight Center (MSFC) is considered the pre-eminent "go-to" group for pre-phase A and phase A concept definition. Over the past several years the ETO team has evaluated thousands of launch vehicle concept variations for a significant number of studies including agency-wide efforts such as the Exploration Systems Architecture Study (ESAS), Constellation, Heavy Lift Launch Vehicle (HLLV), Augustine Report, Heavy Lift Propulsion Technology (HLPT), Human Exploration Framework Team (HEFT), and Space Launch System (SLS). The ACO ETO Team is called upon to address many needs in NASA's design community; some of these are defining extremely large trade-spaces, evaluating advanced technology concepts which have not been addressed by a large majority of the aerospace community, and the rapid turn-around of highly time critical actions. It is the time critical actions, those often limited by schedule or little advanced warning, that have forced the five member ETO team to develop a design process robust enough to handle their current output level in order to meet their customer's needs. Based on the number of vehicle concepts evaluated over the past year this output level averages to four completed vehicle concepts per day. Each of these completed vehicle concepts includes a full mass breakdown of the vehicle to a tertiary level of subsystem components and a vehicle trajectory analysis to determine optimized payload delivery to specified orbital parameters, flight environments, and delta v capability. A structural analysis of the vehicle to determine flight loads based on the trajectory output, material properties, and geometry of the concept is also performed. Due to working in this fast-paced and sometimes rapidly changing environment, the ETO Team has developed a finely tuned process to maximize their delivery capabilities. The objective of this paper is to describe the interfaces

  12. Estimating spacecraft attitude based on in-orbit sensor measurements

    DEFF Research Database (Denmark)

    Jakobsen, Britt; Lyn-Knudsen, Kevin; Mølgaard, Mathias

    2014-01-01

    of 2014/15. To better evaluate the performance of the payload, it is desirable to couple the payload data with the satellite's orientation. With AAUSAT3 already in orbit it is possible to collect data directly from space in order to evaluate the performance of the attitude estimation. An extended kalman...... filter (EKF) is used for quaternion-based attitude estimation. A Simulink simulation environment developed for AAUSAT3, containing a "truth model" of the satellite and the orbit environment, is used to test the performance The performance is tested using different sensor noise parameters obtained both...... from a controlled environment on Earth as well as in-orbit. By using sensor noise parameters obtained on Earth as the expected parameters in the attitude estimation, and simulating the environment using the sensor noise parameters from space, it is possible to assess whether the EKF can be designed...

  13. A Preliminary Formation Flying Orbit Dynamics Analysis for Leonardo-BRDF

    Science.gov (United States)

    Hughes, Steven P.; Mailhe, Laurie M.

    2001-01-01

    Leonardo-BRDF is a NASA mission concept proposed to allow the investigation of radiative transfer and its effect on the Earth's climate and atmospheric phenomenon. Enabled by the recent developments in small-satellite and formation flying technology, the mission is envisioned to be composed of an array of spacecraft in carefully designed orbits. The different perspectives provided by a distributed array of spacecraft offer a unique advantage to study the Earth's albedo. This paper presents the orbit dynamics analysis performed in the context of the Leonardo-BRDF science requirements. First, the albedo integral is investigated and the effect of viewing geometry on science return is studied. The method used in this paper, based on Gauss quadrature, provides the optimal formation geometry to ensure that the value of the integral is accurately approximated. An orbit design approach is presented to achieve specific relative orbit geometries while simultaneously satisfying orbit dynamics constraints to reduce formation-keeping fuel expenditure. The relative geometry afforded by the design is discussed in terms of mission requirements. An optimal two-burn initialization scheme is presented with the required delta-V to distribute all spacecraft from a common parking orbit into their appropriate orbits in the formation. Finally, formation-keeping strategies are developed and the associated delta-V's are calculated to maintain the formation in the presence of perturbations.

  14. Near-Earth Asteroids: Destinations for Human Exploration

    Science.gov (United States)

    Barbee, Brent W.

    2014-01-01

    The Near-Earth Object Human Space Flight Accessible Targets Study (NHATS) is a system that monitors the near-Earth asteroid (NEA) population to identify NEAs whose orbital characteristics may make them potential destinations for future round-trip human space flight missions. To accomplish this monitoring, Brent Barbee (GSFC) developed and automated a system that applies specialized trajectory processing to the orbits of newly discovered NEAs, and those for which we have updated orbit knowledge, obtained from the JPL Small Bodies Database (SBDB). This automated process executes daily and the results are distributed to the general public and the astronomy community. This aids in prioritizing telescope radar time allocations for obtaining crucial follow-up observations of highly accessible NEAs during the critical, because it is often fleeting, time period surrounding the time at which the NEAs are initially discovered.

  15. Changing inclination of earth satellites using the gravity of the moon

    Directory of Open Access Journals (Sweden)

    Karla de Souza Torres

    2006-01-01

    Full Text Available We analyze the problem of the orbital control of an Earth's satellite using the gravity of the Moon. The main objective is to study a technique to decrease the fuel consumption of a plane change maneuver to be performed in a satellite that is in orbit around the Earth. The main idea of this approach is to send the satellite to the Moon using a single-impulsive maneuver, use the gravity field of the Moon to make the desired plane change of the trajectory, and then return the satellite to its nominal semimajor axis and eccentricity using a bi-impulsive Hohmann-type maneuver. The satellite is assumed to start in a Keplerian orbit in the plane of the lunar orbit around the Earth and the goal is to put it in a similar orbit that differs from the initial orbit only by the inclination. A description of the close-approach maneuver is made in the three-dimensional space. Analytical equations based on the patched conics approach are used to calculate the variation in velocity, angular momentum, energy, and inclination of the satellite. Then, several simulations are made to evaluate the savings involved. The time required by those transfers is also calculated and shown.

  16. Orbital motions as gradiometers for post-Newtonian tidal effects

    Energy Technology Data Exchange (ETDEWEB)

    Iorio, Lorenzo, E-mail: lorenzo.iorio@libero.it [Ministero dell' Istruzione, dell' Università e della Ricerca, Istruzione, Bari (Italy)

    2014-08-14

    The direct long-term changes occurring in the orbital dynamics of a local gravitationally bound binary system S due to the post-Newtonian tidal acceleration caused by an external massive source are investigated. A class of systems made of a test particle m rapidly orbiting with orbital frequency n{sub b} an astronomical body of mass M which, in turn, slowly revolves around a distant object of mass M′ with orbital frequency n{sub b}′ « n{sub b} is considered. The characteristic frequencies of the non-Keplerian orbital variations of m and of M itself are assumed to be negligible with respect to both n{sub b} and n{sub b}′. General expressions for the resulting Newtonian and post-Newtonian tidal orbital shifts of m are obtained. The future missions BepiColombo and JUICE to Mercury and Ganymede, respectively, are considered in view of a possible detection. The largest effects, of the order of ≈ 0.1-0.5 milliarcseconds per year (mas yr{sup −1}), occur for the Ganymede orbiter of the JUICE mission. Although future improvements in spacecraft tracking and orbit determination might, perhaps, reach the required sensitivity, the systematic bias represented by the other known orbital perturbations of both Newtonian and post-Newtonian origin would be overwhelming. The realization of a dedicated artificial mini-planetary system to be carried onboard and Earth-orbiting spacecraft is considered as well. Post-Newtonian tidal precessions as large as ≈ 1−10{sup 2} mas yr{sup −1} could be obtained, but the quite larger Newtonian tidal effects would be a major source of systematic bias because of the present-day percent uncertainty in the product of the Earth's mass times the Newtonian gravitational parameter.

  17. RITD - Adapting Mars Entry, Descent and Landing System for Earth

    Science.gov (United States)

    Haukka, H.; Heilimo, J.; Harri, A.-M.; Aleksashkin, S.; Koryanov, V.; Arruego, I.; Schmidt, W.; Finchenko, V.; Martynov, M.; Ponomarenko, A.; Kazakovtsev, V.; Martin, S.

    2015-10-01

    We have developed an atmospheric re-entry and descent system concept based on inflatable hypersonic decelerator techniques that were originally developed for Mars. The ultimate goal of this EU-funded RITD-project (Re-entry: Inflatable Technology Development) was to assess the benefits of this technology when deploying small payloads from low Earth orbits to the surface of the Earth with modest costs. The principal goal was to assess and develop a preliminary EDLS design for the entire relevant range of aerodynamic regimes expected to be encountered in Earth's atmosphere during entry, descent and landing. Low Earth Orbit (LEO) and even Lunar applications envisaged include the use of the EDLS approach in returning payloads of 4-8 kg down to the surface.

  18. Solar sail trajectory design in the Earth-Moon circular restricted three body problem

    Science.gov (United States)

    Das, Ashwati

    The quest to explore the Moon has helped resolve scientific questions, has spurred leaps in technology development, and has revealed Earth's celestial companion to be a gateway to other destinations. With a renewed focus on returning to the Moon in this decade, alternatives to chemical propulsion systems are becoming attractive methods to efficiently use scarce resources and support extended mission durations. Thus, an investigation is conducted to develop a general framework, that facilitates propellant-free Earth-Moon transfers by exploiting sail dynamics in combination with advantageous transfer options offered in the Earth-Moon circular restricted multi-body dynamical model. Both periodic orbits in the vicinity of the Earth-Moon libration points, and lunar-centric long-term capture orbits are incorporated as target destinations to demonstrate the applicability of the general framework to varied design scanarios, each incorporating a variety of complexities and challenges. The transfers are comprised of three phases - a spiral Earth escape, a transit period, and, finally, the capture into a desirable orbit in the vicinity of the Moon. The Earth-escape phase consists of spiral trajectories constructed using three different sail steering strategies - locally optimal, on/off and velocity tangent. In the case of the Earth-libration point transfers, naturally occurring flow structures (e.g., invariant manifolds) arising from the mutual gravitational interaction of the Earth and Moon are exploited to link an Earth departure spiral with a destination orbit. In contrast, sail steering alone is employed to establish a link between the Earth-escape phase and capture orbits about the Moon due to a lack of applicable natural structures for the required connection. Metrics associated with the transfers including flight-time and the influence of operational constraints, such as occultation events, are investigated to determine the available capabilities for Earth

  19. Space Radiation: The Number One Risk to Astronaut Health beyond Low Earth Orbit

    Science.gov (United States)

    Chancellor, Jeffery C.; Scott, Graham B. I.; Sutton, Jeffrey P.

    2014-01-01

    Projecting a vision for space radiobiological research necessitates understanding the nature of the space radiation environment and how radiation risks influence mission planning, timelines and operational decisions. Exposure to space radiation increases the risks of astronauts developing cancer, experiencing central nervous system (CNS) decrements, exhibiting degenerative tissue effects or developing acute radiation syndrome. One or more of these deleterious health effects could develop during future multi-year space exploration missions beyond low Earth orbit (LEO). Shielding is an effective countermeasure against solar particle events (SPEs), but is ineffective in protecting crew members from the biological impacts of fast moving, highly-charged galactic cosmic radiation (GCR) nuclei. Astronauts traveling on a protracted voyage to Mars may be exposed to SPE radiation events, overlaid on a more predictable flux of GCR. Therefore, ground-based research studies employing model organisms seeking to accurately mimic the biological effects of the space radiation environment must concatenate exposures to both proton and heavy ion sources. New techniques in genomics, proteomics, metabolomics and other “omics” areas should also be intelligently employed and correlated with phenotypic observations. This approach will more precisely elucidate the effects of space radiation on human physiology and aid in developing personalized radiological countermeasures for astronauts. PMID:25370382

  20. Space Radiation: The Number One Risk to Astronaut Health beyond Low Earth Orbit

    Directory of Open Access Journals (Sweden)

    Jeffery C. Chancellor

    2014-09-01

    Full Text Available Projecting a vision for space radiobiological research necessitates understanding the nature of the space radiation environment and how radiation risks influence mission planning, timelines and operational decisions. Exposure to space radiation increases the risks of astronauts developing cancer, experiencing central nervous system (CNS decrements, exhibiting degenerative tissue effects or developing acute radiation syndrome. One or more of these deleterious health effects could develop during future multi-year space exploration missions beyond low Earth orbit (LEO. Shielding is an effective countermeasure against solar particle events (SPEs, but is ineffective in protecting crew members from the biological impacts of fast moving, highly-charged galactic cosmic radiation (GCR nuclei. Astronauts traveling on a protracted voyage to Mars may be exposed to SPE radiation events, overlaid on a more predictable flux of GCR. Therefore, ground-based research studies employing model organisms seeking to accurately mimic the biological effects of the space radiation environment must concatenate exposures to both proton and heavy ion sources. New techniques in genomics, proteomics, metabolomics and other “omics” areas should also be intelligently employed and correlated with phenotypic observations. This approach will more precisely elucidate the effects of space radiation on human physiology and aid in developing personalized radiological countermeasures for astronauts.

  1. Orbit Determination Using Vinti’s Solution

    Science.gov (United States)

    2016-09-15

    crew capsule orbited the earth twice and then experienced re-entry as part of an experimental test flight (Orion EFT -1). With a flight duration of almost...utility greatly outweighs these initial difficulties. A summary of efforts required to tap into these benefits follows. • The current research developed...and Lear, D., “Orion EFT -1 Postflight MMOD Inspection,” Orbital Debris Quarterly News, Vol. 19, April 2015, pp. 6–9. [16] European Space Agency, “Space

  2. Radiation shielding aspects for long manned mission to space: Criteria, survey study, and preliminary model

    Directory of Open Access Journals (Sweden)

    Sztejnberg Manuel

    2006-01-01

    Full Text Available The prospect of manned space missions outside Earth's orbit is limited by the travel time and shielding against cosmic radiation. The chemical rockets currently used in the space program have no hope of propelling a manned vehicle to a far away location such as Mars due to the enormous mass of fuel that would be required. The specific energy available from nuclear fuel is a factor of 106 higher than chemical fuel; it is therefore obvious that nuclear power production in space is a must. On the other hand, recent considerations to send a man to the Moon for a long stay would require a stable, secured and safe source of energy (there is hardly anything beyond nuclear power that would provide a useful and reliably safe sustainable supply of energy. National Aeronautics and Space Administration (NASA anticipates that the mass of a shielding material required for long travel to Mars is the next major design driver. In 2006 NASA identified a need to assess and evaluate potential gaps in existing knowledge and understanding of the level and types of radiation critical to astronauts' health during the long travel to Mars and to start a comprehensive study related to the shielding design of a spacecraft finding the conditions for the mitigation of radiation components contributing to the doses beyond accepted limits. In order to reduce the overall space craft mass, NASA is looking for the novel, multi-purpose and multi-functional materials that will provide effective shielding of the crew and electronics on board. The Laboratory for Neutronics and Geometry Computation in the School of Nuclear Engineering at Purdue University led by Prof. Tatjana Jevremović began in 2004 the analytical evaluations of different lightweight materials. The preliminary results of the design survey study are presented in this paper.

  3. Design options for advanced manned launch systems

    Science.gov (United States)

    Freeman, Delma C.; Talay, Theodore A.; Stanley, Douglas O.; Lepsch, Roger A.; Wilhite, Alan W.

    1995-03-01

    Various concepts for advanced manned launch systems are examined for delivery missions to space station and polar orbit. Included are single-and two-stage winged systems with rocket and/or air-breathing propulsion systems. For near-term technologies, two-stage reusable rocket systems are favored over single-stage rocket or two-stage air-breathing/rocket systems. Advanced technologies enable viable single-stage-to-orbit (SSTO) concepts. Although two-stage rocket systems continue to be lighter in dry weight than SSTO vehicles, advantages in simpler operations may make SSTO vehicles more cost-effective over the life cycle. Generally, rocket systems maintain a dry-weight advantage over air-breathing systems at the advanced technology levels, but to a lesser degree than when near-term technologies are used. More detailed understanding of vehicle systems and associated ground and flight operations requirements and procedures is essential in determining quantitative discrimination between these latter concepts.

  4. Concept Design of the Payload Handling Manipulator System. [space shuttle orbiters

    Science.gov (United States)

    1975-01-01

    The design, requirements, and interface definition of a remote manipulator system developed to handle orbiter payloads are presented. End effector design, control system concepts, and man-machine engineering are considered along with crew station requirements and closed circuit television system performance requirements.

  5. Modelling of charged satellite motion in Earth's gravitational and magnetic fields

    Science.gov (United States)

    Abd El-Bar, S. E.; Abd El-Salam, F. A.

    2018-05-01

    In this work Lagrange's planetary equations for a charged satellite subjected to the Earth's gravitational and magnetic force fields are solved. The Earth's gravity, and magnetic and electric force components are obtained and expressed in terms of orbital elements. The variational equations of orbit with the considered model in Keplerian elements are derived. The solution of the problem in a fully analytical way is obtained. The temporal rate of changes of the orbital elements of the spacecraft are integrated via Lagrange's planetary equations and integrals of the normalized Keplerian motion obtained by Ahmed (Astron. J. 107(5):1900, 1994).

  6. Feasibility study of wireless power transmission systems

    Science.gov (United States)

    Robinson, W. J., Jr.

    1968-01-01

    Wireless microwave or laser energy transfers power from a manned earth-orbiting central station to unmanned astronomical substations. More efficient systems are required for the microwave power transmission.

  7. Verification of KAM Theory on Earth Orbiting Satellites

    Science.gov (United States)

    2010-03-01

    9 2.2 The Two Body Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.3 Geocentric and Geographic...Center of Earth Radius . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Geocentric Latitude...their gravitational fields a different approach must be used. For the moment the above representation is sufficient, but a more accurate model will be

  8. Radiosensitive orbital metastasis as presentation of occult colonic adenocarcinoma.

    Science.gov (United States)

    Ludmir, Ethan B; McCall, Shannon J; Czito, Brian G; Palta, Manisha

    2014-09-19

    An 82-year-old man presented with progressive right frontal headaches. The patient's history was significant for benign polyps on surveillance colonoscopy 2 years prior, without high-grade dysplasia or carcinoma. MRI revealed an enhancing lesion arising within the superomedial aspect of the right orbit. Lesion biopsy demonstrated histological appearance and immunophenotype suggestive of colonic adenocarcinoma. Staging positron emission tomography/CT showed visceral metastases and diffuse activity in the posterior rectosigmoid, consistent with metastatic colon cancer. Treatment of the orbital lesion with external beam radiotherapy to 30 Gy resulted in significant palliation of the patient's headaches. The patient expired 2 months following treatment completion due to disease progression. Orbital metastasis as the initial presentation of an occult colorectal primary lesion is exceedingly rare, and occurred in this patient despite surveillance colonoscopy. Radiotherapy remains an efficacious modality for treatment of orbital metastases. 2014 BMJ Publishing Group Ltd.

  9. Displaced Electric Sail Orbits Design and Transition Trajectory Optimization

    Directory of Open Access Journals (Sweden)

    Naiming Qi

    2014-01-01

    Full Text Available Displaced orbits for spacecraft propelled by electric sails are investigated as an alternative to the use of solar sails. The orbital dynamics of electric sails based spacecraft are studied within a spherical coordinate system, which permits finding the solutions of displaced electric sail orbits and optimize transfer trajectory. Transfer trajectories from Earth's orbit to displaced orbit are also studied in an optimal framework, by using genetic algorithm and Gauss pseudospectral method. The initial guesses for the state and control histories used in the Gauss pseudospectral method are interpolated from the best solution of a genetic algorithm. Numerical simulations show that the electric sail is able to perform the transfer from Earth’s orbit to displaced orbit in acceptable time, and the hybrid optimization method has the capability to search the feasible and optimal solution without any initial value guess.

  10. Glacial cycles: exogenous orbital changes vs. endogenous climate dynamics

    Science.gov (United States)

    Kaufmann, R. K.; Juselius, K.

    2010-04-01

    We use a statistical model, the cointegrated vector autoregressive model, to assess the degree to which variations in Earth's orbit and endogenous climate dynamics can be used to simulate glacial cycles during the late Quaternary (390 kyr-present). To do so, we estimate models of varying complexity and compare the accuracy of their in-sample simulations. Results indicate that strong statistical associations between endogenous climate variables are not enough for statistical models to reproduce glacial cycles. Rather, changes in solar insolation associated with changes in Earth's orbit are needed to simulate glacial cycles accurately. Also, results suggest that non-linear dynamics, threshold effects, and/or free oscillations may not play an overriding role in glacial cycles.

  11. Preventing Commercial Colonialism and Retaining Sovereignty Over National Policy and Military Strategy in Space

    Science.gov (United States)

    2018-04-09

    of satellites and sub-orbital space tourism flights, to the almost fictional asteroid mining, hotels on the Moon, and settlements on Mars. In... tourism . However, it is likely that the Chinese military will protect Chinese commercial presence in space either through militarization of dual-use...include sub-orbital space tourism , crew changes for orbital facilities, and residential tourism in orbit around Earth and the Moon. Visions of manned

  12. Precision GPS orbit determination strategies for an earth orbiter and geodetic tracking system

    Science.gov (United States)

    Lichten, Stephen M.; Bertiger, Willy I.; Border, James S.

    1988-01-01

    Data from two 1985 GPS field tests were processed and precise GPS orbits were determined. With a combined carrier phase and pseudorange, the 1314-km repeatability improves substantially to 5 parts in 10 to the 9th (0.6 cm) in the north and 2 parts in 10 to the 8th (2-3 cm) in the other components. To achieve these levels of repeatability and accuracy, it is necessary to fine-tune the GPS solar radiation coefficients and ground station zenith tropospheric delays.

  13. MetNet - In situ observational Network and Orbital platform to investigate the Martian environment

    Science.gov (United States)

    Harri, Ari-Matti; Leinonen, Jussi; Merikallio, Sini; Paton, Mark; Haukka, Harri; Polkko, Jouni

    2007-09-01

    MetNet Mars Mission is an in situ observational network and orbital platform mission to investigate the Martian environment and it has been proposed to European Space Agency in response to Call for proposals for the first planning cycle of Cosmic Vision 2015-2025 D/SCI/DJS/SV/val/21851. The MetNet Mars Mission is to be implemented in collaboration with ESA, FMI, LA, IKI and the payload providing science teams. The scope of the MetNet Mission is to deploy 16 MetNet Landers (MNLs) on the Martian surface by using inflatable descent system structures accompanied by an atmospheric sounder and data relay onboard the MetNet Orbiter (MNO), which is based on ESA Mars Express satellite platform. The MNLs are attached on the three sides of the satellite and most of the MNLs are deployed to Mars separately a few weeks prior to the arrival to Mars. The MetNet Orbiter will perform continuous atmospheric soundings thus complementing the accurate in situ observations at the Martian ground produced by the MetNet observation network, as well as the orbiter will serve as the primary data relay between the MetNet Landers and the Earth. The MNLs are equipped with a versatile science payload focused on the atmospheric science of Mars. Detailed characterisation of the Martian atmospheric circulation patterns, boundary layer phenomena, and climatological cycles, as well as interior investigations, require simultaneous in situ meteorological, seismic and magnetic measurements from networks of stations on the Martian surface. MetNet Mars Mission will also provide a crucial support for the safety of large landing missions in general and manned Mars missions in particular. Accurate knowledge of atmospheric conditions and weather data is essential to guarantee safe landings of the forthcoming Mars mission elements.

  14. Near Earth Objects

    DEFF Research Database (Denmark)

    Wolff, Stefan

    2006-01-01

    , Near Earth Objects: Asteroids and comets following paths that bring them near the Earth. NEOs have collided with the Earth since its formation, some causing local devastation, some causing global climate changes, yet the threat from a collision with a near Earth object has only recently been recognised...... and accepted. The European Space Agency mission Gaia is a proposed space observatory, designed to perform a highly accurate census of our galaxy, the Milky Way, and beyond. Through accurate measurement of star positions, Gaia is expected to discover thousands of extra-solar planets and follow the bending...... of starlight by the Sun, and therefore directly observe the structure of space-time. This thesis explores several aspects of the observation of NEOs with Gaia, emphasising detection of NEOs and the quality of orbits computed from Gaia observations. The main contribution is the work on motion detection...

  15. Det man hører, er man selv

    DEFF Research Database (Denmark)

    Svømmekjær, Heidi Frank

    2012-01-01

    Katalog til udstillingen "Det man hører, er man selv" på Mediemuseet i Odense 7. september 2012 - 15. januar 2013.......Katalog til udstillingen "Det man hører, er man selv" på Mediemuseet i Odense 7. september 2012 - 15. januar 2013....

  16. Getting a Crew into Orbit

    Science.gov (United States)

    Riddle, Bob

    2011-01-01

    Despite the temporary setback in our country's crewed space exploration program, there will continue to be missions requiring crews to orbit Earth and beyond. Under the NASA Authorization Act of 2010, NASA should have its own heavy launch rocket and crew vehicle developed by 2016. Private companies will continue to explore space, as well. At the…

  17. Retention of alkaline earth elements in man

    International Nuclear Information System (INIS)

    Newton, D.

    1990-06-01

    The data on human metabolism and long-term retention of alkaline earth elements ( 133 Ba injected into six healthy male volunteers at age 25-81 y and 45 Ca and 85 Sr received by one healthy male volunteer) are presented. Excreta were collected for 2-3 weeks after injection of the tracer into an antecubital vein. Activity in urine, ashed faeces and early samples of blood plasma was determined by gamma-ray scintillation spectrometry. Whole body retention has been assessed through serial measurements of body radioactivity. The injected 133 Ba apparently became mainly skeletal within several days, much earlier than predicted by the ICRP model. The whole-body retention at 32 d ranged from 5 to 14%, the rate of loss correlating with the excretory plasma clearance rate. No age-related trends were identified in the metabolism of Ca and Sr. 2 refs, 2 figs

  18. Asteroid impacts on terrestrial planets: the effects of super-Earths and the role of the ν6 resonance

    Science.gov (United States)

    Smallwood, Jeremy L.; Martin, Rebecca G.; Lepp, Stephen; Livio, Mario

    2018-01-01

    With N-body simulations of a planetary system with an asteroid belt, we investigate how the asteroid impact rate on the Earth is affected by the architecture of the planetary system. We find that the ν6 secular resonance plays an important role in the asteroid collision rate with the Earth. Compared to exoplanetary systems, the Solar system is somewhat special in its lack of a super-Earth mass planet in the inner Solar system. We therefore first consider the effects of the presence of a super-Earth in the terrestrial planet region. We find a significant effect for super-Earths with a mass of around 10 M⊕ and a separation greater than about 0.7 au. For a super-Earth which is interior to the Earth's orbit, the number of asteroids colliding with Earth increases the closer the super-Earth is to the Earth's orbit. This is the result of multiple secular resonance locations causing more asteroids to be perturbed on to Earth-crossing orbits. When the super-Earth is placed exterior to Earth's orbit, the collision rate decreases substantially because the ν6 resonance no longer exists in the asteroid belt region. We also find that changing the semimajor axis of Saturn leads to a significant decrease in the asteroid collision rate, though increasing its mass increases the collision rate. These results may have implications for the habitability of exoplanetary systems.

  19. Effect of ionic size on the orbital ordering transition in RMnO3+δ

    NARCIS (Netherlands)

    Maris, G.; Volotchaev, V.; Palstra, T.T.M.

    2004-01-01

    We present high-temperature powder x-ray diffraction data of the orbital-order-induced structural distortion of RMnO3, with R a rare earth element. The associated phase transition takes place in a temperature interval of ≈200K in which the orbitally ordered phase and the orbitally disordered phase

  20. Cosmic acceleration of Earth and the Moon by dark matter

    Science.gov (United States)

    Nordtvedt, Kenneth L.

    1994-01-01

    In order to test the hypothesis that the gravitational interaction between our Galaxy's dark matter and the ordinary matter in Earth and the Moon might not fulfill the equivalence principle (universality of free fall), we consider the pertinent perturbation of the lunar orbit -- a sidereal month period range oscillation resulting from a spatially fixed polarization of the orbit. Lunar laser ranging (LLR) data can measure this sidereal perturbation to an accuracy equal to or better than its existing measurement of the synodic month period range oscillation amplitude (+/- 3 cm) which has been used for testing whether Earth and the Moon accelerate at equal rates toward the Sun. Because of the slow precession rate of the Moon's perigree (8.9 yr period), the lunar orbit is particularly sensitive to a cosmic acceleration; the LLR fit of the orbit places an upper limit of 10(exp -13) cm/sq. s for any cosmic differential acceleration between Earth (Fe) and the Moon (silicates). This is 10(exp -5) of the total galactic acceleration of the solar system, of which, it has been suggested, a large portion is produced by dark matter.

  1. Fuel-optimal trajectories of aeroassisted orbital transfer with plane change

    Science.gov (United States)

    Naidu, Desineni Subbaramaiah; Hibey, Joseph L.

    1989-06-01

    The problem of minimization of fuel consumption during the atmospheric portion of an aeroassisted, orbital transfer with plane change is addressed. The complete mission has required three characteristic velocities, a deorbit impulse at high earth orbit (HEO), a boost impulse at the atmospheric exit, and a reorbit impulse at low earth orbit (LEO). A performance index has been formulated as the sum of these three impulses. Application of optimal control principles has led to a nonlinear, two-point, boundary value problem which was solved by using a multiple shooting algorithm. The strategy for the atmospheric portion of the minimum-fuel transfer is to start initially with the maximum positive lift in order to recover from the downward plunge, and then to fly with a gradually decreasing lift such that the vehicle skips out of the atmosphere with a flight path angle near zero degrees.

  2. Reconstructing the orbit of the Chelyabinsk meteor using satellite observations

    DEFF Research Database (Denmark)

    Proud, Simon Richard

    2013-01-01

    The large number of objects in a range of orbits around the Sun means that some will inevitably intersect the Earth, becoming a meteor. These objects are commonly comet fragments or asteroids. To determine the type of a particular meteor requires knowledge of its trajectory and orbital path...... that is typically estimated by using ground-based observations such as images or radar measurements. A lack of data can, however, make this difficult and create large uncertainties in the reconstructed orbit. Here I show a new method for estimating a meteor's trajectory, and hence allowing computation of the orbit...

  3. Dynamics of the Sun-Earth-Moon System

    Indian Academy of Sciences (India)

    The dynamics of the Sun-Earth-Moon system is discussed with special attention to the effects of. Sun's perturbations on the Moon's orbit around the Earth. Important secular effects are the re- gression of the nodes, the advance of the perigee and the increase in the Moon's mean longitude. We discuss the relationship of the ...

  4. Analysis of Approaches to the Near-Earth Orbit Cleanup from Space Debris of the Size Below10 cm

    Directory of Open Access Journals (Sweden)

    V. I. Maiorova

    2016-01-01

    Full Text Available Nowadays, there are a lot of concepts aimed at space debris removal from the near-Earth orbits being under way at different stages of detailed engineering and design. As opposed to large-size space debris (upper-stages, rocket bodies, non-active satellites, to track the small objects of space debris (SOSD, such as picosatellites, satellite fragments, pyrotechnic devices, and other items less than 10 cm in size, using the ground stations is, presently, a challenge.This SOSD feature allows the authors to propose the two most rational approaches, which use, respectively, a passive and an active (prompt maneuverable space vehicles (SV and appropriate schematic diagrams for their collection:1 Passive scheme – space vehicle (SV to be launched into an orbit is characterized by high mathematical expectation of collision with a large amount of SOSD and, accordingly, by high probability to be captured using both active or the passive tools. The SV does not execute any maneuvers, but can be equipped with a propulsion system required for orbit’s maintenance and correction and also for solving the tasks of long-range guidance.2 Active scheme – the SV is to be launched into the target or operating orbit and executes a number of maneuvers to capture the SOSD using both active and passive tools. Thus, such a SV has to be equipped with a rather high-trust propulsion system, which allows the change of its trajectory and also with the guidance system to provide it with target coordinates. The guidance system can be built on either radio or optical devices, it can be installed onboard the debris-removal SV or onboard the SV which operates as a supply unit (if such SVs are foreseen.The paper describes each approach, emphasizes advantages and disadvantages, and defines the cutting-edge technologies to be implemented.

  5. Invariant Solar Sail Formations in Elliptical Sun-Synchronous Orbits

    Science.gov (United States)

    Parsay, Khashayar

    Current and past missions that study the Earth's geomagnetic tail require multiple spacecraft to fly in formation about a highly eccentric Keplerian reference orbit that has its apogee inside a predefined science region of interest. Because the geomagnetic tail is directed along the Sun-Earth line and therefore rotates annually, inertially fixed Keplerian orbits are only aligned with the geomagnetic tail once per year. This limitation reduces the duration of the science phase to less than a few months annually. Solar sails are capable of creating non-Keplerian, Sun-synchronous orbits that rotate with the geomagnetic tail. A solar sail flying in a Sun-synchronous orbit will have a continuous presence in the geomagnetic tail throughout the entire year, which significantly improves the in situ observations of the magnetosphere. To achieve a Sun-synchronous orbit, a solar sail is required to maintain a Sun-pointing attitude, which leads to the artificial precession of the orbit apse line in a Sun-synchronous manner, leaving the orbit apogee inside the science region of interest throughout entire the year. To study the spatial and temporal variations of plasma in the highly dynamic environment of the magnetosphere, multiple spacecraft must fly in a formation. The objective for this dissertation is to investigate the feasibility of solar sail formation flying in the Earth-centered, Sun-synchronous orbit regime. The focus of this effort is to enable formation flying for a group of solar sails that maintain a nominally fixed Sun-pointing attitude during formation flight, solely for the purpose of precessing their orbit apse lines Sun-synchronously. A fixed-attitude solar sail formation is motivated by the difficulties in the simultaneous control of orbit and attitude in flying solar sails. First, the secular rates of the orbital elements resulting from the effects of solar radiation pressure (SRP) are determined using averaging theory for a Sun-pointing attitude sail

  6. TYCHO: Demonstrator and operational satellite mission to Earth-Moon-Libration point EML-4 for communication relay provision as a service

    Science.gov (United States)

    Hornig, Andreas; Homeister, Maren

    2015-03-01

    In the current wake of mission plans to the Moon and to Earth-Moon Libration points (EML) by several agencies and organizations, TYCHO identifies the key role of telecommunication provision for the future path of lunar exploration. It demonstrates an interesting extension to existing communication methods to the Moon and beyond by combining innovative technology with a next frontier location and the commercial space communication sector. It is evident that all communication systems will rely on direct communication to Earth ground stations. In case of EML-2 missions around HALO orbits or bases on the far side of the Moon, it has to be extended by communication links via relay stations. The innovative approach is that TYCHO provides this relay communication to those out-of-sight lunar missions as a service. TYCHO will establish a new infrastructure for future missions and even create a new market for add-on relay services. The TMA-0 satellite is TYCHO's first phase and a proposed demonstrator mission to the Earth-Moon Libration point EML-4. It demonstrates relay services needed for automated exploratory and manned missions (Moon bases) on the rim (>90°E and >90°W) and far side surface, to lunar orbits and even to EML-2 halo orbits (satellites and space stations). Its main advantage is the permanent availability of communication coverage. This will provide full access to scientific and telemetry data and furthermore to crucial medical monitoring and safety. The communication subsystem is a platform for conventional communication but also a test-bed for optical communication with high data-rate LASER links to serve the future needs of manned bases and periodic burst data-transfer from lunar poles. The operational TMA-1 satellite is a stand-alone mission integrated into existing space communication networks to provide open communication service to external lunar missions. Therefore the long-time stable libration points EML-4 and -5 are selected to guarantee an

  7. Orbital compressed air and petroleum injury mimicking necrotizing fasciitis.

    Science.gov (United States)

    Mellington, Faye E; Bacon, Annette S; Abu-Bakra, Mohammed A J; Martinez-Devesa, Pablo; Norris, Jonathan H

    2014-09-01

    Orbital injury secondary to petroleum-based products is rare. We report the first case, to our knowledge, of a combined compressed air and chemical orbital injury, which mimicked necrotizing fasciitis. A 58-year-old man was repairing his motorcycle engine when a piston inadvertently fired, discharging compressed air and petroleum-based carburetor cleaner into his left eye. He developed surgical emphysema, skin necrosis, and a chemical cellulitis, causing an orbital compartment syndrome. He was treated initially with antibiotics and subsequently with intravenous steroid and orbital decompression surgery. There was almost complete recovery by 4 weeks postsurgery. WHY SHOULD AN EMERGENCY PHYSICIAN BE AWARE OF THIS?: Petroleum-based products can cause severe skin irritation and necrosis. Compressed air injury can cause surgical emphysema. When these two mechanisms of injury are combined, the resulting orbitopathy and skin necrosis can mimic necrotizing fasciitis and cause diagnostic confusion. A favorable outcome is achievable with aggressive timely management. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. Orbital metastasis: A rare manifestation of scapular bone osteosarcoma

    Directory of Open Access Journals (Sweden)

    Mohammad Taher Rajabi

    2014-01-01

    Full Text Available Purpose: To report a case of orbital metastasis from scapular bone osteosarcoma. Case Report: A 55-year-old man who was a known case of scapular bone osteosarcoma, was referred to our clinic with ocular symptoms including acute painful decreased vision, proptosis, conjunctival injection, and chemosis. He had undergone surgical excision of the original tumor and received systemic chemotherapy 4 months before. Imaging studies and incisional biopsy were performed for the orbital lesion, the histopathological examination confirmed the diagnosis of metastatic osteosarcoma. The patient was referred to the oncologist for palliative chemotherapy and further intervention; however, he deceased 2 months later due to sepsis in the context of immunosuppression. Conclusion: Metastatic involvement of the orbit due to osteosarcoma is a rare condition manifesting with orbital mass, pain, diplopia and ocular motility disturbance. Although there is no effective treatment, the combination of modalities such as chemotherapy, radiotherapy, and surgery may delay progression of the disease.

  9. Orbit and geometry constraints on the design and operation of a long-life SIRTF mission. [Shuttle Infrared Telescope Facility

    Science.gov (United States)

    Jackson, R. W.

    1984-01-01

    For a long-life SIRTF mission, the ability of the telescope to observe targets everywhere in the sky is an important requirement. For low-inclination orbits, a telescope aperture shade must be designed for Sun and Earth Limb avoidance angles of 50 deg to 60 deg to prevent unwanted radiation from entering the telescope. The minimum orbit inclination depends on the Earth Limb avoidance angle. About 30 percent of the sky will be prohibited for observations during any day in orbit, with about 100 days in orbit required to observe the entire sky.

  10. Imaging Near-Earth Electron Densities Using Thomson Scattering

    Science.gov (United States)

    2009-01-15

    geocentric solar magnetospheric (GSM) coordinates1. TECs were initially computed from a viewing loca- tion at the Sun-Earth L1 Lagrange point2 for both...further find that an elliptical Earth orbit (apogee ~30 RE) is a suitable lower- cost option for a demonstration mission. 5. SIMULATED OBSERVATIONS We

  11. Neutron Measurements for Radiation Protection in Low Earth Orbit - History and Future

    Science.gov (United States)

    Golightly, M. J.; Se,pmes. E/

    2003-01-01

    The neutron environment inside spacecraft has been of interest from a scientific and radiation protection perspective since early in the history of manned spaceflight. With 1:.1e exception of a few missions which carried plutonium-fueled radioisotope thermoelectric generators, all of the neutrons inside the spacecraft are secondary radiations resulting from interactions of high-energy charged particles with nuclei in the Earth's atmosphere, spacecraft structural materials, and the astronaut's own bodies. Although of great interest, definitive measurements of the spacecraft neutron field have been difficult due to the wide particle energy range and the limited available volume and power for traditional techniques involving Bonner spheres. A multitude of measurements, however, have been made of the neutron environment inside spacecraft. The majority of measurements were made using passive techniques including metal activation fo ils, fission foils, nuclear photoemulsions, plastic track detectors, and thermoluminescent detectors. Active measurements have utilized proton recoil spectrometers (stilbene), Bonner Spheres eRe proportional counter based), and LiI(Eu)phoswich scintillation detectors. For the International Space Station (ISS), only the plastic track! thermoluminescent detectors are used with any regularity. A monitoring program utilizing a set of active Bonner spheres was carried out in the ISS Lab module from March - December 200l. These measurements provide a very limited look at the crew neutron exposure, both in time coverage and neutron energy coverage. A review of the currently published data from past flights will be made and compared with the more recent results from the ISS. Future measurement efforts using currently available techniques and those in development will be also discussed.

  12. Radio Astronomers Lift "Fog" on Milky Way's Dark Heart: Black Hole Fits Inside Earth's Orbit

    Science.gov (United States)

    2004-04-01

    -emitting object would fit neatly just inside the path of the Earth's orbit around the Sun, the astronomers said. The black hole itself, they calculate, is about 14 million miles across, and would fit easily inside the orbit of Mercury. Black holes are concentrations of matter so dense that not even light can escape their powerful gravity. The new VLBA observations provided astronomers their best look yet at a black hole system. "We are much closer to seeing the effects of a black hole on its environment here than anywhere else," Bower said. The Milky Way's central black hole, like its more-massive cousins in more-active galactic nuclei, is believed to be drawing in material from its surroundings, and in the process powering the emission of the radio waves. While the new VLBA observations have not provided a final answer on the nature of this process, they have helped rule out some theories, Bower said. Based on the latest work, he explained, the top remaining theories for the nature of the radio- emitting object are jets of subatomic particles, similar to those seen in radio galaxies; and some theories involving matter being accelerated near the edge of the black hole. As the astronomers studied Sagittarius A* at higher and higher radio frequencies, the apparent size of the object became smaller. This fact, too, Bower said, helped rule out some ideas of the object's nature. The decrease in observed size with increasing frequency, or shorter wavelength, also gives the astronomers a tantalizing target. "We think we can eventually observe at short enough wavelengths that we will see a cutoff when we reach the size of the black hole itself," Bower said. In addition, he said, "in future observations, we hope to see a 'shadow' cast by a gravitational lensing effect of the very strong gravity of the black hole." In 2000, Falcke and his colleagues proposed such an observation on theoretical grounds, and it now seems feasible. "Imaging the shadow of the black hole's event horizon is now

  13. A umbrella for the Earth

    International Nuclear Information System (INIS)

    Kunzig, R.

    2009-01-01

    In front of the global warming threat, the 'geo-engineers' foresee some solutions to change the climate of the Earth, like for instance, by hiding part of the solar radiation. Among the solutions one can notice: the injection of sulfur dioxide in the stratosphere, the artificial generation of clouds using sea fog generators, or the putting into orbit of disc-shape screens creating a 100000 km x 12000 km elliptical 'umbrella' between the sun and the Earth. (J.S.)

  14. Automation, robotics, and inflight training for manned Mars missions

    Science.gov (United States)

    Holt, Alan C.

    1986-01-01

    The automation, robotics, and inflight training requirements of manned Mars missions will be supported by similar capabilities developed for the space station program. Evolutionary space station onboard training facilities will allow the crewmembers to minimize the amount of training received on the ground by providing extensive onboard access to system and experiment malfunction procedures, maintenance procedures, repair procedures, and associated video sequences. Considerable on-the-job training will also be conducted for space station management, mobile remote manipulator operations, proximity operations with the Orbital Maneuvering Vehicle (and later the Orbit Transfer Vehicle), and telerobotics and mobile robots. A similar approach could be used for manned Mars mission training with significant additions such as high fidelity image generation and simulation systems such as holographic projection systems for Mars landing, ascent, and rendezvous training. In addition, a substantial increase in the use of automation and robotics for hazardous and tedious tasks would be expected for Mars mission. Mobile robots may be used to assist in the assembly, test and checkout of the Mars spacecraft, in the handling of nuclear components and hazardous chemical propellent transfer operations, in major spacecraft repair tasks which might be needed (repair of a micrometeroid penetration, for example), in the construction of a Mars base, and for routine maintenance of the base when unmanned.

  15. From Extrasolar Planets to Exo-Earths

    Science.gov (United States)

    Fischer, Debra

    2018-06-01

    The ancient Greeks debated whether the Earth was unique, or innumerable worlds existed around other Suns. Twenty five years ago, technology and human ingenuity enabled the discovery of the first extrasolar planet candidates. The architectures of these first systems, with gas giant planets in star-skirting orbits, were unexpected and again raised an echo of that ancient question: is the Earth typical or unique? We are interested in this seemingly anthropocentric question because with all of our searching and discoveries, Earth is the only place where life has been found. It is the question of whether life exists elsewhere that energizes the search for exoplanets. The trajectory of this field has been stunning. After a steady stream of detections with the radial velocity method, a burst of discovery was made possible with the NASA Kepler mission. While thousands of smaller planets have now been found, true Earth analogs have eluded robust detection. However, we are sharpening the knives of our technology and without a doubt we now stand at the threshold of detecting hundreds of Earth analogs. Using Gaia, TESS, WFIRST, JWST and new ground-based spectrographs, we will learn the names and addresses of the worlds that orbit nearby stars and we will be ready to probe their atmospheres. We will finally resolve the ancient question of whether life is unique or common.

  16. Viking orbiter and its Mariner inheritance

    Science.gov (United States)

    1984-01-01

    Improvements to the design of the Mariner spacecraft resulted in the Viking spacecraft. The Viking spacecraft would consist of two major systems - an orbiter and a lander, while the lander would provide the means for safely delivering the scientific instruments to the surface, house, and provide the necessary power source and communication links for those experiments, the orbiter would transport the lander to Mars, rovide a platform for the Viking imaging system so that proposed landing sites could be surveyed and certified, relay lander science information back to Earth, and conduct scientific observations in its own right.

  17. NASA's New Orbital Debris Engineering Model, ORDEM2010

    Science.gov (United States)

    Krisko, Paula H.

    2010-01-01

    This paper describes the functionality and use of ORDEM2010, which replaces ORDEM2000, as the NASA Orbital Debris Program Office (ODPO) debris engineering model. Like its predecessor, ORDEM2010 serves the ODPO mission of providing spacecraft designers/operators and debris observers with a publicly available model to calculate orbital debris flux by current-state-of-knowledge methods. The key advance in ORDEM2010 is the input file structure of the yearly debris populations from 1995-2035 of sizes 10 micron - 1 m. These files include debris from low-Earth orbits (LEO) through geosynchronous orbits (GEO). Stable orbital elements (i.e., those that do not randomize on a sub-year timescale) are included in the files as are debris size, debris number, material density, random error and population error. Material density is implemented from ground-test data into the NASA breakup model and assigned to debris fragments accordingly. The random and population errors are due to machine error and uncertainties in debris sizes. These high-fidelity population files call for a much higher-level model analysis than what was possible with the populations of ORDEM2000. Population analysis in the ORDEM2010 model consists of mapping matrices that convert the debris population elements to debris fluxes. One output mode results in a spacecraft encompassing 3-D igloo of debris flux, compartmentalized by debris size, velocity, pitch, and yaw with respect to spacecraft ram direction. The second output mode provides debris flux through an Earth-based telescope/radar beam from LEO through GEO. This paper compares the new ORDEM2010 with ORDEM2000 in terms of processes and results with examples of specific orbits.

  18. Earth-return trajectory options for the 1985-86 Halley opportunity

    Science.gov (United States)

    Farquhar, R. W.; Dunham, D. W.

    1982-01-01

    A unique and useful family of ballistic trajectories to Halley's comet is described. The distinguishing feature of this family is that all of the trajectories return to the Earth's vicinity after the Halley intercept. It is shown that, in some cases, the original Earth-return path can be reshaped by Earth-swingby maneuvers to achieve additional small-body encounters. One mission profile includes flybys of the asteroid Geographos and comet Tempel-2 following the Halley intercept. Dual-flyby missions involving comets Encke and Borrelly and the asteroid Anteros are also discussed. Dust and gas samples are collected during the high-velocity (about 70 km/sec) flythrough of Halley, and then returned to a high-apogee Earth orbit. Aerobraking maneuvers are used to bring the sample-return spacecraft to a low-altitude circular orbit where it can be recovered by the Space Shuttle.

  19. Moon over Mauna Loa - a review of hypotheses of formation of earth's moon

    International Nuclear Information System (INIS)

    Wood, J.A.

    1986-01-01

    The present paper examines five models of lunar formation after considering the following constraints: (1) the large mass of the moon and the substantial prograde angular momentum of the earth-moon system; (2) the moon's depletion in volatile elements and iron, (3) the correspondence of oxygen isotope signatures in earth and moon, and (4) the lunar magma ocean. The models considered are: (1) capture from an independent heliocentric orbit, (2) coaccretion from a swarm of planetesimals in geocentric orbit, (3) fission from a rapidly rotating earth, (4) collisional ejection, and (5) disintegrative capture. 99 references

  20. Orbital resonances of Taiwan's FORMOSAT-2 remote sensing satellite

    Science.gov (United States)

    Lin, Shin-Fa; Hwang, Cheinway

    2018-06-01

    Unlike a typical remote sensing satellite that has a global coverage and non-integral orbital revolutions per day, Taiwan's FORMOSAT-2 (FS-2) satellite has a non-global coverage due to the mission requirements of one-day repeat cycle and daily visit around Taiwan. These orbital characteristics result in an integer number of revolutions a day and orbital resonances caused by certain components of the Earth's gravity field. Orbital flight data indicated amplified variations in the amplitudes of FS-2's Keplerian elements. We use twelve years of orbital observations and maneuver data to analyze the cause of the resonances and explain the differences between the simulated (at the pre-launch stage) and real orbits of FS-2. The differences are quantified using orbital perturbation theories that describe secular and long-period orbital evolutions caused by resonances. The resonance-induced orbital rising rate of FS-2 reaches +1.425 m/day, due to the combined (modeled) effect of resonances and atmospheric drags (the relative modeling errors remote sensing mission similar to FS-2, especially in the early mission design and planning phase.