WorldWideScience

Sample records for manmade space debris

  1. Space Tourism: Orbital Debris Considerations

    Science.gov (United States)

    Mahmoudian, N.; Shajiee, S.; Moghani, T.; Bahrami, M.

    2002-01-01

    Space activities after a phase of research and development, political competition and national prestige have entered an era of real commercialization. Remote sensing, earth observation, and communication are among the areas in which this growing industry is facing competition and declining government money. A project like International Space Station, which draws from public money, has not only opened a window of real multinational cooperation, but also changed space travel from a mere fantasy into a real world activity. Besides research activities for sending man to moon and Mars and other outer planets, space travel has attracted a considerable attention in recent years in the form of space tourism. Four countries from space fairing nations are actively involved in the development of space tourism. Even, nations which are either in early stages of space technology development or just beginning their space activities, have high ambitions in this area. This is worth noting considering their limited resources. At present, trips to space are available, but limited and expensive. To move beyond this point to generally available trips to orbit and week long stays in LEO, in orbital hotels, some of the required basic transportations, living requirements, and technological developments required for long stay in orbit are already underway. For tourism to develop to a real everyday business, not only the price has to come down to meaningful levels, but also safety considerations should be fully developed to attract travelers' trust. A serious hazard to space activities in general and space tourism in particular is space debris in earth orbit. Orbiting debris are man-made objects left over by space operations, hazardous to space missions. Since the higher density of debris population occurs in low earth orbit, which is also the same orbit of interest to space tourism, a careful attention should be paid to the effect of debris on tourism activities. In this study, after a

  2. Legal Consequences of the Pollution of Outer Space with Space Debris

    Science.gov (United States)

    Stubbe, Peter

    2017-07-01

    Space debris has grown to be a significant problem for outer space activities. The remnants of human activities in space are very diverse; they can be tiny paint flakes, all sorts of fragments, or entirely intact—but otherwise nonfunctional spacecraft and rocket bodies. The amount of debris is increasing at a growing pace, thus raising the risk of collision with operational satellites. Due to the relative high velocities involved in on-orbit collisions, their consequences are severe; collisions lead to significant damage or the complete destruction of the affected spacecraft. Protective measures and collision avoidance have thus become a major concern for spacecraft operators. The pollution of space with debris must, however, not only be seen as an unfavorable circumstance that accompanies space activities and increases the costs and complexity of outer space activities. Beyond this rather technical perspective, the presence of man-made, nonfunctional objects in space represents a global environmental concern. Similar to the patterns of other environmental problems on Earth, debris generation appears to have surpassed the absorption capacity of the space environment. Studies indicate that the evolution of the space object environment has crossed the tipping point to a runaway situation in which an increasing number of collisions―mostly among debris―leads to an uncontrolled population growth. It is thus in the interest of all mankind to address the debris problem in order to preserve the space environment for future generations. International space law protects the space environment. Article IX of the Outer Space Treaty obligates States to avoid the harmful contamination of outer space. The provision corresponds to the obligation to protect the environment in areas beyond national jurisdiction under the customary "no harm" rule of general environmental law. These norms are applicable to space debris and establish the duty not to pollute outer space by limiting

  3. On the effects of solar storms to the decaying orbital space debris

    International Nuclear Information System (INIS)

    Herdiwijaya, Dhani; Rachman, Abdul

    2014-01-01

    Any man-made object in Earth's orbit that no longer serves a useful purpose is classified as orbital debris. Debris objects come from a variety of sources. The majority is related to satellite fragmentation. Other major sources of debris are propulsion systems, and fragmentation of spent upper stages, payload and mission related debris. Serious concern about orbital debris has been growing. Knowledge of the future debris environment is important to both satellite designers, and mission planners, who need to know what hazards a satellite might encounter during the course of its mission. Therefore, it is important to know how much debris is in orbit, where it is located, and when it will decay. The debris environment is complex and dynamically evolving. Objects of different shape and size behave differently in orbit. The geoeffectiveness space environments include solar flux at 10.7 cm, solar energetic particles flux or speed, solar wind flow pressure, electric field, and geomagnetic indices. We study the decaying orbital debris from Tracking and Impact Prediction (TIP) messages in conjuction with geoeffectiveness space environments through time epoch correlation. We found that the decaying and reentry orbital debris are triggered by space environment enhancement within at least one week before reentry. It is not necessary a transient or high energetic and severe solar storm events are needed in decaying processes. We propose that the gradual enhancement processes of space environment will cause satellite surface charging due to energetic electron and enhance drag force

  4. On the effects of solar storms to the decaying orbital space debris

    Energy Technology Data Exchange (ETDEWEB)

    Herdiwijaya, Dhani, E-mail: dhani@as.itb.ac.id [Astronomy Division and Bosscha Observatory, Faculty of Mathematics and Natural Sciences, Bandung Institute of Technology, Ganesha 10, Bandung 40132 (Indonesia); Rachman, Abdul [Space Science Center, National Institute of Aeronautics and Space, Junjunan 133, Bandung 40173 (Indonesia)

    2014-03-24

    Any man-made object in Earth's orbit that no longer serves a useful purpose is classified as orbital debris. Debris objects come from a variety of sources. The majority is related to satellite fragmentation. Other major sources of debris are propulsion systems, and fragmentation of spent upper stages, payload and mission related debris. Serious concern about orbital debris has been growing. Knowledge of the future debris environment is important to both satellite designers, and mission planners, who need to know what hazards a satellite might encounter during the course of its mission. Therefore, it is important to know how much debris is in orbit, where it is located, and when it will decay. The debris environment is complex and dynamically evolving. Objects of different shape and size behave differently in orbit. The geoeffectiveness space environments include solar flux at 10.7 cm, solar energetic particles flux or speed, solar wind flow pressure, electric field, and geomagnetic indices. We study the decaying orbital debris from Tracking and Impact Prediction (TIP) messages in conjuction with geoeffectiveness space environments through time epoch correlation. We found that the decaying and reentry orbital debris are triggered by space environment enhancement within at least one week before reentry. It is not necessary a transient or high energetic and severe solar storm events are needed in decaying processes. We propose that the gradual enhancement processes of space environment will cause satellite surface charging due to energetic electron and enhance drag force.

  5. Space Debris & its Mitigation

    Science.gov (United States)

    Kaushal, Sourabh; Arora, Nishant

    2012-07-01

    Space debris has become a growing concern in recent years, since collisions at orbital velocities can be highly damaging to functioning satellites and can also produce even more space debris in the process. Some spacecraft, like the International Space Station, are now armored to deal with this hazard but armor and mitigation measures can be prohibitively costly when trying to protect satellites or human spaceflight vehicles like the shuttle. This paper describes the current orbital debris environment, outline its main sources, and identify mitigation measures to reduce orbital debris growth by controlling these sources. We studied the literature on the topic Space Debris. We have proposed some methods to solve this problem of space debris. We have also highlighted the shortcomings of already proposed methods by space experts and we have proposed some modification in those methods. Some of them can be very effective in the process of mitigation of space debris, but some of them need some modification. Recently proposed methods by space experts are maneuver, shielding of space elevator with the foil, vaporizing or redirecting of space debris back to earth with the help of laser, use of aerogel as a protective layer, construction of large junkyards around international space station, use of electrodynamics tether & the latest method proposed is the use of nano satellites in the clearing of the space debris. Limitations of the already proposed methods are as follows: - Maneuvering can't be the final solution to our problem as it is the act of self-defence. - Shielding can't be done on the parts like solar panels and optical devices. - Vaporizing or redirecting of space debris can affect the human life on earth if it is not done in proper manner. - Aerogel has a threshold limit up to which it can bear (resist) the impact of collision. - Large junkyards can be effective only for large sized debris. In this paper we propose: A. The Use of Nano Tubes by creating a mesh

  6. Space debris: modeling and detectability

    Science.gov (United States)

    Wiedemann, C.; Lorenz, J.; Radtke, J.; Kebschull, C.; Horstmann, A.; Stoll, E.

    2017-01-01

    High precision orbit determination is required for the detection and removal of space debris. Knowledge of the distribution of debris objects in orbit is necessary for orbit determination by active or passive sensors. The results can be used to investigate the orbits on which objects of a certain size at a certain frequency can be found. The knowledge of the orbital distribution of the objects as well as their properties in accordance with sensor performance models provide the basis for estimating the expected detection rates. Comprehensive modeling of the space debris environment is required for this. This paper provides an overview of the current state of knowledge about the space debris environment. In particular non-cataloged small objects are evaluated. Furthermore, improvements concerning the update of the current space debris model are addressed. The model of the space debris environment is based on the simulation of historical events, such as fragmentations due to explosions and collisions that actually occurred in Earth orbits. The orbital distribution of debris is simulated by propagating the orbits considering all perturbing forces up to a reference epoch. The modeled object population is compared with measured data and validated. The model provides a statistical distribution of space objects, according to their size and number. This distribution is based on the correct consideration of orbital mechanics. This allows for a realistic description of the space debris environment. Subsequently, a realistic prediction can be provided concerning the question, how many pieces of debris can be expected on certain orbits. To validate the model, a software tool has been developed which allows the simulation of the observation behavior of ground-based or space-based sensors. Thus, it is possible to compare the results of published measurement data with simulated detections. This tool can also be used for the simulation of sensor measurement campaigns. It is

  7. Active Space Debris Removal System

    Directory of Open Access Journals (Sweden)

    Gabriele GUERRA

    2017-06-01

    Full Text Available Since the start of the space era, more than 5000 launches have been carried out, each carrying satellites for many disparate uses, such as Earth observation or communication. Thus, the space environment has become congested and the problem of space debris is now generating some concerns in the space community due to our long-lived belief that “space is big”. In the last few years, solutions to this problem have been proposed, one of those is Active Space Debris Removal: this method will reduce the increasing debris growth and permit future sustainable space activities. The main idea of the method proposed below is a drag augmentation system: use a system capable of putting an expanded foam on a debris which will increase the area-to-mass ratio to increase the natural atmospheric drag and solar pressure. The drag augmentation system proposed here requires a docking system; the debris will be pushed to its release height and then, after un-docking, an uncontrolled re-entry takes place ending with a burn up of the object and the foam in the atmosphere within a given time frame. The method requires an efficient way to change the orbit between two debris. The present paper analyses such a system in combination with an Electric Propulsion system, and emphasizes the choice of using two satellites to remove five effective rockets bodies debris within a year.

  8. A deployable mechanism concept for the collection of small-to-medium-size space debris

    Science.gov (United States)

    St-Onge, David; Sharf, Inna; Sagnières, Luc; Gosselin, Clément

    2018-03-01

    Current efforts in active debris removal strategies and mission planning focus on removing the largest, most massive debris. It can be argued, however, that small untrackable debris, specifically those smaller than 5 cm in size, also pose a serious threat. In this work, we propose and analyze a mission to sweep the most crowded Low Earth Orbit with a large cupola device to remove small-to-medium-size debris. The cupola consists of a deployable mechanism expanding more than 25 times its storage size to extend a membrane covering its surface. The membrane is sufficiently stiff to capture most small debris and to slow down the medium-size objects, thus accelerating their fall. An overview of the design of a belt-driven rigid-link mechanism proposed to support the collecting cupola surface is presented, based on our previous work. Because of its large size, the cupola will be subject to significant aerodynamic drag; thus, orbit maintenance analysis is carried out using the DTM-2013 atmospheric density model and it predicts feasible requirements. While in operation, the device will also be subject to numerous hyper-velocity impacts which may significantly perturb its orientation from the desired attitude for debris collection. Thus, another important feature of the proposed debris removal device is a distributed array of flywheels mounted on the cupola for reorienting and stabilizing its attitude during the mission. Analysis using a stochastic modeling framework for hyper-velocity impacts demonstrates that three-axes attitude stabilization is achievable with the flywheels array. MASTER-2009 software is employed to provide relevant data for all debris related estimates, including the debris fluxes for the baseline mission design and for assessment of its expected performance. Space debris removal is a high priority for ensuring sustainability of space and continual launch and operation of man-made space assets. This manuscript presents the first analysis of a small

  9. Small satellites and space debris issues

    Science.gov (United States)

    Yakovlev, M.; Kulik, S.; Agapov, V.

    2001-10-01

    The objective of this report is the analysis of the tendencies in designing of small satellites (SS) and the effect of small satellites on space debris population. It is shown that SS to include nano- and pico-satellites should be considered as a particularly dangerous source of space debris when elaborating international standards and legal documents concerning the space debris problem, in particular "International Space Debris Mitigation Standard". These issues are in accordance with the IADC goals in its main activity areas and should be carefully considered within the IADC framework.

  10. Space debris mitigation - engineering strategies

    Science.gov (United States)

    Taylor, E.; Hammond, M.

    The problem of space debris pollution is acknowledged to be of growing concern by space agencies, leading to recent activities in the field of space debris mitigation. A review of the current (and near-future) mitigation guidelines, handbooks, standards and licensing procedures has identified a number of areas where further work is required. In order for space debris mitigation to be implemented in spacecraft manufacture and operation, the authors suggest that debris-related criteria need to become design parameters (following the same process as applied to reliability and radiation). To meet these parameters, spacecraft manufacturers and operators will need processes (supported by design tools and databases and implementation standards). A particular aspect of debris mitigation, as compared with conventional requirements (e.g. radiation and reliability) is the current and near-future national and international regulatory framework and associated liability aspects. A framework for these implementation standards is presented, in addition to results of in-house research and development on design tools and databases (including collision avoidance in GTO and SSTO and evaluation of failure criteria on composite and aluminium structures).

  11. Space Debris Elimination (SpaDE)

    Data.gov (United States)

    National Aeronautics and Space Administration — The amount of debris in low Earth orbit (LEO) has increased rapidly over the last twenty years. This prevalence of debris increases the likelihood of cascading...

  12. Space Debris Removal: A Game Theoretic Analysis

    Directory of Open Access Journals (Sweden)

    Richard Klima

    2016-08-01

    Full Text Available We analyse active space debris removal efforts from a strategic, game-theoretical perspective. Space debris is non-manoeuvrable, human-made objects orbiting Earth, which pose a significant threat to operational spacecraft. Active debris removal missions have been considered and investigated by different space agencies with the goal to protect valuable assets present in strategic orbital environments. An active debris removal mission is costly, but has a positive effect for all satellites in the same orbital band. This leads to a dilemma: each agency is faced with the choice between the individually costly action of debris removal, which has a positive impact on all players; or wait and hope that others jump in and do the ‘dirty’ work. The risk of the latter action is that, if everyone waits, the joint outcome will be catastrophic, leading to what in game theory is referred to as the ‘tragedy of the commons’. We introduce and thoroughly analyse this dilemma using empirical game theory and a space debris simulator. We consider two- and three-player settings, investigate the strategic properties and equilibria of the game and find that the cost/benefit ratio of debris removal strongly affects the game dynamics.

  13. New solutions for the space debris problem

    CERN Document Server

    Pelton, Joseph N

    2015-01-01

    Addressing a pressing issue in space policy, Pelton explores the new forms of technology that are being developed to actively remove the defunct space objects from orbit and analyzes their implications in the existing regime of international space law and public international law. This authoritative review covers the due diligence guidelines that nations are using to minimize the generation of new debris, mandates to de-orbit satellites at end of life, and innovative endeavours to remove non-functional satellites, upper stage rockets and other large debris from orbit under new institutional, financial and regulatory guidelines.  Commercial space services currently exceed 100 billion USD business per annum, but the alarming proliferation in the population of orbital debris in low, medium and geosynchronous satellite orbits poses a serious threat to all kinds of space assets and applications. There is a graver concern that the existing space debris will begin to collide in a cascading manner, generating furth...

  14. Orbital Debris and NASA's Measurement Program

    Science.gov (United States)

    Africano, J. L.; Stansbery, E. G.

    2002-05-01

    Since the launch of Sputnik in 1957, the number of manmade objects in orbit around the Earth has dramatically increased. The United States Space Surveillance Network (SSN) tracks and maintains orbits on over nine thousand objects down to a limiting diameter of about ten centimeters. Unfortunately, active spacecraft are only a small percentage ( ~ 7%) of this population. The rest of the population is orbital debris or ``space junk" consisting of expended rocket bodies, dead payloads, bits and pieces from satellite launches, and fragments from satellite breakups. The number of these smaller orbital debris objects increases rapidly with decreasing size. It is estimated that there are at least 130,000 orbital debris objects between one and ten centimeters in diameter. Most objects smaller than 10 centimeters go untracked! As the orbital debris population grows, the risk to other orbiting objects, most importantly manned space vehicles, of a collision with a piece of debris also grows. The kinetic energy of a solid 1 cm aluminum sphere traveling at an orbital velocity of 10 km/sec is equivalent to a 400 lb. safe traveling at 60 mph. Fortunately, the volume of space in which the orbiting population resides is large, collisions are infrequent, but they do occur. The Space Shuttle often returns to earth with its windshield pocked with small pits or craters caused by collisions with very small, sub-millimeter-size pieces of debris (paint flakes, particles from solid rocket exhaust, etc.), and micrometeoroids. To get a more complete picture of the orbital-debris environment, NASA has been using both radar and optical techniques to monitor the orbital debris environment. This paper gives an overview of the orbital debris environment and NASA's measurement program.

  15. Analysis of a space debris laser removal system

    Science.gov (United States)

    Gjesvold, Evan; Straub, Jeremy

    2017-05-01

    As long as man ventures into space, he will leave behind debris, and as long as he ventures into space, this debris will pose a threat to him and his projects. Space debris must be located and decommissioned. Lasers may prove to be the ideal method, as they can operate at a distance from the debris, have a theoretically infinite supply of energy from the sun, and are a seemingly readily available technology. This paper explores the requirements and reasoning for such a laser debris removal method. A case is made for the negligibility of eliminating rotational velocity from certain systems, while a design schematic is also presented for the implementation of a cube satellite proof of concept.

  16. Space Debris Mitigation CONOPS Development

    Science.gov (United States)

    2013-06-01

    literature search and review a lone article was found with any discussion of it. As with any net, the concept is to catch space debris objects in the net...travel along the track of the orbit and collect debris along its path. The lone article found contends that the idea “does not work”. Bonnal and...100,000 pieces of debris orbiting the planet , [as] NASA estimated -- 2,600 of them more than [four] inches across. [NASA] called the breakup of the

  17. Space Debris Mitigation Guidelines

    Science.gov (United States)

    Johnson, Nicholas L.

    2011-01-01

    The purpose of national and international space debris mitigation guides is to promote the preservation of near-Earth space for applications and exploration missions far into the future. To accomplish this objective, the accumulation of objects, particularly in long-lived orbits, must be eliminated or curtailed.

  18. USA Space Debris Environment, Operations, and Research Updates

    Science.gov (United States)

    Liou, J.-C.

    2018-01-01

    Space Missions in 2017 Earth Satellite Population Collision Avoidance Maneuvers Post mission Disposal of U.S.A. Spacecraft Space Situational Awareness (SSA) and the Space Debris Sensor (SDS) A total of 86 space launches placed more than 400 spacecraft into Earth orbits during 2017, following the trend of increase over the past decade NASA has established conjunction assessment processes for its human spaceflight and uncrewed spacecraft to avoid accidental collisions with objects tracked by the U.S. Space Surveillance Network - NASA also assists other U.S. government spacecraft owners with conjunction assessments and subsequent maneuvers The ISS has conducted 25 debris collision avoidance maneuvers since 1999 - None in 2016-2017, but an ISS visiting vehicle had one collision avoidance maneuver in 2017 During 2017 NASA executed or assisted in the execution of 21 collision avoidance maneuvers by uncrewed spacecraft - Four maneuvers were conducted to avoid debris from Fengyun-1C - Two maneuvers were conducted to avoid debris from the collision of Cosmos 2251 and Iridium 33 - One maneuver was conducted to avoid the ISS NASA has established conjunction assessment processes for its human spaceflight and uncrewed spacecraft to avoid accidental collisions with objects tracked by the U.S. Space Surveillance Network - NASA also assists other U.S. government spacecraft owners with conjunction assessments and subsequent maneuvers The ISS has conducted 25 debris collision avoidance maneuvers since 1999 - None in 2016-2017, but an ISS visiting vehicle had one collision avoidance maneuver in 2017 During 2017 NASA executed or assisted in the execution of 21 collision avoidance maneuvers by uncrewed spacecraft - Four maneuvers were conducted to avoid debris from Fengyun-1C - Two maneuvers were conducted to avoid debris from the collision of Cosmos 2251 and Iridium 33 The 2014-15 NASA Engineering and Safety Center (NESC) study on the micrometeoroid and orbital debris (MMOD

  19. Space Transportation System Liftoff Debris Mitigation Process Overview

    Science.gov (United States)

    Mitchell, Michael; Riley, Christopher

    2011-01-01

    Liftoff debris is a top risk to the Space Shuttle Vehicle. To manage the Liftoff debris risk, the Space Shuttle Program created a team with in the Propulsion Systems Engineering & Integration Office. The Shutt le Liftoff Debris Team harnesses the Systems Engineering process to i dentify, assess, mitigate, and communicate the Liftoff debris risk. T he Liftoff Debris Team leverages off the technical knowledge and expe rtise of engineering groups across multiple NASA centers to integrate total system solutions. These solutions connect the hardware and ana lyses to identify and characterize debris sources and zones contribut ing to the Liftoff debris risk. The solutions incorporate analyses sp anning: the definition and modeling of natural and induced environmen ts; material characterizations; statistical trending analyses, imager y based trajectory analyses; debris transport analyses, and risk asse ssments. The verification and validation of these analyses are bound by conservative assumptions and anchored by testing and flight data. The Liftoff debris risk mitigation is managed through vigilant collab orative work between the Liftoff Debris Team and Launch Pad Operation s personnel and through the management of requirements, interfaces, r isk documentation, configurations, and technical data. Furthermore, o n day of launch, decision analysis is used to apply the wealth of ana lyses to case specific identified risks. This presentation describes how the Liftoff Debris Team applies Systems Engineering in their proce sses to mitigate risk and improve the safety of the Space Shuttle Veh icle.

  20. Changes of Space Debris Orbits After LDR Operation

    Science.gov (United States)

    Wnuk, E.; Golebiewska, J.; Jacquelard, C.; Haag, H.

    2013-09-01

    A lot of technical studies are currently developing concepts of active removal of space debris to protect space assets from on orbit collision. For small objects, such concepts include the use of ground-based lasers to remove or reduce the momentum of the objects thereby lowering their orbit in order to facilitate their decay by re-entry into the Earth's atmosphere. The concept of the Laser Debris Removal (LDR) system is the main subject of the CLEANSPACE project. One of the CLEANSPACE objectives is to define a global architecture (including surveillance, identification and tracking) for an innovative ground-based laser solution, which can remove hazardous medium debris around selected space assets. The CLEANSPACE project is realized by a European consortium in the frame of the European Commission Seventh Framework Programme (FP7), Space topic. The use of sequence of laser operations to remove space debris, needs very precise predictions of future space debris orbital positions, on a level even better than 1 meter. Orbit determination, tracking (radar, optical and laser) and orbit prediction have to be performed with accuracy much better than so far. For that, the applied prediction tools have to take into account all perturbation factors that influence object orbit. The expected object's trajectory after the LDR operation is a lowering of its perigee. To prevent the debris with this new trajectory to collide with another object, a precise trajectory prediction after the LDR sequence is therefore the main task allowing also to estimate re-entry parameters. The LDR laser pulses change the debris object velocity v. The future orbit and re-entry parameters of the space debris after the LDR engagement can be calculated if the resulting ?v vector is known with the sufficient accuracy. The value of the ?v may be estimated from the parameters of the LDR station and from the characteristics of the orbital debris. However, usually due to the poor knowledge of the debris

  1. First laser measurements to space debris in Poland

    Science.gov (United States)

    Lejba, Paweł; Suchodolski, Tomasz; Michałek, Piotr; Bartoszak, Jacek; Schillak, Stanisław; Zapaśnik, Stanisław

    2018-05-01

    The Borowiec Satellite Laser Ranging station (BORL 7811, Borowiec) being a part of the Space Research Centre of the Polish Academy of Sciences (SRC PAS) went through modernization in 2014-2015. One of the main tasks of the modernization was the installation of a high-energy laser module dedicated to space debris tracking. Surelite III by Continuum is a Nd:YAG pulse laser with 10 Hz repetition rate, a pulse width of 3-5 ns and a pulse energy of 450 mJ for green (532 nm). This new laser unit was integrated with the SLR system at Borowiec performing standard satellite tracking. In 2016 BORL 7811 participated actively to the observational campaigns related to the space debris targets from LEO region managed by the Space Debris Study Group (SDSG) of the International Laser Ranging Service (ILRS). Currently, Borowiec station regularly tracks 36 space debris from the LEO regime, including typical rocket bodies (Russian/Chinese) and cooperative targets like the inactive TOPEX/Poseidon, ENVISAT, OICETS and others. In this paper the first results of space debris laser measurements obtained by the Borowiec station in period August 2016 - January 2017 are presented. The results gained by the SRC PAS Borowiec station confirm the rotation of the defunct TOPEX/Poseidon satellite which spins with a period of approximately 10 s. The novelty of this work is the presentation of the sample results of the Chinese CZ-2C R/B target (NORAD catalogue number 31114) which is equipped (probably) with retroreflectors. Laser measurements to space debris is a very desirable topic for the next years, especially in the context of the Space Surveillance and Tracking (SST) activity. Some targets are very easy to track like defunct ENVISAT or TOPEX/Poseidon. On the other hand, there is a big population of different LEO targets with different orbital and physical parameters, which are challenging for laser ranging like small irregular debris and rocket boosters.

  2. GEO Debris and Interplanetary Dust: Fluxes and Charging Behavior

    Science.gov (United States)

    Graps, A. L.; Green, S. F.; McBride, N. M.; McDonnell, J. A. M.; Drolshagen, G.; Svedhem, H.; Bunte, K. D.

    2005-08-01

    A population of cosmic dust mixed with a population of man-made debris exists within the Earth's magnetosphere. Measurements of these provide the data samples for studies of the interplanetary dust particles that travel through our magnetosphere from the outside and for studies of the local byproducts of our space endeavours. Even though instruments to detect natural meteoroids and space debris particles have been flown in Low Earth Orbits (LEO) and on interplanetary missions, very little information on the particle environment for Earth orbits above about 600 km altitude have been available. In particular, knowledge about particles smaller than 1 m in the geostationary (GEO) region was largely unknown before GORID. In September 1996, a dust/debris detector: GORID was launched into GEO as a piggyback instrument on the Russian Express-2 telecommunications spacecraft. The instrument began its normal operation in April 1997 and ended its mission in July 2002. The goal of this work was to use GORID's particle data to identify and separate the space debris from the interplanetary dust particles (IDPs) in GEO, to more finely determine the instrument's measurement characteristics and to derive impact fluxes. Here we present some results of that study. We give GORID flux distributions for debris and IDPs and then present intriguing debris clustering features that might be the result of electrostatic fragmentation of the rocket slag particles.

  3. Attitude Motion of Cylindrical Space Debris during Its Removal by Ion Beam

    Directory of Open Access Journals (Sweden)

    Vladimir S. Aslanov

    2017-01-01

    Full Text Available The paper is devoted to the problem of space debris mitigation. Contactless method of the space debris deorbiting is considered. It is assumed that ion thrusters on the active spacecraft create the ion flow, which blows the debris and slows it down. The objectives of this work are the development of mathematical models and the research of space debris motion under the action of the ion flow. It is supposed that the space debris is a rigid body of a cylindrical shape. Calculation of ion beam force and torque was performed for a self-similar model of plasma plume expansion using the hypothesis of ion fully diffused reflection from a surface. A mathematical model describing plane motions of the cylindrical space debris under the influence of gravity gradient torque and the ion flux was constructed. It was shown that motion of the space debris around its center of mass has a significant effect on its removal time. Phase portraits, describing the motion of the space debris relative to its center of mass, were constructed. Comparison of the descent times in different motion modes was carried out. The results can be used to create new effective systems of large space debris removal.

  4. Space Debris and Observational Astronomy

    Science.gov (United States)

    Seitzer, Patrick

    2018-01-01

    Since the launch of Sputnik 1 in 1957, astronomers have faced an increasing number of artificial objects contaminating their images of the night sky. Currently almost 17000 objects larger than 10 cm are tracked and have current orbits in the public catalog. Active missions are only a small fraction of these objects. Most are inactive satellites, rocket bodies, and fragments of larger objects: all space debris. Several mega-constellations are planned which will increase this number by 20% or more in low Earth orbit (LEO). In terms of observational astronomy, this population of Earth orbiting objects has three implications: 1) the number of streaks and glints from spacecraft will only increase. There are some practical steps that can be taken to minimize the number of such streaks and glints in astronomical imaging data. 2) The risk to damage to orbiting astronomical telescopes will only increase, particularly those in LEO. 3) If you are working on a plan for an orbiting telescope project, then there are specific steps that must be taken to minimize space debris generation during the mission lifetime, and actions to safely dispose of the spacecraft at end of mission to prevent it from becoming space debris and a risk to other missions. These steps may involve sacrifices to mission performance and lifetime, but are essential in today's orbital environment.

  5. Man-Made Debris In and From Lunar Orbit

    Science.gov (United States)

    Johnson, Nicholas L.; McKay, Gordon A. (Technical Monitor)

    1999-01-01

    During 1966-1976, as part of the first phase of lunar exploration, 29 manned and robotic missions placed more than 40 objects into lunar orbit. Whereas several vehicles later successfully landed on the Moon and/or returned to Earth, others were either abandoned in orbit or intentionally sent to their destruction on the lunar surface. The former now constitute a small population of lunar orbital debris; the latter, including four Lunar Orbiters and four Lunar Module ascent stages, have contributed to nearly 50 lunar sites of man's refuse. Other lunar satellites are known or suspected of having fallen from orbit. Unlike Earth satellite orbital decays and deorbits, lunar satellites impact the lunar surface unscathed by atmospheric burning or melting. Fragmentations of lunar satellites, which would produce clouds of numerous orbital debris, have not yet been detected. The return to lunar orbit in the 1990's by the Hagoromo, Hiten, Clementine, and Lunar Prospector spacecraft and plans for increased lunar exploration early in the 21st century, raise questions of how best to minimize and to dispose of lunar orbital debris. Some of the lessons learned from more than 40 years of Earth orbit exploitation can be applied to the lunar orbital environment. For the near-term, perhaps the most important of these is postmission passivation. Unique solutions, e.g., lunar equatorial dumps, may also prove attractive. However, as with Earth satellites, debris mitigation measures are most effectively adopted early in the concept and design phase, and prevention is less costly than remediation.

  6. Net deployment and contact dynamics of capturing space debris objects

    NARCIS (Netherlands)

    Shan, M.

    2018-01-01

    Space debris poses a big threat to operational satellites which form a crucial infrastructure for society. According to the main source of information on space debris, the U.S. Space SurveillanceNetwork (SSN), more than 17 500 objects larger than 10 cmhave been catalogued as of February 2017. Among

  7. Simulation analysis of impulse characteristics of space debris irradiated by multi-pulse laser

    Science.gov (United States)

    Lin, Zhengguo; Jin, Xing; Chang, Hao; You, Xiangyu

    2018-02-01

    Cleaning space debris with laser is a hot topic in the field of space security research. Impulse characteristics are the basis of cleaning space debris with laser. In order to study the impulse characteristics of rotating irregular space debris irradiated by multi-pulse laser, the impulse calculation method of rotating space debris irradiated by multi-pulse laser is established based on the area matrix method. The calculation method of impulse and impulsive moment under multi-pulse irradiation is given. The calculation process of total impulse under multi-pulse irradiation is analyzed. With a typical non-planar space debris (cube) as example, the impulse characteristics of space debris irradiated by multi-pulse laser are simulated and analyzed. The effects of initial angular velocity, spot size and pulse frequency on impulse characteristics are investigated.

  8. Space debris removal using a high-power ground-based laser

    Energy Technology Data Exchange (ETDEWEB)

    Monroe, D.K.

    1993-12-31

    The feasibility and practicality of using a ground-based laser (GBL) to remove artificial space debris is examined. Physical constraints indicate that a reactor-pumped laser (RPL) may be best suited for this mission, because of its capabilities for multimegawatt output long run-times, and near-diffraction-limited initial beams. Simulations of a laser-powered debris removal system indicate that a 5-MW RPL with a 10-meter-diameter beam director and adaptive optics capabilities can deorbit 1-kg debris from space station altitudes. Larger debris can be deorbited or transferred to safer orbits after multiple laser engagements. A ground-based laser system may be the only realistic way to access and remove some 10,000 separate objects, having velocities in the neighborhood of 7 km/sec, and being spatially distributed over some 10{sup 10} km{sup 3} of space.

  9. Apparent rotation properties of space debris extracted from photometric measurements

    Science.gov (United States)

    Šilha, Jiří; Pittet, Jean-Noël; Hamara, Michal; Schildknecht, Thomas

    2018-02-01

    Knowledge about the rotation properties of space debris objects is essential for the active debris removal missions, accurate re-entry predictions and to investigate the long-term effects of the space environment on the attitude motion change. Different orbital regions and object's physical properties lead to different attitude states and their change over time. Since 2007 the Astronomical Institute of the University of Bern (AIUB) performs photometric measurements of space debris objects. To June 2016 almost 2000 light curves of more than 400 individual objects have been acquired and processed. These objects are situated in all orbital regions, from low Earth orbit (LEO), via global navigation systems orbits and high eccentricity orbit (HEO), to geosynchronous Earth orbit (GEO). All types of objects were observed including the non-functional spacecraft, rocket bodies, fragmentation debris and uncorrelated objects discovered during dedicated surveys. For data acquisition, we used the 1-meter Zimmerwald Laser and Astrometry Telescope (ZIMLAT) at the Swiss Optical Ground Station and Geodynamics Observatory Zimmerwald, Switzerland. We applied our own method of phase-diagram reconstruction to extract the apparent rotation period from the light curve. Presented is the AIUB's light curve database and the obtained rotation properties of space debris as a function of object type and orbit.

  10. ISU Team Project: An Integral View on Space Debris Mitigation and Removal

    Science.gov (United States)

    Maier, Philipp; Ricote Navarro, Carmon; Jehn, Rudiger; Gini, Andrea; Faure, Pauline; Adriaensen, Maarten; Datta, Iman; Hilbich, Daniel; Jacimovic, Aleksandar; Jacques, Lionel; Penent, Guilhem; Sinn, Thomas; Shioi, Hiroaki

    2013-08-01

    The issue of space debris poses challenges not only in technical, but also legal, political and economic dimensions. A sustainable solution needs to take into account all of them. This paper investigates such a potential solution in a multidisciplinary approach. To this end, it addresses the effectiveness of the existing debris mitigation guidelines, and identifies technical improvements for mitigation. It continues examining technical concepts for debris removal and performing proper cost-benefit trade-offs. The results of new simulations to assess the damage cost caused by space debris are presented. Based on these findings, an organizational framework and political recommendations are developed which will enable a sustainable use of space starting in 2020. The findings are compiled into a roadmap, which outlines 1) a path to the full adherence to debris mitigation guidelines and 2) the removal of ten large pieces of debris per year by a dedicated international organization, including expected expenditures necessary for its implementation.

  11. Image processing improvement for optical observations of space debris with the TAROT telescopes

    Science.gov (United States)

    Thiebaut, C.; Theron, S.; Richard, P.; Blanchet, G.; Klotz, A.; Boër, M.

    2016-07-01

    CNES is involved in the Inter-Agency Space Debris Coordination Committee (IADC) and is observing space debris with two robotic ground based fully automated telescopes called TAROT and operated by the CNRS. An image processing algorithm devoted to debris detection in geostationary orbit is implemented in the standard pipeline. Nevertheless, this algorithm is unable to deal with debris tracking mode images, this mode being the preferred one for debris detectability. We present an algorithm improvement for this mode and give results in terms of false detection rate.

  12. Exploiting Orbital Data and Observation Campaigns to Improve Space Debris Models

    Science.gov (United States)

    Braun, V.; Horstmann, A.; Reihs, B.; Lemmens, S.; Merz, K.; Krag, H.

    The European Space Agency (ESA) has been developing the Meteoroid and Space Debris Terrestrial Environment Reference (MASTER) software as the European reference model for space debris for more than 25 years. It is an event-based simulation of all known individual debris-generating events since 1957, including breakups, solid rocket motor firings and nuclear reactor core ejections. In 2014, the upgraded Debris Risk Assessment and Mitigation Analysis (DRAMA) tool suite was released. In the same year an ESA instruction made the standard ISO 24113:2011 on space debris mitigation requirements, adopted via the European Cooperation for Space Standardization (ECSS), applicable to all ESA missions. In order to verify the compliance of a space mission with those requirements, the DRAMA software is used to assess collision avoidance statistics, estimate the remaining orbital lifetime and evaluate the on-ground risk for controlled and uncontrolled reentries. In this paper, the approach to validate the MASTER and DRAMA tools is outlined. For objects larger than 1 cm, thus potentially being observable from ground, the MASTER model has been validated through dedicated observation campaigns. Recent campaign results shall be discussed. Moreover, catalogue data from the Space Surveillance Network (SSN) has been used to correlate the larger objects. In DRAMA, the assessment of collision avoidance statistics is based on orbit uncertainty information derived from Conjunction Data Messages (CDM) provided by the Joint Space Operations Center (JSpOC). They were collected for more than 20 ESA spacecraft in the recent years. The way this information is going to be used in a future DRAMA version is outlined and the comparison of estimated manoeuvre rates with real manoeuvres from the operations of ESA spacecraft is shown.

  13. UniSat-5: a space-based optical system for space debris monitoring

    Science.gov (United States)

    Di Roberto, Riccardo; Cappelletti, Chantal

    2012-07-01

    Micro-satellite missions, thanks to the miniaturization process of electronic components, now have a broader range of applications. Gauss Group at School of Aerospace Engineering has been a pioneer in educational micro-satellites, namely with UNISAT and EDUSAT missions. Moreover it has been long involved in space debris related studies, such as optical observations as well as mitigation. A new project is under development for a compact digital imaging system. The purpose will be in situ observation of space debris on board Unisat-5 micro-satellite. One of the key elements of observing on orbit is that many atmospheric phenomena would be avoided, such as diffraction and EM absorption. Hence images would gain more contrast and solar spectral irradiance would be higher for the whole visible spectrum Earlier limitations of power and instrument size prevented the inclusion of these payloads in educational satellite missions. The system is composed of an optical tube, a camera, C band and S band transceivers and two antennas. The system is independent from the rest of the spacecraft. The optical tube is a Schmidt-Cassegrain reflector, and the magnitude limit is 13. The camera is equipped with a panchromatic 5Mpix sensor, capable of direct video streaming, as well as local storage of recorded images. The transceivers operate on ISM 2.4GHz and 5 GHz Wi-Fi bands, and they provide stand-alone communication capabilities to the payload, and Unisat-5 OBDH can switch between the two. Both transceivers are connected to their respective custom-designed patch antenna. The ground segment is constituted of a high gain antenna dish, which will use the same transceiver on board the spacecraft as the feed, in order to establish a TCP/IP wireless link. Every component of this system is a consumer grade product. Therefore price reduction of cutting edge imaging technology now allows the use of professional instruments, that combined with the new wireless technology developed for

  14. Cost-effective and robust mitigation of space debris in low earth orbit

    Science.gov (United States)

    Walker, R.; Martin, C.

    It is predicted that the space debris population in low Earth orbit (LEO) will continue to grow and in an exponential manner in the long-term due to an increasing rate of collisions between large objects, unless internationally-accepted space debris mitigation measures are adopted soon. Such measures are aimed at avoiding the future generation of space debris objects and primarily need to be effective in preventing significant long-term growth in the debris population, even in the potential scenario of an increase in future space activity. It is also important that mitigation measures can limit future debris population levels, and therefore the underlying collision risk to space missions, to the lowest extent possible. However, for their wide acceptance, the cost of implementation associated with mitigation measures needs to be minimised as far as possible. Generally, a lower collision risk will cost more to achieve and vice versa, so it is necessary to strike a balance between cost and risk in order to find a cost-effective set of mitigation measures. In this paper, clear criteria are established in order to assess the cost-effectiveness of space debris mitigation measures. A full cost-risk-benefit trade-off analysis of numerous mitigation scenarios is presented. These scenarios consider explosion prevention and post-mission disposal of space systems, including de-orbiting to limited lifetime orbits and re-orbiting above the LEO region. The ESA DELTA model is used to provide long-term debris environment projections for these scenarios as input to the benefit and risk parts of the trade-off analysis. Manoeuvre requirements for the different post-mission disposal scenarios were also calculated in order to define the cost-related element. A 25-year post-mission lifetime de-orbit policy, combined with explosion prevention and mission-related object limitation, was found to be the most cost-effective solution to the space debris problem in LEO. This package would also

  15. Collision risk investigation for an operational spacecraft caused by space debris

    Science.gov (United States)

    Zhang, Binbin; Wang, Zhaokui; Zhang, Yulin

    2017-04-01

    The collision probability between an operational spacecraft and a population of space debris is investigated. By dividing the 3-dimensional operational space of the spacecraft into several space volume cells (SVC) and proposing a boundary selection method to calculate the collision probability in each SVC, the distribution of the collision risk, as functions of the time, the orbital height, the declination, the impact elevation, the collision velocity, etc., can be obtained. Thus, the collision risk could be carefully evaluated over a time span for the general orbital configurations of the spacecraft and the space debris. As an application, the collision risk for the Tiangong-2 space laboratory caused by the cataloged space debris is discussed and evaluated. Results show that most of the collision threat comes from the front left and front right in Tiangong-2's local, quasi-horizontal plane. And the collision probability will also accumulate when Tiangong-2 moves to the largest declinations (about {±} 42°). As a result, the manned space activities should be avoided at those declinations.

  16. Comparison of Space Debris Environment Models: ORDEM2000, MASTER-2001, MASTER-2005 and MASTER-2009

    OpenAIRE

    Kanemitsu, Yuki; 赤星, 保浩; Akahoshi, Yasuhiro; 鳴海, 智博; Narumi, Tomohiro; Faure, Pauline; 松本, 晴久; Matsumoto, Haruhisa; 北澤, 幸人; Kitazawa, Yukihito

    2012-01-01

    Hypervelocity impact by space debris on spacecraft is one of the most important issues for space development and operation, especially considering the growing amount of space debris in recent years. It is therefore important for spacecraft design to evaluate the impact risk by using environment models. In this paper, the authors compared the results of the debris impact flux in low Earth orbit, as calculated by four debris environment engineering models -NASA's ORDEM2000 and ESA's MASTER-2001...

  17. Engineering and Technology Challenges for Active Debris Removal

    Science.gov (United States)

    Liou, Jer-Chyi

    2011-01-01

    After more than fifty years of space activities, the near-Earth environment is polluted with man-made orbital debris. The collision between Cosmos 2251 and the operational Iridium 33 in 2009 signaled a potential collision cascade effect, also known as the "Kessler Syndrome", in the environment. Various modelling studies have suggested that the commonly-adopted mitigation measures will not be sufficient to stabilize the future debris population. Active debris removal must be considered to remediate the environment. This paper summarizes the key issues associated with debris removal and describes the technology and engineering challenges to move forward. Fifty-four years after the launch of Sputnik 1, satellites have become an integral part of human society. Unfortunately, the ongoing space activities have left behind an undesirable byproduct orbital debris. This environment problem is threatening the current and future space activities. On average, two Shuttle window panels are replaced after every mission due to damage by micrometeoroid or orbital debris impacts. More than 100 collision avoidance maneuvers were conducted by satellite operators in 2010 to reduce the impact risks of their satellites with respect to objects in the U.S. Space Surveillance Network (SSN) catalog. Of the four known accident collisions between objects in the SSN catalog, the last one, collision between Cosmos 2251 and the operational Iridium 33 in 2009, was the most significant. It was the first ever accidental catastrophic destruction of an operational satellite by another satellite. It also signaled the potential collision cascade effect in the environment, commonly known as the "Kessler Syndrome," predicted by Kessler and Cour-Palais in 1978 [1]. Figure 1 shows the historical increase of objects in the SSN catalog. The majority of the catalog objects are 10 cm and larger. As of April 2011, the total objects tracked by the SSN sensors were more than 22,000. However, approximately 6000 of

  18. An LDEF 2 dust instrument for discrimination between orbital debris and natural particles in near-Earth space

    Science.gov (United States)

    Tuzzolino, A. J.; Simpson, J. A.; Mckibben, R. B.; Voss, H. D.; Gursky, H.

    1993-01-01

    The characteristics of a space dust instrument which would be ideally suited to carry out near-Earth dust measurements on a possible Long Duraction Exposure Facility reflight mission (LDEF 2) is discussed. As a model for the trajectory portion of the instrument proposed for LDEF 2, the characteristics of a SPAce DUSt instrument (SPADUS) currently under development for flight on the USA ARGOS mission to measure the flux, mass, velocity, and trajectory of near-Earth dust is summarized. Since natural (cosmic) dust and man-made dust particles (orbital debris) have different velocity and trajectory distributions, they are distinguished by means of the SPADUS velocity/trajectory information. The SPADUS measurements will cover the dust mass range approximately 5 x 10(exp -12) g (2 microns diameter) to approximately 1 x 10(exp -5) g (200 microns diameter), with an expected mean error in particle trajectory of approximately 7 deg (isotropic flux). Arrays of capture cell devices positioned behind the trajectory instrumentation would provide for Earth-based chemical and isotopic analysis of captured dust. The SPADUS measurement principles, characteristics, its role in the ARGOS mission, and its application to an LDEF 2 mission are summarized.

  19. A Brief History of Meteoroid and Orbital Debris Shielding Technology for US Manned Spacecraft

    Science.gov (United States)

    Bjorkman, Michael D.; Hyde, James L.

    2008-01-01

    Meteoroid and orbital debris shielding has played an important role from the beginning of manned spaceflight. During the early 60 s, meteoroid protection drove requirements for new meteor and micrometeoroid impact science. Meteoroid protection also stimulated advances in the technology of hypervelocity impact launchers and impact damage assessment methodologies. The first phase of meteoroid shielding assessments closed in the early 70 s with the end of the Apollo program. The second phase of meteoroid protection technology began in the early 80 s when it was determined that there is a manmade Earth orbital debris belt that poses a significant risk to LEO manned spacecraft. The severity of the Earth orbital debris environment has dictated changes in Space Shuttle and ISS operations as well as driven advances in shielding technology and assessment methodologies. A timeline of shielding technology and assessment methodology advances is presented along with a summary of risk assessment results.

  20. Utilizing Weather RADAR for Rapid Location of Meteorite Falls and Space Debris Re-Entry

    Science.gov (United States)

    Fries, Marc D.

    2016-01-01

    This activity utilizes existing NOAA weather RADAR imagery to locate meteorite falls and space debris falls. The near-real-time availability and spatial accuracy of these data allow rapid recovery of material from both meteorite falls and space debris re-entry events. To date, at least 22 meteorite fall recoveries have benefitted from RADAR detection and fall modeling, and multiple debris re-entry events over the United States have been observed in unprecedented detail.

  1. Laser space debris removal: now, not later

    Science.gov (United States)

    Phipps, Claude R.

    2015-02-01

    Small (1-10cm) debris in low Earth orbit (LEO) are extremely dangerous, because they spread the breakup cascade depicted in the movie "Gravity." Laser-Debris-Removal (LDR) is the only solution that can address both large and small debris. In this paper, we briefly review ground-based LDR, and discuss how a polar location can dramatically increase its effectiveness for the important class of sun-synchronous orbit (SSO) objects. No other solutions address the whole problem of large ( 1000cm, 1 ton) as well as small debris. Physical removal of small debris (by nets, tethers and so on) is impractical because of the energy cost of matching orbits. We also discuss a new proposal which uses a space-based station in low Earth orbit (LEO), and rapid, head-on interaction in 10- 40s rather than 4 minutes, with high-power bursts of 100ps, 355nm pulses from a 1.5m diameter aperture. The orbiting station employs "heat-capacity" laser mode with low duty cycle to create an adaptable, robust, dualmode system which can lower or raise large derelict objects into less dangerous orbits, as well as clear out the small debris in a 400-km thick LEO band. Time-average laser optical power is less than 15kW. The combination of short pulses and UV wavelength gives lower required energy density (fluence) on target as well as higher momentum coupling coefficient. This combination leads to much smaller mirrors and lower average power than the ground-based systems we have considered previously. Our system also permits strong defense of specific assets. Analysis gives an estimated cost of about 1k each to re-enter most small debris in a few months, and about 280k each to raise or lower 1-ton objects by 40km. We believe it can do this for 2,000 such large objects in about four years. Laser ablation is one of the few interactions in nature that propel a distant object without any significant reaction on the source.

  2. Research on the new type of multi-functional satellite system for space debris detection

    Science.gov (United States)

    Guo, Linghua; Fu, Qiang; Jiang, Huilin; Xu, Xihe

    2017-05-01

    With the rapid development of space exploration and utilization, orbital debris increases dramatically, leading to great threat to human space activities and spacecraft security. In this paper, a new type of multi-functional space debris satellite system (MSDS) was put forward, which shared main optical system, and possessed functions of multidimensional information detection, polarized remote sensing and high rate transmission. The MSDS system can meet the requirements of detection and identification for the small orbital debris which is 1000km faraway, as well as the requirements of the data transmission by 50 Mbps to 2.5 Gbps@200-1000 km. At the same time, by the method of satellite orbital maneuver and attitude adjusting, the orbital debris information that is real-time, complex and refined, allweather can be acquired and transmitted by the new system. Such new type of multifunctional satellite system can provide important and effective technology for international orbital debris detection.

  3. Space Debris Alert System for Aviation

    Science.gov (United States)

    Sgobba, Tommaso

    2013-09-01

    Despite increasing efforts to accurately predict space debris re-entry, the exact time and location of re-entry is still very uncertain. Partially, this is due to a skipping effect uncontrolled spacecraft may experience as they enter the atmosphere at a shallow angle. Such effect difficult to model depends on atmospheric variations of density. When the bouncing off ends and atmospheric re-entry starts, the trajectory and the overall location of surviving fragments can be precisely predicted but the time to impact with ground, or to reach the airspace, becomes very short.Different is the case of a functional space system performing controlled re-entry. Suitable forecasts methods are available to clear air and maritime traffic from hazard areas (so-called traffic segregation).In US, following the Space Shuttle Columbia accident in 2003, a re-entry hazard areas location forecast system was putted in place for the specific case of major malfunction of a Reusable Launch Vehicles (RLV) at re-entry. The Shuttle Hazard Area to Aircraft Calculator (SHAAC) is a system based on ground equipment and software analyses and prediction tools, which require trained personnel and close coordination between the organization responsible for RLV operation (NASA for Shuttle) and the Federal Aviation Administration. The system very much relies on the operator's capability to determine that a major malfunction has occurred.This paper presents a US pending patent by the European Space Agency, which consists of a "smart fragment" using a GPS localizer together with pre- computed debris footprint area and direct broadcasting of such hazard areas.The risk for aviation from falling debris is very remote but catastrophic. Suspending flight over vast swath of airspace for every re-entering spacecraft or rocket upper stage, which is a weekly occurrence, would be extremely costly and disruptive.The Re-entry Direct Broadcasting Alert System (R- DBAS) is an original merging and evolution of the Re

  4. Analyzing the capability of a radio telescope in a bistatic space debris observation system

    International Nuclear Information System (INIS)

    Zhao Zhe; Zhao You; Gao Peng-Qi

    2013-01-01

    A bistatic space debris observation system using a radio telescope as the receiving part is introduced. The detection capability of the system at different working frequencies is analyzed based on real instruments. The detection range of targets with a fixed radar cross section and the detection ability of small space debris at a fixed range are discussed. The simulations of this particular observation system at different transmitting powers are also implemented and the detection capability is discussed. The simulated results approximately match the actual experiments. The analysis in this paper provides a theoretical basis for developing a space debris observation system that can be built in China

  5. Statistical learning modeling method for space debris photometric measurement

    Science.gov (United States)

    Sun, Wenjing; Sun, Jinqiu; Zhang, Yanning; Li, Haisen

    2016-03-01

    Photometric measurement is an important way to identify the space debris, but the present methods of photometric measurement have many constraints on star image and need complex image processing. Aiming at the problems, a statistical learning modeling method for space debris photometric measurement is proposed based on the global consistency of the star image, and the statistical information of star images is used to eliminate the measurement noises. First, the known stars on the star image are divided into training stars and testing stars. Then, the training stars are selected as the least squares fitting parameters to construct the photometric measurement model, and the testing stars are used to calculate the measurement accuracy of the photometric measurement model. Experimental results show that, the accuracy of the proposed photometric measurement model is about 0.1 magnitudes.

  6. NASA Safety Standard: Guidelines and Assessment Procedures for Limiting Orbital Debris

    Science.gov (United States)

    1995-01-01

    Collision with orbital debris is a hazard of growing concern as historically accepted practices and procedures have allowed man-made objects to accumulate in orbit. To limit future debris generation, NASA Management Instruction (NMI) 1700.8, 'Policy to Limit Orbital Debris Generation,' was issued in April of 1993. The NMI requires each program to conduct a formal assessment of the potential to generate orbital debris. This document serves as a companion to NMI 1700.08 and provides each NASA program with specific guidelines and assessment methods to assure compliance with the NMI. Each main debris assessment issue (e.g., Post Mission Disposal) is developed in a separate chapter.

  7. Development of Harpoon System for Capturing Space Debris

    Science.gov (United States)

    Reed, Jame; Barraclough, Simon

    2013-08-01

    Active removal of large space debris has been identified as a key activity to control the growth in the debris population and to limit the risk to active satellites. Astrium is developing technologies to enable such a mission, including a harpoon capture system. The harpoon is simple, compact and lightweight. Since the capture is fast (typically barbs to robustly hold the target, a crushable section to absorb excess impact energy, and a tether to connect to the chaser vehicle. The baseline firing system uses compressed gas, although a simpler one-shot system has also been designed. To understand how a harpoon could be applicable to active debris removal an on-ground prototype and test-rig has been developed for trials with real structural elements of satellites and rocket bodies. Testing has demonstrated the feasibility of the concept and this paper describes the results as well as the next steps. A number of design variants are also proposed which could simplify the system design of an ADR mission.

  8. Thrust Control During Towing of Space Debris using an Elastic Tether

    Directory of Open Access Journals (Sweden)

    A. D. Ledkov

    2014-01-01

    Full Text Available The paper considers a maneuver for deorbiting the large space debris using an active spacecraft connected with the debris by an elastic tether. Tether slacking during the maneuver can lead to the tether rupture, kinking, and winding on the descending object. Therefore it is important to prevent slacking. The objective of this work is to find the law of thrust force control of the active spacecraft to ensure a continuously strained tether during the maneuver.Using Lagrange formalism a mathematical model to describe the system plane motion is developed. This model considers the active spacecraft as a mass point, the space debris as a rigid body, and the tether as a weightless elastic rod. A thrust force is directed along the local horizon of the spacecraft. Linearization of nonlinear differential equation describing longitudinal oscillations of the tether length is performed. Its phase portrait is analyzed. An approximate expression describing the position of the center on the phase portrait is obtained. A time-optimal control with full feedback to ensure that the tether is in the strained state is found by solving the Bellman equation. To use the obtained optimal law it is necessary to set the measuring equipment on the spacecraft, which is capable of accurate measuring a distance to the space debris and its relative velocity. An alternative control law, which is simpler in terms of the practical implementation, is proposed. As an example, the descent from an orbit of nonfunctioning Soviet satellite Meteor-2 is considered. It is shown that both proposed laws provide continuous strain of the tether during deorbiting of the satellite. Moreover, slack does not occur even at the first period of oscillation of the tether length. It is shown that the use of the proposed control laws leads to slight increase of deorbiting time as compared to the case of using the constant thrust.The results can be used to develop the control systems of small spacecrafts

  9. The bistatic radar capabilities of the Medicina radiotelescopes in space debris detection and tracking

    Science.gov (United States)

    Montebugnoli, S.; Pupillo, G.; Salerno, E.; Pluchino, S.; di Martino, M.

    2010-03-01

    An accurate measurement of the position and trajectory of the space debris fragments is of primary importance for the characterization of the orbital debris environment. The Medicina Radioastronomical Station is a radio observation facility that is here proposed as receiving part of a ground-based space surveillance system for detecting and tracking space debris at different orbital regions (from Low Earth Orbits up to Geostationary Earth Orbits). The proposed system consists of two bistatic radars formed by the existing Medicina receiving antennas coupled with appropriate transmitters. This paper focuses on the current features and future technical development of the receiving part of the observational setup. Outlines of possible transmitting systems will also be given together with the evaluation of the observation strategies achievable with the proposed facilities.

  10. A Numerical Approach to Estimate the Ballistic Coefficient of Space Debris from TLE Orbital Data

    Science.gov (United States)

    Narkeliunas, Jonas

    2016-01-01

    Low Earth Orbit (LEO) is full of space debris, which consist of spent rocket stages, old satellites and fragments from explosions and collisions. As of 2009, more than 21,000 orbital debris larger than 10 cm are known to exist], and while it is hard to track anything smaller than that, the estimated population of particles between 1 and 10 cm in diameter is approximately 500,000, whereas small as 1 cm exceeds 100 million. These objects orbit Earth with huge kinetic energies speeds usually exceed 7 kms. The shape of their orbit varies from almost circular to highly elliptical and covers all LEO, a region in space between 160 and 2,000 km above sea level. Unfortunately, LEO is also the place where most of our active satellites are situated, as well as, International Space Station (ISS) and Hubble Space Telescope, whose orbits are around 400 and 550 km above sea level, respectively.This poses a real threat as debris can collide with satellites and deal substantial damage or even destroy them.Collisions between two or more debris create clouds of smaller debris, which are harder to track and increase overall object density and collision probability. At some point, the debris density couldthen reach a critical value, which would start a chain reaction and the number of space debris would grow exponentially. This phenomenon was first described by Kessler in 1978 and he concluded that it would lead to creation of debris belt, which would vastly complicate satellite operations in LEO. The debris density is already relatively high, as seen from several necessary debris avoidance maneuvers done by Shuttle, before it was discontinued, and ISS. But not all satellites have a propulsion system to avoid collision, hence different methods need to be applied. One of the proposed collision avoidance concepts is called LightForce and it suggests using photon pressure to induce small orbital corrections to deflect debris from colliding. This method is very efficient as seen from

  11. Earth Satellite Population Instability: Underscoring the Need for Debris Mitigation

    Science.gov (United States)

    Liou, Jer-chyi; Johnson, N. L.

    2006-01-01

    A recent study by NASA indicates that the implementation of international orbital debris mitigation measures alone will not prevent a significant increase in the artificial Earth satellite population, beginning in the second half of this century. Whereas the focus of the aerospace community for the past 25 years has been on the curtailment of the generation of long-lived orbital debris, active remediation of the current orbital debris population should now be reconsidered to help preserve near-Earth space for future generations. In particular, we show in this paper that even if launch operations were to cease today, the population of space debris would continue to grow. Further, proposed remediation techniques do not appear to offer a viable solution. We therefore recommend that, while the aerospace community maintains the current debris-limiting mission regulations and postmission disposal procedures, future emphasis should be placed on finding new remediation technologies for solving this growing problem. Since the launch of Sputnik 1, space activities have created an orbital debris environment that poses increasing impact risks to existing space systems, including human space flight and robotic missions (1, 2). Currently, more than 9,000 Earth orbiting man-made objects (including many breakup fragments), with a combined mass exceeding 5 million kilograms, are tracked by the US Space Surveillance Network and maintained in the US satellite catalog (3-5). Three accidental collisions between cataloged satellites during the period from late 1991 to early 2005 have already been documented (6), although fortunately none resulted in the creation of large, trackable debris clouds. Several studies conducted during 1991-2001 demonstrated, with assumed future launch rates, the unintended growth potential of the Earth satellite population, resulting from random, accidental collisions among resident space objects (7-13). In some low Earth orbit (LEO) altitude regimes where

  12. Review of the Space Debris Protection Application on ``TIANGONG-1''

    Science.gov (United States)

    Zhang, Yong; Li, Ming; Han, Zengyao

    Meteoroid and orbital debris (M/OD) is the key factor related to the astronaut safety. The long-term manned spacelab generally adopts protection measures to reduce its hypervelocity impact (HVI) risk. This paper presents the engineering application on“Tiangong-1”,the first long-term spacelab in orbit for China.The application includes the M/OD shielding, active avoidance and mitigation. Firstly, the shielding concepts on“Tiangong-1”manned module and radiator are summarized. Two typical Whipple shields respectively with the 70mm and 50mm standoff are separately utilized for the front cone and cylinder pressurized walls. The ballistic limit Equations (BLE) of these two shieldings are achieved through the HVI tests and numerical simulation. The shields provide the resistance capability of space debris particle.Meanwhile, the M/OD risk is assessed by utilizing the MODAOST to predict the probability of penetration (PP) and probability of critical failure (PCF). The assessment shows that the shielding design meets the safety requirement with the PP of 2.09X10 (-3) and the critical cracking PCF of 3.35X10 (-4) . The radiator,the large-scaled component of manned Spacelab, adopts the Ω-shaped tube to improve the HVI resistance capability with the cost of less mass. Secondly, the orbit transfer strategy is designed not only to meet the requirement of the orbit phase of “Shenzhou” spacecraft but also actively avoid the rendezvous with the cataloged debris in orbit. This strategy is validated through the rendezvous and docking missions of “Shenzhou-8” and “Tiangong-1”,“Shenzhou-9”,“Shenzhou-10”. Thirdly, the mitigation and deactivation concepts are introduced by means of reentry simulation of “Tiangong-1” to protect the space environment and reduce the ground casualty. The space debris protection techniques applied on “Tiangong-1” have been broken through with the successful mission of “Tiangong-1”, and these applied techniques provide

  13. Implementation of an Open-Scenario, Long-Term Space Debris Simulation Approach

    Science.gov (United States)

    Nelson, Bron; Yang Yang, Fan; Carlino, Roberto; Dono Perez, Andres; Faber, Nicolas; Henze, Chris; Karacalioglu, Arif Goktug; O'Toole, Conor; Swenson, Jason; Stupl, Jan

    2015-01-01

    This paper provides a status update on the implementation of a flexible, long-term space debris simulation approach. The motivation is to build a tool that can assess the long-term impact of various options for debris-remediation, including the LightForce space debris collision avoidance concept that diverts objects using photon pressure [9]. State-of-the-art simulation approaches that assess the long-term development of the debris environment use either completely statistical approaches, or they rely on large time steps on the order of several days if they simulate the positions of single objects over time. They cannot be easily adapted to investigate the impact of specific collision avoidance schemes or de-orbit schemes, because the efficiency of a collision avoidance maneuver can depend on various input parameters, including ground station positions and orbital and physical parameters of the objects involved in close encounters (conjunctions). Furthermore, maneuvers take place on timescales much smaller than days. For example, LightForce only changes the orbit of a certain object (aiming to reduce the probability of collision), but it does not remove entire objects or groups of objects. In the same sense, it is also not straightforward to compare specific de-orbit methods in regard to potential collision risks during a de-orbit maneuver. To gain flexibility in assessing interactions with objects, we implement a simulation that includes every tracked space object in Low Earth Orbit (LEO) and propagates all objects with high precision and variable time-steps as small as one second. It allows the assessment of the (potential) impact of physical or orbital changes to any object. The final goal is to employ a Monte Carlo approach to assess the debris evolution during the simulation time-frame of 100 years and to compare a baseline scenario to debris remediation scenarios or other scenarios of interest. To populate the initial simulation, we use the entire space

  14. Experiments and simulation of a net closing mechanism for tether-net capture of space debris

    Science.gov (United States)

    Sharf, Inna; Thomsen, Benjamin; Botta, Eleonora M.; Misra, Arun K.

    2017-10-01

    This research addresses the design and testing of a debris containment system for use in a tether-net approach to space debris removal. The tether-net active debris removal involves the ejection of a net from a spacecraft by applying impulses to masses on the net, subsequent expansion of the net, the envelopment and capture of the debris target, and the de-orbiting of the debris via a tether to the chaser spacecraft. To ensure a debris removal mission's success, it is important that the debris be successfully captured and then, secured within the net. To this end, we present a concept for a net closing mechanism, which we believe will permit consistently successful debris capture via a simple and unobtrusive design. This net closing system functions by extending the main tether connecting the chaser spacecraft and the net vertex to the perimeter and around the perimeter of the net, allowing the tether to actuate closure of the net in a manner similar to a cinch cord. A particular embodiment of the design in a laboratory test-bed is described: the test-bed itself is comprised of a scaled-down tether-net, a supporting frame and a mock-up debris. Experiments conducted with the facility demonstrate the practicality of the net closing system. A model of the net closure concept has been integrated into the previously developed dynamics simulator of the chaser/tether-net/debris system. Simulations under tether tensioning conditions demonstrate the effectiveness of the closure concept for debris containment, in the gravity-free environment of space, for a realistic debris target. The on-ground experimental test-bed is also used to showcase its utility for validating the dynamics simulation of the net deployment, and a full-scale automated setup would make possible a range of validation studies of other aspects of a tether-net debris capture mission.

  15. Efficient and automatic image reduction framework for space debris detection based on GPU technology

    Science.gov (United States)

    Diprima, Francesco; Santoni, Fabio; Piergentili, Fabrizio; Fortunato, Vito; Abbattista, Cristoforo; Amoruso, Leonardo

    2018-04-01

    In the last years, the increasing number of space debris has triggered the need of a distributed monitoring system for the prevention of possible space collisions. Space surveillance based on ground telescope allows the monitoring of the traffic of the Resident Space Objects (RSOs) in the Earth orbit. This space debris surveillance has several applications such as orbit prediction and conjunction assessment. In this paper is proposed an optimized and performance-oriented pipeline for sources extraction intended to the automatic detection of space debris in optical data. The detection method is based on the morphological operations and Hough Transform for lines. Near real-time detection is obtained using General Purpose computing on Graphics Processing Units (GPGPU). The high degree of processing parallelism provided by GPGPU allows to split data analysis over thousands of threads in order to process big datasets with a limited computational time. The implementation has been tested on a large and heterogeneous images data set, containing both imaging satellites from different orbit ranges and multiple observation modes (i.e. sidereal and object tracking). These images were taken during an observation campaign performed from the EQUO (EQUatorial Observatory) observatory settled at the Broglio Space Center (BSC) in Kenya, which is part of the ASI-Sapienza Agreement.

  16. Modeling and control of a flexible space robot to capture a tumbling debris

    Science.gov (United States)

    Dubanchet, Vincent

    After 60 years of intensive satellite launches, the number of drifting objects in Earth orbits is reaching a shifting point, where human intervention is becoming necessary to reduce the threat of collision. Indeed, a 200 year forecast, known as the "Kessler syndrome", states that space access will be greatly compromised if nothing is done to address the proliferation of these debris. Scientist J.-C. Liou from the National Aeronautics and Space Administration (NASA) has shown that the current trend could be reversed if at least five massive objects, such as dead satellites or rocket upper stages, were de-orbited each year. Among the various technical concepts considered for debris removal, robotics has emerged, over the last 30 years, as one of the most promising solutions. The International Space Station (ISS) already possesses fully operational robotic arms, and other missions have explored the potential of a manipulator embedded onto a satellite. During two of the latter, key capabilities have been demonstrated for on-orbit servicing, and prove to be equally useful for the purpose of debris removal. This thesis focuses on the close range capture of a tumbling debris by a robotic arm with light-weight flexible segments. This phase includes the motion planning and the control of a space robot, in order to smoothly catch a target point on the debris. The validation of such technologies is almost impossible on Earth and leads to prohibitive costs when performed on orbit. Therefore, the modeling and simulation of flexible multi-body systems has been investigated thoroughly, and is likewise a strong contribution of the thesis. Based on these models, an experimental validation is proposed by reproducing the on-orbit kinematics on a test bench made up of two industrial manipulators and driven by a real-time dynamic simulation. In a nutshell, the thesis is built around three main parts: the modeling of a space robot, the design of control laws, and their validation on a

  17. Simulation of the space debris environment in LEO using a simplified approach

    Science.gov (United States)

    Kebschull, Christopher; Scheidemann, Philipp; Hesselbach, Sebastian; Radtke, Jonas; Braun, Vitali; Krag, H.; Stoll, Enrico

    2017-01-01

    Several numerical approaches exist to simulate the evolution of the space debris environment. These simulations usually rely on the propagation of a large population of objects in order to determine the collision probability for each object. Explosion and collision events are triggered randomly using a Monte-Carlo (MC) approach. So in many different scenarios different objects are fragmented and contribute to a different version of the space debris environment. The results of the single Monte-Carlo runs therefore represent the whole spectrum of possible evolutions of the space debris environment. For the comparison of different scenarios, in general the average of all MC runs together with its standard deviation is used. This method is computationally very expensive due to the propagation of thousands of objects over long timeframes and the application of the MC method. At the Institute of Space Systems (IRAS) a model capable of describing the evolution of the space debris environment has been developed and implemented. The model is based on source and sink mechanisms, where yearly launches as well as collisions and explosions are considered as sources. The natural decay and post mission disposal measures are the only sink mechanisms. This method reduces the computational costs tremendously. In order to achieve this benefit a few simplifications have been applied. The approach of the model partitions the Low Earth Orbit (LEO) region into altitude shells. Only two kinds of objects are considered, intact bodies and fragments, which are also divided into diameter bins. As an extension to a previously presented model the eccentricity has additionally been taken into account with 67 eccentricity bins. While a set of differential equations has been implemented in a generic manner, the Euler method was chosen to integrate the equations for a given time span. For this paper parameters have been derived so that the model is able to reflect the results of the numerical MC

  18. New algorithms for optical observations of space debris with the TAROT telescopes

    Science.gov (United States)

    Laas-Bourez, Myrtille; Boer, Michel; Blanchet, Gwendoline; Ducrotte, Etienne; Klotz, Alain

    To preserve the space environment for the future, and to make space expedition safe, we have to improve our knowledge of the debris population in the vicinity of the geostationary orbit. Since 2004, CNES observes satellites in the geostationary orbit with a network of robotic ground based fully automated telescopes. One is located in France and the second being in ESO La Silla, Chile. This system makes real time processing and its wide field of view is useful for detection, systematic survey and tracking both catalogued and uncatalogued objets. We are implementing new, more efficient, image processing algorithms. A new source extraction algorithm based on morphological mathematic, and a "matching-pursuit" algorithm allow to correlate the measurements of the same object on successive images and give an almost nil false detection rate. These new methods allow us to detect objects on the geostationary belt and on other orbits like MEO or GTO. We also improved the timing precision of individual images (few milliseconds) and the precision of the position restitution respective to the celestial frame. Our "delay card" provides an extremely precise date of objects in a picture and our new algorithm accurately extracts stars from background for calibration; Thanks to all these improvements, the overall efficiency and quality of the survey of the geostationary orbit has drastically improved and we can now detect satellites and debris in different orbits like GTO orbit. In this paper we present our new methods and the work we have made for the detection of space debris: the images dating with a card of delay, the accuracy of astronomical calibration, and the robustness of the extracting space debris with different algorithms. The results obtained on the sky will be shown.

  19. Preliminary investigation for the development of surrogate debris from nuclear detonations in marine-urban environments

    International Nuclear Information System (INIS)

    Seybert, A.G.; Auxier II, J.D.; University of Tennessee, Knoxville, TN; Hall, H.L.; University of Tennessee, Knoxville, TN; University of Tennessee, Knoxville, TN

    2017-01-01

    Since no nuclear weapon surface detonations have occurred in urban harbor environments, the nuclear forensic community has no actual debris from which to develop and validate analytical methods for radiochemistry analysis, making the development of surrogate debris representative of this a marine-urban detonation a vital undertaking. This work seeks to build a robust model that accounts for natural and manmade environmental variations in harbor environments and vessel compositions to statistically define the elemental composition of vaporized debris from a marine-urban nuclear detonation. This initial work is necessary for follow-on neutron-activation and debris formation analysis. (author)

  20. Impact of the New Optimal Rules for Arbitration of Disputers Relating to Space Debris Controversies

    Science.gov (United States)

    Force, Melissa K.

    2013-09-01

    The mechanisms and procedures for settlement of disputes arising from space debris collision damage, such as that suffered by the Russian Cosmos and US Iridium satellites in 2009, are highly political, nonbinding and unpredictable - all of which contributes to the uncertainty that increases the costs of financing and insuring those endeavors that take place in near-Earth space, especially in Low Earth Orbit. Dispute settlement mechanisms can be found in the 1967 Outer Space Treaty, which provides for consultations in cases involving potentially harmful interference with activities of States parties, and in the 1972 Liability Convention which permits but does not require States - not non-governmental entities - to pursue claims in a resolution process that is nonbinding (unless otherwise agreed.) There are soft- law mechanisms to control the growth of space debris, such as the voluntary 2008 United Nations Space Debris Mitigation Guidelines, and international law and the principles of equity and justice generally provide reparation to restore a person, State or organization to the condition which would have existed if damage had not occurred, but only if all agree to a specific tribunal or international court; even then, parties may be bound by the result only if agreed and enforcement of the award internationally remains uncertain. In all, the dispute resolution process for damage resulting from inevitable future damage from space debris collisions is highly unsatisfactory. However, the Administrative Council of the Permanent Court of Arbitration's recently adopted Optional Rules for the Arbitration of Disputes Relating to Outer Space Activities are, as of yet, untested, and this article will provide an overview of the process, explore the ways in which they fill in gaps in the previous patchwork of systems and analyze the benefits and shortcomings of the new Outer Space Optional Rules.

  1. Debris mitigation measures by satellite design and operational methods - Findings from the DLR space debris End-to-End Service

    Science.gov (United States)

    Sdunnus, H.; Beltrami, P.; Janovsky, R.; Koppenwallner, G.; Krag, H.; Reimerdes, H.; Schäfer, F.

    Debris Mitigation has been recognised as an issue to be addressed by the space faring nations around the world. Currently, there are various activities going on, aiming at the establishment of debris mitigation guidelines on various levels, reaching from the UN down to national space agencies. Though guidelines established on the national level already provide concrete information how things should be done (rather that specifying what should be done or providing fundamental principles) potential users of the guidelines will still have the need to explore the technical, management, and financial implications of the guidelines for their projects. Those questions are addressed by the so called "Space Debris End-to-End Service" project, which has been initiated as a national initiative of the German Aerospace Centre (DLR). Based on a review of already existing mitigation guidelines or guidelines under development and following an identification of needs from a circle of industrial users the "End-to-End Service Gu idelines" have been established for designer and operators of spacecraft. The End-to-End Service Guidelines are based on requirements addressed by the mitigation guidelines and provide recommendations how and when the technical consideration of the mitigation guidelines should take place. By referencing requirements from the mitigation guidelines, the End-to-End Service Guidelines address the consideration of debris mitigation measures by spacecraft design and operational measures. This paper will give an introduction to the End-to-End Service Guidelines. It will focus on the proposals made for mitigation measures by the S/C system design, i.e. on protective design measures inside the spacecraft and on design measures, e.g. innovative protective (shielding) systems. Furthermore, approaches on the analytical optimisation of protective systems will be presented, aiming at the minimisation of shield mass under conservation of the protective effects. On the

  2. Aerogels Materials as Space Debris Collectors

    Directory of Open Access Journals (Sweden)

    Thierry Woignier

    2013-01-01

    Full Text Available Material degradation due to the specific space environment becomes a key parameter for space missions. The use of large surface of brittle materials on satellites can produce, if impacted by hypervelocity particles, ejected volumes of mater 100 times higher than the impacting one. The presented work is devoted to the use of silica aerogels as passive detectors. Aerogels have been exposed to the low earth orbit of the ISS for 18 months. The study describes the aerogels process and the choice of synthesis parameters in such a way to get expected features in terms of porosity, mechanical properties, internal stresses, and transparency. Low-density aerogels (0.09 g·cm−3 have been prepared. The control of transparency necessary to see and identify particles and fragments collected is obtained using a base catalysis during gel synthesis. After return to earth, the aerogels samples have been observed using optical microscopy to detect and quantify craters on the exposed surface. First results obtained on a small part of the aerogels indicate a large number of debris collected in the materials.

  3. Global Man-made Impervious Surface (GMIS) Dataset From Landsat

    Data.gov (United States)

    National Aeronautics and Space Administration — The Global Man-made Impervious Surface (GMIS) Dataset From Landsat consists of global estimates of fractional impervious cover derived from the Global Land Survey...

  4. Hierarchical phase space structure of dark matter haloes: Tidal debris, caustics, and dark matter annihilation

    International Nuclear Information System (INIS)

    Afshordi, Niayesh; Mohayaee, Roya; Bertschinger, Edmund

    2009-01-01

    Most of the mass content of dark matter haloes is expected to be in the form of tidal debris. The density of debris is not constant, but rather can grow due to formation of caustics at the apocenters and pericenters of the orbit, or decay as a result of phase mixing. In the phase space, the debris assemble in a hierarchy that is truncated by the primordial temperature of dark matter. Understanding this phase structure can be of significant importance for the interpretation of many astrophysical observations and, in particular, dark matter detection experiments. With this purpose in mind, we develop a general theoretical framework to describe the hierarchical structure of the phase space of cold dark matter haloes. We do not make any assumption of spherical symmetry and/or smooth and continuous accretion. Instead, working with correlation functions in the action-angle space, we can fully account for the hierarchical structure (predicting a two-point correlation function ∝ΔJ -1.6 in the action space), as well as the primordial discreteness of the phase space. As an application, we estimate the boost to the dark matter annihilation signal due to the structure of the phase space within virial radius: the boost due to the hierarchical tidal debris is of order unity, whereas the primordial discreteness of the phase structure can boost the total annihilation signal by up to an order of magnitude. The latter is dominated by the regions beyond 20% of the virial radius, and is largest for the recently formed haloes with the least degree of phase mixing. Nevertheless, as we argue in a companion paper, the boost due to small gravitationally-bound substructure can dominate this effect at low redshifts.

  5. Hierarchical phase space structure of dark matter haloes: Tidal debris, caustics, and dark matter annihilation

    Science.gov (United States)

    Afshordi, Niayesh; Mohayaee, Roya; Bertschinger, Edmund

    2009-04-01

    Most of the mass content of dark matter haloes is expected to be in the form of tidal debris. The density of debris is not constant, but rather can grow due to formation of caustics at the apocenters and pericenters of the orbit, or decay as a result of phase mixing. In the phase space, the debris assemble in a hierarchy that is truncated by the primordial temperature of dark matter. Understanding this phase structure can be of significant importance for the interpretation of many astrophysical observations and, in particular, dark matter detection experiments. With this purpose in mind, we develop a general theoretical framework to describe the hierarchical structure of the phase space of cold dark matter haloes. We do not make any assumption of spherical symmetry and/or smooth and continuous accretion. Instead, working with correlation functions in the action-angle space, we can fully account for the hierarchical structure (predicting a two-point correlation function ∝ΔJ-1.6 in the action space), as well as the primordial discreteness of the phase space. As an application, we estimate the boost to the dark matter annihilation signal due to the structure of the phase space within virial radius: the boost due to the hierarchical tidal debris is of order unity, whereas the primordial discreteness of the phase structure can boost the total annihilation signal by up to an order of magnitude. The latter is dominated by the regions beyond 20% of the virial radius, and is largest for the recently formed haloes with the least degree of phase mixing. Nevertheless, as we argue in a companion paper, the boost due to small gravitationally-bound substructure can dominate this effect at low redshifts.

  6. Orbital debris: a technical assessment

    National Research Council Canada - National Science Library

    Committee on Space Debris, National Research Council

    ..., and other debris created as a byproduct of space operations. Orbital Debris examines the methods we can use to characterize orbital debris, estimates the magnitude of the debris population, and assesses the hazard that this population poses to spacecraft...

  7. NASA's Newest Orbital Debris Ground-based Telescope Assets: MCAT and UKIRT

    Science.gov (United States)

    Lederer, S.; Frith, J.; Pace, L. F.; Cowardin, H. M.; Hickson, P.; Glesne, T.; Maeda, R.; Buckalew, B.; Nishimoto, D.; Douglas, D.; Stansbery, E. G.

    2014-09-01

    these ground-based telescope assets will yield spectral coverage ranging from 0.3 25 microns, allowing orbital debris to be studied in depth across a wider wavelength range in the visible and IR than ever previously studied by ODPO. Located on opposite sides of the world and in opposite hemispheres, they offer access to nearly the entire GEO belt on any given night, allowing immediate coverage of nearly any time-critical break-up event. By expanding the methods for surveying, detecting, and characterizing orbital debris, we can better model the debris environment and ultimately gain insight into how to mitigate potential collisions for future missions. Acknowledgments: Special thanks to Matt Bold, Rick Kendrick, the UKIRT staff, the Joint Astronomy Centre, Lockheed Martin, and the University of Arizona, for their collaborative efforts toward modifying UKIRT to boldly venture inward in space to track tiny man-made objects orbiting the Earth.

  8. Development of the KARI Space Debris Collision Risk Management System (KARISMA)

    Science.gov (United States)

    Kim, Hae-Dong; Lee, Sang-Cherl; Cho, Dong-Hyun; Seong, Jae-Dong

    2018-05-01

    Korea has been operating multi-purpose low-earth orbit (LEO) satellites such as the Korea multi-purpose satellite (KOMPSAT) since 1999 and the Communication, Ocean, and Meteorological Satellite (COMS), which was launched into geostationary orbit in 2006. The Korea Aerospace Research Institute (KARI) consequently became concerned about the deteriorating space debris environment. This led to the instigation, in 2011, of a project to develop the KARI space debris collision risk management system (KARISMA). In 2014, KARISMA was adopted as an official tool at the KARI ground station and is operated to mitigate collision risks while being continuously upgraded with input from satellite operators. The characteristics and architecture of KARISMA are described with detailed operational views. The user-friendly user interfaces including 2D and 3D displays of the results, conjunction geometries, and so on, are described in detail. The results of our analysis of the space collision risk faced by the KOMPSAT satellites as determined using KARISMA are presented, as well as optimized collision avoidance maneuver planning with maneuvering strategies for several conjunction events. Consequently, the development of KARISMA to provide detailed descriptions is expected to contribute significantly to satellite operators and owners who require tools with many useful functions to mitigate collision risk.

  9. Micro-satellite for space debris observation by optical sensors

    Science.gov (United States)

    Thillot, Marc; Brenière, Xavier; Midavaine, Thierry

    2017-11-01

    The purpose of this theoretical study carried out under CNES contract is to analyze the feasibility of small space debris detection and classification with an optical sensor on-board micro-satellite. Technical solutions based on active and passive sensors are analyzed and compared. For the most appropriated concept an optimization was made and theoretical performances in terms of number of detection versus class of diameter were calculated. Finally we give some preliminary physical sensor features to illustrate the concept (weight, volume, consumption,…).

  10. Man-Made Object Extraction from Remote Sensing Imagery by Graph-Based Manifold Ranking

    Science.gov (United States)

    He, Y.; Wang, X.; Hu, X. Y.; Liu, S. H.

    2018-04-01

    The automatic extraction of man-made objects from remote sensing imagery is useful in many applications. This paper proposes an algorithm for extracting man-made objects automatically by integrating a graph model with the manifold ranking algorithm. Initially, we estimate a priori value of the man-made objects with the use of symmetric and contrast features. The graph model is established to represent the spatial relationships among pre-segmented superpixels, which are used as the graph nodes. Multiple characteristics, namely colour, texture and main direction, are used to compute the weights of the adjacent nodes. Manifold ranking effectively explores the relationships among all the nodes in the feature space as well as initial query assignment; thus, it is applied to generate a ranking map, which indicates the scores of the man-made objects. The man-made objects are then segmented on the basis of the ranking map. Two typical segmentation algorithms are compared with the proposed algorithm. Experimental results show that the proposed algorithm can extract man-made objects with high recognition rate and low omission rate.

  11. Perspectives for Distributed Observations of Near-Earth Space Using a Russian-Cuban Observatory

    Science.gov (United States)

    Bisikalo, D. V.; Savanov, I. S.; Naroenkov, S. A.; Nalivkin, M. A.; Shugarov, A. S.; Bakhtigaraev, N. S.; Levkina, P. A.; Ibragimov, M. A.; Kil'pio, E. Yu.; Sachkov, M. E.; Kartashova, A. P.; Fateeva, A. M.; Uratsuka, Marta R. Rodriguez; Estrada, Ramses Zaldivar; Diaz, Antonio Alonsa; Rodríguez, Omar Pons; Figuera, Fidel Hernandes; Garcia, Maritza Garcia

    2018-06-01

    The creation of a specialized network of large, wide-angle telescopes for distributed observations of near-Earth space using a Russian-Cuban Observatory is considered. An extremely important goal of routine monitoring of near-Earth and near-Sun space is warding off threats with both natural and technogenic origins. Natural threats are associated with asteroids or comets, and technogenic threats with man-made debris in near-Earth space. A modern network of ground-based optical instruments designed to ward off such threats must: (a) have a global and, if possible, uniform geographic distribution, (b) be suitable for wide-angle, high-accuracy precision survey observations, and (c) be created and operated within a single network-oriented framework. Experience at the Institute of Astronomy on the development of one-meter-class wide-angle telescopes and elements of a super-wide-angle telescope cluster is applied to determine preferences for the composition of each node of such a network. The efficiency of distributed observations in attaining maximally accurate predictions of the motions of potentially dangerous celestial bodies as they approach the Earth and in observations of space debris and man-made satellites is estimated. The first estimates of astroclimatic conditions at the proposed site of the future Russian-Cuban Observatory in the mountains of the Sierra del Rosario Biosphere Reserve are obtained. Special attention is given to the possible use of the network to carry out a wide range of astrophysical studies, including optical support for the localization of gravitational waves and other transient events.

  12. Space Debris Attitude Simulation - IOTA (In-Orbit Tumbling Analysis)

    Science.gov (United States)

    Kanzler, R.; Schildknecht, T.; Lips, T.; Fritsche, B.; Silha, J.; Krag, H.

    Today, there is little knowledge on the attitude state of decommissioned intact objects in Earth orbit. Observational means have advanced in the past years, but are still limited with respect to an accurate estimate of motion vector orientations and magnitude. Especially for the preparation of Active Debris Removal (ADR) missions as planned by ESA's Clean Space initiative or contingency scenarios for ESA spacecraft like ENVISAT, such knowledge is needed. The In-Orbit Tumbling Analysis tool (IOTA) is a prototype software, currently in development within the framework of ESA's “Debris Attitude Motion Measurements and Modelling” project (ESA Contract No. 40000112447), which is led by the Astronomical Institute of the University of Bern (AIUB). The project goal is to achieve a good understanding of the attitude evolution and the considerable internal and external effects which occur. To characterize the attitude state of selected targets in LEO and GTO, multiple observation methods are combined. Optical observations are carried out by AIUB, Satellite Laser Ranging (SLR) is performed by the Space Research Institute of the Austrian Academy of Sciences (IWF) and radar measurements and signal level determination are provided by the Fraunhofer Institute for High Frequency Physics and Radar Techniques (FHR). Developed by Hyperschall Technologie Göttingen GmbH (HTG), IOTA will be a highly modular software tool to perform short- (days), medium- (months) and long-term (years) propagation of the orbit and attitude motion (six degrees-of-freedom) of spacecraft in Earth orbit. The simulation takes into account all relevant acting forces and torques, including aerodynamic drag, solar radiation pressure, gravitational influences of Earth, Sun and Moon, eddy current damping, impulse and momentum transfer from space debris or micro meteoroid impact, as well as the optional definition of particular spacecraft specific influences like tank sloshing, reaction wheel behaviour

  13. The geocentric particulate distribution: Cometary, asteroidal, or space debris?

    Science.gov (United States)

    Mcdonnell, J. A. M.; Ratcliff, P. R.

    1992-01-01

    Definition of the Low Earth Orbit (LEO) particulate environment has been refined considerably with the analysis of data from NASA's Long Duration Exposure Facility (LDEF). Measurements of the impact rates from particulates ranging from sub-micron to millimetres in dimension and, especially, information on their directionality has permitted new scrunity of the sources of the particulates. Modelling of the dynamics of both bound (Earth orbital) and unbound (hyperbolic interplanetary) particulates intercepting LDEF's faces leads to the conclusion that the source is dominantly interplanetary for particle dimensions of greater than some 5 microns diameter; however the anisotropy below this dimension demands lower velocities and is compatible with an orbital component. Characteristics of the LDEF interplanetary component are compatible with familiar meteoroid sources and deep space measurements. Understanding of the orbital component which exceeds the interplanetary flux by a factor of 4 is less clear; although the very small particulates in orbit have been associated with space debris (Lawrance and Brownlee, 1986) this data conflicts with other measurements (McDonnell, Carey and Dixon, 1984) at the same epoch. By analysis of trajectories approaching the Earth and its atmosphere, we have shown that a significant contribution could be captured by aerocapture, i.e., atmospheric drag, from either asteroidal or cometary sources; such enhancement is unlikely however to provide the temporal and spatial fluctuations observed by the LDEF Interplanetary Dust Experiment (Mullholland et al. 1992). A further new mechanism is also examined, that of aerofragmentation capture, where an atmospheric grazing trajectory, which would not normally lead to capture, leads to fragmentation by thermal or mechanical shock; the microparticulates thus created can be injected in large numbers, but only into short-lifetime orbits. The concentration in one particular orbit plane, could explain the

  14. Impacts on Hubble Space Telescope solar arrays: discrimination between natural and man-made particles.

    Science.gov (United States)

    Kearsley, A. T.; Drolshagen, G.; McDonnell, J. A. M.; Mandeville, J.-C.; Moussi, A.

    A Post-Flight Investigation was initiated by the European Space Agency to analyze impact fluxes on solar arrays of the Hubble Space Telescope (HST), exposed to space for 8.25 years at approximately 600 km altitude. The solar cells were deployed during servicing mission SM-1 (December 1993), and retrieved by shuttle orbiter Columbia in March 2002 (SM-3B). A sub-panel of 2 m2 was cut from the --V2 wing and cells were selected for in-depth analysis. Twelve cells (9.6x10-3 m2) were surveyed for flux of all craters of sizes greater than 5 microns Dco; six at the NHM, and six at ONERA. Cumulative flux plots reveal slightly greater abundance of very small craters than in a comparable survey of SM-1 cells. Analytical scanning electron microscopy was used to locate impact features and to analyse residues at the NHM. 103 features of 3 -- 4000 micron conchoidal detachment diameter (Dco) were located on a total of 17 solar cells. 78 features show identifiable residue: 36 are Space Debris impacts and 42 Micrometeoroid impacts. Of the remaining 25: 4 contain residue of ambiguous origin, 1 is a minor manufacturing flaw, 1 is obscured by contamination, and 19 are unresolved, lacking recognizable residue. Space debris impacts on the SM-3B cells are all less than 80 microns Dco, dominated by Al- rich residue, probably of solid rocket motor origin, some may be unburnt fuel. Three craters may be sodium metal droplet impacts. No residues from paint pigment, aluminium or ferrous alloys, or copper- and tin-bearing metal were found. All craters larger than 100 microns are of micrometeoroid origin, or unresolved. Most residues are magnesium-iron silicate or iron sulfide. A few craters show vesicular Mg, S, Fe and Ni residue. A single Fe Ni metal residue was found, as well as enigmatic Mg- and S-bearing residues, all considered of micrometeoroid origin. A few Fe-, O- and C-bearing residues were classified as of ambiguous origin. The quality and quantity of residue is clearly linked to the

  15. Laser Remediation of Threats Posed by Small Orbital Debris

    Science.gov (United States)

    Fork, Richard L.; Rogers, Jan R.; Hovater, Mary A.

    2012-01-01

    The continually increasing amount of orbital debris in near Earth space poses an increasing challenge to space situational awareness. Recent collisions of spacecraft caused abrupt increases in the density of both large and small debris in near Earth space. An especially challenging class of threats is that due to the increasing density of small (1 mm to 10 cm dimension) orbital debris. This small debris poses a serious threat since: (1) The high velocity enables even millimeter dimension debris to cause serious damage to vulnerable areas of space assets, e.g., detector windows; (2) The small size and large number of debris elements prevent adequate detection and cataloguing. We have identified solutions to this threat in the form of novel laser systems and novel ways of using these laser systems. While implementation of the solutions we identify is challenging we find approaches offering threat mitigation within time frames and at costs of practical interest. We base our analysis on the unique combination of coherent light specifically structured in both space and time and applied in novel ways entirely within the vacuum of space to deorbiting small debris. We compare and contrast laser based small debris removal strategies using ground based laser systems with strategies using space based laser systems. We find laser systems located and used entirely within space offer essential and decisive advantages over groundbased laser systems.

  16. Modelling of Structural Loads in Drag Augmented Space Debris Removal Concepts

    DEFF Research Database (Denmark)

    Kristensen, Anders Schmidt; Nikolajsen, Jan Ánike; Lauridsen, Peter Riddersholm

    2017-01-01

    A Self-deployable Deorbiting Space Structure (SDSS) is used for drag augmented space debris removal. A highly flexible frame allows for a folding of the structure by bifurcation. This research models the structural loads during the deployment and unfolding of the drag sail in Low Earth Orbit (LEO......). The Spacecraft travels with 7.8 km/s at deployment. As the drag sail unfolds instantaneously the structure must withstand the loads from the unfolding and the drag. Thermal loads are included in the FEA as the temperature varies from -80°C to +80°C during deorbit. The results are used to verify the structural...

  17. Electron microscope observations of impact crater debris amongst contaminating particulates on materials surfaces exposed in space in low-Earth orbit

    Science.gov (United States)

    Murr, L. E.; Rivas, J. M.; Quinones, S.; Niou, C.-S.; Advani, A. H.; Marquez, B.

    1993-01-01

    Debris particles extracted from a small sampling region on the leading edge of the Long Duration Exposure Facility (LDEF) spacecraft have been examined by analytical transmission electron microscopy and the elemental frequency observed by energy-dispersive X-ray spectrometry and compared with upper atmosphere (Earth) particle elemental frequency and the average elemental compositions of interplanetary dust particles. A much broader elemental distribution was observed for the exposed spacecraft surface debris milieu. Numerous metal microfragment analyses, particularly aluminum and stainless steel, were compared with scanning electron microscope observations-of impact crater features, and the corresponding elemental spectra on selected LDEF aluminium tray clamps and stainless steel bolts. The compositions and melt features for these impact craters and ejecta have been shown to be consistent with microcrystalline debris fragments in the case of aluminum, and these observations suggest an ever changing debris milieu on exposed surfaces for space craft and space system materials.

  18. Validated simulator for space debris removal with nets and other flexible tethers applications

    Science.gov (United States)

    Gołębiowski, Wojciech; Michalczyk, Rafał; Dyrek, Michał; Battista, Umberto; Wormnes, Kjetil

    2016-12-01

    In the context of active debris removal technologies and preparation activities for the e.Deorbit mission, a simulator for net-shaped elastic bodies dynamics and their interactions with rigid bodies, has been developed. Its main application is to aid net design and test scenarios for space debris deorbitation. The simulator can model all the phases of the debris capturing process: net launch, flight and wrapping around the target. It handles coupled simulation of rigid and flexible bodies dynamics. Flexible bodies were implemented using Cosserat rods model. It allows to simulate flexible threads or wires with elasticity and damping for stretching, bending and torsion. Threads may be combined into structures of any topology, so the software is able to simulate nets, pure tethers, tether bundles, cages, trusses, etc. Full contact dynamics was implemented. Programmatic interaction with simulation is possible - i.e. for control implementation. The underlying model has been experimentally validated and due to significant gravity influence, experiment had to be performed in microgravity conditions. Validation experiment for parabolic flight was a downscaled process of Envisat capturing. The prepacked net was launched towards the satellite model, it expanded, hit the model and wrapped around it. The whole process was recorded with 2 fast stereographic camera sets for full 3D trajectory reconstruction. The trajectories were used to compare net dynamics to respective simulations and then to validate the simulation tool. The experiments were performed on board of a Falcon-20 aircraft, operated by National Research Council in Ottawa, Canada. Validation results show that model reflects phenomenon physics accurately enough, so it may be used for scenario evaluation and mission design purposes. The functionalities of the simulator are described in detail in the paper, as well as its underlying model, sample cases and methodology behind validation. Results are presented and

  19. High Precision Optical Observations of Space Debris in the Geo Ring from Venezuela

    Science.gov (United States)

    Lacruz, E.; Abad, C.; Downes, J. J.; Casanova, D.; Tresaco, E.

    2018-01-01

    We present preliminary results to demonstrate that our method for detection and location of Space Debris (SD) in the geostationary Earth orbit (GEO) ring, based on observations at the OAN of Venezuela is of high astrometric precision. A detailed explanation of the method, its validation and first results is available in (Lacruz et al. 2017).

  20. LightForce Photon-Pressure Collision Avoidance: Efficiency Assessment on an Entire Catalogue of Space Debris

    Science.gov (United States)

    Stupl, Jan Michael; Faber, Nicolas; Foster, Cyrus; Yang Yang, Fan; Levit, Creon

    2013-01-01

    The potential to perturb debris orbits using photon pressure from ground-based lasers has been confirmed by independent research teams. Two useful applications of this scheme are protecting space assets from impacts with debris and stabilizing the orbital debris environment, both relying on collision avoidance rather than de-orbiting debris. This paper presents the results of a new assessment method to analyze the efficiency of the concept for collision avoidance. Earlier research concluded that one ground based system consisting of a 10 kW class laser, directed by a 1.5 m telescope with adaptive optics, can prevent a significant fraction of debris-debris collisions in low Earth orbit. That research used in-track displacement to measure efficiency and restricted itself to an analysis of a limited number of objects. As orbit prediction error is dependent on debris object properties, a static displacement threshold should be complemented with another measure to assess the efficiency of the scheme. In this paper we present the results of an approach using probability of collision. Using a least-squares fitting method, we improve the quality of the original TLE catalogue in terms of state and co-state accuracy. We then calculate collision probabilities for all the objects in the catalogue. The conjunctions with the highest risk of collision are then engaged by a simulated network of laser ground stations. After those engagements, the perturbed orbits are used to re-assess the collision probability in a 20 minute window around the original conjunction. We then use different criteria to evaluate the utility of the laser-based collision avoidance scheme and assess the number of base-line ground stations needed to mitigate a significant number of high probability conjunctions. Finally, we also give an account how a laser ground station can be used for both orbit deflection and debris tracking.

  1. Analysis of Approaches to the Near-Earth Orbit Cleanup from Space Debris of the Size Below10 cm

    Directory of Open Access Journals (Sweden)

    V. I. Maiorova

    2016-01-01

    Full Text Available Nowadays, there are a lot of concepts aimed at space debris removal from the near-Earth orbits being under way at different stages of detailed engineering and design. As opposed to large-size space debris (upper-stages, rocket bodies, non-active satellites, to track the small objects of space debris (SOSD, such as picosatellites, satellite fragments, pyrotechnic devices, and other items less than 10 cm in size, using the ground stations is, presently, a challenge.This SOSD feature allows the authors to propose the two most rational approaches, which use, respectively, a passive and an active (prompt maneuverable space vehicles (SV and appropriate schematic diagrams for their collection:1 Passive scheme – space vehicle (SV to be launched into an orbit is characterized by high mathematical expectation of collision with a large amount of SOSD and, accordingly, by high probability to be captured using both active or the passive tools. The SV does not execute any maneuvers, but can be equipped with a propulsion system required for orbit’s maintenance and correction and also for solving the tasks of long-range guidance.2 Active scheme – the SV is to be launched into the target or operating orbit and executes a number of maneuvers to capture the SOSD using both active and passive tools. Thus, such a SV has to be equipped with a rather high-trust propulsion system, which allows the change of its trajectory and also with the guidance system to provide it with target coordinates. The guidance system can be built on either radio or optical devices, it can be installed onboard the debris-removal SV or onboard the SV which operates as a supply unit (if such SVs are foreseen.The paper describes each approach, emphasizes advantages and disadvantages, and defines the cutting-edge technologies to be implemented.

  2. Protecting Spacecraft Fragments from Exposure to Small Debris

    OpenAIRE

    V. V. Zelentsov

    2015-01-01

    Since the launch of the first artificial Earth satellite a large amount of space debris has been accumulated in near-earth space. This debris comprises the exhausted spacecrafts, final stages of rocket-carriers and boosters, technological space junk, consisting of the structure elements, which are separated when deploying the solar arrays, antennas etc., as well as when undocking a booster and a spacecraft. All the debris is divided into observable one of over 100 mm in size and unobservable ...

  3. JSC Orbital Debris Website Description

    Science.gov (United States)

    Johnson, Nicholas L.

    2006-01-01

    Purpose: The website provides information about the NASA Orbital Debris Program Office at JSC, which is the lead NASA center for orbital debris research. It is recognized world-wide for its leadership in addressing orbital debris issues. The NASA Orbital Debris Program Office has taken the international lead in conducting measurements of the environment and in developing the technical consensus for adopting mitigation measures to protect users of the orbital environment. Work at the center continues with developing an improved understanding of the orbital debris environment and measures that can be taken to control its growth. Major Contents: Orbital Debris research is divided into the following five broad efforts. Each area of research contains specific information as follows: 1) Modeling - NASA scientists continue to develop and upgrade orbital debris models to describe and characterize the current and future debris environment. Evolutionary and engineering models are described in detail. Downloadable items include a document in PDF format and executable software. 2) Measurements - Measurements of near-Earth orbital debris are accomplished by conducting ground-based and space-based observations of the orbital debris environment. The data from these sources provide validation of the environment models and identify the presence of new sources. Radar, optical and surface examinations are described. External links to related topics are provided. 3) Protection - Orbital debris protection involves conducting hypervelocity impact measurements to assess the risk presented by orbital debris to operating spacecraft and developing new materials and new designs to provide better protection from the environment with less weight penalty. The data from this work provides the link between the environment defined by the models and the risk presented by that environment to operating spacecraft and provides recommendations on design and operations procedures to reduce the risk as

  4. An Ontological Architecture for Orbital Debris Data

    OpenAIRE

    Rovetto, Robert J.

    2017-01-01

    The orbital debris problem presents an opportunity for inter-agency and international cooperation toward the mutually beneficial goals of debris prevention, mitigation, remediation, and improved space situational awareness (SSA). Achieving these goals requires sharing orbital debris and other SSA data. Toward this, I present an ontological architecture for the orbital debris domain, taking steps in the creation of an orbital debris ontology (ODO). The purpose of this ontological system is to ...

  5. Comparing long-term projections of the space debris environment to real world data - Looking back to 1990

    Science.gov (United States)

    Radtke, Jonas; Stoll, Enrico

    2016-10-01

    Long-term projections of the space debris environment are commonly used to assess the trends within different scenarios for the assumed future development of spacefaring. General scenarios investigated include business-as-usual cases in which spaceflight is performed as today and mitigation scenarios, assuming the implementation of Space Debris Mitigation Guidelines at different advances or the effectiveness of more drastic measures, such as active debris removal. One problem that always goes along with the projection of a system's behaviour in the future is that affecting parameters, such as the launch rate, are unpredictable. It is common to look backwards and re-model the past in other fields of research. This is a rather difficult task for spaceflight as it is still quite young, and furthermore mostly influenced by drastic politic changes, as the break-down of the Soviet Union in the end of the 1980s. Furthermore, one major driver of the evolution of the number of on-orbit objects turn out to be collisions between objects. As of today, these collisions are, fortunately, very rare and therefore, a real-world-data modelling approach is difficult. Nevertheless, since the end of the cold war more than 20 years of a comparably stable evolution of spaceflight activities have passed. For this study, this period is used in a comparison between the real evolution of the space debris environment and that one projected using the Institute of Space System's in-house tool for long-term assessment LUCA (Long-Term Utility for Collision Analysis). Four different scenarios are investigated in this comparison; all of them have the common starting point of using an initial population for 1st May 1989. The first scenario, which serves as reference, is simply taken from MASTER-2009. All launch and mission related objects from the Two Line Elements (TLE) catalogue and other available sources are included. All events such as explosion and collision events have been re-modelled as

  6. Yarkovsky-Schach effect on space debris motion

    Science.gov (United States)

    Murawiecka, M.; Lemaitre, A.

    2018-02-01

    The Yarkovsky-Schach effect is a small perturbation affecting Earth satellites and space debris illuminated by the Sun. It was first applied to the orbit of LAGEOS satellites as an explanation of the residuals in orbital elements. In this work, we carry out several numerical integration tests taking into consideration various orbit and rotation parameters, in order to analyse this effect in a broader context. The semi-major axis variations remain small and depend on the spin axis attitude with respect to the Sun. We show that the force amplitude is maximised for orbits inclined with i ≈ 20-30°. We also observe the influence on other orbital elements, notably on the orbit inclination. However, these effects are clearly observed only on long timescales; in our simulations, we propagated the orbits for 200 y. The Yarkovsky-Schach effect is thus confirmed to have a minuscule magnitude. It should be taken into account in studies requiring high-precision orbit determination, or on expanded timescales.

  7. StreakDet data processing and analysis pipeline for space debris optical observations

    Science.gov (United States)

    Virtanen, Jenni; Flohrer, Tim; Muinonen, Karri; Granvik, Mikael; Torppa, Johanna; Poikonen, Jonne; Lehti, Jussi; Santti, Tero; Komulainen, Tuomo; Naranen, Jyri

    We describe a novel data processing and analysis pipeline for optical observations of space debris. The monitoring of space object populations requires reliable acquisition of observational data, to support the development and validation of space debris environment models, the build-up and maintenance of a catalogue of orbital elements. In addition, data is needed for the assessment of conjunction events and for the support of contingency situations or launches. The currently available, mature image processing algorithms for detection and astrometric reduction of optical data cover objects that cross the sensor field-of-view comparably slowly, and within a rather narrow, predefined range of angular velocities. By applying specific tracking techniques, the objects appear point-like or as short trails in the exposures. However, the general survey scenario is always a “track before detect” problem, resulting in streaks, i.e., object trails of arbitrary lengths, in the images. The scope of the ESA-funded StreakDet (Streak detection and astrometric reduction) project is to investigate solutions for detecting and reducing streaks from optical images, particularly in the low signal-to-noise ratio (SNR) domain, where algorithms are not readily available yet. For long streaks, the challenge is to extract precise position information and related registered epochs with sufficient precision. Although some considerations for low-SNR processing of streak-like features are available in the current image processing and computer vision literature, there is a need to discuss and compare these approaches for space debris analysis, in order to develop and evaluate prototype implementations. In the StreakDet project, we develop algorithms applicable to single images (as compared to consecutive frames of the same field) obtained with any observing scenario, including space-based surveys and both low- and high-altitude populations. The proposed processing pipeline starts from the

  8. A parallel algorithm for the initial screening of space debris collisions prediction using the SGP4/SDP4 models and GPU acceleration

    Science.gov (United States)

    Lin, Mingpei; Xu, Ming; Fu, Xiaoyu

    2017-05-01

    Currently, a tremendous amount of space debris in Earth's orbit imperils operational spacecraft. It is essential to undertake risk assessments of collisions and predict dangerous encounters in space. However, collision predictions for an enormous amount of space debris give rise to large-scale computations. In this paper, a parallel algorithm is established on the Compute Unified Device Architecture (CUDA) platform of NVIDIA Corporation for collision prediction. According to the parallel structure of NVIDIA graphics processors, a block decomposition strategy is adopted in the algorithm. Space debris is divided into batches, and the computation and data transfer operations of adjacent batches overlap. As a consequence, the latency to access shared memory during the entire computing process is significantly reduced, and a higher computing speed is reached. Theoretically, a simulation of collision prediction for space debris of any amount and for any time span can be executed. To verify this algorithm, a simulation example including 1382 pieces of debris, whose operational time scales vary from 1 min to 3 days, is conducted on Tesla C2075 of NVIDIA. The simulation results demonstrate that with the same computational accuracy as that of a CPU, the computing speed of the parallel algorithm on a GPU is 30 times that on a CPU. Based on this algorithm, collision prediction of over 150 Chinese spacecraft for a time span of 3 days can be completed in less than 3 h on a single computer, which meets the timeliness requirement of the initial screening task. Furthermore, the algorithm can be adapted for multiple tasks, including particle filtration, constellation design, and Monte-Carlo simulation of an orbital computation.

  9. Man-made gemstones; Jinko hoseki

    Energy Technology Data Exchange (ETDEWEB)

    Isogami, M. [Kyocera Corp., Kyoto (Japan)

    2000-01-01

    Birth and development of the man-made gemstones in the 20th century are outlined. Manufacturing gemstones was initiated by the invention of corundum production, followed by production of rubies and sapphires. In 1950 GE Co. synthesized diamonds, after that, most gemstones were manufactured consequently by progress of technologies of single crystal growing and ceramic manufacturing. In the 21st century, steep growth in demand is not expected but it seems to keep steady growth and the importance and necessity of man-made gemstones may be increased because of global environmental issues. Man-made gemstones seem to have both personality and variety of characteristics. (NEDO)

  10. Prediction of HAMR Debris Population Distribution Released from GEO Space

    Science.gov (United States)

    Rosengren, A.; Scheeres, D.

    2012-09-01

    The high area-to-mass ratio (HAMR) debris population is thought to have origins in the GEO region. Many of these objects are uncharacterized with apparent area-to-mass ratios of up to 30 meters squared per kilogram. The orbits of HAMR objects are highly perturbed due to the combined effect of solar radiation pressure (SRP), anomalies of the Earth gravitational field, and third-body gravitational interactions induced by the Sun and the Moon. A sound understanding of their nature, orbital evolution, and possible origin is critical for space situational awareness. The study of the orbital evolution of HAMR objects, taking into account both short-period and long-period terms, requires numerical integration of the precise set of differential equations, and the investigation of a broad range of possible parameter values. However, such computations become very costly when continuously applied over a period of several decades, as is necessary in the case of HAMR debris. It therefore seems reasonable to investigate the equations that govern the long-term behavior of orbits; such equations can be derived by the method of averaging. We have validated a semi-analytical averaged theory of HAMR object orbit evolution against high precision numerical integrations, and are able to capture the extreme dynamical behaviors reported for these objects. This new averaged model, explicitly given in terms of the eccentricity and angular momentum vectors, is several hundred times faster to numerically integrate than the non-averaged Newtonian counterpart, and provides a very accurate description of the long-term behavior. Using this model, it is possible to make predictions of how a population of HAMR objects, released into GEO orbit, will evolve over time. Our earlier analyses revealed that the population would have a range of orbits much different than circular GEO. Their orbits will suffer a sub-yearly oscillation in the eccentricity and inclination evolutions, and a longer-term drift

  11. Impact interaction of shells and structural elements of spacecrafts with the particles of space debris and micrometeoroids

    Science.gov (United States)

    Gerasimov, A. V.; Pashkov, S. V.; Khristenko, Yu. F.

    2017-10-01

    Space debris formed during the launch and operation of spacecrafts in the circumterrestrial space, and the flows of micrometeoroids from the depths of space pose a real threat to manned and automatic vehicles. Providing the fracture resistance of aluminum, glass and ceramic spacecraft elements is an important practical task. These materials are widely used in spacecraft elements such as bodies, tanks, windows, glass in optical devices, heat shields, etc.

  12. Evasive Maneuvers in Space Debris Environment and Technological Parameters

    Directory of Open Access Journals (Sweden)

    Antônio D. C. Jesus

    2012-01-01

    Full Text Available We present a study of collisional dynamics between space debris and an operational vehicle in LEO. We adopted an approach based on the relative dynamics between the objects on a collisional course and with a short warning time and established a semianalytical solution for the final trajectories of these objects. Our results show that there are angular ranges in 3D, in addition to the initial conditions, that favor the collisions. These results allowed the investigation of a range of technological parameters for the spacecraft (e.g., fuel reserve that allow a safe evasive maneuver (e.g., time available for the maneuver. The numerical model was tested for different values of the impact velocity and relative distance between the approaching objects.

  13. Man-made climate change: an overview

    Energy Technology Data Exchange (ETDEWEB)

    Holopainen, E [Helsinki Univ. (Finland). Dept. of Meteorology

    1996-12-31

    The first major man-made environmental problem was the soil acidification, caused primarily by the massive industrial emissions of sulphur dioxide. Then came the problem of ozone depletion, caused by the emissions of man-made halocarbons. More recently, the possibility of man-made climate change has received a lot of attention. These three man-made problems are interconnected in fundamental ways and require for their solution interdisciplinary and international approach. Narrowing of the scientific uncertainties connected with the problems mentioned above can be expected through international `Global Change` programmes such as the World Climate Research Programme (WCRP) and the International Geosphere-Biosphere Programme (IGBP). Periodic assessments of the type produced by the IPCC will clearly be needed. Also in the future such assessments should form the scientific basis for international negotiations and conventions on the climate change issue

  14. Man-made climate change: an overview

    Energy Technology Data Exchange (ETDEWEB)

    Holopainen, E. [Helsinki Univ. (Finland). Dept. of Meteorology

    1995-12-31

    The first major man-made environmental problem was the soil acidification, caused primarily by the massive industrial emissions of sulphur dioxide. Then came the problem of ozone depletion, caused by the emissions of man-made halocarbons. More recently, the possibility of man-made climate change has received a lot of attention. These three man-made problems are interconnected in fundamental ways and require for their solution interdisciplinary and international approach. Narrowing of the scientific uncertainties connected with the problems mentioned above can be expected through international `Global Change` programmes such as the World Climate Research Programme (WCRP) and the International Geosphere-Biosphere Programme (IGBP). Periodic assessments of the type produced by the IPCC will clearly be needed. Also in the future such assessments should form the scientific basis for international negotiations and conventions on the climate change issue

  15. Wholesale debris removal from LEO

    Science.gov (United States)

    Levin, Eugene; Pearson, Jerome; Carroll, Joseph

    2012-04-01

    Recent advances in electrodynamic propulsion make it possible to seriously consider wholesale removal of large debris from LEO for the first time since the beginning of the space era. Cumulative ranking of large groups of the LEO debris population and general limitations of passive drag devices and rocket-based removal systems are analyzed. A candidate electrodynamic debris removal system is discussed that can affordably remove all debris objects over 2 kg from LEO in 7 years. That means removing more than 99% of the collision-generated debris potential in LEO. Removal is performed by a dozen 100-kg propellantless vehicles that react against the Earth's magnetic field. The debris objects are dragged down and released into short-lived orbits below ISS. As an alternative to deorbit, some of them can be collected for storage and possible in-orbit recycling. The estimated cost per kilogram of debris removed is a small fraction of typical launch costs per kilogram. These rates are low enough to open commercial opportunities and create a governing framework for wholesale removal of large debris objects from LEO.

  16. A SPH Method-based Numerical Simulation of the Space Debris Fragments Interaction with Spacecraft Structure Components

    Directory of Open Access Journals (Sweden)

    V. V. Zelentsov

    2017-01-01

    Full Text Available Significant amount of space debris available in the near-Earth space is a reason to protect space vehicles from the fragments of space debris. Existing empirical calculation methods do not allow us to estimate quality of developed protection. Experimental verification of protection requires complex and expensive installations that do not allow having a desirable impact velocity. The article proposes to use the ANSYS AUTODYN software environment – a software complex of the nonlinear dynamic analysis to evaluate quality of developed protection. The ANSYS AUTODYN environment is based on the integration methods of a system of equations of continuum mechanics. The SPH (smoothed particle method method is used as a solver. The SPH method is based on the area of sampling by a finite set of the Lagrangian particles that can be represented as the elementary volumes of the medium. In modeling the targets were under attack of 2 and 3 mm spheres and cylinders with 2 mm in bottom diameter and with generator of 2 and 3 mm. The apheres and cylinders are solid and hollow, with a wall thickness of 0.5 mm. The impact velocity of the particles with a target was assumed to be 7.5 km / s. The number of integration cycles in all cases of calculation was assumed to be 1000. The rate of flying debris fragments of the target material as a function of the h / d ratio (h - the thickness of the target, / d - the diameter of a sphere or a cylinder end is obtained. In simulation the sample picture obtained coincides both with results of experimental study carried out at the Tomsk State Technical University and  with results described in the literature.

  17. Zodiac II: Debris Disk Science from a Balloon

    Science.gov (United States)

    Bryden, Geoffrey; Traub, Wesley; Roberts, Lewis C., Jr.; Bruno, Robin; Unwin, Stephen; Backovsky, Stan; Brugarolas, Paul; Chakrabarti, Supriya; Chen, Pin; Hillenbrand, Lynne; hide

    2011-01-01

    Zodiac II is a proposed balloon-borne science investigation of debris disks around nearby stars. Debris disks are analogs of the Asteroid Belt (mainly rocky) and Kuiper Belt (mainly icy) in our Solar System. Zodiac II will measure the size, shape, brightness, and color of a statistically significant sample of disks. These measurements will enable us to probe these fundamental questions: what do debris disks tell us about the evolution of planetary systems; how are debris disks produced; how are debris disks shaped by planets; what materials are debris disks made of; how much dust do debris disks make as they grind down; and how long do debris disks live? In addition, Zodiac II will observe hot, young exoplanets as targets of opportunity. The Zodiac II instrument is a 1.1-m diameter SiC (Silicone carbide) telescope and an imaging coronagraph on a gondola carried by a stratospheric balloon. Its data product is a set of images of each targeted debris disk in four broad visible-wavelength bands. Zodiac II will address its science questions by taking high-resolution, multi-wavelength images of the debris disks around tens of nearby stars. Mid-latitude flights are considered: overnight test flights in the US followed by half-global flights in the Southern Hemisphere. These longer flights are required to fully explore the set of known debris disks accessible only to Zodiac II. On these targets, it will be 100 times more sensitive than the Hubble Space Telescope's Advanced Camera for Surveys (HST/ACS); no existing telescope can match the Zodiac II contrast and resolution performance. A second objective of Zodiac II is to use the near-space environment to raise the Technology Readiness Level (TRL) of SiC mirrors, internal coronagraphs, deformable mirrors, and wavefront sensing and control, all potentially needed for a future space-based telescope for high-contrast exoplanet imaging.

  18. Observations of the orbital debris complex by the Midcourse Space Experiment (MSX) satellite

    Science.gov (United States)

    Vilas, Faith; Anz-Meador, Phillip; Talent, Dave

    1997-01-01

    The midcourse space experiment (MSX) provides the opportunity to observe debris at multiple, simultaneous wavelengths, or in conjunction with other sensors and prior data sets. The instruments onboard MSX include an infrared telescope, an infrared interferometer, a visible telescope, an ultraviolet telescope and a spectroscopic imager. The spacecraft carries calibration spheres for instrument calibration and atmospheric drag studies. The experimental program, the implementation aspects, the data reduction techniques and the preliminary results are described.

  19. ON THE DETECTION AND TRACKING OF SPACE DEBRIS USING THE MURCHISON WIDEFIELD ARRAY. I. SIMULATIONS AND TEST OBSERVATIONS DEMONSTRATE FEASIBILITY

    Energy Technology Data Exchange (ETDEWEB)

    Tingay, S. J.; Wayth, R. B.; Hurley-Walker, N.; Kennewell, J.; Arcus, W.; Bhat, N. D. R.; Emrich, D.; Herne, D.; Kudryavtseva, N.; Lynch, M.; Ord, S. M.; Waterson, M. [International Centre for Radio Astronomy Research, Curtin University, Perth (Australia); Kaplan, D. L. [University of Wisconsin-Milwaukee, Milwaukee (United States); McKinley, B.; Briggs, F.; Bell, M.; Gaensler, B. M. [ARC Centre of Excellence for All-sky Astrophysics (CAASTRO), Sydney (Australia); Smith, C. [Electro Optic Systems Pty Ltd, Canberra (Australia); Zhang, K. [RMIT University, Melbourne (Australia); Barnes, D. G., E-mail: s.tingay@curtin.edu.au [Monash e-Research Centre, Monash University, Clayton (Australia); and others

    2013-10-01

    The Murchison Widefield Array (MWA) is a new low-frequency interferometric radio telescope, operating in the benign radio frequency environment of remote Western Australia. The MWA is the low-frequency precursor to the Square Kilometre Array (SKA) and is the first of three SKA precursors to be operational, supporting a varied science mission ranging from the attempted detection of the Epoch of Reionization to the monitoring of solar flares and space weather. In this paper we explore the possibility that the MWA can be used for the purposes of Space Situational Awareness (SSA). In particular we propose that the MWA can be used as an element of a passive radar facility operating in the frequency range 87.5-108 MHz (the commercial FM broadcast band). In this scenario the MWA can be considered the receiving element in a bi-static radar configuration, with FM broadcast stations serving as non-cooperative transmitters. The FM broadcasts propagate into space, are reflected off debris in Earth orbit, and are received at the MWA. The imaging capabilities of the MWA can be used to simultaneously detect multiple pieces of space debris, image their positions on the sky as a function of time, and provide tracking data that can be used to determine orbital parameters. Such a capability would be a valuable addition to Australian and global SSA assets, in terms of southern and eastern hemispheric coverage. We provide a feasibility assessment of this proposal, based on simple calculations and electromagnetic simulations, that shows that the detection of sub-meter size debris should be possible (debris radius of >0.5 m to ∼1000 km altitude). We also present a proof-of-concept set of observations that demonstrate the feasibility of the proposal, based on the detection and tracking of the International Space Station via reflected FM broadcast signals originating in southwest Western Australia. These observations broadly validate our calculations and simulations. We discuss some

  20. On the Detection and Tracking of Space Debris Using the Murchison Widefield Array. I. Simulations and Test Observations Demonstrate Feasibility

    Science.gov (United States)

    Tingay, S. J.; Kaplan, D. L.; McKinley, B.; Briggs, F.; Wayth, R. B.; Hurley-Walker, N.; Kennewell, J.; Smith, C.; Zhang, K.; Arcus, W.; Bhat, N. D. R.; Emrich, D.; Herne, D.; Kudryavtseva, N.; Lynch, M.; Ord, S. M.; Waterson, M.; Barnes, D. G.; Bell, M.; Gaensler, B. M.; Lenc, E.; Bernardi, G.; Greenhill, L. J.; Kasper, J. C.; Bowman, J. D.; Jacobs, D.; Bunton, J. D.; deSouza, L.; Koenig, R.; Pathikulangara, J.; Stevens, J.; Cappallo, R. J.; Corey, B. E.; Kincaid, B. B.; Kratzenberg, E.; Lonsdale, C. J.; McWhirter, S. R.; Rogers, A. E. E.; Salah, J. E.; Whitney, A. R.; Deshpande, A.; Prabu, T.; Udaya Shankar, N.; Srivani, K. S.; Subrahmanyan, R.; Ewall-Wice, A.; Feng, L.; Goeke, R.; Morgan, E.; Remillard, R. A.; Williams, C. L.; Hazelton, B. J.; Morales, M. F.; Johnston-Hollitt, M.; Mitchell, D. A.; Procopio, P.; Riding, J.; Webster, R. L.; Wyithe, J. S. B.; Oberoi, D.; Roshi, A.; Sault, R. J.; Williams, A.

    2013-10-01

    The Murchison Widefield Array (MWA) is a new low-frequency interferometric radio telescope, operating in the benign radio frequency environment of remote Western Australia. The MWA is the low-frequency precursor to the Square Kilometre Array (SKA) and is the first of three SKA precursors to be operational, supporting a varied science mission ranging from the attempted detection of the Epoch of Reionization to the monitoring of solar flares and space weather. In this paper we explore the possibility that the MWA can be used for the purposes of Space Situational Awareness (SSA). In particular we propose that the MWA can be used as an element of a passive radar facility operating in the frequency range 87.5-108 MHz (the commercial FM broadcast band). In this scenario the MWA can be considered the receiving element in a bi-static radar configuration, with FM broadcast stations serving as non-cooperative transmitters. The FM broadcasts propagate into space, are reflected off debris in Earth orbit, and are received at the MWA. The imaging capabilities of the MWA can be used to simultaneously detect multiple pieces of space debris, image their positions on the sky as a function of time, and provide tracking data that can be used to determine orbital parameters. Such a capability would be a valuable addition to Australian and global SSA assets, in terms of southern and eastern hemispheric coverage. We provide a feasibility assessment of this proposal, based on simple calculations and electromagnetic simulations, that shows that the detection of sub-meter size debris should be possible (debris radius of >0.5 m to ~1000 km altitude). We also present a proof-of-concept set of observations that demonstrate the feasibility of the proposal, based on the detection and tracking of the International Space Station via reflected FM broadcast signals originating in southwest Western Australia. These observations broadly validate our calculations and simulations. We discuss some

  1. ON THE DETECTION AND TRACKING OF SPACE DEBRIS USING THE MURCHISON WIDEFIELD ARRAY. I. SIMULATIONS AND TEST OBSERVATIONS DEMONSTRATE FEASIBILITY

    International Nuclear Information System (INIS)

    Tingay, S. J.; Wayth, R. B.; Hurley-Walker, N.; Kennewell, J.; Arcus, W.; Bhat, N. D. R.; Emrich, D.; Herne, D.; Kudryavtseva, N.; Lynch, M.; Ord, S. M.; Waterson, M.; Kaplan, D. L.; McKinley, B.; Briggs, F.; Bell, M.; Gaensler, B. M.; Smith, C.; Zhang, K.; Barnes, D. G.

    2013-01-01

    The Murchison Widefield Array (MWA) is a new low-frequency interferometric radio telescope, operating in the benign radio frequency environment of remote Western Australia. The MWA is the low-frequency precursor to the Square Kilometre Array (SKA) and is the first of three SKA precursors to be operational, supporting a varied science mission ranging from the attempted detection of the Epoch of Reionization to the monitoring of solar flares and space weather. In this paper we explore the possibility that the MWA can be used for the purposes of Space Situational Awareness (SSA). In particular we propose that the MWA can be used as an element of a passive radar facility operating in the frequency range 87.5-108 MHz (the commercial FM broadcast band). In this scenario the MWA can be considered the receiving element in a bi-static radar configuration, with FM broadcast stations serving as non-cooperative transmitters. The FM broadcasts propagate into space, are reflected off debris in Earth orbit, and are received at the MWA. The imaging capabilities of the MWA can be used to simultaneously detect multiple pieces of space debris, image their positions on the sky as a function of time, and provide tracking data that can be used to determine orbital parameters. Such a capability would be a valuable addition to Australian and global SSA assets, in terms of southern and eastern hemispheric coverage. We provide a feasibility assessment of this proposal, based on simple calculations and electromagnetic simulations, that shows that the detection of sub-meter size debris should be possible (debris radius of >0.5 m to ∼1000 km altitude). We also present a proof-of-concept set of observations that demonstrate the feasibility of the proposal, based on the detection and tracking of the International Space Station via reflected FM broadcast signals originating in southwest Western Australia. These observations broadly validate our calculations and simulations. We discuss some

  2. Colisional Cloud Debris and Propelled Evasive Maneuvers

    Science.gov (United States)

    Ferreira, L. S.; Jesus, A. D. C.; Carvalho, T. C. F.; Sousa, R. R.

    2017-10-01

    Space debris clouds exist at various altitudes in the environment outside the Earth. Fragmentation of debris and/or collision between the debris of a cloud increases the amount of debris, producing smaller debris. This event also increases significantly the chances of collision with operational vehicles in orbit. In this work we study clouds of debris that are close to a spacecraft in relation to its distance from the center of the Earth. The results show several layers of colliding debris depending on their size over time of evasive maneuvers of the vehicle. In addition, we have tested such maneuvers for propulsion systems with a linear and exponential mass variation model. The results show that the linear propulsion system is more efficient.

  3. Comparison of debris environment models (MASTER-2005, 2001, ORDEM2000): For international standardization of process based implementation of meteoroid and debris environmental models

    OpenAIRE

    Fukushige, Shinya; Akahoshi, Yasuhiro; Kitazawa, Yukihito; Goka, Tateo; 福重 進也; 赤星 保浩; 北澤 幸人; 五家 建夫

    2007-01-01

    Space agencies of some countries have space debris environment model for design of spacecrafts. These models can estimate debris flux as a function of the size, relative impact velocity, and impact angle in a spacecraft orbit. However, it is known calculation results of models are not always consistent with each other. Therefore, international common implementation process of debris environment model is required. In this paper, as the first step of international standardization of implementat...

  4. Active space debris removal—A preliminary mission analysis and design

    Science.gov (United States)

    Castronuovo, Marco M.

    2011-11-01

    The active removal of five to ten large objects per year from the low Earth orbit (LEO) region is the only way to prevent the debris collisions from cascading. Among the three orbital regions near the Earth where most catastrophic collisions are predicted to occur, the one corresponding to a sun-synchronous condition is considered the most relevant. Forty-one large rocket bodies orbiting in this belt have been identified as the priority targets for removal. As part of a more comprehensive system engineering solution, a space mission dedicated to the de-orbiting of five rocket bodies per year from this orbital regime has been designed. The selected concept of operations envisages the launch of a satellite carrying a number of de-orbiting devices, such as solid propellant kits. The satellite performs a rendezvous with an identified object and mates with it by means of a robotic arm. A de-orbiting device is attached to the object by means of a second robotic arm, the object is released and the device is activated. The spacecraft travels then to the next target. The present paper shows that an active debris removal mission capable of de-orbiting 35 large objects in 7 years is technically feasible, and the resulting propellant mass budget is compatible with many existing platforms.

  5. Implementation of National Space Policy on US Air Force End of Life Operations and Orbital Debris Mitigation

    Science.gov (United States)

    2012-06-01

    Space Development and Test Directorate, Kirtland AFB, NM, 87117 Recent changes to US space policy regarding the execution of satellite End of Life ( EOL ...procedures have been driven by the rising significance of the orbital debris problem in Low Earth Orbit (LEO). Therefore current EOL plans are...considerations for writing operational EOL plans, with special applicability to military missions and focus on LEO satellites that are unable to relocate

  6. Photon Pressure Force on Space Debris TOPEX/Poseidon Measured by Satellite Laser Ranging

    Science.gov (United States)

    Kucharski, D.; Kirchner, G.; Bennett, J. C.; Lachut, M.; Sośnica, K.; Koshkin, N.; Shakun, L.; Koidl, F.; Steindorfer, M.; Wang, P.; Fan, C.; Han, X.; Grunwaldt, L.; Wilkinson, M.; Rodríguez, J.; Bianco, G.; Vespe, F.; Catalán, M.; Salmins, K.; del Pino, J. R.; Lim, H.-C.; Park, E.; Moore, C.; Lejba, P.; Suchodolski, T.

    2017-10-01

    The (TOPography EXperiment) TOPEX/Poseidon (T/P) altimetry mission operated for 13 years before the satellite was decommissioned in January 2006, becoming a large space debris object at an altitude of 1,340 km. Since the end of the mission, the interaction of T/P with the space environment has driven the satellite's spin dynamics. Satellite laser ranging (SLR) measurements collected from June 2014 to October 2016 allow for the satellite spin axis orientation to be determined with an accuracy of 1.7°. The spin axis coincides with the platform yaw axis (formerly pointing in the nadir direction) about which the body rotates in a counterclockwise direction. The combined photometric and SLR data collected over the 11 year time span indicates that T/P has continuously gained rotational energy at an average rate of 2.87 J/d and spins with a period of 10.73 s as of 19 October 2016. The satellite attitude model shows a variation of the cross-sectional area in the Sun direction between 8.2 m2 and 34 m2. The direct solar radiation pressure is the main factor responsible for the spin-up of the body, and the exerted photon force varies from 65 μN to 228 μN around the mean value of 138.6 μN. Including realistic surface force modeling in orbit propagation algorithms will improve the prediction accuracy, giving better conjunction warnings for scenarios like the recent close approach reported by the ILRS Space Debris Study Group—an approximate 400 m flyby between T/P and Jason-2 on 20 June 2017.

  7. Protecting Spacecraft Fragments from Exposure to Small Debris

    Directory of Open Access Journals (Sweden)

    V. V. Zelentsov

    2015-01-01

    Full Text Available Since the launch of the first artificial Earth satellite a large amount of space debris has been accumulated in near-earth space. This debris comprises the exhausted spacecrafts, final stages of rocket-carriers and boosters, technological space junk, consisting of the structure elements, which are separated when deploying the solar arrays, antennas etc., as well as when undocking a booster and a spacecraft. All the debris is divided into observable one of over 100 mm in size and unobservable debris. In case of possible collision with the observed debris an avoidance manoeuvre is provided. The situation with unobservable debris is worse, its dimensions ranging from 100 mm to several microns. This debris is formed as a result of explosions of dead space objects and at collisions of destroyed spacecraft fragments against each other. This debris moves along arbitrary trajectories at different speeds.At collision of a spacecraft with fragments of small-size space debris, various consequences are possible: the device can immediately fail, suffer damages, which will have effect later and damages, which break no bones to the aircraft. Anyway, the spacecraft collision with small-size debris particles is undesirable. The protective shields are used to protect the aircraft from damage. Development of shield construction is complicated because the high cost of launch makes it impossible to conduct field tests of shields in space. All the work is carried out in the laboratory, with particles having co-impact speeds up to 10 km/s (possible speeds are up to 20 km/s and spherically shaped particles of 0.8 ... 3 mm in diameter.Various materials are used to manufacture shields. These are aluminum sheet, sandwich panels, metal mesh, metal foam, and woven materials (ballistic fabric. The paper considers single-layer (from sheet metal sandwich materials and multilayer shield designs. As experimental studies show, a single-layer shield protects colliding at speeds

  8. Loopy, Floppy and Fragmented: Debris Characteristics Matter

    Science.gov (United States)

    Parrish, J.; Burgess, H. K.

    2016-02-01

    Marine debris is a world-wide problem threatening the health and safety of marine organisms, ecosystems, and humans. Recent and ongoing research shows that risk of harm is not associated with identity, but rather with a set of specific character states, where the character state space intersection is defined by the organism of interest. For example, intersections of material, color, rigidity and size predict the likelihood of an object being ingested: plastic, clear-white, floppy objects risks to sea turtles whereas yellow-red, rigid objects risks to albatrosses. A character state space approach allows prioritization of prevention and removal of marine debris informed by risk assessments for species of interest by comparing species ranges with spatio-temporal hotspots of all debris with characteristics known to be associated with increased risk of harm, regardless of identity. With this in mind, the Coastal Observation and Seabird Survey Team (COASST) developed and tested a 20 character data collection approach to quantifying the diversity and abundance of marine debris found on beaches. Development resulted in meta-analysis of the literature and expert opinion eliciting harmful character state space. Testing included data collection on inter-rater reliability and accuracy, where the latter included 75 participants quantifying marine debris characteristics on monthly surveys of 30 beaches along the Washington and Oregon coastlines over the past year. Pilot work indicates that characters must be simply and operationally defined, states must be listed, and examples must be provided for color states. Complex characters (e.g., windage, shape) are not replicable across multiple data collectors. Although data collection takes longer than other marine debris surveys for a given amount of debris and area surveyed, volunteer rapidity and accuracy improved within 3-5 surveys. Initial feedback indicated that volunteers were willing to continue collecting data as long as they

  9. Debris thickness patterns on debris-covered glaciers

    Science.gov (United States)

    Anderson, Leif S.; Anderson, Robert S.

    2018-06-01

    Many debris-covered glaciers have broadly similar debris thickness patterns: surface debris thickens and tends to transition from convex- to concave-up-down glacier. We explain this pattern using theory (analytical and numerical models) paired with empirical observations. Down glacier debris thickening results from the conveyor-belt-like nature of the glacier surface in the ablation zone (debris can typically only be added but not removed) and from the inevitable decline in ice surface velocity toward the terminus. Down-glacier thickening of debris leads to the reduction of sub-debris melt and debris emergence toward the terminus. Convex-up debris thickness patterns occur near the up-glacier end of debris covers where debris emergence dominates (ablation controlled). Concave-up debris thickness patterns occur toward glacier termini where declining surface velocities dominate (velocity controlled). A convex-concave debris thickness profile inevitably results from the transition between ablation-control and velocity-control down-glacier. Debris thickness patterns deviating from this longitudinal shape are most likely caused by changes in hillslope debris supply through time. By establishing this expected debris thickness pattern, the effects of climate change on debris cover can be better identified.

  10. Resonant Orbital Dynamics in LEO Region: Space Debris in Focus

    Directory of Open Access Journals (Sweden)

    J. C. Sampaio

    2014-01-01

    Full Text Available The increasing number of objects orbiting the earth justifies the great attention and interest in the observation, spacecraft protection, and collision avoidance. These studies involve different disturbances and resonances in the orbital motions of these objects distributed by the distinct altitudes. In this work, objects in resonant orbital motions are studied in low earth orbits. Using the two-line elements (TLE of the NORAD, resonant angles and resonant periods associated with real motions are described, providing more accurate information to develop an analytical model that describes a certain resonance. The time behaviors of the semimajor axis, eccentricity, and inclination of some space debris are studied. Possible irregular motions are observed by the frequency analysis and by the presence of different resonant angles describing the orbital dynamics of these objects.

  11. The world state of orbital debris measurements and modeling

    Science.gov (United States)

    Johnson, Nicholas L.

    2004-02-01

    For more than 20 years orbital debris research around the world has been striving to obtain a sharper, more comprehensive picture of the near-Earth artificial satellite environment. Whereas significant progress has been achieved through better organized and funded programs and with the assistance of advancing technologies in both space surveillance sensors and computational capabilities, the potential of measurements and modeling of orbital debris has yet to be realized. Greater emphasis on a systems-level approach to the characterization and projection of the orbital debris environment would prove beneficial. On-going space surveillance activities, primarily from terrestrial-based facilities, are narrowing the uncertainties of the orbital debris population for objects greater than 2 mm in LEO and offer a better understanding of the GEO regime down to 10 cm diameter objects. In situ data collected in LEO is limited to a narrow range of altitudes and should be employed with great care. Orbital debris modeling efforts should place high priority on improving model fidelity, on clearly and completely delineating assumptions and simplifications, and on more thorough sensitivity studies. Most importantly, however, greater communications and cooperation between the measurements and modeling communities are essential for the efficient advancement of the field. The advent of the Inter-Agency Space Debris Coordination Committee (IADC) in 1993 has facilitated this exchange of data and modeling techniques. A joint goal of these communities should be the identification of new sources of orbital debris.

  12. Apparatus for controlling nuclear core debris

    Science.gov (United States)

    Jones, Robert D.

    1978-01-01

    Nuclear reactor apparatus for containing, cooling, and dispersing reactor debris assumed to flow from the core area in the unlikely event of an accident causing core meltdown. The apparatus includes a plurality of horizontally disposed vertically spaced plates, having depressions to contain debris in controlled amounts, and a plurality of holes therein which provide natural circulation cooling and a path for debris to continue flowing downward to the plate beneath. The uppermost plates may also include generally vertical sections which form annular-like flow areas which assist the natural circulation cooling.

  13. Apparatus for controlling nuclear core debris

    International Nuclear Information System (INIS)

    Jones, R.D.

    1978-01-01

    Disclosed is an apparatus for containing, cooling, and dispersing reactor debris assumed to flow from the core area in the unlikely event of an accident causing core meltdown. The apparatus includes a plurality of horizontally disposed vertically spaced plates, having depressions to contain debris in controlled amounts, and a plurality of holes therein which provide natural circulation cooling and a path for debris to continue flowing downward to the plate beneath. The uppermost plates may also include generally vertical sections which form annular-like flow areas which assist the natural circulation cooling

  14. Measurements of Man-Made Spectrum Noise Floor

    Science.gov (United States)

    Enge, Per; Akos, Dennis; Do, Juyong; Simoneau, Joel B.; Pearson, L. Wilson; Seetharam, Venkatesh; Oria, A. J. (Editor)

    2004-01-01

    This report consolidates research carried out at Clemson University and Stanford University where a series of measurements were undertaken to identify the man-made radiation present in four bands used by rather different services, namely, L1 Band (1563.42 1587.42 MHz), the Unified S-Band (2025 2110 MHz), the 2.4 GHz Industrial, Scientific and Medical (ISM) Band (2400 2482.50 MHz), and the 23.6-24.0 GHz Passive Sensing Band. Results show that there were distinctive differences in the measurement data in the frequency bands, which should be expected based on the function/regulation associated with each. The GPS L1 Band had little to none terrestrial man-made sources, but the ISM 2.4 GHz Band had a large number of man-made sources regardless of the site and the time. The Unified S Band showed mixed results depending on the sites. The Passive Sensing Band does not contain appreciable man-made radiation.

  15. Investigations Some Impact Space Debris and Working Satellites

    Science.gov (United States)

    Vovchyk, Yeva

    Combining the coordinate with the photometric date of the artificial satellite the information of its behavior on the orbit, its orientation, form and optical characteristics of the object’s surface could be determined. The successful solution of this task could be received only on the base of complex observations. It means that one must have coordinate and photometric observations from some (at least two) stations and the observations must be done synchronous. Photometric observations enable to record the reflection of the Sunlight from the separate fragments of the object’s surface. The periodic splashes give the information of the own rotation and the precession of the object. But from the light curve of the object to the information of its rotations is a long way of mathematics analysis with the supplement of the information from the other type observations. As the example the way of received the information of the behavior of the two satellites -- “EgyptSat” in the June-August 2010 after its collision on the orbit with unknown space debris and Russian station “Fobos-grunt” in the November 2011 during the unsuccessfully launching, inoperative spacecraft Envisat is shown. In the paper the initial observations and mathematical process of the solution of this task would be given. These investigations were made by the team "Astronoms from Ukraine" -- Ja. Blagodyr, A.Bilinsky, Ye.Vovchyk,K.Martyniyuk-Lotocky from Astronomical Observatory of Ivan Franko National University, Lviv; V.Yepishev, V.Kudak, I.Motrunych,I.Najbaer from Laboratory of the Space Investigations, National University of Uzgorod; N.Koshkin,L. Shakun from Astronomical Observatory of National University of Odessa; V.Lopachenko,V.Rykhalsky from National Centre of Direction and Testing of the Space System, Yevpatoriya.

  16. Operational support to collision avoidance activities by ESA's space debris office

    Science.gov (United States)

    Braun, V.; Flohrer, T.; Krag, H.; Merz, K.; Lemmens, S.; Bastida Virgili, B.; Funke, Q.

    2016-09-01

    The European Space Agency's (ESA) Space Debris Office provides a service to support operational collision avoidance activities. This support currently covers ESA's missions Cryosat-2, Sentinel-1A and -2A, the constellation of Swarm-A/B/C in low-Earth orbit (LEO), as well as missions of third-party customers. In this work, we describe the current collision avoidance process for ESA and third-party missions in LEO. We give an overview on the upgrades developed and implemented since the advent of conjunction summary messages (CSM)/conjunction data messages (CDM), addressing conjunction event detection, collision risk assessment, orbit determination, orbit and covariance propagation, process control, and data handling. We pay special attention to the effect of warning thresholds on the risk reduction and manoeuvre rates, as they are established through risk mitigation and analysis tools, such as ESA's Debris Risk Assessment and Mitigation Analysis (DRAMA) software suite. To handle the large number of CDMs and the associated risk analyses, a database-centric approach has been developed. All CDMs and risk analysis results are stored in a database. In this way, a temporary local "mini-catalogue" of objects close to our target spacecraft is obtained, which can be used, e.g., for manoeuvre screening and to update the risk analysis whenever a new ephemeris becomes available from the flight dynamics team. The database is also used as the backbone for a Web-based tool, which consists of the visualization component and a collaboration tool that facilitates the status monitoring and task allocation within the support team as well as communication with the control team. The visualization component further supports the information sharing by displaying target and chaser motion over time along with the involved uncertainties. The Web-based solution optimally meets the needs for a concise and easy-to-use way to obtain a situation picture in a very short time, and the support for

  17. Vision-based Ground Test for Active Debris Removal

    Directory of Open Access Journals (Sweden)

    Seong-Min Lim

    2013-12-01

    Full Text Available Due to the continuous space development by mankind, the number of space objects including space debris in orbits around the Earth has increased, and accordingly, difficulties of space development and activities are expected in the near future. In this study, among the stages for space debris removal, the implementation of a vision-based approach technique for approaching space debris from a far-range rendezvous state to a proximity state, and the ground test performance results were described. For the vision-based object tracking, the CAM-shift algorithm with high speed and strong performance, and the Kalman filter were combined and utilized. For measuring the distance to a tracking object, a stereo camera was used. For the construction of a low-cost space environment simulation test bed, a sun simulator was used, and in the case of the platform for approaching, a two-dimensional mobile robot was used. The tracking status was examined while changing the position of the sun simulator, and the results indicated that the CAM-shift showed a tracking rate of about 87% and the relative distance could be measured down to 0.9 m. In addition, considerations for future space environment simulation tests were proposed.

  18. ROGER a potential orbital space debris removal system

    Science.gov (United States)

    Starke, Juergen; Bischof, Bernd; Foth, W.-O.; -J., J.; Günther

    The previous activities in the field of On Orbit Servicing studied in the 1990's included in partic-ular the capability of vehicles in GEO to capture and support satellites (mainly communication satellites) to enable repair and continuation of operations, and finally the controlled transfer the target into a permanent graveyard orbit. The specific capture tools for these applications were mostly based on robotic systems to capture and fix the target under specific dynamic constraints (e.g. slowly tumbling target) without damage, and to allow the stabilization, re-orientation and potential repair of the target and subsequent release or transport to the final disposal orbit. Due to the drastically increasing number of debris particularly in the Low Earth Orbits (SSO) the active debris removal is now necessary to counteract to the predicted debris production cascade (Kessler Syndrome), which means the pollution of the total sphere in low earth orbit and not only the SSO area. In most of the debris congresses it was recommended to start removal with the still integrated systems as soon as possible. In the case of large debris objects, the soft capture system can be replaced by a simpler and robust system able to operate from a safe distance to the target and flexible enough to capture and hold different types of targets such as deactivated and/or defective satellites, upper stages and big fragments. These nominally non -cooperative targets might be partially destroyed by the capture process, but the production of additional debris shall be avoided. A major argument for the commercial applications is a multi-target mission potential, which is possible at GEO because the transfer propellant requirement to the disposal orbit and the return to the orbit of the next potential target is relative low (orbits with similar inclination and altitude). The proposed ROGER system is designed as a spacecraft with rendezvous capabilities including inspection in the vicinity of the

  19. Examination of returned solar-max surfaces for impacting orbital debris and meteoroids

    Science.gov (United States)

    Kessler, D. J.; Zook, H. A.; Potter, A. E.; Mckay, D. S.; Clanton, U. S.; Warren, J. L.; Watts, L. A.; Schultz, R. A.; Schramm, L. S.; Wentworth, S. J.

    1985-01-01

    Previous theoretical studies predicted that in certain regions of earth orbit, the man-made earth orbiting debris environment will soon exceed the interplanetary meteoroid environment for sizes smaller than 1 cm. The surfaces returned from the repaired Solar Max Mission (SMM) by STS 41-C on April 12, 1984, offered an excellent opportunity to examine both the debris and meteoroid environments. To date, approximately 0.7 sq. met. of the thermal insulation and 0.05 sq. met of the aluminum louvers have been mapped by optical microscope for crater diameters larger than 40 microns. Craters larger in diameter than about 100 microns found on the initial 75 micron thick Kapton first sheet on the MEB (Main Electronics Box) blanket are actually holes and constitute perforations through that blanket. The following populations have been found to date in impact sites on these blankets: (1) meteoritic material; (2) thermal paint particles; (3) aluminum droplets; and (4) waste particles.

  20. Conceptualizing an economically, legally, and politically viable active debris removal option

    Science.gov (United States)

    Emanuelli, M.; Federico, G.; Loughman, J.; Prasad, D.; Chow, T.; Rathnasabapathy, M.

    2014-11-01

    It has become increasingly clear in recent years that the issue of space debris, particularly in low-Earth orbit, can no longer be ignored or simply mitigated. Orbital debris currently threatens safe space flight for both satellites and humans aboard the International Space Station. Additionally, orbital debris might impact Earth upon re-entry, endangering human lives and damaging the environment with toxic materials. In summary, orbital debris seriously jeopardizes the future not only of human presence in space, but also of human safety on Earth. While international efforts to mitigate the current situation and limit the creation of new debris are useful, recent studies predicting debris evolution have indicated that these will not be enough to ensure humanity's access to and use of the near-Earth environment in the long-term. Rather, active debris removal (ADR) must be pursued if we are to continue benefiting from and conducting space activities. While the concept of ADR is not new, it has not yet been implemented. This is not just because of the technical feasibility of such a scheme, but also because of the host of economic, legal/regulatory, and political issues associated with debris remediation. The costs of ADR are not insignificant and, in today's restrictive fiscal climate, are unlikely/to be covered by any single actor. Similarly, ADR concepts bring up many unresolved questions about liability, the protection of proprietary information, safety, and standards. In addition, because of the dual use nature of ADR technologies, any venture will necessarily require political considerations. Despite the many unanswered questions surrounding ADR, it is an endeavor worth pursuing if we are to continue relying on space activities for a variety of critical daily needs and services. Moreover, we cannot ignore the environmental implications that an unsustainable use of space will imply for life on Earth in the long run. This paper aims to explore some of these

  1. Impact risk assessment for the ATV using ESABASE/DEBRIS

    Science.gov (United States)

    Beltrami Karlezi, P.; Drolshagen, G.; Lambert, M.

    2001-10-01

    The European Space Agency ESA participates in the International Space Station with various programs, one of them being the Automated Transfer Vehicle (ATV). The ATV is an unmanned servicing and logistics vehicle launched on Ariane 5 and designed to fulfil different roles like cargo transport, re-supply of fuel and consumables and orbit re-boost of the International Space Station (ISS). For this reason it is important that the risks imposed on these modules by meteoroids and orbital debris are calculated accurately. Following such calculations the Meteoroid and Orbital Debris Protection System (M/ODPS) can be optimised. This paper presents the results of the risk assessment of meteoroids and space debris for the ATV spacecraft attached to the ISS using different shield configurations. The results are presented as the probability of no penetration (PNP) for each component and each configuration. They are compared to a target PNP requirement of 0.999 for 135 days and the weight penalty produced by the extra shielding is given.

  2. Modelling natural electromagnetic interference in man-made conductors for space weather applications

    Science.gov (United States)

    Trichtchenko, Larisa

    2016-04-01

    Power transmission lines above the ground, cables and pipelines in the ground and under the sea, and in general all man-made long grounded conductors are exposed to the variations of the natural electromagnetic field. The resulting currents in the networks (commonly named geomagnetically induced currents, GIC), are produced by the conductive and/or inductive coupling and can compromise or even disrupt system operations and, in extreme cases, cause power blackouts, railway signalling mis-operation, or interfere with pipeline corrosion protection systems. To properly model the GIC in order to mitigate their impacts it is necessary to know the frequency dependence of the response of these systems to the geomagnetic variations which naturally span a wide frequency range. For that, the general equations of the electromagnetic induction in a multi-layered infinitely long cylinder (representing cable, power line wire, rail or pipeline) embedded in uniform media have been solved utilising methods widely used in geophysics. The derived electromagnetic fields and currents include the effects of the electromagnetic properties of each layer and of the different types of the surrounding media. This exact solution then has been used to examine the electromagnetic response of particular samples of long conducting structures to the external electromagnetic wave for a wide range of frequencies. Because the exact solution has a rather complicated structure, simple approximate analytical formulas have been proposed, analysed and compared with the results from the exact model. These approximate formulas show good coincidence in the frequency range spanning from geomagnetic storms (less than mHz) to pulsations (mHz to Hz) to atmospherics (kHz) and above, and can be recommended for use in space weather applications.

  3. Life Cycle Assessment of man-made cellulose fibres

    NARCIS (Netherlands)

    Shen, L.; Patel, M.K.

    2010-01-01

    The production of textile materials has undergone dramatic changes in the last century. Man-made cellulose fibres have played an important role for more than 70 years. Today, the man-made cellulose fibre industry is the worldwide second largest biorefinery (next to the paper industry). In the last

  4. A 1 cm space debris impact onto the Sentinel-1A solar array

    Science.gov (United States)

    Krag, H.; Serrano, M.; Braun, V.; Kuchynka, P.; Catania, M.; Siminski, J.; Schimmerohn, M.; Marc, X.; Kuijper, D.; Shurmer, I.; O'Connell, A.; Otten, M.; Muñoz, Isidro; Morales, J.; Wermuth, M.; McKissock, D.

    2017-08-01

    Sentinel-1A is a 2-ton spacecraft of the Copernicus Earth observation program operated by ESA's Space Operations Centre in Darmstadt, Germany. Sentinel-1A and its sister spacecraft Sentinel-1B operate in a sun-synchronous orbit at about 700 km altitude. On 2016/08/23 17:07:37 UTC, Sentinel-1A suffered from an anomaly resulting in a sudden permanent partial power loss and significant impulsive orbit and attitude changes. A deeper investigation identified that an impulsive orbit change against flight direction of 0.7 mm/s, estimated at the time of the event, gave the best results in terms of GPS residuals. At the same time, a peak attitude off-pointing of 0.7° (around the spacecraft yaw axis) and peak attitude rate increase of 0.04°/s (around the same axis) were observed. The simultaneous occurrence of these anomalies, starting from a sudden attitude change and ending with a permanent partial power loss, made an MMOD (Micro-Meteoroid and Orbital Debris) impact onto a solar array a possible explanation for this event. While the spacecraft is able to continue its mission nominally, a detailed investigation involving ESA's Space Debris and Flight Dynamics experts was conducted. An MMOD impact as an explanation gained further credibility, due to the pictures of the solar array taken by the on-board camera displaying a significant damage area. On September 7th, JSpOC (US Joint Space Operations Centre) informed SDO on 8 tracked fragments that are considered to be released by Sentinel-1A after the impact. This paper addresses the analysis that was performed on the data characterising the attitude and orbit change, the on-board camera image, and the tracked fragments. The data helped to identify the linear momentum vector while a flux analysis helped to identify the origin of the impactor and allowed to understand its mass and size characteristics.

  5. Environmental impact assessment of man-made cellulose fibres

    NARCIS (Netherlands)

    Shen, L.; Worrell, E.; Patel, M.K.

    2010-01-01

    Man-made cellulose fibres have played an important role in the production of textile products for more than 70 years. The purpose of this study is to assess the environmental impact of man-made cellulose fibres. Life cycle assessment (LCA) was conducted for three types of fibres (i.e. Viscose, Modal

  6. Algorithms for the Computation of Debris Risk

    Science.gov (United States)

    Matney, Mark J.

    2017-01-01

    Determining the risks from space debris involve a number of statistical calculations. These calculations inevitably involve assumptions about geometry - including the physical geometry of orbits and the geometry of satellites. A number of tools have been developed in NASA’s Orbital Debris Program Office to handle these calculations; many of which have never been published before. These include algorithms that are used in NASA’s Orbital Debris Engineering Model ORDEM 3.0, as well as other tools useful for computing orbital collision rates and ground casualty risks. This paper presents an introduction to these algorithms and the assumptions upon which they are based.

  7. Preservation of Near-Earth Space for Future Generations

    Science.gov (United States)

    Simpson, John A.

    2007-05-01

    List of contributors; Preface; Part I. Introduction: 1. Introduction J. A. Simpson; Part II. Defining the Problem: 2. The Earth satellite population: official growth and constituents Nicholas L. Johnson; 3. The current and future environment: an overall assessment Donald J. Kessler; 4. The current and future space debris environment as assessed in Europe Dietrich Rex; 5. Human survivability issues in the low Earth orbit space debris environment Bernard Bloom; 6. Protecting the space environment for astronomy Joel R. Primack; 7. Effects of space debris on commercial spacecraft - the RADARSAT example H. Robert Warren and M. J. Yelle; 8. Potential effects of the space debris environment on military space systems Albert E. Reinhardt; Part III. Mitigation of and Adaptation to the Space Environment: Techniques and Practices: 9. Precluding post-launch fragmentation of delta stages Irvin J. Webster and T. Y. Kawamura; 10. US international and interagency cooperation in orbital debris Daniel V. Jacobs; 11. ESA concepts for space debris mitigation and risk reduction Heiner Klinkrad; 12. Space debris: how France handles mitigation and adaptation Jean-Louis Marcé; 13. Facing seriously the issue of protection of the outer space environment Qi Yong Liang; 14. Space debris - mitigation and adaptation U. R. Rao; 15. Near Earth space contamination and counteractions Vladimir F. Utkin and S. V. Chekalin; 16. The current and future space debris environment as assessed in Japan Susumu Toda; 17. Orbital debris minimization and mitigation techniques Joseph P. Loftus Jr, Philip D. Anz-Meador and Robert Reynolds; Part IV. Economic Issues: 18. In pursuit of a sustainable space environment: economic issues in regulating space debris Molly K. Macauley; 19. The economics of space operations: insurance aspects Christopher T. W. Kunstadter; Part V. Legal Issues: 20. Environmental treatymaking: lessons learned for controlling pollution of outer space Winfried Lang; 21. Regulation of orbital

  8. Impact of high-risk conjunctions on Active Debris Removal target selection

    OpenAIRE

    Lidtke, Aleksander A.; Lewis, Hugh G.; Armellin, Roberto

    2015-01-01

    All rights reserved.Space debris simulations show that if current space launches continue unchanged, spacecraft operations might become difficult in the congested space environment. It has been suggested that Active Debris Removal (ADR) might be necessary in order to prevent such a situation. Selection of objects to be targeted by ADR is considered important because removal of non-relevant objects will unnecessarily increase the cost of ADR. One of the factors to be used in this ADR target se...

  9. DESIGN OF SLIT DAMS FOR CONTROLLING STONY DEBRIS FLOWS

    Institute of Scientific and Technical Information of China (English)

    Hui-Pang LIEN

    2003-01-01

    A new method to a slit dam for controlling the stony debris flow has been derived based on the mass conservation law of the stony debris flow passing through a slit dam and the laboratory experiment results.This new method is then combined with three primary efficiency expressions: the dimensionless sediment outflow ratio,the sediment concentration ratio,and the sediment storage rate to develop a simple module,with which the height and the spacing of the posts,as well as the total spacing of slit dam are determined.Furthermore,these expressions can also be applied to check those slit dams that have already been constructed with their effectiveness against various magnitudes of the debris flow. The comparison between these expressions and laboratory data is in reasonable agreement.

  10. Orbital Debris: Past, Present, and Future

    Science.gov (United States)

    Stansbery, Gene; Johnson, Nicholas

    2013-01-01

    In the early days of spaceflight, the gBig Sky h theory was the near universally accepted paradigm for dealing with collisions of orbiting objects. This theory was also used during the early years of the aviation industry. Just as it did in aviation, the gBig Sky h theory breaks down as more and more objects accumulate in the environment. Fortunately, by the late 1970 fs some visionaries in NASA and the US Department of Defense (DoD) realized that trends in the orbital environment would inevitably lead to increased risks to operational spacecraft from collisions with other orbiting objects. The NASA Orbital Debris Program was established at and has been conducted at Johnson Space Center since 1979. At the start of 1979, fewer than 5000 objects were being tracked by the US Space Surveillance Network and very few attempts had been made to sample the environment for smaller sizes. Today, the number of tracked objects has quadrupled. Ground ]based and in situ measurements have statistically sampled the LEO environment over most sizes and mitigation guidelines and requirements are common among most space faring nations. NASA has been a leader, not only in defining the debris environment, but in promoting awareness of the issues in the US and internationally, and in providing leadership in developing policies to address the issue. This paper will discuss in broad terms the evolution of the NASA debris program from its beginnings to its present broad range of debris related research. The paper will discuss in some detail current research topics and will attempt to predict future research trends.

  11. Algorithms for the Computation of Debris Risks

    Science.gov (United States)

    Matney, Mark

    2017-01-01

    Determining the risks from space debris involve a number of statistical calculations. These calculations inevitably involve assumptions about geometry - including the physical geometry of orbits and the geometry of non-spherical satellites. A number of tools have been developed in NASA's Orbital Debris Program Office to handle these calculations; many of which have never been published before. These include algorithms that are used in NASA's Orbital Debris Engineering Model ORDEM 3.0, as well as other tools useful for computing orbital collision rates and ground casualty risks. This paper will present an introduction to these algorithms and the assumptions upon which they are based.

  12. NASA Orbital Debris Large-Object Baseline Population in ORDEM 3.0

    Science.gov (United States)

    Krisco, Paula H.; Vavrin, A. B.; Anz-Meador, P. D.

    2013-01-01

    The NASA Orbital Debris Program Office (ODPO) has created and validated high fidelity populations of the debris environment for the latest Orbital Debris Engineering Model (ORDEM 3.0). Though the model includes fluxes of objects 10 um and larger, this paper considers particle fluxes for 1 cm and larger debris objects from low Earth orbit (LEO) through Geosynchronous Transfer Orbit (GTO). These are validated by several reliable radar observations through the Space Surveillance Network (SSN), Haystack, and HAX radars. ORDEM 3.0 populations were designed for the purpose of assisting, debris researchers and sensor developers in planning and testing. This environment includes a background derived from the LEO-to-GEO ENvironment Debris evolutionary model (LEGEND) with a Bayesian rescaling as well as specific events such as the FY-1C anti-satellite test, the Iridium 33/Cosmos 2251 accidental collision, and the Soviet/Russian Radar Ocean Reconnaissance Satellite (RORSAT) sodium-potassium droplet releases. The environment described in this paper is the most realistic orbital debris population larger than 1 cm, to date. We describe derivations of the background population and added specific populations. We present sample validation charts of our 1 cm and larger LEO population against Space Surveillance Network (SSN), Haystack, and HAX radar measurements.

  13. De-Orbiting of Space Debris by Means of a Towering Cable and a Single Thruster Spaceship: Whiplash and Tail Wagging Effects

    Science.gov (United States)

    da Cruz Pacheco, Gabriel Felippe; Carpentier, Benjamin; Petit, Nicolas

    2013-08-01

    This papers exposes two difficulties that are likely to take place during the towing of a space debris. These effects, which could trouble de-orbitation strategies, are visible on simple simulations based on a model of coupled rigid-bodies dynamics. We name them tail wagging and whiplash effects, respectively.

  14. Streak detection and analysis pipeline for space-debris optical images

    Science.gov (United States)

    Virtanen, Jenni; Poikonen, Jonne; Säntti, Tero; Komulainen, Tuomo; Torppa, Johanna; Granvik, Mikael; Muinonen, Karri; Pentikäinen, Hanna; Martikainen, Julia; Näränen, Jyri; Lehti, Jussi; Flohrer, Tim

    2016-04-01

    We describe a novel data-processing and analysis pipeline for optical observations of moving objects, either of natural (asteroids, meteors) or artificial origin (satellites, space debris). The monitoring of the space object populations requires reliable acquisition of observational data, to support the development and validation of population models and to build and maintain catalogues of orbital elements. The orbital catalogues are, in turn, needed for the assessment of close approaches (for asteroids, with the Earth; for satellites, with each other) and for the support of contingency situations or launches. For both types of populations, there is also increasing interest to detect fainter objects corresponding to the small end of the size distribution. The ESA-funded StreakDet (streak detection and astrometric reduction) activity has aimed at formulating and discussing suitable approaches for the detection and astrometric reduction of object trails, or streaks, in optical observations. Our two main focuses are objects in lower altitudes and space-based observations (i.e., high angular velocities), resulting in long (potentially curved) and faint streaks in the optical images. In particular, we concentrate on single-image (as compared to consecutive frames of the same field) and low-SNR detection of objects. Particular attention has been paid to the process of extraction of all necessary information from one image (segmentation), and subsequently, to efficient reduction of the extracted data (classification). We have developed an automated streak detection and processing pipeline and demonstrated its performance with an extensive database of semisynthetic images simulating streak observations both from ground-based and space-based observing platforms. The average processing time per image is about 13 s for a typical 2k-by-2k image. For long streaks (length >100 pixels), primary targets of the pipeline, the detection sensitivity (true positives) is about 90% for

  15. Problems of Small Debris

    Directory of Open Access Journals (Sweden)

    V. V. Zelentsov

    2015-01-01

    Full Text Available During the exploration of outer space (as of 1/1 2011 6853 was launched spacecraft (SC are successful 6264, representing 95% of the total number of starts. The most intensively exploited space Russia (USSR (3701 starts, 94% successful, USA (2774 starts, 90% successful, China (234 starts, 96% successful and India (89 starts, 90% successful. A small part of running the spacecraft returned to Earth (manned spacecraft and transport, and the rest remained in orbit. Some of them are descended from orbit and burned up in the atmosphere, the rest remained in the OCP and turned into space debris (SD.The composition of the Cabinet is diverse: finish the job spacecraft; boosters and the last stage of launch vehicles left in orbit after SC injection; technological waste arising during the opening drop-down structures and fragments of the destroyed spacecraft. The resulting explosion orbital SD forms ellipsoidal region which orbits blasted object. Then, as a result of precession, is the distribution of objects in orbit explosion exploding spacecraft.The whole Cabinet is divided into two factions: the observed (larger than 100 mm and not observed (less than 100 mm. Observed debris katalogalizirovan and 0.2% of the total number of SD, there was no SD is the bulk - 99.8%.SC meeting working with a fragment observed SD predictable and due to changes in altitude spacecraft avoids a possible meeting. Contact spacecraft with large fragment lead to disaster (which took place at a meeting of the Russian communications satellite "Cosmos-2251" and the American machine "Iridium". Meeting with small SD is not predictable, especially if it was formed by an explosion or collision fragments together. Orbit that KM is not predictable, and the speed can be up to 10 km / s. Meeting with small particle SD no less dangerous for the spacecraft. The impact speed of spacecraft with space debris particles can reach up to 10 ... 15 km / s at such speeds the breakdown probability thin

  16. Higher order sliding mode control of laser pointing for orbital debris mitigation

    Science.gov (United States)

    Palosz, Arthur

    This thesis explores the use of a space-based laser to clean up small orbital debris from near Earth space. This system's challenge is to quickly and precisely aim the laser beam at very small (laser beam onto the orbital debris. A Kalman Filter (KF) is designed to accurately track the orbital debris and generate a command signal for the controller. A second order Super Twisting Sliding Mode Controller (2-SMC) is designed to follow the command signal generated by the KF and to overcome the parametric uncertainties and external disturbances. The performance of the system is validated with a computer simulation created in MATLAB and Simulink.

  17. Uncertainty propagation for statistical impact prediction of space debris

    Science.gov (United States)

    Hoogendoorn, R.; Mooij, E.; Geul, J.

    2018-01-01

    Predictions of the impact time and location of space debris in a decaying trajectory are highly influenced by uncertainties. The traditional Monte Carlo (MC) method can be used to perform accurate statistical impact predictions, but requires a large computational effort. A method is investigated that directly propagates a Probability Density Function (PDF) in time, which has the potential to obtain more accurate results with less computational effort. The decaying trajectory of Delta-K rocket stages was used to test the methods using a six degrees-of-freedom state model. The PDF of the state of the body was propagated in time to obtain impact-time distributions. This Direct PDF Propagation (DPP) method results in a multi-dimensional scattered dataset of the PDF of the state, which is highly challenging to process. No accurate results could be obtained, because of the structure of the DPP data and the high dimensionality. Therefore, the DPP method is less suitable for practical uncontrolled entry problems and the traditional MC method remains superior. Additionally, the MC method was used with two improved uncertainty models to obtain impact-time distributions, which were validated using observations of true impacts. For one of the two uncertainty models, statistically more valid impact-time distributions were obtained than in previous research.

  18. Spacecraft-plasma-debris interaction in an ion beam shepherd mission

    Science.gov (United States)

    Cichocki, Filippo; Merino, Mario; Ahedo, Eduardo

    2018-05-01

    This paper presents a study of the interaction between a spacecraft, a plasma thruster plume and a free floating object, in the context of an active space debris removal mission based on the ion beam shepherd concept. The analysis is performed with the EP2PLUS hybrid code and includes the evaluation of the transferred force and torque to the target debris, its surface sputtering due to the impinging hypersonic ions, and the equivalent electric circuit of the spacecraft-plasma-debris interaction. The electric potential difference that builds up between the spacecraft and the debris, the ion backscattering and the backsputtering contamination of the shepherd satellite are evaluated for a nominal scenario. A sensitivity analysis is carried out to evaluate quantitatively the effects of electron thermodynamics, ambient plasma, heavy species collisions, and debris position.

  19. Simulation of Micron-Sized Debris Populations in Low Earth Orbit

    Science.gov (United States)

    Xu, Y.-L.; Matney, M.; Liou, J.-C.; Hyde, J. L.; Prior, T. G.

    2010-01-01

    The update of ORDEM2000, the NASA Orbital Debris Engineering Model, to its new version . ORDEM2010, is nearly complete. As a part of the ORDEM upgrade, this paper addresses the simulation of micro-debris (greater than 10 micron and smaller than 1 mm in size) populations in low Earth orbit. The principal data used in the modeling of the micron-sized debris populations are in-situ hypervelocity impact records, accumulated in post-flight damage surveys on the space-exposed surfaces of returned spacecrafts. The development of the micro-debris model populations follows the general approach to deriving other ORDEM2010-required input populations for various components and types of debris. This paper describes the key elements and major steps in the statistical inference of the ORDEM2010 micro-debris populations. A crucial step is the construction of a degradation/ejecta source model to provide prior information on the micron-sized objects (such as orbital and object-size distributions). Another critical step is to link model populations with data, which is rather involved. It demands detailed information on area-time/directionality for all the space-exposed elements of a shuttle orbiter and damage laws, which relate impact damage with the physical properties of a projectile and impact conditions such as impact angle and velocity. Also needed are model-predicted debris fluxes as a function of object size and impact velocity from all possible directions. In spite of the very limited quantity of the available shuttle impact data, the population-derivation process is satisfactorily stable. Final modeling results obtained from shuttle window and radiator impact data are reasonably convergent and consistent, especially for the debris populations with object-size thresholds at 10 and 100 micron.

  20. FROM PONDS TO MAN-MADE SEAS IN RUSSIA

    Directory of Open Access Journals (Sweden)

    Sergey Gorshkov

    2013-01-01

    Full Text Available Russia has more than 2200 reservoirs and large ponds. As time went by, ponds lost their importance in some aspects of human life, while newly created man-made seas impacted the nature and the people in two ways. The costs involved in designing, constructing, and operating the artificial seas, especially on the plains, have been too high to consider them as an undisputed achievement of the Soviet scientists transforming the nature. This paper discusses the problem of ponds and man-made seas in Russia.

  1. Fold and Fit: Space Conserving Shape Editing

    KAUST Repository

    Ibrahim, Mohamed; Yan, Dong-Ming

    2017-01-01

    We present a framework that folds man-made objects in a structure-aware manner for space-conserving storage and transportation. Given a segmented 3D mesh of a man-made object, our framework jointly optimizes for joint locations, the folding order

  2. Natural and man-made terrestrial electromagnetic noise: an outlook

    Directory of Open Access Journals (Sweden)

    A. Meloni

    2007-06-01

    Full Text Available The terrestrial environment is continuously exposed to electromagnetic radiations which set up a «background» electromagnetic noise. Within the Non Ionizing Radiation band (NIR, i.e. for frequencies lower than 300 GHz, this background can have a natural or an artificial origin. Natural origins of electromagnetic radiations are generally atmospheric or cosmic while artificial origins are technological applications, power transmission, communications, etc. This paper briefly describes the natural and man-made electromagnetic noise in the NIR band. Natural noise comes from a large variety of sources involving different physical phenomena and covering a wide range of frequencies and showing various propagation characteristics with an extremely broad range of power levels. Due to technological growth man-made electromagnetic noise is nowadays superimposed on natural noise almost everywhere on Earth. In the last decades man-made noise has increased dramatically over and above the natural noise in residential and business areas. This increase has led some scientists to consider possible negative effects of electromagnetic waves on human life and living systems in general. Accurate measurements of natural and man-made electromagnetic noise are necessary to understand the relative power levels in the different bands and their influence on life.

  3. Abstraction of man-made shapes

    KAUST Repository

    Mehra, Ravish; Zhou, Qingnan; Long, Jeremy; Sheffer, Alla; Gooch, Amy Ashurst; Mitra, Niloy J.

    2009-01-01

    Man-made objects are ubiquitous in the real world and in virtual environments. While such objects can be very detailed, capturing every small feature, they are often identified and characterized by a small set of defining curves. Compact, abstracted shape descriptions based on such curves are often visually more appealing than the original models, which can appear to be visually cluttered. We introduce a novel algorithm for abstracting three-dimensional geometric models using characteristic curves or contours as building blocks for the abstraction. Our method robustly handles models with poor connectivity, including the extreme cases of polygon soups, common in models of man-made objects taken from online repositories. In our algorithm, we use a two-step procedure that first approximates the input model using a manifold, closed envelope surface and then extracts from it a hierarchical abstraction curve network along with suitable normal information. The constructed curve networks form a compact, yet powerful, representation for the input shapes, retaining their key shape characteristics while discarding minor details and irregularities. © 2009 ACM.

  4. 2-GHz band man-made noise evaluation for cryogenic receiver front-end

    Energy Technology Data Exchange (ETDEWEB)

    Narahashi, S; Satoh, K; Suzuki, Y [Research Laboratories, NTT DoCoMo, Inc., 3-5 Hikari-no-oka, Yokosuka, Kanagawa 239-8536 (Japan); Mimura, T [Intellectual Property Department, NTT DoCoMo, Inc., 2-11-1 Nagatacho, Chiyoda, Tokyo 100-6150 (Japan); Nojima, T [Graduate School of Information Science and Technology, Hokkaido University, Nishi 9, Kita 14, Kita, Sapporo 060-0808 (Japan)], E-mail: narahashi@nttdocomo.co.jp

    2008-02-01

    This paper presents measured results of man-made noise in urban and suburban areas in the 2-GHz band with amplitude probability distribution (APD) in order to evaluate the impact of man-made noise on an experimental cryogenic receiver front-end (CRFE). The CRFE comprises a high-temperature superconducting filter, cryogenically-cooled low-noise amplifier, and highly reliable cryostat that is very compact. The CRFE is anticipated to be an effective way to achieve efficient frequency utilization and to improve the sensitivity of mobile base station receivers. It is important to measure the characteristics of the man-made noise in typical cellular base station antenna environments and confirm their impact on the CRFE reception with APD because if man-made noise has a stronger effect than thermal noise, the CRFE would fail to offer any improvement in sensitivity. The measured results suggest that the contribution of man-made noise in the 2-GHz band can be ignored as far as the wideband code division multiple access (W-CDMA) system is concerned.

  5. Charging of Space Debris and Their Dynamical Consequences

    Science.gov (United States)

    2016-01-08

    the Debye screening (λ) length and other typical system lengths of interest such as the object size a [15]. In a collisional plasma i .e. when the...than the Debye lengths and the size of the debris objects. Hence the OML approach can work well in this region and can provide a realistic estimate...mean free path of the ions becomes comparable to the system scale lengths , ion-neutral collisions may lead to the trapping of ions in the sheath region

  6. Lower end fitting debris collector and end cap spacer grid

    International Nuclear Information System (INIS)

    Bryan, W.J.

    1990-01-01

    This patent describes a nuclear reactor having fuel assemblies including an upper end fitting and spaced nuclear fuel rod spacer grids for supporting and spacing a plurality of elongated nuclear fuel rods. Each includes a hollow active portion of nuclear fuel filled cladding intermediate the rod ends and tapering end cap of solid material with a circumferential groove on the rod end which first encounters reactor coolant flow, a lower end filtering debris collector and end cap spacer grid for capturing and retaining deleterious debris carried by reactor coolant before it enters the active region of a fuel assembly and creates fuel rod cladding damage

  7. The Space Debris Crisis: Time for an International Treaty

    Science.gov (United States)

    2011-03-23

    TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Lieutenant Colonel Gregory D. Hillebrand Department of...Military Strategy, Planning, and Operations 8. PERFORMING ORGANIZATION REPORT NUMBER 9. SPONSORING / MONITORING AGENCY NAME(S) AND...problem is much larger than this. NASA estimates that There are more than 20,000 pieces of debris larger than a softball orbiting the Earth. They

  8. Dosimetry of natural and man-made alpha emitters in plankton

    International Nuclear Information System (INIS)

    Paschoa, A.S.; Baptista, G.B.; Wrenn, M.E.; Eisenbrid, M.

    1980-11-01

    Comparison between the natural and man-made alpha radiation dose rates to plankton can be important for predicting the potential long-term effects on aquatic biota resulting from the routine or accidental radioactive releases from the nuclear fuel cycle. A contribution is made here towards the goal of comparing natural with man-made alpha radiation dose rates to plankton using the same method of calculation in both cases. (Author) [pt

  9. Comparing two models for post-wildfire debris flow susceptibility mapping

    Science.gov (United States)

    Cramer, J.; Bursik, M. I.; Legorreta Paulin, G.

    2017-12-01

    Traditionally, probabilistic post-fire debris flow susceptibility mapping has been performed based on the typical method of failure for debris flows/landslides, where slip occurs along a basal shear zone as a result of rainfall infiltration. Recent studies have argued that post-fire debris flows are fundamentally different in their method of initiation, which is not infiltration-driven, but surface runoff-driven. We test these competing models by comparing the accuracy of the susceptibility maps produced by each initiation method. Debris flow susceptibility maps are generated according to each initiation method for a mountainous region of Southern California that recently experienced wildfire and subsequent debris flows. A multiple logistic regression (MLR), which uses the occurrence of past debris flows and the values of environmental parameters, was used to determine the probability of future debris flow occurrence. The independent variables used in the MLR are dependent on the initiation method; for example, depth to slip plane, and shear strength of soil are relevant to the infiltration initiation, but not surface runoff. A post-fire debris flow inventory serves as the standard to compare the two susceptibility maps, and was generated by LiDAR analysis and field based ground-truthing. The amount of overlap between the true locations where debris flow erosion can be documented, and where the MLR predicts high probability of debris flow initiation was statistically quantified. The Figure of Merit in Space (FMS) was used to compare the two models, and the results of the FMS comparison suggest that surface runoff-driven initiation better explains debris flow occurrence. Wildfire can breed conditions that induce debris flows in areas that normally would not be prone to them. Because of this, nearby communities at risk may not be equipped to protect themselves against debris flows. In California, there are just a few months between wildland fire season and the wet

  10. Technology Combination Analysis Tool (TCAT) for Active Debris Removal

    Science.gov (United States)

    Chamot, B.; Richard, M.; Salmon, T.; Pisseloup, A.; Cougnet, C.; Axthelm, R.; Saunder, C.; Dupont, C.; Lequette, L.

    2013-08-01

    This paper present the work of the Swiss Space Center EPFL within the CNES-funded OTV-2 study. In order to find the most performant Active Debris Removal (ADR) mission architectures and technologies, a tool was developed in order to design and compare ADR spacecraft, and to plan ADR campaigns to remove large debris. Two types of architectures are considered to be efficient: the Chaser (single-debris spacecraft), the Mothership/ Kits (multiple-debris spacecraft). Both are able to perform controlled re-entry. The tool includes modules to optimise the launch dates and the order of capture, to design missions and spacecraft, and to select launch vehicles. The propulsion, power and structure subsystems are sized by the tool thanks to high-level parametric models whilst the other ones are defined by their mass and power consumption. Final results are still under investigation by the consortium but two concrete examples of the tool's outputs are presented in the paper.

  11. A brief scenario about the ''space pollution'' around the Earth

    International Nuclear Information System (INIS)

    Brito, T P; Celestino, C C; Moraes, R V

    2013-01-01

    In this work is presented a brief review about the main events generating of space debris around the Earth, occurred up to the present day. How the clouds of debris ''polluted'' the neighborhood of orbits in which the bodies were initially allocated is here analyzed. The implications of the growth of space debris existing on space missions as well as safety rules to control sources of debris are discussed

  12. Kent in space: Cosmic dust to space debris

    Science.gov (United States)

    McDonnell, J. A. M.

    1994-10-01

    The dusty heritage of the University of Kent's Space Group commenced at Jodrell Bank, Cheshire, U.K., the home of the largest steerable radio telescope. While Professor Bernard Lovell's 250 ft. diameter telescope was used to command the U.S. deep space Pioneer spacecraft, Professor Tony McDonnell, as a research student in 1960, was developing a space dust detector for the US-UK Ariel program. It was successful. With a Ph.D. safely under the belt, it seemed an inevitable step to go for the next higher degree, a B.T.A.] Two years with NASA at Goddard Space Flight Center, Greenbelt, provided excellent qualifications for such a graduation ('Been to America'). A spirited return to the University of Kent at Canterbury followed, to one of the green field UK University sites springing from the Robbins Report on Higher Education. Swimming against the current of the brain drain, and taking a very considerable reduction in salary, it was with some disappointment that he found that the UK Premier Harold Wilson's 'white-hot technological revolution' never quite seemed to materialize in terms of research funding] Research expertise, centered initially on cosmic dust, enlarged to encompass planetology during the Apollo program, and rightly acquired international acclaim, notching up a history of space missions over 25 years. The group now comprises 38 people supported by four sources: the government's Research Councils, the University, the Space Agencies and Industry. This paper describes the thrust of the group's Research Plan in Space Science and Planetology; not so much based on existing international space missions, but more helping to shape the direction and selection of space missions ahead.

  13. Data Acquisition, Management, and Analysis in Support of the Audiology and Hearing Conservation and the Orbital Debris Program Office

    Science.gov (United States)

    Dicken, Todd

    2012-01-01

    My internship at Johnson Space Center, Houston TX comprised of working simultaneously in the Space Life Science Directorate (Clinical Services Branch, SD3) in Audiology and Hearing Conservation and in the Astromaterials Research and Exploration Sciences Directorate in the Orbital Debris Program Office (KX). The purpose of the project done to support the Audiology and Hearing Conservation Clinic (AuHCon) is to organize and analyze auditory test data that has been obtained from tests conducted onboard the International Space Station (ISS) and in Johnson Space Center's clinic. Astronauts undergo a special type of auditory test called an On-Orbit Hearing Assessment (OOHA), which monitors hearing function while crewmembers are exposed to noise and microgravity during long-duration spaceflight. Data needed to be formatted to assist the Audiologist in studying, analyzing and reporting OOHA results from all ISS missions, with comparison to conventional preflight and post-flight audiometric test results of crewmembers. Orbital debris is the #1 threat to manned spacecraft; therefore NASA is investing in different measurement techniques to acquire information on orbital debris. These measurements are taken with telescopes in different parts of the world to acquire brightness variations over time, from which size, rotation rates and material information can be determined for orbital debris. Currently many assumptions are taken to resolve size and material from observed brightness, therefore a laboratory (Optical Measurement Center) is used to simulate the space environment and acquire information of known targets suited to best model the orbital debris population. In the Orbital Debris Program Office (ODPO) telescopic data were acquired and analyzed to better assess the orbital debris population.

  14. Ocean Disposal of Man-Made Ice Piers

    Science.gov (United States)

    The National Science Foundation is permitted to ocean dump man-made ice piers from its base at McMurdo Sound in Antarctica under a MPRSA general permit. Information is provided about ice piers and impacts of ice pier disposal.

  15. Numerical investigation of debris materials prior to debris flow hazards using satellite images

    Science.gov (United States)

    Zhang, N.; Matsushima, T.

    2018-05-01

    The volume of debris flows occurred in mountainous areas is mainly affected by the volume of debris materials deposited at the valley bottom. Quantitative evaluation of debris materials prior to debris flow hazards is important to predict and prevent hazards. At midnight on 7th August 2010, two catastrophic debris flows were triggered by the torrential rain from two valleys in the northern part of Zhouqu City, NW China, resulting in 1765 fatalities and huge economic losses. In the present study, a depth-integrated particle method is adopted to simulate the debris materials, based on 2.5 m resolution satellite images. In the simulation scheme, the materials are modeled as dry granular solids, and they travel down from the slopes and are deposited at the valley bottom. The spatial distributions of the debris materials are investigated in terms of location, volume and thickness. Simulation results show good agreement with post-disaster satellite images and field observation data. Additionally, the effect of the spatial distributions of the debris materials on subsequent debris flows is also evaluated. It is found that the spatial distributions of the debris materials strongly influence affected area, runout distance and flow discharge. This study might be useful in hazard assessments prior to debris flow hazards by investigating diverse scenarios in which the debris materials are unknown.

  16. Data base on avian mortality on man-made structures

    Energy Technology Data Exchange (ETDEWEB)

    Dailey, N. S.

    1978-01-01

    A computerized data base concerning avian mortality on man-made structures is available for searching at the Ecological Sciences Information Center of the Information Center Complex, Information Division, Oak Ridge National Laboratory. This data base, which contains entries from the available literature, provides information on avian mortality from either collision into or electrocution on man-made structures. Primary emphasis has been placed on avian collision with obstacles such as television and radio towers, airport ceilometers, transmission lines, and cooling towers. Other structures included in the studies are fences, glass walls and windows, lighthouses, telegraph and telephone wires, buildings, monuments, smokestacks, and water towers.

  17. Space Operations Learning Center (SOLC) iPhone/iPad Application

    Science.gov (United States)

    Binebrink, Daniel; Kuok, Heng; Hammond, Malinda; Hull, Scott

    2013-01-01

    This iPhone application, Space Junk Sammy, is intended to be an educational application designed for Apple iPhones and iPads. This new concept educates kids in an innovative way about how orbital debris affects space missions. Orbital debris is becoming a very significant concern for NASA and all Earthorbiting space missions. Spacecraft in low-Earth orbit are in constant danger of being potentially damaged or destroyed by debris. High-profile spacecraft such as the International Space Station (ISS) and Hubble Space Telescope are dealing with orbital debris on a regular basis. Other basic educational concepts that are portrayed are low-Earth orbits, satellites, ISS, attitude control, and other facts that can be presented in betweenlevel popup screens. The Orbital Debris Cleanup game is relatively simple from the user s technical standpoint. It is a 2D game where the user s avatar is a satellite buddy, named Sammy, in orbit around Earth. Sammy is controlled by the user with the device s gyroscope as well as touchscreen controls. It has equipment used for taking care of the space debris objects on the screen. Sammy also has a claw, a laser deflector, and hydrazine rockets to grab or push the debris objects into a higher orbit or into a lower orbit to burn up in the Earth s atmosphere. The user interface shows Sammy and space debris objects constantly moving from left to right, where Sammy is trying to catch the debris objects before they move off the right side of the screen. Everything will be in constant motion to increase fun and add to the realism of orbiting the Earth. The satellite buddy is used to clean up the space debris and protect other satellites. Later levels will include a laser deflector and hydrazine rockets instead of a robotic claw to push the orbital debris into a higher orbit and out of the path of other satellites

  18. The New Horizons and Hubble Space Telescope search for rings, dust, and debris in the Pluto-Charon system

    Science.gov (United States)

    Lauer, Tod R.; Throop, Henry B.; Showalter, Mark R.; Weaver, Harold A.; Stern, S. Alan; Spencer, John R.; Buie, Marc W.; Hamilton, Douglas P.; Porter, Simon B.; Verbiscer, Anne J.; Young, Leslie A.; Olkin, Cathy B.; Ennico, Kimberly; New Horizons Science Team

    2018-02-01

    We conducted an extensive search for dust or debris rings in the Pluto-Charon system before, during, and after the New Horizons encounter in July 2015. Methodologies included attempting to detect features by back-scattered light during the approach to Pluto (phase angle α ∼ 15°), in situ detection of impacting particles, a search for stellar occultations near the time of closest approach, and by forward-scattered light imaging during departure (α ∼ 165°). An extensive search using the Hubble Space Telescope (HST) prior to the encounter also contributed to the final ring limits. No rings, debris, or dust features were observed, but our new detection limits provide a substantially improved picture of the environment throughout the Pluto-Charon system. Searches for rings in back-scattered light covered the range 35,000-250,000 km from the system barycenter, a zone that starts interior to the orbit of Styx, the innermost minor satellite, and extends out to four times the orbital radius of Hydra, the outermost known satellite. We obtained our firmest limits using data from the New Horizons LORRI camera in the inner half of this region. Our limits on the normal I/F of an unseen ring depends on the radial scale of the rings: 2 ×10-8 (3σ) for 1500 km wide rings, 1 ×10-8 for 6000 km rings, and 7 ×10-9 for 12,000 km rings. Beyond ∼ 100, 000 km from Pluto, HST observations limit normal I/F to ∼ 8 ×10-8 . Searches for dust features from forward-scattered light extended from the surface of Pluto to the Pluto-Charon Hill sphere (rHill = 6.4 ×106 km). No evidence for rings or dust clouds was detected to normal I/F limits of ∼ 8.9 ×10-7 on ∼ 104 km scales. Four stellar occulation observations also probed the space interior to Hydra, but again no dust or debris was detected. The Student Dust Counter detected one particle impact 3.6 × 106 km from Pluto, but this is consistent with the interplanetary space environment established during the cruise of New

  19. Is the Sky Really Falling? An Overview of Orbital Debris

    Science.gov (United States)

    Hull, Scott M.

    2015-01-01

    Orbital debris has been a prominent topic for a while, even before the movie Gravity came out. An anti-satellite test and a collision with an operational satellite both produced large highly-publicized debris clouds within recent years. While large objects like abandoned satellites and rocket bodies may be the most recognizable and identifiable concerns, a majority of the daily threat comes from the much more numerous smaller particles. In fact, small particle penetration continues to rank among the leading risks for manned space missions to the International Space Station and beyond. How much 'stuff' is up there, where did it come from, what harm can it do, and what is being done about it? These questions and more will be discussed.

  20. The fast debris evolution model

    Science.gov (United States)

    Lewis, H. G.; Swinerd, G. G.; Newland, R. J.; Saunders, A.

    2009-09-01

    . The results demonstrate that the FADE model is able to capture comparable time-series of collisions and number of objects as predicted by DAMAGE in several scenarios. Further, and perhaps more importantly, its speed and flexibility allows the user to explore and understand the evolution of the space debris environment.

  1. Satellite Collision Modeling with Physics-Based Hydrocodes: Debris Generation Predictions of the Iridium-Cosmos Collision Event and Other Impact Events

    International Nuclear Information System (INIS)

    Springer, H.K.; Miller, W.O.; Levatin, J.L.; Pertica, A.J.; Olivier, S.S.

    2010-01-01

    Satellite collision debris poses risks to existing space assets and future space missions. Predictive models of debris generated from these hypervelocity collisions are critical for developing accurate space situational awareness tools and effective mitigation strategies. Hypervelocity collisions involve complex phenomenon that spans several time- and length-scales. We have developed a satellite collision debris modeling approach consisting of a Lagrangian hydrocode enriched with smooth particle hydrodynamics (SPH), advanced material failure models, detailed satellite mesh models, and massively parallel computers. These computational studies enable us to investigate the influence of satellite center-of-mass (CM) overlap and orientation, relative velocity, and material composition on the size, velocity, and material type distributions of collision debris. We have applied our debris modeling capability to the recent Iridium 33-Cosmos 2251 collision event. While the relative velocity was well understood in this event, the degree of satellite CM overlap and orientation was ill-defined. In our simulations, we varied the collision CM overlap and orientation of the satellites from nearly maximum overlap to partial overlap on the outermost extents of the satellites (i.e, solar panels and gravity boom). As expected, we found that with increased satellite overlap, the overall debris cloud mass and momentum (transfer) increases, the average debris size decreases, and the debris velocity increases. The largest predicted debris can also provide insight into which satellite components were further removed from the impact location. A significant fraction of the momentum transfer is imparted to the smallest debris (< 1-5mm, dependent on mesh resolution), especially in large CM overlap simulations. While the inclusion of the smallest debris is critical to enforcing mass and momentum conservation in hydrocode simulations, there seems to be relatively little interest in their

  2. Optimizing of the recycling of contaminated concrete debris. Final report

    International Nuclear Information System (INIS)

    Kloeckner, J.; Rasch, H.; Schloesser, K.H.; Schon, T.

    1999-01-01

    1. Latest research: So far concrete debris from nuclear facilities has been free released or was treated as radioactive waste. 2. Objective: The objective of this study is to develop solutions and methods for recycling concrete debris. The amount of materials used in nuclear facilities should be limited and the contamination of new materials should be avoided. 3. Methods: The status of recycling was presented using examples of operating or completed decommissioning as well as available studies and literature. The quality requirements for the production of new concrete products using recycled materials has been discussed. The expected amounts of concrete debris for the next 12 years was estimated. For the proposed recycling examples, radiological and economic aspects have been considered. 4. Results: The production of qualified concrete products from concrete debris is possible by using modified receptions. Technical regulations to this are missing. There is no need for the utilization of large amounts of concrete debris for shielding walls. For the production of new shielding-containers for radioactive waste, concrete debris can be applied. Regarding the distance to a central recycling facility the use of mobile equipment can be economical. By using the concrete for filling the cavity or space in a final storage, it is possible to dispose the whole radioactive debris. 5. Application possibilities: The use of concrete debris as an inner concrete shielding in waste-containers today is already possible. For the manufacture of qualified concrete products by using recycling products, further developments and regulations are necessary. (orig.) [de

  3. The Orbital Debris Problem and the Challenges for Environment Remediation

    Science.gov (United States)

    Liou, J.-C.

    2014-01-01

    LEO debris population will continue to increase even with a good implementation of the commonly-adopted mitigation measures. The root-cause of the increase is catastrophic collisions involving large/massive intact objects (rocket bodies or spacecraft). The major mission-ending risks for most operational spacecraft, however, come from impacts with debris just above the threshold of the protection shields (5-mm to 1-cm). A solution-driven approach is to seek: Concepts for removal of massive intacts with high P(collision); Concepts capable of preventing collisions involving intacts; Concepts for removal of 5-mm to 1-cm debris; Enhanced impact protection shields for valuable space assets. Key questions for remediation consideration of orbital debris: What is the acceptable threat level? What are the mission objectives? What is the appropriate roadmap/timeframe for remediation? Support advanced technology development when an economically viable approach is identified. Address non-technical issues, such as policy, coordination, ownership, legal, and liability at the national and international levels.

  4. Natural and Man-Made Hazards in the Cayman Islands

    Science.gov (United States)

    Novelo-Casanova, D. A.; Suarez, G.

    2010-12-01

    Located in the western Caribbean Sea to the northwest of Jamaica, the Cayman Islands are a British overseas territory comprised of three islands: Grand Cayman, Cayman Brac, and Little Cayman. These three islands occupy around 250 km2 of land area. In this work, historical and recent data were collected and classified to identify and rank the natural and man-made hazards that may potentially affect the Cayman Islands and determine the level of exposure of Grand Cayman to these events. With this purpose, we used the vulnerability assessment methodology developed by the North Caroline Department of Environment and Natural Resources. The different degrees of physical vulnerability for each hazard were graphically interpreted with the aid of maps using a relative scoring system. Spatial maps were generated showing the areas of different levels of exposure to multi-hazards. The more important natural hazard to which the Cayman Islands are exposed is clearly hurricanes. To a lesser degree, the islands may be occasionally exposed to earthquakes and tsunamis. Explosions or leaks of the Airport Texaco Fuel Depot and the fuel pipeline at Grand Cayman are the most significant man-made hazards. Our results indicate that there are four areas in Grand Cayman with various levels of exposure to natural and man-made hazards: The North Sound, Little Sound and Eastern West Bay (Area 1) show a very high level of exposure; The Central Mangroves, Central Bodden Town, Central George Town and the West Bay (Area 2) have high level of exposure; The Northwestern West Bay, Western Georgetown-Bodden Town, and East End-North Side (Area 3) are under moderate levels of exposure. The remainder of the island shows low exposure (Area 4). It is important to underline that this study presents a first evaluation of the main natural and man-made hazards that may affect the Cayman Islands. The maps generated will be useful tools for emergency managers and policy developers and will increase the overall

  5. The Near-Earth Orbital Debris Problem and the Challenges for Environment Remediation

    Science.gov (United States)

    Liou, Jer-Chyi

    2012-01-01

    The near-Earth space environment has been gradually polluted with orbital debris (OD) since the beginning of space activities 55 years ago. Although this problem has been known to the research community for decades, the public was, in general, unaware of the issue until the anti-satellite test conducted by China in 2007 and the collision between Cosmos 2251 and the operational Iridium 33 in 2009. The latter also underlined the potential of an ongoing collision cascade effect (the "Kessler Syndrome") in the low Earth orbit (LEO, the region below 2000 km altitude). Recent modeling results have indicated that mitigation measures commonly adopted by the international space community will be insufficient to stabilize the LEO debris population. To better limit the OD population increase, more aggressive actions must be considered. There are three options for OD environment remediation-removal of large/massive intact objects to address the root cause of the OD population growth problem, removal of 5-mm-to-1 cm debris to mitigate the main mission-ending threats for the majority of operational spacecraft, and prevention of major debris-generating collisions as a temporary means to slow down the OD population increase. The technology, engineering, and cost challenges to carry out any of these three options are monumental. It will require innovative ideas, game-changing technologies, and major collaborations at the international level to address the OD problem and preserve the near-Earth environment for future generations.

  6. Large-size space debris flyby in low earth orbits

    Science.gov (United States)

    Baranov, A. A.; Grishko, D. A.; Razoumny, Y. N.

    2017-09-01

    the analysis of NORAD catalogue of space objects executed with respect to the overall sizes of upper-stages and last stages of carrier rockets allows the classification of 5 groups of large-size space debris (LSSD). These groups are defined according to the proximity of orbital inclinations of the involved objects. The orbits within a group have various values of deviations in the Right Ascension of the Ascending Node (RAAN). It is proposed to use the RAANs deviations' evolution portrait to clarify the orbital planes' relative spatial distribution in a group so that the RAAN deviations should be calculated with respect to the concrete precessing orbital plane of the concrete object. In case of the first three groups (inclinations i = 71°, i = 74°, i = 81°) the straight lines of the RAAN relative deviations almost do not intersect each other. So the simple, successive flyby of group's elements is effective, but the significant value of total Δ V is required to form drift orbits. In case of the fifth group (Sun-synchronous orbits) these straight lines chaotically intersect each other for many times due to the noticeable differences in values of semi-major axes and orbital inclinations. The intersections' existence makes it possible to create such a flyby sequence for LSSD group when the orbit of one LSSD object simultaneously serves as the drift orbit to attain another LSSD object. This flyby scheme requiring less Δ V was called "diagonal." The RAANs deviations' evolution portrait built for the fourth group (to be studied in the paper) contains both types of lines, so the simultaneous combination of diagonal and successive flyby schemes is possible. The value of total Δ V and temporal costs were calculated to cover all the elements of the 4th group. The article is also enriched by the results obtained for the flyby problem solution in case of all the five mentioned LSSD groups. The general recommendations are given concerned with the required reserve of total

  7. Natural and man-made radiation: is there a distinction

    International Nuclear Information System (INIS)

    Moghissi, A.A.; Carter, M.W.

    1976-01-01

    The Atomic Energy Act of 1954 and its subsequent amdenments separate radioactive materials and ionizing radiation into two categories. The one category, man-made, which is covered by that Act has received considerable care and attention and thus causes a small population exposure and dose. However, the second category, natural, has received very little care and attention and, in many cases, has been neglected. Ironically, natural radiation causes the major fraction of the population exposure. This paper describes the exposure from these categories, identifies laws covering each category, and attempts a risk-benefit analysis of the subject. It also discusses the difficulties associated with differentiating between natural and man-made radiation

  8. The man-made creators of the imbalance of water in Nature

    Science.gov (United States)

    Shlafman, L. M.; Kontar, V. A.

    2013-12-01

    At 2011 we have described the imbalance of water in Nature as the system [1]. At 2012 we have described water and carbon and the glaciers [2], [3] as creators of the imbalance of Nature. Now we are describing some man-made creators of the imbalance of Nature. The photosynthesis is a powerful creator of the imbalance of Nature. The photosynthesis significantly increases the complexity of the structures and reduces the entropy. Earth's hydrosphere contains water less than it was flowed via photosynthesis. This is an example of the imbalance of involving when the return of water has delayed because water is involved into the processes of life and other processes. People widely use photosynthesis and create not only an additional man-made imbalance of water in Nature, but also the man-made changing the albedo, and a lot of other important parameters of the planet of Earth. All of these processes are significantly imbalanced. The fossil hydrocarbons have accumulated during millions of years, but now are burned. This is an example of the imbalance delay by time. The man-made burning of the hydrocarbons is creating the imbalances of impact or explosive type, because of the burning processes is in millions of times faster than the accumulation processes. Please pay attention to the imbalance of redeployment by places. For example, oil and gas are extracted in one places, and burned in others. During combustion is standing out not only water, but energy, and other components. The temperature in the centers of big cities is always higher and there is dominating the rising air. It pollutes the environment, changes circulations, create greenhouse effect, etc. Other examples of the imbalance of relocation are shown in the production and consumption of food. The irrigation systems transfer water from one place to another. This transfer of water creates a lot of imbalances in change climate, ecosystems, etc in places where water was took and where the water was brought. Usually

  9. Bi-objective optimization of a multiple-target active debris removal mission

    Science.gov (United States)

    Bérend, Nicolas; Olive, Xavier

    2016-05-01

    The increasing number of space debris in Low-Earth Orbit (LEO) raises the question of future Active Debris Removal (ADR) operations. Typical ADR scenarios rely on an Orbital Transfer Vehicle (OTV) using one of the two following disposal strategies: the first one consists in attaching a deorbiting kit, such as a solid rocket booster, to the debris after rendezvous; with the second one, the OTV captures the debris and moves it to a low-perigee disposal orbit. For multiple-target ADR scenarios, the design of such a mission is very complex, as it involves two optimization levels: one for the space debris sequence, and a second one for the "elementary" orbit transfer strategy from a released debris to the next one in the sequence. This problem can be seen as a Time-Dependant Traveling Salesman Problem (TDTSP) with two objective functions to minimize: the total mission duration and the total propellant consumption. In order to efficiently solve this problem, ONERA has designed, under CNES contract, TOPAS (Tool for Optimal Planning of ADR Sequence), a tool that implements a Branch & Bound method developed in previous work together with a dedicated algorithm for optimizing the "elementary" orbit transfer. A single run of this tool yields an estimation of the Pareto front of the problem, which exhibits the trade-off between mission duration and propellant consumption. We first detail our solution to cope with the combinatorial explosion of complex ADR scenarios with 10 debris. The key point of this approach is to define the orbit transfer strategy through a small set of parameters, allowing an acceptable compromise between the quality of the optimum solution and the calculation cost. Then we present optimization results obtained for various 10 debris removal scenarios involving a 15-ton OTV, using either the deorbiting kit or the disposal orbit strategy. We show that the advantage of one strategy upon the other depends on the propellant margin, the maximum duration allowed

  10. Debris Dispersion Model Using Java 3D

    Science.gov (United States)

    Thirumalainambi, Rajkumar; Bardina, Jorge

    2004-01-01

    This paper describes web based simulation of Shuttle launch operations and debris dispersion. Java 3D graphics provides geometric and visual content with suitable mathematical model and behaviors of Shuttle launch. Because the model is so heterogeneous and interrelated with various factors, 3D graphics combined with physical models provides mechanisms to understand the complexity of launch and range operations. The main focus in the modeling and simulation covers orbital dynamics and range safety. Range safety areas include destruct limit lines, telemetry and tracking and population risk near range. If there is an explosion of Shuttle during launch, debris dispersion is explained. The shuttle launch and range operations in this paper are discussed based on the operations from Kennedy Space Center, Florida, USA.

  11. MIPS Observations of the Fabulous Four Debris Disks

    Science.gov (United States)

    Su, K. Y. L.; Stansberry, J. A.; Rieke, G. H.; Trilling, D. E.; Stapelfeldt, K. R.; Werner, M. W.; Beichman, C.; Chen, C.; Marengo, M.; Megeath, T.; Backman, D.; van Cleve, J.

    2004-12-01

    The Multiband Imaging Photometer for Spitzer (MIPS) provides long-wavelength capability with imaging bands at 24, 70, and 160 um. We will present the MIPS images of the Fabulous Four Debris Disks: Beta Pictoris (A5 V), Epsilon Eridani (K2 V), Fomalhaut (A3 V) and Vega (A0 V). These systems discovered by IRAS possess large far-infrared excess emission above photosphere, indicating the existence of a circumstellar dusty disk. Given the main-sequence ages of these stars ( ˜12 Myr for Beta Pictoris, ˜730 Myr for Epsilon Eridani, ˜200 Myr for Fomalhaut, and ˜350 Myr for Vega), the dust in the systems could not be primordial as it would have been removed by radiation pressure and Poynting-Robertson drag on relatively short time scales ( ˜1E4 yr). The second-generation dust in such debris disks is thought to arise primarily from collisions between planetesimals (asteroids) and from cometary activity; however, details about the debris formation and evolution are not well understood. With the sensitivity and angular resolution of the Spitizer Space Telescope, the structures of these nearby debris disks were mapped in great detail to study the disks' spatial structures at mid- to far-infrared wavelengths. These high spatial resolution images provide unprecedented new constraints on the the dust properties in the systems and limits on the origin of dusty debris. Support for this work was provided by NASA through Contract Number 960785 issued by JPL/Caltech.

  12. Modelling man-made ground to link the above- and below- ground urban domains

    NARCIS (Netherlands)

    Schokker, J.

    2017-01-01

    This report describes the results of STSM TU1206-36204. During a visit to GEUS (DK) between 23 and 27 January 2017, Jeroen Schokker (TNO-GSN, NL) has focussed on the modelling of man-made ground as a linking pin between the above- and below-ground urban domains. Key results include: • Man-made

  13. An adaptive process-based cloud infrastructure for space situational awareness applications

    Science.gov (United States)

    Liu, Bingwei; Chen, Yu; Shen, Dan; Chen, Genshe; Pham, Khanh; Blasch, Erik; Rubin, Bruce

    2014-06-01

    Space situational awareness (SSA) and defense space control capabilities are top priorities for groups that own or operate man-made spacecraft. Also, with the growing amount of space debris, there is an increase in demand for contextual understanding that necessitates the capability of collecting and processing a vast amount sensor data. Cloud computing, which features scalable and flexible storage and computing services, has been recognized as an ideal candidate that can meet the large data contextual challenges as needed by SSA. Cloud computing consists of physical service providers and middleware virtual machines together with infrastructure, platform, and software as service (IaaS, PaaS, SaaS) models. However, the typical Virtual Machine (VM) abstraction is on a per operating systems basis, which is at too low-level and limits the flexibility of a mission application architecture. In responding to this technical challenge, a novel adaptive process based cloud infrastructure for SSA applications is proposed in this paper. In addition, the details for the design rationale and a prototype is further examined. The SSA Cloud (SSAC) conceptual capability will potentially support space situation monitoring and tracking, object identification, and threat assessment. Lastly, the benefits of a more granular and flexible cloud computing resources allocation are illustrated for data processing and implementation considerations within a representative SSA system environment. We show that the container-based virtualization performs better than hypervisor-based virtualization technology in an SSA scenario.

  14. Aquatic insect assemblages of man-made permanent ponds, Buenos Aires city, Argentina.

    Science.gov (United States)

    Fontanarrosa, M S; Collantes, M B; Bachmann, A O

    2013-02-01

    Freshwater habitats are important elements within urban green space and they are endangered by various types of human activity. With the aim to increase the knowledge about species biodiversity in urban ecosystems, we characterised the assemblages of aquatic insects in four permanent man-made ponds in Buenos Aires city (Argentina) during a 1-year period. We recorded 32 species with Sigara spp. (Hemiptera) as the most abundant. The removal of aquatic vegetation from the studied ponds may have affected both the establishment and permanence of the insect community. Swimmers were the dominant group in the studied sites, followed by burrowers and sprawlers, and only a few strictly climbers were collected. Therefore, all sampled ponds were dominated by collectors (principally gatherers), secondarily by predators and only few shredders were detected, which was much affected by the removal of macrophytes. Non-parametric abundance indexes estimated a number of species very close to the observed number in each site. Conversely, the incidence indexes estimated more species because there were many more taxa present only in one sample than those represented by few individual in a sample. Our data provides some insights on the community of man-made ponds that can improve the management of these aquatic urban habitats. Considering that macrophytes affect animal assemblages due to their role as physical structures that increase the complexity or heterogeneity of habitats, they should not be removed by authorities in order to promote biodiversity.

  15. NEW DEBRIS DISKS IN NEARBY YOUNG MOVING GROUPS

    Energy Technology Data Exchange (ETDEWEB)

    Moór, A.; Kóspál, Á.; Ábrahám, P.; Kiss, Cs. [Konkoly Observatory, Research Centre for Astronomy and Earth Sciences, Hungarian Academy of Sciences, P.O. Box 67, H-1525 Budapest (Hungary); Balog, Z.; Henning, Th. [Max-Planck-Institut für Astronomie, Königstuhl 17, D-69117 Heidelberg (Germany); Csengeri, T. [Max-Planck-Institut für Radioastronomie, Auf dem Hügel 69, D-53121 Bonn (Germany); Juhász, A., E-mail: moor@konkoly.hu [Institute of Astronomy, Madingley Road, Cambridge CB3, OHA (United Kingdom)

    2016-08-01

    A significant fraction of nearby young moving group members harbor circumstellar debris dust disks. Due to their proximity and youth, these disks are attractive targets for studying the early evolution of debris dust and planetesimal belts. Here we present 70 and 160 μ m observations of 31 systems in the β Pic moving group, and in the Tucana–Horologium, Columba, Carina, and Argus associations, using the Herschel Space Observatory . None of these stars were observed at far-infrared wavelengths before. Our Herschel measurements were complemented by photometry from the WISE satellite for the whole sample, and by submillimeter/millimeter continuum data for one source, HD 48370. We identified six stars with infrared excess, four of them are new discoveries. By combining our new findings with results from the literature, we examined the incidence and general characteristics of debris disks around Sun-like members of the selected groups. With their dust temperatures of <45 K the newly identified disks around HD 38397, HD 48370, HD 160305, and BD-20 951 represent the coldest population within this sample. For HD 38397 and HD 48370, the emission is resolved in the 70 μ m Photodetector Array Camera and Spectrograph images, the estimated radius of these disks is ∼90 au. Together with the well-known disk around HD 61005, these three systems represent the highest mass end of the known debris disk population around young G-type members of the selected groups. In terms of dust content, they resemble the hypothesized debris disk of the ancient solar system.

  16. Academy of Program/Project & Engineering Leadership Orbital Debris Management and Risk Mitigation

    Data.gov (United States)

    National Aeronautics and Space Administration — The NASA Academy of Program/Project & Engineering Leadership (APPEL) is excited to announce the public release of Orbital Debris Management and Risk Mitigation,...

  17. Publicly Available Geosynchronous (GEO) Space Object Catalog for Future Space Situational Awareness (SSA) Studies

    Science.gov (United States)

    Koblick, D. C.; Shankar, P.; Xu, S.

    Previously, there have been many commercial proposals and extensive academic studies regarding ground and space based sensors to assist a space surveillance network in obtaining metric observations of satellites and debris near Geosynchronous Earth Orbit (GEO). Most use physics based models for geometric constraints, lighting, and tasker/scheduler operations of sensor architectures. Under similar physics modeling assumptions, the space object catalog is often different due to proprietary standards and datasets. Lack of catalog commonality between studies creates barriers and difficulty comparing performance benefits of sensor trades. To solve this problem, we have constructed a future GEO space catalog from publicly available datasets and literature. The annual number of new payloads and rocket bodies is drawn from a Poisson distribution while the growth of the current GEO catalog is bootstrapped from the historical payload, upper stage, and debris data. We adopt a spherically symmetric explosion model and couple it with the NASA standard breakup model to simulate explosions of payloads and rocket bodies as they are the primary drivers of the debris population growth. The cumulative number of fragments follow a power-law distribution. Result from 1,000 random catalog growth simulations indicates that the GEO space object population in the year 2050 will include over 3,600 objects, nearly half of which are debris greater than 10 cm spherical diameter. The number of rocket bodies and dead payloads is projected to nearly double over the next 33 years. For comparison, the current Air Force Space Command catalog snapshot contains fewer than 50 pieces of debris and coarse Radar Cross Section (RCS) estimates which include: small, medium, and large. The current catalog may be sufficient for conjunction studies, but not for analyzing future sensor system performance. The 2050 GEO projected catalog will be available online for commercial/academic research and development.

  18. Implementation of Man-made Tongue Immobilization Devices in Treating Head and Neck Cancer Patients

    International Nuclear Information System (INIS)

    Baek, Jong Geal; Kim, Joo Ho; Lee, Sang Kyu; Lee, Won Joo; Yoon, Jong Won; Cho, Jeong Hee

    2008-01-01

    For head and neck cancer patients treated with radiation therapy, proper immobilization of intra-oral structures is crucial in reproducing treatment positions and optimizing dose distribution. We produced a man-made tongue immobilization device for each patient subjected to this study. Reproducibility of treatment positions and dose distributions at air-and-tissue interface were compared using man-made tongue immobilization devices and conventional tongue-bites. Dental alginate and putty were used in producing man-made tongue immobilization devices. In order to evaluate reproducibility of treatment positions, all patients were CT-simulated, and linac-gram was repeated 5 times with each patient in the treatment position. An acrylic phantom was devised in order to evaluate safety of man-made tongue immobilization devices. Air, water, alginate and putty were placed in the phantom and dose distributions at air-and-tissue interface were calculated using Pinnacle (version 7.6c, Phillips, USA) and measured with EBT film. Two different field sizes (33 cm and 55 cm) were used for comparison. Evaluation of linac grams showed reproducibility of a treatment position was 4 times more accurate with man-made tongue immobilization devices compared with conventional tongue bites. Patients felt more comfortable using customized tongue immobilization devices during radiation treatment. Air-and-tissue interface dose distributions calculated using Pinnacle were 7.78% and 0.56% for 33 cm field and 55 cm field respectively. Dose distributions measured with EBT (international specialty products, USA) film were 36.5% and 11.8% for 33 cm field and 55 cm field respectively. Values from EBT film were higher. Using man-made tongue immobilization devices made of dental alginate and putty in treatment of head and neck cancer patients showed higher reproducibility of treatment position compared with using conventional mouth pieces. Man-made immobilization devices can help optimizing air

  19. Implementation of Man-made Tongue Immobilization Devices in Treating Head and Neck Cancer Patients

    Energy Technology Data Exchange (ETDEWEB)

    Baek, Jong Geal; Kim, Joo Ho; Lee, Sang Kyu; Lee, Won Joo; Yoon, Jong Won; Cho, Jeong Hee [Dept. of Radiation Oncology, Yensei Cancer Center, Yensei University Health System, Seoul (Korea, Republic of)

    2008-03-15

    For head and neck cancer patients treated with radiation therapy, proper immobilization of intra-oral structures is crucial in reproducing treatment positions and optimizing dose distribution. We produced a man-made tongue immobilization device for each patient subjected to this study. Reproducibility of treatment positions and dose distributions at air-and-tissue interface were compared using man-made tongue immobilization devices and conventional tongue-bites. Dental alginate and putty were used in producing man-made tongue immobilization devices. In order to evaluate reproducibility of treatment positions, all patients were CT-simulated, and linac-gram was repeated 5 times with each patient in the treatment position. An acrylic phantom was devised in order to evaluate safety of man-made tongue immobilization devices. Air, water, alginate and putty were placed in the phantom and dose distributions at air-and-tissue interface were calculated using Pinnacle (version 7.6c, Phillips, USA) and measured with EBT film. Two different field sizes (33 cm and 55 cm) were used for comparison. Evaluation of linac grams showed reproducibility of a treatment position was 4 times more accurate with man-made tongue immobilization devices compared with conventional tongue bites. Patients felt more comfortable using customized tongue immobilization devices during radiation treatment. Air-and-tissue interface dose distributions calculated using Pinnacle were 7.78% and 0.56% for 33 cm field and 55 cm field respectively. Dose distributions measured with EBT (international specialty products, USA) film were 36.5% and 11.8% for 33 cm field and 55 cm field respectively. Values from EBT film were higher. Using man-made tongue immobilization devices made of dental alginate and putty in treatment of head and neck cancer patients showed higher reproducibility of treatment position compared with using conventional mouth pieces. Man-made immobilization devices can help optimizing air

  20. The Orbital Space Environment and Space Situational Awareness Domain Ontology - Toward an International Information System for Space Data

    Science.gov (United States)

    Rovetto, R.

    2016-09-01

    The orbital space environment is home to natural and artificial satellites, debris, and space weather phenomena. As the population of orbital objects grows so do the potential hazards to astronauts, space infrastructure and spaceflight capability. Orbital debris, in particular, is a universal concern. This and other hazards can be minimized by improving global space situational awareness (SSA). By sharing more data and increasing observational coverage of the space environment we stand to achieve that goal, thereby making spaceflight safer and expanding our knowledge of near-Earth space. To facilitate data-sharing interoperability among distinct orbital debris and space object catalogs, and SSA information systems, I proposed ontology in (Rovetto, 2015) and (Rovetto and Kelso, 2016). I continue this effort toward formal representations and models of the overall domain that may serve to improve peaceful SSA and increase our scientific knowledge. This paper explains the project concept introduced in those publications, summarizing efforts to date as well as the research field of ontology development and engineering. I describe concepts for an ontological framework for the orbital space environment, near-Earth space environment and SSA domain. An ontological framework is conceived as a part of a potential international information system. The purpose of such a system is to consolidate, analyze and reason over various sources and types of orbital and SSA data toward the mutually beneficial goals of safer space navigation and scientific research. Recent internationals findings on the limitations of orbital data, in addition to existing publications on collaborative SSA, demonstrate both the overlap with this project and the need for datasharing and integration.

  1. RS-34 (Peacekeeper Post Boost Propulsion System) Orbital Debris Application Concept Study

    Science.gov (United States)

    Esther, Elizabeth A.; Burnside, Christopher G.

    2013-01-01

    The Advanced Concepts Office (ACO) at the NASA Marshall Space Flight Center (MSFC) lead a study to evaluate the Rocketdyne produced RS-34 propulsion system as it applies to an orbital debris removal design reference mission. The existing RS-34 propulsion system is a remaining asset from the de-commissioned United States Air Force Peacekeeper ICBM program; specifically the pressure-fed storable bi-propellant Stage IV Post Boost Propulsion System. MSFC gained experience with the RS-34 propulsion system on the successful Ares I-X flight test program flown in the Ares I-X Roll control system (RoCS). The heritage hardware proved extremely robust and reliable and sparked interest for further utilization on other potential in-space applications. Subsequently, MSFC is working closely with the USAF to obtain all the remaining RS-34 stages for re-use opportunities. Prior to pursuit of securing the hardware, MSFC commissioned the Advanced Concepts Office to understand the capability and potential applications for the RS-34 Phoenix stage as it benefits NASA, DoD, and commercial industry. Originally designed, the RS-34 Phoenix provided in-space six-degrees-of freedom operational maneuvering to deploy multiple payloads at various orbital locations. The RS-34 Concept Study, preceded by a utilization study to understand how the unique capabilities of the RS-34 Phoenix and its application to six candidate missions, sought to further understand application for an orbital debris design reference mission as the orbital debris removal mission was found to closely mimic the heritage RS-34 mission. The RS-34 Orbital Debris Application Concept Study sought to identify multiple configurations varying the degree of modification to trade for dry mass optimization and propellant load for overall capability and evaluation of several candidate missions. The results of the RS-34 Phoenix Utilization Study show that the system is technically sufficient to successfully support all of the missions

  2. Woody debris

    Science.gov (United States)

    Donna B. Scheungrab; Carl C. Trettin; Russ Lea; Martin F. Jurgensen

    2000-01-01

    Woody debris can be defined as any dead, woody plant material, including logs, branches, standing dead trees, and root wads. Woody debris is an important part of forest and stream ecosystems because it has a role in carbon budgets and nutrient cycling, is a source of energy for aquatic ecosystems, provides habitat for terrestrial and aquatic organisms, and contributes...

  3. A Study on Re-entry Predictions of Uncontrolled Space Objects for Space Situational Awareness

    Science.gov (United States)

    Choi, Eun-Jung; Cho, Sungki; Lee, Deok-Jin; Kim, Siwoo; Jo, Jung Hyun

    2017-12-01

    The key risk analysis technologies for the re-entry of space objects into Earth’s atmosphere are divided into four categories: cataloguing and databases of the re-entry of space objects, lifetime and re-entry trajectory predictions, break-up models after re-entry and multiple debris distribution predictions, and ground impact probability models. In this study, we focused on re- entry prediction, including orbital lifetime assessments, for space situational awareness systems. Re-entry predictions are very difficult and are affected by various sources of uncertainty. In particular, during uncontrolled re-entry, large spacecraft may break into several pieces of debris, and the surviving fragments can be a significant hazard for persons and properties on the ground. In recent years, specific methods and procedures have been developed to provide clear information for predicting and analyzing the re-entry of space objects and for ground-risk assessments. Representative tools include object reentry survival analysis tool (ORSAT) and debris assessment software (DAS) developed by National Aeronautics and Space Administration (NASA), spacecraft atmospheric re-entry and aerothermal break-up (SCARAB) and debris risk assessment and mitigation analysis (DRAMA) developed by European Space Agency (ESA), and semi-analytic tool for end of life analysis (STELA) developed by Centre National d’Etudes Spatiales (CNES). In this study, various surveys of existing re-entry space objects are reviewed, and an efficient re-entry prediction technique is suggested based on STELA, the life-cycle analysis tool for satellites, and DRAMA, a re-entry analysis tool. To verify the proposed method, the re-entry of the Tiangong-1 Space Lab, which is expected to re-enter Earth’s atmosphere shortly, was simulated. Eventually, these results will provide a basis for space situational awareness risk analyses of the re-entry of space objects.

  4. Characterization of Orbital Debris Photometric Properties Derived from Laboratory-Based Measurements

    Science.gov (United States)

    Cowardin, H.; Abercromby, K.; Barker, E.; Seitzer, P.; Schildknecht, T.

    2010-01-01

    To better characterize and model optical data acquired from ground-based telescopes, the Optical Measurements Center (OMC) at NASA/JSC attempts to emulate illumination conditions seen in space using equipment and techniques that parallel telescopic observations and source-target-sensor orientations. The OMC uses a 75 Watt Xenon arc lamp as a solar simulator, an SBIG CCD camera with standard Johnson/Bessel filters, and a robotic arm to simulate an object's position and rotation. The laboratory uses known shapes, materials suspected to be consistent with the orbital debris population, and three phase angles to best match the lighting conditions of the telescope based data. The fourteen objects studied in the laboratory are fragments or materials acquired through ground-tests of scaled-model satellites/rocket bodies as well as material samples in more/less "flight-ready" condition. All fragments were measured at 10 increments in a full 360 rotation at 6 , 36 , and 60 phase angles. This paper will investigate published color photometric data for a series of orbital debris targets and compare it to the empirical photometric measurements generated in the OMC. Using the data acquired over specific rotational angles through different filters (B, V, R, I), a color index is acquired (B-R, R-I). Using these values and their associated lightcurves, this laboratory data is compared to observational data obtained on the 1 m telescope of the Astronomical Institute of the University of Bern (AUIB), the 0.9 m operated by the Small- and Medium-Aperture Research Telescope System (SMARTS) Consortium and the Curtis-Schmidt 0.6 m Michigan Orbital Debris Space Debris Telescope both located at Cerro Tololo Inter-American Observatory (CTIO). An empirical based optical characterization model will be presented to provide preliminary correlations between laboratory based and telescope-based data in the context of classification of GEO debris objects.

  5. DebriSat - A Planned Laboratory-Based Satellite Impact Experiment for Breakup Fragment Characterization

    Science.gov (United States)

    Liou, J.-C.; Fitz-Coy, N.; Werremeyer, M.; Huynh, T.; Voelker, M.; Opiela, J.

    2012-01-01

    DebriSat is a planned laboratory ]based satellite hypervelocity impact experiment. The goal of the project is to characterize the orbital debris that would be generated by a hypervelocity collision involving a modern satellite in low Earth orbit (LEO). The DebriSat project will update and expand upon the information obtained in the 1992 Satellite Orbital Debris Characterization Impact Test (SOCIT), which characterized the breakup of a 1960 's US Navy Transit satellite. There are three phases to this project: the design and fabrication of an engineering model representing a modern, 50-cm/50-kg class LEO satellite known as DebriSat; conduction of a laboratory-based hypervelocity impact to catastrophically break up the satellite; and characterization of the properties of breakup fragments down to 2 mm in size. The data obtained, including fragment size, area ]to ]mass ratio, density, shape, material composition, optical properties, and radar cross ]section distributions, will be used to supplement the DoD fs and NASA fs satellite breakup models to better describe the breakup outcome of a modern satellite. Updated breakup models will improve mission planning, environmental models, and event response. The DebriSat project is sponsored by the Air Force fs Space and Missile Systems Center and the NASA Orbital Debris Program Office. The design and fabrication of DebriSat is led by University of Florida with subject matter experts f support from The Aerospace Corporation. The major milestones of the project include the complete fabrication of DebriSat by September 2013, the hypervelocity impact of DebriSat at the Air Force fs Arnold Engineering Development Complex in early 2014, and fragment characterization and data analyses in late 2014.

  6. Debris flows susceptibility mapping under tropical rain conditions in Rwanda.

    Science.gov (United States)

    Nduwayezu, Emmanuel; Nsengiyumva, Jean-Baptiste; BUgnon, Pierre-Charles; Jaboyedoff, Michel; Derron, Marc-Henri

    2017-04-01

    Rwanda is a densely populated country. It means that all the space is exploited, including sometimes areas with very steep slopes. This has as for consequences that during the rainy season slopes with human activities are affected by gravitational processes, mostly debris and mud flows and shallow landslides. The events of early May 2016 (May 8 and 9), with more than 50 deaths, are an illustration of these frequents landslides and inundations. The goal of this work is to produce a susceptibility map for debris/mud flows at regional/national scale. Main available pieces of data are a national digital terrain model at 10m resolution, bedrock and soil maps, and information collected during field visits on some specific localities. The first step is the characterization of the slope angle distribution for the different types of bedrock or soils (decomposition in Gaussian populations). Then, the combination of this information with other geomorphic and hydrologic parameters is used to define potential source areas of debris flows. Finally, propagation maps of debris flows are produced using FLOW-R (Horton et al. 2013). Horton, P., Jaboyedoff, M., Rudaz, B., and Zimmermann, M.: Flow-R, a model for susceptibility mapping of debris flows and other gravitational hazards at a regional scale, Nat. Hazards Earth Syst. Sci., 13, 869-885, doi:10.5194/nhess-13-869-2013, 2013. The paper is in open access.

  7. Close Approach Prediction Analysis of the Earth Science Constellation with the Fengyun-1C Debris

    Science.gov (United States)

    Duncan, Matthew; Rand, David K.

    2008-01-01

    Routine satellite operations for the Earth Science Constellation (ESC) include collision risk assessment between members of the constellation and other orbiting space objects. Each day, close approach predictions are generated by a U.S. Department of Defense Joint Space Operations Center Orbital Safety Analyst using the high accuracy Space Object Catalog maintained by the Air Force's 1" Space Control Squadron. Prediction results and other ancillary data such as state vector information are sent to NASAJGoddard Space Flight Center's (GSFC's) Collision Risk Assessment analysis team for review. Collision analysis is performed and the GSFC team works with the ESC member missions to develop risk reduction strategies as necessary. This paper presents various close approach statistics for the ESC. The ESC missions have been affected by debris from the recent anti-satellite test which destroyed the Chinese Fengyun- 1 C satellite. The paper also presents the percentage of close approach events induced by the Fengyun-1C debris, and presents analysis results which predict the future effects on the ESC caused by this event. Specifically, the Fengyun-1C debris is propagated for twenty years using high-performance computing technology and close approach predictions are generated for the ESC. The percent increase in the total number of conjunction events is considered to be an estimate of the collision risk due to the Fengyun-1C break- UP.

  8. Improved Space Surveillance Network (SSN) Scheduling using Artificial Intelligence Techniques

    Science.gov (United States)

    Stottler, D.

    There are close to 20,000 cataloged manmade objects in space, the large majority of which are not active, functioning satellites. These are tracked by phased array and mechanical radars and ground and space-based optical telescopes, collectively known as the Space Surveillance Network (SSN). A better SSN schedule of observations could, using exactly the same legacy sensor resources, improve space catalog accuracy through more complementary tracking, provide better responsiveness to real-time changes, better track small debris in low earth orbit (LEO) through efficient use of applicable sensors, efficiently track deep space (DS) frequent revisit objects, handle increased numbers of objects and new types of sensors, and take advantage of future improved communication and control to globally optimize the SSN schedule. We have developed a scheduling algorithm that takes as input the space catalog and the associated covariance matrices and produces a globally optimized schedule for each sensor site as to what objects to observe and when. This algorithm is able to schedule more observations with the same sensor resources and have those observations be more complementary, in terms of the precision with which each orbit metric is known, to produce a satellite observation schedule that, when executed, minimizes the covariances across the entire space object catalog. If used operationally, the results would be significantly increased accuracy of the space catalog with fewer lost objects with the same set of sensor resources. This approach inherently can also trade-off fewer high priority tasks against more lower-priority tasks, when there is benefit in doing so. Currently the project has completed a prototyping and feasibility study, using open source data on the SSN's sensors, that showed significant reduction in orbit metric covariances. The algorithm techniques and results will be discussed along with future directions for the research.

  9. Sizing of "Mother Ship and Catcher" Concepts for LEO Small Debris Capture

    Science.gov (United States)

    Bacon, John B.

    2009-01-01

    Most Low Earth Orbit (LEO) debris lies in a limited number of inclination "bands" associated with launch latitudes, or with specific useful orbit inclinations (such as polar orbits). Such narrow inclination bands generally have a uniform spread over all possible Right Ascensions of Ascending Node (RAANs), creating a different orbit plane for nearly every piece of debris. This complicates concept of rendezvous and capture for debris removal. However, a low-orbiting satellite will always phase in RAAN faster than debris objects in higher orbits at the same inclination, potentially solving the problem. Such a base can serve as a single space-based launch facility (a "mother ship") that can tend and then send tiny individual catcher devices for each debris object, as the facility drifts into the same RAAN as the higher object. This presentation will highlight characteristic system requirements of such an architecture, including structural and navigation requirements, power, mass and dV budgets for both the mother ship and the mass-produced common catcher devices that would clean out selected inclination bands. The altitude and inclination regime over which a band is to be cleared, the size distribution of the debris, and the inclusion of additional mission priorities all affect the sizing of the system. It is demonstrated that major LEO hazardous debris reductions can be realized in each band with a single LEO launch of a single mother ship, with simple attached catchers of total mass less than typical commercial LEO launch capability.

  10. Active debris removal GNC challenges over design and required ground validation

    Science.gov (United States)

    Colmenarejo, Pablo; Avilés, Marcos; di Sotto, Emanuele

    2015-06-01

    Because of the exponential growth of space debris, the access to space in the medium-term future is considered as being seriously compromised, particularly within LEO polar Sun-synchronous orbits and within geostationary orbits. The active debris removal (ADR) application poses new and challenging requirements on: first, the new required Guidance, Navigation and Control (GNC) technologies and, second, how to validate these new technologies before being applied in real missions. There is no doubt about the strong safety and collision risk aspects affecting the real operational ADR missions. But it shall be considered that even ADR demonstration missions will be affected by significant risk of collision during the demonstration, and that the ADR GNC systems/technologies to be used shall be well mature before using/demonstrating them in space. Specific and dedicated on-ground validation approaches, techniques and facilities are mandatory. The different ADR techniques can be roughly catalogued in three main groups (rigid capture, non-rigid capture and contactless). All of them have a strong impact on the GNC system of the active vehicle during the capture/proximity phase and, particularly, during the active vehicle/debris combo control phase after capture and during the de-orbiting phase. The main operational phases on an ADR scenario are: (1) ground controlled phase (ADR vehicle and debris are far), (2) fine orbit synchronization phase (ADR vehicle to reach debris ±V-bar), (3) short range phase (along track distance reduction till 10-100 s of metres), (4) terminal approach/capture phase and (5) de-orbiting. While phases 1-3 are somehow conventional and already addressed in detail during past/on-going studies related to rendezvous and/or formation flying, phases 4-5 are very specific and not mature in terms of GNC needed technologies and HW equipment. GMV is currently performing different internal activities and ESA studies/developments related to ADR mission, GNC and

  11. Techniques for inventorying manmade impacts in roadway environments.

    Science.gov (United States)

    Dale R. Potter; J. Alan. Wagar

    1971-01-01

    Four techniques for inventorying manmade impacts along roadway corridors were devised and compared. Ground surveillance and ground photography techniques recorded impacts within the corridor visible from the road. Techniques on large- and small-scale aerial photography recorded impacts within a more complete corridor that included areas screened from the road by...

  12. Spatial and temporal patterns of stranded intertidal marine debris: is there a picture of global change?

    Science.gov (United States)

    Browne, Mark Anthony; Chapman, M Gee; Thompson, Richard C; Amaral Zettler, Linda A; Jambeck, Jenna; Mallos, Nicholas J

    2015-06-16

    Floating and stranded marine debris is widespread. Increasing sea levels and altered rainfall, solar radiation, wind speed, waves, and oceanic currents associated with climatic change are likely to transfer more debris from coastal cities into marine and coastal habitats. Marine debris causes economic and ecological impacts, but understanding the scope of these requires quantitative information on spatial patterns and trends in the amounts and types of debris at a global scale. There are very few large-scale programs to measure debris, but many peer-reviewed and published scientific studies of marine debris describe local patterns. Unfortunately, methods of defining debris, sampling, and interpreting patterns in space or time vary considerably among studies, yet if data could be synthesized across studies, a global picture of the problem may be avaliable. We analyzed 104 published scientific papers on marine debris in order to determine how to evaluate this. Although many studies were well designed to answer specific questions, definitions of what constitutes marine debris, the methods used to measure, and the scale of the scope of the studies means that no general picture can emerge from this wealth of data. These problems are detailed to guide future studies and guidelines provided to enable the collection of more comparable data to better manage this growing problem.

  13. Assessing accumulated hard-tissue debris using micro-computed tomography and free software for image processing and analysis.

    Science.gov (United States)

    De-Deus, Gustavo; Marins, Juliana; Neves, Aline de Almeida; Reis, Claudia; Fidel, Sandra; Versiani, Marco A; Alves, Haimon; Lopes, Ricardo Tadeu; Paciornik, Sidnei

    2014-02-01

    The accumulation of debris occurs after root canal preparation procedures specifically in fins, isthmus, irregularities, and ramifications. The aim of this study was to present a step-by-step description of a new method used to longitudinally identify, measure, and 3-dimensionally map the accumulation of hard-tissue debris inside the root canal after biomechanical preparation using free software for image processing and analysis. Three mandibular molars presenting the mesial root with a large isthmus width and a type II Vertucci's canal configuration were selected and scanned. The specimens were assigned to 1 of 3 experimental approaches: (1) 5.25% sodium hypochlorite + 17% EDTA, (2) bidistilled water, and (3) no irrigation. After root canal preparation, high-resolution scans of the teeth were accomplished, and free software packages were used to register and quantify the amount of accumulated hard-tissue debris in either canal space or isthmus areas. Canal preparation without irrigation resulted in 34.6% of its volume filled with hard-tissue debris, whereas the use of bidistilled water or NaOCl followed by EDTA showed a reduction in the percentage volume of debris to 16% and 11.3%, respectively. The closer the distance to the isthmus area was the larger the amount of accumulated debris regardless of the irrigating protocol used. Through the present method, it was possible to calculate the volume of hard-tissue debris in the isthmuses and in the root canal space. Free-software packages used for image reconstruction, registering, and analysis have shown to be promising for end-user application. Copyright © 2014. Published by Elsevier Inc.

  14. DebriSat Hypervelocity Impact Test

    Science.gov (United States)

    2015-08-01

    public release; distribution unlimited.  Targets: Scaled Multishock Shield, DebrisLV, and DebriSat  500-600 g hollow aluminum and nylon projectile... insulation . DebriSat’s internal components were structurally similar to real flight hardware but were nonfunctional. AEDC-TR-15-S-2 6...structures with an AL 5052 honeycomb core and M55J carbon fiber face sheets. The basic system characteristics of the DebriSat are given in Table 1

  15. LDEF data: Comparisons with existing models

    Science.gov (United States)

    Coombs, Cassandra R.; Watts, Alan J.; Wagner, John D.; Atkinson, Dale R.

    1993-04-01

    The relationship between the observed cratering impact damage on the Long Duration Exposure Facility (LDEF) versus the existing models for both the natural environment of micrometeoroids and the man-made debris was investigated. Experimental data was provided by several LDEF Principal Investigators, Meteoroid and Debris Special Investigation Group (M&D SIG) members, and by the Kennedy Space Center Analysis Team (KSC A-Team) members. These data were collected from various aluminum materials around the LDEF satellite. A PC (personal computer) computer program, SPENV, was written which incorporates the existing models of the Low Earth Orbit (LEO) environment. This program calculates the expected number of impacts per unit area as functions of altitude, orbital inclination, time in orbit, and direction of the spacecraft surface relative to the velocity vector, for both micrometeoroids and man-made debris. Since both particle models are couched in terms of impact fluxes versus impactor particle size, and much of the LDEF data is in the form of crater production rates, scaling laws have been used to relate the two. Also many hydrodynamic impact computer simulations were conducted, using CTH, of various impact events, that identified certain modes of response, including simple metallic target cratering, perforations and delamination effects of coatings.

  16. The Gaia Catalogue Second Data Release and Its Implications to Optical Observations of Man-Made Earth Orbiting Objects

    Science.gov (United States)

    Frith, James M.; Buckalew, Brent A.; Cowardin, Heather M.; Lederer, Susan M.

    2018-01-01

    The Gaia catalogue second data release and its implications to optical observations of man-made Earth orbiting objects. Abstract and not the Final Paper is attached. The Gaia spacecraft was launched in December 2013 by the European Space Agency to produce a three-dimensional, dynamic map of objects within the Milky Way. Gaia's first year of data was released in September 2016. Common sources from the first data release have been combined with the Tycho-2 catalogue to provide a 5 parameter astrometric solution for approximately 2 million stars. The second Gaia data release is scheduled to come out in April 2018 and is expected to provide astrometry and photometry for more than 1 billion stars, a subset of which with a the full 6 parameter astrometric solution (adding radial velocity) and positional accuracy better than 0.002 arcsec (2 mas). In addition to precise astrometry, a unique opportunity exists with the Gaia catalogue in its production of accurate, broadband photometry using the Gaia G filter. In the past, clear filters have been used by various groups to maximize likelihood of detection of dim man-made objects but these data were very difficult to calibrate. With the second release of the Gaia catalogue, a ground based system utilizing the G band filter will have access to 1.5 billion all-sky calibration sources down to an accuracy of 0.02 magnitudes or better. In this talk, we will discuss the advantages and practicalities of implementing the Gaia filters and catalogue into data pipelines designed for optical observations of man-made objects.

  17. Fighting in a Contested Space Environment: Training Marines for Operations with Degraded or Denied Space-Enabled Capabilities

    Science.gov (United States)

    2015-06-01

    TRAINING MARINES FOR OPERATIONS WITH DEGRADED OR DENIED SPACE-ENABLED CAPABILITIES 5. FUNDING NUMBERS 6. AUTHOR(S) David M. Garcia 7. PERFORMING ...ORGANIZATION NAME(S) AND ADDRESS(ES) Naval Postgraduate School Monterey, CA 93943-5000 8. PERFORMING ORGANIZATION REPORT NUMBER 9. SPONSORING...could possibly have been linked to the blast as well [19]. Space Debris (4) There are over 20,000 pieces of debris the size of a softball or greater

  18. Debris flow-induced topographic changes: effects of recurrent debris flow initiation.

    Science.gov (United States)

    Chen, Chien-Yuan; Wang, Qun

    2017-08-12

    Chushui Creek in Shengmu Village, Nantou County, Taiwan, was analyzed for recurrent debris flow using numerical modeling and geographic information system (GIS) spatial analysis. The two-dimensional water flood and mudflow simulation program FLO-2D were used to simulate debris flow induced by rainfall during typhoon Herb in 1996 and Mindulle in 2004. Changes in topographic characteristics after the debris flows were simulated for the initiation of hydrological characteristics, magnitude, and affected area. Changes in topographic characteristics included those in elevation, slope, aspect, stream power index (SPI), topographic wetness index (TWI), and hypsometric curve integral (HI), all of which were analyzed using GIS spatial analysis. The results show that the SPI and peak discharge in the basin increased after a recurrence of debris flow. The TWI was higher in 2003 than in 2004 and indicated higher potential of landslide initiation when the slope of the basin was steeper. The HI revealed that the basin was in its mature stage and was shifting toward the old stage. Numerical simulation demonstrated that the parameters' mean depth, maximum depth, affected area, mean flow rate, maximum flow rate, and peak flow discharge were increased after recurrent debris flow, and peak discharge occurred quickly.

  19. A globally complete map of supraglacial debris cover and a new toolkit for debris cover research

    Science.gov (United States)

    Herreid, Sam; Pellicciotti, Francesca

    2017-04-01

    A growing canon of literature is focused on resolving the processes and implications of debris cover on glaciers. However, this work is often confined to a handful of glaciers that were likely selected based on criteria optimizing their suitability to test a specific hypothesis or logistical ease. The role of debris cover in a glacier system is likely to not go overlooked in forthcoming research, yet the magnitude of this role at a global scale has not yet been fully described. Here, we present a map of debris cover for all glacierized regions on Earth including the Greenland Ice Sheet using 30 m Landsat data. This dataset will begin to open a wider context to the high quality, localized findings from the debris-covered glacier research community and help inform large-scale modeling efforts. A global map of debris cover also facilitates analysis attempting to isolate first order geomorphological and climate controls of supraglacial debris production. Furthering the objective of expanding the inclusion of debris cover in forthcoming research, we also present an under development suite of open-source, Python based tools. Requiring minimal and often freely available input data, we have automated the mapping of: i) debris cover, ii) ice cliffs, iii) debris cover evolution over the Landsat era and iv) glacier flow instabilities from altered debris structures. At the present time, debris extent is the only globally complete quantity but with the expanding repository of high quality global datasets and further tool development minimizing manual tasks and computational cost, we foresee all of these tools being applied globally in the near future.

  20. Basal interstitial water pressure in laboratory debris flows over a rigid bed in an open channel

    Directory of Open Access Journals (Sweden)

    N. Hotta

    2012-08-01

    Full Text Available Measuring the interstitial water pressure of debris flows under various conditions gives essential information on the flow stress structure. This study measured the basal interstitial water pressure during debris flow routing experiments in a laboratory flume. Because a sensitive pressure gauge is required to measure the interstitial water pressure in shallow laboratory debris flows, a differential gas pressure gauge with an attached diaphragm was used. Although this system required calibration before and after each experiment, it showed a linear behavior and a sufficiently high temporal resolution for measuring the interstitial water pressure of debris flows. The values of the interstitial water pressure were low. However, an excess of pressure beyond the hydrostatic pressure was observed with increasing sediment particle size. The measured excess pressure corresponded to the theoretical excess interstitial water pressure, derived as a Reynolds stress in the interstitial water of boulder debris flows. Turbulence was thought to induce a strong shear in the interstitial space of sediment particles. The interstitial water pressure in boulder debris flows should be affected by the fine sediment concentration and the phase transition from laminar to turbulent debris flow; this should be the subject of future studies.

  1. An enhanced temperature index model for debris-covered glaciers accounting for thickness effect

    Science.gov (United States)

    Carenzo, M.; Pellicciotti, F.; Mabillard, J.; Reid, T.; Brock, B. W.

    2016-08-01

    strem curve. Its large number of parameters might be a limitation, but we show that the model is transferable in time and space to a second glacier with little loss of performance. We thus suggest that the new DETI model can be included in continuous mass balance models of debris-covered glaciers, because of its limited data requirements. As such, we expect its application to lead to an improvement in simulations of the debris-covered glacier response to climate in comparison with models that simply recalibrate empirical parameters to prescribe a constant across glacier reduction in melt.

  2. The physics of debris flows

    Science.gov (United States)

    Iverson, Richard M.

    1997-08-01

    Recent advances in theory and experimentation motivate a thorough reassessment of the physics of debris flows. Analyses of flows of dry, granular solids and solid-fluid mixtures provide a foundation for a comprehensive debris flow theory, and experiments provide data that reveal the strengths and limitations of theoretical models. Both debris flow materials and dry granular materials can sustain shear stresses while remaining static; both can deform in a slow, tranquil mode characterized by enduring, frictional grain contacts; and both can flow in a more rapid, agitated mode characterized by brief, inelastic grain collisions. In debris flows, however, pore fluid that is highly viscous and nearly incompressible, composed of water with suspended silt and clay, can strongly mediate intergranular friction and collisions. Grain friction, grain collisions, and viscous fluid flow may transfer significant momentum simultaneously. Both the vibrational kinetic energy of solid grains (measured by a quantity termed the granular temperature) and the pressure of the intervening pore fluid facilitate motion of grains past one another, thereby enhancing debris flow mobility. Granular temperature arises from conversion of flow translational energy to grain vibrational energy, a process that depends on shear rates, grain properties, boundary conditions, and the ambient fluid viscosity and pressure. Pore fluid pressures that exceed static equilibrium pressures result from local or global debris contraction. Like larger, natural debris flows, experimental debris flows of ˜10 m³ of poorly sorted, water-saturated sediment invariably move as an unsteady surge or series of surges. Measurements at the base of experimental flows show that coarse-grained surge fronts have little or no pore fluid pressure. In contrast, finer-grained, thoroughly saturated debris behind surge fronts is nearly liquefied by high pore pressure, which persists owing to the great compressibility and moderate

  3. The physics of debris flows

    Science.gov (United States)

    Iverson, R.M.

    1997-01-01

    Recent advances in theory and experimentation motivate a thorough reassessment of the physics of debris flows. Analyses of flows of dry, granular solids and solid-fluid mixtures provide a foundation for a comprehensive debris flow theory, and experiments provide data that reveal the strengths and limitations of theoretical models. Both debris flow materials and dry granular materials can sustain shear stresses while remaining static; both can deform in a slow, tranquil mode characterized by enduring, frictional grain contacts; and both can flow in a more rapid, agitated mode characterized by brief, inelastic grain collisions. In debris flows, however, pore fluid that is highly viscous and nearly incompressible, composed of water with suspended silt and clay, can strongly mediate intergranular friction and collisions. Grain friction, grain collisions, and viscous fluid flow may transfer significant momentum simultaneously. Both the vibrational kinetic energy of solid grains (measured by a quantity termed the granular temperature) and the pressure of the intervening pore fluid facilitate motion of grains past one another, thereby enhancing debris flow mobility. Granular temperature arises from conversion of flow translational energy to grain vibrational energy, a process that depends on shear rates, grain properties, boundary conditions, and the ambient fluid viscosity and pressure. Pore fluid pressures that exceed static equilibrium pressures result from local or global debris contraction. Like larger, natural debris flows, experimental debris flows of ???10 m3 of poorly sorted, water-saturated sediment invariably move as an unsteady surge or series of surges. Measurements at the base of experimental flows show that coarse-grained surge fronts have little or no pore fluid pressure. In contrast, finer-grained, thoroughly saturated debris behind surge fronts is nearly liquefied by high pore pressure, which persists owing to the great compressibility and moderate

  4. Position of Social Determinants of Health in Urban Man-Made Lakes

    Science.gov (United States)

    Shojaei, Parisa; Karimlou, Masoud; Mohammadi, Farahnaz; Afzali, Hosein Malek; Forouzan, Ameneh Setareh

    2013-01-01

    Background and Objective: A social determinants approach proposes that enhancing living conditions in areas such as income, housing, transportation, employment, education, social support, and health services is central to improving the health of urban populations. Urban development projects can be costly but have health impacts. The benefit derived from the creation of man-made lakes in developing countries is usually associated with great risks; however, the evidence for physical and non-physical health benefits of urban man-made lake is unclear. The aim of this paper is to formulate a conceptual framework of associations between urban man-made lakes and social determinants of health. Method: This study was a qualitative study carried out using one focus group discussion and 16 individual interviews. Data were analyzed based on deductive-inductive content analysis approach. Results: Participants’ points of view were analyzed within 261 codes. Data analysis matrix was the conceptual framework of social determinants of health commission and its sub-groups, thus, two structural and mediating determinants categories as well as their sub-sets were created accordingly. In addition, some extra sub-sets including environment, air quality, weather changes, noise pollution, pathogenesis, quality of life, shortage of available resources, region popularity, ethnicity, tourism, social and physical development of children, unintentional injuries, aesthetic, and spirituality were extracted beyond the matrix factors, which were placed in each of above categories based on their thematic content. Conclusion: This paper has illustrated that the quality and type of man-made lake provided within communities can have a significant and sustained impact on community’s health and wellbeing. Therefore, in order to strengthen positive effects and reduce negative effects of any developmental projects within community, their impacts on public health should be taken into consideration

  5. Active Debris Removal mission design in Low Earth Orbit

    Science.gov (United States)

    Martin, Th.; Pérot, E.; Desjean, M.-Ch.; Bitetti, L.

    2013-03-01

    Active Debris Removal (ADR) aims at removing large sized intact objects ― defunct satellites, rocket upper-stages ― from space crowded regions. Why? Because they constitute the main source of the long-term debris environment deterioration caused by possible future collisions with fragments and worse still with other intact but uncontrolled objects. In order to limit the growth of the orbital debris population in the future (referred to as the Kessler syndrome), it is now highly recommended to carry out such ADR missions, together with the mitigation measures already adopted by national agencies (such as postmission disposal). At the French Space Agency, CNES, and in the frame of advanced studies, the design of such an ADR mission in Low Earth Orbit (LEO) is under evaluation. A two-step preliminary approach has been envisaged. First, a reconnaissance mission based on a small demonstrator (˜500 kg) rendezvousing with several targets (observation and in-flight qualification testing). Secondly, an ADR mission based on a larger vehicle (inherited from the Orbital Transfer Vehicle (OTV) concept) being able to capture and deorbit several preselected targets by attaching a propulsive kit to these targets. This paper presents a flight dynamics level tradeoff analysis between different vehicle and mission concepts as well as target disposal options. The delta-velocity, times, and masses required to transfer, rendezvous with targets and deorbit are assessed for some propelled systems and propellant less options. Total mass budgets are then derived for two end-to-end study cases corresponding to the reconnaissance and ADR missions mentioned above.

  6. Autogenic dynamics of debris-flow fans

    Science.gov (United States)

    van den Berg, Wilco; de Haas, Tjalling; Braat, Lisanne; Kleinhans, Maarten

    2015-04-01

    Alluvial fans develop their semi-conical shape by cyclic avulsion of their geomorphologically active sector from a fixed fan apex. These cyclic avulsions have been attributed to both allogenic and autogenic forcings and processes. Autogenic dynamics have been extensively studied on fluvial fans through physical scale experiments, and are governed by cyclic alternations of aggradation by unconfined sheet flow, fanhead incision leading to channelized flow, channel backfilling and avulsion. On debris-flow fans, however, autogenic dynamics have not yet been directly observed. We experimentally created debris-flow fans under constant extrinsic forcings, and show that autogenic dynamics are a fundamental intrinsic process on debris-flow fans. We found that autogenic cycles on debris-flow fans are driven by sequences of backfilling, avulsion and channelization, similar to the cycles on fluvial fans. However, the processes that govern these sequences are unique for debris-flow fans, and differ fundamentally from the processes that govern autogenic dynamics on fluvial fans. We experimentally observed that backfilling commenced after the debris flows reached their maximum possible extent. The next debris flows then progressively became shorter, driven by feedbacks on fan morphology and flow-dynamics. The progressively decreasing debris-flow length caused in-channel sedimentation, which led to increasing channel overflow and wider debris flows. This reduced the impulse of the liquefied flow body to the flow front, which then further reduced flow velocity and runout length, and induced further in-channel sedimentation. This commenced a positive feedback wherein debris flows became increasingly short and wide, until the channel was completely filled and the apex cross-profile was plano-convex. At this point, there was no preferential transport direction by channelization, and the debris flows progressively avulsed towards the steepest, preferential, flow path. Simultaneously

  7. A review of the welfare impact on Pinnipeds of plastic marine debris

    Directory of Open Access Journals (Sweden)

    Andrew Butterworth

    2016-08-01

    Full Text Available Uncounted, and usually unobserved, numbers of pinnipeds find themselves entangled in lost fishing gear, monofilament line, nets, rope, plastic packaging in the ocean or on the shoreline. These animals may carry debris wrapped around themselves for long periods, and often die as a result, sometimes from deep chronic wounds. The pinniped species most affected by this modern and manmade phenomenon are fur seals, monk seals, and California sea lions, and to a lesser extent grey, common and monk seals. Entanglement rates described range up to 7.9% of local populations annually, and the common entangling materials; packing bands, fragments of lost net, rope, monofilament line, fishery flashers and lures, long-line fishing gear, hooks and line, and bait hooks are discussed. Awareness of this issue is increasing, and local action is reported to have made measurable differences in entanglement rates, however, plastic material in the ocean is likely to be long lived, and will leave many entangled pinnpeds unreported and result in a hidden and potentially significant effect on wild animal welfare.

  8. Mapping surface temperature variability on a debris-covered glacier with an unmanned aerial vehicle

    Science.gov (United States)

    Kraaijenbrink, P. D. A.; Litt, M.; Shea, J. M.; Treichler, D.; Koch, I.; Immerzeel, W.

    2016-12-01

    progresses, and the influence of ice on debris surface temperature reduces considerably. Many patterns are revealed that cannot be detected from the Landsat data, both on small spatial and temporal scales. The high detail the UAV-borne thermal imagery provides in time and space has great potential in the research of debris cover and its characteristics.

  9. Detecting debris flows using ground vibrations

    Science.gov (United States)

    LaHusen, Richard G.

    1998-01-01

    Debris flows are rapidly flowing mixtures of rock debris, mud, and water that originate on steep slopes. During and following volcanic eruptions, debris flows are among the most destructive and persistent hazards. Debris flows threaten lives and property not only on volcanoes but far downstream in valleys that drain volcanoes where they arrive suddenly and inundate entire valley bottoms. Debris flows can destroy vegetation and structures in their path, including bridges and buildings. Their deposits can cover roads and railways, smother crops, and fill stream channels, thereby reducing their flood-carrying capacity and navigability.

  10. Detailed debris flow hazard assessment in Andorra: A multidisciplinary approach

    Science.gov (United States)

    Hürlimann, Marcel; Copons, Ramon; Altimir, Joan

    2006-08-01

    In many mountainous areas, the rapid development of urbanisation and the limited space in the valley floors have created a need to construct buildings in zones potentially exposed to debris flow hazard. In these zones, a detailed and coherent hazard assessment is necessary to provide an adequate urban planning. This article presents a multidisciplinary procedure to evaluate the debris flow hazard at a local scale. Our four-step approach was successfully applied to five torrent catchments in the Principality of Andorra, located in the Pyrenees. The first step consisted of a comprehensive geomorphologic and geologic analysis providing an inventory map of the past debris flows, a magnitude-frequency relationship, and a geomorphologic-geologic map. These data were necessary to determine the potential initiation zones and volumes of future debris flows for each catchment. A susceptibility map and different scenarios were the principal outcome of the first step, as well as essential input data for the second step, the runout analysis. A one-dimensional numerical code was applied to analyse the scenarios previously defined. First, the critical channel sections in the fan area were evaluated, then the maximum runout of the debris flows on the fan was studied, and finally simplified intensity maps for each defined scenario were established. The third step of our hazard assessment was the hazard zonation and the compilation of all the results from the two previous steps in a final hazard map. The base of this hazard map was the hazard matrix, which combined the intensity of the debris flow with its probability of occurrence and determined a certain hazard degree. The fourth step referred to the hazard mitigation and included some recommendations for hazard reduction. In Andorra, this four-step approach is actually being applied to assess the debris flow hazard. The final hazard maps, at 1 : 2000 scale, provide an obligatory tool for local land use planning. Experience

  11. Prevalence of marine debris in marine birds from the North Atlantic.

    Science.gov (United States)

    Provencher, Jennifer F; Bond, Alexander L; Hedd, April; Montevecchi, William A; Muzaffar, Sabir Bin; Courchesne, Sarah J; Gilchrist, H Grant; Jamieson, Sarah E; Merkel, Flemming R; Falk, Knud; Durinck, Jan; Mallory, Mark L

    2014-07-15

    Marine birds have been found to ingest plastic debris in many of the world's oceans. Plastic accumulation data from necropsies findings and regurgitation studies are presented on 13 species of marine birds in the North Atlantic, from Georgia, USA to Nunavut, Canada and east to southwest Greenland and the Norwegian Sea. Of the species examined, the two surface plungers (great shearwaters Puffinus gravis; northern fulmars Fulmarus glacialis) had the highest prevalence of ingested plastic (71% and 51%, respectively). Great shearwaters also had the most pieces of plastics in their stomachs, with some individuals containing as many of 36 items. Seven species contained no evidence of plastic debris. Reporting of baseline data as done here is needed to ensure that data are available for marine birds over time and space scales in which we see changes in historical debris patterns in marine environments (i.e. decades) and among oceanographic regions. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. LCA single score analysis of man-made cellulose fibres

    NARCIS (Netherlands)

    Shen, L.; Patel, M.K.

    2010-01-01

    In this study, the LCA report “Life Cycle assessment of man-made cellulose fibres” [3] is extended to the single score analysis in order to provide an additional basis for decision making. The single score analysis covers 9 to 11 environmental impact categories. Three single score methods (Single

  13. 75 FR 71791 - Commercial Space Transportation Advisory Committee-Public Teleconference

    Science.gov (United States)

    2010-11-24

    ... debris questions asked by the FAA; continuing the group's review of the Concept of Operation for Global Space Vehicle Debris Threat Management Report, and updating the list of top issues that should require... given of a teleconference of the Space Transportation Operations Working Group (STOWG) of the Commercial...

  14. [Research progress in post-fire debris flow].

    Science.gov (United States)

    Di, Xue-ying; Tao, Yu-zhu

    2013-08-01

    The occurrence of the secondary disasters of forest fire has significant impacts on the environment quality and human health and safety. Post-fire debris flow is one of the most hazardous secondary disasters of forest fire. To understand the occurrence conditions of post-fire debris flow and to master its occurrence situation are the critical elements in post-fire hazard assessment. From the viewpoints of vegetation, precipitation threshold and debris flow material sources, this paper elaborated the impacts of forest fire on the debris flow, analyzed the geologic and geomorphic conditions, precipitation and slope condition that caused the post-fire debris flow as well as the primary mechanisms of debris-flow initiation caused by shallow landslide or surface runoff, and reviewed the research progress in the prediction and forecast of post-fire debris flow and the related control measures. In the future research, four aspects to be focused on were proposed, i. e., the quantification of the relationships between the fire behaviors and environmental factors and the post-fire debris flow, the quantitative research on the post-fire debris flow initiation and movement processes, the mechanistic model of post-fire debris flow, and the rapid and efficient control countermeasures of post-fire debris flow.

  15. Review of current activities to model and measure the orbital debris environment in low-earth orbit

    Science.gov (United States)

    Reynolds, R. C.

    A very active orbital debris program is currently being pursued at the NASA/Johnson Space Center (JSC), with projects designed to better define the current environment, to project future environments, to model the processes contributing to or constraining the growth of debris in the environment, and to gather supporting data needed to improve the understanding of the orbital debris problem and the hazard it presents to spacecraft. This paper is a review of the activity being conducted at JSC, by NASA, Lockheed Engineering and Sciences Company, and other support contractors, and presents a review of current activity, results of current research, and a discussion of directions for future development.

  16. DRAGONS - A Micrometeoroid and Orbital Debris Impact Sensor

    Science.gov (United States)

    Liou, J. -C.; Corsaro, R.; Giovane, F.; Anderson, C.; Sadilek, A.; Burchell, M.; Hamilton, J.

    2015-01-01

    The Debris Resistive/Acoustic Grid Orbital Navy-NASA Sensor (DRAGONS) is intended to be a large area impact sensor for in situ measurements of micrometeoroids and orbital debris (MMOD) in the millimeter or smaller size regime. These MMOD particles are too small to be detected by ground-based radars and optical telescopes, but are still large enough to be a serious safety concern for human space activities and robotic missions in the low Earth orbit (LEO) region. The nominal detection area of a DRAGONS unit is 1 m2, consisting of several independently operated panels. The approach of the DRAGONS design is to combine different particle impact detection principles to maximize information that can be extracted from detected events. After more than 10 years of concept and technology development, a 1 m2 DRAGONS system has been selected for deployment on the International Space Station (ISS) in August 2016. The project team achieved a major milestone when the Preliminary Design Review (PDR) was completed in May 2015. Once deployed on the ISS, this multi-year mission will provide a unique opportunity to demonstrate the MMOD detection capability of the DRAGONS technologies and to collect data to better define the small MMOD environment at the ISS altitude.

  17. Comparison of an Inductance In-Line Oil Debris Sensor and Magnetic Plug Oil Debris Sensor

    Science.gov (United States)

    Dempsey, Paula J.; Tuck, Roger; Showalter, Stephen

    2012-01-01

    The objective of this research was to compare the performance of an inductance in-line oil debris sensor and magnetic plug oil debris sensor when detecting transmission component health in the same system under the same operating conditions. Both sensors were installed in series in the NASA Glenn Spiral Bevel Gear Fatigue Rig during tests performed on 5 gear sets (pinion/gear) when different levels of damage occurred on the gear teeth. Results of this analysis found both the inductance in-line oil debris sensor and magnetic plug oil debris sensor have benefits and limitations when detecting gearbox component damage.

  18. Debris Disks in Aggregate: Using Hubble Space Telescope Coronagraphic Imagery to Understand the Scattered-Light Disk Detection Rate

    Science.gov (United States)

    Grady, Carol A.

    2011-01-01

    Despite more than a decade of coronagraphic imaging of debris disk candidate stars, only 16 have been imaged in scattered light. Since imaged disks provide our best insight into processes which sculpt disks, and can provide signposts of the presence of giant planets at distances which would elude radial velocity and transit surveys, we need to understand under what conditions we detect the disks in scattered light, how these disks differ from the majority of debris disks, and how to increase the yield of disks which are imaged with 0.1" angular resolution. In this talk, I will review what we have learned from a shallow HSTINICMOS NIR survey of debris disks, and present first results from our on-going HST /STIS optical imaging of bright scattered-light disks.

  19. Marine debris removal: one year of effort by the Georgia Sea Turtle-Center-Marine Debris Initiative.

    Science.gov (United States)

    Martin, Jeannie Miller

    2013-09-15

    Once in the marine environment, debris poses a significant threat to marine life that can be prevented through the help of citizen science. Marine debris is any manufactured item that enters the ocean regardless of source, commonly plastics, metal, wood, glass, foam, cloth, or rubber. Citizen science is an effective way to engage volunteers in conservation initiatives and provide education and skill development. The Georgia Sea Turtle Center Marine Debris Initiative (GSTC-MDI) is a grant funded program developed to engage citizens in the removal of marine debris from the beaches of Jekyll Island, GA, USA and the surrounding areas. During the first year of effort, more than 200 volunteers donated over 460 h of service to the removal of marine debris. Of the debris removed, approximately 89% were plastics, with a significant portion being cigarette materials. Given the successful first year, the GSTC-MDI was funded again for a second year. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Debris Examination Using Ballistic and Radar Integrated Software

    Science.gov (United States)

    Griffith, Anthony; Schottel, Matthew; Lee, David; Scully, Robert; Hamilton, Joseph; Kent, Brian; Thomas, Christopher; Benson, Jonathan; Branch, Eric; Hardman, Paul; hide

    2012-01-01

    The Debris Examination Using Ballistic and Radar Integrated Software (DEBRIS) program was developed to provide rapid and accurate analysis of debris observed by the NASA Debris Radar (NDR). This software provides a greatly improved analysis capacity over earlier manual processes, allowing for up to four times as much data to be analyzed by one-quarter of the personnel required by earlier methods. There are two applications that comprise the DEBRIS system: the Automated Radar Debris Examination Tool (ARDENT) and the primary DEBRIS tool.

  1. Debris filtering effectiveness and pressure drop tests of debris resistance-bottom end piece

    International Nuclear Information System (INIS)

    Chung, Moon Ki; Song, Chul Hwa; Chung, Heung June; Won, Soon Yeun; Cho, Young Ro; Kim, Bok Deuk

    1992-03-01

    In this final report, described are the test conditions and test procedures for the debris filtering effectiveness and pressure drop tests for developing the Debris Resistance-Bottom End Piece (DR-BEP). And the test results are tabulated for later evaluation. (Author)

  2. Modelling human interactions in the assessment of man-made hazards

    International Nuclear Information System (INIS)

    Nitoi, M.; Farcasiu, M.; Apostol, M.

    2016-01-01

    The human reliability assessment tools are not currently capable to model adequately the human ability to adapt, to innovate and to manage under extreme situations. The paper presents the results obtained by ICN PSA team in the frame of FP7 Advanced Safety Assessment Methodologies: extended PSA (ASAMPSA_E) project regarding the investigation of conducting HRA in human-made hazards. The paper proposes to use a 4-steps methodology for the assessment of human interactions in the external events (Definition and modelling of human interactions; Quantification of human failure events; Recovery analysis; Review). The most relevant factors with respect to HRA for man-made hazards (response execution complexity; existence of procedures with respect to the scenario in question; time available for action; timing of cues; accessibility of equipment; harsh environmental conditions) are presented and discussed thoroughly. The challenges identified in relation to man-made hazards HRA are highlighted. (authors)

  3. A Search for Debris Disks Around Variable Pulsars

    Science.gov (United States)

    Shannon, Ryan; Cordes, J.; Lazio, J.; Kramer, M.; Lyne, A.

    2009-01-01

    After a supernova explosion, a modest amount of material will fall back and form a disk surrounding the resultant neutron star. This material can aggregate into rocky debris and the disk can be stable for the entire 10 million year lifetime of a canonical (non-recycled) radio pulsar. Previously, we developed a model that unifies the different classes of radio variability observed in many older pulsars. In this model, rocky material migrates inwards towards the neutron star and is ablated inside the pulsar magnetosphere. This material alters the electrodynamics in the magnetosphere which can cause the observed quiescent and bursting states observed in nulling pulsars, intermittent pulsars, and rotating radio transients. With this model in mind, we observed three nulling pulsars and one intermittent pulsar that are good candidates to host debris disks detectable by the Spitzer IRAC. Here we report how our IRAC observations constrain disk geometry, with particular emphasis on configurations that can provide the in-fall rate to cause the observed radio variability. We place these observations in the context of other searches for debris disks around neutron stars, which had studied either very young or very old (recycled) pulsars. By observing older canonical pulsars, all major classes of radio pulsars have been observed, and we can assess the presence of debris disks as a function of pulsar type. This work is based in part on observations made with the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory, California Institute of Technology under a contract with NASA. Support for this work was provided by NASA through an award issued by JPL/Caltech.

  4. Integrity assessment of the spacecraft subjected to the hypervelocity impact by ceramic and metal projectiles simulating space debris and micrometeoroids

    International Nuclear Information System (INIS)

    Katayama, Masahide; Takeba, Atsushi; Nitta, Kumi; Kawakita, Shirou; Matsumoto, Haruhisa; Kitazawa, Yukihito

    2010-01-01

    In order to establish the guidelines for the protection of unmanned spacecrafts from the space debris and micrometeoroid impacts, the experimental and numerical investigations have been conducted at Japan Aerospace Exploration Agency. This paper presents mainly its numerical methodology, especially from the viewpoint of highly non-linear and dynamic material model: i.e. the equation of state, constitutive model and fracture or failure model, including a brittle material model for ceramics and an equation of state for the shock-induced vaporization accompanied by hypervelocity impact. The experimental results of hypervelocity impact by two-stage light-gas gun and plasma drag gun are compared with corresponding numerical simulation results by using a hydrocode, and both results are demonstrated to be overall in good agreement with each other.

  5. Integrity assessment of the spacecraft subjected to the hypervelocity impact by ceramic and metal projectiles simulating space debris and micrometeoroids

    Energy Technology Data Exchange (ETDEWEB)

    Katayama, Masahide, E-mail: masahide.katayama@ctc-g.co.jp [Science and Engineering Systems Division, ITOCHU Techno-Solutions, 3-2-5, Kasumigaseki, Chiyoda-ku, Tokyo 100-6080 (Japan); Materials and Structures Laboratory, Tokyo Institute of Technology, 4259, Nagatsuta, Midori-ku, Yokohama-shi, Kanagawa 226-8503 (Japan); Takeba, Atsushi [Science and Engineering Systems Division, ITOCHU Techno-Solutions, 3-2-5, Kasumigaseki, Chiyoda-ku, Tokyo 100-6080 (Japan); Nitta, Kumi; Kawakita, Shirou; Matsumoto, Haruhisa [Aerospace Research and Development Directorate, Japan Aerospace Exploration Agency, 2-1-1, Sengen, Tsukuba-city, Ibaraki 305-8505 (Japan); Kitazawa, Yukihito [Aerospace Research and Development Directorate, Japan Aerospace Exploration Agency, 2-1-1, Sengen, Tsukuba-city, Ibaraki 305-8505 (Japan); Aero-Engine and Space Operations, IHI Corporation, 3-1-1, Toyosu, Koto-ku, Tokyo 135-8710 (Japan)

    2010-10-15

    In order to establish the guidelines for the protection of unmanned spacecrafts from the space debris and micrometeoroid impacts, the experimental and numerical investigations have been conducted at Japan Aerospace Exploration Agency. This paper presents mainly its numerical methodology, especially from the viewpoint of highly non-linear and dynamic material model: i.e. the equation of state, constitutive model and fracture or failure model, including a brittle material model for ceramics and an equation of state for the shock-induced vaporization accompanied by hypervelocity impact. The experimental results of hypervelocity impact by two-stage light-gas gun and plasma drag gun are compared with corresponding numerical simulation results by using a hydrocode, and both results are demonstrated to be overall in good agreement with each other.

  6. Backwater development by woody debris

    Science.gov (United States)

    Geertsema, Tjitske; Torfs, Paul; Teuling, Ryan; Hoitink, Ton

    2017-04-01

    Placement of woody debris is a common method for increasing ecological values in river and stream restoration, and is thus widely used in natural environments. Water managers, however, are afraid to introduce wood in channels draining agricultural and urban areas. Upstream, it may create backwater, depending on hydrodynamic characteristics including the obstruction ratio, the Froude number and the surface level gradient. Patches of wood may trigger or counter morphological activity, both laterally, through bank erosion and protection, and vertically, with pool and riffle formation. Also, a permeable construction composed of wood will weather over time. Both morphodynamic activity and weathering cause backwater effects to change in time. The purpose of this study is to quantify the time development of backwater effects caused by woody debris. Hourly water levels gauged upstream and downstream of patches and discharge are collected for five streams in the Netherlands. The water level drop over the woody debris patch relates to discharge in the streams. This relation is characterized by an increasing water level difference for an increasing discharge, up to a maximum. If the discharge increases beyond this level, the water level difference reduces to the value that may represent the situation without woody debris. This reduction depends primarily on the obstruction ratio of the woody debris in the channel cross-section. Morphologic adjustments in the stream and reorientation of the woody material reduce the water level drop over the patches in time. Our results demonstrate that backwater effects can be reduced by optimizing the location where woody debris is placed and manipulating the obstruction ratio. Current efforts are focussed on representing woody debris in a one-dimensional numerical model, aiming to obtain a generic tool to achieve a stream design with woody debris that minimizes backwater.

  7. Standardization by ISO to Ensure the Sustainability of Space Activities

    Science.gov (United States)

    Kato, A.; Lazare, B.; Oltrogge, D.; Stokes, H.

    2013-08-01

    The ISO / Technical Committee 20 / Sub-committee 14 develops debris-related standards and technical reports to mitigate debris and help ensure mission and space sustainability. While UN Guidelines and the IADC Guidelines encourage national governments and agencies to promote debris mitigation design and operation, the ISO standards will help the global space industry promote and sustain its space-related business. In this paper the scope and status of each ISO standard is discussed within an overall framework. A comparison with international guidelines is also provided to demonstrate the level of consistency. Finally, as a case study, the ISO standards are applied to a CubeSat mission, thus demonstrating their usability on a relatively recent and popular class of satellite.

  8. Summary of Disposable Debris Shields (DDS) Analysis for Development of Solid Debris Collection at NIF

    International Nuclear Information System (INIS)

    Shaughnessy, D.A.; Moody, K.J.; Grant, P.M.; Lewis, L.A.; Hutcheon, I.D.; Lindvall, R.; Gostic, J.M.

    2011-01-01

    Collection of solid debris from the National Ignition Facility (NIF) is being developed both as a diagnostic tool and as a means for measuring nuclear reaction cross sections relevant to the Stockpile Stewardship Program and nuclear astrophysics. The concept is straightforward; following a NIF shot, the debris that is produced as a result of the capsule and hohlraum explosion would be collected and subsequently extracted from the chamber. The number of nuclear activations that occurred in the capsule would then be measured through a combination of radiation detection and radiochemical processing followed by mass spectrometry. Development of the catcher is challenging due to the complex environment of the NIF target chamber. The collector surface is first exposed to a large photon flux, followed by the debris wind that is produced. The material used in the catcher must be mechanically strong in order to withstand the large amount of energy it is exposed to, as well as be chemically compatible with the form and composition of the debris. In addition, the location of the catcher is equally important. If it is positioned too close to the center of the target chamber, it will be significantly ablated, which could interfere with the ability of the debris to reach the surface and stick. If it is too far away, the fraction of the debris cloud collected will be too small to result in a statistically significant measurement. Material, geometric configuration, and location must all be tested in order to design the optimal debris collection system for NIF. One of the first ideas regarding solid debris collection at NIF was to use the disposable debris shields (DDS), which are fielded over the final optics assemblies (FOA) 7 m away from the center of the target chamber. The DDS are meant to be replaced after a certain number of shots, and if the shields could be subsequently analyzed after removal, it would serve as a mechanism for fielding a relatively large collection area

  9. Position of social determinants of health in urban man-made lakes plans.

    Science.gov (United States)

    Shojaei, Parisa; Karimloo, Masoud; Mohammadi, Farahnaz; Malek Afzali, Hossein; Forouzan, Ameneh Setareh

    2013-09-04

    A social determinants approach proposes that enhancing living conditions in areas such as income, housing, transportation, employment, education, social support, and health services is central to improving the health of urban populations. Urban development projects can be costly but have health impacts. The benefit derived from the creation of man-made lakes in developing countries is usually associated with great risks; however, the evidence for physical and non-physical health benefits of urban man-made lake is unclear. The aim of this paper is to formulate a conceptual framework of associations between urban man-made lakes and social determinants of health. This study was a qualitative study carried out using one focus group discussion and 16 individual interviews. Data were analyzed based on deductive-inductive content analysis approach. Participants' points of view were analyzed within 261 codes. Data analysis matrix was the conceptual framework of social determinants of health commission and its sub-groups, thus, two structural and mediating determinants categories as well as their sub-sets were created accordingly. In addition, some extra sub-sets including environment, air quality, weather changes, noise pollution, pathogenesis, quality of life, shortage of available resources, region popularity, ethnicity, tourism, social and physical development of children, unintentional injuries, aesthetic, and spirituality were extracted beyond the matrix factors, which were placed in each of above categories based on their thematic content. This paper has illustrated that the quality and type of man-made lake provided within communities can have a significant and sustained impact on community's health and wellbeing. Therefore, in order to strengthen positive effects and reduce negative effects of any developmental projects within community, their impacts on public health should be taken into consideration.

  10. NASA's New Orbital Debris Engineering Model, ORDEM2010

    Science.gov (United States)

    Krisko, Paula H.

    2010-01-01

    This paper describes the functionality and use of ORDEM2010, which replaces ORDEM2000, as the NASA Orbital Debris Program Office (ODPO) debris engineering model. Like its predecessor, ORDEM2010 serves the ODPO mission of providing spacecraft designers/operators and debris observers with a publicly available model to calculate orbital debris flux by current-state-of-knowledge methods. The key advance in ORDEM2010 is the input file structure of the yearly debris populations from 1995-2035 of sizes 10 micron - 1 m. These files include debris from low-Earth orbits (LEO) through geosynchronous orbits (GEO). Stable orbital elements (i.e., those that do not randomize on a sub-year timescale) are included in the files as are debris size, debris number, material density, random error and population error. Material density is implemented from ground-test data into the NASA breakup model and assigned to debris fragments accordingly. The random and population errors are due to machine error and uncertainties in debris sizes. These high-fidelity population files call for a much higher-level model analysis than what was possible with the populations of ORDEM2000. Population analysis in the ORDEM2010 model consists of mapping matrices that convert the debris population elements to debris fluxes. One output mode results in a spacecraft encompassing 3-D igloo of debris flux, compartmentalized by debris size, velocity, pitch, and yaw with respect to spacecraft ram direction. The second output mode provides debris flux through an Earth-based telescope/radar beam from LEO through GEO. This paper compares the new ORDEM2010 with ORDEM2000 in terms of processes and results with examples of specific orbits.

  11. Independent Review of U.S. and Russian Probabilistic Risk Assessments for the International Space Station Mini Research Module #2 Micrometeoroid and Orbital Debris Risk

    Science.gov (United States)

    Squire, Michael D.

    2011-01-01

    The Mini-Research Module-2 (MRM-2), a Russian module on the International Space Station, does not meet its requirements for micrometeoroid and orbital debris probability of no penetration (PNP). To document this condition, the primary Russian Federal Space Agency ISS contractor, S.P. Korolev Rocket and Space Corporation-Energia (RSC-E), submitted an ISS non-compliance report (NCR) which was presented at the 5R Stage Operations Readiness Review (SORR) in October 2009. In the NCR, RSC-E argued for waiving the PNP requirement based on several factors, one of which was the risk of catastrophic failure was acceptably low at 1 in 11,100. However, NASA independently performed an assessment of the catastrophic risk resulting in a value of 1 in 1380 and believed that the risk at that level was unacceptable. The NASA Engineering and Safety Center was requested to evaluate the two competing catastrophic risk values and determine which was more accurate. This document contains the outcome of the assessment.

  12. Short and long term efficiencies of debris risk reduction measures: Application to a European LEO mission

    Science.gov (United States)

    Lang, T.; Kervarc, R.; Bertrand, S.; Carle, P.; Donath, T.; Destefanis, R.; Grassi, L.; Tiboldo, F.; Schäfer, F.; Kempf, S.; Gelhaus, J.

    2015-01-01

    Recent numerical studies indicate that the low Earth orbit (LEO) debris environment has reached a point such that even if no further space launches were conducted, the Earth satellite population would remain relatively constant for only the next 50 years or so. Beyond that, the debris population would begin to increase noticeably, due to the production of collisional debris (Liou and Johnson, 2008). Measures to be enforced play thus a major role to preserve an acceptable space mission risk and ensure sustainable space activities. The identification of such measures and the quantification of their efficiency over time for LEO missions is of prime concern in the decision-making process, as it has been investigated for the last few decades by the Inter-Agency Space Debris Coordination Committee (IADC). This paper addresses the final results of a generic methodology and the characteristics of a tool developed to assess the efficiency of the risk reduction measures identified for the Sentinel-1 (S1) mission. This work is performed as part of the 34-month P2-ROTECT project (Prediction, Protection & Reduction of OrbiTal Exposure to Collision Threats), funded by the European Union within the Seventh Framework Programme. Three ways of risk reduction have been investigated, both in short and long-term, namely: better satellite protection, better conjunction prediction, and cleaner environment. According to our assumptions, the S1 mission vulnerability evaluations in the long term (from 2093 to 2100) show that full compliance to the mitigation measures leads to a situation twice safer than that induced by an active debris removal of 5 objects per year in a MASTER2009 Business-As-Usual context. Because these measures have visible risk reduction effects in the long term, complementary measures with short response time are also studied. In the short term (from 2013 to 2020), a better prediction of the conjunctions is more efficient than protecting the satellite S1 itself. By

  13. On the influence of debris in glacier melt modelling: a new temperature-index model accounting for the debris thickness feedback

    Science.gov (United States)

    Carenzo, Marco; Mabillard, Johan; Pellicciotti, Francesca; Reid, Tim; Brock, Ben; Burlando, Paolo

    2013-04-01

    The increase of rockfalls from the surrounding slopes and of englacial melt-out material has led to an increase of the debris cover extent on Alpine glaciers. In recent years, distributed debris energy-balance models have been developed to account for the melt rate enhancing/reduction due to a thin/thick debris layer, respectively. However, such models require a large amount of input data that are not often available, especially in remote mountain areas such as the Himalaya. Some of the input data such as wind or temperature are also of difficult extrapolation from station measurements. Due to their lower data requirement, empirical models have been used in glacier melt modelling. However, they generally simplify the debris effect by using a single melt-reduction factor which does not account for the influence of debris thickness on melt. In this paper, we present a new temperature-index model accounting for the debris thickness feedback in the computation of melt rates at the debris-ice interface. The empirical parameters (temperature factor, shortwave radiation factor, and lag factor accounting for the energy transfer through the debris layer) are optimized at the point scale for several debris thicknesses against melt rates simulated by a physically-based debris energy balance model. The latter has been validated against ablation stake readings and surface temperature measurements. Each parameter is then related to a plausible set of debris thickness values to provide a general and transferable parameterization. The new model is developed on Miage Glacier, Italy, a debris cover glacier in which the ablation area is mantled in near-continuous layer of rock. Subsequently, its transferability is tested on Haut Glacier d'Arolla, Switzerland, where debris is thinner and its extension has been seen to expand in the last decades. The results show that the performance of the new debris temperature-index model (DETI) in simulating the glacier melt rate at the point scale

  14. Post-Newtonian equations of motion for LEO debris objects and space-based acquisition, pointing and tracking laser systems

    Science.gov (United States)

    Gambi, J. M.; García del Pino, M. L.; Gschwindl, J.; Weinmüller, E. B.

    2017-12-01

    This paper deals with the problem of throwing middle-sized low Earth orbit debris objects into the atmosphere via laser ablation. The post-Newtonian equations here provided allow (hypothetical) space-based acquisition, pointing and tracking systems endowed with very narrow laser beams to reach the pointing accuracy presently prescribed. In fact, whatever the orbital elements of these objects may be, these equations will allow the operators to account for the corrections needed to balance the deviations of the line of sight directions due to the curvature of the paths the laser beams are to travel along. To minimize the respective corrections, the systems will have to perform initial positioning manoeuvres, and the shooting point-ahead angles will have to be adapted in real time. The enclosed numerical experiments suggest that neglecting these measures will cause fatal errors, due to differences in the actual locations of the objects comparable to their size.

  15. Man-made radionuclides in the environment and resulting radiation exposures

    International Nuclear Information System (INIS)

    Michel, R.

    2009-01-01

    This contribution gives a survey about the sources of man-made environmental radioactivity and quantifies some of the resulting radiation exposures. The relevance of the different radionuclides with respect to the radiation exposures is discussed. Finally, the question of the effects of small doses is addressed. (orig.)

  16. Natural analogues, paradigm for manmade repositories for radioactive wastes

    International Nuclear Information System (INIS)

    Pavelescu, M.; Pavelescu, A.

    2004-01-01

    Natural analogues are given by nature. They show the results of natural processes which have lasted thousands or millions of years. They provide an excellent example of what could happen in an underground site, offering in the same time the opportunity to test by observation and measurement, many of the geochemical processes that are expected to influence in a realistic and appropriate way, the predicted reliability of the radioactive waste repository over long periods of geological time. The natural analogue studies attempt to understand the multiprocessing complexity of the natural system, which contrasts with the limitations of the laboratory experiments and bring arguments to overcome the difficult time scale issue. By this the natural analogues are a useful paradigm for manmade repository for radioactive wastes. The paper discusses the implicit link in the public mind between natural analogues and manmade waste repository with an accent of the positive impact on public acceptance. It is also discussed the decisive qualities of the natural analogues concerning providing valid long term data and increasing the confidence of the public for manmade repositories. The debate is conducting in terms of sustainable development, having at base high-level principles in order to protect humans and their environment, both now and in the future, from potential hazards arising from such wastes. Safe radwaste management involves the application of technology and resources in a regulated manner so that the public, workers and the environment are protected in accordance with the accepted national and international standards. There are at least seven high-level principles which are mentioned in the paper. It is presented the general concept of the deep geological repository, very important for an acceptable solution for the management of nuclear waste, what is a prerequisite for a renewal of nuclear power. Further are introduced natural and archaeological (manufactured) analogue

  17. Controlling the Growth of Future LEO Debris Populations with Active Debris Removal

    Science.gov (United States)

    Liou, J.-C.; Johnson, N. L.; Hill, N. M.

    2008-01-01

    Active debris removal (ADR) was suggested as a potential means to remediate the low Earth orbit (LEO) debris environment as early as the 1980s. The reasons ADR has not become practical are due to its technical difficulties and the high cost associated with the approach. However, as the LEO debris populations continue to increase, ADR may be the only option to preserve the near-Earth environment for future generations. An initial study was completed in 2007 to demonstrate that a simple ADR target selection criterion could be developed to reduce the future debris population growth. The present paper summarizes a comprehensive study based on more realistic simulation scenarios, including fragments generated from the 2007 Fengyun-1C event, mitigation measures, and other target selection options. The simulations were based on the NASA long-term orbital debris projection model, LEGEND. A scenario, where at the end of mission lifetimes, spacecraft and upper stages were moved to 25-year decay orbits, was adopted as the baseline environment for comparison. Different annual removal rates and different ADR target selection criteria were tested, and the resulting 200-year future environment projections were compared with the baseline scenario. Results of this parametric study indicate that (1) an effective removal strategy can be developed based on the mass and collision probability of each object as the selection criterion, and (2) the LEO environment can be stabilized in the next 200 years with an ADR removal rate of five objects per year.

  18. Disaster Debris Recovery Database - Landfills

    Data.gov (United States)

    U.S. Environmental Protection Agency — The US EPA Disaster Debris Recovery Database (DDRD) promotes the proper recovery, recycling, and disposal of disaster debris for emergency responders at the federal,...

  19. Disaster Debris Recovery Database - Recovery

    Data.gov (United States)

    U.S. Environmental Protection Agency — The US EPA Disaster Debris Recovery Database (DDRD) promotes the proper recovery, recycling, and disposal of disaster debris for emergency responders at the federal,...

  20. DRAGONS-A Micrometeoroid and Orbital Debris Impact Sensor on the ISS

    Science.gov (United States)

    Liou, J.-C.; Hamilton, J.; Liolios, S.; Anderson, C.; Sadilek, A.; Corsaro, R.; Giovane, F.; Burchell, M.

    2015-01-01

    The Debris Resistive/Acoustic Grid Orbital Navy-NASA Sensor (DRAGONS) is intended to be a large area impact sensor for in situ measurements of micrometeoroids and orbital debris (MMOD) in the sub-millimeter to millimeter size regime in the near Earth space environment. These MMOD particles are too small to be detected by ground-based radars and optical telescopes, but still large enough to be a serious threat to human space activities and robotic missions in the low Earth orbit (LEO) region. The nominal detection area of DRAGONS is 1 sq m, consisting of four 0.5 m × 0.5 m independent panels, but the dimensions of the panels can easily be modified to accommodate different payload constraints. The approach of the DRAGONS design is to combine three particle impact detection concepts to maximize information that can be extracted from each detected impact. The first is a resistive grid consisting of 75-micrometer-wide resistive lines, coated in parallel and separated by 75 micrometer gaps on a 25-micrometer thin film. When a particle a few hundred micrometers or larger strikes the grid, it would penetrate the film and sever some resistive lines. The size of the damage area can be estimated from the increased resistance. The second concept is based on polyvinylidene fluoride (PVDF) acoustic impact sensors. Multiple PVDF sensors are attached to the thin film to provide the impact timing information. From the different signal arrival times at different acoustic sensors, the impact location can be calculated via triangulation algorithms. The third concept employs a dual-layer film system where a second 25-micrometer film is placed 15 cm behind the resistive-grid film. Multiple PVDF acoustic sensors are also attached to the second film. The combination of impact timing and location information from the two films allows for direct measurements of the impact direction and speed. The DRAGONS technology development has been funded by several NASA organizations since 2002, first

  1. Investigation of Orbital Debris: Mitigation, Removal, and Modeling the Debris Population

    Science.gov (United States)

    Slotten, Joel

    The population of objects in orbit around Earth has grown since the late 1950s. Today there are over 21,000 objects over 10 cm in length in orbit, and an estimated 500,000 more between 1 and 10 cm. Only a small fraction of these objects are operational satellites. The rest are debris: old derelict spacecraft or rocket bodies, fragments created as the result of explosions or collisions, discarded objects, slag from solid rockets, or even flaked off paint. Traveling at up to 7 km/s, a collision with even a 1 cm piece of debris could severely damage or destroy a satellite. This dissertation examines three aspects of orbital debris. First, the concept of a self-consuming satellite is explored. This nanosatellite would use its own external structure as propellant to execute a deorbit maneuver at the end of its operational life, thus allowing it to meet current debris mitigation standards. Results from lab experiments examining potential materials for this concept have shown favorable results. Second, Particle in Cell techniques are modified and used to model the plasma plume from a micro-cathode arc thruster. This model is then applied to the concept of an ion beam shepherd satellite. This satellite would use its plasma plume to deorbit another derelict satellite. Results from these simulations indicate the micro-cathode arc thruster could potentially deorbit a derelict CubeSat in a matter of a few weeks. Finally, the orbital debris population at geosynchronous orbit is examined, focusing on variations in the density of the population as a function of longitude. New insights are revealed demonstrating that the variation in population density is slightly less than previously reported.

  2. Development of debris-resistant bottom end piece

    International Nuclear Information System (INIS)

    Sohn, Dong Seong; Lee, Jae Kyung; Hwang, Dae Hyun; Yim, Jung Sik; Song, Kee Nam; Oh, Dong Seok; Im, Hyun Tae

    1993-01-01

    Debris-related fuel failures has been identified to be one of the major causes of fuel failures recently occured in nuclear power plants. In order to reduce the possibility of debris-related fuel failures, it is necessary to prevent the debris from reaching to fuel rods. In this regard, it is important to develop Debris-Resistant Bottom End Piece. (Author)

  3. Ultrastructural and clinical evidence of subretinal debris accumulation in type 2 macular telangiectasia.

    Science.gov (United States)

    Cherepanoff, Svetlana; Killingsworth, Murray C; Zhu, Meidong; Nolan, Timothy; Hunyor, Alex P; Young, Stephanie H; Hageman, Gregory S; Gillies, Mark C

    2012-11-01

    To describe subretinal debris found on ultrastructural examination in an eye with macular telangiectasia (MacTel) type 2 and on optical coherence tomography (OCT) in a subset of patients with MacTel type 2. Blocks from the mid-periphery and temporal perifovea of an eye with clinically documented MacTel type 2 were examined with electron microscopy (EM). Cases came from the Sydney centre of the MacTel project and the practices of the authors. On EM examination, subretinal debris was found in the perifovea with accumulation of degenerate photoreceptor elements in the subretinal space. Despite the substantial subretinal debris, there was minimal retinal pigment epithelial (RPE) reaction. Focal defects were seen in the inner limiting membrane in the perifovea. Of the 65 Sydney MacTel project participants, three (5%) had prominent yellow material at the fovea. OCT revealed smooth mounds between the RPE and the ellipsoid region. The material was hyperautofluorescent. This study suggests that subretinal accumulation of photoreceptor debris may be a feature of MacTel type 2. Ultrastructural and OCT evidence of disease beyond the vasculature, involving photoreceptors and Muller cells, is presented.

  4. POST Earthquake Debris Management - AN Overview

    Science.gov (United States)

    Sarkar, Raju

    Every year natural disasters, such as fires, floods, earthquakes, hurricanes, landslides, tsunami, and tornadoes, challenge various communities of the world. Earthquakes strike with varying degrees of severity and pose both short- and long-term challenges to public service providers. Earthquakes generate shock waves and displace the ground along fault lines. These seismic forces can bring down buildings and bridges in a localized area and damage buildings and other structures in a far wider area. Secondary damage from fires, explosions, and localized flooding from broken water pipes can increase the amount of debris. Earthquake debris includes building materials, personal property, and sediment from landslides. The management of this debris, as well as the waste generated during the reconstruction works, can place significant challenges on the national and local capacities. Debris removal is a major component of every post earthquake recovery operation. Much of the debris generated from earthquake is not hazardous. Soil, building material, and green waste, such as trees and shrubs, make up most of the volume of earthquake debris. These wastes not only create significant health problems and a very unpleasant living environment if not disposed of safely and appropriately, but also can subsequently impose economical burdens on the reconstruction phase. In practice, most of the debris may be either disposed of at landfill sites, reused as materials for construction or recycled into useful commodities Therefore, the debris clearance operation should focus on the geotechnical engineering approach as an important post earthquake issue to control the quality of the incoming flow of potential soil materials. In this paper, the importance of an emergency management perspective in this geotechnical approach that takes into account the different criteria related to the operation execution is proposed by highlighting the key issues concerning the handling of the construction

  5. Flow characteristics of counter-current flow in debris bed

    International Nuclear Information System (INIS)

    Abe, Yutaka; Adachi, Hiromichi

    2004-01-01

    In the course of a severe accident, a damaged core would form a debris bed consisting of once-molten and fragmented fuel elements. It is necessary to evaluate the dryout heat flux for the judgment of the coolability of the debris bed during the severe accident. The dryout phenomena in the debris bed is dominated by the counter-current flow limitation (CCFL) in the debris bed. In this study, air-water counter-current flow behavior in the debris bed is experimentally investigated with glass particles simulating the debris beds. In this experiment, falling water flow rate and axial pressure distributions were experimentally measured. As the results, it is clarified that falling water flow rate becomes larger with the debris bed height and the pressure gradient in the upper region of the debris bed is different from that in the lower region of the debris bed. These results indicate that the dominant region for CCFL in the debris bed is identified near the top of the debris bed. Analytical results with annular flow model indicates that interfacial shear stress in the upper region of the debris bed is larger than that in the lower region of the debris bed. (author)

  6. LightForce Photon-pressure Collision Avoidance: Efficiency Analysis in the Current Debris Environment and Long-Term Simulation Perspective

    Science.gov (United States)

    Yang, Fan Y.; Nelson, Bron; Carlino, Roberto; Perez, Andres D.; Faber, Nicolas; Henze, Chris; Karacahoglu, Arif G.; O'Toole, Conor; Swenson, Jason; Stupl, Jan

    2015-01-01

    This work provides an efficiency analysis of the LightForce space debris collision avoidance scheme in the current debris environment and describes a simulation approach to assess its impact on the long-term evolution of the space debris environment. LightForce aims to provide just-in-time collision avoidance by utilizing photon pressure from ground-based industrial lasers. These ground stations impart minimal accelerations to increase the miss distance for a predicted conjunction between two objects. In the first part of this paper we will present research that investigates the short-term effect of a few systems consisting of 10kW class lasers directed by 1.5 m diameter telescopes using adaptive optics. The results found such a network of ground stations to mitigate more than 85 percent of conjunctions and could lower the expected number of collisions in Low Earth Orbit (LEO) by an order of magnitude. While these are impressive numbers that indicate LightForce's utility in the short-term, the remaining 15 percent of possible collisions contain (among others) conjunctions between two massive objects that would add large amount of debris if they collide. Still, conjunctions between massive objects and smaller objects can be mitigated. Hence we choose to expand the capabilities of the simulation software to investigate the overall effect of a network of LightForce stations on the long-term debris evolution. In the second part of this paper, we will present the planed simulation approach for that effort.

  7. Sampling supraglacial debris thickness using terrestrial photogrammetry

    Science.gov (United States)

    Nicholson, Lindsey; Mertes, Jordan

    2017-04-01

    The melt rate of debris-covered ice differs to that of clean ice primarily as a function of debris thickness. The spatial distribution of supraglacial debris thickness must therefore be known in order to understand how it is likely to impact glacier behaviour, and meltwater contribution to local hydrological resources and global sea level rise. However, practical means of determining debris cover thickness remain elusive. In this study we explore the utility of terrestrial photogrammetry to produce high resolution, scaled and texturized digital terrain models of debris cover exposures above ice cliffs as a means of quantifying and characterizing debris thickness. Two Nikon D5000 DSLRs with Tamron 100mm lenses were used to photograph a sample area of the Ngozumpa glacier in the Khumbu Himal of Nepal in April 2016. A Structure from Motion workflow using Agisoft Photoscan software was used to generate a surface models with <10cm resolution. A Trimble Geo7X differential GPS with Zephyr antenna, along with a local base station, was used to precisely measure marked ground control points to scale the photogrammetric surface model. Measurements of debris thickness along the exposed cliffline were made from this scaled model, assuming that the ice surface at the debris-ice boundary is horizontal, and these data are compared to 50 manual point measurements along the same clifftops. We conclude that sufficiently high resolution photogrammetry, with precise scaling information, provides a useful means to determine debris thickness at clifftop exposures. The resolution of the possible measurements depends on image resolution, the accuracy of the ground control points and the computational capacity to generate centimetre scale surface models. Application of such techniques to sufficiently high resolution imagery from UAV-borne cameras may offer a powerful means of determining debris thickness distribution patterns over debris covered glacier termini.

  8. AAFE man-made noise experiment project. Volume 1: Introduction experiment definition and requirements

    Science.gov (United States)

    1974-01-01

    An experiment was conducted to measure and map the man-made radio frequency emanations which exist at earth orbital altitudes. The major objectives of the program are to develop a complete conceptual experiment and developmental hardware for the collection and processing of data required to produce meaningful statistics on man-made noise level variations as functions of time, frequency, and geographic location. A wide dispersion measurement receiver mounted in a spacecraft operating in a specialized orbit is used to obtain the data. A summary of the experiment designs goals and constraints is provided. The recommended orbit for the spacecraft is defined. The characteristics of the receiver and the antennas are analyzed.

  9. Global analysis of anthropogenic debris ingestion by sea turtles.

    Science.gov (United States)

    Schuyler, Qamar; Hardesty, Britta Denise; Wilcox, Chris; Townsend, Kathy

    2014-02-01

    Ingestion of marine debris can have lethal and sublethal effects on sea turtles and other wildlife. Although researchers have reported on ingestion of anthropogenic debris by marine turtles and implied incidences of debris ingestion have increased over time, there has not been a global synthesis of the phenomenon since 1985. Thus, we analyzed 37 studies published from 1985 to 2012 that report on data collected from before 1900 through 2011. Specifically, we investigated whether ingestion prevalence has changed over time, what types of debris are most commonly ingested, the geographic distribution of debris ingestion by marine turtles relative to global debris distribution, and which species and life-history stages are most likely to ingest debris. The probability of green (Chelonia mydas) and leatherback turtles (Dermochelys coriacea) ingesting debris increased significantly over time, and plastic was the most commonly ingested debris. Turtles in nearly all regions studied ingest debris, but the probability of ingestion was not related to modeled debris densities. Furthermore, smaller, oceanic-stage turtles were more likely to ingest debris than coastal foragers, whereas carnivorous species were less likely to ingest debris than herbivores or gelatinovores. Our results indicate oceanic leatherback turtles and green turtles are at the greatest risk of both lethal and sublethal effects from ingested marine debris. To reduce this risk, anthropogenic debris must be managed at a global level. © 2013 The Authors. Conservation Biology published by Wiley Periodicals, Inc., on behalf of the Society for Conservation Biology.

  10. Debris flows: behavior and hazard assessment

    Science.gov (United States)

    Iverson, Richard M.

    2014-01-01

    Debris flows are water-laden masses of soil and fragmented rock that rush down mountainsides, funnel into stream channels, entrain objects in their paths, and form lobate deposits when they spill onto valley floors. Because they have volumetric sediment concentrations that exceed 40 percent, maximum speeds that surpass 10 m/s, and sizes that can range up to ~109 m3, debris flows can denude slopes, bury floodplains, and devastate people and property. Computational models can accurately represent the physics of debris-flow initiation, motion and deposition by simulating evolution of flow mass and momentum while accounting for interactions of debris' solid and fluid constituents. The use of physically based models for hazard forecasting can be limited by imprecise knowledge of initial and boundary conditions and material properties, however. Therefore, empirical methods continue to play an important role in debris-flow hazard assessment.

  11. Thermal-hydraulic and characteristic models for packed debris beds

    International Nuclear Information System (INIS)

    Mueller, G.E.; Sozer, A.

    1986-12-01

    APRIL is a mechanistic core-wide meltdown and debris relocation computer code for Boiling Water Reactor (BWR) severe accident analyses. The capabilities of the code continue to be increased by the improvement of existing models. This report contains information on theory and models for degraded core packed debris beds. The models, when incorporated into APRIL, will provide new and improved capabilities in predicting BWR debris bed coolability characteristics. These models will allow for a more mechanistic treatment in calculating temperatures in the fluid and solid phases in the debris bed, in determining debris bed dryout, debris bed quenching from either top-flooding or bottom-flooding, single and two-phase pressure drops across the debris bed, debris bed porosity, and in finding the minimum fluidization mass velocity. The inclusion of these models in a debris bed computer module will permit a more accurate prediction of the coolability characteristics of the debris bed and therefore reduce some of the uncertainties in assessing the severe accident characteristics for BWR application. Some of the debris bed theoretical models have been used to develop a FORTRAN 77 subroutine module called DEBRIS. DEBRIS is a driver program that calls other subroutines to analyze the thermal characteristics of a packed debris bed. Fortran 77 listings of each subroutine are provided in the appendix

  12. Multi-layered foil capture of micrometeoroids and orbital debris in low Earth orbit

    Science.gov (United States)

    Kearsley, A.; Graham, G.

    Much of our knowledge concerning the sub-millimetre orbital debris population that poses a threat to orbiting satellites has been gleaned from examination of surfaces retrieved and subsequently analysed as part of post-flight investigations. The preservation of the hypervelocity impact-derived remnants located on these surfaces is very variable, whether of space debris or micrometeoroid origin. Whilst glass and metallic materials show highly visible impact craters when examined using optical and electron microscopes, complex mixing between the target material and the impacting particle may make unambiguous interpretation of the impactor origin difficult or impossible. Our recent detailed examination of selected multi-layered insulation (MLI) foils from the ISAS Space Flyer Unit (SFU), and our preliminary study of NASA's Trek blanket, exposed on the Mir station, show that these constructions have the potential to preserve abundant residue material of a quality sufficient for detailed analysis. Although there are still limitations on the recognition of certain sources of orbital debris, the foils complement the metal and glass substrates. We suggest that a purpose-built multi-layered foil structure may prove to be extremely effective for rapid collection and unambiguous analysis of impact- derived residues. Such a collector could be used an environmental monitor for ISS, as it would have low mass, high durability, easy deployment, recovery and storage, making it an economically viable and attractive option.

  13. Characterization of Orbital Debris Photometric Properties Derived from Laboratory-Based Measurements

    Science.gov (United States)

    Cowardin, Heather; Seitzer, Pat; Abercromby, Kira; Barker, Ed; Schildknecht, Thomas

    2010-01-01

    Capitalizing on optical data products and applying them to generate a more complete understanding of orbital space objects, is a key objective of NASA's Optical Measurement Program, and a primary objective for the creation of the Optical Measurements Center(OMC). The OMC attempts to emulate space-based illumination conditions using equipment and techniques that parallel telescopic observations and source-target-sensor orientations. The data acquired in the OMC are a function of known shape, size, and material. These three physical parameters are key to understanding the orbital debris environment in more depth. For optical observations, one must rely on spectroscopic or photometric measurements to ascertain an object's material type. Determination of an object s shape using remote observations is more complicated due to the various light scattering properties each object present and is a subject that requires more study. It is much easier to look at the periodicity of the light curve and analyze its structure for rotation. In order to best simulate the orbital debris population, three main sources were used as test fragments for optical measurements: flight-ready materials, destructive hypervelocity testing (simulating on-orbit collisions) and destructive pressure testing (simulating on-orbit explosions). Laboratory optical characteristics of fragments were measured, including light curve shape, phase angle dependence, and photometric and spectroscopic color indices. These characteristics were then compared with similar optical measurements acquired from telescopic observations in order to correlate remote and laboratory properties with the intent of ascertaining the intrinsic properties of the observed orbital debris

  14. Modelling the near-Earth space environment using LDEF data

    Science.gov (United States)

    Atkinson, Dale R.; Coombs, Cassandra R.; Crowell, Lawrence B.; Watts, Alan J.

    1992-01-01

    Near-Earth space is a dynamic environment, that is currently not well understood. In an effort to better characterize the near-Earth space environment, this study compares the results of actual impact crater measurement data and the Space Environment (SPENV) Program developed in-house at POD, to theoretical models established by Kessler (NASA TM-100471, 1987) and Cour-Palais (NASA SP-8013, 1969). With the continuing escalation of debris there will exist a definite hazard to unmanned satellites as well as manned operations. Since the smaller non-trackable debris has the highest impact rate, it is clearly necessary to establish the true debris environment for all particle sizes. Proper comprehension of the near-Earth space environment and its origin will permit improvement in spacecraft design and mission planning, thereby reducing potential disasters and extreme costs. Results of this study directly relate to the survivability of future spacecraft and satellites that are to travel through and/or reside in low Earth orbit (LEO). More specifically, these data are being used to: (1) characterize the effects of the LEO micrometeoroid an debris environment on satellite designs and components; (2) update the current theoretical micrometeoroid and debris models for LEO; (3) help assess the survivability of spacecraft and satellites that must travel through or reside in LEO, and the probability of their collision with already resident debris; and (4) help define and evaluate future debris mitigation and disposal methods. Combined model predictions match relatively well with the LDEF data for impact craters larger than approximately 0.05 cm, diameter; however, for smaller impact craters, the combined predictions diverge and do not reflect the sporadic clouds identified by the Interplanetary Dust Experiment (IDE) aboard LDEF. The divergences cannot currently be explained by the authors or model developers. The mean flux of small craters (approximately 0.05 cm diameter) is

  15. TMI-2 core debris analysis

    International Nuclear Information System (INIS)

    Cook, B.A.; Carlson, E.R.

    1985-01-01

    One of the ongoing examination tasks for the damaged TMI-2 reactor is analysis of samples of debris obtained from the debris bed presently at the top of the core. This paper summarizes the results reported in the TMI-2 Core Debris Grab Sample Examination and Analysis Report, which will be available early in 1986. The sampling and analysis procedures are presented, and information is provided on the key results as they relate to the present core condition, peak temperatures during the transient, temperature history, chemical interactions, and core relocation. The results are then summarized

  16. TRANSPORT CHARACTERISTICS OF SELECTED PWR LOCA GENERATED DEBRIS

    International Nuclear Information System (INIS)

    MAJI, A. K.; MARSHALL, B.

    2000-01-01

    In the unlikely event of a Loss of Coolant Accident (LOCA) in a pressurized water reactor (PWR), break jet impingement would dislodge thermal insulation FR-om nearby piping, as well as other materials within the containment, such as paint chips, concrete dust, and fire barrier materials. Steam/water flows induced by the break and by the containment sprays would transport debris to the containment floor. Subsequently, debris would likely transport to and accumulate on the suction sump screens of the emergency core cooling system (ECCS) pumps, thereby potentially degrading ECCS performance and possibly even failing the ECCS. In 1998, the U. S. Nuclear Regulatory Commission (NRC) initiated a generic study (Generic Safety Issue-191) to evaluate the potential for the accumulation of LOCA related debris on the PWR sump screen and the consequent loss of ECCS pump net positive suction head (NPSH). Los Alamos National Laboratory (LANL), supporting the resolution of GSI-191, was tasked with developing a method for estimating debris transport in PWR containments to estimate the quantity of debris that would accumulate on the sump screen for use in plant specific evaluations. The analytical method proposed by LANL, to predict debris transport within the water that would accumulate on the containment floor, is to use computational fluid dynamics (CFD) combined with experimental debris transport data to predict debris transport and accumulation on the screen. CFD simulations of actual plant containment designs would provide flow data for a postulated accident in that plant, e.g., three-dimensional patterns of flow velocities and flow turbulence. Small-scale experiments would determine parameters defining the debris transport characteristics for each type of debris. The containment floor transport methodology will merge debris transport characteristics with CFD results to provide a reasonable and conservative estimate of debris transport within the containment floor pool and

  17. Waves in man-made materials: superlattice to metamaterials

    Science.gov (United States)

    Tsu, Raphael; Fiddy, Michael A.

    2014-07-01

    While artificial or man-made structures date back to Lord Rayleigh, the work started by Lewin in 1947, placing spheres onto cubic lattices, greatly enriched microwave materials and devices. It was very suggestive of both metamaterials and photonics crystals. Effective medium models were used to describe bulk properties with some success. The concept of metamaterials followed photonic crystals, and these both were introduced after the introduction of the man-made superlattices designed to enrich the class of materials for electronic devices. The work on serrated ridged waveguides by Kirschbaum and Tsu for the control of the refractive index of microwave lenses as well as microwave matching devices in 1959 used a combination of theory, such as Floquet's theory, Bloch theory in one dimension, as well as periodic lumped loading. There is much in common between metamaterials and superlattices, but in this paper, we discuss some practical limitations to both. It is pointed out that unlike superlattices where kl > 1 is the most important criterion, metamaterials try to avoid involve such restrictions. However, the natural random fluctuations that limit the properties of naturally occurring materials are shown to take a toll on the theoretical predictions of metamaterials. The question is how great that toll, i.e. how significant those fluctuations will be, in diminishing the unusual properties that metamaterials can exhibit.

  18. Space Surveillance Catalog growth during SBIRS low deployment.

    Science.gov (United States)

    Hoult, C. P.; Wright, R. P.

    The Space Surveillance Catalog is a database of all Resident Space Objects (RSOs) on Earth orbit. It is expected to grow in the future as more RSOs accumulate on orbit. Potentially still more dramatic growth could follow the deployment of the Space Based Infrared System Low Earth Orbit Component (SBTRS Low). SBIRS Low, currently about to enter development, offers the potential to detect and acquire much smaller debris RSOs than can be seen by the current ground-based Space Surveillance Network (SSN). SBIRS Low will host multicolor infrared/visible sensors on each satellite in a proliferated constellation on low Earth orbit, and if appropriately tasked, these sensors could provide significant space surveillance capability. Catalog growth during SBIRS Low deployment was analyzed using a highly aggregated code that numerically integrates the Markov equations governing the state transitions of RSOs from uncataloged to cataloged, and back again. It was assumed that all newly observed debris RSOs will be detected as by-products of routine Catalog maintenance, not including any post breakup searches, and if sufficient sensor resources are available, be acquired into the Catalog. Debris over the entire low to high altitude regime were considered.

  19. DEBRIS DISTRIBUTION IN HD 95086—A YOUNG ANALOG OF HR 8799

    International Nuclear Information System (INIS)

    Su, Kate Y. L.; Smith, Paul S.; Rieke, George H.; Morrison, Sarah; Malhotra, Renu; Balog, Zoltan

    2015-01-01

    HD 95086 is a young early-type star that hosts (1) a 5 M J planet at the projected distance of 56 AU revealed by direct imaging, and (2) a prominent debris disk. Here we report the detection of 69 μm crystalline olivine feature from the disk using the Spitzer/MIPS-SED data covering 55-95 μm. Due to the low resolution of the MIPS-SED mode, this feature is not spectrally resolved, but is consistent with the emission from crystalline forsterite contributing ∼5% of the total dust mass. We also present detailed analysis of the disk spectral energy distribution and re-analysis of resolved images obtained by Herschel. Our results suggest that the debris structure around HD 95086 consists of a warm (∼175 K) belt, a cold (∼55 K) disk, and an extended disk halo (up to ∼800 AU), and is very similar to that of HR 8799. We compare the properties of the three debris components, and suggest that HD 95086 is a young analog of HR 8799. We further investigate and constrain single-planet, two-planet, three-planet, and four-planet architectures that can account for the observed debris structure and are compatible with dynamical stability constraints. We find that equal-mass four-planet configurations of geometrically spaced orbits, with each planet of mass ∼ 5 M J , could maintain the gap between the warm and cold debris belts, and also be just marginally stable for timescales comparable to the age of the system

  20. DEBRIS DISTRIBUTION IN HD 95086—A YOUNG ANALOG OF HR 8799

    Energy Technology Data Exchange (ETDEWEB)

    Su, Kate Y. L.; Smith, Paul S.; Rieke, George H. [Steward Observatory, University of Arizona, 933 N Cherry Ave., Tucson, AZ 85721 (United States); Morrison, Sarah; Malhotra, Renu [Lunar and Planetary Laboratory, University of Arizona, Tucson, AZ 85721 (United States); Balog, Zoltan, E-mail: ksu@as.arizona.edu [Max-Planck-Institut für Astronomie, Königstuhl 17 D-69117, Heidelberg (Germany)

    2015-02-01

    HD 95086 is a young early-type star that hosts (1) a 5 M{sub J} planet at the projected distance of 56 AU revealed by direct imaging, and (2) a prominent debris disk. Here we report the detection of 69 μm crystalline olivine feature from the disk using the Spitzer/MIPS-SED data covering 55-95 μm. Due to the low resolution of the MIPS-SED mode, this feature is not spectrally resolved, but is consistent with the emission from crystalline forsterite contributing ∼5% of the total dust mass. We also present detailed analysis of the disk spectral energy distribution and re-analysis of resolved images obtained by Herschel. Our results suggest that the debris structure around HD 95086 consists of a warm (∼175 K) belt, a cold (∼55 K) disk, and an extended disk halo (up to ∼800 AU), and is very similar to that of HR 8799. We compare the properties of the three debris components, and suggest that HD 95086 is a young analog of HR 8799. We further investigate and constrain single-planet, two-planet, three-planet, and four-planet architectures that can account for the observed debris structure and are compatible with dynamical stability constraints. We find that equal-mass four-planet configurations of geometrically spaced orbits, with each planet of mass ∼ 5 M{sub J} , could maintain the gap between the warm and cold debris belts, and also be just marginally stable for timescales comparable to the age of the system.

  1. Shielding requirements for the Space Station habitability modules

    Science.gov (United States)

    Avans, Sherman L.; Horn, Jennifer R.; Williamsen, Joel E.

    1990-01-01

    The design, analysis, development, and tests of the total meteoroid/debris protection system for the Space Station Freedom habitability modules, such as the habitation module, the laboratory module, and the node structures, are described. Design requirements are discussed along with development efforts, including a combination of hypervelocity testing and analyses. Computer hydrocode analysis of hypervelocity impact phenomena associated with Space Station habitability structures is covered and the use of optimization techniques, engineering models, and parametric analyses is assessed. Explosive rail gun development efforts and protective capability and damage tolerance of multilayer insulation due to meteoroid/debris impact are considered. It is concluded that anticipated changes in the debris environment definition and requirements will require rescoping the tests and analysis required to develop a protection system.

  2. On the Solar System-Debris Disk Connecction

    OpenAIRE

    Moro-Martin, Amaya

    2007-01-01

    This paper emphasizes the connection between solar and extra-solar debris disks: how models and observations of the Solar System are helping us understand the debris disk phenomenon, and vice versa, how debris disks are helping us place our Solar System into context.

  3. Plastic debris in the coastal environment: The invincible threat? Abundance of buried plastic debris on Malaysian beaches.

    Science.gov (United States)

    Fauziah, S H; Liyana, I A; Agamuthu, P

    2015-09-01

    Studies on marine debris have gained worldwide attention since many types of debris have found their way into the food chain of higher organisms. Thus, it is crucial that more focus is given to this area in order to curb contaminations in sea food. This study was conducted to quantify plastic debris buried in sand at selected beaches in Malaysia. Marine debris was identified according to size range and distribution, and this information was related to preventive actions to improve marine waste issues. For the purpose of this study, comparison of plastic waste abundance between a recreational beach and fish-landing beaches was also carried out, since the different beach types represent different activities that produce debris. Six beaches along the Malaysian coastline were selected for this study. The plastic types in this study were related to the functions of the beach. While recreational beaches have abundant quantities of plastic film, foamed plastic including polystyrene, and plastic fragment, fish-landing beaches accumulated line and foamed plastic. A total of 2542 pieces (265.30 g m(-2)) of small plastic debris were collected from all six beaches, with the highest number from Kuala Terengganu, at 879 items m(-2) on Seberang Takir Beach, followed by Batu Burok Beach with 780 items m(-2). Findings from studies of Malaysian beaches have provided a clearer understanding of the distribution of plastic debris. This demonstrates that commitments and actions, such as practices of the 'reduce, reuse, recycle' (3R) approach, supporting public awareness programmes and beach clean-up activities, are essential in order to reduce and prevent plastic debris pollution. © The Author(s) 2015.

  4. Present status of the 4-m ILMT data reduction pipeline: application to space debris detection and characterization

    Science.gov (United States)

    Pradhan, Bikram; Delchambre, Ludovic; Hickson, Paul; Akhunov, Talat; Bartczak, Przemyslaw; Kumar, Brajesh; Surdej, Jean

    2018-04-01

    The 4-m International Liquid Mirror Telescope (ILMT) located at the ARIES Observatory (Devasthal, India) has been designed to scan at a latitude of +29° 22' 26" a band of sky having a width of about half a degree in the Time Delayed Integration (TDI) mode. Therefore, a special data-reduction and analysis pipeline to process online the large amount of optical data being produced has been dedicated to it. This requirement has led to the development of the 4-m ILMT data reduction pipeline, a new software package built with Python in order to simplify a large number of tasks aimed at the reduction of the acquired TDI images. This software provides astronomers with specially designed data reduction functions, astrometry and photometry calibration tools. In this paper we discuss the various reduction and calibration steps followed to reduce TDI images obtained in May 2015 with the Devasthal 1.3m telescope. We report here the detection and characterization of nine space debris present in the TDI frames.

  5. Posttraumatic Stress Disorder in Children Exposed to Man-Made Disasters.

    Science.gov (United States)

    Manix, Mary M.

    This paper reviews the literature published in the last 10 years that focused on posttraumatic stress disorder (PTSD) in children exposed to man-made disasters such as war, school shootings, and the Oklahoma City bombing. As mass violence continues in society, mental health professionals need to be prepared to treat child victims of such…

  6. Assessment of active methods for removal of LEO debris

    Science.gov (United States)

    Hakima, Houman; Emami, M. Reza

    2018-03-01

    This paper investigates the applicability of five active methods for removal of large low Earth orbit debris. The removal methods, namely net, laser, electrodynamic tether, ion beam shepherd, and robotic arm, are selected based on a set of high-level space mission constraints. Mission level criteria are then utilized to assess the performance of each redirection method in light of the results obtained from a Monte Carlo simulation. The simulation provides an insight into the removal time, performance robustness, and propellant mass criteria for the targeted debris range. The remaining attributes are quantified based on the models provided in the literature, which take into account several important parameters pertaining to each removal method. The means of assigning attributes to each assessment criterion is discussed in detail. A systematic comparison is performed using two different assessment schemes: Analytical Hierarchy Process and utility-based approach. A third assessment technique, namely the potential-loss analysis, is utilized to highlight the effect of risks in each removal methods.

  7. NASA Orbital Debris Baseline Populations

    Science.gov (United States)

    Krisko, Paula H.; Vavrin, A. B.

    2013-01-01

    The NASA Orbital Debris Program Office has created high fidelity populations of the debris environment. The populations include objects of 1 cm and larger in Low Earth Orbit through Geosynchronous Transfer Orbit. They were designed for the purpose of assisting debris researchers and sensor developers in planning and testing. This environment is derived directly from the newest ORDEM model populations which include a background derived from LEGEND, as well as specific events such as the Chinese ASAT test, the Iridium 33/Cosmos 2251 accidental collision, the RORSAT sodium-potassium droplet releases, and other miscellaneous events. It is the most realistic ODPO debris population to date. In this paper we present the populations in chart form. We describe derivations of the background population and the specific populations added on. We validate our 1 cm and larger Low Earth Orbit population against SSN, Haystack, and HAX radar measurements.

  8. DebriSat Project Update and Planning

    Science.gov (United States)

    Sorge, M.; Krisko, P. H.

    2016-01-01

    DebriSat Reporting Topics: DebriSat Fragment Analysis Calendar; Near-term Fragment Extraction Strategy; Fragment Characterization and Database; HVI (High-Velocity Impact) Considerations; Requirements Document.

  9. An In vitro Comparison of Apically Extruded Debris Using Reciproc, ProTaper Universal, Neolix and Hyflex in Curved Canals

    Science.gov (United States)

    Labbaf, Hossein; Nazari Moghadam, Kiumars; Shahab, Shahriar; Mohammadi Bassir, Mahshid; Fahimi, Mohammad Amin

    2017-01-01

    Introduction: As a consequence of root canal preparation, dentinal chips, irrigants and pulp remnants are extruded into preradicular space. This phenomenon may lead to post endodontic flare-ups. The purpose of this study was to compare the amount of extruded debris with four endodontic NiTi engine-driven systems. Methods and Materials: Sixty mesiobuccal roots of maxillary molars with 15-30˚ curvature were divided randomly into four groups (n=15). Each group was instrumented up to apical size of 25 using Reciproc, ProTaper Universal, Neolix and Hyflex. Bidistilled water was used as irrigant and extruded debris was collected in pre-weighted Eppendorf tubes. Tubes were stored in incubator for drying the debris. Extruded debris were weighted in electronic microbalance with accuracy of 0.0001 g. The raw data was analyzed with one way analysis of variance (ANOVA) and Tukey’s HSD post hoc test. Level of significance was set at 0.05. Results: The debris extrusion with Reciproc files was significantly higher than the other groups (P<0.05). Hyflex significantly extruded less debris than other files (P<0.05). There was no significant difference between ProTaper Universal and Neolix regarding the amount of extruded debris (P=0.98). Conclusion: All systems extruded debris during the instrumentation. Reciproc system significantly extruded more debris. Caution should be taken when interpreting the results of this study and applying it to the real clinical situation. PMID:28808456

  10. A probabilistic approach for debris impact risk with numerical simulations of debris behaviors

    International Nuclear Information System (INIS)

    Kihara, Naoto; Matsuyama, Masafumi; Fujii, Naoki

    2013-01-01

    We propose a probabilistic approach for evaluating the impact risk of tsunami debris through Monte Carlo simulations with a combined system comprising a depth-averaged two-dimensional shallow water model and a discrete element model customized to simulate the motions of floating objects such as vessels. In the proposed method, first, probabilistic tsunami hazard analysis is carried out, and the exceedance probability of tsunami height and numerous tsunami time series for various hazard levels on the offshore side of a target site are estimated. Second, a characteristic tsunami time series for each hazard level is created by cluster analysis. Third, using the Monte Carlo simulation model the debris impact probability with the buildings of interest and the exceedance probability of debris impact speed are evaluated. (author)

  11. Mitigation of Debris Flow Damage--­ A Case Study of Debris Flow Damage

    Science.gov (United States)

    Lin, J. C.; Jen, C. H.

    Typhoon Toraji caused more than 30 casualties in Central Taiwan on the 31st July 2001. It was the biggest Typhoon since the Chi-Chi earthquake of 1999 with huge amounts of rainfall. Because of the influence of the earthquake, loose debris falls and flows became major hazards in Central Taiwan. Analysis of rainfall data and sites of slope failure show that damage from these natural hazards were enhanced as a result of the Chi-Chi earthquake. Three main types of hazard occurred in Central Taiwan: land- slides, debris flows and gully erosion. Landslides occurred mainly along hill slopes and banks of channels. Many dams and houses were destroyed by flooding. Debris flows occurred during typhoon periods and re-activated ancient debris depositions. Many new gullies were therefore developed from deposits loosened and shaken by the earthquake. This paper demonstrates the geological/geomorphological background of the hazard area, and reviews methods of damage mitigation in central Taiwan. A good example is Hsi-Tou, which had experienced no gully erosion for more than 40 years. The area experienced much gully erosion as a result of the combined effects of earth- quake and typhoon. Although Typhoon Toraji produced only 30% of the rainfall of Typhoon Herb of 1996, it caused more damage in the Hsi-Tou area. The mitigation of debris flow hazards in Hsi-tou area is discussed in this paper.

  12. Using Light Curves to Characterize Size and Shape of Pseudo-Debris

    Science.gov (United States)

    Rodriquez, Heather M.; Abercromby, Kira J.; Jarvis, Kandy S.; Barker, Edwin

    2006-01-01

    Photometric measurements were collected for a new study aimed at estimating orbital debris sizes based on object brightness. To obtain a size from optical measurements the current practice is to assume an albedo and use a normalized magnitude to calculate optical size. However, assuming a single albedo value may not be valid for all objects or orbit types; material type and orientation can mask an object s true optical cross section. This experiment used a CCD camera to record data, a 300 W Xenon, Ozone Free collimated light source to simulate solar illumination, and a robotic arm with five degrees of freedom to move the piece of simulated debris through various orientations. The pseudo-debris pieces used in this experiment originate from the European Space Operations Centre s ESOC2 ground test explosion of a mock satellite. A uniformly illuminated white ping-pong ball was used as a zero-magnitude reference. Each debris piece was then moved through specific orientations and rotations to generate a light curve. This paper discusses the results of five different object-based light curves as measured through an x-rotation. Intensity measurements, from which each light curve was generated, were recorded in five degree increments from zero to 180 degrees. Comparing light curves of different shaped and sized pieces against their characteristic length establishes the start of a database from which an optical size estimation model will be derived in the future.

  13. Quantitative assessment of apical debris extrusion and intracanal debris in the apical third, using hand instrumentation and three rotary instrumentation systems.

    Science.gov (United States)

    H K, Sowmya; T S, Subhash; Goel, Beena Rani; T N, Nandini; Bhandi, Shilpa H

    2014-02-01

    Decreased apical extrusion of debris and apical one third debris have strong implications for decreased incidence of postoperative inflammation and pain. Thus, the aim of this study was to assess quantitatively the apical extrusion of debris and intracanal debris in the apical third during root canal instrumentation using hand and three different types of rotary instruments. Sixty freshly extracted single rooted human teeth were randomly divided into four groups. Canal preparation was done using step-back with hand instrumentation, crown-down technique with respect to ProTaper and K3, and hybrid technique with LightSpeed LSX. Irrigation was done with NaOCl, EDTA, and normal saline and for final irrigation, EndoVac system was used. The apically extruded debris was collected on the pre-weighed Millipore plastic filter disk and weighed using microbalance. The teeth were submitted to the histological processing. Sections from the apical third were analyzed by a trinocular research microscope that was coupled to a computer where the images were captured and analyzed using image proplus V4.1.0.0 software. The mean weight of extruded debris for each group and intracanal debris in the root canal was statistically analyzed by a Kruskal-Wallis one-way analysis of variance and Mann-Whitney U test. The result showed that, hand instrumentation using K files showed the highest amount of debris extrusion apically when compared to ProTaper, K3 and LightSpeed LSX. The result also showed that there was no statistically significant difference between the groups in relation to presence of intracanal debris in the apical one third. Based on the results, all instrumentation techniques produced debris extrusion. The engine driven Ni-Ti systems extruded significantly less apical debris than hand instrumentation. There was no statistically significant difference between the groups in relation to presence of intracanal debris in the apical one third.

  14. Evaluating the environmental criticality of massive objects in LEO for debris mitigation and remediation

    Science.gov (United States)

    Pardini, Carmen; Anselmo, Luciano

    2018-04-01

    Approximately 95% of the mass in Earth orbit is currently concentrated in about 6700 intact objects, of which nearly 80% are abandoned and more than 90% cannot be maneuvered. The intact objects abandoned in low Earth orbit (LEO) above 650 km, i.e. with an average residual lifetime of more than 25 years, represent the main potential mass reservoir for the generation of new detrimental orbital debris in case of mutual collisions with the existing debris environment, taking into account that an 800 g impactor may be sufficient, in principle, to shatter a 1000 kg spacecraft or rocket stage. Since the 1980's, several mitigation measures were promoted and agreed at the international level in order to prevent the occurrence of new breakups in space and put under control the accumulation of mass abandoned in orbit, but unfortunately the level of compliance with such guidelines, requirements or standards is still far from satisfactory. Moreover, the appearance on the scene of space activity of new private and government actors from a growing number of countries makes the proper management of the circumterrestrial space a task of increasing complexity, taking also into account the rapid emerging of new potential applications, disrupting technologies and operational approaches quite different from the past. In this rapidly evolving environment, it might be useful to have a simple and flexible instrument for evaluating the potential criticality for the environment of massive objects placed or abandoned in LEO. With this goal, in the last few years, a particular effort was devoted to the development of various "criticality indexes", then applied for evaluating many families of rocket bodies and selected spacecraft. In this paper, with the underlining ambition to be simple, intuitive and relevant, from an environmental point of view, a couple of the most complete indexes were coherently applied in order to assess the potential criticality of the most massive objects abandoned in

  15. Protecting AREVA ATRIUM™ BWR fuel from debris fretting failure

    International Nuclear Information System (INIS)

    Cole, Steven E.; Garner, Norman L.; Lippert, Hans-Joachim; Graebert, Rüdiger; Mollard, Pierre; Hahn, Gregory C.

    2014-01-01

    Historically, debris fretting has been the leading cause of fuel rod failure in BWR fuel assemblies, costing the industry millions of dollars in lost generation and negatively impacting the working area of plant site personnel. In this paper the focus will be on recent BWR fuel product innovation designed to eliminate debris related failures. Experience feedback from more than three decades of operation history with non-line-of-sight FUELGUARD™ lower tie plate debris filters will be presented. The development and relative effectiveness of successive generations of filtration technology will be discussed. It will be shown that modern, state of the art debris filters are an effective defense against debris fretting failure. Protective measures extend beyond inlet nozzle debris filters. The comprehensive debris resistance features built into AREVA’s newest fuel design, the ATRIUM™ 11, reduce the overall risk of debris entrapment as well as providing a degree of protection from debris that may fall down on the fuel assembly from above, e.g., during refueling operations. The positive recent experience in a debris sensitive plant will be discussed showing that the combination of advanced fuel technology and a robust foreign material exclusion program at the reactor site can eliminate the debris fretting failure mechanism. (author)

  16. The effect of debris-flow composition on runout distance

    Science.gov (United States)

    de Haas, Tjalling; Braat, Lisanne; Leuven, Jasper; Lokhorst, Ivar; Kleinhans, Maarten

    2015-04-01

    Estimating runout distance is of major importance for the assessment and mitigation of debris-flow hazards. Debris-flow runout distance depends on debris-flow composition and topography, but state-of-the-art runout prediction methods are mainly based on topographical parameters and debris-flow volume, while composition is generally neglected or incorporated in empirical constants. Here we experimentally investigated the effect of debris-flow composition and topography on runout distance. We created the first small-scale experimental debris flows with self-formed levees, distinct lobes and morphology and texture accurately resembling natural debris flows. In general, the effect of debris-flow composition on runout distance was larger than the effect of topography. Enhancing channel slope and width, outflow plain slope, debris-flow size and water fraction leads to an increase in runout distance. However, runout distance shows an optimum relation with coarse-material and clay fraction. An increase in coarse-material fraction leads to larger runout distances by increased grain collisional forces and more effective levee formation, but too much coarse debris causes a large accumulation of coarse debris at the flow front, enhancing friction and decreasing runout. An increase in clay fraction initially enlarges the volume and viscosity of the interstitial fluid, liquefying the flow and enhancing runout, while a further increase leads to very viscous flows with high yield strength, reducing runout. These results highlight the importance and further need of research on the relation between debris-flow composition and runout distance. Our experiments further provide valuable insight on the effects of debris-flow composition on depositional mechanisms and deposit morphology.

  17. Understanding sources, sinks, and transport of marine debris

    Science.gov (United States)

    Law, Kara Lavender; Maximenko, Nikolai

    2011-07-01

    Fifth International Marine Debris Conference: Hydrodynamics of Marine Debris; Honolulu, Hawaii, 20 March 2011; Ocean pollution in the form of marine debris, especially plastic debris, has received increasing public and media attention in recent years through striking but frequently inaccurate descriptions of “garbage patches.” Marine debris is composed of all manufactured materials, including glass, metal, paper, fibers, and plastic, that have been deliberately dumped or that accidentally entered the marine environment. Marine debris is most visible on beaches, but it has been observed in all oceans and in such remote locations as on the deep seabed and floating in the middle of subtropical ocean gyres. While many initiatives have been developed to solve this pollution problem through prevention and cleanup efforts, there is relatively little scientific information available to assess the current status of the problem or to provide metrics to gauge the success of remediation measures. With this in mind, a full-day workshop entitled “Hydrodynamics of Marine Debris” was convened at the Fifth International Marine Debris Conference in Hawaii, bringing together observational scientists and oceanographic modelers to outline the steps necessary to quantify the major sources and sinks of marine debris and the pathways between them. The ultimate goal in integrating the two approaches of study is to quantify the basinscale and global inventory of marine debris by closing the associated mass budgets.

  18. POST Earthquake Debris Management — AN Overview

    Science.gov (United States)

    Sarkar, Raju

    Every year natural disasters, such as fires, floods, earthquakes, hurricanes, landslides, tsunami, and tornadoes, challenge various communities of the world. Earthquakes strike with varying degrees of severity and pose both short- and long-term challenges to public service providers. Earthquakes generate shock waves and displace the ground along fault lines. These seismic forces can bring down buildings and bridges in a localized area and damage buildings and other structures in a far wider area. Secondary damage from fires, explosions, and localized flooding from broken water pipes can increase the amount of debris. Earthquake debris includes building materials, personal property, and sediment from landslides. The management of this debris, as well as the waste generated during the reconstruction works, can place significant challenges on the national and local capacities. Debris removal is a major component of every post earthquake recovery operation. Much of the debris generated from earthquake is not hazardous. Soil, building material, and green waste, such as trees and shrubs, make up most of the volume of earthquake debris. These wastes not only create significant health problems and a very unpleasant living environment if not disposed of safely and appropriately, but also can subsequently impose economical burdens on the reconstruction phase. In practice, most of the debris may be either disposed of at landfill sites, reused as materials for construction or recycled into useful commodities Therefore, the debris clearance operation should focus on the geotechnical engineering approach as an important post earthquake issue to control the quality of the incoming flow of potential soil materials. In this paper, the importance of an emergency management perspective in this geotechnical approach that takes into account the different criteria related to the operation execution is proposed by highlighting the key issues concerning the handling of the construction

  19. Design of full scale debris washing system

    International Nuclear Information System (INIS)

    Taylor, M.L.; Dosani, M.A.; Wentz, J.A.; Patkar, A.N.; Barkley, N.P.

    1992-01-01

    Since 1987, IT Environmental Programs Inc. (ITEP, a subsidiary of International Technology Corporation) in conjunction with EPA/RREL in Cincinnati, Ohio, have been developing and conducting bench scale and pilot scale testing of a transportable debris washing system which can be used on-site for the decontamination of debris. During the initial phase of the debris decontamination project, a series of bench scale tests were performed in the laboratory to assess the ability of the system to remove contaminants from debris and to facilitate selection of the most efficient surfactant solution. Five nonionic, non-toxic, low foaming, surfactant solution (BG-5, MC-2000, LF-330, BB-100, and L-433) were selected for an experimental evaluation to determine their capacity to solubilize and remove contaminants from the surfaces of corroded steel places. The pieces of corroded steel were coated with a heavy grease mixture prepared in the laboratory and these pieces of debris were placed in a bench scale spray tank on a metal tray and subjected in a high-pressure spray for each surfactant solution for 15 minutes. At the end of the spray cycle, The tray was transferred to a second bench scale system, a high-turbulence wash tank, where the debris was washed for 30 minutes with the same surfactant solution as the used in the spray tank. After the was cycle was completed, the tray was removed from the wash tank and the debris was allowed to air-dry. Before and after treatment, surface-wipe samples were obtained from each of the six pieces of debris and were analyzed for oil and graese. Based on the results, BG-5 was selected as the solution best suited for cleaning grease-laden, metallic debris. 2 refs

  20. THE SPITZER INFRARED SPECTROGRAPH DEBRIS DISK CATALOG. I. CONTINUUM ANALYSIS OF UNRESOLVED TARGETS

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Christine H. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Mittal, Tushar [Department of Earth and Planetary Science, University of California Berkeley, Berkeley, CA 94720-4767 (United States); Kuchner, Marc [NASA Goddard Space Flight Center, Exoplanets and Stellar Astrophysics Laboratory, Code 667, Greenbelt, MD 20771 (United States); Forrest, William J.; Watson, Dan M. [Department of Physics and Astronomy, University of Rochester, Rochester, NY 14627 (United States); Lisse, Carey M. [Johns Hopkins University Applied Physics Laboratory, 11100 Johns Hopkins Road, Laurel, MD 20723 (United States); Manoj, P. [Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400 005 (India); Sargent, Benjamin A., E-mail: cchen@stsci.edu [Center for Imaging Science and Laboratory for Multiwavelength Astrophysics, Rochester Institute of Technology, 54 Lomb Memorial Drive, Rochester, NY 14623 (United States)

    2014-04-01

    During the Spitzer Space Telescope cryogenic mission, Guaranteed Time Observers, Legacy Teams, and General Observers obtained Infrared Spectrograph (IRS) observations of hundreds of debris disk candidates. We calibrated the spectra of 571 candidates, including 64 new IRAS and Multiband Imaging Photometer for Spitzer (MIPS) debris disks candidates, modeled their stellar photospheres, and produced a catalog of excess spectra for unresolved debris disks. For 499 targets with IRS excess but without strong spectral features (and a subset of 420 targets with additional MIPS 70 μm observations), we modeled the IRS (and MIPS data) assuming that the dust thermal emission was well-described using either a one- or two-temperature blackbody model. We calculated the probability for each model and computed the average probability to select among models. We found that the spectral energy distributions for the majority of objects (∼66%) were better described using a two-temperature model with warm (T {sub gr} ∼ 100-500 K) and cold (T {sub gr} ∼ 50-150 K) dust populations analogous to zodiacal and Kuiper Belt dust, suggesting that planetary systems are common in debris disks and zodiacal dust is common around host stars with ages up to ∼1 Gyr. We found that younger stars generally have disks with larger fractional infrared luminosities and higher grain temperatures and that higher-mass stars have disks with higher grain temperatures. We show that the increasing distance of dust around debris disks is inconsistent with self-stirred disk models, expected if these systems possess planets at 30-150 AU. Finally, we illustrate how observations of debris disks may be used to constrain the radial dependence of material in the minimum mass solar nebula.

  1. DebriSat Laboratory Analyses

    Science.gov (United States)

    2015-01-05

    droplets. Fluorine from Teflon wire insulation was also common in the SEM stub and witness plates deposits. Nano droplets of metallic materials...and Debris-LV debris. Aluminum was from the Al honeycomb, nadir and zenith panels, structural core and COPV liner. Aluminum oxide particles were...three pieces: Outer Nylon shell (sabot) with 2 part hollow aluminum insert. • ~600 grams, 8.6 cm diameter X 10.3 cm long – size of a soup can

  2. Herschel Observations of Gas and Dust in the Unusual 49 Ceti Debris Disk

    NARCIS (Netherlands)

    Roberge, A.; Kamp, I.; Montesinos, B.; Dent, W. R. F.; Meeus, G.; Donaldson, J. K.; Olofsson, J.; Moor, A.; Augereau, J. -C.; Howard, C.; Eiroa, C.; Thi, W. -F.; Ardila, D. R.; Sandell, G.; Woitke, P.

    2013-01-01

    We present far-IR/sub-mm imaging and spectroscopy of 49 Ceti, an unusual circumstellar disk around a nearby young A1V star. The system is famous for showing the dust properties of a debris disk, but the gas properties of a low-mass protoplanetary disk. The data were acquired with the Herschel Space

  3. Mixed debris treatment at the Idaho National Engineering Laboratory (INEL)

    International Nuclear Information System (INIS)

    Garcia, E.C.; Porter, C.L.; Wallace, M.T.

    1993-01-01

    August 18, 1992 the EPA published the final revised treatment standards for hazardous debris, including mixed debris. Whereas previous standards had been concentration based, the revised standards are performance based. Debris must be treated prior to land disposal, using specific technologies from one or more of the following families of debris treatment technologies: Extraction, destruction, or immobilization. Seventeen specific technologies with generic application are discussed in the final rule. The existing capabilities and types of debris at the INEL were evaluated against the debris rule to determine an overall treatment strategy for the INEL. Seven types of debris were identified: Combustible, porous, non-porous, inherently hazardous, HEPA filters, asbestos contaminated, and reactive metals contaminated debris. With the exception of debris contaminated with reactive metals treatment can be achieved utilizing existing facilities coupled with minor modifications

  4. Trophic interactions among the heterotrophic components of plankton in man-made peat pools

    Directory of Open Access Journals (Sweden)

    Michał Niedźwiecki

    2017-03-01

    Full Text Available Man-made peat pools are permanent freshwater habitats developed due to non-commercial man-made peat extraction. Yet, they have not been widely surveyed in terms of ecosystem functioning, mainly regarding the complexity of heterotrophic components of the plankton. In this study we analysed distribution and trophic interrelations among heterotrophic plankton in man-made peat pools located in different types of peatbogs. We found that peat pools showed extreme differences in environmental conditions that occurred to be important drivers of distribution of microplankton and metazooplankton. Abundance of bacteria and protozoa showed significant differences, whereas metazooplankton was less differentiated in density among peat pools. In all peat pools stress-tolerant species of protozoa and metazoa were dominant. In each peat pool five trophic functional groups were distinguished. The abundance of lower functional trophic groups (bacteria, heterotrophic nanoflagellates (HNF and ciliates feeding on bacteria and HNF was weakly influenced by environmental drivers and was highly stable in all peat pool types. Higher functional trophic groups (naupli, omnivorous and carnivorous ciliates, cladocerans, adult copepods and copepodites were strongly influenced by environmental variables and exhibited lower stability. Our study contributes to comprehensive knowledge of the functioning of peat bogs, as our results have shown that peat pools are characterized by high stability of the lowest trophic levels, which can be crucial for energy transfer and carbon flux through food webs.

  5. Linking effects of anthropogenic debris to ecological impacts

    Science.gov (United States)

    Browne, Mark Anthony; Underwood, A. J.; Chapman, M. G.; Williams, Rob; Thompson, Richard C.; van Franeker, Jan A.

    2015-01-01

    Accelerated contamination of habitats with debris has caused increased effort to determine ecological impacts. Strikingly, most work on organisms focuses on sublethal responses to plastic debris. This is controversial because (i) researchers have ignored medical insights about the mechanisms that link effects of debris across lower levels of biological organization to disease and mortality, and (ii) debris is considered non-hazardous by policy-makers, possibly because individuals can be injured or removed from populations and assemblages without ecological impacts. We reviewed the mechanisms that link effects of debris across lower levels of biological organization to assemblages and populations. Using plastic, we show microplastics reduce the ‘health’, feeding, growth and survival of ecosystem engineers. Larger debris alters assemblages because fishing-gear and tyres kill animals and damage habitat-forming plants, and because floating bottles facilitate recruitment and survival of novel taxa. Where ecological linkages are not known, we show how to establish hypothetical links by synthesizing studies to assess the likelihood of impacts. We also consider how population models examine ecological linkages and guide management of ecological impacts. We show that by focusing on linkages to ecological impacts rather than the presence of debris and its sublethal impacts, we could reduce threats posed by debris. PMID:25904661

  6. ABB. CASE's GUARDIANTM Debris Resistant Fuel Assembly Design

    International Nuclear Information System (INIS)

    Dixon, D. J.; Wohlsen, W. D.

    1992-01-01

    ABB CE's experience, that 72% of all recent fuel-rod failures are caused by debris fretting, is typical. In response to this problem, ABB Combustion Engineering began supplying in the late 1980s fuel assemblies with a variety of debris resistant features, including both long-end caps and small flow holes. Now ABB CAE has developed an advanced debris resistant design concept, GUARDIAN TM , which has the advantage of capturing and retaining more debris than other designs, while displacing less plenum or active fuel volume than the long end-cap design. GUARDIAN TM design features have now been implemented into four different assembly designs. ABB CASE's GUARDIAN TM fuel assembly is an advanced debris-resistant design which has both superior filtering performance and uniquely, excellent debris retention, Retention effectively removes the debris from circulation in the coolant so that it is not able to threaten the fuel again. GUARDIAN TM features have been incorporated into four ABB. CAE fuel assembly designs. These assemblies are all fully compatible with the NSLS, and full-batch operation with GUARDIAN TM began in 1992. The number of plants of both CAE and non-CAE design which accept GUARDIAN TM for debris protection is expected to grow significantly during the next few years

  7. Small space object imaging : LDRD final report.

    Energy Technology Data Exchange (ETDEWEB)

    Ackermann, Mark R.; Valley, Michael T.; Kearney, Sean Patrick

    2009-10-01

    We report the results of an LDRD effort to investigate new technologies for the identification of small-sized (mm to cm) debris in low-earth orbit. This small-yet-energetic debris presents a threat to the integrity of space-assets worldwide and represents significant security challenge to the international community. We present a nonexhaustive review of recent US and Russian efforts to meet the challenges of debris identification and removal and then provide a detailed description of joint US-Russian plans for sensitive, laser-based imaging of small debris at distances of hundreds of kilometers and relative velocities of several kilometers per second. Plans for the upcoming experimental testing of these imaging schemes are presented and a preliminary path toward system integration is identified.

  8. Man-made materials : An exciting area for hyperfine-interaction investigation

    International Nuclear Information System (INIS)

    Freeman, A.; Wu, R.

    1996-01-01

    Man-made low-dimensional magnetic systems including surfaces, interfaces and multilayers, have attracted a great amount of attention in the past decade because, as expected, the lowered symmetry and coordination number offer a variety of opportunities for inducing new and exotic phenomena and so hold out the promise of new device applications. Local spin density functional (LSDF) ab initio electronic-structure calculations employing the full-potential -linearized augmented-plane-wave (FLAPW) method have played a key role in the development of this exciting field by not only providing a clearer understanding of the experimental observations but also predicting new systems with desired properties. One of the striking successes of theory in the last decade has been the calculation of hyperfine fields at surfaces and interfaces. Concurrently, several groups have followed the pioneering work of Korecki and Gradmann and have measured hyperfine fields at surfaces and interfaces. In this paper, it is reviewed new features of hyperfine-interaction investigations in man-made materials which are essential because the hyperfine field is not proportional to the magnetization and so interpretations of experiment are totally dependent on theory

  9. DEBRIS DISKS AROUND SOLAR-TYPE STARS: OBSERVATIONS OF THE PLEIADES WITH THE SPITZER SPACE TELESCOPE

    International Nuclear Information System (INIS)

    Sierchio, J. M.; Rieke, G. H.; Su, K. Y. L.; Plavchan, P.; Stauffer, J. R.; Gorlova, N. I.

    2010-01-01

    We present Spitzer MIPS observations at 24 μm of 37 solar-type stars in the Pleiades and combine them with previous observations to obtain a sample of 71 stars. We report that 23 stars, or 32% ± 6.8%, have excesses at 24 μm at least 10% above their photospheric emission. We compare our results with studies of debris disks in other open clusters and with a study of A stars to show that debris disks around solar-type stars at 115 Myr occur at nearly the same rate as around A-type stars. We analyze the effects of binarity and X-ray activity on the excess flux. Stars with warm excesses tend not to be in equal-mass binary systems, possibly due to clearing of planetesimals by binary companions in similar orbits. We find that the apparent anti-correlations in the incidence of excess and both the rate of stellar rotation and also the level of activity as judged by X-ray emission are statistically weak.

  10. Application of electrical resistivity tomography techniques for mapping man-made sinkholes

    Science.gov (United States)

    Rey, J.; Martínez, J.; Hidalgo, C.; Dueñas, J.

    2012-04-01

    The suitability of the geophysical prospecting by electrical resistivity tomography to detect and map man-made subsurface cavities and related sinkholes has been studied in the Linares abandoned mining district (Spain). We have selected for this study four mined sectors constituted of different lithologies: granite and phyllites of Paleozoic age, and Triassic shales and sandstones. In three of these sectors, detail underground topographic surveys were carried out to chart the position and dimensions of the mining voids (galleries and chamber), in order to analyze the resolution of this methodology to characterize these cavities by using different electrode arrays. The results are variable, depending on the depth and diameter of the void, the selected electrode array, the spacing between electrodes, geological complexity and data density. These results also indicate that when the cavity is empty, an anomaly with a steep gradient and high resistivity values is registered, because the air that fills the mining void is dielectric, while when the cavities are filled with fine grain sediments, frequently saturated in water, the electrical resistance is lower. In relation with the three different multi-electrode arrays tested, the Wenner-Schlumberger array has resulted to offer the maximum resolution in all these cases, with lower and more stable values for the RMS than the other arrays. Therefore, this electrode array has been applied in the fourth studied sector, a former mine near the city centre of Linares, in an area of urban expansion in which there are problems of subsidence. Two sets of four electrical tomography profiles have been carried out, perpendicular to each other, and which have allowed reaching depths of research between 30-35 m. This net-array allowed the identification of two shallow anomalies of low resistivity values, interpreted as old mining galleries filled with fine material saturated in water. It also allows detecting two fractures, correlated

  11. Mixed debris treatment at the Idaho National Engineering Laboratory (INEL)

    International Nuclear Information System (INIS)

    Garcia, E.C.; Porter, C.L.; Wallace, M.T.

    1993-01-01

    August 18, 1992 the Environmental Protection Agency (EPA) published the final revised treatment standards for hazardous debris, including mixed debris. (1) Whereas previous standards had been concentration based, the revised standards are performance based. Debris must be treated prior to land disposal, using specific technologies from one or more of the following families of debris treatment technologies: Extraction, destruction, or immobilization. Seventeen specific technologies with generic application are discussed in the final rule. The existing capabilities and types of debris at the INEL were scrubbed against the debris rule to determine an overall treatment strategy. Seven types of debris were identified: combustible, porous, non-porous, inherently hazardous, HEPA filters, asbestos contaminated, and reactive metals contaminated debris. With the exception of debris contaminated with reactive metals treatment can be achieved utilizing existing facilities coupled with minor modifications

  12. 19 CFR 10.425 - Transit and transshipment of non-originating cotton or man-made fiber fabric or apparel goods.

    Science.gov (United States)

    2010-04-01

    ... 19 Customs Duties 1 2010-04-01 2010-04-01 false Transit and transshipment of non-originating cotton or man-made fiber fabric or apparel goods. 10.425 Section 10.425 Customs Duties U.S. CUSTOMS AND... § 10.425 Transit and transshipment of non-originating cotton or man-made fiber fabric or apparel goods...

  13. Photometric Studies of GEO Debris

    Science.gov (United States)

    Seitzer, Patrick; Cowardin, Heather M.; Barker, Edwin; Abercromby, Kira J.; Foreman, Gary; Horstman, Matt

    2009-01-01

    The photometric signature of a debris object can be useful in determining what the physical characteristics of a piece of debris are. We report on optical observations in multiple filters of debris at geosynchronous Earth orbit (GEO). Our sample is taken from GEO objects discovered in a survey with the University of Michigan's 0.6-m aperture Schmidt telescope MODEST (for Michigan Orbital DEbris Survey Telescope), and then followed up in real-time with the SMARTS (Small and Medium Aperture Research Telescope System) 0.9-m at CTIO for orbits and photometry. Our goal is to determine 6 parameter orbits and measure colors for all objects fainter than R = 15 th magnitude that are discovered in the MODEST survey. At this magnitude the distribution of observed angular rates changes significantly from that of brighter objects. There are two objectives: 1. Estimate the orbital distribution of objects selected on the basis of two observational criteria: brightness (magnitude) and angular rates. 2. Obtain magnitudes and colors in standard astronomical filters (BVRI) for comparison with reflectance spectra of likely spacecraft materials. What is the faint debris likely to be? In this paper we report on the photometric results. For a sample of 50 objects, more than 90 calibrated sequences of R-B-V-I-R magnitudes have been obtained with the CTIO 0.9-m. For objects that do not show large brightness variations, the colors are largely redder than solar in both B-R and R-I. The width of the color distribution may be intrinsic to the nature of the surfaces, but also could be that we are seeing irregularly shaped objects and measuring the colors at different times with just one telescope. For a smaller sample of objects we have observed with synchronized CCD cameras on the two telescopes. The CTIO 0.9-m observes in B, and MODEST in R. The CCD cameras are electronically linked together so that the start time and duration of observations are the same to better than 50 milliseconds. Thus

  14. Treatment technology analysis for mixed waste containers and debris

    International Nuclear Information System (INIS)

    Gehrke, R.J.; Brown, C.H.; Langton, C.A.; Askew, N.M.; Kan, T.; Schwinkendorf, W.E.

    1994-03-01

    A team was assembled to develop technology needs and strategies for treatment of mixed waste debris and empty containers in the Department of Energy (DOE) complex, and to determine the advantages and disadvantages of applying the Debris and Empty Container Rules to these wastes. These rules issued by the Environmental Protection Agency (EPA) apply only to the hazardous component of mixed debris. Hazardous debris that is subjected to regulations under the Atomic Energy Act because of its radioactivity (i.e., mixed debris) is also subject to the debris treatment standards. The issue of treating debris per the Resource Conservation and Recovery Act (RCRA) at the same time or in conjunction with decontamination of the radioactive contamination was also addressed. Resolution of this issue requires policy development by DOE Headquarters of de minimis concentrations for radioactivity and release of material to Subtitle D landfills or into the commercial sector. The task team recommends that, since alternate treatment technologies (for the hazardous component) are Best Demonstrated Available Technology (BDAT): (1) funding should focus on demonstration, testing, and evaluation of BDAT on mixed debris, (2) funding should also consider verification of alternative treatments for the decontamination of radioactive debris, and (3) DOE should establish criteria for the recycle/reuse or disposal of treated and decontaminated mixed debris as municipal waste

  15. The ecological impacts of marine debris

    NARCIS (Netherlands)

    Rochman, Chelsea M.; Browne, Mark Anthony; Underwood, A.J.; Franeker, Van Jan A.; Thompson, Richard C.; Amaral-Zettler, Linda A.

    2016-01-01

    Anthropogenic debris contaminates marine habitats globally, leading to several perceived ecological impacts. Here, we critically and systematically review the literature regarding impacts of debris from several scientific fields to understand the weight of evidence regarding the ecological

  16. Modeling the HD 32297 Debris Disk With Far-Infrared Herschel Data

    Science.gov (United States)

    Donaldson, J.K.; Lebreton, J.; Roberge, A.; Augereau, J.-C.; Krivov, A. V.

    2013-01-01

    HD 32297 is a young A-star (approx. 30 Myr) 112 pc away with a bright edge-on debris disk that has been resolved in scattered light. We observed the HD 32297 debris disk in the far-infrared and sub-millimeter with the Herschel Space Observatory PACS and SPIRE instruments, populating the spectral energy distribution (SED) from 63 to 500 micron..We aimed to determine the composition of dust grains in the HD 32297 disk through SED modeling, using geometrical constraints from the resolved imaging to break the degeneracies inherent in SED modeling. We found the best fitting SED model has two components: an outer ring centered around 110 AU, seen in the scattered light images, and an inner disk near the habitable zone of the star. The outer disk appears to be composed of grains>2 micron consisting of silicates, carbonaceous material, and water ice with an abundance ratio of 1:2:3 respectively and 90% porosity. These grains appear consistent with cometary grains, implying the underlying planetesimal population is dominated by comet-like bodies. We also discuss the 3.7 sigma detection of [C ii] emission at 158 micron with the Herschel PACS instrument, making HD 32297 one of only a handful of debris disks with circumstellar gas detected

  17. Debris Flows and Related Phenomena

    Science.gov (United States)

    Ancey, C.

    Torrential floods are a major natural hazard, claiming thousands of lives and millions of dollars in lost property each year in almost all mountain areas on the Earth. After a catastrophic eruption of Mount St. Helen in the USA in May 1980, water from melting snow, torrential rains from the eruption cloud, and water displaced from Spirit Lake mixed with deposited ash and debris to produce very large debris flows and cause extensive damage and loss of life [1]. During the 1985 eruption of Nevado del Ruiz in Colombia, more than 20,000 people perished when a large debris flow triggered by the rapid melting of snow and ice at the volcano summit, swept through the town of Armero [2]. In 1991, the eruption of Pinatubo volcano in the Philippines disperses more than 5 cubic kilometres of volcanic ash into surrounding valleys. Much of that sediment has subsequently been mobilised as debris flows by typhoon rains and has devastated more than 300 square kilometres of agricultural land. Even, in Eur opean countries, recent events that torrential floods may have very destructive effects (Sarno and Quindici in southern Italy in May 1998, where approximately 200 people were killed). The catastrophic character of these floods in mountainous watersheds is a consequence of significant transport of materials associated with water flows. Two limiting flow regimes can be distinguished. Bed load and suspension refer to dilute transport of sediments within water. This means that water is the main agent in the flow dynamics and that the particle concentration does not exceed a few percent. Such flows are typically two-phase flows. In contrast, debris flows are mas s movements of concentrated slurries of water, fine solids, rocks and boulders. As a first approximation, debris flows can be treated as one-phase flows and their flow properties can be studied using classical rheological methods. The study of debris flows is a very exciting albeit immature science, made up of disparate elements

  18. The impact of debris on the Florida manatee

    Science.gov (United States)

    Beck, C.A.; Barros, N.B.

    1991-01-01

    The endangered Florida manatee ingests debris while feeding. From 1978 through 1986, 439 salvaged manatees were examined. Debris was in the gastrointestinal tract of 63 (14.4%) and four died as a direct result of debris ingestion. Monofilament fishing line was the most common debris found (N=49). Plastic bags, string, twine, rope, fish hooks, wire, paper, cellophane, synthetic sponges, rubber bands, and stockings also were recovered. Entanglement in lines and nets killed 11 manatees from 1974 through 1985. Numerous free-ranging manatees have missing or scarred flippers from entanglements, or debris still encircling one or both flippers. We recommend local cleanups, education of the public, and fishing restrictions in high use areas to significantly reduce harm to manatees.

  19. Debris prevention system, radiation system, and lithograpic apparatus

    NARCIS (Netherlands)

    2009-01-01

    A debris prevention system is constructed and arranged to prevent debris that emanates from a radiation source from propagating with radiation from the radiation source into or within a lithographic apparatus. The debris prevention system includes an aperture that defines a maximum emission angle of

  20. Linking effects of anthropogenic debris to ecological impacts.

    Science.gov (United States)

    Browne, Mark Anthony; Underwood, A J; Chapman, M G; Williams, Rob; Thompson, Richard C; van Franeker, Jan A

    2015-05-22

    Accelerated contamination of habitats with debris has caused increased effort to determine ecological impacts. Strikingly, most work on organisms focuses on sublethal responses to plastic debris. This is controversial because (i) researchers have ignored medical insights about the mechanisms that link effects of debris across lower levels of biological organization to disease and mortality, and (ii) debris is considered non-hazardous by policy-makers, possibly because individuals can be injured or removed from populations and assemblages without ecological impacts. We reviewed the mechanisms that link effects of debris across lower levels of biological organization to assemblages and populations. Using plastic, we show microplastics reduce the 'health', feeding, growth and survival of ecosystem engineers. Larger debris alters assemblages because fishing-gear and tyres kill animals and damage habitat-forming plants, and because floating bottles facilitate recruitment and survival of novel taxa. Where ecological linkages are not known, we show how to establish hypothetical links by synthesizing studies to assess the likelihood of impacts. We also consider how population models examine ecological linkages and guide management of ecological impacts. We show that by focusing on linkages to ecological impacts rather than the presence of debris and its sublethal impacts, we could reduce threats posed by debris. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  1. Preserving the Near-Earth Space Environment with Green Engineering and Operations

    Science.gov (United States)

    Johnson, Nicholas L.

    2009-01-01

    Green engineering and operations are essential to preserving the near-Earth space environment for future generations. The U.S. and the international aerospace community have been proactive in addressing the threat of the increasing orbital debris population and the risks to people and property from reentering debris. NASA has led this activity first by devoting resources to thoroughly understand the technical issues and then by developing effective and acceptable policies and guidelines. NASA also worked closely with the international community to ensure that the US aerospace industry was not placed at an economic disadvantage. In the long term, the removal of large orbital debris will be essential to the sustainability of space operations.

  2. Drone Use in Monioring Open Ocean Surface Debris, Including Paired Manta and Tucker Trawls for Relateing Sea State to Vertical Debris Distribution

    Science.gov (United States)

    Lattin, G.

    2016-02-01

    Monitoring debris at sea presents challenges not found in beach or riverine habitats, and is typically done with trawl nets of various apertures and mesh sizes, which limits the size of debris captured and the area surveyed. To partially overcome these limitations in monitoring floating debris, a Quadcopter drone with video transmitting and recording capabilities was deployed at the beginning and the end of manta trawl transects within the North Pacific Subtropical Gyre's eastern convergence zone. Subsurface tucker trawls at 10 meters were conducted at the same time as the manta trawls, in order to assess the effect of sea state on debris dispersal. Trawls were conducted on an 11 station grid used repeatedly since 1999. For drone observations, the operator and observer were stationed on the mother ship while two researchers collected observed debris using a rigid inflatable boat (RIB). The drone was flown to a distance of approximately 100 meters from the vessel in a zigzag or circular search pattern. Here we examine issues arising from drone deployment during the survey: 1) relation of area surveyed by drone to volume of water passing through trawl; 2) retrieval of drone-spotted and associated RIB spotted debris. 3) integrating post- flight image analysis into retrieved debris quantification; and 4) factors limiting drone effectiveness at sea. During the survey, debris too large for the manta trawl was spotted by the drone, and significant debris not observed using the drone was recovered by the RIB. The combination of drone sightings, RIB retrieval, and post flight image analysis leads to improved monitoring of debris at sea. We also examine the issue of the distribution of floating debris during sea states varying from 0-5 by comparing quantities from surface manta trawls to the tucker trawls at a nominal depth of 10 meters.

  3. Silicon Photonics for Space Communications

    Data.gov (United States)

    National Aeronautics and Space Administration — This proposal is aimed to address level two "Optical Communication and Navigation" needs within the "5.0 Communications, Navigation, and Orbital Debris Tracking and...

  4. Threats to U.S. National Security Interests in Space: Orbital Debris Mitigation and Removal

    Science.gov (United States)

    2014-01-08

    Analytical Graphics, Inc., offers SOCRATES —Satellite Orbital Conjunction Reports Assessing Threatening Encounters in Space—on pending conjunctions over...the coming week. SOCRATES predicted a close approach between Iridium 33 and Cosmos 2251 of 584 m (1,916 ft.) at the time of the actual collision and... methods to slow or stop the formation of a debris belt. Donald J. Kessler and Burton G. Cour-Palais, “Collision Frequency of Artificial Satellites: The

  5. Preconceptual systems and equipment for plugging of man-made accesses to a repository in basalt

    International Nuclear Information System (INIS)

    Taylor, C.L.; O'Rourke, J.E.; Allirot, D.; O'Connor, K.

    1980-09-01

    This report presents results of a study leading to preconceptual designs for plugging boreholes, shafts, and tunnels to a nuclear waste repository in basalt. Beginning design criteria include a list of preferred plug materials and plugging machines that were selected to suit the environmental conditions, and depths, diameters, and orientations of the accesses to a nuclear waste repository in the Columbia River basalts located in eastern Washington State. The environmental conditions are described. The fiscal year 1979-1980 Task II work is presented in two parts: preliminary testing of materials for plugging of man-made accesses to a repository in basalt (described in a separate report); and preconceptual systems and equipment for plugging of man-made accesses to a repository in basalt (described in this report). To fulfill the scope of the Task II work, Woodward-Clyde Consultants (WCC) was requested to: provide preconceptual systems for plugging boreholes, tunnels, and shafts in basalt; describe preconceptual borehole plugging equipment for placing the selected materials in man-made accesses; utilize the quality assurance program, program plan and schedule, and work plans previously developed for Task II; and prepare a preliminary report

  6. The Impact of New Trends in Satellite Launches on Orbital Debris Environment

    Science.gov (United States)

    Karacalioglu, Arif Goktug; Stupl, Jan

    2016-01-01

    The main goal of this study is to examine the impact of new trends in satellite launch activities on the orbital debris environment and collision risk. Starting from the launch of the first artificial satellite in 1957, space borne technology has become an indispensable part of our lives. More than 6,000 satellites have been launched into Earth orbit. Though the annual number of satellites launched stayed flat for many decades, the trend has recently changed. The satellite market has been undergoing a major evolution with new space companies replacing the traditional approach of deploying a few large, complex and costly satellites with an approach to use a multitude of smaller, less complex and cheaper satellites. This new approach creates a sharp increase in the number of satellites and so the historic trends are no longer representative. As a foundation for this study, a scenario for satellite deployments based on the publicly announced future satellite missions has been developed. These constellation-deploying companies include, but are not limited to, Blacksky, CICERO, EROS, Landmapper, Leosat, Northstar, O3b, OmniEarth, OneWeb, Orbcomm, OuterNet, PlanetIQ, Planet Labs, Radarsat, RapidEye Next Generation, Sentinel, Skybox, SpaceX, and Spire. Information such as the annual number of launches, the number of orbital planes to be used by the constellation, as well as apogee, perigee, inclination, spacecraft mass and area were included or approximated. Besides the production of satellites, a widespread ongoing effort to enhance orbital injection capabilities will allow delivery of more spacecraft more accurately into Earth orbits. A long list of companies such as Microcosm, Rocket Lab, Firefly Space Systems, Sierra Nevada Corporation and Arca Space Corporation are developing new launch vehicles dedicated for small satellites. There are other projects which intend to develop interstages with propulsive capabilities which will allow the deployment of satellites into

  7. Long-Lived Glass Mirrors For Outer Space

    Science.gov (United States)

    Bouquet, Frank L.; Maag, Carl R.; Heggen, Philip M.

    1988-01-01

    Paper summarizes available knowledge about glass mirrors for use in outer space. Strengths and weaknesses of various types of first and second reflective surfaces identified. Second-surface glass mirrors used in outer space designed to different criteria more stringent for terrestrial mirrors. Protons, electrons, cosmic rays, meteorites, and orbiting space debris affect longevities of components. Contamination also factor in space.

  8. Experimental study on coolability of particulate core-metal debris bed with oxidization, (2). Fragmentation and enhanced heat transfer in zircaloy debris bed

    International Nuclear Information System (INIS)

    Su, Guanghui; Sugiyama, Ken-ichiro; Aoki, Hiroomi; Kimura, Iichi

    2006-01-01

    The oxidization and coolability characteristics of the particulate Zircaloy debris bed, which is deposited under the hard debris and through which first vapor penetrates and then water penetrates, are studied in the present paper. In the vapor penetration experiments, it is found that Zircaloy debris particles are effectively broken into small pieces after making thick oxidized layer with deep clacks by rapid oxidization under the condition that vapor with 20 cm/s penetrates for 30 to 70 min at an initial debris bed temperature of 1,030degC. It is also confirmed in the water penetration experiments that the oxidized particle debris bed has potentially of high coolability when water penetrates through the fully oxidized particle bed because of a high capillary force originating from those particles with deep cracks on their surfaces. Based on the present study, a new scenario for the appearance and disappearance of the hot spot in the TMI-2 accident is possible. The particulate core-metal core-metal debris bed is first heated up by rapid oxidization with heat generation when vapor can penetrate through the debris bed with porosities. This corresponds to the appearance of the hot spot. The resultant oxidized particulate debris bed causes a high coolability due to its high capillary force when the water can touch the debris bed at wet condition. This corresponds to the disappearance of the hot spot. (author)

  9. Natural radioactivity and radon exhalation rates in man-made tiles used as building materials in Japan.

    Science.gov (United States)

    Iwaoka, K; Hosoda, M; Suwankot, N; Omori, Y; Ishikawa, T; Yonehara, H; Tokonami, S

    2015-11-01

    Man-made tiles frequently used in Japan were collected, and activity concentrations and radon ((222)Rn) exhalation rates in these tiles were measured. Dose estimations for inhabitants living in houses built using these tiles were also carried out. The activity concentrations of (226)Ra, (228)Ra and (40)K in the man-made tiles were 31-170, 35-110 and 260-980 Bq kg(-1), respectively. The (222)Rn exhalation rates in the tiles were 8.8-21 μBq m(-2) s(-1). The ranges of experimental activity concentrations and (222)Rn exhalation rates were almost identical to those of natural rocks used as typical building materials in Japan. The maximum value of effective dose to inhabitants living in houses built with the man-made tiles was 0.14 mSv y(-1), which is lower than the reference level range (1-20 mSv y(-1)) for abnormally high levels of natural background radiation published in the ICRP Publication 103. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  10. Debris Avalanches and Debris Flows Transformed from Collapses in the Trans-Mexican Volcanic Belt, México.

    Science.gov (United States)

    Capra, L.; Macias, J.; Scott, K.; Abrams, M.; Garduño, V.

    2001-12-01

    Volcanoes of the Trans-Mexican Volcanic Belt (TMVB) have yielded numerous sector and flank collapses during Pleistocene and Holocene time. Sector collapses associated with magmatic activity have yielded debris avalanches with generally limited runout extent (e.g. Popocatépetl, Jocotitlán, and Colima volcanoes). In contrast, flank collapses (smaller failures not involving the volcano summit), both associated and unassociated with magmatic activity and correlated with intense hydrothermal alteration in ice-capped volcanoes, commonly have yielded highly mobile cohesive debris flows (e.g. Pico de Orizaba and Nevado de Toluca volcanoes). Collapse orientation in the TMVB is preferentially to the south and north-east, probably reflecting the tectonic regime of active E-W and NNW faults. The different mobilities of the flows transformed from collapses have important implications for hazard assessment. Both sector and flank collapse can yield highly mobile debris flows, but this transformation is more common in the case of the smaller failures. High mobility is related to factors such as water and clay content of the failed material, the paleotopography, and the extent of entrainment of sediment during flow (bulking). Both debris-avalanches and debris-flows are volcanic hazards that occur from both active volcanoes, as well as those that are inactive or dormant volcanoes, and may by triggered by earthquakes, precipitation, or simple gravity. There will be no precursory warning in such non-volcanic cases.

  11. Active Debris Removal and the Challenges for Environment Remediation

    Science.gov (United States)

    Liou, J. C.

    2012-01-01

    Recent modeling studies on the instability of the debris population in the low Earth orbit (LEO) region and the collision between Iridium 33 and Cosmos 2251 have underlined the need for active debris removal. A 2009 analysis by the NASA Orbital Debris Program Office shows that, in order to maintain the LEO debris population at a constant level for the next 200 years, an active debris removal of about five objects per year is needed. The targets identified for removal are those with the highest mass and collision probability products in the environment. Many of these objects are spent upper stages with masses ranging from 1 to more than 8 metric tons, residing in several altitude regions and concentrated in about 7 inclination bands. To remove five of those objects on a yearly basis, in a cost-effective manner, represents many challenges in technology development, engineering, and operations. This paper outlines the fundamental rationale for considering active debris removal and addresses the two possible objectives of the operations -- removing large debris to stabilize the environment and removing small debris to reduce the threat to operational spacecraft. Technological and engineering challenges associated with the two different objectives are also discussed.

  12. On protection of freedom's solar dynamic radiator from the orbital debris environment. Part 2

    International Nuclear Information System (INIS)

    Rhatigan, J.L.

    1992-01-01

    In this paper, recent progress to better understand the environmental threat of micrometeoroid and space debris to the solar dynamic radiator for the Space Station Freedom power system is reported. The objective was to define a design which would perform to survivability requirements over the expected lifetime of the radiator. A previous paper described the approach developed to assess on-orbit survivability of the solar dynamic radiator due to micrometeoroid and space debris impacts. Preliminary analyses were presented to quantify the solar dynamic radiator survivability. These included the type of particle and particle population expected to defeat the radiator bumpering. Results of preliminary hypervelocity impact (HVI) testing performed on radiator panel samples were also presented. This paper presents results of a more extensive test program undertaken to further define the response of the solar dynamic radiator to HVI. Tests were conducted on representative radiator panels (under ambient, nonoperating conditions) over a range of particle size, particle density, impact angle, and impact velocity. Target parameters were also varied. Data indicate that analytical penetration predictions are conservative (i.e., pessimistic) for the specific configuration of the solar dynamic radiator. Test results are used to define more rigorously the solar dynamic radiator reliability with respect to HVI. Test data, analyses, and survivability results are presented

  13. On the debris-level origins of adhesive wear.

    Science.gov (United States)

    Aghababaei, Ramin; Warner, Derek H; Molinari, Jean-François

    2017-07-25

    Every contacting surface inevitably experiences wear. Predicting the exact amount of material loss due to wear relies on empirical data and cannot be obtained from any physical model. Here, we analyze and quantify wear at the most fundamental level, i.e., wear debris particles. Our simulations show that the asperity junction size dictates the debris volume, revealing the origins of the long-standing hypothesized correlation between the wear volume and the real contact area. No correlation, however, is found between the debris volume and the normal applied force at the debris level. Alternatively, we show that the junction size controls the tangential force and sliding distance such that their product, i.e., the tangential work, is always proportional to the debris volume, with a proportionality constant of 1 over the junction shear strength. This study provides an estimation of the debris volume without any empirical factor, resulting in a wear coefficient of unity at the debris level. Discrepant microscopic and macroscopic wear observations and models are then contextualized on the basis of this understanding. This finding offers a way to characterize the wear volume in atomistic simulations and atomic force microscope wear experiments. It also provides a fundamental basis for predicting the wear coefficient for sliding rough contacts, given the statistics of junction clusters sizes.

  14. Wildlife habitats in managed rangelands—the Great Basin of southeastern Oregon: manmade habitats.

    Science.gov (United States)

    Chris Maser; Jack Ward Thomas; Ira David Luman; Ralph. Anderson

    1979-01-01

    Manmade structures on rangelands provide specialized habitats for some species. These habitats and how they function as specialized habitat features are examined in this publication. The relationships of the wildlife of the Great Basin to such structures are detailed.

  15. Space Surveillance Network and Analysis Model (SSNAM) Performance Improvements

    National Research Council Canada - National Science Library

    Butkus, Albert; Roe, Kevin; Mitchell, Barbara L; Payne, Timothy

    2007-01-01

    ... capacity by sensor, models for sensors yet to be created, user defined weather conditions, National Aeronautical and Space Administration catalog growth model including space debris, and solar flux just to name a few...

  16. A real two-phase submarine debris flow and tsunami

    International Nuclear Information System (INIS)

    Pudasaini, Shiva P.; Miller, Stephen A.

    2012-01-01

    The general two-phase debris flow model proposed by Pudasaini is employed to study subaerial and submarine debris flows, and the tsunami generated by the debris impact at lakes and oceans. The model, which includes three fundamentally new and dominant physical aspects such as enhanced viscous stress, virtual mass, and generalized drag (in addition to buoyancy), constitutes the most generalized two-phase flow model to date. The advantage of this two-phase debris flow model over classical single-phase, or quasi-two-phase models, is that the initial mass can be divided into several parts by appropriately considering the solid volume fraction. These parts include a dry (landslide or rock slide), a fluid (water or muddy water; e.g., dams, rivers), and a general debris mixture material as needed in real flow simulations. This innovative formulation provides an opportunity, within a single framework, to simultaneously simulate the sliding debris (or landslide), the water lake or ocean, the debris impact at the lake or ocean, the tsunami generation and propagation, the mixing and separation between the solid and fluid phases, and the sediment transport and deposition process in the bathymetric surface. Applications of this model include (a) sediment transport on hill slopes, river streams, hydraulic channels (e.g., hydropower dams and plants); lakes, fjords, coastal lines, and aquatic ecology; and (b) submarine debris impact and the rupture of fiber optic, submarine cables and pipelines along the ocean floor, and damage to offshore drilling platforms. Numerical simulations reveal that the dynamics of debris impact induced tsunamis in mountain lakes or oceans are fundamentally different than the tsunami generated by pure rock avalanches and landslides. The analysis includes the generation, amplification and propagation of super tsunami waves and run-ups along coastlines, debris slide and deposition at the bottom floor, and debris shock waves. It is observed that the

  17. A real two-phase submarine debris flow and tsunami

    Energy Technology Data Exchange (ETDEWEB)

    Pudasaini, Shiva P.; Miller, Stephen A. [Department of Geodynamics and Geophysics, Steinmann Institute, University of Bonn Nussallee 8, D-53115, Bonn (Germany)

    2012-09-26

    The general two-phase debris flow model proposed by Pudasaini is employed to study subaerial and submarine debris flows, and the tsunami generated by the debris impact at lakes and oceans. The model, which includes three fundamentally new and dominant physical aspects such as enhanced viscous stress, virtual mass, and generalized drag (in addition to buoyancy), constitutes the most generalized two-phase flow model to date. The advantage of this two-phase debris flow model over classical single-phase, or quasi-two-phase models, is that the initial mass can be divided into several parts by appropriately considering the solid volume fraction. These parts include a dry (landslide or rock slide), a fluid (water or muddy water; e.g., dams, rivers), and a general debris mixture material as needed in real flow simulations. This innovative formulation provides an opportunity, within a single framework, to simultaneously simulate the sliding debris (or landslide), the water lake or ocean, the debris impact at the lake or ocean, the tsunami generation and propagation, the mixing and separation between the solid and fluid phases, and the sediment transport and deposition process in the bathymetric surface. Applications of this model include (a) sediment transport on hill slopes, river streams, hydraulic channels (e.g., hydropower dams and plants); lakes, fjords, coastal lines, and aquatic ecology; and (b) submarine debris impact and the rupture of fiber optic, submarine cables and pipelines along the ocean floor, and damage to offshore drilling platforms. Numerical simulations reveal that the dynamics of debris impact induced tsunamis in mountain lakes or oceans are fundamentally different than the tsunami generated by pure rock avalanches and landslides. The analysis includes the generation, amplification and propagation of super tsunami waves and run-ups along coastlines, debris slide and deposition at the bottom floor, and debris shock waves. It is observed that the

  18. Systems and Sensors for Debris-flow Monitoring and Warning

    Directory of Open Access Journals (Sweden)

    Lorenzo Marchi

    2008-04-01

    Full Text Available Debris flows are a type of mass movement that occurs in mountain torrents. They consist of a high concentration of solid material in water that flows as a wave with a steep front. Debris flows can be considered a phenomenon intermediate between landslides and water floods. They are amongst the most hazardous natural processes in mountainous regions and may occur under different climatic conditions. Their destructiveness is due to different factors: their capability of transporting and depositing huge amounts of solid materials, which may also reach large sizes (boulders of several cubic meters are commonly transported by debris flows, their steep fronts, which may reach several meters of height and also their high velocities. The implementation of both structural and nonstructural control measures is often required when debris flows endanger routes, urban areas and other infrastructures. Sensor networks for debris-flow monitoring and warning play an important role amongst non-structural measures intended to reduce debris-flow risk. In particular, debris flow warning systems can be subdivided into two main classes: advance warning and event warning systems. These two classes employ different types of sensors. Advance warning systems are based on monitoring causative hydrometeorological processes (typically rainfall and aim to issue a warning before a possible debris flow is triggered. Event warning systems are based on detecting debris flows when these processes are in progress. They have a much smaller lead time than advance warning ones but are also less prone to false alarms. Advance warning for debris flows employs sensors and techniques typical of meteorology and hydrology, including measuring rainfall by means of rain gauges and weather radar and monitoring water discharge in headwater streams. Event warning systems use different types of sensors, encompassing ultrasonic or radar gauges, ground vibration sensors, videocameras, avalanche

  19. Marine Debris Research, Prevention, and Reduction Act

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Marine Debris Research, Prevention, and Reduction Act legally establishes the National Oceanic and Atmospheric Administration's (NOAA) Marine Debris Program. The...

  20. Disaster Debris Recovery Database - Landfills

    Science.gov (United States)

    The US EPA Region 5 Disaster Debris Recovery Database includes public datasets of over 6,000 composting facilities, demolition contractors, transfer stations, landfills and recycling facilities for construction and demolition materials, electronics, household hazardous waste, metals, tires, and vehicles in the states of Illinois, Indiana, Iowa, Kentucky, Michigan, Minnesota, Missouri, North Dakota, Ohio, Pennsylvania, South Dakota, West Virginia and Wisconsin.In this update, facilities in the 7 states that border the EPA Region 5 states were added to assist interstate disaster debris management. Also, the datasets for composters, construction and demolition recyclers, demolition contractors, and metals recyclers were verified and source information added for each record using these sources: AGC, Biocycle, BMRA, CDRA, ISRI, NDA, USCC, FEMA Debris Removal Contractor Registry, EPA Facility Registry System, and State and local listings.

  1. Disaster Debris Recovery Database - Recovery

    Science.gov (United States)

    The US EPA Region 5 Disaster Debris Recovery Database includes public datasets of over 6,000 composting facilities, demolition contractors, transfer stations, landfills and recycling facilities for construction and demolition materials, electronics, household hazardous waste, metals, tires, and vehicles in the states of Illinois, Indiana, Iowa, Kentucky, Michigan, Minnesota, Missouri, North Dakota, Ohio, Pennsylvania, South Dakota, West Virginia and Wisconsin.In this update, facilities in the 7 states that border the EPA Region 5 states were added to assist interstate disaster debris management. Also, the datasets for composters, construction and demolition recyclers, demolition contractors, and metals recyclers were verified and source information added for each record using these sources: AGC, Biocycle, BMRA, CDRA, ISRI, NDA, USCC, FEMA Debris Removal Contractor Registry, EPA Facility Registry System, and State and local listings.

  2. The mechanics of motorised momentum exchange tethers when applied to active debris removal from LEO

    Energy Technology Data Exchange (ETDEWEB)

    Caldecott, Ralph; Kamarulzaman, Dayangku N. S.; Kirrane, James P.; Cartmell, Matthew P.; Ganilova, Olga A. [Department of Mechanical Engineering, University of Sheffield, Mappin St., Sheffield, S1 3JD, England (United Kingdom)

    2014-12-10

    The concept of momentum exchange when applied to space tethers for propulsion is well established, and a considerable body of literature now exists on the on-orbit modelling, the dynamics, and also the control of a large range of tether system applications. The authors consider here a new application for the Motorised Momentum Exchange Tether by highlighting three key stages of development leading to a conceptualisation that can subsequently be developed into a technology for Active Debris Removal. The paper starts with a study of the on-orbit mechanics of a full sized motorised tether in which it is shown that a laden and therefore highly massasymmetrical tether can still be forced to spin, and certainly to librate, thereby confirming its possible usefulness for active debris removal (ADR). The second part of the paper concentrates on the modelling of the centripetal deployment of a symmetrical MMET in order to get it initialized for debris removal operations, and the third and final part of the paper provides an entry into scale modelling for low cost mission design and testing. It is shown that the motorised momentum exchange tether offers a potential solution to the removal of large pieces of orbital debris, and that dynamic methodologies can be implemented to in order to optimise the emergent design.

  3. The mechanics of motorised momentum exchange tethers when applied to active debris removal from LEO

    International Nuclear Information System (INIS)

    Caldecott, Ralph; Kamarulzaman, Dayangku N. S.; Kirrane, James P.; Cartmell, Matthew P.; Ganilova, Olga A.

    2014-01-01

    The concept of momentum exchange when applied to space tethers for propulsion is well established, and a considerable body of literature now exists on the on-orbit modelling, the dynamics, and also the control of a large range of tether system applications. The authors consider here a new application for the Motorised Momentum Exchange Tether by highlighting three key stages of development leading to a conceptualisation that can subsequently be developed into a technology for Active Debris Removal. The paper starts with a study of the on-orbit mechanics of a full sized motorised tether in which it is shown that a laden and therefore highly massasymmetrical tether can still be forced to spin, and certainly to librate, thereby confirming its possible usefulness for active debris removal (ADR). The second part of the paper concentrates on the modelling of the centripetal deployment of a symmetrical MMET in order to get it initialized for debris removal operations, and the third and final part of the paper provides an entry into scale modelling for low cost mission design and testing. It is shown that the motorised momentum exchange tether offers a potential solution to the removal of large pieces of orbital debris, and that dynamic methodologies can be implemented to in order to optimise the emergent design

  4. Structural debris experiments at operation MILL RACE

    International Nuclear Information System (INIS)

    Rempel, J.R.; Beck, J.E.; McKee, R.G.

    1983-01-01

    Structural debris patterns as determined by the mechanisms of building collapse under airblast loading have been studied experimentally at MILL RACE, White Sands, NM. Three near full-size buildings were instrumented to observe deflections, accelerations and air pressures and exposed to two different regimes of incident blast pressure produced by HE simulating 1 kt, viz., 10 and 3 psi; after the shot enough wall debris was located and identified to provide estimates of debris movement. Two of the test buildings were unreinforced, load-bearing masonry, one located at each of the two incident overpressures. The third building was made of reinforced concrete panels and was exposed to approximately 25 psi. Preliminary estimates of the effect of arching on debris energy and distribution are presented

  5. TMI defueling project fuel debris removal system

    International Nuclear Information System (INIS)

    Burdge, B.

    1992-01-01

    The three mile Island Unit 2 (TMI-2) pressurized water reactor loss-of-coolant accident on March 28, 1979, presented the nuclear community with many challenging remediation problems; most importantly, the removal of the fission products within the reactor containment vessel. To meet this removal problem, an air-lift system (ALS) can be used to employ compressed air to produce the motive force for transporting debris. Debris is separated from the transport stream by gravity separation. The entire method does not rely on any moving parts. Full-scale testing of the ALS at the Idaho National Engineering Laboratory (INEL) has demonstrated the capability of transporting fuel debris from beneath the LCSA into a standard fuel debris bucket at a minimum rate of 230 kg/min

  6. An Approach to Predict Debris Flow Average Velocity

    Directory of Open Access Journals (Sweden)

    Chen Cao

    2017-03-01

    Full Text Available Debris flow is one of the major threats for the sustainability of environmental and social development. The velocity directly determines the impact on the vulnerability. This study focuses on an approach using radial basis function (RBF neural network and gravitational search algorithm (GSA for predicting debris flow velocity. A total of 50 debris flow events were investigated in the Jiangjia gully. These data were used for building the GSA-based RBF approach (GSA-RBF. Eighty percent (40 groups of the measured data were selected randomly as the training database. The other 20% (10 groups of data were used as testing data. Finally, the approach was applied to predict six debris flow gullies velocities in the Wudongde Dam site area, where environmental conditions were similar to the Jiangjia gully. The modified Dongchuan empirical equation and the pulled particle analysis of debris flow (PPA approach were used for comparison and validation. The results showed that: (i the GSA-RBF predicted debris flow velocity values are very close to the measured values, which performs better than those using RBF neural network alone; (ii the GSA-RBF results and the MDEE results are similar in the Jiangjia gully debris flow velocities prediction, and GSA-RBF performs better; (iii in the study area, the GSA-RBF results are validated reliable; and (iv we could consider more variables in predicting the debris flow velocity by using GSA-RBF on the basis of measured data in other areas, which is more applicable. Because the GSA-RBF approach was more accurate, both the numerical simulation and the empirical equation can be taken into consideration for constructing debris flow mitigation works. They could be complementary and verified for each other.

  7. Cetaceans and Marine Debris: The Great Unknown

    Directory of Open Access Journals (Sweden)

    Mark Peter Simmonds

    2012-01-01

    Full Text Available Plastics and other marine debris have been found in the gastrointestinal tracts of cetaceans, including instances where large quantities of material have been found that are likely to cause impairment to digestive processes and other examples, where other morbidity and even death have resulted. In some instances, debris may have been ingested as a result of the stranding process and, in others, it may have been ingested when feeding. Those species that are suction or “ram” feeders may be most at risk. There is also evidence of entanglement of cetaceans in marine debris. However, it is usually difficult to distinguish entanglement in active fishing gear from that in lost or discarded gear. The overall significance of the threat from ingested plastics and other debris remains unclear for any population or species of cetaceans, although there are concerns for some taxa, including at the population level, and marine debris in the oceans continues to grow. Further research including the compilation of unpublished material and the investigation of important habitat areas is strongly recommended.

  8. Molten core debris-sodium interactions: M-Series experiments

    International Nuclear Information System (INIS)

    Sowa, E.S.; Gabor, J.D.; Pavlik, J.R.; Cassulo, J.C.; Cook, C.J.; Baker, L. Jr.

    1979-01-01

    Five new kilogram-scale experiments have been carried out. Four of the experiments simulated the situation where molten core debris flows from a breached reactor vessel into a dry reactor cavity and is followed by a flow of sodium (Ex-vessel case) and one experiment simulated the flow of core debris into an existing pool of sodium (In-vessel case). The core debris was closely simulated by a thermite reaction which produced a molten mixture of UO 2 , ZrO 2 , and stainless steel. There was efficient fragmentation of the debris in all experiments with no explosive interactions observed

  9. Hydrobiological observations in Surinam with special reference to the man-made Brokopondo Lake

    NARCIS (Netherlands)

    Leentvaar, P.

    1975-01-01

    The construction of large reservoirs such as the man-made Brokopondo lake, is certainly not the result of proposals and conclusions of biological studies, but rather of political, technological and economical decisions without serious consideration of the biological implications. The biologist is

  10. Formation of system of indicators for analysis and evaluation of man-made of pollution

    OpenAIRE

    Rytikova K.A.

    2017-01-01

    Review existing methods of assessing technogenic pollution. A new approach to the formation of a system of indicators to measure man-made pollution and the definition of "contamination zones" based on the matrix approach.

  11. The international environment UNISPACE '82 and the ITU: A relationship between orbit-spectrum resource allocation and orbital debris

    Science.gov (United States)

    Olmstead, D.

    1985-01-01

    The 1985 Space WARC will examine and potentially modify the current geostationary orbit spectrum resource allocation methodology. Discussions in this international political environment could likely associate the geostationary orbital debris issue with the politicized issue of orbit spectrum allocation.

  12. Particulate metallic debris in cemented total hip arthroplasty.

    Science.gov (United States)

    Salvati, E A; Betts, F; Doty, S B

    1993-08-01

    Several studies conducted by the authors in the last six years demonstrate that the generation of metallic debris is more severe with titanium alloy than with cobalt-chrome alloy femoral components in cemented total hip arthroplasty (THA). The debris is generated from the articulating surface, particularly if entrapped acrylic debris produces three-body wear, and from the stem surface when the component loosens and abrades against fragmented cement. In selected cases in which the titanium metallic debris is copious, premature failure and severe progressive bone loss occurs. Electron microscopy demonstrates that the particles of metallic debris can be extremely small (a few hundredths of 1 micron). They are phagocytized by the macrophages and transported to the phagolysosomes. In this highly corrosive environment, the very high surface area of the particles may release toxic concentrations of the constituents of the alloy intracellularly, probably leading to progressive cell degeneration and death, with subsequent release of intracellular enzymes and ingested metallic debris. This cycle most likely repeats itself, leading to tissue necrosis. The results presented do not support the use of titanium alloy femoral components for cemented THA, particularly for the articulating surface.

  13. Cosmic debris what it is and what we can do about it

    CERN Document Server

    Powell, Jonathan

    2017-01-01

    This book examines the mysterious and the well-studied debris in Earth’s crowded neighborhood. From orbiting comets to the workings of the Asteroid Belt, and from meteor showers to our home-grown network of orbiting satellites, the full diversity of space objects and the debris they create is explored. Powell also discusses some of the current research techniques used to find potentially harmful rogue elements, with an emphasis on keeping watch for any objects that may intersect Earth’s orbit. Such bodies also impact other worlds, and much has been learned from observing these encounters. The information in this book is intended to foster thought about the universe in which we live, but without overloading its readers with numbers and lecture-room analysis. Like a good thriller, it allows its readers to pace themselves with the story and, by the end, encourages them to draw their own conclusions.

  14. Alternative fuels in fire debris analysis: biodiesel basics.

    Science.gov (United States)

    Stauffer, Eric; Byron, Doug

    2007-03-01

    Alternative fuels are becoming more prominent on the market today and, soon, fire debris analysts will start seeing them in liquid samples or in fire debris samples. Biodiesel fuel is one of the most common alternative fuels and is now readily available in many parts of the United States and around the world. This article introduces biodiesel to fire debris analysts. Biodiesel fuel is manufactured from vegetable oils and/or animal oils/fats. It is composed of fatty acid methyl esters (FAMEs) and is sold pure or as a blend with diesel fuel. When present in fire debris samples, it is recommended to extract the debris using passive headspace concentration on activated charcoal, possibly followed by a solvent extraction. The gas chromatographic analysis of the extract is first carried out with the same program as for regular ignitable liquid residues, and second with a program adapted to the analysis of FAMEs.

  15. Evaluation of Oconee steam-generator debris. Final report

    International Nuclear Information System (INIS)

    Rigdon, M.A.; Rubright, M.M.; Sarver, L.W.

    1981-10-01

    Pieces of debris were observed near damaged tubes at the 14th support plate elevation in the Oconee 1-B steam generator. A project was initiated to evaluate the physical and chemical nature of the debris, to identify its source, and to determine its role in tube damage at this elevation. Various laboratory techniques were used to characterize several debris and mill scale samples. Data from these samples were then compared with each other and with literature data. It was concluded that seven of eight debris samples were probably formed in the steam generator. Six of these samples were probably formed by high temperature aqueous corrosion early in the life of the steam generator. The seventh sample was probably formed by the deposition and spalling of magnetite on the Inconel steam generator tubes. None of the debris samples resembled any of the mill scale samples

  16. Chemical and mineralogical concerns for the use of man-made materials in the post-emplacement environment

    International Nuclear Information System (INIS)

    Meike, A.

    1993-01-01

    In a radioactive waste repository, materials will be introduced for a variety of reasons. Some materials such as metals, bonding agents, and concrete will serve as active parts of the designed engineered barrier system (EBS). Other materials will be introduced to serve a number of purposes that include any or all of the following: surveillance (thermocouples, gauges), construction and operation (drilling rigs, roadbeds, exhaust fumes, chemical toilets, concrete, grout, rebar), lubrication (petroleum-based products, rope dressing) and other functions. Water chemistry will directly affect the corrosion of containers, the dissolution of spent fuel and waste glass and the concentration of dissolved or suspended radionuclides in water that exits breached containers. To predict the water quality requires a knowledge of the dissolution kinetics of the phases present in man-made materials, and the precipitation kinetics of product phases. The chemical evolution of man-made materials of interest to the Yucca Mountain project are by and large not presently known. Prediction of the long-term behavior (10,000 years) required of the modeling efforts is an additional layer of complexity that is not addressed by current models of water chemistry. Man-made modifications to the environment may significantly alter the thermal, chemical and radionuclide transportation attributes of the natural environment that are presently being considered in order to determine a waste package design. The specific chemical concerns addressed here are: solubility and stability of solid phases; liquid and gas phase stability; long term effects; radiolysis effects; colloids; and interactions between man-made material, rock, and J-13 or concentrated J-13 water. The report concludes with recommendations

  17. Safe disposal and recycling of water disaster debris in pakistan

    International Nuclear Information System (INIS)

    Latif, A.

    2014-01-01

    Depending upon the nature, the disaster may produce large masses of debris. Waste masses from single disaster integrate to larger magnitude annually. This will ultimately causes the extra work load on personnel and reflects the poor existing debris management facilities. Besides, it will take longer time to rehabilitate the debris exaggerated regions. The study focuses on 2 main cases of disaster i.e. earthquake of 2005 and flood of 2010 in Pakistan. Complete analysis involve two stages: the first stage involve development of disaster and disaster debris effects guidance whereas the second stage involves the development of set of criteria to make efficient environment and positive impacts of successful debris managing scheme. Such principles were employed to evaluate efficiency of debris managing scheme for detailed analysis. The discussion of the detailed analysis depicts methodology which assists the disaster managers, planners and researcher to simply multitude of work. Moreover, the disaster and disaster debris influence direction, the effect evaluation criterion and managing criteria have been established having the effect they can be virtually put into service for prospect debris managing scheme, planning and retort. With respect to character and strictness, calamity may make high magnitude of waste. By keeping in view the precedent calamities in the United States (US), concluded that in few situations produced waste masses approximately five to fifteen times more than yearly waste production rate from a single occasion. Same results were revealed by subsequent tsunami of Indian Ocean. Such kind of large masses may effects the existing solid debris management system and human resources. Major disaster yields large masses of debris in few hours or sometimes even in minutes. The volume of disaster debris depends upon the magnitude of trees ball up, indemnity to houses, business, services etc. The disaster remaining may be equally large in metropolitan and non

  18. Debris flows associated with the 2015 Gorkha Earthquake in Nepal

    Science.gov (United States)

    Dahlquist, M. P.; West, A. J.; Martinez, J.

    2017-12-01

    Debris flows are a primary driver of erosion and a major geologic hazard in many steep landscapes, particularly near the headwaters of rivers, and are generated in large numbers by extreme events. The 2015 Mw 7.8 Gorkha Earthquake triggered 25,000 coseismic landslides in central Nepal. During the ensuing monsoon, sediment delivered to channels by landslides was mobilized in the heavy rains, and new postseismic landslides were triggered in rock weakened by the shaking. These coseismic and postseismic landslide-generated debris flows form a useful dataset for studying the impact and behavior of debris flows on one of the most active landscapes on Earth. Debris flow-dominated channel reaches are generally understood to have a topographic signature recognizable in slope-area plots and distinct from fluvial channels, but in examining debris flows associated with the Gorkha earthquake we find they frequently extend into reaches with geometry typically associated with fluvial systems. We examine a dataset of these debris flows, considering whether they are generated by coseismic or postseismic landslides, whether they are likely to be driving active incision into bedrock, and whether their channels correspond with those typically associated with debris flows. Preliminary analysis of debris flow channels in Nepal suggests there may be systematic differences in the geometry of channels containing debris flows triggered by coseismic versus postseismic landslides, which potentially holds implications for hazard analyses and the mechanics behind the different debris flow types.

  19. Photometric Studies of GEO Orbital Debris

    Science.gov (United States)

    Seitzer, Patrick; Rodriquez-Cowardin, Heather M.; Barker, Ed; Abercromby, Kira J.; Foreman, Gary; Horstman, Matt

    2009-01-01

    The photometric signature of a debris object can be useful in determining what the physical characteristics of a piece of debris are. We report on optical observations in multiple filters of debris at geosynchronous Earth orbit (GEO). Our sample is taken from GEO objects discovered in a survey with the University of Michigan's 0.6-m aperture Schmidt telescope MODEST (for Michigan Orbital DEbris Survey Telescope), and then followed up in real-time with the Cerro Tololo Inter- American Observatory (CTIO) 0.9-m for orbits and photometry. Our goal is to determine 6 parameter orbits and measure colors for all objects fainter than R=15th magnitude that are discovered in the MODEST survey. At this magnitude the distribution of observed angular rates changes significantly from that of brighter objects. There are two objectives: 1. Estimate the orbital distribution of objects selected on the basis of two observational criteria: brightness (magnitude) and angular rates. 2. Obtain magnitudes and colors in standard astronomical filters (BVRI) for comparison with reflectance spectra of likely spacecraft materials. What is the faint debris likely to be? More than 90 calibrated sequences of R-B-V-I-R magnitudes for a sample of 50 objects have been obtained with the CTIO 0.9-m. For objects that do not show large brightness variations, the colors are largely redder than solar in both B-R and R-I. The width of the color distribution may be intrinsic to the nature of the surfaces, but also could be that we are seeing irregularly shaped objects and measuring the colors at different times with just one telescope. For a smaller sample of objects we have observed with synchronized CCD cameras on the two telescopes. The CTIO 0.9-m observes in B, and MODEST in R. The CCD cameras are electronically linked together so that the start time and duration of observations are the same to better than 50 milliseconds. Thus the B-R color is a true measure of the surface of the debris piece facing the

  20. Laser ignition of traumatically embedded firework debris.

    Science.gov (United States)

    Taylor, C R

    1998-01-01

    The Q-switched ruby laser (QSRL) has a good track record for traumatic tattoo removal. An unusual case of QSRL-treatment of a traumatic tattoo composed of firework debris is presented. A young man's traumatic tattoo, composed of firework debris, underwent QSRL ablation at 4-7 J/cm2 (pulse width 5 mm; duration 20 ns). Each test pulse produced visible sparks and focal projectile ejection of skin with pox-like scar formation. Caution is advised when using the QSRL for the treatment of traumatic tattoos composed of potentially combustible debris.

  1. Debris Disks: Probing Planet Formation

    OpenAIRE

    Wyatt, Mark C.

    2018-01-01

    Debris disks are the dust disks found around ~20% of nearby main sequence stars in far-IR surveys. They can be considered as descendants of protoplanetary disks or components of planetary systems, providing valuable information on circumstellar disk evolution and the outcome of planet formation. The debris disk population can be explained by the steady collisional erosion of planetesimal belts; population models constrain where (10-100au) and in what quantity (>1Mearth) planetesimals (>10km i...

  2. Debris filtering efficiency and its effect on long term cooling capability

    International Nuclear Information System (INIS)

    Jung, Min-Su; Kim, Kyu-Tae

    2013-01-01

    Highlights: • Debris filtering efficiencies for two debris filter designs used in PWRs are provided. • Various debris used in the tests are selected to simulate actual debris found in PWRs. • Debris filter efficiency is explained by flow-hole size and grid strap height. • The effect of debris filters on flow blockage during LTC after a LOCA is described. -- Abstract: A cutting-edge debris-filter designs, Protective Grid (P-grid) and Guardian Grid (G-grid) attached to the upper part of bottom nozzle, have been employed for the PWRs in Korea since 2000s to protect the fuel from debris-induced fuel failures. The debris-filter efficiency of the P-grid and G-grid designs is improved by relatively smaller flow areas formed by the grid straps and dimples. The debris-filter efficiency of the P-grid design is further improved by the relatively smaller flow-hole bottom nozzle. The debris-filter flow tests employing eighteen debris types showed that the debris-filter efficiencies of the P-grid and G-grid designs are 91 and 96%, respectively, while that of the SYS80 fuel design having only the standard flow-hole bottom nozzle is 26%. The slightly better debris-filter efficiency of the G-grid design against the P-grid design may be explained by relatively smaller flow areas at the G-grid dimple region as well as by the relatively longer solid end plug and the higher G-grid strap. The P-grid design may capture circular shapes of debris larger than 3.44 mm in diameter at the flow holes formed by the P-grid dimples, whereas the G-grid design may capture circular shapes of debris larger than 2.54 mm in diameter at the flow holes formed by the G-grid dimples. The aforementioned difference in the debris-filter efficiency between the P-grid and G-grid designs may be predicted by the solid modeling technique generating three-dimensional flow paths. Using the minimum flow-hole areas generated by the P-grid and G-grid designs, on the other hand, the effect of debris injected from

  3. Numerical simulation for debris bed behavior in sodium cooled fast reactor

    International Nuclear Information System (INIS)

    Tagami, Hirotaka; Tobita, Yoshiharu

    2014-01-01

    For safety analysis of SFR, it is necessary to evaluate behavior along with coolability of debris bed in lower plenum which is formed in severe accident. In order to analyze debris behavior, model for dense sediment particles behavior was proposed and installed in SFR safety analysis code SIMMER. SIMMER code could adequately reproduce experimental results simulating the self-leveling phenomena with appropriate model parameters for bed stiffness. In reactor condition, the self-leveling experiment for prototypical debris bed has not been performed. Additionally, the prototypical debris bed consists of non-spherical particles and it is difficult to quantify model parameters. This situation brings sensitivity analysis to investigate effect of model parameters on the self-leveling phenomena of prototypical debris bed in present paper. As initial condition for sensitivity analysis, simple mound-like debris bed in sodium-filled lower plenum in reactor vessel is considered. The bed consists of the mixture of fuel debris of 3,300 kg and steel debris of 1,570 kg. Decay heat is given to this fuel debris. The model parameter is chosen as sensitivity parameter. Sensitivity analysis shows that the model parameters can effect on intensity of self-leveling phenomena and eventual flatness of bed. In all analyses, however, coolant and sodium vapor break the debris bed at mainly center part of bed and the debris is relocated to outside of bed. Through this process, the initial debris bed is almost planarized before re-melting of debris. This result shows that the model parameters affect the self-leveling phenomena, but its effect in the safety analysis of SFRs is limited. (author)

  4. Solar Radiation Pressure Estimation and Analysis of a GEO Class of High Area-to-Mass Ratio Debris Objects

    Science.gov (United States)

    Kelecy, Tom; Payne, Tim; Thurston, Robin; Stansbery, Gene

    2007-01-01

    A population of deep space objects is thought to be high area-to-mass ratio (AMR) debris having origins from sources in the geosynchronous orbit (GEO) belt. The typical AMR values have been observed to range anywhere from 1's to 10's of m(sup 2)/kg, and hence, higher than average solar radiation pressure effects result in long-term migration of eccentricity (0.1-0.6) and inclination over time. However, the nature of the debris orientation-dependent dynamics also results time-varying solar radiation forces about the average which complicate the short-term orbit determination processing. The orbit determination results are presented for several of these debris objects, and highlight their unique and varied dynamic attributes. Estimation or the solar pressure dynamics over time scales suitable for resolving the shorter term dynamics improves the orbit estimation, and hence, the orbit predictions needed to conduct follow-up observations.

  5. EDDA: integrated simulation of debris flow erosion, deposition and property changes

    Science.gov (United States)

    Chen, H. X.; Zhang, L. M.

    2014-11-01

    Debris flow material properties change during the initiation, transportation and deposition processes, which influences the runout characteristics of the debris flow. A quasi-three-dimensional depth-integrated numerical model, EDDA, is presented in this paper to simulate debris flow erosion, deposition and induced material property changes. The model considers changes in debris flow density, yield stress and dynamic viscosity during the flow process. The yield stress of debris flow mixture is determined at limit equilibrium using the Mohr-Coulomb equation, which is applicable to clear water flow, hyper-concentrated flow and fully developed debris flow. To assure numerical stability and computational efficiency at the same time, a variable time stepping algorithm is developed to solve the governing differential equations. Four numerical tests are conducted to validate the model. The first two tests involve a one-dimensional dam-break water flow and a one-dimensional debris flow with constant properties. The last two tests involve erosion and deposition, and the movement of multi-directional debris flows. The changes in debris flow mass and properties due to either erosion or deposition are shown to affect the runout characteristics significantly. The model is also applied to simulate a large-scale debris flow in Xiaojiagou Ravine to test the performance of the model in catchment-scale simulations. The results suggest that the model estimates well the volume, inundated area, and runout distance of the debris flow. The model is intended for use as a module in a real-time debris flow warning system.

  6. Phase shifting-based debris effect detection in USV-assisted AFM nanomachining

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Jialin [State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences (CAS), Shenyang, Liaoning 110016 (China); University of the Chinese Academy of Sciences, Beijing 100049 (China); Beijing Advanced Innovation Center for Imaging Technology, Capital Normal University, Beijing 100049 (China); Liu, Lianqing, E-mail: lianqingliu@sia.cn [State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences (CAS), Shenyang, Liaoning 110016 (China); Yu, Peng; Cong, Yang [State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences (CAS), Shenyang, Liaoning 110016 (China); Li, Guangyong [Department of Electrical and Computer Engineering, University of Pittsburgh, Pittsburgh, PA 15213 (United States)

    2017-08-15

    Highlights: • The mechanism of the debris effect on machining depth in force control mode operation is analyzed. • The relationship between phase shifting and pile-up of debris is investigated. • The phase shifting-based method is hardly affected by the pile-up of debris. • Debris effect detection by phase shifting-based method is achived. - Abstract: Atomic force microscopy (AFM) mechanical-based lithography attracts much attention in nanomanufacturing due to its advantages of low cost, high precision and high resolution. However, debris effects during mechanical lithography often lead to an unstable machining process and inaccurate results, which limits further applications of AFM-based lithography. There is a lack of a real-time debris detection approach, which is the prerequisite to eventually eliminating the influence of the debris, and of a method that can solve the above problems well. The ultrasonic vibration (USV)-assisted AFM has the ability to sense the machining depth in real time by detecting the phase shifting of cantilever. However, whether the pile-up of debris affect the phase response of cantilever is still lack of investigation. Therefore, we analyzed the mechanism of the debris effect on force control mode and investigated the relationship between phase shifting and pile-up of debris. Theoretical analysis and experimental results reveal that the pile-up of debris have negligible effect on phase shifting of cantilever. Therefore, the phase shifting-based method can detect the debris effect on machining depth in force control mode of AFM machining.

  7. Interactions of the space debris environment with mega constellations-Using the example of the OneWeb constellation

    Science.gov (United States)

    Radtke, Jonas; Kebschull, Christopher; Stoll, Enrico

    2017-02-01

    Recently, several announcements have been published to deploy satellite constellations into Low Earth Orbit (LEO) containing several hundred to thousands of rather small sized objects. The purpose of these constellations is to provide a worldwide internet coverage, even to the remotest areas. Examples of these mega-constellations are one from SpaceX, which is announced to comprise of about 4000 satellites, the Norwegian STEAM network, which is told to contain 4257 satellites, and the OneWeb constellation, which forms one of the smaller constellations with 720 satellites. As example constellation, OneWeb has been chosen. From all announced constellation, OneWeb by far delivered most information, both in regards to constellation design and their plans to encounter space debris issues, which is the reason why it has been chosen for these analyses. In this paper, at first an overview of the planned OneWeb constellation setup is given. From this description, a mission life-cycle is deduced, splitting the complete orbital lifetime of the satellites into four phases. Following, using ESA-MASTER, for each of the mission phases the flux on both single constellations satellites and the complete constellation are performed and the collision probabilities are derived. The focus in this analysis is set on catastrophic collisions. This analysis is then varied parametrically for different operational altitudes of the constellation as well as different lifetimes with different assumptions for the success of post mission disposal (PMD). Following the to-be-expected mean number of collision avoidance manoeuvres during all active mission phases is performed using ARES from ESA's DRAMA tool suite. The same variations as during the flux analysis are considered. Lastly the characteristics of hypothetical OneWeb satellite fragmentation clouds, calculated using the NASA Breakup model, are described and the impact of collision clouds from OneWeb satellites on the constellation itself is

  8. Coolability of oxidized particulate debris bed accumulated in horizontal narrow gaps

    International Nuclear Information System (INIS)

    Arai, Y.; Sugiyama, K.; Narabayashi, T.

    2007-01-01

    When LOCA occurs in a nuclear reactor system, the coolability of the core would be kept as reported at a series of presentations in ICONE14. Therefore the probability of the core meltdown is negligible small. However, from the view point of defense in depth, it is necessary to be sure that the coolability of the bottom of reactor pressure vessel (RPV) is maintained even if a part of the core should melt and a substantial amount of debris should be deposited on the lower plenum. We carried out an experimental study in order to observe the coolability of particulate core-metal debris bed with 12 mm thickness accompanied with rapid heat generation because of oxidization, which was reported at ICONE14. The coolability was assured by a small amount of coolant supply because of high capillary force of oxidized fine particulate debris produced. In the present study, we examined the coolability of particulate debris bed deposited in narrower gap of 1 mm or 5 mm that coolant supply is hard. The particulate debris beds were piled up on the stainless steel sheet with 0.1 mm thickness, which was used to measure the bottom temperatures of particulate debris bed by using a thermo-video camera. We set up a heat supply section with heat input of 2.1 kW, which simulates the hard debris bed deposited on the particulate debris bed as reported for the TMI-2 accident. We measured the temperatures of the bottom surface of the heat supply section and the heat fluxes released into debris bed as well as the temperatures at the bottom of debris bed on the stainless steel sheet. It is found that when only the upper surface of particulate debris bed is in the film boiling, capillary force causes coolant supply to the particulate debris bed. Therefore, in the condition of thicker gap with small particulate debris, coolability of debris bed is improved. We find out that smaller particulate debris is moved by vapor movement. As a result, the area that high capillary force is caused because of

  9. Development of debris resistant bottom end piece

    International Nuclear Information System (INIS)

    Lee, Jae Kyung; Sohn, Dong Seong; Yim, Jeong Sik; Hwang, Dae Hyun; Song, Kee Nam; Oh, Dong Seok; Rhu, Ho Sik; Lee, Chang Woo; Kim, Seong Soo; Oh, Jong Myung

    1993-12-01

    Debris-related fuel failures have been identified as one of the major causes of fuel failures. In order to reduce the possibility of debris-related fuel failures, it is necessary to develop Debris-Resistant Bottom End Piece. For this development, mechanical strength test and pressure drop test were performed, and the test results were analyzed. And the laser cutting, laser welding and electron beam welding technology, which were the core manufacturing technology of DRBEP, were developed. Final design were performed, and the final drawing and specifications were prepared. The prototype of DRBEP was manufactured according to the developed munufacturing procedure. (Author)

  10. The uses of Man-Made diamond in wafering applications

    Science.gov (United States)

    Fallon, D. B.

    1982-01-01

    The continuing, rapid growth of the semiconductor industry requires the involvement of several specialized industries in the development of special products geared toward the unique requirements of this new industry. A specialized manufactured diamond to meet various material removal needs was discussed. The area of silicon wafer slicing has presented yet anothr challenge and it is met most effectively. The history, operation, and performance of Man-Made diamond and particularly as applied to silicon wafer slicing is discussed. Product development is underway to come up with a diamond specifically for sawing silicon wafers on an electroplated blade.

  11. Dynamics of Flexible MLI-type Debris for Accurate Orbit Prediction

    Science.gov (United States)

    2014-09-01

    debris for accurate propagation under perturbations”, in Proceedings of 65th International Astronautical Congress (IAC 2014), Toronto, Canada , 2014...Surveillance Network ( SSN ) was able to detect more than 900 pieces of debris that were at risk to damage operational spacecraft. In February 10, 2009...created two large debris clouds and the SSN reported that 382 pieces of debris from Iridium 33 and 893 pieces from Cosmos 2251 were created, and

  12. Revealing asymmetries in the HD 181327 debris disk: A recent massive collision or interstellar medium warping

    Energy Technology Data Exchange (ETDEWEB)

    Stark, Christopher C.; Kuchner, Marc J. [NASA Goddard Space Flight Center, Exoplanets and Stellar Astrophysics Laboratory, Code 667, Greenbelt, MD 20771 (United States); Schneider, Glenn [Steward Observatory, The University of Arizona, Tucson, AZ 85721 (United States); Weinberger, Alycia J. [Department of Terrestrial Magnetism, Carnegie Institution of Washington, 5241 Broad Branch Road NW, Washington, DC 20015 (United States); Debes, John H. [Space Telescope Science Institute, Baltimore, MD 21218 (United States); Grady, Carol A. [Eureka Scientific, 2452 Delmer, Suite 100, Oakland, CA 96002 (United States); Jang-Condell, Hannah, E-mail: christopher.c.stark@nasa.gov [Department of Physics and Astronomy, University of Wyoming, Laramie, WY 82071 (United States)

    2014-07-01

    New multi-roll coronagraphic images of the HD 181327 debris disk obtained using the Space Telescope Imaging Spectrograph on board the Hubble Space Telescope reveal the debris ring in its entirety at high signal-to-noise ratio and unprecedented spatial resolution. We present and apply a new multi-roll image processing routine to identify and further remove quasi-static point-spread function-subtraction residuals and quantify systematic uncertainties. We also use a new iterative image deprojection technique to constrain the true disk geometry and aggressively remove any surface brightness asymmetries that can be explained without invoking dust density enhancements/deficits. The measured empirical scattering phase function for the disk is more forward scattering than previously thought and is not well-fit by a Henyey-Greenstein function. The empirical scattering phase function varies with stellocentric distance, consistent with the expected radiation pressured-induced size segregation exterior to the belt. Within the belt, the empirical scattering phase function contradicts unperturbed debris ring models, suggesting the presence of an unseen planet. The radial profile of the flux density is degenerate with a radially varying scattering phase function; therefore estimates of the ring's true width and edge slope may be highly uncertain. We detect large scale asymmetries in the disk, consistent with either the recent catastrophic disruption of a body with mass >1% the mass of Pluto, or disk warping due to strong interactions with the interstellar medium.

  13. Revealing Asymmetries in the HD 181327 Debris Disk: A Recent Massive Collision or Interstellar Medium Warping

    Science.gov (United States)

    Stark, Christopher C.; Schneider, Glenn; Weinberger, Alycia J.; Debes, John H.; Grady, Carol A.; Jang-Condell, Hannah; Kuchner, Marc J.

    2014-07-01

    New multi-roll coronagraphic images of the HD 181327 debris disk obtained using the Space Telescope Imaging Spectrograph on board the Hubble Space Telescope reveal the debris ring in its entirety at high signal-to-noise ratio and unprecedented spatial resolution. We present and apply a new multi-roll image processing routine to identify and further remove quasi-static point-spread function-subtraction residuals and quantify systematic uncertainties. We also use a new iterative image deprojection technique to constrain the true disk geometry and aggressively remove any surface brightness asymmetries that can be explained without invoking dust density enhancements/deficits. The measured empirical scattering phase function for the disk is more forward scattering than previously thought and is not well-fit by a Henyey-Greenstein function. The empirical scattering phase function varies with stellocentric distance, consistent with the expected radiation pressured-induced size segregation exterior to the belt. Within the belt, the empirical scattering phase function contradicts unperturbed debris ring models, suggesting the presence of an unseen planet. The radial profile of the flux density is degenerate with a radially varying scattering phase function; therefore estimates of the ring's true width and edge slope may be highly uncertain. We detect large scale asymmetries in the disk, consistent with either the recent catastrophic disruption of a body with mass >1% the mass of Pluto, or disk warping due to strong interactions with the interstellar medium.

  14. Counter-orbiting tidal debris as the origin of the MW DoS

    Directory of Open Access Journals (Sweden)

    Pawlowski M.S.

    2012-02-01

    Full Text Available The Milky Way satellite galaxies show a phase-space distribution that is not expected from the standard scenario of galaxy formation. This is a strong hint at them being of tidal origin, which would naturally explain their spacial distribution in a disc of satellites. It is shown that also their orbital directions can be reproduced with the debris of galaxy collisions. Both co- and counter-orbiting satellites are formed naturally in merger and fly-by interactions.

  15. Debris disc constraints on planetesimal formation

    Science.gov (United States)

    Krivov, Alexander V.; Ide, Aljoscha; Löhne, Torsten; Johansen, Anders; Blum, Jürgen

    2018-02-01

    Two basic routes for planetesimal formation have been proposed over the last decades. One is a classical `slow-growth' scenario. Another one is particle concentration models, in which small pebbles are concentrated locally and then collapse gravitationally to form planetesimals. Both types of models make certain predictions for the size spectrum and internal structure of newly born planetesimals. We use these predictions as input to simulate collisional evolution of debris discs left after the gas dispersal. The debris disc emission as a function of a system's age computed in these simulations is compared with several Spitzer and Herschel debris disc surveys around A-type stars. We confirm that the observed brightness evolution for the majority of discs can be reproduced by classical models. Further, we find that it is equally consistent with the size distribution of planetesimals predicted by particle concentration models - provided the objects are loosely bound `pebble piles' as these models also predict. Regardless of the assumed planetesimal formation mechanism, explaining the brightest debris discs in the samples uncovers a `disc mass problem'. To reproduce such discs by collisional simulations, a total mass of planetesimals of up to ˜1000 Earth masses is required, which exceeds the total mass of solids available in the protoplanetary progenitors of debris discs. This may indicate that stirring was delayed in some of the bright discs, that giant impacts occurred recently in some of them, that some systems may be younger than previously thought or that non-collisional processes contribute significantly to the dust production.

  16. Anthropogenic effect on avalanche and debris flow activity

    OpenAIRE

    S. A. Sokratov; Yu. G. Seliverstov; A. L. Shnyparkov; K. P. Koltermann

    2013-01-01

    The paper presents examples of the change in snow avalanches and debris flows activity due to the anthropogenic pressure on vegetation and relief. The changes in dynamical characteristics of selected snow avalanches and debris flows due to the anthropogenic activity are quantified. The conclusion is made that the anthropogenic effects on the snow avalanches and debris flows activity are more pronounced than the possible effects of the climate change. The necessity is expressed on the unavoida...

  17. Fold and Fit: Space Conserving Shape Editing

    KAUST Repository

    Ibrahim, Mohamed

    2017-09-01

    We present a framework that folds man-made objects in a structure-aware manner for space-conserving storage and transportation. Given a segmented 3D mesh of a man-made object, our framework jointly optimizes for joint locations, the folding order, and folding angles for each part of the model, enabling it to transform into a spatially efficient configuration while keeping its original functionality as intact as possible. That is, if a model is supposed to withstand several forces in its initial state to serve its functionality, our framework places the joints between the parts of the model such that the model can withstand forces with magnitudes that are comparable to the magnitudes applied on the unedited model. Furthermore, if the folded shape is not compact, our framework proposes further segmentation of the model to improve its compactness in its folded state.

  18. Apically-extruded debris using the ProTaper system.

    Science.gov (United States)

    Azar, Nasim Gheshlaghi; Ebrahimi, Gholamreza

    2005-04-01

    The purpose of this in vitro study was to determine the quantity of debris and irrigant extruded apically using the ProTaper system compared to ProFiles and K-Flexofiles. Thirty-six mesio-buccal root canals of human mandibular molars were selected and divided into three groups of twelve canals. Two groups were instrumented with ProFiles and ProTapers according to the manufacturer's instructions. The other group was instrumented with K-Flexofiles using the step-back technique. A standard amount of irrigant was used for each canal. Apically-extruded debris and irrigant was collected in pre-weighed vials. The mean weight of extruded debris and irrigant for each group was statistically analysed using Student's t-test and one-way ANOVA. All instrumentation techniques produced extruded debris and irrigant. Although the mean amount of extrusion with the step-back technique was higher than the two rotary systems, there was no significant difference between the three groups (p > 0.05). NiTi rotary systems were associated with less apical extrusion, but were not significantly better than hand file instrumentation. All techniques extruded debris.

  19. Sensitivity Analysis of Launch Vehicle Debris Risk Model

    Science.gov (United States)

    Gee, Ken; Lawrence, Scott L.

    2010-01-01

    As part of an analysis of the loss of crew risk associated with an ascent abort system for a manned launch vehicle, a model was developed to predict the impact risk of the debris resulting from an explosion of the launch vehicle on the crew module. The model consisted of a debris catalog describing the number, size and imparted velocity of each piece of debris, a method to compute the trajectories of the debris and a method to calculate the impact risk given the abort trajectory of the crew module. The model provided a point estimate of the strike probability as a function of the debris catalog, the time of abort and the delay time between the abort and destruction of the launch vehicle. A study was conducted to determine the sensitivity of the strike probability to the various model input parameters and to develop a response surface model for use in the sensitivity analysis of the overall ascent abort risk model. The results of the sensitivity analysis and the response surface model are presented in this paper.

  20. Optical Photometric Observations of GEO Debris

    Science.gov (United States)

    Seitzer, Patrick; Rodriquez-Cowardin, Heather M.; Barker, Edwin S.; Abercromby, Kira J.; Kelecy, Thomas M.; Horstman, Matt

    2010-01-01

    We report on a continuing program of optical photometric measurements of faint orbital debris at geosynchronous Earth orbit (GEO). These observations can be compared with laboratory studies of actual spacecraft materials in an effort to determine what the faint debris at GEO may be. We have optical observations from Cerro Tololo Inter-American Observatory (CTIO) in Chile of two samples of debris: 1. GEO objects discovered in a survey with the University of Michigan's 0.6-m aperture Curtis-Schmidt telescope MODEST (for Michigan Orbital DEbris Survey Telescope), and then followed up in real-time with the CTIO/SMARTS 0.9-m for orbits and photometry. Our goal is to determine 6 parameter orbits and measure colors for all objects fainter than R = 15 t11 magnitude that are discovered in the MODEST survey. 2. A smaller sample of high area to mass ratio (AMR) objects discovered independently, and acquired using predictions from orbits derived from independent tracking data collected days prior to the observations. Our optical observations in standard astronomical BVRI filters are done with either telescope, and with the telescope tracking the debris object at the object's angular rate. Observations in different filters are obtained sequentially. We have obtained 71 calibrated sequences of R-B-V-I-R magnitudes. A total of 66 of these sequences have 3 or more good measurements in all filters (not contaminated by star streaks or in Earth's shadow). Most of these sequences show brightness variations, but a small subset has observed brightness variations consistent with that expected from observational errors alone. The majority of these stable objects are redder than a solar color in both B-R and R-I. There is no dependence on color with brightness. For a smaller sample of objects we have observed with synchronized CCD cameras on the two telescopes. The CTIO 0.9-m observes in B, and MODEST in R. The CCD cameras are electronically linked together so that the start time and

  1. Investigation of debris bed formation, spreading and coolability

    Energy Technology Data Exchange (ETDEWEB)

    Kudinov, P.; Konovalenko, A.; Grishchenko, D.; Yakush, S.; Basso, S.; Lubchenko, N.; Karbojian, A. [Royal Institute of Technology, KTH. Div. of Nuclear Power Safety, Stockholm (Sweden)

    2013-08-15

    The work is motivated by the severe accident management strategy adopted in Nordic type BWRs. It is assumed that core melt ejected from the vessel will fragment, quench and form a coolable debris bed in a deep water pool below the vessel. In this work we consider phenomena relevant to the debris bed formation and coolability. Several DEFOR-A (Debris Bed Formation - Agglomeration) tests have been carried out with new corium melt material and a melt releasing nozzle mockup. The influence of the melt material, melt superheat, jet free fall height on the (i) faction of agglomerated debris, (ii) particle size distribution, (iii) ablation/plugging of the nozzle mockup has been addressed. Results of the DECOSIM (Debris Coolability Simulator) code validation against available COOLOCE data are presented in the report. The dependence of DHF on system pressure from COOLOCE experiments can be reproduced quite accurately if either the effective particle diameter or debris bed porosity is increased. For a cylindrical debris bed, good agreement is achieved in DECOSIM simulations for the particle diameter 0.89 mm and porosity 0.4. The results obtained are consistent with MEWA simulation where larger particle diameters and porosities were found to be necessary to reproduce the experimental data on DHF. It is instructive to note that results of DHF prediction are in better agreement with POMECO-HT data obtained for the same particles. It is concluded that further clarification of the discrepancies between different experiments and model predictions. In total 13 exploratory tests were carried out in PDS (particulate debris spreading) facility to clarify potential influence of the COOLOCE (VTT) facility heaters and TCs on particle self-leveling process. Results of the preliminary analysis suggest that there is no significant influence of the pins on self-leveling, at least for the air superficial velocities ranging from 0.17 up to 0.52 m/s. Further confirmatory tests might be needed

  2. Investigation of debris bed formation, spreading and coolability

    International Nuclear Information System (INIS)

    Kudinov, P.; Konovalenko, A.; Grishchenko, D.; Yakush, S.; Basso, S.; Lubchenko, N.; Karbojian, A.

    2013-08-01

    The work is motivated by the severe accident management strategy adopted in Nordic type BWRs. It is assumed that core melt ejected from the vessel will fragment, quench and form a coolable debris bed in a deep water pool below the vessel. In this work we consider phenomena relevant to the debris bed formation and coolability. Several DEFOR-A (Debris Bed Formation - Agglomeration) tests have been carried out with new corium melt material and a melt releasing nozzle mockup. The influence of the melt material, melt superheat, jet free fall height on the (i) faction of agglomerated debris, (ii) particle size distribution, (iii) ablation/plugging of the nozzle mockup has been addressed. Results of the DECOSIM (Debris Coolability Simulator) code validation against available COOLOCE data are presented in the report. The dependence of DHF on system pressure from COOLOCE experiments can be reproduced quite accurately if either the effective particle diameter or debris bed porosity is increased. For a cylindrical debris bed, good agreement is achieved in DECOSIM simulations for the particle diameter 0.89 mm and porosity 0.4. The results obtained are consistent with MEWA simulation where larger particle diameters and porosities were found to be necessary to reproduce the experimental data on DHF. It is instructive to note that results of DHF prediction are in better agreement with POMECO-HT data obtained for the same particles. It is concluded that further clarification of the discrepancies between different experiments and model predictions. In total 13 exploratory tests were carried out in PDS (particulate debris spreading) facility to clarify potential influence of the COOLOCE (VTT) facility heaters and TCs on particle self-leveling process. Results of the preliminary analysis suggest that there is no significant influence of the pins on self-leveling, at least for the air superficial velocities ranging from 0.17 up to 0.52 m/s. Further confirmatory tests might be needed

  3. Global Analysis of Anthropogenic Debris Ingestion by Sea Turtles

    Science.gov (United States)

    Schuyler, Qamar; Hardesty, Britta Denise; Wilcox, Chris; Townsend, Kathy

    2014-01-01

    Ingestion of marine debris can have lethal and sublethal effects on sea turtles and other wildlife. Although researchers have reported on ingestion of anthropogenic debris by marine turtles and implied incidences of debris ingestion have increased over time, there has not been a global synthesis of the phenomenon since 1985. Thus, we analyzed 37 studies published from 1985 to 2012 that report on data collected from before 1900 through 2011. Specifically, we investigated whether ingestion prevalence has changed over time, what types of debris are most commonly ingested, the geographic distribution of debris ingestion by marine turtles relative to global debris distribution, and which species and life-history stages are most likely to ingest debris. The probability of green (Chelonia mydas) and leatherback turtles (Dermochelys coriacea) ingesting debris increased significantly over time, and plastic was the most commonly ingested debris. Turtles in nearly all regions studied ingest debris, but the probability of ingestion was not related to modeled debris densities. Furthermore, smaller, oceanic-stage turtles were more likely to ingest debris than coastal foragers, whereas carnivorous species were less likely to ingest debris than herbivores or gelatinovores. Our results indicate oceanic leatherback turtles and green turtles are at the greatest risk of both lethal and sublethal effects from ingested marine debris. To reduce this risk, anthropogenic debris must be managed at a global level. Análisis Global de la Ingesta de Residuos Antropogénicos por Tortugas Marinas La ingesta de residuos marinos puede tener efectos letales y subletales sobre las tortugas marinas y otros animales. Aunque hay investigadores que han reportado la ingesta de residuos antropogénicos por tortugas marinas y la incidencia de la ingesta de residuos ha incrementado con el tiempo, no ha habido una síntesis global del fenómeno desde 1985. Por esto analizamos 37 estudios publicados, desde

  4. Characterizing Longitude-Dependent Orbital Debris Congestion in the Geosynchronous Orbit Regime

    Science.gov (United States)

    Anderson, Paul V.

    The geosynchronous orbit (GEO) is a unique commodity of the satellite industry that is becoming increasingly contaminated with orbital debris, but is heavily populated with high-value assets from the civil, commercial, and defense sectors. The GEO arena is home to hundreds of communications, data transmission, and intelligence satellites collectively insured for an estimated 18.3 billion USD. As the lack of natural cleansing mechanisms at the GEO altitude renders the lifetimes of GEO debris essentially infinite, conjunction and risk assessment must be performed to safeguard operational assets from debris collisions. In this thesis, longitude-dependent debris congestion is characterized by predicting the number of near-miss events per day for every longitude slot at GEO, using custom debris propagation tools and a torus intersection metric. Near-miss events with the present-day debris population are assigned risk levels based on GEO-relative position and speed, and this risk information is used to prioritize the population for debris removal target selection. Long-term projections of debris growth under nominal launch traffic, mitigation practices, and fragmentation events are also discussed, and latitudinal synchronization of the GEO debris population is explained via node variations arising from luni-solar gravity. In addition to characterizing localized debris congestion in the GEO ring, this thesis further investigates the conjunction risk to operational satellites or debris removal systems applying low-thrust propulsion to raise orbit altitude at end-of-life to a super-synchronous disposal orbit. Conjunction risks as a function of thrust level, miss distance, longitude, and semi-major axis are evaluated, and a guidance method for evading conjuncting debris with continuous thrust by means of a thrust heading change via single-shooting is developed.

  5. Some examples of marine mammal 'discomfort thresholds' in relation to man-made noise

    NARCIS (Netherlands)

    Verboom, W.C.; Kastelein, R.A.

    2005-01-01

    World-wide a concern exists about the influence of man-made noise on marine life and particularly on marine mammals and fish. One of the acoustic polluters of the world’s oceans is high-power active sonar, but also pile driving and seismic activities at sea are of concern with respect to animal

  6. Monitoring the abundance of plastic debris in the marine environment

    OpenAIRE

    Ryan, Peter G.; Moore, Charles J.; van Franeker, Jan A.; Moloney, Coleen L.

    2009-01-01

    Plastic debris has significant environmental and economic impacts in marine systems. Monitoring is crucial to assess the efficacy of measures implemented to reduce the abundance of plastic debris, but it is complicated by large spatial and temporal heterogeneity in the amounts of plastic debris and by our limited understanding of the pathways followed by plastic debris and its long-term fate. To date, most monitoring has focused on beach surveys of stranded plastics and other litter. Infreque...

  7. Spiders (Araneae of stony debris in North Bohemia

    Directory of Open Access Journals (Sweden)

    Růžička, Vlastimil

    1996-12-01

    Full Text Available The arachnofauna was studied at five stony debris sites in northern Bohemia. In Central Europe, the northern and montane species inhabiting cold places live not only on mountain tops and peat bogs but also on the lower edges of boulder debris, where air streaming through the system of inner compartments gives rise to an exceedingly cold microclimate. At such cold sites, spiders can live either on bare stones (Bathyphantes simillimus, Wubanoides uralensis, or in the rich layers of moss and lichen (Diplocentria bidentata. Kratochviliella bicapitata exhibits a diplostenoecious occurence in stony debris and on the tree bark. Latithorax faustus and Theonoe minutissima display diplostenoecious occurence in stony debris and on peat bogs. The occurence of the species Scotina celans in the Czech Republic was documented for the first time.

  8. Influence of check dams on debris-flow run-out intensity

    Directory of Open Access Journals (Sweden)

    A. Remaître

    2008-12-01

    Full Text Available Debris flows are very dangerous phenomena claiming thousands of lives and millions of Euros each year over the world. Disaster mitigation includes non-structural (hazard mapping, insurance policies, active structural (drainage systems and passive structural (check dams, stilling basins countermeasures. Since over twenty years, many efforts are devoted by the scientific and engineering communities to the design of proper devices able to capture the debris-flow volume and/or break down the energy. If considerable theoretical and numerical work has been performed on the size, the shape and structure of check dams, allowing the definition of general design criteria, it is worth noting that less research has focused on the optimal location of these dams along the debris-flow pathway.

    In this paper, a methodological framework is proposed to evaluate the influence of the number and the location of the check dams on the reduction of the debris-flow intensity (in term of flow thickness, flow velocity and volume. A debris-flow model is used to simulate the run-out of the debris flow. The model uses the Janbu force diagram to resolve the force equilibrium equations; a bingham fluid rheology is introduced and represents the resistance term. The model has been calibrated on two muddy debris-flow events that occurred in 1996 and 2003 at the Faucon watershed (South French Alps.

    Influence of the check dams on the debris-flow intensity is quantified taking into account several check dams configurations (number and location as input geometrical parameters. Results indicate that debris-flow intensity is decreasing with the distance between the source area and the first check dams. The study demonstrates that a small number of check dams located near the source area may decrease substantially the debris-flow intensity on the alluvial fans.

  9. Monitoring the abundance of plastic debris in the marine environment.

    Science.gov (United States)

    Ryan, Peter G; Moore, Charles J; van Franeker, Jan A; Moloney, Coleen L

    2009-07-27

    Plastic debris has significant environmental and economic impacts in marine systems. Monitoring is crucial to assess the efficacy of measures implemented to reduce the abundance of plastic debris, but it is complicated by large spatial and temporal heterogeneity in the amounts of plastic debris and by our limited understanding of the pathways followed by plastic debris and its long-term fate. To date, most monitoring has focused on beach surveys of stranded plastics and other litter. Infrequent surveys of the standing stock of litter on beaches provide crude estimates of debris types and abundance, but are biased by differential removal of litter items by beachcombing, cleanups and beach dynamics. Monitoring the accumulation of stranded debris provides an index of debris trends in adjacent waters, but is costly to undertake. At-sea sampling requires large sample sizes for statistical power to detect changes in abundance, given the high spatial and temporal heterogeneity. Another approach is to monitor the impacts of plastics. Seabirds and other marine organisms that accumulate plastics in their stomachs offer a cost-effective way to monitor the abundance and composition of small plastic litter. Changes in entanglement rates are harder to interpret, as they are sensitive to changes in population sizes of affected species. Monitoring waste disposal on ships and plastic debris levels in rivers and storm-water runoff is useful because it identifies the main sources of plastic debris entering the sea and can direct mitigation efforts. Different monitoring approaches are required to answer different questions, but attempts should be made to standardize approaches internationally.

  10. Monitoring the abundance of plastic debris in the marine environment

    NARCIS (Netherlands)

    Ryan, P.G.; Moore, C.J. C.J.; Franeker, van J.A.; Moloney, C.L.

    2009-01-01

    Plastic debris has significant environmental and economic impacts in marine systems. Monitoring is crucial to assess the efficacy of measures implemented to reduce the abundance of plastic debris, but it is complicated by large spatial and temporal heterogeneity in the amounts of plastic debris and

  11. Classification of debris flow phenomena in the Faroe Islands

    DEFF Research Database (Denmark)

    Dahl, Mads-Peter Jakob; E. Mortensen, Lis; Jensen, Niels H.

    2012-01-01

    Landslides and debris flow phenomena in particular constitute a threat to human activities in the Faroe Islands. As a contribution to ongoing landslide risk management research, this paper proposes a classification scheme for debris flow phenomena in the Faroe Islands. The scheme, produced through...... a multidisciplinary study involving geomorphological fieldwork and qualitative collection of indigenous landslide knowledge, presents physical characteristics to classify debris flow phenomena into groups named with Faroese terms. The following landslide definitions are proposed. Brekku-skriðulop (English translation...... with international landslide classification systems, significantly increases the knowledge of debris flow phenomena and promotes a consistent terminology of these within the Faroe Islands....

  12. ASTM standards for fire debris analysis: a review.

    Science.gov (United States)

    Stauffer, Eric; Lentini, John J

    2003-03-12

    The American Society for Testing and Materials (ASTM) recently updated its standards E 1387 and E 1618 for the analysis of fire debris. The changes in the classification of ignitable liquids are presented in this review. Furthermore, a new standard on extraction of fire debris with solid phase microextraction (SPME) was released. Advantages and drawbacks of this technique are presented and discussed. Also, the standard on cleanup by acid stripping has not been reapproved. Fire debris analysts that use the standards should be aware of these changes.

  13. Achievable space elevators for space transportation and starship acceleration

    Science.gov (United States)

    Pearson, Jerome

    1990-04-01

    Space elevator concepts for low-cost space launches are reviewed. Previous concepts suffered from requirements for ultra-high-strength materials, dynamically unstable systems, or from danger of collision with space debris. The use of magnetic grain streams solves these problems. Magnetic grain streams can support short space elevators for lifting payloads cheaply into Earth orbit, overcoming the material strength problem in building space elevators. Alternatively, the stream could support an international spaceport circling the Earth daily tens of miles above the equator, accessible to advanced aircraft. Mars could be equipped with a similar grain stream, using material from its moons Phobos and Deimos. Grain-stream arcs about the sun could be used for fast launches to the outer planets and for accelerating starships to near lightspeed for interstellar reconnaisance. Grain streams are essentially impervious to collisions, and could reduce the cost of space transportation by an order of magnitude.

  14. Property measurements and inner state estimation of simulated fuel debris

    Energy Technology Data Exchange (ETDEWEB)

    Hirooka, S.; Kato, M.; Morimoto, K.; Washiya, T. [Japan Atomic Energy Agency, Ibaraki (Japan)

    2014-07-01

    Fuel debris properties and inner state such as temperature profile were evaluated by using analysis of simulated fuel debris manufactured from UO{sub 2} and oxidized zircaloy. The center of the fuel debris was expected to be molten state soon after the melt down accident of LWRs because power density was very high. On the other hand, the surface of the fuel debris was cooled in the water. This large temperature gradient may cause inner stress and consequent cracks were expected. (author)

  15. To Eat or Not to Eat? Debris Selectivity by Marine Turtles

    Science.gov (United States)

    Schuyler, Qamar; Hardesty, Britta Denise; Wilcox, Chris; Townsend, Kathy

    2012-01-01

    Marine debris is a growing problem for wildlife, and has been documented to affect more than 267 species worldwide. We investigated the prevalence of marine debris ingestion in 115 sea turtles stranded in Queensland between 2006–2011, and assessed how the ingestion rates differ between species (Eretmochelys imbricata vs. Chelonia mydas) and by turtle size class (smaller oceanic feeders vs. larger benthic feeders). Concurrently, we conducted 25 beach surveys to estimate the composition of the debris present in the marine environment. Based on this proxy measurement of debris availability, we modeled turtles’ debris preferences (color and type) using a resource selection function, a method traditionally used for habitat and food selection. We found no significant difference in the overall probability of ingesting debris between the two species studied, both of which have similar life histories. Curved carapace length, however, was inversely correlated with the probability of ingesting debris; 54.5% of pelagic sized turtles had ingested debris, whereas only 25% of benthic feeding turtles were found with debris in their gastrointestinal system. Benthic and pelagic sized turtles also exhibited different selectivity ratios for debris ingestion. Benthic phase turtles had a strong selectivity for soft, clear plastic, lending support to the hypothesis that sea turtles ingest debris because it resembles natural prey items such as jellyfish. Pelagic turtles were much less selective in their feeding, though they showed a trend towards selectivity for rubber items such as balloons. Most ingested items were plastic and were positively buoyant. This study highlights the need to address increasing amounts of plastic in the marine environment, and provides evidence for the disproportionate ingestion of balloons by marine turtles. PMID:22829894

  16. To eat or not to eat? Debris selectivity by marine turtles.

    Directory of Open Access Journals (Sweden)

    Qamar Schuyler

    Full Text Available Marine debris is a growing problem for wildlife, and has been documented to affect more than 267 species worldwide. We investigated the prevalence of marine debris ingestion in 115 sea turtles stranded in Queensland between 2006-2011, and assessed how the ingestion rates differ between species (Eretmochelys imbricata vs. Chelonia mydas and by turtle size class (smaller oceanic feeders vs. larger benthic feeders. Concurrently, we conducted 25 beach surveys to estimate the composition of the debris present in the marine environment. Based on this proxy measurement of debris availability, we modeled turtles' debris preferences (color and type using a resource selection function, a method traditionally used for habitat and food selection. We found no significant difference in the overall probability of ingesting debris between the two species studied, both of which have similar life histories. Curved carapace length, however, was inversely correlated with the probability of ingesting debris; 54.5% of pelagic sized turtles had ingested debris, whereas only 25% of benthic feeding turtles were found with debris in their gastrointestinal system. Benthic and pelagic sized turtles also exhibited different selectivity ratios for debris ingestion. Benthic phase turtles had a strong selectivity for soft, clear plastic, lending support to the hypothesis that sea turtles ingest debris because it resembles natural prey items such as jellyfish. Pelagic turtles were much less selective in their feeding, though they showed a trend towards selectivity for rubber items such as balloons. Most ingested items were plastic and were positively buoyant. This study highlights the need to address increasing amounts of plastic in the marine environment, and provides evidence for the disproportionate ingestion of balloons by marine turtles.

  17. Emissions from the burning of vegetative debris in air curtain destructors.

    Science.gov (United States)

    Miller, C Andrew; Lemieux, Paul M

    2007-08-01

    Although air curtain destructors (ACDs) have been used for quite some time to dispose of vegetative debris, relatively little in-depth testing has been conducted to quantify emissions of pollutants other than CO and particulate matter. As part of an effort to prepare for possible use of ACDs to dispose of the enormous volumes of debris generated by Hurricanes Katrina and Rita, the literature on ACD emissions was reviewed to identify potential environmental issues associated with ACD disposal of construction and demolition (C&D) debris. Although no data have been published on emissions from C&D debris combustion in an ACD, a few studies provided information on emissions from the combustion of vegetative debris. These studies are reviewed, and the results compared with studies of open burning of biomass. Combustion of vegetative debris in ACD units results in significantly lower emissions of particulate matter and CO per unit of mass of debris compared with open pile burning. The available data are not sufficient to make general estimates regarding emissions of organic or metal compounds. The highly transient nature of the ACD combustion process, a minimal degree of operational control, and significant variability in debris properties make accurate prediction of ACD emissions impossible in general. Results of scoping tests conducted in preparation for possible in-depth emissions tests demonstrate the challenges associated with sampling ACD emissions and highlight the transient nature of the process. The environmental impacts of widespread use of ACDs for disposal of vegetative debris and their potential use to reduce the volume of C&D debris in future disaster response scenarios remain a considerable gap in understanding the risks associated with debris disposal options.

  18. On the identification of substructure in phase space using orbital frequencies

    NARCIS (Netherlands)

    Gomez, Facundo A.; Helmi, Amina

    2010-01-01

    We study the evolution of satellite debris to establish the most suitable space to identify past merger events. We confirm that the space of orbital frequencies is very promising in this respect. In frequency space individual streams can be easily identified, and their separation provides a direct

  19. Mapping coastal marine debris using aerial imagery and spatial analysis.

    Science.gov (United States)

    Moy, Kirsten; Neilson, Brian; Chung, Anne; Meadows, Amber; Castrence, Miguel; Ambagis, Stephen; Davidson, Kristine

    2017-12-19

    This study is the first to systematically quantify, categorize, and map marine macro-debris across the main Hawaiian Islands (MHI), including remote areas (e.g., Niihau, Kahoolawe, and northern Molokai). Aerial surveys were conducted over each island to collect high resolution photos, which were processed into orthorectified imagery and visually analyzed in GIS. The technique provided precise measurements of the quantity, location, type, and size of macro-debris (>0.05m 2 ), identifying 20,658 total debris items. Northeastern (windward) shorelines had the highest density of debris. Plastics, including nets, lines, buoys, floats, and foam, comprised 83% of the total count. In addition, the study located six vessels from the 2011 Tōhoku tsunami. These results created a baseline of the location, distribution, and composition of marine macro-debris across the MHI. Resource managers and communities may target high priority areas, particularly along remote coastlines where macro-debris counts were largely undocumented. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Survivability of ancient man-made earthen mounds: implications for uranium mill tailings impoundments

    International Nuclear Information System (INIS)

    Lindsey, C.G.; Mishima, J.; King, S.E.; Walters, W.H.

    1983-06-01

    As part of a study for the Nuclear Regulatory Commission (NRC), the Pacific Northwest Laboratory (PNL) is investigating long-term stabilization techniques for uranium mill impoundments. Part of this investigation involves the design of a rock armoring blanket (riprap) to mitigate wind and water erosion of the underlying soil cover, which in turn prevents exposure of the tailings to the environment. However, the need for the armoring blanket, as well as the blanket's effectiveness, depends on the stability of the underlying soil cap (radon suppression cover) and on the tailings themselves. Compelling evidence in archaeological records suggests that large man-made earthen structures can remain sound and intact for time periods comparable to those required for the stabilization of the tailings piles if properly constructed. We present archaeological evidence on the existence and survivability of man-made earthen and rock structures through specific examples of such structures from around the world. We also review factors contributing to their survival or destruction and address the influence of climate, building materials, and construction techniques on survivability

  1. Preliminary results from initial in-pile debris bed experiments

    International Nuclear Information System (INIS)

    Rivard, J.B.

    1977-01-01

    An accident in a liquid metal fast breeder reactor (LMFBR) in which molten core material is suddenly quenched with subcooled liquid sodium could result in extensive fragmentation and dispersal of fuel as subcritical beds of frozen particulate debris within the reactor vessel. Since this debris will continue to generate power due to decay of retained fission products, containment of the debris is threatened if the generated heat is not removed. Therefore, the initial safety question is the capacity which debris beds may have for transfer of the decay heat to overlying liquid sodium by natural processes--i.e., without the aid of forced circulation of the coolant. Up to the present time, all experiments on debris bed behavior either have used substitute materials (e.g., sand and water) or have employed actual materials, but atypical heating methods. Increased confidence in the applicability of debris bed simulations is afforded if the heat is generated within the fuel component of the appropriate fast reactor materials. The initial series of in-pile tests reported on herein constitutes the first experiments in which the internal heating mode has been produced in particulate oxide fuel immersed in liquid sodium. Fission heating of the fully-enriched UO 2 in the experiment while it is contained within Sandia Laboratories Annular Core Pulse Reactor (ACPR), operating in its steady-state mode, approximates the decay heating of debris. Preliminary results are discussed

  2. Anthropogenic debris in the nests of kelp gulls in South Africa.

    Science.gov (United States)

    Witteveen, Minke; Brown, Mark; Ryan, Peter G

    2017-01-30

    Anthropogenic debris results in detrimental interactions with many marine species. Several seabirds include debris items in their nests, which can lead to entanglement of chicks and adults, resulting in injury or death. Anthropogenic debris was found in 4-67% of kelp gull Larus dominicanus nests in seven colonies in the Western Cape, South Africa. Nests contained two types of litter: items included in the nest structure during construction (mainly ropes and straps), and regurgitated items (mainly bags and food wrappers) that probably accumulate primarily during the chick-rearing period. Debris used in nest construction was more likely to injure gulls, and was found mainly at coastal sites where there was little natural vegetation for construction. Distance to the nearest urban waste landfill significantly affected the occurrence of debris items in nests, especially dietary-derived items. The amount of debris in kelp gull nests highlights the need for improved debris management in South Africa. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Study on the leaching behavior of actinides from nuclear fuel debris

    Science.gov (United States)

    Kirishima, Akira; Hirano, Masahiko; Akiyama, Daisuke; Sasaki, Takayuki; Sato, Nobuaki

    2018-04-01

    For the prediction of the leaching behavior of actinides contained in the nuclear fuel debris generated by the Fukushima Daiichi nuclear power plant accident in Japan, simulated fuel debris consisting of a UO2-ZrO2 solid solution doped with 137Cs, 237Np, 236Pu, and 241Am tracers was synthesized and investigated. The synthesis of the debris was carried out by heat treatment at 1200 °C at different oxygen partial pressures, and the samples were subsequently used for leaching tests with Milli-Q water and seawater. The results of the leaching tests indicate that the leaching of actinides depends on the redox conditions under which the debris was generated; for example, debris generated under oxidative conditions releases more actinide nuclides to water than that generated under reductive conditions. Furthermore, we found that, as Zr(IV) increasingly substituted U(IV) in the fluorite crystal structure of the debris, the actinide leaching from the debris decreased. In addition, we found that seawater leached more actinides from the debris than pure water, which seems to be caused by the complexation of actinides by carbonate ions in seawater.

  4. LEGACY - EOP Marine Debris

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — These data contains towed diver surveys of and weights of marine debris removed from the near shore environments of the NWHI.

  5. Benthic plastic debris in marine and fresh water environments.

    Science.gov (United States)

    Corcoran, Patricia L

    2015-08-01

    This review provides a discussion of the published literature concerning benthic plastic debris in ocean, sea, lake, estuary and river bottoms throughout the world. Although numerous investigations of shoreline, surface and near-surface plastic debris provide important information on plastic types, distribution, accumulation, and degradation, studies of submerged plastic debris have been sporadic in the past and have become more prominent only recently. The distribution of benthic debris is controlled mainly by combinations of urban proximity and its association with fishing-related activities, geomorphology, hydrological conditions, and river input. High density plastics, biofouled products, polymers with mineral fillers or adsorbed minerals, and plastic-metal composites all have the potential to sink. Once deposited on the bottoms of water basins and channels, plastics are shielded from UV light, thus slowing the degradation process significantly. Investigations of the interactions between benthic plastic debris and bottom-dwelling organisms will help shed light on the potential dangers of submerged plastic litter.

  6. Rocky Planetary Debris Around Young WDs

    Science.gov (United States)

    Gaensicke, B.

    2014-04-01

    The vast majority of all known planet host stars, including the Sun, will eventually evolve into red giants and finally end their lives as white dwarfs: extremely dense Earth-sized stellar embers. Only close-in planets will be devoured during the red-giant phase. In the solar system, Mars, the asteroid belt, and all the giant planets will escape evaporation, and the same is true for many of the known exo-planets. It is hence certain that a significant fraction of the known white dwarfs were once host stars to planets, and it is very likely that many of them still have remnants of planetary systems. The detection of metals in the atmospheres of white dwarfs is the unmistakable signpost of such evolved planetary systems. The strong surface gravity of white dwarfs causes metals to sink out of the atmosphere on time-scales much shorter than their cooling ages, leading unavoidably to pristine H/He atmospheres. Therefore any metals detected in the atmosphere of a white dwarf imply recent or ongoing accretion of planetary debris. In fact, planetary debris is also detected as circumstellar dust and gas around a number of white dwarfs. These debris disks are formed from the tidal disruption of asteroids or Kuiper belt-like objects, stirred up by left-over planets, and are subsequently accreted onto the white dwarf, imprinting their abundance pattern into its atmosphere. Determining the photospheric abundances of debris-polluted white dwarfs is hence entirely analogue to the use of meteorites, "rocks that fell from the sky", for measuring the abundances of planetary material in the solar system. I will briefly review this new field of exo-planet science, and then focus on the results of a large, unbiased COS snapshot survey of relatively young ( 20-100Myr) white dwarfs that we carried out in Cycle 18/19. * At least 30% of all white dwarfs in our sample are accreting planetary debris, and that fraction may be as high as 50%. * In most cases where debris pollution is detected

  7. Lasers in space.

    CSIR Research Space (South Africa)

    Michaelis, MM

    2008-04-01

    Full Text Available cube, laser beam reflectors, placed on the Moon half a century ago. These early achievements will soon be followed by a plethora of experiments involving lasers in low earth orbit (LEO) or at Lagrange points. And not much later, laser communications... will stretch out as far as Mars and beyond. One important low Earth orbit (LEO) application is the removal of space debris by Earth based or LEO relayed lasers as promoted by Phipps et al.3. Another is military communication. The prominent L1 laser space...

  8. Debris Flow Occurrence and Sediment Persistence, Upper Colorado River Valley, CO.

    Science.gov (United States)

    Grimsley, K J; Rathburn, S L; Friedman, J M; Mangano, J F

    2016-07-01

    Debris flow magnitudes and frequencies are compared across the Upper Colorado River valley to assess influences on debris flow occurrence and to evaluate valley geometry effects on sediment persistence. Dendrochronology, field mapping, and aerial photographic analysis are used to evaluate whether a 19th century earthen, water-conveyance ditch has altered the regime of debris flow occurrence in the Colorado River headwaters. Identifying any shifts in disturbance processes or changes in magnitudes and frequencies of occurrence is fundamental to establishing the historical range of variability (HRV) at the site. We found no substantial difference in frequency of debris flows cataloged at eleven sites of deposition between the east (8) and west (11) sides of the Colorado River valley over the last century, but four of the five largest debris flows originated on the west side of the valley in association with the earthen ditch, while the fifth is on a steep hillslope of hydrothermally altered rock on the east side. These results suggest that the ditch has altered the regime of debris flow activity in the Colorado River headwaters as compared to HRV by increasing the frequency of debris flows large enough to reach the Colorado River valley. Valley confinement is a dominant control on response to debris flows, influencing volumes of aggradation and persistence of debris flow deposits. Large, frequent debris flows, exceeding HRV, create persistent effects due to valley geometry and geomorphic setting conducive to sediment storage that are easily delineated by valley confinement ratios which are useful to land managers.

  9. Linking effects of anthropogenic debris to ecological impacts

    NARCIS (Netherlands)

    Browne, M.A.; Underwood, A.J.; Chapman, M.G.; Williams, R.; Thompson, R.C.; Franeker, van J.A.

    2015-01-01

    Accelerated contamination of habitats with debris has caused increased effort to determine ecological impacts. Strikingly, most work on organisms focuses on sublethal responses to plastic debris. This is controversial because (i) researchers have ignored medical insights about the mechanisms that

  10. Debris flow hazard modelling on medium scale: Valtellina di Tirano, Italy

    Directory of Open Access Journals (Sweden)

    J. Blahut

    2010-11-01

    Full Text Available Debris flow hazard modelling at medium (regional scale has been subject of various studies in recent years. In this study, hazard zonation was carried out, incorporating information about debris flow initiation probability (spatial and temporal, and the delimitation of the potential runout areas. Debris flow hazard zonation was carried out in the area of the Consortium of Mountain Municipalities of Valtellina di Tirano (Central Alps, Italy. The complexity of the phenomenon, the scale of the study, the variability of local conditioning factors, and the lacking data limited the use of process-based models for the runout zone delimitation. Firstly, a map of hazard initiation probabilities was prepared for the study area, based on the available susceptibility zoning information, and the analysis of two sets of aerial photographs for the temporal probability estimation. Afterwards, the hazard initiation map was used as one of the inputs for an empirical GIS-based model (Flow-R, developed at the University of Lausanne (Switzerland. An estimation of the debris flow magnitude was neglected as the main aim of the analysis was to prepare a debris flow hazard map at medium scale. A digital elevation model, with a 10 m resolution, was used together with landuse, geology and debris flow hazard initiation maps as inputs of the Flow-R model to restrict potential areas within each hazard initiation probability class to locations where debris flows are most likely to initiate. Afterwards, runout areas were calculated using multiple flow direction and energy based algorithms. Maximum probable runout zones were calibrated using documented past events and aerial photographs. Finally, two debris flow hazard maps were prepared. The first simply delimits five hazard zones, while the second incorporates the information about debris flow spreading direction probabilities, showing areas more likely to be affected by future debris flows. Limitations of the modelling arise

  11. A Direct Imaging Survey of Spitzer-detected Debris Disks: Occurrence of Giant Planets in Dusty Systems

    Science.gov (United States)

    Meshkat, Tiffany; Mawet, Dimitri; Bryan, Marta L.; Hinkley, Sasha; Bowler, Brendan P.; Stapelfeldt, Karl R.; Batygin, Konstantin; Padgett, Deborah; Morales, Farisa Y.; Serabyn, Eugene; Christiaens, Valentin; Brandt, Timothy D.; Wahhaj, Zahed

    2017-12-01

    We describe a joint high-contrast imaging survey for planets at the Keck and Very Large Telescope of the last large sample of debris disks identified by the Spitzer Space Telescope. No new substellar companions were discovered in our survey of 30 Spitzer-selected targets. We combine our observations with data from four published surveys to place constraints on the frequency of planets around 130 debris disk single stars, the largest sample to date. For a control sample, we assembled contrast curves from several published surveys targeting 277 stars that do not show infrared excesses. We assumed a double power-law distribution in mass and semimajor axis (SMA) of the form f(m,a)={{Cm}}α {a}β , where we adopted power-law values and logarithmically flat values for the mass and SMA of planets. We find that the frequency of giant planets with masses 5-20 M Jup and separations 10-1000 au around stars with debris disks is 6.27% (68% confidence interval 3.68%-9.76%), compared to 0.73% (68% confidence interval 0.20%-1.80%) for the control sample of stars without disks. These distributions differ at the 88% confidence level, tentatively suggesting distinctness of these samples. Some of the data presented herein were obtained at the W.M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W.M. Keck Foundation.

  12. Empirical closures for particulate debris bed spreading induced by gas–liquid flow

    Energy Technology Data Exchange (ETDEWEB)

    Basso, S., E-mail: simoneb@kth.se; Konovalenko, A.; Kudinov, P.

    2016-02-15

    Highlights: • Experimental study of the debris bed self-leveling phenomenon. • A scaling approach and a non-dimensional model to describe particle flow rate are proposed. • The model is validated against experiments with particles of different properties and at different gas injection conditions. - Abstract: Efficient removal of decay heat from the nuclear reactor core debris is paramount for termination of severe accident progression. One of the strategies is based on melt fragmentation, quenching and cooling in a deep pool of water under the reactor vessel. Geometrical configuration of the debris bed is among the important factors which determine possibility of removing the decay heat from the debris bed by natural circulation of the coolant. For instance, a tall mound-shape debris bed can be non-coolable, while the same debris can be coolable if spread uniformly. Decay heat generates a significant amount of thermal energy which goes to production of steam inside the debris bed. Two-phase flow escaping through the top layer of the bed becomes a source of mechanical energy which can move the particulate debris along the slope of the bed. The motion of the debris will lead to flattening of the bed. Such process is often called “self-leveling” phenomenon. Spreading of the debris bed by the self-leveling process can take significant time, depending on the initial debris bed configuration and other parameters. There is a competition between the time scales for reaching (i) a coolable configuration of the bed, and (ii) onset of dryout and re-melting of the debris. In the previous work we have demonstrated that the rate of particulate debris spreading is determined by local gas velocity and local slope angle of the bed. In this work we develop a scaling approach and a closure for prediction of debris spreading rate based on generalization of available experimental data. We demonstrate that introduced scaling criteria are universal for particles of different

  13. ORDEM2010 and MASTER-2009 Modeled Small Debris Population Comparison

    Science.gov (United States)

    Krisko, Paula H.; Flegel, S.

    2010-01-01

    The latest versions of the two premier orbital debris engineering models, NASA s ORDEM2010 and ESA s MASTER-2009, have been publicly released. Both models have gone through significant advancements since inception, and now represent the state-of-the-art in orbital debris knowledge of their respective agencies. The purpose of these models is to provide satellite designers/operators and debris researchers with reliable estimates of the artificial debris environment in near-Earth orbit. The small debris environment within the size range of 1 mm to 1 cm is of particular interest to both human and robotic spacecraft programs. These objects are much more numerous than larger trackable debris but are still large enough to cause significant, if not catastrophic, damage to spacecraft upon impact. They are also small enough to elude routine detection by existing observation systems (radar and telescope). Without reliable detection the modeling of these populations has always coupled theoretical origins with supporting observational data in different degrees. This paper details the 1 mm to 1 cm orbital debris populations of both ORDEM2010 and MASTER-2009; their sources (both known and presumed), current supporting data and theory, and methods of population analysis. Fluxes on spacecraft for chosen orbits are also presented and discussed within the context of each model.

  14. Marine debris: global and regional impacts

    OpenAIRE

    Torres N,Daniel; Berguño B,Jorge

    2011-01-01

    A synthesis on the Marine Debris problem is given upon de basis of the general knowledge on the matter as well as that obtained at Cape Shirreff, Livingston Island, South Shetland, Antarctica. It is suggested to improve the database on marine debris through permanent scientific research as well as with monitoring activities. It is necessary to coordinate key groups to apply strategies to identify types, sources, amount, interactions and socio-economic aspects of this global and regional probl...

  15. Change detection and change monitoring of natural and man-made features in multispectral and hyperspectral satellite imagery

    Science.gov (United States)

    Moody, Daniela Irina

    2018-04-17

    An approach for land cover classification, seasonal and yearly change detection and monitoring, and identification of changes in man-made features may use a clustering of sparse approximations (CoSA) on sparse representations in learned dictionaries. A Hebbian learning rule may be used to build multispectral or hyperspectral, multiresolution dictionaries that are adapted to regional satellite image data. Sparse image representations of pixel patches over the learned dictionaries may be used to perform unsupervised k-means clustering into land cover categories. The clustering process behaves as a classifier in detecting real variability. This approach may combine spectral and spatial textural characteristics to detect geologic, vegetative, hydrologic, and man-made features, as well as changes in these features over time.

  16. ORDEM 3.0 and the Risk of High-Density Debris

    Science.gov (United States)

    Matney, Mark; Anz-Meador, Philip

    2014-01-01

    NASA’s Orbital Debris Engineering Model was designed to calculate orbital debris fluxes on spacecraft in order to assess collision risk. The newest of these models, ORDEM 3.0, has a number of features not present in previous models. One of the most important is that the populations and fluxes are now broken out into material density groups. Previous models concentrated on debris size alone, but a particle’s mass and density also determine the amount of damage it can cause. ORDEM 3.0 includes a high-density component, primarily consisting of iron/steel particles that drive much of the risk to spacecraft. This paper will outline the methods that were used to separate and identify the different densities of debris, and how these new densities affect the overall debris flux and risk.

  17. Recent advances in modeling landslides and debris flows

    CERN Document Server

    2015-01-01

    Landslides and debris flows belong to the most dangerous natural hazards in many parts of the world. Despite intensive research, these events continue to result in human suffering, property losses, and environmental degradation every year. Better understanding of the mechanisms and processes of landslides and debris flows will help make reliable predictions, develop mitigation strategies and reduce vulnerability of infrastructure. This book presents contributions to the workshop on Recent Developments in the Analysis, Monitoring and Forecast of Landslides and Debris Flow, in Vienna, Austria, September 9, 2013. The contributions cover a broad spectrum of topics from material behavior, physical modelling over numerical simulation to applications and case studies. The workshop is a joint event of three research projects funded by the European Commission within the 7th Framework Program: MUMOLADE (Multiscale modelling of landslides and debris flows, www.mumolade.com), REVENUES (Numerical Analysis of Slopes with V...

  18. Effect of excess pore pressure on the long runout of debris flows over low gradient channels: A case study of the Dongyuege debris flow in Nu River, China

    Science.gov (United States)

    Zhou, Zhen-Hua; Ren, Zhe; Wang, Kun; Yang, Kui; Tang, Yong-Jun; Tian, Lin; Xu, Ze-Min

    2018-05-01

    Debris flows with long reaches are one of the major natural hazards to human life and property on alluvial fans, as shown by the debris flow that occurred in the Dongyuege (DYG) Gully in August 18, 2010, and caused 96 deaths. The travel distance and the runout distance of the DYG large-scale tragic debris flow were 11 km and 9 km, respectively. In particular, the runout distance over the low gradient channel (channel slope sediment and water are related to the maximum grain size (MGS), gradation and mineralogy of clay-size particles of the sediment. The layer-lattice silicates in clay particles can be the typical clay minerals, including kaolinite, montmorillonite and illite, and also the unrepresentative clay minerals such as muscovite and chlorite. Moreover, small woody debris can also contribute to the slurrying of sediments and maintenance of debris flows in well vegetated mountainous areas and the boulders suspended in debris flows can elevate excess pore pressure and extend debris-flow mobility. The parameters, including Id, Kp, R and etc., are affected by the intrinsic properties of debris. They, therefore, can reflect the slurrying susceptibility of sediments, and can also be applied to the research on the occurrence mechanisms and risk assessment of other debris flows.

  19. Development of a debris flow model in a geotechnical centrifuge

    Science.gov (United States)

    Cabrera, Miguel Angel; Wu, Wei

    2013-04-01

    Debris flows occur in three main stages. At first the initial soil mass, which rests in a rigid configuration, reaches a critic state releasing a finite mass over a failure surface. In the second stage the released mass starts being transported downhill in a dynamic motion. Segregation, erosion, entrainment, and variable channel geometry are among the more common characteristics of this stage. Finally, at the third stage the transported mass plus the mass gained or loosed during the transportation stage reach a flat and/or a wide area and its deposition starts, going back to a rigid configuration. The lack of understanding and predictability of debris flow from the traditional theoretical approaches has lead that in the last two decades the mechanics of debris flows started to be analysed around the world. Nevertheless, the validation of recent numerical advances with experimental data is required. Centrifuge modelling is an experimental tool that allows the test of natural processes under defined boundary conditions in a small scale configuration, with a good level of accuracy in comparison with a full scale test. This paper presents the development of a debris flow model in a geotechnical centrifuge focused on the second stage of the debris flow process explained before. A small scale model of an inclined flume will be developed, with laboratory instrumentation able to measure the pore pressure, normal stress, and velocity path, developed in a scaled debris flow in motion. The model aims to reproduce in a controlled environment the main parameters of debris flow motion. This work is carried under the EC 7th Framework Programme as part of the MUMOLADE project. The dataset and data-analysis obtained from the tests will provide a qualitative description of debris flow motion-mechanics and be of valuable information for MUMOLADE co-researchers and for the debris flow research community in general.

  20. As main meal for sperm whales: plastics debris.

    Science.gov (United States)

    de Stephanis, Renaud; Giménez, Joan; Carpinelli, Eva; Gutierrez-Exposito, Carlos; Cañadas, Ana

    2013-04-15

    Marine debris has been found in marine animals since the early 20th century, but little is known about the impacts of the ingestion of debris in large marine mammals. In this study we describe a case of mortality of a sperm whale related to the ingestion of large amounts of marine debris in the Mediterranean Sea (4th published case worldwide to our knowledge), and discuss it within the context of the spatial distribution of the species and the presence of anthropogenic activities in the area that could be the source of the plastic debris found inside the sperm whale. The spatial distribution modelled for the species in the region shows that these animals can be seen in two distinct areas: near the waters of Almería, Granada and Murcia and in waters near the Strait of Gibraltar. The results shows how these animals feed in waters near an area completely flooded by the greenhouse industry, making them vulnerable to its waste products if adequate treatment of this industry's debris is not in place. Most types of these plastic materials have been found in the individual examined and cause of death was presumed to be gastric rupture following impaction with debris, which added to a previous problem of starvation. The problem of plastics arising from greenhouse agriculture should have a relevant section in the conservation plans and should be a recommendation from ACCOBAMS due to these plastics' and sperm whales' high mobility in the Mediterranean Sea. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Cooling of an internal-heated debris bed with fine particles

    International Nuclear Information System (INIS)

    Yang, Z.L.; Sehgal, B.R.

    2001-01-01

    In this paper, an analytical model on dryout heat flux of ex-vessel debris beds with fines particles under top flooding conditions has been developed. The parametric study is performed on the effect of the stratification of the debris beds on the dryout heat flux. The calculated results show that the stratification configuration of the debris beds with smaller particles and lower porosity layer resting on the top of another layer of the beds has profound effect on the dryout heat flux for the debris beds both with and without a downcomer. The enhancement of the dryout heat flux by the downcomer is significant. The efficiency of the single downcomer on the enhancement of the dryout heat flux is also analyzed. This, in general, agrees well with experimental data. The model is also employed to perform the assessment on the coolability of the ex-vessel debris bed under representative accidental conditions. One conservative case is chosen, and it is found that the downcomer could be efficient measure to cool the debris bed and hence terminate the severe accident. (authors)

  2. Development of anti-debris filter for WWER-440 working fuel assembly

    International Nuclear Information System (INIS)

    Kolosovsky, V.; Aksyonov, P.; Kukushkin, Y.; Molchanov, V.; Kolobaev, A.

    2006-01-01

    Mechanical damaging of the fuel rod claddings caused by debris is one of the main reasons for fuel assembly failures. The paper focuses on the program and results of experimental and design activities carried out by Russian organizations relating to the development and investigation of operational characteristics of anti-debris filters for WWER-440 working fuel assemblies. Lead working fuel assemblies equipped with anti-debris filters have been loaded in the core of Kola-2 NPP. The results obtained can be used for making the decision concerning the application of anti-debris filter for WWER-440 working fuel assemblies with the purpose of enhancing their debris-resistance properties. (authors)

  3. Characterizing the Survey Strategy and Initial Orbit Determination Abilities of the NASA MCAT Telescope for Geosynchronous Orbital Debris Environmental Studies

    Science.gov (United States)

    Frith, J.; Barker, E.; Cowardin, H.; Buckalew, B.; Anz-Meador, P.; Lederer, S.

    The National Aeronautics and Space Administration (NASA) Orbital Debris Program Office (ODPO) recently commissioned the Meter Class Autonomous Telescope (MCAT) on Ascension Island with the primary goal of obtaining population statistics of the geosynchronous (GEO) orbital debris environment. To help facilitate this, studies have been conducted using MCAT’s known and projected capabilities to estimate the accuracy and timeliness in which it can survey the GEO environment, including collected weather data and the proposed observational data collection cadence. To optimize observing cadences and probability of detection, on-going work using a simulated GEO debris population sampled at various cadences are run through the Constrained Admissible Region Multi Hypotheses Filter (CAR-MHF). The orbits computed from the results are then compared to the simulated data to assess MCAT’s ability to determine accurately the orbits of debris at various sample rates. The goal of this work is to discriminate GEO and near-GEO objects from GEO transfer orbit objects that can appear as GEO objects in the environmental models due to the short arc observation and an assumed circular orbit. The specific methods and results are presented here.

  4. Assessing the debris around glaciers using remote sensing and random sets

    NARCIS (Netherlands)

    Bandishoev, Mus; Dilo, Arta; Stein, A.; Fonte, C.C.; Goncalves, L.M.S.; Goncalves, G.

    2011-01-01

    Glacier mapping from satellite multispectral image data is hampered by debris cover on glacier surfaces. Information on the spatial distribution and spatial-temporal dynamics of debris, however, bears various kinds of uncertainties. Debris exhibits the same spectral properties as lateral and

  5. EDDA 1.0: integrated simulation of debris flow erosion, deposition and property changes

    Science.gov (United States)

    Chen, H. X.; Zhang, L. M.

    2015-03-01

    Debris flow material properties change during the initiation, transportation and deposition processes, which influences the runout characteristics of the debris flow. A quasi-three-dimensional depth-integrated numerical model, EDDA (Erosion-Deposition Debris flow Analysis), is presented in this paper to simulate debris flow erosion, deposition and induced material property changes. The model considers changes in debris flow density, yield stress and dynamic viscosity during the flow process. The yield stress of the debris flow mixture determined at limit equilibrium using the Mohr-Coulomb equation is applicable to clear water flow, hyper-concentrated flow and fully developed debris flow. To assure numerical stability and computational efficiency at the same time, an adaptive time stepping algorithm is developed to solve the governing differential equations. Four numerical tests are conducted to validate the model. The first two tests involve a one-dimensional debris flow with constant properties and a two-dimensional dam-break water flow. The last two tests involve erosion and deposition, and the movement of multi-directional debris flows. The changes in debris flow mass and properties due to either erosion or deposition are shown to affect the runout characteristics significantly. The model is also applied to simulate a large-scale debris flow in Xiaojiagou Ravine to test the performance of the model in catchment-scale simulations. The results suggest that the model estimates well the volume, inundated area, and runout distance of the debris flow. The model is intended for use as a module in a real-time debris flow warning system.

  6. Behavior of explosion debris clouds

    International Nuclear Information System (INIS)

    Anon.

    1986-01-01

    In the normal course of events the behavior of debris clouds created by explosions will be of little concern to the atomic energy industry. However, two situations, one of them actual and one postulated, exist where the rise and spread of explosion clouds can affect site operations. The actual occurrence would be the detonation of nuclear weapons and the resultant release and transport of radioactive debris across the various atomic energy installations. Although the activity of the diffusing cloud is not of biological concern, it may still be sufficiently above background to play havoc with the normal readings of sensitive monitoring instruments. If it were not known that these anomalous readings resulted from explosion debris, considerable time and expense might be required for on-site testing and tracing. Fortunately it is usually possible, with the use of meteorological data and forecasts, to predict when individual sites are affected by nuclear weapon debris effects. The formation rise, and diffusion of weapon clouds will be discussed. The explosion of an atomic reactor is the postulated situation. It is common practice in reactor hazard analysis to assume a combination of circumstances which might result in a nuclear incident with a release of material to the atmosphere. It is not within the scope of this report to examine the manifold plausibilities that might lead to an explosion or the possible methods of release of gaseous and/or particulates from such an occurrence. However, if the information of a cloud is assumed and some idea of its energy content is obtainable, estimates of the cloud behavior in the atmosphere can be made

  7. Study on the Formation and Initial Transport for Non-Homogeneous Debris Flow

    Directory of Open Access Journals (Sweden)

    An Ping Shu

    2017-04-01

    Full Text Available Non-homogeneous debris flows generally occur during the rainy seasons in Southwest China, and have received considerable attention in the literature. Regarding the complexity in debris flow dynamics, experimental approaches have proven to be effective in revealing the formative mechanism for debris flow, and quantifying the relations between the various influencing factors with debris-flow formation and subsequent transport processes. Therefore, a flume-based and experimental study was performed at the Debris Flow Observation and Research Station of Jiangjia Gully in Yunnan Province, to theoretically analyze favorable conditions for debris-flow formation and initial transport by selecting the median particle size d50, flow rate Q, vertical grading coefficient ψ, slopes S, and the initial soil water contents W as the five variables for investigation. To achieve this, an optimal combination of these variables was made through an orthogonal experimental design to determine their relative importance upon the occurrence and initial mobilization behavior of a debris flow and to further enhance our insight into debris-flow triggering and transport mechanisms.

  8. Numerical modeling of the debris flows runout

    Directory of Open Access Journals (Sweden)

    Federico Francesco

    2017-01-01

    Full Text Available Rapid debris flows are identified among the most dangerous of all landslides. Due to their destructive potential, the runout length has to be predicted to define the hazardous areas and design safeguarding measures. To this purpose, a continuum model to predict the debris flows mobility is developed. It is based on the well known depth-integrated avalanche model proposed by Savage and Hutter (S&H model to simulate the dry granular materials flows. Conservation of mass and momentum equations, describing the evolving geometry and the depth averaged velocity distribution, are re-written taking into account the effects of the interstitial pressures and the possible variation of mass along the motion due to erosion/deposition processes. Furthermore, the mechanical behaviour of the debris flow is described by a recently developed rheological law, which allows to take into account the dissipative effects of the grain inelastic collisions and friction, simultaneously acting within a ‘shear layer’, typically at the base of the debris flows. The governing PDEs are solved by applying the finite difference method. The analysis of a documented case is finally carried out.

  9. Space Surveillance Network: New Way Proposed To Support Commercial and Foreign Entities

    National Research Council Canada - National Science Library

    Shays, Christopher

    2002-01-01

    DOD uses the U.S. space surveillance network to track active and inactive satellites and space debris generated from launch vehicles and satellite breakups, and the agency catalogs and provides these data to DOD organizations, U.S...

  10. DEMETER observations of manmade waves that propagate in the ionosphere

    Science.gov (United States)

    Parrot, Michel

    2018-01-01

    This paper is a review of manmade waves observed by the ionospheric satellite DEMETER. It concerns waves emitted by the ground-based VLF and ELF transmitters, by broadcasting stations, by the power line harmonic radiation, by industrial noise, and by active experiments. Examples are shown including, for the first time, the record of a wave coming from an ELF transmitter. These waves propagate upwards in the magnetosphere and they can be observed in the magnetically conjugated region of emission. Depending on their frequencies, they perturb the ionosphere and the particles in the radiation belts, and additional emissions are triggered. xml:lang="fr"

  11. Corporate social responsibility in marine plastic debris governance.

    Science.gov (United States)

    Landon-Lane, Micah

    2018-02-01

    This paper explores the governance characteristics of marine plastic debris, some of the factors underpinning its severity, and examines the possibility of harnessing corporate social responsibility (CSR) to manage plastic use within the contextual attitudes of a contemporary global society. It argues that international and domestic law alone are insufficient to resolve the "wicked problem" of marine plastic debris, and investigates the potential of the private sector, through the philosophy of CSR, to assist in reducing the amount and impacts of marine plastic debris. To illustrate how CSR could minimise marine plastic pollution, an industry-targeted code of conduct was developed. Applying CSR would be most effective if implemented in conjunction with facilitating governance frameworks, such as supportive governmental regulation and non-governmental partnerships. This study maintains that management policies must be inclusive of all stakeholders if they are to match the scale and severity of the marine plastic debris issue. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Experimental study of self-leveling behavior in debris bed

    International Nuclear Information System (INIS)

    Zhang, Bin; Harada, Tetsushi; Hirahara, Daisuke; Matsumoto, Tatsuya; Morita, Koji; Fukuda, Kenji; Yamano, Hidemasa; Suzuki, Tohru; Tobita, Yoshiharu

    2008-01-01

    After a core disruptive accident in a sodium-cooled fast reactor, core debris may settle on locations such as within the core-support structure or in the lower inlet plenum of the reactor vessel as debris beds, as a consequence of rapid quenching and fragmentation of core materials in subcooled sodium. The particle beds that are initially of varying depth have been observed to undergo a process of self-leveling when sodium boiling occurs within the beds. The boiling is believed to provide the driven force with debris needed to overcome resisting forces. Self-leveling ability has much effect on heat-removal capability of debris beds. In the present study, characteristics of self-leveling behaviors were investigated experimentally with simulant materials. Although the decay heat from fuel debris drives the coolant boiling in reactor accident conditions, the present experiments employed depressurization boiling of water to simulate axially increasing void distribution in a debris bed, which consists of solid particles of alumina or lead with different density. The particle size (from 0.5 mm to 6 mm in diameter) and shape (spherical or non-spherical particles) were also taken as experimental parameters. A rough criteria for self-leveling occurrence is proposed and compared with the experimental results. Characteristics of the self-leveling behaviors observed are analyzed and extrapolate to reactor accident conditions. (author)

  13. The complex interaction between marine debris and toxic chemicals in the ocean.

    Science.gov (United States)

    Engler, Richard E

    2012-11-20

    Marine debris, especially plastic debris, is widely recognized as a global environmental problem. There has been substantial research on the impacts of plastic marine debris, such as entanglement and ingestion. These impacts are largely due to the physical presence of plastic debris. In recent years there has been an increasing focus on the impacts of toxic chemicals as they relate to plastic debris. Some plastic debris acts as a source of toxic chemicals: substances that were added to the plastic during manufacturing leach from plastic debris. Plastic debris also acts as a sink for toxic chemicals. Plastic sorbs persistent, bioaccumulative, and toxic substances (PBTs), such as polychlorinated biphenyls (PCBs) and dioxins, from the water or sediment. These PBTs may desorb when the plastic is ingested by any of a variety of marine species. This broad look at the current research suggests that while there is significant uncertainty and complexity in the kinetics and thermodynamics of the interaction, plastic debris appears to act as a vector transferring PBTs from the water to the food web, increasing risk throughout the marine food web, including humans. Because of the extremely long lifetime of plastic and PBTs in the ocean, prevention strategies are vital to minimizing these risks.

  14. Comparison of apical debris extrusion using a conventional and two rotary techniques.

    Science.gov (United States)

    Adl, Alireza; Sahebi, Safoora; Moazami, Fariborz; Niknam, Mahnaz

    2009-01-01

    Preparation techniques and instruments produce and push debris out of canals. This can induce inflammation within the periapical area. Therefore, instrumentation that causes less extrusion of debris is more desirable. The purpose of this in vitro study was to evaluate the quantity of debris extruded from the apical foramen during root canal preparation by using one hand, and two rotary instrumentation techniques. Three different groups each with 12 mesiobuccal roots of human maxillary first molar were instrumented using either step-back technique with hand instruments, FlexMaster or Mtwo rotary system. Debris extruded from the apical foramen during canal preparation was collected. The mean dry weights of debris were compared using one-way ANOVA. Step-back group had a significantly greater mean weight of debris compared to the other two groups (Pengine driven techniques were associated with less apical debris extrusion. [Iranian Endodontic Journal 2009;4(4):135-8].

  15. Numerical simulations on self-leveling behaviors with cylindrical debris bed

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Liancheng, E-mail: Liancheng.guo@kit.edu [Institute for Nuclear and Energy Technologies (IKET), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen (Germany); Morita, Koji, E-mail: morita@nucl.kyushu-u.ac.jp [Faculty of Engineering, Kyushu University, 2-3-7, 744 Motooka, Nishi-ku, Fukuoka 819-0395 (Japan); Tobita, Yoshiharu, E-mail: tobita.yoshiharu@jaea.go.jp [Fast Reactor Safety Technology Development Department, Japan Atomic Energy Agency, 4002 Narita, O-arai, Ibaraki 311-1393 (Japan)

    2017-04-15

    Highlights: • A 3D coupled method was developed by combining DEM with the multi-fluid model of SIMMER-IV code. • The method was validated by performing numerical simulations on a series of experiments with cylindrical particle bed. • Reasonable agreement can demonstrate the applicability of the method in reproducing the self-leveling behavior. • Sensitivity analysis on some model parameters was performed to assess their impacts. - Abstract: The postulated core disruptive accidents (CDAs) are regarded as particular difficulties in the safety analysis of liquid-metal fast reactors (LMFRs). In the CDAs, core debris may settle on the core-support structure and form conic bed mounds. Then debris bed can be levelled by the heat convection and vaporization of surrounding coolant sodium, which is named “self-leveling behavior”. The self-leveling behavior is a crucial issue in the safety analysis, due to its significant effect on the relocation of molten core and heat-removal capability of the debris bed. Considering its complicate multiphase mechanism, a comprehensive computational tool is needed to reasonably simulate transient particle behavior as well as thermal-hydraulic phenomenon of surrounding fluid phases. The SIMMER program is a successful computer code initially developed as an advanced tool for CDA analysis of LMFRs. It is a multi-velocity-field, multiphase, multicomponent, Eulerian, fluid dynamics code coupled with a fuel-pin model and a space- and energy-dependent neutron kinetics model. Until now, the code has been successfully applied in numerical simulations for reproducing key thermal-hydraulic phenomena involved in CDAs as well as performing reactor safety assessment. However, strong interactions between massive solid particles as well as particle characteristics in multiphase flows were not taken into consideration in its fluid-dynamics models. To solve this problem, a new method is developed by combining the discrete element method (DEM

  16. From orbital debris capture systems through internal combustion engines on Mars

    Science.gov (United States)

    1991-01-01

    The investigation and conceptualization of an orbital debris collector was the primary area of design. In addition, an alternate structural design for Space Station Freedom and systems supporting resource utilization at Mars and the moon were studied. Hardware for production of oxygen from simulate Mars atmosphere was modified to permit more reliable operation at low pressures (down to 10 mb). An internal combustion engine was altered to study how Mars atmosphere could be used as a diluent to control combustion temperatures and avoid excess Mars propellant production requirements that would result from either methane-rich or oxygen-rich, methane-oxygen combustion. An elastic loop traction system that could be used for lunar construction vehicles was refined to permit testing. A parabolic heat rejection radiator system was designed and built to determine whether it was capable of increasing heat rejection rates during lunar daytime operation. In addition, an alternate space station truss design, utilizing a pre-integrated concept, was studied and found to reduce estimate extravehicular activity (EVA) time and increase the structural integrity when compared to the original Warren truss concept. An orbital-debris-capturing spacecraft design which could be mated with the Orbital Maneuvering Vehicle was studied. The design identified Soviet C-1B boosters as the best targets of opportunity in Earth orbits between an altitude of 900 km and 1100 km and at an inclination of 82.9 deg. A dual robot pallet, which could be spun to match the tumbling rate of the C-1B booster, was developed as the conceptual design.

  17. An example of capturing a hotspot of man-made radioactive 152Eu

    International Nuclear Information System (INIS)

    Hu Mingkao; Fang Jiangqi; Gu Renkang

    2002-01-01

    The author presents an example of successfully capturing a hotspot of man-made radioactive 152 Eu in Dayuan when the authors carried out airborne survey for radioactivity levels in north China. The hotspot was on the front of the gate of a concrete pipe factory in Dayuan. The activity of the source was estimated roughly 4.25 x 10 8 -7.53 x 10 8 Bq. The longitudinal positioning error was less than 15 m

  18. Temporal variations in supraglacial debris distribution on Baltoro Glacier, Karakoram between 2001 and 2012

    Science.gov (United States)

    Gibson, Morgan J.; Glasser, Neil F.; Quincey, Duncan J.; Mayer, Christoph; Rowan, Ann V.; Irvine-Fynn, Tristram D. L.

    2017-10-01

    Distribution of supraglacial debris in a glacier system varies spatially and temporally due to differing rates of debris input, transport and deposition. Supraglacial debris distribution governs the thickness of a supraglacial debris layer, an important control on the amount of ablation that occurs under such a debris layer. Characterising supraglacial debris layer thickness on a glacier is therefore key to calculating ablation across a glacier surface. The spatial pattern of debris thickness on Baltoro Glacier has previously been calculated for one discrete point in time (2004) using satellite thermal data and an empirically based relationship between supraglacial debris layer thickness and debris surface temperature identified in the field. Here, the same empirically based relationship was applied to two further datasets (2001, 2012) to calculate debris layer thickness across Baltoro Glacier for three discrete points over an 11-year period (2001, 2004, 2012). Surface velocity and sediment flux were also calculated, as well as debris thickness change between periods. Using these outputs, alongside geomorphological maps of Baltoro Glacier produced for 2001, 2004 and 2012, spatiotemporal changes in debris distribution for a sub-decadal timescale were investigated. Sediment flux remained constant throughout the 11-year period. The greatest changes in debris thickness occurred along medial moraines, the locations of mass movement deposition and areas of interaction between tributary glaciers and the main glacier tongue. The study confirms the occurrence of spatiotemporal changes in supraglacial debris layer thickness on sub-decadal timescales, independent of variation in surface velocity. Instead, variation in rates of debris distribution are primarily attributed to frequency and magnitude of mass movement events over decadal timescales, with climate, regional uplift and erosion rates expected to control debris inputs over centurial to millennial timescales. Inclusion

  19. Timing of susceptibility to post-fire debris flows in the western USA

    Science.gov (United States)

    DeGraff, Jerome V.; Cannon, Susan H.; Gartner, Joseph E.

    2015-01-01

    Watersheds recently burned by wildfires can have an increased susceptibility to debris flow, although little is known about how long this susceptibility persists, and how it changes over time. We here use a compilation of 75 debris-flow response and fire-ignition dates, vegetation and bedrock class, rainfall regime, and initiation process from throughout the western U.S. to address these issues. The great majority (85 percent) of debris flows occurred within the first 12 months following wildfire, with 71 percent within the first six months. Seven percent of the debris flows occurred between 1 and 1.5 years after a fire, or during the second rainy season to impact an area. Within the first 1.5 years following fires, all but one of the debris flows initiated through runoff-dominated processes, and debris flows occurred in similar proportions in forested and non-forested landscapes. Geologic materials affected how long debris-flow activity persisted, and the timing of debris flows varied within different rainfall regimes. A second, later period of increased debris flow susceptibility between 2.2 and 10 years after fires is indicated by the remaining 8 percent of events, which occurred primarily in forested terrains and initiated largely through landslide processes. The short time period between fire and debris-flow response within the first 1.5 years after ignition, and the longer-term response between 2.2 and 10 years after fire, demonstrate the necessity of both rapid and long-term reactions by land managers and emergency-response agencies to mitigate hazards from debris flows from recently burned areas in the western U.S.

  20. RFI and Remote Sensing of the Earth from Space

    Science.gov (United States)

    Le Vine, D. M.; Johnson, J. T.; Piepmeier, J.

    2016-01-01

    Passive microwave remote sensing of the Earth from space provides information essential for understanding the Earth's environment and its evolution. Parameters such as soil moisture, sea surface temperature and salinity, and profiles of atmospheric temperature and humidity are measured at frequencies determined by the physics (e.g. sensitivity to changes in desired parameters) and by the availability of suitable spectrum free from interference. Interference from manmade sources (radio frequency interference) is an impediment that in many cases limits the potential for accurate measurements from space. A review is presented here of the frequencies employed in passive microwave remote sensing of the Earth from space and the associated experience with RFI.

  1. Effect of downed woody debris on small mammal anti-predator behavior.

    Energy Technology Data Exchange (ETDEWEB)

    Hinkleman, Travis, M.; Orrock, John, L.; Loeb, Susan, C.

    2011-10-01

    Anti-predator behavior can affect prey growth, reproduction, survival, and generate emergent effects in food webs. Small mammals often lower the cost of predation by altering their behavior in response to shrubs,but the importance of other microhabitat features, such as downed woody debris, for anti-predator behavior is unknown. We used givingup densities to quantify the degree to which downed woody debris alters perceived predation risk by small mammals in southeastern pineforests. We placed 14 foraging trays next to large downed woody debris,shrubs, and in open areas for 12 consecutive nights. Moon illumination, a common indicator of predation risk, led to a similar reduction in small mammal foraging in all three microhabitats (open, downed woody debris,and shrub). Small mammals perceived open microhabitats as riskier than shrub microhabitats, with downed woody debris habitats perceived as being of intermediate risk between shrub and open microhabitats. Despite the presumed benefits of the protective cover of downed woody debris, small mammals may perceive downed woody debris as a relatively risky foraging site in southeastern pine forests where the high diversity and abundance of rodent-eating snakes may provide a primary predatory threat.

  2. Prediction of corium debris characteristics in lower plenum of a nordic BWR in different accident scenarios using MELCOR code - 15367

    International Nuclear Information System (INIS)

    Phung, V.A.; Galushin, S.; Raub, S.; Goronovski, A.; Villanueva, W.; Koeoep, K; Grishchenko, D.; Kudinov, P.

    2015-01-01

    Severe accident management strategy in Nordic boiling water reactors (BWRs) relies on ex-vessel core debris coolability. The mode of corium melt release from the vessel determines conditions for ex-vessel accident progression and threats to containment integrity, e.g., formation of a non-coolable debris bed and possibility of energetic steam explosion. In-vessel core degradation and relocation is an important stage which determines characteristics of corium debris in the vessel lower plenum, such as mass, composition, thermal properties, timing of relocation, and decay heat. These properties affect debris reheating and remelting, melt interactions with the vessel structures, and possibly vessel failure and melt ejection mode. Core degradation and relocation is contingent upon the accident scenario parameters such as recovery time and capacity of safety systems. The goal of this work is to obtain a better understanding of the impact of the accident scenarios and timing of the events on core relocation phenomena and resulting properties of the debris bed in the vessel lower plenum of Nordic BWRs. In this study, severe accidents in a Nordic BWR reference plant are initiated by a station black out event, which is the main contributor to core damage frequency of the reactor. The work focuses on identifying ranges of debris bed characteristics in the lower plenum as functions of the accident scenario with different recovery timing and capacity of safety systems. The severe accident analysis code MELCOR coupled with GA-IDPSA is used in this work. GA-IDPSA is a Genetic Algorithm-based Integrated Deterministic Probabilistic Safety Analysis tool, which has been developed to search uncertain input parameter space. The search is guided by different target functions. Scenario grouping and clustering approach is applied in order to estimate the ranges of debris characteristics and identify scenario regions of core relocation that can lead to significantly different debris bed

  3. Anthropogenic effect on avalanche and debris flow activity

    Directory of Open Access Journals (Sweden)

    S. A. Sokratov

    2013-01-01

    Full Text Available The paper presents examples of the change in snow avalanches and debris flows activity due to the anthropogenic pressure on vegetation and relief. The changes in dynamical characteristics of selected snow avalanches and debris flows due to the anthropogenic activity are quantified. The conclusion is made that the anthropogenic effects on the snow avalanches and debris flows activity are more pronounced than the possible effects of the climate change. The necessity is expressed on the unavoidable changes of the natural environment as the result of a construction and of use of the constructed infrastructure to be account for in corresponding planning of the protection measures.

  4. Exploiting Maximum Entropy method and ASTER data for assessing debris flow and debris slide susceptibility for the Giampilieri catchment (north-eastern Sicily, Italy).

    KAUST Repository

    Lombardo, Luigi; Bachofer, F.; Cama, M.; Mä rker, M.; Rotigliano, E.

    2016-01-01

    This study aims at evaluating the performance of the Maximum Entropy method in assessing landslide susceptibility, exploiting topographic and multispectral remote sensing predictors. We selected the catchment of the Giampilieri stream, which is located in the north-eastern sector of Sicily (southern Italy), as test site. On 1/10/2009, a storm rainfall triggered in this area hundreds of debris flow/avalanche phenomena causing extensive economical damage and loss of life. Within this area a presence-only-based statistical method was applied to obtain susceptibility models capable of distinguish future activation sites of debris flow and debris slide, which where the main source failure mechanisms for flow or avalanche type propagation. The set of predictors used in this experiment comprised primary and secondary topographic attributes, derived by processing a high resolution digital elevation model, CORINE land cover data and a set of vegetation and mineral indices obtained by processing multispectral ASTER images. All the selected data sources are dated before the disaster. A spatially random partition technique was adopted for validation, generating fifty replicates for each of the two considered movement typologies in order to assess accuracy, precision and reliability of the models. The debris slide and debris flow susceptibility models produced high performances with the first type being the best fitted. The evaluation of the probability estimates around the mean value for each mapped pixel shows an inverted relation, with the most robust models corresponding to the debris flows. With respect to the role of each predictor within the modelling phase, debris flows appeared to be primarily controlled by topographic attributes whilst the debris slides were better explained by remotely sensed derived indices, particularly by the occurrence of previous wildfires across the slope. The overall excellent performances of the two models suggest promising perspectives for

  5. Exploiting Maximum Entropy method and ASTER data for assessing debris flow and debris slide susceptibility for the Giampilieri catchment (north-eastern Sicily, Italy).

    KAUST Repository

    Lombardo, Luigi

    2016-07-18

    This study aims at evaluating the performance of the Maximum Entropy method in assessing landslide susceptibility, exploiting topographic and multispectral remote sensing predictors. We selected the catchment of the Giampilieri stream, which is located in the north-eastern sector of Sicily (southern Italy), as test site. On 1/10/2009, a storm rainfall triggered in this area hundreds of debris flow/avalanche phenomena causing extensive economical damage and loss of life. Within this area a presence-only-based statistical method was applied to obtain susceptibility models capable of distinguish future activation sites of debris flow and debris slide, which where the main source failure mechanisms for flow or avalanche type propagation. The set of predictors used in this experiment comprised primary and secondary topographic attributes, derived by processing a high resolution digital elevation model, CORINE land cover data and a set of vegetation and mineral indices obtained by processing multispectral ASTER images. All the selected data sources are dated before the disaster. A spatially random partition technique was adopted for validation, generating fifty replicates for each of the two considered movement typologies in order to assess accuracy, precision and reliability of the models. The debris slide and debris flow susceptibility models produced high performances with the first type being the best fitted. The evaluation of the probability estimates around the mean value for each mapped pixel shows an inverted relation, with the most robust models corresponding to the debris flows. With respect to the role of each predictor within the modelling phase, debris flows appeared to be primarily controlled by topographic attributes whilst the debris slides were better explained by remotely sensed derived indices, particularly by the occurrence of previous wildfires across the slope. The overall excellent performances of the two models suggest promising perspectives for

  6. Impact Forces from Tsunami-Driven Debris

    Science.gov (United States)

    Ko, H.; Cox, D. T.; Riggs, H.; Naito, C. J.; Kobayashi, M. H.; Piran Aghl, P.

    2012-12-01

    Debris driven by tsunami inundation flow has been known to be a significant threat to structures, yet we lack the constitutive equations necessary to predict debris impact force. The objective of this research project is to improve our understanding of, and predictive capabilities for, tsunami-driven debris impact forces on structures. Of special interest are shipping containers, which are virtually everywhere and which will float even when fully loaded. The forces from such debris hitting structures, for example evacuation shelters and critical port facilities such as fuel storage tanks, are currently not known. This research project focuses on the impact by flexible shipping containers on rigid columns and investigated using large-scale laboratory testing. Full-scale in-air collision experiments were conducted at Lehigh University with 20 ft shipping containers to experimentally quantify the nonlinear behavior of full scale shipping containers as they collide into structural elements. The results from the full scale experiments were used to calibrate computer models and used to design a series of simpler, 1:5 scale wave flume experiments at Oregon State University. Scaled in-air collision tests were conducted using 1:5 scale idealized containers to mimic the container behavior observed in the full scale tests and to provide a direct comparison to the hydraulic model tests. Two specimens were constructed using different materials (aluminum, acrylic) to vary the stiffness. The collision tests showed that at higher speeds, the collision became inelastic as the slope of maximum impact force/velocity decreased with increasing velocity. Hydraulic model tests were conducted using the 1:5 scaled shipping containers to measure the impact load by the containers on a rigid column. The column was instrumented with a load cell to measure impact forces, strain gages to measure the column deflection, and a video camera was used to provide the debris orientation and speed. The

  7. The Fifteen-Year Attitude History of the Wide Field Planetary Camera 2 Radiator and Collection Efficiencies for Micrometeoroids and Orbital Debris

    Science.gov (United States)

    Anz-Meador, Phillip D.; Liou, Jer-Chyi; Cooke, William J.; Koehler, H.

    2010-01-01

    An examination of the Hubble Space Telescope (HST) Wide Field Planetary Camera 2 (WFPC-2) radiator assembly was conducted at NASA Goddard Space Flight Center (GSFC) during the summer of 2009. Immediately apparent was a distinct biasing of the largest 45 impact features towards one side of the radiator, in contrast to an approximately uniform distribution of smaller impacts. Such a distribution may be a consequence of the HST s attitude history and pointing requirements for the cold radiator, or of environmental effects, such as an anisotropic distribution of the responsible population in that size regime. Understanding the size-dependent spatial distribution of impact features is essential to the general analysis of these features. We have obtained from GSFC a 15 minute temporal resolution record of the state vector (Earth Centered Inertial position and velocity) and HST attitude, consisting of the orientation of the velocity and HST-sun vectors in HST body coordinates. This paper reviews the actual state vector and attitude history of the radiator in the context of the randomly tumbling plate assumption and assesses the statistical likelihood (or collection efficiency) of the radiator for the micrometeoroid and orbital debris environments. The NASA Marshall Space Flight Center s Meteoroid Environment Model is used to assess the micrometeoroid component. The NASA Orbital Debris Engineering Model (ORDEM) is used to model the orbital debris component. Modeling results are compared with observations of the impact feature spatial distribution, and the relative contribution of each environmental component are examined in detail.

  8. Interstellar Explorer Observations of the Solar System's Debris Disks

    Science.gov (United States)

    Lisse, C. M.; McNutt, R. L., Jr.; Brandt, P. C.

    2017-12-01

    Planetesimal belts and debris disks full of dust are known as the "signposts of planet formation" in exosystems. The overall brightness of a disk provides information on the amount of sourcing planetesimal material, while asymmetries in the shape of the disk can be used to search for perturbing planets. The solar system is known to house two such belts, the Asteroid belt and the Kuiper Belt; and at least one debris cloud, the Zodiacal Cloud, sourced by planetisimal collisions and Kuiper Belt comet evaporative sublimation. However these are poorly understood in toto because we live inside of them. E.g., while we know of the two planetesimal belt systems, it is not clear how much, if any, dust is produced from the Kuiper belt since the near-Sun comet contributions dominate near-Earth space. Understanding how much dust is produced in the Kuiper belt would give us a much better idea of the total number of bodies in the belt, especially the smallest ones, and their dynamical collisional state. Even for the close in Zodiacal cloud, questions remain concerning its overall shape and orientation with respect to the ecliptic and invariable planes of the solar system - they aren't explainable from the perturbations caused by the known planets alone. In this paper we explore the possibilities of using an Interstellar Explorer telescope placed at 200 AU from the sun to observe the brightness, shape, and extent of the solar system's debris disk(s). We should be able to measure the entire extent of the inner, near-earth zodiacal cloud; whether it connects smoothly into an outer cloud, or if there is a second outer cloud sourced by the Kuiper belt and isolated by the outer planets, as predicted by Stark & Kuchner (2009, 2010) and Poppe et al. (2012, 2016; Figure 1). VISNIR imagery will inform about the dust cloud's density, while MIR cameras will provide thermal imaging photometry related to the cloud's dust particle size and composition. Observing at high phase angle by looking

  9. Estimating Foreign-Object-Debris Density from Photogrammetry Data

    Science.gov (United States)

    Long, Jason; Metzger, Philip; Lane, John

    2013-01-01

    Within the first few seconds after launch of STS-124, debris traveling vertically near the vehicle was captured on two 16-mm film cameras surrounding the launch pad. One particular piece of debris caught the attention of engineers investigating the release of the flame trench fire bricks. The question to be answered was if the debris was a fire brick, and if it represented the first bricks that were ejected from the flame trench wall, or was the object one of the pieces of debris normally ejected from the vehicle during launch. If it was typical launch debris, such as SRB throat plug foam, why was it traveling vertically and parallel to the vehicle during launch, instead of following its normal trajectory, flying horizontally toward the north perimeter fence? By utilizing the Runge-Kutta integration method for velocity and the Verlet integration method for position, a method that suppresses trajectory computational instabilities due to noisy position data was obtained. This combination of integration methods provides a means to extract the best estimate of drag force and drag coefficient under the non-ideal conditions of limited position data. This integration strategy leads immediately to the best possible estimate of object density, within the constraints of unknown particle shape. These types of calculations do not exist in readily available off-the-shelf simulation software, especially where photogrammetry data is needed as an input.

  10. Influence of man-made aluminosilicate raw materials on physical and mechanical properties of building materials.

    Science.gov (United States)

    Volodchenko, A. A.; Lesovik, V. S.; Stoletov, A. A.; Glagolev, E. S.; Volodchenko, A. N.; Magomedov, Z. G.

    2018-03-01

    It has been identified that man-made aluminosilicate raw materials represented by clay rock of varied genesis can be used as energy-efficient raw materials to obtain efficient highly-hollow non-autoclaved silicate materials. A technique of structure formation in the conditions of pressureless steam treatment has been offered. Cementing compounds of non- autoclaved silicate materials based on man-made aluminosilicate raw materials possess hydraulic properties that are conditioned by the process of further formation and recrystallization of calcium silicate hydrates, which optimizes the ratio between gellike and crystalline components and densifies the cementing compound structure, which leads to improvement of performance characteristics. Increasing the performance characteristics of the obtained products is possible by changing the molding conditions. For this reason, in order to create high-density material packaging and, as a result, to increase the strength properties of the products, it is reasonable to use higher pressure, under which raw brick is formed, which will facilitate the increase of quality of highly-hollow products.

  11. A man-made object detection for underwater TV

    Science.gov (United States)

    Cheng, Binbin; Wang, Wenwu; Chen, Yao

    2018-03-01

    It is a great challenging task to complete an automatic search of objects underwater. Usually the forward looking sonar is used to find the target, and then the initial identification of the target is completed by the side-scan sonar, and finally the confirmation of the target is accomplished by underwater TV. This paper presents an efficient method for automatic extraction of man-made sensitive targets in underwater TV. Firstly, the image of underwater TV is simplified with taking full advantage of the prior knowledge of the target and the background; then template matching technology is used for target detection; finally the target is confirmed by extracting parallel lines on the target contour. The algorithm is formulated for real-time execution on limited-memory commercial-of-the-shelf platforms and is capable of detection objects in underwater TV.

  12. Space Commercialization and the Development of Space Law

    Science.gov (United States)

    Yun, Zhao

    2017-05-01

    Shortly after the launch of the first manmade satellite in 1957, the United Nations (UN) took the lead in formulating international rules governing space activities. The five international conventions (i.e., the 1967 Outer Space Treaty, the 1968 Rescue Agreement, the 1972 Liability Convention, the 1975 Registration Convention, and the 1979 Moon Agreement) within the UN framework constitute the nucleus of space law; laying a solid legal foundation for securing the smooth development of space activities over the next few decades. Outer space was soon found to be a place with abundant opportunities for commercialization: with telecommunications services the first and most successful commercial application followed by remote sensing and global navigation services. In the last decade, the rapid development of space technologies brought space tourism and space mining to the forefront as well. With more and more commercial activities taking place on a daily basis from the 1980s on, existing space law faces severe challenges. The five conventions, which were enacted at a time when space was monopolized by two superpowers—the United States and the former Soviet Union—also failed to take into account the commercial aspect of space activities. Although there are urgent needs for new rules to deal with the ongoing trend of space commercialization, the international society faces difficulties in adopting new rules due to diversified national interests. As a result, it adjusts legislative strategies by enacting soft laws. In view of the difficulty in adopting binding rules at the international level, states are encouraged to enact their own national space legislation providing sufficient guidance for their domestic space commercial activities. It is expected that the development of soft laws and national space legislation will be the mainstream regulatory activities in the space field for the foreseeable future.

  13. Evidence of marine debris usage by the ghost crab Ocypode quadrata (Fabricius, 1787).

    Science.gov (United States)

    Costa, Leonardo Lopes; Rangel, Danilo Freitas; Zalmon, Ilana Rosental

    2018-03-01

    Sandy beaches are sites of marine debris stranding, but the interaction of beach biota with waste is poorly studied. The objective of this study was to investigate whether the ghost crab Ocypode quadrata selects marine debris by types using a non-destructive method on sandy beaches of Southeastern Brazil. We found marine debris in 7% of 1696 surveyed burrows, and the ghost crabs selectivity was mainly by soft plastic (30%), straw (11%), rope (6%) and foam (4%). Burrows with marine debris showed higher occupation rate (~68%) compared to burrows without debris (~28%), indicating that these materials may increase the capacity of ghost crabs to memorize their burrows placement (homing). The percentage of marine debris was not always related to their amount in the drift line, but ghost crabs used more debris near urbanized areas. Future studies should test whether ghost crabs are using marine debris for feeding, homing or other mechanisms. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. Debris avalanches and debris flows transformed from collapses in the Trans-Mexican Volcanic Belt, Mexico - behavior, and implications for hazard assessment

    Science.gov (United States)

    Capra, L.; Macías, J. L.; Scott, K. M.; Abrams, M.; Garduño-Monroy, V. H.

    2002-03-01

    Volcanoes of the Trans-Mexican Volcanic Belt (TMVB) have yielded numerous sector and flank collapses during Pleistocene and Holocene times. Sector collapses associated with magmatic activity have yielded debris avalanches with generally limited runout extent (e.g. Popocatépetl, Jocotitlán, and Colima volcanoes). In contrast, flank collapses (smaller failures not involving the volcano summit), both associated and unassociated with magmatic activity and correlating with intense hydrothermal alteration in ice-capped volcanoes, commonly have yielded highly mobile cohesive debris flows (e.g. Pico de Orizaba and Nevado de Toluca volcanoes). Collapse orientation in the TMVB is preferentially to the south and northeast, probably reflecting the tectonic regime of active E-W and NNW faults. The differing mobilities of the flows transformed from collapses have important implications for hazard assessment. Both sector and flank collapse can yield highly mobile debris flows, but this transformation is more common in the cases of the smaller failures. High mobility is related to factors such as water content and clay content of the failed material, the paleotopography, and the extent of entrainment of sediment during flow (bulking). The ratio of fall height to runout distance commonly used for hazard zonation of debris avalanches is not valid for debris flows, which are more effectively modeled with the relation inundated area to failure or flow volume coupled with the topography of the inundated area.

  15. The debris disc of solar analogue τ Ceti: Herschel observations and dynamical simulations of the proposed multiplanet system

    NARCIS (Netherlands)

    Lawler, S.M.; Di Francesco, J.; Kennedy, G.M.; Sibthorpe, B.; Booth, M.; Vandenbussche, B.; Matthews, B.C.; Holland, W.S.; Greaves, J.; Wilner, D.J.; Tuomi, M.; Blommaert, J.A.D.L.; de Vries, B.L.; Dominik, C.; Fridlund, M.; Gear, W.; Heras, A.M.; Ivison, R.; Olofsson, G.

    2014-01-01

    τ Ceti is a nearby, mature G-type star very similar to our Sun, with a massive Kuiper Belt analogue and possible multiplanet system that has been compared to our Solar system. We present Herschel Space Observatory images of the debris disc, finding the disc is resolved at 70 μm and 160 μm, and

  16. Conditioning of metallic Magnox fuel element debris

    International Nuclear Information System (INIS)

    Kaye, C.J.

    1983-01-01

    The conditioning of metallic Magnox debris poses particular problems arising from its chemical reactivity and from the presence in discrete amounts of highly radioactive components. The treatment of this waste is currently being studied by the Central Electricity Generating Board. Following retrieval from store it is envisaged that the debris will be dried and comminuted to facilitate the removal for further storage of the highly active components from the bulk debris. A satisfactory means of sorting the debris appears to be by magnetic induction. The relatively low activity but potentially reactive Magnox will then be directly encapsulated prior to disposal off-site. Currently the only disposal route open for this waste is to the deep ocean. Matrices for encapsulating Magnox have been developed and others are under investigation. The desirable features of such matrices include low chemical reactivity and impermeability to water. The methods used to characterize the resultant waste forms and the results obtained are presented. Thermosetting polymers produce suitable waste forms for sea disposal, exhibiting high mechanical strength and resistance to leaching, and possessing very low chemical reactivity with respect to the Magnox waste. Low viscosity matrices are advantageous from the point of view of the process plant engineering as they enable the comminuted waste to be directly encapsulated. (author)

  17. Predictions for shepherding planets in scattered light images of debris disks

    International Nuclear Information System (INIS)

    Rodigas, Timothy J.; Hinz, Philip M.; Malhotra, Renu

    2014-01-01

    Planets can affect debris disk structure by creating gaps, sharp edges, warps, and other potentially observable signatures. However, there is currently no simple way for observers to deduce a disk-shepherding planet's properties from the observed features of the disk. Here we present a single equation that relates a shepherding planet's maximum mass to the debris ring's observed width in scattered light, along with a procedure to estimate the planet's eccentricity and minimum semimajor axis. We accomplish this by performing dynamical N-body simulations of model systems containing a star, a single planet, and an exterior disk of parent bodies and dust grains to determine the resulting debris disk properties over a wide range of input parameters. We find that the relationship between planet mass and debris disk width is linear, with increasing planet mass producing broader debris rings. We apply our methods to five imaged debris rings to constrain the putative planet masses and orbits in each system. Observers can use our empirically derived equation as a guide for future direct imaging searches for planets in debris disk systems. In the fortuitous case of an imaged planet orbiting interior to an imaged disk, the planet's maximum mass can be estimated independent of atmospheric models.

  18. Sampling and Analysis Plan for K Basins Debris

    International Nuclear Information System (INIS)

    WESTCOTT, J.L.

    2000-01-01

    This Sampling and Analysis Plan presents the rationale and strategy for sampling and analysis activities to support removal of debris from the K-East and K-West Basins located in the 100K Area at the Hanford Site. This project is focused on characterization to support waste designation for disposal of waste at the Environmental Restoration Disposal Facility (ERDF). This material has previously been dispositioned at the Hanford Low-Level Burial Grounds or Central Waste Complex. The structures that house the basins are classified as radioactive material areas. Therefore, all materials removed from the buildings are presumed to be radioactively contaminated. Because most of the materials that will be addressed under this plan will be removed from the basins, and because of the cost associated with screening materials for release, it is anticipated that all debris will be managed as low-level waste. Materials will be surveyed, however, to estimate radionuclide content for disposal and to determine that the debris is not contaminated with levels of transuranic radionuclides that would designate the debris as transuranic waste

  19. Economic analysis requirements in support of orbital debris regulatory policy

    Science.gov (United States)

    Greenberg, Joel S.

    1996-10-01

    As the number of Earth orbiting objects increases so does the potential for generating orbital debris with the consequent increase in the likelihood of impacting and damaging operating satellites. Various debris remediation approaches are being considered that encompass both in-orbit and return-to-Earth schema and have varying degrees of operations, cost, international competitiveness, and safety implications. Because of the diversity of issues, concerns and long-term impacts, there is a clear need for the setting of government policies that will lead to an orderly abatement of the potential orbital debris hazards. These policies may require the establishment of a supportive regulatory regime. The Department of Transportation is likely to have regulatory responsibilities relating to orbital debris stemming from its charge to protect the public health and safety, safety of property, and national security interests and foreign policy interests of the United States. This paper describes DOT's potential regulatory role relating to orbital debris remediation, the myriad of issues concerning the need for establishing government policies relating to orbital debris remediation and their regulatory implications, the proposed technological solutions and their economic and safety implications. Particular emphasis is placed upon addressing cost-effectiveness and economic analyses as they relate to economic impact analysis in support of regulatory impact analysis.

  20. Plastic debris retention and exportation by a mangrove forest patch

    International Nuclear Information System (INIS)

    Ivar do Sul, Juliana A.; Costa, Monica F.; Silva-Cavalcanti, Jacqueline S.; Araújo, Maria Christina B.

    2014-01-01

    Highlights: • Estuaries and mangrove forests are rarely studied for marine plastic debris loads. • Types of plastic items and mangrove forest habitats determine the potential of debris retention. • Mangrove habitats are temporary sinks of plastic debris from river and marine origins. • Plastics rapidly accumulate in mangrove forest, but are exported slowly. • Fauna and fishers using mangrove forest habitats are at risk of interaction with plastic debris. -- Abstract: An experiment observed the behavior of selected tagged plastic items deliberately released in different habitats of a tropical mangrove forest in NE Brazil in late rainy (September) and late dry (March) seasons. Significant differences were not reported among seasons. However, marine debris retention varied among habitats, according to characteristics such as hydrodynamic (i.e., flow rates and volume transported) and relative vegetation (Rhizophora mangle) height and density. The highest grounds retained significantly more items when compared to the borders of the river and the tidal creek. Among the used tagged items, PET bottles were more observed and margarine tubs were less observed, being easily transported to adjacent habitats. Plastic bags were the items most retained near the releasing site. The balance between items retained and items lost was positive, demonstrating that mangrove forests tend to retain plastic marine debris for long periods (months-years)

  1. A direct reflection OLVF debris detector based on dark-field imaging

    Science.gov (United States)

    Li, Bo; Xi, Yinhu; Feng, Song; Mao, Junhong; Xie, You-Bai

    2018-06-01

    To solve the problems of monitoring wear debris in black oil, a direct reflection online visual ferrograph (OLVF) debris detector is presented. In current OLVF detectors, a reflected light source is used. The emitted light is reflected by wear debris directly instead of passing through the lube oil. Therefore, the transparency of the lube oil ceases to matter. Two experiments were conducted to validate the wear debris imaging feasibility and effectiveness of the newly developed detector. The results show that the visual feature information of the wear debris can be reliably obtained from black oil by this detector, and it can also be used to track the fast-changing wear of tribopairs at different wear stages. To the best of our knowledge, to date there is no other report for solving this issue.

  2. An experimental simulation study of debris quenching in a radially stratified porous bed

    International Nuclear Information System (INIS)

    Sehgal, B.R.; Nayak, A.K.; Stepanyan, A.

    2004-01-01

    test section with dimensions 350x350 mm containing sand which simulates the corium debris. The height of the bed was 500 mm. The sand bed with lower porosity was put at the centre of test section and the bed with higher porosity was put at the periphery. The porosities and size of the sand chosen were close to that observed in a corium debris bed. The sand beds were heated directly with heaters of maximum capacity 46 kW. The bed was quenched by flooding water from the top of the bed. For this, seven downcomers (six small size and the centre one large) were placed inside the test section to study their effects on quenching of the various sections of the debris bed. Those downcomers bring water from the top of the debris bed to the bottom and enable quenching from the bottom. In addition, provisions were made for water injection into the bed at four different points located symmetrically in the side wall of the test section. The level of water above the bed was always maintained at 0.5 m for each experiment. In order to study the effects of non-condensable gases on quenching and CCFL (counter current flooding limitations), air was injected at different velocities and its effect on quenching rate and possible existence of CCFL was investigated. Fig.1 shows a typical quenching result measured with top flooding using all downcomers. Also, we allowed water injection at four locations through the side walls. The bed was heated to a temperature of about 500 deg. C before water at 95 deg. C was added to the top of the bed. The graph shows the temperature listing at different axial locations in one radial plane. Thermocouples 0 to 5 are distributed from top to bottom at equally spaced axial intervals. The results show that the top and bottom of the bed are quenched much earlier than the middle section of the bed. The time for water to ingress to middle of section bed is quite large as evident from the above figure. The experiments are continuing and further results on the

  3. A Simulation and Modeling Framework for Space Situational Awareness

    International Nuclear Information System (INIS)

    Olivier, S.S.

    2008-01-01

    This paper describes the development and initial demonstration of a new, integrated modeling and simulation framework, encompassing the space situational awareness enterprise, for quantitatively assessing the benefit of specific sensor systems, technologies and data analysis techniques. The framework is based on a flexible, scalable architecture to enable efficient, physics-based simulation of the current SSA enterprise, and to accommodate future advancements in SSA systems. In particular, the code is designed to take advantage of massively parallel computer systems available, for example, at Lawrence Livermore National Laboratory. The details of the modeling and simulation framework are described, including hydrodynamic models of satellite intercept and debris generation, orbital propagation algorithms, radar cross section calculations, optical brightness calculations, generic radar system models, generic optical system models, specific Space Surveillance Network models, object detection algorithms, orbit determination algorithms, and visualization tools. The use of this integrated simulation and modeling framework on a specific scenario involving space debris is demonstrated

  4. Management of outer space

    Science.gov (United States)

    Perek, Lubos

    1993-10-01

    Various aspects of space-environment management are discussed. Attention is called to the fact that, while space radio communications are already under an adequate management by the International Communications Union, the use of nuclear power sources is regulated by the recently adopted set of principles, and space debris will be discussed in the near future at the UN COPUOS, other aspects of management of outer space received little or no attention of the international community. These include the competency of crews and technical equipment of spacecraft launched by newcomers to space exploration; monitoring of locations and motions of space objects (now in national hands), with relevant data made accessible through a computer network; and the requirement to use space only for beneficial purposes and not for promoting narrow and debatable interests damaging the outer space environment and impeding on astronomical observations. It is suggested that some of these tasks would be best performed by an international space agency within the UN system of organizations.

  5. The effects of large beach debris on nesting sea turtles

    Science.gov (United States)

    Fujisaki, Ikuko; Lamont, Margaret M.

    2016-01-01

    A field experiment was conducted to understand the effects of large beach debris on sea turtle nesting behavior as well as the effectiveness of large debris removal for habitat restoration. Large natural and anthropogenic debris were removed from one of three sections of a sea turtle nesting beach and distributions of nests and false crawls (non-nesting crawls) in pre- (2011–2012) and post- (2013–2014) removal years in the three sections were compared. The number of nests increased 200% and the number of false crawls increased 55% in the experimental section, whereas a corresponding increase in number of nests and false crawls was not observed in the other two sections where debris removal was not conducted. The proportion of nest and false crawl abundance in all three beach sections was significantly different between pre- and post-removal years. The nesting success, the percent of successful nests in total nesting attempts (number of nests + false crawls), also increased from 24% to 38%; however the magnitude of the increase was comparably small because both the number of nests and false crawls increased, and thus the proportion of the nesting success in the experimental beach in pre- and post-removal years was not significantly different. The substantial increase in sea turtle nesting activities after the removal of large debris indicates that large debris may have an adverse impact on sea turtle nesting behavior. Removal of large debris could be an effective restoration strategy to improve sea turtle nesting.

  6. On the challenge of quantifying man-made nanoparticles in the aquatic environment.

    Science.gov (United States)

    Howard, Alan G

    2010-01-01

    Technologies based on nanomaterials are developing daily, finding applications as diverse as new sensors for improved monitoring and detection, new medical imaging techniques, novel approaches to the treatment and remediation of contaminated land and green technologies for chemical production. An inevitable consequence of Man's exploitation of nanotechnology is both the deliberate and accidental release of manufactured nanomaterials into the environment. This presents the analytical science community with a challenge for which it is, at present, poorly prepared--the quantification of specific nanoparticles in the environment. The problem is the development of trace analysis methods targeted at solid phase species, rather than the dissolved species measured, for example, in a typical pesticide residue analysis. This will require the adoption of radically different approaches and techniques, many of which will be unfamiliar to the conventionally trained environmental analyst. This paper sets out to give a very brief overview of the techniques that are available, specifically questioning their suitability for the quantification of man-made nanoparticles in the aquatic environment. Suggestions are made as to how these techniques might be transferred from the characterization of synthetic products to the field of trace analysis. The analytical community is presented with a new frontier of environmental investigation that can only commence with the development of innovative approaches to the quantitative measurement of man-made nanomaterials in the environment.

  7. Types and Origins of Debris Found on Maui Shorelines: Implications for Mitigation Policies and Strategies

    Science.gov (United States)

    Blickley, L.; Currie, J. J.; Kaufman, G. D.

    2016-02-01

    Marine debris is an identified concern for coastal areas and is known to accumulate in large quantities in the North Pacific Ocean. The proximity of the Main Hawaiian Islands to these "garbage patches" represents an ongoing concern with little understanding of debris origins or efficacy of current mitigation policies. Debris accumulation surveys were conducted monthly between October 2013 and August 2014 and daily during January 2015 at 3 beaches on Maui's coastline. Debris accumulation rates, loads, and sources varied between sites and were influenced by both environmental and anthropogenic factors. Debris accumulation was strongly influenced by the temporal scale of sampling, with daily surveys showing a significant increase in accumulation rate. Plastics were the most common debris item at each site ranging from local, land-based debris including cigarette butts, straws, and food wrappers, to foreign, ocean-based debris such as oyster spacer tubes and hagfish traps. The results of this study indicate that the passage of a tobacco free beaches bill on Maui has not significantly reduced the amount of tobacco related debris. Alternatively, a ban on plastic grocery bags has eliminated this type of debris from Maui's shorelines, with no bags found at any of the sampling sites. The wide spread origins of collected debris further suggests that mitigation strategies to reduce debris will need to take place across hundreds of local municipalities. The efficacy of marine debris policies furthermore depends on enforcement and implementation strategy, as current results suggest policy enforcement at the producer level affords more effective results than that at the consumer level. Local debris mitigation actions have nevertheless been shown to affect debris loads, and municipalities are therefore encouraged to adopt a holistic combination of policy, community-based debris removal programs, increased public awareness, and ongoing monitoring to address marine debris.

  8. An attempt of modelling debris flows characterised by strong inertial effects through Cellular Automata

    Science.gov (United States)

    Iovine, G.; D'Ambrosio, D.

    2003-04-01

    Cellular Automata models do represent a valid method for the simulation of complex phenomena, when these latter can be described in "a-centric" terms - i.e. through local interactions within a discrete time-space. In particular, flow-type landslides (such as debris flows) can be viewed as a-centric dynamical system. SCIDDICA S4b, the last release of a family of two-dimensional hexagonal Cellular Automata models, has recently been developed for simulating debris flows characterised by strong inertial effects. It has been derived by progressively enriching an initial simplified CA model, originally derived for simulating very simple cases of slow-moving flow-type landslides. In S4b, by applying an empirical strategy, the inertial characters of the flowing mass have been translated into CA terms. In the transition function of the model, the distribution of landslide debris among the cells is computed by considering the momentum of the debris which move among the cells of the neighbourhood, and privileging the flow direction. By properly setting the value of one of the global parameters of the model (the "inertial factor"), the mechanism of distribution of the landslide debris among the cells can be influenced in order to emphasise the inertial effects, according to the energy of the flowing mass. Moreover, the high complexity of both the model and of the phenomena to be simulated (e.g. debris flows characterised by severe erosion along their path, and by strong inertial effects) suggested to employ an automated technique of evaluation, for the determination of the best set of global parameters. Accordingly, the calibration of the model has been performed through Genetic Algorithms, by considering several real cases of study: these latter have been selected among the population of landslides triggered in Campania (Southern Italy) in May 1998 and December 1999. Obtained results are satisfying: errors computed by comparing the simulations with the map of the real

  9. Wastes in space

    International Nuclear Information System (INIS)

    2011-01-01

    As human space activities have created more wastes on low and high Earth orbits over the past 50 years than the solar system injected meteorites over billions of years, this report gives an overview of this problem. It identifies the origins of these space debris and wastes (launchers, combustion residues, exploitation wastes, out-of-use satellites, accidental explosions, accidental collisions, voluntary destructions, space erosion), and proposes a stock list of space wastes. Then, it distinguishes the situation for the different orbits: low Earth orbit or LEO (traffic, presence of the International Space Station), medium Earth orbits or MEO (traffic, operating satellites, wastes), geostationary Earth orbit or GEO (traffic, operating satellites, wastes). It also discusses wastes and bacteria present on the moon (due to Apollo missions or to crash tests). It evokes how space and nuclear industry is concerned, and discusses the re-entry issue (radioactive boomerang, metallic boomerang). It also indicates elements of international law

  10. Compressive sensing-based electrostatic sensor array signal processing and exhausted abnormal debris detecting

    Science.gov (United States)

    Tang, Xin; Chen, Zhongsheng; Li, Yue; Yang, Yongmin

    2018-05-01

    When faults happen at gas path components of gas turbines, some sparsely-distributed and charged debris will be generated and released into the exhaust gas. The debris is called abnormal debris. Electrostatic sensors can detect the debris online and further indicate the faults. It is generally considered that, under a specific working condition, a more serious fault generates more and larger debris, and a piece of larger debris carries more charge. Therefore, the amount and charge of the abnormal debris are important indicators of the fault severity. However, because an electrostatic sensor can only detect the superposed effect on the electrostatic field of all the debris, it can hardly identify the amount and position of the debris. Moreover, because signals of electrostatic sensors depend on not only charge but also position of debris, and the position information is difficult to acquire, measuring debris charge accurately using the electrostatic detecting method is still a technical difficulty. To solve these problems, a hemisphere-shaped electrostatic sensors' circular array (HSESCA) is used, and an array signal processing method based on compressive sensing (CS) is proposed in this paper. To research in a theoretical framework of CS, the measurement model of the HSESCA is discretized into a sparse representation form by meshing. In this way, the amount and charge of the abnormal debris are described as a sparse vector. It is further reconstructed by constraining l1-norm when solving an underdetermined equation. In addition, a pre-processing method based on singular value decomposition and a result calibration method based on weighted-centroid algorithm are applied to ensure the accuracy of the reconstruction. The proposed method is validated by both numerical simulations and experiments. Reconstruction errors, characteristics of the results and some related factors are discussed.

  11. Predicting the occurrence of channelized debris flow by an integrated cascading model: A case study of a small debris flow-prone catchment in Zhejiang Province, China

    Science.gov (United States)

    Wei, Zhen-lei; Xu, Yue-Ping; Sun, Hong-yue; Xie, Wei; Wu, Gang

    2018-05-01

    Excessive water in a channel is an important factor that triggers channelized debris flows. Floods and debris flows often occur in a cascading manner, and thus, calculating the amount of runoff accurately is important for predicting the occurrence of debris flows. In order to explore the runoff-rainfall relationship, we placed two measuring facilities at the outlet of a small, debris flow-prone headwater catchment to explore the hydrological response of the catchment. The runoff responses generally consisted of a rapid increase in runoff followed by a slower decrease. The peak runoff often occurred after the rainfall ended. The runoff discharge data were simulated by two different modeling approaches, i.e., the NAM model and the Hydrologic Engineering Center-Hydrologic Modeling System (HEC-HMS) model. The results showed that the NAM model performed better than the HEC-HMS model. The NAM model provided acceptable simulations, while the HEC-HMS model did not. Then, we coupled the calculated results of the NAM model with an empirically based debris flow initiation model to obtain a new integrated cascading disaster modeling system to provide improved disaster preparedness and hazard management. In this case study, we found that the coupled model could correctly predict the occurrence of debris flows. Furthermore, we evaluated the effect of the range of input parameter values on the hydrographical shape of the runoff. We also used the grey relational analysis to conduct a sensitivity analysis of the parameters of the model. This study highlighted the important connections between rainfall, hydrological processes, and debris flow, and it provides a useful prototype model system for operational forecasting of debris flows.

  12. Distributed sensor management for space situational awareness via a negotiation game

    Science.gov (United States)

    Jia, Bin; Shen, Dan; Pham, Khanh; Blasch, Erik; Chen, Genshe

    2015-05-01

    Space situational awareness (SSA) is critical to many space missions serving weather analysis, communications, and navigation. However, the number of sensors used in space situational awareness is limited which hinders collision avoidance prediction, debris assessment, and efficient routing. Hence, it is critical to use such sensor resources efficiently. In addition, it is desired to develop the SSA sensor management algorithm in a distributed manner. In this paper, a distributed sensor management approach using the negotiation game (NG-DSM) is proposed for the SSA. Specifically, the proposed negotiation game is played by each sensor and its neighboring sensors. The bargaining strategies are developed for each sensor based on negotiating for accurately tracking desired targets (e.g., satellite, debris, etc.) . The proposed NG-DSM method is tested in a scenario which includes eight space objects and three different sensor modalities which include a space based optical sensor, a ground radar, or a ground Electro-Optic sensor. The geometric relation between the sensor, the Sun, and the space object is also considered. The simulation results demonstrate the effectiveness of the proposed NG-DSM sensor management methods, which facilitates an application of multiple-sensor multiple-target tracking for space situational awareness.

  13. Removing metal debris from thermosetting EMC powders by Nd-Fe-B permanent magnets

    Directory of Open Access Journals (Sweden)

    Liaw Yowching

    2017-01-01

    Full Text Available During the preparation of thermosetting encapsulation molding compounds (EMCs for semiconductor packaging, metal debris are always present in the EMC powders due to the hard silica fillers in the compound. These metal debris in the EMC powders will cause circuit shortage and therefore have to be removed before molding. In this study, Nd-Fe-B permanent magnets are used to remove these debris. The results show that the metal debris can be removed effectively as the rate of accumulation of the metal debris increases as time proceeds in the removing operation. The removal effectiveness of the debris is affected by both the magnetic flux density and the flow around the magnet. The wake flow behind the magnet is a relatively low speed recirculation region which facilities the attraction of metal debris in the powders. Thus, the largest amount of the accumulated EMC powders occurs downstream of the magnet. Hence, this low speed recirculation region should be better utilized to enhance the removal efficiency of the metal debris.

  14. Headwater sediment dynamics in a debris flow catchment constrained by high-resolution topographic surveys

    Science.gov (United States)

    Loye, Alexandre; Jaboyedoff, Michel; Theule, Joshua Isaac; Liébault, Frédéric

    2016-06-01

    Debris flows have been recognized to be linked to the amounts of material temporarily stored in torrent channels. Hence, sediment supply and storage changes from low-order channels of the Manival catchment, a small tributary valley with an active torrent system located exclusively in sedimentary rocks of the Chartreuse Massif (French Alps), were surveyed periodically for 16 months using terrestrial laser scanning (TLS) to study the coupling between sediment dynamics and torrent responses in terms of debris flow events, which occurred twice during the monitoring period. Sediment transfer in the main torrent was monitored with cross-section surveys. Sediment budgets were generated seasonally using sequential TLS data differencing and morphological extrapolations. Debris production depends strongly on rockfall occurring during the winter-early spring season, following a power law distribution for volumes of rockfall events above 0.1 m3, while hillslope sediment reworking dominates debris recharge in spring and autumn, which shows effective hillslope-channel coupling. The occurrence of both debris flow events that occurred during the monitoring was linked to recharge from previous debris pulses coming from the hillside and from bedload transfer. Headwater debris sources display an ambiguous behaviour in sediment transfer: low geomorphic activity occurred in the production zone, despite rainstorms inducing debris flows in the torrent; still, a general reactivation of sediment transport in headwater channels was observed in autumn without new debris supply, suggesting that the stored debris was not exhausted. The seasonal cycle of sediment yield seems to depend not only on debris supply and runoff (flow capacity) but also on geomorphic conditions that destabilize remnant debris stocks. This study shows that monitoring the changes within a torrent's in-channel storage and its debris supply can improve knowledge on recharge thresholds leading to debris flow.

  15. A systematic review of probable posttraumatic stress disorder in first responders following man-made mass violence.

    Science.gov (United States)

    Wilson, Laura C

    2015-09-30

    The current study was a systematic review examining probable posttraumatic stress disorder (PTSD) in first responders following man-made mass violence. A systematic literature search yielded 20 studies that fit the inclusion criteria. The prevalence rates of probable PTSD across all 20 studies ranged from 1.3% to 22.0%. Fifteen of the 20 articles focused on first responders following the September 11th terrorist attacks and many of the studies used the same participant recruitment pools. Overall, the results of the systematic review described here suggest that our understanding of PTSD in first responders following man-made mass violence is based on a very small set of articles that have focused on a few particular events. This paper is meant to serve as a call for additional research and to encourage more breadth in the specific incidents that are examined. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  16. Pathways and Distribution of Marine Debris Around a Remote Caribbean Island, Little Cayman

    Science.gov (United States)

    Camp, L.; Marsh, L.; O'Keefe, A.; Duran, J.; Wilcox, S. M.; James, R.; Cowan, E.

    2011-12-01

    Marine Debris is a major environmental concern that affects all levels of marine life. On remote beaches in the Caribbean, where human populations are minimal, marine debris is largely deposited by ocean currents. The ocean is estimated to be littered with over 6 million metric tons of trash per year with 90% coming from land sources, but little is known about the exact sources and pathways for the debris. In 2006, on Little Cayman Island, coastal debris was collected at two coastal areas where removal of debris had not occurred in at least 9 years and along 2000 meters squared. One site was located on the north side, while the other site was located on the south side of the island. Both sites were located in reef-protected coastal zones. These two sites were revisited in 2007, 2010, and 2011 to determine the volume, weight, and type of debris arriving annually and to assess the importance of different coastal processes in deposition. In 2011, eight turtle nesting beaches were added to the study and a total of 11,186 liters of debris was collected from 1600 meters of coastline. The island lies in a northeast southwest orientation. The south-side of the island is influenced largely by prevailing trade winds, currents and tropical storms, traveling across the Caribbean from the east. Currents, eddies, and Norwesters would presumably deposit debris on the north side of the island. Approximately five times the amount of debris is deposited on the south side of the island than on the north side of the island. From the total debris collected, 72.45% was plastic, 8.23% shoes, 6.37% ropes & nets , 5.13% glass, 4.37% styrofoam, and 3.44% contained other debris. The marine debris originated in 8 different countries, and it is estimated that there is collectively 223,721 liters (11,635 kg) covering the shores of the entire island. Remarkably, debris found on Little Cayman in 2011 was traced to the 2010 Haitian earthquake relief effort.

  17. In situ measurements of post-fire debris flows in southern California: Comparisons of the timing and magnitude of 24 debris-flow events with rainfall and soil moisture conditions

    Science.gov (United States)

    Kean, J.W.; Staley, D.M.; Cannon, S.H.

    2011-01-01

    Debris flows often occur in burned steeplands of southern California, sometimes causing property damage and loss of life. In an effort to better understand the hydrologic controls on post-fire debris-flow initiation, timing and magnitude, we measured the flow stage, rainfall, channel bed pore fluid pressure and hillslope soil-moisture accompanying 24 debris flows recorded in five different watersheds burned in the 2009 Station and Jesusita Fires (San Gabriel and Santa Ynez Mountains). The measurements show substantial differences in debris-flow dynamics between sites and between sequential events at the same site. Despite these differences, the timing and magnitude of all events were consistently associated with local peaks in short duration (landslides. By identifying the storm characteristics most closely associated with post-fire debris flows, these measurements provide valuable guidance for warning operations and important constraints for developing and testing models of post-fire debris flows. copyright. 2011 by the American Geophysical Union.

  18. Superstorm Sandy marine debris wash-ups on Long Island - What happened to them?

    Science.gov (United States)

    Swanson, R Lawrence; Lwiza, Kamazima; Willig, Kaitlin; Morris, Kaitlin

    2016-07-15

    Superstorm Sandy generated huge quantities of debris in the Long Island, NY coastal zone. However, little appears to have been washed offshore to eventually be returned to Long Island's beaches as marine debris wash-ups. Information for our analysis includes debris collection statistics, very high resolution satellite images, along with wind and sea level data. Rigorous debris collection efforts along with meteorological conditions following the storm appear to have reduced the likelihood of debris wash-ups. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Report 6: Guidance document. Man-made hazards and Accidental Aircraft Crash hazards modelling and implementation in extended PSA

    International Nuclear Information System (INIS)

    Kahia, S.; Brinkman, H.; Bareith, A.; Siklossy, T.; Vinot, T.; Mateescu, T.; Espargilliere, J.; Burgazzi, L.; Ivanov, I.; Bogdanov, D.; Groudev, P.; Ostapchuk, S.; Zhabin, O.; Stojka, T.; Alzbutas, R.; Kumar, M.; Nitoi, M.; Farcasiu, M.; Borysiewicz, M.; Kowal, K.; Potempski, S.

    2016-01-01

    The goal of this report is to provide guidance on practices to model man-made hazards (mainly external fires and explosions) and accidental aircraft crash hazards and implement them in extended Level 1 PSA. This report is a joint deliverable of work package 21 (WP21) and work package 22 (WP22). The general objective of WP21 is to provide guidance on all of the individual hazards selected at the first ASAMPSA-E End Users Workshop (May 2014, Uppsala, Sweden). The objective of WP22 is to provide the solutions for purposes of different parts of man-made hazards Level 1 PSA fulfilment. This guidance is focusing on man-made hazards, namely: external fires and explosions, and accidental aircraft crash hazards. Guidance developed refers to existing guidance whenever possible. The initial part of guidance (WP21 part) reflects current practices to assess the frequencies for each type of hazards or combination of hazards (including correlated hazards) as initiating event for PSAs. The sources and quality of hazard data, the elements of hazard assessment methodologies and relevant examples are discussed. Classification and criteria to properly assess hazard combinations as well as examples and methods for assessment of these combinations are included in this guidance. In appendixes additional material is presented with the examples of practical approaches to aircraft crash and man-made hazard. The following issues are addressed: 1) Hazard assessment methodologies, including issues related to hazard combinations. 2) Modelling equipment of safety related SSC, 3) HRA, 4) Emergency response, 5) Multi-unit issues. Recommendations and also limitations, gaps identified in the existing methodologies and a list of open issues are included. At all stages of this guidance and especially from an industrial end-user perspective, one must keep in mind that the development of man-made hazards probabilistic analysis must be conditioned to the ability to ultimately obtain a representative risk

  20. Risk and size estimation of debris flow caused by storm rainfall in mountain regions

    Institute of Scientific and Technical Information of China (English)

    CHENG; Genwei

    2003-01-01

    Debris flow is a common disaster in mountain regions. The valley slope, storm rainfall and amassed sand-rock materials in a watershed may influence the types of debris flow. The bursting of debris flow is not a pure random event. Field investigations show the periodicity of its burst, but no directive evidence has been found yet. A risk definition of debris flow is proposed here based upon the accumulation and the starting conditions of loose material in channel. According to this definition, the risk of debris flow is of quasi-periodicity. A formula of risk estimation is derived. Analysis of relative factors reveals the relationship between frequency and size of debris flow. For a debris flow creek, the longer the time interval between two occurrences of debris flows is, the bigger the bursting event will be.

  1. Feature test report for the Small Debris Collection and Packaging System

    International Nuclear Information System (INIS)

    Brisbin, S.A.

    1995-01-01

    The Spent Nuclear Fuel Equipment Engineering group performed feature testing of the Small Debris Collection and Packaging System (SDCPS) in the 305 Cold Test Facility from January 30, 1995, to February 1, 1995. Feature testing of the Small Debris Collection and Packaging System (SDCPS) was performed for the following reasons: To assess the feasibility of using ''drop-out'' vessels to collect small debris (<2.5 cm) in MK-II fuel canisters while transferring sludge to the Weasel Pit. To evaluate system performance under conditions similar to those in the K-Basins (e.g. submerged under 4.9 meters of water and operated with long handled tools) while using a surrogate sludge mixed with debris. To determine if canister weight could be used to predict the volume of sludge and/or debris contained within the canisters during system operation

  2. Initiation of Recent Debris Flows on Mount Rainier, Washington: A Climate Warming Signal?

    Science.gov (United States)

    Copeland, E. A.; Kennard, P.; Nolin, A. W.; Lancaster, S. T.; Grant, G. E.

    2008-12-01

    The first week of November 2006 an intense rainstorm inundated the Pacific Northwest and triggered debris flows on many large volcanoes in the Cascade Range of Washington and Oregon. At Mount Rainier, Washington, 45.7 cm of rain was recorded in 36 hours; the storm was preceded by a week of light precipitation and moderate temperatures, so that rain fell on nearly-saturated ground with minimal snow cover. The November 2006 storm was exceptional in that it resulted in a 100-year flood and caused an unprecedented six-month closure of Mount Rainier National Park. It also focused inquiry as to whether debris flows from Cascade volcanoes are likely to occur more frequently in the future as glaciers recede due to climate warming, leaving unstable moraines and sediment that can act as initiation sites. We examined the recent history of debris flows from Mount Rainier using aerial photographs and field surveyed debris flow tracks. Prior to 2001, debris flows were recorded in association with rainfall or glacial outburst floods in 4 drainages, but 3 additional drainages were first impacted by debris flows in 2001, 2005, and 2006, respectively. We discovered that most of the recent debris flows initiated as small gullies in unconsolidated material at the edge of fragmented glaciers or areas of permanent snow and ice. Other initiation sites occur on steep-sided un-vegetated moraines. Of the 28 named glaciers on Mount Rainier, debris flows initiated near five glaciers in the exceptional storm of 2006 (Winthrop, Inter, Kautz-Success, Van Trump, Pyramid, and South Tahoma). Less exceptional storms, however, have also produced wide-spread debris flows: in September 2005, 15.3 cm of rain fell in 48 hours on minimal snow cover and caused debris flows in all except 2 of the glacier drainages that initiated in 2006. Debris flows from both storms initiated at elevations of 1980 to 2400 m, traveled 5 to 10 kilometers, and caused significant streambed aggradation. These results suggest a

  3. Participatory Sensing Marine Debris: Current Trends and Future Opportunities

    Science.gov (United States)

    Jambeck, J.; Johnsen, K.

    2016-02-01

    The monitoring of litter and debris is challenging at the global scale because of spatial and temporal variability, disconnected local organizations and the use of paper and pen for documentation. The Marine Debris Tracker mobile app and citizen science program allows for the collection of global standardized data at a scale, speed and efficiency that was not previously possible. The app itself also serves as an outreach and education tool, creating an engaged participatory sensing instrument. This instrument is characterized by several aspects including range and frequency, accuracy and precision, accessibility, measurement dimensions, participant performance, and statistical analysis. Also, important to Marine Debris Tracker is open data and transparency. A web portal provides data that users have logged allowing immediate feedback to users and additional education opportunities. The engagement of users through a top tracker competition and social media keeps participants interested in the Marine Debris Tracker community. Over half a million items have been tracked globally, and maps provide both global and local distribution of data. The Marine Debris Tracker community and dataset continues to grow daily. We will present current usage and engagement, participatory sensing data distributions, choropleth maps of areas of active tracking, and discuss future technologies and platforms to expand data collection and conduct statistical analysis.

  4. VARIABILITY OF THE INFRARED EXCESS OF EXTREME DEBRIS DISKS

    International Nuclear Information System (INIS)

    Meng, Huan Y. A.; Rieke, George H.; Su, Kate Y. L.; Rujopakarn, Wiphu; Ivanov, Valentin D.; Vanzi, Leonardo

    2012-01-01

    Debris disks with extremely large infrared excesses (fractional luminosities >10 –2 ) are rare. Those with ages between 30 and 130 Myr are of interest because their evolution has progressed well beyond that of protoplanetary disks (which dissipate with a timescale of order 3 Myr), yet they represent a period when dynamical models suggest that terrestrial planet building may still be progressing through large, violent collisions that could yield large amounts of debris and large infrared excesses. For example, our Moon was formed through a violent collision of two large protoplanets during this age range. We report two disks around the solar-like stars ID8 and HD 23514 in this age range where the 24 μm infrared excesses vary on timescales of a few years, even though the stars are not variable in the optical. Variations this rapid are difficult to understand if the debris is produced by collisional cascades, as it is for most debris disks. It is possible that the debris in these two systems arises in part from condensates from silicate-rich vapor produced in a series of violent collisions among relatively large bodies. If their evolution is rapid, the rate of detection of extreme excesses would indicate that major collisions may be relatively common in this age range.

  5. Debris and pool formation/heat transfer in FARO-LWR: experiments and analyses

    International Nuclear Information System (INIS)

    Magallon, D.; Annunziato, A.; Corradini, M.

    1999-01-01

    The FARO-LWR experiments examine the debris and pool formation from a pour of core melt materials (UO 2 /ZrO 2 and UO 2 /ZrO 2 /Zr) into a pool of water at prototypic accident conditions. The experiments give unique data on the debris bed initial conditions, morphology and heat transfer after the core melt has slump and (partly) quenched into the water of the lower head. Quantities of up to 170 kg of corium melt are poured by gravity into water of depth between 1 and 2 m through a nozzle of diameter 0.1 m at different system pressures. The debris is collected in a flat bottom catcher of diameter 0.66 m. It reaches heights up to 0.2 m depending on the melt quantity. In general, the melt reaches the bottom only partially fragmented. The debris which forms consists of a conglomerate ('cake') in contact with the collecting structure and overlaying fragments (loose debris). The mean particle size of the loose debris is in the range 3.5 - 4.8 mm. The upper surface of the debris is flat. A gap is present between the cake and the bottom plate. The paper reviews the debris formation and heat transfer to the bottom steel structure from these tests and describes the development of a model to predict the debris and pool formation process. Sensitivity analyses have been performed by the COMETA code to study the behaviour of the ratio between the cake mass and the total mass. (authors)

  6. Mitigating Aviation Communication and Satellite Orbit Operations Surprises from Adverse Space Weather

    Science.gov (United States)

    Tobiska, W. Kent

    2008-01-01

    Adverse space weather affects operational activities in aviation and satellite systems. For example, large solar flares create highly variable enhanced neutral atmosphere and ionosphere electron density regions. These regions impact aviation communication frequencies as well as precision orbit determination. The natural space environment, with its dynamic space weather variability, is additionally changed by human activity. The increase in orbital debris in low Earth orbit (LEO), combined with lower atmosphere CO2 that rises into the lower thermosphere and causes increased cooling that results in increased debris lifetime, adds to the environmental hazards of navigating in near-Earth space. This is at a time when commercial space endeavors are posed to begin more missions to LEO during the rise of the solar activity cycle toward the next maximum (2012). For satellite and aviation operators, adverse space weather results in greater expenses for orbit management, more communication outages or aviation and ground-based high frequency radio used, and an inability to effectively plan missions or service customers with space-based communication, imagery, and data transferal during time-critical activities. Examples of some revenue-impacting conditions and solutions for mitigating adverse space weather are offered.

  7. Remote sensing-based detection and quantification of roadway debris following natural disasters

    Science.gov (United States)

    Axel, Colin; van Aardt, Jan A. N.; Aros-Vera, Felipe; Holguín-Veras, José

    2016-05-01

    Rapid knowledge of road network conditions is vital to formulate an efficient emergency response plan following any major disaster. Fallen buildings, immobile vehicles, and other forms of debris often render roads impassable to responders. The status of roadways is generally determined through time and resource heavy methods, such as field surveys and manual interpretation of remotely sensed imagery. Airborne lidar systems provide an alternative, cost-effective option for performing network assessments. The 3D data can be collected quickly over a wide area and provide valuable insight about the geometry and structure of the scene. This paper presents a method for automatically detecting and characterizing debris in roadways using airborne lidar data. Points falling within the road extent are extracted from the point cloud and clustered into individual objects using region growing. Objects are classified as debris or non-debris using surface properties and contextual cues. Debris piles are reconstructed as surfaces using alpha shapes, from which an estimate of debris volume can be computed. Results using real lidar data collected after a natural disaster are presented. Initial results indicate that accurate debris maps can be automatically generated using the proposed method. These debris maps would be an invaluable asset to disaster management and emergency response teams attempting to reach survivors despite a crippled transportation network.

  8. Towards the integration of orbital space use in Life Cycle Impact Assessment.

    Science.gov (United States)

    Maury, Thibaut; Loubet, Philippe; Ouziel, Jonathan; Saint-Amand, Maud; Dariol, Ludovic; Sonnemann, Guido

    2017-10-01

    A rising sustainability concern is occurring in the space sector: 29,000 human-made objects, larger than 10cm are orbiting the Earth but only 6% are operational spacecrafts. Today, space debris is today a significant and constant danger to all space missions. Consequently, it becomes compelled to design new space missions considering End-of-Life requirements in order to ensure the sustainable use of space orbits. Furthermore, Life Cycle Assessment (LCA) has been identified by the European Space Agency as an adequate tool to measure the environmental impact of spacecraft missions. Hence, our challenge is to integrate orbital space use into Life Cycle Impact Assessment (LCIA) to broaden the scope of LCA for space systems. The generation of debris in the near-Earth's orbital regions leads to a decrease in volume availability. The Area-of-Protection (AoP) 'resources' seems to be the most relevant reflection of this depletion. To address orbital space use in a comprehensive way, we propose a first attempt at establishing an impact pathway linking outer space use to resources. This framework will be the basis for defining new indicator(s) related to orbital space use. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Assessment of apically extruded debris produced by the self-adjusting file system.

    Science.gov (United States)

    De-Deus, Gustavo André; Nogueira Leal Silva, Emmanuel João; Moreira, Edson Jorge; de Almeida Neves, Aline; Belladonna, Felipe Gonçalves; Tameirão, Michele

    2014-04-01

    This study was designed to quantitatively evaluate the amount of apically extruded debris by the Self-Adjusting-File system (SAF; ReDent-Nova, Ra'anana, Israel). Hand and rotary instruments were used as references for comparison. Sixty mesial roots of mandibular molars were randomly assigned to 3 groups (n = 20). The root canals were instrumented with hand files using a crown-down technique. The ProTaper (Dentsply Maillefer, Ballaigues, Switzerland) and SAF systems were used according to the manufacturers' instructions. Sodium hypochlorite was used as an irrigant, and the apically extruded debris was collected in preweighted glass vials and dried afterward. The mean weight of debris was assessed with a microbalance and statistically analyzed using 1-way analysis of variance and the post hoc Tukey multiple comparison test. Hand file instrumentation produced significantly more debris compared with the ProTaper and SAF systems (P system produced significantly more debris compared with the SAF system (P systems caused apical debris extrusion. SAF instrumentation was associated with less debris extrusion compared with the use of hand and rotary files. Copyright © 2014 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  10. Development of built-in debris-filter bottom nozzle for PWR fuel assemblies

    International Nuclear Information System (INIS)

    Juntaro Shimizu; Kazuki Monaka; Masaji Mori; Kazuo Ikeda

    2005-01-01

    Mitsubishi Heavy Industries, Ltd. (MHI) has worked to improve the capability of anti debris bottom nozzle for a PWR fuel assembly. The Current debris filter bottom nozzle (DFBN) having 4mm diameter flow holes can capture the larger size of debris than the flow hole inner diameter. MHI has completed the development of the built-in debris filter bottom nozzle, which is the new idea of the debris-filter for high burnup (55GWd/t assembly average burnup). Built-in debris filter bottom nozzle consists of the blades and nozzle body. The blades made from inconel strip are embedded and welded on the grooved top surface of the bottom nozzle adapter plate. A flow hole is divided by the blade and the trap size of the debris is reduced. Because the blades block the coolant flow, it was anticipated to increase the pressure loss of the nozzle, however, adjusting the relation between blade and taper shape of the flow hole, the pressure loss has been successfully maintained the satisfactory level. Grooves are cut on the nozzle plate; nevertheless, the additional skirts on the four sides of the nozzle compensate the structural strength. (authors)

  11. Supraglacial Ponds Regulate Runoff From Himalayan Debris-Covered Glaciers

    Science.gov (United States)

    Irvine-Fynn, Tristram D. L.; Porter, Philip R.; Rowan, Ann V.; Quincey, Duncan J.; Gibson, Morgan J.; Bridge, Jonathan W.; Watson, C. Scott; Hubbard, Alun; Glasser, Neil F.

    2017-12-01

    Meltwater and runoff from glaciers in High Mountain Asia is a vital freshwater resource for one-fifth of the Earth's population. Between 13% and 36% of the region's glacierized areas exhibit surface debris cover and associated supraglacial ponds whose hydrological buffering roles remain unconstrained. We present a high-resolution meltwater hydrograph from the extensively debris-covered Khumbu Glacier, Nepal, spanning a 7 month period in 2014. Supraglacial ponds and accompanying debris cover modulate proglacial discharge by acting as transient and evolving reservoirs. Diurnally, the supraglacial pond system may store >23% of observed mean daily discharge, with mean recession constants ranging from 31 to 108 h. Given projections of increased debris cover and supraglacial pond extent across High Mountain Asia, we conclude that runoff regimes may become progressively buffered by the presence of supraglacial reservoirs. Incorporation of these processes is critical to improve predictions of the region's freshwater resource availability and cascading environmental effects downstream.

  12. Mechanical properties of fuel debris for defueling toward decommissioning

    International Nuclear Information System (INIS)

    Hoshino, Takanori; Kitagaki, Toru; Yano, Kimihiko; Okamura, Nobuo; Koizumi, Kenji; Ohara, Hiroshi; Fukasawa, Tetsuo

    2015-01-01

    In the decommissioning of the Fukushima Daiichi Nuclear Power Plant (1F), safe and steady defueling work is required. Before defueling 1F, it is necessary to evaluate fuel debris for properties related to the defueling procedure and technology. While defueling after the Three Mile Island Nuclear Power Plant Unit 2 (TMI-2) accident, a core boring system played an important role. Considering the working principle of core boring, hardness, elastic modulus, and fracture toughness were found to be important fuel debris properties that had a profound effect on the performance of the boring machine. It is speculated that uranium and zirconium oxide solid solution ((U,Zr)O_2) is one of the major materials of fuel debris in 1F, according to the TMI-2 accident experience and the results of past severe accident studies. In addition, the Zr content of 1F fuel debris is expected to be higher than that of TMI-2 debris, because the 1F reactors were boiling-water reactor (BWR). In this report, the mechanical properties of (U,Zr)O_2 are evaluated in the ZrO_2 content range from 10% to 65%. The hardness, elastic modulus, and fracture toughness were measured by Vickers test, ultrasonic pulse echo method, and indentation fracture method, respectively. In the ZrO_2 content range under 50%, the Vickers hardness and fracture toughness of (U,Zr)O_2 increased, and the elastic modulus decreased slightly with ZrO_2 content. In the case of 55% and 65% ZrO_2, all of those measures increased slightly with ZrO_2 content. Summarizing those results, ZrO_2 content affects mechanical properties significantly in the case of low ZrO_2 content. Higher Zr content (exceeding 50%) has little effect on mechanical properties. In the future, nonradioactive surrogate debris will be necessary for small-scale functional and large-scale mockup tests of various defueling technologies. These results are useful to select the material for surrogate debris. (author)

  13. Salmonella Species' Persistence and Their High Level of Antimicrobial Resistance in Flooded Man-Made Rivers in China.

    Science.gov (United States)

    Song, Qifa; Zhang, Danyang; Gao, Hong; Wu, Junhua

    2018-05-11

    Man-made rivers, owing to proximity to human habitats, facilitate transmission of salmonellosis to humans. To determine the contamination situation by Salmonella in flooded man-made rivers and thereafter the exposure risk to public health, we investigated the prevalence of Salmonella species and their antimicrobial resistance in such rivers, as well as the relationship between the incidence of local infectious diarrhea cases and the number of Salmonella isolates from patients. After a heavy flood, 95 isolates of 13 Salmonella serotypes were isolated from 80 river water samples. The two most prevalent serotypes were Typhimurium and Derby. Eight Salmonella serotypes were newly detected after the flood. Overall, 50 isolates were resistant to ampicillin and/or cefotaxime and carried at least bla TEM . Twelve isolates of serotypes Typhimurium, Derby, Rissen, and Indiana were extended-spectrum β-lactamase (ESBL) producing and carried at least one of bla OXA and bla CTX-M-like genes. Twelve isolates of serotypes Typhimurium, Derby, Agona, Rissen, and Indiana were resistant to ciprofloxacin and had gyrA mutations. Isolates of Typhimurium, Derby, and Indiana were concurrently ciprofloxacin resistant and ESBL producing. Pulsed-field gel electrophoresis illustrates the circulation of two dominant clones of Salmonella Typhimurium isolates among patients, river, and food. High prevalence of various highly pathogenic and antimicrobial-resistant Salmonella serotypes shows that man-made rivers are prone to heavy contamination with Salmonella, and as a result put public health at greater risk.

  14. Pleistocene cohesive debris flows at Nevado de Toluca Volcano, central Mexico

    Science.gov (United States)

    Capra, L.; Macías, J. L.

    2000-10-01

    During the Pleistocene, intense hydrothermal alteration promoted a flank failure of the southern portion of Nevado de Toluca volcano. This event produced a debris avalanche that transformed into a cohesive debris flow (Pilcaya deposit) owing to water saturation and weakness of the altered pre-avalanche rocks. The Pilcaya debris flow traveled along a narrow tectonic depression up to a distance of 40 km and then spread over a flat plain reaching up to 55 km from the volcano summit. This transition zone corresponds with a sudden break in slope from 5 to 0.5° that caused a rapid reduction in velocity and thickening of the flow that consequently reduced its competence to transport large particles. The resulting deposit thickens from 15 to 40 m, and contains boulders up to 15 m in diameter that form hummocky morphology close to the transitional zone. Sometime after the emplacement of the Pilcaya debris flow, heavy rains and superficial drainage contributed to remobilize the upper portions of the deposit causing two secondary lahars. These debris flows called El Mogote, traveled up to 75 km from the volcano. The edifice collapse generated lahars with a total volume of 2.8 km3 that devastated an approximate area of 250 km2. The area versus volume plot for both deposits shows that the magnitude of the event is comparable to other cohesive debris flows such as the Teteltzingo lahar (Pico de Orizaba, Mexico) and the Osceola mudflow (Mount Rainier, Wa). The Pilcaya debris flow represents additional evidence of debris flow transformed from a flank failure, a potentially devastating phenomenon that could threaten distant areas from the volcano previously considered without risk.

  15. Transporting fuel debris from TMI-2 to INEL

    International Nuclear Information System (INIS)

    Quinn, G.J.; Burton, H.M.; Bixby, W.W.; McIntosh, T.W.; McGoff, O.J.; Barkonic, R.J.; Henrie, J.O.

    1986-06-01

    Transportation of the damaged fuel from Unit 2 of Three Mile Island (TMI-2) presented noteworthy technical challenges involving complex institutional issues. The program resulted from both a need to package and remove the accident debris and also the opportunity to receive and study damaged core components. These combined to establish the safe transport of the TMI-2 fuel debris as a high priority for many diverse organizations. The capability of the sending and receiving facilities to handle spent fuel transport casks in the most cost-effective manner was assessed and resulted in the development by Nuclear Packaging Inc. (NuPac) of the NuPac 125-B rail cask. This paper reviews the technical challenges in preparation of the TMI-2 core debris for transport from TMI-2 to the Idaho National Engineering Laboratory (INEL) and receipt and storage of that material at INEL. Challenges discussed include design and testing of fuel debris canisters; design, fabrication and licensing of a new rail cask for spent fuel transport; cask loading operations, equipment and facilities at TMI-2; transportation logistics; and, receipt, storage and core examination operations at INEL. 10 refs

  16. Clearance of concrete debris generated from modification work of JRR-3

    International Nuclear Information System (INIS)

    Satoyama, Tomonori; Nanri, Tomohiro; Kishimoto, Katsumi

    2014-01-01

    The Japan Atomic Energy Agency (JAEA) planned to apply the clearance system to slightly contaminated concrete debris with radionuclides, which was generated from the modification of the Japan Research Reactor No. 3 (JRR-3) in the Nuclear Science Research Institute (NSRI) of JAEA. The modification work was conducted from 1985 to 1990 and the generated concrete debris has been stored as radioactive waste in interim storage facilities in the NSRI. This is the Japanese first approved of clearance system to concrete debris and stored waste. We established procedures for measuring and evaluating the radioactivity concentration of scored concrete debris. In 2008, the authority approved these procedures for clearance. Since 2009, we have been measuring and evaluating the radioactivity concentration of concrete debris, using the approved procedures. By the end of 2012, the authority had confirmed the correctness of our measurement and evaluation results on about 2,600 tons of concrete debris. About 1,800 tons of those cleared concrete were recycled to flat surface subsidence in the NSRI caused by the Great East Japan Earthquake, and also used as base material to construct new buildings and parking lots in the NSRI. (author)

  17. Quantities of arsenic-treated wood in demolition debris generated by Hurricane Katrina.

    Science.gov (United States)

    Dubey, Brajesh; Solo-Gabriele, Helena M; Townsendt, Timothy G

    2007-03-01

    The disaster debris from Hurricane Katrina is one of the largest in terms of volume and economic loss in American history. One of the major components of the demolition debris is wood waste of which a significant proportion is treated with preservatives, including preservatives containing arsenic. As a result of the large scale destruction of treated wood structures such as electrical poles, fences, decks, and homes a considerable amount of treated wood and consequently arsenic will be disposed as disaster debris. In this study an effort was made to estimate the quantity of arsenic disposed through demolition debris generated in the Louisiana and Mississippi area through Hurricane Katrina. Of the 72 million cubic meters of disaster debris generated, roughly 12 million cubic meters were in the form of construction and demolition wood resulting in an estimated 1740 metric tons of arsenic disposed. Management of disaster debris should consider the relatively large quantities of arsenic associated with pressure-treated wood.

  18. Fault-tolerant feature-based estimation of space debris rotational motion during active removal missions

    Science.gov (United States)

    Biondi, Gabriele; Mauro, Stefano; Pastorelli, Stefano; Sorli, Massimo

    2018-05-01

    One of the key functionalities required by an Active Debris Removal mission is the assessment of the target kinematics and inertial properties. Passive sensors, such as stereo cameras, are often included in the onboard instrumentation of a chaser spacecraft for capturing sequential photographs and for tracking features of the target surface. A plenty of methods, based on Kalman filtering, are available for the estimation of the target's state from feature positions; however, to guarantee the filter convergence, they typically require continuity of measurements and the capability of tracking a fixed set of pre-defined features of the object. These requirements clash with the actual tracking conditions: failures in feature detection often occur and the assumption of having some a-priori knowledge about the shape of the target could be restrictive in certain cases. The aim of the presented work is to propose a fault-tolerant alternative method for estimating the angular velocity and the relative magnitudes of the principal moments of inertia of the target. Raw data regarding the positions of the tracked features are processed to evaluate corrupted values of a 3-dimentional parameter which entirely describes the finite screw motion of the debris and which primarily is invariant on the particular set of considered features of the object. Missing values of the parameter are completely restored exploiting the typical periodicity of the rotational motion of an uncontrolled satellite: compressed sensing techniques, typically adopted for recovering images or for prognostic applications, are herein used in a completely original fashion for retrieving a kinematic signal that appears sparse in the frequency domain. Due to its invariance about the features, no assumptions are needed about the target's shape and continuity of the tracking. The obtained signal is useful for the indirect evaluation of an attitude signal that feeds an unscented Kalman filter for the estimation of

  19. A Ballistic Limit Analysis Program for Shielding Against Micrometeoroids and Orbital Debris

    Science.gov (United States)

    Ryan, Shannon; Christiansen, Erie

    2010-01-01

    A software program has been developed that enables the user to quickly and simply perform ballistic limit calculations for common spacecraft structures that are subject to hypervelocity impact of micrometeoroid and orbital debris (MMOD) projectiles. This analysis program consists of two core modules: design, and; performance. The design module enables a user to calculate preliminary dimensions of a shield configuration (e.g., thicknesses/areal densities, spacing, etc.) for a ?design? particle (diameter, density, impact velocity, incidence). The performance module enables a more detailed shielding analysis, providing the performance of a user-defined shielding configuration over the range of relevant in-orbit impact conditions.

  20. In vitro Comparison of Debris Removal Using Various Adjunct Irrigation Devices

    Science.gov (United States)

    2016-06-09

    treatment of apical periodontitis is the goal of endodontic therapy (1). In order to facilitate this goal, the removal of debris and, even more...importantly, the removal of bacteria from the root canal system is necessary (2,3). Debris consists of dentin shavings, toxins, residual pulp tissue...accessory canals, fins, and deltas can all provide ideal locations for harboring both debris and bacteria (6). Mechanical instrumentation, although

  1. Fission-product releases from a PHWR terminal debris bed

    Energy Technology Data Exchange (ETDEWEB)

    Brown, M.J.; Bailey, D.G., E-mail: morgan.brown@cnl.ca [Canadian Nuclear Laboratories, Chalk River, Ontario (Canada)

    2016-06-15

    During an unmitigated severe accident in a pressurized heavy water reactor (PHWR) with horizontal fuel channels, the core may disassemble and relocate to the bottom of the calandria vessel. The resulting heterogeneous in-vessel terminal debris bed (TDB) would likely be quenched by any remaining moderator, and some of the decay heat would be conducted through the calandria vessel shell to the surrounding reactor vault or shield tank water. As the moderator boiled off, the solid debris bed would transform into a more homogeneous molten corium pool located between top and bottom crusts. Until recently, the severe accident code MAAP-CANDU assumed that unreleased volatile and semi-volatile fission products remained in the TDB until after calandria vessel failure, due to low diffusivity through the top crust and the lack of gases or steam to flush released fission products from the debris. However, national and international experimental results indicate this assumption is unlikely; instead, high- and medium-volatility fission products would be released from a molten debris pool, and their volatility and transport should be taken into account in TDB modelling. The resulting change in the distribution of fission products within the reactor and containment, and the associated decay heat, can have significant effects upon the progression of the accident and fission-product releases to the environment. This article describes a postulated PHWR severe accident progression to generate a TDB and the effects of fission-product releases from the terminal debris, using the simple release model in the MAAP-CANDU severe accident code. It also provides insights from various experimental programs related to fission-product releases from core debris, and their applicability to the MAAP-CANDU TDB model. (author)

  2. The effect of self-leveling on debris bed coolability under severe accident conditions

    Energy Technology Data Exchange (ETDEWEB)

    Basso, S.; Konovalenko, A. [Division of Nuclear Power Safety, Royal Institute of Technology (KTH), Roslagstullsbacken 21, D5, Stockholm 106 91 (Sweden); Yakush, S.E. [Institute for Problems in Mechanics of the Russian Academy of Sciences, Ave. Vernadskogo 101 Bldg 1, Moscow 119526 (Russian Federation); Kudinov, P. [Division of Nuclear Power Safety, Royal Institute of Technology (KTH), Roslagstullsbacken 21, D5, Stockholm 106 91 (Sweden)

    2016-08-15

    Highlights: • A model for coolability of a self-leveling, variable-shape debris bed is proposed. • Sensitivity analysis is performed to screen out the less influential input parameters. • A small fraction of scenarios has initially a non-coolable debris bed configuration. • The fraction of non-coolable scenarios decreases with time due to self-leveling. - Abstract: Nordic-type boiling water reactors employ melt fragmentation, quenching, and long term cooling of the debris bed in a deep pool of water under the reactor vessel as a severe accident (SA) mitigation strategy. The height and shape of the bed are among the most important factors that determine if decay heat can be removed from the porous debris bed by natural circulation of water. The debris bed geometry depends on its formation process (melt release, fragmentation, sedimentation and settlement on the containment basemat), but it also changes with time afterwards, due to particle redistribution promoted by coolant flow (self-leveling). The ultimate goal of this work is to develop an approach to the assessment of the probability that debris in such a variable-shape bed can reach re-melting (which means failure of SA mitigation strategy), i.e. the time necessary for the slumping debris bed to reach a coolable configuration is larger than the time necessary for the debris to reach the re-melting temperature. For this purpose, previously developed models for particulate debris spreading by self-leveling and debris bed dryout are combined to assess the time necessary to reach a coolable state and evaluate its uncertainty. Sensitivity analysis was performed to screen out less important input parameters, after which Monte Carlo simulation was carried out in order to collect statistical characteristics of the coolability time. The obtained results suggest that, given the parameters ranges typical of Nordic BWRs, only a small fraction of debris beds configurations exhibits the occurrence of dryout. Of the

  3. Sedimentology, Behavior, and Hazards of Debris Flows at Mount Rainier, Washington

    Science.gov (United States)

    Scott, K.M.; Vallance, J.W.; Pringle, P.T.

    1995-01-01

    Mount Rainier is potentially the most dangerous volcano in the Cascade Range because of its great height, frequent earthquakes, active hydrothermal system, and extensive glacier mantle. Many debris flows and their distal phases have inundated areas far from the volcano during postglacial time. Two types of debris flows, cohesive and noncohesive, have radically different origins and behavior that relate empirically to clay content. The two types are the major subpopulations of debris flows at Mount Rainier. The behavior of cohesive flows is affected by the cohesion and adhesion of particles; noncohesive flows are dominated by particle collisions to the extent that particle cataclasis becomes common during near-boundary shear. Cohesive debris flows contain more than 3 to 5 percent of clay-size sediment. The composition of these flows changed little as they traveled more than 100 kilometers from Mount Rainier to inundate parts of the now-populated Puget Sound lowland. They originate as deep-seated failures of sectors of the volcanic edifice, and such failures are sufficiently frequent that they are the major destructional process of Mount Rainier's morphologic evolution. In several deposits of large cohesive flows, a lateral, megaclast-bearing facies (with a mounded or hummocky surface) contrasts with a more clay-rich facies in the center of valleys and downstream. Cohesive flows at Mount Rainier do not correlate strongly with volcanic activity and thus can recur without warning, possibly triggered by non-magmatic earthquakes or by changes in the hydrothermal system. Noncohesive debris flows contain less than 3 to 5 percent clay-size sediment. They form most commonly by bulking of sediment in water surges, but some originate directly or indirectly from shallow slope failures that do not penetrate the hydrothermally altered core of the volcano. In contrast with cohesive flows, most noncohesive flows transform both from and to other flow types and are, therefore, the

  4. The Outer Space Treaty

    Science.gov (United States)

    Johnson, Christopher Daniel

    2018-01-01

    celestial bodies. Subsequent treaties were to refine these concepts, and national space legislation was to incorporate the treaty's rights and obligations at the national level. While the treaty is the cornerstone in the regulation of activities in outer space, today the emergence of new issues that were not contemplated at the time of its creation, such as small satellites and megaconstellations, satellite servicing missions, the problem of space debris and the possibility of space debris removal, and the use of lunar and asteroid resources, all stretch the coherence and continuing adequacy of the treaty, and may occasion the need for new governance frameworks.

  5. Risk Analysis Reveals Global Hotspots for Marine Debris Ingestion by Sea Turtles

    Science.gov (United States)

    Schuyler, Q. A.; Wilcox, C.; Townsend, K.; Wedemeyer-Strombel, K.; Balazs, G.; van Sebille, E.; Hardesty, B. D.

    2016-02-01

    Plastic marine debris pollution is rapidly becoming one of the critical environmental concerns facing wildlife in the 21st century. Here we present a risk analysis for plastic ingestion by sea turtles on a global scale. We combined global marine plastic distributions based on ocean drifter data with sea turtle habitat maps to predict exposure levels to plastic pollution. Empirical data from necropsies of deceased animals were then utilised to assess the consequence of exposure to plastics. We modelled the risk (probability of debris ingestion) by incorporating exposure to debris and consequence of exposure, and included life history stage, species of sea turtle, and date of stranding observation as possible additional explanatory factors. Life history stage is the best predictor of debris ingestion, but the best-fit model also incorporates encounter rates within a limited distance from stranding location, marine debris predictions specific to the date of the stranding study, and turtle species. There was no difference in ingestion rates between stranded turtles vs. those caught as bycatch from fishing activity, suggesting that stranded animals are not a biased representation of debris ingestion rates in the background population. Oceanic life-stage sea turtles are at the highest risk of debris ingestion, and olive ridley turtles are the most at-risk species. The regions of highest risk to global sea turtle populations are off of the east coasts of the USA, Australia, and South Africa; the east Indian Ocean, and Southeast Asia. Model results can be used to predict the number of sea turtles globally at risk of debris ingestion. Based on currently available data, initial calculations indicate that up to 52% of sea turtles may have ingested debris.

  6. Young Debris Disks With Newly Discovered Emission Features

    Science.gov (United States)

    Ballering, N.

    2014-04-01

    We analyzed the Spitzer/IRS spectra of young A and F stars that host debris disks with previously unidentified silicate emission features. Such features probe small, warm dust grains in the inner regions of these young systems where terrestrial planet formation may be proceeding (Lisse et al. 2009). For most systems, these regions are too near their host star to be directly seen with high-contrast imaging and too warm to be imaged with submillimeter interferometers. Mid-infrared excess spectra - originating from the thermal emission of the debris disk dust - remain the best data to constrain the properties of the debris in these regions. For each target, we fit physically-motivated model spectra to the data. Typical spectra of unresolved debris disks are featureless and suffer severe degeneracies between the dust location and the grain properties; however, spectra with solid-state emission features provide significantly more information, allowing for a more accurate determination of the dust size, composition, and location (e.g. Chen et al. 2006; Olofsson et al. 2012). Our results shed light on the dynamic properties occurring in the terrestrial regions of these systems. For instance, the sizes of the smallest grains and the nature of the grain size distribution reveal whether the dust originates from steady-state collisional cascades or from stochastic collisions. The properties of the dust grains - such as their crystalline or amorphous structure - can inform us of grain processing mechanisms in the disk. The location of this debris illuminates where terrestrial planet forming activity is occurring. We used results from the Beta Pictoris - which has a well-resolved debris disk with emission features (Li et al. 2012) - to place our results in context. References: Chen et al. 2006, ApJS, 166, 351 Li et al. 2012, ApJ, 759, 81 Lisse et al. 2009, ApJ, 701, 2019 Olofsson et al. 2012, A&A, 542, A90

  7. MOLECULAR GAS IN YOUNG DEBRIS DISKS

    International Nuclear Information System (INIS)

    Moor, A.; Abraham, P.; Kiss, Cs.; Juhasz, A.; Kospal, A.; Pascucci, I.; Apai, D.; Henning, Th.; Csengeri, T.; Grady, C.

    2011-01-01

    Gas-rich primordial disks and tenuous gas-poor debris disks are usually considered as two distinct evolutionary phases of the circumstellar matter. Interestingly, the debris disk around the young main-sequence star 49 Ceti possesses a substantial amount of molecular gas and possibly represents the missing link between the two phases. Motivated to understand the evolution of the gas component in circumstellar disks via finding more 49 Ceti-like systems, we carried out a CO J = 3-2 survey with the Atacama Pathfinder EXperiment, targeting 20 infrared-luminous debris disks. These systems fill the gap between primordial and old tenuous debris disks in terms of fractional luminosity. Here we report on the discovery of a second 49 Ceti-like disk around the 30 Myr old A3-type star HD21997, a member of the Columba Association. This system was also detected in the CO(2-1) transition, and the reliable age determination makes it an even clearer example of an old gas-bearing disk than 49 Ceti. While the fractional luminosities of HD21997 and 49 Ceti are not particularly high, these objects seem to harbor the most extended disks within our sample. The double-peaked profiles of HD21997 were reproduced by a Keplerian disk model combined with the LIME radiative transfer code. Based on their similarities, 49 Ceti and HD21997 may be the first representatives of a so far undefined new class of relatively old (∼>8 Myr), gaseous dust disks. From our results, neither primordial origin nor steady secondary production from icy planetesimals can unequivocally explain the presence of CO gas in the disk of HD21997.

  8. Plastic debris in the open ocean

    KAUST Repository

    Cozar, Andres

    2014-06-30

    There is a rising concern regarding the accumulation of floating plastic debris in the open ocean. However, the magnitude and the fate of this pollution are still open questions. Using data from the Malaspina 2010 circumnavigation, regional surveys, and previously published reports, we show a worldwide distribution of plastic on the surface of the open ocean, mostly accumulating in the convergence zones of each of the five subtropical gyres with comparable density. However, the global load of plastic on the open ocean surface was estimated to be on the order of tens of thousands of tons, far less than expected. Our observations of the size distribution of floating plastic debris point at important size-selective sinks removing millimeter-sized fragments of floating plastic on a large scale. This sink may involve a combination of fast nano-fragmentation of the microplastic into particles of microns or smaller, their transference to the ocean interior by food webs and ballasting processes, and processes yet to be discovered. Resolving the fate of the missing plastic debris is of fundamental importance to determine the nature and significance of the impacts of plastic pollution in the ocean.

  9. Plastic debris in the open ocean.

    Science.gov (United States)

    Cózar, Andrés; Echevarría, Fidel; González-Gordillo, J Ignacio; Irigoien, Xabier; Ubeda, Bárbara; Hernández-León, Santiago; Palma, Alvaro T; Navarro, Sandra; García-de-Lomas, Juan; Ruiz, Andrea; Fernández-de-Puelles, María L; Duarte, Carlos M

    2014-07-15

    There is a rising concern regarding the accumulation of floating plastic debris in the open ocean. However, the magnitude and the fate of this pollution are still open questions. Using data from the Malaspina 2010 circumnavigation, regional surveys, and previously published reports, we show a worldwide distribution of plastic on the surface of the open ocean, mostly accumulating in the convergence zones of each of the five subtropical gyres with comparable density. However, the global load of plastic on the open ocean surface was estimated to be on the order of tens of thousands of tons, far less than expected. Our observations of the size distribution of floating plastic debris point at important size-selective sinks removing millimeter-sized fragments of floating plastic on a large scale. This sink may involve a combination of fast nano-fragmentation of the microplastic into particles of microns or smaller, their transference to the ocean interior by food webs and ballasting processes, and processes yet to be discovered. Resolving the fate of the missing plastic debris is of fundamental importance to determine the nature and significance of the impacts of plastic pollution in the ocean.

  10. Plastic debris in the open ocean

    Science.gov (United States)

    Cózar, Andrés; Echevarría, Fidel; González-Gordillo, J. Ignacio; Irigoien, Xabier; Úbeda, Bárbara; Hernández-León, Santiago; Palma, Álvaro T.; Navarro, Sandra; García-de-Lomas, Juan; Ruiz, Andrea; Fernández-de-Puelles, María L.; Duarte, Carlos M.

    2014-01-01

    There is a rising concern regarding the accumulation of floating plastic debris in the open ocean. However, the magnitude and the fate of this pollution are still open questions. Using data from the Malaspina 2010 circumnavigation, regional surveys, and previously published reports, we show a worldwide distribution of plastic on the surface of the open ocean, mostly accumulating in the convergence zones of each of the five subtropical gyres with comparable density. However, the global load of plastic on the open ocean surface was estimated to be on the order of tens of thousands of tons, far less than expected. Our observations of the size distribution of floating plastic debris point at important size-selective sinks removing millimeter-sized fragments of floating plastic on a large scale. This sink may involve a combination of fast nano-fragmentation of the microplastic into particles of microns or smaller, their transference to the ocean interior by food webs and ballasting processes, and processes yet to be discovered. Resolving the fate of the missing plastic debris is of fundamental importance to determine the nature and significance of the impacts of plastic pollution in the ocean. PMID:24982135

  11. Mechanics of debris flows and rock avalanches: Chapter 43

    Science.gov (United States)

    Iverson, Richard M.; Fernando, Harindra Joseph

    2012-01-01

    Debris flows are geophysical phenomena intermediate in character between rock avalanches and flash floods. They commonly originate as water-laden landslides on steep slopes and transform into liquefied masses of fragmented rock, muddy water, and entrained organic matter that disgorge from canyons onto valley floors. Typically including 50%–70% solid grains by volume, attaining speeds >10 m/s, and ranging in size up to ∼109 m3, debris flows can denude mountainsides, inundate floodplains, and devastate people and property (Figure 43.1). Notable recent debris-flow disasters resulted in more than 20,000 fatalities in Armero, Colombia, in 1985 and in Vargas state, Venezuela, in 1999.

  12. Emerging insights into the dynamics of submarine debris flows

    Directory of Open Access Journals (Sweden)

    A. Elverhøi

    2005-01-01

    Full Text Available Recent experimental and theoretical work on the dynamics of submarine debris flows is summarized. Hydroplaning was first discovered in laboratory flows and later shown to likely occur in natural debris flows as well. It is a prime mechanism for explaining the extremely long runout distances observed in some natural debris flows even of over-consolidated clay materials. Moreover, the accelerations and high velocities reached by the flow head in a short time appear to fit well with the required initial conditions of observed tsunamis as obtained from back-calculations. Investigations of high-speed video recordings of laboratory debris flows were combined with measurements of total and pore pressure. The results are pointing towards yet another important role of ambient water: Water that intrudes from the water cushion underneath the hydroplaning head and through cracks in the upper surface of the debris flow may drastically soften initially stiff clayey material in the 'neck' of the flow, where significant stretching occurs due to the reduced friction at the bottom of the hydroplaning head. This self-reinforcing process may lead to the head separating from the main body and becoming an 'outrunner' block as clearly observed in several natural debris flows. Comparison of laboratory flows with different material composition indicates a gradual transition from hydroplaning plug flows of stiff clay-rich material, with a very low suspension rate, to the strongly agitated flow of sandy materials that develop a pronounced turbidity current. Statistical analysis of the great number of distinguishable lobes in the Storegga slide complex reveals power-law scaling behavior of the runout distance with the release mass over many orders of magnitude. Mathematical flow models based on viscoplastic material behavior (e.g. BING successfully reproduce the observed scaling behavior only for relatively small clay-rich debris flows while granular (frictional models

  13. ORDEM 3.0 and MASTER-2009 Modeled Small Debris Population Comparison

    Science.gov (United States)

    Krisko, P. H.; Flegel, S.

    2014-01-01

    The latest versions of the two premier orbital debris engineering models, NASA's ORDEM 3.0 and ESA's MASTER-2009, have been publically released. Both models have gone through significant advancements since inception, and now represent the state-of-the-art in orbital debris knowledge of their respective agencies. The purpose of these models is to provide satellite designers/operators and debris researchers with reliable estimates of the artificial debris environment in low Earth orbit (LEO) to geosynchronous orbit (GEO). The small debris environment within the size range of 1 mm to 1 cm is of particular interest to both human and robotic spacecraft programs, particularly in LEO. These objects are much more numerous than larger trackable debris and can have enough momentum to cause significant, if not catastrophic, damage to spacecraft upon impact. They are also small enough to elude routine detection by existing observation systems (radar and telescope). Without reliable detection the modeling of these populations has always coupled theoretical origins with supporting observational data in different degrees. In this paper, we present and detail the 1 mm to 1 cm orbital debris populations from both ORDEM 3.0 and MASTER-2009 in LEO. We review population categories: particle sources for MASTER-2009, particle densities for ORDEM 3.0. We describe data sources and their uses, and supporting models. Fluxes on spacecraft for chosen orbits are also presented and discussed within the context of each model.

  14. Functions and Requirements for Debris Removal System-Project A.2

    International Nuclear Information System (INIS)

    PRECECHTEL, D.R.

    1999-01-01

    This revision of the Functions and Requirements Document updates the approved Functions and Requirements for Debris Removal Subproject WHC-SD-SNF-FRD-009, Rev. 0. It has been revised in its entirety to reflect the current scope of work for Debris Removal as canisters and lids under the K Basin Projects work breakdown structure (WBS). In this revision the canisters and lids will be consider debris and a new set of Functions and Requirements have been developed to remove the canisters and lids from the basin

  15. Reduced sulfur compounds in gas from construction and demolition debris landfills.

    Science.gov (United States)

    Lee, Sue; Xu, Qiyong; Booth, Matthew; Townsend, Timothy G; Chadik, Paul; Bitton, Gabriel

    2006-01-01

    The biological conversion of sulfate from disposed gypsum drywall to hydrogen sulfide (H(2)S) in the anaerobic environment of a landfill results in odor problems and possible health concerns at many disposal facilities. To examine the extent and magnitude of such emissions, landfill gas samples from wells, soil vapor samples from the interface of the waste and cover soil, and ambient air samples, were collected from 10 construction and demolition (C&D) debris landfills in Florida and analyzed for H(2)S and other reduced sulfur compounds (RSC). H(2)S was detected in the well gas and soil vapor at all 10 sites. The concentrations in the ambient air above the surface of the landfill were much lower than those observed in the soil vapor, and no direct correlation was observed between the two sampling locations. Methyl mercaptan and carbonyl sulfide were the most frequently observed other RSC, though they occurred at smaller concentrations than H(2)S. This research confirmed the presence of H(2)S at C&D debris landfills. High concentrations of H(2)S may be a concern for employees working on the landfill site. These results indicate that workers should use proper personal protection at C&D debris landfills when involved in excavation, landfill gas collection, or confined spaces. The results indicate that H(2)S is sufficiently diluted in the atmosphere to not commonly pose acute health impacts for these landfill workers in normal working conditions. H(2)S concentrations were extremely variable with measurements occurring over a very large range (from less than 3 ppbv to 12,000 ppmv in the soil vapor and from less than 3 ppbv to 50 ppmv in ambient air). Possible reasons for the large intra- and inter-site variability observed include waste and soil heterogeneities, impact of weather conditions, and different site management practices.

  16. Apparatus for controlling molten core debris

    International Nuclear Information System (INIS)

    Golden, M.P.; Tilbrook, R.W.; Heylmun, N.F.

    1972-01-01

    Disclosed is an apparatus for containing, cooling, diluting, dispersing and maintaining subcritical the molten core debris assumed to melt through the bottom of a nuclear reactor pressure vessel in the unlikely event of a core meltdown. The apparatus is basically a sacrificial bed system which includes an inverted conical funnel, a core debris receptacle including a spherical dome, a spherically layered bed of primarily magnesia bricks, a cooling system of zig-zag piping in graphite blocks about and below the bed and a cylindrical liner surrounding the graphite blocks including a steel shell surrounded by firebrick. Tantalum absorber rods are used in the receptacle and bed. 9 claims, 22 figures

  17. Wildfire impacts on the processes that generate debris flows in burned watersheds

    Science.gov (United States)

    Parise, M.; Cannon, S.H.

    2012-01-01

    Every year, and in many countries worldwide, wildfires cause significant damage and economic losses due to both the direct effects of the fires and the subsequent accelerated runoff, erosion, and debris flow. Wildfires can have profound effects on the hydrologic response of watersheds by changing the infiltration characteristics and erodibility of the soil, which leads to decreased rainfall infiltration, significantly increased overland flow and runoff in channels, and movement of soil. Debris-flow activity is among the most destructive consequences of these changes, often causing extensive damage to human infrastructure. Data from the Mediterranean area and Western United States of America help identify the primary processes that result in debris flows in recently burned areas. Two primary processes for the initiation of fire-related debris flows have been so far identified: (1) runoff-dominated erosion by surface overland flow; and (2) infiltration-triggered failure and mobilization of a discrete landslide mass. The first process is frequently documented immediately post-fire and leads to the generation of debris flows through progressive bulking of storm runoff with sediment eroded from the hillslopes and channels. As sediment is incorporated into water, runoff can convert to debris flow. The conversion to debris flow may be observed at a position within a drainage network that appears to be controlled by threshold values of upslope contributing area and its gradient. At these locations, sufficient eroded material has been incorporated, relative to the volume of contributing surface runoff, to generate debris flows. Debris flows have also been generated from burned basins in response to increased runoff by water cascading over a steep, bedrock cliff, and incorporating material from readily erodible colluvium or channel bed. Post-fire debris flows have also been generated by infiltration-triggered landslide failures which then mobilize into debris flows. However

  18. Review of the Technical Status on the Debris Bed Cooling Model

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Eui Kwang; Cho, Chung Ho; Lee, Yong Bum

    2007-09-15

    Preliminary safety analyses of the KALIMER-600 design have shown that the design has inherent safety characteristics and is capable of accommodating double-fault initiators such as ATWS events without coolant boiling or fuel melting. However, for the future design of sodium cooled fast reactor, the evaluation of the safety performance and the determination of containment requirements may be worth due consideration of triple-fault accident sequences of extremely low probability of occurrence that leads to core melting. For any postulated accident sequence which leads to core melting, in-vessel retention of the core debris will be required as a design requirement for the future design of sodium cooled fast reactor. Also, proof of the capacity of the debris bed cooling is an essential condition to solve the problem of in-vessel retention of the core debris. In this study, review of the technical status on the debris bed cooling model was carried out for in-vessel retention of the core debris0.

  19. Review of the Technical Status on the Debris Bed Cooling Model

    International Nuclear Information System (INIS)

    Kim, Eui Kwang; Cho, Chung Ho; Lee, Yong Bum

    2007-09-01

    Preliminary safety analyses of the KALIMER-600 design have shown that the design has inherent safety characteristics and is capable of accommodating double-fault initiators such as ATWS events without coolant boiling or fuel melting. However, for the future design of sodium cooled fast reactor, the evaluation of the safety performance and the determination of containment requirements may be worth due consideration of triple-fault accident sequences of extremely low probability of occurrence that leads to core melting. For any postulated accident sequence which leads to core melting, in-vessel retention of the core debris will be required as a design requirement for the future design of sodium cooled fast reactor. Also, proof of the capacity of the debris bed cooling is an essential condition to solve the problem of in-vessel retention of the core debris. In this study, review of the technical status on the debris bed cooling model was carried out for in-vessel retention of the core debris

  20. Radar rainfall estimation for the identification of debris-flow precipitation thresholds

    Science.gov (United States)

    Marra, Francesco; Nikolopoulos, Efthymios I.; Creutin, Jean-Dominique; Borga, Marco

    2014-05-01

    Identification of rainfall thresholds for the prediction of debris-flow occurrence is a common approach for warning procedures. Traditionally the debris-flow triggering rainfall is derived from the closest available raingauge. However, the spatial and temporal variability of intense rainfall on mountainous areas, where debris flows take place, may lead to large uncertainty in point-based estimates. Nikolopoulos et al. (2014) have shown that this uncertainty translates into a systematic underestimation of the rainfall thresholds, leading to a step degradation of the performances of the rainfall threshold for identification of debris flows occurrence under operational conditions. A potential solution to this limitation lies on use of rainfall estimates from weather radar. Thanks to their high spatial and temporal resolutions, these estimates offer the advantage of providing rainfall information over the actual debris flow location. The aim of this study is to analyze the value of radar precipitation estimations for the identification of debris flow precipitation thresholds. Seven rainfall events that triggered debris flows in the Adige river basin (Eastern Italian Alps) are analyzed using data from a dense raingauge network and a C-Band weather radar. Radar data are elaborated by using a set of correction algorithms specifically developed for weather radar rainfall application in mountainous areas. Rainfall thresholds for the triggering of debris flows are identified in the form of average intensity-duration power law curves using a frequentist approach by using both radar rainfall estimates and raingauge data. Sampling uncertainty associated to the derivation of the thresholds is assessed by using a bootstrap technique (Peruccacci et al. 2012). Results show that radar-based rainfall thresholds are largely exceeding those obtained by using raingauge data. Moreover, the differences between the two thresholds may be related to the spatial characteristics (i.e., spatial