WorldWideScience

Sample records for maneuvering reentry vehicle

  1. Reentry Vehicle Flight Controls Design Guidelines: Dynamic Inversion

    Science.gov (United States)

    Ito, Daigoro; Georgie, Jennifer; Valasek, John; Ward, Donald T.

    2002-01-01

    This report addresses issues in developing a flight control design for vehicles operating across a broad flight regime and with highly nonlinear physical descriptions of motion. Specifically it addresses the need for reentry vehicles that could operate through reentry from space to controlled touchdown on Earth. The latter part of controlled descent is achieved by parachute or paraglider - or by all automatic or a human-controlled landing similar to that of the Orbiter. Since this report addresses the specific needs of human-carrying (not necessarily piloted) reentry vehicles, it deals with highly nonlinear equations of motion, and then-generated control systems must be robust across a very wide range of physics. Thus, this report deals almost exclusively with some form of dynamic inversion (DI). Two vital aspects of control theory - noninteracting control laws and the transformation of nonlinear systems into equivalent linear systems - are embodied in DI. Though there is no doubt that the mathematical tools and underlying theory are widely available, there are open issues as to the practicality of using DI as the only or primary design approach for reentry articles. This report provides a set of guidelines that can be used to determine the practical usefulness of the technique.

  2. Neural Dynamic Trajectory Design for Reentry Vehicles (Preprint)

    National Research Council Canada - National Science Library

    Verma, Ajay; Xu, Peng; Vadakkeveedu, Kalyan; Mayer, Rick

    2007-01-01

    The next generation of reentry vehicles is envisioned to have onboard autonomous capability of real-time trajectory planning to provide capability of responsive launch and delivering payload anywhere...

  3. Flight Performance of the Inflatable Reentry Vehicle Experiment 3

    Science.gov (United States)

    Dillman, Robert; DiNonno, John; Bodkin, Richard; Gsell, Valerie; Miller, Nathanael; Olds, Aaron; Bruce, Walter

    2013-01-01

    The Inflatable Reentry Vehicle Experiment 3 (IRVE-3) launched July 23, 2012, from NASA Wallops Flight Facility (WFF) on a Black Brant XI suborbital sounding rocket and successfully performed its mission, demonstrating the survivability of a hypersonic inflatable aerodynamic decelerator (HIAD) in the reentry heating environment and also illustrating the effect of an offset center of gravity on the HIAD's lift-to-drag ratio. IRVE-3 was a follow-on to 2009's IRVE-II mission, which demonstrated exo-atmospheric inflation, reentry survivability - without significant heating - and the aerodynamic stability of a HIAD down to subsonic flight conditions. NASA Langley Research Center is leading the development of HIAD technology for use on future interplanetary and Earth reentry missions.

  4. High performance modeling of atmospheric re-entry vehicles

    International Nuclear Information System (INIS)

    Martin, Alexandre; Scalabrin, Leonardo C; Boyd, Iain D

    2012-01-01

    Re-entry vehicles designed for space exploration are usually equipped with thermal protection systems made of ablative material. In order to properly model and predict the aerothermal environment of the vehicle, it is imperative to account for the gases produced by ablation processes. In the case of charring ablators, where an inner resin is pyrolyzed at a relatively low temperature, the composition of the gas expelled into the boundary layer is complex and may lead to thermal chemical reactions that cannot be captured with simple flow chemistry models. In order to obtain better predictions, an appropriate gas flow chemistry model needs to be included in the CFD calculations. Using a recently developed chemistry model for ablating carbon-phenolic-in-air species, a CFD calculation of the Stardust re-entry at 71 km is presented. The code used for that purpose has been designed to take advantage of the nature of the problem and therefore remains very efficient when a high number of chemical species are involved. The CFD result demonstrates the need for such chemistry model when modeling the flow field around an ablative material. Modeling of the nonequilibrium radiation spectra is also presented, and compared to the experimental data obtained during Stardust re-entry by the Echelle instrument. The predicted emission from the CN lines compares quite well with the experimental results, demonstrating the validity of the current approach.

  5. Automated scheme to determine design parameters for a recoverable reentry vehicle

    International Nuclear Information System (INIS)

    Williamson, W.E.

    1976-01-01

    The NRV (Nosetip Recovery Vehicle) program at Sandia Laboratories is designed to recover the nose section from a sphere cone reentry vehicle after it has flown a near ICBM reentry trajectory. Both mass jettison and parachutes are used to reduce the velocity of the RV near the end of the trajectory to a sufficiently low level that the vehicle may land intact. The design problem of determining mass jettison time and parachute deployment time in order to ensure that the vehicle does land intact is considered. The problem is formulated as a min-max optimization problem where the design parameters are to be selected to minimize the maximum possible deviation in the design criteria due to uncertainties in the system. The results of the study indicate that the optimal choice of the design parameters ensures that the maximum deviation in the design criteria is within acceptable bounds. This analytically ensures the feasibility of recovery for NRV

  6. Reentry analysis

    International Nuclear Information System (INIS)

    Biehl, F.A.

    1984-05-01

    This paper presents the criteria, previous nuclear experience in space, analysis techniques, and possible breakup enhancement devices applicable to an acceptable SP-100 reentry from space. Reactor operation in nuclear-safe orbit will minimize the radiological risk; the remaining safeguards criteria need to be defined. A simple analytical point mass reentry technique and a more comprehensive analysis method that considers vehicle dynamics and orbit insertion malfunctions are presented. Vehicle trajectory, attitude, and possible breakup enhancement devices will be integrated in the simulation as required to ensure an adequate representation of the reentry process

  7. In-Flight Imaging Systems for Hypervelocity and Re-Entry Vehicles, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — It is proposed to create a rugged, reliable, compact, standardized imaging system for hypervelocity and re-entry vehicles using sapphire windows, small imagers, and...

  8. IXV re-entry demonstrator: Mission overview, system challenges and flight reward

    Science.gov (United States)

    Angelini, Roberto; Denaro, Angelo

    2016-07-01

    The Intermediate eXperimental Vehicle (IXV) is an advanced re-entry demonstrator vehicle aimed to perform in-flight experimentation of atmospheric re-entry enabling systems and technologies. The IXV integrates key technologies at the system level, with significant advancements on Europe's previous flying test-beds. The project builds on previous achievements at system and technology levels, and provides a unique and concrete way of establishing and consolidating Europe's autonomous position in the strategic field of atmospheric re-entry. The IXV mission and system objectives are the design, development, manufacturing, assembling and on-ground to in-flight verification of an autonomous European lifting and aerodynamically controlled reentry system, integrating critical re-entry technologies at system level. Among such critical technologies of interest, special attention is paid to aerodynamic and aerothermodynamics experimentation, including advanced instrumentation for aerothermodynamics phenomena investigations, thermal protections and hot-structures, guidance, navigation and flight control through combined jets and aerodynamic surfaces (i.e. flaps), in particular focusing on the technologies integration at system level for flight. Following the extensive detailed design, manufacturing, qualification, integration and testing of the flight segment and ground segment elements, IXV has performed a full successful flight on February 11th 2015. After the launch with the VEGA launcher form the CSG spaceport in French Guyana, IXV has performed a full nominal mission ending with a successful splashdown in the Pacific Ocean. During Flight Phase, the IXV space and ground segments worked perfectly, implementing the whole flight program in line with the commanded maneuvers and trajectory prediction, performing an overall flight of 34.400 km including 7.600 km with hot atmospheric re-entry in automatic guidance, concluding with successful precision landing at a distance of ~1

  9. Aerothermodynamics of generic re-entry vehicle with a series of aerospikes at nose

    Science.gov (United States)

    Yadav, Rajesh; Velidi, Gurunadh; Guven, Ugur

    2014-03-01

    Re-entry of a blunt nosed vehicle is one of the most intriguing problems in any space programme. Especially in light of various space tourism possibilities, there are many works concerning re-entry of commercial blunt nosed space vehicles. In this paper, a generic blunt body re-entry model represented by a hemisphere-cylinder, fitted axisymmetrically with an aerodisk aerospike at the nose is investigated numerically with commercially available control volume based axisymmetric flow solver. The scaled down re-entry model has a base diameter of 40 mm and an overall length of 100 mm. A 6 mm diameter aerospike fitted axisymmetrically at the nose has a hemispherical cap from which another aerospike of 4 mm diameter protrudes which again has a hemispherical cap. Two dimensional compressible, axisymmetric Navier Stokes Equations are solved for a turbulent hypersonic flow of a 5 species, chemically reacting air in thermal equilibrium with free stream conditions of Mach no., static pressure and temperature of 10.1, 16,066 Pa and 216.65 K, respectively. The results are compared with that of re-entry model without any aerospike. Among the cases investigated, the spiked blunt body having two aerospikes in series with lengths l1 and l2 equal to 30 and 20 respectively and overall length-to-diameter ratio of 1.5 showed a favourable reduction in the peak reattachment heat flux along with high reduction in aerodynamic drag and thus stands as a prospective case for blunt body nose configuration for hypersonic flight.

  10. Improved MPSP Method-based Cooperative Re-entry Guidance for Hypersonic Gliding Vehicles

    Directory of Open Access Journals (Sweden)

    Chu Haiyan

    2017-01-01

    Full Text Available A computationally sufficient technique is used to solve the 3-D cooperative re-entry guidance problem for hypersonic gliding vehicles. Due to the poor surrounding adaptive ability of the traditional cooperative guidance methods, a novel methodology, named as model predictive static programming (MPSP, is used to solve a class of finite-horizon optimal control problems with hard terminal constraints. The main feature of this guidance law is that it is capable of hitting the target with high accuracy for each one of the cooperative vehicles at the same time. In addition, it accurately satisfies variable constraints. Performance of the proposed MPSP-based guidance is demonstrated in 3-D nonlinear dynamics scenario. The numerical simulation results show that the proposed cooperative re-entry guidance methodology has the advantage of computational efficiency and better robustness against the perturbations.

  11. Linear quadratic regulator design for an unpowered, winged re-entry vehicle

    NARCIS (Netherlands)

    Mooij, E.

    1998-01-01

    This report describes the design of an attitude controller for an unpowered, winged re-entry vehicle. The decoupling of the symmetric and asymmetric motion makes it possible to design two separate controllers, one for the pitch mot ion and one for the lateral motion. The design of the controller, a

  12. Ceramic Adhesive and Methods for On-Orbit Repair of Re-Entry Vehicles

    Science.gov (United States)

    Riedell, James A.; Easler, Timothy E.

    2013-01-01

    This adhesive is capable of repairing damaged leading edge components of reentry vehicles while in space, and is novel with regard to its ability to be applied in the vacuum of space, and in a microgravity environment. Once applied, the adhesive provides thermal and oxidation protection to the substrate (in this case, reinforced carbon/carbon composites, RCCs) during re-entry of a space vehicle. Although there may be many formulations for repair adhesives, at the time of this reporting, this is the first known adhesive capable of an on-orbit repair. The adhesive is an engineered ceramic material composed of a pre-ceramic polymer and refractory powders in the form of a paste or putty that can be applied to a scratched, cracked, or fractured composite surface, covering and protecting the damaged area. The adhesive is then "cured" with a heat cycle, thereby cross-linking the polymer into a hardened material and bonding it to the substrate. During the heat of reentry, the material is converted to a ceramic coating that provides thermal and oxidative stability to the repaired area, thus allowing the vehicle to pass safely from space into the upper atmosphere. Ceramic powders such as SiC, ZrB2 and Y2O3 are combined with allylhydridopolycarbosilane (AHPCS) resin, and are mixed to form a paste adhesive. The material is then applied to the damaged area by brush, spatula, trowel, or other means to fill cracks, gaps, and holes, or used to bond patches onto the damaged area. The material is then cured, in a vacuum, preferably at 250F (approximately equal to 121C) for two hours. The re-entry heating of the vehicle at temperatures in excess of 3,000F (approximately equal to 1,650C) then converts this material into a ceramic coating. This invention has demonstrated advantages in resistance to high temperatures, as was demonstrated in more than 100 arc-jet tests in representative environments at NASA. Extensive testing verified oxidation protection for the repaired substrate (RCC

  13. Pre-flight physical simulation test of HIMES reentry test vehicle

    Science.gov (United States)

    Kawaguchi, Jun'ichiro; Inatani, Yoshifumi; Yonemoto, Koichi; Hosokawa, Shigeru

    ISAS is now developing a small reentry test vehicle, which is 2m long with a 1.5m wing span and weighs about 170 kg, for the purpose of exploring high angle-of-attack aerodynamic attitude control issue in supersonic and hypersonic speed. The flight test, employing 'Rockoon' launch system, is planned as a preliminary design verification for a fully reusable winged rocket named HIMES (Highly Maneuverable Experimental Space) vehicle. This paper describes the results of preflight ground test using a motion table system. This ground system test is called 'physical simulation' aimed at: (1) functional verification of side-jet system, aerodynamic surface actuators, battery and onboard avionics; and (2) guidance and control law evaluation, in total hardware-in-the-loop system. The pressure of side-jet nozzles was measured to provide exact thrust characteristics of reaction control. The dynamics of vehicle motion was calculated in real-time by the ground simulation computer.

  14. Observer-based attitude controller for lifting re-entry vehicle with non-minimum phase property

    Directory of Open Access Journals (Sweden)

    Wenming Nie

    2017-05-01

    Full Text Available This article concentrates on the attitude control problem for the lifting re-entry vehicle with non-minimum phase property. A novel attitude control method is proposed for this kind of lifting re-entry vehicle without assuming the internal dynamics to be measurable. First, an internal dynamics extended state observer is developed to deal with the unmeasurable problem of the internal dynamics. And then, the control scheme which adopts output feedback method is proposed by modifying the traditional output redefinition technique with internal dynamics extended state observer. This control scheme only requires the system output to be measurable, and it can still stabilize the unstable internal dynamics and track attitude commands. Besides, because of the inherent property of extended state observer in rejecting uncertainties and disturbances, the control precision of the proposed controller is higher than the controller designed with traditional output redefinition technique. Finally, the effectiveness and robustness of the proposed attitude controller are demonstrated by the simulation results.

  15. Application of light-initiated explosive for simulating x-ray blowoff impulse effects on a full scale reentry vehicle

    International Nuclear Information System (INIS)

    Benham, R.A.; Mathews, F.H.; Higgins, P.B.

    1976-01-01

    Laboratory nuclear effects testing allows the study of reentry vehicle response to simulated exoatmospheric x-ray encounters. Light-initiated explosive produces the nearly simultaneous impulse loading of a structure by using a spray painted coating of explosive which is detonated by an intense flash of light. A lateral impulse test on a full scale reentry vehicle is described which demonstrates that the light-initiated explosive technique can be extended to the lateral loading of very large systems involving load discontinuities. This experiment required the development of a diagnostic method for verifying the applied impulse, and development of a large light source for simultaneously initiating the explosive over the surface of the vehicle. Acceptable comparison between measured strain response and code predictions is obtained. The structural capability and internal response of a vehicle subjected to an x-ray environment was determined from a light-initiated explosive test

  16. Project, Aerodynamic, Thermal and Ballistic Analysis of a Lifting-Body Reentry Vehicle

    Directory of Open Access Journals (Sweden)

    A. N. Eliseev

    2015-01-01

    Full Text Available The objective of this article is to assess the prospects for an increasingly maneuverable reentry vehicle (RV of class "lifting body". In this regard, a project aerodynamic thermal and ballistic analysis has been conducted and the results have been compared with some well-known projects of the RV of the same class, made both in our country and abroad.The project analysis begins with finding a position of the "lifting body" vehicle in the classification system. Said classification distribution allows correct formulation of requirements for the conceptual structure of an aerospace vehicle at the initial stage of design in terms of system positions, since just the initial phase of the design often determines the success of the whole program.Then the paper compares design characteristics of the RV of class "lifting body" with vehicles such as X-15 rocket plane, the orbiter "Space Shuttle», M2-F2, HL-10, SV-5, and NASP "Hermes". It also gives a comparative estimate of the "lifting body" RV mass in a wide range of dimensions. The paper shows the sustainability of various landing complexes with reference to the Russian experience in developing the RV " Soyuz", and the conditions for using the vehicles of class "lifting body" in space programs.The aerodynamic analysis uses method for the approximate Newtonian theory to calculate aerodynamic characteristics of the perspective RV of class "lifting body" in the hypersonic descent phase. To obtain the desired aerodynamic performance and reduce balancing weight is contemplated a possibility to provide balance by introducing additional boards. The ballistic analysis considers four modes of descent:1. zero roll descent;2. maximum cross-range descent without restriction;3. maximum cross-range descent with restriction of maximum overload and maximum temperature;4. ballistic descent.To calculate the RV ballistic characteristics a system of equations of the vehicle motion in the atmosphere is used. The vehicle

  17. Designing a Fuzzy Logic Controller to Enhance Directional Stability of Vehicles under Difficult Maneuvers

    OpenAIRE

    Mehrdad N. Khajavi; Golamhassan Paygane; Ali Hakima

    2009-01-01

    Vehicle which are turning or maneuvering at high speeds are susceptible to sliding and subsequently deviate from desired path. In this paper the dynamics governing the Yaw/Roll behavior of a vehicle has been simulated. Two different simulations have been used one for the real vehicle, for which a fuzzy controller is designed to increase its directional stability property. The other simulation is for a hypothetical vehicle with much higher tire cornering stiffness which is ca...

  18. Estimation of left-turning vehicle maneuvers for the assessment of pedestrian safety at intersections

    Directory of Open Access Journals (Sweden)

    Wael K.M. Alhajyaseen

    2012-07-01

    Full Text Available Improving pedestrian safety at intersections remains a critical issue. Although several types of safety countermeasures, such as reforming intersection layouts, have been implemented, methods have not yet been established to quantitatively evaluate the effects of these countermeasures before installation. One of the main issues in pedestrian safety is conflicts with turning vehicles. This study aims to develop an integrated model to represent the variations in the maneuvers of left-turners (left-hand traffic at signalized intersections that dynamically considers the vehicle reaction to intersection geometry and crossing pedestrians. The proposed method consists of four empirically developed stochastic sub-models, including a path model, free-flow speed profile model, lag/gap acceptance model, and stopping/clearing speed profile model. Since safety assessment is the main objective driving the development of the proposed model, this study uses post-encroachment time (PET and vehicle speed at the crosswalk as validation parameters. Preliminary validation results obtained by Monte Carlo simulation show that the proposed integrated model can realistically represent the variations in vehicle maneuvers as well as the distribution of PET and vehicle speeds at the crosswalk.

  19. An Analytical Solution for Yaw Maneuver Optimization on the International Space Station and Other Orbiting Space Vehicles

    Science.gov (United States)

    Dobrinskaya, Tatiana

    2015-01-01

    This paper suggests a new method for optimizing yaw maneuvers on the International Space Station (ISS). Yaw rotations are the most common large maneuvers on the ISS often used for docking and undocking operations, as well as for other activities. When maneuver optimization is used, large maneuvers, which were performed on thrusters, could be performed either using control moment gyroscopes (CMG), or with significantly reduced thruster firings. Maneuver optimization helps to save expensive propellant and reduce structural loads - an important factor for the ISS service life. In addition, optimized maneuvers reduce contamination of the critical elements of the vehicle structure, such as solar arrays. This paper presents an analytical solution for optimizing yaw attitude maneuvers. Equations describing pitch and roll motion needed to counteract the major torques during a yaw maneuver are obtained. A yaw rate profile is proposed. Also the paper describes the physical basis of the suggested optimization approach. In the obtained optimized case, the torques are significantly reduced. This torque reduction was compared to the existing optimization method which utilizes the computational solution. It was shown that the attitude profiles and the torque reduction have a good match for these two methods of optimization. The simulations using the ISS flight software showed similar propellant consumption for both methods. The analytical solution proposed in this paper has major benefits with respect to computational approach. In contrast to the current computational solution, which only can be calculated on the ground, the analytical solution does not require extensive computational resources, and can be implemented in the onboard software, thus, making the maneuver execution automatic. The automatic maneuver significantly simplifies the operations and, if necessary, allows to perform a maneuver without communication with the ground. It also reduces the probability of command

  20. 75 FR 75621 - Office of Commercial Space Transportation; Waiver of Autonomous Reentry Restriction for a Reentry...

    Science.gov (United States)

    2010-12-06

    ... Dragon's reentry to Earth is in the public interest and will not jeopardize public health and safety... proposes that the FAA permit the autonomous reentry of a healthy Dragon at the nominal landing location in...; (2) the vehicle has the ability to autonomously guide itself to the same pre-determined landing site...

  1. Active disturbance rejection attitude control for a hypersonic reentry vehicle with actuator saturation

    Directory of Open Access Journals (Sweden)

    Hongjiu Yang

    2017-05-01

    Full Text Available In this article, nonlinear uncertainty has been investigated for a hypersonic reentry vehicle subject to actuator saturation via active disturbance rejection control technology. A nonlinear extended state observer is designed to estimate “total disturbances,” which is compensated with a linear controller. Both convergence of the nonlinear extended state observer and stabilization of the closed-loop system are studied in this article. Some simulation results are given to illustrate the effectiveness of the proposed method.

  2. Correlation between crash avoidance maneuvers and injury severity sustained by motorcyclists in single-vehicle crashes.

    Science.gov (United States)

    Wang, Chen; Lu, Linjun; Lu, Jian; Wang, Tao

    2016-01-01

    In order to improve motorcycle safety, this article examines the correlation between crash avoidance maneuvers and injury severity sustained by motorcyclists, under multiple precrash conditions. Ten-year crash data for single-vehicle motorcycle crashes from the General Estimates Systems (GES) were analyzed, using partial proportional odds models (i.e., generalized ordered logit models). The modeling results show that "braking (no lock-up)" is associated with a higher probability of increased severity, whereas "braking (lock-up)" is associated with a higher probability of decreased severity, under all precrash conditions. "Steering" is associated with a higher probability of reduced injury severity when other vehicles are encroaching, whereas it is correlated with high injury severity under other conditions. "Braking and steering" is significantly associated with a higher probability of low severity under "animal encounter and object presence," whereas it is surprisingly correlated with high injury severity when motorcycles are traveling off the edge of the road. The results also show that a large number of motorcyclists did not perform any crash avoidance maneuvers or conducted crash avoidance maneuvers that are significantly associated with high injury severity. In general, this study suggests that precrash maneuvers are an important factor associated with motorcyclists' injury severity. To improve motorcycle safety, training/educational programs should be considered to improve safety awareness and adjust driving habits of motorcyclists. Antilock brakes and such systems are also promising, because they could effectively prevent brake lock-up and assist motorcyclists in maneuvering during critical conditions. This study also provides valuable information for the design of motorcycle training curriculum.

  3. Maneuver Analysis and Targeting Strategy for the Stardust Re-Entry Capsule

    Science.gov (United States)

    Helfrich, Cliff; Bhat, Ramachand S.; Kangas, Julie A.; Wilson, Roby S.; Wong, Mau C.; Potts, Christopher L.; Williams, Kenneth E.

    2006-01-01

    The Stardust Sample Return Capsule (SRC) returned to Earth on January 15, 2006 after seven years of collecting interstellar and comet particles over three heliocentric revolutions, as shown in Figure 1. The SRC was carried on board the Stardust spacecraft, as shown in Figure 2. Because the spacecraft was built with unbalanced thrusters, turns and attitude control maintenance resulted in undesirable delta-v being imparted to the trajectory. As a result, a carefully planned maneuver strategy was devised to accurately target the Stardust capsule to the Utah Test and Training Range (UTTR). This paper provides an overview of the Stardust spacecraft and mission and describes the maneuver strategy that was employed to achieve the stringent targeting requirements for landing in Utah. In addition, an overview of Stardust maneuver analysis tools and techniques will also be presented.

  4. Inflatable Re-Entry Vehicle Experiment (IRVE) Design Overview

    Science.gov (United States)

    Hughes, Stephen J.; Dillman, Robert A.; Starr, Brett R.; Stephan, Ryan A.; Lindell, Michael C.; Player, Charles J.; Cheatwood, F. McNeil

    2005-01-01

    Inflatable aeroshells offer several advantages over traditional rigid aeroshells for atmospheric entry. Inflatables offer increased payload volume fraction of the launch vehicle shroud and the possibility to deliver more payload mass to the surface for equivalent trajectory constraints. An inflatable s diameter is not constrained by the launch vehicle shroud. The resultant larger drag area can provide deceleration equivalent to a rigid system at higher atmospheric altitudes, thus offering access to higher landing sites. When stowed for launch and cruise, inflatable aeroshells allow access to the payload after the vehicle is integrated for launch and offer direct access to vehicle structure for structural attachment with the launch vehicle. They also offer an opportunity to eliminate system duplication between the cruise stage and entry vehicle. There are however several potential technical challenges for inflatable aeroshells. First and foremost is the fact that they are flexible structures. That flexibility could lead to unpredictable drag performance or an aerostructural dynamic instability. In addition, durability of large inflatable structures may limit their application. They are susceptible to puncture, a potentially catastrophic insult, from many possible sources. Finally, aerothermal heating during planetary entry poses a significant challenge to a thin membrane. NASA Langley Research Center and NASA's Wallops Flight Facility are jointly developing inflatable aeroshell technology for use on future NASA missions. The technology will be demonstrated in the Inflatable Re-entry Vehicle Experiment (IRVE). This paper will detail the development of the initial IRVE inflatable system to be launched on a Terrier/Orion sounding rocket in the fourth quarter of CY2005. The experiment will demonstrate achievable packaging efficiency of the inflatable aeroshell for launch, inflation, leak performance of the inflatable system throughout the flight regime, structural

  5. An electromagnetic method for removing the communication blackout with a space vehicle upon re-entry into the atmosphere

    Science.gov (United States)

    Cheng, Jianjun; Jin, Ke; Kou, Yong; Hu, Ruifeng; Zheng, Xiaojing

    2017-03-01

    When a hypersonic vehicle travels in the Earth and Mars atmosphere, the surface of the vehicle is surrounded by a plasma layer, which is an envelope of ionized air, created from the compression and heat of the atmosphere by the shock wave. The vehicles will lose contact with ground stations known as the reentry communication blackout. Based on the magnetohydrodynamic framework and electromagnetic wave propagation theory, an analytical model is proposed to describe the effect of the effectiveness of electromagnetic mitigation scheme on removing the reentry communication blackout. C and Global Positioning System (GPS) bands, two commonly used radio bands for communication, are taken as the cases to discuss the effectiveness of the electromagnetic field mitigation scheme. The results show that the electron density near the antenna of vehicles can be reduced by the electromagnetic field, and the required external magnetic field strength is far below the one in the magnetic window method. The directions of the external electric field and magnetic field have a significant impact on the effectiveness of the mitigation scheme. Furthermore, the effect of electron collisions on the required applied electromagnetic field is discussed, and the result indicates that electron collisions are a key factor to analyze the electromagnetic mitigation scheme. Finally, the feasible regions of the applied electromagnetic field for eliminating blackout are given. These investigations could have a significant benefit on the design and optimization of electromagnetic mitigation scheme for the blackout problem.

  6. Study of the Use of a Terminal Controller Technique for Reentry Guidance of a Capsule-Type Vehicle

    Science.gov (United States)

    Foudriat, Edwin C.

    1961-01-01

    A study has been made of the use o f a terminal controller technique i n the guidance of a high-drag, variable-lift reentry vehicle to a desired landing point. The technique uses linearized equations of motion attained by the perturbation of the dependent variables from those of a reference trajectory. The guidance system continuously predicts the terminal range error and uses this error to control the angle of attack of the vehicle in an on-off manner until the predicted range error is within +-O.1 degrees of the required arc or +-6.9 miles.

  7. On Motion Planning for Point-to-Point Maneuvers for a Class of Sailing Vehicles

    DEFF Research Database (Denmark)

    Xiao, Lin; Jouffroy, Jerome

    2011-01-01

    Despite their interesting dynamic and controllability properties, sailing vehicles have not been much studied in the control community. In this paper, we investigate motion planning of such vehicles. Starting from a simple dynamic model of sailing vessels in one dimension, this paper first...... considers their associated controllability issues, with the so-called no-sailing zone as a starting point, and it links them with a motion planning strategy using two-point boundary value problems as the main mathematical tool. This perspective is then expanded to do point-to-point maneuvers of sailing...

  8. Exploring precrash maneuvers using classification trees and random forests.

    Science.gov (United States)

    Harb, Rami; Yan, Xuedong; Radwan, Essam; Su, Xiaogang

    2009-01-01

    Taking evasive actions vis-à-vis critical traffic situations impending to motor vehicle crashes endows drivers an opportunity to avoid the crash occurrence or at least diminish its severity. This study explores the drivers, vehicles, and environments' characteristics associated with crash avoidance maneuvers (i.e., evasive actions or no evasive actions). Rear-end collisions, head-on collisions, and angle collisions are analyzed separately using decision trees and the significance of the variables on the binary response variable (evasive actions or no evasive actions) is determined. Moreover, the random forests method is employed to rank the importance of the drivers/vehicles/environments characteristics on crash avoidance maneuvers. According to the exploratory analyses' results, drivers' visibility obstruction, drivers' physical impairment, drivers' distraction are associated with crash avoidance maneuvers in all three types of accidents. Moreover, speed limit is associated with rear-end collisions' avoidance maneuvers and vehicle type is correlated with head-on collisions and angle collisions' avoidance maneuvers. It is recommended that future research investigates further the explored trends (e.g., physically impaired drivers, visibility obstruction) using driving simulators which may help in legislative initiatives and in-vehicle technology recommendations.

  9. Reentry response of the lightweight radioisotope heater unit resulting from a Cassini Venus-Venus-Earth-Jupiter gravity assist maneuver accident

    International Nuclear Information System (INIS)

    1996-12-01

    Reentry analyses consisting of ablation response, thermal response and thermal stress response have been conducted on the Lightweight Radioisotope Heater Unit (LWRHU) for Cassini/Venus-Venus-Earth-Jupiter-Gravity-Assist (VVEJGA) reentry conditions. Sequential ablation analyses of the LWRHU aeroshell, and the fuel pellet have been conducted in reentry regimes where the aeroshell has been deemed to fail. The failure criterion for ablation is generally assumed to be recession corresponding to 75% and 100% of the wall thickness. The 75% recession failure criteria allows for uncertainties that result mainly because of the high energies involved in the VVEJGA reentries compared to orbital decay reentries. Risk evaluations should consider the fact that for shallow flight paths the unit may disassemble at high-altitude as a result of ablation or may remain intact with a clad that had been molten. Within the limitations of the methodologies and assumptions of the analyses, the results indicate that: (1) For a side-on stable LWRHU reentry, aeroshell ablation failures occur for all reentry angles. (2)For a side-on spinning LWRHU reentry, aeroshell ablation failures are minimal. (3) For the tumbling LWRHU reentry, the aeroshell survives for most angles. (4) For the thermostructural analyses, using both a 1% and 5% allowable strain, all reentry angles and orientations examined resulted in small localized failures, but aeroshell breach is not predicted for any case. The analyses included in this report concentrate on VVEJGA reentry scenarios. Analyses reported previously have demonstrated that the LWRHU has adequate design margin to survive reentry from orbital decay scenarios and most injection scenarios at speeds up to escape speeds. The exception is a narrow range of flight path angles that produce multiple skip trajectories which may have excessive ablation

  10. F-18 High Alpha Research Vehicle (HARV) parameter identification flight test maneuvers for optimal input design validation and lateral control effectiveness

    Science.gov (United States)

    Morelli, Eugene A.

    1995-01-01

    Flight test maneuvers are specified for the F-18 High Alpha Research Vehicle (HARV). The maneuvers were designed for open loop parameter identification purposes, specifically for optimal input design validation at 5 degrees angle of attack, identification of individual strake effectiveness at 40 and 50 degrees angle of attack, and study of lateral dynamics and lateral control effectiveness at 40 and 50 degrees angle of attack. Each maneuver is to be realized by applying square wave inputs to specific control effectors using the On-Board Excitation System (OBES). Maneuver descriptions and complete specifications of the time/amplitude points define each input are included, along with plots of the input time histories.

  11. The Ariane Transfer Vehicle (ATV) system studies

    Science.gov (United States)

    Thomas, U.; Thirkettle, A.

    1991-08-01

    Two distinct concepts of the Ariane transfer vehicle (ATV) are compared which incorporate existing ATV technology and offer logistics delivery at competitive costs. One concept is based on the Ariane-5 upper stage and the Vehicle Equipment Bay, and the other does not include Ariane-5 functions so that existing upper-stage limitations can be eliminated. Both concepts are required to accomplish the same transport, rendezvous, and berthing maneuvers and allow for controlled destructive reentry. An ATV reference mission is outlined, and key ATV design drivers are listed which include safety requirements, debris protection, and propulsion criteria. The Ariane-5 upgrade is the most cost-effective design although the second design is more operationally efficient. The ATV can potentially be used to relieve the schedule of the shuttle flights required for building the Space Station Freedom.

  12. Passivity analysis for a winged re-entry vehicle

    Energy Technology Data Exchange (ETDEWEB)

    Mooij, E. [Delft University of Technology, Faculty of Aerospace Engineering, Delft (Netherlands)

    2014-12-10

    Application of simple adaptive control (SAC) theory to the design of guidance and control systems for winged re-entry vehicles has been proven successful. To apply SAC to these non-linear and non-stationary systems, it needs to be Almost Strictly Passive (ASP), which is an extension of the Almost Strictly Positive Real (ASPR) condition for linear, time-invariant systems. To fulfill the ASP condition, the controlled, non-linear system has to be minimum-phase (i.e., the zero dynamics is stable), and there is a specific condition for the product of output and input matrix. Earlier studies indicate that even the linearised system is not ASPR. The two problems at hand are: 1) the system is non-minimum phase when flying with zero bank angle, and 2) whenever there is hybrid control, e.g., yaw control is established by combined reaction and aerodynamic control for the major part of flight, the second ASPR condition cannot be met. In this paper we look at both issues, the former related to the guidance system and the latter to the attitude-control system. It is concluded that whenever the nominal bank angle is zero, the passivity conditions can never be met, and guidance should be based on nominal commands and a redefinition of those whenever the error becomes too large. For the remaining part of the trajectory, the passivity conditions are marginally met, but it is proposed to add feedforward compensators to alleviate these conditions. The issue of hybrid control is avoided by redefining the controls with total control moments and adding a so-called control allocator. Deriving the passivity conditions for rotational motion, and evaluating these conditions along the trajectory shows that the (non-linear) winged entry vehicle is ASP. The sufficient conditions to apply SAC for attitude control are thus met.

  13. THE DUBINS TRAVELING SALESMAN PROBLEM WITH CONSTRAINED COLLECTING MANEUVERS

    Directory of Open Access Journals (Sweden)

    Petr Váňa

    2016-11-01

    Full Text Available In this paper, we introduce a variant of the Dubins traveling salesman problem (DTSP that is called the Dubins traveling salesman problem with constrained collecting maneuvers (DTSP-CM. In contrast to the ordinary formulation of the DTSP, in the proposed DTSP-CM, the vehicle is requested to visit each target by specified collecting maneuver to accomplish the mission. The proposed problem formulation is motivated by scenarios with unmanned aerial vehicles where particular maneuvers are necessary for accomplishing the mission, such as object dropping or data collection with sensor sensitive to changes in vehicle heading. We consider existing methods for the DTSP and propose its modifications to use these methods to address a variant of the introduced DTSP-CM, where the collecting maneuvers are constrained to straight line segments.

  14. A FMM-FFT accelerated hybrid volume surface integral equation solver for electromagnetic analysis of re-entry space vehicles

    KAUST Repository

    Yücel, Abdulkadir C.

    2014-07-01

    Space vehicles that re-enter the atmosphere often experience communication blackout. The blackout occurs when the vehicle becomes engulfed in plasma produced by interactions between the vehicle surface and the atmosphere. The plasma often is concentrated in a relatively thin shell around the vehicle, with higher densities near its nose than rear. A less structured, sometimes turbulent plasma wake often trails the vehicle. The plasma shell severely affects the performance of side-mounted antennas as it alters their characteristics (frequency response, gain patterns, axial ratio, and impedance) away from nominal, free-space values, sometimes entirely shielding the antenna from the outside world. The plasma plume/turbulent wake similarly affect the performance of antennas mounted at the back of the vehicle. The electromagnetic characteristics of the thin plasma shell and plume/turbulent wake heavily depend on the type of re-entry trajectory, the vehicle\\'s speed, angles of attack, and chemical composition, as well as environmental conditions. To analyze the antennas\\' performance during blackout and to design robust communication antennas, efficient and accurate simulation tools for charactering the antennas\\' performance along the trajectory are called for.

  15. Application of the FADS system on the Re-entry Module

    Science.gov (United States)

    Zhen, Huang

    2016-07-01

    The aerodynamic model for Flush Air Data Sensing System (FADS) is built based on the surface pressure distribution obtained through the pressure orifices laid on specific positions of the surface,and the flight parameters,such as angle of attack,angle of side-slip,Mach number,free-stream static pressure and dynamic pressure are inferred from the aerodynamic model.The flush air data sensing system (FADS) has been used on several flight tests of aircraft and re-entry vehicle,such as,X-15,space shuttle,F-14,X-33,X-43A and so on. This paper discusses the application of the FADS on the re-entry module with blunt body to obtain high-precision aerodynamic parameters.First of all,a basic theory and operating principle of the FADS is shown.Then,the applications of the FADS on typical aircrafts and re-entry vehicles are described.Thirdly,the application mode on the re-entry module with blunt body is discussed in detail,including aerodynamic simulation,pressure distribution,trajectory reconstruction and the hardware shoule be used,such as flush air data sensing system(FADS),inertial navigation system (INS),data acquisition system,data storage system.Finally,ablunt module re-entry flight test from low earth orbit (LEO) is planned to obtain aerodynamic parameters and amend the aerodynamic model with this FADS system data.The results show that FADS system can be applied widely in re-entry module with blunt bodies.

  16. Displacements of Metallic Thermal Protection System Panels During Reentry

    Science.gov (United States)

    Daryabeigi, Kamran; Blosser, Max L.; Wurster, Kathryn E.

    2006-01-01

    Bowing of metallic thermal protection systems for reentry of a previously proposed single-stage-to-orbit reusable launch vehicle was studied. The outer layer of current metallic thermal protection system concepts typically consists of a honeycomb panel made of a high temperature nickel alloy. During portions of reentry when the thermal protection system is exposed to rapidly varying heating rates, a significant temperature gradient develops across the honeycomb panel thickness, resulting in bowing of the honeycomb panel. The deformations of the honeycomb panel increase the roughness of the outer mold line of the vehicle, which could possibly result in premature boundary layer transition, resulting in significantly higher downstream heating rates. The aerothermal loads and parameters for three locations on the centerline of the windward side of this vehicle were calculated using an engineering code. The transient temperature distributions through a metallic thermal protection system were obtained using 1-D finite volume thermal analysis, and the resulting displacements of the thermal protection system were calculated. The maximum deflection of the thermal protection system throughout the reentry trajectory was 6.4 mm. The maximum ratio of deflection to boundary layer thickness was 0.032. Based on previously developed distributed roughness correlations, it was concluded that these defections will not result in tripping the hypersonic boundary layer.

  17. Effects of Reentry Plasma Sheath on GPS Patch Antenna Polarization Property

    Directory of Open Access Journals (Sweden)

    L. Zhao

    2013-01-01

    Full Text Available A plasma sheath enveloping a reentry vehicle would affect performances of on-board antenna greatly, especially the navigation antennas. This paper studies the effects of reentry plasma sheath on a GPS right-hand circularly polarized (RHCP patch antenna polarization property during a typical reentry process. Utilizing the algorithm of finite integration technique, the polarization characteristic of a GPS antenna coated by a plasma sheath is obtained. Results show that the GPS RHCP patch antenna radiation pattern distortions as well as polarization deteriorations exist during the entire reentry process, and the worst polarization mismatch loss between a GPS antenna and RHCP GPS signal is nearly 3 dB. This paper also indicates that measures should be taken to alleviate the plasma sheath for maintaining the GPS communication during the reentry process.

  18. Mitigating vestibular disturbances during space flight using virtual reality training and reentry vehicle design guidelines

    Science.gov (United States)

    Stroud, Kenneth Joshua

    Seventy to eighty percent of astronauts reportedly exhibit undesirable vestibular disturbances during the first few days of weightlessness, including space motion sickness (SMS) and spatial disorientation (SD). SMS presents a potentially dangerous situation, both because critical piloted tasks such as docking maneuvers and emergency reentry may be compromised, and because of the potential for asphyxiation should an astronaut vomit while wearing a space suit. SD can be provocative for SMS as well as become dangerous during an emergency in which it is critical for an astronaut to move quickly through the vehicle. In the U.S. space program, medication is currently used both for prevention and treatment of SMS. However, this approach has had only moderate success, and the side effects of drowsiness and lack of concentration are undesirable. Research suggests that preflight training in virtual reality devices can simulate certain aspects of microgravity and may prove to be an effective countermeasure for SMS and SD. It was hypothesized that exposing subjects preflight to variable virtual orientations, similar to those encountered during space flight, will reduce the incidence and/or severity of SMS and SD. Results from a study conducted at the NASA Johnson Space Center as part of this research demonstrated that this type of training is effective for reducing motion sickness and improving task performance in potentially disorienting visual surroundings, thus suggesting the possibility that such training may prove an effective countermeasure for SMS, SD and related performance decrements that occur in space flight. In addition to the effects associated with weightlessness, almost all astronauts experience vestibular disturbances associated with gravity-transitions incurred during the return to Earth, which could be exacerbated if traveling in a spacecraft that is designed differently than a conventional aircraft. Therefore, for piloted descent and landing operations

  19. Automated Re-Entry System using FNPEG

    Science.gov (United States)

    Johnson, Wyatt R.; Lu, Ping; Stachowiak, Susan J.

    2017-01-01

    This paper discusses the implementation and simulated performance of the FNPEG (Fully Numerical Predictor-corrector Entry Guidance) algorithm into GNC FSW (Guidance, Navigation, and Control Flight Software) for use in an autonomous re-entry vehicle. A few modifications to FNPEG are discussed that result in computational savings -- a change to the state propagator, and a modification to cross-range lateral logic. Finally, some Monte Carlo results are presented using a representative vehicle in both a high-fidelity 6-DOF (degree-of-freedom) sim as well as in a 3-DOF sim for independent validation.

  20. Linking spatial and dynamic models for traffic maneuvers

    DEFF Research Database (Denmark)

    Olderog, Ernst-Rüdiger; Ravn, Anders Peter; Wisniewski, Rafal

    2015-01-01

    For traffic maneuvers of multiple vehicles on highways we build an abstract spatial and a concrete dynamic model. In the spatial model we show the safety (collision freedom) of lane-change maneuvers. By linking the spatial and dynamic model via suitable refinements of the spatial atoms to distance...

  1. Aerodynamics of the EXPERT Re-Entry Ballistic Vehicle

    Science.gov (United States)

    Kharitonov, A. M.; Adamov, N. P.; Mazhul, I. I.; Vasenyov, L. G.; Zvegintsev, V. I.; Muylaert, J. M.

    2009-01-01

    Since 2002 till now, experimental studies of the EXPERT reentry capsule have been performed in ITAM SB RAS wind tunnels. These studies have been performed in consecutive ISTC project No. 2109, 3151, and currently ongoing project No. 3550. The results of earlier studies in ITAM wind tunnels can be found in [1-4]. The present paper describes new data obtained for the EXPERT model.

  2. Investigation of piloting aids for manual control of hypersonic maneuvers

    Science.gov (United States)

    Raney, David L.; Phillips, Michael R.; Person, Lee H., Jr.

    1995-01-01

    An investigation of piloting aids designed to provide precise maneuver control for an air-breathing hypersonic vehicle is described. Stringent constraints and nonintuitive high-speed flight effects associated with maneuvering in the hypersonic regime raise the question of whether manual control of such a vehicle should even be considered. The objectives of this research were to determine the extent of manual control that is desirable for a vehicle maneuvering in this regime and to identify the form of aids that must be supplied to the pilot to make such control feasible. A piloted real-time motion-based simulation of a hypersonic vehicle concept was used for this study, and the investigation focused on a single representative cruise turn maneuver. Piloting aids, which consisted of an auto throttle, throttle director, autopilot, flight director, and two head-up display configurations, were developed and evaluated. Two longitudinal control response types consisting of a rate-command/attitude-hold system and a load factor-rate/load-factor-hold system were also compared. The complete set of piloting aids, which consisted of the autothrottle, throttle director, and flight director, improved the average Cooper-Harper flying qualities ratings from 8 to 2.6, even though identical inner-loop stability and control augmentation was provided in all cases. The flight director was determined to be the most critical of these aids, and the cruise turn maneuver was unachievable to adequate performance specifications in the absence of this flight director.

  3. A Novel Fenestration Technique for Abdominal Aortic Dissection Membranes Using a Combination of a Needle Re-entry Catheter and the “Cheese-wire” Technique

    International Nuclear Information System (INIS)

    Kos, Sebastian; Gürke, Lorenz; Jacob, Augustinus L.

    2011-01-01

    Purpose: This study was designed to demonstrate the applicability of a combined needle-based re-entry catheter and “cheese-wire” technique for fenestration of abdominal aortic dissection membranes. Methods: Four male patients (mean age: 65 years) with acute complicated aortic type B dissections were treated at our institution by fenestrating the abdominal aortic dissection membrane using a hybrid technique. This technique combined an initial membrane puncture with a needle-based re-entry catheter using a transfemoral approach. A guidewire was passed through the re-entry catheter and across the membrane. Using a contralateral transfemoral access, this guidewire was then snared, creating a through-and-through wire access. The membrane was then fenestrated using the cheese-wire maneuver. Results: We successfully performed: (a) membrane puncture; (b) guidewire passage; (c) guidewire snaring; and (d) cheese-wire maneuver in all four cases. After this maneuver, decompression of the false lumen and acceptable arterial inflow into the true lumen was observed in all cases. The dependent visceral arteries were reperfused. In one case, portions of the fenestrated membrane occluded the common iliac artery, which was immediately and successfully stented. In another case, long-standing intestinal hypoperfusion before the fenestration resulted in reperfusion-related shock and intraoperative death of the patient. Conclusions: The described hybrid approach for fenestration of dissection membranes is technically feasible and may be established as a therapeutic method in cases with a complicated type B dissection.

  4. Evaluating and Addressing Potential Hazards of Fuel Tanks Surviving Atmospheric Reentry

    Science.gov (United States)

    Kelley, Robert L.; Johnson, Nicholas L.

    2011-01-01

    In order to ensure reentering spacecraft do not pose an undue risk to the Earth's population it is important to design satellites and rocket bodies with end of life considerations in mind. In addition to considering the possible consequences of deorbiting a vehicle, consideration must also be given to the possible risks associated with a vehicle failing to become operational or reach its intended orbit. Based on recovered space debris and numerous reentry survivability analyses, fuel tanks are of particular concern in both of these considerations. Most spacecraft utilize some type of fuel tank as part of their propulsion system. These fuel tanks are most often constructed using stainless steel or titanium and are filled with potentially hazardous substances such as hydrazine and nitrogen tetroxide. For a vehicle which has reached its scheduled end of mission the contents of the tanks are typically depleted. In this scenario the use of stainless steel and titanium results in the tanks posing a risk to people and property do to the high melting point and large heat of ablation of these materials leading to likely survival of the tank during reentry. If a large portion of the fuel is not depleted prior to reentry, there is the added risk of hazardous substance being released when the tank impact the ground. This paper presents a discussion of proactive methods which have been utilized by NASA satellite projects to address the risks associated with fuel tanks reentering the atmosphere. In particular it will address the design of a demiseable fuel tank as well as the evaluation of off the shelf designs which are selected to burst during reentry.

  5. Know Before You Do: Anticipating Maneuvers via Learning Temporal Driving Models

    Science.gov (United States)

    2015-04-01

    features/index.htm. Accessed: 2014-09-30. [3] Google self driving car . http://en.wikipedia.org/wiki/ Google driverless car . Accessed: 2014-10-11. [4...and outside the car , GPS, and speed information, with lane and driving maneuver annotations. II. RELATED WORK Assistive features for vehicles . Recent...made driving safer over the last decade. They prepare vehicles for unsafe road conditions and alert drivers if they perform a dangerous maneuver

  6. Research on the Frequency Aliasing of Resistance Acceleration Guidance for Reentry Flight

    Directory of Open Access Journals (Sweden)

    Han Pengxin

    2017-01-01

    Full Text Available According to the special response of resistance acceleration during hypersonic reentry flight, different guidance frequency will result to very different flight and control response. The analysis model for the response of resistance acceleration to the attack angle and dynamic press is put forward respectively in this paper. And the frequency aliasing phenomenon of guidance is revealed. The simulation results to the same vehicle sufficiently substantiate the frequency aliasing of resistance acceleration during reentry guidance.

  7. Cooperative maneuvering in close environments among cybercars and dual-mode cars

    NARCIS (Netherlands)

    Milanés, V.; Alonso, J.; Bouraoui, L.; Ploeg, J.

    2011-01-01

    This paper describes the results of vehicle-to-vehicle (V2V) and infrastructure-to-vehicle (I2V) experiments implementing cooperative maneuvering for three different vehicles driving automatically. The cars used were cybercars from the Institut National de Recherche en Informatique et Automatique

  8. Colisional Cloud Debris and Propelled Evasive Maneuvers

    Science.gov (United States)

    Ferreira, L. S.; Jesus, A. D. C.; Carvalho, T. C. F.; Sousa, R. R.

    2017-10-01

    Space debris clouds exist at various altitudes in the environment outside the Earth. Fragmentation of debris and/or collision between the debris of a cloud increases the amount of debris, producing smaller debris. This event also increases significantly the chances of collision with operational vehicles in orbit. In this work we study clouds of debris that are close to a spacecraft in relation to its distance from the center of the Earth. The results show several layers of colliding debris depending on their size over time of evasive maneuvers of the vehicle. In addition, we have tested such maneuvers for propulsion systems with a linear and exponential mass variation model. The results show that the linear propulsion system is more efficient.

  9. Associating crash avoidance maneuvers with driver attributes and accident characteristics: a mixed logit model approach.

    Science.gov (United States)

    Kaplan, Sigal; Prato, Carlo Giacomo

    2012-01-01

    The current study focuses on the propensity of drivers to engage in crash avoidance maneuvers in relation to driver attributes, critical events, crash characteristics, vehicles involved, road characteristics, and environmental conditions. The importance of avoidance maneuvers derives from the key role of proactive and state-aware road users within the concept of sustainable safety systems, as well as from the key role of effective corrective maneuvers in the success of automated in-vehicle warning and driver assistance systems. The analysis is conducted by means of a mixed logit model that represents the selection among 5 emergency lateral and speed control maneuvers (i.e., "no avoidance maneuvers," "braking," "steering," "braking and steering," and "other maneuvers) while accommodating correlations across maneuvers and heteroscedasticity. Data for the analysis were retrieved from the General Estimates System (GES) crash database for the year 2009 by considering drivers for which crash avoidance maneuvers are known. The results show that (1) the nature of the critical event that made the crash imminent greatly influences the choice of crash avoidance maneuvers, (2) women and elderly have a relatively lower propensity to conduct crash avoidance maneuvers, (3) drowsiness and fatigue have a greater negative marginal effect on the tendency to engage in crash avoidance maneuvers than alcohol and drug consumption, (4) difficult road conditions increase the propensity to perform crash avoidance maneuvers, and (5) visual obstruction and artificial illumination decrease the probability to carry out crash avoidance maneuvers. The results emphasize the need for public awareness campaigns to promote safe driving style for senior drivers and warning about the risks of driving under fatigue and distraction being comparable to the risks of driving under the influence of alcohol and drugs. Moreover, the results suggest the need to educate drivers about hazard perception, designing

  10. HIAD on ULA (HULA) Orbital Reentry Flight Experiment Concept

    Science.gov (United States)

    Dinonno, J. M.; Cheatwood, F. M.; Hughes, S. J.; Ragab, M. M.; Dillman, R. A.; Bodkin, R. J.; Zumwalt, C. H.; Johnson, R. K.

    2016-01-01

    This paper describes a proposed orbital velocity reentry flight test of a Hypersonic Inflatable Aerodynamic Decelerator (HIAD). The flight test builds upon ground development activities that continue to advance the materials, design, and manufacturing techniques for the inflatable structure and flexible thermal protection system (F-TPS) that comprise the inflatable heat shield. While certain aspects of material and system performance can be assessed using a variety of ground testing capabilities, only orbital velocity energy on a trajectory through the gradient density of the atmosphere can impart the combined aerodynamic and aeroheating design environments in real time. To achieve this at limited cost, the HIAD would be delivered to a spin-stabilized entry trajectory as a secondary payload on the Centaur stage of a United Launch Alliance (ULA) Atlas V launch vehicle. Initial trajectory studies indicate that the combination of launch vehicle capability and achievable reentry vehicle ballistic numbers make this a strategic opportunity for technology development. This 4 to 6 meter diameter scale aeroshell flight, referred to as HIAD on ULA (HULA), would also contribute to ULA asset recovery development. ULA has proposed that a HIAD be utilized as part of the Sensible, Modular, Autonomous Return Technology (SMART) initiative to enable recovery of the Vulcan launch vehicle booster main engines [1], including a Mid-Air Recovery (MAR) to gently return these assets for reuse. Whereas HULA will attain valuable aerothermal and structural response data toward advancing HIAD technology, it may also provide a largest-to-date scaled flight test of the MAR operation, which in turn would allow the examination of a nearly pristine post-entry aeroshell. By utilizing infrared camera imaging, HULA will also attain aft-side thermal response data, enhancing understanding of the aft side aerothermal environment, an area of high uncertainty. The aeroshell inflation will utilize a

  11. Virtual simulation of maneuvering captive tests for a surface vessel

    Directory of Open Access Journals (Sweden)

    Ahmad Hajivand

    2015-09-01

    Full Text Available Hydrodynamic derivatives or coefficients are required to predict the maneuvering characteristics of a marine vehicle. These derivatives are obtained numerically for a DTMB 5512 model ship by virtual simulating of captive model tests in a CFD environment. The computed coefficients are applied to predict the turning circle and zigzag maneuvers of the model ship. The comparison of the simulated results with the available experimental data shows a very good agreement among them. The simulations show that the CFD is precise and affordable tool at the preliminary design stage to obtain maneuverability performance of a marine vehicles.

  12. An adaptive reentry guidance method considering the influence of blackout zone

    Science.gov (United States)

    Wu, Yu; Yao, Jianyao; Qu, Xiangju

    2018-01-01

    Reentry guidance has been researched as a popular topic because it is critical for a successful flight. In view that the existing guidance methods do not take into account the accumulated navigation error of Inertial Navigation System (INS) in the blackout zone, in this paper, an adaptive reentry guidance method is proposed to obtain the optimal reentry trajectory quickly with the target of minimum aerodynamic heating rate. The terminal error in position and attitude can be also reduced with the proposed method. In this method, the whole reentry guidance task is divided into two phases, i.e., the trajectory updating phase and the trajectory planning phase. In the first phase, the idea of model predictive control (MPC) is used, and the receding optimization procedure ensures the optimal trajectory in the next few seconds. In the trajectory planning phase, after the vehicle has flown out of the blackout zone, the optimal reentry trajectory is obtained by online planning to adapt to the navigation information. An effective swarm intelligence algorithm, i.e. pigeon inspired optimization (PIO) algorithm, is applied to obtain the optimal reentry trajectory in both of the two phases. Compared to the trajectory updating method, the proposed method can reduce the terminal error by about 30% considering both the position and attitude, especially, the terminal error of height has almost been eliminated. Besides, the PIO algorithm performs better than the particle swarm optimization (PSO) algorithm both in the trajectory updating phase and the trajectory planning phases.

  13. Lightweight Ultrahigh Temperature CMC-Encased C/C Structure for Reentry and Hypersonic Applications, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Future reentry and hypersonic vehicles require advanced lightweight leading edge thermal protection systems that can provide the dual functionality of...

  14. High Fidelity Airborne Imaging System for Remote Observation of Space Launch/Reentry Systems, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The utility of airborne remote observation of hypersonic reentry vehicles was demonstrated by the NASA Hypersonic Thermodynamic Infrared Measurement (HYTHIRM)...

  15. Fault-tolerant control with mixed aerodynamic surfaces and RCS jets for hypersonic reentry vehicles

    Directory of Open Access Journals (Sweden)

    Jingjing He

    2017-04-01

    Full Text Available This paper proposes a fault-tolerant strategy for hypersonic reentry vehicles with mixed aerodynamic surfaces and reaction control systems (RCS under external disturbances and subject to actuator faults. Aerodynamic surfaces are treated as the primary actuator in normal situations, and they are driven by a continuous quadratic programming (QP allocator to generate torque commanded by a nonlinear adaptive feedback control law. When aerodynamic surfaces encounter faults, they may not be able to provide sufficient torque as commanded, and RCS jets are activated to augment the aerodynamic surfaces to compensate for insufficient torque. Partial loss of effectiveness and stuck faults are considered in this paper, and observers are designed to detect and identify the faults. Based on the fault identification results, an RCS control allocator using integer linear programming (ILP techniques is designed to determine the optimal combination of activated RCS jets. By treating the RCS control allocator as a quantization element, closed-loop stability with both continuous and quantized inputs is analyzed. Simulation results verify the effectiveness of the proposed method.

  16. Active disturbance rejection based trajectory linearization control for hypersonic reentry vehicle with bounded uncertainties.

    Science.gov (United States)

    Shao, Xingling; Wang, Honglun

    2015-01-01

    This paper investigates a novel compound control scheme combined with the advantages of trajectory linearization control (TLC) and alternative active disturbance rejection control (ADRC) for hypersonic reentry vehicle (HRV) attitude tracking system with bounded uncertainties. Firstly, in order to overcome actuator saturation problem, nonlinear tracking differentiator (TD) is applied in the attitude loop to achieve fewer control consumption. Then, linear extended state observers (LESO) are constructed to estimate the uncertainties acting on the LTV system in the attitude and angular rate loop. In addition, feedback linearization (FL) based controllers are designed using estimates of uncertainties generated by LESO in each loop, which enable the tracking error for closed-loop system in the presence of large uncertainties to converge to the residual set of the origin asymptotically. Finally, the compound controllers are derived by integrating with the nominal controller for open-loop nonlinear system and FL based controller. Also, comparisons and simulation results are presented to illustrate the effectiveness of the control strategy. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.

  17. Analysis of Driver Evasive Maneuvering Prior to Intersection Crashes Using Event Data Recorders.

    Science.gov (United States)

    Scanlon, John M; Kusano, Kristofer D; Gabler, Hampton C

    2015-01-01

    Intersection crashes account for over 4,500 fatalities in the United States each year. Intersection Advanced Driver Assistance Systems (I-ADAS) are emerging vehicle-based active safety systems that have the potential to help drivers safely navigate across intersections and prevent intersection crashes and injuries. The performance of an I-ADAS is expected to be highly dependent upon driver evasive maneuvering prior to an intersection crash. Little has been published, however, on the detailed evasive kinematics followed by drivers prior to real-world intersection crashes. The objective of this study was to characterize the frequency, timing, and kinematics of driver evasive maneuvers prior to intersection crashes. Event data recorders (EDRs) downloaded from vehicles involved in intersection crashes were investigated as part of NASS-CDS years 2001 to 2013. A total of 135 EDRs with precrash vehicle speed and braking application were downloaded to investigate evasive braking. A smaller subset of 59 EDRs that collected vehicle yaw rate was additionally analyzed to investigate evasive steering. Each vehicle was assigned to one of 3 precrash movement classifiers (traveling through the intersection, completely stopped, or rolling stop) based on the vehicle's calculated acceleration and observed velocity profile. To ensure that any significant steering input observed was an attempted evasive maneuver, the analysis excluded vehicles at intersections that were turning, driving on a curved road, or performing a lane change. Braking application at the last EDR-recorded time point was assumed to indicate evasive braking. A vehicle yaw rate greater than 4° per second was assumed to indicate an evasive steering maneuver. Drivers executed crash avoidance maneuvers in four-fifths of intersection crashes. A more detailed analysis of evasive braking frequency by precrash maneuver revealed that drivers performing complete or rolling stops (61.3%) braked less often than drivers

  18. Reaction Control Engine for Space Launch Initiative

    Science.gov (United States)

    2002-01-01

    Engineers at the Marshall Space Flight Center (MSFC) have begun a series of engine tests on a new breed of space propulsion: a Reaction Control Engine developed for the Space Launch Initiative (SLI). The engine, developed by TRW Space and Electronics of Redondo Beach, California, is an auxiliary propulsion engine designed to maneuver vehicles in orbit. It is used for docking, reentry, attitude control, and fine-pointing while the vehicle is in orbit. The engine uses nontoxic chemicals as propellants, a feature that creates a safer environment for ground operators, lowers cost, and increases efficiency with less maintenance and quicker turnaround time between missions. Testing includes 30 hot-firings. This photograph shows the first engine test performed at MSFC that includes SLI technology. Another unique feature of the Reaction Control Engine is that it operates at dual thrust modes, combining two engine functions into one engine. The engine operates at both 25 and 1,000 pounds of force, reducing overall propulsion weight and allowing vehicles to easily maneuver in space. The low-level thrust of 25 pounds of force allows the vehicle to fine-point maneuver and dock while the high-level thrust of 1,000 pounds of force is used for reentry, orbit transfer, and coarse positioning. SLI is a NASA-wide research and development program, managed by the MSFC, designed to improve safety, reliability, and cost effectiveness of space travel for second generation reusable launch vehicles.

  19. Adaptive twisting sliding mode algorithm for hypersonic reentry vehicle attitude control based on finite-time observer.

    Science.gov (United States)

    Guo, Zongyi; Chang, Jing; Guo, Jianguo; Zhou, Jun

    2018-06-01

    This paper focuses on the adaptive twisting sliding mode control for the Hypersonic Reentry Vehicles (HRVs) attitude tracking issue. The HRV attitude tracking model is transformed into the error dynamics in matched structure, whereas an unmeasurable state is redefined by lumping the existing unmatched disturbance with the angular rate. Hence, an adaptive finite-time observer is used to estimate the unknown state. Then, an adaptive twisting algorithm is proposed for systems subject to disturbances with unknown bounds. The stability of the proposed observer-based adaptive twisting approach is guaranteed, and the case of noisy measurement is analyzed. Also, the developed control law avoids the aggressive chattering phenomenon of the existing adaptive twisting approaches because the adaptive gains decrease close to the disturbance once the trajectories reach the sliding surface. Finally, numerical simulations on the attitude control of the HRV are conducted to verify the effectiveness and benefit of the proposed approach. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.

  20. Sliding mode based trajectory linearization control for hypersonic reentry vehicle via extended disturbance observer.

    Science.gov (United States)

    Xingling, Shao; Honglun, Wang

    2014-11-01

    This paper proposes a novel hybrid control framework by combing observer-based sliding mode control (SMC) with trajectory linearization control (TLC) for hypersonic reentry vehicle (HRV) attitude tracking problem. First, fewer control consumption is achieved using nonlinear tracking differentiator (TD) in the attitude loop. Second, a novel SMC that employs extended disturbance observer (EDO) to counteract the effect of uncertainties using a new sliding surface which includes the estimation error is integrated to address the tracking error stabilization issues in the attitude and angular rate loop, respectively. In addition, new results associated with EDO are examined in terms of dynamic response and noise-tolerant performance, as well as estimation accuracy. The key feature of the proposed compound control approach is that chattering free tracking performance with high accuracy can be ensured for HRV in the presence of multiple uncertainties under control constraints. Based on finite time convergence stability theory, the stability of the resulting closed-loop system is well established. Also, comparisons and extensive simulation results are presented to demonstrate the effectiveness of the control strategy. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.

  1. Closeup of STS-26 Discovery, OV-103, orbital maneuvering system (OMS) leak

    Science.gov (United States)

    1988-01-01

    Closeup of STS-26 Discovery, Orbiter Vehicle (OV) 103, orbital maneuvering system (OMS) reaction control system (RCS) nitrogen tetroxide gas leak was captured by a Cobra borescope and displayed on a video monitor. The borescope has a miniature videocamera at the end of a flexible rubber tube and is able to be maneuvered into other inaccessible locations.

  2. 14 CFR 431.35 - Acceptable reusable launch vehicle mission risk.

    Science.gov (United States)

    2010-01-01

    ... applicable, and reentry or descent flight, and concludes upon landing on Earth of the RLV. (b) Acceptable... reentry or descent of the vehicle through landing, including its three-sigma dispersion. [Docket No. FAA...

  3. Advanced validation of CFD-FDTD combined method using highly applicable solver for reentry blackout prediction

    International Nuclear Information System (INIS)

    Takahashi, Yusuke

    2016-01-01

    An analysis model of plasma flow and electromagnetic waves around a reentry vehicle for radio frequency blackout prediction during aerodynamic heating was developed in this study. The model was validated based on experimental results from the radio attenuation measurement program. The plasma flow properties, such as electron number density, in the shock layer and wake region were obtained using a newly developed unstructured grid solver that incorporated real gas effect models and could treat thermochemically non-equilibrium flow. To predict the electromagnetic waves in plasma, a frequency-dependent finite-difference time-domain method was used. Moreover, the complicated behaviour of electromagnetic waves in the plasma layer during atmospheric reentry was clarified at several altitudes. The prediction performance of the combined model was evaluated with profiles and peak values of the electron number density in the plasma layer. In addition, to validate the models, the signal losses measured during communication with the reentry vehicle were directly compared with the predicted results. Based on the study, it was suggested that the present analysis model accurately predicts the radio frequency blackout and plasma attenuation of electromagnetic waves in plasma in communication. (paper)

  4. A Vehicle Steering Recognition System Based on Low-Cost Smartphone Sensors

    Directory of Open Access Journals (Sweden)

    Xinhua Liu

    2017-03-01

    Full Text Available Recognizing how a vehicle is steered and then alerting drivers in real time is of utmost importance to the vehicle and driver’s safety, since fatal accidents are often caused by dangerous vehicle maneuvers, such as rapid turns, fast lane-changes, etc. Existing solutions using video or in-vehicle sensors have been employed to identify dangerous vehicle maneuvers, but these methods are subject to the effects of the environmental elements or the hardware is very costly. In the mobile computing era, smartphones have become key tools to develop innovative mobile context-aware systems. In this paper, we present a recognition system for dangerous vehicle steering based on the low-cost sensors found in a smartphone: i.e., the gyroscope and the accelerometer. To identify vehicle steering maneuvers, we focus on the vehicle’s angular velocity, which is characterized by gyroscope data from a smartphone mounted in the vehicle. Three steering maneuvers including turns, lane-changes and U-turns are defined, and a vehicle angular velocity matching algorithm based on Fast Dynamic Time Warping (FastDTW is adopted to recognize the vehicle steering. The results of extensive experiments show that the average accuracy rate of the presented recognition reaches 95%, which implies that the proposed smartphone-based method is suitable for recognizing dangerous vehicle steering maneuvers.

  5. Novel control algorithm of braking energy regeneration system for an electric vehicle during safety–critical driving maneuvers

    International Nuclear Information System (INIS)

    Lv, Chen; Zhang, Junzhi; Li, Yutong; Yuan, Ye

    2015-01-01

    Highlights: • Models of an electric vehicle with regenerative braking system (RBS) are built. • Control algorithm of RBS under safety–critical driving maneuvers is proposed. • Simulations and HIL tests of the proposed strategy are conducted. • Performance improvement of vehicle’s mean deceleration is up to 13.89%. • Test results verify the feasibility and effectiveness of the proposed method. - Abstract: This paper mainly focuses on control algorithm of the braking energy regeneration system of an electric bus under safety–critical driving situations. With the aims of guaranteeing vehicle stability in various types of tyre–road adhesion conditions, based on the characteristics of electrified powertrain, a novel control algorithm of regenerative braking system is proposed for electric vehicles during anti-lock braking procedures. First, the models of vehicle dynamics and main components including braking energy regenerative system of the case-study electric bus are built in MATLAB/Simulink. Then, based on the phase-plane method, the optimal brake torque is calculated for ABS control of vehicle. Next, a novel allocation strategy, wherein the target optimal brake torque is divided into two parts that are handled separately by the regenerative and friction brakes, is developed. Simulations of the proposed control strategy are conducted based on system models built using MATLAB/Simulink. The simulation results demonstrate that the developed strategy enables improved control in terms of vehicle stability and braking performance under different emergency driving conditions. To further verify the synthesized control algorithm, hardware-in-the-loop tests are also performed. The experimental results validate the simulation data and verify the feasibility and effectiveness of the developed control algorithm.

  6. 14 CFR 431.79 - Reusable launch vehicle mission reporting requirements.

    Science.gov (United States)

    2010-01-01

    ... writing, of the time and date of the intended launch and reentry or other landing on Earth of the RLV and..., including the vehicle, launch site, planned launch and reentry flight path, and intended landing sites...

  7. Optimizing interplanetary trajectories with deep space maneuvers

    Science.gov (United States)

    Navagh, John

    1993-09-01

    Analysis of interplanetary trajectories is a crucial area for both manned and unmanned missions of the Space Exploration Initiative. A deep space maneuver (DSM) can improve a trajectory in much the same way as a planetary swingby. However, instead of using a gravitational field to alter the trajectory, the on-board propulsion system of the spacecraft is used when the vehicle is not near a planet. The purpose is to develop an algorithm to determine where and when to use deep space maneuvers to reduce the cost of a trajectory. The approach taken to solve this problem uses primer vector theory in combination with a non-linear optimizing program to minimize Delta(V). A set of necessary conditions on the primer vector is shown to indicate whether a deep space maneuver will be beneficial. Deep space maneuvers are applied to a round trip mission to Mars to determine their effect on the launch opportunities. Other studies which were performed include cycler trajectories and Mars mission abort scenarios. It was found that the software developed was able to locate quickly DSM's which lower the total Delta(V) on these trajectories.

  8. Aerospace Vehicle Design, Spacecraft Section. Volume 1: Project Groups 3-5

    Science.gov (United States)

    1989-01-01

    Three groups of student engineers in an aerospace vehicle design course present their designs for a vehicle that can be used to resupply the Space Station Freedom and provide an emergency crew return to earth capability. The vehicle's requirements include a lifetime that exceeds six years, low cost, the capability for withstanding pressurization, launch, orbit, and reentry hazards, and reliability. The vehicle's subsystems are analyzed. These subsystems are structures, communication and command data systems, attitude and articulation control, life support and crew systems, power and propulsion, reentry and recovery systems, and mission management, planning, and costing.

  9. Plume-Free Stream Interaction Heating Effects During Orion Crew Module Reentry

    Science.gov (United States)

    Marichalar, J.; Lumpkin, F.; Boyles, K.

    2012-01-01

    During reentry of the Orion Crew Module (CM), vehicle attitude control will be performed by firing reaction control system (RCS) thrusters. Simulation of RCS plumes and their interaction with the oncoming flow has been difficult for the analysis community due to the large scarf angles of the RCS thrusters and the unsteady nature of the Orion capsule backshell environments. The model for the aerothermal database has thus relied on wind tunnel test data to capture the heating effects of thruster plume interactions with the freestream. These data are only valid for the continuum flow regime of the reentry trajectory. A Direct Simulation Monte Carlo (DSMC) analysis was performed to study the vehicle heating effects that result from the RCS thruster plume interaction with the oncoming freestream flow at high altitudes during Orion CM reentry. The study was performed with the DSMC Analysis Code (DAC). The inflow boundary conditions for the jets were obtained from Data Parallel Line Relaxation (DPLR) computational fluid dynamics (CFD) solutions. Simulations were performed for the roll, yaw, pitch-up and pitch-down jets at altitudes of 105 km, 125 km and 160 km as well as vacuum conditions. For comparison purposes (see Figure 1), the freestream conditions were based on previous DAC simulations performed without active RCS to populate the aerodynamic database for the Orion CM. Other inputs to the analysis included a constant Orbital reentry velocity of 7.5 km/s and angle of attack of 160 degrees. The results of the study showed that the interaction effects decrease quickly with increasing altitude. Also, jets with highly scarfed nozzles cause more severe heating compared to the nozzles with lower scarf angles. The difficulty of performing these simulations was based on the maximum number density and the ratio of number densities between the freestream and the plume for each simulation. The lowest altitude solutions required a substantial amount of computational resources

  10. Associating crash avoidance maneuvers with driver attributes and accident characteristics: a mixed logit model approach

    DEFF Research Database (Denmark)

    Kaplan, Sigal; Prato, Carlo Giacomo

    2012-01-01

    from the key role of proactive and state-aware road users within the concept of sustainable safety systems, as well as from the key role of effective corrective maneuvers in the success of automated in-vehicle warning and driver assistance systems. Methods: The analysis is conducted by means of a mixed...... about the risks of driving under fatigue and distraction being comparable to the risks of driving under the influence of alcohol and drugs. Moreover, the results suggest the need to educate drivers about hazard perception, designing a forgiving infrastructure within a sustainable safety systems......Objective: The current study focuses on the propensity of drivers to engage in crash avoidance maneuvers in relation to driver attributes, critical events, crash characteristics, vehicles involved, road characteristics, and environmental conditions. The importance of avoidance maneuvers derives...

  11. Reusable Reentry Satellite (RRS): Propulsion system trade study

    Science.gov (United States)

    1990-01-01

    The purpose of the Reusable Reentry Satellite (RRS) Propulsion System Trade Study described in this summary report was to investigate various propulsion options available for incorporation on the RRS and to select the option best suited for RRS application. The design requirements for the RRS propulsion system were driven by the total impulse requirements necessary to operate within the performance envelope specified in the RRS System Requirements Documents. These requirements were incorporated within the Design Reference Missions (DRM's) identified for use in this and other subsystem trade studies. This study investigated the following propulsion systems: solid rocket, monopropellant, bipropellant (monomethyl hydrazine and nitrogen tetroxide or MMH/NTO), dual-mode bipropellant (hydrazine and nitrogen tetroxide or N2H4/NTO), liquid oxygen and liquid hydrogen (LO2/LH2), and an advanced design propulsion system using SDI-developed components. A liquid monopropellant blowdown propulsion system was found to be best suited for meeting the RRS requirements and is recommended as the baseline system. This system was chosen because it is the simplest of all investigated, has the fewest components, and is the most cost effective. The monopropellant system meets all RRS performance requirements and has the capability to provide a very accurate deorbit burn which minimizes reentry dispersions. In addition, no new hardware qualification is required for a monopropellant system. Although the bipropellant systems offered some weight savings capability for missions requiring large deorbit velocities, the advantage of a lower mass system only applies if the total vehicle design can be reduced to allow a cheaper launch vehicle to be used. At the time of this trade study, the overall RRS weight budget and launch vehicle selection were not being driven by the propulsion system selection. Thus, the added cost and complexity of more advanced systems did not warrant application.

  12. Vehicle following controller design for autonomous intelligent vehicles

    Science.gov (United States)

    Chien, C. C.; Lai, M. C.; Mayr, R.

    1994-01-01

    A new vehicle following controller is proposed for autonomous intelligent vehicles. The proposed vehicle following controller not only provides smooth transient maneuvers for unavoidable nonzero initial conditions but also guarantees the asymptotic platoon stability without the availability of feedforward information. Furthermore, the achieved asymptotic platoon stability is shown to be robust to sensor delays and an upper bound for the allowable sensor delays is also provided in this paper.

  13. A Maneuvering Flight Noise Model for Helicopter Mission Planning

    Science.gov (United States)

    Greenwood, Eric; Rau, Robert; May, Benjamin; Hobbs, Christopher

    2015-01-01

    A new model for estimating the noise radiation during maneuvering flight is developed in this paper. The model applies the Quasi-Static Acoustic Mapping (Q-SAM) method to a database of acoustic spheres generated using the Fundamental Rotorcraft Acoustics Modeling from Experiments (FRAME) technique. A method is developed to generate a realistic flight trajectory from a limited set of waypoints and is used to calculate the quasi-static operating condition and corresponding acoustic sphere for the vehicle throughout the maneuver. By using a previously computed database of acoustic spheres, the acoustic impact of proposed helicopter operations can be rapidly predicted for use in mission-planning. The resulting FRAME-QS model is applied to near-horizon noise measurements collected for the Bell 430 helicopter undergoing transient pitch up and roll maneuvers, with good agreement between the measured data and the FRAME-QS model.

  14. Optimal Braking Patterns and Forces in Autonomous Safety-Critical Maneuvers

    OpenAIRE

    Fors, Victor

    2018-01-01

    The trend of more advanced driver-assistance features and the development toward autonomous vehicles enable new possibilities in the area of active safety. With more information available in the vehicle about the surrounding traffic and the road ahead, there is the possibility of improved active-safety systems that make use of this information for stability control in safety-critical maneuvers. Such a system could adaptively make a trade-off between controlling the longitudinal, lateral, and ...

  15. Aerospace Vehicle Design, Spacecraft Section. Final Project Reports. Volume 2; Project Groups 6-8

    Science.gov (United States)

    1989-01-01

    Three groups of student engineers in an aerospace vehicle design course present their designs for a vehicle that can be used to resupply the Space Station Freedam and provide emergency crew return to earth capability. The vehicle's requirements include a lifetime that exceeds six years, low cost, the capability for withstanding pressurization, launch, orbit, and reentry hazards, and reliability. The vehicle's subsystems are structures, communication and command data systems, attitude and articulation control, life support and crew systems, power and propulsion, reentry and recovery systems, and mission management, planning, and costing. Special attention is given to spacecraft communications.

  16. A multinomial-logit ordered-probit model for jointly analyzing crash avoidance maneuvers and crash severity

    DEFF Research Database (Denmark)

    Kaplan, Sigal; Prato, Carlo Giacomo

    ' propensity to engage in various corrective maneuvers in the case of the critical event of vehicle travelling. Five lateral and speed control maneuvers are considered: “braking”, “steering”, “braking & steering”, and “other maneuvers”, in addition to a “no action” option. The analyzed data are retrieved from...... the United States National Automotive Sampling System General Estimates System (GES) crash database for the years 2005-2009. Results show (i) the correlation between crash avoidance maneuvers and crash severity, and (ii) the link between drivers' attributes, risky driving behavior, road characteristics...

  17. Simulation of the ATV Re-Entry Obsrvations

    Science.gov (United States)

    Bastida Virgili, B.; Krag, H.; Lips, T.; De Pasquale, E.

    2010-09-01

    The first ATV was launched on 9th March 2008 and, after a successful mission, the last phase was a controlled destructive re-entry on 29th September 2008, shortly after 13:30 UTC, in which the remains of the ATV and its load fell into the South Pacific Ocean. In order to better understand the re-entry processes, an insitu optical observation campaign was launched to record and analyze the ATV controlled re-entry with several instruments on board of two airplanes and also from the ISS. This observation campaign was successful and triggered several different still-ongoing studies on the extraction and analysis of data to draw conclusions on the adequacy of the re-entry break-up and explosion models used for the safety analysis of the ATV re-entry. This paper addresses the validation process for ESA’s model for re-entry survivability and on-ground risk assessment for explosive re-entry events using the observation data. The underlying rationale is to improve the models for the benefit of planning and execution of future controlled re-entries and in risk calculation in case of uncontrolled ones. The re-entry trajectory of the ATV, the explosive event and the trajectories of the fragments are simulated with the existing ESA tools and the EVOLVE explosion model. Additional software has been developed to simulate airborne sensor field of view(FOV) crossings based on the aircraft trajectories, attitude profile, sensor mounts and FOVs. Sensor performance and object radiation are modeled in order to generate synthetic images for the different sensors in the ISS and the two airplanes. These synthetic images and synthetic videos are compared with the available reentry observations of the ATV. This paper will present the software and techniques to generate synthetic imagery. It will give results of the comparison between the simulated and the real trajectories and fragmentation and explain the subsequent validation process of the ESA re-entry tools and the potential

  18. Behavior of HfB2-SiC Materials in Simulated Re-Entry Environments

    Science.gov (United States)

    Ellerby, Don; Beckman, Sarah; Irby, Edward; Johnson, Sylvia M.; Gunsman, Michael; Gasch, Matthew; Ridge, Jerry; Martinez, Ed; Squire, Tom; Olejniczak, Joe

    2003-01-01

    The objectives of this research are to: 1) Investigate the oxidation/ablation behavior of HfB2/SiC materials in simulated re-entry environments; 2) Use the arc jet test results to define appropriate use environments for these materials for use in vehicle design. The parameters to be investigated include: surface temperature, stagnation pressure, duration, number of cycles, and thermal stresses.

  19. Maneuver Automation Software

    Science.gov (United States)

    Uffelman, Hal; Goodson, Troy; Pellegrin, Michael; Stavert, Lynn; Burk, Thomas; Beach, David; Signorelli, Joel; Jones, Jeremy; Hahn, Yungsun; Attiyah, Ahlam; hide

    2009-01-01

    The Maneuver Automation Software (MAS) automates the process of generating commands for maneuvers to keep the spacecraft of the Cassini-Huygens mission on a predetermined prime mission trajectory. Before MAS became available, a team of approximately 10 members had to work about two weeks to design, test, and implement each maneuver in a process that involved running many maneuver-related application programs and then serially handing off data products to other parts of the team. MAS enables a three-member team to design, test, and implement a maneuver in about one-half hour after Navigation has process-tracking data. MAS accepts more than 60 parameters and 22 files as input directly from users. MAS consists of Practical Extraction and Reporting Language (PERL) scripts that link, sequence, and execute the maneuver- related application programs: "Pushing a single button" on a graphical user interface causes MAS to run navigation programs that design a maneuver; programs that create sequences of commands to execute the maneuver on the spacecraft; and a program that generates predictions about maneuver performance and generates reports and other files that enable users to quickly review and verify the maneuver design. MAS can also generate presentation materials, initiate electronic command request forms, and archive all data products for future reference.

  20. A conceptual study of the use of a particle bed reactor nuclear propulsion module for the orbital maneuvering vehicle

    International Nuclear Information System (INIS)

    Malloy, J.; Potekhen, D.

    1989-01-01

    This paper examines the use of a particle bed reactor nuclear engine for direct thrust in a spacecraft based on the NASA/TRW orbital maneuvering vehicle (OMV). It presents the conceptual design of a 500 lb thrust engine that matches critical design features of the existing OMV bi-propellant propulsion system. This application contrasts with the usual tendency to consider a nuclear heat source either for high thrust direct propulsion or as a power source for electric propulsion. A nuclear propulsion module adapted to the OMV could potentially accomplish several Department of Defense missions, such as multiple round trips from a space-based support platform at 280 NM to service a constellation of satellites orbiting at 1800 NM

  1. Correctional Practitioners on Reentry: A Missed Perspective

    Directory of Open Access Journals (Sweden)

    Elaine Gunnison

    2015-06-01

    Full Text Available Much of the literature on reentry of formerly incarcerated individuals revolves around discussions of failures they incur during reintegration or the identification of needs and challenges that they have during reentry from the perspective of community corrections officers. The present research fills a gap in the reentry literature by examining the needs and challenges of formerly incarcerated individuals and what makes for reentry success from the perspective of correctional practitioners (i.e., wardens and non-wardens. The views of correctional practitioners are important to understand the level of organizational commitment to reentry and the ways in which social distance between correctional professionals and their clients may impact reentry success. This research reports on the results from an email survey distributed to a national sample of correctional officials listed in the American Correctional Association, 2012 Directory. Specifically, correctional officials were asked to report on needs and challenges facing formerly incarcerated individuals, define success, identify factors related to successful reentry, recount success stories, and report what could be done to assist them in successful outcomes. Housing and employment were raised by wardens and corrections officials as important needs for successful reentry. Corrections officials adopted organizational and systems perspectives in their responses and had differing opinions about social distance. Policy implications are presented.

  2. Driver Behavior During Overtaking Maneuvers from the 100-Car Naturalistic Driving Study.

    Science.gov (United States)

    Chen, Rong; Kusano, Kristofer D; Gabler, Hampton C

    2015-01-01

    Lane changes with the intention to overtake the vehicle in front are especially challenging scenarios for forward collision warning (FCW) designs. These overtaking maneuvers can occur at high relative vehicle speeds and often involve no brake and/or turn signal application. Therefore, overtaking presents the potential of erroneously triggering the FCW. A better understanding of driver behavior during lane change events can improve designs of this human-machine interface and increase driver acceptance of FCW. The objective of this study was to aid FCW design by characterizing driver behavior during lane change events using naturalistic driving study data. The analysis was based on data from the 100-Car Naturalistic Driving Study, collected by the Virginia Tech Transportation Institute. The 100-Car study contains approximately 1.2 million vehicle miles of driving and 43,000 h of data collected from 108 primary drivers. In order to identify overtaking maneuvers from a large sample of driving data, an algorithm to automatically identify overtaking events was developed. The lead vehicle and minimum time to collision (TTC) at the start of lane change events was identified using radar processing techniques developed in a previous study. The lane change identification algorithm was validated against video analysis, which manually identified 1,425 lane change events from approximately 126 full trips. Forty-five drivers with valid time series data were selected from the 100-Car study. From the sample of drivers, our algorithm identified 326,238 lane change events. A total of 90,639 lane change events were found to involve a closing lead vehicle. Lane change events were evenly distributed between left side and right side lane changes. The characterization of lane change frequency and minimum TTC was divided into 10 mph speed bins for vehicle travel speeds between 10 and 90 mph. For all lane change events with a closing lead vehicle, the results showed that drivers change

  3. Robust on-off pulse control of flexible space vehicles

    Science.gov (United States)

    Wie, Bong; Sinha, Ravi

    1993-01-01

    The on-off reaction jet control system is often used for attitude and orbital maneuvering of various spacecraft. Future space vehicles such as the orbital transfer vehicles, orbital maneuvering vehicles, and space station will extensively use reaction jets for orbital maneuvering and attitude stabilization. The proposed robust fuel- and time-optimal control algorithm is used for a three-mass spacing model of flexible spacecraft. A fuel-efficient on-off control logic is developed for robust rest-to-rest maneuver of a flexible vehicle with minimum excitation of structural modes. The first part of this report is concerned with the problem of selecting a proper pair of jets for practical trade-offs among the maneuvering time, fuel consumption, structural mode excitation, and performance robustness. A time-optimal control problem subject to parameter robustness constraints is formulated and solved. The second part of this report deals with obtaining parameter insensitive fuel- and time- optimal control inputs by solving a constrained optimization problem subject to robustness constraints. It is shown that sensitivity to modeling errors can be significantly reduced by the proposed, robustified open-loop control approach. The final part of this report deals with sliding mode control design for uncertain flexible structures. The benchmark problem of a flexible structure is used as an example for the feedback sliding mode controller design with bounded control inputs and robustness to parameter variations is investigated.

  4. Evasive Maneuvers in Space Debris Environment and Technological Parameters

    Directory of Open Access Journals (Sweden)

    Antônio D. C. Jesus

    2012-01-01

    Full Text Available We present a study of collisional dynamics between space debris and an operational vehicle in LEO. We adopted an approach based on the relative dynamics between the objects on a collisional course and with a short warning time and established a semianalytical solution for the final trajectories of these objects. Our results show that there are angular ranges in 3D, in addition to the initial conditions, that favor the collisions. These results allowed the investigation of a range of technological parameters for the spacecraft (e.g., fuel reserve that allow a safe evasive maneuver (e.g., time available for the maneuver. The numerical model was tested for different values of the impact velocity and relative distance between the approaching objects.

  5. Intelligent behaviors through vehicle-to-vehicle and vehicle-to-infrastructure communication

    Science.gov (United States)

    Garcia, Richard D.; Sturgeon, Purser; Brown, Mike

    2012-06-01

    The last decade has seen a significant increase in intelligent safety devices on private automobiles. These devices have both increased and augmented the situational awareness of the driver and in some cases provided automated vehicle responses. To date almost all intelligent safety devices have relied on data directly perceived by the vehicle. This constraint has a direct impact on the types of solutions available to the vehicle. In an effort to improve the safety options available to a vehicle, numerous research laboratories and government agencies are investing time and resources into connecting vehicles to each other and to infrastructure-based devices. This work details several efforts in both the commercial vehicle and the private auto industries to increase vehicle safety and driver situational awareness through vehicle-to-vehicle and vehicle-to-infrastructure communication. It will specifically discuss intelligent behaviors being designed to automatically disable non-compliant vehicles, warn tractor trailer vehicles of unsafe lane maneuvers such as lane changes, passing, and merging, and alert drivers to non-line-of-sight emergencies.

  6. Improving aggregate behavior in parking lots with appropriate local maneuvers

    KAUST Repository

    Rodriguez, Samuel

    2013-11-01

    In this paper we study the ingress and egress of pedestrians and vehicles in a parking lot. We show how local maneuvers executed by agents permit them to create trajectories in constrained environments, and to resolve the deadlocks between them in mixed-flow scenarios. We utilize a roadmap-based approach which allows us to map complex environments and generate heuristic local paths that are feasible for both pedestrians and vehicles. Finally, we examine the effect that some agent-behavioral parameters have on parking lot ingress and egress. © 2013 IEEE.

  7. The reentry catheter: a second chance for endoluminal reentry at difficult lower extremity subintimal arterial recanalizations.

    Science.gov (United States)

    Etezadi, Vahid; Benenati, James F; Patel, Parag J; Patel, Rahul S; Powell, Alex; Katzen, Barry T

    2010-05-01

    From January 2005 to July 2008, a retrospective study was conducted at a single institution to investigate technical success of the use of a reentry device (Outback LTD reentry catheter) in aortoiliac and femoropopliteal artery recanalization in 34 patients (18 men; mean age +/- SD, 72 years +/- 11) in whom the conventional guide wires and catheters failed to reenter the true lumen. True lumen reentry was achieved in 87% (n = 23) and 91% (n = 11) of patients with femoropopliteal and aortoiliac occlusions, respectively. The overall technical success rate with the device was 88% (n = 34). The device success rate in Transatlantic Inter-Society Consensus II class D lesions was significantly lower than in lower lesion classes (71.4% vs 100%; P < .05). No procedure-related complications were encountered. In conclusion, the use of the reentry catheter enhances the likelihood of successful subintimal recanalization of chronic occlusions in femoropopliteal and aortoiliac arteries.

  8. Recording animal vocalizations from a UAV: bat echolocation during roost re-entry.

    Science.gov (United States)

    Kloepper, Laura N; Kinniry, Morgan

    2018-05-17

    Unmanned aerial vehicles (UAVs) are rising in popularity for wildlife monitoring, but direct recordings of animal vocalizations have not yet been accomplished, likely due to the noise generated by the UAV. Echolocating bats, especially Tadarida brasiliensis, are good candidates for UAV recording due to their high-speed, high-altitude flight. Here, we use a UAV to record the signals of bats during morning roost re-entry. We designed a UAV to block the noise of the propellers from the receiving microphone, and report on the characteristics of bioacoustic recordings from a UAV. We report the first published characteristics of echolocation signals from bats during group flight and cave re-entry. We found changes in inter-individual time-frequency shape, suggesting that bats may use differences in call design when sensing in complex groups. Furthermore, our first documented successful recordings of animals in their natural habitat demonstrate that UAVs can be important tools for bioacoustic monitoring, and we discuss the ethical considerations for such monitoring.

  9. Development of a Ground Vehicle Maneuver Ontology to Support the Common Operational Picture

    National Research Council Canada - National Science Library

    Richmond, Paul W; Blais, Curtis L; Goerger, Niki C

    2006-01-01

    .... This paper describes both the Mobility-COP, from which warfighters can assess the ability of forces to maneuver effectively under multiple environmental and tactical conditions, and a formal ontology...

  10. Time-varying mixed logit model for vehicle merging behavior in work zone merging areas.

    Science.gov (United States)

    Weng, Jinxian; Du, Gang; Li, Dan; Yu, Yao

    2018-08-01

    This study aims to develop a time-varying mixed logit model for the vehicle merging behavior in work zone merging areas during the merging implementation period from the time of starting a merging maneuver to that of completing the maneuver. From the safety perspective, vehicle crash probability and severity between the merging vehicle and its surrounding vehicles are regarded as major factors influencing vehicle merging decisions. Model results show that the model with the use of vehicle crash risk probability and severity could provide higher prediction accuracy than previous models with the use of vehicle speeds and gap sizes. It is found that lead vehicle type, through lead vehicle type, through lag vehicle type, crash probability of the merging vehicle with respect to the through lag vehicle, crash severities of the merging vehicle with respect to the through lead and lag vehicles could exhibit time-varying effects on the merging behavior. One important finding is that the merging vehicle could become more and more aggressive in order to complete the merging maneuver as quickly as possible over the elapsed time, even if it has high vehicle crash risk with respect to the through lead and lag vehicles. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. Can Social Capital Networks Assist Re-entry Felons to Overcome Barriers to Re-entry and Reduce Recidivism?

    Directory of Open Access Journals (Sweden)

    Earl Smith

    2011-05-01

    Full Text Available Based on interviews with 25 reentry felons, this article examines the impact that social capital plays in successful reentry; specifically with securing stable housing and employment. We found that access to social capital allowed those with the lowest probability for success—African American men with felony convictions—to secure both stable employment and housing and thus avoid engaging in illegitimate behavior that leads to recidivism. The findings suggest that even for those individuals reentering society with the most strikes against them (as noted by researchers such as Pager and Travis, access to the resource rich social capital networks provided by reentry programs can allow these individuals to overcome the barriers to reentry and find stable jobs and secure housing. Our findings suggest that more research be done on the impact of social capital embedded in reentry programs and that referrals be made to these types of programs and funding be provided for those that demonstrate the ability to significantly reduce recidivism. As Putman has noted, "Just as a screwdriver (physical capital or a college education (human capital can increase productivity (both individual and collective, so do social contacts affect the productivity of individuals and groups."

  12. Developing a Distributed Consensus-Based Cooperative Adaptive Cruise Control System for Heterogeneous Vehicles with Predecessor Following Topology

    Directory of Open Access Journals (Sweden)

    Ziran Wang

    2017-01-01

    Full Text Available Connected and automated vehicle (CAV has become an increasingly popular topic recently. As an application, Cooperative Adaptive Cruise Control (CACC systems are of high interest, allowing CAVs to communicate with each other and coordinating their maneuvers to form platoons, where one vehicle follows another with a constant velocity and/or time headway. In this study, we propose a novel CACC system, where distributed consensus algorithm and protocol are designed for platoon formation, merging maneuvers, and splitting maneuvers. Predecessor following information flow topology is adopted for the system, where each vehicle only communicates with its following vehicle to reach consensus of the whole platoon, making the vehicle-to-vehicle (V2V communication fast and accurate. Moreover, different from most studies assuming the type and dynamics of all the vehicles in a platoon to be homogenous, we take into account the length, location of GPS antenna on vehicle, and braking performance of different vehicles. A simulation study has been conducted under scenarios including normal platoon formation, platoon restoration from disturbances, and merging and splitting maneuvers. We have also carried out a sensitivity analysis on the distributed consensus algorithm, investigating the effect of the damping gain on convergence rate, driving comfort, and driving safety of the system.

  13. The efficacy of family reunification practices: reentry rates and correlates of reentry for abused and neglected children reunited with their families.

    Science.gov (United States)

    Terling, T

    1999-12-01

    Since the 1980s Child Protective Services has increasingly relied on family reunification for abused/neglected children rather than long term foster care or adoption. While family reunification practices are controversial, little research is available to inform the debate. This research explores the efficacy of these practices. This study utilizes two CPS data sources and both quantitative and qualitative methodologies to identify reentry rates and correlates of reentry for abused and neglected children returned to their families by CPS. System reentry due to additional maltreatment is considerable. Thirty-seven percent of the children reunited with their families reenter the system within 3 1/2 years. Correlates of reentry are identified as; abuse type, CPS history, parental competency, race, criminal history, substance abuse, and social support. Notably, assessments of risk made by caseworkers are found to be unrelated to reentry. The high reentry rate and the limitations of current risk assessment procedures suggest that CPS family reunification practices have not been entirely successful. The identification of specific risks of reentry, such as those revealed in this study, will be helpful in assessing risk on cases. In addition, future studies should explore the systemic deficiencies that contribute to the additional maltreatment that occurs for a sizable proportion of the children served by the system.

  14. Mitigating reentry radio blackout by using a traveling magnetic field

    Directory of Open Access Journals (Sweden)

    Hui Zhou

    2017-10-01

    Full Text Available A hypersonic flight or a reentry vehicle is surrounded by a plasma layer that prevents electromagnetic wave transmission, which results in radio blackout. The magnetic-window method is considered a promising means to mitigate reentry communication blackout. However, the real application of this method is limited because of the need for strong magnetic fields. To reduce the required magnetic field strength, a novel method that applies a traveling magnetic field (TMF is proposed in this study. A mathematical model based on magneto-hydrodynamic theory is adopted to analyze the effect of TMF on plasma. The mitigating effects of the TMF on the blackout of typical frequency bands, including L-, S-, and C-bands, are demonstrated. Results indicate that a significant reduction of plasma density occurs in the magnetic-window region by applying a TMF, and the reduction ratio is positively correlated with the velocity of the TMF. The required traveling velocities for eliminating the blackout of the Global Positioning System (GPS and the typical telemetry system are also discussed. Compared with the constant magnetic-window method, the TMF method needs lower magnetic field strength and is easier to realize in the engineering field.

  15. Mitigating reentry radio blackout by using a traveling magnetic field

    Science.gov (United States)

    Zhou, Hui; Li, Xiaoping; Xie, Kai; Liu, Yanming; Yu, Yuanyuan

    2017-10-01

    A hypersonic flight or a reentry vehicle is surrounded by a plasma layer that prevents electromagnetic wave transmission, which results in radio blackout. The magnetic-window method is considered a promising means to mitigate reentry communication blackout. However, the real application of this method is limited because of the need for strong magnetic fields. To reduce the required magnetic field strength, a novel method that applies a traveling magnetic field (TMF) is proposed in this study. A mathematical model based on magneto-hydrodynamic theory is adopted to analyze the effect of TMF on plasma. The mitigating effects of the TMF on the blackout of typical frequency bands, including L-, S-, and C-bands, are demonstrated. Results indicate that a significant reduction of plasma density occurs in the magnetic-window region by applying a TMF, and the reduction ratio is positively correlated with the velocity of the TMF. The required traveling velocities for eliminating the blackout of the Global Positioning System (GPS) and the typical telemetry system are also discussed. Compared with the constant magnetic-window method, the TMF method needs lower magnetic field strength and is easier to realize in the engineering field.

  16. Is vehicle automation enough to prevent crashes? Role of traffic operations in automated driving environments for traffic safety.

    Science.gov (United States)

    Jeong, Eunbi; Oh, Cheol; Lee, Seolyoung

    2017-07-01

    Automated driving systems (ADSs) are expected to prevent traffic accidents caused by driver carelessness on freeways. There is no doubt regarding this safety benefit if all vehicles in the transportation system were equipped with ADSs; however, it is implausible to expect that ADSs will reach 100% market penetration rate (MPR) in the near future. Therefore, the following question arises: 'Can ADSs, which consider only situations in the vicinity of an equipped vehicle, really contribute to a significant reduction in traffic accidents?' To address this issue, the interactions between equipped and unequipped vehicles must be investigated, which is the purpose of this study. This study evaluated traffic safety at different MPRs based on a proposed index to represent the overall rear-end crash risk of the traffic stream. Two approaches were evaluated for adjusting longitudinal vehicle maneuvers: vehicle safety-based maneuvering (VSM), which considers the crash risk of an equipped vehicle and its neighboring vehicles, and traffic safety-based maneuvering (TSM), which considers the overall crash risk in the traffic stream. TSM assumes that traffic operational agencies are able to monitor all the vehicles and to intervene in vehicle maneuvering. An optimization process, which attempts to obtain vehicle maneuvering control parameters to minimize the overall crash risk, is integrated into the proposed evaluation framework. The main purpose of employing the optimization process for vehicle maneuvering in this study is to identify opportunities to improve traffic safety through effective traffic management rather than developing a vehicle control algorithm that can be implemented in practice. The microscopic traffic simulator VISSIM was used to simulate the freeway traffic stream and to conduct systematic evaluations based on the proposed methodology. Both TSM and VSM achieved significant reductions in the potential for rear-end crashes. However, TSM obtained much greater

  17. Maneuver from the Air Domain

    Science.gov (United States)

    2016-05-26

    Overload From the previous discussion, cognitive maneuver seeks to degrade the enemy’s capacity for...in all domains, the ability to maneuver from the air domain in the cognitive sense, comes primarily from air power’s unique ability to overload the... cognitive maneuver mechanisms developed in the 1980s as part of broader maneuver warfare theory. The result is a proposed definition of maneuver from

  18. Vehicle Reference Generator for Collision-Free Trajectories in Hazardous Maneuvers

    Directory of Open Access Journals (Sweden)

    Cuauhtémoc Acosta Lúa

    2018-01-01

    Full Text Available This paper presents a reference generator for ground vehicles, based on potential fields adapted to the case of vehicular dynamics. The reference generator generates signals to be tracked by the vehicle, corresponding to a trajectory avoiding collisions with obstacles. This generator integrates artificial forces of potential fields of the object surrounding the vehicle. The reference generator is used with a controller to ensure the tracking of the accident-free reference. This approach can be used for vehicle autonomous driving or for active control of manned vehicles. Simulation results, presented for the autonomous driving, consider a scenario inspired by the so-called moose (or elk test, with the presence of other collaborative vehicles.

  19. Vehicle Maneuver Detection with Accelerometer-Based Classification

    Directory of Open Access Journals (Sweden)

    Javier Cervantes-Villanueva

    2016-09-01

    Full Text Available In the mobile computing era, smartphones have become instrumental tools to develop innovative mobile context-aware systems. In that sense, their usage in the vehicular domain eases the development of novel and personal transportation solutions. In this frame, the present work introduces an innovative mechanism to perceive the current kinematic state of a vehicle on the basis of the accelerometer data from a smartphone mounted in the vehicle. Unlike previous proposals, the introduced architecture targets the computational limitations of such devices to carry out the detection process following an incremental approach. For its realization, we have evaluated different classification algorithms to act as agents within the architecture. Finally, our approach has been tested with a real-world dataset collected by means of the ad hoc mobile application developed.

  20. Trajectories and Maneuvers of Surrounding Vehicles with Panoramic Camera Arrays

    DEFF Research Database (Denmark)

    Dueholm, Jacob Velling; Kristoffersen, Miklas Strøm; Satzoda, Ravi K.

    2016-01-01

    Vision-based research for intelligent vehicles have traditionally focused on specific regions around a vehicle, such as a front looking camera for, e.g., lane estimation. Traffic scenes are complex and vital information could be lost in unobserved regions. This paper proposes a framework that uses...... four visual sensors for a full surround view of a vehicle in order to achieve an understanding of surrounding vehicle behaviors. The framework will assist the analysis of naturalistic driving studies by automating the task of data reduction of the observed trajectories. To this end, trajectories...... are estimated using a vehicle detector together with a multiperspective optimized tracker in each view. The trajectories are transformed to a common ground plane, where they are associated between perspectives and analyzed to reveal tendencies around the ego-vehicle. The system is tested on sequences from 2.5 h...

  1. Adaptive vehicle motion estimation and prediction

    Science.gov (United States)

    Zhao, Liang; Thorpe, Chuck E.

    1999-01-01

    Accurate motion estimation and reliable maneuver prediction enable an automated car to react quickly and correctly to the rapid maneuvers of the other vehicles, and so allow safe and efficient navigation. In this paper, we present a car tracking system which provides motion estimation, maneuver prediction and detection of the tracked car. The three strategies employed - adaptive motion modeling, adaptive data sampling, and adaptive model switching probabilities - result in an adaptive interacting multiple model algorithm (AIMM). The experimental results on simulated and real data demonstrate that our tracking system is reliable, flexible, and robust. The adaptive tracking makes the system intelligent and useful in various autonomous driving tasks.

  2. Development of a highly maneuverable unmanned underwater vehicle on the basis of quad-copter dynamics

    Science.gov (United States)

    Amin, Osman Md; Karim, Md. Arshadul; Saad, Abdullah His

    2017-12-01

    At present, research on unmanned underwater vehicle (UUV) has become a significant & familiar topic for researchers from various engineering fields. UUV is of mainly two types - AUV (Autonomous Underwater vehicle) & ROV (Remotely Operated Vehicle). There exist a significant number of published research papers on UUV, where very few researchers emphasize on the ease of maneuvering and control of UUV. Maneuvering is important for underwater vehicle in avoiding obstacles, installing underwater piping system, searching undersea resources, underwater mine disposal operations, oceanographic surveys etc. A team from Dept. of Naval Architecture & Marine Engineering of MIST has taken a project to design a highly maneuverable unmanned underwater vehicle on the basis of quad-copter dynamics. The main objective of the research is to develop a control system for UUV which would be able to maneuver the vehicle in six DOF (Degrees of Freedom) with great ease. For this purpose we are not only focusing on controllability but also designing an efficient hull with minimal drag force & optimized propeller using CFD technique. Motors were selected on the basis of the simulated thrust generated by propellers in ANSYS Fluent software module. Settings for control parameters to carry out different types of maneuvering such as hovering, spiral, one point rotation about its centroid, gliding, rolling, drifting and zigzag motions were explained in short at the end.

  3. Reentry safety for the Topaz II Space Reactor: Issues and analyses

    International Nuclear Information System (INIS)

    Connell, L.W.; Trost, L.C.

    1994-03-01

    This report documents the reentry safety analyses conducted for the TOPAZ II Nuclear Electric Propulsion Space Test Program (NEPSTP). Scoping calculations were performed on the reentry aerothermal breakup and ground footprint of reactor core debris. The calculations were used to assess the risks associated with radiologically cold reentry accidents and to determine if constraints should be placed on the core configuration for such accidents. Three risk factors were considered: inadvertent criticality upon reentry impact, atmospheric dispersal of U-235 fuel, and the Special Nuclear Material Safeguards risks. Results indicate that the risks associated with cold reentry are very low regardless of the core configuration. Core configuration constraints were therefore not established for radiologically cold reentry accidents

  4. Minimum Propellant Low-Thrust Maneuvers near the Libration Points

    Science.gov (United States)

    Marinescu, A.; Dumitrache, M.

    The impulse technique certainly can bring the vehicle on orbits around the libration points or close to them. The question that aries is, by what means can the vehicle arrive in such cases at the libration points? A first investigation carried out in this paper can give an answer: the use of the technique of low-thrust, which, in addition, can bring the vehicle from the libration points near to or into orbits around these points. This aspect is considered in this present paper where for the applications we have considered the transfer for orbits of the equidistant point L4 and of the collinear point L2, from Earth-moon system. This transfer maneuver can be used to insertion one satellite on libration points orbits. In Earth- moon system the points L 4 and L 5 because an vehicle in on of the equidistant points in quite stable and remains in its vicinity of perturbed, have potential interest for the establishment of transporder satellite for interplanetary tracking. In contrast an vehicle in one of the collinear points is quite instable and it will oscillate along the Earth-moon-axis at increasing amplitude and gradually escape from the libration point. Let use assume that a space vehicle equipped with a low-thrust propulsion is near a libration point L. We consider the planar motion in the restricted frame of the three bodies in the rotating system L, where the Earth-moon distance D=l. The unit of time T is period of the moon's orbit divided by 2 and multiplied by the square root of the quantity one plus the moon/Earth mass ratio, and the unit of mass is the Earth's mass. With these predictions the motion equatios of the vehicle equiped with a low-thrust propulsion installation in the linear approximation near the libration point, have been established. The parameters of the motion at the beginning and the end of these maneuvers are known, the variational problem has been formulated as a Lagrange type problem with fixed extremities. On established the differential

  5. Development and Validation of Reentry Simulation Using MATLAB

    National Research Council Canada - National Science Library

    Jameson, Jr, Robert E

    2006-01-01

    This research effort develops a program using MATLAB to solve the equations of motion for atmospheric reentry and analyzes the validity of the program for use as a tool to expeditiously predict reentry profiles...

  6. Pico Reentry Probes: Affordable Options for Reentry Measurements and Testing

    Science.gov (United States)

    Ailor, William H.; Kapoor, Vinod B.; Allen, Gay A., Jr.; Venkatapathy, Ethiraj; Arnold, James O.; Rasky, Daniel J.

    2005-01-01

    It is generally very costly to perform in-space and atmospheric entry experiments. This paper presents a new platform - the Pico Reentry Probe (PREP) - that we believe will make targeted flight-tests and planetary atmospheric probe science missions considerably more affordable. Small, lightweight, self-contained, it is designed as a "launch and forget" system, suitable for experiments that require no ongoing communication with the ground. It contains a data recorder, battery, transmitter, and user-customized instrumentation. Data recorded during reentry or space operations is returned at end-of-mission via transmission to Iridium satellites (in the case of earth-based operations) or a similar orbiting communication system for planetary missions. This paper discusses possible applications of this concept for Earth and Martian atmospheric entry science. Two well-known heritage aerodynamic shapes are considered as candidates for PREP: the shape developed for the Planetary Atmospheric Experiment Test (PAET) and that for the Deep Space II Mars Probe.

  7. Hayabusa Re-Entry: Trajectory Analysis and Observation Mission Design

    Science.gov (United States)

    Cassell, Alan M.; Winter, Michael W.; Allen, Gary A.; Grinstead, Jay H.; Antimisiaris, Manny E.; Albers, James; Jenniskens, Peter

    2011-01-01

    On June 13th, 2010, the Hayabusa sample return capsule successfully re-entered Earth s atmosphere over the Woomera Prohibited Area in southern Australia in its quest to return fragments from the asteroid 1998 SF36 Itokawa . The sample return capsule entered at a super-orbital velocity of 12.04 km/sec (inertial), making it the second fastest human-made object to traverse the atmosphere. The NASA DC-8 airborne observatory was utilized as an instrument platform to record the luminous portion of the sample return capsule re-entry (60 sec) with a variety of on-board spectroscopic imaging instruments. The predicted sample return capsule s entry state information at 200 km altitude was propagated through the atmosphere to generate aerothermodynamic and trajectory data used for initial observation flight path design and planning. The DC- 8 flight path was designed by considering safety, optimal sample return capsule viewing geometry and aircraft capabilities in concert with key aerothermodynamic events along the predicted trajectory. Subsequent entry state vector updates provided by the Deep Space Network team at NASA s Jet Propulsion Laboratory were analyzed after the planned trajectory correction maneuvers to further refine the DC-8 observation flight path. Primary and alternate observation flight paths were generated during the mission planning phase which required coordination with Australian authorities for pre-mission approval. The final observation flight path was chosen based upon trade-offs between optimal viewing requirements, ground based observer locations (to facilitate post-flight trajectory reconstruction), predicted weather in the Woomera Prohibited Area and constraints imposed by flight path filing deadlines. To facilitate sample return capsule tracking by the instrument operators, a series of two racetrack flight path patterns were performed prior to the observation leg so the instruments could be pointed towards the region in the star background where

  8. Associating Crash Avoidance Maneuvers with Driver Attributes and Accident Characteristics: A Mixed Logit Model Approach

    DEFF Research Database (Denmark)

    Kaplan, Sigal; Prato, Carlo Giacomo

    2012-01-01

    as from the key role of the ability of drivers to perform effective corrective maneuvers for the success of automated in-vehicle warning and driver assistance systems. The analysis is conducted by means of a mixed logit model that accommodates correlations across alternatives and heteroscedasticity. Data...

  9. Design and Simulation of the Robust ABS and ESP Fuzzy Logic Controller on the Complex Braking Maneuvers

    Directory of Open Access Journals (Sweden)

    Andrei Aksjonov

    2016-11-01

    Full Text Available Automotive driving safety systems such as an anti-lock braking system (ABS and an electronic stability program (ESP assist drivers in controlling the vehicle to avoid road accidents. In this paper, ABS and the ESP, based on the fuzzy logic theory, are integrated for vehicle stability control in complex braking maneuvers. The proposed control algorithm is implemented for a sport utility vehicle (SUV and investigated for braking on different surfaces. The results obtained for the vehicle software simulator confirm the robustness of the developed control strategy for a variety of road profiles and surfaces.

  10. Space Vehicle Reliability Modeling in DIORAMA

    Energy Technology Data Exchange (ETDEWEB)

    Tornga, Shawn Robert [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-07-12

    When modeling system performance of space based detection systems it is important to consider spacecraft reliability. As space vehicles age the components become prone to failure for a variety of reasons such as radiation damage. Additionally, some vehicles may lose the ability to maneuver once they exhaust fuel supplies. Typically failure is divided into two categories: engineering mistakes and technology surprise. This document will report on a method of simulating space vehicle reliability in the DIORAMA framework.

  11. Highly Skilled Autonomous Vehicles

    OpenAIRE

    Manuel Acosta Reche; Stratis Kanarachos; Mike V Blundell

    2017-01-01

    Recent research suggests that collision mitigation on low grip surfaces might require autonomous vehicles to execute maneuvers such as drift, trail braking or Scandinavian flick. In order to achieve this it is necessary to perceive the vehicle states and their interaction with the environment, and use this information to determine the chassis limits. A first look at the virtual automotive sensing problem is provided, followed by a description of Rally driving modeling approaches. Finally, a c...

  12. Characteristic Model-Based Robust Model Predictive Control for Hypersonic Vehicles with Constraints

    Directory of Open Access Journals (Sweden)

    Jun Zhang

    2017-06-01

    Full Text Available Designing robust control for hypersonic vehicles in reentry is difficult, due to the features of the vehicles including strong coupling, non-linearity, and multiple constraints. This paper proposed a characteristic model-based robust model predictive control (MPC for hypersonic vehicles with reentry constraints. First, the hypersonic vehicle is modeled by a characteristic model composed of a linear time-varying system and a lumped disturbance. Then, the identification data are regenerated by the accumulative sum idea in the gray theory, which weakens effects of the random noises and strengthens regularity of the identification data. Based on the regenerated data, the time-varying parameters and the disturbance are online estimated according to the gray identification. At last, the mixed H2/H∞ robust predictive control law is proposed based on linear matrix inequalities (LMIs and receding horizon optimization techniques. Using active tackling system constraints of MPC, the input and state constraints are satisfied in the closed-loop control system. The validity of the proposed control is verified theoretically according to Lyapunov theory and illustrated by simulation results.

  13. Cassini-Huygens maneuver automation for navigation

    Science.gov (United States)

    Goodson, Troy; Attiyah, Amy; Buffington, Brent; Hahn, Yungsun; Pojman, Joan; Stavert, Bob; Strange, Nathan; Stumpf, Paul; Wagner, Sean; Wolff, Peter; hide

    2006-01-01

    Many times during the Cassini-Huygens mission to Saturn, propulsive maneuvers must be spaced so closely together that there isn't enough time or workforce to execute the maneuver-related software manually, one subsystem at a time. Automation is required. Automating the maneuver design process has involved close cooperation between teams. We present the contribution from the Navigation system. In scope, this includes trajectory propagation and search, generation of ephemerides, general tasks such as email notification and file transfer, and presentation materials. The software has been used to help understand maneuver optimization results, Huygens probe delivery statistics, and Saturn ring-plane crossing geometry. The Maneuver Automation Software (MAS), developed for the Cassini-Huygens program enables frequent maneuvers by handling mundane tasks such as creation of deliverable files, file delivery, generation and transmission of email announcements, generation of presentation material and other supporting documentation. By hand, these tasks took up hours, if not days, of work for each maneuver. Automated, these tasks may be completed in under an hour. During the cruise trajectory the spacing of maneuvers was such that development of a maneuver design could span about a month, involving several other processes in addition to that described, above. Often, about the last five days of this process covered the generation of a final design using an updated orbit-determination estimate. To support the tour trajectory, the orbit determination data cut-off of five days before the maneuver needed to be reduced to approximately one day and the whole maneuver development process needed to be reduced to less than a week..

  14. Re-entry simulation chamber for thermo-mechanical characterisation of space materials

    Science.gov (United States)

    Liedtke, Volker

    2003-09-01

    During re-entry, materials and components are subject to very high thermal and mechanical loads. Any failure may cause loss of mission. Therefore, materials and components have to be tested under most rigid conditions to verify the suitability of the material and to verify the design of the components. The Re-Entry Simulation Chamber (RESiC) at ARC Seibersdorf research (ARCS) allows simulating the high thermal loads as well as complex mechanical load profiles that may occur during a re-entry; additionally, the influence of chemical reactions of materials with gaseous components of the atmosphere can be studied. The high vacuum chamber (better than 1×10-6 mbar) has a diameter of 650 mm and allows a sample height of 500 mm, or 1000 mm with extension flange. The gas dosing system is designed to emulate the increasing atmospheric pressure during the re-entry trajectory of a vehicle. Heating is performed by a 30 kW induction generator that allows a sufficiently rapid heating of larger components; electrically conductive materials such as metals or carbon fibre reinforced ceramics are directly heated, while for electrical insulators, susceptor plates or tubes will be employed. The uniaxial servo-hydraulic testing machine has a maximum load of 70 kN, either static or with a frequency of up to 70 Hz, with any given load profile (sinus, rectangular, triangular, ...). Strain measurements will be done by non-contacting laser speckle system for maximum flexibility and minimum instrumentation time effort (currently under application testing), or by strain gauges. All relevant process parameters are controlled and recorded by microcomputer. The highly sophisticated control software allows a convenient and reliable multi-channel data acquisition, e.g. temperatures at various positions of the test piece, pressure, loads, strains, and any other test data according to customer specifications; the data format is suitable for any further data processing. During the set-up and

  15. Drag De-Orbit Device: A New Standard Re-Entry Actuator for CubeSats

    Science.gov (United States)

    Guglielmo, David; Omar, Sanny R.; Bevilacqua, Riccardo

    2017-01-01

    With the advent of CubeSats, research in Low Earth Orbit (LEO) becomes possible for universities and small research groups. Only a handful of launch sites can be used, due to geographical and political restrictions. As a result, common orbits in LEO are becoming crowded due to the additional launches made possible by low-cost access to space. CubeSat design principles require a maximum of a 25-year orbital lifetime in an effort to reduce the total number of spacecraft in orbit at any time. Additionally, since debris may survive re-entry, it is ideal to de-orbit spacecraft over unpopulated areas to prevent casualties. The Drag Deorbit Device (D3) is a self-contained targeted re-entry subsystem intended for CubeSats. By varying the cross-wind area, the atmospheric drag can be varied in such a way as to produce desired maneuvers. The D3 is intended to be used to remove spacecraft from orbit to reach a desired target interface point. Additionally, attitude stabilization is performed by the D3 prior to deployment and can replace a traditional ADACS on many missions.This paper presents the hardware used in the D3 and operation details. Four stepper-driven, repeatedly retractable booms are used to modify the cross-wind area of the D3 and attached spacecraft. Five magnetorquers (solenoids) over three axes are used to damp rotational velocity. This system is expected to be used to improve mission flexibility and allow additional launches by reducing the orbital lifetime of spacecraft.The D3 can be used to effect a re-entry to any target interface point, with the orbital inclination limiting the maximum latitude. In the chance that the main spacecraft fails, a timer will automatically deploy the booms fully, ensuring the spacecraft will at the minimum reenter the atmosphere in the minimum possible time, although not necessarily at the desired target interface point. Although this does not reduce the risk of casualties, the 25-year lifetime limit is still respected, allowing

  16. In Depth Analysis of AVCOAT TPS Response to a Reentry Flow

    International Nuclear Information System (INIS)

    Titov, E. V.; Kumar, Rakesh; Levin, D. A.

    2011-01-01

    Modeling of the high altitude portion of reentry vehicle trajectories with DSMC or statistical BGK solvers requires accurate evaluation of the boundary conditions at the ablating TPS surface. Presented in this article is a model which takes into account the complex ablation physics including the production of pyrolysis gases, and chemistry at the TPS surface. Since the ablation process is time dependent the modeling of the material response to the high energy reentry flow starts with the solution of the rarefied flow over the vehicle and then loosely couples with the material response. The objective of the present work is to carry out conjugate thermal analysis by weakly coupling a flow solver to a material thermal response model. The latter model solves the one dimensional heat conduction equation accounting for the pyrolysis process that takes place in the reaction zone of an ablative thermal protection system (TPS) material. An estimate of the temperature range within which the pyrolysis reaction (decomposition and volatilization) takes place is obtained from Ref. [1]. The pyrolysis reaction results in the formation of char and the release of gases through the porous charred material. These gases remove additional amount of heat as they pass through the material, thus cooling the material (the process known as transpiration cooling). In the present work, we incorporate the transpiration cooling model in the material thermal response code in addition to the pyrolysis model. The flow in the boundary layer and in the vicinity of the TPS material is in the transitional flow regime. Therefore, we use a previously validated statistical BGK method to model the flow physics in the vicinity of the micro-cracks, since the BGK method allows simulations of flow at pressures higher than can be computed using DSMC.

  17. Smooth Sliding Mode Control for Vehicle Rollover Prevention Using Active Antiroll Suspension

    Directory of Open Access Journals (Sweden)

    Duanfeng Chu

    2015-01-01

    Full Text Available The rollover accidents induced by severe maneuvers are very dangerous and mostly happen to vehicles with elevated center of gravity, such as heavy-duty trucks and pickup trucks. Unfortunately, it is hard for drivers of those vehicles to predict and prevent the trend of the maneuver-induced (untripped rollover ahead of time. In this study, a lateral load transfer ratio which reflects the load distribution of left and right tires is used to indicate the rollover criticality. An antiroll controller is designed with smooth sliding mode control technique for vehicles, in which an active antiroll suspension is installed. A simplified second order roll dynamic model with additive sector bounded uncertainties is used for control design, followed by robust stability analysis. Combined with the vehicle dynamics simulation package TruckSim, MATLAB/Simulink is used for simulating experiment. The results show that the applied controller can improve the roll stability under some typical steering maneuvers, such as Fishhook and J-turn. This direct antiroll control method could be more effective for untripped rollover prevention when driver deceleration or steering is too late. It could also be extended to handle tripped rollovers.

  18. Investigation of plasma–surface interaction effects on pulsed electrostatic manipulation for reentry blackout alleviation

    International Nuclear Information System (INIS)

    Krishnamoorthy, S; Close, S

    2017-01-01

    distances up to three times the electrode length normal to the vehicle surface. Based on our results, we postulate that pulsed electrostatic manipulation (PEM) may be a viable candidate for reentry blackout alleviation in the future. (paper)

  19. Ariane Transfer Vehicle in service of man in orbit

    Science.gov (United States)

    Deutscher, N.; Schefold, K.; Cougnet, C.

    1988-10-01

    The Ariane Transfer Vehicle (ATV), an unmanned propulsion system that is designed to be carried by the Ariane 5 launch vehicle, will undertake the logistical support required by the International Space Station and the Man-Tended Free Flyer, carrying both pressurized and unpressurized cargo to these spacecraft and carrying away wastes. The ATV is an expendable vehicle, disposed of by burn-up during reentry, and will be available for initial operations in 1996. In order to minimize development costs and recurrent costs, the ATV design will incorporate existing hardware and software.

  20. Off-road vehicle dynamics analysis, modelling and optimization

    CERN Document Server

    Taghavifar, Hamid

    2017-01-01

    This book deals with the analysis of off-road vehicle dynamics from kinetics and kinematics perspectives and the performance of vehicle traversing over rough and irregular terrain. The authors consider the wheel performance, soil-tire interactions and their interface, tractive performance of the vehicle, ride comfort, stability over maneuvering, transient and steady state conditions of the vehicle traversing, modeling the aforementioned aspects and optimization from energetic and vehicle mobility perspectives. This book brings novel figures for the transient dynamics and original wheel terrain dynamics at on-the-go condition.

  1. A Study on Re-entry Predictions of Uncontrolled Space Objects for Space Situational Awareness

    Science.gov (United States)

    Choi, Eun-Jung; Cho, Sungki; Lee, Deok-Jin; Kim, Siwoo; Jo, Jung Hyun

    2017-12-01

    The key risk analysis technologies for the re-entry of space objects into Earth’s atmosphere are divided into four categories: cataloguing and databases of the re-entry of space objects, lifetime and re-entry trajectory predictions, break-up models after re-entry and multiple debris distribution predictions, and ground impact probability models. In this study, we focused on re- entry prediction, including orbital lifetime assessments, for space situational awareness systems. Re-entry predictions are very difficult and are affected by various sources of uncertainty. In particular, during uncontrolled re-entry, large spacecraft may break into several pieces of debris, and the surviving fragments can be a significant hazard for persons and properties on the ground. In recent years, specific methods and procedures have been developed to provide clear information for predicting and analyzing the re-entry of space objects and for ground-risk assessments. Representative tools include object reentry survival analysis tool (ORSAT) and debris assessment software (DAS) developed by National Aeronautics and Space Administration (NASA), spacecraft atmospheric re-entry and aerothermal break-up (SCARAB) and debris risk assessment and mitigation analysis (DRAMA) developed by European Space Agency (ESA), and semi-analytic tool for end of life analysis (STELA) developed by Centre National d’Etudes Spatiales (CNES). In this study, various surveys of existing re-entry space objects are reviewed, and an efficient re-entry prediction technique is suggested based on STELA, the life-cycle analysis tool for satellites, and DRAMA, a re-entry analysis tool. To verify the proposed method, the re-entry of the Tiangong-1 Space Lab, which is expected to re-enter Earth’s atmosphere shortly, was simulated. Eventually, these results will provide a basis for space situational awareness risk analyses of the re-entry of space objects.

  2. Experimental visualization of rapid maneuvering fish

    Science.gov (United States)

    Daigh, S.; Techet, A. H.

    2003-11-01

    A freshwater tropical fish, Danio aequippinatus, is studied undergoing rapid turning and fast starting maneuvers. This agile species of fish is ideal for this study as it is capable of quick turning and darting motions up to 5g's. The fgish studied are 4-5 cm in length. The speed and kinematics of the maneuvering is determined by video analysis. Planar and stereo Particle Image Velocimetry (PIV) is used to map the vortical patterns in the wake of the maneuvering fish. PIV visualizations reveal that during C-shaped maneuvers a ring shaped jet vortex is formed. Fast starting behavior is also presented. PIV data is used to approixmate the thrust vectoring force produced during each maneuver.

  3. Psychophysiological assessment and correction of spatial disorientation during simulated Orion spacecraft re-entry.

    Science.gov (United States)

    Cowings, Patricia S; Toscano, William B; Reschke, Millard F; Tsehay, Addis

    2018-03-02

    The National Aeronautics and Space Administration (NASA) has identified a potential risk of spatial disorientation, motion sickness, and degraded performance to astronauts during re-entry and landing of the proposed Orion crew vehicle. The purpose of this study was to determine if a physiological training procedure, Autogenic-Feedback Training Exercise (AFTE), can mitigate these adverse effects. Fourteen men and six women were assigned to two groups (AFTE, no-treatment Control) matched for motion sickness susceptibility and gender. All subjects received a standard rotating chair test to determine motion sickness susceptibility; three training sessions on a manual performance task; and four exposures in the rotating chair (Orion tests) simulating angular accelerations of the crew vehicle during re-entry. AFTE subjects received 2 h of training before Orion tests 2, 3, and 4. Motion sickness symptoms, task performance, and physiological measures were recorded on all subjects. Results showed that the AFTE group had significantly lower symptom scores when compared to Controls on test 2 (p = .05), test 3 (p = .03), and test 4 (p = .02). Although there were no significant group differences on task performance, trends showed that AFTE subjects were less impaired than Controls. Heart rate change scores (20 rpm minus baseline) of AFTE subjects indicated significantly less reactivity on Test 4 compared to Test 1 (10.09 versus 16.59, p = .02), while Controls did not change significantly across tests. Results of this study indicate that AFTE may be an effective countermeasure for mitigating spatial disorientation and motion sickness in astronauts. Copyright © 2018. Published by Elsevier B.V.

  4. Demonstrator of atmospheric reentry system with hyperbolic velocity—DASH

    Science.gov (United States)

    Morita, Yasuhiro; Kawaguchi, Jun'ichiro; Inatani, Yoshifumi; Abe, Takashi

    2003-01-01

    Among a wide variety of challenging projects planned for the coming decade is the MUSES-C mission designed by the ISAS of Japan. Despite huge amount of data collected by the previous interplanetary spacecraft and probes, the origin and evolution of the solar system still remains unveiled due to their limited information. Thus, our concern has been directed toward a sample return to carry sample from an asteroid back to the earth, which will contribute to better understanding of the system. One of the keys to success is considered the reentry technology with hyperbolic velocity, which has not been demonstrated yet. With this as background, the demonstrator of atmospheric reentry system with hyperbolic velocity, DASH, has been given a commitment to demonstrate the high-speed reentry technology, which will be launched in summer of next year by Japan's H-IIA rocket in a piggyback configuration. The spaceship, composed of a reentry capsule and its carrier, will be injected into a geostationary transfer orbit (GTO) and after several revolutions it will deorbit by burn of a solid propellant deorbit motor. The capsule, identical to that of the sample return mission, can experience the targeted level of thermal environment even from the GTO by tracing a specially designed reentry trajectory.

  5. Intent-Estimation- and Motion-Model-Based Collision Avoidance Method for Autonomous Vehicles in Urban Environments

    Directory of Open Access Journals (Sweden)

    Rulin Huang

    2017-04-01

    Full Text Available Existing collision avoidance methods for autonomous vehicles, which ignore the driving intent of detected vehicles, thus, cannot satisfy the requirements for autonomous driving in urban environments because of their high false detection rates of collisions with vehicles on winding roads and the missed detection rate of collisions with maneuvering vehicles. This study introduces an intent-estimation- and motion-model-based (IEMMB method to address these disadvantages. First, a state vector is constructed by combining the road structure and the moving state of detected vehicles. A Gaussian mixture model is used to learn the maneuvering patterns of vehicles from collected data, and the patterns are used to estimate the driving intent of the detected vehicles. Then, a desirable long-term trajectory is obtained by weighting time and comfort. The long-term trajectory and the short-term trajectory, which are predicted using a constant yaw rate motion model, are fused to achieve an accurate trajectory. Finally, considering the moving state of the autonomous vehicle, collisions can be detected and avoided. Experiments have shown that the intent estimation method performed well, achieving an accuracy of 91.7% on straight roads and an accuracy of 90.5% on winding roads, which is much higher than that achieved by the method that ignores the road structure. The average collision detection distance is increased by more than 8 m. In addition, the maximum yaw rate and acceleration during an evasive maneuver are decreased, indicating an improvement in the driving comfort.

  6. Design Multi-Sides System Unmanned Surface Vehicle (USV) Rocket

    Science.gov (United States)

    Syam, Rafiudin; Sutresman, Onny; Mappaita, Abdullah; Amiruddin; Wiranata, Ardi

    2018-02-01

    This study aims to design and test USV multislide forms. This system is excellent for maneuvering on the x-y-z coordinates. The disadvantage of a single side USV is that it is very difficult to maneuver to achieve very dynamic targets. While for multi sides system easily maneuvered though x-y-z coordinates. In addition to security defense purposes, multi-side system is also good for maritime intelligence, surveillance. In this case, electric deducted fan with Multi-Side system so that the vehicle can still operate even in reverse condition. Multipleside USV experiments have done with good results. In a USV study designed to use two propulsions.

  7. Phase 2 reentry in man

    DEFF Research Database (Denmark)

    Thomsen, P.E.B.; Jørgensen, R.M.; Kanters, J.K.

    2005-01-01

    -wave changes documented in the last sinus beat prior to ventricular extrasystoles are in agreement with phase 2 reentry, suggesting that this may be the responsible mechanism for ventricular extrasystoles and ventricular tachycardia/fibrillation. The phenomenon has been demonstrated in only animal experiments...... phase 2 reentry, demonstrated in animal experiments to initiate ventricular extrasystoles, ventricular tachycardia, and ventricular fibrillation, also plays a role in humans. METHODS We examined 18 patients with ventricular extrasystoles and/or ventricular tachycardia by signal averaging of the ECG...... patients undergoing radiofrequency ablation. Eight of the 11 patients had right ventricular outflow tract extrasystoles. RESULTS In six of the seven patients in group A, we demonstrated significant ST-elevation and/or T-wave changes in the sinus beat preceding ventricular extrasystoles compared...

  8. Potential applications of skip SMV with thrust engine

    Science.gov (United States)

    Wang, Weilin; Savvaris, Al

    2016-11-01

    This paper investigates the potential applications of Space Maneuver Vehicles (SMV) with skip trajectory. Due to soaring space operations over the past decades, the risk of space debris has considerably increased such as collision risks with space asset, human property on ground and even aviation. Many active debris removal methods have been investigated and in this paper, a debris remediation method is first proposed based on skip SMV. The key point is to perform controlled re-entry. These vehicles are expected to achieve a trans-atmospheric maneuver with thrust engine. If debris is released at altitude below 80 km, debris could be captured by the atmosphere drag force and re-entry interface prediction accuracy is improved. Moreover if the debris is released in a cargo at a much lower altitude, this technique protects high value space asset from break up by the atmosphere and improves landing accuracy. To demonstrate the feasibility of this concept, the present paper presents the simulation results for two specific mission profiles: (1) descent to predetermined altitude; (2) descent to predetermined point (altitude, longitude and latitude). The evolutionary collocation method is adopted for skip trajectory optimization due to its global optimality and high-accuracy. This method is actually a two-step optimization approach based on the heuristic algorithm and the collocation method. The optimal-control problem is transformed into a nonlinear programming problem (NLP) which can be efficiently and accurately solved by the sequential quadratic programming (SQP) procedure. However, such a method is sensitive to initial values. To reduce the sensitivity problem, genetic algorithm (GA) is adopted to refine the grids and provide near optimum initial values. By comparing the simulation data from different scenarios, it is found that skip SMV is feasible in active debris removal and the evolutionary collocation method gives a truthful re-entry trajectory that satisfies the

  9. 33 CFR 84.23 - Maneuvering light.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Maneuvering light. 84.23 Section... RULES ANNEX I: POSITIONING AND TECHNICAL DETAILS OF LIGHTS AND SHAPES § 84.23 Maneuvering light. Notwithstanding the provisions of § 84.03(f), the maneuvering light described in Rule 34(b) shall be placed...

  10. The balance and harmony of control power for a combat aircraft in tactical maneuvering

    Science.gov (United States)

    Bocvarov, Spiro; Cliff, Eugene M.; Lutze, Frederick H.

    1992-01-01

    An analysis is presented for a family of regular extremal attitude-maneuvers for the High Angle-of-Attack Research Vehicle that has thrust-vectoring capability. Different levels of dynamic coupling are identified in the combat aircraft attitude model, and the characteristic extremal-family motion is explained. It is shown why the extremal-family trajectories develop small sideslip-angles, a highly desirable feature from a practical viewpoint.

  11. Hypersonic vehicle control law development using H(infinity) and micron-synthesis

    Science.gov (United States)

    Gregory, Irene M.; Mcminn, John D.; Shaughnessy, John D.; Chowdhry, Rajiv S.

    1993-01-01

    Hypersonic vehicle control law development using H(infinity) and mu-synthesis is discussed. Airbreathing SSTO vehicles has a mutli-faceted mission that includes orbital operations, as well as re-entry and descent culminating in horizontal landing. However, the most challenging part of the operations is the ascent to orbit. The airbreathing propulsion requires lengthy atmospheric flight that may last as long as 30 minutes and take the vehicle half way around the globe. The vehicles's ascent is characterized by tight payload to orbit margins which translate into minimum fuel orbit as the performance criteria. Issues discussed include: SSTO airbreathing vehicle issues; control system performance requirements; robust control law framework; H(infinity) controller frequency analysis; and mu controller frequency analysis.

  12. Development and demonstration of a validation methodology for vehicle lateral dynamics simulation models

    Energy Technology Data Exchange (ETDEWEB)

    Kutluay, Emir

    2013-02-01

    In this thesis a validation methodology to be used in the assessment of the vehicle dynamics simulation models is presented. Simulation of vehicle dynamics is used to estimate the dynamic responses of existing or proposed vehicles and has a wide array of applications in the development of vehicle technologies. Although simulation environments, measurement tools and mathematical theories on vehicle dynamics are well established, the methodical link between the experimental test data and validity analysis of the simulation model is still lacking. The developed validation paradigm has a top-down approach to the problem. It is ascertained that vehicle dynamics simulation models can only be validated using test maneuvers although they are aimed for real world maneuvers. Test maneuvers are determined according to the requirements of the real event at the start of the model development project and data handling techniques, validation metrics and criteria are declared for each of the selected maneuvers. If the simulation results satisfy these criteria, then the simulation is deemed ''not invalid''. If the simulation model fails to meet the criteria, the model is deemed invalid, and model iteration should be performed. The results are analyzed to determine if the results indicate a modeling error or a modeling inadequacy; and if a conditional validity in terms of system variables can be defined. Three test cases are used to demonstrate the application of the methodology. The developed methodology successfully identified the shortcomings of the tested simulation model, and defined the limits of application. The tested simulation model is found to be acceptable but valid only in a certain dynamical range. Several insights for the deficiencies of the model are reported in the analysis but the iteration step of the methodology is not demonstrated. Utilizing the proposed methodology will help to achieve more time and cost efficient simulation projects with

  13. Thermal response of an aeroassisted orbital-transfer vehicle with a conical drag brake

    Science.gov (United States)

    Pitts, W. C.; Murbach, M. S.

    1984-01-01

    As an aeroassisted orbital-transfer vehicle (AOTV) goes through an aerobraking maneuver, a significant amount of heat is generated. In this paper, the thermal response of a specific AOTV to this aerobrake heating is examined. The vehicle has a 70 deg, conical drag-brake heat shield attached to a cylindrical body which contains the payload. The heat shield is made of silica fabric. The heat-shield thickness is varied from that of a thin cloth to a 1.5-cm blanket. The fabric thickness, the radiation absorptivity of the vehicle surface materials, and radiation from the wake are all significant parameters in the thermal response to the heating produced by the braking maneuver. The maximum temperatures occur in the vicinity of the interface between the body and the conical heat shield.

  14. Thermal Response of an Aeroassisted Orbital Transfer Vehicle with a Conical Drag Brake

    Science.gov (United States)

    Pitts, W. C.; Murbach, M. S.

    1985-01-01

    As an aeroassisted orbital transfer vehicle (AOTV) goes through an aerobraking maneuver a significant amount of heat is generated. In this paper, the thermal response of a specific AOTV to this aerobrake heating is examined. The vehicle has a 70-deg, Conical drag-brake heat shield attached to a cylindrical body which contains the payload. The heat shield is made of ceramic fabric its thickness is varied from that of a thin cloth to a 1.5-cm blanket. The fabric thickness, the radiation absorptivity of the vehicle surface materials, and radiation from the wake are all significant parameters in the thermal response to the heating produced by the braking maneuver. The maximum temperatures occur In the vicinity of the interface between the body and the conical heat shield.

  15. Reentry Works: The Implementation and Effectiveness of a Serious and Violent Offender Reentry Initiative

    Science.gov (United States)

    Bouffard, Jeffrey A.; Bergeron, Lindsey E.

    2006-01-01

    Spurred by large increases in prison populations and other recent sentencing and correctional trends, the federal government has supported the development and implementation of Serious and Violent Offender Reentry Initiatives (SVORI) nationwide. While existing research demonstrates the effectiveness of the separate components of these programs…

  16. Implementation of the Orbital Maneuvering Systems Engine and Thrust Vector Control for the European Service Module

    Science.gov (United States)

    Millard, Jon

    2014-01-01

    The European Space Agency (ESA) has entered into a partnership with the National Aeronautics and Space Administration (NASA) to develop and provide the Service Module (SM) for the Orion Multipurpose Crew Vehicle (MPCV) Program. The European Service Module (ESM) will provide main engine thrust by utilizing the Space Shuttle Program Orbital Maneuvering System Engine (OMS-E). Thrust Vector Control (TVC) of the OMS-E will be provided by the Orbital Maneuvering System (OMS) TVC, also used during the Space Shuttle Program. NASA will be providing the OMS-E and OMS TVC to ESA as Government Furnished Equipment (GFE) to integrate into the ESM. This presentation will describe the OMS-E and OMS TVC and discuss the implementation of the hardware for the ESM.

  17. 14 CFR 27.337 - Limit maneuvering load factor.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Limit maneuvering load factor. 27.337... Limit maneuvering load factor. The rotorcraft must be designed for— (a) A limit maneuvering load factor... load factor not less than 2.0 and any negative limit maneuvering load factor of not less than −0.5 for...

  18. 14 CFR 29.337 - Limit maneuvering load factor.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Limit maneuvering load factor. 29.337... Limit maneuvering load factor. The rotorcraft must be designed for— (a) A limit maneuvering load factor... load factor not less than 2.0 and any negative limit maneuvering load factor of not less than −0.5 for...

  19. Neonatal morbidity associated with shoulder dystocia maneuvers.

    Science.gov (United States)

    Spain, Janine E; Frey, Heather A; Tuuli, Methodius G; Colvin, Ryan; Macones, George A; Cahill, Alison G

    2015-03-01

    We sought to examine neonatal morbidity associated with different maneuvers used among term patients who experience a shoulder dystocia. We conducted a retrospective cohort study of all women who experienced a clinically diagnosed shoulder dystocia at term requiring obstetric maneuvers at a single tertiary care hospital from 2005 through 2008. We excluded women with major fetal anomaly, intrauterine death, multiple gestation, and preterm. Women exposed to Rubin maneuver, Wood's screw maneuver, or delivery of the posterior arm were compared to women delivered by McRoberts/suprapubic pressure only, which served as the reference group. The primary outcome was a composite morbidity of neonatal injury (defined as clavicular or humeral fracture or brachial plexus injury) and neonatal depression (defined as Apgar dystocia, defined as time from delivery of fetal head to delivery of shoulders. Among the 231 women who met inclusion criteria, 135 were delivered by McRoberts/suprapubic pressure alone (57.9%), 83 women were exposed to Rubin maneuver, 53 women were exposed to Wood's screw, and 36 women were exposed to delivery of posterior arm. Individual maneuvers were not associated with composite morbidity, neonatal injury, or neonatal depression after adjusting for nulliparity and duration of shoulder dystocia. We found no association between shoulder dystocia maneuvers and neonatal morbidity after adjusting for duration, a surrogate for severity. Our results demonstrate that clinicians should utilize the maneuver most likely to result in successful delivery. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Development of Bird-like Micro Aerial Vehicle with Flapping and Feathering Wing Motions

    Science.gov (United States)

    Maglasang, Jonathan; Goto, Norihiro; Isogai, Koji

    To investigate the feasibility of a highly efficient flapping system capable of avian maneuvers, such as rapid takeoff, hover and gliding, a full scale bird-like (ornithopter) flapping-wing micro aerial vehicle (MAV) shaped and patterned after a typical pigeon (Columba livia) has been designed and constructed. Both numerical and experimental methods have been used in the development of this vehicle. This flapping-wing micro aerial vehicle utilizes both the flapping and feathering motions of an avian wing by employing a novel flapping-feathering mechanism, which has been synthesized and constructed so as to best describe the properly coordinated flapping and feathering wing motions at phase angle difference of 90° in a horizontal steady level flight condition. This design allows high flapping and feathering amplitudes and is configurable for asymmetric wing motions which are desirable in high-speed flapping flight and maneuvering. The preliminary results indicate its viability as a practical and an efficient flapping-wing micro aerial vehicle.

  1. 23 CFR 660.517 - Maneuver area roads.

    Science.gov (United States)

    2010-04-01

    ... 23 Highways 1 2010-04-01 2010-04-01 false Maneuver area roads. 660.517 Section 660.517 Highways... PROGRAMS (DIRECT FEDERAL) Defense Access Roads § 660.517 Maneuver area roads. (a) Claims by a highway agency for costs incurred to restore, to their former condition, roads damaged by maneuvers involving a...

  2. Comparison of ORSAT and SCARAB Reentry Analysis Tools for a Generic Satellite Test Case

    Science.gov (United States)

    Kelley, Robert L.; Hill, Nicole M.; Rochelle, W. C.; Johnson, Nicholas L.; Lips, T.

    2010-01-01

    Reentry analysis is essential to understanding the consequences of the full life cycle of a spacecraft. Since reentry is a key factor in spacecraft development, NASA and ESA have separately developed tools to assess the survivability of objects during reentry. Criteria such as debris casualty area and impact energy are particularly important to understanding the risks posed to people on Earth. Therefore, NASA and ESA have undertaken a series of comparison studies of their respective reentry codes for verification and improvements in accuracy. The NASA Object Reentry Survival Analysis Tool (ORSAT) and the ESA Spacecraft Atmospheric Reentry and Aerothermal Breakup (SCARAB) reentry analysis tools serve as standard codes for reentry survivability assessment of satellites. These programs predict whether an object will demise during reentry and calculate the debris casualty area of objects determined to survive, establishing the reentry risk posed to the Earth's population by surviving debris. A series of test cases have been studied for comparison and the most recent uses "Testsat," a conceptual satellite composed of generic parts, defined to use numerous simple shapes and various materials for a better comparison of the predictions of these two codes. This study is an improvement on the others in this series because of increased consistency in modeling techniques and variables. The overall comparison demonstrated that the two codes arrive at similar results. Either most objects modeled resulted in close agreement between the two codes, or if the difference was significant, the variance could be explained as a case of semantics in the model definitions. This paper presents the main results of ORSAT and SCARAB for the Testsat case and discusses the sources of any discovered differences. Discussion of the results of previous comparisons is made for a summary of differences between the codes and lessons learned from this series of tests.

  3. Flight Test Maneuvers for Efficient Aerodynamic Modeling

    Science.gov (United States)

    Morelli, Eugene A.

    2011-01-01

    Novel flight test maneuvers for efficient aerodynamic modeling were developed and demonstrated in flight. Orthogonal optimized multi-sine inputs were applied to aircraft control surfaces to excite aircraft dynamic response in all six degrees of freedom simultaneously while keeping the aircraft close to chosen reference flight conditions. Each maneuver was designed for a specific modeling task that cannot be adequately or efficiently accomplished using conventional flight test maneuvers. All of the new maneuvers were first described and explained, then demonstrated on a subscale jet transport aircraft in flight. Real-time and post-flight modeling results obtained using equation-error parameter estimation in the frequency domain were used to show the effectiveness and efficiency of the new maneuvers, as well as the quality of the aerodynamic models that can be identified from the resultant flight data.

  4. Estimating maneuvers for precise relative orbit determination using GPS

    Science.gov (United States)

    Allende-Alba, Gerardo; Montenbruck, Oliver; Ardaens, Jean-Sébastien; Wermuth, Martin; Hugentobler, Urs

    2017-01-01

    Precise relative orbit determination is an essential element for the generation of science products from distributed instrumentation of formation flying satellites in low Earth orbit. According to the mission profile, the required formation is typically maintained and/or controlled by executing maneuvers. In order to generate consistent and precise orbit products, a strategy for maneuver handling is mandatory in order to avoid discontinuities or precision degradation before, after and during maneuver execution. Precise orbit determination offers the possibility of maneuver estimation in an adjustment of single-satellite trajectories using GPS measurements. However, a consistent formulation of a precise relative orbit determination scheme requires the implementation of a maneuver estimation strategy which can be used, in addition, to improve the precision of maneuver estimates by drawing upon the use of differential GPS measurements. The present study introduces a method for precise relative orbit determination based on a reduced-dynamic batch processing of differential GPS pseudorange and carrier phase measurements, which includes maneuver estimation as part of the relative orbit adjustment. The proposed method has been validated using flight data from space missions with different rates of maneuvering activity, including the GRACE, TanDEM-X and PRISMA missions. The results show the feasibility of obtaining precise relative orbits without degradation in the vicinity of maneuvers as well as improved maneuver estimates that can be used for better maneuver planning in flight dynamics operations.

  5. Performance evaluation and design of flight vehicle control systems

    CERN Document Server

    Falangas, Eric T

    2015-01-01

    This book will help students, control engineers and flight dynamics analysts to model and conduct sophisticated and systemic analyses of early flight vehicle designs controlled with multiple types of effectors and to design and evaluate new vehicle concepts in terms of satisfying mission and performance goals. Performance Evaluation and Design of Flight Vehicle Control Systems begins by creating a dynamic model of a generic flight vehicle that includes a range of elements from airplanes and launch vehicles to re-entry vehicles and spacecraft. The models may include dynamic effects dealing with structural flexibility, as well as dynamic coupling between structures and actuators, propellant sloshing, and aeroelasticity, and they are typically used for control analysis and design. The book shows how to efficiently combine different types of effectors together, such as aero-surfaces, TVC, throttling engines and RCS, to operate as a system by developing a mixing logic atrix. Methods of trimming a vehicle controll...

  6. Global optimal path planning of an autonomous vehicle for overtaking a moving obstacle

    Directory of Open Access Journals (Sweden)

    B. Mashadi

    Full Text Available In this paper, the global optimal path planning of an autonomous vehicle for overtaking a moving obstacle is proposed. In this study, the autonomous vehicle overtakes a moving vehicle by performing a double lane-change maneuver after detecting it in a proper distance ahead. The optimal path of vehicle for performing the lane-change maneuver is generated by a path planning program in which the sum of lateral deviation of the vehicle from a reference path and the rate of steering angle become minimum while the lateral acceleration of vehicle does not exceed a safe limit value. A nonlinear optimal control theory with the lateral vehicle dynamics equations and inequality constraint of lateral acceleration are used to generate the path. The indirect approach for solving the optimal control problem is used by applying the calculus of variation and the Pontryagin's Minimum Principle to obtain first-order necessary conditions for optimality. The optimal path is generated as a global optimal solution and can be used as the benchmark of the path generated by the local motion planning of autonomous vehicles. A full nonlinear vehicle model in CarSim software is used for path following simulation by importing path data from the MATLAB code. The simulation results show that the generated path for the autonomous vehicle satisfies all vehicle dynamics constraints and hence is a suitable overtaking path for the following vehicle.

  7. Childhood cancer survivors' school (re)entry: Australian parents' perceptions.

    Science.gov (United States)

    McLoone, J K; Wakefield, C E; Cohn, R J

    2013-07-01

    Starting or returning to school after intense medical treatment can be academically and socially challenging for childhood cancer survivors. This study aimed to evaluate the school (re)entry experience of children who had recently completed cancer treatment. Forty-two semi-structured telephone interviews were conducted to explore parents' perceptions of their child's (re)entry to school after completing treatment (23 mothers, 19 fathers, parent mean age 39.5 years; child mean age 7.76 years). Interviews were analysed using the framework of Miles and Huberman and emergent themes were organised using QSR NVivo8. Parents closely monitored their child's school (re)entry and fostered close relationships with their child's teacher to ensure swift communication of concerns should they arise. The most commonly reported difficulty related to aspects of peer socialisation; survivors either displayed a limited understanding of social rules such as turn taking, or related more to older children or teachers relative to their peers. Additionally, parents placed a strong emphasis on their child's overall personal development, above academic achievement alone. Improved parent, clinician and teacher awareness of the importance of continued peer socialisation during the treatment period is recommended in order to limit the ongoing ramifications this may have on school (re)entry post-treatment completion. © 2013 John Wiley & Sons Ltd.

  8. Reentry Tachycardia in Children: Adenosine Can Make It Worse.

    Science.gov (United States)

    Hien, Maximilian D; Benito Castro, Fernando; Fournier, Philippe; Filleron, Anne; Tran, Tu-Anh

    2016-10-08

    We report on a rare but severe complication of adenosine use in a child with reentry tachycardia. Treatment with adenosine, which is the standard medical therapy of atrioventricular reentry tachycardia, led to the development of an irregular wide complex tachycardia, caused by rapid ventricular response to atrial fibrillation. The girl was finally stabilized with electrical cardioversion. We analyze the pathomechanism and discuss possible treatment options. Atrial fibrillation, as well as its conduction to the ventricles, can be caused by adenosine. Rapid ventricular response in children with Wolff-Parkinson-White syndrome is more frequent than previously believed. A patient history of atrial fibrillation is a contraindication for cardioversion with adenosine and needs to be assessed in children with reentry tachycardia. High-risk patients may potentially profit from prophylactic comedication with antiarrhythmic agents, such as flecainide, ibutilide, or vernakalant, before adenosine administration.

  9. Real-Time and High-Fidelity Simulation Environment for Autonomous Ground Vehicle Dynamics

    Science.gov (United States)

    Cameron, Jonathan; Myint, Steven; Kuo, Calvin; Jain, Abhi; Grip, Havard; Jayakumar, Paramsothy; Overholt, Jim

    2013-01-01

    This paper reports on a collaborative project between U.S. Army TARDEC and Jet Propulsion Laboratory (JPL) to develop a unmanned ground vehicle (UGV) simulation model using the ROAMS vehicle modeling framework. Besides modeling the physical suspension of the vehicle, the sensing and navigation of the HMMWV vehicle are simulated. Using models of urban and off-road environments, the HMMWV simulation was tested in several ways, including navigation in an urban environment with obstacle avoidance and the performance of a lane change maneuver.

  10. Lightweight Ablative and Ceramic Thermal Protection System Materials for NASA Exploration Systems Vehicles

    Science.gov (United States)

    Valentine, Peter G.; Lawrence, Timothy W.; Gubert, Michael K.; Milos, Frank S.; Kiser, James D.; Ohlhorst, Craig W.; Koenig, John R.

    2006-01-01

    As a collaborative effort among NASA Centers, the "Lightweight Nonmetallic Thermal Protection Materials Technology" Project was set up to assist mission/vehicle design trade studies, to support risk reduction in thermal protection system (TPS) material selections, to facilitate vehicle mass optimization, and to aid development of human-rated TPS qualification and certification plans. Missions performing aerocapture, aerobraking, or direct aeroentry rely on advanced heatshields that allow reductions in spacecraft mass by minimizing propellant requirements. Information will be presented on candidate materials for such reentry approaches and on screening tests conducted (material property and space environmental effects tests) to evaluate viable candidates. Seventeen materials, in three classes (ablatives, tiles, and ceramic matrix composites), were studied. In additional to physical, mechanical, and thermal property tests, high heat flux laser tests and simulated-reentry oxidation tests were performed. Space environmental effects testing, which included exposures to electrons, atomic oxygen, and hypervelocity impacts, was also conducted.

  11. Robust Design of H-infinity Controller for a Launch Vehicle Autopilot against Disturbances

    OpenAIRE

    Graells, Antonio; Carrabina, Francisco

    2016-01-01

    Atmospheric flight phase of a launch vehicle is utilized to evaluate the performance of an H-infinity controller in the presence of disturbances. Dynamics of the vehicle is linearly modeled using time-varying parameters. An operating point was found to design a robust command tracker using H-infinity control theory that guarantees a stable maneuver. At the end, the controller was employed on the launch vehicle to assess the capability of control design on the linearized aerospace vehicle. Exp...

  12. General and Specific Strategies Used to Facilitate Locomotor Maneuvers.

    Directory of Open Access Journals (Sweden)

    Mengnan Wu

    Full Text Available People make anticipatory changes in gait patterns prior to initiating a rapid change of direction. How they prepare will change based on their knowledge of the maneuver. To investigate specific and general strategies used to facilitate locomotor maneuvers, we manipulated subjects' ability to anticipate the direction of an upcoming lateral "lane-change" maneuver. To examine specific anticipatory adjustments, we observed the four steps immediately preceding a maneuver that subjects were instructed to perform at a known time in a known direction. We hypothesized that to facilitate a specific change of direction, subjects would proactively decrease margin of stability in the future direction of travel. Our results support this hypothesis: subjects significantly decreased lateral margin of stability by 69% on the side ipsilateral to the maneuver during only the step immediately preceding the maneuver. This gait adaptation may have improved energetic efficiency and simplified the control of the maneuver. To examine general anticipatory adjustments, we observed the two steps immediately preceding the instant when subjects received information about the direction of the maneuver. When the maneuver direction was unknown, we hypothesized that subjects would make general anticipatory adjustments that would improve their ability to actively initiate a maneuver in multiple directions. This second hypothesis was partially supported as subjects increased step width and stance phase hip flexion during these anticipatory steps. These modifications may have improved subjects' ability to generate forces in multiple directions and maintain equilibrium during the onset and execution of the rapid maneuver. However, adapting these general anticipatory strategies likely incurred an additional energetic cost.

  13. OPTIMAL CONTROL FOR ELECTRIC VEHICLE STABILIZATION

    Directory of Open Access Journals (Sweden)

    MARIAN GAICEANU

    2016-01-01

    Full Text Available This main objective of the paper is to stabilize an electric vehicle in optimal manner to a step lane change maneuver. To define the mathematical model of the vehicle, the rigid body moving on a plane is taken into account. An optimal lane keeping controller delivers the adequate angles in order to stabilize the vehicle’s trajectory in an optimal way. Two degree of freedom linear bicycle model is adopted as vehicle model, consisting of lateral and yaw motion equations. The proposed control maintains the lateral stability by taking the feedback information from the vehicle transducers. In this way only the lateral vehicle’s dynamics are enough to considerate. Based on the obtained linear mathematical model the quadratic optimal control is designed in order to maintain the lateral stability of the electric vehicle. The numerical simulation results demonstrate the feasibility of the proposed solution.

  14. Maneuvering control and configuration adaptation of a biologically inspired morphing aircraft

    Science.gov (United States)

    Abdulrahim, Mujahid

    Natural flight as a source of inspiration for aircraft design was prominent with early aircraft but became marginalized as aircraft became larger and faster. With recent interest in small unmanned air vehicles, biological inspiration is a possible technology to enhance mission performance of aircraft that are dimensionally similar to gliding birds. Serial wing joints, loosely modeling the avian skeletal structure, are used in the current study to allow significant reconfiguration of the wing shape. The wings are reconfigured to optimize aerodynamic performance and maneuvering metrics related to specific mission tasks. Wing shapes for each mission are determined and related to the seagulls, falcons, albatrosses, and non-migratory African swallows on which the aircraft are based. Variable wing geometry changes the vehicle dynamics, affording versatility in flight behavior but also requiring appropriate compensation to maintain stability and controllability. Time-varying compensation is in the form of a baseline controller which adapts to both the variable vehicle dynamics and to the changing mission requirements. Wing shape is adapted in flight to minimize a cost function which represents energy, temporal, and spatial efficiency. An optimal control architecture unifies the control and adaptation tasks.

  15. 46 CFR 109.564 - Maneuvering characteristics.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Maneuvering characteristics. 109.564 Section 109.564 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS OPERATIONS Miscellaneous § 109.564 Maneuvering characteristics. (a) The master or person in charge of each...

  16. Parachute systems for the atmospheric reentry of launcher upper stages

    Directory of Open Access Journals (Sweden)

    Bogdan DOBRESCU

    2017-03-01

    Full Text Available Parachute systems can be used to control the reentry trajectory of launcher upper stages, in order to lower the risks to the population or facilitate the retrieval of the stage. Several types of parachutes deployed at subsonic, supersonic and hypersonic speeds are analyzed, modeled as single and multistage systems. The performance of deceleration parachutes depends on their drag area and deployment conditions, while gliding parachutes are configured to achieve stable flight with a high glide ratio. Gliding parachutes can be autonomously guided to a low risk landing area. Sizing the canopy is shown to be an effective method to reduce parachute sensitivity to wind. The reentry trajectory of a launcher upper stage is simulated for each parachute system configuration and the results are compared to the nominal reentry case.

  17. Non-Toxic Orbital Maneuvering System Engine Development

    Science.gov (United States)

    Green, Christopher; Claflin, Scott; Maeding, Chris; Butas, John

    1999-01-01

    Recent results using the Aestus engine operated with LOx/ethanol propellant are presented. An experimental program at Rocketdyne Propulsion and Power is underway to adapt this engine for the Boeing Reusable Space Systems Division non-toxic Orbital Maneuvering System/Reaction control System (OMS/RCS) system. Daimler-Chrysler Aerospace designed the Aestus as an nitrogen tetroxide/monomethyl hydrazine (NTO/MMH) upper-stage engine for the Ariane 5. The non-toxic OMS/RCS system's preliminary design requires a LOx/ethanol (O2/C2H5OH) engine that operates with a mixture ratio of 1.8, a specific impulse of 323 seconds, and fits within the original OMS design envelope. This paper describes current efforts to meet these requirements including, investigating engine performance using LOx/ethanol, developing the en-ine system sizing package, and meeting the vehicle operation parameters. Data from hot-fire testing are also presented and discussed.

  18. Dynamic performances analysis of a real vehicle driving

    Science.gov (United States)

    Abdullah, M. A.; Jamil, J. F.; Salim, M. A.

    2015-12-01

    Vehicle dynamic is the effects of movement of a vehicle generated from the acceleration, braking, ride and handling activities. The dynamic behaviours are determined by the forces from tire, gravity and aerodynamic which acting on the vehicle. This paper emphasizes the analysis of vehicle dynamic performance of a real vehicle. Real driving experiment on the vehicle is conducted to determine the effect of vehicle based on roll, pitch, and yaw, longitudinal, lateral and vertical acceleration. The experiment is done using the accelerometer to record the reading of the vehicle dynamic performance when the vehicle is driven on the road. The experiment starts with weighing a car model to get the center of gravity (COG) to place the accelerometer sensor for data acquisition (DAQ). The COG of the vehicle is determined by using the weight of the vehicle. A rural route is set to launch the experiment and the road conditions are determined for the test. The dynamic performance of the vehicle are depends on the road conditions and driving maneuver. The stability of a vehicle can be controlled by the dynamic performance analysis.

  19. Workforce re-entry for Japanese unemployed dental hygienists.

    Science.gov (United States)

    Usui, Y; Miura, H

    2015-02-01

    The aim of this study was to define the profile of unemployed dental hygienists who could be enticed to re-enter the workforce and the factors that could facilitate their re-entry into the dental field in Japan. The questionnaire was mailed with a postage-paid return envelope to a sample of 3095 licensed dental hygienists. A 50.4% response rate (S = 1477) was observed. The rate of working dental hygienists was 60.3% (n = 891), and of unemployed dental hygienists was 39.7% (n = 586). Of the latter, 31.9% (n = 187) stated intentions of returning to the workplace. The unemployed dental hygienists seeking employment were more often married and had more children, compared with working dental hygienists currently. This group also had significantly fewer total service years. Moreover, only 11.96% of them belonged to the Japan Dental Hygienists' Association, and 41.3% of those attended training workshops. According to their response, they perceived their top three major barriers to re-entry as 'lack sufficient dental hygiene skill', 'child rearing' and 'poor working atmosphere'. 'Flexibility in the work schedule' and 'location' were the most important factors for re-entry from their perspective. There were not many dental hygienists hoping to return to the dental field. The findings suggested that strategies to encourage non-practicing dental hygienists to re-entry should be emphasized in the areas of a flexible working atmosphere, easy access to information on how to return to practice and guidance on how to maintain professionalism during inactivity. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  20. An integrated multi-population genetic algorithm for multi-vehicle task assignment in a drift field

    NARCIS (Netherlands)

    Bai, Xiaoshan; Yan, Weisheng; Ge, Shuzhi Sam; Cao, Ming

    This paper investigates the task assignment problem for a team of autonomous aerial/marine vehicles driven by constant thrust and maneuvering in a planar lateral drift field. The aim is to minimize the total traveling time in order to guide the vehicles to deliver a number of customized sensors to a

  1. Multiple Re-entry Closures After TEVAR for Ruptured Chronic Post-dissection Thoraco-abdominal Aortic Aneurysm

    Directory of Open Access Journals (Sweden)

    R. Kinoshita

    Full Text Available Introduction: Although thoracic endovascular aortic repair (TEVAR has become a promising treatment for complicated acute type B dissection, its role in treating chronic post-dissection thoraco-abdominal aortic aneurysm (TAA is still limited owing to persistent retrograde flow into the false lumen (FL through abdominal or iliac re-entry tears. Report: A case of chronic post-dissection TAA treatment, in which a dilated descending FL ruptured into the left thorax, is described. The primary entry tear was closed by emergency TEVAR and multiple abdominal re-entries were closed by EVAR. In addition, major re-entries at the detached right renal artery and iliac bifurcation were closed using covered stents. To close re-entries as far as possible, EVAR was carried out using the chimney technique, and additional aortic extenders were placed above the coeliac artery. A few re-entries remained, but complete FL thrombosis of the rupture site was achieved. Follow-up computed tomography showed significant shrinkage of the FL. Discussion: In treating post-dissection TAA, entry closure by TEVAR is sometimes insufficient, owing to persistent retrograde flow into the FL from abdominal or iliac re-entries. Adjunctive techniques are needed to close these distal re-entries to obtain complete FL exclusion, especially in rupture cases. Recently, encouraging results of complete coverage of the thoraco-abdominal aorta with fenestrated or branched endografts have been reported; however, the widespread employment of such techniques appears to be limited owing to technical difficulties. The present method with multiple re-entry closures using off the shelf and immediately available devices is an alternative for the endovascular treatment of post-dissection TAA, especially in the emergency setting. Keywords: Aortic dissection, Ruptured aortic aneurysm, Post-dissection thoracoabdominal aortic aneurysm, Endovascular aortic repair, Reentry closure, Endovascular procedures

  2. 75 FR 22813 - Guidance for Industry: Requalification Method for Reentry of Blood Donors Deferred Because of...

    Science.gov (United States)

    2010-04-30

    ...] Guidance for Industry: Requalification Method for Reentry of Blood Donors Deferred Because of Reactive Test... availability of a document entitled ``Guidance for Industry: Requalification Method for Reentry of Blood Donors... document entitled ``Guidance for Industry: Requalification Method for Reentry of Blood Donors Deferred...

  3. Automated low-thrust guidance for the orbital maneuvering vehicle

    Science.gov (United States)

    Rose, Richard E.; Schmeichel, Harry; Shortwell, Charles P.; Werner, Ronald A.

    1988-01-01

    This paper describes the highly autonomous OMV Guidance Navigation and Control system. Emphasis is placed on a key feature of the design, the low thrust guidance algorithm. The two guidance modes, orbit change guidance and rendezvous guidance, are discussed in detail. It is shown how OMV will automatically transfer from its initial orbit to an arbitrary target orbit and reach a specified rendezvous position relative to the target vehicle.

  4. Review about hiperventilation test and Valsalva Maneuver

    Directory of Open Access Journals (Sweden)

    Eduardo Antonio MENA-DOMÍNGUEZ

    2018-04-01

    Full Text Available Introduction and objective: With this paper, we pretend to explain the characteristics and the field of application of two clinical explorations used in the patient with suspected vestibular pathology, the hyperventilation maneuver and the Valsalva maneuver. Methodology: Narrative review. Results: Through different neurophysiological mechanisms, hyperventilation can induce nystagmus in cases of vestibular asymmetry, both peripheral and central. The Valsalva maneuver may also trigger nystagmus and vertigo because of direct transmission of internal ear pressure in cases of perilymphatic fistula, anomalies of the cranio-cervical junction (Arnold-Chiari malformation, and other ossicles, oval window and saccule pathologies. Discussion and conclusions: Both the hyperventilation test and the Valsalva maneuver should be included in the battery of tests for patients with vestibular pathology to, depending on the results obtained, anatomically locate the site of the lesion and justify the use of imaging techniques.

  5. Modeling vehicle interior noise exposure dose on freeways: Considering weaving segment designs and engine operation.

    Science.gov (United States)

    Li, Qing; Qiao, Fengxiang; Yu, Lei; Shi, Junqing

    2017-07-05

    Vehicle interior noise functions at the dominant frequencies of 500 Hz below and around 800 Hz, which fall into the bands that may impair hearing. Recent studies demonstrated that freeway commuters are chronically exposed to vehicle interior noise, bearing the risk of hearing impairment. The interior noise evaluation process is mostly conducted in a laboratory environment. The test results and the developed noise models may underestimate or ignore the noise effects from dynamic traffic and road conditions and configuration. However, the interior noise is highly associated with vehicle maneuvering. The vehicle maneuvering on a freeway weaving segment is more complex because of its nature of conflicting areas. This research is intended to explore the risk of the interior noise exposure on freeway weaving segments for freeway commuters and to improve the interior noise estimation by constructing a decision tree learning-based noise exposure dose (NED) model, considering weaving segment designs and engine operation. On-road driving tests were conducted on 12 subjects on State Highway 288 in Houston, Texas. On-board Diagnosis (OBD) II, a smartphone-based roughness app, and a digital sound meter were used to collect vehicle maneuvering and engine information, International Roughness Index, and interior noise levels, respectively. Eleven variables were obtainable from the driving tests, including the length and type of a weaving segment, serving as predictors. The importance of the predictors was estimated by their out-of-bag-permuted predictor delta errors. The hazardous exposure level of the interior noise on weaving segments was quantified to hazard quotient, NED, and daily noise exposure level, respectively. Results showed that the risk of hearing impairment on freeway is acceptable; the interior noise level is the most sensitive to the pavement roughness and is subject to freeway configuration and traffic conditions. The constructed NED model shows high predictive

  6. Socio-Economic status of parents as a correlate of re-entry of girls ...

    African Journals Online (AJOL)

    economic status (SES) and re-entry of girls into school in Edo State, Nigeria. One research question and one hypothesis were formulated for the study. Two research instruments, the “Socio-Economic Status of Parents” and the “Reentry into ...

  7. Adaptive Maneuvering Frequency Method of Current Statistical Model

    Institute of Scientific and Technical Information of China (English)

    Wei Sun; Yongjian Yang

    2017-01-01

    Current statistical model(CSM) has a good performance in maneuvering target tracking. However, the fixed maneuvering frequency will deteriorate the tracking results, such as a serious dynamic delay, a slowly converging speedy and a limited precision when using Kalman filter(KF) algorithm. In this study, a new current statistical model and a new Kalman filter are proposed to improve the performance of maneuvering target tracking. The new model which employs innovation dominated subjection function to adaptively adjust maneuvering frequency has a better performance in step maneuvering target tracking, while a fluctuant phenomenon appears. As far as this problem is concerned, a new adaptive fading Kalman filter is proposed as well. In the new Kalman filter, the prediction values are amended in time by setting judgment and amendment rules,so that tracking precision and fluctuant phenomenon of the new current statistical model are improved. The results of simulation indicate the effectiveness of the new algorithm and the practical guiding significance.

  8. Multi-Perspective Vehicle Detection and Tracking

    DEFF Research Database (Denmark)

    Dueholm, Jacob Velling; Kristoffersen, Miklas Strøm; Satzoda, Ravi K.

    2016-01-01

    this dataset is introduced along with its challenges and evaluation metrics. A vision-based multi-perspective dataset is presented, containing a full panoramic view from a moving platform driving on U.S. highways capturing 2704x1440 resolution images at 12 frames per second. The dataset serves multiple......The research community has shown significant improvements in both vision-based detection and tracking of vehicles, working towards a high level understanding of on-road maneuvers. Behaviors of surrounding vehicles in a highway environment is found as an interesting starting point, of why...... purposes to be used as traditional detection and tracking, together with tracking of vehicles across perspectives. Each of the four perspectives have been annotated, resulting in more than 4000 bounding boxes in order to evaluate and compare novel methods....

  9. Observability Analysis of DVL/PS Aided INS for a Maneuvering AUV

    Directory of Open Access Journals (Sweden)

    Itzik Klein

    2015-10-01

    Full Text Available Recently, ocean exploration has increased considerably through the use of autonomous underwater vehicles (AUV. A key enabling technology is the precision of the AUV navigation capability. In this paper, we focus on understanding the limitation of the AUV navigation system. That is, what are the observable error-states for different maneuvering types of the AUV? Since analyzing the performance of an underwater navigation system is highly complex, to answer the above question, current approaches use simulations. This, of course, limits the conclusions to the emulated type of vehicle used and to the simulation setup. For this reason, we take a different approach and analyze the system observability for different types of vehicle dynamics by finding the set of observable and unobservable states. To that end, we apply the observability Gramian approach, previously used only for terrestrial applications. We demonstrate our analysis for an underwater inertial navigation system aided by a Doppler velocity logger or by a pressure sensor. The result is a first prediction of the performance of an AUV standing, rotating at a position and turning at a constant speed. Our conclusions of the observable and unobservable navigation error states for different dynamics are supported by extensive numerical simulation.

  10. Maneuver Planning for Conjunction Risk Mitigation with Ground-track Control Requirements

    Science.gov (United States)

    McKinley, David

    2008-01-01

    The planning of conjunction Risk Mitigation Maneuvers (RMM) in the presence of ground-track control requirements is analyzed. Past RMM planning efforts on the Aqua, Aura, and Terra spacecraft have demonstrated that only small maneuvers are available when ground-track control requirements are maintained. Assuming small maneuvers, analytical expressions for the effect of a given maneuver on conjunction geometry are derived. The analytical expressions are used to generate a large trade space for initial RMM design. This trade space represents a significant improvement in initial maneuver planning over existing methods that employ high fidelity maneuver models and propagation.

  11. Behavioral health problems, ex-offender reentry policies, and the "Second Chance Act".

    Science.gov (United States)

    Pogorzelski, Wendy; Wolff, Nancy; Pan, Ko-Yu; Blitz, Cynthia L

    2005-10-01

    The federal "Second Chance Act of 2005" calls for expanding reentry services for people leaving prison, yet existing policies restrict access to needed services for those with criminal records. We examined the interaction between individual-level characteristics and policy-level restrictions related to criminal conviction, and the likely effects on access to resources upon reentry, using a sample of prisoners with Axis I mental disorders (n=3073). We identified multiple challenges related to convictions, including restricted access to housing, public assistance, and other resources. Invisible punishments embedded within existing policies were inconsistent with the call for second chances. Without modification of federal and state policies, the ability of reentry services to foster behavioral health and community reintegration is limited.

  12. Right Atrial Dual-loop Reentry Tachycardia after Cardiac Surgery: Prevalence, Electrophysiologic Characteristics and Ablation Outcomes.

    Science.gov (United States)

    Yang, Jian-du; Sun, Qi; Guo, Xiao-Gang; Zhou, Gong-Bu; Liu, Xu; Luo, Bin; Wei, Hui-Qiang; Santangeli, Pasquale; Liang, Jackson J; Ma, Jian

    2018-04-03

    Right atrial dual-loop reentry tachycardia has been described in patients with open-heart surgery. However, the prevalence, electrophysiologic substrate and ablation outcomes have been poorly characterized. We aimed to investigate the prevalence, electrophysiologic substrate and ablation outcomes for RA dual-loop reentry tachycardia following cardiac surgery. We identified all patients with atrial tachycardia after cardiac surgery. We compared electrophysiologic findings and outcomes of those with RA dual-loop reentry tachycardia versus a control group of patients with RA macro-reentrant arrhythmias in the setting of linear RA free wall (FW) scar. Out of 127 patients with 152 post-surgical atrial tachycardias (ATs), 28 (18.4%) had diagnosis of RA dual-loop reentry and 24/28 (85.7%) had tricuspid annular (TA) reentry combined with FW incisional reentry. An incision length > 51.5mm along the FW predicted the substrate for a second loop. In 22/23 patients (95.7%) with initial ablation in the cavo-tricuspid isthmus, a change in the interval between Halo d to CS p could be recorded, while 15/23 patients (65.2%) had CS activation pattern change. Complete success was achieved in 25/28 (89.3%) and 64/69 (92.8%) in the dual-loop reentry and control groups, respectively. After mean follow-up of 33.9±24.2 months, 24/28 (85.7%) and 60/69 (86.95%) were free of arrhythmias after initial procedure in two groups. The prevalence of RA dual-loop reentry is 18.4% among ATs with prior atriotomy scar. A long incision should alert physician the possibility of the second loop at the FW. Halo and CS activation pattern are important clues for circuit transformation. Copyright © 2018. Published by Elsevier Inc.

  13. Planetary Mission Entry Vehicles Quick Reference Guide. Version 3.0

    Science.gov (United States)

    Davies, Carol; Arcadi, Marla

    2006-01-01

    This is Version 3.0 of the planetary mission entry vehicle document. Three new missions, Re-entry F, Hayabusa, and ARD have been added to t he previously published edition (Version 2.1). In addition, the Huyge ns mission has been significantly updated and some Apollo data correc ted. Due to the changing nature of planetary vehicles during the desi gn, manufacture and mission phases, and to the variables involved in measurement and computation, please be aware that the data provided h erein cannot be guaranteed. Contact Carol Davies at cdavies@mail.arc. nasa.gov to correct or update the current data, or to suggest other missions.

  14. Improved Maneuver Criteria Evaluation Program

    Science.gov (United States)

    1979-11-01

    If the rotor rpm breakpoint (OMGBL2) is le :-s than the mininum rotor rpm (OMEGMN), then the rpm bleed :ate (OMGBDI) will be the only bleed rate used...VCP =60 PSU 1 EEF = 1 OMGBD1=2 OMGBD3=0 OMGRC2=0 VERR = 2 MPRINT= 1 OMEGMN=300 OMGBL.2=4 OMGBL4=0 OMGRD2=0 MUF = 1 BINERT:2860 TRPMMN= 0 OMGBD2=0 OMGBD4...height is within 2 feet of the measured height. These comparisons show that the MCEP maneuvers are accurate for simulating these types of maneuvers

  15. Overview of the Mars Sample Return Earth Entry Vehicle

    Science.gov (United States)

    Dillman, Robert; Corliss, James

    2008-01-01

    NASA's Mars Sample Return (MSR) project will bring Mars surface and atmosphere samples back to Earth for detailed examination. Langley Research Center's MSR Earth Entry Vehicle (EEV) is a core part of the mission, protecting the sample container during atmospheric entry, descent, and landing. Planetary protection requirements demand a higher reliability from the EEV than for any previous planetary entry vehicle. An overview of the EEV design and preliminary analysis is presented, with a follow-on discussion of recommended future design trade studies to be performed over the next several years in support of an MSR launch in 2018 or 2020. Planned topics include vehicle size for impact protection of a range of sample container sizes, outer mold line changes to achieve surface sterilization during re-entry, micrometeoroid protection, aerodynamic stability, thermal protection, and structural materials selection.

  16. Tracks for Eastern/Western European Future Launch Vehicles Cooperation

    Science.gov (United States)

    Eymar, Patrick; Bertschi, Markus

    2002-01-01

    exclusively upon Western European elements indigenously produced. Yet some private initiatives took place successfully in the second half of the nineties (Eurockot and Starsem) bringing together companies from Western and Eastern Europe. Evolution of these JV's are already envisioned. But these ventures relied mostly on already existing vehicles. broadening the bases in order to enlarge the reachable world market appears attractive, even if structural difficulties are complicating the process. had recently started to analyze, with KSRC counterparts how mixing Russian and Western European based elements would provide potential competitive edges. and RKA in the frame of the new ESA's Future Launch Preparatory Programme (FLPP). main technical which have been considered as the most promising (reusable LOx/Hydrocarbon engine, experimental reentry vehicles or demonstrators and reusable launch vehicle first stage or booster. international approach. 1 patrick.eymar@lanceurs.aeromatra.com 2

  17. Intermediate Experimental Vehicle, ESA Program IXV ATDB Tool and Aerothermodynamic Characterization

    Science.gov (United States)

    Mareschi, Vincenzo; Ferrarella, Daniela; Zaccagnino, Elio; Tribot, Jean-Pierre; Vallee, Jean-Jacques; Haya-Ramos, Rodrigo; Rufolo, Giuseppe; Mancuso, Salvatore

    2011-05-01

    In the complex domain of the space technologies and among the different applications available in Europe, a great interest has been placed since several years in the development of re-entry technologies. Among the different achievements obtained in that field it is to be recalled the experience of the Atmospheric Re-entry Vehicle flight in 1998 and a certain number of important investments per-formed at Agency and national levels like Hermes, MSTP, Festip, X-38, FLPP, TRP, GSTP, HSTS, AREV, Pre-X. IXV (Intermediate eXperimental V ehicle) builds on these past experiences and studies and it is conceived to be the next technological step forward with respect to ARD With respect to previous European ballistic or quasi- ballistic demonstrators, IXV will have an increased in- flight manoeuvrability and the planned mission will allow verifying the performances of the required technologies against a wider re-entry corridor. This will imply from the pure technological aspect to increase the level of engagement on critical technologies and disciplines like aerodynamics/aerothermodynamics, guidance, navigation, control, thermal protection materials and in flight measurements. In order to support the TPS design and the other sub- systems, an AeroThermodynamicDataBase Tool has been developed by Dassault Aviation and integrated by Thales Alenia Space with the Functional Engineering Simulator (used for GNC performances evaluation) in order to characterize the aerothermodynamic behaviour of the vehicle. This paper will describe: - The methodology used to develop the ATDB tool, based on the processing of CFD computations and WTT campaigns results. - The utilization of the ATDB tool, by means of its integration into the System process. - The methodology used for the aerothermal characterization of IXV.

  18. Aqua/Aura Updated Inclination Adjust Maneuver Performance Prediction Model

    Science.gov (United States)

    Boone, Spencer

    2017-01-01

    This presentation will discuss the updated Inclination Adjust Maneuver (IAM) performance prediction model that was developed for Aqua and Aura following the 2017 IAM series. This updated model uses statistical regression methods to identify potential long-term trends in maneuver parameters, yielding improved predictions when re-planning past maneuvers. The presentation has been reviewed and approved by Eric Moyer, ESMO Deputy Project Manager.

  19. Formation keeping of unmanned ground vehicles

    Directory of Open Access Journals (Sweden)

    Muangmin Kamonwan

    2017-01-01

    Full Text Available Controlling motions of an unmanned ground vehicle becomes more popular in real world practices. Its application is useful for household chores, military services, medical purposes, and industrial revolutions, etc. An analysis of motions by using the Fundamental Equations of Constrained Motion (FECM is one effective tool to determine the motions. Its conceptualization is done in three-step procedure as follows: (I Determining an unconstrained motion (II Assigning constraint equations and (III Computing a constrained motion. The equations of motion obtained are expressed as liner functions of acceleration. Then other kinematical information of the unmanned ground vehicles can be obtained by integration its acceleration. In this work, the FECM is used as a tool to analyze motions of a group of unmanned ground vehicles in various forms. The simulation results show that control forces obtained from the approach can regulate motions of unmanned ground vehicles to maneuver in desired formations.

  20. Cardiac re-entry dynamics and self-termination in DT-MRI based model of Human Foetal Heart

    Science.gov (United States)

    Biktasheva, Irina V.; Anderson, Richard A.; Holden, Arun V.; Pervolaraki, Eleftheria; Wen, Fen Cai

    2018-02-01

    The effect of human foetal heart geometry and anisotropy on anatomy induced drift and self-termination of cardiac re-entry is studied here in MRI based 2D slice and 3D whole heart computer simulations. Isotropic and anisotropic models of 20 weeks of gestational age human foetal heart obtained from 100μm voxel diffusion tensor MRI data sets were used in the computer simulations. The fiber orientation angles of the heart were obtained from the orientation of the DT-MRI primary eigenvectors. In a spatially homogeneous electrophysiological monodomain model with the DT-MRI based heart geometries, cardiac re-entry was initiated at a prescribed location in a 2D slice, and in the 3D whole heart anatomy models. Excitation was described by simplified FitzHugh-Nagumo kinetics. In a slice of the heart, with propagation velocity twice as fast along the fibres than across the fibers, DT-MRI based fiber anisotropy changes the re-entry dynamics from pinned to an anatomical re-entry. In the 3D whole heart models, the fiber anisotropy changes cardiac re-entry dynamics from a persistent re-entry to the re-entry self-termination. The self-termination time depends on the re-entry’s initial position. In all the simulations with the DT-MRI based cardiac geometry, the anisotropy of the myocardial tissue shortens the time to re-entry self-termination several folds. The numerical simulations depend on the validity of the DT-MRI data set used. The ventricular wall showed the characteristic transmural rotation of the helix angle of the developed mammalian heart, while the fiber orientation in the atria was irregular.

  1. An overview of Suomi NPP VIIRS calibration maneuvers

    Science.gov (United States)

    Butler, James J.; Xiong, Xiaoxiong; Barnes, Robert A.; Patt, Frederick S.; Sun, Junqiang; Chiang, Kwofu

    2012-09-01

    The first Visible Infrared Imager Radiometer Suite (VIIRS) instrument was successfully launched on-board the Suomi National Polar-orbiting Partnership (SNPP) spacecraft on October 28, 2011. Suomi NPP VIIRS observations are made in 22 spectral bands, from the visible (VIS) to the long-wave infrared (LWIR), and are used to produce 22 Environmental Data Records (EDRs) with a broad range of scientific applications. The quality of these VIIRS EDRs strongly depends on the quality of its calibrated and geo-located Sensor Date Records (SDRs). Built with a strong heritage to the NASA's EOS MODerate resolution Imaging Spectroradiometer (MODIS) instrument, the VIIRS is calibrated on-orbit using a similar set of on-board calibrators (OBC), including a solar diffuser (SD) and solar diffuser stability monitor (SDSM) system for the reflective solar bands (RSB) and a blackbody (BB) for the thermal emissive bands (TEB). Onorbit maneuvers of the SNPP spacecraft provide additional calibration and characterization data from the VIIRS instrument which cannot be obtained pre-launch and are required to produce the highest quality SDRs. These include multiorbit yaw maneuvers for the characterization of SD and SDSM screen transmission, quasi-monthly roll maneuvers to acquire lunar observations to track sensor degradation in the visible through shortwave infrared, and a driven pitch-over maneuver to acquire multiple scans of deep space to determine TEB response versus scan angle (RVS). This paper provides an overview of these three SNPP calibration maneuvers. Discussions are focused on their potential calibration and science benefits, pre-launch planning activities, and on-orbit scheduling and implementation strategies. Results from calibration maneuvers performed during the Intensive Calibration and Validation (ICV) period for the VIIRS sensor are illustrated. Also presented in this paper are lessons learned regarding the implementation of calibration spacecraft maneuvers on follow

  2. ANNOTATED BIBLIOGRAPHY OF ASTRODYNAMICS AND RE-ENTRY MECHANICS,

    Science.gov (United States)

    A selected list of references in the fields of astronautics and re-entry mechanics is classified and discussed, and a comprehensive subject and author index is included for ease in locating the references. (Author)

  3. Mars Exploration Rovers Launch Performance and TCM-1 Maneuver Design

    Science.gov (United States)

    Kangas, Julie A.; Potts, Christopher L.; Raofi, Behzad

    2004-01-01

    The Mars Exploration Rover (MER) project successfully landed two identical rovers on Mars in order to remotely conduct geologic investigations, including characterization of rocks and soils that may hold clues to past water activity. Two landing sites, Gusev crater and Meridiani Planum, were selected out of nearly 200 candidate sites after balancing science returns and flight system engineering and safety. Precise trajectory targeting and control was necessary to achieve the atmospheric entry requirements for the selected landing sites within the flight system constraints. This paper discusses the expected and achieved launch vehicle performance and the impacts of that performance on the first Trajectory Correction Maneuver (TCM-1) while maintaining targeting flexibility in accommodating additional project concerns about landing site safety and possible in-flight retargeting to alternate landing sites.

  4. Helicopter Pilot Performance for Discrete-maneuver Flight Tasks

    Science.gov (United States)

    Heffley, R. K.; Bourne, S. M.; Hindson, W. S.

    1984-01-01

    This paper describes a current study of several basic helicopter flight maneuvers. The data base consists of in-flight measurements from instrumented helicopters using experienced pilots. The analysis technique is simple enough to apply without automatic data processing, and the results can be used to build quantitative matah models of the flight task and some aspects of the pilot control strategy. In addition to describing the performance measurement technqiue, some results are presented which define the aggressiveness and amplitude of maneuvering for several lateral maneuvers including turns and sidesteps.

  5. Planar reorientation maneuvers of space multibody systems using internal controls

    Science.gov (United States)

    Reyhanoglu, Mahmut; Mcclamroch, N. H.

    1992-01-01

    In this paper a reorientation maneuvering strategy for an interconnection of planar rigid bodies in space is developed. It is assumed that there are no exogeneous torques, and torques generated by joint motors are used as means of control so that the total angular momentum of the multibody system is a constant, assumed to be zero in this paper. The maneuver strategy uses the nonintegrability of the expression for the angular momentum. We demonstrate that large-angle maneuvers can be designed to achieve an arbitrary reorientation of the multibody system with respect to an inertial frame. The theoretical background for carrying out the required maneuvers is briefly summarized. Specifications and computer simulations of a specific reorientation maneuver, and the corresponding control strategies, are described.

  6. Users manual for Aerospace Nuclear Safety Program six-degree-of-freedom reentry simulation (TMAGRA6C)

    International Nuclear Information System (INIS)

    Sharbaugh, R.C.

    1990-02-01

    This report documents the updated six-degree-of-freedom reentry simulation TMAGRA6C used in the Aerospace Nuclear Safety Program, ANSP. The simulation provides for the inclusion of the effects of ablation on the aerodynamic stability and drag of reentry bodies, specifically the General Purpose Heat Source, GPHS. The existing six-degree-of-freedom reentry body simulations (TMAGRA6A and TMAGRA6B) used in the JHU/APL Nuclear Safety Program do not include aerodynamic effects resulting from geometric changes to the configuration due to ablation from reentry flights. A wind tunnel test was conducted in 1989 to obtain the effects of ablation on the hypersonic aerodynamics of the GPHS module. The analyzed data were used to form data sets which are included herein in tabular form. These are used as incremental aerodynamic inputs in the new TMAGRA6C six-degree-of-freedom reentry simulation. 20 refs., 13 figs., 2 tabs

  7. Comparative field evaluation of vehicle cruise speed and acceleration level impacts on hot stabilized emissions

    International Nuclear Information System (INIS)

    El-Shawarby, Ihab; Ahn, Kyoungho; Rakha, Hesham

    2005-01-01

    The main objectives of this paper are two fold. First, the paper evaluates the impact of vehicle cruise speed and acceleration levels on vehicle fuel-consumption and emission rates using field data gathered under real-world driving conditions. Second, it validates the VT-Micro model for the modeling of real-world conditions. Specifically, an on-board emission-measurement device was used to collect emissions of oxides of nitrogen, hydrocarbons, carbon monoxide, and carbon dioxide using a light-duty test vehicle. The analysis demonstrates that vehicle fuel-consumption and emission rates per-unit distance are optimum in the range of 60-90 km/h, with considerable increase outside this optimum range. The study demonstrates that as the level of aggressiveness for acceleration maneuvers increases, the fuel-consumption and emission rates per maneuver decrease because the vehicle spends less time accelerating. However, when emissions are gathered over a sufficiently long fixed distance, fuel-consumption and mobile-source emission rates per-unit distance increase as the level of acceleration increases because of the history effects that accompany rich-mode engine operations. In addition, the paper demonstrates the validity of the VT-Micro framework for modeling steady-state vehicle fuel-consumption and emission behavior. Finally, the research demonstrates that the VT-Micro framework requires further refinement to capture non-steady-state history behavior when the engine operates in rich mode. (Author)

  8. Rio Blanco: nuclear operations and chimney reentry

    International Nuclear Information System (INIS)

    Woodruff, W.R.; Guido, R.S.

    1975-01-01

    Rio Blanco was the third experiment in the U.S. Atomic Energy Commission's Plowshare Program to develop technology to stimulate gas production from geologic formations not conducive to production by conventional means. The project was sponsored by CER Geonuclear Corporation, with the Lawrence Livermore Laboratory providing the explosives and several technical programs, such as spall measurement. Three nuclear explosives specifically designed for this application were detonated simultaneously in a minimum-diameter emplacement well using many commercially available but established-reliability components. The explosive system performed properly under extreme temperature and pressure conditions. Emplacement and stemming operations were designed with the aim of simplifying both the emplacement and reentry and fully containing the detonation products. An integrated command and control system was used with communication to all three explosives through a single coaxial cable. Reentry and the initial production testing are completed. To date 98 million standard ft 3 of chimney gas have been produced. (auth)

  9. Risk Assessment During the Final Phase of an Uncontrolled Re-Entry

    Science.gov (United States)

    Gaudel, A.; Hourtolle, C.; Goester, J. F.; Fuentes, N.

    2013-09-01

    As French National Space Agency, CNES is empowered to monitor compliance with technical regulations of the French Space Operation Act, FSOA, and to take all necessary measures to ensure the safety of people, property, public health and environment for all space operations involving French responsibility at international level.Therefore, CNES developed ELECTRA that calculates the risk for ground population involved in three types of events: rocket launching, controlled re-entry and uncontrolled re-entry. For the first two cases, ELECTRA takes into account degraded cases due to a premature stop of propulsion.Major evolutions were implemented recently on ELECTRA to meet new users' requirements, like the risk assessment during the final phase of uncontrolled re-entry, that can be combined with the computed risk for each country involved by impacts.The purpose of this paper is to provide an overview of the ELECTRA method and main functionalities, and then to highlight these recent improvements.

  10. The Total In-Flight Simulator (TIFS) aerodynamics and systems: Description and analysis. [maneuver control and gust alleviators

    Science.gov (United States)

    Andrisani, D., II; Daughaday, H.; Dittenhauser, J.; Rynaski, E.

    1978-01-01

    The aerodynamics, control system, instrumentation complement and recording system of the USAF Total In/Flight Simulator (TIFS) airplane are described. A control system that would allow the ailerons to be operated collectively, as well as, differentially to entrance the ability of the vehicle to perform the dual function of maneuver load control and gust alleviation is emphasized. Mathematical prediction of the rigid body and the flexible equations of longitudinal motion using the level 2.01 FLEXSTAB program are included along with a definition of the vehicle geometry, the mass and stiffness distribution, the calculated mode frequencies and mode shapes, and the resulting aerodynamic equations of motion of the flexible vehicle. A complete description of the control and instrumentation system of the aircraft is presented, including analysis, ground test and flight data comparisons of the performance and bandwidth of the aerodynamic surface servos. Proposed modification for improved performance of the servos are also presented.

  11. ELECTRA © Launch and Re-Entry Safety Analysis Tool

    Science.gov (United States)

    Lazare, B.; Arnal, M. H.; Aussilhou, C.; Blazquez, A.; Chemama, F.

    2010-09-01

    French Space Operation Act gives as prime objective to National Technical Regulations to protect people, properties, public health and environment. In this frame, an independent technical assessment of French space operation is delegated to CNES. To perform this task and also for his owns operations CNES needs efficient state-of-the-art tools for evaluating risks. The development of the ELECTRA© tool, undertaken in 2007, meets the requirement for precise quantification of the risks involved in launching and re-entry of spacecraft. The ELECTRA© project draws on the proven expertise of CNES technical centers in the field of flight analysis and safety, spaceflight dynamics and the design of spacecraft. The ELECTRA© tool was specifically designed to evaluate the risks involved in the re-entry and return to Earth of all or part of a spacecraft. It will also be used for locating and visualizing nominal or accidental re-entry zones while comparing them with suitable geographic data such as population density, urban areas, and shipping lines, among others. The method chosen for ELECTRA© consists of two main steps: calculating the possible reentry trajectories for each fragment after the spacecraft breaks up; calculating the risks while taking into account the energy of the fragments, the population density and protection afforded by buildings. For launch operations and active re-entry, the risk calculation will be weighted by the probability of instantaneous failure of the spacecraft and integrated for the whole trajectory. ELECTRA©’s development is today at the end of the validation phase, last step before delivery to users. Validation process has been performed in different ways: numerical application way for the risk formulation; benchmarking process for casualty area, level of energy of the fragments entries and level of protection housing module; best practices in space transportation industries concerning dependability evaluation; benchmarking process for

  12. Hybrid path planning for non-holonomic autonomous vehicles: An experimental evaluation

    NARCIS (Netherlands)

    Esposto, F.; Goos, J.; Teerhuis, A.; Alirezaei, M.

    2017-01-01

    Path planning of an autonomous vehicle as a non-holonomic system is an essential part for many automated driving applications. Parking a car into a parking lot and maneuvering it through a narrow corridor would be a common driving scenarios in an urban environment. In this study a hybrid approach

  13. Social Support, Motivation, and the Process of Juvenile Reentry: An Exploratory Analysis of Desistance

    Science.gov (United States)

    Panuccio, Elizabeth A.; Christian, Johnna; Martinez, Damian J.; Sullivan, Mercer L.

    2012-01-01

    Many scholarly works and studies have explored the experience of reentry and desistance for adult offenders, but fewer studies have focused on these processes among juvenile offenders. Using qualitative case studies of juveniles released from secure confinement, this study explores the desistance process during juvenile reentry by examining how…

  14. Human Factors Lessons Learned from Flight Testing Wingless Lifting Body Vehicles

    Science.gov (United States)

    Merlin, Peter William

    2014-01-01

    Since the 1960s, NASA, the Air Force, and now private industry have attempted to develop an operational human crewed reusable spacecraft with a wingless, lifting body configuration. This type of vehicle offers increased mission flexibility and greater reentry cross range than capsule type craft, and is particularly attractive due to the capability to land on a runway. That capability, however, adds complexity to the human factors engineering requirements of developing such aircraft.

  15. Vehicle Velocity and Roll Angle Estimation with Road and Friction Adaptation for Four-Wheel Independent Drive Electric Vehicle

    Directory of Open Access Journals (Sweden)

    Linhui Zhao

    2014-01-01

    Full Text Available Vehicle velocity and roll angle are important information for active safety control systems of four-wheel independent drive electric vehicle. In order to obtain robustness estimation of vehicle velocity and roll angle, a novel method is proposed based on vehicle dynamics and the measurement information provided by the sensors equipped in modern cars. The method is robust with respect to different road and friction conditions. Firstly, the dynamic characteristics of four-wheel independent drive electric vehicle are analyzed, and a four-degree-of-freedom nonlinear dynamic model of vehicle and a tire longitudinal dynamic equation are established. The relationship between the longitudinal and lateral friction forces is derived based on Dugoff tire model. The unknown input reconstruction technique of sliding mode observer is used to achieve longitudinal tire friction force estimation. A simple observer is designed for the estimation of the roll angle of the vehicle. And then using the relationship, the estimated longitudinal friction forces and roll angle, a sliding mode observer for vehicle velocity estimation is provided, which does not need to know the tire-road friction coefficient and road angles. Finally, the proposed method is evaluated experimentally under a variety of maneuvers and road conditions.

  16. Simulation for Prediction of Entry Article Demise (SPEAD): An Analysis Tool for Spacecraft Safety Analysis and Ascent/Reentry Risk Assessment

    Science.gov (United States)

    Ling, Lisa

    2014-01-01

    For the purpose of performing safety analysis and risk assessment for a potential off-nominal atmospheric reentry resulting in vehicle breakup, a synthesis of trajectory propagation coupled with thermal analysis and the evaluation of node failure is required to predict the sequence of events, the timeline, and the progressive demise of spacecraft components. To provide this capability, the Simulation for Prediction of Entry Article Demise (SPEAD) analysis tool was developed. The software and methodology have been validated against actual flights, telemetry data, and validated software, and safety/risk analyses were performed for various programs using SPEAD. This report discusses the capabilities, modeling, validation, and application of the SPEAD analysis tool.

  17. "The stress will kill you": prisoner reentry as experienced by family members and the urgent need for support services.

    Science.gov (United States)

    Grieb, Suzanne M; Crawford, Amelia; Fields, Julie; Smith, Horace; Harris, Richard; Matson, Pamela

    2014-08-01

    The role of incarceration and community reentry after incarceration has been studied extensively for individual and community health; however, little attention has been given to the experiences of individuals who provide support to those in reentry. Through a community-academic partnership, seven focus groups were conducted with 39 individuals supporting a family member in reentry in the summer of 2012. The primary objectives of the focus groups were to explore community experiences and perspectives regarding providing support during a family member's reentry from a period of incarceration and any desired support for themselves during this time. Five themes emerged under a metatheme of stress, indicating that family members experience acute stress as a result of family reentry that adds to the chronic stress they already endure. Programs that acknowledge the difficult role of family members as supporters during an individual's reentry and provide support to them are desperately needed.

  18. A control strategy for steering an autonomous surface sailing vehicle in a tacking maneuver

    DEFF Research Database (Denmark)

    Jouffroy, Jerome

    2009-01-01

    Sailing vessels such as sailboats but also landyachts are vehicles representing a real challenge for automation. However, the control aspects of such vehicles were hitherto very little studied. This paper presents a simplied dynamic model of a so-called landyacht allowing to capture the main...

  19. Control of ZrH reactor reactivity perturbations during orbital maneuvers

    International Nuclear Information System (INIS)

    Audette, R.F.

    1970-01-01

    Scheduled and inadvertent vehicle maneuvers in manned and unmanned space missions may result in reactivity perturbations to the ZrH reactor due to fuel and control drum motion from acceleration forces. Potential power and outlet coolant temperature excursions could result in interruptions of PCS power generation, or excessive coolant temperatures if uncontrolled. This analysis compares potential uncontrolled reactor transients with allowable transients for uninterrupted electrical power generation from a Brayton system, and presents a control scheme to limit transient reactor outlet temperatures to 1250 0 F for a system designed to operate at a nominal 1200 0 F reactor outlet. Potential uncontrolled transients could result in a reactor outlet temperature swing of +-77 0 F about a nominal 1200 0 F and a reactor power swing of +92 Kwt and -67 Kwt about a nominal 130 Kwt for the Brayton System. (U.S.)

  20. Re-entry Adjustment and Job Embeddedness: The Mediating Role of Professional Identity in Indonesian Returnees.

    Science.gov (United States)

    Andrianto, Sonny; Jianhong, Ma; Hommey, Confidence; Damayanti, Devi; Wahyuni, Honey

    2018-01-01

    The present study examined the relationship between difficulty in re-entry adjustment and job embeddedness, considering the mediating role of sense of professional identity. The online data on demographic characteristics, difficulty on re-entry adjustment, sense of professional identity, and job embeddedness were collected from 178 Indonesian returnees from multiple organizations. The results showed that difficulty in re-entry adjustment was a significant predictor of a sense of professional identity; a sense of professional identity was a significant predictor of job embeddedness. Furthermore, sense of professional identity is an effective mediating variable, bridging the relationship between post-return conditions to the home country and work atmosphere. Finally, the key finding of this study was that sense of professional identity mediated the effect of difficulty in re-entry adjustment on job embeddedness. The theoretical and practical implications, study limitations, and future research needs of our findings are noted.

  1. Reentry Women and Feminist Therapy: A Career Counseling Model.

    Science.gov (United States)

    Christian, Connie; Wilson, Jean

    1985-01-01

    Using the tenets of feminist therapy, presents a career counseling model for reentry women. Describes goals, intervention strategies, and feminist tenets for each of three stages: stabilization; personal growth; and action. (MCF)

  2. 40 CFR 161.390 - Reentry protection data requirements.

    Science.gov (United States)

    2010-07-01

    ... could cause adverse effects on persons entering treated sites. In the last situation, reentry intervals... crop Nonfood Greenhouse Food crop Nonfood Forestry Domestic outdoor Indoor Test substance Data to... oncogenic effects or other adverse effects as evidenced by subchronic, chronic, and reproduction studies...

  3. Ship maneuvering digital simulator; Simulador digital de manobras de navios

    Energy Technology Data Exchange (ETDEWEB)

    Souza Junior, Jesse Rebello; Tannuri, Eduardo Aoun; Oshiro, Anderson Takehiro [Universidade de Sao Paulo (USP), SP (Brazil). Escola Politecnica. Dept. de Engenharia Naval e Oceanica

    2008-07-01

    This paper reports on two case studies making use of a digital simulator to investigate the maneuvering motions of ships in canals with shallow and restricted waters. The first case study corresponds to a maneuvering analysis conducted for the Port of Rio Grande (RS - Brazil), whose aim was to assess the potential impact upon maneuvers of the presence of a large offshore platform (the PETROBRAS P-53) which is to remain docked for several months at the Port to complete its construction. The second study made use of the simulator to evaluate the maneuvering conditions along the approach route and maneuvering basin of the Port of Ponta do Felix (PR - Brazil). The simulator includes a complete mathematical model of the ship dynamics in the horizontal plane when subjected to wind and current forces. It also comprises detailed models for the action of thrusters and propellers, both fixed and azimuth, employed to control maneuvers and dynamically position ships, as well as rudders and tugboats. He models used by the simulator allow for the effects of shallow and restricted waters, including the increase in resistance and lateral forces, increase in additional mass and the appearance of lateral and vertical suction (squatting). The simulator is implemented via an interactive interface through which the user is able to apply control actions (rudder angle, main engine, thrusters and tugboats) in real time during maneuvers, thereby reproducing to some extent the action of a pilot. (author)

  4. Seismic Parameters of Mining-Induced Aftershock Sequences for Re-entry Protocol Development

    Science.gov (United States)

    Vallejos, Javier A.; Estay, Rodrigo A.

    2018-03-01

    A common characteristic of deep mines in hard rock is induced seismicity. This results from stress changes and rock failure around mining excavations. Following large seismic events, there is an increase in the levels of seismicity, which gradually decay with time. Restricting access to areas of a mine for enough time to allow this decay of seismic events is the main approach in re-entry strategies. The statistical properties of aftershock sequences can be studied with three scaling relations: (1) Gutenberg-Richter frequency magnitude, (2) the modified Omori's law (MOL) for the temporal decay, and (3) Båth's law for the magnitude of the largest aftershock. In this paper, these three scaling relations, in addition to the stochastic Reasenberg-Jones model are applied to study the characteristic parameters of 11 large magnitude mining-induced aftershock sequences in four mines in Ontario, Canada. To provide guidelines for re-entry protocol development, the dependence of the scaling relation parameters on the magnitude of the main event are studied. Some relations between the parameters and the magnitude of the main event are found. Using these relationships and the scaling relations, a space-time-magnitude re-entry protocol is developed. These findings provide a first approximation to concise and well-justified guidelines for re-entry protocol development applicable to the range of mining conditions found in Ontario, Canada.

  5. Optimal Autonomous Spacecraft Resiliency Maneuvers Using Metaheuristics

    Science.gov (United States)

    2014-09-15

    This work was accepted for published by the American Institute of Aeronautics and Astronautics (AIAA) Journal of Spacecraft and Rockets in July 2014...publication in the AIAA Journal of Spacecraft and Rockets . Chapter 5 introduces an impulsive maneuvering strategy to deliver a spacecraft to its final...upon arrival r2 and v2 , respectively. The variable T2 determines the time of flight needed to make the maneuver, and the variable θ2 determines the

  6. Mars Exploration Rovers Propulsive Maneuver Design

    Science.gov (United States)

    Potts, Christopher L.; Raofi, Behzad; Kangas, Julie A.

    2004-01-01

    The Mars Exploration Rovers Spirit and Opportunity successfully landed respectively at Gusev Crater and Meridiani Planum in January 2004. The rovers are essentially robotic geologists, sent on a mission to search for evidence in the rocks and soil pertaining to the historical presence of water and the ability to possibly sustain life. In order to conduct NASA's 'follow the water' strategy on opposite sides of the planet Mars, an interplanetary journey of over 300 million miles culminated with historic navigation precision. Rigorous trajectory targeting and control was necessary to achieve the atmospheric entry requirements for the selected landing sites. The propulsive maneuver design challenge was to meet or exceed these requirements while preserving the necessary design margin to accommodate additional project concerns. Landing site flexibility was maintained for both missions after launch, and even after the first trajectory correction maneuver for Spirit. The final targeting strategy was modified to improve delivery performance and reduce risk after revealing constraining trajectory control characteristics. Flight results are examined and summarized for the six trajectory correction maneuvers that were planned for each mission.

  7. A safe-repositioning maneuver for the management of benign paroxysmal positional vertigo: Gans vs. Epley maneuver; a randomized comparative clinical trial.

    Science.gov (United States)

    Saberi, Alia; Nemati, Shadman; Sabnan, Salah; Mollahoseini, Fatemeh; Kazemnejad, Ehsan

    2017-08-01

    Benign paroxysmal positional vertigo (BPPV) is the most common cause of peripheral vertigo. Some repositioning maneuvers have been described for its management. The aim of this study was comparing the therapeutic effect of Epley and Gans maneuvers in BPPV. This randomized clinical trial was performed from September to December 2015. 73 patients with true vertigo diagnosed as BPPV enrolled the study. They randomly assigned in quadripartite blocks to modified Epley maneuver group (E) or Gans maneuver group (G). 1 day and 1 week after intervention, the objective and subjective responses to treatment were assessed. Statistical analysis was performed using the Chi-square test and regression model in the SPSS software version 21. Thirty patients enrolled each group with a mean age of 46.9 ± 13.4 (E group) and 46.7 ± 7.5 year (G group). 23.3 % of E group and 26.7 % of G group were men (p = 0.766). In E and G groups in the first day, subjective outcomes revealed 86.7 and 60 % rate of success (p = 0.02); and 86.7 and 56.7 % of patients exhibited objective improvement, respectively (p = 0.01). After 1 week, the subjective and objective outcomes revealed improvement among 70 % of E group and 46.7 % of G group (p = 0.067). The only complication with significant difference was cervical pain with a higher rate in E group (23.3 vs. 0.0 %, p = 0.005). These results revealed the similar long-term efficacy of Epley and Gans maneuver for the treatment of BPPV. Cervical pain was most frequent complication of Epley maneuver.

  8. Effects of major-road vehicle speed and driver age and gender on left-turn gap acceptance.

    Science.gov (United States)

    Yan, Xuedong; Radwan, Essam; Guo, Dahai

    2007-07-01

    Because the driver's gap-acceptance maneuver is a complex and risky driving behavior, it is a highly concerned topic for traffic safety and operation. Previous studies have mainly focused on the driver's gap acceptance decision itself but did not pay attention to the maneuver process and driving behaviors. Using a driving simulator experiment for left-turn gap acceptance at a stop-controlled intersection, this study evaluated the effects of major traffic speed and driver age and gender on gap acceptance behaviors. The experiment results illustrate relationships among drivers' left-turn gap decision, driver's acceleration rate, steering action, and the influence of the gap-acceptance maneuver on the vehicles in the major traffic stream. The experiment results identified an association between high crash risk and high traffic speed at stop-controlled intersections. The older drivers, especially older female drivers, displayed a conservative driving attitude as a compensation for reduced driving ability, but also showed to be the most vulnerable group for the relatively complex driving maneuvers.

  9. Effects of Reentry Plasma Sheath on Mutual-Coupling Property of Array Antenna

    Directory of Open Access Journals (Sweden)

    B. W. Bai

    2015-01-01

    Full Text Available A plasma sheath enveloping a reentry vehicle would cause the failure of on-board antennas, which is an important effect that contributes to the “blackout” problem. The method of replacing the on-board single antenna with the array antennas and using beamforming technology has been proposed to mitigate “blackout” problem by many other researchers. Because the plasma sheath is a reflective medium, plasma will alter the mutual coupling between array elements and degrade the beamforming performance of array antenna. In this paper, the effects of the plasma sheath on the mutual coupling properties between adjacent array elements are studied utilizing the algorithm of finite integration technique. Results show that mutual coupling coefficients of array elements are deteriorating more seriously with the decrease of collision frequency. Moreover, when electron density and collision frequency are both large, plasma sheath improves the mutual coupling property of array elements; this conclusion suggests that replacing the on-board single antenna with the array antennas and using beamforming technology can be adopted to mitigate the blackout problem in this condition.

  10. Dynamic sensor tasking and IMM EKF estimation for tracking impulsively maneuvering satellites

    Science.gov (United States)

    Lace, Arthur A.

    In order to efficiently maintain space situational awareness, care must be taken to optimally allocate expensive observation resources. In most situations the available sensors capable of tracking spacecraft have their time split between many different monitoring responsibilities. Tracking maneuvering spacecraft can be especially difficult as the schedule of maneuvers may not be known and will often throw off previous orbital models. Effectively solving this tasking problem is an ongoing focus of research in the area of space situational awareness. Most methods of automated tasking do not make use of interacting multiple model extended Kalman filter techniques to better track satellites during maneuvers. This paper proposes a modification to a Fisher information gain and estimated state covariance based sensor tasking method to take maneuver probability and multiple model dynamics into account. By incorporating the probabilistic maneuvering model, sensor tasking can be improved during satellite maneuvers using constrained resources. The proposed methods are verified through the use of numerical simulations with multiple maneuvering satellites and both orbital and ground-based sensors.

  11. Taxonomy of Conflict Detection and Resolution Approaches for Unmanned Aerial Vehicle in an Integrated Airspace

    NARCIS (Netherlands)

    Jenie, Y.I.; van Kampen, E.; Ellerbroek, J.; Hoekstra, J.M.

    2016-01-01

    This paper proposes a taxonomy of Conflict Detection and Resolution (CD&R) approaches for Unmanned Aerial Vehicles (UAV) operation in an integrated airspace. Possible approaches for UAVs are surveyed and broken down based on their types of surveillance, coordination, maneuver, and autonomy. The

  12. Design of an urban driverless ground vehicle

    OpenAIRE

    Benenson , Rodrigo; Parent , Michel ,

    2008-01-01

    International audience; This paper presents the design and implementation of a driverless car for populated urban environments. We propose a system that explicitly map the static obstacles, detects and track the moving obstacle, consider the unobserved areas, provide a motion plan with safety guarantees and executes it. All of it was implemented and integrated into a single computer maneuvering on real time an electric vehicle into an unvisited area with moving obstacles. The overview of the ...

  13. Reentry challenges facing women with mental health problems.

    Science.gov (United States)

    Visher, Christy A; Bakken, Nicholas W

    2014-01-01

    Women entering the correctional system represent a population at high risk for mental health and the body of research on the mental health needs of women offenders is growing. These mental health problems pose challenges for women at every stage of the criminal justice process, from arrest to incarceration to community reentry and reintegration. In this article, we examined mental health status among a sample of 142 women leaving confinement and the role that mental health problems played in shaping their reentry outcomes using data collected between 2002 and 2005 in Houston, Texas. In the year after leaving prison, women with mental health problems reported poorer health, more hospitalizations, more suicidal thoughts, greater difficulties securing housing and employment, more involvement in criminal behavior, and less financial support from family than women with no indication of mental health problems. However, mental health status did not increase the likelihood of substance use relapse or reincarceration. The article concludes with a discussion of recommendations for improved policy and practice.

  14. Applying Dynamical Systems Theory to Optimize Libration Point Orbit Stationkeeping Maneuvers for WIND

    Science.gov (United States)

    Brown, Jonathan M.; Petersen, Jeremy D.

    2014-01-01

    NASA's WIND mission has been operating in a large amplitude Lissajous orbit in the vicinity of the interior libration point of the Sun-Earth/Moon system since 2004. Regular stationkeeping maneuvers are required to maintain the orbit due to the instability around the collinear libration points. Historically these stationkeeping maneuvers have been performed by applying an incremental change in velocity, or (delta)v along the spacecraft-Sun vector as projected into the ecliptic plane. Previous studies have shown that the magnitude of libration point stationkeeping maneuvers can be minimized by applying the (delta)v in the direction of the local stable manifold found using dynamical systems theory. This paper presents the analysis of this new maneuver strategy which shows that the magnitude of stationkeeping maneuvers can be decreased by 5 to 25 percent, depending on the location in the orbit where the maneuver is performed. The implementation of the optimized maneuver method into operations is discussed and results are presented for the first two optimized stationkeeping maneuvers executed by WIND.

  15. Dynamic Cerebral Autoregulation Changes during Sub-Maximal Handgrip Maneuver

    Science.gov (United States)

    Nogueira, Ricardo C.; Bor-Seng-Shu, Edson; Santos, Marcelo R.; Negrão, Carlos E.; Teixeira, Manoel J.; Panerai, Ronney B.

    2013-01-01

    Purpose We investigated the effect of handgrip (HG) maneuver on time-varying estimates of dynamic cerebral autoregulation (CA) using the autoregressive moving average technique. Methods Twelve healthy subjects were recruited to perform HG maneuver during 3 minutes with 30% of maximum contraction force. Cerebral blood flow velocity, end-tidal CO2 pressure (PETCO2), and noninvasive arterial blood pressure (ABP) were continuously recorded during baseline, HG and recovery. Critical closing pressure (CrCP), resistance area-product (RAP), and time-varying autoregulation index (ARI) were obtained. Results PETCO2 did not show significant changes during HG maneuver. Whilst ABP increased continuously during the maneuver, to 27% above its baseline value, CBFV raised to a plateau approximately 15% above baseline. This was sustained by a parallel increase in RAP, suggestive of myogenic vasoconstriction, and a reduction in CrCP that could be associated with metabolic vasodilation. The time-varying ARI index dropped at the beginning and end of the maneuver (p<0.005), which could be related to corresponding alert reactions or to different time constants of the myogenic, metabolic and/or neurogenic mechanisms. Conclusion Changes in dynamic CA during HG suggest a complex interplay of regulatory mechanisms during static exercise that should be considered when assessing the determinants of cerebral blood flow and metabolism. PMID:23967113

  16. Dynamic cerebral autoregulation changes during sub-maximal handgrip maneuver.

    Directory of Open Access Journals (Sweden)

    Ricardo C Nogueira

    Full Text Available PURPOSE: We investigated the effect of handgrip (HG maneuver on time-varying estimates of dynamic cerebral autoregulation (CA using the autoregressive moving average technique. METHODS: Twelve healthy subjects were recruited to perform HG maneuver during 3 minutes with 30% of maximum contraction force. Cerebral blood flow velocity, end-tidal CO₂ pressure (PETCO₂, and noninvasive arterial blood pressure (ABP were continuously recorded during baseline, HG and recovery. Critical closing pressure (CrCP, resistance area-product (RAP, and time-varying autoregulation index (ARI were obtained. RESULTS: PETCO₂ did not show significant changes during HG maneuver. Whilst ABP increased continuously during the maneuver, to 27% above its baseline value, CBFV raised to a plateau approximately 15% above baseline. This was sustained by a parallel increase in RAP, suggestive of myogenic vasoconstriction, and a reduction in CrCP that could be associated with metabolic vasodilation. The time-varying ARI index dropped at the beginning and end of the maneuver (p<0.005, which could be related to corresponding alert reactions or to different time constants of the myogenic, metabolic and/or neurogenic mechanisms. CONCLUSION: Changes in dynamic CA during HG suggest a complex interplay of regulatory mechanisms during static exercise that should be considered when assessing the determinants of cerebral blood flow and metabolism.

  17. A School Reentry Program for Chronically Ill Children.

    Science.gov (United States)

    Worchel-Prevatt, Frances F.; Heffer, Robert W.; Prevatt, Bruce C.; Miner, Jennifer; Young-Saleme, Tammi; Horgan, Daniel; Lopez, Molly A.; Frankel, Lawrence; Rae, William A.

    1998-01-01

    Describes a school reintegration program aimed at overcoming the numerous psychological, physical, environmental, and family-based deterrents to school reentry for chronically ill children. The program uses a systems approach to children's mental health with an emphasis on multiple aspects of the child's environment (i.e., family, medical…

  18. Continuous Steering Stability Control Based on an Energy-Saving Torque Distribution Algorithm for a Four in-Wheel-Motor Independent-Drive Electric Vehicle

    Directory of Open Access Journals (Sweden)

    Li Zhai

    2018-02-01

    Full Text Available In this paper, a continuous steering stability controller based on an energy-saving torque distribution algorithm is proposed for a four in-wheel-motor independent-drive electric vehicle (4MIDEV to improve the energy consumption efficiency while maintaining the stability in steering maneuvers. The controller is designed as a hierarchical structure, including the reference model level, the upper-level controller, and the lower-level controller. The upper-level controller adopts the direct yaw moment control (DYC, which is designed to work continuously during the steering maneuver to better ensure steering stability in extreme situations, rather than working only after the vehicle is judged to be unstable. An adaptive two-hierarchy energy-saving torque distribution algorithm is developed in the lower-level controller with the friction ellipse constraint as a basis for judging whether the algorithm needs to be switched, so as to achieve a more stable and energy-efficient steering operation. The proposed stability controller was validated in a co-simulation of CarSim and Matlab/Simulink. The simulation results under different steering maneuvers indicate that the proposed controller, compared with the conventional servo controller and the ordinary continuous controller, can reduce energy consumption up to 23.68% and improve the vehicle steering stability.

  19. 14 CFR 23.155 - Elevator control force in maneuvers.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Elevator control force in maneuvers. 23.155 Section 23.155 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION... Controllability and Maneuverability § 23.155 Elevator control force in maneuvers. (a) The elevator control force...

  20. A FMM-FFT accelerated hybrid volume surface integral equation solver for electromagnetic analysis of re-entry space vehicles

    KAUST Repository

    Yü cel, Abdulkadir C.; Gomez, Luis J.; Liu, Yang; Bagci, Hakan; Michielssen, Eric

    2014-01-01

    Space vehicles that re-enter the atmosphere often experience communication blackout. The blackout occurs when the vehicle becomes engulfed in plasma produced by interactions between the vehicle surface and the atmosphere. The plasma often

  1. Cases requiring increased number of repositioning maneuvers in benign paroxysmal positional vertigo

    Directory of Open Access Journals (Sweden)

    Mukadder Korkmaz

    Full Text Available ABSTRACT INTRODUCTION: Benign paroxysmal positional vertigo (BPPV is a clinical syndrome that is proposed to be caused by dislocated utricular debris into semicircular canals. Although the majority of patients are treated by one or two repositioning maneuvers, some of the patients need repeated maneuvers for relief. OBJECTIVE: The goal of this study was to investigate the factors associated with patients with benign paroxysmal positional vertigo who required multiple repositioning procedures for treatment. METHODS: Data were obtained from the clinical records of 153 patients diagnosed with benign paroxysmal positional vertigo. Patients were treated by repositioning maneuvers. Demographic data and the factors including age, sex, canal type, duration of symptoms, comorbidities and number of repositioning maneuvers for relief were documented for statistical analysis. RESULTS: Age, sex, canal type and the duration of symptoms had no impact on the number of maneuvers. The most common comorbidity was spine problems. Hypertension was the only comorbidity that significantly associated with increased number of maneuvers. CONCLUSION: The presence of hypertension is a risk factor for repeated maneuvers in benign paroxysmal positional vertigo treatment. Physicians should be aware of the increased probability of repeated repositioning maneuvers in these group of patients. The role of comorbidities and vascular factors need to be further clarified in the course of benign paroxysmal positional vertigo.

  2. Cases requiring increased number of repositioning maneuvers in benign paroxysmal positional vertigo.

    Science.gov (United States)

    Korkmaz, Mukadder; Korkmaz, Hakan

    2016-01-01

    Benign paroxysmal positional vertigo (BPPV) is a clinical syndrome that is proposed to be caused by dislocated utricular debris into semicircular canals. Although the majority of patients are treated by one or two repositioning maneuvers, some of the patients need repeated maneuvers for relief. The goal of this study was to investigate the factors associated with patients with benign paroxysmal positional vertigo who required multiple repositioning procedures for treatment. Data were obtained from the clinical records of 153 patients diagnosed with benign paroxysmal positional vertigo. Patients were treated by repositioning maneuvers. Demographic data and the factors including age, sex, canal type, duration of symptoms, comorbidities and number of repositioning maneuvers for relief were documented for statistical analysis. Age, sex, canal type and the duration of symptoms had no impact on the number of maneuvers. The most common comorbidity was spine problems. Hypertension was the only comorbidity that significantly associated with increased number of maneuvers. The presence of hypertension is a risk factor for repeated maneuvers in benign paroxysmal positional vertigo treatment. Physicians should be aware of the increased probability of repeated repositioning maneuvers in these group of patients. The role of comorbidities and vascular factors need to be further clarified in the course of benign paroxysmal positional vertigo. Copyright © 2015 Associação Brasileira de Otorrinolaringologia e Cirurgia Cérvico-Facial. Published by Elsevier Editora Ltda. All rights reserved.

  3. Remotely Operated Vehicle for Surveilance Applications On and Under Water Surface

    Directory of Open Access Journals (Sweden)

    Mahfuzh Shah Mustari

    2017-03-01

    Full Text Available This paper presents the low cost hardware prototype of a Remotely Operated Vehicle (ROV for surveilance applications. The vehicle is designed to make maneuvers under water and on surface of water, where its movement is guided remotely via a GHz-scale wireless communication system. The main electronic control unit (ECU of the vehicle is an 8-bit microcontroller, which is used to control 6 motor actuators. Two motors are embedded in a ballast tank used for pumping and draining in and out of the ballast tank. While, the other four motors are used for vehicle movements on water surface. One wireless transceiver is embedded in a joystick and the other is separately placed in the waterproof box mounted on the vehicle. The performance tests present that, in general, the ROV can be controlled well with limited performance. The total weight of the vehicle is 10.35kg with weight density of 0.89kg/ltr

  4. Mars Earth Return Vehicle (MERV) Propulsion Options

    Science.gov (United States)

    Oleson, Steven R.; McGuire, Melissa L.; Burke, Laura; Fincannon, James; Warner, Joe; Williams, Glenn; Parkey, Thomas; Colozza, Tony; Fittje, Jim; Martini, Mike; hide

    2010-01-01

    The COMPASS Team was tasked with the design of a Mars Sample Return Vehicle. The current Mars sample return mission is a joint National Aeronautics and Space Administration (NASA) and European Space Agency (ESA) mission, with ESA contributing the launch vehicle for the Mars Sample Return Vehicle. The COMPASS Team ran a series of design trades for this Mars sample return vehicle. Four design options were investigated: Chemical Return /solar electric propulsion (SEP) stage outbound, all-SEP, all chemical and chemical with aerobraking. The all-SEP and Chemical with aerobraking were deemed the best choices for comparison. SEP can eliminate both the Earth flyby and the aerobraking maneuver (both considered high risk by the Mars Sample Return Project) required by the chemical propulsion option but also require long low thrust spiral times. However this is offset somewhat by the chemical/aerobrake missions use of an Earth flyby and aerobraking which also take many months. Cost and risk analyses are used to further differentiate the all-SEP and Chemical/Aerobrake options.

  5. Ischemic stroke associated with radio frequency ablation for nodal reentry

    International Nuclear Information System (INIS)

    Diaz M, Juan C; Duran R, Carlos E; Perafan B, Pablo; Pava M, Luis F

    2010-01-01

    Atrioventricular nodal reentry tachycardia is the most common type of paroxysmal supraventricular tachycardia. In those patients in whom drug therapy is not effective or not desired, radio frequency ablation is an excellent therapeutic method. Although overall these procedures are fast and safe, several complications among which ischemic stroke stands out, have been reported. We present the case of a 41 year old female patient with repetitive episodes of tachycardia due to nodal reentry who was treated with radiofrequency ablation. Immediately after the procedure she presented focal neurologic deficit consistent with ischemic stroke in the right medial cerebral artery territory. Angiography with angioplastia and abxicimab was performed and then tissue plasminogen activator (rtPA) was locally infused, with appropriate clinical and angiographic outcome.

  6. Astronauts McNair and Stewart prepare for reentry

    Science.gov (United States)

    1984-01-01

    Astronauts Ronald E. McNair and Robert L. Stewart prepare for the re-entry phase of the shuttle Challenger near the end of the 41-B mission. The are stationed behind the crew commander and pilot. Stewart is already wearing his helmet. McNair is stowing some of his gear.

  7. Dynamics and Control of Three-Dimensional Perching Maneuver under Dynamic Stall Influence

    Science.gov (United States)

    Feroskhan, Mir Alikhan Bin Mohammad

    Perching is a type of aggressive maneuver performed by the class 'Aves' species to attain precision point landing with a generally short landing distance. Perching capability is desirable on unmanned aerial vehicles (UAVs) due to its efficient deceleration process that potentially expands the functionality and flight envelope of the aircraft. This dissertation extends the previous works on perching, which is mostly limited to two-dimensional (2D) cases, to its state-of-the-art threedimensional (3D) variety. This dissertation presents the aerodynamic modeling and optimization framework adopted to generate unprecedented variants of the 3D perching maneuver that include the sideslip perching trajectory, which ameliorates the existing 2D perching concept by eliminating the undesirable undershoot and reliance on gravity. The sideslip perching technique methodically utilizes the lateral and longitudinal drag mechanisms through consecutive phases of yawing and pitching-up motion. Since perching maneuver involves high rates of change in the angles of attack and large turn rates, introduction of three internal variables thus becomes necessary for addressing the influence of dynamic stall delay on the UAV's transient post-stall behavior. These variables are then integrated into a static nonlinear aerodynamic model, developed using empirical and analytical methods, and into an optimization framework that generates a trajectory of sideslip perching maneuver, acquiring over 70% velocity reduction. An impact study of the dynamic stall influence on the optimal perching trajectories suggests that consideration of dynamic stall delay is essential due to the significant discrepancies in the corresponding control inputs required. A comparative study between 2D and 3D perching is also conducted to examine the different drag mechanisms employed by 2D and 3D perching respectively. 3D perching is presented as a more efficient deceleration technique with respect to spatial costs and

  8. An acoustically controlled tetherless underwater vehicle for installation and maintenance of neutrino detectors in the deep ocean

    International Nuclear Information System (INIS)

    Ballou, Philip J.

    1997-01-01

    The task of installing and servicing high energy neutrino detectors in the deep ocean from a surface support vessel is problematic using conventional tethered systems. An array of multiple detector strings rising 500 m from the ocean floor, and forming a grid with 50 m spacing between the strings, presents a substantial entanglement hazard for equipment cables deployed from the surface. Such tasks may be accomplished with fewer risks using a tetherless underwater remotely operated vehicle that has a local acoustic telemetry link to send control commands and sensor data between the vehicle and a stationary hydrophone suspended above or just outside the perimeter of the work site. The Phase I effort involves the development of an underwater acoustic telemetry link for vehicle control and sensor feedback, the evaluation of video compression methods for real-time acoustic transmission of video through the water, and the defining of local control routines on board the vehicle to allow it to perform certain basic maneuvering tasks autonomously, or to initiate a self-rescue if the acoustic control link should be lost. In Phase II, a prototype tetherless vehicle system will be designed and constructed to demonstrate the ability to install cable interconnections within a detector array at 4 km depth. The same control technology could be used with a larger more powerful vehicle to maneuver the detector strings into desired positions as they are being lowered to the ocean floor

  9. Low-cost teleoperator-controlled vehicle for damage assessment and radiation dose measurement

    International Nuclear Information System (INIS)

    Tyree, W.H.

    1991-01-01

    A low-cost, disposable, radio-controlled, remote-reading, ionizing radiation and surveillance teleoperator re-entry vehicle has been built. The vehicle carries equipment, measures radiation levels, and evaluates building conditions. The basic vehicle, radio control with amplifiers, telemetry, elevator, and video camera with monitor cost less than $2500. Velcro-mounted alpha, beta-gamma, and neutron sensing equipment is used in the present system. Many types of health physics radiation measuring equipment may be substituted on the vehicle. The system includes a black-and-white video camera to observe the environment surrounding the vehicle. The camera is mounted on a vertical elevator extendible to 11 feet above the floor. The present vehicle uses a video camera with an umbilical cord between the vehicle and the operators. Preferred operation would eliminate the umbilical. Video monitoring equipment is part of the operator control system. Power for the vehicle equipment is carried on board and supplied by sealed lead-acid batteries. Radios are powered by 9-V alkaline batteries. The radio control receiver, servo drivers, high-power amplifier and 49-MHz FM transceivers were irradiated at moderate rates with neutron and gamma doses to 3000 Rem and 300 Rem, respectively, to ensure system operation

  10. oVEMP as an objective indicator of successful repositioning maneuver.

    Science.gov (United States)

    Asal, Samir; Sobhy, Osama; Balbaa, Amany

    Benign paroxysmal positioning vertigo (BPPV) is the most common peripheral vestibular disorder. Canalolithiasis in the posterior semi-circular canal is the most common underlying pathology that can be treated effectively by repositioning maneuvers. Our hypothesis suggested that successful maneuvers can lead to repositioning of dislodged otoconia to the utricle. Air conducted oVEMP, which is thought to originate from the contra-lateral utricular organ was measured in twenty patients with unilateral BPPV and we compared n1-p1 peak to peak amplitude of the affected ears in 3 separate intervals: on pre-treatment when typical nystagmus was confirmed, immediately after, and 1 week after repositioning maneuvers to assess change, if any, in amplitude. This study showed significant increase of oVEMP amplitude in the affected ears after successful repositioning maneuver that was more significant after 1 week. oVEMP can be used as a reliable objective test for ensuring a successful maneuver rather than subjective dependence on the patient's symptoms, which may be misleading due to a remission. Copyright © 2017 Elsevier España, S.L.U. and Sociedad Española de Otorrinolaringología y Cirugía de Cabeza y Cuello. All rights reserved.

  11. Mobility potential of a robotic six-wheeled omnidirectional drive vehicle (ODV) with z-axis and tire inflation control

    Science.gov (United States)

    Witus, Gary

    2000-07-01

    Robot vehicle mobility is the product of the physical configuration, mechatronics (sensors, actuators, and control) and the motion programs for different obstacles, terrain conditions, and maneuver objectives. This paper examines the mobility potential of a robotic 6-by-6 wheeled omni-directional drive vehicle (ODV) with z-axis and tire inflation control. Ad ODV can steer and drive all wheels independently. The direction of motion is independent of the orientation of the body. Z- axis control refers to independent control of the suspension elevation at each wheel. Pneumatic tire inflation control provides the ability to inflate and deflate individual tires. The paper describes motion programs for various discrete obstacles and challenging terrain conditions. The paper illustrates how ODV control, z-axis control and tire inflation control interact to provide high mobility with respect to cornering, maneuvering on slopes, negotiating vertical step and horizontal gap obstacles, and braking/acceleration on soft soil and slick surfaces. The paper derives guidelines for the physical dimensions of the vehicle needed to achieve these capabilities.

  12. A general method for closed-loop inverse simulation of helicopter maneuver flight

    Directory of Open Access Journals (Sweden)

    Wei WU

    2017-12-01

    Full Text Available Maneuverability is a key factor to determine whether a helicopter could finish certain flight missions successfully or not. Inverse simulation is commonly used to calculate the pilot controls of a helicopter to complete a certain kind of maneuver flight and to assess its maneuverability. A general method for inverse simulation of maneuver flight for helicopters with the flight control system online is developed in this paper. A general mathematical describing function is established to provide mathematical descriptions of different kinds of maneuvers. A comprehensive control solver based on the optimal linear quadratic regulator theory is developed to calculate the pilot controls of different maneuvers. The coupling problem between pilot controls and flight control system outputs is well solved by taking the flight control system model into the control solver. Inverse simulation of three different kinds of maneuvers with different agility requirements defined in the ADS-33E-PRF is implemented based on the developed method for a UH-60 helicopter. The results show that the method developed in this paper can solve the closed-loop inverse simulation problem of helicopter maneuver flight with high reliability as well as efficiency. Keywords: Closed-loop, Flying quality, Helicopters, Inverse simulation, Maneuver flight

  13. Weight savings in aerospace vehicles through propellant scavenging

    Science.gov (United States)

    Schneider, Steven J.; Reed, Brian D.

    1988-01-01

    Vehicle payload benefits of scavenging hydrogen and oxygen propellants are addressed. The approach used is to select a vehicle and a mission and then select a scavenging system for detailed weight analysis. The Shuttle 2 vehicle on a Space Station rendezvous mission was chosen for study. The propellant scavenging system scavenges liquid hydrogen and liquid oxygen from the launch propulsion tankage during orbital maneuvers and stores them in well insulated liquid accumulators for use in a cryogenic auxiliary propulsion system. The fraction of auxiliary propulsion propellant which may be scavenged for propulsive purposes is estimated to be 45.1 percent. The auxiliary propulsion subsystem dry mass, including the proposed scavenging system, an additional 20 percent for secondary structure, an additional 5 percent for electrical service, a 10 percent weight growth margin, and 15.4 percent propellant reserves and residuals is estimated to be 6331 kg. This study shows that the fraction of the on-orbit vehicle mass required by the auxiliary propulsion system of this Shuttle 2 vehicle using this technology is estimated to be 12.0 percent compared to 19.9 percent for a vehicle with an earth-storable bipropellant system. This results in a vehicle with the capability of delivering an additional 7820 kg to the Space Station.

  14. Weight savings in aerospace vehicles through propellant scavenging

    Science.gov (United States)

    Schneider, Steven J.; Reed, Brian D.

    1988-05-01

    Vehicle payload benefits of scavenging hydrogen and oxygen propellants are addressed. The approach used is to select a vehicle and a mission and then select a scavenging system for detailed weight analysis. The Shuttle 2 vehicle on a Space Station rendezvous mission was chosen for study. The propellant scavenging system scavenges liquid hydrogen and liquid oxygen from the launch propulsion tankage during orbital maneuvers and stores them in well insulated liquid accumulators for use in a cryogenic auxiliary propulsion system. The fraction of auxiliary propulsion propellant which may be scavenged for propulsive purposes is estimated to be 45.1 percent. The auxiliary propulsion subsystem dry mass, including the proposed scavenging system, an additional 20 percent for secondary structure, an additional 5 percent for electrical service, a 10 percent weight growth margin, and 15.4 percent propellant reserves and residuals is estimated to be 6331 kg. This study shows that the fraction of the on-orbit vehicle mass required by the auxiliary propulsion system of this Shuttle 2 vehicle using this technology is estimated to be 12.0 percent compared to 19.9 percent for a vehicle with an earth-storable bipropellant system. This results in a vehicle with the capability of delivering an additional 7820 kg to the Space Station.

  15. Influence of flowfield and vehicle parameters on engineering aerothermal methods

    Science.gov (United States)

    Wurster, Kathryn E.; Zoby, E. Vincent; Thompson, Richard A.

    1989-01-01

    The reliability and flexibility of three engineering codes used in the aerosphace industry (AEROHEAT, INCHES, and MINIVER) were investigated by comparing the results of these codes with Reentry F flight data and ground-test heat-transfer data for a range of cone angles, and with the predictions obtained using the detailed VSL3D code; the engineering solutions were also compared. In particular, the impact of several vehicle and flow-field parameters on the heat transfer and the capability of the engineering codes to predict these results were determined. It was found that entropy, pressure gradient, nose bluntness, gas chemistry, and angle of attack all affect heating levels. A comparison of the results of the three engineering codes with Reentry F flight data and with the predictions obtained of the VSL3D code showed a very good agreement in the regions of the applicability of the codes. It is emphasized that the parameters used in this study can significantly influence the actual heating levels and the prediction capability of a code.

  16. Surface dust criteria for dioxin and dioxin-like compounds for re-entry to buildings

    Energy Technology Data Exchange (ETDEWEB)

    Greene, J.; Brorby, G.; Warmerdam, J. [Exponent, Oakland, CA (United States); Paustenbach, D. [ChemRisk, San Francisco, CA (United States)

    2004-09-15

    Introduction. Building reentry criteria for dioxin TEQ, as measured by surface wipes, vary greatly, from as low as 1 ng/m{sup 2} to as high as 125 ng/m{sup 2}1. Recently, the World Trade Center Indoor Air Taskforce calculated a reentry criterion of 2 ng TEQ/m{sup 2} for a residential exposure. This number was based on the EPA's draft cancer slope factor (CSF) of 1 x 10{sup 6} (mg/kg-day)-1, and various exposure parameters, dermal absorption values, and a cancer risk criterion of 1 x 10{sup -4}. An indoor 'degradation' parameter was also included in the calculations. However, a single criterion based on a single set of assumptions cannot be universally applied to all sites with contaminated surfaces. Reentry criteria that consider a wider range of exposure scenarios, exposure pathways, bioavailability, and behavioral parameters would be very useful to risk managers who may have to address multiple diverse situations in the coming years. This paper describes our recommended reentry ''building surface'' criteria for four exposure scenarios: (1) adult occupational, (2) adult residential, (3) childhood ''occupational'' (i.e., school), and (4) childhood residential.

  17. The Art and Science of Operational Maneuver,

    Science.gov (United States)

    1988-05-04

    Classification) The Art and Science of Operational Maneuver (U) 12. PERSONAL AUTHOR(S) MAJ Joseph Schroedel 13a. TYPE OF REPORT 13b. TIME COVERED 14...CLASSIFICATION OF THIS PAGE VA) CL LA S F1 EP {fJE ART ANQ SCIENCE OlF OPERAIl NAL MANUVER By6 Mal or Josepi~ Schroeci, L U. S. Arm~y H Aciv -darILC Ced M ili t...Studies ,nIgz’raph ApprovwA. Name of Student: Major Jonevh Schroedel. U.S. Army Title ot Monograph: The Art and Science of Operational Maneuver Approved By

  18. Finite-Time Reentry Attitude Control Using Time-Varying Sliding Mode and Disturbance Observer

    Directory of Open Access Journals (Sweden)

    Xuzhong Wu

    2015-01-01

    Full Text Available This paper presents the finite-time attitude control problem for reentry vehicle with redundant actuators in consideration of planet uncertainties and external disturbances. Firstly, feedback linearization technique is used to cancel the nonlinearities of equations of motion to construct a basic mode for attitude controller. Secondly, two kinds of time-varying sliding mode control methods with disturbance observer are integrated with the basic mode in order to enhance the control performance and system robustness. One method is designed based on boundary layer technique and the other is a novel second-order sliding model control method. The finite-time stability analyses of both resultant closed-loop systems are carried out. Furthermore, after attitude controller produces the torque commands, an optimization control allocation approach is introduced to allocate them into aerodynamic surface deflections and on-off reaction control system thrusts. Finally, the numerical simulation results demonstrate that both of the time-varying sliding mode control methods are robust to uncertainties and disturbances without chattering phenomenon. Moreover, the proposed second-order sliding mode control method possesses better control accuracy.

  19. Utilizing Weather RADAR for Rapid Location of Meteorite Falls and Space Debris Re-Entry

    Science.gov (United States)

    Fries, Marc D.

    2016-01-01

    This activity utilizes existing NOAA weather RADAR imagery to locate meteorite falls and space debris falls. The near-real-time availability and spatial accuracy of these data allow rapid recovery of material from both meteorite falls and space debris re-entry events. To date, at least 22 meteorite fall recoveries have benefitted from RADAR detection and fall modeling, and multiple debris re-entry events over the United States have been observed in unprecedented detail.

  20. Safety analysis of passing maneuvers using extreme value theory

    Directory of Open Access Journals (Sweden)

    Haneen Farah

    2017-04-01

    The results indicate that this is a promising approach for safety evaluation. On-going work of the authors will attempt to generalize this method to other safety measures related to passing maneuvers, test it for the detailed analysis of the effect of demographic factors on passing maneuvers' crash probability and for its usefulness in a traffic simulation environment.

  1. Constellation Mission Operation Working Group: ESMO Maneuver Planning Process Review

    Science.gov (United States)

    Moyer, Eric

    2015-01-01

    The Earth Science Mission Operation (ESMO) Project created an Independent Review Board to review our Conjunction Risk evaluation process and Maneuver Planning Process to identify improvements that safely manages mission conjunction risks, maintains ground track science requirements, and minimizes overall hours expended on High Interest Events (HIE). The Review Board is evaluating the current maneuver process which requires support by multiple groups. In the past year, there have been several changes to the processes although many prior and new concerns exist. This presentation will discuss maneuver process reviews and Board comments, ESMO assessment and path foward, ESMO future plans, recent changes and concerns.

  2. A New Concept for Atmospheric Reentry Optimal Guidance: An Inverse Problem Inspired Approach

    Directory of Open Access Journals (Sweden)

    Davood Abbasi

    2013-01-01

    Full Text Available This paper presents a new concept for atmospheric reentry online optimal guidance and control using a method called MARE G&C that exploits the different time scale featured by reentry dynamics. The new technique reaches a quasi-analytical solution and simplified computations, even considering both lift-to-drag ratio and aerodynamic roll as control variables; in addition, the paper offers a solution for the challenging path constraints issue, getting inspiration from the inverse problem methodology. The final resulting algorithm seems suitable for onboard predictive guidance, a new need for future space missions.

  3. Automated Robust Maneuver Design and Optimization

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA is seeking improvements to the current technologies related to Position, Navigation and Timing. In particular, it is desired to automate precise maneuver...

  4. Cassini Solstice Mission Maneuver Experience: Year Two

    Science.gov (United States)

    Arrieta, Juan; Ballard, Christopher G.; Hahn, Yungsun

    2012-01-01

    The Cassini Spacecraft was launched in October 1997 on a mission to observe Saturn and its moons; it entered orbit around Saturn in July 2004 for a nominal four-year Prime Mission, later augmented by two extensions: the Equinox Mission, from July 2008 through September 2010, and the Solstice Mission, from October 2010 through September 2017. This paper provides an overview of the maneuver activities from August 2011 through June 2012 which include the design of 38 Orbit Trim Maneuvers--OTM-288 through OTM-326-- for attaining 14 natural satellite encounters: seven with Titan, six with Enceladus, and one with Dione.

  5. EntrySat: A 3U CubeStat to study the reentry atmospheric environment

    Science.gov (United States)

    Anthony, Sournac; Raphael, Garcia; David, Mimoun; Jeremie, Chaix

    2016-04-01

    ISAE France Entrysat has for main scientific objective the study of uncontrolled atmospheric re-entry. This project, is developed by ISAE in collaboration with ONERA and University of Toulouse, is funded by CNES, in the overall frame of the QB50 project. This nano-satellite is a 3U Cubesat measuring 34*10*10 cm3, similar to secondary debris produced during the break up of a spacecraft. EntrySat will collect the external and internal temperatures, pressure, heat flux, attitude variations and drag force of the satellite between ≈150 and 90 km before its destruction in the atmosphere, and transmit them during the re-entry using the IRIDIUM satellite network. The result will be compared with the computations of MUSIC/FAST, a new 6-degree of freedom code developed by ONERA to predict the trajectory of space debris. In order to fulfil the scientific objectives, the satellite will acquire 18 re-entry sensors signals, convert them and compress them, thanks to an electronic board developed by ISAE students in cooperation with EREMS. In order to transmit these data every second during the re-entry phase, the satellite will use an IRIDIUM connection. In order to keep a stable enough attitudes during this phase, a simple attitude orbit and control system using magnetotorquers and an inertial measurement unit (IMU) is developed at ISAE by students. A commercial GPS board is also integrated in the satellite into Entry Sat to determine its position and velocity which are necessary during the re-entry phase. This GPS will also be used to synchronize the on-board clock with the real-time UTC data. During the orbital phase (≈2 year) EntrySat measurements will be recorded transmitted through a more classical "UHF/VHF" connection. Preference for presentation: Poster Most suitable session: Author for correspondence: Dr Raphael F. Garcia ISAE 10, ave E. Belin, 31400 Toulouse, France Raphael.GARCIA@isae.fr +33 5 61 33 81 14

  6. Intelligent Prediction of Ship Maneuvering

    Directory of Open Access Journals (Sweden)

    Miroslaw Lacki

    2016-09-01

    Full Text Available In this paper the author presents an idea of the intelligent ship maneuvering prediction system with the usage of neuroevolution. This may be also be seen as the ship handling system that simulates a learning process of an autonomous control unit, created with artificial neural network. The control unit observes input signals and calculates the values of required parameters of the vessel maneuvering in confined waters. In neuroevolution such units are treated as individuals in population of artificial neural networks, which through environmental sensing and evolutionary algorithms learn to perform given task efficiently. The main task of the system is to learn continuously and predict the values of a navigational parameters of the vessel after certain amount of time, regarding an influence of its environment. The result of a prediction may occur as a warning to navigator to aware him about incoming threat.

  7. Ceramic Matrix Composite (CMC) Thermal Protection Systems (TPS) and Hot Structures for Hypersonic Vehicles

    Science.gov (United States)

    Glass, David E.

    2008-01-01

    Thermal protection systems (TPS) and hot structures are required for a range of hypersonic vehicles ranging from ballistic reentry to hypersonic cruise vehicles, both within Earth's atmosphere and non-Earth atmospheres. The focus of this paper is on air breathing hypersonic vehicles in the Earth's atmosphere. This includes single-stage to orbit (SSTO), two-stage to orbit (TSTO) accelerators, access to space vehicles, and hypersonic cruise vehicles. This paper will start out with a brief discussion of aerodynamic heating and thermal management techniques to address the high heating, followed by an overview of TPS for rocket-launched and air-breathing vehicles. The argument is presented that as we move from rocket-based vehicles to air-breathing vehicles, we need to move away from the insulated airplane approach used on the Space Shuttle Orbiter to a wide range of TPS and hot structure approaches. The primary portion of the paper will discuss issues and design options for CMC TPS and hot structure components, including leading edges, acreage TPS, and control surfaces. The current state-of-the-art will be briefly discussed for some of the components. The two primary technical challenges impacting the use of CMC TPS and hot structures for hypersonic vehicles are environmental durability and fabrication, and will be discussed briefly.

  8. Volumetric PIV of multiple free-swimming maneuvers generated by the KnifeBot: a biomimetic vessel propelled by an undulating fin

    Science.gov (United States)

    Liu, Hanlin; Troolin, Daniel; Hortensius, Ruben; Pothos, Stamatios; Curet, Oscar

    2017-11-01

    An undulating fin represents a remarkable propulsion model for underwater vehicles due to its high propulsive efficiency and considerable locomotor capabilities. In this work, we used a bio-inspired vessel, the KnifeBot to demonstrate the maneuverability of undulating fin propulsion, including forward-backward swimming, station keeping and vertical swimming. This self-contained robotic system uses an undulating ventral fin as the propulsor and features a slender 3D-printed hull with 16 motors, 2 batteries and electronic boards encapsulated inside. We tested the robot in a water-filled tank and used volumetric particle image velocimetry (V3V PIV) to investigate the three-dimensional flow features and vortex structures generated by the undulating ribbon fin in free-swimming maneuvers. Our results indicate that in the forward swimming, a series of vortex tubes are shed off the fin edge. A streamwise jet at an oblique angle to the fin is generated in association with the vortex tubes propelling the robot forward as well as pitching it up. For the hovering maneuver with inward counter-propagating waves. The streamlines develop vertically downward with the tip vortex shed from the fin edge. This downward jet provides substantial heave force for the robot to swim upward or perform station keeping. Our findings will be useful for understanding the mechanical basis of undulating fin propulsion and facilitate the development of bio-inspired vehicles using undulatory propellers. Office of Naval Research under Award Number N00014-16-1-2505.

  9. Impact of freeway weaving segment design on light-duty vehicle exhaust emissions.

    Science.gov (United States)

    Li, Qing; Qiao, Fengxiang; Yu, Lei; Chen, Shuyan; Li, Tiezhu

    2018-06-01

    In the United States, 26% of greenhouse gas emissions is emitted from the transportation sector; these emisssions meanwhile are accompanied by enormous toxic emissions to humans, such as carbon monoxide (CO), nitrogen oxides (NO x ), and hydrocarbon (HC), approximately 2.5% and 2.44% of a total exhaust emissions for a petrol and a diesel engine, respectively. These exhaust emissions are typically subject to vehicles' intermittent operations, such as hard acceleration and hard braking. In practice, drivers are inclined to operate intermittently while driving through a weaving segment, due to complex vehicle maneuvering for weaving. As a result, the exhaust emissions within a weaving segment ought to vary from those on a basic segment. However, existing emission models usually rely on vehicle operation information, and compute a generalized emission result, regardless of road configuration. This research proposes to explore the impacts of weaving segment configuration on vehicle emissions, identify important predictors for emission estimations, and develop a nonlinear normalized emission factor (NEF) model for weaving segments. An on-board emission test was conducted on 12 subjects on State Highway 288 in Houston, Texas. Vehicles' activity information, road conditions, and real-time exhaust emissions were collected by on-board diagnosis (OBD), a smartphone-based roughness app, and a portable emission measurement system (PEMS), respectively. Five feature selection algorithms were used to identify the important predictors for the response of NEF and the modeling algorithm. The predictive power of four algorithm-based emission models was tested by 10-fold cross-validation. Results showed that emissions are also susceptible to the type and length of a weaving segment. Bagged decision tree algorithm was chosen to develop a 50-grown-tree NEF model, which provided a validation error of 0.0051. The estimated NEFs are highly correlated with the observed NEFs in the training

  10. 8 CFR 211.3 - Expiration of immigrant visas, reentry permits, refugee travel documents, and Form I-551.

    Science.gov (United States)

    2010-01-01

    ... permits, refugee travel documents, and Form I-551. 211.3 Section 211.3 Aliens and Nationality DEPARTMENT... Expiration of immigrant visas, reentry permits, refugee travel documents, and Form I-551. An immigrant visa, reentry permit, refugee travel document, or Form I-551 shall be regarded as unexpired if the rightful...

  11. Employment of hypersonic glide vehicles: Proposed criteria for use

    Energy Technology Data Exchange (ETDEWEB)

    Olguin, Abel [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2014-07-01

    Hypersonic Glide Vehicles (HGVs) are a type of reentry vehicle that couples the high speed of ballistic missiles with the maneuverability of aircraft. The HGV has been in development since the 1970s, and its technology falls under the category of Conventional Prompt Global Strike (CPGS) weapons. As noted by James M. Acton, a senior associate in the Nuclear Policy Program at the Carnegie Endowment, CPGS is a “missile in search of a mission.” With the introduction of any significant new military capability, a doctrine for use—including specifics regarding how, when and where it would be used, as well as tactics, training and procedures—must be clearly defined and understood by policy makers, military commanders, and planners. In this paper, benefits and limitations of the HGV are presented. Proposed criteria and four scenarios illustrate a possible method for assessing when to use an HGV.

  12. Attitude Control Performance of IRVE-3

    Science.gov (United States)

    Dillman, Robert A.; Gsell, Valerie T.; Bowden, Ernest L.

    2013-01-01

    The Inflatable Reentry Vehicle Experiment 3 (IRVE-3) launched July 23, 2012, from NASA Wallops Flight Facility and successfully performed its mission, demonstrating both the survivability of a hypersonic inflatable aerodynamic decelerator in the reentry heating environment and the effect of an offset center of gravity on the aeroshell's flight L/D. The reentry vehicle separated from the launch vehicle, released and inflated its aeroshell, reoriented for atmospheric entry, and mechanically shifted its center of gravity before reaching atmospheric interface. Performance data from the entire mission was telemetered to the ground for analysis. This paper discusses the IRVE-3 mission scenario, reentry vehicle design, and as-flown performance of the attitude control system in the different phases of the mission.

  13. Development of power change maneuvering method for BWR

    International Nuclear Information System (INIS)

    Fukuzaki, Takaharu; Yamada, Naoyuki; Kiguchi, Takashi; Sakurai, Mikio.

    1985-01-01

    A power change maneuvering method for BWR has been proposed to generate an optimal power control maneuver, which realizes the power change operation closest to a power change demand pattern under operating constraints. The method searches for the maneuver as an optimization problem, where the variables are thermal power levels sampled from the demand pattern, the performance index is defined to express the power mismatch between demand and feasible patterns, and the constraints are limit lines on the thermal power-core flow rate map and limits on keeping fuel integrity. The usable feasible direction method is utilized as the optimization algorithm, with newly developed techniques for initial value generation and step length determination, which apply one-dimensional search and inverse-interpolation methods, respectively, to realize the effective search of the optimal solution. Simulation results show that a typical computing time is about 5 min by a general purpose computer and the method has been verified to be practical even for on-line use. (author)

  14. Study on driving control behavior for lane change maneuver. Analysis of expert driver using neural network system; Shasen henkoji no driver sosa tokusei. Neural network system ni yoru jukuren driver no kaiseki

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Z; Okayama, T; Katayama, T [Japan Automobile Research Institute Inc., Tsukuba (Japan); Kageyama, I [Nihon University, Tokyo (Japan)

    1997-10-01

    In order to study driver steering control behavior for vehicle, a driver model for single-lane change maneuver is constructed by a neural network system concerned with the man-machine-environment system. And, using sensitivity analysis, it is found that the model represent the driver control behavior, and the relation between the driver control behavior and vehicle responses. The sensitivity analysis is also examined by applying to the 2nd order predictive driver model. The validity of the sensitivity analysis is confirmed. 5 refs., 8 figs.

  15. On spacecraft maneuvers control subject to propellant engine modes.

    Science.gov (United States)

    Mazinan, A H

    2015-09-01

    The paper attempts to address a new control approach to spacecraft maneuvers based upon the modes of propellant engine. A realization of control strategy is now presented in engine on mode (high thrusts as well as further low thrusts), which is related to small angle maneuvers and engine off mode (specified low thrusts), which is also related to large angle maneuvers. There is currently a coarse-fine tuning in engine on mode. It is shown that the process of handling the angular velocities are finalized via rate feedback system in engine modes, where the angular rotations are controlled through quaternion based control (QBCL)strategy in engine off mode and these ones are also controlled through an optimum PID (OPIDH) strategy in engine on mode. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  16. Determination of the optimal conditions for inclination maneuvers using a Swing-by

    Science.gov (United States)

    Moura, O.; Celestino, C. C.; Prado, A. F. B. A.

    2018-05-01

    The search for methods to reduce the fuel consumption in orbital transfers is something relevant and always current in astrodynamics. Therefore, the maneuvers assisted by the gravity, also called Swing-by maneuvers, can be an advantageous option to save fuel. The proposal of the present research is to explore the influence of some parameters in a Swing-by of an artificial satellite orbiting a planet with one of the moons of this mother planet, with the goal of changing the inclination of the artificial satellite around the main body of the system. The fuel consumption of this maneuver is compared with the required consumption to perform the same change of inclination using the classical approach of impulsive maneuvers.

  17. Using the Two-Burn Escape Maneuver for Fast Transfers in the Solar System and Beyond

    Science.gov (United States)

    Adams, Robert B.; Richardson, Georgia A.

    2010-01-01

    The two-burn maneuver to escape the gravitational pull of a central body is described. The maneuver, originally suggested by Hermann Oberth, improves efficiency considerably for a wide range of missions of interest in space exploration and scientific investigation. A clear delineation of when the maneuver is more effective is given, as are methods to extract the most advantage when using the maneuver. Some examples are given of how this maneuver can enable exploration of the outer solar system, near interstellar space, and crewed missions to Mars and beyond. The maneuver has the potential to halve the required infrastructure associated with a crewed mission to Mars and achieve increased solar escape velocities with existing spacecraft technologies.

  18. Qualitative analysis of the Dix-Hallpike maneuver in multi-canal BPPV using a biomechanical model: Introduction of an expanded Dix-Hallpike maneuver for enhanced diagnosis of multi-canal BPPV

    Directory of Open Access Journals (Sweden)

    Henri Traboulsi

    2017-09-01

    Conclusion: The Dix–Hallpike maneuver may cause simultaneous movement of otoliths present in multiple canals and create an obstacle to accurate diagnosis in multi-canal BPPV. An expanded Dix-Hallpike maneuver is described which adds intermediate steps with the head positioned to the right and left in the horizontal position before head-hanging. This expanded maneuver has helped to isolate affected semi-circular canals for individual assessment in multiple canal BPPV.

  19. Optimal Earth's reentry disposal of the Galileo constellation

    Science.gov (United States)

    Armellin, Roberto; San-Juan, Juan F.

    2018-02-01

    Nowadays there is international consensus that space activities must be managed to minimize debris generation and risk. The paper presents a method for the end-of-life (EoL) disposal of spacecraft in Medium Earth Orbit (MEO). The problem is formulated as a multiobjective optimisation one, which is solved with an evolutionary algorithm. An impulsive manoeuvre is optimised to reenter the spacecraft in Earth's atmosphere within 100 years. Pareto optimal solutions are obtained using the manoeuvre Δv and the time-to-reentry as objective functions to be minimised. To explore at the best the search space a semi-analytical orbit propagator, which can propagate an orbit for 100 years in few seconds, is adopted. An in-depth analysis of the results is carried out to understand the conditions leading to a fast reentry with minimum propellant. For this aim a new way of representing the disposal solutions is introduced. With a single 2D plot we are able to fully describe the time evolution of all the relevant orbital parameters as well as identify the conditions that enables the eccentricity build-up. The EoL disposal of the Galileo constellation is used as test case.

  20. Conjugate gradient optimization programs for shuttle reentry

    Science.gov (United States)

    Powers, W. F.; Jacobson, R. A.; Leonard, D. A.

    1972-01-01

    Two computer programs for shuttle reentry trajectory optimization are listed and described. Both programs use the conjugate gradient method as the optimization procedure. The Phase 1 Program is developed in cartesian coordinates for a rotating spherical earth, and crossrange, downrange, maximum deceleration, total heating, and terminal speed, altitude, and flight path angle are included in the performance index. The programs make extensive use of subroutines so that they may be easily adapted to other atmospheric trajectory optimization problems.

  1. Application of Taylor-Series Integration to Reentry Problems with Wind

    NARCIS (Netherlands)

    Bergsma, Michiel; Mooij, E.

    2016-01-01

    Taylor-series integration is a numerical integration technique that computes the Taylor series of state variables using recurrence relations and uses this series to propagate the state in time. A Taylor-series integration reentry integrator is developed and compared with the fifth-order

  2. Mechanical Constraints on Flight at High Elevation Decrease Maneuvering Performance of Hummingbirds.

    Science.gov (United States)

    Segre, Paolo S; Dakin, Roslyn; Read, Tyson J G; Straw, Andrew D; Altshuler, Douglas L

    2016-12-19

    High-elevation habitats offer ecological advantages including reduced competition, predation, and parasitism [1]. However, flying organisms at high elevation also face physiological challenges due to lower air density and oxygen availability [2]. These constraints are expected to affect the flight maneuvers that are required to compete with rivals, capture prey, and evade threats [3-5]. To test how individual maneuvering performance is affected by elevation, we measured the free-flight maneuvers of male Anna's hummingbirds in a large chamber translocated to a high-elevation site and then measured their performance at low elevation. We used a multi-camera tracking system to identify thousands of maneuvers based on body position and orientation [6]. At high elevation, the birds' translational velocities, accelerations, and rotational velocities were reduced, and they used less demanding turns. To determine how mechanical and metabolic constraints independently affect performance, we performed a second experiment to evaluate flight maneuvers in an airtight chamber infused with either normoxic heliox, to lower air density, or nitrogen, to lower oxygen availability. The hypodense treatment caused the birds to reduce their accelerations and rotational velocities, whereas the hypoxic treatment had no significant effect on maneuvering performance. Collectively, these experiments reveal how aerial maneuvering performance changes with elevation, demonstrating that as birds move up in elevation, air density constrains their maneuverability prior to any influence of oxygen availability. Our results support the hypothesis that changes in competitive ability at high elevations are the result of mechanical limits to flight performance [7]. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Thermally-Constrained Fuel-Optimal ISS Maneuvers

    Science.gov (United States)

    Bhatt, Sagar; Svecz, Andrew; Alaniz, Abran; Jang, Jiann-Woei; Nguyen, Louis; Spanos, Pol

    2015-01-01

    Optimal Propellant Maneuvers (OPMs) are now being used to rotate the International Space Station (ISS) and have saved hundreds of kilograms of propellant over the last two years. The savings are achieved by commanding the ISS to follow a pre-planned attitude trajectory optimized to take advantage of environmental torques. The trajectory is obtained by solving an optimal control problem. Prior to use on orbit, OPM trajectories are screened to ensure a static sun vector (SSV) does not occur during the maneuver. The SSV is an indicator that the ISS hardware temperatures may exceed thermal limits, causing damage to the components. In this paper, thermally-constrained fuel-optimal trajectories are presented that avoid an SSV and can be used throughout the year while still reducing propellant consumption significantly.

  4. Fully self-contained vision-aided navigation and landing of a micro air vehicle independent from external sensor inputs

    Science.gov (United States)

    Brockers, Roland; Susca, Sara; Zhu, David; Matthies, Larry

    2012-06-01

    Direct-lift micro air vehicles have important applications in reconnaissance. In order to conduct persistent surveillance in urban environments, it is essential that these systems can perform autonomous landing maneuvers on elevated surfaces that provide high vantage points without the help of any external sensor and with a fully contained on-board software solution. In this paper, we present a micro air vehicle that uses vision feedback from a single down looking camera to navigate autonomously and detect an elevated landing platform as a surrogate for a roof top. Our method requires no special preparation (labels or markers) of the landing location. Rather, leveraging the planar character of urban structure, the landing platform detection system uses a planar homography decomposition to detect landing targets and produce approach waypoints for autonomous landing. The vehicle control algorithm uses a Kalman filter based approach for pose estimation to fuse visual SLAM (PTAM) position estimates with IMU data to correct for high latency SLAM inputs and to increase the position estimate update rate in order to improve control stability. Scale recovery is achieved using inputs from a sonar altimeter. In experimental runs, we demonstrate a real-time implementation running on-board a micro aerial vehicle that is fully self-contained and independent from any external sensor information. With this method, the vehicle is able to search autonomously for a landing location and perform precision landing maneuvers on the detected targets.

  5. Feature and Pose Constrained Visual Aided Inertial Navigation for Computationally Constrained Aerial Vehicles

    Science.gov (United States)

    Williams, Brian; Hudson, Nicolas; Tweddle, Brent; Brockers, Roland; Matthies, Larry

    2011-01-01

    A Feature and Pose Constrained Extended Kalman Filter (FPC-EKF) is developed for highly dynamic computationally constrained micro aerial vehicles. Vehicle localization is achieved using only a low performance inertial measurement unit and a single camera. The FPC-EKF framework augments the vehicle's state with both previous vehicle poses and critical environmental features, including vertical edges. This filter framework efficiently incorporates measurements from hundreds of opportunistic visual features to constrain the motion estimate, while allowing navigating and sustained tracking with respect to a few persistent features. In addition, vertical features in the environment are opportunistically used to provide global attitude references. Accurate pose estimation is demonstrated on a sequence including fast traversing, where visual features enter and exit the field-of-view quickly, as well as hover and ingress maneuvers where drift free navigation is achieved with respect to the environment.

  6. Depressed trajectory SLBMs: A technical evaluation and arms control possibilities

    International Nuclear Information System (INIS)

    Gronlund, L.; Wright, D.C.

    1992-01-01

    SLBMs (sea-launched ballistic missiles) flown on depressed trajectories would have short flight times, comparable to escape times of bombers and launch times of ICBMs, thus raising the possibility of short time-of-flight (STOF) nuclear attacks. We assess the depressed trajectory (DT) capability of existing SLBMs by calculating the flight times, atmospheric loading on the booster, reentry heating on the reentry vehicle (RV), and degradation of accuracy for a DT SLBM. We find that current US and CIS SLBMs flown on depressed trajectories would have the capability to attack bomber bases at ranges of up to about 2,000 kilometers, and possibly at ranges up to 3,000 kilometers. To target bombers based furthest inland, a new high-velocity booster might be required, and attacking hardened targets would require a maneuvering RV (MaRV). We conclude that DT capabilities could be effectively controlled by the combination of an apogee restriction on the flight testing of existing SLBMs and bans on the development of high-velocity boosters and MaRVs, and that, in view of their inherent STOF capabilities, deep cuts in the number of SLBMs or their elimination might be desirable for an optimal minimum-deterrent force structure

  7. School Reentry for Children with Acquired Central Nervous Systems Injuries

    Science.gov (United States)

    Carney, Joan; Porter, Patricia

    2009-01-01

    Onset of acquired central nervous system (CNS) injury during the normal developmental process of childhood can have impact on cognitive, behavioral, and motor function. This alteration of function often necessitates special education programming, modifications, and accommodations in the education setting for successful school reentry. Special…

  8. Study on driver`s stress in lane-change maneuver. Evaluation and analysis of heat rate change; Shasen henkoji no untensha no kinchodo kaiseki. Shinpaku hendo no gen`in bunrui to sono hyoka

    Energy Technology Data Exchange (ETDEWEB)

    Sumida, K [Mitsubishi Motors Corp., Tokyo (Japan); Chikamori, S; Shimizu, Y [Seikei University, Tokyo (Japan)

    1997-10-01

    We measured the changes of heart rate in order to analyze the drivers` stress while they tried high speed lane-change on the stationary driving simulator. We concluded that the reasons of the chances were mainly dependent on the following two items. (1) mental pressure caused by the coming task of lane-change, (2) mental disturbance by the task to keep the vehicle inside the lane. By using the mental pressure and disturbance, we could evaluate the stability of the vehicles in lane-change maneuver. 3 refs., 11 figs.

  9. Path planning for persistent surveillance applications using fixed-wing unmanned aerial vehicles

    Science.gov (United States)

    Keller, James F.

    This thesis addresses coordinated path planning for fixed-wing Unmanned Aerial Vehicles (UAVs) engaged in persistent surveillance missions. While uniquely suited to this mission, fixed wing vehicles have maneuver constraints that can limit their performance in this role. Current technology vehicles are capable of long duration flight with a minimal acoustic footprint while carrying an array of cameras and sensors. Both military tactical and civilian safety applications can benefit from this technology. We make three main contributions: C1 A sequential path planner that generates a C 2 flight plan to persistently acquire a covering set of data over a user designated area of interest. The planner features the following innovations: • A path length abstraction that embeds kino-dynamic motion constraints to estimate feasible path length. • A Traveling Salesman-type planner to generate a covering set route based on the path length abstraction. • A smooth path generator that provides C 2 routes that satisfy user specified curvature constraints. C2 A set of algorithms to coordinate multiple UAVs, including mission commencement from arbitrary locations to the start of a coordinated mission and de-confliction of paths to avoid collisions with other vehicles and fixed obstacles. C3 A numerically robust toolbox of spline-based algorithms tailored for vehicle routing validated through flight test experiments on multiple platforms. A variety of tests and platforms are discussed. The algorithms presented are based on a technical approach with approximately equal emphasis on analysis, computation, dynamic simulation, and flight test experimentation. Our planner (C1) directly takes into account vehicle maneuverability and agility constraints that could otherwise render simple solutions infeasible. This is especially important when surveillance objectives elevate the importance of optimized paths. Researchers have developed a diverse range of solutions for persistent

  10. Advanced Technology and Mitigation (ATDM) SPARC Re-Entry Code Fiscal Year 2017 Progress and Accomplishments for ECP.

    Energy Technology Data Exchange (ETDEWEB)

    Crozier, Paul [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Howard, Micah [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Rider, William J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Freno, Brian Andrew [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Bova, Steven W. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Carnes, Brian [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-09-01

    The SPARC (Sandia Parallel Aerodynamics and Reentry Code) will provide nuclear weapon qualification evidence for the random vibration and thermal environments created by re-entry of a warhead into the earth’s atmosphere. SPARC incorporates the innovative approaches of ATDM projects on several fronts including: effective harnessing of heterogeneous compute nodes using Kokkos, exascale-ready parallel scalability through asynchronous multi-tasking, uncertainty quantification through Sacado integration, implementation of state-of-the-art reentry physics and multiscale models, use of advanced verification and validation methods, and enabling of improved workflows for users. SPARC is being developed primarily for the Department of Energy nuclear weapon program, with additional development and use of the code is being supported by the Department of Defense for conventional weapons programs.

  11. Huang's three-step maneuver shortens the learning curve of laparoscopic spleen-preserving splenic hilar lymphadenectomy.

    Science.gov (United States)

    Huang, Chang-Ming; Huang, Ze-Ning; Zheng, Chao-Hui; Li, Ping; Xie, Jian-Wei; Wang, Jia-Bin; Lin, Jian-Xian; Jun, Lu; Chen, Qi-Yue; Cao, Long-Long; Lin, Mi; Tu, Ru-Hong

    2017-12-01

    The goal of this study was to investigate the difference between the learning curves of different maneuvers in laparoscopic spleen-preserving splenic hilar lymphadenectomy for advanced upper gastric cancer. From January 2010 to April 2014, 53 consecutive patients who underwent laparoscopic spleen-preserving splenic hilar lymphadenectomy via the traditional-step maneuver (group A) and 53 consecutive patients via Huang's three-step maneuver (group B) were retrospectively analyzed. No significant difference in patient characteristics were found between the two groups. The learning curves of groups A and B were divided into phase 1 (1-43 cases and 1-30 cases, respectively) and phase 2 (44-53 cases and 31-53 cases, respectively). Compared with group A, the dissection time, bleeding loss and vascular injury were significantly decreased in group B. No significant differences in short-term outcomes were found between the two maneuvers. The multivariate analysis indicated that the body mass index, short gastric vessels, splenic artery type and maneuver were significantly associated with the dissection time in group B. No significant difference in the survival curve was found between the maneuvers. The learning curve of Huang's three-step maneuver was shorter than that of the traditional-step maneuver, and the former represents an ideal maneuver for laparoscopic spleen-preserving splenic hilar lymphadenectomy.To shorten the learning curve at the beginning of laparoscopic spleen-preserving splenic hilar lymphadenectomy, beginners should beneficially use Huang's three-step maneuver and select patients with advanced upper gastric cancer with a body mass index of less than 25 kg/m 2 and the concentrated type of splenic artery. Copyright © 2017. Published by Elsevier Ltd.

  12. Morphology, muscle capacity, skill, and maneuvering ability in hummingbirds.

    Science.gov (United States)

    Dakin, Roslyn; Segre, Paolo S; Straw, Andrew D; Altshuler, Douglas L

    2018-02-09

    How does agility evolve? This question is challenging because natural movement has many degrees of freedom and can be influenced by multiple traits. We used computer vision to record thousands of translations, rotations, and turns from more than 200 hummingbirds from 25 species, revealing that distinct performance metrics are correlated and that species diverge in their maneuvering style. Our analysis demonstrates that the enhanced maneuverability of larger species is explained by their proportionately greater muscle capacity and lower wing loading. Fast acceleration maneuvers evolve by recruiting changes in muscle capacity, whereas fast rotations and sharp turns evolve by recruiting changes in wing morphology. Both species and individuals use turns that play to their strengths. These results demonstrate how both skill and biomechanical traits shape maneuvering behavior. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  13. A biorobotic pectoral fin for autonomous undersea vehicles.

    Science.gov (United States)

    Tangorra, James L; Davidson, S Naomi; Madden, Peter G; Lauder, George V; Hunter, Ian W

    2006-01-01

    A biorobotic fin for autonomous undersea vehicles (AUVs) was developed based on studies of the anatomy, kinematics, and hydrodynamics of the bluegill sunfish pectoral fin. The biorobotic fin was able to produce many of the complex fin motions used by the sunfish during steady swimming and was used to investigate mechanisms of thrust production and control. This biorobotic fin is an excellent experimental tool and is an important first step towards developing propulsive devices that give AUVs maneuvering characteristics that match and exceed those of highly maneuverable fish.

  14. STS-26 Discovery, Orbiter Vehicle (OV) 103, OMS pod leak repair at KSC

    Science.gov (United States)

    1988-01-01

    At the Kennedy Space Center (KSC), Rockwell manufacturing engineering specialist Claude Willis (left) and Rockwell manufacturing supervisor George Gallagher begin installation of a 'clamshell' device in the left orbital maneuvering system (OMS) pod reaction control system (RCS) of Discovery, Orbiter Vehicle (OV) 103. Gallagher performed the OMS pod nitric acid oxidizer leak repair operation using the two newly cut access ports in the Orbiter's aft bulkhead.

  15. Evaluating the Interference of Bicycle Traffic on Vehicle Operation on Urban Streets with Bike Lanes

    Directory of Open Access Journals (Sweden)

    Ziyuan Pu

    2017-01-01

    Full Text Available Many urban streets are designed with on-street bike lanes to provide right-of-way for bicycle traffic. However, when bicycle flow is large, extensive passing maneuvers could occupy vehicle lanes and thus cause interferences to vehicle traffic. The primary objective of this study is to evaluate how bicycle traffic affects vehicle operation on urban streets with bike lanes. Data were collected on six street segments in Nanjing, China. The cumulative curves were constructed to extract traffic flow information including individual bicycle and vehicle speeds and aggregated traffic parameters such as flow and density. The results showed that as bicycle density on bike lanes continuously increases faster bicycles may run into vehicle lanes causing considerable reductions in vehicle speeds. A generalized linear model was estimated to predict the vehicle delay. Results showed that vehicle delay increases as bicycle flow and vehicle flow increase. Number of vehicle lanes and width of bike lane also have significant impact on vehicle delay. Findings of the study are helpful to regions around the world in bike infrastructure design in order to improve operations of both bicycles and vehicles.

  16. Neutron and gamma-ray transport experiments in liquid air

    International Nuclear Information System (INIS)

    Farley, W.E.

    1976-01-01

    Accurate estimates of neutron and gamma radiations from a nuclear explosion and their subsequent transport through the atmosphere are vital to nuclear-weapon employment studies: i.e., for determining safety radii for aircraft crews, casualty and collateral-damage risk radii for tactical weapons, and the kill range from a high-yield defensive burst for a maneuvering reentry vehicle. Radiation transport codes, such as the Laboratory's TARTNP, are used to calculate neutron and gamma fluences. Experiments have been performed to check and update these codes. Recently, a 1.3-m-radius liquid-air (21 percent oxygen) sphere, with a pulsed source of 14-MeV neutrons at its center, was used to measure the fluence and spectra of emerging neutrons and secondary gamma rays. Comparison of measured radiation dose with TARTNP showed agreement within 10 percent

  17. Autonomous vehicles: from paradigms to technology

    Science.gov (United States)

    Ionita, Silviu

    2017-10-01

    Mobility is a basic necessity of contemporary society and it is a key factor in global economic development. The basic requirements for the transport of people and goods are: safety and duration of travel, but also a number of additional criteria are very important: energy saving, pollution, passenger comfort. Due to advances in hardware and software, automation has penetrated massively in transport systems both on infrastructure and on vehicles, but man is still the key element in vehicle driving. However, the classic concept of ‘human-in-the-loop’ in terms of ‘hands on’ in driving the cars is competing aside from the self-driving startups working towards so-called ‘Level 4 autonomy’, which is defined as “a self-driving system that does not requires human intervention in most scenarios”. In this paper, a conceptual synthesis of the autonomous vehicle issue is made in connection with the artificial intelligence paradigm. It presents a classification of the tasks that take place during the driving of the vehicle and its modeling from the perspective of traditional control engineering and artificial intelligence. The issue of autonomous vehicle management is addressed on three levels: navigation, movement in traffic, respectively effective maneuver and vehicle dynamics control. Each level is then described in terms of specific tasks, such as: route selection, planning and reconfiguration, recognition of traffic signs and reaction to signaling and traffic events, as well as control of effective speed, distance and direction. The approach will lead to a better understanding of the way technology is moving when talking about autonomous cars, smart/intelligent cars or intelligent transport systems. Keywords: self-driving vehicle, artificial intelligence, deep learning, intelligent transport systems.

  18. Reentry Orientation and Alumni Networking in U.S. Colleges and Universities with Agriculture and Natural Resources Programs. Survey Report.

    Science.gov (United States)

    Huntsberger, Paul E.

    This report presents results of a survey of U.S. postsecondary institutions with agriculture and natural resources programs, concerning institutional support for reentry orientation and alumni networking programs. Reentry orientation" involves programs that help international students become aware of the adjustment aspects of returning home,…

  19. Doppler ultrasonography measurement of hepatic hemodynamics during Valsalva maneuver: healthy volunteer study

    Directory of Open Access Journals (Sweden)

    Dong-Ho Bang

    2015-01-01

    Full Text Available Purpose: The aim of our study was to assess the hemodynamic change of liver during the Valsalva maneuver using Doppler ultrasonography. Methods: Thirty healthy men volunteers were enrolled (mean age, 25.5±3.64 years. The diameter, minimal and maximal velocities, and volume flow of intrahepatic inferior vena cava (IVC, middle hepatic vein (MHV, and right main portal vein (RMPV was measured during both rest and Valsalva maneuver. These changes were compared using paired t-test. Results: The mean diameters (cm of the intrahepatic IVC at rest and Valsalva maneuver were 1.94±0.40 versus 0.56±0.66 (P<0.001. The mean diameter (cm, minimal velocity (cm/sec, maximal velocity (cm/sec, and volume flow (mL/min of MHV at rest and Valsalva maneuver were 0.60±0.15 versus 0.38±0.20 (P<0.001, -7.98±5.47 versus 25.74±13.13 (P<0.001, 21.34±6.89 versus 35.12±19.95 (P=0.002, and 106.94±97.65 versus 153.90±151.80 (P=0.014, respectively. Those of RMPV at rest and Valsalva maneuver were 0.78±0.21 versus 0.76±0.20 (P=0.485, 20.21±8.22 versus 18.73±7.43 (P=0.351, 26.79±8.85 versus 24.93±9.91 (P=0.275, and 391.52±265.63 versus 378.43±239.36 (P=0.315, respectively. Conclusion: The blood flow velocity and volume flow of MHV increased significantly during Valsalva maneuver. These findings suggest that hepatic vein might play an important role to maintain venous return to the heart during the maneuver.

  20. Doppler ultrasonography measuement of hepatic hemodynamics during Valsalva maneuver: healthy volunteers study

    Energy Technology Data Exchange (ETDEWEB)

    Bang, Dong Ho; Son, Young Jin; Lee, Young Hwan; Yoon, Kwon Ha [Dept. of Radiology, Wonkwang University School of Medicine, Iksan (Korea, Republic of)

    2015-01-15

    The aim of our study was to assess the hemodynamic change of liver during the Valsalva maneuver using Doppler ultrasonography. Thirty healthy men volunteers were enrolled (mean age, 25.5±3.64 years). The diameter, minimal and maximal velocities, and volume flow of intrahepatic inferior vena cava (IVC), middle hepatic vein (MHV), and right main portal vein (RMPV) was measured during both rest and Valsalva maneuver. These changes were compared using paired t-test. The mean diameters (cm) of the intrahepatic IVC at rest and Valsalva maneuver were 1.94±0.40 versus 0.56±0.66 (P<0.001). The mean diameter (cm), minimal velocity (cm/sec), maximal velocity (cm/sec), and volume flow (mL/min) of MHV at rest and Valsalva maneuver were 0.60±0.15 versus 0.38±0.20 (P<0.001), -7.98±5.47 versus 25.74±13.13 (P<0.001), 21.34±6.89 versus 35.12±19.95 (P=0.002), and 106.94±97.65 versus 153.90±151.80 (P=0.014), respectively. Those of RMPV at rest and Valsalva maneuver were 0.78±0.21 versus 0.76±0.20 (P=0.485), 20.21±8.22 versus 18.73±7.43 (P=0.351), 26.79±8.85 versus 24.93±9.91 (P=0.275), and 391.52±265.63 versus 378.43±239.36 (P=0.315), respectively. The blood flow velocity and volume flow of MHV increased significantly during Valsalva maneuver. These findings suggest that hepatic vein might play an important role to maintain venous return to the heart during the maneuver.

  1. 32 CFR 552.38 - Acquisition of maneuver agreements for Army commanders.

    Science.gov (United States)

    2010-07-01

    ... Real Estate and Interest Therein § 552.38 Acquisition of maneuver agreements for Army commanders. (a... specific areas desired for use. (b) Real estate coverage. Real estate coverage will be in the form of agreements with landowners, granting the right to conduct maneuvers at a given time or periodically. Short...

  2. Multiple Maneuvering Target Tracking by Improved Particle Filter Based on Multiscan JPDA

    Directory of Open Access Journals (Sweden)

    Jing Liu

    2012-01-01

    Full Text Available The multiple maneuvering target tracking algorithm based on a particle filter is addressed. The equivalent-noise approach is adopted, which uses a simple dynamic model consisting of target state and equivalent noise which accounts for the combined effects of the process noise and maneuvers. The equivalent-noise approach converts the problem of maneuvering target tracking to that of state estimation in the presence of nonstationary process noise with unknown statistics. A novel method for identifying the nonstationary process noise is proposed in the particle filter framework. Furthermore, a particle filter based multiscan Joint Probability Data Association (JPDA filter is proposed to deal with the data association problem in a multiple maneuvering target tracking. In the proposed multiscan JPDA algorithm, the distributions of interest are the marginal filtering distributions for each of the targets, and these distributions are approximated with particles. The multiscan JPDA algorithm examines the joint association events in a multiscan sliding window and calculates the marginal posterior probability based on the multiscan joint association events. The proposed algorithm is illustrated via an example involving the tracking of two highly maneuvering, at times closely spaced and crossed, targets, based on resolved measurements.

  3. A Comparison of Obstetric Maneuvers for the Acute Management of Shoulder Dystocia

    Science.gov (United States)

    Hoffman, Matthew K; Bailit, Jennifer L; Branch, D. Ware; Burkman, Ronald T; Van Veldhusien, Paul; Lu, Li; Kominiarek, Michelle A.; Hibbard, Judith U; Landy, Helain J; Haberman, Shoshana; Wilkins, Isabelle; Gonzalez Quintero, Victor H; Gregory, Kimberly D; Hatjis, Christos G; Ramirez, Mildred M; Reddy, Uma M.; Troendle, James; Zhang, Jun

    2011-01-01

    Objective To assess the efficacy of obstetric maneuvers for resolving shoulder dystocia, and the effect that these maneuvers have on neonatal injury when shoulder dystocia occurs. Methods Using an electronic database encompassing 206,969 deliveries, we identified all women with a vertex fetus beyond 34 0/7 weeks of gestation who incurred a shoulder dystocia during the process of delivery. Women whose fetuses had a congenital anomaly and women with an antepartum stillbirth were excluded. Medical records of all cases were reviewed by trained abstractors. Cases involving neonatal injury (defined as brachial plexus injury, clavicular or humerus fracture, or hypoxic ischemic encephalopathy or intrapartum neonatal death attributed to the shoulder dystocia) were compared to those without injury. RESULTS Among 132,098 women who delivered a term cephalic liveborn fetus vaginally, 2,018 incurred a shoulder dystocia (1.5%), and 101 (5.2%) of these incurred a neonatal injury. Delivery of the posterior shoulder was associated with the highest rate of delivery when compared to other maneuvers (84.4% compared with 24.3% to 72.0% for other maneuvers; Pdystocia. The need for additional maneuvers was associated with higher rates of neonatal injury. PMID:21555962

  4. Use of Lung Opening Maneuver in Patients with Acute Respiratory Failure After Cardiosurgical Operations

    Directory of Open Access Journals (Sweden)

    A. A. Yeremenko

    2006-01-01

    Full Text Available Postoperative respiratory failure is a most common complication and a main cause of postoperative death. The lung opening maneuver is a most effective method of respiratory therapy for this syndrome.Objective. To evaluate the impact of recruiting maneuver on gas exchange parameters, the biomechanical properties of the lung, and hemodynamic parameters. To determine whether the lung opening maneuver can be fully performed in patients undergoing cardiac surgery.Materials and methods. The study covered 19 patients aged 53 to 70 years who had postoperative failure. The indication for the recruiting maneuver was a decrease in the oxygenation index below 250 mm Hg during assisted ventilation (AV with FiO2>0.5, an inspiratory-expira-tory phase ratio of 1:1 to 3:1, and a positive end-expiratory pressure of 5—10 cm H2O.Results. A decrease in the oxygenation index to 139±36 mm Hg was observed before the recruiting maneuver was applied. Cd;n. averaged 41.1±8.4 ml/cm H2O. After use of the recruiting maneuver, there were increases in the oxygenation index up to 371±121 mm Hg and in Cd;n. up to 64.3±10 ml/cm H2O in all the patients. When the recruiting maneuver was employed, 14 patients were observed to have elevated blood pressures corrected with a vasopressor. One patient developed pneumothorax that was drained in proper time.Conclusion. The application of the lung opening maneuver leads to a considerable improvement of gas exchange parameters and lung mechanical properties.

  5. Maternal Separations During the Reentry Years for 100 Infants Raised in a Prison Nursery

    Science.gov (United States)

    Byrne, Mary W.; Goshin, Lorie; Blanchard-Lewis, Barbara

    2011-01-01

    Prison nurseries prevent maternal separations related to incarceration for the small subset of children whose pregnant mothers are incarcerated in states with such programs. For a cohort of 100 children accepted by corrections into one prison nursery, subsequent separation patterns are analyzed. The largest numbers are caused by corrections’ removal of infants from the nursery and infants reaching a one-year age limit. Criminal recidivism and substance abuse relapse threaten continued mothering during reentry. Focused and coordinated services are needed during prison stay and reentry years to sustain mothering for women and children accepted into prison nursery programs. PMID:22328865

  6. Demonstrative Maneuvers for Aircraft Agility Predictions

    Science.gov (United States)

    2008-03-01

    AIAA Paper 1996-3741. 19. Raymer , Daniel P. Aircraft Design: A Conceptual Approach. American Institute of Aeronautics and Astronautics, Inc., 3rd...Shaw, Robert L. Fighter Combat: Tactics and Maneuvering. Naval Institute Press, Annapolis, MD, 1985. 25. Smith, Steven W. The Scientist and

  7. Prevention of shoulder dystocia: A randomized controlled trial to evaluate an obstetric maneuver.

    Science.gov (United States)

    Poujade, Olivier; Azria, Elie; Ceccaldi, Pierre-François; Davitian, Carine; Khater, Carine; Chatel, Paul; Pernin, Emilie; Aflak, Nizar; Koskas, Martin; Bourgeois-Moine, Agnès; Hamou-Plotkine, Laurence; Valentin, Morgane; Renner, Jean-Paul; Roy, Carine; Estellat, Candice; Luton, Dominique

    2018-08-01

    Shoulder dystocia is a major obstetric emergency defined as a failure of delivery of the fetal shoulder(s). This study evaluated whether an obstetric maneuver, the push back maneuver performed gently on the fetal head during delivery, could reduce the risk of shoulder dystocia. We performed a multicenter, randomized, single-blind trial to compare the push back maneuver with usual care in parturient women at term. The primary outcome, shoulder dystocia, was considered to have occurred if, after delivery of the fetal head, any additional obstetric maneuver, beginning with the McRoberts maneuver, other than gentle downward traction and episiotomy was required. We randomly assigned 522 women to the push back maneuver group (group P) and 523 women to the standard vaginal delivery group (group S). Finally, 473 women assigned to group P and 472 women assigned to group S delivered vaginally. The rate of shoulder dystocia was significantly lower in group P (1·5%) than in group S (3·8%) (odds ratio [OR] 0·38 [0·16-0·92]; P = 0·03). After adjustment for predefined main risk factors, dystocia remained significantly lower in group P than in group S. There were no significant between-group differences in neonatal complications, including brachial plexus injury, clavicle fracture, hematoma and generalized asphyxia. In this trial in 945 women who delivered vaginally, the push back maneuver significantly decreased the risk of shoulder dystocia, as compared with standard vaginal delivery. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. A Fuel-Efficient Conflict Resolution Maneuver for Separation Assurance

    Science.gov (United States)

    Bowe, Aisha Ruth; Santiago, Confesor

    2012-01-01

    Automated separation assurance algorithms are envisioned to play an integral role in accommodating the forecasted increase in demand of the National Airspace System. Developing a robust, reliable, air traffic management system involves safely increasing efficiency and throughput while considering the potential impact on users. This experiment seeks to evaluate the benefit of augmenting a conflict detection and resolution algorithm to consider a fuel efficient, Zero-Delay Direct-To maneuver, when resolving a given conflict based on either minimum fuel burn or minimum delay. A total of twelve conditions were tested in a fast-time simulation conducted in three airspace regions with mixed aircraft types and light weather. Results show that inclusion of this maneuver has no appreciable effect on the ability of the algorithm to safely detect and resolve conflicts. The results further suggest that enabling the Zero-Delay Direct-To maneuver significantly increases the cumulative fuel burn savings when choosing resolution based on minimum fuel burn while marginally increasing the average delay per resolution.

  9. The impact of prison reentry services on short-term outcomes: evidence from a multisite evaluation.

    Science.gov (United States)

    Lattimore, Pamela K; Visher, Christy A

    2013-01-01

    Renewed interest in prisoner rehabilitation to improve postrelease outcomes occurred in the 1990s, as policy makers reacted to burgeoning prison populations with calls to facilitate community reintegration and reduce recidivism. In 2003, the Federal government funded grants to implement locally designed reentry programs. Adult programs in 12 states were studied to determine the effects of the reentry programs on multiple outcomes. A two-stage matching procedure was used to examine the effectiveness of 12 reentry programs for adult males. In the first stage, "intact group matching" was used to identify comparison populations that were similar to program participants. In the second stage, propensity score matching was used to adjust for remaining differences between groups. Propensity score weighted logistic regression was used to examine the impact of reentry program participation on multiple outcomes measured 3 months after release. The study population was 1,697 adult males released from prisons in 2004-2005. Data consisted of interview data gathered 30 days prior to release and approximately 3 months following release, supplemented by administrative data from state departments of correction and the National Crime Information Center. Results suggest programs increased in-prison service receipt and produced modest positive outcomes across multiple domains (employment, housing, and substance use) 3 months after release. Although program participants reported fewer crimes, differences in postrelease arrest and reincarceration were not statistically significant. Incomplete implementation and service receipt by comparison group members may have resulted in insufficient statistical power to identify stronger treatment effects.

  10. The Secret of Guided Missile Re-Entry,

    Science.gov (United States)

    1986-06-25

    I RD-PAI169 598 THE SECRET OF GUIDED MISSILE RE-ENTRY(U) FOREIGN / I TECHNOLOGY DIV NRIGHT-PATTERSON RFB OH J CHEN ET AL. I 25 JUN 96 FTD-ID(RS)T...TECHNOLOGY DIVISION THE SECRET OF GUIDED MISSILE RE-ENTRY by Chen Jingzhong, An Sehua J L 0 7 ’:;85’ ’ 0 *Approved for public release; Distribution...unlimite t d. :. 86 7 034.. FTD- ID(RS)T-0459-86 HUMAN TRANSLATION FTD-ID(RS)T-0459-86 25 June 1986 MICROFICHE NR: F - - 0Q 9? THE SECRET OF GUIDED

  11. Effect of Conflict Resolution Maneuver Execution Delay on Losses of Separation

    Science.gov (United States)

    Cone, Andrew C.

    2010-01-01

    This paper examines uncertainty in the maneuver execution delay for data linked conflict resolution maneuvers. This uncertainty could cause the previously cleared primary conflict to reoccur or a secondary conflict to appear. Results show that the likelihood of a primary conflict reoccurring during a horizontal conflict resolution maneuver increases with larger initial turn-out angles and with shorter times until loss of separation. There is also a significant increase in the probability of a primary conflict reoccurring when the time until loss falls under three minutes. Increasing horizontal separation by an additional 1.5 nmi lowers the risk, but does not completely eliminate it. Secondary conflicts were shown to have a small probability of occurring in all tested configurations.

  12. Evaluation of Mathematical Models for Tankers’ Maneuvering Motions

    Directory of Open Access Journals (Sweden)

    Erhan AKSU

    2017-03-01

    Full Text Available In this study, the maneuvering performance of two tanker ships, KVLCC1 and KVLCC2 which have different stern forms are predicted using a system-based method. Two different 3 DOF (degrees of freedom mathematical models based on the MMG(Maneuvering Modeling Group concept areappliedwith the difference in representing lateral force and yawing moment by second and third order polynomials respectively. Hydrodynamic coefficients and related parameters used in the mathematical models of the same scale models of KVLCC1 and KVLCC2 ships are estimated by using experimental data of NMRI (National Maritime Research Institute. The simulations of turning circle with rudder angle ±35o , zigzag(±10o /±10o and zigzag (±20o /±20o maneuvers are carried out and compared with free running model test data of MARIN (Maritime Research Institute Netherlands in this study. As a result of the analysis, it can be summarised that MMG model based on the third order polynomial is superior to the one based on the second order polynomial in view of estimation accuracy of lateral hull force and yawing moment.

  13. Measuring the spectral emissivity of thermal protection materials during atmospheric reentry simulation

    Science.gov (United States)

    Marble, Elizabeth

    1996-01-01

    Hypersonic spacecraft reentering the earth's atmosphere encounter extreme heat due to atmospheric friction. Thermal Protection System (TPS) materials shield the craft from this searing heat, which can reach temperatures of 2900 F. Various thermophysical and optical properties of TPS materials are tested at the Johnson Space Center Atmospheric Reentry Materials and Structures Evaluation Facility, which has the capability to simulate critical environmental conditions associated with entry into the earth's atmosphere. Emissivity is an optical property that determines how well a material will reradiate incident heat back into the atmosphere upon reentry, thus protecting the spacecraft from the intense frictional heat. This report describes a method of measuring TPS emissivities using the SR5000 Scanning Spectroradiometer, and includes system characteristics, sample data, and operational procedures developed for arc-jet applications.

  14. Facilitation of school re-entry and peer acceptance of children with cancer

    DEFF Research Database (Denmark)

    Helms, A. S.; Schmiegelow, K.; Brok, J.

    2016-01-01

    Increased survival rates from childhood cancer call for efforts to reintegrate children with cancer back into their academic and social environments. The aims of this study were to: (1) review and analyse the existing literature on school re-entry interventions for children with cancer; and (2......) discuss the importance of peer involvement in the treatment. Relevant databases were searched using equivalent search algorithms and six studies were selected that target children with cancer and/or their classmates. Two authors independently reviewed the literature for data extraction. The articles were...... reviewed using the PRISMA model for reporting reviews. Statistical calculations for the meta-analyses were done using Review Manager 5.2. The metaanalyses showed significant effects of school re-entry programmes in terms of enhancing academic achievement in children with cancer (P = 0.008) and lowering...

  15. Career Reentry Strategies for Highly Educated, Stay-at-Home Mothers

    Science.gov (United States)

    Guc, Cheryl M.

    2017-01-01

    Most stay-at-home mothers wish to return to the workplace; yet, the majority are not successful. There is a looming labor shortage and increasing organizational initiatives to increase female participation at most levels, providing opportunity for this talent pool. The purpose of this descriptive study was to examine the reentry strategies of…

  16. Study on zigzag maneuver characteristics of V-U very large crude oil (VLCC) tankers

    Science.gov (United States)

    Jaswar, Maimun, A.; Wahid, M. A.; Priyanto, A.; Zamani, Pauzi, Saman

    2012-06-01

    The Department of Marine Technology at the Faculty of Mechanical Engineering, University Teknologi Malaysia has recently developed an Ship Maneuverability tool which intends to upgrade student's level understanding the application of fluid dynamic on interaction between hull, propeller, and rudder during maneuvering. This paper discusses zigzag maneuver for conventional Very Large Crude Oil (VLCC) ships with the same principal dimensions but different stern flame shape. 10/10 zigzag maneuver characteristics of U and V types of VLCC ships are investigated. Simulation results for U-type show a good agreement with the experimental data, but V-type not good agreement with experimental one. Further study on zigzag maneuver characteristics are required.

  17. Development of an automated vehicle stop system for cardiac emergencies

    Directory of Open Access Journals (Sweden)

    Tung T. Nguyen

    2017-06-01

    Full Text Available This paper describes the concept and configuration of a novel automated safety vehicle stop system, and a future prospect of the study. Intrinsic sudden death may cause traffic accident since such accidents sometimes involve not only the driver but also other traffic users such as passengers and pedestrians. Cardiovascular disease (CVD is considered as a serious driving risk factor. The pain and others effects of cardiac events degrade driver’s performance, and CVD causes ischemia brought by the CVD induces incapacity of driving. In the automated safety vehicle stop system, which our research group has developed, steer-sensors collects bio-signals and a camera captures the driver’s posture to monitor driver’s incapability. When the driver loses his or her driving capability, the system takes over the maneuver of the vehicle and automatically drives to a safety spot by observing the traffic environment. An emergency scenario was used to demonstrate the system verifying its potential.

  18. Rendezvous maneuvers using Genetic Algorithm

    International Nuclear Information System (INIS)

    Dos Santos, Denílson Paulo Souza; De Almeida Prado, Antônio F Bertachini; Teodoro, Anderson Rodrigo Barretto

    2013-01-01

    The present paper has the goal of studying orbital maneuvers of Rendezvous, that is an orbital transfer where a spacecraft has to change its orbit to meet with another spacecraft that is travelling in another orbit. This transfer will be accomplished by using a multi-impulsive control. A genetic algorithm is used to find the transfers that have minimum fuel consumption

  19. Adaptive ISAR Imaging of Maneuvering Targets Based on a Modified Fourier Transform.

    Science.gov (United States)

    Wang, Binbin; Xu, Shiyou; Wu, Wenzhen; Hu, Pengjiang; Chen, Zengping

    2018-04-27

    Focusing on the inverse synthetic aperture radar (ISAR) imaging of maneuvering targets, this paper presents a new imaging method which works well when the target's maneuvering is not too severe. After translational motion compensation, we describe the equivalent rotation of maneuvering targets by two variables-the relative chirp rate of the linear frequency modulated (LFM) signal and the Doppler focus shift. The first variable indicates the target's motion status, and the second one represents the possible residual error of the translational motion compensation. With them, a modified Fourier transform matrix is constructed and then used for cross-range compression. Consequently, the imaging of maneuvering is converted into a two-dimensional parameter optimization problem in which a stable and clear ISAR image is guaranteed. A gradient descent optimization scheme is employed to obtain the accurate relative chirp rate and Doppler focus shift. Moreover, we designed an efficient and robust initialization process for the gradient descent method, thus, the well-focused ISAR images of maneuvering targets can be achieved adaptively. Human intervention is not needed, and it is quite convenient for practical ISAR imaging systems. Compared to precedent imaging methods, the new method achieves better imaging quality under reasonable computational cost. Simulation results are provided to validate the effectiveness and advantages of the proposed method.

  20. 32 CFR 644.137 - Maneuver agreements.

    Science.gov (United States)

    2010-07-01

    ... planning and acquires rights to use land and other facilities for Department of the Army exercises. The... and, after the maneuver is completed, will be responsible for negotiating restoration settlements and... director at field level whereby the command will assume responsibility for settlement of real estate...

  1. Tongue-Driven Wheelchair Out-Maneuvers the Competition

    Science.gov (United States)

    ... 2, 2014 Tongue-Driven Wheelchair Out-Maneuvers the Competition Researchers funded by the National Institute of Biomedical ... significant step towards vastly improving the independence and quality of life of individuals with tetraplegia, and is ...

  2. Safe Reentry for False Aneurysm Operations in High-Risk Patients.

    Science.gov (United States)

    Martinelli, Gian Luca; Cotroneo, Attilio; Caimmi, Philippe Primo; Musica, Gabriele; Barillà, David; Stelian, Edmond; Romano, Angelo; Novelli, Eugenio; Renzi, Luca; Diena, Marco

    2017-06-01

    In the absence of a standardized safe surgical reentry strategy for high-risk patients with large or anterior postoperative aortic false aneurysm (PAFA), we aimed to describe an effective and safe approach for such patients. We prospectively analyzed patients treated for PAFA between 2006 and 2015. According to the preoperative computed tomography scan examination, patients were divided into two groups according to the anatomy and extension of PAFA: in group A, high-risk PAFA (diameter ≥3 cm) developed in the anterior mediastinum; in group B, low-risk PAFA (diameter <3 cm) was situated posteriorly. For group A, a safe surgical strategy, including continuous cerebral, visceral, and coronary perfusion was adopted before resternotomy; group B patients underwent conventional surgery. We treated 27 patients (safe reentry, n = 13; standard approach, n = 14). Mean age was 60 years (range, 29 to 80); 17 patients were male. Mean interval between the first operation and the last procedure was 4.3 years. Overall 30-day mortality rate was 7.4% (1 patient in each group). No aorta-related mortality was observed at 1 and 5 years in either group. The Kaplan-Meier overall survival estimates at 1 and 5 years were, respectively, 92.3% ± 7.4% and 73.4% ± 13.4% in group A, and 92.9% ± 6.9% and 72.2% ± 13.9% in group B (log rank test, p = 0.830). Freedom from reoperation for recurrent aortic disease was 100% at 1 year and 88% at 5 years. The safe reentry technique with continuous cerebral, visceral, and coronary perfusion for high-risk patients resulted in early and midterm outcomes similar to those observed for low-risk patients undergoing conventional surgery. Copyright © 2017 The Society of Thoracic Surgeons. Published by Elsevier Inc. All rights reserved.

  3. Review of Tracktable for Satellite Maneuver Detection

    Energy Technology Data Exchange (ETDEWEB)

    Acquesta, Erin C.S. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Valicka, Christopher G. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Hinga, Mark B. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Ehn, Carollan Beret [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-10-01

    As a tool developed to translate geospatial data into geometrical descriptors, Tracktable offers a highly efficient means to detect anomalous flight and maritime behavior. Following the success of using geometrical descriptors for detecting anomalous trajectory behavior, the question of whether Tracktable could be used to detect satellite maneuvers arose. In answering this question, this re- port will introduce a brief description of how Tracktable has been used in the past, along with an introduction to the fundamental properties of astrodynamics for satellite trajectories. This will then allow us to compare the two problem spaces, addressing how easily the methods used by Tracktable will translate to orbital mechanics. Based on these results, we will then be able to out- line the current limitations as well as possible path forward for using Tracktable to detect satellite maneuvers.

  4. A Computer Simulation of the System-Wide Effects of Parallel-Offset Route Maneuvers

    Science.gov (United States)

    Lauderdale, Todd A.; Santiago, Confesor; Pankok, Carl

    2010-01-01

    Most aircraft managed by air-traffic controllers in the National Airspace System are capable of flying parallel-offset routes. This paper presents the results of two related studies on the effects of increased use of offset routes as a conflict resolution maneuver. The first study analyzes offset routes in the context of all standard resolution types which air-traffic controllers currently use. This study shows that by utilizing parallel-offset route maneuvers, significant system-wide savings in delay due to conflict resolution of up to 30% are possible. It also shows that most offset resolutions replace horizontal-vectoring resolutions. The second study builds on the results of the first and directly compares offset resolutions and standard horizontal-vectoring maneuvers to determine that in-trail conflicts are often more efficiently resolved by offset maneuvers.

  5. Analysis of Electromagnetic Wave Propagation in a Magnetized Re-Entry Plasma Sheath Via the Kinetic Equation

    Science.gov (United States)

    Manning, Robert M.

    2009-01-01

    Based on a theoretical model of the propagation of electromagnetic waves through a hypersonically induced plasma, it has been demonstrated that the classical radiofrequency communications blackout that is experienced during atmospheric reentry can be mitigated through the appropriate control of an external magnetic field of nominal magnitude. The model is based on the kinetic equation treatment of Vlasov and involves an analytical solution for the electric and magnetic fields within the plasma allowing for a description of the attendant transmission, reflection and absorption coefficients. The ability to transmit through the magnetized plasma is due to the magnetic windows that are created within the plasma via the well-known whistler modes of propagation. The case of 2 GHz transmission through a re-entry plasma is considered. The coefficients are found to be highly sensitive to the prevailing electron density and will thus require a dynamic control mechanism to vary the magnetic field as the plasma evolves through the re-entry phase.

  6. [Effects of recruitment maneuver in prone position on hemodynamics in patients with severe pulmonary infection].

    Science.gov (United States)

    Fan, Yuan-hua; Liu, Yuan-fei; Zhu, Hua-yong; Zhang, Min

    2012-02-01

    To evaluate effects of recruitment maneuver in prone position on hemodynamics in patients with severe pulmonary infection, based on the protective pulmonary ventilation strategy. Ninety-seven cases with severe pulmonary infection admitted to intensive care unit (ICU) of Ganzhou City People's Hospital undergoing mechanical ventilation were involved. Volume controlled ventilation mode with small tidal volume (8 ml/kg) and positive end-expiratory pressure (PEEP) of 6 cm H(2)O [1 cm H(2)O = 0.098 kPa] was conducted. Each patient underwent recruitment maneuver in supine position and then in prone position [PEEP 20 cm H(2)O+pressure control (PC) 20 cm H(2)O]. Heart rate (HR), mean arterial pressure (MAP), pulse oxygen saturation [SpO(2)] and blood gas analysis data were recorded before and after recruitment maneuver in either position. A double-lumen venous catheter was inserted into internal jugular vein or subclavian vein, and a pulse index contour cardiac output (PiCCO) catheter was introduced into femoral artery. Cardiac index (CI), stroke volume index (SVI), systemic vascular resistance index (SVRI), intra-thoracic blood volume index (ITBVI), extra vascular lung water index (EVLWI), global end-diastolic volume index (GEDVI), global ejection fraction (GEF), stroke volume variation (SVV) and central vein pressure (CVP) were monitored. (1) Compared with data before recruitment maneuver, there were no significant differences in HR and MAP after supine position and prone position recruitment maneuver, but significant differences in SpO(2) were found between before and after recruitment maneuver when patients' position was changed (supine position: 0.954 ± 0.032 vs. 0.917 ± 0.025, P recruitment maneuver (P recruitment maneuver, CI [L×min(-1)×m(-2)], SVI (ml/m(2)), GEDVI (ml/m(2)) and GEF were decreased significantly during recruitment maneuver (supine position: CI 3.2 ± 0.4 vs. 3.8 ± 0.6, SVI 32.4 ± 5.6 vs. 38.8 ± 6.5, GEDVI 689 ± 44 vs. 766 ± 32, GEF 0.267 ± 0

  7. Re-Entry Women Students in Higher Education: A Model for Non-Traditional Support Programs in Counseling and Career Advisement.

    Science.gov (United States)

    Karr-Kidwell, PJ

    A model program of support for non-traditional women students has been developed at Texas Woman's University (TWU). Based on a pilot study, several steps were taken to assist these re-entry students at TWU. For example, in spring semester of 1983, a committee for re-entry students was established, with a student organization--Women in…

  8. Automated vehicle guidance using discrete reference markers. [road surface steering techniques

    Science.gov (United States)

    Johnston, A. R.; Assefi, T.; Lai, J. Y.

    1979-01-01

    Techniques for providing steering control for an automated vehicle using discrete reference markers fixed to the road surface are investigated analytically. Either optical or magnetic approaches can be used for the sensor, which generates a measurement of the lateral offset of the vehicle path at each marker to form the basic data for steering control. Possible mechanizations of sensor and controller are outlined. Techniques for handling certain anomalous conditions, such as a missing marker, or loss of acquisition, and special maneuvers, such as u-turns and switching, are briefly discussed. A general analysis of the vehicle dynamics and the discrete control system is presented using the state variable formulation. Noise in both the sensor measurement and in the steering servo are accounted for. An optimal controller is simulated on a general purpose computer, and the resulting plots of vehicle path are presented. Parameters representing a small multipassenger tram were selected, and the simulation runs show response to an erroneous sensor measurement and acquisition following large initial path errors.

  9. From the inside/out: Greene County jail inmates on restorative reentry.

    Science.gov (United States)

    Hass, Aida Y; Saxon, Caryn E

    2012-10-01

    The application of criminal justice sanctions is often misguided by a failure to recognize the need for a comprehensive approach in the transformation of offenders into law-abiding citizens. Restorative justice is a growing movement within criminal justice that recognizes the disconnect between offender rehabilitative measures and the social dynamics within which offender reentry takes place. By using restorative approaches to justice, what one hopes of these alternative processes is that the offenders become reconnected to the community and its values, something rarely seen in retributive models in which punishment is imposed and offenders can often experience further alienation from society. In this study, the authors wish to examine factors that contribute to failed prisoner reentry and reintegration and explore how restorative reintegration processes can address these factors as well as the needs, attitudes, and perceptions that help construct and maintain many of the obstacles and barriers returning inmates face when attempting to reintegrate into society.

  10. Optimal Control of Hypersonic Planning Maneuvers Based on Pontryagin’s Maximum Principle

    Directory of Open Access Journals (Sweden)

    A. Yu. Melnikov

    2015-01-01

    Full Text Available The work objective is the synthesis of simple analytical formula of the optimal roll angle of hypersonic gliding vehicles for conditions of quasi-horizontal motion, allowing its practical implementation in onboard control algorithms.The introduction justifies relevance, formulates basic control tasks, and describes a history of scientific research and achievements in the field concerned. The author reveals a common disadvantage of the other authors’ methods, i.e. the problem of practical implementation in onboard control algorithms.The similar tasks of hypersonic maneuvers are systemized according to the type of maneuver, control parameters and limitations.In the statement of the problem the glider launched horizontally with a suborbital speed glides passive in the static Atmosphere on a spherical surface of constant radius in the Central field of gravitation.The work specifies a system of equations of motion in the inertial spherical coordinate system, sets the limits on the roll angle and optimization criteria at the end of the flight: high speed or azimuth and the minimum distances to the specified geocentric points.The solution.1 A system of equations of motion is transformed by replacing the time argument with another independent argument – the normal equilibrium overload. The Hamiltonian and the equations of mated parameters are obtained using the Pontryagin’s maximum principle. The number of equations of motion and mated vector is reduced.2 The mated parameters were expressed by formulas using current movement parameters. The formulas are proved through differentiation and substitution in the equations of motion.3 The Formula of optimal roll-position control by condition of maximum is obtained. After substitution of mated parameters, the insertion of constants, and trigonometric transformations the Formula of the optimal roll angle is obtained as functions of the current parameters of motion.The roll angle is expressed as the ratio

  11. Quantitative analysis of the relationship between driver`s behavior and vehicle motion; Sharyo unten ni taisuru untensha no kyodo no teiryoka bunseki ni tsuite

    Energy Technology Data Exchange (ETDEWEB)

    Nakagawa, H; Matsuura, Y [Osaka Sangyo University, Osaka (Japan); Masuda, T

    1997-10-01

    In order to study the subject of driving safety about the human-vehicle interaction, driver`s maneuvering behavior was shot by CCD-cameras installed in a cabin and the motion of traveling vehicle was simultaneously taken by VTR-cameras set on the test course. These pictures were analyzed using the three-dimensional image processing system (Peak Motus system). Consequently, this system was effectively able to use for these measurements and analysis and introduced the correlation between the vehicle movement and the driver`s action. 4 refs., 12 figs., 2 tabs.

  12. Orbital transfer vehicle concept definition and system analysis study. Volume 2: OTV concept definition and evaluation. Book 1: Mission and system requirements

    Science.gov (United States)

    Kofal, Allen E.

    1987-01-01

    The mission and system requirements for the concept definition and system analysis of the Orbital Transfer Vehicle (OTV) are established. The requirements set forth constitute the single authority for the selection, evaluation, and optimization of the technical performance and design of the OTV. This requirements document forms the basis for the Ground and Space Based OTV concept definition analyses and establishes the physical, functional, performance and design relationships to STS, Space Station, Orbital Maneuvering Vehicle (OMV), and payloads.

  13. Steering assistance for backing up articulated vehicles

    Directory of Open Access Journals (Sweden)

    Dieter Zoebel

    2003-10-01

    Full Text Available Articulated vehicles belong to the category of nonholonomous wheelers. Under the aspect of control theory they require a sophisticated handling. This corresponds to the experience of unexercised drivers, for instance maneuvering a car and its caravan into a parking box. In this context some adequate advice for the right steering movements would give an appreciable assistance. Here a visual assistance is proposed and realized. The decisive advice for the driver is derived from kinematic modeling. The system is designed to be integrated into standard cars and trucks. For testing purposes the actual system has been incorporated into an existing backing up simulator.

  14. Direct Simulation of Reentry Flows with Ionization

    Science.gov (United States)

    Carlson, Ann B.; Hassan, H. A.

    1989-01-01

    The Direct Simulation Monte Carlo (DSMC) method is applied in this paper to the study of rarefied, hypersonic, reentry flows. The assumptions and simplifications involved with the treatment of ionization, free electrons and the electric field are investigated. A new method is presented for the calculation of the electric field and handling of charged particles with DSMC. In addition, a two-step model for electron impact ionization is implemented. The flow field representing a 10 km/sec shock at an altitude of 65 km is calculated. The effects of the new modeling techniques on the calculation results are presented and discussed.

  15. Integrated detection, estimation, and guidance in pursuit of a maneuvering target

    Science.gov (United States)

    Dionne, Dany

    The thesis focuses on efficient solutions of non-cooperative pursuit-evasion games with imperfect information on the state of the system. This problem is important in the context of interception of future maneuverable ballistic missiles. However, the theoretical developments are expected to find application to a broad class of hybrid control and estimation problems in industry. The validity of the results is nevertheless confirmed using a benchmark problem in the area of terminal guidance. A specific interception scenario between an incoming target with no information and a single interceptor missile with noisy measurements is analyzed in the form of a linear hybrid system subject to additive abrupt changes. The general research is aimed to achieve improved homing accuracy by integrating ideas from detection theory, state estimation theory and guidance. The results achieved can be summarized as follows. (i) Two novel maneuver detectors are developed to diagnose abrupt changes in a class of hybrid systems (detection and isolation of evasive maneuvers): a new implementation of the GLR detector and the novel adaptive- H0 GLR detector. (ii) Two novel state estimators for target tracking are derived using the novel maneuver detectors. The state estimators employ parameterized family of functions to described possible evasive maneuvers. (iii) A novel adaptive Bayesian multiple model predictor of the ballistic miss is developed which employs semi-Markov models and ideas from detection theory. (iv) A novel integrated estimation and guidance scheme that significantly improves the homing accuracy is also presented. The integrated scheme employs banks of estimators and guidance laws, a maneuver detector, and an on-line governor; the scheme is adaptive with respect to the uncertainty affecting the probability density function of the filtered state. (v) A novel discretization technique for the family of continuous-time, game theoretic, bang-bang guidance laws is introduced. The

  16. Maneuver Acoustic Flight Test of the Bell 430 Helicopter

    Science.gov (United States)

    Watts, Michael E.; Snider, Royce; Greenwood, Eric; Baden, Joel

    2012-01-01

    A cooperative flight test by NASA, Bell Helicopter and the U.S. Army to characterize the steady state acoustics and measure the maneuver noise of a Bell Helicopter 430 aircraft was accomplished. The test occurred during June/July, 2011 at Eglin Air Force Base, Florida. This test gathered a total of 410 data points over 10 test days and compiled an extensive data base of dynamic maneuver measurements. Three microphone configurations with up to 31 microphones in each configuration were used to acquire acoustic data. Aircraft data included DGPS, aircraft state and rotor state information. This paper provides an overview of the test.

  17. Recovery, Transportation and Acceptance to the Curation Facility of the Hayabusa Re-Entry Capsule

    Science.gov (United States)

    Abe, M.; Fujimura, A.; Yano, H.; Okamoto, C.; Okada, T.; Yada, T.; Ishibashi, Y.; Shirai, K.; Nakamura, T.; Noguchi, T.; hide

    2011-01-01

    The "Hayabusa" re-entry capsule was safely carried into the clean room of Sagamihara Planetary Sample Curation Facility in JAXA on June 18, 2010. After executing computed tomographic (CT) scanning, removal of heat shield, and surface cleaning of sample container, the sample container was enclosed into the clean chamber. After opening the sample container and residual gas sampling in the clean chamber, optical observation, sample recovery, sample separation for initial analysis will be performed. This curation work is continuing for several manths with some selected member of Hayabusa Asteroidal Sample Preliminary Examination Team (HASPET). We report here on the 'Hayabusa' capsule recovery operation, and transportation and acceptance at the curation facility of the Hayabusa re-entry capsule.

  18. Effects of the Eccentricity of a Perturbing Third Body on the Orbital Correction Maneuvers of a Spacecraft

    Directory of Open Access Journals (Sweden)

    R. C. Domingos

    2014-01-01

    Full Text Available The fuel consumption required by the orbital maneuvers when correcting perturbations on the orbit of a spacecraft due to a perturbing body was estimated. The main goals are the measurement of the influence of the eccentricity of the perturbing body on the fuel consumption required by the station keeping maneuvers and the validation of the averaged methods when applied to the problem of predicting orbital maneuvers. To study the evolution of the orbits, the restricted elliptic three-body problem and the single- and double-averaged models are used. Maneuvers are made by using impulsive and low thrust maneuvers. The results indicated that the averaged models are good to make predictions for the orbital maneuvers when the spacecraft is in a high inclined orbit. The eccentricity of the perturbing body plays an important role in increasing the effects of the perturbation and the fuel consumption required for the station keeping maneuvers. It is shown that the use of more frequent maneuvers decreases the annual cost of the station keeping to correct the orbit of a spacecraft. An example of an eccentric planetary system of importance to apply the present study is the dwarf planet Haumea and its moons, one of them in an eccentric orbit.

  19. The effects of betahistine in addition to epley maneuver in posterior canal benign paroxysmal positional vertigo.

    Science.gov (United States)

    Guneri, Enis Alpin; Kustutan, Ozge

    2012-01-01

    The purpose of this study is to evaluate the effects of betahistine in addition to Epley maneuver on the quality of life of patients with posterior semicircular canal benign paroxysmal positional vertigo (BPPV) of the canalithiasis type. Double-blind, randomized, controlled clinical trial. Academic university hospital. Seventy-two patients were enrolled in the study. The first group was treated with Epley maneuver only. The second group received placebo drug 2 times daily for 1 week in addition to Epley maneuver, and the third group received 24 mg betahistine 2 times daily for 1 week in addition to Epley maneuver. The effectiveness of the treatments was assessed in each group as well as between them by analyzing and comparing data of 4 different vertigo symptom scales. Epley maneuver, alone or combined with betahistine or placebo, was found to be very effective with a primary success rate of 86.2%. The symptoms were significantly reduced in group 3 patients overall, and those patients younger or older than 50 years of age who had hypertension, with symptom onset <1 month, and with attack duration of less than a minute did significantly better with the combination of betahistine 48 mg daily. Betahistine in addition to Epley maneuver is more effective than Epley maneuver alone or combined with placebo with regard to improvement of symptoms in certain patients. However, future clinical studies covering more patients to investigate the benefit of medical treatments in addition to Epley maneuver are needed.

  20. Analysis of Radio Frequency Blackout for a Blunt-Body Capsule in Atmospheric Reentry Missions

    Directory of Open Access Journals (Sweden)

    Yusuke Takahashi

    2016-01-01

    Full Text Available A numerical analysis of electromagnetic waves around the atmospheric reentry demonstrator (ARD of the European Space Agency (ESA in an atmospheric reentry mission was conducted. During the ARD mission, which involves a 70% scaled-down configuration capsule of the Apollo command module, radio frequency blackout and strong plasma attenuation of radio waves in communications with data relay satellites and air planes were observed. The electromagnetic interference was caused by highly dense plasma derived from a strong shock wave generated in front of the capsule because of orbital speed during reentry. In this study, the physical properties of the plasma flow in the shock layer and wake region of the ESA ARD were obtained using a computational fluid dynamics technique. Then, electromagnetic waves were expressed using a frequency-dependent finite-difference time-domain method using the plasma properties. The analysis model was validated based on experimental flight data. A comparison of the measured and predicted results showed good agreement. The distribution of charged particles around the ESA ARD and the complicated behavior of electromagnetic waves, with attenuation and reflection, are clarified in detail. It is suggested that the analysis model could be an effective tool for investigating radio frequency blackout and plasma attenuation in radio wave communication.

  1. Changing lanes in a simulator: effects of aging on the control of the vehicle and visual inspection of mirrors and blind spot.

    Science.gov (United States)

    Lavalliere, Martin; Laurendeau, Denis; Simoneau, Martin; Teasdale, Normand

    2011-04-01

    The aim of this study was to examine lane change strategies in active younger and older drivers. Visual inspection of mirrors and the blind spot and the control of the vehicle were documented in a simulator environment. Younger (n = 10, 21-31 years) and older (n = 11, 65-75 years) active drivers drove through a continuous simulated environment including urban and rural sections. The scenario included events where, to negotiate a secure lane change, the driver needed to look at 3 regions of interest (ROI): (1) the rearview mirror, (2) the left side mirror, and (3) the left blind spot. The lane change maneuvers were necessary to avoid a vehicle parked halfway in the rightmost lane that was partially or completely blocking the lane or for overtaking a slower moving vehicle. Compared with younger drivers, older drivers showed a reduced frequency of visual inspection toward the rearview mirror and the blind spot. Also, though the older drivers showed a constant frequency of visual inspection across the 2 types of driving maneuvers, the younger drivers increased their frequency of inspection when overtaking a slower vehicle. Control of the car was mostly similar for both groups. A better knowledge of the drivers' visual search strategies when changing lanes could help in identifying suboptimal strategies at-risk of causing crashes and also serves to develop retraining programs.

  2. Effects-Based Operations: The End of Dominant Maneuver?

    National Research Council Canada - National Science Library

    Cheek, Gary

    2002-01-01

    ... without dominant ground maneuver. The paper concludes that such thinking misreads a historical warfare lethality trend in a potentially dangerous effort to vindicate the Air Force doctrine of strategic attack...

  3. Reentry planning: The technical basis for offsite recovery following warfare agent contamination

    Energy Technology Data Exchange (ETDEWEB)

    Watson, A.P.; Munro, N.B.

    1990-04-01

    In the event on an unplanned release of chemical agent during any stage of Chemical Stockpile Disposal Program (CSDP), the potential exists for contamination of drinking water, forage crops, grains, garden produce and livestock. Persistent agents, such as VX or sulfur mustard, pose the greatest human health concern for reentry. The purpose of this technical support study is to provide information and analyses that can be used by federal, state and local emergency planners in determining the safety or reentry to, as well as the potential for recovery of, contaminated or suspect areas beyond the installation boundary. Guidelines for disposition of livestock, agricultural crops and personal/real property are summarized. Advisories for ingestion of food crops, water, meat and milk from the affected zones are proposed. This document does not address potential adverse effects to, or agent contamination of, wild species of plants or animals. 80 refs., 4 figs., 29 tabs.

  4. ADDJUST - An automated system for steering Centaur launch vehicles in measured winds

    Science.gov (United States)

    Swanson, D. C.

    1977-01-01

    ADDJUST (Automatic Determination and Dissemination of Just-Updated Steering Terms) is an automated computer and communication system designed to provide Atlas/Centaur and Titan/Centaur launch vehicles with booster-phase steering data on launch day. Wind soundings are first obtained, from which a smoothed wind velocity vs altitude relationship is established. Design for conditions at the end of the boost phase with initial pitch and yaw maneuvers, followed by zero total angle of attack through the filtered wind establishes the required vehicle attitude as a function of altitude. Polynomial coefficients for pitch and yaw attitude vs altitude are determined and are transmitted for validation and loading into the Centaur airborne computer. The system has enabled 14 consecutive launches without a flight wind delay.

  5. 14 CFR 401.5 - Definitions.

    Science.gov (United States)

    2010-01-01

    ... reentry, or otherwise after vehicle landing or impact on Earth, and after activities necessary to return...” also includes activities conducted on the ground after vehicle landing on Earth to ensure the reentry... mission rules and procedures. Contingency abort includes landing at an alternative location that has been...

  6. Modal and Dynamic Analysis of a Vehicle with Kinetic Dynamic Suspension System

    Directory of Open Access Journals (Sweden)

    Bangji Zhang

    2016-01-01

    Full Text Available A novel kinetic dynamic suspension (KDS system is presented for the cooperative control of the roll and warp motion modes of off-road vehicles. The proposed KDS system consists of two hydraulic cylinders acting on the antiroll bars. Hence, the antiroll bars are not completely replaced by the hydraulic system, but both systems are installed. In this paper, the vibration analysis in terms of natural frequencies of different motion modes in frequency domain for an off-road vehicle equipped with different configurable suspension systems is studied by using the modal analysis method. The dynamic responses of the vehicle with different configurable suspension systems are investigated under different road excitations and maneuvers. The results of the modal and dynamic analysis prove that the KDS system can reduce the roll and articulation motions of the off-road vehicle without adding extra bounce stiffness and deteriorating the ride comfort. Furthermore, the roll stiffness is increased and the warp stiffness is decreased by the KDS system, which could significantly enhance handing performance and off-road capability.

  7. Close Proximity Robotic Maneuvering through Flux Pinning Manipulation

    Data.gov (United States)

    National Aeronautics and Space Administration — Non-contacting actuation technology like flux pinning has never been demonstrated in space. The development of a nonphysical joint is critical for maneuvers such as...

  8. Review of Leading Approaches for Mitigating Hypersonic Vehicle Communications Blackout and a Method of Ceramic Particulate Injection Via Cathode Spot Arcs for Blackout Mitigation

    Science.gov (United States)

    Gillman, Eric D.; Foster, John E.; Blankson, Isaiah M.

    2010-01-01

    Vehicles flying at hypersonic velocities within the atmosphere become enveloped in a "plasma sheath" that prevents radio communication, telemetry, and most importantly, GPS signal reception for navigation. This radio "blackout" period has been a problem since the dawn of the manned space program and was an especially significant hindrance during the days of the Apollo missions. An appropriate mitigation method must allow for spacecraft to ground control and ground control to spacecraft communications through the reentry plasma sheath. Many mitigation techniques have been proposed, including but not limited to, aerodynamic shaping, magnetic windows, and liquid injection. The research performed on these mitigation techniques over the years will be reviewed and summarized, along with the advantages and obstacles that each technique will need to overcome to be practically implemented. A unique approach for mitigating the blackout communications problem is presented herein along with research results associated with this method. The novel method involves the injection of ceramic metal-oxide particulate into a simulated reentry plasma to quench the reentry plasma. Injection of the solid ceramic particulates is achieved by entrainment within induced, energetic cathode spot flows.

  9. Efficacy of Epley’s Maneuver in Treating BPPV Patients: A Prospective Observational Study

    Directory of Open Access Journals (Sweden)

    Sushil Gaur

    2015-01-01

    Full Text Available Vertigo and balance disorders are among the most common symptoms encountered in patients who visit ENT outpatient department. This is associated with risk of falling and is compounded in elderly persons with other neurologic deficits and chronic medical problems. BPPV is the most common cause of peripheral vertigo. BPPV is a common vestibular disorder leading to significant morbidity, psychosocial impact, and medical costs. The objective of Epley’s maneuver, which is noninvasive, inexpensive, and easily administered, is to move the canaliths out of the canal to the utricle where they no longer affect the canal dynamics. Our study aims to analyze the response to Epley’s maneuver in a series of patients with posterior canal BPPV and compares the results with those treated exclusively by medical management alone. Even though many studies have been conducted to prove the efficacy of this maneuver, this study reinforces the validity of Epley’s maneuver by comparison with the medical management.

  10. A mission executor for an autonomous underwater vehicle

    Science.gov (United States)

    Lee, Yuh-Jeng; Wilkinson, Paul

    1991-01-01

    The Naval Postgraduate School has been conducting research into the design and testing of an Autonomous Underwater Vehicle (AUV). One facet of this research is to incrementally design a software architecture and implement it in an advanced testbed, the AUV II. As part of the high level architecture, a Mission Executor is being constructed using CLIPS (C Language Integrated Production System) version 5.0. The Mission Executor is an expert system designed to oversee progress from the AUV launch point to a goal area and back to the origin. It is expected that the executor will make informed decisions about the mission, taking into account the navigational path, the vehicle subsystem health, and the sea environment, as well as the specific mission profile which is downloaded from an offboard mission planner. Heuristics for maneuvering, avoidance of uncharted obstacles, waypoint navigation, and reaction to emergencies (essentially the expert knowledge of a submarine captain) are required. Many of the vehicle subsystems are modeled as objects using the CLIPS Object Oriented Language (COOL) embedded in CLIPS 5.0. Also, truth maintenance is applied to the knowledge base to keep configurations updated.

  11. CFD Analysis of a Maneuvering F/A-18E Super Hornet

    Science.gov (United States)

    2016-10-12

    tools for aircraft, ships, and radio - frequency antenna design and analysis. The resulting program is called the Computational Research and Engineering...accurately predicting the forces and moments on the F/A-18E Super Hornet while performing several complicated maneuvers. Past F/A-18E computational studies... predicting the forces and moments on the F/A-18E Super Hornet while performing several complicated maneuvers. Past F/A-18E computational studies have

  12. Overview of the In-Flight Experimentations and Measurements on the IXV Experimental Vehicle

    Science.gov (United States)

    Cosson, E.; Giusto, S.; Del Vecchio, A.; Mancuso, S.

    2009-01-01

    After an assessment and then a trade-off of all the passenger experiments proposed by different partners within Europe, a selection of Core Experiments to be embarked on-board IXV to fulfil the Mission and System Requirements has been made. Some Passenger Experiments have also been identified to be potentially embarked, provided it is compatible with the system allocations, since they could bring valuable additional in-flight data. All those experiments include Thermal Protection System (TPS) experiments (including innovative TPS materials), AeroThermoDynamic (ATD) experiments and Health Monitoring System (HMS) experiments. Aside the previously mentioned experiments, a specific Vehicle Model Identification experiment (VMI) aims at validating in-flight the mathematical models of flight dynamics for a gliding re-entry vehicle. This paper also presents a preliminary version of the in- flight measurement plan, encompassing both conventional instrumentation and advanced sensors or even innovative measurement techniques.

  13. Trajectory Control of Rendezvous with Maneuver Target Spacecraft

    Science.gov (United States)

    Zhou, Zhinqiang

    2012-01-01

    In this paper, a nonlinear trajectory control algorithm of rendezvous with maneuvering target spacecraft is presented. The disturbance forces on the chaser and target spacecraft and the thrust forces on the chaser spacecraft are considered in the analysis. The control algorithm developed in this paper uses the relative distance and relative velocity between the target and chaser spacecraft as the inputs. A general formula of reference relative trajectory of the chaser spacecraft to the target spacecraft is developed and applied to four different proximity maneuvers, which are in-track circling, cross-track circling, in-track spiral rendezvous and cross-track spiral rendezvous. The closed-loop differential equations of the proximity relative motion with the control algorithm are derived. It is proven in the paper that the tracking errors between the commanded relative trajectory and the actual relative trajectory are bounded within a constant region determined by the control gains. The prediction of the tracking errors is obtained. Design examples are provided to show the implementation of the control algorithm. The simulation results show that the actual relative trajectory tracks the commanded relative trajectory tightly. The predicted tracking errors match those calculated in the simulation results. The control algorithm developed in this paper can also be applied to interception of maneuver target spacecraft and relative trajectory control of spacecraft formation flying.

  14. Helicopter noise footprint prediction in unsteady maneuvers

    NARCIS (Netherlands)

    Gennaretti, Massimo; Bernardini, Giovanni; Serafini, Jacopo; Anobile, A.; Hartjes, S.

    2017-01-01

    This paper investigates different methodologies for the evaluation of the acoustic disturbance emitted by helicopter’s main rotors during unsteady maneuvers. Nowadays, the simulation of noise emitted by helicopters is of great interest to designers, both for the assessment of the acoustic impact

  15. 47 CFR 25.282 - Orbit raising maneuvers.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 2 2010-10-01 2010-10-01 false Orbit raising maneuvers. 25.282 Section 25.282 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES SATELLITE COMMUNICATIONS... geostationary satellite orbit under this part is also authorized to transmit in connection with short-term...

  16. Five surgical maneuvers on nasal mucosa movement in cleft palate repair: A cadaver study.

    Science.gov (United States)

    Nguyen, Dennis C; Patel, Kamlesh B; Parikh, Rajiv P; Skolnick, Gary B; Woo, Albert S

    2016-06-01

    This biomechanical study aims to characterize the nasal mucosa during palatoplasty, thereby describing the soft tissue attachments at different zones and quantifying movement following their release. Palatal nasal mucosa was exposed and divided in the midline in 10 adult cadaver heads. Five consecutive maneuvers were performed: (1) elevation of nasal mucosa off the maxilla, (2) dissection of nasal mucosa from soft palate musculature, (3) separation of nasal mucosa from palatine aponeurosis, (4) release of mucosa at the pterygopalatine junction, and (5) mobilization of vomer flaps. The mucosal movements across the midline at the midpalate (MP) and posterior nasal spine (PNS) following each maneuver were measured. At the MP, maneuvers 1-4 cumulatively provided 3.8 mm (36.9%), 4.9 mm (47.6%), 6.1 mm (59.2%), and 10.3 mm, respectively. Vomer flap (10.5 mm) elevation led to mobility equivalent to that of maneuvers 1-4 (p = 0.72). At the PNS, cumulative measurements after maneuvers 1-4 were 1.3 mm (10%), 2.4 mm (18.6%), 5.7 mm (44.2%), and 12.9 mm. Here, vomer flaps (6.5 mm) provided less movement (p < 0.001). Maneuver 4 yielded the greatest amount of movement of the lateral nasal mucosa at both MP (4.2 mm, 40.8%) and PNS (7.2 mm, 55.8%). At the MP, complete release of the lateral nasal mucosa achieves as much movement as the vomer flap. At the hard-soft palate junction, the maneuvers progressively add to the movement of the lateral nasal mucosa. The most powerful step is release of attachments along the posterior aspect of the medial pterygoid. Published by Elsevier Ltd.

  17. RITD - Re-entry: Inflatable Technology Development in Russian Collaboration

    Science.gov (United States)

    Heilimo, J.; Harri, A.-M.; Aleksashkin, S.; Koryanov, V.; Arruego, I.; Schmidt, W.; Haukka, H.; Finchenko, V.; Martynov, M.; Ostresko, B.; Ponomarenko, A.; Kazakovtsev, V.; Martin, S.; Siili, T.

    2014-04-01

    A new generation of inflatable Entry, Descent and Landing System (EDLS) for Mars has been developed. It is used in both the initial atmospheric entry and atmospheric descent before the semi-hard impact of the penetrator into Martian surface. The EDLS applicability to Earth's atmosphere is studied by the EU/RITD [1] project. Project focuses on the analysis and tests of the transonic behaviour of this compact and light weight payload entry system at the Earth re-entry.

  18. Piloted Simulation Evaluation of a Model-Predictive Automatic Recovery System to Prevent Vehicle Loss of Control on Approach

    Science.gov (United States)

    Litt, Jonathan S.; Liu, Yuan; Sowers, Thomas S.; Owen, A. Karl; Guo, Ten-Huei

    2014-01-01

    This paper describes a model-predictive automatic recovery system for aircraft on the verge of a loss-of-control situation. The system determines when it must intervene to prevent an imminent accident, resulting from a poor approach. It estimates the altitude loss that would result from a go-around maneuver at the current flight condition. If the loss is projected to violate a minimum altitude threshold, the maneuver is automatically triggered. The system deactivates to allow landing once several criteria are met. Piloted flight simulator evaluation showed the system to provide effective envelope protection during extremely unsafe landing attempts. The results demonstrate how flight and propulsion control can be integrated to recover control of the vehicle automatically and prevent a potential catastrophe.

  19. Phospho-Rb mediating cell cycle reentry induces early apoptosis following oxygen-glucose deprivation in rat cortical neurons.

    Science.gov (United States)

    Yu, Ying; Ren, Qing-Guo; Zhang, Zhao-Hui; Zhou, Ke; Yu, Zhi-Yuan; Luo, Xiang; Wang, Wei

    2012-03-01

    The aim of this study was to investigate the relationship between cell cycle reentry and apoptosis in cultured cortical neurons following oxygen-glucose deprivation (OGD). We found that the percentage of neurons with BrdU uptake, TUNEL staining, and colocalized BrdU uptake and TUNEL staining was increased relative to control 6, 12 and 24 h after 1 h of OGD. The number of neurons with colocalized BrdU and TUNEL staining was decreased relative to the number of TUNEL-positive neurons at 24 h. The expression of phosphorylated retinoblastoma protein (phospho-Rb) was significantly increased 6, 12 and 24 h after OGD, parallel with the changes in BrdU uptake. Phospho-Rb and TUNEL staining were colocalized in neurons 6 and 12 h after OGD. This colocalization was strikingly decreased 24 h after OGD. Treatment with the cyclin-dependent kinase inhibitor roscovitine (100 μM) decreased the expression of phospho-Rb and reduced neuronal apoptosis in vitro. These results demonstrated that attempted cell cycle reentry with phosphorylation of Rb induce early apoptosis in neurons after OGD and there must be other mechanisms involved in the later stages of neuronal apoptosis besides cell cycle reentry. Phosphoralated Rb may be an important factor which closely associates aberrant cell cycle reentry with the early stages of neuronal apoptosis following ischemia/hypoxia in vitro, and pharmacological interventions for neuroprotection may be useful directed at this keypoint.

  20. A unified flight control methodology for a compound rotorcraft in fundamental and aerobatic maneuvering flight

    Science.gov (United States)

    Thorsen, Adam

    This study investigates a novel approach to flight control for a compound rotorcraft in a variety of maneuvers ranging from fundamental to aerobatic in nature. Fundamental maneuvers are a class of maneuvers with design significance that are useful for testing and tuning flight control systems along with uncovering control law deficiencies. Aerobatic maneuvers are a class of aggressive and complex maneuvers with more operational significance. The process culminating in a unified approach to flight control includes various control allocation studies for redundant controls in trim and maneuvering flight, an efficient methodology to simulate non-piloted maneuvers with varying degrees of complexity, and the setup of an unconventional control inceptor configuration along with the use of a flight simulator to gather pilot feedback in order to improve the unified control architecture. A flight path generation algorithm was developed to calculate control inceptor commands required for a rotorcraft in aerobatic maneuvers. This generalized algorithm was tailored to generate flight paths through optimization methods in order to satisfy target terminal position coordinates or to minimize the total time of a particular maneuver. Six aerobatic maneuvers were developed drawing inspiration from air combat maneuvers of fighter jet aircraft: Pitch-Back Turn (PBT), Combat Ascent Turn (CAT), Combat Descent Turn (CDT), Weaving Pull-up (WPU), Combat Break Turn (CBT), and Zoom and Boom (ZAB). These aerobatic maneuvers were simulated at moderate to high advance ratios while fundamental maneuvers of the compound including level accelerations/decelerations, climbs, descents, and turns were investigated across the entire flight envelope to evaluate controller performance. The unified control system was developed to allow controls to seamlessly transition between manual and automatic allocations while ensuring that the axis of control for a particular inceptor remained constant with flight

  1. Concurrent image-based visual servoing with adaptive zooming for non-cooperative rendezvous maneuvers

    Science.gov (United States)

    Pomares, Jorge; Felicetti, Leonard; Pérez, Javier; Emami, M. Reza

    2018-02-01

    An image-based servo controller for the guidance of a spacecraft during non-cooperative rendezvous is presented in this paper. The controller directly utilizes the visual features from image frames of a target spacecraft for computing both attitude and orbital maneuvers concurrently. The utilization of adaptive optics, such as zooming cameras, is also addressed through developing an invariant-image servo controller. The controller allows for performing rendezvous maneuvers independently from the adjustments of the camera focal length, improving the performance and versatility of maneuvers. The stability of the proposed control scheme is proven analytically in the invariant space, and its viability is explored through numerical simulations.

  2. Propulsion System and Orbit Maneuver Integration in CubeSats: Trajectory Control Strategies Using Micro Ion Propulsion

    Science.gov (United States)

    Hudson, Jennifer; Martinez, Andres; Petro, Andrew

    2015-01-01

    The Propulsion System and Orbit Maneuver Integration in CubeSats project aims to solve the challenges of integrating a micro electric propulsion system on a CubeSat in order to perform orbital maneuvers and control attitude. This represents a fundamentally new capability for CubeSats, which typically do not contain propulsion systems and cannot maneuver far beyond their initial orbits.

  3. "I Want a Second Chance": Experiences of African American Fathers in Reentry.

    Science.gov (United States)

    Dill, LeConté J; Mahaffey, Carlos; Mosley, Tracey; Treadwell, Henrie; Barkwell, Fabeain; Barnhill, Sandra

    2016-11-01

    With over 700,000 people on average released from prison each year to communities, greater attention is warranted on the experiences and needs of those who are parents and seeking to develop healthy relationships with their children and families. This study seeks to explore the experiences of African American fathers in reentry. Qualitative data from 16 African American men enrolled in a fellowship program for fathers were collected from a focus group and analyzed for common themes and using standpoint theory. Four themes emerged that focused on fathers' commitment toward healthy and successful reintegration postincarceration: redemption, employment, health care, and social support. Focus group participants actively strive to develop and rebuild healthy relationships with their children through seeking gainful employment and through bonding with like-minded peers. Barriers in accessing health care are also discussed. Research findings may inform future programs and policies related to supporting fathers and their children in reentry. © The Author(s) 2015.

  4. Technical and Economical Feasibility of SSTO and TSTO Launch Vehicles

    Science.gov (United States)

    Lerch, Jens

    This paper discusses whether it is more cost effective to launch to low earth orbit in one or two stages, assuming current or near future technologies. First the paper provides an overview of the current state of the launch market and the hurdles to introducing new launch vehicles capable of significantly lowering the cost of access to space and discusses possible routes to solve those problems. It is assumed that reducing the complexity of launchers by reducing the number of stages and engines, and introducing reusability will result in lower launch costs. A number of operational and historic launch vehicle stages capable of near single stage to orbit (SSTO) performance are presented and the necessary steps to modify them into an expendable SSTO launcher and an optimized two stage to orbit (TSTO) launcher are shown, through parametric analysis. Then a ballistic reentry and recovery system is added to show that reusable SSTO and TSTO vehicles are also within the current state of the art. The development and recurring costs of the SSTO and the TSTO systems are estimated and compared. This analysis shows whether it is more economical to develop and operate expendable or reusable SSTO or TSTO systems under different assumption for launch rate and initial investment.

  5. About avatars and maneuvering in virtual environments

    NARCIS (Netherlands)

    Delleman, N.

    2006-01-01

    This paper is about the use of avatars and maneuvering in virtual environments for simulation-based design ergonomics. An avatar is a digital human model driven by an instrumented human who is immersed in a virtual environment. A presentation on locomotion devices is followed by descriptions of

  6. The Pringle maneuver reduces the infusion rate of rocuronium required to maintain surgical muscle relaxation during hepatectomy.

    Science.gov (United States)

    Kajiura, Akira; Nagata, Osamu; Sanui, Masamitsu

    2018-04-27

    We investigated the continuous infusion rates of rocuronium necessary to obtain the surgical muscle relaxation before, during, and after the Pringle maneuver on patients who underwent hepatectomy. Fifteen patients were induced by total intravenous anesthesia with propofol. After obtaining the calibration of acceleromyography, the patient was intubated with rocuronium 0.6 mg/kg. Fifteen minutes after initial rocuronium injection, the continuous infusion was started at 7.5 µg/kg/min. The infusion rate was adjusted every 15 min so that the first twitch height (% T1) might become from 3 to 10% of control. The infusion rates at the time when the state of surgical muscle relaxation was achieved for more than 15 min were recorded before, during and after the Pringle maneuver. The 25% recovery time was measured after discontinuing the continuous infusion. The infusion rate of rocuronium before, during, and after the Pringle maneuver was 7.2 ± 1.8, 4.2 ± 1.4, and 4.7 ± 1.5 µg/kg/min (mean ± SD), respectively. The rocuronium infusion rate during the Pringle maneuver was decreased about 40% compared to that before this maneuver, and that after completion of the Pringle maneuver was not recovered to that before the Pringle maneuver. The 25% recovery time was 20 ± 7 min. In case of continuous administration of rocuronium during surgery performing the Pringle maneuver, it was considered necessary to regulate the administration of rocuronium using muscle relaxant monitoring in order to deal with the decrease in muscle relaxant requirement by the Pringle maneuver.

  7. The influence of airway supporting maneuvers on glottis view in pediatric fiberoptic bronchoscopy

    Directory of Open Access Journals (Sweden)

    Tarik Umutoglu

    2015-10-01

    Full Text Available ABSTRACTINTRODUCTION:Flexible fiber optic bronchoscopy is a valuable intervention for evaluation and management of respiratory diseases in both infants, pediatric and adult patients. The aim of this study is to investigate the influence of the airway supporting maneuvers on glottis view during pediatric flexible fiberoptic bronchoscopy.MATERIALS AND METHODS:In this randomized, controlled, crossover study; patients aged between 0 and 15 years who underwent flexible fiberoptic bronchoscopy procedure having American Society of Anesthesiologists I---II risk score were included. Patients having risk of difficult intubation, intubated or patients with tracheostomy, and patients with reduced neck mobility or having cautions for neck mobility were excluded from this study. After obtaining best glottic view at the neutral position, patients were positioned jaw trust with open mouth, jaw trust with teeth prottution, head tilt chin lift and triple airway maneuvers and best glottis scores were recorded.RESULTS:Total of 121 pediatric patients, 57 girls and 64 boys, were included in this study. Both jaw trust with open mouth and jaw trust with teeth prottution maneuvers improved the glottis view compared with neutral position (p 0.05. Head tilt chin lift and triple airway maneuvers improved glottis view when compared with both jaw trust with open mouth and jaw trust with teeth prottution maneuvers and neutral position (p 0.05.

  8. Fuzzy Logic Unmanned Air Vehicle Motion Planning

    Directory of Open Access Journals (Sweden)

    Chelsea Sabo

    2012-01-01

    Full Text Available There are a variety of scenarios in which the mission objectives rely on an unmanned aerial vehicle (UAV being capable of maneuvering in an environment containing obstacles in which there is little prior knowledge of the surroundings. With an appropriate dynamic motion planning algorithm, UAVs would be able to maneuver in any unknown environment towards a target in real time. This paper presents a methodology for two-dimensional motion planning of a UAV using fuzzy logic. The fuzzy inference system takes information in real time about obstacles (if within the agent's sensing range and target location and outputs a change in heading angle and speed. The FL controller was validated, and Monte Carlo testing was completed to evaluate the performance. Not only was the path traversed by the UAV often the exact path computed using an optimal method, the low failure rate makes the fuzzy logic controller (FLC feasible for exploration. The FLC showed only a total of 3% failure rate, whereas an artificial potential field (APF solution, a commonly used intelligent control method, had an average of 18% failure rate. These results highlighted one of the advantages of the FLC method: its adaptability to complex scenarios while maintaining low control effort.

  9. Development of a lane change risk index using vehicle trajectory data.

    Science.gov (United States)

    Park, Hyunjin; Oh, Cheol; Moon, Jaepil; Kim, Seongho

    2018-01-01

    Surrogate safety measures (SSMs) have been widely used to evaluate crash potential, which is fundamental for the development of effective safety countermeasures. Unlike existing SSMs, which are mainly focused on the evaluation of longitudinal vehicle maneuvering leading to rear-end crashes, this study proposes a new method for estimating crash risk while a subject vehicle changes lanes, referred to as the lane change risk index (LCRI). A novel feature of the proposed methodology is its incorporation of the amount of exposure time to potential crash and the expected crash severity level by applying a fault tree analysis (FTA) to the evaluation framework. Vehicle interactions between a subject vehicle and adjacent vehicles in the starting lane and the target lane are evaluated in terms of crash potential during lane change. Vehicle trajectory data obtained from a traffic stream, photographed using a drone flown over a freeway segment, is used to investigate the applicability of the proposed methodology. This study compares the characteristics of compulsory and discretionary lane changes observed in a work zone section and a general section of a freeway using the LCRI. It is expected that the outcome of this study will be valuable in evaluating the effectiveness of various traffic operations and control strategies in terms of lane change safety. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Pilot vehicle interface on the advanced fighter technology integration F-16

    Science.gov (United States)

    Dana, W. H.; Smith, W. B.; Howard, J. D.

    1986-01-01

    This paper focuses on the work load aspects of the pilot vehicle interface in regard to the new technologies tested during AMAS Phase II. Subjects discussed in this paper include: a wide field-of-view head-up display; automated maneuvering attack system/sensor tracker system; master modes that configure flight controls and mission avionics; a modified helmet mounted sight; improved multifunction display capability; a voice interactive command system; ride qualities during automated weapon delivery; a color moving map; an advanced digital map display; and a g-induced loss-of-consciousness and spatial disorientation autorecovery system.

  11. Precision Closed-Loop Orbital Maneuvering System Design and Performance for the Magnetospheric Multi-Scale Mission (MMS) Formation

    Science.gov (United States)

    Chai, Dean; Queen, Steve; Placanica, Sam

    2015-01-01

    NASA's Magnetospheric Multi-Scale (MMS) mission successfully launched on March 13, 2015 (UTC) consists of four identically instrumented spin-stabilized observatories that function as a constellation to study magnetic reconnection in space. The need to maintain sufficiently accurate spatial and temporal formation resolution of the observatories must be balanced against the logistical constraints of executing overly-frequent maneuvers on a small fleet of spacecraft. These two considerations make for an extremely challenging maneuver design problem. This paper focuses on the design elements of a 6-DOF spacecraft attitude control and maneuvering system capable of delivering the high-precision adjustments required by the constellation designers---specifically, the design, implementation, and on-orbit performance of the closed-loop formation-class maneuvers that include initialization, maintenance, and re-sizing. The maneuvering control system flown on MMS utilizes a micro-gravity resolution accelerometer sampled at a high rate in order to achieve closed-loop velocity tracking of an inertial target with arc-minute directional and millimeter-per-second magnitude accuracy. This paper summarizes the techniques used for correcting bias drift, sensor-head offsets, and centripetal aliasing in the acceleration measurements. It also discusses the on-board pre-maneuver calibration and compensation algorithms as well as the implementation of the post-maneuver attitude adjustments.

  12. Effect of a hybrid maneuver in treating posterior canal benign paroxysmal positional vertigo.

    Science.gov (United States)

    Badawy, Wanees M A; Gad El-Mawla, Ebtessam K; Chedid, Ahmed E F; Mustafa, Ahmed H A

    2015-02-01

    Benign paroxysmal positional vertigo (BPPV) is the most common disorder of the vestibular system of the inner ear, which is a vital part of maintaining balance. Although the efficacy of the Epley maneuver-also known as the canalith repositioning maneuver (CRM)-is well established, data comparing CRM versus a hybrid treatment are lacking. The purpose of this study was to determine the effect of a hybrid treatment, the Gans repositioning maneuver (GRM) either with or without postmaneuver restrictions, compared with CRM on treatment of posterior canal BPPV (PC-BPPV). Study design was a randomized controlled trial. A total of 45 patients (30 males and 15 females) with unilateral PC-BPPV were randomly allocated to one of three equal groups on the basis of the date of the first visit with matched assignment for gender: a GRMR group (GRM with postmaneuver restrictions), a GRM group, and a CRM group. Patients received weekly administration of the maneuver until resolution of symptoms. The Dix-Hallpike test was performed before treatment at every appointment, and finally after 1 mo from the last maneuver. Nystagmus duration and vertigo intensity were recorded. The supine roll test was performed in case the Dix-Hallpike test was negative to test otoconial migration. Data were analyzed with repeated-measures analysis of variance, paired t-tests with a Bonferroni correction, and the Spearman rank correlation coefficient. All patients showed improvement within the groups, and PC-BPPV symptoms were resolved by an average of 2, 1.7, and 1.6 maneuvers for GRMR, GRM, and CRM, respectively, with no statistical differences among the three groups (p > 0.05). Only two patients had recurrence, and one patient had horizontal BPPV at 1 mo follow-up. We demonstrated that the GRM as a new treatment is effective in treating PC-BPPV with no benefits to postmaneuver restrictions. American Academy of Audiology.

  13. Nonlinear gain of a millimetre wave antenna array mounted on a re-entry vehicle

    International Nuclear Information System (INIS)

    Sharma, Ashok Kumar; Kumar, Ashok

    2007-01-01

    A millimetre wave antenna array, mounted on a space vehicle re-entering the Earth's atmosphere, encounters a high density plasma around it. At high antenna power, the millimetre wave field heats the electrons nonuniformly. The electron temperature, T e , follows the antenna pattern, being maximum along the direction of the principal maximum (z-axis) and falling off rapidly across it. The ambipolar plasma diffusion under the pressure gradient force creates a refractive index profile with maximum on the z-axis, leading to self-convergence of the millimetre wave and enhancement in the effective gain of the antenna

  14. Space Objects Maneuvering Detection and Prediction via Inverse Reinforcement Learning

    Science.gov (United States)

    Linares, R.; Furfaro, R.

    This paper determines the behavior of Space Objects (SOs) using inverse Reinforcement Learning (RL) to estimate the reward function that each SO is using for control. The approach discussed in this work can be used to analyze maneuvering of SOs from observational data. The inverse RL problem is solved using the Feature Matching approach. This approach determines the optimal reward function that a SO is using while maneuvering by assuming that the observed trajectories are optimal with respect to the SO's own reward function. This paper uses estimated orbital elements data to determine the behavior of SOs in a data-driven fashion.

  15. The effects of bedrest on crew performance during simulated shuttle reentry. Volume 2: Control task performance

    Science.gov (United States)

    Jex, H. R.; Peters, R. A.; Dimarco, R. J.; Allen, R. W.

    1974-01-01

    A simplified space shuttle reentry simulation performed on the NASA Ames Research Center Centrifuge is described. Anticipating potentially deleterious effects of physiological deconditioning from orbital living (simulated here by 10 days of enforced bedrest) upon a shuttle pilot's ability to manually control his aircraft (should that be necessary in an emergency) a comprehensive battery of measurements was made roughly every 1/2 minute on eight military pilot subjects, over two 20-minute reentry Gz vs. time profiles, one peaking at 2 Gz and the other at 3 Gz. Alternate runs were made without and with g-suits to test the help or interference offered by such protective devices to manual control performance. A very demanding two-axis control task was employed, with a subcritical instability in the pitch axis to force a high attentional demand and a severe loss-of-control penalty. The results show that pilots experienced in high Gz flying can easily handle the shuttle manual control task during 2 Gz or 3 Gz reentry profiles, provided the degree of physiological deconditioning is no more than induced by these 10 days of enforced bedrest.

  16. 14 CFR 431.45 - Mishap investigation plan and emergency response plan.

    Science.gov (United States)

    2010-01-01

    ... actual location of launch and reentry or other landing on Earth; (iv) Identification of the vehicle; (v... local officials in the event of an off-site or unplanned landing so that vehicle recovery can be... dissemination of up to date information to the public, and for doing so in advance of reentry or other landing...

  17. 14 CFR 431.23 - Policy review.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Policy review. 431.23 Section 431.23... TRANSPORTATION LICENSING LAUNCH AND REENTRY OF A REUSABLE LAUNCH VEHICLE (RLV) Policy Review and Approval for Launch and Reentry of a Reusable Launch Vehicle § 431.23 Policy review. (a) The FAA reviews an RLV...

  18. Thermal Response of Whipox-Type All-Oxide Ceramic Matrix Composites during Reentry Simulation in the Dlr-Lbk Arc-Heated Facility

    Science.gov (United States)

    Mechnich, P.; Braue, W.; Schneider, H.; Koch, U.; Esser, B.; Gülhan, A.

    2005-02-01

    All-oxide ceramic matrix composites (CMCs) such as WHIPOXTM (wound highly porous oxide) exhibit excellent damage tolerance and thermal stability up to 1400°C. Due to their low density and thermal conductivity these new ceramic materials are considered promising candidates for thermal protection systems (TPS) of spacecrafts. The performance of WHIPOX-type CMCs was evaluated during reentry simulations in the L2K leg of the arc-heated LBK facility of DLR, Cologne. The application of reaction-bonded alumina (RBAO) coatings provides significant CMC surface protection and decreased gas permeability, which are key issues for reentry applications. Since emittance and catalycity of the RBAO-coatings limit the performance of CMCs in a reentry environment, binary SiC/RBAO coatings providing higher emittance and/or lower catalycity proved to be a promising approach.

  19. Cases requiring increased number of repositioning maneuvers in benign paroxysmal positional vertigo

    OpenAIRE

    Korkmaz, Mukadder; Korkmaz, Hakan

    2016-01-01

    ABSTRACT INTRODUCTION: Benign paroxysmal positional vertigo (BPPV) is a clinical syndrome that is proposed to be caused by dislocated utricular debris into semicircular canals. Although the majority of patients are treated by one or two repositioning maneuvers, some of the patients need repeated maneuvers for relief. OBJECTIVE: The goal of this study was to investigate the factors associated with patients with benign paroxysmal positional vertigo who required multiple repositioning proced...

  20. Decisive Army Strategic and Expeditionary Maneuver

    Science.gov (United States)

    2015-05-01

    emerging changes will impact strategic maneuver by 2025. For example, a rapid transition is occurring in the commercial air cargo market where 777...more readily available in the international defense market and in the inventories of potential adversaries. In short, the study team believes HPMs... Cisco Visual Networking Index (VNI), available at: http://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index- vni

  1. Lightweight Ultrahigh Temperature CMC-Encased C/C Structure for Reentry and Hypersonic Applications, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The reentry spacecraft and hypersonic cruisers of the future will require advanced lightweight thermal protection systems that can provide the dual functionality of...

  2. Hypersonic Cruise and Re-Entry Radio Frequency Blackout Mitigation: Alleviating the Communications Blackout Problem

    Science.gov (United States)

    Manning, Robert M.

    2017-01-01

    The work presented here will be a review of a NASA effort to provide a method to transmit and receive RF communications and telemetry through a re-entry plasma thus alleviating the classical RF blackout phenomenon.

  3. Exploring Efficacy in Negotiating Support: Women Re-Entry Students in Higher Education

    Science.gov (United States)

    Filipponi-Berardinelli, Josephine Oriana

    2013-01-01

    The existing literature on women re-entry students reveals that women students concurrently struggle with family, work, and sometimes health issues. Women students often do not receive adequate support from their partners or from other sources in helping manage the multiple roles that compete for their time, and often face constraints that affect…

  4. A Novel Device for True Lumen Re-Entry After Subintimal Recanalization of Superficial Femoral Arteries: First-in-Man Experience and Technical Description

    International Nuclear Information System (INIS)

    Airoldi, Flavio; Faglia, Ezio; Losa, Sergio; Tavano, Davide; Latib, Azeem; Mantero, Manuela; Lanza, Gaetano; Clerici, Giacomo

    2011-01-01

    Subintimal angioplasty (SAP) is frequently performed for the treatment of critical limb ischemia (CLI) and has been recognized as an effective technique for these patients. Nevertheless, this approach is limited by the lack of controlled re-entry into the true lumen of the target vessel. We describe a novel device for true lumen re-entry after subintimal recanalization of superficial femoral arteries (SFA). We report our experience with six patients treated between April 2009 and January 2010 with a novel system designed to facilitate true lumen re-entry. The device was advanced by ipsilateral antegrade approach through a 6-French sheath. Successful reaccess into the true lumen was obtained in five of six patients without complications. The patient in whom the reaccess to the true lumen was not possible underwent successful bypass surgery. At 30 days follow-up, the SFA was patent in all patients according to echo-Doppler examination. Our preliminary experience indicates that this novel re-entry device increases the success rate of percutaneous revascularization of chronically occluded SFA.

  5. High-Glass-Transition-Temperature Polyimides Developed for Reusable Launch Vehicle Applications

    Science.gov (United States)

    Chuang, Kathy; Ardent, Cory P.

    2002-01-01

    Polyimide composites have been traditionally used for high-temperature applications in aircraft engines at temperatures up to 550 F (288 C) for thousands of hours. However, as NASA shifts its focus toward the development of advanced reusable launch vehicles, there is an urgent need for lightweight polymer composites that can sustain 600 to 800 F (315 to 427 C) for short excursions (hundreds of hours). To meet critical vehicle weight targets, it is essential that one use lightweight, high-temperature polymer matrix composites in propulsion components such as turbopump housings, ducts, engine supports, and struts. Composite materials in reusable launch vehicle components will heat quickly during launch and reentry. Conventional composites, consisting of layers of fabric or fiber-reinforced lamina, would either blister or encounter catastrophic delamination under high heating rates above 300 C. This blistering and delamination are the result of a sudden volume expansion within the composite due to the release of absorbed moisture and gases generated by the degradation of the polymer matrix. Researchers at the NASA Glenn Research Center and the Boeing Company (Long Beach, CA) recently demonstrated a successful approach for preventing this delamination--the use of three-dimensional stitched composites fabricated by resin infusion.

  6. A general method for closed-loop inverse simulation of helicopter maneuver flight

    OpenAIRE

    Wei WU

    2017-01-01

    Maneuverability is a key factor to determine whether a helicopter could finish certain flight missions successfully or not. Inverse simulation is commonly used to calculate the pilot controls of a helicopter to complete a certain kind of maneuver flight and to assess its maneuverability. A general method for inverse simulation of maneuver flight for helicopters with the flight control system online is developed in this paper. A general mathematical describing function is established to provid...

  7. Tracking Maneuvering Group Target with Extension Predicted and Best Model Augmentation Method Adapted

    Directory of Open Access Journals (Sweden)

    Linhai Gan

    2017-01-01

    Full Text Available The random matrix (RM method is widely applied for group target tracking. The assumption that the group extension keeps invariant in conventional RM method is not yet valid, as the orientation of the group varies rapidly while it is maneuvering; thus, a new approach with group extension predicted is derived here. To match the group maneuvering, a best model augmentation (BMA method is introduced. The existing BMA method uses a fixed basic model set, which may lead to a poor performance when it could not ensure basic coverage of true motion modes. Here, a maneuvering group target tracking algorithm is proposed, where the group extension prediction and the BMA adaption are exploited. The performance of the proposed algorithm will be illustrated by simulation.

  8. Capturing and analyzing wheelchair maneuvering patterns with mobile cloud computing.

    Science.gov (United States)

    Fu, Jicheng; Hao, Wei; White, Travis; Yan, Yuqing; Jones, Maria; Jan, Yih-Kuen

    2013-01-01

    Power wheelchairs have been widely used to provide independent mobility to people with disabilities. Despite great advancements in power wheelchair technology, research shows that wheelchair related accidents occur frequently. To ensure safe maneuverability, capturing wheelchair maneuvering patterns is fundamental to enable other research, such as safe robotic assistance for wheelchair users. In this study, we propose to record, store, and analyze wheelchair maneuvering data by means of mobile cloud computing. Specifically, the accelerometer and gyroscope sensors in smart phones are used to record wheelchair maneuvering data in real-time. Then, the recorded data are periodically transmitted to the cloud for storage and analysis. The analyzed results are then made available to various types of users, such as mobile phone users, traditional desktop users, etc. The combination of mobile computing and cloud computing leverages the advantages of both techniques and extends the smart phone's capabilities of computing and data storage via the Internet. We performed a case study to implement the mobile cloud computing framework using Android smart phones and Google App Engine, a popular cloud computing platform. Experimental results demonstrated the feasibility of the proposed mobile cloud computing framework.

  9. High- and Low-Order Overtaking-Ability Affordances: Drivers Rely on the Maximum Velocity and Acceleration of Their Cars to Perform Overtaking Maneuvers.

    Science.gov (United States)

    Basilio, Numa; Morice, Antoine H P; Marti, Geoffrey; Montagne, Gilles

    2015-08-01

    The aim of this study was to answer the question, Do drivers take into account the action boundaries of their car when overtaking? The Morice et al. affordance-based approach to visually guided overtaking suggests that the "overtake-ability" affordance can be formalized as the ratio of the "minimum satisfying velocity" (MSV) of the maneuver to the maximum velocity (V(max)) of the driven car. In this definition, however, the maximum acceleration (A(max)) of the vehicle is ignored. We hypothesize that drivers may be sensitive to an affordance redefined with the ratio of the "minimum satisfying acceleration" (MSA) to the A(max) of the car. Two groups of nine drivers drove cars differing in their A(max). They were instructed to attempt overtaking maneuvers in 25 situations resulting from the combination of five MSA and five MSV values. When overtaking frequency was expressed as a function of MSV and MSA, maneuvers were found to be initiated differently for the two groups. However, when expressed as a function of MSV/V(max) and MSA/A(max), overtaking frequency was quite similar for both groups. Finally, a multiple regression coefficient analysis demonstrated that overtaking decisions are fully explained by a composite variable comprising MSA/A(max) and the time required to reach MSV. Drivers reliably decide whether overtaking is safe (or not) by using low- and high-order variables taking into account their car's maximum velocity and acceleration, respectively, as predicted by "affordance-based control" theory. Potential applications include the design of overtaking assistance, which should exploit the MSA/A(max) variables in order to suggest perceptually relevant overtaking solutions. © 2015, Human Factors and Ergonomics Society.

  10. Vehicle and Mission Design Options for the Human Exploration of Mars/Phobos Using "Bimodal" NTR and LANTR Propulsion

    Science.gov (United States)

    Borowski, Stanley K.; Dudzinski, Leonard A.; McGuire, Melissa L.

    2002-12-01

    available in Mars orbit grows to 150 kWe compared to 30 kWe for the DRM. Propulsive capture also eliminates the complex, higher risk aerobraking and capture maneuver which is replaced by a simpler reentry using a standardized, lower mass "aerodescent" shell. The attractiveness of the "all BNTR" option is further increased by the substitution of the lightweight, inflatable "TransHab" module in place of the heavier, hard-shell hab module. Use of TransHab introduces the potential for propulsive recovery and reuse of the BNTR / Earth return vehicle (ERV). It also allows the crew to travel to and from Mars on the same BNTR transfer vehicle thereby cutting the duration of the ERV mission in half--from approximately 4.7 to 2.5 years. Finally, for difficult Mars options, such as Phobos rendezvous and sample return missions, volume (not mass) constraints limit the performance of the "all LH2" BNTR stage. The use of "LOX-augmented" NTR (LANTR) engines, operating at a modest oxygen-to-hydrogen mixture ratio (MR) of 0.5, helps to increase "bulk" propellant density and total thrust during the TMI burn. On all subsequent burns, the bimodal LANTR engines operate on LH2 only (MR=0) to maximize vehicle performance while staying within the mass limits of two Magnum launches.

  11. Characteristic Analysis of Mixed Traffic Flow of Regular and Autonomous Vehicles Using Cellular Automata

    Directory of Open Access Journals (Sweden)

    Yangzexi Liu

    2017-01-01

    Full Text Available The technology of autonomous vehicles is expected to revolutionize the operation of road transport systems. The penetration rate of autonomous vehicles will be low at the early stage of their deployment. It is a challenge to explore the effects of autonomous vehicles and their penetration on heterogeneous traffic flow dynamics. This paper aims to investigate this issue. An improved cellular automaton was employed as the modeling platform for our study. In particular, two sets of rules for lane changing were designed to address mild and aggressive lane changing behavior. With extensive simulation studies, we obtained some promising results. First, the introduction of autonomous vehicles to road traffic could considerably improve traffic flow, particularly the road capacity and free-flow speed. And the level of improvement increases with the penetration rate. Second, the lane-changing frequency between neighboring lanes evolves with traffic density along a fundamental-diagram-like curve. Third, the impacts of autonomous vehicles on the collective traffic flow characteristics are mainly related to their smart maneuvers in lane changing and car following, and it seems that the car-following impact is more pronounced.

  12. Statistical study of overvoltages by maneuvering in switches in high voltage using EMTP-RV

    International Nuclear Information System (INIS)

    Dominguez Herrera, Diego Armando

    2013-01-01

    The transient overvoltages produced by maneuvering of switches are studied in a statistical way and through a variation the sequential closing times of switches in networks larger than 230 kV. This study is performed according to time delays and typical deviation ranges, using the tool EMTP- RV (ElectroMagnetic Trasient Program Restructured Version). A conceptual framework related with the electromagnetic transients by maneuver is developed in triphasic switches installed in nominal voltages higher than 230 kV. The methodology established for the execution of statistical studies of overvoltages by switch maneuver is reviewed and evaluated by simulating two fictitious cases in EMTP-RV [es

  13. Analysis of LFM-waveform Libraries for Cognitive Tracking Maneuvering Targets

    Directory of Open Access Journals (Sweden)

    Wang Hongyan

    2016-01-01

    Full Text Available Based on the idea of the waveform agility in cognitive radars,the waveform libraries for maneuvering target tracking are discussed. LFM-waveform libraries are designed according to different combinations of chirp parameters and FrFT rotation angles. By applying the interact multiple model (IMM algorithm in tracking maneuvering targets, transmitted waveform is called real time from the LFM-waveform libraries. The waveforms are selected from the library according to the criterion of maximum mutual information between the current state of knowledge of the model and the measurement. Simulation results show that waveform library containing certain amount LFM-waveforms can improve the performance of cognitive tracking radar.

  14. ESBWR power maneuvering via feedwater temperature control

    International Nuclear Information System (INIS)

    Saha, P.; Marquino, W.; Tucker, L. J.

    2008-01-01

    The ESBWR is a Generation III+ Boiling Water Reactor (BWR) driven by natural circulation. For a given geometry/hardware, system pressure, downcomer water level and feedwater temperature, the core flow rate in the ESBWR is only a function of reactor power, controlled through the control blade movement. In order to provide operational flexibility, another method of core-wide or global power maneuvering via feedwater temperature control has been developed. This is independent of power maneuvering via control blade movement, and it lowers the linear heat generation rate (LHGR) changes near the tip of control blades, which improves fuel reliability. All required stability, anticipated operational occurrences (AOOs), infrequent events, special events including anticipated transients without scram (ATWS), and loss-of-coolant accident (LOCA) analyses have been performed for the 4500 MWt ESBWR. Based on the results of these analyses at 'high', nominal and 'low' feedwater temperatures, a safe Power - Feedwater Temperature operating domain has been developed. This paper summarizes the results of these analyses and presents the ESBWR Power - Feedwater Temperature operating domain or map. (authors)

  15. State Estimation for Landing Maneuver on High Performance Aircraft

    Science.gov (United States)

    Suresh, P. S.; Sura, Niranjan K.; Shankar, K.

    2018-01-01

    State estimation methods are popular means for validating aerodynamic database on aircraft flight maneuver performance characteristics. In this work, the state estimation method during landing maneuver is explored for the first of its kind, using upper diagonal adaptive extended Kalman filter (UD-AEKF) with fuzzy based adaptive tunning of process noise matrix. The mathematical model for symmetrical landing maneuver consists of non-linear flight mechanics equation representing Aircraft longitudinal dynamics. The UD-AEKF algorithm is implemented in MATLAB environment and the states with bias is considered to be the initial conditions just prior to the flare. The measurement data is obtained from a non-linear 6 DOF pilot in loop simulation using FORTRAN. These simulated measurement data is additively mixed with process and measurement noises, which are used as an input for UD-AEKF. Then, the governing states that dictate the landing loads at the instant of touch down are compared. The method is verified using flight data wherein, the vertical acceleration at the aircraft center of gravity (CG) is compared. Two possible outcome of purely relying on the aircraft measured data is highlighted. It is observed that, with the implementation of adaptive fuzzy logic based extended Kalman filter tuned to adapt for aircraft landing dynamics, the methodology improves the data quality of the states that are sourced from noisy measurements.

  16. Computing and Visualizing Reachable Volumes for Maneuvering Satellites

    Science.gov (United States)

    Jiang, M.; de Vries, W.; Pertica, A.; Olivier, S.

    2011-09-01

    Detecting and predicting maneuvering satellites is an important problem for Space Situational Awareness. The spatial envelope of all possible locations within reach of such a maneuvering satellite is known as the Reachable Volume (RV). As soon as custody of a satellite is lost, calculating the RV and its subsequent time evolution is a critical component in the rapid recovery of the satellite. In this paper, we present a Monte Carlo approach to computing the RV for a given object. Essentially, our approach samples all possible trajectories by randomizing thrust-vectors, thrust magnitudes and time of burn. At any given instance, the distribution of the "point-cloud" of the virtual particles defines the RV. For short orbital time-scales, the temporal evolution of the point-cloud can result in complex, multi-reentrant manifolds. Visualization plays an important role in gaining insight and understanding into this complex and evolving manifold. In the second part of this paper, we focus on how to effectively visualize the large number of virtual trajectories and the computed RV. We present a real-time out-of-core rendering technique for visualizing the large number of virtual trajectories. We also examine different techniques for visualizing the computed volume of probability density distribution, including volume slicing, convex hull and isosurfacing. We compare and contrast these techniques in terms of computational cost and visualization effectiveness, and describe the main implementation issues encountered during our development process. Finally, we will present some of the results from our end-to-end system for computing and visualizing RVs using examples of maneuvering satellites.

  17. Computing and Visualizing Reachable Volumes for Maneuvering Satellites

    International Nuclear Information System (INIS)

    Jiang, M.; de Vries, W.H.; Pertica, A.J.; Olivier, S.S.

    2011-01-01

    Detecting and predicting maneuvering satellites is an important problem for Space Situational Awareness. The spatial envelope of all possible locations within reach of such a maneuvering satellite is known as the Reachable Volume (RV). As soon as custody of a satellite is lost, calculating the RV and its subsequent time evolution is a critical component in the rapid recovery of the satellite. In this paper, we present a Monte Carlo approach to computing the RV for a given object. Essentially, our approach samples all possible trajectories by randomizing thrust-vectors, thrust magnitudes and time of burn. At any given instance, the distribution of the 'point-cloud' of the virtual particles defines the RV. For short orbital time-scales, the temporal evolution of the point-cloud can result in complex, multi-reentrant manifolds. Visualization plays an important role in gaining insight and understanding into this complex and evolving manifold. In the second part of this paper, we focus on how to effectively visualize the large number of virtual trajectories and the computed RV. We present a real-time out-of-core rendering technique for visualizing the large number of virtual trajectories. We also examine different techniques for visualizing the computed volume of probability density distribution, including volume slicing, convex hull and isosurfacing. We compare and contrast these techniques in terms of computational cost and visualization effectiveness, and describe the main implementation issues encountered during our development process. Finally, we will present some of the results from our end-to-end system for computing and visualizing RVs using examples of maneuvering satellites.

  18. Maintenance Maneuver Automation for an Adapted Cylindrical Shape TEC

    Directory of Open Access Journals (Sweden)

    Rafael Morales

    2016-09-01

    Full Text Available Several manufacturers have developed devices with which to harness tidal/current power in areas where the depth does not exceed 40 m. These are the so-called first generation Tidal Energy Converters (TEC, and they are usually fixed to the seabed by gravity. When carrying out maintenance tasks on these devices it is, therefore, necessary to remove the nacelles from their bases and raise them to the surface of the sea. They must subsequently be placed back on their bases. These tasks require special high performance ships, signifying high maintenance costs. The automation of emersion and immersion maneuvers will undoubtedly lead to lower costs, given that ships with less demanding requirements will be required for the aforementioned maintenance tasks. This research presents a simple two degrees of freedom dynamic model that can be used to control a first generation TEC that has been conceived of to harness energy from marine currents. The control of the system is carried out by means of a water ballast system located inside the nacelle of the main power unit and is used as an actuator to produce buoying vertical forces. A nonlinear control law based on a decoupling term for the closed loop depth and/or orientation control is also proposed in order to ensure adequate behavior when the TEC performs emersion and immersion maneuvers with only hydrostatic buoyancy forces. The control scheme is composed of an inner loop consisting of a linear and decoupled input/output relationship and the vector of friction and compressibility terms and an outer loop that operates with the tracking error vector in order to ensure the asymptotically exponential stability of the TEC posture. Finally, the effectiveness of the dynamic model and the controller approach is demonstrated by means of numerical simulations when the TEC is carrying out an emersion maneuver for the development of general maintenance tasks and an emersion maneuver for blade-cleaning maintenance

  19. Effects of Personality Correlates on Achievement Motivation in Traditional and Reentry College Women.

    Science.gov (United States)

    Johnson, Carolyn H.

    There is little literature comparing personality differences between traditional (under age 25) and reentry women students (aged 25 and older). The purpose of the present study is to examine these differences. A background questionnaire and five additional scales: (1) the Work and Family Orientation Questionnaire (WOFO-3); (2) the…

  20. Importance of back blow maneuvers in a 6 month old patient with sudden upper airway obstruction

    Directory of Open Access Journals (Sweden)

    Pinar Gencpinar

    2015-12-01

    Full Text Available Foreign body aspiration in children under four years old is one of the most frequently observed reasons for accident related deaths. It is more common in this age group due to inadequate swallowing functions and exploration of objects with the mouth. The most frequently encountered foreign bodies are food and toy parts. Life threatening complete laryngeal obstruction is rarely observed. Dyspnea, hypersalivation, cough and cyanosis can be seen. The basic and life-saving treatment approach is complete removal of foreign body maneuvers in the sudden onset of total obstruction. Here we report a six-month old male, who ingested a foreign body and was treated with back blow maneuvers successfully. In this case we emphasized the importance of back blow maneuvers. Keywords: Upper airway obstruction, Child, Back blows maneuvers

  1. Integrated Photonic Engine for Miniaturized Fiber Optics Sensor Interrogators, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Structural health monitoring is critical capability for NASA, and it is required for launch vehicles, space vehicles, re-entry vehicles, vehicle pressure systems,...

  2. Novel Fractional Order Calculus Extended PN for Maneuvering Targets

    Directory of Open Access Journals (Sweden)

    Jikun Ye

    2017-01-01

    Full Text Available Based on the theory of fractional order calculus (FOC, a novel extended proportional guidance (EPN law for intercepting the maneuvering target is proposed. In the first part, considering the memory function and filter characteristic of FOC, the novel extended PN guidance algorithm is developed based on the conventional PN after introducing the properties and operation rules of FOC. Further, with the help of FOC theory, the average load and ballistics characteristics of proposed guidance law are analyzed. Then, using the small offset kinematic model, the robustness of the new guidance law against autopilot parameters is studied theoretically by analyzing the sensitivity of the closed loop guidance system. At last, representative numerical results show that the designed guidance law obtains a better performance than the traditional PN for maneuvering target.

  3. Analysis of risk factors influencing the outcome of the Epley maneuver.

    Science.gov (United States)

    Domínguez-Durán, E; Domènech-Vadillo, E; Álvarez-Morujo de Sande, M G; González-Aguado, R; Guerra-Jiménez, G; Ramos-Macías, Á; Morales-Angulo, C; Martín-Mateos, A J; Figuerola-Massana, E; Galera-Ruiz, H

    2017-10-01

    Benign paroxysmal positional vertigo (BPPV) is the most frequent type of vertigo. The treatment of canalithiasis of the posterior semicircular canal consists in performing a particle-repositioning maneuver, such as the Epley maneuver (EM). However, the EM is not effective in all cases. The objective of this study is to identify risk factors, which predict the EM failure, among the clinical variables recorded in anamnesis and patient examination. This is an observational prospective multicentric study. All patients presenting with BPPV were recruited and applied the EM and appointed for a follow-up visit 7 days later. The following variables were recorded: sex, age, arterial hypertension, diabetes, hyperlipidemia, smoking habit, alcohol consumption, migraine, osteoporosis, diseases of the inner ear, previous ipsilateral BPPV, previous traumatic brain injury, previous sudden head deceleration, time of evolution, sulpiride or betahistine treatment, experienced symptoms, outcome of the Halmagyi maneuver, laterality, cephalic hyperextension of the neck, intensity of nystagmus, intensity of vertigo, duration of nystagmus, occurrence of orthotropic nystagmus, symptoms immediately after the EM, postural restrictions, and symptoms 7 days after the EM. Significant differences in the rate of loss of nystagmus were found for six variables: hyperlipidemia, previous ipsilateral BPPV, intensity of nystagmus, duration of nystagmus, post-maneuver sweating, and subjective status. The most useful significant variables in the clinical practice to predict the success of the EM are previous BPPV and intensity of nystagmus. In the other significant variables, no physiopathological hypothesis can be formulated or differences between groups are too small.

  4. Base flow investigation of the Apollo AS-202 Command Module

    Science.gov (United States)

    Walpot, Louis M. G.; Wright, Michael J.; Noeding, Peter; Schrijer, Ferry

    2012-01-01

    A major contributor to the overall vehicle mass of re-entry vehicles is the afterbody thermal protection system. This is due to the large acreage (equal or bigger than that of the forebody) to be protected. The present predictive capabilities for base flows are comparatively lower than those for windward flowfields and offer therefore a substantial potential for improving the design of future re-entry vehicles. To that end, it is essential to address the accuracy of high fidelity CFD tools exercised in the US and EU, which motivates a thorough investigation of the present status of hypersonic flight afterbody heating. This paper addresses the predictive capabilities of afterbody flow fields of re-entry vehicles investigated in the frame of the NATO/RTO-RTG-043 task group. First, the verification of base flow topologies on the basis of available wind-tunnel results performed under controlled supersonic conditions (i.e. cold flows devoid of reactive effects) is performed. Such tests address the detailed characterization of the base flow with particular emphasis on separation/reattachment and their relation to Mach number effects. The tests have been performed on an Apollo-like re-entry capsule configuration. Second, the tools validated in the frame of the previous effort are exercised and appraised against flight-test data collected during the Apollo AS-202 re-entry.

  5. New Electro-Thermal Battery Pack Model of an Electric Vehicle

    Directory of Open Access Journals (Sweden)

    Muhammed Alhanouti

    2016-07-01

    Full Text Available Since the evolution of the electric and hybrid vehicle, the analysis of batteries’ characteristics and influence on driving range has become essential. This fact advocates the necessity of accurate simulation modeling for batteries. Different models for the Li-ion battery cell are reviewed in this paper and a group of the highly dynamic models is selected for comparison. A new open circuit voltage (OCV model is proposed. The new model can simulate the OCV curves of lithium iron magnesium phosphate (LiFeMgPO4 battery type at different temperatures. It also considers both charging and discharging cases. The most remarkable features from different models, in addition to the proposed OCV model, are integrated in a single hybrid electrical model. A lumped thermal model is implemented to simulate the temperature development in the battery cell. The synthesized electro-thermal battery cell model is extended to model a battery pack of an actual electric vehicle. Experimental tests on the battery, as well as drive tests on the vehicle are performed. The proposed model demonstrates a higher modeling accuracy, for the battery pack voltage, than the constituent models under extreme maneuver drive tests.

  6. Lunar Gravity-Assist Maneuver As a Way of Reducing the Orbit Amplitude in the Spectrum-Röntgen-Gamma Project

    Science.gov (United States)

    Kovalenko, I. D.; Eismont, N. A.

    2018-04-01

    Spectrum-Röntgen-Gamma (SRG) is a space observatory designed to observe astrophysical objects in the X-ray range of the electromagnetic spectrum. SRG is planned to be launched in 2019 by a Proton-M launch vehicle with a DM3 upper stage. The spacecraft will be delivered to an orbit around the Sun-Earth collinear libration point L2 located at a distance of 1.5 million km from the Earth. Although the SRG launch scheme has already been determined at present, in this paper we consider an alternative spacecraft transfer scenario using a lunar gravity-assist maneuver. The proposed scenario allows a oneimpulse transfer from a low Earth orbit to a small-amplitude orbit around the libration point to be performed while fulfilling the technical constraints and the scientific requirements of the mission.

  7. An Entry Flight Controls Analysis for a Reusable Launch Vehicle

    Science.gov (United States)

    Calhoun, Philip

    2000-01-01

    The NASA Langley Research Center has been performing studies to address the feasibility of various single-stage to orbit concepts for use by NASA and the commercial launch industry to provide a lower cost access to space. Some work on the conceptual design of a typical lifting body concept vehicle, designated VentureStar(sup TM) has been conducted in cooperation with the Lockheed Martin Skunk Works. This paper will address the results of a preliminary flight controls assessment of this vehicle concept during the atmospheric entry phase of flight. The work includes control analysis from hypersonic flight at the atmospheric entry through supersonic speeds to final approach and landing at subsonic conditions. The requirements of the flight control effectors are determined over the full range of entry vehicle Mach number conditions. The analysis was performed for a typical maximum crossrange entry trajectory utilizing angle of attack to limit entry heating and providing for energy management, and bank angle to modulation of the lift vector to provide downrange and crossrange capability to fly the vehicle to a specified landing site. Sensitivity of the vehicle open and closed loop characteristics to CG location, control surface mixing strategy and wind gusts are included in the results. An alternative control surface mixing strategy utilizing a reverse aileron technique demonstrated a significant reduction in RCS torque and fuel required to perform bank maneuvers during entry. The results of the control analysis revealed challenges for an early vehicle configuration in the areas of hypersonic pitch trim and subsonic longitudinal controllability.

  8. Low Speed Longitudinal Control Algorithms for Automated Vehicles in Simulation and Real Platforms

    Directory of Open Access Journals (Sweden)

    Mauricio Marcano

    2018-01-01

    Full Text Available Advanced Driver Assistance Systems (ADAS acting over throttle and brake are already available in level 2 automated vehicles. In order to increase the level of automation new systems need to be tested in an extensive set of complex scenarios, ensuring safety under all circumstances. Validation of these systems using real vehicles presents important drawbacks: the time needed to drive millions of kilometers, the risk associated with some situations, and the high cost involved. Simulation platforms emerge as a feasible solution. Therefore, robust and reliable virtual environments to test automated driving maneuvers and control techniques are needed. In that sense, this paper presents a use case where three longitudinal low speed control techniques are designed, tuned, and validated using an in-house simulation framework and later applied in a real vehicle. Control algorithms include a classical PID, an adaptive network fuzzy inference system (ANFIS, and a Model Predictive Control (MPC. The simulated dynamics are calculated using a multibody vehicle model. In addition, longitudinal actuators of a Renault Twizy are characterized through empirical tests. A comparative analysis of results between simulated and real platform shows the effectiveness of the proposed framework for designing and validating longitudinal controllers for real automated vehicles.

  9. NPSAT1: Assessment Of Risk For Human Casualty From Atmospheric Reentry

    Science.gov (United States)

    2016-03-01

    wrapped copper wire, resembling a large solenoid. Between their core and insulations , these wires are approximately 0.370 millimeter in diameter and... insulation is melted. This action would expose the wires to significantly greater stress during atmospheric reentry and would most likely end in their...solid piece of metal to create a hollow void for cables when assembled. Modeling this component requires the operator to reduce the overall structure to

  10. Ground Track Acquisition and Maintenance Maneuver Modeling for Low-Earth Orbit Satellite

    Directory of Open Access Journals (Sweden)

    Byoung-Sun Lee

    1997-12-01

    Full Text Available This paper presents a comprehensive analytical approach for determining key maneuver parameters associated with the acquisition and maintenance of the ground track for a low-earth orbit. A livearized model relating changes in the drift rate of the ground track directly to changes in the orbital semi-major axis is also developed. The effect of terrestrial atmospheric drag on the semi-major axis is also explored, being quantified through an analytical expression for the decay rate as a function of density. The non-singular Lagrange planetary equations, further simplified for nearly circular orbits, provide the desired relationships between the corrective in-plane impulsive velocity increments and the corresponding effects on the orbit elements. The resulting solution strategy offers excellent insight into the dynamics affecting the timing, magnitude, and frequency of these maneuvers. Simulations are executed for the ground track acquisition and maintenance maneuver as a pre-flight planning and analysis.

  11. Kristeller maneuvers or fundal pressure and maternal/neonatal morbidity: obstetric and judicial literature review.

    Science.gov (United States)

    Malvasi, Antonio; Zaami, Simona; Tinelli, Andrea; Trojano, Giuseppe; Montanari Vergallo, Gianluca; Marinelli, Enrico

    2018-02-21

    A significant amount of data concerning maternal-fetal damage arising from the exertion of Kristeller maneuvers (KMs) or fundal pressure (FP) go unreleased due to medicolegal implications. For this reason, the paper gathers information as to the real magnitude of litigation related to FP-induced damages and injuries. The authors have undertaken a research in order to include general search engines (PubMed-Medline, Cochrane, Embase, Google, GyneWeb) and legal databases (De Jure, Italian database of jurisprudence daily update; Westlaw, Thomson Reuters, American ruling database and Bailii, UK Court Ruling Database). Results confirm said phenomenon to be more wide ranging than it appears through official channels. Several courts of law, both in the United States of America (USA) and in European Union (EU) Member States as well, have ruled against the use of the maneuver itself, assuming a stance conducive to a presumption of guilt against those doctors and healthcare providers who resorted to KMs or FP during deliveries. Given how rife FP is in mainstream obstetric practice, it is as if there were a wide gap between obstetric real-life and what official jurisprudence and healthcare institutions-sanctioned official practices are. The authors think that it would be desirable to draft specifically targeted guidelines or recommendations on maneuvers during vaginal delivery, in which to point out exactly what kinds of maneuvering techniques are to be absolutely banned and what maneuvers are to be allowed, and under what conditions their application can be considered appropriate.

  12. Mueller-Hillis maneuver and angle of progression: Are they correlated?

    Directory of Open Access Journals (Sweden)

    Sofia Mendes

    Full Text Available Summary Objective: Mueller-Hillis maneuver (MHM and angle of progression (AOP measured by transperineal ultrasound have been used to assess fetal head descent during the second stage of labor. We aimed to assess whether AOP correlates with MHM in the second stage of labor. Method: A prospective observational study including women with singleton pregnancy in the second stage of labor was performed. The AOP was measured immediately after the Mueller-Hillis maneuver. A receiver-operating characteristics (ROC curve analysis was performed to determine the best discriminatory AOP cut-off for the identification of a positive MHM. A p-value less than 0.05 was considered statistically significant. Results: One hundred and sixty-six (166 women were enrolled in the study and 81.3% (n=135 had a positive MHM. The median AOP was 143º (106º to 210º. The area under the curve for the prediction of a positive maneuver was 0.619 (p=0.040. Derived from the ROC curve, an AOP of 138.5º had the best diagnostic performance for the identification of a positive MHM (specificity of 65% and a sensitivity of 67%. Conclusion: An AOP of 138º seems to be associated with a positive MHM in the second stage of labor.

  13. Maintaining Aura's Orbit Requirements While Performing Orbit Maintenance Maneuvers Containing an Orbit Normal Delta-V Component

    Science.gov (United States)

    Johnson, Megan R.; Petersen, Jeremy D.

    2014-01-01

    The Earth Observing System (EOS) Afternoon Constellation consists of five member missions (GCOM-W1, Aqua, CALIPSO, CloudSat, and Aura), each of which maintain a frozen, sun-synchronous orbit with a 16-day repeating ground track that follows the Worldwide Reference System-2 (WRS-2). Under nominal science operations for Aura, the propulsion system is oriented such that the resultant thrust vector is aligned 13.493 degrees away from the velocity vector along the yaw axis. When performing orbit maintenance maneuvers, the spacecraft performs a yaw slew to align the thrust vector in the appropriate direction. A new Drag Make Up (DMU) maneuver operations scheme has been implemented for Aura alleviating the need for the 13.493 degree yaw slew. The focus of this investigation is to assess the impact that no-slew DMU maneuver operations will have on Aura's Mean Local Time (MLT) which drives the required along track separation between Aura and the constellation members, as well as Aura's frozen orbit properties, eccentricity and argument of perigee. Seven maneuver strategies were analyzed to determine the best operational approach. A mirror pole strategy, with maneuvers alternating at the North and South poles, was implemented operationally to minimize impact to the MLT. Additional analysis determined that the mirror pole strategy could be further modified to include frozen orbit maneuvers and thus maintain both MLT and the frozen orbit properties under noslew operations.

  14. ESTIMATING THE BENEFIT OF TRMM TROPICAL CYCLONE DATA IN SAVING LIVES

    Science.gov (United States)

    Adler, Robert F.

    2005-01-01

    The Tropical Rainfall Measuring Mission (TRMM) is a joint NASA/JAXA research mission launched in late 1997 to improve our knowledge of tropical rainfall processes and climatology (Kummerow et ai., 2000; Adler et ai., 2003). In addition to being a highly successful research mission, its data are available in real time and operational weather agencies in the U.S. and internationally are using TRMM data and images to monitor and forecast hazardous weather (tropical cyclones, floods, etc.). For example, in 2004 TRMM data were used 669 times for determining tropical cyclone location fixes (National Research Council, 2004). TRMM flies at a relatively low altitude, 400 km, and requires orbit adjustment maneuvers to maintain altitude against the small drag of the atmosphere. There is enough fuel used for these maneuvers remaining on TRMM for the satellite to continue flying until 2011-12. However, most of the remaining fuel may be used to perform a controlled re-entry of the satellite into the Pacific Ocean. The fuel threshold for this operation will be reached in the summer of 2005, although the maneuver would actually occur in late 2006 or 2007. The full science mission would end in 2005 under the controlled re-entry option. This re-entry option is related to the estimated probability of injury (1/5,000) that might occur during an uncontrolled re-entry of the satellite. If the estimated probability of injury exceeds 1/10,000 a satellite is a candidate for a possible controlled re-entry. In the TRMM case the NASA Safety Office examined the related issues and concluded that, although TRMM exceeded the formal threshold, the use of TRMM data in the monitoring and forecasting of hazardous weather gave a public safety benefit that compensated for TRMM slightly exceeding the orbital debris threshold (Martin, 2002). This conclusion was based in part on results of an independent panel during a workshop on benefits of TRMM data in concluded that the benefit of TRMM data in saving

  15. Near Earth Asteroid redirect missions based on gravity assist maneuver

    Science.gov (United States)

    Ledkov, Anton; Shustov, Boris M.; Eismont, Natan; Boyarsky, Michael; Nazirov, Ravil; Fedyaev, Konstantin

    During last years several events attracted world community attention to the hazards of hitting the Earth by sky objects. One of these objects is Apophis asteroid what was expected with nonzero probability to hit the Earth in 2036. Luckily after more precise measurements this event is considered as practically improbable. But the other object has really reached the Earth, entered the atmosphere in the Chelyabinsk area and caused vast damages. After this the hazardous near Earth objects problem received practical confirmation of the necessity to find the methods of its resolution. The methods to prevent collision of the dangerous sky object with the Earth proposed up to now look not practical enough if one mentions such as gravitational tractor or changing the reflectivity of the asteroid surface. Even the method supposing the targeting of the spacecraft to the hazardous object in order to deflect it from initial trajectory by impact does not work because its low mass as compared with the mass of asteroid to be deflected. For example the mass of the Apophis is estimated to be about 40 million tons but the spacecraft which can be launched to intercept the asteroid using contemporary launchers has the mass not more than 5 tons. So the question arises where to find the heavier projectile which is possible to direct to the dangerous object? The answer proposed in our paper is very simple: to search it among small near Earth asteroids. As small ones we suppose those which have the cross section size not more than 12-15 meters and mass not exceeding 1500 -1700 tons. According to contemporary estimates the number of such asteroids is not less than 100000. The other question is how to redirect such asteroid to the dangerous one. In the paper the possibilities are studied to use for that purpose gravity assist maneuvers near Earth. It is shown that even among asteroids included in contemporary catalogue there are the ones which could be directed to the trajectory of the

  16. Launch Vehicle Demonstrator Using Shuttle Assets

    Science.gov (United States)

    Threet, Grady E., Jr.; Creech, Dennis M.; Philips, Alan D.; Water, Eric D.

    2011-01-01

    and test platform for the Orion Program. Critical spacecraft systems, re-entry and recovery systems, and launch abort systems of Orion could also be demonstrated in early test flights of the launch vehicle demo. Furthermore, an early demonstrator of this type would provide a stop-gap for retaining critical human capital and infrastructure while affording the current emerging generation of young engineers opportunity to work with and capture lessons learned from existing STS program offices and personnel, who were integral in the design and development of the Space Shuttle before these resources are no longer available. The objective of this study is to define candidate launch vehicle demonstration concepts that are based on Space Shuttle assets and determine their performance capabilities and how these demonstration vehicles could evolve to a heavy lift capability to low earth orbit.

  17. Identifying tacit strategies in aircraft maneuvers

    Science.gov (United States)

    Lewis, Charles M.; Heidorn, P. B.

    1991-01-01

    Two machine-learning methods are presently used to characterize the avoidance strategies used by skilled pilots in simulated aircraft encounters, and a general framework for the characterization of the strategic components of skilled behavior via qualitative representation of situations and responses is presented. Descriptions of pilot maneuvers that were 'conceptually equivalent' were ascertained by a concept-learning algorithm in conjunction with a classifier system that employed a generic algorithm; satisficing and 'buggy' strategies were thereby revealed.

  18. Who Comes Back? A Longitudinal Analysis of the Reentry Behavior of Exiting Teachers

    Science.gov (United States)

    Grissom, Jason A.; Reininger, Michelle

    2012-01-01

    While a large literature examines the factors that lead teachers to leave teaching, few studies have examined what factors affect teachers' decisions to reenter the profession. Drawing on research on the role of family characteristics in predicting teacher work behavior, we examine predictors of reentry. We employ survival analysis of time to…

  19. Anatomical basis of the liver hanging maneuver.

    Science.gov (United States)

    Trotovsek, Blaz; Belghiti, Jacques; Gadzijev, Eldar M; Ravnik, Dean; Hribernik, Marija

    2005-01-01

    The anterior approach to right hepatectomy using the liver hanging maneuver without liver mobilization claims to be anatomically evaluated. During this procedure a 4 to 6-cm blind dissection between the inferior vena cava and the liver is performed. Short subhepatic veins, entering the inferior vena cava could be torn and a hemorrhage, difficult to control, could occur. On 100 corrosive casts of livers the anterior surface of the inferior vena cava was studied to evaluate the position, diameter and draining area of short subhepatic veins and inferior right hepatic vein. The width of the narrowest point on the planned route of blind dissection was determined. The average value of the narrowest point on the planned route of blind dissection was 8.7+/-2.3mm (range 2-15mm). The ideal angle of dissection being 0 degrees was found in 93% of cases. In 7% we found the angle of 5 degrees toward the right border of inferior vena cava to be the better choice. Our results show that liver hanging maneuver is a safe procedure. With the dissection in the proposed route the risk of disrupting short subhepatic veins is low (7%).

  20. Steering characteristic of an articulated bus under quasi steady maneuvering

    Science.gov (United States)

    Ubaidillah, Setiawan, Budi Agus; Aridharma, Airlangga Putra; Lenggana, Bhre Wangsa; Caesar, Bernardus Placenta Previo

    2018-02-01

    Articulated buses have been being preferred as public transportation modes due to their operational capacity. Therefore, passenger safety must be the priority of this public service vehicle. This research focused on the analytical approach of steering characteristics of an articulated bus when it maneuvered steadily. Such turning condition could be referred as a stability parameter of the bus for preliminary handling assessment. The analytical approach employed kinematics relationship between front and rear bodies as well as steering capabilities. The quasi steady model was developed to determine steering parameters such as turning radius, oversteer, and understeer. The mathematical model was useful for determining both coefficients of understeer and oversteer. The dimension of articulated bus followed a commonly used bus as utilized in Trans Jakarta busses. Based on the simulation, for one minimum center of the body, the turning radius was calculated about 8.8 m and 7.6 m at steady turning speed of 10 km/h. In neutral condition, the minimum road radius should be 6.5 m at 10 km/h and 6.9 m at 40 km/h. For two centers of the body and oversteer condition, the front body has the turning radius of 8.8 m, while, the rear body has the turning radius of 9.8 m at both turning speeds of 40 km/h. The other steering parameters were discussed accordingly.

  1. Flight-Determined Subsonic Longitudinal Stability and Control Derivatives of the F-18 High Angle of Attack Research Vehicle (HARV) with Thrust Vectoring

    Science.gov (United States)

    Iliff, Kenneth W.; Wang, Kon-Sheng Charles

    1997-01-01

    The subsonic longitudinal stability and control derivatives of the F-18 High Angle of Attack Research Vehicle (HARV) are extracted from dynamic flight data using a maximum likelihood parameter identification technique. The technique uses the linearized aircraft equations of motion in their continuous/discrete form and accounts for state and measurement noise as well as thrust-vectoring effects. State noise is used to model the uncommanded forcing function caused by unsteady aerodynamics over the aircraft, particularly at high angles of attack. Thrust vectoring was implemented using electrohydraulically-actuated nozzle postexit vanes and a specialized research flight control system. During maneuvers, a control system feature provided independent aerodynamic control surface inputs and independent thrust-vectoring vane inputs, thereby eliminating correlations between the aircraft states and controls. Substantial variations in control excitation and dynamic response were exhibited for maneuvers conducted at different angles of attack. Opposing vane interactions caused most thrust-vectoring inputs to experience some exhaust plume interference and thus reduced effectiveness. The estimated stability and control derivatives are plotted, and a discussion relates them to predicted values and maneuver quality.

  2. Effect of different body postures on the pressures generated during an L-1 maneuver.

    Science.gov (United States)

    Williams, C A; Lind, A R; Wiley, R L; Douglas, J E; Miller, G

    1988-10-01

    Changes in blood pressure, intrathoracic pressure, heart rate and the electromyographic activity of various muscle groups were determined while nine male subjects performed 15-s L-1 straining maneuvers at four spine-to-thigh angles (70, 84, 94, and 105 degrees) and two seatback angles (30 and 60 degrees). There was no significant difference between the changes in these variables due to the different body positions. At the onset of the L-1, arterial pressure immediately increased to 195 +/- 5 mm Hg, but fell progressively during the next 5 s to 160 +/- 5 mm Hg. It remained constant during the next 5 s of the maneuver and then recovered to 180 +/- mm Hg during the last 5 s of the maneuver. Esophageal pressure followed essentially the same pattern of response, but heart rate progressively increased during the entire L-1. No one muscle group was utilized more than another. Inflation of an anti-G suit to 4 PSI had no effect on the variables measured. Generation of high arterial pressures during L-1 maneuvers is transitory and not affected either positively or negatively by altering subject body position.

  3. Atmosphere Re-Entry Simulation Using Direct Simulation Monte Carlo (DSMC Method

    Directory of Open Access Journals (Sweden)

    Francesco Pellicani

    2016-05-01

    Full Text Available Hypersonic re-entry vehicles aerothermodynamic investigations provide fundamental information to other important disciplines like materials and structures, assisting the development of thermal protection systems (TPS efficient and with a low weight. In the transitional flow regime, where thermal and chemical equilibrium is almost absent, a new numerical method for such studies has been introduced, the direct simulation Monte Carlo (DSMC numerical technique. The acceptance and applicability of the DSMC method have increased significantly in the 50 years since its invention thanks to the increase in computer speed and to the parallel computing. Anyway, further verification and validation efforts are needed to lead to its greater acceptance. In this study, the Monte Carlo simulator OpenFOAM and Sparta have been studied and benchmarked against numerical and theoretical data for inert and chemically reactive flows and the same will be done against experimental data in the near future. The results show the validity of the data found with the DSMC. The best setting of the fundamental parameters used by a DSMC simulator are presented for each software and they are compared with the guidelines deriving from the theory behind the Monte Carlo method. In particular, the number of particles per cell was found to be the most relevant parameter to achieve valid and optimized results. It is shown how a simulation with a mean value of one particle per cell gives sufficiently good results with very low computational resources. This achievement aims to reconsider the correct investigation method in the transitional regime where both the direct simulation Monte Carlo (DSMC and the computational fluid-dynamics (CFD can work, but with a different computational effort.

  4. Catheter Entrapment During Posterior Mitral Leaflet Pushing Maneuver for MitraClip Implantation.

    Science.gov (United States)

    Castrodeza, Javier; Amat-Santos, Ignacio J; Tobar, Javier; Varela-Falcón, Luis H

    2016-06-01

    MitraClip (Abbott Vascular) therapy has been reported to be an effective procedure for mitral regurgitation, especially in high-risk patients. Recently, the novel pushing maneuver technique has been described for approaching restricted and short posterior leaflets with a pigtail catheter in order to facilitate grasping of the clip. However, complications or unexpected situations may occur. We report the case of an 84-year-old patient who underwent MitraClip implantation wherein the pushing maneuver was complicated by the clip accidentally gripping the pigtail catheter along with the two leaflets.

  5. Engagement processes in model programs for community reentry from prison for people with serious mental illness.

    Science.gov (United States)

    Angell, Beth; Matthews, Elizabeth; Barrenger, Stacey; Watson, Amy C; Draine, Jeffrey

    2014-01-01

    Linking prisoners with mental illness with treatment following release is critical to preventing recidivism, but little research exists to inform efforts to engage them effectively. This presentation compares the engagement process in two model programs, each representing an evidence-based practice for mental health which has been adapted to the context of prison reentry. One model, Forensic Assertive Community Treatment (FACT), emphasizes a long-term wrap-around approach that seeks to maximize continuity of care by concentrating all services within one interdisciplinary team; the other, Critical Time Intervention (CTI), is a time-limited intervention that promotes linkages to outside services and bolsters natural support systems. To compare engagement practices, we analyze data from two qualitative studies, each conducted in a newly developed treatment program serving prisoners with mental illness being discharged from prisons to urban communities. Findings show that the working relationship in reentry services exhibits unique features and is furthered in both programs by the use of practitioner strategies of engagement, including tangible assistance, methods of interacting with consumers, and encouragement of service use via third parties such as families and parole officers. Nevertheless, each program exhibited distinct cultures and rituals of reentry that were associated with fundamental differences in philosophy and differences in resources available to each program. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Evaluation of lung recruitment maneuvers in acute respiratory distress syndrome using computer simulation.

    Science.gov (United States)

    Das, Anup; Cole, Oana; Chikhani, Marc; Wang, Wenfei; Ali, Tayyba; Haque, Mainul; Bates, Declan G; Hardman, Jonathan G

    2015-01-12

    Direct comparison of the relative efficacy of different recruitment maneuvers (RMs) for patients with acute respiratory distress syndrome (ARDS) via clinical trials is difficult, due to the heterogeneity of patient populations and disease states, as well as a variety of practical issues. There is also significant uncertainty regarding the minimum values of positive end-expiratory pressure (PEEP) required to ensure maintenance of effective lung recruitment using RMs. We used patient-specific computational simulation to analyze how three different RMs act to improve physiological responses, and investigate how different levels of PEEP contribute to maintaining effective lung recruitment. We conducted experiments on five 'virtual' ARDS patients using a computational simulator that reproduces static and dynamic features of a multivariable clinical dataset on the responses of individual ARDS patients to a range of ventilator inputs. Three recruitment maneuvers (sustained inflation (SI), maximal recruitment strategy (MRS) followed by a titrated PEEP, and prolonged recruitment maneuver (PRM)) were implemented and evaluated for a range of different pressure settings. All maneuvers demonstrated improvements in gas exchange, but the extent and duration of improvement varied significantly, as did the observed mechanism of operation. Maintaining adequate post-RM levels of PEEP was seen to be crucial in avoiding cliff-edge type re-collapse of alveolar units for all maneuvers. For all five patients, the MRS exhibited the most prolonged improvement in oxygenation, and we found that a PEEP setting of 35 cm H2O with a fixed driving pressure of 15 cm H2O (above PEEP) was sufficient to achieve 95% recruitment. Subsequently, we found that PEEP titrated to a value of 16 cm H2O was able to maintain 95% recruitment in all five patients. There appears to be significant scope for reducing the peak levels of PEEP originally specified in the MRS and hence to avoid exposing the lung to

  7. Maneuver Acoustic Flight Test of the Bell 430 Helicopter Data Report

    Science.gov (United States)

    Watts, Michael E.; Greenwood, Eric; Smith, Charles D.; Snider, Royce; Conner, David A.

    2014-01-01

    A cooperative ight test by NASA, Bell Helicopter and the U.S. Army to characterize the steady state acoustics and measure the maneuver noise of a Bell Helicopter 430 aircraft was accomplished. The test occurred during June/July 2011 at Eglin Air Force Base, Florida. This test gathered a total of 410 test points over 10 test days and compiled an extensive database of dynamic maneuver measurements. Three microphone arrays with up to 31 microphon. es in each were used to acquire acoustic data. Aircraft data included Differential Global Positioning System, aircraft state and rotor state information. This paper provides an overview of the test and documents the data acquired.

  8. Virtual maneuvering test in CFD media in presence of free surface

    Directory of Open Access Journals (Sweden)

    Ahmad Hajivand

    2015-05-01

    Full Text Available Maneuvering oblique towing test is simulated in a Computational Fluid Dynamic (CFD environment to obtain the linear and nonlinear velocity dependent damping coefficients for a DTMB 5512 model ship. The simulations are carried out in freely accessible OpenFOAM library with three different solvers, rasInterFoam, LTSInterFoam and interDyMFoam, and two turbulence models, k-ε and SST k-ω in presence of free surface. Turning and zig-zag maneuvers are simulated for the DTMB 5512 model ship using the calculated damping coefficients with CFD. The comparison of simulated results with the available experimental shows a very good agreement among them.

  9. Automated Precision Maneuvering and Landing in Extreme and Constrained Environments

    Data.gov (United States)

    National Aeronautics and Space Administration — Autonomous, precise maneuvering and landing in extreme and constrained environments is a key enabler for future NASA missions. Missions to map the interior of a...

  10. Contingency Trajectory Design for a Lunar Orbit Insertion Maneuver Failure by the LADEE Spacecraft

    Science.gov (United States)

    Genova, A. L.

    2014-01-01

    This paper presents results from a contingency trajectory analysis performed for the Lunar Atmosphere & Dust Environment Explorer (LADEE) mission in the event of a missed lunar-orbit insertion (LOI) maneuver by the LADEE spacecraft. The effects of varying solar perturbations in the vicinity of the weak stability boundary (WSB) in the Sun-Earth system on the trajectory design are analyzed and discussed. It is shown that geocentric recovery trajectory options existed for the LADEE spacecraft, depending on the spacecraft's recovery time to perform an Earth escape-prevention maneuver after the hypothetical LOI maneuver failure and subsequent path traveled through the Sun-Earth WSB. If Earth-escape occurred, a heliocentric recovery option existed, but with reduced science capacapability for the spacecraft in an eccentric, not circular near-equatorial retrograde lunar orbit.

  11. Regenerative braking failures in battery electric vehicles and their impact on the driver.

    Science.gov (United States)

    Cocron, Peter; Neumann, Isabel; Kreußlein, Maria; Wanner, Daniel; Bierbach, Maxim; Krems, Josef F

    2018-09-01

    A unique feature of battery electric vehicles (BEV) is their regenerative braking system (RBS) to recapture kinetic energy in deceleration maneuvers. If such a system is triggered via gas pedal, most deceleration maneuvers can be executed by just using this pedal. This impacts the driving task as different deceleration strategies can be applied. Previous research has indicated that a RBS failure leading to a sudden reduced deceleration represents an adverse event for BEV drivers. In the present study, we investigated such a failure's impact on the driver's evaluation and behavior. We conducted an experiment on a closed-off test track using a modified BEV that could temporarily switch off the RBS. One half of the 44 participants in the study received information about an upcoming RBS failure whereas the other half did not. While 91% of the drivers receiving prior information noticed the RBS failure, only 48% recognized it in the "uniformed" group. In general, the failure and the perception of its occurrence influenced the driver's evaluation and behavior more than receiving prior information. Nevertheless, under the tested conditions, drivers kept control and were able to compensate for the RBS failure. As the participants drove quite simple maneuvers in our experiment, further studies are needed to validate our findings using more complex driving settings. Given that RBS failures could have severe consequences, appropriate information and warning strategies for drivers are necessary. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. Conflict Resolution Performance in an Experimental Study of En Route Free Maneuvering Operations

    Science.gov (United States)

    Doble, Nathan A.; Barhydt, Richard; Hitt, James M., II

    2005-01-01

    NASA has developed a far-term air traffic management concept, termed Distributed Air/Ground Traffic Management (DAG-TM). One component of DAG-TM, En Route Free Maneuvering, allows properly trained flight crews of equipped autonomous aircraft to assume responsibility for separation from other autonomous aircraft and from Instrument Flight Rules (IFR) aircraft. Ground-based air traffic controllers continue to separate IFR traffic and issue flow management constraints to all aircraft. To examine En Route Free Maneuvering operations, a joint human-in-the-loop experiment was conducted in summer 2004 at the NASA Ames and Langley Research Centers. Test subject pilots used desktop flight simulators to resolve traffic conflicts and adhere to air traffic flow constraints issued by subject controllers. The experimental airspace integrated both autonomous and IFR aircraft at varying traffic densities. This paper presents a subset of the En Route Free Maneuvering experimental results, focusing on airborne and ground-based conflict resolution, and the effects of increased traffic levels on the ability of pilots and air traffic controllers to perform this task. The results show that, in general, increases in autonomous traffic do not significantly impact conflict resolution performance. In addition, pilot acceptability of autonomous operations remains high throughout the range of traffic densities studied. Together with previously reported findings, these results continue to support the feasibility of the En Route Free Maneuvering component of DAG-TM.

  13. Linearity of electrical impedance tomography during maximum effort breathing and forced expiration maneuvers.

    Science.gov (United States)

    Ngo, Chuong; Leonhardt, Steffen; Zhang, Tony; Lüken, Markus; Misgeld, Berno; Vollmer, Thomas; Tenbrock, Klaus; Lehmann, Sylvia

    2017-01-01

    Electrical impedance tomography (EIT) provides global and regional information about ventilation by means of relative changes in electrical impedance measured with electrodes placed around the thorax. In combination with lung function tests, e.g. spirometry and body plethysmography, regional information about lung ventilation can be achieved. Impedance changes strictly correlate with lung volume during tidal breathing and mechanical ventilation. Initial studies presumed a correlation also during forced expiration maneuvers. To quantify the validity of this correlation in extreme lung volume changes during forced breathing, a measurement system was set up and applied on seven lung-healthy volunteers. Simultaneous measurements of changes in lung volume using EIT imaging and pneumotachography were obtained with different breathing patterns. Data was divided into a synchronizing phase (spontaneous breathing) and a test phase (maximum effort breathing and forced maneuvers). The EIT impedance changes correlate strictly with spirometric data during slow breathing with increasing and maximum effort ([Formula: see text]) and during forced expiration maneuvers ([Formula: see text]). Strong correlations in spirometric volume parameters [Formula: see text] ([Formula: see text]), [Formula: see text]/FVC ([Formula: see text]), and flow parameters PEF, [Formula: see text], [Formula: see text], [Formula: see text] ([Formula: see text]) were observed. According to the linearity during forced expiration maneuvers, EIT can be used during pulmonary function testing in combination with spirometry for visualisation of regional lung ventilation.

  14. In-depth analysis of drivers' merging behavior and rear-end crash risks in work zone merging areas.

    Science.gov (United States)

    Weng, Jinxian; Xue, Shan; Yang, Ying; Yan, Xuedong; Qu, Xiaobo

    2015-04-01

    This study investigates the drivers' merging behavior and the rear-end crash risk in work zone merging areas during the entire merging implementation period from the time of starting a merging maneuver to that of completing the maneuver. With the merging traffic data from a work zone site in Singapore, a mixed probit model is developed to describe the merging behavior, and two surrogate safety measures including the time to collision (TTC) and deceleration rate to avoid the crash (DRAC) are adopted to compute the rear-end crash risk between the merging vehicle and its neighboring vehicles. Results show that the merging vehicle has a bigger probability of completing a merging maneuver quickly under one of the following situations: (i) the merging vehicle moves relatively fast; (ii) the merging lead vehicle is a heavy vehicle; and (iii) there is a sizable gap in the adjacent through lane. Results indicate that the rear-end crash risk does not monotonically increase as the merging vehicle speed increases. The merging vehicle's rear-end crash risk is also affected by the vehicle type. There is a biggest increment of rear-end crash risk if the merging lead vehicle belongs to a heavy vehicle. Although the reduced remaining distance to work zone could urge the merging vehicle to complete a merging maneuver quickly, it might lead to an increased rear-end crash risk. Interestingly, it is found that the rear-end crash risk could be generally increased over the elapsed time after the merging maneuver being triggered. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. 'What on earth can this possibly mean'? French reentry courts and experts' risk assessment.

    Science.gov (United States)

    Herzog-Evans, Martine

    2016-01-01

    Against the backdrop of ten years of punitive criminal justice policies, the number of cases in which risk assessments by psychiatrist experts are mandatory has considerably increased in France. Because of complex and deeply ingrained cultural factors, most experts and academics oppose the use of actuarial or other structured judgement tools, which they assimilate to these policy changes. Parallel to this, the reentry judges in charge of making release and other community sentence decisions have maintained a strong rehabilitative and desistance-focused culture. Drawing on interviews with these judges and experts, the author wanted to assess the judges' expectations of experts' reports, their opinion on actuarial tools, and how they perceived experts and their aptitude to assess risk. The study showed that French reentry judges manage to keep experts' conclusions at bay when they do not fit with their desistance goals, as they can draw upon their own expertise and that of probation services. They do not have much faith in the professionalism and methodology of experts, and would like them to better demonstrate how they reach their conclusions. Moreover, criminogenic needs assessment would be much more useful to them than static risk assessment, which raises the issue as to why this is not the French probation services' role. Reentry judges who never encountered a report which uses a structured tool are influenced by the French ideological debate; those who have read such reports are unanimously in favour of such tools. It thus seems clear that they would like experts to be more strongly guided by science, but are not yet fully aware of what this entails. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Thermal Protection Test Bed Pathfinder Development Project

    Science.gov (United States)

    Snapp, Cooper

    2015-01-01

    In order to increase thermal protection capabilities for future reentry vehicles, a method to obtain relevant test data is required. Although arc jet testing can be used to obtain some data on materials, the best method to obtain these data is to actually expose them to an atmospheric reentry. The overprediction of the Orion EFT-1 flight data is an example of how the ground test to flight traceability is not fully understood. The RED-Data small reentry capsule developed by Terminal Velocity Aerospace is critical to understanding this traceability. In order to begin to utilize this technology, ES3 needs to be ready to build and integrate heat shields onto the RED-Data vehicle. Using a heritage Shuttle tile material for the heat shield will both allow valuable insight into the environment that the RED-Data vehicle can provide and give ES3 the knowledge and capability to build and integrate future heat shields for this vehicle.

  17. Architectural Design Document for Camera Models

    DEFF Research Database (Denmark)

    Thuesen, Gøsta

    1998-01-01

    Architecture of camera simulator models and data interface for the Maneuvering of Inspection/Servicing Vehicle (MIV) study.......Architecture of camera simulator models and data interface for the Maneuvering of Inspection/Servicing Vehicle (MIV) study....

  18. Early Mission Maneuver Operations for the Deep Space Climate Observatory Sun-Earth L1 Libration Point Mission

    Science.gov (United States)

    Roberts, Craig; Case, Sara; Reagoso, John; Webster, Cassandra

    2015-01-01

    The Deep Space Climate Observatory mission launched on February 11, 2015, and inserted onto a transfer trajectory toward a Lissajous orbit around the Sun-Earth L1 libration point. This paper presents an overview of the baseline transfer orbit and early mission maneuver operations leading up to the start of nominal science orbit operations. In particular, the analysis and performance of the spacecraft insertion, mid-course correction maneuvers, and the deep-space Lissajous orbit insertion maneuvers are discussed, com-paring the baseline orbit with actual mission results and highlighting mission and operations constraints..

  19. Exploration of the Trade Space Between Unmanned Aircraft Systems Descent Maneuver Performance and Sense-and-Avoid System Performance Requirements

    Science.gov (United States)

    Jack, Devin P.; Hoffler, Keith D.; Johnson, Sally C.

    2014-01-01

    A need exists to safely integrate Unmanned Aircraft Systems (UAS) into the United States' National Airspace System. Replacing manned aircraft's see-and-avoid capability in the absence of an onboard pilot is one of the key challenges associated with safe integration. Sense-and-avoid (SAA) systems will have to achieve yet-to-be-determined required separation distances for a wide range of encounters. They will also need to account for the maneuver performance of the UAS they are paired with. The work described in this paper is aimed at developing an understanding of the trade space between UAS maneuver performance and SAA system performance requirements, focusing on a descent avoidance maneuver. An assessment of current manned and unmanned aircraft performance was used to establish potential UAS performance test matrix bounds. Then, near-term UAS integration work was used to narrow down the scope. A simulator was developed with sufficient fidelity to assess SAA system performance requirements. The simulator generates closest-point-of-approach (CPA) data from the wide range of UAS performance models maneuvering against a single intruder with various encounter geometries. Initial attempts to model the results made it clear that developing maneuver performance groups is required. Discussion of the performance groups developed and how to know in which group an aircraft belongs for a given flight condition and encounter is included. The groups are airplane, flight condition, and encounter specific, rather than airplane-only specific. Results and methodology for developing UAS maneuver performance requirements are presented for a descent avoidance maneuver. Results for the descent maneuver indicate that a minimum specific excess power magnitude can assure a minimum CPA for a given time-to-go prediction. However, smaller amounts of specific excess power may achieve or exceed the same CPA if the UAS has sufficient speed to trade for altitude. The results of this study will

  20. Autonomous execution of the Precision Immobilization Technique

    Science.gov (United States)

    Mascareñas, David D. L.; Stull, Christopher J.; Farrar, Charles R.

    2017-03-01

    Over the course of the last decade great advances have been made in autonomously driving cars. The technology has advanced to the point that driverless car technology is currently being tested on publicly accessed roadways. The introduction of these technologies onto publicly accessed roadways not only raises questions of safety, but also security. Autonomously driving cars are inherently cyber-physical systems and as such will have novel security vulnerabilities that couple both the cyber aspects of the vehicle including the on-board computing and any network data it makes use of, with the physical nature of the vehicle including its sensors, actuators, and the vehicle chassis. Widespread implementation of driverless car technology will require that both the cyber, as well as physical security concerns surrounding these vehicles are addressed. In this work, we specifically developed a control policy to autonomously execute the Precision Immobilization Technique, a.k.a. the PIT maneuver. The PIT maneuver was originally developed by law enforcement to end high-speed vehicular pursuits in a quasi-safe manner. However, there is still a risk of damage/roll-over to both the vehicle executing the PIT maneuver as well as to the vehicle subject to the PIT maneuver. In law enforcement applications, it would be preferable to execute the PIT maneuver using an autonomous vehicle, thus removing the danger to law-enforcement officers. Furthermore, it is entirely possible that unscrupulous individuals could inject code into an autonomously-driving car to use the PIT maneuver to immobilize other vehicles while maintaining anonymity. For these reasons it is useful to know how the PIT maneuver can be implemented on an autonomous car. In this work a simple control policy based on velocity pursuit was developed to autonomously execute the PIT maneuver using only a vision and range measurements that are both commonly collected by contemporary driverless cars. The ability of this

  1. Entrainment and high-density three-dimensional mapping in right atrial macroreentry provide critical complementary information: Entrainment may unmask "visual reentry" as passive.

    Science.gov (United States)

    Pathik, Bhupesh; Lee, Geoffrey; Nalliah, Chrishan; Joseph, Stephen; Morton, Joseph B; Sparks, Paul B; Sanders, Prashanthan; Kistler, Peter M; Kalman, Jonathan M

    2017-10-01

    With the recent advent of high-density (HD) 3-dimensional (3D) mapping, the utility of entrainment is uncertain. However, the limitations of visual representation and interpretation of these high-resolution 3D maps are unclear. The purpose of this study was to determine the strengths and limitations of both HD 3D mapping and entrainment mapping during mapping of right atrial macroreentry. Fifteen patients were studied. The number and type of circuits accounting for ≥90% of the tachycardia cycle length using HD 3D mapping were verified using systematic entrainment mapping. Entrainment sites with an unexpectedly long postpacing interval despite proximity to the active circuit were evaluated. Based on HD 3D mapping, 27 circuits were observed: 12 peritricuspid, 2 upper loop reentry, 10 lower loop reentry, and 3 lateral wall circuits. With entrainment, 17 of the 27 circuits were active: all 12 peritricuspid and 2 upper loop reentry. However, lower loop reentry was confirmed in only 3 of 10, and none of the 3 lateral wall circuits were present. Mean percentage of tachycardia cycle length covered by active circuits was 98% ± 1% vs 97% ± 2% for passive circuits (P = .09). None of the 345 entrainment runs terminated tachycardia or changed tachycardia mechanism. In 8 of 15 patients, 13 examples of unexpectedly long postpacing interval were observed at entrainment sites located distal to localized zones of slow conduction seen on HD 3D mapping. Using HD 3D mapping, "visual reentry" may be due to passive circuitous propagation rather than a critical reentrant circuit. HD 3D mapping provides new insights into regional conduction and helps explain unusual entrainment phenomena. Copyright © 2017 Heart Rhythm Society. Published by Elsevier Inc. All rights reserved.

  2. Parametric Dependence of Initial LEV Behavior on Maneuvering Wings

    Science.gov (United States)

    Berdon, Randall; Wabick, Kevin; Buchholz, James; Johnson, Kyle; Thurow, Brian; University of Iowa Team; Auburn University Team

    2017-11-01

    A maneuvering rectangular wing of aspect ratio 2 is examined experimentally using dye visualization and PIV to characterize the initial development of the leading-edge vortex (LEV) during a rolling maneuver in a uniform free stream. Understanding the underlying physics during the early evolution of the vortex is important for developing strategies to manipulate vortex evolution. Varying the dimensionless radius of gyration of the wing (Rg/c, where Rg is the radius of gyration and c is the chord) and the advance ratio (J=U/ ΩRg, where U is the free-stream velocity and Ω is the roll rate) affects the structure of the vortex and its propensity to remain attached. The influence of these parameters will be discussed, toward identification of similarity parameters governing vortex development. This work is supported by the Air Force Office of Scientific Research (Grant Number FA9550-16-1-0107, Dr. Douglas Smith, program manager).

  3. Evaluation of the Trade Space Between UAS Maneuver Performance and SAA System Performance Requirements

    Science.gov (United States)

    Jack, Devin P.; Hoffler, Keith D.; Johnson, Sally C.

    2014-01-01

    A need exists to safely integrate Unmanned Aircraft Systems (UAS) into the National Airspace System. Replacing manned aircraft's see-and-avoid capability in the absence of an onboard pilot is one of the key challenges associated with safe integration. Sense-and-avoid (SAA) systems will have to achieve yet-to-be-determined required separation distances for a wide range of encounters. They will also need to account for the maneuver performance of the UAS they are paired with. The work described in this paper is aimed at developing an understanding of the trade space between UAS maneuver performance and SAA system performance requirements. An assessment of current manned and unmanned aircraft performance was used to establish potential UAS performance test matrix bounds. Then, nearterm UAS integration work was used to narrow down the scope. A simulator was developed with sufficient fidelity to assess SAA system performance requirements for a wide range of encounters. The simulator generates closest-point-of-approach (CPA) data from the wide range of UAS performance models maneuvering against a single intruder with various encounter geometries. The simulator is described herein and has both a graphical user interface and batch interface to support detailed analysis of individual UAS encounters and macro analysis of a very large set of UAS and encounter models, respectively. Results from the simulator using approximate performance data from a well-known manned aircraft is presented to provide insight into the problem and as verification and validation of the simulator. Analysis of climb, descent, and level turn maneuvers to avoid a collision is presented. Noting the diversity of backgrounds in the UAS community, a description of the UAS aerodynamic and propulsive design and performance parameters is included. Initial attempts to model the results made it clear that developing maneuver performance groups is required. Discussion of the performance groups developed and how

  4. Potential Dermal Exposure in greenhouses for manual sprayers: Analysis of the mix/load, application and re-entry stages

    Energy Technology Data Exchange (ETDEWEB)

    Ramos, Laura M.; Querejeta, Giselle A.; Flores, Andrea P.; Hughes, Enrique A.; Zalts, Anita [Instituto de Ciencias, Universidad Nacional de General Sarmiento (UNGS), J. M. Gutierrez 1150, (B1613GSX) Los Polvorines, Prov. de Buenos Aires (Argentina); Montserrat, Javier M., E-mail: jmontser@ungs.edu.ar [Instituto de Ciencias, Universidad Nacional de General Sarmiento (UNGS), J. M. Gutierrez 1150, (B1613GSX) Los Polvorines, Prov. de Buenos Aires (Argentina); Instituto de Investigaciones en Ingenieria Genetica y Biologia Molecular (CONICET), Vuelta de Obligado 2490, 2o piso, Buenos Aires (Argentina)

    2010-09-01

    An evaluation of the Potential Dermal Exposure for the mix/load, application and re-entry stages, associated with procymidone and deltamethrin usage, was carried out for tomatoes grown in greenhouses of small production units in Argentina. Eight experiments were done with four different operators, under typical field conditions with a lever operated backpack sprayer. The methodology applied was based on the Whole Body Dosimetry technique, evaluating a set of different data for the mix and load, application and re-entry operations. These results indicated that the Potential Dermal Exposure of the application step was (38 {+-} 17) mL h{sup -1} with the highest proportion on torso, head and arms. When the three stages were compared, re-entry was found to contribute least towards the total Potential Dermal Exposure; meanwhile in all cases, except one, the mix/load operation was the stage with highest exposure. The Margin of Safety for each different operation was also calculated and the proportion of pesticide drift from the greenhouse to the environment is presented. These results emphasize the importance of improving the personal protection measures in the mix and load stage, an operation that is not usually associated with high-risk in small production units.

  5. Potential Dermal Exposure in greenhouses for manual sprayers: Analysis of the mix/load, application and re-entry stages

    International Nuclear Information System (INIS)

    Ramos, Laura M.; Querejeta, Giselle A.; Flores, Andrea P.; Hughes, Enrique A.; Zalts, Anita; Montserrat, Javier M.

    2010-01-01

    An evaluation of the Potential Dermal Exposure for the mix/load, application and re-entry stages, associated with procymidone and deltamethrin usage, was carried out for tomatoes grown in greenhouses of small production units in Argentina. Eight experiments were done with four different operators, under typical field conditions with a lever operated backpack sprayer. The methodology applied was based on the Whole Body Dosimetry technique, evaluating a set of different data for the mix and load, application and re-entry operations. These results indicated that the Potential Dermal Exposure of the application step was (38 ± 17) mL h -1 with the highest proportion on torso, head and arms. When the three stages were compared, re-entry was found to contribute least towards the total Potential Dermal Exposure; meanwhile in all cases, except one, the mix/load operation was the stage with highest exposure. The Margin of Safety for each different operation was also calculated and the proportion of pesticide drift from the greenhouse to the environment is presented. These results emphasize the importance of improving the personal protection measures in the mix and load stage, an operation that is not usually associated with high-risk in small production units.

  6. Automated Escape Guidance Algorithms for An Escape Vehicle

    Science.gov (United States)

    Flanary, Ronald; Hammen, David; Ito, Daigoro; Rabalais, Bruce; Rishikof, Brian; Siebold, Karl

    2002-01-01

    An escape vehicle was designed to provide an emergency evacuation for crew members living on a space station. For maximum escape capability, the escape vehicle needs to have the ability to safely evacuate a station in a contingency scenario such as an uncontrolled (e.g., tumbling) station. This emergency escape sequence will typically be divided into three events: The fust separation event (SEP1), the navigation reconstruction event, and the second separation event (SEP2). SEP1 is responsible for taking the spacecraft from its docking port to a distance greater than the maximum radius of the rotating station. The navigation reconstruction event takes place prior to the SEP2 event and establishes the orbital state to within the tolerance limits necessary for SEP2. The SEP2 event calculates and performs an avoidance burn to prevent station recontact during the next several orbits. This paper presents the tools and results for the whole separation sequence with an emphasis on the two separation events. The fust challenge includes collision avoidance during the escape sequence while the station is in an uncontrolled rotational state, with rotation rates of up to 2 degrees per second. The task of avoiding a collision may require the use of the Vehicle's de-orbit propulsion system for maximum thrust and minimum dwell time within the vicinity of the station vicinity. The thrust of the propulsion system is in a single direction, and can be controlled only by the attitude of the spacecraft. Escape algorithms based on a look-up table or analytical guidance can be implemented since the rotation rate and the angular momentum vector can be sensed onboard and a-priori knowledge of the position and relative orientation are available. In addition, crew intervention has been provided for in the event of unforeseen obstacles in the escape path. The purpose of the SEP2 burn is to avoid re-contact with the station over an extended period of time. Performing this maneuver properly

  7. 78 FR 11555 - Special Conditions: Embraer S.A., Model EMB-550 Airplane; Design Roll Maneuver for Electronic...

    Science.gov (United States)

    2013-02-19

    ... Law 92-574, the ``Noise Control Act of 1972.'' The FAA issues special conditions, as defined in 14 CFR...; Design Roll Maneuver for Electronic Flight Controls AGENCY: Federal Aviation Administration (FAA), DOT... design roll maneuver for electronic flight controls, specifically an electronic flight control system...

  8. 77 FR 70384 - Special Conditions: Embraer S.A., Model EMB-550 Airplane; Design Roll Maneuver for Electronic...

    Science.gov (United States)

    2012-11-26

    ... Law 92-574, the ``Noise Control Act of 1972.'' The FAA issues special conditions, as defined in 14 CFR... Maneuver for Electronic Flight Controls AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice... design roll maneuver for electronic flight controls, specifically an electronic flight control system...

  9. 78 FR 72011 - Interpretation Concerning Involvement of NASA Astronauts During a Licensed Launch or Reentry

    Science.gov (United States)

    2013-12-02

    ..., from engaging in operational functions during an FAA-licensed launch or reentry. NASA noted that all... environmental controls and life support systems.'' NASA also asked the FAA whether NASA's astronauts could... an off-nominal or emergency situation, the NASA astronaut would, much of the time, be using...

  10. Pulsed Electrogasdynamic Thruster for Attitude Control and Orbit Maneuver, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — A new pulsed electric thruster, named "pulsed electrogasdynamic thruster," for attitude control and orbit maneuver is proposed. In this thruster, propellant gas is...

  11. "Spaghetti Maneuver": A useful tool in pediatric laparoscopy - Our experience

    Directory of Open Access Journals (Sweden)

    Antonio Marte

    2011-01-01

    Full Text Available Aims: The laparoscopic "Spaghetti Maneuver" consists in holding an organ by its extremity with a grasper and rolling it up around the tool to keep the organ stable and facilitate its traction within a small space. We describe our experience with the "Spaghetti Maneuver" in some minimally invasive procedures. Materials and Methods: We successfully adopted this technique in 13 patients (5F : 8M aged between 6 and 14 years (average age, 10 on whom we performed 7 appendectomies, 2 ureteral reimplantation and 4 cholecystectomies. In all cases, after the first steps, the appendix, the gallbladder and the ureter were rolled around the grasper and easily isolated; hemostasis was thus induced and the organ was mobilized until removal during cholecystectomy and appendectomy, and before the reimplantation in case of ureteral reimplantation. Results: We found that this technique facilitated significantly the acts of holding, isolating and removing, when necessary, the structures involved, which remained constantly within the visual field of the operator. This allowed a very ergonomic work setting, overcoming the problem of the "blind" zone, which represents a dangerous and invisible area out of the operator′s control during laparoscopy. Moreover the isolation maneuvers resulted easier and reduced operating time. Conclusion: We think that this technique is easy to perform and very useful, because it facilitates the dissection of these organs, by harmonizing and stabilizing the force of traction exercised.

  12. Present status of promotion of advanced safety vehicle in phase 2 (ASV2); Dai 2 ki senshin anzen jidosha (ASV) suishin keikaku ni okeru kenkyu jokyo

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-11-01

    For active safety enhancement, drivers will be provided with information and warning that will help them drive with safety. Studies are under way about functions to facilitate drivers' perception and to lighten the burdens imposed on them. As for accident avoidance techniques, onboard systems will perform controls involving vehicle maneuver for safety enhancement. This includes the improvement of vehicle maneuvering performance, in addition to brake control and steering control, for lightening drivers' burdens and for complementing their operating skill. Danger avoidance is based on the concept that the related system is to work in case warnings alone are not enough to avoid a collision. Full automation will be implemented by two ways, the autonomous way aided by the existing infrastructures such as GPS (Global Positioning System) or the way in which infrastructures to be newly built will be utilized. Passive safety technologies aim at minimizing damage upon collision, and involve structural improvement, air bags, etc. Disaster aggravation prevention means to prevent disaster from spreading after collision. Communication is one of safety-related elements on which studies will continue. Under the Phase 2 ASV program, research and development will be conducted for putting passenger cars to practical use, and the same will be conducted, in the case of large vehicles and motorcycles, for the construction of their prototypes. (NEDO)

  13. Effect of Repositioning Maneuver Type and Postmaneuver Restrictions on Vertigo and Dizziness in Benign Positional Paroxysmal Vertigo

    Science.gov (United States)

    Toupet, Michel; Ferrary, Evelyne; Bozorg Grayeli, Alexis

    2012-01-01

    Introduction. To compare the efficiency of Epley (Ep) and Sémont-Toupet (ST) repositioning maneuvers and to evaluate postmaneuver restriction effect on short-term vertigo and dizziness after repositioning maneuvers by an analog visual scale (VAS) in benign positional paroxysmal vertigo (BPPV). Material and Methods. 226 consecutive adult patients with posterior canal BPPV were included. Patients were randomized into 2 different maneuver sequence groups (n = 113): 2 ST then 1 Ep or 2 Ep then 1 ST. Each group of sequence was randomized into 2 subgroups: with or without postmaneuver restrictions. Vertigo and dizziness were assessed from days 0 to 5 by VAS. Results. There was no difference between vertigo scores between Ep and ST groups. Dizziness scores were higher in Ep group during the first 3 days but became similar to those of ST group at days 4 and 5. ST maneuvers induced liberatory signs more frequently than Ep (58% versus 42% resp., P < 0.01, Fisher's test). After repositioning maneuvers, VAS scores decreased similarly in patients with and without liberatory signs. Postmaneuver restrictions did not influence VAS scores. Conclusion. Even if ST showed a higher rate of liberatory signs than Ep in this series, VAS scores were not influenced by these signs. PMID:22973168

  14. Control of Oscillating Foil for Propulsion of Biorobotic Autonomous Underwater Vehicle (AUV

    Directory of Open Access Journals (Sweden)

    S. N. Singh

    2005-01-01

    Full Text Available The paper treats the question of control of a laterally and rotationally oscillating hydrofoil for the propulsion of biologically inspired robotic (biorobotic autonomous underwater vehicles (BAUVs. Sinusoidal oscillations of foils produce maneuvering and propulsive forces. The design is based on the internal model principle. Two springs are used to transmit forces from the actuators to the foil. Oscillating fins produce periodic forces, which can be used for fish-like propulsion and control of autonomous underwater vehicles (AUVs. The equations of motion of the foil include hydrodynamic lift and moment based on linear, unsteady, aerodynamic theory. A control law is derived for the lateral and rotational sinusoidal oscillation of the foil. In the closed-loop system, the lateral displacement and the rotational angle of the foil asymptotically follow sinusoidal trajectories of distinct frequencies and amplitudes independently. Simulation results are presented to show the trajectory tracking performance of the foil for different freestream velocities and sinusoidal command trajectories.

  15. Analysis of effects of manhole covers on motorcycle driver maneuvers: a nonparametric classification tree approach.

    Science.gov (United States)

    Chang, Li-Yen

    2014-01-01

    A manhole cover is a removable plate forming the lid over the opening of a manhole to allow traffic to pass over the manhole and to prevent people from falling in. Because most manhole covers are placed in roadway traffic lanes, if these manhole covers are not appropriately installed or maintained, they can represent unexpected hazards on the road, especially for motorcycle drivers. The objective of this study is to identify the effects of manhole cover characteristics as well as driver factors and traffic and roadway conditions on motorcycle driver maneuvers. A video camera was used to record motorcycle drivers' maneuvers when they encountered an inappropriately installed or maintained manhole cover. Information on 3059 drivers' maneuver decisions was recorded. Classification and regression tree (CART) models were applied to explore factors that can significantly affect motorcycle driver maneuvers when passing a manhole cover. Nearly 50 percent of the motorcycle drivers decelerated or changed their driving path to reduce the effects of the manhole cover. The manhole cover characteristics including the level difference between manhole cover and pavement, the pavement condition over the manhole cover, and the size of the manhole cover can significantly affect motorcycle driver maneuvers. Other factors, including traffic conditions, lane width, motorcycle speed, and loading conditions, also have significant effects on motorcycle driver maneuvers. To reduce the effects and potential risks from the manhole covers, highway authorities not only need to make sure that any newly installed manhole covers are as level as possible but also need to regularly maintain all the manhole covers to ensure that they are in good condition. In the long run, the size of manhole covers should be kept as small as possible so that the impact of manhole covers on motorcycle drivers can be effectively reduced. Supplemental materials are available for this article. Go to the publisher

  16. Incarcerated women's relationship-based strategies to avoid drug use after community re-entry.

    Science.gov (United States)

    Snell-Rood, Claire; Staton-Tindall, Michele; Victor, Grant

    2016-10-01

    While recent research has stressed the supportive role that family and friends play for incarcerated persons as they re-enter the community, drug-using incarcerated women re-entering the community often have to rely on family, community, and intimate relationships that have played a role in their substance abuse and criminalization. In this study the authors conducted qualitative analysis of clinical sessions with rural, drug-using women (N = 20) in a larger prison-based HIV risk reduction intervention in Kentucky during 2012-2014 to examine incarcerated women's perceptions of the role of their family, community, and intimate relationships in their plans to decrease their substance abuse upon community re-entry. Women stressed the obstacles to receiving support in many of their family and drug-using relationships after community re-entry. Nonetheless, they asserted that changes in their relationships could support their desires to end their substance abuse by setting limits on and using their positive relationships, particularly with their children, to motivate them to change. Interventions to promote incarcerated women's health behavior changes-including substance abuse-must acknowledge the complex social environments in which they live.

  17. The Prospect of Responsive Spacecraft Using Aeroassisted, Trans-Atmospheric Maneuvers

    Science.gov (United States)

    2014-06-19

    99 V. Design of Experiments Approach to Atmospheric Skip Entry Maneuver Optimization .....100 Chapter Overview...Transfer Diagram .................................................................................................11 3.1. Comparison of Geocentric ...Comparison of Geocentric /Geodetic Latitude for Apollo 10 (2-Gravity Model, Fourth-Order Runge-Kutta Solver

  18. Quadcopter Aggressive Maneuvers along Singular Configurations: An Energy-Quaternion Based Approach

    Directory of Open Access Journals (Sweden)

    Ayman A. El-Badawy

    2016-01-01

    Full Text Available Automatic aggressive maneuvers with quadcopters are regarded as a highly challenging control problem. The aim is to tackle the singularities that exist in a vertical looping maneuver. Modeling singularities are resolved by writing the equations-of-motion of the quadcopter in quaternion form. Physical singularities due to underactuation are resolved by using an energy-based control. Energy-based control is utilized to overcome the uncontrollability of the quadcopter at physical singular configurations, for instance, when commanding the quadcopter to gain altitude while pitched at 90∘. Three looping strategies (circular, clothoidal, and newly developed constant thrust are implemented on a nonlinear model of the quadcopter. The three looping strategies are discussed along with their advantages and limitations.

  19. Transient Structured Distance as a Maneuver in Marital Therapy

    Science.gov (United States)

    Greene, Bernard L.; And Others

    1973-01-01

    Experience with 73 cases has shown the value of Transient Structured Distance as a maneuver in marriage therapy. While the TSD is a radical form of intervention with risks of anxiety reactions, homosexual panic, or divorce, it has proved effective with difficult forms of acute or chronic marital disharmony. (Author)

  20. A Small State Maneuvering in the Changing World Order

    DEFF Research Database (Denmark)

    Sørensen, Camilla T. N.

    2016-01-01

    , especially the Danish approach to the BRICs, has developed in recent years, I show how Denmark – a small state – is trying to maneuver in the changing world order through a “creative agency” approach characterized by pragmatic low-profile activism. I develop a neoclassical realist framework and use...

  1. Reusable launch vehicles, enabling technology for the development of advanced upper stages and payloads

    International Nuclear Information System (INIS)

    Metzger, John D.

    1998-01-01

    In the near future there will be classes of upper stages and payloads that will require initial operation at a high-earth orbit to reduce the probability of an inadvertent reentry that could result in a detrimental impact on humans and the biosphere. A nuclear propulsion system, such as was being developed under the Space Nuclear Thermal Propulsion (SNTP) Program, is an example of such a potential payload. This paper uses the results of a reusable launch vehicle (RLV) study to demonstrate the potential importance of a Reusable Launch Vehicle (RLV) to test and implement an advanced upper stage (AUS) or payload in a safe orbit and in a cost effective and reliable manner. The RLV is a horizontal takeoff and horizontal landing (HTHL), two-stage-to-orbit (TSTO) vehicle. The results of the study shows that an HTHL is cost effective because it implements airplane-like operation, infrastructure, and flight operations. The first stage of the TSTO is powered by Rocket-Based-Combined-Cycle (RBCC) engines, the second stage is powered by a LOX/LH rocket engine. The TSTO is used since it most effectively utilizes the capability of the RBCC engine. The analysis uses the NASA code POST (Program to Optimize Simulated Trajectories) to determine trajectories and weight in high-earth orbit for AUS/advanced payloads. Cost and reliability of an RLV versus current generation expandable launch vehicles are presented

  2. Analysis of internal ablation for the thermal control of aerospace vehicles

    Science.gov (United States)

    Camberos, Jose A.; Roberts, Leonard

    1989-01-01

    A new method of thermal protection for transatmospheric vehicles is introduced. The method involves the combination of radiation, ablation and transpiration cooling. By placing an ablating material behind a fixed-shape, porous outer shield, the effectiveness of transpiration cooling is made possible while retaining the simplicity of a passive mechanism. A simplified one-dimensional approach is used to derive the governing equations. Reduction of these equations to non-dimensional form yields two parameters which characterize the thermal protection effectiveness of the shield and ablator combination for a given trajectory. The non-dimensional equations are solved numerically for a sample trajectory corresponding to glide re-entry. Four typical ablators are tested and compared with results obtained by using the thermal properties of water. For the present level of analysis, the numerical computations adequately support the analytical model.

  3. Support and maneuvering device

    Science.gov (United States)

    Wood, R.L.

    1987-03-23

    A support and maneuvering device includes an elongated flexible inflatable enclosure having a fixed end and a movable end. The movable end is collapsible toward the fixed end to a contracted position when the enclosure is in a noninflated condition. Upon inflation, the movable end is movable away from the fixed end to an extended position. The movable end includes means for mounting an article such as a solar reflector thereon. The device also includes a plurality of position controlling means disposed about the movable end to effect adjusting movement of portions thereof by predetermined amounts and for controlling an angle at which the article disposed at the movable end is oriented. The plurality of position controlling means limits a suitable number degrees of freedom of the movable end for transmitting a steering motion thereto and for controlling the position thereof. 9 figs.

  4. Input shaping control with reentry commands of prescribed duration

    Directory of Open Access Journals (Sweden)

    Valášek M.

    2008-12-01

    Full Text Available Control of flexible mechanical structures often deals with the problem of unwanted vibration. The input shaping is a feedforward method based on modification of the input signal so that the output performs the demanded behaviour. The presented approach is based on a finite-time Laplace transform. It leads to no-vibration control signal without any limitations on its time duration because it is not strictly connected to the system resonant frequency. This idea used for synthesis of control input is extended to design of dynamical shaper with reentry property that transform an arbitrary input signal to the signal that cause no vibration. All these theoretical tasks are supported by the results of simulation experiments.

  5. Orbital maneuvering vehicle end effectors

    Science.gov (United States)

    Myers, W. Neill (Inventor); Forbes, John C. (Inventor); Barnes, Wayne L. (Inventor)

    1988-01-01

    An end effector device (A) for grasping and holding an article such as a handle (18) of a space telescope is disclosed. The device includes a V-shaped capture window (74) defined as inclined surfaces (76, 78) in parallel face plates (22, 24) which converge toward a retainer recess (54) in which the handle is retained. A pivotal finger (30) meshes with a pair of pivoted fingers (26, 28) which rotate in counterrotation. The fingers rotate to pull a handle within the capture window into recess (54) where latches (50) lock handle (18) in the recess. To align the capture window, plates (22, 24) may be cocked plus or minus five degrees on base (64).

  6. Cerebral near-infrared spectroscopy to evaluate anti-G straining maneuvers in centrifuge training.

    Science.gov (United States)

    Kobayashi, Asao; Kikukawa, Azusa; Kimura, Mikihiko; Inui, Takuo; Miyamoto, Yoshinori

    2012-08-01

    Over the past decade, near-infrared spectroscopy (NIRS) has emerged as an easily manageable noninvasive method for the continuous monitoring of cerebral cortical oxygenation during +Gz exposure. NIRS is also used to evaluate pilot trainees' ability to adequately perform anti-G straining maneuvers in the course of centrifuge training. This study aimed to determine the general patterns and individual differences in NIRS recordings during +Gz exposure. There were 22 healthy male cadets who participated in the study. The centrifuge training profiles included a gradual onset run (GOR, onset rate of 0.1 Gz x s(-1)) and short-term repeated exposures, with Gz levels from 4 to 7 Gz at an onset rate of 1.0 Gz x s(-1) (rapid onset run, ROR). Cortical tissue hemoglobin saturation (tissue oxygenation index, TOI) and changes in the concentration of oxygenated hemoglobin (O2Hb) were recorded from the right forehead during the period of Gz exposure. Most of the subjects successfully performed an anti-G straining maneuver and maintained or increased the cerebral oxygenation level during Gz exposure. In four subjects, however, oxygenation decline was observed at levels over 4 Gz, even though their anti-G systems were functioning. In contrast to the O2Hb response, TOI, which reflects intracranial oxygenation changes, was decreased during the anti-G straining maneuver at Gz onset or during the countdown to a ROR exposure. Although NIRS is an effective tool for monitoring anti-G straining maneuver performance, it should be carefully evaluated in terms of intracranial oxygenation results.

  7. Simulation of upwind maneuvering of a sailing yacht

    Science.gov (United States)

    Harris, Daniel Hartrick

    A time domain maneuvering simulation of an IACC class yacht suitable for the analysis of unsteady upwind sailing including tacking is presented. The simulation considers motions in six degrees of freedom. The hydrodynamic and aerodynamic loads are calculated primarily with unsteady potential theory supplemented by empirical viscous models. The hydrodynamic model includes the effects of incident waves. Control of the rudder is provided by a simple rate feedback autopilot which is augmented with open loop additions to mimic human steering. The hydrodynamic models are based on the superposition of force components. These components fall into two groups, those which the yacht will experience in calm water, and those due to incident waves. The calm water loads are further divided into zero Froude number, or "double body" maneuvering loads, hydrostatic loads, gravitational loads, free surface radiation loads, and viscous/residual loads. The maneuvering loads are calculated with an unsteady panel code which treats the instantaneous geometry of the yacht below the undisturbed free surface. The free surface radiation loads are calculated via convolution of impulse response functions derived from seakeeping strip theory. The viscous/residual loads are based upon empirical estimates. The aerodynamic model consists primarily of a database of steady state sail coefficients. These coefficients treat the individual contributions to the total sail force of a number of chordwise strips on both the main and jib. Dynamic effects are modeled by using the instantaneous incident wind velocity and direction as the independent variables for the sail load contribution of each strip. The sail coefficient database was calculated numerically with potential methods and simple empirical viscous corrections. Additional aerodynamic load calculations are made to determine the parasitic contributions of the rig and hull. Validation studies compare the steady sailing hydro and aerodynamic loads

  8. Autonomous Path Planning for Road Vehicles in Narrow Environments: An Efficient Continuous Curvature Approach

    Directory of Open Access Journals (Sweden)

    Domokos Kiss

    2017-01-01

    Full Text Available In this paper we introduce a novel method for obtaining good quality paths for autonomous road vehicles (e.g., cars or buses in narrow environments. There are many traffic situations in urban scenarios where nontrivial maneuvering in narrow places is necessary. Navigating in cluttered parking lots or having to avoid obstacles blocking the way and finding a detour even in narrow streets are challenging, especially if the vehicle has large dimensions like a bus. We present a combined approximation-based approach to solve the path planning problem in such situations. Our approach consists of a global planner which generates a preliminary path consisting of straight and turning-in-place primitives and a local planner which is used to make the preliminary path feasible to car-like vehicles. The approximation methodology is well known in the literature; however, both components proposed in this paper differ from existing similar planning methods. The approximation process with the proposed local planner is proven to be convergent for any preliminary global paths. The resulting path has continuous curvature which renders our method well suited for application on real vehicles. Simulation experiments show that the proposed method outperforms similar approaches in terms of path quality in complicated planning tasks.

  9. Hemodynamic responses during and after multiple sets of stretching exercises performed with and without the Valsalva maneuver.

    Science.gov (United States)

    Lima, Tainah P; Farinatti, Paulo T V; Rubini, Ercole C; Silva, Elirez B; Monteiro, Walace D

    2015-05-01

    This study investigated the acute hemodynamic responses to multiple sets of passive stretching exercises performed with and without the Valsalva maneuver. Fifteen healthy men aged 21 to 29 years with poor flexibility performed stretching protocols comprising 10 sets of maximal passive unilateral hip flexion, sustained for 30 seconds with equal intervals between sets. Protocols without and with the Valsalva maneuver were applied in a random counterbalanced order, separated by 48-hour intervals. Hemodynamic responses were measured by photoplethysmography pre-exercise, during the stretching sets, and post-exercise. The effects of stretching sets on systolic and diastolic blood pressure were cumulative until the fourth set in protocols performed with and without the Valsalva maneuver. The heart rate and rate pressure product increased in both protocols, but no additive effect was observed due to the number of sets. Hemodynamic responses were always higher when stretching was performed with the Valsalva maneuver, causing an additional elevation in the rate pressure product. Multiple sets of unilateral hip flexion stretching significantly increased blood pressure, heart rate, and rate pressure product values. A cumulative effect of the number of sets occurred only for systolic and diastolic blood pressure, at least in the initial sets of the stretching protocols. The performance of the Valsalva maneuver intensified all hemodynamic responses, which resulted in significant increases in cardiac work during stretching exercises.

  10. In-shoe plantar tri-axial stress profiles during maximum-effort cutting maneuvers.

    Science.gov (United States)

    Cong, Yan; Lam, Wing Kai; Cheung, Jason Tak-Man; Zhang, Ming

    2014-12-18

    Soft tissue injuries, such as anterior cruciate ligament rupture, ankle sprain and foot skin problems, frequently occur during cutting maneuvers. These injuries are often regarded as associated with abnormal joint torque and interfacial friction caused by excessive external and in-shoe shear forces. This study simultaneously investigated the dynamic in-shoe localized plantar pressure and shear stress during lateral shuffling and 45° sidestep cutting maneuvers. Tri-axial force transducers were affixed at the first and second metatarsal heads, lateral forefoot, and heel regions in the midsole of a basketball shoe. Seventeen basketball players executed both cutting maneuvers with maximum efforts. Lateral shuffling cutting had a larger mediolateral braking force than 45° sidestep cutting. This large braking force was concentrated at the first metatarsal head, as indicated by its maximum medial shear stress (312.2 ± 157.0 kPa). During propulsion phase, peak shear stress occurred at the second metatarsal head (271.3 ± 124.3 kPa). Compared with lateral shuffling cutting, 45° sidestep cutting produced larger peak propulsion shear stress (463.0 ± 272.6 kPa) but smaller peak braking shear stress (184.8 ± 181.7 kPa), of which both were found at the first metatarsal head. During both cutting maneuvers, maximum medial and posterior shear stress occurred at the first metatarsal head, whereas maximum pressure occurred at the second metatarsal head. The first and second metatarsal heads sustained relatively high pressure and shear stress and were expected to be susceptible to plantar tissue discomfort or injury. Due to different stress distribution, distinct pressure and shear cushioning mechanisms in basketball footwear might be considered over different foot regions. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. 再突入飛行体まわりの空力加熱のCFD解析と実験

    OpenAIRE

    Yamamoto, Yukimitsu; 山本 行光

    1997-01-01

    Recent comparisons of hypersonic CFD (Computational Fluid Dynamics) analysis with hypersonic wind tunnel experiments, including NAL M10 HWT (Hypersonic Wind Tunnel), ONERA S4MA HWT, Calspan's shock tunnel and Caltech T-5 high enthalpy shock tunnel, are introduced. Also, hypersonic reentry flight analysis, such as OREX (Orbital Reentry Experiment) and HYFLEX (Hypersonic Flight Experiment) are made. Through these studies, aerothermodynamic heating characteristics of reentry vehicle are investig...

  12. The Choice of the Maneuver of the Vessel’s Passing Considering the Coordination’s System of the Interactive Vessels and Their Dynamic Characteristics

    Directory of Open Access Journals (Sweden)

    Yevgen Volkov

    2017-03-01

    Full Text Available The maneuver of the altering course of the vessel is a more preferable to avoid a collision. Due to that the calculation of the parameters of the avoidance maneuver should be done considering the dynamic characteristics of the vessel in maneuvering. The paper analyzes the dynamic models of the vessel rotation motion in order to select more appropriate one for the calculation of avoidance maneuver of the vessel applying the altering of the course.

  13. ABDOMINAL DRAWING IN MANEUVER: EFFECT ON GAIT PARAMETERS AND PAIN REDUCTION IN PATIENTS WITH CHRONIC LOW BACK PAIN

    Directory of Open Access Journals (Sweden)

    Paramasivan Mani

    2016-08-01

    Full Text Available Background: Back pain is the common musculoskeletal condition with a high prevalence of up to 80% among the general and work force population at some times in their lives.Muscular injury, fatigue, or facet or disc degeneration can compromise the stabilizing effects resulting in shearing forces that cause pain.Abdominal drawing in maneuver is used to facilitate the re-education of neuromuscular control mechanisms provided by local stabilizing muscles. Objective of the study is to measure the gait parameters and pain control before and after abdominal drawing in maneuver in patient with chronic mechanical low back pain. Methods: Total number of 30 consecutive patients and they were divided into two groups by purposive sampling. Group A is subjects with low back pain and Group B is subjects without low back pain. Outcome measures were average step cycle, average step length, coefficient of variation, time on each foot, Ambulation index measured with Biodex gait trainer. Pain is measured with Revised-Oswestry low back pain questionnaire. Results: Significant difference between gait parameters were observed in both low back pain group and the group without low back pain group with abdominal drawing in maneuver and the changes without abdominal drawing in maneuver was minimal. There was no significant difference found between both groups with or without abdominal drawing in maneuver. Conclusion: Gait parameters and Pain control can be improved by training with abdominal drawing in maneuver thereby it reduces pain and improves gait symmetry in subjects with low back pain.

  14. 46 CFR 35.20-40 - Maneuvering characteristics-T/OC.

    Science.gov (United States)

    2010-10-01

    ... for the normal load and normal ballast condition for: (1) Calm weather—wind 10 knots or less, calm sea... response of the (name of the vessel) may be different from those listed above if any of the following conditions, upon which the maneuvering information is based, are varied: (1) Calm weather—wind 10 knots or...

  15. CARS Measurement of Vibrational/Rotational Temperatures with Total Radiation Visualization behind Strong Shock Waves of 5-7 km/s

    Science.gov (United States)

    Sakurai, K.; Bindu, V. Hima; Niinomi, S.; Ota, M.; Maeno, K.

    2011-05-01

    In the development of aerospace technology the design of space vehicles is important in phase of reentry flight. The space vehicles reenter into the atmosphere with range of 6-8 km/s. The non-equilibrium flow with radiative heating from strongly shocked air ahead of the vehicles plays an important role on the heat flux to the wall surface structure as well as convective heating. The experimental data for re-entry analyses, however, have remained in classical level. Recent development of optical instruments enables us to have novel approach of diagnostics to the re-entry problems. We employ the CARS (Coherent Anti-Stokes Raman Spectroscopy) method for measurement of real gas temperatures of N2 with radiation of the strong shock wave. The CARS signal can be acquired even in the strong radiation area behind the strong shock waves. In addition, we try to use the CCD camera to obtain 2D images of total radiation simultaneously. The strong shock wave in front of the reentering space vehicles is experimentally realigned by free-piston, double-diaphragm shock tube with low density test gas.

  16. Parameter Identification of Ship Maneuvering Models Using Recursive Least Square Method Based on Support Vector Machines

    Directory of Open Access Journals (Sweden)

    Man Zhu

    2017-03-01

    Full Text Available Determination of ship maneuvering models is a tough task of ship maneuverability prediction. Among several prime approaches of estimating ship maneuvering models, system identification combined with the full-scale or free- running model test is preferred. In this contribution, real-time system identification programs using recursive identification method, such as the recursive least square method (RLS, are exerted for on-line identification of ship maneuvering models. However, this method seriously depends on the objects of study and initial values of identified parameters. To overcome this, an intelligent technology, i.e., support vector machines (SVM, is firstly used to estimate initial values of the identified parameters with finite samples. As real measured motion data of the Mariner class ship always involve noise from sensors and external disturbances, the zigzag simulation test data include a substantial quantity of Gaussian white noise. Wavelet method and empirical mode decomposition (EMD are used to filter the data corrupted by noise, respectively. The choice of the sample number for SVM to decide initial values of identified parameters is extensively discussed and analyzed. With de-noised motion data as input-output training samples, parameters of ship maneuvering models are estimated using RLS and SVM-RLS, respectively. The comparison between identification results and true values of parameters demonstrates that both the identified ship maneuvering models from RLS and SVM-RLS have reasonable agreements with simulated motions of the ship, and the increment of the sample for SVM positively affects the identification results. Furthermore, SVM-RLS using data de-noised by EMD shows the highest accuracy and best convergence.

  17. Active control of passive acoustic fields: passive synthetic aperture/Doppler beamforming with data from an autonomous vehicle.

    Science.gov (United States)

    D'Spain, Gerald L; Terrill, Eric; Chadwell, C David; Smith, Jerome A; Lynch, Stephen D

    2006-12-01

    The maneuverability of autonomous underwater vehicles (AUVs) equipped with hull-mounted arrays provides the opportunity to actively modify received acoustic fields to optimize extraction of information. This paper uses ocean acoustic data collected by an AUV-mounted two-dimensional hydrophone array, with overall dimension one-tenth wavelength at 200-500 Hz, to demonstrate aspects of this control through vehicle motion. Source localization is performed using Doppler shifts measured at a set of receiver velocities by both single elements and a physical array. Results show that a source in the presence of a 10-dB higher-level interferer having exactly the same frequency content (as measured by a stationary receiver) is properly localized and that white-noise-constrained adaptive beamforming applied to the physical aperture data in combination with Doppler beamforming provides greater spatial resolution than physical-aperture-alone beamforming and significantly lower sidelobes than single element Doppler beamforming. A new broadband beamformer that adjusts for variations in vehicle velocity on a sample by sample basis is demonstrated with data collected during a high-acceleration maneuver. The importance of including the cost of energy expenditure in determining optimal vehicle motion is demonstrated through simulation, further illustrating how the vehicle characteristics are an integral part of the signal/array processing structure.

  18. Evaluating the effectiveness of active vehicle safety systems.

    Science.gov (United States)

    Jeong, Eunbi; Oh, Cheol

    2017-03-01

    Advanced vehicle safety systems have been widely introduced in transportation systems and are expected to enhance traffic safety. However, these technologies mainly focus on assisting individual vehicles that are equipped with them, and less effort has been made to identify the effect of vehicular technologies on the traffic stream. This study proposed a methodology to assess the effectiveness of active vehicle safety systems (AVSSs), which represent a promising technology to prevent traffic crashes and mitigate injury severity. The proposed AVSS consists of longitudinal and lateral vehicle control systems, which corresponds to the Level 2 vehicle automation presented by the National Highway Safety Administration (NHTSA). The effectiveness evaluation for the proposed technology was conducted in terms of crash potential reduction and congestion mitigation. A microscopic traffic simulator, VISSIM, was used to simulate freeway traffic stream and collect vehicle-maneuvering data. In addition, an external application program interface, VISSIM's COM-interface, was used to implement the AVSS. A surrogate safety assessment model (SSAM) was used to derive indirect safety measures to evaluate the effectiveness of the AVSS. A 16.7-km freeway stretch between the Nakdong and Seonsan interchanges on Korean freeway 45 was selected for the simulation experiments to evaluate the effectiveness of AVSS. A total of five simulation runs for each evaluation scenario were conducted. For the non-incident conditions, the rear-end and lane-change conflicts were reduced by 78.8% and 17.3%, respectively, under the level of service (LOS) D traffic conditions. In addition, the average delay was reduced by 55.5%. However, the system's effectiveness was weakened in the LOS A-C categories. Under incident traffic conditions, the number of rear-end conflicts was reduced by approximately 9.7%. Vehicle delays were reduced by approximately 43.9% with 100% of market penetration rate (MPR). These results

  19. Romance, recovery & community re-entry for criminal justice involved women: Conceptualizing and measuring intimate relationship factors and power.

    Science.gov (United States)

    Walt, Lisa C; Hunter, Bronwyn; Salina, Doreen; Jason, Leonard

    Researchers have suggested that interpersonal relationships, particularly romantic relationships, may influence women's attempts at substance abuse recovery and community re-entry after criminal justice system involvement. The present paper evaluates relational and power theories to conceptualize the influence of romantic partner and romantic relationship qualities on pathways in and out of substance abuse and crime. The paper then combines these conceptualizations with a complementary empirical analysis to describe an ongoing research project that longitudinally investigates these relational and power driven factors on women's substance abuse recovery and community re-entry success among former substance abusing, recently criminally involved women. This paper is designed to encourage the integration of theory and empirical analysis by detailing how each of these concepts are operationalized and measured. Future research and clinical implications are also discussed.

  20. Uncertainty Requirement Analysis for the Orbit, Attitude, and Burn Performance of the 1st Lunar Orbit Insertion Maneuver

    Directory of Open Access Journals (Sweden)

    Young-Joo Song

    2016-12-01

    Full Text Available In this study, the uncertainty requirements for orbit, attitude, and burn performance were estimated and analyzed for the execution of the 1st lunar orbit insertion (LOI maneuver of the Korea Pathfinder Lunar Orbiter (KPLO mission. During the early design phase of the system, associate analysis is an essential design factor as the 1st LOI maneuver is the largest burn that utilizes the onboard propulsion system; the success of the lunar capture is directly affected by the performance achieved. For the analysis, the spacecraft is assumed to have already approached the periselene with a hyperbolic arrival trajectory around the moon. In addition, diverse arrival conditions and mission constraints were considered, such as varying periselene approach velocity, altitude, and orbital period of the capture orbit after execution of the 1st LOI maneuver. The current analysis assumed an impulsive LOI maneuver, and two-body equations of motion were adapted to simplify the problem for a preliminary analysis. Monte Carlo simulations were performed for the statistical analysis to analyze diverse uncertainties that might arise at the moment when the maneuver is executed. As a result, three major requirements were analyzed and estimated for the early design phase. First, the minimum requirements were estimated for the burn performance to be captured around the moon. Second, the requirements for orbit, attitude, and maneuver burn performances were simultaneously estimated and analyzed to maintain the 1st elliptical orbit achieved around the moon within the specified orbital period. Finally, the dispersion requirements on the B-plane aiming at target points to meet the target insertion goal were analyzed and can be utilized as reference target guidelines for a mid-course correction (MCC maneuver during the transfer. More detailed system requirements for the KPLO mission, particularly for the spacecraft bus itself and for the flight dynamics subsystem at the ground

  1. Effects of a reentry plasma sheath on the beam pointing properties of an array antenna

    Directory of Open Access Journals (Sweden)

    Bowen Bai

    2018-03-01

    Full Text Available The reduction in the gain of an on-board antenna caused by a reentry plasma sheath is an important effect that contributes to the reentry “blackout” problem. Using phased array antenna and beamforming technology could provide higher gain and an increase in the communication signal intensity. The attenuation and phase delay of the electromagnetic (EM waves transmitting through the plasma sheath are direction-dependent, and the radiation pattern of the phased array antenna is affected, leading to a deviation in the beam pointing. In this paper, the far-field pattern of a planar array antenna covered by a plasma sheath is deduced analytically by considering both refraction and mutual coupling effects. A comparison between the analytic results and the results from an electromagnetic simulation is carried out. The effect of the plasma sheath on the radiation pattern and the beam pointing errors of the phased array antenna is studied systematically, and the derived results could provide useful information for the correction of pointing errors.

  2. Does Shoe Collar Height Influence Ankle Joint Kinematics and Kinetics in Sagittal Plane Maneuvers?

    Science.gov (United States)

    Yang, Yang; Fang, Ying; Zhang, Xini; He, Junliang; Fu, Weijie

    2017-01-01

    The Objective of the study is to investigate the effects of basketball shoes with different collar heights on ankle kinematics and kinetics and athletic performance in different sagittal plane maneuvers. Twelve participants who wore high-top and low-top basketball shoes (hereafter, HS and LS, respectively) performed a weight-bearing dorsiflexion (WB-DF) maneuver, drop jumps (DJs), and lay-up jumps (LJs). Their sagittal plane kinematics and ground reaction forces were recorded using the Vicon motion capture system and Kistler force plates simultaneously. Moreover, ankle dorsiflexion and plantarflexion angles, moment, power, stiffness, and jump height were calculated. In the WB-DF test, the peak ankle dorsiflexion angle (p = 0.041) was significantly smaller in HS than in LS. Additionally, the peak ankle plantarflexion moment (p = 0.028) and power (p = 0.022) were significantly lower in HS than in LS during LJs but not during DJs. In both jumping maneuvers, no significant differences were found in the jump height or ankle kinematics between the two shoe types. According to the WB-DF test, increasing shoe collar height can effectively reduce the ankle range of motion in the sagittal plane. Although the HS did not restrict the flexion–extension performance of the ankle joint during two jumping maneuvers, an increased shoe collar height can reduce peak ankle plantarflexion moment and peak power during the push-off phase in LJs. Therefore, a higher shoe collar height should be used to circumvent effects on the partial kinetics of the ankle joint in the sagittal plane. Key points An increased shoe collar height effectively reduced ankle joint ROM in the sagittal plane in weight-bearing dorsiflexion maneuver. Shoe collar height did not affect sagittal plane ankle kinematics and had no effect on performance during realistic jumping. Shoe collar height can affect the ankle plantarflexion torque and peak power during the push-off phase in lay-up jump. PMID:29238255

  3. Concept of a Maneuvering Load Control System and Effect on the Fatigue Life Extension

    Directory of Open Access Journals (Sweden)

    N. Paletta

    Full Text Available Abstract This paper presents a methodology for the conceptual design of a Maneuver Load Control system taking into account the airframe flexibility. The system, when switched on, is able to minimize the bending moment augmentation at a wing station near the wing root during an unsteady longitudinal maneuver. The reduction of the incremental wing bending moment due to maneuvers can lead to benefits such as improved pay-loads/gross weight capabilities and/or extended structural fatigue life. The maneuver is performed by following a desired vertical load factor law with elevators deflections, starting from the trim equilibrium in level flight. The system observes load factor and structural bending through accelerometers and calibrated strain sensors and then sends signals to a computer that symmetrically actuates ailerons for reducing the structural bending and elevators for compensating the perturbation to the longitudinal equilibrium. The major limit of this kind of systems appears when it has to be installed on commercial transport aircraft for reduced OEW or augmented wing aspect-ratio. In this case extensive RAMS analyses and high redundancy of the MLC related sub-systems are required by the Certification Authority. Otherwise the structural design must be performed at system off. Thus the unique actual benefit to be gained from the adoption of a MLC system on a commercial transport is the fatigue life extension. An application to a business aircraft responding to the EASA Certification Specifications, Part 25, has been performed. The aircraft used for the numerical application is considered only as a test case-study. Most of design and analysis considerations are applicable also to other aircraft, such as unmanned or military ones, although some design requirements can be clearly different. The estimation of the fatigue life extension of a structural joint (wing lower skin-stringer, located close to the wing root, has been estimated by showing

  4. Pressure applied by the healthcare staff on a cricoids cartilage simulator during Sellick's maneuver in rapid sequence intubation

    NARCIS (Netherlands)

    J.A. Calvache (Jose Andrés); L.C.B. Sandoval (Luz); W.A. Vargas (William Andres)

    2013-01-01

    textabstractBackground: Sellick's maneuver or cricoid pressure is a strategy used to prevent bronchoaspiration during the rapid intubation sequence. Several studies have described that the force required for an adequate maneuver is of 2.5-3.5 kg. The purpose of this paper was to determine the force

  5. Empirical analysis of gross vehicle weight and free flow speed and consideration on its relation with differential speed limit.

    Science.gov (United States)

    Saifizul, Ahmad Abdullah; Yamanaka, Hideo; Karim, Mohamed Rehan

    2011-05-01

    Most highly motorized countries in the world have implemented different speed limits for light weight and heavy weight vehicles. The heavy vehicle speed limit is usually chosen to be lower than that of passenger cars due to the difficulty for the drivers to safely maneuver the heavy vehicle at high speed and greater impact during a crash. However, in many cases, the speed limit for heavy vehicle is set by only considering the vehicle size or category, mostly due to simplicity in enforcement. In this study, traffic and vehicular data for all vehicle types were collected using a weigh-in-motion system installed at Federal Route 54 in Malaysia. The first finding from the data showed that the weight variation for each vehicle category is considerable. Therefore, the effect of gross vehicle weight (GVW) and category of heavy vehicle on free flow speed and their interaction were analyzed using statistical techniques. Empirical analysis results showed that statistically for each type of heavy vehicle, there was a significant relationship between free flow speed of a heavy vehicle and GVW. Specifically, the results suggest that the mean and variance of free flow speed decrease with an increase GVW by the amount unrelated to size and shape for all GVW range. Then, based on the 85th percentile principle, the study proposed a new concept for setting the speed limit for heavy vehicle by incorporating GVW where a different speed limit is imposed to the heavy vehicle, not only based on vehicle classification, but also according to its GVW. Copyright © 2010 Elsevier Ltd. All rights reserved.

  6. Lane Changing Trajectory Planning and Tracking Controller Design for Intelligent Vehicle Running on Curved Road

    Directory of Open Access Journals (Sweden)

    Lie Guo

    2014-01-01

    Full Text Available To enhance the active safety and realize the autonomy of intelligent vehicle on highway curved road, a lane changing trajectory is planned and tracked for lane changing maneuver on curved road. The kinematics model of the intelligent vehicle with nonholonomic constraint feature and the tracking error model are established firstly. The longitudinal and lateral coupling and the difference of curvature radius between the outside and inside lane are taken into account, which is helpful to enhance the authenticity of desired lane changing trajectory on curved road. Then the trajectory tracking controller of closed-loop control structure is derived using integral backstepping method to construct a new virtual variable. The Lyapunov theory is applied to analyze the stability of the proposed tracking controller. Simulation results demonstrate that this controller can guarantee the convergences of both the relative position tracking errors and the position tracking synchronization.

  7. Effects of an alveolar recruitment maneuver on subdural pressure, brain swelling, and mean arterial pressure in patients undergoing supratentorial tumour resection: a randomized crossover study.

    Science.gov (United States)

    Flexman, Alana M; Gooderham, Peter A; Griesdale, Donald E; Argue, Ruth; Toyota, Brian

    2017-06-01

    Although recruitment maneuvers have been advocated as part of a lung protective ventilation strategy, their effects on cerebral physiology during elective neurosurgery are unknown. Our objectives were to determine the effects of an alveolar recruitment maneuver on subdural pressure (SDP), brain relaxation score (BRS), and cerebral perfusion pressure among patients undergoing supratentorial tumour resection. In this prospective crossover study, patients scheduled for resection of a supratentorial brain tumour were randomized to undergo either a recruitment maneuver (30 cm of water for 30 sec) or a "sham" maneuver (5 cm of water for 30 sec), followed by the alternative intervention after a 90-sec equilibration period. Subdural pressure was measured through a dural perforation following opening of the cranium. Subdural pressure and mean arterial pressure (MAP) were recorded continuously. The blinded neurosurgeon provided a BRS at baseline and at the end of each intervention. During each treatment, the changes in SDP, BRS, and MAP were compared. Twenty-one patients underwent the study procedure. The increase in SDP was higher during the recruitment maneuver than during the sham maneuver (difference, 3.9 mmHg; 95% confidence interval [CI], 2.2 to 5.6; P < 0.001). Mean arterial pressure decreased further in the recruitment maneuver than in the sham maneuver (difference, -9.0 mmHg; 95% CI, -12.5 to -5.6; P < 0.001). Cerebral perfusion pressure decreased 14 mmHg (95% CI, 4 to 24) during the recruitment maneuver. The BRS did not change with either maneuver. Our results suggest that recruitment maneuvers increase subdural pressure and reduce cerebral perfusion pressure, although the clinical importance of these findings is thus far unknown. This trial was registered with ClinicalTrials.gov, NCT02093117.

  8. Conflict resolution maneuvers during near miss encounters with cockpit traffic displays

    Science.gov (United States)

    Palmer, E.

    1983-01-01

    The benefits and liabilities associated with pilots' use of a cockpit traffic display to assess the threat posed by air traffic and to make small maneuvers to avoid situations which would result in collision avoidance advisories are experimentally studied. The crew's task was to fly a simulated wide-body aircraft along a straight course at constant altitude while intruder aircraft appeared on a variety of converging trajectories. The main experimental variables were the amount and quality of the information displayed on the intruder aircraft's estimated future position. Pilots were to maintain a horizontal separation of at least 1.5 nautical miles or a vertical separation of 500 ft, so that collision avoidance advisories would not be triggered. The results show that pilots could usually maneuver to provide the specified separation but often made course deviations greater than 1.5 nm or 500 ft.

  9. Coordination Logic for Repulsive Resolution Maneuvers

    Science.gov (United States)

    Narkawicz, Anthony J.; Munoz, Cesar A.; Dutle, Aaron M.

    2016-01-01

    This paper presents an algorithm for determining the direction an aircraft should maneuver in the event of a potential conflict with another aircraft. The algorithm is implicitly coordinated, meaning that with perfectly reliable computations and information, it will in- dependently provide directional information that is guaranteed to be coordinated without any additional information exchange or direct communication. The logic is inspired by the logic of TCAS II, the airborne system designed to reduce the risk of mid-air collisions between aircraft. TCAS II provides pilots with only vertical resolution advice, while the proposed algorithm, using a similar logic, provides implicitly coordinated vertical and horizontal directional advice.

  10. Ocular VEMPs indicate repositioning of otoconia to the utricle after successful liberatory maneuvers in benign paroxysmal positioning vertigo

    Science.gov (United States)

    BREMOVA, TATIANA; BAYER, OTMAR; AGRAWAL, YURI; KREMMYDA, OLYMPIA; BRANDT, THOMAS; TEUFEL, JULIAN; STRUPP, MICHAEL

    2014-01-01

    Conclusions This study showed a transient increase of ocular vestibular evoked myogenic potential (oVEMP) amplitudes in the affected ear after successful liberatory maneuvers and no changes in cervical VEMP (cVEMP) amplitudes. These findings support the hypothesis that successful liberatory maneuvers can lead to a repositioning of otoconia to the utricle. Objectives To evaluate whether oVEMP amplitudes increase after successful liberatory maneuvers in patients with posterior semicircular canal benign paroxysmal positioning vertigo (pc-BPPV), while cVEMP amplitudes do not change. These findings may indicate a successful repositioning of dislodged otoconia to the utricular macula, but not to the saccular macula. Methods Thirty patients with unilateral pc-BPPV were prospectively examined with bone-conducted oVEMP and air-conducted cVEMP at four time points: before, after, 1 week after, and 1 month after the liberatory maneuvers (Sémont maneuvers). Results At the 1-week follow-up, 20 of 30 patients were asymptomatic (responders); BPPV could still be induced in the other 10 (non-responders). In responders the mean n10 amplitude on the affected side increased from 12 ± 6.5 μV at baseline (before the treatment) to 15.9 ± 7.1 μV at 1 week after treatment; this increase was significantly (p = 0.001) higher in responders than in non-responders. cVEMP did not differ significantly. PMID:24245699

  11. [Effects of lung protective ventilation strategy combined with lung recruitment maneuver on patients with severe burn complicated with acute respiratory distress syndrome].

    Science.gov (United States)

    Li, Xiaojian; Zhong, Xiaomin; Deng, Zhongyuan; Zhang Xuhui; Zhang, Zhi; Zhang, Tao; Tang, Wenbin; Chen, Bib; Liu, Changling; Cao, Wenjuan

    2014-08-01

    To investigate the effects of lung protective ventilation strategy combined with lung recruitment maneuver on ARDS complicating patients with severe burn. Clinical data of 15 severely burned patients with ARDS admitted to our burn ICU from September 2011 to September 2013 and conforming to the study criteria were analyzed. Right after the diagnosis of acute lung injury/ARDS, patients received mechanical ventilation with lung protective ventilation strategy. When the oxygenation index (OI) was below or equal to 200 mmHg (1 mmHg = 0. 133 kPa), lung recruitment maneuver was performed combining incremental positive end-expiratory pressure. When OI was above 200 mmHg, lung recruitment maneuver was stopped and ventilation with lung protective ventilation strategy was continued. When OI was above 300 mmHg, mechanical ventilation was stopped. Before combining lung recruitment maneuver, 24 h after combining lung recruitment maneuver, and at the end of combining lung recruitment maneuver, variables of blood gas analysis (pH, PaO2, and PaCO2) were obtained by blood gas analyzer, and the OI values were calculated; hemodynamic parameters including heart rate, mean arterial pressure (MAP), central venous pressure (CVP) of all patients and the cardiac output (CO), extravascular lung water index (EVLWI) of 4 patients who received pulse contour cardiac output (PiCCO) monitoring were monitored. Treatment measures and outcome of patients were recorded. Data were processed with analysis of variance of repeated measurement of a single group and LSD test. (1) Before combining lung recruitment maneuver, 24 h after combining lung recruitment maneuver, and at the end of combining lung recruitment maneuver, the levels of PaO2 and OI of patients were respectively (77 ± 8), (113 ± 5), (142 ± 6) mmHg, and (128 ± 12), (188 ± 8), (237 ± 10) mmHg. As a whole, levels of PaO2 and OI changed significantly at different time points (with F values respectively 860. 96 and 842. 09, P values below

  12. Does Shoe Collar Height Influence Ankle Joint Kinematics and Kinetics in Sagittal Plane Maneuvers?

    Directory of Open Access Journals (Sweden)

    Yang Yang, Ying Fang, Xini Zhang, Junliang He, Weijie Fu

    2017-12-01

    Full Text Available The Objective of the study is to investigate the effects of basketball shoes with different collar heights on ankle kinematics and kinetics and athletic performance in different sagittal plane maneuvers. Twelve participants who wore high-top and low-top basketball shoes (hereafter, HS and LS, respectively performed a weight-bearing dorsiflexion (WB-DF maneuver, drop jumps (DJs, and lay-up jumps (LJs. Their sagittal plane kinematics and ground reaction forces were recorded using the Vicon motion capture system and Kistler force plates simultaneously. Moreover, ankle dorsiflexion and plantarflexion angles, moment, power, stiffness, and jump height were calculated. In the WB-DF test, the peak ankle dorsiflexion angle (p = 0.041 was significantly smaller in HS than in LS. Additionally, the peak ankle plantarflexion moment (p = 0.028 and power (p = 0.022 were significantly lower in HS than in LS during LJs but not during DJs. In both jumping maneuvers, no significant differences were found in the jump height or ankle kinematics between the two shoe types. According to the WB-DF test, increasing shoe collar height can effectively reduce the ankle range of motion in the sagittal plane. Although the HS did not restrict the flexion–extension performance of the ankle joint during two jumping maneuvers, an increased shoe collar height can reduce peak ankle plantarflexion moment and peak power during the push-off phase in LJs. Therefore, a higher shoe collar height should be used to circumvent effects on the partial kinetics of the ankle joint in the sagittal plane.

  13. Does Shoe Collar Height Influence Ankle Joint Kinematics and Kinetics in Sagittal Plane Maneuvers?

    Science.gov (United States)

    Yang, Yang; Fang, Ying; Zhang, Xini; He, Junliang; Fu, Weijie

    2017-12-01

    The Objective of the study is to investigate the effects of basketball shoes with different collar heights on ankle kinematics and kinetics and athletic performance in different sagittal plane maneuvers. Twelve participants who wore high-top and low-top basketball shoes (hereafter, HS and LS, respectively) performed a weight-bearing dorsiflexion (WB-DF) maneuver, drop jumps (DJs), and lay-up jumps (LJs). Their sagittal plane kinematics and ground reaction forces were recorded using the Vicon motion capture system and Kistler force plates simultaneously. Moreover, ankle dorsiflexion and plantarflexion angles, moment, power, stiffness, and jump height were calculated. In the WB-DF test, the peak ankle dorsiflexion angle (p = 0.041) was significantly smaller in HS than in LS. Additionally, the peak ankle plantarflexion moment (p = 0.028) and power (p = 0.022) were significantly lower in HS than in LS during LJs but not during DJs. In both jumping maneuvers, no significant differences were found in the jump height or ankle kinematics between the two shoe types. According to the WB-DF test, increasing shoe collar height can effectively reduce the ankle range of motion in the sagittal plane. Although the HS did not restrict the flexion-extension performance of the ankle joint during two jumping maneuvers, an increased shoe collar height can reduce peak ankle plantarflexion moment and peak power during the push-off phase in LJs. Therefore, a higher shoe collar height should be used to circumvent effects on the partial kinetics of the ankle joint in the sagittal plane.

  14. Re-entry experiences of Black men living with HIV/AIDS after release from prison: Intersectionality and implications for care.

    Science.gov (United States)

    Sun, Shufang; Crooks, Natasha; Kemnitz, Rebecca; Westergaard, Ryan P

    2018-06-12

    Both the HIV epidemic and incarceration disproportionately affect Black men in the United States. A critical period for incarcerated Black men living with HIV/AIDS is re-entry into the community, which is often associated with adverse health outcomes. Additionally, Black men living with HIV/AIDS involved in the criminal justice system are burdened by multiple, intersecting disadvantaged identities and social positions. This study aimed to examine community re-entry experiences among Black men living with HIV/AIDS from an intersectional perspective. In-depth, semi-structured interviews were conducted with 16 incarcerated Black men in Wisconsin, at pre-release from prison and six months after re-entry. Thematic analysis guided by intersectionality theory was used to analyze interview transcripts. Seven emerged themes included Intersectional Identities and Social Positions, Family Support, Neighborhood Violence, Relationship with Law Enforcement, Employment, Mental Health Concerns, and Medical Care and Medication Management. Intersecting identities and social positions interact with factors at multiple levels to inform health and HIV care. A conceptual framework was developed to illustrate relationships among themes. Findings demonstrate the relevance of intersectionality theory in HIV care with Black men involved in criminal justice system. Incorporating a social-ecological perspective into intersectionality framework could be useful in theoretical and empirical research. Disenfranchised communities may particularly benefit from interventions that address community- and systemic-level issues. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. Orbital maneuvering end effectors

    Science.gov (United States)

    Myers, W. Neill (Inventor); Forbes, John C. (Inventor); Barnes, Wayne L. (Inventor)

    1986-01-01

    This invention relates to an end effector device for grasping and maneuvering objects such as berthing handles of a space telescope. The device includes a V-shaped capture window defined as inclined surfaces in parallel face plates which converge toward a retainer recess in which the handle is retained. A pivotal finger (30) meshes with a pair of pivoted fingers which rotate in counterrotation. The fingers rotate to pull a handle within the capture window into recess where latches lock handle in the recess. To align the capture window, plates may be cocked plus or minus five degrees on base. Drive means is included in the form of a motor coupled with a harmonic drive speed reducer, which provides for slow movement of the fingers at a high torque so that large articles may be handled. Novelty of the invention is believed to reside in the combined intermeshing finger structure, drive means and the harmonic drive speed reducer, which features provide the required maneuverability and strength.

  16. A Comprehensive Structural Dynamic Analysis Approach for Multi Mission Earth Entry Vehicle (MMEEV) Development

    Science.gov (United States)

    Perino, Scott; Bayandor, Javid; Siddens, Aaron

    2012-01-01

    The anticipated NASA Mars Sample Return Mission (MSR) requires a simple and reliable method in which to return collected Martian samples back to earth for scientific analysis. The Multi-Mission Earth Entry Vehicle (MMEEV) is NASA's proposed solution to this MSR requirement. Key aspects of the MMEEV are its reliable and passive operation, energy absorbing foam-composite structure, and modular impact sphere (IS) design. To aid in the development of an EEV design that can be modified for various missions requirements, two fully parametric finite element models were developed. The first model was developed in an explicit finite element code and was designed to evaluate the impact response of the vehicle and payload during the final stage of the vehicle's return to earth. The second model was developed in an explicit code and was designed to evaluate the static and dynamic structural response of the vehicle during launch and reentry. In contrast to most other FE models, built through a Graphical User Interface (GUI) pre-processor, the current model was developed using a coding technique that allows the analyst to quickly change nearly all aspects of the model including: geometric dimensions, material properties, load and boundary conditions, mesh properties, and analysis controls. Using the developed design tool, a full range of proposed designs can quickly be analyzed numerically and thus the design trade space for the EEV can be fully understood. An engineer can then quickly reach the best design for a specific mission and also adapt and optimize the general design for different missions.

  17. In-Space Repair and Refurbishment of Thermal Protection System Structures for Reusable Launch Vehicles

    Science.gov (United States)

    Singh, M.

    2007-01-01

    Advanced repair and refurbishment technologies are critically needed for the thermal protection system of current space transportation systems as well as for future launch and crew return vehicles. There is a history of damage to these systems from impact during ground handling or ice during launch. In addition, there exists the potential for in-orbit damage from micrometeoroid and orbital debris impact as well as different factors (weather, launch acoustics, shearing, etc.) during launch and re-entry. The GRC developed GRABER (Glenn Refractory Adhesive for Bonding and Exterior Repair) material has shown multiuse capability for repair of small cracks and damage in reinforced carbon-carbon (RCC) material. The concept consists of preparing an adhesive paste of desired ceramic with appropriate additives and then applying the paste to the damaged/cracked area of the RCC composites with an adhesive delivery system. The adhesive paste cures at 100-120 C and transforms into a high temperature ceramic during reentry conditions. A number of plasma torch and ArcJet tests were carried out to evaluate the crack repair capability of GRABER materials for Reinforced Carbon-Carbon (RCC) composites. For the large area repair applications, Integrated Systems for Tile and Leading Edge Repair (InSTALER) have been developed and evaluated under various ArcJet testing conditions. In this presentation, performance of the repair materials as applied to RCC is discussed. Additionally, critical in-space repair needs and technical challenges are reviewed.

  18. Comparing Black and White Drug Offenders: Implications for Racial Disparities in Criminal Justice and Reentry Policy and Programming.

    Science.gov (United States)

    Rosenberg, Alana; Groves, Allison K; Blankenship, Kim M

    2017-01-01

    Despite knowledge of racial bias for drug-related criminal justice involvement and its collateral consequences, we know less about differences between Black and White drug offenders. We compare 243 Blacks and White non-violent drug offenders in New Haven, CT for demographic characteristics, substance use, and re-entry services accessed. Blacks were significantly more likely to have sales and possession charges, significantly more likely to prefer marijuana, a less addictive drug, and significantly less likely to report having severe drug problems. For both races, drug treatment was the most common service accessed through supervision. These comparisons suggest different reasons for committing drug-related crimes and thus, different reentry programming needs. While drug treatment is critical for all who need it, for racial justice, we must also intervene to address other needs of offenders, such as poverty alleviation and employment opportunities.

  19. Aerothermodynamics of expert ballistic vehicle at hypersonic speeds

    Science.gov (United States)

    Kharitonov, A. M.; Adamov, N. P.; Chirkashenko, V. F.; Mazhul, I. I.; Shpak, S. I.; Shiplyuk, A. N.; Vasenyov, L. G.; Zvegintsev, V. I.; Muylaert, J. M.

    2012-01-01

    The European EXPErimental Re-entry Test bed (EXPERT) vehicle is intended for studying various basic phenomena, such as the boundary-layer transition on blunted bodies, real gas effects during shock wave/boundary layer interaction, and effect of surface catalycity. Another task is to develop methods for recalculating the results of windtunnel experiments to flight conditions. The EXPERT program implies large-scale preflight research, in particular, various calculations with the use of advanced numerical methods, experimental studies of the models in various wind tunnels, and comparative analysis of data obtained for possible extrapolation of data to in-flight conditions. The experimental studies are performed in various aerodynamic centers of Europe and Russia under contracts with ESA-ESTEC. In particular, extensive experiments are performed at the Von Karman Institute for Fluid Dynamics (VKI, Belgium) and also at the DLR aerospace center in Germany. At ITAM SB RAS, the experimental studies of the EXPERT model characteristic were performed under ISTC Projects 2109, 3151, and 3550, in the T-313 supersonic wind tunnel and AT-303 hypersonic wind tunnel.

  20. Radiofrequency ablation of rabbit liver in vivo: effect of the Pringle maneuver on pathologic changes in liver surrounding the ablation zone

    International Nuclear Information System (INIS)

    Kim, Seung Kwon; Lim, Hyo K; Ryu, Jeong Ah

    2004-01-01

    We wished to evaluate the effect of the Pringle maneuver (occlusion of both the hepatic artery and portal vein) on the pathologic changes in the hepatic vessels, bile ducts and liver parenchyma surrounding the ablation zone in rabbit livers. Radiofrequency (RF) ablation zones were created in the livers of 24 rabbits in vivo by using a 50-W, 480-kHz monopolar RF generator and a 15-gauge expandable electrode with four sharp prongs for 7 mins. The tips of the electrodes were placed in the liver parenchyma near the porta hepatis with the distal 1 cm of their prongs deployed. Radiofrequency ablation was performed in the groups with (n=12 rabbits) and without (n=12 rabbits) the Pringle maneuver. Three animals of each group were sacrificed immediately, three days (the acute phase), seven days (the early subacute phase) and two weeks (the late subacute phase) after RF ablation. The ablation zones were excised and serial pathologic changes in the hepatic vessels, bile ducts and liver parenchyma surrounding the ablation zone were evaluated. With the Pringle maneuver, portal vein thrombosis was found in three cases (in the immediate [n=2] and acute phase [n=1]), bile duct dilatation adjacent to the ablation zone was found in one case (in the late subacute phase [n=1]), infarction adjacent to the ablation zone was found in three cases (in the early subacute [n=2] and late subacute [n=1] phases). None of the above changes was found in the livers ablated without the Pringle maneuver. On the microscopic findings, centrilobular congestion, sinusoidal congestion, sinusoidal platelet and neutrophilic adhesion, and hepatocyte vacuolar and ballooning changes in liver ablated with Pringle maneuver showed more significant changes than in those livers ablated without the Pringle maneuver (ρ < 0.05). Radiofrequency ablation with the Pringle maneuver created more severe pathologic changes in the portal vein, bile ducts and liver parenchyma surrounding the ablation zone compared with RF

  1. Effectiveness of Otolith Repositioning Maneuvers and Vestibular Rehabilitation exercises in elderly people with Benign Paroxysmal Positional Vertigo: a systematic review

    Directory of Open Access Journals (Sweden)

    Karyna Figueiredo Ribeiro

    Full Text Available Abstract Introduction Benign Paroxysmal Positional Vertigo is highly prevalent in elderly people. This condition is related to vertigo, hearing loss, tinnitus, poor balance, gait disturbance, and an increase in risk of falls, leading to postural changes and quality of life decreasing. Objective To evaluate the outcomes obtained by clinical trials on the effectiveness of Otolith Repositioning Maneuver and Vestibular Rehabilitation exercises in the treatment of Benign Paroxysmal Positional Vertigo in elderly. Methods The literature research was performed using PubMed, Scopus, Web of Science and PEDro databases, and included randomized controlled clinical trials in English, Spanish and Portuguese, published during January 2000 to August 2016. The methodological quality of the studies was assessed by PEDro score and the outcomes analysis was done by critical revision of content. Results Six studies were fully reviewed. The average age of participants ranged between 67.2 and 74.5 years. The articles were classified from 2 to 7/10 through the PEDro score. The main outcome measures analyzed were vertigo, positional nystagmus and postural balance. Additionally, the number of maneuvers necessary for remission of the symptoms, the quality of life, and the functionality were also assessed. The majority of the clinical trials used Otolith Repositioning Maneuver (n = 5 and 3 articles performed Vestibular Rehabilitation exercises in addition to Otolith Repositioning Maneuver or pharmacotherapy. One study showed that the addition of movement restrictions after maneuver did not influence the outcomes. Conclusion There was a trend of improvement in Benign Paroxysmal Positional Vertigo symptomatology in elderly patients who underwent Otolith Repositioning Maneuver. There is sparse evidence from methodologically robust clinical trials that examined the effects of Otolith Repositioning Maneuver and Vestibular Rehabilitation exercises for treating Benign Paroxysmal

  2. Performance evaluation of control strategies for power maneuvering event of the KALIMER-600

    International Nuclear Information System (INIS)

    Seong, Seong-Hwan; Kim, Seong-O

    2012-01-01

    Highlights: ► The performance of three power control strategies of the KALIMER-600 was evaluated. ► There are turbine-, reactor- and feedwater-leading strategies in this study. ► For this, a performance analysis code was developed in this study. ► Simulation results show the turbine-leading is the best alternative. ► The feedwater-leading seems to be the second option. - Abstract: A sodium-cooled fast reactor named KALIMER-600 has been under development at KAERI. It is a pool-type reactor with the intermediate loops filled with sodium and has a superheated steam cycle with the once-through steam generators. Since the characteristic of the power control of the KALIMER-600 is expected to be different with that of a conventional power plant, the performance of the turbine-leading, reactor-leading and feedwater-leading control strategies for a power maneuvering event of the KALIMER-600 was evaluated in this study. The turbine-leading and reactor-leading strategies are very similar to those of a conventional water reactor but the feedwater-leading strategy is very similar to that of a fossil plant. Also, a performance analysis code which can analyze the plant dynamics of the KALIMER-600 and simulate the control actions during a power maneuvering event was developed. To evaluate the performance of control strategies, a simple power maneuvering event including a 10% step change and a ramp change with a rate of 5%/min was assumed and simulated. Through the simulation results, the turbine-leading strategy is proven to be very suitable for the KALIMER-600 and the feedwater-leading strategy for power maneuvering seems to be a good alternative for the power control. In further studies, various performance-related events such as the reactor power cutback, turbine runback and some transients will be evaluated and the best control strategy will be suggested.

  3. [Efficacy of quick repositioning maneuver for posterior semicircular canal benign paroxysmal positional vertigo in different age groups].

    Science.gov (United States)

    Zhang, Hao; Li, Jinrang; Guo, Pengfei; Tian, Shiyu; Li, Keliang

    2015-12-01

    To observe the short and long-term efficacy of quick repositioning maneuver for posterior semicircular canal benign paroxysmal positional vertigo (PC-BPPV) in different age groups. The clinical data of 113 adult patients with single PC-BPPV who underwent quick repositioning maneuver from July 2009 to February 2015 were retrospectively analyzed. The quick repositioning maneuver was to roll the patient from involved side to healthy side in the coronal plane for 180° as quickly as possible. The patients were divided into 3 groups according to different ages: young group (age group (45 ≤ age group (≥ 60 years). The short and long term outcomes of the three groups were observed. The left ear was involved in 58 cases (51.3%) and the right ear in 55 cases (48.7%). The short term improvement rates of the young, middle-age and the old groups were 92.5%, 93.6% and 92.3% respectively, and the long term improvement rate was 90.0%, 85.1% and 73.1% respectively. There was no significant difference among the three groups in short and long term outcomes (P > 0.05). The recurrence rate of the three groups was 5.0%, 6.4% and 15.4% respectively, also no significant difference (P > 0.05). The quick repositioning maneuver along the coronal plane for PC-BPPV has a definite effect for every age groups. The method is simple, rapid and easy to master, and the patients are tolerated the maneuver well without evident side effect.

  4. Home particle repositioning maneuver to prevent the recurrence of posterior canal BPPV.

    Science.gov (United States)

    Ismail, Elshahat Ibrahem; Morgan, Ashraf Elsayed; Abdeltawwab, Mohamed Moustafa

    2018-03-08

    To check the value of home particle repositioning maneuver in the prevention of the recurrence of posterior canal benign paroxysmal positional vertigo (pc-BPPV). In this study, patients diagnosed as unilateral posterior canal BPPV were selected following an accurate evaluation using video goggle VNG system. All patients were managed by particle repositioning maneuver (PRM). Patients were instructed to do home PRM once weekly for five years. Then, they were divided into two groups (according to choice of patient to do PRM). The first group (control group) consisted of 144 patients who did not do home PRM; whereas the second group (study group) included 165 patients who performed home PRM. All patients (control & study groups) were followed up every four months for five years. The study found out that the recurrence rate of pc-BPPV in control group was 33 patients in the first year (27.2%), 11 patients in second year (9%), 5 patients in third year (4%), 3 patients in fourth year (2.5%) and 3 patients in fifth year (2.5%). The recurrence of pc-BPPV in the treated side (study group) of patients was reported as 5 patients in the first year (3.5%), 3 patients in the second year (2%), 2 patients in the third year (1.4%), 2 patients in the fourth year (1.4%), and 1 patient in the fifth year (0.7%). There was statistically significant difference between the control and the study groups regarding the recurrence rates in the first year follow up which was the highest in first four months. Home particle repositioning maneuver has the capacity to prevent the recurrence of pc-BPPV. It proved to be more successful and functional in minimizing the recurrence of the disease in the study than in the control group. Hence, home particle repositioning maneuver is highly recommended for one year at least in pc-BPPV. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Differential Evolution Optimization for Targeting Spacecraft Maneuver Plans

    Science.gov (United States)

    Mattern, Daniel

    2016-01-01

    Previous analysis identified specific orbital parameters as being safer for conjunction avoidance for the TDRS fleet. With TDRS-9 being considered an at-risk spacecraft, a potential conjunction concern was raised should TDRS-9 fail while at a longitude of 12W. This document summarizes the analysis performed to identify if these specific orbital parameters could be targeted using the remaining drift-termination maneuvers for the relocation of TDRS-9 from 41W longitude to 12W longitude.

  6. The Rapier or the Club: The Relationship between Attrition and Maneuver Warfare

    National Research Council Canada - National Science Library

    Springman, Jeffrey A

    2006-01-01

    ...? This project compares the relationship between attrition and maneuver warfare. The study considers whether there are times when wars of attrition should be fought, and whether there are conditions that force wars of attrition...

  7. Focal and Reentrant Mechanisms of Torsades de Pointes: EAD, Reentry, or Chimera?

    Directory of Open Access Journals (Sweden)

    Yuji Murakawa, MD

    2011-01-01

    Full Text Available Torsades de pointes (TdP. is characterized not only by its electrocardiographic morphology but also by a tendency to spontaneously terminate. Although clinical and experimental studies suggested that TdP is triggered exclusively by early afterdepolarization, the reentrant mechanism seems to play a certain role in its maintenance. In this article, I review the studies that investigated the origin and activation sequences of the twisting QRS complexes of TdP, and discuss whether it is fortunate or unfortunate for us if TdP has something to do with reentry.

  8. Effects of positive end-expiratory pressure and recruitment maneuvers in a ventilator-induced injury mouse model.

    Directory of Open Access Journals (Sweden)

    Laura A Cagle

    Full Text Available Positive-pressure mechanical ventilation is an essential therapeutic intervention, yet it causes the clinical syndrome known as ventilator-induced lung injury. Various lung protective mechanical ventilation strategies have attempted to reduce or prevent ventilator-induced lung injury but few modalities have proven effective. A model that isolates the contribution of mechanical ventilation on the development of acute lung injury is needed to better understand biologic mechanisms that lead to ventilator-induced lung injury.To evaluate the effects of positive end-expiratory pressure and recruitment maneuvers in reducing lung injury in a ventilator-induced lung injury murine model in short- and longer-term ventilation.5-12 week-old female BALB/c mice (n = 85 were anesthetized, placed on mechanical ventilation for either 2 hrs or 4 hrs with either low tidal volume (8 ml/kg or high tidal volume (15 ml/kg with or without positive end-expiratory pressure and recruitment maneuvers.Alteration of the alveolar-capillary barrier was noted at 2 hrs of high tidal volume ventilation. Standardized histology scores, influx of bronchoalveolar lavage albumin, proinflammatory cytokines, and absolute neutrophils were significantly higher in the high-tidal volume ventilation group at 4 hours of ventilation. Application of positive end-expiratory pressure resulted in significantly decreased standardized histology scores and bronchoalveolar absolute neutrophil counts at low- and high-tidal volume ventilation, respectively. Recruitment maneuvers were essential to maintain pulmonary compliance at both 2 and 4 hrs of ventilation.Signs of ventilator-induced lung injury are evident soon after high tidal volume ventilation (as early as 2 hours and lung injury worsens with longer-term ventilation (4 hrs. Application of positive end-expiratory pressure and recruitment maneuvers are protective against worsening VILI across all time points. Dynamic compliance can be used guide

  9. Effects of positive end-expiratory pressure and recruitment maneuvers in a ventilator-induced injury mouse model

    Science.gov (United States)

    Franzi, Lisa M.; Linderholm, Angela L.; Last, Jerold A.; Adams, Jason Y.; Harper, Richart W.

    2017-01-01

    Background Positive-pressure mechanical ventilation is an essential therapeutic intervention, yet it causes the clinical syndrome known as ventilator-induced lung injury. Various lung protective mechanical ventilation strategies have attempted to reduce or prevent ventilator-induced lung injury but few modalities have proven effective. A model that isolates the contribution of mechanical ventilation on the development of acute lung injury is needed to better understand biologic mechanisms that lead to ventilator-induced lung injury. Objectives To evaluate the effects of positive end-expiratory pressure and recruitment maneuvers in reducing lung injury in a ventilator-induced lung injury murine model in short- and longer-term ventilation. Methods 5–12 week-old female BALB/c mice (n = 85) were anesthetized, placed on mechanical ventilation for either 2 hrs or 4 hrs with either low tidal volume (8 ml/kg) or high tidal volume (15 ml/kg) with or without positive end-expiratory pressure and recruitment maneuvers. Results Alteration of the alveolar-capillary barrier was noted at 2 hrs of high tidal volume ventilation. Standardized histology scores, influx of bronchoalveolar lavage albumin, proinflammatory cytokines, and absolute neutrophils were significantly higher in the high-tidal volume ventilation group at 4 hours of ventilation. Application of positive end-expiratory pressure resulted in significantly decreased standardized histology scores and bronchoalveolar absolute neutrophil counts at low- and high-tidal volume ventilation, respectively. Recruitment maneuvers were essential to maintain pulmonary compliance at both 2 and 4 hrs of ventilation. Conclusions Signs of ventilator-induced lung injury are evident soon after high tidal volume ventilation (as early as 2 hours) and lung injury worsens with longer-term ventilation (4 hrs). Application of positive end-expiratory pressure and recruitment maneuvers are protective against worsening VILI across all time points

  10. Effects of positive end-expiratory pressure and recruitment maneuvers in a ventilator-induced injury mouse model.

    Science.gov (United States)

    Cagle, Laura A; Franzi, Lisa M; Linderholm, Angela L; Last, Jerold A; Adams, Jason Y; Harper, Richart W; Kenyon, Nicholas J

    2017-01-01

    Positive-pressure mechanical ventilation is an essential therapeutic intervention, yet it causes the clinical syndrome known as ventilator-induced lung injury. Various lung protective mechanical ventilation strategies have attempted to reduce or prevent ventilator-induced lung injury but few modalities have proven effective. A model that isolates the contribution of mechanical ventilation on the development of acute lung injury is needed to better understand biologic mechanisms that lead to ventilator-induced lung injury. To evaluate the effects of positive end-expiratory pressure and recruitment maneuvers in reducing lung injury in a ventilator-induced lung injury murine model in short- and longer-term ventilation. 5-12 week-old female BALB/c mice (n = 85) were anesthetized, placed on mechanical ventilation for either 2 hrs or 4 hrs with either low tidal volume (8 ml/kg) or high tidal volume (15 ml/kg) with or without positive end-expiratory pressure and recruitment maneuvers. Alteration of the alveolar-capillary barrier was noted at 2 hrs of high tidal volume ventilation. Standardized histology scores, influx of bronchoalveolar lavage albumin, proinflammatory cytokines, and absolute neutrophils were significantly higher in the high-tidal volume ventilation group at 4 hours of ventilation. Application of positive end-expiratory pressure resulted in significantly decreased standardized histology scores and bronchoalveolar absolute neutrophil counts at low- and high-tidal volume ventilation, respectively. Recruitment maneuvers were essential to maintain pulmonary compliance at both 2 and 4 hrs of ventilation. Signs of ventilator-induced lung injury are evident soon after high tidal volume ventilation (as early as 2 hours) and lung injury worsens with longer-term ventilation (4 hrs). Application of positive end-expiratory pressure and recruitment maneuvers are protective against worsening VILI across all time points. Dynamic compliance can be used guide the frequency

  11. Entry Descent and Landing Workshop Proceedings. Volume 1; Inflatable Reentry Vehicle Experiment-3 (IRVE-3) Project Overview & Instrumentation

    Science.gov (United States)

    Dillman, Robert

    2015-01-01

    Entry mass at Mars is limited by the payload size that can be carried by a rigid capsule that can fit inside the launch vehicle fairing. Landing altitude at Mars is limited by ballistic coefficient (mass per area) of entry body. Inflatable technologies allow payload to use full diameter of launch fairing, and deploy larger aeroshell before atmospheric interface, landing more payload at a higher altitude. Also useful for return of large payloads from Low Earth Orbit (LEO).

  12. Using the Design for Demise Philosophy to Reduce Casualty Risk Due to Reentering Spacecraft

    Science.gov (United States)

    Kelley, R. L.

    2012-01-01

    Recently the reentry of a number of vehicles has garnered public attention due to their risk of human casualty due to fragments surviving reentry. In order to minimize this risk for their vehicles, a number of NASA programs have actively sought to minimize the number of components likely to survive reentry at the end of their spacecraft's life in order to meet and/or exceed NASA safety standards for controlled and uncontrolled reentering vehicles. This philosophy, referred to as "Design for Demise" or D4D, has steadily been adopted, to at least some degree, by numerous programs. The result is that many programs are requesting evaluations of components at the early stages of vehicle design, as they strive to find ways to reduce the number surviving components while ensuring that the components meet the performance requirements of their mission. This paper will discuss some of the methods that have been employed to ensure that the consequences of the vehicle s end-of-life are considered at the beginning of the design process. In addition this paper will discuss the technical challenges overcome, as well as some of the more creative solutions which have been utilized to reduce casualty risk.

  13. ARV Re-Entry Module Aerodynmics And Aerothermodynamics

    Science.gov (United States)

    Scheer, Heloise; Tran, Philippe; Berthe, Philippe

    2011-05-01

    Astrium-ST is the prime contractor of ARV phase A and is especially in charge of designing the Reentry Module (RM). The RM aeroshape has been defined following a trade-off. High level system requirements were derived with particular attention paid on minimum lift-over-drag ratio, trim incidence, centre-of-gravity lateral off-set and box size, volumetric efficiency, attitude at parachute deployment, flight heritage and aeroheating. Since moderate cross-range and thus L/D ratio were required, the aeroshape trade-off has been performed among blunt capsule candidates. Two front- shield families were considered: spherical (Apollo/ARD/Soyuz type) and sphero-conical (CTV type) segment front-shield. The rear-cone angle was set to 20° for internal pressurized volume and accommodation purposes. Figures of merit were assessed and a spherical front- shield of ARD type with a 20° rear-cone section was selected and proposed for further investigations. Maximum benefits will be taken from ARD flight heritage. CFD and WTT campaigns plans will be presented including preliminary results.

  14. Cooperative vehicle control, feature tracking and ocean sampling

    Science.gov (United States)

    Fiorelli, Edward A.

    This dissertation concerns the development of a feedback control framework for coordinating multiple, sensor-equipped, autonomous vehicles into mobile sensing arrays to perform adaptive sampling of observed fields. The use of feedback is central; it maintains the array, i.e. regulates formation position, orientation, and shape, and directs the array to perform its sampling mission in response to measurements taken by each vehicle. Specifically, we address how to perform autonomous gradient tracking and feature detection in an unknown field such as temperature or salinity in the ocean. Artificial potentials and virtual bodies are used to coordinate the autonomous vehicles, modelled as point masses (with unit mass). The virtual bodies consist of linked, moving reference points called virtual leaders. Artificial potentials couple the dynamics of the vehicles and the virtual bodies. The dynamics of the virtual body are then prescribed allowing the virtual body, and thus the vehicle group, to perform maneuvers that include translation, rotation and contraction/expansion, while ensuring that the formation error remains bounded. This methodology is called the Virtual Body and Artificial Potential (VBAP) methodology. We then propose how to utilize these arrays to perform autonomous gradient climbing and front tracking in the presence of both correlated and uncorrelated noise. We implement various techniques for estimation of gradients (first-order and higher), including finite differencing, least squares error minimization, averaging, and Kalman filtering. Furthermore, we illustrate how the estimation error can be used to optimally choose the formation size. To complement our theoretical work, we present an account of sea trials performed with a fleet of autonomous underwater gliders in Monterey Bay during the Autonomous Ocean Sampling Network (AOSN) II project in August 2003. During these trials, Slocum autonomous underwater gliders were coordinated into triangle

  15. How hummingbirds hum: Acoustic holography of hummingbirds during maneuvering flight

    Science.gov (United States)

    Hightower, Ben; Wijnings, Patrick; Ingersoll, Rivers; Chin, Diana; Scholte, Rick; Lentink, David

    2017-11-01

    Hummingbirds make a characteristic humming sound when they flap their wings. The physics and the biological significance of hummingbird aeroacoustics is still poorly understood. We used acoustic holography and high-speed cameras to determine the acoustic field of six hummingbirds while they either hovered stationary in front of a flower or maneuvered to track flower motion. We used a robotic flower that oscillated either laterally or longitudinally with a linear combination of 20 different frequencies between 0.2 and 20 Hz, a range that encompasses natural flower vibration frequencies in wind. We used high-speed marker tracking to dissect the transfer function between the moving flower, the head, and body of the bird. We also positioned four acoustic arrays equipped with 2176 microphones total above, below, and in front of the hummingbird. Acoustic data from the microphones were back-propagated to planes adjacent to the hummingbird to create the first real-time holograms of the pressure field a hummingbird generates in vivo. Integration of all this data offers insight into how hummingbirds modulate the acoustic field during hovering and maneuvering flight.

  16. Evaluation of the Positive Re-Entry in Corrections Program: A Positive Psychology Intervention With Prison Inmates.

    Science.gov (United States)

    Huynh, Kim H; Hall, Brittany; Hurst, Mark A; Bikos, Lynette H

    2015-08-01

    Two groups of male inmates (n = 31, n = 31) participated in the Positive Re-Entry in Corrections Program (PRCP). This positive psychology intervention focused on teaching offenders skills that facilitate re-entry into the community. Offenders participated in weekly lectures, discussions, and homework assignments focused on positive psychology principles. The two groups differed in duration of treatment (8 weeks and 12 weeks). Participants completed pre- and post-intervention measures of gratitude, hope, and life satisfaction. Using a 2 × 2 mixed design ANOVA, we hypothesized that the intervention (with two between-subjects levels of 8 and 12 weeks) and duration (with two repeated measures levels of pre and post) of treatment would moderate pre- to post-intervention change. Results indicated significant differences on pre- and post-intervention scores for both groups of offenders on all measures. The analysis did not yield statistically significant differences between groups, demonstrating no additive benefits from the inclusion of four additional sessions, thus saving time and money for correctional programming and funding. This research supports the use of positive psychology in prison interventions. © The Author(s) 2014.

  17. AIRCRAFT CONFLICTS RESOLUTION BY COURSE MANEUVERING

    Directory of Open Access Journals (Sweden)

    В. Харченко

    2011-02-01

    Full Text Available Enhancement of requirements for air traffic efficiency at increasing of flights intensity determines the necessity of development of new optimization methods for aircraft conflict resolutions. The statement of problem of optimal conflict resolutions at Cooperative Air Traffic Management was done. The method for optimal aircraft conflict  resolution by course maneuvering has been  developed. The method using dynamic programming provides planning of aircraft conflict-free trajectory with minimum length. The decomposition of conflict resolution process on phases and stages, definition of states, controls and recursive  equations for generation of optimal course control program were done. Computer modeling of aircraft conflict resolution by developed method was done

  18. Multislice spiral computed tomography to determine the effects of a recruitment maneuver in experimental lung injury

    Energy Technology Data Exchange (ETDEWEB)

    Henzler, Dietrich; Rossaint, Rolf [University Hospital, RWTH Aachen, Anesthesiology Department, Aachen (Germany); Mahnken, Andreas H.; Wildberger, Joachim E.; Guenther, Rolf W. [University Hospital of the RWTH Aachen, Clinic of Diagnostic Radiology, Aachen (Germany); Kuhlen, Ralf [University Hospital of the RWTH Aachen, Operative Intensive Care Department, Aachen (Germany)

    2006-06-15

    Although recruitment of atelectatic lung is a common aim in acute respiratory distress syndrome (ARDS), the effects of a recruitment maneuver have not been assessed quantitatively. By multislice spiral CT (MSCT), we analyzed the changes in lung volumes calculated from the changes in the CT values of hyperinflated (V{sub HYP}), normally (V{sub NORM}), poorly (V{sub POOR}) and nonaerated (V{sub NON}) lung in eight mechanically ventilated pigs with saline lavage-induced acute lung injury before and after a recruitment maneuver. This was compared to single slice analysis near the diaphragm. The increase in aerated lung was mainly for V{sub POOR} and the less in V{sub NORM}. Total lung volume and intrathoracic gas increased. No differences were found for tidal volumes measured by spirometry or determined by CT. The inspiratory-expiratory volume differences were not different after the recruitment maneuver in V{sub NON} (from 62{+-}18 ml to 43{+-}26 ml, P=0.114), and in V{sub NORM} (from 216{+-}51 ml to 251{+-}37 ml, P=0.102). Single slice analysis significantly underestimated the increase in normally and poorly aerated lung. Quantitative analysis of lung volumes by whole lung MSCT revealed the increase of poorly aerated lung as the main mechanism of a standard recruitment maneuver. MSCT can provide additional information as compared to single slice CT. (orig.)

  19. Multislice spiral computed tomography to determine the effects of a recruitment maneuver in experimental lung injury

    International Nuclear Information System (INIS)

    Henzler, Dietrich; Rossaint, Rolf; Mahnken, Andreas H.; Wildberger, Joachim E.; Guenther, Rolf W.; Kuhlen, Ralf

    2006-01-01

    Although recruitment of atelectatic lung is a common aim in acute respiratory distress syndrome (ARDS), the effects of a recruitment maneuver have not been assessed quantitatively. By multislice spiral CT (MSCT), we analyzed the changes in lung volumes calculated from the changes in the CT values of hyperinflated (V HYP ), normally (V NORM ), poorly (V POOR ) and nonaerated (V NON ) lung in eight mechanically ventilated pigs with saline lavage-induced acute lung injury before and after a recruitment maneuver. This was compared to single slice analysis near the diaphragm. The increase in aerated lung was mainly for V POOR and the less in V NORM . Total lung volume and intrathoracic gas increased. No differences were found for tidal volumes measured by spirometry or determined by CT. The inspiratory-expiratory volume differences were not different after the recruitment maneuver in V NON (from 62±18 ml to 43±26 ml, P=0.114), and in V NORM (from 216±51 ml to 251±37 ml, P=0.102). Single slice analysis significantly underestimated the increase in normally and poorly aerated lung. Quantitative analysis of lung volumes by whole lung MSCT revealed the increase of poorly aerated lung as the main mechanism of a standard recruitment maneuver. MSCT can provide additional information as compared to single slice CT. (orig.)

  20. Reentry Program and Social Work Education: Training the Next Generation of Criminal Justice Social Workers.

    Science.gov (United States)

    Franke, Nancy D; Treglia, Dan; Cnaan, Ram A

    2017-01-01

    Social work plays a marginal role in opposing the trend of mass incarceration and high rates of recidivism, and social work education offers limited opportunities for students to specialize in working with people who are currently or were previously incarcerated. How to train students of social work to work against mass-incarceration is still challenging. The authors devised and implemented an in-school social service agency devoted to working with people pre and post release from a prison system. The agency is a field practicum setting where interested students study and practice reentry work. In this article, the authors describe and assess the educational merit of this in-school agency. Findings from surveys of students and alumni suggest that the program attained its educational goals of connecting classroom education to practice experience and training students for careers in the criminal justice system. The authors also discuss pending challenges. The experience of the Goldring Reentry Initiative suggests that by developing their own social work agencies, the authors may be able to heighten their students educational experience and expand their contribution to social work practice broadly.