WorldWideScience

Sample records for management system requirements

  1. Management system requirements for small reactors

    Energy Technology Data Exchange (ETDEWEB)

    Jones, K.A., E-mail: kenneth.jones@cnsc-ccsn.gc.ca [Canadian Nuclear Safety Commission, Ottawa, Ontario (Canada)

    2013-07-01

    This abstract identifies the management system requirements for the life cycle of small reactors from initial conception through completion of decommissioning. For small reactors, the requirements for management systems remain the same as those for 'large' reactors regardless of the licensee' business model and objectives. The CSA N-Series of standards provides an interlinked set of requirements for the management of nuclear facilities. CSA N286 provides overall direction to management to develop and implement sound management practices and controls, while other CSA nuclear standards provide technical requirements and guidance that support the management system. CSA N286 is based on a set of principles. The principles are then supported by generic requirements that are applicable to the life cycle of nuclear facilities. CNSC regulatory documents provide further technical requirements and guidance. (author)

  2. Training Requirements and Information Management System

    Energy Technology Data Exchange (ETDEWEB)

    Cillan, T.F.; Hodgson, M.A.

    1992-05-01

    This is the software user's guide for the Training Requirements and Information Management System. This guide defines and describes the software operating procedures as they apply to the end user of the software program. This guide is intended as a reference tool for the user who already has an indepth knowledge of the Training Requirements and Information Management System functions and data reporting requirement.

  3. 46 CFR 16.500 - Management Information System requirements.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Management Information System requirements. 16.500 Section 16.500 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY MERCHANT MARINE OFFICERS AND SEAMEN CHEMICAL TESTING Management Information System § 16.500 Management Information System requirements. (a...

  4. 23 CFR 973.204 - Management systems requirements.

    Science.gov (United States)

    2010-04-01

    ... system; (2) A process to operate and maintain the management systems and their associated databases; (3... may include consultation with the tribes, as appropriate. (k) The management systems shall be operated... 23 Highways 1 2010-04-01 2010-04-01 false Management systems requirements. 973.204 Section 973.204...

  5. 76 FR 76917 - Homeless Management Information Systems Requirements

    Science.gov (United States)

    2011-12-09

    ...-P-01] Homeless Management Information Systems Requirements AGENCY: Office of the Assistant Secretary... for the establishment of regulations for Homeless Management Information Systems (HMIS), which are the... community development, Homeless, Information technology system, Management system, Nonprofit organizations...

  6. Waste Management Systems Requirements and Descriptions (SRD)

    International Nuclear Information System (INIS)

    Conner, C.W.

    1986-01-01

    The Department of Energy (DOE), Office of Civilian Radioactive Waste Management (OCRWM) is responsible for the development of a system for the management of high-level radioactive waste and spent fuel in accordance with the Nuclear Waste Policy Act of 1982. The Waste Management system requirements and description document is the program-level technical baseline document. The requirements include the functions that must be performed in order to achieve the system mission and performance criteria for those functions. This document covers only the functional requirements of the system; it does not cover programmatic or procedural requirements pertaining to the processes of designing, siting and licensing. The requirements are largely based on the Nuclear Waste Policy Act of 1982, Environmental Protection Agency standards, Nuclear Regulatory Commission regulations, and DOE orders and guidance. However, nothing in this document should be construed as to relieve the DOE or its contractors from their responsibilities to comply with applicable statutes, regulations, and standards. This document also provides a brief description of the system being developed to meet the requirements. In addition to the described ''authorized system,'' a system description is provided for an ''improved-performance system'' which would include a monitored retrievable storage (MRS) facility. In the event that an MRS facility is approved by Congress, the improved-performance system will become the reference system. Neither system description includes Federal Interim Storage (FIS) capabilities. Should the need for FIS be identified, it will be included as an additional system element. The descriptions are focused on the interfaces between the system elements, rather than on the detail of the system elements themselves

  7. I-15 integrated corridor management : system requirements.

    Science.gov (United States)

    2011-07-01

    This document is intended as a listing and discussion of the Requirements for the I-15 Integrated Corridor Management System : (ICMS) Demonstration Project in San Diego. This document describes what the system is to do (the functional requirements), ...

  8. Civilian Radioactive Waste Management System Requirements Document

    International Nuclear Information System (INIS)

    1992-12-01

    This document specifies the top-level requirements for the Civilian Radioactive Waste Management System (CRWMS). The document is referred to herein as the CRD, for CRWMS Requirements document. The OCRWM System Engineering Management Plan (SEMP) establishes the technical document hierarchy (hierarchy of technical requirements and configuration baseline documents) for the CRWMS program. The CRD is the top-level document in this hierarchy. The immediate subordinate documents are the System Requirements Documents (SRDS) for the four elements of the CRWMS and the Interface Specification (IFS). The four elements of the CRWMS are the Waste Acceptance System, the Transportation System, the Monitored Retrievable Storage (MRS) System and the Mined Geologic Disposal System (MGDS). The Interface Specification describes the six inter-element interfaces between the four elements. This hierarchy establishes the requirements to be addressed by the design of the system elements. Many of the technical requirements for the CRWMS are documented in a variety of Federal regulations, DOE directives and other Government documentation. It is the purpose of the CRD to establish the technical requirements for the entire program. In doing so, the CRD summarizes source documentation for requirements that must be addressed by the program, specifies particular requirements, and documents derived requirements that are not covered in regulatory and other Government documentation, but are necessary to accomplish the mission of the CRWMS. The CRD defines the CRWMS by identifying the top-level functions the elements must perform (These top-level functions were derived using functional analysis initially documented in the Physical System Requirements (PSR) documents). The CRD also defines the top-level physical architecture of the system and allocates the functions and requirements to the architectural elements of the system

  9. The Management System for Facilities and Activities. Safety Requirements

    International Nuclear Information System (INIS)

    2011-01-01

    This publication establishes requirements for management systems that integrate safety, health, security, quality assurance and environmental objectives. A successful management system ensures that nuclear safety matters are not dealt with in isolation but are considered within the context of all these objectives. The aim of this publication is to assist Member States in establishing and implementing effective management systems that integrate all aspects of managing nuclear facilities and activities in a coherent manner. It details the planned and systematic actions necessary to provide adequate confidence that all these requirements are satisfied. Contents: 1. Introduction; 2. Management system; 3. Management responsibility; 4. Resource management; 5. Process implementation; 6. Measurement, assessment and improvement.

  10. Establishing functional requirements for emergency management information systems

    Energy Technology Data Exchange (ETDEWEB)

    Reed, J.H.; Rogers, G.O.; Sorensen, J.H.

    1991-01-01

    The advancement of computer technologies has led to the development of a number of emergency management information systems (e.g., EIS, CAMEO, IEMIS). The design of these systems has tended to be technologically driven rather than oriented to meeting information management needs during an emergency. Of course, emergency management needs vary depending on the characteristics of the emergency. For example, in hurricanes, onset is typically slow enough to allow emergency managers to simulate evacuations dynamically while in chemical disasters onset may be sufficiently rapid to preclude such simulation(s). This paper describes a system design process in which the analysis of widely recognized emergency management functions was used to identify information requirements and the requisite software and hardware capabilities to deal with rapid onset, low probability, high consequence events. These requirements were then implemented as a prototype emergency management system using existing hardware and software to assure feasibility. Data, hardware, and software requirements were further developed, refined, and made more concrete through an iterative prototyping effort. This approach focuses attention directly on meeting emergency management information needs while avoiding unneeded technological innovations. 10 refs., 4 figs., 1 tab.

  11. Recent developments and trends in requirements management systems

    International Nuclear Information System (INIS)

    Suzuki, Satoru; Ueda, Hiroyoshi; Fujisaki, Kiyoshi; Ishiguro, Katsuhiko; Tsuchi, Hiroyuki; Vomvoris, Stratis; Gaus, Irina

    2011-01-01

    In a recent international meeting, five radioactive waste disposal organizations (NUMO/Japan; NAGRA/Switzerland; ONDRAF/NIRAS/Belgium; POSIVA/Finland; SKB/Sweden) have discussed the status and developments of RMS in their respective programs. The majority have already implemented an IT-based system, or, are testing and developing such systems. The level of detail of requirements depends on the stage of the program. Those approaching the license application have integrated all components of the repository concept, including the processes for the operational phase. Requirements management is closely associated with the quality management system. Combining requirement and decision-tracking has been expressed as an explicit goal for some programs. Caution was expressed regarding the expectations for the RMS being developed. There is a risk that such systems are perceived as expert systems that can derive decisions, which then will be unquestionably accepted. It is nevertheless recognized that they can be of great help in communicating with the various stakeholders and with relative ease demonstrate how their requirements have been considered and satisfied with the proposed repository systems. Further efforts need to be undertaken to integrate the requirement management systems, and the processes that they represent, in the day-to-day operations of the organizations. First positive experiences of the latter are reported. (author)

  12. Training Requirements and Information Management System. Software user guide

    Energy Technology Data Exchange (ETDEWEB)

    Cillan, T.F.; Hodgson, M.A.

    1992-05-01

    This is the software user`s guide for the Training Requirements and Information Management System. This guide defines and describes the software operating procedures as they apply to the end user of the software program. This guide is intended as a reference tool for the user who already has an indepth knowledge of the Training Requirements and Information Management System functions and data reporting requirement.

  13. Civilian Radioactive Waste Management System Requirements Document (CRP)

    International Nuclear Information System (INIS)

    C.A. Kouts

    2006-01-01

    The CRD addresses the requirements of Department of Energy (DOE) Order 413.3-Change 1, ''Program and Project Management for the Acquisition of Capital Assets'', by providing the Secretarial Acquisition Executive (Level 0) scope baseline and the Program-level (Level 1) technical baseline. The Secretarial Acquisition Executive approves the Office of Civilian Radioactive Waste Management's (OCRWM) critical decisions and changes against the Level 0 baseline; and in turn, the OCRWM Director approves all changes against the Level 1 baseline. This baseline establishes the top-level technical scope of the CRMWS and its three system elements, as described in section 1.3.2. The organizations responsible for design, development, and operation of system elements described in this document must therefore prepare subordinate project-level documents that are consistent with the CRD. Changes to requirements will be managed in accordance with established change and configuration control procedures. The CRD establishes requirements for the design, development, and operation of the CRWMS. It specifically addresses the top-level governing laws and regulations (e.g., ''Nuclear Waste Policy Act'' (NWPA), 10 Code of Federal Regulations (CFR) Part 63, 10 CFR Part 71, etc.) along with specific policy, performance requirements, interface requirements, and system architecture. The CRD shall be used as a vehicle to incorporate specific changes in technical scope or performance requirements that may have significant program implications. Such may include changes to the program mission, changes to operational capability, and high visibility stakeholder issues. The CRD uses a systems approach to: (1) identify key functions that the CRWMS must perform, (2) allocate top-level requirements derived from statutory, regulatory, and programmatic sources, and (3) define the basic elements of the system architecture and operational concept. Project-level documents address CRD requirements by further

  14. CH2M Hill Hanford Group, Inc., Standards and Requirements Identification Document (SRID) Requirements Management System and Requirements Specification

    International Nuclear Information System (INIS)

    JOHNSON, A.L.

    2000-01-01

    The current Tank Farm Contractor (TFC) for the U. S. Department of Energy, Office of River Protection (ORP), River Protection Project (RPP), CH2M Hill Hanford Group, Inc. (CHG), will use a computer based requirements management system. The system will serve as a tool to assist in identifying, capturing, and maintaining the Standards/Requirements Identification Document (S/RID) requirements and links to implementing procedures and other documents. By managing requirements as one integrated set, CHG will be able to carry out its mission more efficiently and effectively. CHG has chosen the Dynamic Object Oriented Requirements System (DOORS(trademark)) as the preferred computer based requirements management system. Accordingly, the S/RID program will use DOORS(trademark). DOORS(trademark) will replace the Environmental Requirements Management Interface (ERMI) system as the tool for S/RID data management. The DOORS(trademark) S/RID test project currently resides on the DOORSTM test server. The S/RID project will be migrated to the DOORS(trademark) production server. After the migration the S/RID project will be considered a production project and will no longer reside on the test server

  15. 25 CFR 170.502 - Are management systems required for the IRR Program?

    Science.gov (United States)

    2010-04-01

    ... the following systems for the IRR Program: (1) Pavement management; (2) Safety management; (3) Bridge... 25 Indians 1 2010-04-01 2010-04-01 false Are management systems required for the IRR Program? 170... Program Reviews and Management Systems § 170.502 Are management systems required for the IRR Program? (a...

  16. Seaway Information System Management and Control Requirements

    Science.gov (United States)

    1973-10-01

    This report examines in detail the control and information system requirements of the St. Lawrence Seaway development program in terms of the needs of the vessel traffic controllers and the management users. Structural control models of Seaway operat...

  17. A SUSTAINABLE HEALTH CARE SYSTEM REQUIRES MANAGEMENT TRANSFORMATION

    Directory of Open Access Journals (Sweden)

    Kanellopoulos Dimitros

    2011-12-01

    Full Text Available In order to be the health care system sustainable , management transformations must be based on very precise diagnostic analysis that includes complete and current information. It is necessary to implement an information system that collects information in real time, that watches the parameters that significantly influence the sustainability of the system. Such an information system should point out a radiography(a scan of the system at some time under following aspects:: 1. An overview of system; 2 An overview of the economic situation; 3 A technical presentation ;4. A legal overview; 5. A social overview ; 6. A management overview .Based on these Xrays of the health system, it outlines a series of conclusions and recommendations together with a SWOT analysis that highlights the potential internal (strengths and weaknesses and external potential (opportunities and threats. Based on this analysis and recommendations, the management is going to redesign the system in order to be adapted to the changing environmental requirements. Management transformation is recommended to be by following steps. :1. The development of a new management system that would make a positive change in the health care system 2. Implementation of the new management system 3. Assessment of the changes

  18. Waste Management System Requirement document

    International Nuclear Information System (INIS)

    1990-04-01

    This volume defines the top level technical requirements for the Monitored Retrievable Storage (MRS) facility. It is designed to be used in conjunction with Volume 1, General System Requirements. Volume 3 provides a functional description expanding the requirements allocated to the MRS facility in Volume 1 and, when appropriate, elaborates on requirements by providing associated performance criteria. Volumes 1 and 3 together convey a minimum set of requirements that must be satisfied by the final MRS facility design without unduly constraining individual design efforts. The requirements are derived from the Nuclear Waste Policy Act of 1982 (NWPA), the Nuclear Waste Policy Amendments Act of 1987 (NWPAA), the Environmental Protection Agency's (EPA) Environmental Standards for the Management and Disposal of Spent Nuclear Fuel (40 CFR 191), NRC Licensing Requirements for the Independent Storage of Spent Nuclear and High-Level Radioactive Waste (10 CFR 72), and other federal statutory and regulatory requirements, and major program policy decisions. This document sets forth specific requirements that will be fulfilled. Each subsequent level of the technical document hierarchy will be significantly more detailed and provide further guidance and definition as to how each of these requirements will be implemented in the design. Requirements appearing in Volume 3 are traceable into the MRS Design Requirements Document. Section 2 of this volume provides a functional breakdown for the MRS facility. 1 tab

  19. System requirements and design description for the environmental requirements management interface (ERMI)

    International Nuclear Information System (INIS)

    Biebesheimer, E.

    1997-01-01

    This document describes system requirements and the design description for the Environmental Requirements Management Interface (ERMI). The ERMI database assists Tank Farm personnel with scheduling, planning, and documenting procedure compliance, performance verification, and selected corrective action tracking activities for Tank Farm S/RID requirements. The ERMI database was developed by Science Applications International Corporation (SAIC). This document was prepared by SAIC and edited by LMHC

  20. Functional requirements for the Automated Transportation Management System: TTP number: RL 439002

    Energy Technology Data Exchange (ETDEWEB)

    Portsmouth, J.H. [Westinghouse Hanford Co., Richland, WA (United States)

    1992-12-31

    This requirements analysis, documents Department of Energy (DOE) transportation management procedures for the purpose of providing a clear and mutual understanding between users and designers of the proposed Automated Transportation Management System (ATMS). It is imperative that one understand precisely how DOE currently performs traffic management tasks; only then can an integrated system be proposed that successfully satisfies the major requirements of transportation managers and other system users. Accordingly, this report describes the current workings of DOE transportation organizations and then proposes a new system which represents a synthesis of procedures (both current and desired) which forms the basis for further systems development activities.

  1. 78 FR 79455 - Information Collection; System for Award Management Registration Requirements for Prime Grant...

    Science.gov (United States)

    2013-12-30

    ...] Information Collection; System for Award Management Registration Requirements for Prime Grant Recipients.... ADDRESSES: Submit comments identified by Information Collection 3090- 0290, System for Award Management... ``Information Collection 3090-0290, System for Award Management Registration Requirements for Prime Grant...

  2. GRANT FINANCIAL SYSTEM REQUIREMENTS; Checklist for Reviewing Systems Under the Federal Financial Management Improvement Act

    National Research Council Canada - National Science Library

    2001-01-01

    ...) of 1996, issued September 9, 1997. JFMIP intends for the requirements to promote understanding of key financial management systems concepts and requirements, to provide a framework for establishing integrated financial management...

  3. Energy management system for power distribution. Interfaces and data communication requirements

    International Nuclear Information System (INIS)

    Koponen, P.; Lemstroem, B.; Ikonen, J.

    1995-01-01

    The opening of the electricity market for competition in Finland creates new requirements for the information systems and data communication in distribution utilities. Energy management systems for distribution utilities are needed with interfaces that make it possible to separate the network business from the energy trade business. However, these interfaces should also support optimization of the whole energy supply system of the country. In this report the interfaces and data communication requirements of the energy management system of the electricity trade business are analyzed. To support this subfunctions of the energy management have been analyzed. It was realized that the amount of necessary data transfer and optimization of the national power system both depend strongly on the general rules of the energy markets. (author)

  4. User Requirements Model for University Timetable Management System

    OpenAIRE

    Ahmad Althunibat; Mohammad I. Muhairat

    2016-01-01

    Automated timetables are used to schedule courses, lectures and rooms in universities by considering some constraints. Inconvenient and ineffective timetables often waste time and money. Therefore, it is important to investigate the requirements and potential needs of users. Thus, eliciting user requirements of University Timetable Management System (TMS) and their implication becomes an important process for the implementation of TMS. On this note, this paper seeks to propose a m...

  5. Technical Meeting on Grading of the Application of Management System Requirements. Presentations

    International Nuclear Information System (INIS)

    2012-01-01

    The objectives of this Technical Meeting are threefold: - to share international experiences and lessons learned, as well as exchange views on best practices and strategies to overcome the difficulties encountered; - to review and discuss the draft technical report on 'Grading the Application of Management System Requirements, to allow the participants to contribute to the improvement of the document and to enrich it with practical examples; and - to strengthen the international networking of specialists in the field. The topics covered during the meeting will include: - Examples and case studies presented by participants from countries with nuclear facilities (mainly focused on NPPs, and, where appropriate, from research reactors, fuel cycle and waste management facilities) on grading the application of management system requirements and lessons learned. - Reviewing and improving the final draft of a technical report on 'Grading the Application of Management System Requirements', which will supersede the previous guidance: Grading of Quality Assurance Requirement: A Manual (Technical Reports Series No. 328)

  6. Several required OWL features for indigenous knowledge management systems

    CSIR Research Space (South Africa)

    Alberts, R

    2012-05-01

    Full Text Available This paper describes the features required of OWL (Web Ontology Language) to realise and enhance Indigenous Knowledge (IK) digital repositories. Several needs for Indigenous Knowledge management systems (IKMSs) are articulated, based on extensive...

  7. Step 1: Human System Integration (HSI) FY05 Pilot-Technology Interface Requirements for Contingency Management

    Science.gov (United States)

    2005-01-01

    This document involves definition of technology interface requirements for Contingency Management. This was performed through a review of Contingency Management-related, HSI requirements documents, standards, and recommended practices. Technology concepts in use by the Contingency Management Work Package were considered. Beginning with HSI high-level functional requirements for Contingency Management, and Contingency Management technology elements, HSI requirements for the interface to the pilot were identified. Results of the analysis describe (1) the information required by the pilot to have knowledge of system failures and associated contingency procedures, and (2) the control capability needed by the pilot to obtain system status and procedure information. Fundamentally, these requirements provide the candidate Contingency Management technology concepts with the necessary human-related elements to make them compatible with human capabilities and limitations. The results of the analysis describe how Contingency Management operations and functions should interface with the pilot to provide the necessary Contingency Management functionality to the UA-pilot system. Requirements and guidelines for Contingency Management are partitioned into four categories: (1) Health and Status and (2) Contingency Management. Each requirement is stated and is supported with a rationale and associated reference(s).

  8. San Juan National Forest Land Management Planning Support System (LMPSS) requirements definition

    Science.gov (United States)

    Werth, L. F. (Principal Investigator)

    1981-01-01

    The role of remote sensing data as it relates to a three-component land management planning system (geographic information, data base management, and planning model) can be understood only when user requirements are known. Personnel at the San Juan National Forest in southwestern Colorado were interviewed to determine data needs for managing and monitoring timber, rangelands, wildlife, fisheries, soils, water, geology and recreation facilities. While all the information required for land management planning cannot be obtained using remote sensing techniques, valuable information can be provided for the geographic information system. A wide range of sensors such as small and large format cameras, synthetic aperture radar, and LANDSAT data should be utilized. Because of the detail and accuracy required, high altitude color infrared photography should serve as the baseline data base and be supplemented and updated with data from the other sensors.

  9. Understanding requirements of novel healthcare information systems for management of advanced prostate cancer.

    Science.gov (United States)

    Wagholikar, Amol S; Fung, Maggie; Nelson, Colleen C

    2012-01-01

    Effective management of chronic diseases is a global health priority. A healthcare information system offers opportunities to address challenges of chronic disease management. However, the requirements of health information systems are often not well understood. The accuracy of requirements has a direct impact on the successful design and implementation of a health information system. Our research describes methods used to understand the requirements of health information systems for advanced prostate cancer management. The research conducted a survey to identify heterogeneous sources of clinical records. Our research showed that the General Practitioner was the common source of patient's clinical records (41%) followed by the Urologist (14%) and other clinicians (14%). Our research describes a method to identify diverse data sources and proposes a novel patient journey browser prototype that integrates disparate data sources.

  10. Software requirements specification for the program analysis and control system risk management module

    International Nuclear Information System (INIS)

    SCHAEFER, J.C.

    1999-01-01

    TWR Program Analysis and Control System Risk Module is used to facilitate specific data processes surrounding the Risk Management program of the Tank Waste Retrieval environment. This document contains the Risk Management system requirements of the database system

  11. TRANSPORTATION SYSTEM REQUIREMENTS DOCUMENT

    International Nuclear Information System (INIS)

    2004-01-01

    This document establishes the Transportation system requirements for the U.S. Department of Energy's (DOE's) Civilian Radioactive Waste Management System (CRWMS). These requirements are derived from the Civilian Radioactive Waste Management System Requirements Document (CRD). The Transportation System Requirements Document (TSRD) was developed in accordance with LP-3.1Q-OCRWM, Preparation, Review, and Approval of Office of National Transportation Level-2 Baseline Requirements. As illustrated in Figure 1, the TSRD forms a part of the DOE Office of Civilian Radioactive Waste Management (OCRWM) Technical Baseline

  12. Information technology - Security techniques - Information security management systems - Requirements

    CERN Document Server

    International Organization for Standardization. Geneva

    2005-01-01

    ISO/IEC 27001:2005 covers all types of organizations (e.g. commercial enterprises, government agencies, not-for profit organizations). ISO/IEC 27001:2005 specifies the requirements for establishing, implementing, operating, monitoring, reviewing, maintaining and improving a documented Information Security Management System within the context of the organization's overall business risks. It specifies requirements for the implementation of security controls customized to the needs of individual organizations or parts thereof. ISO/IEC 27001:2005 is designed to ensure the selection of adequate and proportionate security controls that protect information assets and give confidence to interested parties. ISO/IEC 27001:2005 is intended to be suitable for several different types of use, including the following: use within organizations to formulate security requirements and objectives; use within organizations as a way to ensure that security risks are cost effectively managed; use within organizations to ensure comp...

  13. NUMO-RMS: a practical requirements management system for the long-term management of the deep geological disposal project - 16304

    International Nuclear Information System (INIS)

    Ueda, Hiroyoshi; Suzuki, Satoru; Ishiguro, Katsuhiko; Oyamada, Kiyoshi; Yashio, Shoko; White, Matt; Wilmot, Roger

    2009-01-01

    NUMO (Nuclear Waste Management Organization of Japan) has the responsibility for implementing deep geological disposal of high-level (HLW) and transuranic (TRU) radioactive waste from the Japanese nuclear programme. A formal Requirements Management System (RMS) is planned to efficiently and effectively support the computerised implementation of the management strategy and the methodology required to drive the step-wise siting processes, and the following repository operational phase,. The RMS will help in the comprehensive management of the decision-making processes in the geological disposal project, in change management as the disposal system is optimised, in driving projects such as the R and D programme efficiently, and in maintaining structured records regarding past decisions, all of which lead to soundness of the project in terms of long-term continuity. The system is planned to have information handling and management functions using a database that includes the decisions/requirements in the programme under consideration, the way in which these are structured in terms of the decision-making process and other associated information. A two-year development programme is underway to develop and enhance an existing trial RMS to a practical system. Functions for change management, history management and association with the external timeline management system are being implemented in the system development work. The database format is being improved to accommodate the requirements management data relating to the facility design and to safety assessment of the deep geological repository. This paper will present an outline of the development work with examples to demonstrate the system's practicality. In parallel with the system/database developments, a case research of the use of requirements management in radioactive waste disposal projects was undertaken to identify key issues in the development of an RMS for radioactive waste disposal and specify a number of

  14. 23 CFR 972.204 - Management systems requirements.

    Science.gov (United States)

    2010-04-01

    ... to operate and maintain the management systems and their associated databases; and (5) A process for... analyses and coordination of all management system outputs to systematically operate, maintain, and upgrade...) The management systems shall be operated so investment decisions based on management system outputs...

  15. Radiation safety requirements for radioactive waste management in the framework of a quality management system

    International Nuclear Information System (INIS)

    Salgado, M.M.; Benitez, J.C.; Pernas, R.; Gonzalez, N.

    2007-01-01

    The Center for Radiation Protection and Hygiene (CPHR) is the institution responsible for the management of radioactive wastes generated from nuclear applications in medicine, industry and research in Cuba. Radioactive Waste Management Service is provided at a national level and it includes the collection and transportation of radioactive wastes to the Centralized Waste Management Facilities, where they are characterized, segregated, treated, conditioned and stored. A Quality Management System, according to the ISO 9001 Standard has been implemented for the RWM Service at CPHR. The Management System includes the radiation safety requirements established for RWM in national regulations and in the Licence's conditions. The role of the Regulatory Body and the Radiation Protection Officer in the Quality Management System, the authorization of practices, training and personal qualification, record keeping, inspections of the Regulatory Body and internal inspection of the Radiation Protection Officer, among other aspects, are described in this paper. The Quality Management System has shown to be an efficient tool to demonstrate that adequate measures are in place to ensure the safety in radioactive waste management activities and their continual improvement. (authors)

  16. Requirements Development Issues for Advanced Life Support Systems: Solid Waste Management

    Science.gov (United States)

    Levri, Julie A.; Fisher, John W.; Alazraki, Michael P.; Hogan, John A.

    2002-01-01

    Long duration missions pose substantial new challenges for solid waste management in Advanced Life Support (ALS) systems. These possibly include storing large volumes of waste material in a safe manner, rendering wastes stable or sterilized for extended periods of time, and/or processing wastes for recovery of vital resources. This is further complicated because future missions remain ill-defined with respect to waste stream quantity, composition and generation schedule. Without definitive knowledge of this information, development of requirements is hampered. Additionally, even if waste streams were well characterized, other operational and processing needs require clarification (e.g. resource recovery requirements, planetary protection constraints). Therefore, the development of solid waste management (SWM) subsystem requirements for long duration space missions is an inherently uncertain, complex and iterative process. The intent of this paper is to address some of the difficulties in writing requirements for missions that are not completely defined. This paper discusses an approach and motivation for ALS SWM requirements development, the characteristics of effective requirements, and the presence of those characteristics in requirements that are developed for uncertain missions. Associated drivers for life support system technological capability are also presented. A general means of requirements forecasting is discussed, including successive modification of requirements and the need to consider requirements integration among subsystems.

  17. Conceptual requirements for large fusion experiment control, data, robotics, and management systems

    International Nuclear Information System (INIS)

    Gaudreau, M.P.J.; Sullivan, J.D.

    1987-05-01

    The conceptual system requirements for the control, data, robotics, and project management (CDRM) system for the next generation of fusion experiments are developed by drawing on the success of the Tara control and data system. The requirements are described in terms of an integrated but separable matrix of well-defined interfaces among the various systems and subsystems. The study stresses modularity, performance, cost effectiveness, and exportability

  18. Detailed requirements document for the Interactive Financial Management System (IFMS), volume 1

    Science.gov (United States)

    Dodson, D. B.

    1975-01-01

    The detailed requirements for phase 1 (online fund control, subauthorization accounting, and accounts receivable functional capabilities) of the Interactive Financial Management System (IFMS) are described. This includes information on the following: systems requirements, performance requirements, test requirements, and production implementation. Most of the work is centered on systems requirements, and includes discussions on the following processes: resources authority, allotment, primary work authorization, reimbursable order acceptance, purchase request, obligation, cost accrual, cost distribution, disbursement, subauthorization performance, travel, accounts receivable, payroll, property, edit table maintenance, end-of-year, backup input. Other subjects covered include: external systems interfaces, general inquiries, general report requirements, communication requirements, and miscellaneous. Subjects covered under performance requirements include: response time, processing volumes, system reliability, and accuracy. Under test requirements come test data sources, general test approach, and acceptance criteria. Under production implementation come data base establishment, operational stages, and operational requirements.

  19. Waste management system requirements document

    International Nuclear Information System (INIS)

    1991-02-01

    This volume defines the top level requirements for the Mined Geologic Disposal System (MGDS). It is designed to be used in conjunction with Volume 1 of the WMSR, General System Requirements. It provides a functional description expanding the requirements allocated to the MGDS in Volume 1 and elaborates on each requirement by providing associated performance criteria as appropriate. Volumes 1 and 4 of the WMSR provide a minimum set of requirements that must be satisfied by the final MGDS design. This document sets forth specific requirements that must be fulfilled. It is not the intent or purpose of this top level document to describe how each requirement is to be satisfied in the final MGDS design. Each subsequent level of the technical document hierarchy must provide further guidance and definition as to how each of these requirements is to be implemented in the design. It is expected that each subsequent level of requirements will be significantly more detailed. Section 2 of this volume provides a functional description of the MGDS. Each function is addressed in terms of requirements, and performance criteria. Section 3 provides a list of controlling documents. Each document cited in a requirement of Chapter 2 is included in this list and is incorporated into this document as a requirement on the final system. The WMSR addresses only federal requirements (i.e., laws, regulations and DOE orders). State and local requirements are not addressed. However, it will be specifically noted at the potentially affected WMSR requirements that there could be additional or more stringent regulations imposed by a state or local requirements or administering agency over the cited federal requirements

  20. UNDERSTANDING THAI CULTURE AND ITS IMPACT ON REQUIREMENTS ENGINEERING PROCESS MANAGEMENT DURING INFORMATION SYSTEMS DEVELOPMENT

    Directory of Open Access Journals (Sweden)

    Theerasak Thanasankit

    2002-01-01

    Full Text Available This paper explores the impact of Thai culture on managing the decision making process in requirements engineering and contribution a better understand of its influence on the management of requirements engineering process. The paper illustrates the interaction of technology and culture and shows that rather than technology changing culture, culture can change the way technology is used. Thai culture is naturally inherent in Thai daily life and Thais bring that into their work practices. The concepts of power and uncertainty in Thai culture contribute toward hierarchical forms of communication and decision making process in Thailand, especially during requirements engineering, where information systems requirements need to be established for further development. The research shows that the decision making process in Thailand tends to take a much longer time, as every stage during requirements engineering needs to be reported to management for final decisions. The tall structure of Thai organisations also contributes to a bureaucratic, elongated decision-making process during information systems development. Understanding the influence of Thai culture on requirements engineering and information systems development will assist multinational information systems consulting organisations to select, adapt, better manage, or change requirements engineering process and information systems developments methodologies to work best with Thai organisations.

  1. Environmental Requirements Management

    Energy Technology Data Exchange (ETDEWEB)

    Cusack, Laura J.; Bramson, Jeffrey E.; Archuleta, Jose A.; Frey, Jeffrey A.

    2015-01-08

    CH2M HILL Plateau Remediation Company (CH2M HILL) is the U.S. Department of Energy (DOE) prime contractor responsible for the environmental cleanup of the Hanford Site Central Plateau. As part of this responsibility, the CH2M HILL is faced with the task of complying with thousands of environmental requirements which originate from over 200 federal, state, and local laws and regulations, DOE Orders, waste management and effluent discharge permits, Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) response and Resource Conservation and Recovery Act (RCRA) corrective action documents, and official regulatory agency correspondence. The challenge is to manage this vast number of requirements to ensure they are appropriately and effectively integrated into CH2M HILL operations. Ensuring compliance with a large number of environmental requirements relies on an organization’s ability to identify, evaluate, communicate, and verify those requirements. To ensure that compliance is maintained, all changes need to be tracked. The CH2M HILL identified that the existing system used to manage environmental requirements was difficult to maintain and that improvements should be made to increase functionality. CH2M HILL established an environmental requirements management procedure and tools to assure that all environmental requirements are effectively and efficiently managed. Having a complete and accurate set of environmental requirements applicable to CH2M HILL operations will promote a more efficient approach to: • Communicating requirements • Planning work • Maintaining work controls • Maintaining compliance

  2. Requirements management at Westinghouse Electric Company

    International Nuclear Information System (INIS)

    Gustavsson, Henrik

    2014-01-01

    Field studies and surveys made in various industry branches support the Westinghouse opinion that qualitative systems engineering and requirements management have a high value in the development of complex systems and products. Two key issues causing overspending and schedule delays in projects are underestimation of complexity and misunderstandings between the different sub-project teams. These issues often arise when a project jumps too early into detail design. Good requirements management practice before detail design helps the project teams avoid such issues. Westinghouse therefore puts great effort into requirements management. The requirements management methodology at Westinghouse rests primarily on four key cornerstones: 1 - Iterative team work when developing requirements specifications, 2 - Id number tags on requirements, 3 - Robust change routine, and 4 - Requirements Traceability Matrix. (authors)

  3. 23 CFR 970.204 - Management systems requirements.

    Science.gov (United States)

    2010-04-01

    ... management system outputs to systematically operate, maintain, and upgrade existing transportation assets cost-effectively; (3) A description of each management system; (4) A process to operate and maintain the management systems and their associated databases; and (5) A process for data collection...

  4. 23 CFR 971.204 - Management systems requirements.

    Science.gov (United States)

    2010-04-01

    ... of all management systems outputs to systematically operate, maintain, and upgrade existing transportation assets cost-effectively; (3) A description of each management system; (4) A process to operate and maintain the management systems and their associated databases; and (5) A process for data collection...

  5. Teaching Management Information Systems as a General Education Requirement (GER) Capstone

    Science.gov (United States)

    Hoanca, Bogdan

    2012-01-01

    Although many IS programs nationwide use capstone courses in the major, this paper reports on the use of an upper division Management Information Systems (MIS) class as a general education requirements (GER) capstone. The class is a core requirement for all majors in the Bachelor of Business Administration (BBA) program at the University of Alaska…

  6. Detailed requirements document for common software of shuttle program information management system

    Science.gov (United States)

    Everette, J. M.; Bradfield, L. D.; Horton, C. L.

    1975-01-01

    Common software was investigated as a method for minimizing development and maintenance cost of the shuttle program information management system (SPIMS) applications while reducing the time-frame of their development. Those requirements satisfying these criteria are presented along with the stand-alone modules which may be used directly by applications. The SPIMS applications operating on the CYBER 74 computer, are specialized information management systems which use System 2000 as a data base manager. Common software provides the features to support user interactions on a CRT terminal using form input and command response capabilities. These features are available as subroutines to the applications.

  7. Tank waste remediation system privatization infrastructure program requirements and document management process guide

    International Nuclear Information System (INIS)

    ROOT, R.W.

    1999-01-01

    This guide provides the Tank Waste Remediation System Privatization Infrastructure Program management with processes and requirements to appropriately control information and documents in accordance with the Tank Waste Remediation System Configuration Management Plan (Vann 1998b). This includes documents and information created by the program, as well as non-program generated materials submitted to the project. It provides appropriate approval/control, distribution and filing systems

  8. Quality management system

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Mu Sung

    2009-08-15

    This book deals with ISO9001 quality management system which includes summary of this system such as classification of quality, principle of quality management, and definition, requirement and procedure of quality management system, introduction of ISO9001 system like model of ISO9001 quality management system, ISO certificate system, structure of ISO9001 standard, requirement of ISO9001 quality management system, process approach and documentation of system, propel cases of ISO9001 quality management system.

  9. Quality management system

    International Nuclear Information System (INIS)

    Lee, Mu Sung

    2009-08-01

    This book deals with ISO9001 quality management system which includes summary of this system such as classification of quality, principle of quality management, and definition, requirement and procedure of quality management system, introduction of ISO9001 system like model of ISO9001 quality management system, ISO certificate system, structure of ISO9001 standard, requirement of ISO9001 quality management system, process approach and documentation of system, propel cases of ISO9001 quality management system.

  10. Step 1: Human System Integration Pilot-Technology Interface Requirements for Weather Management

    Science.gov (United States)

    2005-01-01

    This document involves definition of technology interface requirements for Hazardous Weather Avoidance. Technology concepts in use by the Access 5 Weather Management Work Package were considered. Beginning with the Human System Integration (HIS) high-level functional requirement for Hazardous Weather Avoidance, and Hazardous Weather Avoidance technology elements, HSI requirements for the interface to the pilot were identified. Results of the analysis describe (1) the information required by the pilot to have knowledge of hazardous weather, and (2) the control capability needed by the pilot to obtain hazardous weather information. Fundamentally, these requirements provide the candidate Hazardous Weather Avoidance technology concepts with the necessary human-related elements to make them compatible with human capabilities and limitations. The results of the analysis describe how Hazardous Weather Avoidance operations and functions should interface with the pilot to provide the necessary Weather Management functionality to the UA-pilot system. Requirements and guidelines for Hazardous Weather Avoidance are partitioned into four categories: (1) Planning En Route (2) Encountering Hazardous Weather En Route, (3) Planning to Destination, and (4) Diversion Planning Alternate Airport. Each requirement is stated and is supported with a rationale and associated reference(s).

  11. Identification of Requirements for Distribution Management Systems in the Smart Grid Context

    DEFF Research Database (Denmark)

    Rezkalla, Michel M.N.; Heussen, Kai; Marinelli, Mattia

    2015-01-01

    The integration of significant volumes of distributed and renewable energy resources directly connected to the distribution network raises new requirement to maintain and operate the power system in secure state. Thus the Distribution Management System (DMS) needs to be updated and integrated...

  12. [Requirements for the successful installation of an data management system].

    Science.gov (United States)

    Benson, M; Junger, A; Quinzio, L; Hempelmann, G

    2002-08-01

    Due to increasing requirements on medical documentation, especially with reference to the German Social Law binding towards quality management and introducing a new billing system (DRGs), an increasing number of departments consider to implement a patient data management system (PDMS). The installation should be professionally planned as a project in order to insure and complete a successful installation. The following aspects are essential: composition of the project group, definition of goals, finance, networking, space considerations, hardware, software, configuration, education and support. Project and finance planning must be prepared before beginning the project and the project process must be constantly evaluated. In selecting the software, certain characteristics should be considered: use of standards, configurability, intercommunicability and modularity. Our experience has taught us that vaguely defined goals, insufficient project planning and the existing management culture are responsible for the failure of PDMS installations. The software used tends to play a less important role.

  13. Identifying and confirming information and system quality requirements for multi-agency disaster management

    NARCIS (Netherlands)

    Bharosa, N.; Appelman, J.A.; Van Zanten, B.; Zuurmond, A.

    2009-01-01

    This paper investigates the relevance and assurance of information and system quality as requirements for information systems success during disaster management. Despite the many examples of poor information quality and poor system quality, research on the relevance and assurance of these

  14. Requirements for VICTORIA Class Fire Control System: Contact Management Function

    Science.gov (United States)

    2014-07-01

    Requirements for VICTORIA Class Fire Control System Contact Management Function Tab Lamoureux CAE Integrated Enterprise Solutions...Contract Report DRDC-RDDC-2014-C190 July 2014 © Her Majesty the Queen in Right of Canada, as represented by the...i Abstract …….. The VICTORIA Class Submarines (VCS) are subject to a continuing program of technical upgrades. One such program is

  15. Mined Geologic Disposal System Requirements Document

    International Nuclear Information System (INIS)

    1993-01-01

    This Mined Geologic Disposal System Requirements document (MGDS-RD) describes the functions to be performed by, and the requirements for, a Mined Geologic Disposal System (MGDS) for the permanent disposal of spent nuclear fuel (SNF) and commercial and defense high level radioactive waste (HLW) in support of the Civilian Radioactive Waste Management System (CRWMS). The development and control of the MGDS-RD is quality-affecting work and is subject to the Department of Energy (DOE) Office of Civilian Radioactive Waste Management (OCRWM) Quality Assurance Requirements Document (QARD). As part of the technical requirements baseline, it is also subject to Baseline Management Plan controls. The MGDS-RD and the other program-level requirements documents have been prepared and managed in accordance with the Technical Document Preparation Plan (TDPP) for the Preparation of System Requirements Documents

  16. Quality Requirements for Electronic Health Record Systems*. A Japanese-German Information Management Perspective.

    Science.gov (United States)

    Winter, Alfred; Takabayashi, Katsuhiko; Jahn, Franziska; Kimura, Eizen; Engelbrecht, Rolf; Haux, Reinhold; Honda, Masayuki; Hübner, Ursula H; Inoue, Sozo; Kohl, Christian D; Matsumoto, Takehiro; Matsumura, Yasushi; Miyo, Kengo; Nakashima, Naoki; Prokosch, Hans-Ulrich; Staemmler, Martin

    2017-08-07

    For more than 30 years, there has been close cooperation between Japanese and German scientists with regard to information systems in health care. Collaboration has been formalized by an agreement between the respective scientific associations. Following this agreement, two joint workshops took place to explore the similarities and differences of electronic health record systems (EHRS) against the background of the two national healthcare systems that share many commonalities. To establish a framework and requirements for the quality of EHRS that may also serve as a basis for comparing different EHRS. Donabedian's three dimensions of quality of medical care were adapted to the outcome, process, and structural quality of EHRS and their management. These quality dimensions were proposed before the first workshop of EHRS experts and enriched during the discussions. The Quality Requirements Framework of EHRS (QRF-EHRS) was defined and complemented by requirements for high quality EHRS. The framework integrates three quality dimensions (outcome, process, and structural quality), three layers of information systems (processes and data, applications, and physical tools) and three dimensions of information management (strategic, tactical, and operational information management). Describing and comparing the quality of EHRS is in fact a multidimensional problem as given by the QRF-EHRS framework. This framework will be utilized to compare Japanese and German EHRS, notably those that were presented at the second workshop.

  17. Waste Receiving and Processing Facility Module 1 Data Management System software requirements specification

    International Nuclear Information System (INIS)

    Rosnick, C.K.

    1996-01-01

    This document provides the software requirements for Waste Receiving and Processing (WRAP) Module 1 Data Management System (DMS). The DMS is one of the plant computer systems for the new WRAP 1 facility (Project W-0126). The DMS will collect, store and report data required to certify the low level waste (LLW) and transuranic (TRU) waste items processed at WRAP 1 as acceptable for shipment, storage, or disposal

  18. Waste Receiving and Processing Facility Module 1 Data Management System Software Requirements Specification

    International Nuclear Information System (INIS)

    Brann, E.C. II.

    1994-01-01

    This document provides the software requirements for Waste Receiving and Processing (WRAP) Module 1 Data Management System (DMS). The DMS is one of the plant computer systems for the new WRAP 1 facility (Project W-026). The DMS will collect, store and report data required to certify the low level waste (LLW) and transuranic (TRU) waste items processed at WRAP 1 as acceptable for shipment, storage, or disposal

  19. Waste Receiving and Processing Facility Module 1 Data Management System Software Requirements Specification

    Energy Technology Data Exchange (ETDEWEB)

    Brann, E.C. II

    1994-09-09

    This document provides the software requirements for Waste Receiving and Processing (WRAP) Module 1 Data Management System (DMS). The DMS is one of the plant computer systems for the new WRAP 1 facility (Project W-026). The DMS will collect, store and report data required to certify the low level waste (LLW) and transuranic (TRU) waste items processed at WRAP 1 as acceptable for shipment, storage, or disposal.

  20. A Data Management System Integrating Web-based Training and Randomized Trials: Requirements, Experiences and Recommendations.

    Science.gov (United States)

    Muroff, Jordana; Amodeo, Maryann; Larson, Mary Jo; Carey, Margaret; Loftin, Ralph D

    2011-01-01

    This article describes a data management system (DMS) developed to support a large-scale randomized study of an innovative web-course that was designed to improve substance abuse counselors' knowledge and skills in applying a substance abuse treatment method (i.e., cognitive behavioral therapy; CBT). The randomized trial compared the performance of web-course-trained participants (intervention group) and printed-manual-trained participants (comparison group) to determine the effectiveness of the web-course in teaching CBT skills. A single DMS was needed to support all aspects of the study: web-course delivery and management, as well as randomized trial management. The authors briefly reviewed several other systems that were described as built either to handle randomized trials or to deliver and evaluate web-based training. However it was clear that these systems fell short of meeting our needs for simultaneous, coordinated management of the web-course and the randomized trial. New England Research Institute's (NERI) proprietary Advanced Data Entry and Protocol Tracking (ADEPT) system was coupled with the web-programmed course and customized for our purposes. This article highlights the requirements for a DMS that operates at the intersection of web-based course management systems and randomized clinical trial systems, and the extent to which the coupled, customized ADEPT satisfied those requirements. Recommendations are included for institutions and individuals considering conducting randomized trials and web-based training programs, and seeking a DMS that can meet similar requirements.

  1. 5 CFR 9701.405 - Performance management system requirements.

    Science.gov (United States)

    2010-01-01

    ... feedback, and developing, rating, and rewarding performance; and (6) Specify the criteria and procedures to... 5 Administrative Personnel 3 2010-01-01 2010-01-01 false Performance management system... HOMELAND SECURITY HUMAN RESOURCES MANAGEMENT SYSTEM Performance Management § 9701.405 Performance...

  2. Auditing of suppliers as the requirement of quality management systems in construction

    Science.gov (United States)

    Harasymiuk, Jolanta; Barski, Janusz

    2017-07-01

    The choice of a supplier of construction materials can be important factor of increase or reduction of building works costs. Construction materials present from 40 for 70% of investment task depending on kind of works being provided for realization. There is necessity of estimate of suppliers from the point of view of effectiveness of construction undertaking and necessity from the point of view of conformity of taken operation by executives of construction job and objects within the confines of systems of managements quality being initiated in their organizations. The estimate of suppliers of construction materials and subexecutives of special works is formal requirement in quality management systems, which meets the requirements of the ISO 9001 standard. The aim of this paper is to show possibilities of making use of anaudit for estimate of credibility and reliability of the supplier of construction materials. The article describes kinds of audits, that were carried in quality management systems, with particular taking into consideration audits called as second-site. One characterizes the estimate criterions of qualitative ability and method of choice of the supplier of construction materials. The paper shows also propositions of exemplary questions, that would be estimated in audit process, the way of conducting of this estimate and conditionality of estimate.

  3. Requirements for a systems-based research and development management process in transport infrastructure engineering

    CSIR Research Space (South Africa)

    Rust, FC

    2015-05-01

    Full Text Available are not suitable for the management of such multi-disciplinary projects. This study focuses on determining the key characteristics required for a systems-based approach to the management of R&D projects. The information and data was compiled from literature reviews...

  4. Use of a Graded Approach in the Application of the Management System Requirements for Facilities and Activities

    International Nuclear Information System (INIS)

    2014-06-01

    IAEA Safety Standards Series No. GS-R-3, The Management System for Facilities and Activities, defines the requirements for establishing, implementing, assessing and continually improving a management system that integrates safety, health, environmental, security, quality and economical elements. It details the need to grade the application of the management system requirements to ensure that resources are deployed and appropriate controls are applied on the basis of the consideration of: the significance and complexity of each product or activity; the hazards and the magnitude of the potential impact (risks) associated with the safety, health, environmental, security, quality and economical elements of each product or activity; and the possible consequences if a product fails or an activity is carried out incorrectly. The grading of the application of the requirements detailed in IAEA Safety Standards Series No. GS-R-3 is especially essential when they are implemented in smaller facilities and activities. The grading is done to ensure that the management system for smaller facilities and activities are suitably tailored to the hazards and the magnitude of the potential impact of the facilities and activities. Detailed guidance on how the grading requirements of IAEA Safety Standards Series No. GS-R-3 can be met and how to ensure that grading is performed in a consistent manner can be found in IAEA Safety Standards Series No. GS-G-3.1, Application of the Management System for Facilities and Activities. In addition, it contains guidance on systematic grading methods which will reduce the likelihood and consequences of improper grading. This publication provides an overview of grading fundamentals, the grading process, the role of classification in the process and the typical controls that can be graded. It also provides practical guidance and examples of grading as required by IAEA Safety Standards Series No. GS-R-3 to develop and apply a method of grading

  5. Managing Requirements-Documents to Data

    Science.gov (United States)

    Orr, Kevin; Hudson, Abe

    2017-01-01

    Managing Requirements on long term projects like International Space Station (ISS) can go thru many phases, from initial product development to almost over 20 years of operations and sustainment. Over that time many authorized changes have been made to the requirement set, that apply to any new systems that would visit the ISS today, like commercial cargo/crew vehicles or payloads. Explore the benefits of managing requirements in a database while satisfying traditional documents needs for contracts and stakeholder/user consumption that are not tied into the database.

  6. 78 FR 55230 - Safety and Environmental Management System Requirements for Vessels on the U.S. Outer Continental...

    Science.gov (United States)

    2013-09-10

    ...\\ including the regulation of workplace safety and health.\\2\\ The Coast Guard's regulatory authority extends... 147 [Docket No. USCG-2012-0779] RIN 1625-AC05 Safety and Environmental Management System Requirements... a vessel-specific Safety and Environmental Management System (SEMS) that incorporates the management...

  7. Requirements for a systems-based research and development management process in transport infrastructure engineering

    Directory of Open Access Journals (Sweden)

    Rust, Frederik Christoffel

    2015-05-01

    Full Text Available The management of research and development (R&D in the transport infrastructure field is complex due to the multidisciplinary nature of the work. The literature shows that linear R&D models that progress from idea through to consumer product are not suitable for the management of such multi-disciplinary projects. This study focuses on determining the key characteristics required for a systems-based approach to the management of R&D projects. The information and data was compiled from literature reviews, interviews, and an e-mail survey with responses from 42 significant international R&D programmes. The findings confirmed the need for a systems-based approach to R&D management. The study formulated twelve principles or tenets for a new, systems-based approach.

  8. CNEN, IAEA and ISO normative requirements for measurement management

    International Nuclear Information System (INIS)

    Kibrit, Eduardo

    2009-01-01

    International standard ISO 10012:2003 establishes requirements for measurement management systems, including requirements for measurement processes and measuring equipment. ISO 9001:2008 presents requirements for quality management systems, including requirements for the control of monitoring and measuring equipment. ISO 17025:2005 presents general requirements for the competence of testing and calibration laboratories. In the nuclear field the requirements for measurement management are established by standards published by the International Atomic Energy Agency (IAEA), and in Brazil, by the National Nuclear Energy Commission (CNEN). The present paper presents and discusses the normative requirements for measurement management, considering requirements established by National Nuclear Energy Commission (CNEN), International Atomic Energy Agency (IAEA), and International Organisation for Standardisation (ISO). (author)

  9. Physical system requirements: Overall system

    International Nuclear Information System (INIS)

    1992-01-01

    The Nuclear Waste Policy Act (NWPA) of 1982 assigned to the Department of Energy (DOE) the responsibility for managing the disposal of spent nuclear fuel and high-level radioactive waste and established the Office of Civilian Radioactive Waste Management (OCRWM) for that purpose. The Secretary of Energy, in his November 1989 report to Congress (DOE/RW-0247), announced three new initiatives for conduct of the Civilian Radioactive Waste Management (CRWM) program. One of these initiatives was to establish improved management structure and procedures. In response, OCRWM performed a management study and the Direct subsequently issued the Management Systems Improvement Strategy (MSIS) on August 10, 1990, calling for a rigorous implementation of systems engineering principles with a special emphasis on functional analysis. This approach establishes a framework for integrating the program management efforts with the technical requirements analysis into a single, unified, and consistent program. The functional analysis approach recognizes that just the facilities and equipment comprising the physical waste management system must perform certain functions, so must certain programmatic and management functions be performed within the program in order to successfully bring the physical system into being

  10. Model-Based Requirements Management in Gear Systems Design Based On Graph-Based Design Languages

    Directory of Open Access Journals (Sweden)

    Kevin Holder

    2017-10-01

    Full Text Available For several decades, a wide-spread consensus concerning the enormous importance of an in-depth clarification of the specifications of a product has been observed. A weak clarification of specifications is repeatedly listed as a main cause for the failure of product development projects. Requirements, which can be defined as the purpose, goals, constraints, and criteria associated with a product development project, play a central role in the clarification of specifications. The collection of activities which ensure that requirements are identified, documented, maintained, communicated, and traced throughout the life cycle of a system, product, or service can be referred to as “requirements engineering”. These activities can be supported by a collection and combination of strategies, methods, and tools which are appropriate for the clarification of specifications. Numerous publications describe the strategy and the components of requirements management. Furthermore, recent research investigates its industrial application. Simultaneously, promising developments of graph-based design languages for a holistic digital representation of the product life cycle are presented. Current developments realize graph-based languages by the diagrams of the Unified Modelling Language (UML, and allow the automatic generation and evaluation of multiple product variants. The research presented in this paper seeks to present a method in order to combine the advantages of a conscious requirements management process and graph-based design languages. Consequently, the main objective of this paper is the investigation of a model-based integration of requirements in a product development process by means of graph-based design languages. The research method is based on an in-depth analysis of an exemplary industrial product development, a gear system for so-called “Electrical Multiple Units” (EMU. Important requirements were abstracted from a gear system

  11. Information management systems for integrating the technical data and regulatory requirements of environmental restoration activities

    International Nuclear Information System (INIS)

    Geffen, C.A.; Garrett, B.A.; Walter, M.B.

    1990-03-01

    Current environmental regulations require that comprehensive planning be conducted before remediating a hazardous waste site to characterize the nature and extent of site contamination, calculate the risk to the public, and assess the effectiveness of various remediation technologies. Remediation of Department of Energy (DOE) sites contaminated with hazardous or mixed wastes will require the effective integration of scientific and engineering data with regulatory and institutional requirements. The information management challenge presented by waste site cleanup activities goes beyond merely dealing with the large quantity of data that will be generated. The information must be stored, managed, and presented in a way that provides some consistency in approach across sites, avoids duplication of effort, and facilitates responses to requests for information from the regulators and the public. This paper provides background information on the regulatory requirements for data gathering and analysis for environmental restoration activities, and outlines the data and information management requirements for completing the pre-remediation phases of an environmental restoration project. Information management systems for integrating the regulatory and institutional requirements of the environmental restoration process with the technical data and analysis requirements are also described. 7 refs

  12. Analysis of normative requirements for the development and implementation of a quality management system in Brazilian nuclear installations and activities

    International Nuclear Information System (INIS)

    Kibrit, Eduardo

    2008-01-01

    The present work identifies, characterizes and analyses the normative requirements for the development and implementation of quality management systems in Brazilian nuclear installations and activities. The requirements established in standards IAEA GS-R-3, IAEA GS-G-3.1, IAEA DS 349, NBR ISO 9001:2000 e CNEN-NN-1.16 are critically analyzed. A correlation matrix of the applicable standards is presented and the related topics among them are identified. The standards IAEA GS-R-3, IAEA GS-G-3.1 and IAEA DS 349 define general requirements for establishing, implementing, assessing and continually improving an integrated management system in nuclear installations and activities, in IAEA member countries. The standard NBR ISO 9001:2000 establishes general requirements for the implementation of a quality management system in all kinds of organizations. The standard CNEN NN-1.16 establishes the regulating requirements for the quality assurance systems and programs of nuclear installations, for licensing and authorization for operation of these installations in Brazil. The standard IAEA GS-R-3 that replaces the code IAEA 50-C-Q introduces the concept of 'Integrated Management System' for the nuclear area, in preference to the concepts of 'Quality Assurance' and 'Quality Management'. This new approach is aligned with the current tendency incorporating requirements of quality, safety, health, environment, security, economics and other in a unique management system. Examples of quality management systems implemented by Brazilian nuclear organizations and by nuclear organizations outside Brazil are analyzed and considered in the discussion of results. (author)

  13. Physical system requirements - Accept waste

    International Nuclear Information System (INIS)

    1992-08-01

    The Nuclear Waste Policy Act (NWPA) assigned to the Department of Energy (DOE) the responsibility for managing the disposal of spent nuclear fuel and high-level radioactive waste and established the Office of Civilian Radioactive Waste Management (OCRWM) for that purpose. The Secretary of Energy, in his November 1989 report to Congress (DOE/RW-0247), announced new initiatives for the conduct of the Civilian Radioactive Waste Management (CRWM) program. One of these initiatives was to establish improved management structure and procedures. In response, OCRWM performed a management study and the OCRWM Director subsequently issued the Management Systems improvement Strategy (MSIS) on August 10, 1990, calling for a rigorous implementation of systems engineering principles with a special emphasis on functional analysis. The functional analysis approach establishes a framework for integrating the program management efforts with the technical requirements analysis into a single, unified, and consistent program. This approach recognizes that just as the facilities and equipment comprising the physical waste management system must perform certain functions, so must certain programmatic and management functions be performed within the program in order to successfully bring the physical system into being. Thus, a comprehensive functional analysis effort has been undertaken which is intended to: Identify the functions that must be performed to fulfill the waste disposal mission; Identify the corresponding requirements imposed on each of the functions; and Identify the conceptual architecture that will be used to satisfy the requirements. The principal purpose of this requirements document is to present the results that were obtained from the conduct of a functional analysis effort for the Accept Waste mission

  14. Evaluation of Requirements for Volt/Var Control and Optimization Function in Distribution Management Systems

    DEFF Research Database (Denmark)

    Rahimi, Saaed; Marinelli, Mattia; Silvestro, Federico

    2012-01-01

    To meet the requirement from new visions within “smart grid” and to provide solutions for many challenges that DSOs (Distribution System Operators) are facing today, we need to develop advanced DMS (Distribution Management System) applications. A centralized Volt/Var Control (VVC) is one of the m...

  15. Instruction of the CSN on the requirements of the system of management of the nuclear power plants

    International Nuclear Information System (INIS)

    Cid, R.; Santo, A. de; Gil Montes, B.; Toca, A.

    2008-01-01

    The Western European Nations Regulatory Authorities (WENRA) performed a nuclear safety requirements harmonization task, as a result of this work and its implementation, the Spanish Nuclear Safety Counsel (CSN) has the commitment to issue its own Regulation Safety Instructions) to identify the WENRA to level nuclear safety requirements, and to incorporate it in the Spanish regulatory pyramid. However, the Spain nuclear installations meet these requirements through the original criteria to fulfill the regulation of the country that supply the NSSS design, these requirements are not incorporated in our regulation. One of the issues, identified by WENRA, is the implementation of the management system requirements in accord with the IAEA GS-R-3 The Management System for Facilities and Activities. As these regards, the CSN has developed a Safety Instruction, basically endorsing the IAEA GS-R-3. The Safety Instruction is actually in a phase of external comments and should be issued by june 2008. This paper describes the bases for the Safety Instruction, summarises the requirements that would meet the management system for nuclear installations and the activities to perform for its implementations. (Author)

  16. Leadership and Management for Safety. General Safety Requirements

    International Nuclear Information System (INIS)

    2016-01-01

    This Safety Requirements publication establishes requirements that support Principle 3 of the Fundamental Safety Principles in relation to establishing, sustaining and continuously improving leadership and management for safety and an integrated management system. It emphasizes that leadership for safety, management for safety, an effective management system and a systemic approach (i.e. an approach in which interactions between technical, human and organizational factors are duly considered) are all essential to the specification and application of adequate safety measures and to the fostering of a strong safety culture. Leadership and an effective management system will integrate safety, health, environmental, security, quality, human-and-organizational factor, societal and economic elements. The management system will ensure the fostering of a strong safety culture, regular assessment of performance and the application of lessons from experience. The publication is intended for use by regulatory bodies, operating organizations (registrants and licensees) and other organizations concerned with facilities and activities that give rise to radiation risks

  17. 47 CFR 97.513 - VE session manager requirements.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false VE session manager requirements. 97.513 Section... SERVICES AMATEUR RADIO SERVICE Qualifying Examination Systems § 97.513 VE session manager requirements. (a) A VE session manager may be selected by the VE team for each examination session. The VE session...

  18. Management of Operational Support Requirements for Manned Flight Missions

    Science.gov (United States)

    1991-01-01

    This Instruction establishes responsibilities for managing the system whereby operational support requirements are levied for support of manned flight missions including associated payloads. This management system will ensure that support requirements are properly requested and responses are properly obtained to meet operational objectives.

  19. Transportation System Requirements Document

    International Nuclear Information System (INIS)

    1993-09-01

    This Transportation System Requirements Document (Trans-SRD) describes the functions to be performed by and the technical requirements for the Transportation System to transport spent nuclear fuel (SNF) and high-level radioactive waste (HLW) from Purchaser and Producer sites to a Civilian Radioactive Waste Management System (CRWMS) site, and between CRWMS sites. The purpose of this document is to define the system-level requirements for Transportation consistent with the CRWMS Requirement Document (CRD). These requirements include design and operations requirements to the extent they impact on the development of the physical segments of Transportation. The document also presents an overall description of Transportation, its functions, its segments, and the requirements allocated to the segments and the system-level interfaces with Transportation. The interface identification and description are published in the CRWMS Interface Specification

  20. Waste Acceptance System Requirements document (WASRD)

    International Nuclear Information System (INIS)

    1993-01-01

    This Waste Acceptance System Requirements document (WA-SRD) describes the functions to be performed and the technical requirements for a Waste Acceptance System for accepting spent nuclear fuel (SNF) and high-level radioactive waste (HLW) into the Civilian Radioactive Waste Management System (CRWMS). This revision of the WA-SRD addresses the requirements for the acceptance of HLW. This revision has been developed as a top priority document to permit DOE's Office of Environmental Restoration and Waste Management (EM) to commence waste qualification runs at the Savannah River Site's (SRS) Defense Waste Processing Facility (DWPF) in a timely manner. Additionally, this revision of the WA-SRD includes the requirements from the Physical System Requirements -- Accept Waste document for the acceptance of SNF. A subsequent revision will fully address requirements relative to the acceptance of SNF

  1. Operations management system

    Science.gov (United States)

    Brandli, A. E.; Eckelkamp, R. E.; Kelly, C. M.; Mccandless, W.; Rue, D. L.

    1990-01-01

    The objective of an operations management system is to provide an orderly and efficient method to operate and maintain aerospace vehicles. Concepts are described for an operations management system and the key technologies are highlighted which will be required if this capability is brought to fruition. Without this automation and decision aiding capability, the growing complexity of avionics will result in an unmanageable workload for the operator, ultimately threatening mission success or survivability of the aircraft or space system. The key technologies include expert system application to operational tasks such as replanning, equipment diagnostics and checkout, global system management, and advanced man machine interfaces. The economical development of operations management systems, which are largely software, will require advancements in other technological areas such as software engineering and computer hardware.

  2. A systems engineering management approach to resource management applications

    Science.gov (United States)

    Hornstein, Rhoda Shaller

    1989-01-01

    The author presents a program management response to the following question: How can the traditional practice of systems engineering management, including requirements specification, be adapted, enhanced, or modified to build future planning and scheduling systems for effective operations? The systems engineering management process, as traditionally practiced, is examined. Extensible resource management systems are discussed. It is concluded that extensible systems are a partial solution to problems presented by requirements that are incomplete, partially immeasurable, and often dynamic. There are positive indications that resource management systems have been characterized and modeled sufficiently to allow their implementation as extensible systems.

  3. Waste management system functional requirements for Interim Waste Management Facilities (IWMFs) and technology demonstrations, LLWDDD [Low-Level Disposal Development and Demonstration] Program

    International Nuclear Information System (INIS)

    1988-03-01

    The purpose of this report is to build upon the preceding decisions and body of information to prepare draft system functional requirements for each classification of waste disposal currently proposed for Low-Level Waste Disposal Development Demonstration (LLWDDD) projects. Functional requirements identify specific information and data needs necessary to satisfy engineering design criteria/objectives for Interim Waste Management Facilities. This draft will suppor the alternatives evaluation process and will continue to evolve as strategy is implemented, regulatory limits are established, technical and economic uncertainties are resolved, and waste management plans are being implemented. This document will become the planning basis for the new generation of solid LLW management facilities on new sites on the Reservation. Eighteen (18) general system requirements are identified which are applicable to all four Low-Level Waste (LLW) disposal classifications. Each classification of LLW disposal is individually addressed with respect ot waste characteristics, site considerations, facility operations, facility closure/post-closure, intruder barriers, institutional control, and performance monitoring requirements. Three initial LLW disposal sites have been proposed as locations on the ORR for the first demonstrations

  4. Applying Required Navigation Performance Concept for Traffic Management of Small Unmanned Aircraft Systems

    Science.gov (United States)

    Jung, Jaewoo; D'Souza, Sarah N.; Johnson, Marcus A.; Ishihara, Abraham K.; Modi, Hemil C.; Nikaido, Ben; Hasseeb, Hashmatullah

    2016-01-01

    In anticipation of a rapid increase in the number of civil Unmanned Aircraft System(UAS) operations, NASA is researching prototype technologies for a UAS Traffic Management (UTM) system that will investigate airspace integration requirements for enabling safe, efficient low-altitude operations. One aspect a UTM system must consider is the correlation between UAS operations (such as vehicles, operation areas and durations), UAS performance requirements, and the risk to people and property in the operational area. This paper investigates the potential application of the International Civil Aviation Organizations (ICAO) Required Navigation Performance (RNP) concept to relate operational risk with trajectory conformance requirements. The approach is to first define a method to quantify operational risk and then define the RNP level requirement as a function of the operational risk. Greater operational risk corresponds to more accurate RNP level, or smaller tolerable Total System Error (TSE). Data from 19 small UAS flights are used to develop and validate a formula that defines this relationship. An approach to assessing UAS-RNP conformance capability using vehicle modeling and wind field simulation is developed to investigate how this formula may be applied in a future UTM system. The results indicate the modeled vehicles flight path is robust to the simulated wind variation, and it can meet RNP level requirements calculated by the formula. The results also indicate how vehicle-modeling fidelity may be improved to adequately verify assessed RNP level.

  5. Requirements Flowdown for Prognostics and Health Management

    Science.gov (United States)

    Goebel, Kai; Saxena, Abhinav; Roychoudhury, Indranil; Celaya, Jose R.; Saha, Bhaskar; Saha, Sankalita

    2012-01-01

    Prognostics and Health Management (PHM) principles have considerable promise to change the game of lifecycle cost of engineering systems at high safety levels by providing a reliable estimate of future system states. This estimate is a key for planning and decision making in an operational setting. While technology solutions have made considerable advances, the tie-in into the systems engineering process is lagging behind, which delays fielding of PHM-enabled systems. The derivation of specifications from high level requirements for algorithm performance to ensure quality predictions is not well developed. From an engineering perspective some key parameters driving the requirements for prognostics performance include: (1) maximum allowable Probability of Failure (PoF) of the prognostic system to bound the risk of losing an asset, (2) tolerable limits on proactive maintenance to minimize missed opportunity of asset usage, (3) lead time to specify the amount of advanced warning needed for actionable decisions, and (4) required confidence to specify when prognosis is sufficiently good to be used. This paper takes a systems engineering view towards the requirements specification process and presents a method for the flowdown process. A case study based on an electric Unmanned Aerial Vehicle (e-UAV) scenario demonstrates how top level requirements for performance, cost, and safety flow down to the health management level and specify quantitative requirements for prognostic algorithm performance.

  6. OCRWM Systems Engineering Management Plan (SEMP)

    International Nuclear Information System (INIS)

    1990-03-01

    The Nuclear Waste Policy Act of 1982 established the Office of Civilian Radioactive Waste Management (OCRWM) in the Department of Energy (DOE) to implement a program for the safe and permanent disposal of spent nuclear fuel and high-level radioactive waste. To achieve this objective, the OCRWM is developing an integrated waste-management system consisting of three elements: the transportation system, the monitored retrievable storage (MRS) facility, and the mined geologic disposal system (MGDS). The development of such a system requires management of many diverse disciplines that are involved in research, siting, design, licensing, and external interactions. The purpose of this Systems Engineering Management Plan (SEMP) is to prescribe how the systems-engineering process will be implemented in the development of the waste-management system. Systems engineering will be used by the OCRWM to manage, integrate, and document all aspects of the technical development of the waste-management system and its system elements to ensure that the requirements of the waste-management program are met. It will be applied to all technical activities of the OCRWM program. It will be used by the OCRWM to specify the sequence of technical activities necessary to define the requirements the waste-management system must satisfy, to develop the waste-management system, to relate system elements to each other, and to determine how the waste-management system can be optimized to most effectively satisfy the requirements. Furthermore, systems engineering will be used in the management of Program activities at the program, program-element, and project levels by specifying procedures, studies, reviews, and documentation requirements. 9 refs., 1 fig

  7. Disaster Management: AN Integral Part of Science & Technology System and Land Administration-Management System

    Science.gov (United States)

    Ghawana, T.; Zlatanova, S.

    2016-06-01

    Disaster management is a multidisciplinary field, which requires a general coordination approach as well as specialist approaches. Science and Technology system of a country allows to create policies and execution of technical inputs required which provide services for the specific types of disasters management. Land administration and management agencies, as the administrative and management bodies, focus more on the coordination of designated tasks to various agencies responsible for their dedicated roles. They get help from Scientific and technical inputs & policies which require to be implemented in a professional manner. The paper provides an example of such integration from India where these two systems complement each other with their dedicated services. Delhi, the Capital of India, has such a disaster management system which has lot of technical departments of government which are mandated to provide their services as Emergency Service Functionaries. Thus, it is shown that disaster management is a job which is an integral part of Science & Technology system of a country while being implemented primarily with the help of land administration and management agencies. It is required that new policies or mandates for the Science and technology organizations of government should give a primary space to disaster management

  8. Configuration Management Program - a part of Integrated Management System

    International Nuclear Information System (INIS)

    Mancev, Bogomil; Yordanova, Vanja; Nenkova, Boyka

    2014-01-01

    The recently issued International Atomic Energy Agency (IAEA) publications (GS-R-3, GS-G-3.1 and GS-G-3.5) regarding Management Systems for Facilities and Activities define requirements for creation, introduction, evaluation and continuously improvement of the Management System, which unifies the safety, health, environment, security, quality and economic elements. According to GS-R-3 the Integrated Management System is based on defined processes identified in the enterprises: Managing, Basic and Supporting processes. At implementation of their activities, the organizations often apply other standards in their interrelations with suppliers and the parties concerned - ISO 9001:2008, ISO 14001:2004 and OHSAS 18001:2007, regarding quality, environment and occupational health and safety management. The integration of the standards of both series ensure the observance of the common management principles that reflect the best practices of management as leadership, participation of the people, process approach, continuously improvement, systematical approach to the management and approach based on facts used at the making decisions. The main objective of the Integrated Management System introduction is to ensure safety considering the influence of all additional impacts taken together. The Integrated Management System is based on the process approach at implementation of the activities in nuclear power plant. The transition to the process oriented approach require long period of time, during which the distribution of the responsibilities is optimized up to the level that will satisfy the requirements, reach and maintain the stipulated objectives. The Configuration Management (CM) is an integrated management process by means of which conformity between design requirements, physical configuration and the plant documentation is ascertained and maintained during the entire life cycle of the facility. Processes within configuration management are not isolated, but are part of

  9. Information Management system of the safety regulatory requirements and guidance for the Korea next generation reactors

    International Nuclear Information System (INIS)

    Yun, Y. C.; Lee, J. H.; Lee, H. C.; Lee, J. S.

    2000-01-01

    In order to achieve the safety of the Korea Next Generation Reactors (KNGR), the Korea Institute of Nuclear Safety has carried out the Safety and Regulatory Requirements and Guidance (SRRG) development program from 1992 such as establishment of the SRRG hierarchy, development of technical requirements and guidance, and consideration of new licensing system. The SRRG hierarchy for the KNGR was consisted of five tiers; Safety Objectives, Safety Principles, General Safety Criteria, Specific Safety Requirements and Safety Regulatory Guides. The developed SRRG have been compared the criteria in 10CFR and Reg. Guide in the U.S.A and the IAEA documents for assuring internationally acceptable level of the SRRG. To improve the efficiency and accuracy of SRRG development, the construction of database system was required in the course of development. Therefore, the Information Management System of SRRG for the KNGR has been developed which enables developers to quickly and accurately seek and systematically manage whole contexts of the SRRG, reference requirements, and current atomic energy regulation rules. Moreover, through homepage whose URL is 'http://kngr.kins.re.kr', the concerned persons and public can acquire the information related with SRRG and KNGR project, and post his/her thought to the opinion forum in the homepage

  10. Information Management system of the safety regulatory requirements and guidance for the Korea next generation reactors

    Energy Technology Data Exchange (ETDEWEB)

    Yun, Y. C. [LG-EDS Systems, Seoul (Korea, Republic of); Lee, J. H.; Lee, H. C.; Lee, J. S. [Korea Institute of Nuclear Safety, Taejon (Korea, Republic of)

    2000-05-01

    In order to achieve the safety of the Korea Next Generation Reactors (KNGR), the Korea Institute of Nuclear Safety has carried out the Safety and Regulatory Requirements and Guidance (SRRG) development program from 1992 such as establishment of the SRRG hierarchy, development of technical requirements and guidance, and consideration of new licensing system. The SRRG hierarchy for the KNGR was consisted of five tiers; Safety Objectives, Safety Principles, General Safety Criteria, Specific Safety Requirements and Safety Regulatory Guides. The developed SRRG have been compared the criteria in 10CFR and Reg. Guide in the U.S.A and the IAEA documents for assuring internationally acceptable level of the SRRG. To improve the efficiency and accuracy of SRRG development, the construction of database system was required in the course of development. Therefore, the Information Management System of SRRG for the KNGR has been developed which enables developers to quickly and accurately seek and systematically manage whole contexts of the SRRG, reference requirements, and current atomic energy regulation rules. Moreover, through homepage whose URL is 'http://kngr.kins.re.kr', the concerned persons and public can acquire the information related with SRRG and KNGR project, and post his/her thought to the opinion forum in the homepage.

  11. SELECTED REQUIREMENTS OF INTEGRATED MANAGEMENT SYSTEMS BASED ON PAS 99 SPECIFICATION

    Directory of Open Access Journals (Sweden)

    Paweł Nowicki

    2013-03-01

    Full Text Available The aim this research was to analyze the ways of integration of management systems in food sector. The study involved the documentation, audits, corrective and preventive actions and management's review phases described in the specification PAS 99, which is one of common elements of integrated management systems. Four organizations were selected for the study. The organizations had introduced and certified at least two standardized management systems. It was assumed that the investigated organizations should have implemented the HACCP system. Studies were conducted as a case study. The employees responsible for the functioning of management systems were interviewed in all four organizations. The study was conducted in the form of in-depth interviews based on pre-prepared script. The scenario was developed based on the PAS 99 guideline. The process of integration of management systems implemented in the studied companies reveals the full compliance of an integrated management system with PASS 99 in the policy area.

  12. Small supermarket management system

    Institute of Scientific and Technical Information of China (English)

    曹正

    2016-01-01

    This system USES the Java language in the MyEclipse platform development tool, SQL2005 as the database platform for data and data, the SQL2005 required for the user operating system. It mainly implements the daily management of goods, including purchase management, inventory management, sales management, personnel management and supplier management. The system can also complete the functions of browsing, querying, adding, deleting and modifying relevant information. This topic is the core of the stock management, inventory management and sales management, at the same time, the system also has the full user management and permissions management function..

  13. Physical System Requirements: Transport Waste

    International Nuclear Information System (INIS)

    1992-04-01

    The Nuclear Waste Policy Act (NWPA) of 1982 assigned to the Department of Energy (DOE) the responsibility for managing the disposal of spent nuclear fuel and high-level radioactive waste and established the Office of Civilian Radioactive Waste Management (OCRWM) for that purpose. The Secretary of Energy, in his November 1989 report to Congress (DOE/RW-0247), announced three new initiatives for the conduct of the Civilian Radioactive Waste Management (CRWM) program. One of these initiatives was to establish improved management structure and procedures. In response, OCRWM performed a management study and the Director subsequently issued the Management Systems Improvement Strategy (MSIS) on August 10, 1990, calling for a rigorous implementation of systems engineering principles with a special emphasis on functional analysis. The functional analysis approach establishes a framework for integrating the program management efforts with the technical requirements analysis into a single, unified, and consistent program. This approach recognizes that just as the facilities and equipment comprising the physical waste management system must perform certain functions, so must certain programmatic and management functions be performed within the program in order to successfully bring the physical system into being. The objective of this document is to establish the essential functions, requirements, interfaces, and system architecture for the Transport Waste mission. Based upon the Nuclear Waste Policy Act, the mission of the Waste Transportation System is to transport SNF and/or HLW from the purchaser's/producer's facilities to, and between, NWMS facilities in a manner that protects the health and safety of the public and of workers and the quality of the environment makes effective use of financial and other resources, and to the fullest extent possible uses the private sector

  14. The analysis of the program to develop the Nuclear Waste Management System: Allocated requirements for the Office of Civilian Radioactive Waste Management Program

    International Nuclear Information System (INIS)

    Woods, T.W.

    1991-09-01

    This report is volume 3, part B, of the program to satisfy the allocated requirements of the Office of Civilian Radioactive Waste Management Program, in the development of the nuclear waste management system. The report is divided into the following sections: regulatory compliance; external relations; international programs; strategic and contingency planning; contract business management; and administrative services. (CS)

  15. Development of an expert system prototype for determining software functional requirements for command management activities at NASA Goddard

    Science.gov (United States)

    Liebowitz, J.

    1986-01-01

    The development of an expert system prototype for software functional requirement determination for NASA Goddard's Command Management System, as part of its process of transforming general requests into specific near-earth satellite commands, is described. The present knowledge base was formulated through interactions with domain experts, and was then linked to the existing Knowledge Engineering Systems (KES) expert system application generator. Steps in the knowledge-base development include problem-oriented attribute hierarchy development, knowledge management approach determination, and knowledge base encoding. The KES Parser and Inspector, in addition to backcasting and analogical mapping, were used to validate the expert system-derived requirements for one of the major functions of a spacecraft, the solar Maximum Mission. Knowledge refinement, evaluation, and implementation procedures of the expert system were then accomplished.

  16. Tethys: The Marine and Hydrokinetic Technology Environmental Impacts Knowledge Management System -- Requirements Specification -- Version 1.0

    Energy Technology Data Exchange (ETDEWEB)

    Butner, R. Scott; Snowden-Swan, Lesley J.; Ellis, Peter C.

    2010-11-09

    The marine and hydrokinetic (MHK) environmental impacts knowledge management system (KMS), dubbed Tethys after the mythical Greek goddess of the seas, is being developed for the U.S. Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy Wind and Hydropower Technologies Program (WHTP) by Pacific Northwest National Laboratory (PNNL). This requirements specification establishes the essential capabilities required of Tethys and clarifies for WHTP and the Tethys development team the results that must be achieved by the system.

  17. Architecturally Significant Requirements Identification, Classification and Change Management for Multi-tenant Cloud-Based Systems

    DEFF Research Database (Denmark)

    Chauhan, Muhammad Aufeef; Probst, Christian W.

    2017-01-01

    presented a framework for requirements classification and change management focusing on distributed Platform as a Service (PaaS) and Software as a Service (SaaS) systems as well as complex software ecosystems that are built using PaaS and SaaS, such as Tools as a Service (TaaS). We have demonstrated...

  18. OCRWM [Office of Civilian Radioactive Waste Management] System Engineering Management Plant (SEMP)

    International Nuclear Information System (INIS)

    1990-02-01

    The Nuclear Waste Policy Act of 1982 established the Office of Civilian Radioactive Waste Management (OCRWM) in the Department of Energy (DOE) to implement a program for the safe and permanent disposal of spent nuclear fuel and high-level radioactive waste. To achieve this objective, the OCRWM is developing an integrated waste-management system consisting of three elements: the transportation system, the monitored retrievable storage (MRS) facility, and the mined geologic disposal system (MGDS). The development of such a system requires management of many diverse disciplines that are involved in research, siting, design, licensing, and external interactions. The purpose of this Systems Engineering Management Plan (SEMP) is to prescribe how the systems-engineering process will be implemented in the development of the waste-management system. Systems engineering will be used by the OCRWM to manage, integrate, and document all aspects of the technical development of the waste-management system and its system elements to ensure that the requirements of the waste-management program are met. It will be applied to all technical activities of the OCRWM program. It will be used by the OCRWM (1) to specify the sequence of technical activities necessary to define the requirements the waste-management system must satisfy, (2) to develop the waste-management system, can be optimized to most effectively satisfy the requirements. Furthermore, systems engineering will be used in the management of Program activities at the program, program-element, and project levels by specifying procedures, studies, reviews, and documentation requirements. 9 refs., 1 fig

  19. Program management system manual

    International Nuclear Information System (INIS)

    1989-08-01

    OCRWM has developed a program management system (PMS) to assist in organizing, planning, directing and controlling the Civilian Radioactive Waste Management Program. A well defined management system is necessary because: (1) the Program is a complex technical undertaking with a large number of participants, (2) the disposal and storage facilities to be developed by the Program must be licensed by the Nuclear Regulatory Commission (NRC) and hence are subject to rigorous quality assurance (QA) requirements, (3) the legislation mandating the Program creates a dichotomy between demanding schedules of performance and a requirement for close and continuous consultation and cooperation with external entities, (4) the various elements of the Program must be managed as parts of an integrated waste management system, (5) the Program has an estimated total system life cycle cost of over $30 billion, and (6) the Program has a unique fiduciary responsibility to the owners and generators of the nuclear waste for controlling costs and minimizing the user fees paid into the Nuclear Waste Fund. This PMS Manual is designed and structured to facilitate strong, effective Program management by providing policies and requirements for organizing, planning, directing and controlling the major Program functions

  20. Leadership and Management for Safety. General Safety Requirements (Arabic Edition)

    International Nuclear Information System (INIS)

    2016-01-01

    This Safety Requirements publication establishes requirements that support Principle 3 of the Fundamental Safety Principles in relation to establishing, sustaining and continuously improving leadership and management for safety and an integrated management system. It emphasizes that leadership for safety, management for safety, an effective management system and a systemic approach (i.e. an approach in which interactions between technical, human and organizational factors are duly considered) are all essential to the specification and application of adequate safety measures and to the fostering of a strong safety culture. Leadership and an effective management system will integrate safety, health, environmental, security, quality, human-and-organizational factors, societal and economic elements. The management system will ensure the fostering of a strong safety culture, regular assessment of performance and the application of lessons from experience. The publication is intended for use by regulatory bodies, operating organizations and other organizations concerned with facilities and activities that give rise to radiation risks.

  1. Leadership and Management for Safety. General Safety Requirements (Chinese Edition)

    International Nuclear Information System (INIS)

    2016-01-01

    This Safety Requirements publication establishes requirements that support Principle 3 of the Fundamental Safety Principles in relation to establishing, sustaining and continuously improving leadership and management for safety and an integrated management system. It emphasizes that leadership for safety, management for safety, an effective management system and a systemic approach (i.e. an approach in which interactions between technical, human and organizational factors are duly considered) are all essential to the specification and application of adequate safety measures and to the fostering of a strong safety culture. Leadership and an effective management system will integrate safety, health, environmental, security, quality, human-and-organizational factors, societal and economic elements. The management system will ensure the fostering of a strong safety culture, regular assessment of performance and the application of lessons from experience. The publication is intended for use by regulatory bodies, operating organizations and other organizations concerned with facilities and activities that give rise to radiation risks.

  2. Leadership and Management for Safety. General Safety Requirements (French Edition)

    International Nuclear Information System (INIS)

    2016-01-01

    This Safety Requirements publication establishes requirements that support Principle 3 of the Fundamental Safety Principles in relation to establishing, sustaining and continuously improving leadership and management for safety and an integrated management system. It emphasizes that leadership for safety, management for safety, an effective management system and a systemic approach (i.e. an approach in which interactions between technical, human and organizational factors are duly considered) are all essential to the specification and application of adequate safety measures and to the fostering of a strong safety culture. Leadership and an effective management system will integrate safety, health, environmental, security, quality, human-and-organizational factors, societal and economic elements. The management system will ensure the fostering of a strong safety culture, regular assessment of performance and the application of lessons from experience. The publication is intended for use by regulatory bodies, operating organizations and other organizations concerned with facilities and activities that give rise to radiation risks.

  3. Leadership and Management for Safety. General Safety Requirements (Spanish Edition)

    International Nuclear Information System (INIS)

    2017-01-01

    his Safety Requirements publication establishes requirements that support Principle 3 of the Fundamental Safety Principles in relation to establishing, sustaining and continuously improving leadership and management for safety and an integrated management system. It emphasizes that leadership for safety, management for safety, an effective management system and a systemic approach (i.e. an approach in which interactions between technical, human and organizational factors are duly considered) are all essential to the specification and application of adequate safety measures and to the fostering of a strong safety culture. Leadership and an effective management system will integrate safety, health, environmental, security, quality, human-and-organizational factors, societal and economic elements. The management system will ensure the fostering of a strong safety culture, regular assessment of performance and the application of lessons from experience. The publication is intended for use by regulatory bodies, operating organizations and other organizations concerned with facilities and activities that give rise to radiation risks.

  4. Lithuanian requirements for ageing management of systems and components important to safety of nuclear power plant

    International Nuclear Information System (INIS)

    Ramanauskiene, A.

    2000-01-01

    In this paper the Lithuanian requirements for ageing management of systems and components important to safety of Ignalina nuclear power plant (two RBMK-1500 water-cooled graphite moderated channel-type power reactors) are presented

  5. Systems Engineering Management Plan

    International Nuclear Information System (INIS)

    1994-01-01

    The purpose of this Monitored Retrievable Storage (MRS) Project Systems Engineering Management Plan (SEMP) is to define and establish the MRS Project Systems Engineering process that implements the approved policy and requirements of the Office of Civilian Radioactive Waste Management (OCRWM) for the US Department of Energy (DOE). This plan is Volume 5 of the MRS Project Management Plan (PMP). This plan provides the framework for implementation of systems engineering on the MRS Project consistent with DOE Order 4700.1, the OCRWM Program Management System Manual (PMSM), and the OCRWM Systems Engineering Management Plan (SEMP)

  6. Compatibility of DOE energy data bases with EEMIS data requirements. [Energy Emergency Management Information Systems

    Energy Technology Data Exchange (ETDEWEB)

    D& #x27; Acierno, J; Hermelee, A

    1979-12-01

    Object of this report is to present the data from EIA data bases which are compatible with the requirements of the data structure for the Energy Emergency Management Information System (EEMIS). An overview of data availability is briefly described and presented in the EEMIS petroleum and natural gas flow diagrams as well as in a more detailed review with each data element in the EEMIS data requirements. This information is presented with the intent that it be used as an overall system guide during the data transfer task as well as in future operation of EEMIS and in the interpretation of EEMIS data.

  7. Generic functional requirements for a NASA general-purpose data base management system

    Science.gov (United States)

    Lohman, G. M.

    1981-01-01

    Generic functional requirements for a general-purpose, multi-mission data base management system (DBMS) for application to remotely sensed scientific data bases are detailed. The motivation for utilizing DBMS technology in this environment is explained. The major requirements include: (1) a DBMS for scientific observational data; (2) a multi-mission capability; (3) user-friendly; (4) extensive and integrated information about data; (5) robust languages for defining data structures and formats; (6) scientific data types and structures; (7) flexible physical access mechanisms; (8) ways of representing spatial relationships; (9) a high level nonprocedural interactive query and data manipulation language; (10) data base maintenance utilities; (11) high rate input/output and large data volume storage; and adaptability to a distributed data base and/or data base machine configuration. Detailed functions are specified in a top-down hierarchic fashion. Implementation, performance, and support requirements are also given.

  8. Maintenance management systems

    International Nuclear Information System (INIS)

    Rohan, M. de

    1989-01-01

    This paper is concerned principally with Maintenance Management systems and their effective introduction into organisations. Maintenance improvement is basically a problem of managing the maintenance department in the broadest sense. Improvement does not only lie in the area of special techniques, systems or procedures; although they are valuable tools, but rather in a balanced attack, carefully guided by management. Over recent years, maintenance systems have received the major emphasis and in many instances the selection of the system has become a pre-occupation, whereas the importance of each maintenance function must be recognised and good management practices applied to all maintenance activities. The ingredients for success in the implementation of maintenance management systems are summarised as: having a management committee, clear objectives, project approach using project management techniques and an enthusiastic leader, user managed and data processing supported project, realistic budget and an understanding of the financial audit requirements. (author)

  9. Dynamic Object Oriented Requirements System (DOORS) System Test Plan

    International Nuclear Information System (INIS)

    JOHNSON, A.L.

    2000-01-01

    The U. S. Department of Energy, Office of River Protection (ORP) will use the Dynamic Object Oriented Requirements System (DOORS) as a tool to assist in identifying, capturing, and maintaining the necessary and sufficient set of requirements for accomplishing the ORP mission. By managing requirements as one integrated set, the ORP will be able to carry out its mission more efficiently and effectively. DOORS is a Commercial-Off-The-Shelf (COTS) requirements management tool. The tool has not been customized for the use of the PIO, at this time

  10. Sewer System Management Plan.

    Energy Technology Data Exchange (ETDEWEB)

    Holland, Robert C. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-08-01

    A Sewer System Management Plan (SSMP) is required by the State Water Resources Control Board (SWRCB) Order No. 2006-0003-DWQ Statewide General Waste Discharge Requirements (WDR) for Sanitary Sewer Systems (General Permit). DOE, National Nuclear Security Administration (NNSA), Sandia Field Office has filed a Notice of Intent to be covered under this General Permit. The General Permit requires a proactive approach to reduce the number and frequency of sanitary sewer overflows (SSOs) within the State. SSMPs must include provisions to provide proper and efficient management, operation, and maintenance of sanitary sewer systems and must contain a spill response plan.

  11. Infrastructure requirement of knowledge management system model of statistical learning tool (SLT) for education community

    Science.gov (United States)

    Abdullah, Rusli; Samah, Bahaman Abu; Bolong, Jusang; D'Silva, Jeffrey Lawrence; Shaffril, Hayrol Azril Mohamed

    2014-09-01

    Today, teaching and learning (T&L) using technology as tool is becoming more important especially in the field of statistics as a part of the subject matter in higher education system environment. Eventhough, there are many types of technology of statistical learnig tool (SLT) which can be used to support and enhance T&L environment, however, there is lack of a common standard knowledge management as a knowledge portal for guidance especially in relation to infrastructure requirement of SLT in servicing the community of user (CoU) such as educators, students and other parties who are interested in performing this technology as a tool for their T&L. Therefore, there is a need of a common standard infrastructure requirement of knowledge portal in helping CoU for managing of statistical knowledge in acquiring, storing, desseminating and applying of the statistical knowedge for their specific purposes. Futhermore, by having this infrastructure requirement of knowledge portal model of SLT as a guidance in promoting knowledge of best practise among the CoU, it can also enhance the quality and productivity of their work towards excellence of statistical knowledge application in education system environment.

  12. Integrated management system

    International Nuclear Information System (INIS)

    Florescu, N.

    2003-01-01

    A management system is developed in order to reflect the needs of the business and to ensure that the objectives of the organization will be achieved. The process model and each individual process within the system then needs to identify the drives or requirements from external customers and stakeholders, regulations, and standards such as ISO and 50-C-Q. The processes are then developed to address these drivers. Developing the process in this way makes it fully integrated and capable of incorporating any new requirements. The International Standard (ISO 9000:2000) promotes the adoption of a process approach when developing, implementing and improving the effectiveness of a quality management system to enhance customer satisfaction by meeting customer requirements. The IAEA Code recognizes that the entire work is a process which can be planned, assessed and improved. For an organization to function effectively, numerous linked activities have to be identified and managed. By definition a process is an activity that using resources and taking into account all the constraints imposed executes the necessary operations which transform the inputs in outcomes. Running a system of processes within an organization, identification of the interaction between the processes and their management can be referred to as a 'process approach'. The advantage of such an approach is the ensuring of the ongoing control over the linkage between the individual processes composing the system as well as over their combination and interaction. Developing a management system implies: identification of the process which delivers Critical Success Factor (CSFs) of the business; identifying the support processes enabling the CSFs to be accomplished; identifying the processes that deliver the business fundamentals. An integrated management system should include all activities not only those related to Quality, Health and Safety. When developing an IMS it is necessary to identify all of the drivers

  13. Curent requirements for image management in radiotherapy

    International Nuclear Information System (INIS)

    Steil, V.; Schneider, F.; Wenz, F.; Lohr, F.; Roehner, F.; Weisser, G.

    2012-01-01

    Treatment techniques of increasing complexity such as dynamic/rotational techniques mandate digital management and increasingly image guidance. This constantly increases requirements for image management and archiving. This article discusses the current status of these requirements and will present potential image administration strategies. Fundamentals of image administration and storage/archiving are presented (DICOM Standard, radiotherapy-specific issues) along the typical patient pathway (demographic data, radiotherapy treatment planning, signatures/approval of plan and image data, archiving of plan and image data). Different strategies for image management are presented (archiving centered on individual application vs. integral approach with central archiving in a DICOM-RT-PACS governed by a radiation oncology information system (ROCIS)). Infrastructural requirements depending on the amount of image data generated in the department are discussed. Application-centered image management provides access to image data including all relevant RT-specific elements. This approach, however, is not migration-safe, requires significant administrative work to ensure a redundancy level that protects against data loss and does not provide datasets that are linked to respective therapeutic interventions. Therefore, centralized image management and archiving that links images to patients and individual steps in the treatment pathway within a standardized DICOM(-RT) environment is preferable despite occasional problems with visualization of specific data elements. (orig.)

  14. Development of Occupational Safety and Health Requirement Management System (OSHREMS Software Using Adobe Dreamweaver CS5 for Building Construction Project

    Directory of Open Access Journals (Sweden)

    Abas Nor Haslinda

    2017-01-01

    Full Text Available The construction industry sector is considered as being risky with frequent and high accident rate. According to Social Security Organization (SOCSO, the construction accidents has arisen from time to time. Construction Industry Development Board (CIDB has developed the Safety and Health Assessment System in Construction (SHASSIC for evaluating the performance of a contractor in construction project by setting out the safety and health management and practices, however the requirement checklist provided is not comprehensive. Therefore, this study aims to develop a software system for facilitating OSH in building construction project, namely OSH requirements management system (OSHREMS, using Adobe Dreamweaver CS5 and Sublime Text as PHP editor. The results from a preliminary study which was conducted through interviews showed that, the respondents were only implementing the basic requirements that comply with legislations, with the absence of appropriate and specific guideline in ensuring occupational safety and health (OSH at the workplace. The tool will be benefits for contractors and other parties to effectively manage the OSH requirements for their projects based on project details.

  15. Investigation on regulatory requirements for radiation safety management

    International Nuclear Information System (INIS)

    Han, Eun Ok; Choi, Yoon Seok; Cho, Dae Hyung

    2013-01-01

    NRC recognizes that efficient management of radiation safety plan is an important factor to achieve radiation safety service. In case of Korea, the contents to perform the actual radiation safety management are legally contained in radiation safety management reports based on the Nuclear Safety Act. It is to prioritize the importance of safety regulations in each sector in accordance with the current situation of radiation and radioactive isotopes-used industry and to provide a basis for deriving safety requirements and safety regulations system maintenance by the priority of radiation safety management regulations. It would be helpful to achieve regulations to conform to reality based on international standards if consistent safety requirements is developed for domestic users, national standards and international standards on the basis of the results of questions answered by radiation safety managers, who lead on-site radiation safety management, about the priority of important factors in radioactive sources use, sales, production, moving user companies, to check whether derived configuration requirements for radiation safety management are suitable for domestic status

  16. Management information systems. [United Kingdom

    Energy Technology Data Exchange (ETDEWEB)

    Hartley, D.; Spence, A.C.

    1985-02-01

    The successful application in the United Kingdom of the real time monitoring and control systems (MINOS) for underground mining operations, particularly in coal transport and the development of coalface monitoring (FIDO) in 1980 led naturally to the design of an operational data base for management. A User Group of experienced colliery managers produced a Management Information System (MIS) requirements specification and began the evolution of the systems of today. Twenty-four mines operate MIS in different ways from total dependency to a means of checking their manual reporting system. MIS collects useful data from all the major MINOS applications and provides a means of manually inputting other, relevant information. A wide variety of displays and reports are available to management, adjusted to meet individual requirements. The benefits from the use of MIS are difficult to quantify, since they become part of the management process. Further developments are taking place based on operational experience and requirements and taking advantage of the recent advances in computer technology. MIS is the modern management tool in British coal mining, collecting, storing, analysing and presenting accurate information upon which management decision making is based.

  17. Maintenance and management system

    International Nuclear Information System (INIS)

    Ando, Yasumasa.

    1992-01-01

    Since highly reliable operation is required in a nuclear power plant, monitoring during operation and periodical inspection are conducted carefully. The present invention provides maintenance and management systems for providing an aid so that these systems are combined effectively and operated rationally based on unified information management. That is, the system contains data bases comprising information for the design of the equipments and pipelines of a plant, information for the exchange of equipment parts, information for the history of plant operation, information for the monitoring and inspection, and information for the management of repair operation. In addition, it has an equipment part history management sub-system for managing equipment part exchange information, an operation history management sub-system for managing the operation state of the plant, an operation history management sub-system for managing equipment monitoring inspection data and operation management sub-system for managing periodical inspection/ repairing operation. These sub-systems are collectively combined to manage the maintenance and management jobs of the plant unitarily. (I.S.)

  18. Program Management System manual

    International Nuclear Information System (INIS)

    1986-01-01

    The Program Management System (PMS), as detailed in this manual, consists of all the plans, policies, procedure, systems, and processes that, taken together, serve as a mechanism for managing the various subprograms and program elements in a cohesive, cost-effective manner. The PMS is consistent with the requirements of the Nuclear Waste Policy Act of 1982 and the ''Mission Plan for the Civilian Radioactive Waste Management Program'' (DOE/RW-0005). It is based on, but goes beyond, the Department of Energy (DOE) management policies and procedures applicable to all DOE programs by adapting these directives to the specific needs of the Civilian Radioactive Waste Management program. This PMS Manual describes the hierarchy of plans required to develop and maintain the cost, schedule, and technical baselines at the various organizational levels of the Civilian Radioactive Waste Management Program. It also establishes the management policies and procedures used in the implementation of the Program. These include requirements for internal reports, data, and other information; systems engineering management; regulatory compliance; safety; quality assurance; and institutional affairs. Although expanded versions of many of these plans, policies, and procedures are found in separate documents, they are an integral part of this manual. The PMS provides the basis for the effective management that is needed to ensure that the Civilian Radioactive Waste Management Program fulfills the mandate of the Nuclear Waste Policy Act of 1982. 5 figs., 2 tabs

  19. Archival Information Management System.

    Science.gov (United States)

    1995-02-01

    management system named Archival Information Management System (AIMS), designed to meet the audit trail requirement for studies completed under the...are to be archived to the extent that future reproducibility and interrogation of results will exist. This report presents a prototype information

  20. Networked inventory management systems: materializing supply chain management

    NARCIS (Netherlands)

    Verwijmeren, M.A.A.P.; Vlist, van der P.; Donselaar, van K.H.

    1996-01-01

    Aims to explain the driving forces for networked inventory management. Discusses major developments with respect to customer requirements, networked organizations and networked inventory management. Presents high level specifications of networked inventory management information systems (NIMISs).

  1. A conceptual design for an integrated data base management system for remote sensing data. [user requirements and data processing

    Science.gov (United States)

    Maresca, P. A.; Lefler, R. M.

    1978-01-01

    The requirements of potential users were considered in the design of an integrated data base management system, developed to be independent of any specific computer or operating system, and to be used to support investigations in weather and climate. Ultimately, the system would expand to include data from the agriculture, hydrology, and related Earth resources disciplines. An overview of the system and its capabilities is presented. Aspects discussed cover the proposed interactive command language; the application program command language; storage and tabular data maintained by the regional data base management system; the handling of data files and the use of system standard formats; various control structures required to support the internal architecture of the system; and the actual system architecture with the various modules needed to implement the system. The concepts on which the relational data model is based; data integrity, consistency, and quality; and provisions for supporting concurrent access to data within the system are covered in the appendices.

  2. Implementation of integrated management system

    International Nuclear Information System (INIS)

    Gaspar Junior, Joao Carlos A.; Fonseca, Victor Zidan da

    2007-01-01

    In present day exist quality assurance system, environment, occupational health and safety such as ISO9001, ISO14001 and OHSAS18001 and others standards will can create. These standards can be implemented and certified they guarantee one record system, quality assurance, documents control, operational control, responsibility definition, training, preparing and serve to emergency, monitoring, internal audit, corrective action, continual improvement, prevent of pollution, write procedure, reduce costs, impact assessment, risk assessment , standard, decree, legal requirements of municipal, state, federal and local scope. These procedure and systems when isolate applied cause many management systems and bureaucracy. Integration Management System reduce to bureaucracy, excess of documents, documents storage and conflict documents and easy to others standards implementation in future. The Integrated Management System (IMS) will be implemented in 2007. INB created a management group for implementation, this group decides planing, works, policy and advertisement. Legal requirements were surveyed, internal audits, pre-audits and audits were realized. INB is partially in accordance with ISO14001, OSHAS18001 standards. But very soon, it will be totally in accordance with this norms. Many studies and works were contracted to deal with legal requirements. This work have intention of show implementation process of ISO14001, OHSAS18001 and Integrated Management System on INB. (author)

  3. Towards Requirements in Systems Engineering for Aerospace IVHM Design

    Science.gov (United States)

    Saxena, Abhinav; Roychoudhury, Indranil; Lin, Wei; Goebel, Kai

    2013-01-01

    Health management (HM) technologies have been employed for safety critical system for decades, but a coherent systematic process to integrate HM into the system design is not yet clear. Consequently, in most cases, health management resorts to be an after-thought or 'band-aid' solution. Moreover, limited guidance exists for carrying out systems engineering (SE) on the subject of writing requirements for designs with integrated vehicle health management (IVHM). It is well accepted that requirements are key to developing a successful IVHM system right from the concept stage to development, verification, utilization, and support. However, writing requirements for systems with IVHM capability have unique challenges that require the designers to look beyond their own domains and consider the constraints and specifications of other interlinked systems. In this paper we look at various stages in the SE process and identify activities specific to IVHM design and development. More importantly, several relevant questions are posed that system engineers must address at various design and development stages. Addressing these questions should provide some guidance to systems engineers towards writing IVHM related requirements to ensure that appropriate IVHM functions are built into the system design.

  4. Implementing Management Systems-Based Assessments

    International Nuclear Information System (INIS)

    Campisi, John A.; Reese, Robert T.

    1999-01-01

    A management system approach for evaluating environment, safety, health, and quality is in use at Sandia National Laboratories (SNL). Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under contract DE-AC04-94AL85000. As a multi-program national laboratory, SNL has many diverse operations including research, engineering development and applications, production, and central services supporting all activities and operations. Basic research examples include fusion power generation, nuclear reactor experiments, and investigation of combustion processes. Engineering development examples are design, testing, and prototype developments of micro-mechanical systems for safe'arding computer systems, air bags for automobiles, satellite systems, design of transportation systems for nuclear materials, and systems for use in medical applications such as diagnostics and surgery. Production operations include manufacture of instrumented detection devices, radioisotopes, and replacement parts for previously produced engineered systems. Support services include facilities engineering, construction, and site management, site security, packaging and transportation of hazardous materials wastes, ES ampersand H functional programs to establish requirements and guidance to comply with federal, state, local, and contractual requirements and work safety. In this diverse environment, unlike more traditional single function business units, an integrated consistent management system is not typical. Instead, each type of diverse activity has its own management system designed and distributed around the operations, personnel, customers, and facilities (e.g., hazards involved, security, regulatory requirements, and locations). Laboratory managers are not likely to have experience in the more traditional hierarchical or command and control structures and thus do not share oversight expectations found in

  5. Implementing Management Systems-Based Assessments

    Energy Technology Data Exchange (ETDEWEB)

    Campisi, John A.; Reese, Robert T.

    1999-05-03

    A management system approach for evaluating environment, safety, health, and quality is in use at Sandia National Laboratories (SNL). Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under contract DE-AC04-94AL85000. As a multi-program national laboratory, SNL has many diverse operations including research, engineering development and applications, production, and central services supporting all activities and operations. Basic research examples include fusion power generation, nuclear reactor experiments, and investigation of combustion processes. Engineering development examples are design, testing, and prototype developments of micro-mechanical systems for safe'~arding computer systems, air bags for automobiles, satellite systems, design of transportation systems for nuclear materials, and systems for use in medical applications such as diagnostics and surgery. Production operations include manufacture of instrumented detection devices, radioisotopes, and replacement parts for previously produced engineered systems. Support services include facilities engineering, construction, and site management, site security, packaging and transportation of hazardous materials wastes, ES&H functional programs to establish requirements and guidance to comply with federal, state, local, and contractual requirements and work safety. In this diverse environment, unlike more traditional single function business units, an integrated consistent management system is not typical. Instead, each type of diverse activity has its own management system designed and distributed around the operations, personnel, customers, and facilities (e.g., hazards involved, security, regulatory requirements, and locations). Laboratory managers are not likely to have experience in the more traditional hierarchical or command and control structures and thus do not share oversight expectations found in

  6. X-PAT: a multiplatform patient referral data management system for small healthcare institution requirements.

    Science.gov (United States)

    Masseroli, Marco; Marchente, Mario

    2008-07-01

    We present X-PAT, a platform-independent software prototype that is able to manage patient referral multimedia data in an intranet network scenario according to the specific control procedures of a healthcare institution. It is a self-developed storage framework based on a file system, implemented in eXtensible Markup Language (XML) and PHP Hypertext Preprocessor Language, and addressed to the requirements of limited-dimension healthcare entities (small hospitals, private medical centers, outpatient clinics, and laboratories). In X-PAT, healthcare data descriptions, stored in a novel Referral Base Management System (RBMS) according to Health Level 7 Clinical Document Architecture Release 2 (CDA R2) standard, can be easily applied to the specific data and organizational procedures of a particular healthcare working environment thanks also to the use of standard clinical terminology. Managed data, centralized on a server, are structured in the RBMS schema using a flexible patient record and CDA healthcare referral document structures based on XML technology. A novel search engine allows defining and performing queries on stored data, whose rapid execution is ensured by expandable RBMS indexing structures. Healthcare personnel can interface the X-PAT system, according to applied state-of-the-art privacy and security measures, through friendly and intuitive Web pages that facilitate user acceptance.

  7. Computerized map-based information management system for natural resource management

    Energy Technology Data Exchange (ETDEWEB)

    Miller, K.

    1995-12-01

    Federal agencies, states and resource managers have control and stewardship responsibility over a significant inventory of natural resources. A number of federal regulations require the review, protection and preservation of natural resource protection. Examples of such actions include the reauthorization of the Clean Water Act and the modification of the National Contingency Plan to incorporate the requirements of the Oil Pollution Act of 1990. To successfully preserve conserve and restore natural resources on federal reservations, and state and private lands, and to comply with Federal regulations designed to protect natural resources located on their sites, and the type of information on these resources required by environmental regulations. This paper presents an approach using a computerized, graphical information management system to catalogue and track data for the management of natural resources under Federal and state regulations, and for promoting resource conservation, preservation and restoration. The system is designed for use by Federal facility resource managers both for the day-to-day management of resources under their control, and for the longer-term management of larger initiatives, including restoration of significant or endangered resources, participation in regional stewardship efforts, and general ecosystem management. The system will be valuable for conducting natural resource baseline inventories an implementing resource management plans on lands other than those controlled by the Federal government as well. The system can provide a method for coordinating the type of natural resource information required by major federal environmental regulations--thereby providing a cost-effective means for managing natural resource information.

  8. Tank waste remediation system configuration management plan

    International Nuclear Information System (INIS)

    Vann, J.M.

    1998-01-01

    The configuration management program for the Tank Waste Remediation System (TWRS) Project Mission supports management of the project baseline by providing the mechanisms to identify, document, and control the functional and physical characteristics of the products. This document is one of the tools used to develop and control the mission and work. It is an integrated approach for control of technical, cost, schedule, and administrative information necessary to manage the configurations for the TWRS Project Mission. Configuration management focuses on five principal activities: configuration management system management, configuration identification, configuration status accounting, change control, and configuration management assessments. TWRS Project personnel must execute work in a controlled fashion. Work must be performed by verbatim use of authorized and released technical information and documentation. Application of configuration management will be consistently applied across all TWRS Project activities and assessed accordingly. The Project Hanford Management Contract (PHMC) configuration management requirements are prescribed in HNF-MP-013, Configuration Management Plan (FDH 1997a). This TWRS Configuration Management Plan (CMP) implements those requirements and supersedes the Tank Waste Remediation System Configuration Management Program Plan described in Vann, 1996. HNF-SD-WM-CM-014, Tank Waste Remediation System Configuration Management Implementation Plan (Vann, 1997) will be revised to implement the requirements of this plan. This plan provides the responsibilities, actions and tools necessary to implement the requirements as defined in the above referenced documents

  9. Medical-Information-Management System

    Science.gov (United States)

    Alterescu, Sidney; Friedman, Carl A.; Frankowski, James W.

    1989-01-01

    Medical Information Management System (MIMS) computer program interactive, general-purpose software system for storage and retrieval of information. Offers immediate assistance where manipulation of large data bases required. User quickly and efficiently extracts, displays, and analyzes data. Used in management of medical data and handling all aspects of data related to care of patients. Other applications include management of data on occupational safety in public and private sectors, handling judicial information, systemizing purchasing and procurement systems, and analyses of cost structures of organizations. Written in Microsoft FORTRAN 77.

  10. OCRWM Systems Engineering Management Plan (SEMP)

    International Nuclear Information System (INIS)

    1994-06-01

    The Office of Civilian Radioactive Waste Management Systems Engineering Management Plan (OCRWM SEMP) specifies the technical management approach for the development of the waste management system, and specifies the approach for the development of each of the system elements -- the waste acceptance system, the transportation system, the Monitored Retrievable Storage (MRS) facility, and the mined geologic disposal system, which includes site characterization activity. The SEMP also delineates how systems engineering will be used by OCRWM to describe the system development process; it identifies responsibilities for its implementation, and specifies the minimum requirements for systems engineering. It also identifies the close interrelationship of system engineering and licensing processes. This SEMP, which is a combined OCRWM and M ampersand O SEMP, is part of the top-level program documentation and is prepared in accordance with the direction provided in the Program Management System Manual (PMSM). The relationship of this document to other top level documents in the CRWMS document hierarchy is defined in the PMSM. A systems engineering management plan for each project, which specifies the actions to be taken in implementing systems engineering at the project level, shall be prepared by the respective project managers. [''Program'' refers to the CRWMS-wide activity and ''project'' refers to that level responsible for accomplishing the specific activities of that segment of the program.] The requirements for the project level SEMPs are addressed in Section 4.2.2.2. They represent the minimum set of requirements, and do not preclude the broadening of systems engineering activities to meet the specific needs of each project

  11. Detailed requirements document for Stowage List and Hardware Tracking System (SLAHTS). [computer based information management system in support of space shuttle orbiter stowage configuration

    Science.gov (United States)

    Keltner, D. J.

    1975-01-01

    The stowage list and hardware tracking system, a computer based information management system, used in support of the space shuttle orbiter stowage configuration and the Johnson Space Center hardware tracking is described. The input, processing, and output requirements that serve as a baseline for system development are defined.

  12. Management control system description

    Energy Technology Data Exchange (ETDEWEB)

    Bence, P. J.

    1990-10-01

    This Management Control System (MCS) description describes the processes used to manage the cost and schedule of work performed by Westinghouse Hanford Company (Westinghouse Hanford) for the US Department of Energy, Richland Operations Office (DOE-RL), Richland, Washington. Westinghouse Hanford will maintain and use formal cost and schedule management control systems, as presented in this document, in performing work for the DOE-RL. This MCS description is a controlled document and will be modified or updated as required. This document must be approved by the DOE-RL; thereafter, any significant change will require DOE-RL concurrence. Westinghouse Hanford is the DOE-RL operations and engineering contractor at the Hanford Site. Activities associated with this contract (DE-AC06-87RL10930) include operating existing plant facilities, managing defined projects and programs, and planning future enhancements. This document is designed to comply with Section I-13 of the contract by providing a description of Westinghouse Hanford's cost and schedule control systems used in managing the above activities. 5 refs., 22 figs., 1 tab.

  13. Web Based Project Management System

    OpenAIRE

    Aadamsoo, Anne-Mai

    2010-01-01

    To increase an efficiency of a product, nowadays many web development companies are using different project management systems. A company may run a number of projects at a time, and requires input from a number of individuals, or teams for a multi level development plan, whereby a good project management system is needed. Project management systems represent a rapidly growing technology in IT industry. As the number of users, who utilize project management applications continues to grow, w...

  14. Emergency management information system (EMINS)

    International Nuclear Information System (INIS)

    Desonier, L.M.

    1987-01-01

    In a time of crisis or in an emergency, a manager is required to make many decisions to facilitate the proper solution and conclusion to the emergency or crisis. In order to make these decisions, it is necessary for the manager to have correct up-to-date information on the situation, which calls for an automated information display and entry process. The information handling needs are identified in terms of data, video, and voice. Studies of existing Emergency Operations Centers and evaluations of hardware and software have been completed. The result of these studies and investigations is the design and implementation of an automated Emergency Management Information System. Not only is the system useful for Emergency Management but for any information management requirement

  15. Design of a requirements system for decommissioning of a nuclear power plant based on systems engineering

    Energy Technology Data Exchange (ETDEWEB)

    Park, Hee Seong; Park, Seung Kook; Jin, Hyung Gon; Song, Chan Ho; Choi, Jong won [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    The nuclear industry has required an advanced system that can manage decommissioning information ever since the Korean government decide to decommission the Gori No.1 nuclear power plant. The D and D division at KAERI has been developing a system that can secure the reliability and sustainability of the decommissioning project based on the engineering system of the KRR-2 (Korean Research Reactor-2). To establish a decommissioning information system, a WBS that needs to be managed for the decommissioning of an NPP has been extracted, and requirements management research composed of system engineering technology has progressed. This paper propose a new type of system based on systems engineering technology. Even though a decommissioning engineering system was developed through the KRR-2, we are now developing an advanced decommissioning information system because it is not easy to apply this system to a commercial nuclear power plant. An NPP decommissioning is a project requiring a high degree of safety and economic feasibility. Therefore, we have to use a systematic project management at the initial phase of the decommissioning. An advanced system can manage the decommissioning information from preparation to remediation by applying a previous system to the systems engineering technology that has been widely used in large-scale government projects. The first phase of the system has progressed the requirements needed for a decommissioning project for a full life cycle. The defined requirements will be used in various types of documents during the decommissioning preparation phase.

  16. Design requirements for SRB production control system. Volume 2: System requirements and conceptual description

    Science.gov (United States)

    1981-01-01

    In the development of the business system for the SRB automated production control system, special attention had to be paid to the unique environment posed by the space shuttle. The issues posed by this environment, and the means by which they were addressed, are reviewed. The change in management philosphy which will be required as NASA switches from one-of-a-kind launches to multiple launches is discussed. The implications of the assembly process on the business system are described. These issues include multiple missions, multiple locations and facilities, maintenance and refurbishment, multiple sources, and multiple contractors. The implications of these aspects on the automated production control system are reviewed including an assessment of the six major subsystems, as well as four other subsystem. Some general system requirements which flow through the entire business system are described.

  17. Managing today's complex healthcare business enterprise: reflections on distinctive requirements of healthcare management education.

    Science.gov (United States)

    Welton, William E

    2004-01-01

    In early 2001, the community of educational programs offering master's-level education in healthcare management began an odyssey to modernize its approach to the organization and delivery of healthcare management education. The community recognized that cumulative long-term changes within healthcare management practice required a careful examination of healthcare management context and manpower requirements. This article suggests an evidence-based rationale for defining the distinctive elements of healthcare management, thus suggesting a basis for review and transformation of master's-level healthcare management curricula. It also suggests ways to modernize these curricula in a manner that recognizes the distinctiveness of the healthcare business enterprise as well as the changing management roles and careers within these complex organizations and systems. Through such efforts, the healthcare management master's-level education community would be better prepared to meet current and future challenges, to increase its relevance to the management practice community, and to allocate scarce faculty and program resources more effectively.

  18. New type radiation management system

    International Nuclear Information System (INIS)

    Mogi, Kenichi; Uranaka, Yasuo; Fujita, Kazuhiko

    2001-01-01

    The radiation management system is a system to carry out entrance and leaving room management of peoples into radiation management area, information management on radiation obtained from a radiation testing apparatus, and so on. New type radiation management system developed by the Mitsubishi Electric Corp. is designed by concepts of superior maintenance and system practice by using apparatus and its interface with standard specification, upgrading of processing response by separating exposure management processing from radiation monitoring processing on a computer, and a backup system not so as to lose its function by a single accident of the constructed computer. Therefore, the system is applied by the newest hardware, package software, and general use LAN, and can carry out a total system filled with requirements and functions for various radiation management of customers by preparing a basic system from radiation testing apparatus to entrance and leaving room management system. Here were described on outline of the new type management system, concept of the system, and functions of every testing apparatus. (G.K.)

  19. Standard requirements for GCP-compliant data management in multinational clinical trials

    LENUS (Irish Health Repository)

    Ohmann, Christian

    2011-03-22

    Abstract Background A recent survey has shown that data management in clinical trials performed by academic trial units still faces many difficulties (e.g. heterogeneity of software products, deficits in quality management, limited human and financial resources and the complexity of running a local computer centre). Unfortunately, no specific, practical and open standard for both GCP-compliant data management and the underlying IT-infrastructure is available to improve the situation. For that reason the "Working Group on Data Centres" of the European Clinical Research Infrastructures Network (ECRIN) has developed a standard specifying the requirements for high quality GCP-compliant data management in multinational clinical trials. Methods International, European and national regulations and guidelines relevant to GCP, data security and IT infrastructures, as well as ECRIN documents produced previously, were evaluated to provide a starting point for the development of standard requirements. The requirements were produced by expert consensus of the ECRIN Working group on Data Centres, using a structured and standardised process. The requirements were divided into two main parts: an IT part covering standards for the underlying IT infrastructure and computer systems in general, and a Data Management (DM) part covering requirements for data management applications in clinical trials. Results The standard developed includes 115 IT requirements, split into 15 separate sections, 107 DM requirements (in 12 sections) and 13 other requirements (2 sections). Sections IT01 to IT05 deal with the basic IT infrastructure while IT06 and IT07 cover validation and local software development. IT08 to IT015 concern the aspects of IT systems that directly support clinical trial management. Sections DM01 to DM03 cover the implementation of a specific clinical data management application, i.e. for a specific trial, whilst DM04 to DM12 address the data management of trials across the unit

  20. Pickering tool management system

    International Nuclear Information System (INIS)

    Wong, E.H.; Green, A.H.

    1997-01-01

    Tools were being deployed in the station with no process in effect to ensure that they are maintained in good repair so as to effectively support the performance of Maintenance activities. Today's legal requirements require that all employers have a process in place to ensure that tools are maintained in a safe condition. This is specified in the Ontario Health and Safety Act. The Pickering Tool Management System has been chosen as the process at Pickering N.D to manage tools. Tools are identified by number etching and bar codes. The system is a Windows application installed on several file servers

  1. Waste Management System Description Document (WMSD)

    International Nuclear Information System (INIS)

    1992-02-01

    This report is an appendix of the ''Waste Management Description Project, Revision 1''. This appendix is about the interim approach for the technical baseline of the waste management system. It describes the documentation and regulations of the waste management system requirements and description. (MB)

  2. Ageing management requirements in Sweden

    International Nuclear Information System (INIS)

    Gott, K.

    2007-01-01

    Since the adoption of the 1997 act of parliament concerning the abolishment of nuclear power in Sweden plant lives are no longer limited until 2010 as they were following the referendum in 1980. The Swedish Nuclear Power Inspectorate (SKI) has therefore in its most recent general regulations from 2004 introduced requirements for plants to develop ageing management programmes which should have been in place by the end of 2005. An ageing management programme for a nuclear power plant can be viewed as a high level coordinated programme consisting of several other programmes including maintenance and inspection programmes, and as such it should be an integrated part of the quality assurance system of the plant. The goals of the programme are to ensure that there is long term management of ageing and avoidance of the unexpected. For the Swedish regulator the safety aspects and not the economic aspects of ageing management are of primary importance. But there are clear advantages to utilities if large surprises which result in unplanned outages can be avoided. (author)

  3. A smartphone-based pain management app for adolescents with cancer: establishing system requirements and a pain care algorithm based on literature review, interviews, and consensus.

    Science.gov (United States)

    Jibb, Lindsay A; Stevens, Bonnie J; Nathan, Paul C; Seto, Emily; Cafazzo, Joseph A; Stinson, Jennifer N

    2014-03-19

    Pain that occurs both within and outside of the hospital setting is a common and distressing problem for adolescents with cancer. The use of smartphone technology may facilitate rapid, in-the-moment pain support for this population. To ensure the best possible pain management advice is given, evidence-based and expert-vetted care algorithms and system design features, which are designed using user-centered methods, are required. To develop the decision algorithm and system requirements that will inform the pain management advice provided by a real-time smartphone-based pain management app for adolescents with cancer. A systematic approach to algorithm development and system design was utilized. Initially, a comprehensive literature review was undertaken to understand the current body of knowledge pertaining to pediatric cancer pain management. A user-centered approach to development was used as the results of the review were disseminated to 15 international experts (clinicians, scientists, and a consumer) in pediatric pain, pediatric oncology and mHealth design, who participated in a 2-day consensus conference. This conference used nominal group technique to develop consensus on important pain inputs, pain management advice, and system design requirements. Using data generated at the conference, a prototype algorithm was developed. Iterative qualitative testing was conducted with adolescents with cancer, as well as pediatric oncology and pain health care providers to vet and refine the developed algorithm and system requirements for the real-time smartphone app. The systematic literature review established the current state of research related to nonpharmacological pediatric cancer pain management. The 2-day consensus conference established which clinically important pain inputs by adolescents would require action (pain management advice) from the app, the appropriate advice the app should provide to adolescents in pain, and the functional requirements of the app

  4. 33 CFR 96.240 - What functional requirements must a safety management system meet?

    Science.gov (United States)

    2010-07-01

    ... a safety management system meet? 96.240 Section 96.240 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY VESSEL OPERATING REGULATIONS RULES FOR THE SAFE OPERATION OF VESSELS AND SAFETY MANAGEMENT SYSTEMS Company and Vessel Safety Management Systems § 96.240 What functional...

  5. The quality management system applied at PRPN

    International Nuclear Information System (INIS)

    Benar Bukit

    2007-01-01

    The ISO 9001-2000 is an International standard for quality management systems. The application of this quality management system is for guaranteeing that the organizations products will fulfill requirements set by its customers. Here the steps taken to apply the quality management system at PRPN are expounded in five main parts, namely quality management system, responsibilities of the management, resources, product realization, measurement, analysis and repair. (author)

  6. Quality assurance management policies and requirements

    International Nuclear Information System (INIS)

    1985-10-01

    The purpose of this document is to: set forth overall, integrated quality assurance management policies and requirements for the entire Civilian Radioactive Waste Management Program; define management responsibilities for assuring quality; and provide a general framework for the development of more detailed quality assurance management policies and requirements by program, project, and contractor organizations

  7. Mined Geologic Disposal System Requirements Document

    International Nuclear Information System (INIS)

    1994-03-01

    This Mined Geologic Disposal System Requirements Document (MGDS-RD) describes the functions to be performed by, and the requirements for, a Mined Geologic Disposal System (MGDS) for the permanent disposal of spent nuclear fuel (SNF) (including SNF loaded in multi-purpose canisters (MPCs)) and commercial and defense high-level radioactive waste (HLW) in support of the Civilian Radioactive Waste Management System (CRWMS). The purpose of the MGDS-RD is to define the program-level requirements for the design of the Repository, the Exploratory Studies Facility (ESF), and Surface Based Testing Facilities (SBTF). These requirements include design, operation, and decommissioning requirements to the extent they impact on the physical development of the MGDS. The document also presents an overall description of the MGDS, its functions (derived using the functional analysis documented by the Physical System Requirements (PSR) documents as a starting point), its segments as described in Section 3.1.3, and the requirements allocated to the segments. In addition, the program-level interfaces of the MGDS are identified. As such, the MGDS-RD provides the technical baseline for the design of the MGDS

  8. CLASSIFICATION OF LEARNING MANAGEMENT SYSTEMS

    Directory of Open Access Journals (Sweden)

    Yu. B. Popova

    2016-01-01

    Full Text Available Using of information technologies and, in particular, learning management systems, increases opportunities of teachers and students in reaching their goals in education. Such systems provide learning content, help organize and monitor training, collect progress statistics and take into account the individual characteristics of each user. Currently, there is a huge inventory of both paid and free systems are physically located both on college servers and in the cloud, offering different features sets of different licensing scheme and the cost. This creates the problem of choosing the best system. This problem is partly due to the lack of comprehensive classification of such systems. Analysis of more than 30 of the most common now automated learning management systems has shown that a classification of such systems should be carried out according to certain criteria, under which the same type of system can be considered. As classification features offered by the author are: cost, functionality, modularity, keeping the customer’s requirements, the integration of content, the physical location of a system, adaptability training. Considering the learning management system within these classifications and taking into account the current trends of their development, it is possible to identify the main requirements to them: functionality, reliability, ease of use, low cost, support for SCORM standard or Tin Can API, modularity and adaptability. According to the requirements at the Software Department of FITR BNTU under the guidance of the author since 2009 take place the development, the use and continuous improvement of their own learning management system.

  9. Electronic document management meets environmental restoration recordkeeping requirements: A case study

    International Nuclear Information System (INIS)

    Burnham, S.L.

    1995-01-01

    Efforts at migrating records management at five Department of Energy sites operated under management by Lockheed Martin Energy Systems, Inc. for Environmental Restoration (ER) business activities are described. The corporate environment, project definition, records keeping requirements are described first. Then an evaluation of electronic document management technologies and of internal and commercially available systems are provided. Finally adopted incremental implementation strategy and lessons learned are discussed

  10. Integrated Project Management System description

    International Nuclear Information System (INIS)

    1987-03-01

    The Uranium Mill Tailings Remedial Action (UMTRA) Project is a Department of Energy (DOE) designated Major System Acquisition (MSA). To execute and manage the Project mission successfully and to comply with the MSA requirements, the UMTRA Project Office (''Project Office'') has implemented and operates an Integrated Project Management System (IPMS). The Project Office is assisted by the Technical Assistance Contractor's (TAC) Project Integration and Control (PIC) Group in system operation. Each participant, in turn, provides critical input to system operation and reporting requirements. The IPMS provides a uniform structured approach for integrating the work of Project participants. It serves as a tool for planning and control, workload management, performance measurement, and specialized reporting within a standardized format. This system description presents the guidance for its operation. Appendices 1 and 2 contain definitions of commonly used terms and abbreviations and acronyms, respectively. 17 figs., 5 tabs

  11. Deficiency tracking system, conceptual business process requirements

    International Nuclear Information System (INIS)

    Hermanson, M.L.

    1997-01-01

    The purpose of this document is to describe the conceptual business process requirements of a single, site-wide, consolidated, automated, deficiency management tracking, trending, and reporting system. This description will be used as the basis for the determination of the automated system acquisition strategy including the further definition of specific requirements, a ''make or buy'' determination and the development of specific software design details

  12. 32 CFR 34.23 - Property management system.

    Science.gov (United States)

    2010-07-01

    ... 32 National Defense 1 2010-07-01 2010-07-01 false Property management system. 34.23 Section 34.23... Requirements Property Standards § 34.23 Property management system. The recipient's property management system... control system shall be in effect to insure adequate safeguards to prevent loss, damage, or theft of the...

  13. System management and quality assurance

    International Nuclear Information System (INIS)

    Sastry, A.M.

    1989-01-01

    This paper describes the principles of system management and shows the relationship to quality assurance. It discusses the need for balanced attention to all the project management controls required for project success

  14. Improvement of management systems for nuclear facilities

    International Nuclear Information System (INIS)

    2005-01-01

    The area of Quality Management/ Quality Assurance has been changed dramatically over the past years. The nuclear facilities moved from the 'traditional' Quality Assurance approach towards Quality Management Systems, and later a new concept of Integrated Management Systems was introduced. The IAEA is developing a new set of Standards on Integrated Management Systems, which will replace the current 50-C-Q/SG-Q1-Q14 Code. The new set of document will require the integration of all management areas into one coherent management system. The new set of standards on Management Systems promotes the concept of the Integrated Management Systems. Based on new set a big number of documents are under preparation. These documents will address the current issues in the management systems area, e.g. Management of Change, Continuous Improvement, Self-assessment, and Attributes of effective management, etc. Currently NPES is providing a number of TC projects and Extra Budgetary Programmes to assist Member States in this area. The new Standards on Management Systems will be published in 2006. A number of Regulatory bodies already indicated that they would take the new Management System Standards as a basis for the national regulation. This fact will motivate a considerable change in the management of nuclear utilities, requiring a new approach. This activity is suitable for all IAEA Members States with large or limited nuclear capabilities. The service is directed to provide assistance for the management of all organizations carrying on or regulating nuclear activities and facilities

  15. 14 CFR 152.303 - Financial management system.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Financial management system. 152.303... (CONTINUED) AIRPORTS AIRPORT AID PROGRAM Accounting and Reporting Requirements § 152.303 Financial management system. Each sponsor or planning agency shall establish and maintain a financial management system that...

  16. 76 FR 16587 - Risk Management Requirements for Derivatives Clearing Organizations

    Science.gov (United States)

    2011-03-24

    ... COMMODITY FUTURES TRADING COMMISSION 17 CFR Part 39 RIN 3038-AC98 Risk Management Requirements for... other things, would implement DCO Core Principle D (Risk Management) and would establish a related... framework to reduce risk, increase transparency, and promote market integrity within the financial system...

  17. Master's Degree in Management Information Systems with a Supply Chain Management Focus

    Science.gov (United States)

    Ramaswamy, Kizhanatham V.; Boyd, Joseph L.; Desai, Mayur

    2007-01-01

    A graduate curriculum in Management Information Systems with a Supply Chain Management focus is presented. The motivation for this endeavor stems from the fact that the global scope of modern business organizations and the competitive environment in which they operate, requires an information system leveraged supply chain management system (SCM)…

  18. Integrating the radioactive waste management system into other management systems

    International Nuclear Information System (INIS)

    Silva, Ana Cristina Lourenco da; Nunes Neto, Carlos Antonio

    2007-01-01

    Radioactive waste management is to be included in the Integrated Management System (IMS) which pursues the continuous improvement of the company's quality, occupational safety and health, and environment protection processes. Radioactive waste management is based on the following aspects: optimization of human and material resources for execution of tasks, including the provision of a radiation protection supervisor to watch over the management of radioactive waste; improved documentation (management plan and procedures); optimization of operational levels for waste classification and release; maintenance of generation records and history through a database that facilitates traceability of information; implementation of radioactive waste segregation at source (source identification, monitoring and decontamination) activities intended to reduce the amount of radioactive waste; licensing of initial storage site for radioactive waste control and storage; employee awareness training on radioactive waste generation; identification and evaluation of emergency situations and response planning; implementation of preventive maintenance program for safety related items; development and application of new, advanced treatment methodologies or systems. These aspects are inherent in the concepts underlying quality management (establishment of administrative controls and performance indicators), environment protection (establishment of operational levels and controls for release), occupational health and safety (establishment of operational controls for exposure in emergency and routine situations and compliance with strict legal requirements and standards). It is noted that optimizing the addressed aspects of a radioactive waste management system further enhances the efficiency of the Integrated Management System for Quality, Environment, and Occupational Safety and Health. (author)

  19. 20 CFR 435.21 - Standards for financial management systems.

    Science.gov (United States)

    2010-04-01

    ... 20 Employees' Benefits 2 2010-04-01 2010-04-01 false Standards for financial management systems... ORGANIZATIONS, AND COMMERCIAL ORGANIZATIONS Post-Award Requirements Financial and Program Management § 435.21 Standards for financial management systems. (a) Introduction. SSA requires recipients to relate financial...

  20. Deficiency tracking system, conceptual business process requirements

    Energy Technology Data Exchange (ETDEWEB)

    Hermanson, M.L.

    1997-04-18

    The purpose of this document is to describe the conceptual business process requirements of a single, site-wide, consolidated, automated, deficiency management tracking, trending, and reporting system. This description will be used as the basis for the determination of the automated system acquisition strategy including the further definition of specific requirements, a ''make or buy'' determination and the development of specific software design details.

  1. Management issues for high performance storage systems

    Energy Technology Data Exchange (ETDEWEB)

    Louis, S. [Lawrence Livermore National Lab., CA (United States); Burris, R. [Oak Ridge National Lab., TN (United States)

    1995-03-01

    Managing distributed high-performance storage systems is complex and, although sharing common ground with traditional network and systems management, presents unique storage-related issues. Integration technologies and frameworks exist to help manage distributed network and system environments. Industry-driven consortia provide open forums where vendors and users cooperate to leverage solutions. But these new approaches to open management fall short addressing the needs of scalable, distributed storage. We discuss the motivation and requirements for storage system management (SSM) capabilities and describe how SSM manages distributed servers and storage resource objects in the High Performance Storage System (HPSS), a new storage facility for data-intensive applications and large-scale computing. Modem storage systems, such as HPSS, require many SSM capabilities, including server and resource configuration control, performance monitoring, quality of service, flexible policies, file migration, file repacking, accounting, and quotas. We present results of initial HPSS SSM development including design decisions and implementation trade-offs. We conclude with plans for follow-on work and provide storage-related recommendations for vendors and standards groups seeking enterprise-wide management solutions.

  2. An Approach for Implementation of Project Management Information Systems

    Science.gov (United States)

    Běrziša, Solvita; Grabis, Jānis

    Project management is governed by project management methodologies, standards, and other regulatory requirements. This chapter proposes an approach for implementing and configuring project management information systems according to requirements defined by these methodologies. The approach uses a project management specification framework to describe project management methodologies in a standardized manner. This specification is used to automatically configure the project management information system by applying appropriate transformation mechanisms. Development of the standardized framework is based on analysis of typical project management concepts and process and existing XML-based representations of project management. A demonstration example of project management information system's configuration is provided.

  3. Implementation of a management system for operating organizations of research reactors

    International Nuclear Information System (INIS)

    Kibrit, Eduardo; Aquino, Afonso Rodrigues de; Zouain, Desiree Moraes

    2011-01-01

    This paper presents the requirements established by an IAEA draft technical document for the implementation of a management system for operating organisations of research reactors. The following aspects will be discussed: structure of IAEA draft technical document, management system requirements, processes common to all research reactors, aspects for the implementation of the management system, and a formula for grading the management system requirements. (author)

  4. Implementation of a management system for operating organizations of research reactors

    Energy Technology Data Exchange (ETDEWEB)

    Kibrit, Eduardo, E-mail: kibrit@ctmsp.mar.mil.b [Centro Tecnologico da Marinha em Sao Paulo (CTMSP), Sao Paulo, SP (Brazil); Aquino, Afonso Rodrigues de; Zouain, Desiree Moraes, E-mail: araquino@ipen.b, E-mail: dmzouain@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2011-07-01

    This paper presents the requirements established by an IAEA draft technical document for the implementation of a management system for operating organisations of research reactors. The following aspects will be discussed: structure of IAEA draft technical document, management system requirements, processes common to all research reactors, aspects for the implementation of the management system, and a formula for grading the management system requirements. (author)

  5. 45 CFR 2543.21 - Standards for financial management systems.

    Science.gov (United States)

    2010-10-01

    ... 45 Public Welfare 4 2010-10-01 2010-10-01 false Standards for financial management systems. 2543... OTHER NON-PROFIT ORGANIZATIONS Post-Award Requirements Financial and Program Management § 2543.21 Standards for financial management systems. (a) Federal awarding agencies shall require recipients to relate...

  6. 22 CFR 518.21 - Standards for financial management systems.

    Science.gov (United States)

    2010-04-01

    ... 22 Foreign Relations 2 2010-04-01 2010-04-01 true Standards for financial management systems. 518... ORGANIZATIONS Post-Award Requirements Financial and Program Management § 518.21 Standards for financial management systems. (a) Federal awarding agencies shall require recipients to relate financial data to...

  7. Management systems in production operations

    International Nuclear Information System (INIS)

    Walters, K.B.; Henderson, G.

    1993-01-01

    The Cullen Enquiry into the Piper Alpha disaster in the U.K. North Sea recommended that an operator should formally present it's company Management System and demonstrate how safety is achieved throughout the life cycle of a platform, from design through operation to abandonment. Brunei Shell Petroleum has prepared a corporate level Safety Management System. As part of Safety Case work, the corporate system is being extended to include the development of specific Management Systems with particular emphasis on offshore production operations involving integrated oil and gas facilities. This paper will describe the development of Management Systems, which includes an intensive Business Process Analysis and will comment upon it's applicability and relationship to ISO 9000. The paper will further describe the applicability and benefits of Management Systems and offer guidance on required effort. The paper will conclude that development of structured Management Systems for safety critical business processes is worthwhile but prioritization of effort will be necessary. As such the full adoption of Management Systems will be directional in nature

  8. Management Information System

    Science.gov (United States)

    1984-01-01

    New Automated Management Information Center (AMIC) employs innovative microcomputer techniques to create color charts, viewgraphs, or other data displays in a fraction of the time formerly required. Developed under Kennedy Space Center's contract by Boeing Services International Inc., Seattle, WA, AMIC can produce an entirely new informational chart in 30 minutes, or an updated chart in only five minutes. AMIC also has considerable potential as a management system for business firms.

  9. THE PLACE OF OCCUPATIONAL HEALTH AND SAFETY MANAGEMENT SYSTEM IN THE INTEGRATED MANAGEMENT SYSTEM

    Directory of Open Access Journals (Sweden)

    Piotr Kafel

    2016-06-01

    Full Text Available The purpose of this paper is to analyze the place of occupational health and safety management system (OHSMS within the integrated management system. Implementation aspects of management systems are discussed, namely the different management system standards used for registration, for example ISO 14001, ISO 9001, OHSAS 18001, ISO 27001, the order in which they were implemented, the time required for each implementation, as well as the scope of integration of these management system standards into a single Integrated Management System and the level of integration. In order to do so, some of the results of a survey carried out in 81 organizations registered to at least two management systems selected from popular international standards, e.g.: ISO 9001, ISO 14001, OHSAS 18001, ISO/IEC 27001, ISO 22000 were used. OHSMS is not the system that is implemented as a first one. Usually it is implemented after or simultaneously with ISO 9001 and ISO 14001 standards. Time of implementation of MSSs in second and further round of implementation is shorter than during the implementation of first standards. There is a higher level of integration of implemented management standards in organizations where one of the standards in OHSMS, than in a companies without OHSMS. The paper analyses those sequences of management systems implementation of safety management systems with other system, that allow organizations to achieve higher levels of integration and presents a possible pattern for the companies initiating the integration process.

  10. Functional requirements for onboard management of space shuttle consumables, volume 1

    Science.gov (United States)

    Graf, P. J.; Herwig, H. A.; Neel, L. W.

    1973-01-01

    A study was conducted to determine the functional requirements for onboard management of space shuttle consumables. A generalized consumable management concept was developed for application to advanced spacecraft. The subsystems and related consumables selected for inclusion in the consumables management system are: (1) propulsion, (2) power generation, and (3) environmental and life support.

  11. Integration of project management and systems engineering: Tools for a total-cycle environmental management system

    International Nuclear Information System (INIS)

    Blacker, P.B.; Winston, R.

    1997-01-01

    An expedited environmental management process has been developed at the Idaho National Engineering and Environmental Laboratory (INEEL). This process is one result of the Lockheed Martin commitment to the US Department of Energy to incorporate proven systems engineering practices with project management and program controls practices at the INEEL. Lockheed Martin uses a graded approach of its management, operations, and systems activities to tailor the level of control to the needs of the individual projects. The Lockheed Martin definition of systems engineering is: ''''Systems Engineering is a proven discipline that defines and manages program requirements, controls risk, ensures program efficiency, supports informed decision making, and verifies that products and services meet customer needs.'''' This paper discusses: the need for an expedited environmental management process; how the system was developed; what the system is; what the system does; and an overview of key components of the process

  12. Device configuration-management system

    International Nuclear Information System (INIS)

    Nowell, D.M.

    1981-01-01

    The Fusion Chamber System, a major component of the Magnetic Fusion Test Facility, contains several hundred devices which report status to the Supervisory Control and Diagnostic System for control and monitoring purposes. To manage the large number of diversity of devices represented, a device configuration management system was required and developed. Key components of this software tool include the MFTF Data Base; a configuration editor; and a tree structure defining the relationships between the subsystem devices. This paper will describe how the configuration system easily accomodates recognizing new devices, restructuring existing devices, and modifying device profile information

  13. Features of the Kozloduy NPP management system

    International Nuclear Information System (INIS)

    2016-01-01

    The Kozloduy NPP management system was built taking into account the specifics of the organizational structure and management of the Company, actual processes and practices, and is oriented towards future development, with the participation of all staff. Additional requirements integrated in the system that distinguish it from general industrial requirements of management systems are: priority of nuclear safety; safety culture; knowledge management including extraction and storage of 'hidden knowledge'; periodic self-assessments; use of graded response to the products and activities; use of 'conservative approach' in decision making;; possibilities for self learning and creating of a vision of 'leaders' and 'professional workers in nuclear energy

  14. The Effect of GST on Farm Management Information Systems and Business Management Skills

    Directory of Open Access Journals (Sweden)

    Tony Lewis

    2005-05-01

    Full Text Available In 1989 New Zealand farmers were confronted by the introduction of a GST. Despite the short to medium term difficulties, many farmers have benefited from the experience. The introduction of the GST forced many New Zealand farmers to improve their record systems as they were required to submit more extensive and accurate information to comply with their new GST requirements. This increase in sophistication of their record systems also meant that farmers had a larger store of more accurate information available to support their farm business management decision-making. It is expected that the introduction of GST and PAYG reporting requirements in Australia is also acting as a catalyst in the evolution of dairy farm record systems and increase in dairy farmer’s store of business management skills. This paper reports the results of a survey that describes the characteristics of dairy farm management information systems and indicates the business management skills that dairy farmers perceive they need to acquire in the short term in order to improve their farm management information systems and comply with their GST requirements. Overall, the importance of bookkeeping/ accounting skills is strongly related to BAS. However, the results also show that as the level of sophistication of dairy farm record systems grows the demand for business skills shifts from accounting/ bookkeeping skills to computer and analytical skills.

  15. Licensing management system prototype system design

    International Nuclear Information System (INIS)

    Immerman, W.H.; Arcuni, A.A.; Elliott, J.M.; Chapman, L.D.

    1983-11-01

    This report is a design document for a prototype implementation of a licensing management system (LMS) as defined in SAND83-7080. It describes the concept of operations for full implementation of an LMS in accordance with the previously defined functional requirements. It defines a subset of a full LMS suitable for meeting prototype implementation goals, and proposes a system design for this subset. The report describes overall system design considerations consistent with, but more explicit than the general characteristics required by the LMS functional definition. A high level design is presented for just those functions selected for prototype implementation. The report also provides a data element dictionary describing the structured logical data elements required to implement the selected functions

  16. Strategic management of health care information systems: nurse managers' perceptions.

    Science.gov (United States)

    Lammintakanen, Johanna; Kivinen, Tuula; Saranto, Kaija; Kinnunen, Juha

    2009-01-01

    The aim of this study is to describe nurse managers' perceptions of the strategic management of information systems in health care. Lack of strategic thinking is a typical feature in health care and this may also concern information systems. The data for this study was collected by eight focus group interviews including altogether 48 nurse managers from primary and specialised health care. Five main categories described the strategic management of information systems in health care; IT as an emphasis of strategy; lack of strategic management of information systems; the importance of management; problems in privacy protection; and costs of IT. Although IT was emphasised in the strategies of many health care organisations, a typical feature was a lack of strategic management of information systems. This was seen both as an underutilisation of IT opportunities in health care organisations and as increased workload from nurse managers' perspective. Furthermore, the nurse managers reported that implementation of IT strengthened their managerial roles but also required stronger management. In conclusion, strategic management of information systems needs to be strengthened in health care and nurse managers should be more involved in this process.

  17. Audit Management System

    CERN Document Server

    Alconada, Federico

    2015-01-01

    In the need of renewing their system, the Internal Audit department has given a proposal for building a new one. Taking into consideration the problems of their system they elaborated a requirement's list with the functionalities and features they were expecting from the new management system. This new system would be primarily for the use of the Internal Audit staff but it would also support the follow-up of internal audit recommendations by potentially all CERN staff members.

  18. Predisposal Management of Radioactive Waste. General Safety Requirements Pt. 5

    International Nuclear Information System (INIS)

    2010-01-01

    There are a large number of facilities and activities around the world in which radioactive material is produced, handled and stored. This Safety Requirements publication presents international consensus requirements for the management of radioactive waste prior to its disposal. It provides the safety imperatives on the basis of which facilities can be designed, operated and regulated. The publication is supported by a number of Safety Guides that provide up to date recommendations and guidance on best practices for management of particular types of radioactive waste, for storage of radioactive waste, for assuring safety by developing safety cases and supporting safety assessments, and for applying appropriate management systems. Contents: 1. Introduction; 2. Protection of human health and the environment; 3. Responsibilities associated with the predisposal management of radioactive waste; 4. Steps in the predisposal management of radioactive waste; 5. Development and operation of predisposal radioactive waste management facilities and activities; Annex: Predisposal management of radioactive waste and the fundamental safety principles.

  19. Predisposal Management of Radioactive Waste. General Safety Requirements Pt. 5

    International Nuclear Information System (INIS)

    2009-01-01

    There are a large number of facilities and activities around the world in which radioactive material is produced, handled and stored. This Safety Requirements publication presents international consensus requirements for the management of radioactive waste prior to its disposal. It provides the safety imperatives on the basis of which facilities can be designed, operated and regulated. The publication is supported by a number of Safety Guides that provide up to date recommendations and guidance on best practices for management of particular types of radioactive waste, for storage of radioactive waste, for assuring safety by developing safety cases and supporting safety assessments, and for applying appropriate management systems. Contents: 1. Introduction; 2. Protection of human health and the environment; 3. Responsibilities associated with the predisposal management of radioactive waste; 4. Steps in the predisposal management of radioactive waste; 5. Development and operation of predisposal radioactive waste management facilities and activities; Annex: Predisposal management of radioactive waste and the fundamental safety principles.

  20. The ABC's required for establishing a practical computerized plant engineering management data base system

    Science.gov (United States)

    Maiocco, F. R.; Hume, J. P.

    1976-01-01

    A system's approach is outlined in the paper to assist facility and Plant Engineers improve their organization's data management system. The six basic steps identified may appear somewhat simple; however, adequate planning, proper resources, and the involvement of management will determine the success of a computerized facility management data base. Helpful suggestions are noted throughout the paper to insure the development of a practical computerized data management system.

  1. A closed-loop based framework for design requirement management

    DEFF Research Database (Denmark)

    Zhang, Zhinan; Li, Xuemeng; Liu, Zelin

    2014-01-01

    management from product lifecycle, and requirement and requirement management lifecycle views. This paper highlights the importance of requirement lifecycle management and aims at closing the requirement information loop in product lifecycle. Then, it addresses the requirement management in engineering...... design field with focusing on the dynamics nature and incomplete nature of requirements. Finally, a closed-loop based framework is proposed for requirement management in engineering design....

  2. Vehicle System Management Modeling in UML for Ares I

    Science.gov (United States)

    Pearson, Newton W.; Biehn, Bradley A.; Curry, Tristan D.; Martinez, Mario R.

    2011-01-01

    The Spacecraft & Vehicle Systems Department of Marshall Space Flight Center is responsible for modeling the Vehicle System Management for the Ares I vehicle which was a part of the now canceled Constellation Program. An approach to generating the requirements for the Vehicle System Management was to use the Unified Modeling Language technique to build and test a model that would fulfill the Vehicle System Management requirements. UML has been used on past projects (flight software) in the design phase of the effort but this was the first attempt to use the UML technique from a top down requirements perspective.

  3. An expert system prototype for aiding in the development of software functional requirements for NASA Goddard's command management system: A case study and lessons learned

    Science.gov (United States)

    Liebowitz, Jay

    1986-01-01

    At NASA Goddard, the role of the command management system (CMS) is to transform general requests for spacecraft opeerations into detailed operational plans to be uplinked to the spacecraft. The CMS is part of the NASA Data System which entails the downlink of science and engineering data from NASA near-earth satellites to the user, and the uplink of command and control data to the spacecraft. Presently, it takes one to three years, with meetings once or twice a week, to determine functional requirements for CMS software design. As an alternative approach to the present technique of developing CMS software functional requirements, an expert system prototype was developed to aid in this function. Specifically, the knowledge base was formulated through interactions with domain experts, and was then linked to an existing expert system application generator called 'Knowledge Engineering System (Version 1.3).' Knowledge base development focused on four major steps: (1) develop the problem-oriented attribute hierachy; (2) determine the knowledge management approach; (3) encode the knowledge base; and (4) validate, test, certify, and evaluate the knowledge base and the expert system prototype as a whole. Backcasting was accomplished for validating and testing the expert system prototype. Knowledge refinement, evaluation, and implementation procedures of the expert system prototype were then transacted.

  4. A computer-based purchase management system

    International Nuclear Information System (INIS)

    Kuriakose, K.K.; Subramani, M.G.

    1989-01-01

    The details of a computer-based purchase management system developed to meet the specific requirements of Madras Regional Purchase Unit (MRPU) is given. Howe ver it can be easily modified to meet the requirements of any other purchase department. It covers various operations of MRPU starting from indent processing to preparation of purchase orders and reminders. In order to enable timely management action and control facilities are provided to generate the necessary management information reports. The scope for further work is also discussed. The system is completely menu driven and user friendly. Appendix A and B contains the menu implemented and the sample outputs respectively. (author)

  5. Digital radiology and digitally formatted image management systems

    International Nuclear Information System (INIS)

    Cox, G.G.; Dwyer, S.J. III; Templeton, A.W.

    1987-01-01

    The number of diagnostic examinations performed with digitally formatted imaging equipment is increasing. Digital general-purpose and fluoroscopic radiology systems are being clinically evaluated. Digitizing conventional x-ray films, such as mammograms, frequently improves the diagnostic quality of the images. The digitizing process with laser has also afforded the opportunity to document required spatial resolution for digital imaging and network systems. The use of digitally formatted image instrumentation imposes new requirements on the acquisition, display and manipulation, transmission, hard copy image recording, and archiving of diagnostic data. Networking of digitally formatted image data offers many advantages for managing digital information. This paper identifies and describes digital radiographic systems. Parameters required for designing and implementing a digital image management system are outlined. Spatial and contrast resolution requirements are identified. The key parameters include the amount of image data generated each working day, the retrieval rate of the generated data, the display hardware and software needed for interactive diagnosis display stations, the requirements for analog hard copy generation, and on-line and long-term archiving requirements. These image management systems are often called PACS (Picture Archiving and Communication Systems)

  6. Database management system for large container inspection system

    International Nuclear Information System (INIS)

    Gao Wenhuan; Li Zheng; Kang Kejun; Song Binshan; Liu Fang

    1998-01-01

    Large Container Inspection System (LCIS) based on radiation imaging technology is a powerful tool for the Customs to check the contents inside a large container without opening it. The author has discussed a database application system, as a part of Signal and Image System (SIS), for the LCIS. The basic requirements analysis was done first. Then the selections of computer hardware, operating system, and database management system were made according to the technology and market products circumstance. Based on the above considerations, a database application system with central management and distributed operation features has been implemented

  7. Simulator configuration management system

    International Nuclear Information System (INIS)

    Faulent, J.; Brooks, J.G.

    1990-01-01

    The proposed revisions to ANS 3.5-1985 (Section 5) require Utilities to establish a simulator Configuration Management System (CMS). The proposed CMS must be capable of: Establishing and maintaining a simulator design database. Identifying and documenting differences between the simulator and its reference plant. Tracking the resolution of identified differences. Recording data to support simulator certification, testing and maintenance. This paper discusses a CMS capable of meeting the proposed requirements contained in ANS 3.5. The system will utilize a personal computer and a relational database management software to construct a simulator design database. The database will contain records to all reference nuclear plant data used in designing the simulator, as well as records identifying all the software, hardware and documentation making up the simulator. Using the relational powers of the database management software, reports will be generated identifying the impact of reference plant changes on the operation of the simulator. These reports can then be evaluated in terms of training needs to determine if changes are required for the simulator. If a change is authorized, the CMS will track the change through to its resolution and then incorporate the change into the simulator design database

  8. DIRAC Data Management System

    CERN Document Server

    Smith, A C

    2007-01-01

    The LHCb experiment being built to utilize CERN’s flagship Large Hadron Collider will generate data to be analysed by a community of over 600 physicists worldwide. DIRAC, LHCb’s Workload and Data Management System, facilitates the use of underlying EGEE Grid resources to generate, process and analyse this data in the distributed environment. The Data Management System, presented here, provides real-time, data-driven distribution in accordance with LHCb’s Computing Model. The data volumes produced by the LHC experiments are unprecedented, rendering individual institutes and even countries, unable to provide the computing and storage resources required to make full use of the produced data. EGEE Grid resources allow the processing of LHCb data possible in a distributed fashion and LHCb’s Computing Model is based on this approach. Data Management in this environment requires reliable and high-throughput transfer of data, homogeneous access to storage resources and the cataloguing of data replicas, all of...

  9. Transportation system requirements document. Revision 1 DCN01. Supplement

    International Nuclear Information System (INIS)

    1995-05-01

    The original Transportation System Requirements Document described the functions to be performed by and the technical requirements for the Transportation System to transport spent nuclear fuel (SNF) and high-level radioactive waste (HLW) from Purchaser and Producer sites to a Civilian Radioactive Waste Management System (CRWMS) site, and between CRWMS sites. The purpose of that document was to define the system-level requirements. These requirements include design and operations requirements to the extent they impact on the development of the physical segments of Transportation. The document also presented an overall description of Transportation, its functions, its segments, and the requirements allocated to the segments and the system-level interfaces with Transportation. This revision of the document contains only the pages that have been modified

  10. Environmental management requirements/defensible costs project. Final report

    International Nuclear Information System (INIS)

    1996-02-01

    Lockheed Idaho Technologies Company (LITCO) used a systems engineering approach to develop the first formal requirements baseline for Idaho National Engineering Laboratory (INEL) Environmental Management (EM) Programs. The recently signed Settlement Agreement with the State of Idaho (Batt Agreement), along with dramatically reduced EM funding targets from Department of Energy (DOE) headquarters, drove the immediacy of this effort. Programs have linked top-level requirements to work scope to cost estimates. All EM work, grouped by decision units, was scrubbed by INEL EM programs and by an independent open-quotes Murder Board.close quotes Direct participation of upper level management from LITCO and the DOE-Idaho Operations Office ensured best information and decisions. The result is a scrubbed down, defensible budget tied to top-level requirements for use in the upcoming DOE-Headquarters' budget workout, the Internal Review Board, the FY98 Activity Data Sheets submittal, and preparation of the FY97 control accounts and out-year plans. In addition to the remarkable accomplishments during the past eight weeks, major issues were identified and documented and follow-on tasks are underway which will lead to further improvements in INEL EM program management

  11. Environmental management requirements/defensible costs project. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-02-01

    Lockheed Idaho Technologies Company (LITCO) used a systems engineering approach to develop the first formal requirements baseline for Idaho National Engineering Laboratory (INEL) Environmental Management (EM) Programs. The recently signed Settlement Agreement with the State of Idaho (Batt Agreement), along with dramatically reduced EM funding targets from Department of Energy (DOE) headquarters, drove the immediacy of this effort. Programs have linked top-level requirements to work scope to cost estimates. All EM work, grouped by decision units, was scrubbed by INEL EM programs and by an independent {open_quotes}Murder Board.{close_quotes} Direct participation of upper level management from LITCO and the DOE-Idaho Operations Office ensured best information and decisions. The result is a scrubbed down, defensible budget tied to top-level requirements for use in the upcoming DOE-Headquarters` budget workout, the Internal Review Board, the FY98 Activity Data Sheets submittal, and preparation of the FY97 control accounts and out-year plans. In addition to the remarkable accomplishments during the past eight weeks, major issues were identified and documented and follow-on tasks are underway which will lead to further improvements in INEL EM program management.

  12. Potential of Computerized Maintenance Management System in Facilities Management

    Directory of Open Access Journals (Sweden)

    Noor Farisya Azahar

    2014-07-01

    Full Text Available For some time it has been clear that managing buildings or estates has been carried out in the context of what has become known as facilities management. British Institute of Facilities Management defined facilities management is the integration of multi-disciplinary activities within the built environment and the management of their impact upon people and the workplace. Effective facilities management is vital to the success of an organisation by contributing to the delivery of its strategic and operational objectives. Maintenance of buildings should be given serious attention before (stage design, during and after a building is completed. But total involvement in building maintenance is after the building is completed and during its operations. Residents of and property owners require their building to look attractive, durable and have a peaceful indoor environment and efficient. The objective of the maintenance management system is to stream line the vast maintenance information system to improve the productivity of an industrial plant. a good maintenance management system makes equipment and facilities available. This paper will discuss the fundamental steps of maintenance management program and Computerized Maintenance Management System (CMMS

  13. Development of accounting quality management system

    Directory of Open Access Journals (Sweden)

    Plakhtii T.F.

    2017-08-01

    Full Text Available Accounting organization as one of the types of practical activities at the enterprise involves organization of the process of implementation of various kinds of accounting procedures to ensure meeting needs of the users of accounting information. Therefore, to improve its quality an owner should use tools, methods and procedures that enable to improve the quality of implementation of accounting methods and technology. The necessity of using a quality management system for the improvement of accounting organization at the enterprise is substantiated. The system of accounting quality management is developed and grounded in the context of ISO 9001:2015, which includes such processes as the processes of the accounting system, leadership, planning, and evaluation. On the basis of specification and justification of the set of universal requirements (content requirements, formal requirements the model of the environment of demands for high-quality organization of the computerized accounting system that improves the process of preparing high quality financial statements is developed. In order to improve the system of accounting quality management, to justify the main objectives of its further development, namely elimination of unnecessary characteristics of accounting information, the differences between the current level of accounting information quality and its perfect level are considered; the meeting of new needs of users of accounting information that have not been satisfied yet. The ways of leadership demonstration in the system of accounting quality management of accounting subjects at the enterprise are substantiated. The relationship between the current level of accounting information quality and its perfect level is considered. The possible types of measures aimed at improving the system of accounting quality management are identified. The paper grounds the need to include the principle of proper management in the current set of accounting

  14. Simulation Data Management - Requirements and Design Specification

    Energy Technology Data Exchange (ETDEWEB)

    Clay, Robert L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Friedman-Hill, Ernest J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Gibson, Marcus J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Hoffman, Edward L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Olson, Kevin H. [Science Applications International Corporation (SAIC), Reston, VA (United States); Laney, Daniel [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-11-01

    Simulation Data Management (SDM), the ability to securely organize, archive, and share analysis models and the artifacts used to create them, is a fundamental requirement for modern engineering analysis based on computational simulation. We have worked separately to provide secure, network SDM services to engineers and scientists at our respective laboratories for over a decade. We propose to leverage our experience and lessons learned to help develop and deploy a next-generation SDM service as part of a multi-laboratory team. This service will be portable across multiple sites and platforms, and will be accessible via a range of command-line tools and well-documented APIs. In this document, we’ll review our high-level and low-level requirements for such a system, review one existing system, and briefly discuss our proposed implementation.

  15. Requirement analysis for the one-stop logistics management of fresh agricultural products

    Science.gov (United States)

    Li, Jun; Gao, Hongmei; Liu, Yuchuan

    2017-08-01

    Issues and concerns for food safety, agro-processing, and the environmental and ecological impact of food production have been attracted many research interests. Traceability and logistics management of fresh agricultural products is faced with the technological challenges including food product label and identification, activity/process characterization, information systems for the supply chain, i.e., from farm to table. Application of one-stop logistics service focuses on the whole supply chain process integration for fresh agricultural products is studied. A collaborative research project for the supply and logistics of fresh agricultural products in Tianjin was performed. Requirement analysis for the one-stop logistics management information system is studied. The model-driven business transformation, an approach uses formal models to explicitly define the structure and behavior of a business, is applied for the review and analysis process. Specific requirements for the logistic management solutions are proposed. Development of this research is crucial for the solution of one-stop logistics management information system integration platform for fresh agricultural products.

  16. Balancing requirements for radioactive waste management and radiation protection

    International Nuclear Information System (INIS)

    Lafuma, J.; Lefevre, J.

    1985-01-01

    The authors recall the principles of radiation protection and their application to radioactive waste management. The dose limitation system applies to every stage in management. The accepted risk limits should be compared with the level of risk from other sources, particularly from natural radiation. The uncertainties associated with long-term estimates should not lead to unrealistic requirements. The optimum rules are to be obtained by discussion among those responsible for radiation protection, nuclear safety and radioactive waste management. Satisfactory, applicable rules can be worked out in the present state of the art [fr

  17. 34 CFR 74.21 - Standards for financial management systems.

    Science.gov (United States)

    2010-07-01

    ... 34 Education 1 2010-07-01 2010-07-01 false Standards for financial management systems. 74.21... Requirements Financial and Program Management § 74.21 Standards for financial management systems. (a... practical. (b) Recipients' financial management systems shall provide for the following: (1) Accurate...

  18. 7 CFR 3019.21 - Standards for financial management systems.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 15 2010-01-01 2010-01-01 false Standards for financial management systems. 3019.21... Requirements Financial and Program Management § 3019.21 Standards for financial management systems. (a) Federal... cost information whenever practical. (b) Recipients' financial management systems shall provide for the...

  19. HLT configuration management system

    CERN Document Server

    Daponte, Vincenzo

    2015-01-01

    The CMS High Level Trigger (HLT) is implemented running a streamlined version of the CMS offline reconstruction software running on thousands of CPUs. The CMS software is written mostly in C++, using Python as its configuration language through an embedded CPython interpreter. The configuration of each process is made up of hundreds of modules, organized in sequences and paths. As an example, the HLT configurations used for 2011 data taking comprised over 2200 different modules, organized in more than 400 independent trigger paths. The complexity of the HLT configurations and the large number of configuration produced require the design of a suitable data management system. The present work describes the designed solution to manage the considerable number of configurations developed and to assist the editing of new configurations. The system is required to be remotely accessible and OS-independent as well as easly maintainable easy to use. To meet these requirements a three-layers architecture has been choose...

  20. QUALITY - SOCIAL ACCOUNTABILITY - HEALTH AND SAFETY INTEGRATED MANAGEMENT SYSTEM AUDIT ACCORDING TO THE REQUIREMENTS OF ISO9001:2008, SA 8000:2008, OHSAS 18001:2007 AND ISO 19011:2011 STANDARDS

    Directory of Open Access Journals (Sweden)

    Valentina TUDOR

    2014-06-01

    Full Text Available The purpose of this paper is to present a method of perfecting the audit of the social requirements of the quality social accountability-health and safety integrated management system with the social requirements of BusinessSocial Compliance Initiative (BSCI and Supplier Ethical Data Exchange (SEDEX. The method used was tosupplement the social requirement of SA 8000:2008 standard with the additional requirements of BSCI and SEDEX.The results are based on a correspondence between the requirements of SA 8000:2008 standard and therequirements of BSCI and SEDEX codes of conducts, because some of BSCI and SEDEX requirements are moredetailed than SA 8000:2008 standard requirements which are the base for the implementation of socialrequirements of the quality-social accountability-health and safety integrated management system. A check list waselaborated with the integrated social requirements of SA 8000:2008, BSCI and SEDEX. The check list is related tochild labour, forced and compulsory labour, health and safety, freedom of association & right to collective bargaining, discrimination, disciplinary practices, working hours, remuneration and management system. Theconclusion of the paper is that the elaborated check list allows the quality-social accountability-health and safety integrated management system audit to match to the requirements of BSCI and SEDEX.

  1. Nuclear maintenance and management system

    International Nuclear Information System (INIS)

    Yamaji, Yoshihiro; Abe, Norihiko

    2000-01-01

    The Mitsubishi Electric Co., Ltd. has developed to introduce various computer systems for desk-top business assistance in a power plant such as system isolation assisting system, operation parameter management system, and so on under aiming at business effectiveness since these ten and some years. Recently, by further elapsed years of the plants when required for further cost reduction and together with change of business environment represented by preparation of individual personal computer, further effectiveness, preparation of the business environment, and upgrading of maintenance in power plant business have been required. Among such background, she has carried out various proposals and developments on construction of a maintenance and management system integrated the business assistant know-hows and the plant know-hows both accumulated previously. They are composed of three main points on rationalization of business management and document management in the further effectiveness, preparation of business environment, TBM maintenance, introduction of CBM maintenance and introduction of maintenance assistance in upgrading of maintenance. Here was introduced on system concepts aiming at the further effectiveness of the nuclear power plant business, preparation of business environment, upgrading of maintenance and maintenance, and so on, at a background of environment around maintenance business in the nuclear power plants (cost-down, highly elapsed year of the plant, change of business environment). (G.K)

  2. 32 CFR 32.21 - Standards for financial management systems.

    Science.gov (United States)

    2010-07-01

    ... 32 National Defense 1 2010-07-01 2010-07-01 false Standards for financial management systems. 32... Program Management § 32.21 Standards for financial management systems. (a) DoD Components shall require... unit cost information. (b) Recipients' financial management systems shall provide for the following. (1...

  3. 29 CFR 95.21 - Standards for financial management systems.

    Science.gov (United States)

    2010-07-01

    ... 29 Labor 1 2010-07-01 2010-07-01 true Standards for financial management systems. 95.21 Section 95... Requirements Financial and Program Management § 95.21 Standards for financial management systems. (a... practical. (b) Recipients' financial management systems shall provide for the following: (1) Accurate...

  4. Vehicle Health Management Communications Requirements for AeroMACS

    Science.gov (United States)

    Kerczewski, Robert J.; Clements, Donna J.; Apaza, Rafael D.

    2012-01-01

    As the development of standards for the aeronautical mobile airport communications system (AeroMACS) progresses, the process of identifying and quantifying appropriate uses for the system is progressing. In addition to defining important elements of AeroMACS standards, indentifying the systems uses impacts AeroMACS bandwidth requirements. Although an initial 59 MHz spectrum allocation for AeroMACS was established in 2007, the allocation may be inadequate; studies have indicated that 100 MHz or more of spectrum may be required to support airport surface communications. Hence additional spectrum allocations have been proposed. Vehicle health management (VHM) systems, which can produce large volumes of vehicle health data, were not considered in the original bandwidth requirements analyses, and are therefore of interest in supporting proposals for additional AeroMACS spectrum. VHM systems are an emerging development in air vehicle safety, and preliminary estimates of the amount of data that will be produced and transmitted off an aircraft, both in flight and on the ground, have been prepared based on estimates of data produced by on-board vehicle health sensors and initial concepts of data processing approaches. This allowed an initial estimate of VHM data transmission requirements for the airport surface. More recently, vehicle-level systems designed to process and analyze VHM data and draw conclusions on the current state of vehicle health have been undergoing testing and evaluation. These systems make use of vehicle system data that is mostly different from VHM data considered previously for airport surface transmission, and produce processed system outputs that will be also need to be archived, thus generating additional data load for AeroMACS. This paper provides an analysis of airport surface data transmission requirements resulting from the vehicle level reasoning systems, within the context of overall VHM data requirements.

  5. Operating the EOSDIS at the land processes DAAC managing expectations, requirements, and performance across agencies, missions, instruments, systems, and user communities

    Science.gov (United States)

    Kalvelage, T.A.; ,

    2002-01-01

    NASA developed the Earth Observing System (EOS) during the 1990'S. At the Land Processes Distributed Active Archive Center (LP DAAC), located at the USGS EROS Data Center, the EOS Data and Information System (EOSDIS) is required to support heritage missions as well as Landsat 7, Terra, and Aqua. The original system concept of the early 1990'S changed as each community had its say - first the managers, then engineers, scientists, developers, operators, and then finally the general public. The systems at the LP DAAC - particularly the largest single system, the EOSDIS Core System (ECS) - are changing as experience accumulates, technology changes, and each user group gains influence. The LP DAAC has adapted as contingencies were planned for, requirements and therefore plans were modified, and expectations changed faster than requirements could hope to be satisfied. Although not responsible for Quality Assurance of the science data, the LP DAAC works to ensure the data are accessible and useable by influencing systems, capabilities, and data formats where possible, and providing tools and user support as necessary. While supporting multiple missions and instruments, the LP DAAC also works with and learns from multiple management and oversight groups as they review mission requirements, system capabilities, and the overall operation of the LP DAAC. Stakeholders, including the Land Science community, are consulted regularly to ensure that the LP DAAC remains cognizant and responsive to the evolving needs of the user community. Today, the systems do not look or function as originally planned, but they do work, and they allow customers to search and order of an impressive amount of diverse data.

  6. 43 CFR 12.60 - Standards for financial management systems.

    Science.gov (United States)

    2010-10-01

    ... 43 Public Lands: Interior 1 2010-10-01 2010-10-01 false Standards for financial management systems... AUDIT REQUIREMENTS AND COST PRINCIPLES FOR ASSISTANCE PROGRAMS Uniform Administrative Requirements for... Standards for financial management systems. (a) A State must expand and account for grant funds in...

  7. Microsoft System Center 2012 R2 compliance management cookbook

    CERN Document Server

    Baumgarten, Andreas; Roesner, Susan

    2014-01-01

    Whether you are an IT manager, an administrator, or security professional who wants to learn how Microsoft Security Compliance Manager and Microsoft System Center can help fulfil compliance and security requirements, this is the book for you. Prior knowledge of Microsoft System Center is required.

  8. Requirements engineering for trust management: Model, methodology, and reasoning

    NARCIS (Netherlands)

    Giorgini, P.; Massacci, F.; Mylopoulos, J.; Zannone, N.

    2006-01-01

    A number of recent proposals aim to incorporate security engineering into mainstream software engineering. Yet, capturing trust and security requirements at an organizational level, as opposed to an IT system level, and mapping these into security and trust management policies is still an open

  9. 10 CFR 600.311 - Standards for financial management systems.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 4 2010-01-01 2010-01-01 false Standards for financial management systems. 600.311... Requirements § 600.311 Standards for financial management systems. (a) Recipients are encouraged to use existing financial management systems to the extent that the systems comply with Generally Accepted...

  10. Waste Management System Requirements Document

    International Nuclear Information System (INIS)

    1992-02-01

    This DCP establishes an interim plan for the Office of Civilian Radioactive Waste Management (OCRWM) technical baseline until the results of the OCRWM Document Hierarchy Task Force can be implemented. This plan is needed to maintain continuity in the Program for ongoing work in the areas of Waste Acceptance, Transportation, Monitored Retrievable Storage (MRS) and Yucca Mountain Site Characterization

  11. Waste management - an integral part of environmental management systems

    Energy Technology Data Exchange (ETDEWEB)

    Hamm, Ulrich

    1998-12-01

    To consider waste as a resource instead of an annoyance with which the management has to cope with, has become an unavoidable task for modern managers. The task the management has to take to secure competitiveness in an environment of rising complexity of production processes and further increasing legal requirements, is to manage waste as much as other recourses are managed. Waste has to be considered an aspect of planning and decision process just as business plans or logistics are. Main themes discussed in this publication comprise waste management, implementation of waste management as an integral part of environmental management systems, and management approach to waste - the results. 4 figs.

  12. Requirements in Functional IT Management

    NARCIS (Netherlands)

    Blaauboer, F.A.; Blaauboer, F.A.

    Requirements engineering and functional IT management have never been researched as to containing similar activities. This paper describes and compares both disciplines, where the BiSL-framework is used for functional IT management. The similarities and differences between the two disciplines are

  13. Intelligent community management system based on the devicenet fieldbus

    Science.gov (United States)

    Wang, Yulan; Wang, Jianxiong; Liu, Jiwen

    2013-03-01

    With the rapid development of the national economy and the improvement of people's living standards, people are making higher demands on the living environment. And the estate management content, management efficiency and service quality have been higher required. This paper in-depth analyzes about the intelligent community of the structure and composition. According to the users' requirements and related specifications, it achieves the district management systems, which includes Basic Information Management: the management level of housing, household information management, administrator-level management, password management, etc. Service Management: standard property costs, property charges collecting, the history of arrears and other property expenses. Security Management: household gas, water, electricity and security and other security management, security management district and other public places. Systems Management: backup database, restore database, log management. This article also carries out on the Intelligent Community System analysis, proposes an architecture which is based on B / S technology system. And it has achieved a global network device management with friendly, easy to use, unified human - machine interface.

  14. RIMS: Resource Information Management System

    Science.gov (United States)

    Symes, J.

    1983-01-01

    An overview is given of the capabilities and functions of the resource management system (RIMS). It is a simple interactive DMS tool which allows users to build, modify, and maintain data management applications. The RIMS minimizes programmer support required to develop/maintain small data base applications. The RIMS also assists in bringing the United Information Services (UIS) budget system work inhouse. Information is also given on the relationship between the RIMS and the user community.

  15. Measurement system as a subsystem of the quality management system

    Directory of Open Access Journals (Sweden)

    Ľubica Floreková

    2006-12-01

    Full Text Available Each measurement system and a control principle must be based on certain facts about the system behaviour (what, operation (how and structure (why. Each system is distributed into subsystems that provide an input for the next subsystem. For each system, start is important the begin, that means system characteristics, collecting of data, its hierarchy and the processes distribution.A measurement system (based on the chapter 8 of the standard ISO 9001:2000 Quality management system, requirements defines the measurement, analysis and improvement for each organization in order to present the products conformity, the quality management system conformity guarantee and for the continuously permanent improvement of effectivity, efficiency and economy of quality management system.

  16. 76 FR 42536 - Real-Time System Management Information Program

    Science.gov (United States)

    2011-07-19

    ...-Time System Management Information Program AGENCY: Federal Highway Administration (FHWA), DOT. ACTION... Real-Time System Management Information Program and general information about current and planned... establishing requirements for the Real-Time System Management Information Program on November 8, 2010, at 75 FR...

  17. Integrated management system - management standards evolution and the IAEA new approach

    International Nuclear Information System (INIS)

    Oliveira, Dirceu Paulo de; Zouain, Desiree Moraes

    2007-01-01

    The management standards application began in military and nuclear areas towards the end of Second World War, when some westerns countries developed quality standards to improve their means to assess suppliers' conditions to assure their products conformance, which was increasingly complex and required a higher degree of reliability. Afterwards, the quality standards application was extended to the consumer market focused on consumers' requirements satisfaction. Coming along the society crescent concern about quality of life, other management standards were developed, such as those dealing with environmental and sustainable development, occupational health and safety, social accountability and so on. As a consequence, the management process became complex. The management system integrated form approach makes possible the compatibility of distinct and complementary interests from several functions and disciplines involved and supply the absence of the organizations' holistic approach. According to this integrated management approach, the Agency - 'International Atomic Energy Agency' (IAEA) - decided to review the structure of the 50-C-Q standard - 'Quality Assurance for Safety in Nuclear Power Plants and Other Nuclear Installations', from 1996, publishing in 2006 the new GS-R-3 standard - 'The Management System for Facilities and Activities - Safety Requirements'. This work presents a brief evolution of management standards and integrated management approach, showing the Agency's new vision concerning this issue with the GS-R-3 standard publication. (author)

  18. Work flow management systems applied in nuclear power plants management system to a new computer platform

    International Nuclear Information System (INIS)

    Rodriguez Lorite, M.; Martin Lopez-Suevos, C.

    1996-01-01

    Activities performed in most companies are based on the flow of information between their different departments and personnel. Most of this information is on paper (delivery notes, invoices, reports, etc). The percentage of information transmitted electronically (electronic transactions, spread sheets, files from word processors, etc) is usually low. The implementation of systems to control and speed up this work flow is the aim of work flow management systems. This article presents a prototype for applying work flow management systems to a specific area: the basic life cycle of a purchase order in a nuclear power plant, which requires the involvement of various computer applications: purchase order management, warehouse management, accounting, etc. Once implemented, work flow management systems allow optimisation of the execution of different tasks included in the managed life cycles and provide parameters to, if necessary, control work cycles, allowing their temporary or definitive modification. (Author)

  19. International safeguards data management system

    International Nuclear Information System (INIS)

    Argentesi, F.; Costantini, L.; Franklin, M.; Dondi, M.G.

    1981-01-01

    The data base management system ''ISADAM'' (i.e. International Safeguards Data Management System) described in this report is intended to facilitate the safeguards authority in making efficient and effective use of accounting reports. ISADAM has been developed using the ADABAS data base management system and is implemented on the JRC-Ispra computer. The evaluation of safeguards declarations focuses on three main objectives: - the requirement of syntactical consistency with the legal conventions of data recording for safeguards accountancy; - the requirement of accounting evidence that there is no material unaccounted for (MUF); - the requirement of semantic consistency with the technological characteristics of the plant and the processing plans of the operator. Section 2 describes in more detail the facilities which ISADAM makes available to a safeguards inspector. Section 3 describes how the MUF variance computation is derived from models of measurement error propagation. Many features of the ISADAM system are automatically provided by ADABAS. The exceptions to this are the utility software designed to: - screen plant declarations before loading into the data base, - prepare variance summary files designed to support real-time computation of MUF and variance of MUF, - provide analyses in response to user requests in interactive or batch mode. Section 4 describes the structure and functions of this software which have been developed by JRC-Ispra

  20. Safety standards of IAEA for management systems

    International Nuclear Information System (INIS)

    Vincze, P.

    2005-01-01

    IAEA has developed a new series of safety standards which are assigned for constitution of the conditions and which give the instruction for setting up the management systems that integrate the aims of safety, health, life environment and quality. The new standard shall replace IAEA 50-C-Q - Requirements for security of the quality for safety in nuclear power plants and other nuclear facilities as well as 14 related safety instructions mentioned in the Safety series No. 50-C/SG-Q (1996). When developing of this complex, integrated set of requirements for management systems, the IAEA requirements 50-C-Q (1996) were taken into consideration as well as the publications developed within the International organisation for standardization (ISO) ISO 9001:2000 and ISO14001: 1996. The experience of European Union member states during the development, implementation and improvement of the management systems were also taken into consideration

  1. Evaluation of expert systems - An approach and case study. [of determining software functional requirements for command management of satellites

    Science.gov (United States)

    Liebowitz, J.

    1985-01-01

    Techniques that were applied in defining an expert system prototype for first-cut evaluations of the software functional requirements of NASA satellite command management activities are described. The prototype was developed using the Knowledge Engineering System. Criteria were selected for evaluating the satellite software before defining the expert system prototype. Application of the prototype system is illustrated in terms of the evaluation procedures used with the COBE satellite to be launched in 1988. The limited number of options which can be considered by the program mandates that biases in the system output must be well understood by the users.

  2. Materials management information systems.

    Science.gov (United States)

    1996-01-01

    The hospital materials management function--ensuring that goods and services get from a source to an end user--encompasses many areas of the hospital and can significantly affect hospital costs. Performing this function in a manner that will keep costs down and ensure adequate cash flow requires effective management of a large amount of information from a variety of sources. To effectively coordinate such information, most hospitals have implemented some form of materials management information system (MMIS). These systems can be used to automate or facilitate functions such as purchasing, accounting, inventory management, and patient supply charges. In this study, we evaluated seven MMISs from seven vendors, focusing on the functional capabilities of each system and the quality of the service and support provided by the vendor. This Evaluation is intended to (1) assist hospitals purchasing an MMIS by educating materials managers about the capabilities, benefits, and limitations of MMISs and (2) educate clinical engineers and information system managers about the scope of materials management within a healthcare facility. Because software products cannot be evaluated in the same manner as most devices typically included in Health Devices Evaluations, our standard Evaluation protocol was not applicable for this technology. Instead, we based our ratings on our observations (e.g., during site visits), interviews we conducted with current users of each system, and information provided by the vendor (e.g., in response to a request for information [RFI]). We divided the Evaluation into the following sections: Section 1. Responsibilities and Information Requirements of Materials Management: Provides an overview of typical materials management functions and describes the capabilities, benefits, and limitations of MMISs. Also includes the supplementary article, "Inventory Cost and Reimbursement Issues" and the glossary, "Materials Management Terminology." Section 2. The

  3. MORE: Management of Requirements in NPP Modernisation Projects, final report

    International Nuclear Information System (INIS)

    Fredriksen, R.; Katta, V.; Raspotnig, C.; Valkonen, J.

    2008-09-01

    This report documents the work and related activities of the MORE (Management of Requirements in NPP Modernisation Projects) (NKS-R project number NKS-R-2005-47) project. This report also provides a summary of the project activities and deliverables, and discusses possible application areas. The project has aimed at the industrial utilisation of the results from the TACO: (Traceability and Communication of Requirements in Digital I and C Systems Development) (NKS-R project number NKS-R-2002-16, completed June, 2005) project, and practical application of improved approaches and methods for requirements engineering and change management. Finally, the report provides a brief description of the extended industrial network and disseminations of the results in Nordic and NKS related events such as seminars and workshops. (au)

  4. MORE: Management of Requirements in NPP Modernisation Projects, final report

    Energy Technology Data Exchange (ETDEWEB)

    Fredriksen, R.; Katta, V.; Raspotnig, C. (Inst. for energiteknikk (IFE) (Norway)); Valkonen, J. (Technical Research Centre of Finland (VTT) (Finland))

    2008-09-15

    This report documents the work and related activities of the MORE (Management of Requirements in NPP Modernisation Projects) (NKS-R project number NKS-R-2005-47) project. This report also provides a summary of the project activities and deliverables, and discusses possible application areas. The project has aimed at the industrial utilisation of the results from the TACO: (Traceability and Communication of Requirements in Digital I and C Systems Development) (NKS-R project number NKS-R-2002-16, completed June, 2005) project, and practical application of improved approaches and methods for requirements engineering and change management. Finally, the report provides a brief description of the extended industrial network and disseminations of the results in Nordic and NKS related events such as seminars and workshops. (author)

  5. 49 CFR 19.21 - Standards for financial management systems.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 1 2010-10-01 2010-10-01 false Standards for financial management systems. 19.21... ORGANIZATIONS Post-Award Requirements § 19.21 Standards for financial management systems. (a) Federal awarding... information whenever practical. (b) Recipients' financial management systems shall provide for the following...

  6. 43 CFR 12.921 - Standards for financial management systems.

    Science.gov (United States)

    2010-10-01

    ... 43 Public Lands: Interior 1 2010-10-01 2010-10-01 false Standards for financial management systems... Organizations Post-Award Requirements § 12.921 Standards for financial management systems. (a) Federal awarding... information whenever practical. (b) Recipients' financial management systems shall provide for the following...

  7. 29 CFR 1470.20 - Standards for financial management systems.

    Science.gov (United States)

    2010-07-01

    ... 29 Labor 4 2010-07-01 2010-07-01 false Standards for financial management systems. 1470.20 Section... Post-Award Requirements Financial Administration § 1470.20 Standards for financial management systems... the restrictions and prohibitions of applicable statutes. (b) The financial management systems of...

  8. LEGACY MANAGEMENT REQUIRES INFORMATION

    International Nuclear Information System (INIS)

    CONNELL, C.W.; HILDEBRAND, R.D.

    2006-01-01

    ''Legacy Management Requires Information'' describes the goal(s) of the US Department of Energy's Office of Legacy Management (LM) relative to maintaining critical records and the way those goals are being addressed at Hanford. The paper discusses the current practices for document control, as well as the use of modern databases for both storing and accessing the data to support cleanup decisions. In addition to the information goals of LM, the Hanford Federal Facility Agreement and Consent Order, known as the ''Tri-Party Agreement'' (TPA) is one of the main drivers in documentation and data management. The TPA, which specifies discrete milestones for cleaning up the Hanford Site, is a legally binding agreement among the US Department of Energy (DOE), the Washington State Department of Ecology (Ecology), and the US Environmental Protection Agency (EPA). The TPA requires that DOE provide the lead regulatory agency with the results of analytical laboratory and non-laboratory tests/readings to help guide them in making decisions. The Agreement also calls for each signatory to preserve--for at least ten years after the Agreement has ended--all of the records in its or its contractors, possession related to sampling, analysis, investigations, and monitoring conducted. The tools used at Hanford to meet TPA requirements are also the tools that can satisfy the needs of LM

  9. BWR reactor management system

    International Nuclear Information System (INIS)

    Makino, Kakuji; Kawamura, Atsuo; Yoshioka, Ritsuo; Neda, Toshikatsu.

    1979-01-01

    It is necessary to grasp the delicate state of operation in reactor cores in view of the control of burn-up and power output at the time of the operation management of BWRs. Enormous labor has been required for the collection, processing and evaluation of the data. It is desirable to obtain the safer, more efficient and faster method of operation control by predicting the states in cores including the change of xenon and reflecting them to operation plans as well as by tracing with high accuracy the past burn-up history for a long period. At present, the on-line evaluation of the states in cores is carried out with the process computers attached to respective units, but the amount of data required for core operation management of high degree far exceeds their capacity. From such viewpoints, the research and development on the reactor management system were carried out. The data processing concerning core operation management is performed with newly installed computers utilizing the data from existing process computers, and the operation of reactor cores, the qualitative improvement of management works, labor saving, and fast, efficient operation control are feasible with it. This system was installed in an actual plant in October, 1977. The composition of the system, the prediction of the change in local output distribution accompanying control rod operation, the prediction of the change in the states in cores due to the flow rate of coolant, and the function of collecting plant data are explained. (Kako, I.)

  10. INTEGRATION OF ENVIRONMENTAL MANAGEMENT SYSTEM

    OpenAIRE

    Tomescu Ada Mirela

    2012-01-01

    The relevance of management as significant factor of business activity can be established on various management systems. These will help to obtain, organise, administrate, evaluate and control particulars: information, quality, environmental protection, health and safety, various resources (time, human, finance, inventory etc). The complexity of nowadays days development, forced us to think ‘integrated’. Sustainable development principles require that environment management policies and p...

  11. ATTACK WARNING: Better Management Required to Resolve NORAD Integration Deficiencies

    Science.gov (United States)

    1989-07-01

    protocols, Cumbersome Integration different manufacturers’ computer systems can communicate with eachother . The warning and assessment subsystems...by treating TW/AA system as a single system subject to program review and oversight by the Defense Acquisition Board. Within this management...restore the unit to operation quickly enough after a power loss to meet NORAD mis- sion requirements. The Air Force intends to have the contractor

  12. 32 CFR 34.11 - Standards for financial management systems.

    Science.gov (United States)

    2010-07-01

    ... 32 National Defense 1 2010-07-01 2010-07-01 false Standards for financial management systems. 34... ORGANIZATIONS Post-award Requirements Financial and Program Management § 34.11 Standards for financial management systems. (a) Recipients shall be allowed and encouraged to use existing financial management...

  13. 24 CFR 84.21 - Standards for financial management systems.

    Science.gov (United States)

    2010-04-01

    ... 24 Housing and Urban Development 1 2010-04-01 2010-04-01 false Standards for financial management... and Program Management § 84.21 Standards for financial management systems. (a) HUD shall require.... (b) Recipients' financial management systems shall provide for the following: (1) Accurate, current...

  14. 25 CFR 900.52 - What type of property is the property management system required to track?

    Science.gov (United States)

    2010-04-01

    ... 25 Indians 2 2010-04-01 2010-04-01 false What type of property is the property management system...-DETERMINATION AND EDUCATION ASSISTANCE ACT Standards for Tribal or Tribal Organization Management Systems Property Management System Standards § 900.52 What type of property is the property management system...

  15. Managing Space System Faults: Coalescing NASA's Views

    Science.gov (United States)

    Muirhead, Brian; Fesq, Lorraine

    2012-01-01

    Managing faults and their resultant failures is a fundamental and critical part of developing and operating aerospace systems. Yet, recent studies have shown that the engineering "discipline" required to manage faults is not widely recognized nor evenly practiced within the NASA community. Attempts to simply name this discipline in recent years has been fraught with controversy among members of the Integrated Systems Health Management (ISHM), Fault Management (FM), Fault Protection (FP), Hazard Analysis (HA), and Aborts communities. Approaches to managing space system faults typically are unique to each organization, with little commonality in the architectures, processes and practices across the industry.

  16. Management and Evaluation System on Human Error, Licence Requirements, and Job-aptitude in Rail and the Other Industries

    Energy Technology Data Exchange (ETDEWEB)

    Koo, In Soo; Suh, S. M.; Park, G. O. (and others)

    2006-07-15

    Rail system is a system that is very closely related to the public life. When an accident happens, the public using this system should be injured or even be killed. The accident that recently took place in Taegu subway system, because of the inappropriate human-side task performance, showed demonstratively how its results could turn out to be tragic one. Many studies have shown that the most cases of the accidents have occurred because of performing his/her tasks in inappropriate way. It is generally recognised that the rail system without human element could never be happened quite long time. So human element in rail system is going to be the major factor to the next tragic accident. This state of the art report studied the cases of the managements and evaluation systems related to human errors, license requirements, and job aptitudes in the areas of rail and the other industries for the purpose of improvement of the task performance of personnel which consists of an element and finally enhancement of rail safety. The human errors, license requirements, and evaluation system of the job aptitude on people engaged in agencies with close relation to rail do much for development and preservation their abilities. But due to various inside and outside factors, to some extent it may have limitations to timely reflect overall trends of society, technology, and a sense of value. Removal and control of the factors of human errors will have epochal roles in safety of the rail system through the case studies of this report. Analytical results on case studies of this report will be used in the project 'Development of Management Criteria on Human Error and Evaluation Criteria on Job-aptitude of Rail Safe-operation Personnel' which has been carried out as a part of 'Integrated R and D Program for Railway Safety'.

  17. Management and Evaluation System on Human Error, Licence Requirements, and Job-aptitude in Rail and the Other Industries

    International Nuclear Information System (INIS)

    Koo, In Soo; Suh, S. M.; Park, G. O.

    2006-07-01

    Rail system is a system that is very closely related to the public life. When an accident happens, the public using this system should be injured or even be killed. The accident that recently took place in Taegu subway system, because of the inappropriate human-side task performance, showed demonstratively how its results could turn out to be tragic one. Many studies have shown that the most cases of the accidents have occurred because of performing his/her tasks in inappropriate way. It is generally recognised that the rail system without human element could never be happened quite long time. So human element in rail system is going to be the major factor to the next tragic accident. This state of the art report studied the cases of the managements and evaluation systems related to human errors, license requirements, and job aptitudes in the areas of rail and the other industries for the purpose of improvement of the task performance of personnel which consists of an element and finally enhancement of rail safety. The human errors, license requirements, and evaluation system of the job aptitude on people engaged in agencies with close relation to rail do much for development and preservation their abilities. But due to various inside and outside factors, to some extent it may have limitations to timely reflect overall trends of society, technology, and a sense of value. Removal and control of the factors of human errors will have epochal roles in safety of the rail system through the case studies of this report. Analytical results on case studies of this report will be used in the project 'Development of Management Criteria on Human Error and Evaluation Criteria on Job-aptitude of Rail Safe-operation Personnel' which has been carried out as a part of 'Integrated R and D Program for Railway Safety'

  18. 14 CFR 1260.121 - Standards for financial management systems.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 5 2010-01-01 2010-01-01 false Standards for financial management systems... Requirements § 1260.121 Standards for financial management systems. (a) Recipients shall relate financial data...) Recipients' financial management systems shall provide for the following. (1) Accurate, current and complete...

  19. 15 CFR 14.21 - Standards for financial management systems.

    Science.gov (United States)

    2010-01-01

    ... 15 Commerce and Foreign Trade 1 2010-01-01 2010-01-01 false Standards for financial management...-PROFIT, AND COMMERCIAL ORGANIZATIONS Post-Award Requirements Financial and Program Management § 14.21 Standards for financial management systems. (a) The Grants Officer shall require recipients to relate...

  20. Propulsion Health Management System Development for Affordable and Reliable Operation of Space Exploration Systems

    Science.gov (United States)

    Melcher, Kevin J.; Maul, William A.; Garg, Sanjay

    2007-01-01

    The constraints of future Exploration Missions will require unique integrated system health management capabilities throughout the mission. An ambitious launch schedule, human-rating requirements, long quiescent periods, limited human access for repair or replacement, and long communication delays, all require an integrated approach to health management that can span distinct, yet interdependent vehicle subsystems, anticipate failure states, provide autonomous remediation and support the Exploration Mission from beginning to end. Propulsion is a critical part of any space exploration mission, and monitoring the health of the propulsion system is an integral part of assuring mission safety and success. Health management is a somewhat ubiquitous technology that encompasses a large spectrum of physical components and logical processes. For this reason, it is essential to develop a systematic plan for propulsion health management system development. This paper provides a high-level perspective of propulsion health management systems, and describes a logical approach for the future planning and early development that are crucial to planned space exploration programs. It also presents an overall approach, or roadmap, for propulsion health management system development and a discussion of the associated roadblocks and challenges.

  1. Development of a quality management system for Brazilian nuclear installations

    International Nuclear Information System (INIS)

    Kibrit, Eduardo; Zouain, Desiree Moraes

    2005-01-01

    The present work is a proposal for developing a quality management system for Brazilian nuclear installations, based on applicable standards. The standard ISO 9001:2000 [4] establishes general requirements for the implementation of a quality management system in all kinds of organizations. The standard IAEA 50-C/SG-Q [1] establishes general requirements for the implementation of a quality assurance system in nuclear installations. The standard CNEN-NN- 1.16 [5] establishes the regulating requirements for the quality assurance systems and programs of nuclear installations, for licensing and authorization for operation of these installations in Brazil. The revision of standard IAEA 50-C/SG-Q [1], to be replaced by IAEA DS 338 [2] and IAEA DPP 349 [3], introduces the concept of 'Integrated Management System' for the nuclear area, in preference to the concept of 'Quality Assurance'. This approach is incorporated with the current tendency, because it guides the system to manage, in an integrated way, the requirements of quality, safety, health, environment, security and economics of the installation. The results of the characterization of the quality management systems established in the applicable standards are presented, with the determination of the common and conflicting points among them. Referring data to quality assurance program/quality management system in some nuclear installations of IAEA Member States are also presented. (author)

  2. 40 CFR 30.21 - Standards for financial management systems.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 1 2010-07-01 2010-07-01 false Standards for financial management... Program Management § 30.21 Standards for financial management systems. (a) EPA shall require recipients to...) Recipients' financial management systems shall provide for the following. (1) Accurate, current and complete...

  3. The Management System for Nuclear Installations (Russian Edition)

    International Nuclear Information System (INIS)

    2014-01-01

    This Safety Guide is applicable throughout the lifetime of a nuclear installation, including any subsequent period of institutional control, until there is no significant residual radiation hazard. For a nuclear installation, the lifetime includes site evaluation, design, construction, commissioning, operation and decommissioning. These stages in the lifetime of a nuclear installation may overlap. This Safety Guide may be applied to nuclear installations in the following ways: (a)To support the development, implementation, assessment and improvement of the management system of those organizations responsible for research, site evaluation, design, construction, commissioning, operation and decommissioning of a nuclear installation; (b)As an aid in the assessment by the regulatory body of the adequacy of the management system of a nuclear installation; (c)To assist an organization in specifying to a supplier, via contractual documentation, any specific element that should be included within the supplier's management system for the supply of products. This Safety Guide follows the structure of the Safety Requirements publication on The Management System for Facilities and Activities, whereby: (a)Section 2 provides recommendations on implementing the management system, including recommendations relating to safety culture, grading and documentation. (b)Section 3 provides recommendations on the responsibilities of senior management for the development and implementation of an effective management system. (c)Section 4 provides recommendations on resource management, including guidance on human resources, infrastructure and the working environment. (d)Section 5 provides recommendations on how the processes of the installation can be specified and developed, including recommendations on some generic processes of the management system. (e)Section 6 provides recommendations on the measurement, assessment and improvement of the management system of a nuclear installation. (f

  4. The Management System for Nuclear Installations Safety Guide

    International Nuclear Information System (INIS)

    2009-01-01

    This Safety Guide is applicable throughout the lifetime of a nuclear installation, including any subsequent period of institutional control, until there is no significant residual radiation hazard. For a nuclear installation, the lifetime includes site evaluation, design, construction, commissioning, operation and decommissioning. These stages in the lifetime of a nuclear installation may overlap. This Safety Guide may be applied to nuclear installations in the following ways: (a)To support the development, implementation, assessment and improvement of the management system of those organizations responsible for research, site evaluation, design, construction, commissioning, operation and decommissioning of a nuclear installation; (b)As an aid in the assessment by the regulatory body of the adequacy of the management system of a nuclear installation; (c)To assist an organization in specifying to a supplier, via contractual documentation, any specific element that should be included within the supplier's management system for the supply of products. This Safety Guide follows the structure of the Safety Requirements publication on The Management System for Facilities and Activities, whereby: (a)Section 2 provides recommendations on implementing the management system, including recommendations relating to safety culture, grading and documentation. (b)Section 3 provides recommendations on the responsibilities of senior management for the development and implementation of an effective management system. (c)Section 4 provides recommendations on resource management, including guidance on human resources, infrastructure and the working environment. (d)Section 5 provides recommendations on how the processes of the installation can be specified and developed, including recommendations on some generic processes of the management system. (e)Section 6 provides recommendations on the measurement, assessment and improvement of the management system of a nuclear installation. (f

  5. Basic principles, contents, and benefits of an integrated management system

    International Nuclear Information System (INIS)

    Schwarzin, Juergen

    2010-01-01

    The basic principles and contents of an integrated management system are presented. The report focuses on the benefits and the experience accumulated in using an integrated management system. Integrated management systems are characterized by 2 features in particular: - On the one hand, by a system holistically controlling and describing all processes within a company which are necessary to achieve the company policy and company goals as defined. - On the other hand, it combines in one integrated management system various different aspects (such as quality, environmental protection, and safety) and the resulting requirements. Successful implementation of an integrated management system requires a clear commitment by company management to the integrated management system serving as a management tool. Implementation must be assigned the appropriate importance in the company. It must not be viewed as an instrument preserving 'status quo.' Instead, it must be seen as a tool for long-term improvement of the company. Application of the integrated management system minimizes the probability of occurrence of events, but is not able to reduce it to zero. (orig.)

  6. Monitoring processes and measuring the effectiveness of the management system

    International Nuclear Information System (INIS)

    Bailescu, A.; Costea, D.

    2009-01-01

    This document presents the way which the 8th principle of the quality management system 'Process approach' is applied, the principle that is identified and used by international standard ISO 9000. In order to understand the evolution of the management system requirements, as used today in different activities namely, industry, services, and nuclear activities, the authors present an evolution of the quality concept and its traceability to different standards, applicable in time. There are described the requirements of ISO 9001 standard, that represents the most widely spread model for modern organization management and the IAEA concerns related to integration of the above standard requirements into the most recent safety IAEA standard 'The Management System for facilities and activities'. The IAEA Safety Standard GS-R-3 describes a management model considering both the evolution of the quality requirements into the modern management and the recovery of the experience gained by nuclear activities. The authors pleads for applying of the 8th principle as a means and a model, easy to use to ensure the achievement of management objectives. (authors)

  7. Systems engineering management plan

    International Nuclear Information System (INIS)

    Conner, C.W.

    1985-10-01

    The purpose of this Systems Engineering Management Plan (SEMP) is to prescribe the systems engineering procedures to be implemented at the Program level and the minimum requirements for systems engineering at the Program-element level. The Program level corresponds to the Director, OCRWM, or to the organizations within OCRWM to which the Director delegates responsibility for the development of the System and for coordinating and integrating the activities at the Program-element level. The Office of Policy and Outreach (OPO) and the Office of Resource Management (ORM) support the Director at the Program level. The Program-element level corresponds to the organizations within OCRWM (i.e., the Office of Geologic Repositories (OGR) and the Office of Storage and Transportation Systems (OSTS)) with overall responsibility for developing the System elements - that is, the mined geologic disposal system (MGDS), monitored retrievable storage (MRS) (if approved by Congress), and the transportation system

  8. 14 CFR 60.5 - Quality management system.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 2 2010-01-01 2010-01-01 false Quality management system. 60.5 Section 60... requirement of this chapter unless the sponsor has established and follows a quality management system (QMS...) AIRMEN FLIGHT SIMULATION TRAINING DEVICE INITIAL AND CONTINUING QUALIFICATION AND USE § 60.5 Quality...

  9. NASA's Risk Management System

    Science.gov (United States)

    Perera, Jeevan S.

    2013-01-01

    Phased-approach for implementation of risk management is necessary. Risk management system will be simple, accessible and promote communication of information to all relevant stakeholders for optimal resource allocation and risk mitigation. Risk management should be used by all team members to manage risks - not just risk office personnel. Each group/department is assigned Risk Integrators who are facilitators for effective risk management. Risks will be managed at the lowest-level feasible, elevate only those risks that require coordination or management from above. Risk informed decision making should be introduced to all levels of management. ? Provide necessary checks and balances to insure that risks are caught/identified and dealt with in a timely manner. Many supporting tools, processes & training must be deployed for effective risk management implementation. Process improvement must be included in the risk processes.

  10. A resource management architecture for metacomputing systems.

    Energy Technology Data Exchange (ETDEWEB)

    Czajkowski, K.; Foster, I.; Karonis, N.; Kesselman, C.; Martin, S.; Smith, W.; Tuecke, S.

    1999-08-24

    Metacomputing systems are intended to support remote and/or concurrent use of geographically distributed computational resources. Resource management in such systems is complicated by five concerns that do not typically arise in other situations: site autonomy and heterogeneous substrates at the resources, and application requirements for policy extensibility, co-allocation, and online control. We describe a resource management architecture that addresses these concerns. This architecture distributes the resource management problem among distinct local manager, resource broker, and resource co-allocator components and defines an extensible resource specification language to exchange information about requirements. We describe how these techniques have been implemented in the context of the Globus metacomputing toolkit and used to implement a variety of different resource management strategies. We report on our experiences applying our techniques in a large testbed, GUSTO, incorporating 15 sites, 330 computers, and 3600 processors.

  11. SGDES: Management system dismantling of ENRESA

    International Nuclear Information System (INIS)

    Julian, A. de; Fernandez, M.; Vidaechea, S.

    2013-01-01

    ENRESA, the Spanish public company responsible for managing radioactive waste and nuclear facilities decommissioning, has developed a management information system (SGDES) for the decommissioning of nuclear power plants. Dismantling activities require a rigorous operations control within highly specialized, process systematization and safety framework, both under human and technological point of view. SGDES system is capable of responding to the mentioned operational needs, efficiently and safely.

  12. Design and Implementation of an ASON Management System

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    According to current management requirements, an ASON management information model and system architecture using CORBA and Java are proposed. A test platform is implemented to demonstrate multi-domain, connection and control plane management.

  13. Hanford Environmental Information System Configuration Management Plan

    International Nuclear Information System (INIS)

    1996-06-01

    The Hanford Environmental Information System (HEIS) Configuration Management Plan establishes the software and data configuration control requirements for the HEIS and project-related databases maintained within the Environmental Restoration Contractor's data management department

  14. AFSC Laboratory Management Information Requirements Project

    National Research Council Canada - National Science Library

    1982-01-01

    This document was developed under the auspices of the Laboratory IRM (LIRM) Management Working Group in response to AFSC Program Directive 0008-81-1, Management Information Requirement Project (23 February 1981...

  15. Planning and Resource Management in an Intelligent Automated Power Management System

    Science.gov (United States)

    Morris, Robert A.

    1991-01-01

    Power system management is a process of guiding a power system towards the objective of continuous supply of electrical power to a set of loads. Spacecraft power system management requires planning and scheduling, since electrical power is a scarce resource in space. The automation of power system management for future spacecraft has been recognized as an important R&D goal. Several automation technologies have emerged including the use of expert systems for automating human problem solving capabilities such as rule based expert system for fault diagnosis and load scheduling. It is questionable whether current generation expert system technology is applicable for power system management in space. The objective of the ADEPTS (ADvanced Electrical Power management Techniques for Space systems) is to study new techniques for power management automation. These techniques involve integrating current expert system technology with that of parallel and distributed computing, as well as a distributed, object-oriented approach to software design. The focus of the current study is the integration of new procedures for automatically planning and scheduling loads with procedures for performing fault diagnosis and control. The objective is the concurrent execution of both sets of tasks on separate transputer processors, thus adding parallelism to the overall management process.

  16. Operational Management System for Regulated Water Systems

    Science.gov (United States)

    van Loenen, A.; van Dijk, M.; van Verseveld, W.; Berger, H.

    2012-04-01

    Most of the Dutch large rivers, canals and lakes are controlled by the Dutch water authorities. The main reasons concern safety, navigation and fresh water supply. Historically the separate water bodies have been controlled locally. For optimizating management of these water systems an integrated approach was required. Presented is a platform which integrates data from all control objects for monitoring and control purposes. The Operational Management System for Regulated Water Systems (IWP) is an implementation of Delft-FEWS which supports operational control of water systems and actively gives advice. One of the main characteristics of IWP is that is real-time collects, transforms and presents different types of data, which all add to the operational water management. Next to that, hydrodynamic models and intelligent decision support tools are added to support the water managers during their daily control activities. An important advantage of IWP is that it uses the Delft-FEWS framework, therefore processes like central data collection, transformations, data processing and presentation are simply configured. At all control locations the same information is readily available. The operational water management itself gains from this information, but it can also contribute to cost efficiency (no unnecessary pumping), better use of available storage and advise during (water polution) calamities.

  17. ISO 9001 quality management systems

    CERN Document Server

    Natarajan, Dhanasekharan

    2017-01-01

    This book explains the requirements of ISO 9001 for establishing quality management system (QMS) for an organization. The requirements are illustrated with examples from industries for understanding the requirements and preparing the documents of QMS with high clarity. Methods of integrating ISO 9001 requirements with enterprise resource planning (ERP) software are presented. The software integrated approach enables process owners to focus on their core tasks of achieving the planned outputs of processes and the software generates quality records automatically.

  18. Monitored Retrievable Storage System Requirements Document

    International Nuclear Information System (INIS)

    1994-03-01

    This Monitored Retrievable Storage System Requirements Document (MRS-SRD) describes the functions to be performed and technical requirements for a Monitored Retrievable Storage (MRS) facility subelement and the On-Site Transfer and Storage (OSTS) subelement. The MRS facility subelement provides for temporary storage, at a Civilian Radioactive Waste Management System (CRWMS) operated site, of spent nuclear fuel (SNF) contained in an NRC-approved Multi-Purpose Canister (MPC) storage mode, or other NRC-approved storage modes. The OSTS subelement provides for transfer and storage, at Purchaser sites, of spent nuclear fuel (SNF) contained in MPCs. Both the MRS facility subelement and the OSTS subelement are in support of the CRWMS. The purpose of the MRS-SRD is to define the top-level requirements for the development of the MRS facility and the OSTS. These requirements include design, operation, and decommissioning requirements to the extent they impact on the physical development of the MRS facility and the OSTS. The document also presents an overall description of the MRS facility and the OSTS, their functions (derived by extending the functional analysis documented by the Physical System Requirements (PSR) Store Waste Document), their segments, and the requirements allocated to the segments. In addition, the top-level interface requirements of the MRS facility and the OSTS are included. As such, the MRS-SRD provides the technical baseline for the MRS Safety Analysis Report (SAR) design and the OSTS Safety Analysis Report design

  19. Program prioritization system user requirements document for Gas Cooled Reactor Associates

    International Nuclear Information System (INIS)

    1981-01-01

    Efficient management of the national HTGR program requires the establishment of an information system that will facilitate a more rational allocation of resources and task prioritization consistent with program policies. The system described in this document provides a data analysis mechanism for processing top level summary status and planning information in a rapid, timely and selective manner. Data produced by the system can be used by management to provide a rational basis for prioritizing tasks, evaluating program changes and program planning regarding costs, schedules and overall program development logic. The purpose of this document is to delineate the program prioritization system (PPS) requirements for use as a guide to acquiring and implementing the system

  20. Searching your site's management information systems

    International Nuclear Information System (INIS)

    Marquez, W.; Rollin, C.

    1994-01-01

    The Department of Energy's guidelines for the Baseline Environmental Management Report (BEMR) encourage the use of existing data when compiling information. Specific systems mentioned include the Progress Tracking System, the Mixed-Waste Inventory Report, the Waste Management Information System, DOE 4700.1-related systems, Programmatic Environmental Impact Statement (PEIS) data, and existing Work Breakdown Structures. In addition to these DOE-Headquarters tracking and reporting systems, there are a number of site systems that will be relied upon to produce the BEMR, including: (1) site management control and cost tracking systems; (2) commitment/issues tracking systems; (3) program-specific internal tracking systems; (4) Site material/equipment inventory systems. New requirements have often prompted the creation of new, customized tracking systems. This is a very time and money consuming process. As the BEMR Management Plan emphasizes, an effort should be made to use the information in existing tracking systems. Because of the wealth of information currently available from in-place systems, development of a new tracking system should be a last resort

  1. System requirements of diesel reforming for the SOFC

    International Nuclear Information System (INIS)

    Harasti, P.T.; Amphlett, J.C.; Mann, R.F.; Peppley, B.A.; Thurgood, C.P.

    2003-01-01

    Diesel fuels are currently a very attractive source of hydrogen due to the global infrastructure for production and distribution that exists today. In order to extract the hydrogen, the hydrocarbon molecules must be chemically reformed into manageable, hydrogen-rich product gases that can be directly used in electrochemical energy conversion devices such as fuel cells. High temperature fuel cells are particularly attractive for diesel-fuelled systems due to the possibility of thermal integration with the high temperature reformer. The methods available for diesel fuel processing are: Steam Reforming, Partial Oxidation, and Auto-Thermal Reforming. The latter two methods introduce air into the process in order to cause exothermic oxidation reactions, which complement the endothermic heating requirement of the reforming reactions. This helps to achieve the high temperature required, but also introduces nitrogen, which can yield unwanted NO x emissions. The components of the reformer should include: an injection system to mix and vaporize the diesel fuel and steam while avoiding the formation of carbon deposits inside the reactor; a temperature and heat management system; and a method of sulphur removal. This presentation will discuss the operating conditions and design requirements of a diesel fuel processor for a solid oxide fuel cell (SOFC) system. (author)

  2. Influence of integrated quality management system on processing management in management and production staff’s opinion in Strauss Cafe Poland Ltd Company

    Directory of Open Access Journals (Sweden)

    Justyna Górna

    2009-01-01

    Full Text Available In the article are presented the results of the research determining the influence of the integrated quality management system on management process in the assessment of management and regular employees of Strauss Cafe Poland Ltd. According to the ISO 9001 requirements in order to effectively manage the organisation, should identify operations. The activities requiring resources and managed in order to enable the transformation of inflow into outflow should be evaluated as a process. The analysis of the gathered data shows the essential influence of the systems (QMS and HACCP on the management process in the company. The management staff emphasized the significant influence of the quality management system whereas production staff of HACCP system. Both of these groups of employees in the survey shows the beurocracy as a negative result of these systems, while positive results are improvement of image of the company and increase of both products and services quality.

  3. Quality management system in Nuclear Medicine

    International Nuclear Information System (INIS)

    Peña Tornet, Adela; Torres Aroche, Leonel A.

    2016-01-01

    Establishing Management Systems (QMS) in services Nuclear Medicine (NM) is a prerequisite for optimizing the efficacy and safety of diagnostic and therapeutic procedures of this specialty and increase steadily the quality of the services provide patients. Several international organizations such as the IAEA and scientific specialty societies (SNM, EBNM, etc) and national bodies stimulate and enhance their introduction; in our country is also a requirement of the National Nuclear Safety Centre (CNSN). Are presented in this paper, the main experiences of our country related to the implementation of QMS and developed tools for achieving this goal, such as: The QNUMED automated web environment for managing indicators and documentation format digital; b) The development of prototypes and models for the implementation of the documentation system; d) requirements applying QUANUM in conducting audits of quality management in local services including QUANUM T ool tool; and f) human resource development issues in Quality Management. (author)

  4. 36 CFR 1210.21 - Standards for financial management systems.

    Science.gov (United States)

    2010-07-01

    ... Program Management § 1210.21 Standards for financial management systems. (a) The NHPRC shall require.... (b) Recipients' financial management systems shall provide for the following. (1) Accurate, current... 36 Parks, Forests, and Public Property 3 2010-07-01 2010-07-01 false Standards for financial...

  5. 45 CFR 2541.200 - Standards for financial management systems.

    Science.gov (United States)

    2010-10-01

    ... 45 Public Welfare 4 2010-10-01 2010-10-01 false Standards for financial management systems. 2541... STATE AND LOCAL GOVERNMENTS Post-Award Requirements § 2541.200 Standards for financial management... violation of the restrictions and prohibitions of applicable statutes. (b) The financial management systems...

  6. Managing Requirement Volatility in an Ontology-Driven Clinical LIMS Using Category Theory

    Directory of Open Access Journals (Sweden)

    Arash Shaban-Nejad

    2009-01-01

    Full Text Available Requirement volatility is an issue in software engineering in general, and in Web-based clinical applications in particular, which often originates from an incomplete knowledge of the domain of interest. With advances in the health science, many features and functionalities need to be added to, or removed from, existing software applications in the biomedical domain. At the same time, the increasing complexity of biomedical systems makes them more difficult to understand, and consequently it is more difficult to define their requirements, which contributes considerably to their volatility. In this paper, we present a novel agent-based approach for analyzing and managing volatile and dynamic requirements in an ontology-driven laboratory information management system (LIMS designed for Web-based case reporting in medical mycology. The proposed framework is empowered with ontologies and formalized using category theory to provide a deep and common understanding of the functional and nonfunctional requirement hierarchies and their interrelations, and to trace the effects of a change on the conceptual framework.

  7. From document to database: modernizing requirements management

    International Nuclear Information System (INIS)

    Giajnorio, J.; Hamilton, S.

    2007-01-01

    The creation, communication, and management of design requirements are central to the successful completion of any large engineering project, both technically and commercially. Design requirements in the Canadian nuclear industry are typically numbered lists in multiple documents created using word processing software. As an alternative, GE Nuclear Products implemented a central requirements management database for a major project at Bruce Power. The database configured the off-the-shelf software product, Telelogic Doors, to GE's requirements structure. This paper describes the advantages realized by this scheme. Examples include traceability from customer requirements through to test procedures, concurrent engineering, and automated change history. (author)

  8. Continuous improvement of the BNFL transport integrated management system

    International Nuclear Information System (INIS)

    Hale, J.A.

    1998-01-01

    The integrated Management System of BNFL Transport and Pacific Nuclear Transport Limited (PNTL) is subject to continuous improvement by the application of established improvement techniques adopted by BNFL. The technique currently being used is the application of a Total Quality Management (TQM) philosophy, involving the identification of key processes, benchmarking against existing measures, initiating various improvement projects and applying process changes within the Company. The measurement technique being used is based upon the European Foundation for Quality Management Model (EFQM). A major initiative was started in 1996 to include the requirements of the Environmental Management Systems standard ISO 14001 within the existing integrated management system. This resulted in additional activities added to the system, modification to some existing activities and additional training for personnel. The system was audited by a third party certification organisation, Lloyds Register Quality Assurance (LRQA), during 1997. This paper describes the arrangements to review and update the integrated management system of BNFL Transport and PNTL to include the requirements of the environmental standard ISO 14001 and it also discusses the continuous improvement process adopted by BNFL Transport. (authors)

  9. 7 CFR 760.104 - Risk management purchase requirements.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 7 2010-01-01 2010-01-01 false Risk management purchase requirements. 760.104 Section... Agricultural Disaster Assistance Programs § 760.104 Risk management purchase requirements. (a) To be eligible... available from the USDA Risk Management Agency (RMA)) obtained catastrophic coverage or better under a...

  10. TFTR data management system

    International Nuclear Information System (INIS)

    Randerson, L.; Chu, J.; Ludescher, C.; Malsbury, J.; Stark, W.

    1986-01-01

    Developments in the tokamak fusion test reactor (TFTR) data management system supporting data management system supporting data acquisition and off-line physics data reduction are described. Data from monitor points, timing channels, and transient recorder channels and other devices are acquired and stored for use by on-line tasks. Files are transferred off-line automatically. A configuration utility determines data acquired and files transferred. An event system driven by file arrival activates off-line reduction processes. A post-run process transfers files not shipped during runs. Files are archived to tape and are retrievable by digraph and shot number. Automatic skimming based on most recent access, file type, shot numbers, and user-set protection maintains the files required for post-run data reduction

  11. ORGANIZATION AND IMPLEMENTATION OF INTEGRATED MANAGEMENT SYSTEM PROCESSES - CRUISE PORT DUBROVNIK

    Directory of Open Access Journals (Sweden)

    Ivona Vrdoljak Raguz

    2012-01-01

    Full Text Available World cruise market is very dynamic and it is characterised by constant changes in offer and demand. Dubrovnik, as one of the leading port in the Mediterranean is faced with the problem of large concentrations of ships and passengers in a short period of time. Paper provides answers to the questions: how to manage cruise tourism in Dubrovnik? What are the guidelines for the further development of cruising in Dubrovnik? Modern ports management system must be organized and managed in a manner that will ensure the recognition requirements of stakeholders and their fulfilment. All this requires a more complex integrated management system, in which the requirements of quality management will be the basis, and requirements of environmental management needed an upgrade.

  12. Managing Health Information System | Campbell | Nigerian ...

    African Journals Online (AJOL)

    The effective planning, management monitoring and evaluation of health services, health resources and indeed the health system requires a wealth of health information, with its simultaneous effective and efficient management. It is an instrument used to help policy-making, decision making and day to day actions in the ...

  13. Introduction to the Chemical Management System

    International Nuclear Information System (INIS)

    Sawyer, J.G.

    1993-01-01

    The CMS, a Laboratory-wide electronic chemical inventory tracking system, will assist PNL by establishing comprehensive, integrated, Laboratory-wide databases supported by consistent and standardized procedures for chemical inventory management. It will provide PNL with the information needed to meet its current chemical management responsibilities and regulatory requirements. Its objectives are to provide an inventory of all chemicals being held at PNL facilities, to provide a specific location for all chemical containers, to ensure that health and safety regulatory codes are being upheld, and to provide PNL staff and managers with hazardous-chemical information for better inventory management. It is composed of 5 modules: chemical purchasing; chemical inventory; chemical names, properties, and hazardous groups; reporting; and system manager

  14. 25 CFR 900.46 - What requirements are imposed upon the Secretary for financial management by these standards?

    Science.gov (United States)

    2010-04-01

    ... financial management by these standards? 900.46 Section 900.46 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT... Management Systems Standards for Financial Management Systems § 900.46 What requirements are imposed upon the Secretary for financial management by these standards? The Secretary shall establish procedures, consistent...

  15. A Systems Approach to Information Technology (IT) Infrastructure Design for Utility Management Automation Systems

    OpenAIRE

    A. Fereidunian; H. Lesani; C. Lucas; M. Lehtonen; M. M. Nordman

    2006-01-01

    Almost all of electric utility companies are planning to improve their management automation system, in order to meet the changing requirements of new liberalized energy market and to benefit from the innovations in information and communication technology (ICT or IT). Architectural design of the utility management automation (UMA) systems for their IT-enabling requires proper selection of IT choices for UMA system, which leads to multi-criteria decision-makings (MCDM). In resp...

  16. Some design constraints required for the use of generic software in embedded systems: Packages which manage abstract dynamic structures without the need for garbage collection

    Science.gov (United States)

    Johnson, Charles S.

    1986-01-01

    The embedded systems running real-time applications, for which Ada was designed, require their own mechanisms for the management of dynamically allocated storage. There is a need for packages which manage their own internalo structures to control their deallocation as well, due to the performance implications of garbage collection by the KAPSE. This places a requirement upon the design of generic packages which manage generically structured private types built-up from application-defined input types. These kinds of generic packages should figure greatly in the development of lower-level software such as operating systems, schedulers, controllers, and device driver; and will manage structures such as queues, stacks, link-lists, files, and binary multary (hierarchical) trees. Controlled to prevent inadvertent de-designation of dynamic elements, which is implicit in the assignment operation A study was made of the use of limited private type, in solving the problems of controlling the accumulation of anonymous, detached objects in running systems. The use of deallocator prodecures for run-down of application-defined input types during deallocation operations during satellites.

  17. 12 CFR 652.20 - Liquidity reserve management and requirements.

    Science.gov (United States)

    2010-01-01

    ... 12 Banks and Banking 6 2010-01-01 2010-01-01 false Liquidity reserve management and requirements... AGRICULTURAL MORTGAGE CORPORATION FUNDING AND FISCAL AFFAIRS Investment Management § 652.20 Liquidity reserve management and requirements. (a) Minimum liquidity reserve requirement. Within 24 months of this rule...

  18. 22 CFR 226.21 - Standards for financial management systems.

    Science.gov (United States)

    2010-04-01

    ... 22 Foreign Relations 1 2010-04-01 2010-04-01 false Standards for financial management systems. 226... AWARDS TO U.S. NON-GOVERNMENTAL ORGANIZATIONS Post-award Requirements Financial and Program Management § 226.21 Standards for financial management systems. (a) Recipients shall relate financial data to...

  19. NASA's Risk Management System

    Science.gov (United States)

    Perera, Jeevan S.

    2011-01-01

    Leadership is key to success. Phased-approach for implementation of risk management is necessary. Risk management system will be simple, accessible and promote communication of information to all relevant stakeholders for optimal resource allocation and risk mitigation. Risk management should be used by all team members to manage risks -- risk office personnel. Each group is assigned Risk Integrators who are facilitators for effective risk management. Risks will be managed at the lowest-level feasible, elevate only those risks that require coordination or management from above. Risk reporting and communication is an essential element of risk management and will combine both qualitative and quantitative elements. Risk informed decision making should be introduced to all levels of management. Provide necessary checks and balances to insure that risks are caught/identified and dealt with in a timely manner. Many supporting tools, processes & training must be deployed for effective risk management implementation. Process improvement must be included in the risk processes.

  20. Verification and Examination Management of Complex Systems

    Directory of Open Access Journals (Sweden)

    Stian Ruud

    2014-10-01

    Full Text Available As ship systems become more complex, with an increasing number of safety-critical functions, many interconnected subsystems, tight integration to other systems, and a large amount of potential failure modes, several industry parties have identified the need for improved methods for managing the verification and examination efforts of such complex systems. Such needs are even more prominent now that the marine and offshore industries are targeting more activities and operations in the Arctic environment. In this paper, a set of requirements and a method for verification and examination management are proposed for allocating examination efforts to selected subsystems. The method is based on a definition of a verification risk function for a given system topology and given requirements. The marginal verification risks for the subsystems may then be evaluated, so that examination efforts for the subsystem can be allocated. Two cases of requirements and systems are used to demonstrate the proposed method. The method establishes a systematic relationship between the verification loss, the logic system topology, verification method performance, examination stop criterion, the required examination effort, and a proposed sequence of examinations to reach the examination stop criterion.

  1. Sandia National Laboratories, California sewer system management plan.

    Energy Technology Data Exchange (ETDEWEB)

    Holland, Robert C.

    2010-02-01

    A Sewer System Management Plan (SSMP) is required by the State Water Resources Control Board (SWRCB) Order No. 2006-0003-DWQ Statewide General Waste Discharge Requirements (WDR) for Sanitary Sewer Systems (General Permit). DOE, National Nuclear Security Administration (NNSA), Sandia Site Office has filed a Notice of Intent to be covered under this General Permit. The General Permit requires a proactive approach to reduce the number and frequency of sanitary sewer overflows (SSOs) within the State. SSMPs must include provisions to provide proper and efficient management, operation, and maintenance of sanitary sewer systems and must contain a spill response plan. Elements of this Plan are under development in accordance with the SWRCB's schedule.

  2. 45 CFR 2552.93 - What are grants management requirements?

    Science.gov (United States)

    2010-10-01

    ... 45 Public Welfare 4 2010-10-01 2010-10-01 false What are grants management requirements? 2552.93... AND COMMUNITY SERVICE FOSTER GRANDPARENT PROGRAM Application and Fiscal Requirements § 2552.93 What are grants management requirements? What rules govern a sponsor's management of grants? (a) A sponsor...

  3. Place of Budget Management in the General System of Trade Enterprise Management

    Directory of Open Access Journals (Sweden)

    Kravchenko Olena S.

    2014-01-01

    Full Text Available The article grounds urgency of identification of the place of budget management in the general system of trade enterprise management. It analyses points of view of economists with respect to definitions of the “budgeting” and “budget management” terms. It considers main functions of budget management. It identifies the place of budget management in the general system of enterprise management. Pursuant to definition of the budget management as a managerial technology, which should meet a number of requirements, which would be determined by specific features of enterprise practical activity, the article identifies its main principles. It groups principles of budget management in accordance with the functions it performs.

  4. Advanced information processing system: Input/output network management software

    Science.gov (United States)

    Nagle, Gail; Alger, Linda; Kemp, Alexander

    1988-01-01

    The purpose of this document is to provide the software requirements and specifications for the Input/Output Network Management Services for the Advanced Information Processing System. This introduction and overview section is provided to briefly outline the overall architecture and software requirements of the AIPS system before discussing the details of the design requirements and specifications of the AIPS I/O Network Management software. A brief overview of the AIPS architecture followed by a more detailed description of the network architecture.

  5. Nuclear knowledge management system in the regulatory activity

    International Nuclear Information System (INIS)

    Nosovskij, A.V.; Klevtsov, A.L.; Kravchenko, N.A.

    2010-01-01

    Important issues on collection, storage and spread of knowledge among organisation dealing with the use of nuclear technologies, role of close cooperation between enterprises and organizations in developing knowledge management, general requirements for creating a nuclear knowledge management system are considered. Recommendations and the main mechanisms are identified to create the knowledge management system in technical support organizations of the regulatory authority.

  6. 5 CFR 9901.405 - Performance management system requirements.

    Science.gov (United States)

    2010-01-01

    ...) Holds supervisors and managers accountable for effectively managing the performance of employees under... and communicating performance expectations, monitoring performance and providing feedback, and... (b) of this section, supervisors and managers will— (1) Clearly communicate performance expectations...

  7. Suitability of customer relationship management systems for the management of study participants in biomedical research.

    Science.gov (United States)

    Schwanke, J; Rienhoff, O; Schulze, T G; Nussbeck, S Y

    2013-01-01

    Longitudinal biomedical research projects study patients or participants over a course of time. No IT solution is known that can manage study participants, enhance quality of data, support re-contacting of participants, plan study visits, and keep track of informed consent procedures and recruitments that may be subject to change over time. In business settings management of personal is one of the major aspects of customer relationship management systems (CRMS). To evaluate whether CRMS are suitable IT solutions for study participant management in biomedical research. Three boards of experts in the field of biomedical research were consulted to get an insight into recent IT developments regarding study participant management systems (SPMS). Subsequently, a requirements analysis was performed with stakeholders of a major biomedical research project. The successive suitability evaluation was based on the comparison of the identified requirements with the features of six CRMS. Independently of each other, the interviewed expert boards confirmed that there is no generic IT solution for the management of participants. Sixty-four requirements were identified and prioritized in a requirements analysis. The best CRMS was able to fulfill forty-two of these requirements. The non-fulfilled requirements demand an adaption of the CRMS, consuming time and resources, reducing the update compatibility, the system's suitability, and the security of the CRMS. A specific solution for the SPMS is favored instead of a generic and commercially-oriented CRMS. Therefore, the development of a small and specific SPMS solution was commenced and is currently on the way to completion.

  8. Computer Based Asset Management System For Commercial Banks

    Directory of Open Access Journals (Sweden)

    Amanze

    2015-08-01

    Full Text Available ABSTRACT The Computer-based Asset Management System is a web-based system. It allows commercial banks to keep track of their assets. The most advantages of this system are the effective management of asset by keeping records of the asset and retrieval of information. In this research I gather the information to define the requirements of the new application and look at factors how commercial banks managed their asset.

  9. Model-based version management system framework

    International Nuclear Information System (INIS)

    Mehmood, W.

    2016-01-01

    In this paper we present a model-based version management system. Version Management System (VMS) a branch of software configuration management (SCM) aims to provide a controlling mechanism for evolution of software artifacts created during software development process. Controlling the evolution requires many activities to perform, such as, construction and creation of versions, identification of differences between versions, conflict detection and merging. Traditional VMS systems are file-based and consider software systems as a set of text files. File based VMS systems are not adequate for performing software configuration management activities such as, version control on software artifacts produced in earlier phases of the software life cycle. New challenges of model differencing, merge, and evolution control arise while using models as central artifact. The goal of this work is to present a generic framework model-based VMS which can be used to overcome the problem of tradition file-based VMS systems and provide model versioning services. (author)

  10. Real-time multi-function entry / exit management system

    International Nuclear Information System (INIS)

    Hiyama, Kazuhisa; Kurosawa, Akihiko; Asano, Norikazu; Onoue, Ryuji; Eguchi, Shohei; Hanawa, Nobuhiro; Hori, Naohiko; Ueda, Hisao; Kanda, Hiroaki

    2012-01-01

    In order to prevent radiation accident and its expansion, more integrated management system is required to safety management for radiation workers in the nuclear facilities. Therefore, JAEA (Japan Atomic Energy Agency) and HAM (Hitachi Aloka Medical, Ltd) have developed innovative real-time multi-function entry/exit management system which managed worker's exposed dose and position under the joint developed patent. This system is sharing worker's data among workers and server manager who is inside of or outside of building, such as worker's positing, health condition and exposed dose. It consists of mobile equipments, receivers, LAN, and servers system. This report summarizes the system to be installed in the JMTR. (author)

  11. 45 CFR 2551.93 - What are grants management requirements?

    Science.gov (United States)

    2010-10-01

    ... 45 Public Welfare 4 2010-10-01 2010-10-01 false What are grants management requirements? 2551.93... AND COMMUNITY SERVICE SENIOR COMPANION PROGRAM Application and Fiscal Requirements § 2551.93 What are grants management requirements? What rules govern a sponsor's management of grants? (a) A sponsor shall...

  12. ITER Remote Maintenance System (IRMS) lifecycle management

    Energy Technology Data Exchange (ETDEWEB)

    Tesini, Alessandro, E-mail: alessandro.tesini@iter.org [ITER Organization, CS 90 046, 13067 St. Paul Lez Durance Cedex (France); Otto' , Bede [Oxford Technologies Ltd, 7, Nuffield Way, Abingdon, Oxon OX14 1RJ (United Kingdom); Blight, John [FAAST 31c Allee de la Granette, 13600 Ceyreste (France); Choi, Chang-Hwan; Friconneau, Jean-Pierre; Gotewal, Krishan Kumar; Hamilton, David [ITER Organization, CS 90 046, 13067 St. Paul Lez Durance Cedex (France); Heckendorn, Frank [FD Technologies, PO Box 6686, Aiken, SC (United States); Martins, Jean-Pierre [ITER Organization, CS 90 046, 13067 St. Paul Lez Durance Cedex (France); Marty, Thomas [Westinghouse, 122, avenue de Hambourg, 13008 Marseille (France); Nakahira, Masataka; Palmer, Jim; Subramanian, Rajendran [ITER Organization, CS 90 046, 13067 St. Paul Lez Durance Cedex (France)

    2011-10-15

    The availability of the ITER machine to perform its scientific program is strongly dependent on the performance of the different Remote Handling (RH) systems constituting the ITER Remote Maintenance System (IRMS). The lifecycle of the IRMS will largely exceed 40 years from initial concept design and proof testing through to machine decommissioning. Such a long lifecycle requires that a rigorous approach is put in place to guarantee the technical capabilities of the highly innovative IRMS, its efficiency and its availability. For this purpose, an IRMS System Engineering and IRMS lifecycle management approach has been adopted by ITER. The approach aims at ensuring the IRMS full operability and availability at an acceptable cost of ownership over the full ITER machine assembly and operations period. The IRMS lifecycle management method described in this paper covers such subjects as specific requirements for IRMS design reviews, monitoring during manufacture, factory and site acceptance testing, integrated commissioning, decontamination, maintenance and re-qualification strategies, requirements for Integrated Logistical Support during operations. The updating and implementation of the IRMS lifecycle strategy and this procedure will be managed and monitored by the Remote Handling Integrated Product Team (RH-IPT). Although developed for the IRMS, the basic principles and procedures of lifecycle management could be applied to other ITER plant systems whose reliability and availability will be essential for the continued operation of the ITER machine.

  13. ITER Remote Maintenance System (IRMS) lifecycle management

    International Nuclear Information System (INIS)

    Tesini, Alessandro; Otto', Bede; Blight, John; Choi, Chang-Hwan; Friconneau, Jean-Pierre; Gotewal, Krishan Kumar; Hamilton, David; Heckendorn, Frank; Martins, Jean-Pierre; Marty, Thomas; Nakahira, Masataka; Palmer, Jim; Subramanian, Rajendran

    2011-01-01

    The availability of the ITER machine to perform its scientific program is strongly dependent on the performance of the different Remote Handling (RH) systems constituting the ITER Remote Maintenance System (IRMS). The lifecycle of the IRMS will largely exceed 40 years from initial concept design and proof testing through to machine decommissioning. Such a long lifecycle requires that a rigorous approach is put in place to guarantee the technical capabilities of the highly innovative IRMS, its efficiency and its availability. For this purpose, an IRMS System Engineering and IRMS lifecycle management approach has been adopted by ITER. The approach aims at ensuring the IRMS full operability and availability at an acceptable cost of ownership over the full ITER machine assembly and operations period. The IRMS lifecycle management method described in this paper covers such subjects as specific requirements for IRMS design reviews, monitoring during manufacture, factory and site acceptance testing, integrated commissioning, decontamination, maintenance and re-qualification strategies, requirements for Integrated Logistical Support during operations. The updating and implementation of the IRMS lifecycle strategy and this procedure will be managed and monitored by the Remote Handling Integrated Product Team (RH-IPT). Although developed for the IRMS, the basic principles and procedures of lifecycle management could be applied to other ITER plant systems whose reliability and availability will be essential for the continued operation of the ITER machine.

  14. Data management system advanced development

    Science.gov (United States)

    Douglas, Katherine; Humphries, Terry

    1990-01-01

    The Data Management System (DMS) Advanced Development task provides for the development of concepts, new tools, DMS services, and for the testing of the Space Station DMS hardware and software. It also provides for the development of techniques capable of determining the effects of system changes/enhancements, additions of new technology, and/or hardware and software growth on system performance. This paper will address the built-in characteristics which will support network monitoring requirements in the design of the evolving DMS network implementation, functional and performance requirements for a real-time, multiprogramming, multiprocessor operating system, and the possible use of advanced development techniques such as expert systems and artificial intelligence tools in the DMS design.

  15. Electric Bike Sharing--System Requirements and Operational Concepts

    Energy Technology Data Exchange (ETDEWEB)

    Cherry, Christopher; Worley, Stacy; Jordan, David

    2010-08-01

    Bike sharing is an exciting new model of public-private transportation provision that has quickly emerged in the past five years. Technological advances have overcome hurdles of early systems and cities throughout the globe are adopting this model of transportation service. Electric bikes have simultaneously gained popularity in many regions of the world and some have suggested that shared electric bikes could provide an even higher level of service compared to existing systems. There are several challenges that are unique to shared electric bikes: electric-assisted range, recharging protocol, and bike and battery checkout procedures. This paper outlines system requirements to successfully develop and deploy an electric bike sharing system, focusing on system architecture, operational concepts, and battery management. Although there is little empirical evidence, electric bike sharing could be feasible, depending on demand and battery management, and can potentially improve the utility of existing bike sharing systems. Under most documented bike sharing use scenarios, electric bike battery capacity is insufficient for a full day of operation, depending on recharging protocol. Off-board battery management is a promising solution to address this problem. Off-board battery management can also support solar recharging. Future pilot tests will be important and allow empirical evaluation of electric bikesharing system performance. (auth)

  16. Traffic Management Systems Performance Measurement: Final Report

    OpenAIRE

    Banks, James H.; Kelly, Gregory

    1997-01-01

    This report documents a study of performance measurement for Transportation Management Centers (TMCs). Performance measurement requirements were analyzed, data collection and management techniques were investigated, and case study traffic data system improvement plans were prepared for two Caltrans districts.

  17. An integrated management system to improve the performance of nuclear installations

    Energy Technology Data Exchange (ETDEWEB)

    Beckmerhagen, I.A.; Berg, H.P. [Bundesamt fur Strahlenschutz, Salzgitter (Germany)

    2001-07-01

    A integrated management system encompasses all management and assessment activities. The integration of DM, QM, safety management and occupational health into an integrated management system is shown for structures, systems and components of waste repositories because they have to fulfill reliability requirements derived from comprehensive safety assessments, and these structures, systems and components (such as transport vehicles and stacker trucks for the underground emplacement activities) are especially manufactured for this purpose and are not series products. QM institutes a QM system which ensures that there are clearly defined and auditable procedures. The requirements are written down in specifications or operation manuals and/or maintenance manuals. The QM system provides assurance that the installed structures, systems or components meet and continue to meet the prescribed goals with the help of DM and that safety management and occupational health specified requirements are fulfilled. DM focuses on the use of engineering analyses, assessments and methods to improve the design, specification, construction, dependability and operation of important systems, structures and components. (author)

  18. An integrated management system to improve the performance of nuclear installations

    International Nuclear Information System (INIS)

    Beckmerhagen, I.A.; Berg, H.P.

    2001-01-01

    A integrated management system encompasses all management and assessment activities. The integration of DM, QM, safety management and occupational health into an integrated management system is shown for structures, systems and components of waste repositories because they have to fulfill reliability requirements derived from comprehensive safety assessments, and these structures, systems and components (such as transport vehicles and stacker trucks for the underground emplacement activities) are especially manufactured for this purpose and are not series products. QM institutes a QM system which ensures that there are clearly defined and auditable procedures. The requirements are written down in specifications or operation manuals and/or maintenance manuals. The QM system provides assurance that the installed structures, systems or components meet and continue to meet the prescribed goals with the help of DM and that safety management and occupational health specified requirements are fulfilled. DM focuses on the use of engineering analyses, assessments and methods to improve the design, specification, construction, dependability and operation of important systems, structures and components. (author)

  19. Management information system applied to radiation protection services

    International Nuclear Information System (INIS)

    Grossi, Pablo Andrade; Souza, Leonardo Soares de; Figueiredo, Geraldo Magela; Figueiredo, Arthur

    2013-01-01

    An effective management information system based on technology, information and people is necessary to improve the safety on all processes and operations subjected to radiation risks. The complex and multisource information flux from all radiation protection activities on nuclear organizations requires a robust tool/system to highlight the strengths and weaknesses and identify behaviors and trends on the activities requiring radiation protection programs. Those organized and processed data are useful to reach a successful management and to support the human decision-making on nuclear organization. This paper presents recent improvements on a management information system based on the radiation protection directives and regulations from Brazilian regulatory body. This radiation protection control system is applied to any radiation protection services and research institutes subjected to Brazilian nuclear regulation and is a powerful tool for continuous management, not only indicating how the health and safety activities are going, but why they are not going as well as planned showing up the critical points. (author)

  20. Management information system applied to radiation protection services

    Energy Technology Data Exchange (ETDEWEB)

    Grossi, Pablo Andrade; Souza, Leonardo Soares de; Figueiredo, Geraldo Magela; Figueiredo, Arthur, E-mail: pabloag@cdtn.br, E-mail: lss@cdtn.br, E-mail: gmf@cdtn.br, E-mail: arthurqof@gmail.com [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2013-07-01

    An effective management information system based on technology, information and people is necessary to improve the safety on all processes and operations subjected to radiation risks. The complex and multisource information flux from all radiation protection activities on nuclear organizations requires a robust tool/system to highlight the strengths and weaknesses and identify behaviors and trends on the activities requiring radiation protection programs. Those organized and processed data are useful to reach a successful management and to support the human decision-making on nuclear organization. This paper presents recent improvements on a management information system based on the radiation protection directives and regulations from Brazilian regulatory body. This radiation protection control system is applied to any radiation protection services and research institutes subjected to Brazilian nuclear regulation and is a powerful tool for continuous management, not only indicating how the health and safety activities are going, but why they are not going as well as planned showing up the critical points. (author)

  1. Generalized Information Architecture for Managing Requirements in IBM?s Rational DOORS(r) Application.

    Energy Technology Data Exchange (ETDEWEB)

    Aragon, Kathryn M.; Eaton, Shelley M.; McCornack, Marjorie Turner; Shannon, Sharon A.

    2014-12-01

    When a requirements engineering effort fails to meet expectations, often times the requirements management tool is blamed. Working with numerous project teams at Sandia National Laboratories over the last fifteen years has shown us that the tool is rarely the culprit; usually it is the lack of a viable information architecture with well- designed processes to support requirements engineering. This document illustrates design concepts with rationale, as well as a proven information architecture to structure and manage information in support of requirements engineering activities for any size or type of project. This generalized information architecture is specific to IBM's Rational DOORS (Dynamic Object Oriented Requirements System) software application, which is the requirements management tool in Sandia's CEE (Common Engineering Environment). This generalized information architecture can be used as presented or as a foundation for designing a tailored information architecture for project-specific needs. It may also be tailored for another software tool. Version 1.0 4 November 201

  2. DOE-RL Integrated Safety Management System Description

    International Nuclear Information System (INIS)

    SHOOP, D.S.

    2000-01-01

    The purpose of this Integrated Safety Management System Description (ISMSD) is to describe the U.S. Department of Energy (DOE), Richland Operations Office (RL) ISMS as implemented through the RL Integrated Management System (RIMS). This ISMSD does not impose additional requirements but rather provides an overview describing how various parts of the ISMS fit together. Specific requirements for each of the core functions and guiding principles are established in other implementing processes, procedures, and program descriptions that comprise RIMS. RL is organized to conduct work through operating contracts; therefore, it is extremely difficult to provide an adequate ISMS description that only addresses RL functions. Of necessity, this ISMSD contains some information on contractor processes and procedures which then require RL approval or oversight. This ISMSD does not purport to contain a full description of the contractors' ISM System Descriptions

  3. DOE-RL Integrated Safety Management System Description

    CERN Document Server

    Shoop, D S

    2000-01-01

    The purpose of this Integrated Safety Management System Description (ISMSD) is to describe the U.S. Department of Energy (DOE), Richland Operations Office (RL) ISMS as implemented through the RL Integrated Management System (RIMS). This ISMSD does not impose additional requirements but rather provides an overview describing how various parts of the ISMS fit together. Specific requirements for each of the core functions and guiding principles are established in other implementing processes, procedures, and program descriptions that comprise RIMS. RL is organized to conduct work through operating contracts; therefore, it is extremely difficult to provide an adequate ISMS description that only addresses RL functions. Of necessity, this ISMSD contains some information on contractor processes and procedures which then require RL approval or oversight. This ISMSD does not purport to contain a full description of the contractors' ISM System Descriptions.

  4. Development of a system for managing document delivery schedule(DDS) for NSSS system design

    International Nuclear Information System (INIS)

    Baek, S. H.; Baek, J. M.; Sohn, Y. S.; Shon, G. H.

    1999-01-01

    The construction of nuclear power plant is a long-term project from initial design to commercial operation. To accomplish NSSS (Nuclear Steam Supply System) system design successfully, the systematic and effective method for managing the system design product and interface correspondence with other organizations is required. To meet this requirement, a system has been developed to control the document delivery schedule, approval process and interface correspondence transmittal, and to report the documentation status periodically from the beginning of the YGN 5 and 6 project. This system is expected to contribute as the beginning step to development of integrated project management system. (author)

  5. Solid municipal waste management: Systems and reference technologies

    International Nuclear Information System (INIS)

    Ciancio, G.; Mura, A.

    1993-03-01

    The management of solid municipal wastes comprises simple methods such as dumping into suitably controlled waste disposal sites, and more complex solutions, which can include waste segregation, some form of materials and/or energy recovery, and the use of combined cycle combustion systems. All these methods, however, require environmental protection systems with custom designed techniques, equipment and safeguards. This paper reviews the technical-economic aspects of different pollution control options currently available to meet the specific requirements of various waste management alternatives

  6. Auditing of environmental management system

    Directory of Open Access Journals (Sweden)

    Čuchranová Katarína

    2001-12-01

    Full Text Available Environmental auditing has estabilished itself as a valueable instrument to verify and help to improve the environmental performance.Organizations of all kinds may have a need to demonstrate the environmental responsibility. The concept of environmental management systems and the associated practice of environmental auditing have been advanced as one way to satisfy this need.These system are intended to help an organization to establish and continue to meet its environmental policies, objectives, standards and other requirements.Environmental auditing is a systematic and documented verification process of objectively obtaining and evaluating audit evidence to determine whether an organizations environmental management system conforms to the environmental management system audit criteria set by the organization and for the communication of the results of this process to the management.The following article intercepts all parts of preparation environmental auditing.The audit programme and procedures should cover the activities and areas to be considered in audits, the frequency of audits, the responsibilities associated with managing and conducting audits, the communication of audit results, auditor competence, and how audits will be conducted.The International Standard ISO 140011 estabilishes the audit procedures that determine conformance with EMS audit criteria.

  7. Development of requirements tracking and verification system for the software design of distributed control system

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Chul Hwan; Kim, Jang Yeol; Kim, Jung Tack; Lee, Jang Soo; Ham, Chang Shik [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1999-12-31

    In this paper a prototype of Requirement Tracking and Verification System(RTVS) for a Distributed Control System was implemented and tested. The RTVS is a software design and verification tool. The main functions required by the RTVS are managing, tracking and verification of the software requirements listed in the documentation of the DCS. The analysis of DCS software design procedures and interfaces with documents were performed to define the user of the RTVS, and the design requirements for RTVS were developed. 4 refs., 3 figs. (Author)

  8. Development of requirements tracking and verification system for the software design of distributed control system

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Chul Hwan; Kim, Jang Yeol; Kim, Jung Tack; Lee, Jang Soo; Ham, Chang Shik [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1998-12-31

    In this paper a prototype of Requirement Tracking and Verification System(RTVS) for a Distributed Control System was implemented and tested. The RTVS is a software design and verification tool. The main functions required by the RTVS are managing, tracking and verification of the software requirements listed in the documentation of the DCS. The analysis of DCS software design procedures and interfaces with documents were performed to define the user of the RTVS, and the design requirements for RTVS were developed. 4 refs., 3 figs. (Author)

  9. Profitability of Management Systems on German Fenlands

    Directory of Open Access Journals (Sweden)

    Marco Rebhann

    2016-10-01

    Full Text Available Fens are organic sites that require drainage for agricultural use. Lowering the groundwater level leads to trade-offs between economic benefits and environmental impacts (i.e., CO2 and nutrient emissions. To identify management options that are both environmentally and economically sustainable, a propaedeutic systematic analysis of the costs, income and profit of different land use and management systems on fenlands is necessary. This study provides an overview of the profitability, labor demand and comparative advantages of feasible management systems on German fenlands. Twenty management practices in four land use systems are analyzed. The results indicate that most management systems are profitable only with subsidies and payments for ecosystem services. In addition to sales revenue, these payments are indispensable to promote peat-saving agricultural practices on fenlands. Regarding the labor aspect, intensive management systems caused an increase in working hours per hectare, which may positively affect employment in rural areas. The calculations obtained in this study can be used as a basis for estimations of greenhouse gas (GHG mitigation costs when management systems are associated with GHG emission values.

  10. Design interface management system for nuclear power plant project

    International Nuclear Information System (INIS)

    Wang Jun

    2012-01-01

    Design interfaces exist between different participants and during the whole course of a nuclear power project, and include different disciplinary requirements. The purpose of interface management is to establish a procedure, which can be efficiently used to control the complex design interfaces and ensure its compliance with NPP design requirements. To this end, a complete work procedures and relationship will be defined and classified, so as to set up the structure of interface management system. The system consists of three levels, i.e. working procedure level, management tool level and technical document level. Two management routes, i.e. administration route and technical route, are adopted so as to conduct management efficiently. (author)

  11. Management of Control System Information SecurityI: Control System Patch Management

    Energy Technology Data Exchange (ETDEWEB)

    Quanyan Zhu; Miles McQueen; Craig Rieger; Tamer Basar

    2011-09-01

    The use of information technologies in control systems poses additional potential threats due to the frequent disclosure of software vulnerabilities. The management of information security involves a series of policy-making on the vulnerability discovery, disclosure, patch development and patching. In this paper, we use a system approach to devise a model to understand the interdependencies of these decision processes. In more details, we establish a theoretical framework for making patching decision for control systems, taking into account the requirement of functionability of control systems. We illustrate our results with numerical simulations and show that the optimal operation period of control systems given the currently estimated attack rate is roughly around a half a month.

  12. The Architecture of Financial Risk Management Systems

    Directory of Open Access Journals (Sweden)

    Iosif ZIMAN

    2013-01-01

    Full Text Available The architecture of systems dedicated to risk management is probably one of the more complex tasks to tackle in the world of finance. Financial risk has been at the center of attention since the explosive growth of financial markets and even more so after the 2008 financial crisis. At multiple levels, financial companies, financial regulatory bodies, governments and cross-national regulatory bodies, all have put the subject of financial risk in particular and the way it is calculated, managed, reported and monitored under intense scrutiny. As a result the technology underpinnings which support the implementation of financial risk systems has evolved considerably and has become one of the most complex areas involving systems and technology in the context of the financial industry. We present the main paradigms, require-ments and design considerations when undertaking the implementation of risk system and give examples of user requirements, sample product coverage and performance parameters.

  13. 24 CFR 990.290 - Compliance with asset management requirements.

    Science.gov (United States)

    2010-04-01

    ... 24 Housing and Urban Development 4 2010-04-01 2010-04-01 false Compliance with asset management... URBAN DEVELOPMENT THE PUBLIC HOUSING OPERATING FUND PROGRAM Asset Management § 990.290 Compliance with asset management requirements. (a) A PHA is considered in compliance with asset management requirements...

  14. Competitiveness in organizational integrated computer system project management

    Directory of Open Access Journals (Sweden)

    Zenovic GHERASIM

    2010-06-01

    Full Text Available The organizational integrated computer system project management aims at achieving competitiveness by unitary, connected and personalised treatment of the requirements for this type of projects, along with the adequate application of all the basic management, administration and project planning principles, as well as of the basic concepts of the organisational information management development. The paper presents some aspects of organizational computer systems project management competitiveness with the specific reference to some Romanian companies’ projects.

  15. An SSH key management system: easing the pain of managing key/user/account associations

    Science.gov (United States)

    Arkhipkin, D.; Betts, W.; Lauret, J.; Shiryaev, A.

    2008-07-01

    Cyber security requirements for secure access to computing facilities often call for access controls via gatekeepers and the use of two-factor authentication. Using SSH keys to satisfy the two factor authentication requirement has introduced a potentially challenging task of managing the keys and their associations with individual users and user accounts. Approaches for a facility with the simple model of one remote user corresponding to one local user would not work at facilities that require a many-to-many mapping between users and accounts on multiple systems. We will present an SSH key management system we developed, tested and deployed to address the many-to-many dilemma in the environment of the STAR experiment. We will explain its use in an online computing context and explain how it makes possible the management and tracing of group account access spread over many sub-system components (data acquisition, slow controls, trigger, detector instrumentation, etc.) without the use of shared passwords for remote logins.

  16. An SSH key management system: easing the pain of managing key/user/account associations

    International Nuclear Information System (INIS)

    Arkhipkin, D; Shiryaev, A; Betts, W; Lauret, J

    2008-01-01

    Cyber security requirements for secure access to computing facilities often call for access controls via gatekeepers and the use of two-factor authentication. Using SSH keys to satisfy the two factor authentication requirement has introduced a potentially challenging task of managing the keys and their associations with individual users and user accounts. Approaches for a facility with the simple model of one remote user corresponding to one local user would not work at facilities that require a many-to-many mapping between users and accounts on multiple systems. We will present an SSH key management system we developed, tested and deployed to address the many-to-many dilemma in the environment of the STAR experiment. We will explain its use in an online computing context and explain how it makes possible the management and tracing of group account access spread over many sub-system components (data acquisition, slow controls, trigger, detector instrumentation, etc.) without the use of shared passwords for remote logins

  17. General Fund Enterprise Business System Did Not Provide Required Financial Information

    Science.gov (United States)

    2012-03-26

    Management of the General Fund Enterprise Business System,” January 14, 2008 Army AAA Report No. A-2010-0187- FFM , “General Fund Enterprise Business System...A-2009-0232- FFM , “General Fund Enterprise Business System – Federal Financial Management Improvement Act Compliance, Examination of Releases...1.4.1, 1.4.2, 1.4.3, and 1.4.4 Requirements,” September 30, 2009 AAA Report No. A-2009-0231- FFM , “General Fund Enterprise Business System – Federal

  18. Fault management and systems knowledge

    Science.gov (United States)

    2016-12-01

    Pilots are asked to manage faults during flight operations. This leads to the training question of the type and depth of system knowledge required to respond to these faults. Based on discussions with multiple airline operators, there is agreement th...

  19. Bug tracking and project management system application in an electronic design company

    Directory of Open Access Journals (Sweden)

    Sadık ARSLAN

    2016-05-01

    Full Text Available In this study, commercially available Bug Tracking and Management Information Systems has been investigated in a comprehensive manner. The systems that commonly used described in detail. Bug Tracking and Project Management Systems requirements analysis of medium-sized companies and Kentkart Ege Electronic which is an Information Technology company has been made. Obtained by the analysis requirements, the appropriate tools are selected for system application. JIRA that a product of Atlassian company was determined as a Bug Tracking and Project Management application tool. In this study, JIRA system adapted to the requirements, Bug Tracking and Project Management systems is designed in a structure which can be easily used by R&D employees. Cost-Benefit analysis is done and using this project was determined to be quite useful.

  20. Hanford solid waste management system simulation

    International Nuclear Information System (INIS)

    Shaver, S.R.; Armacost, L.L.; Konynenbelt, H.S.; Wehrman, R.R.

    1994-12-01

    This paper describes systems analysis and simulation model development for a proposed solid waste management system at a U.S. Department of Energy Site. The proposed system will include a central storage facility, four treatment facilities, and three disposal sites. The material managed by this system will include radioactive, hazardous, and mixed radioactive and hazardous wastes. The objective of the modeling effort is to provide a means of evaluating throughput and capacity requirements for the proposed treatment, storage, and disposal facilities. The model is used to evaluate alternative system configurations and the effect on the alternatives of changing waste stream characteristics and receipt schedules. An iterative modeling and analysis approach is used that provides macro-level models early in the project and establishes credibility with the customer. The results from the analyses based on the macro models influence system design decisions and provide information that helps focus subsequent model development. Modeling and simulation of alternative system configurations and operating strategies yield a better understanding of the solid waste system requirements. The model effectively integrates information obtained through systems analysis and waste characterization to provide a consistent basis for system and facility planning

  1. The utility of system-level RAM analysis and standards for the US nuclear waste management system

    International Nuclear Information System (INIS)

    Rod, S.R.; Adickes, M.D.; Paul, B.K.

    1992-03-01

    The Department of Energy (DOE) Office of Civilian Radioactive Waste Management (OCRWM) is responsible for developing a system to manage spent nuclear fuel and high-level radioactive waste in accordance with the Nuclear Waste Policy Act of 1982 and its subsequent amendments. Pacific Northwest Laboratory (PNL) is assisting OCRWM in its investigation of whether system-level reliability, availability, and maintainability (RAM) requirements are appropriate for the waste management system and, if they are, what appropriate form should be for such requirements. Results and recommendations are presented

  2. SNL/CA Environmental Management System Program Manual.

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, Barbara L.

    2007-04-01

    The Sandia National Laboratories, California (SNL/CA) Environmental Management System (EMS) Program Manual documents the elements of the site EMS Program. The SNL/CA EMS Program conforms to the International Standard on Environmental Management Systems, ISO 14001:2004. Elements of the ISO standard overlap with those of Department of Energy (DOE) Order 450.1, thus SNL/CA's EMS program also meets the DOE requirements.

  3. Sustainable System for Residual Hazards Management

    International Nuclear Information System (INIS)

    Kevin M. Kostelnik; James H. Clarke; Jerry L. Harbour

    2004-01-01

    Hazardous, radioactive and other toxic substances have routinely been generated and subsequently disposed of in the shallow subsurface throughout the world. Many of today's waste management techniques do not eliminate the problem, but rather only concentrate or contain the hazardous contaminants. Residual hazards result from the presence of hazardous and/or contaminated material that remains on-site following active operations or the completion of remedial actions. Residual hazards pose continued risk to humans and the environment and represent a significant and chronic problem that require continuous long-term management (i.e. >1000 years). To protect human health and safeguard the natural environment, a sustainable system is required for the proper management of residual hazards. A sustainable system for the management of residual hazards will require the integration of engineered, institutional and land-use controls to isolate residual contaminants and thus minimize the associated hazards. Engineered controls are physical modifications to the natural setting and ecosystem, including the site, facility, and/or the residual materials themselves, in order to reduce or eliminate the potential for exposure to contaminants of concern (COCs). Institutional controls are processes, instruments, and mechanisms designed to influence human behavior and activity. System failure can involve hazardous material escaping from the confinement because of system degradation (i.e., chronic or acute degradation) or by external intrusion of the biosphere into the contaminated material because of the loss of institutional control. An ongoing analysis of contemporary and historic sites suggests that the significance of the loss of institutional controls is a critical pathway because decisions made during the operations/remedial action phase, as well as decisions made throughout the residual hazards management period, are key to the long-term success of the prescribed system. In fact

  4. [Essential guidelines for Quality Management System].

    Science.gov (United States)

    Daunizeau, A

    2013-06-01

    The guidelines describe the essential parts of the quality management system to fulfil the requirements of the standard EN ISO 15 189. It includes mainly the organisation, the definition of responsibilities, training of personnel, the document control, the quality control, identification and control of nonconformities, corrective actions, preventive actions and evaluation, as audits and the management review.

  5. The System 80+ Standard Plant Information Management System

    Energy Technology Data Exchange (ETDEWEB)

    Turk, R.S.; Bryan, R.E. [ABB Combuions Engineering Nuclear Systems (United States)

    1998-07-01

    Historically, electric nuclear power plant owners, following the completion of construction and startup, have been left with a mountain of hard-copy documents and drawings. Hundreds of thousands of hours are spent searching for relevant documents and, in most cases, the documents found require many other documents and drawings to fully understand the design basis. All too often the information is incomplete, and eventually becomes obsolete. In the U.S., utilities spend millions of dollars to discover design basis information and update as-built data for each plant. This information must then be stored in an easily accessed usable form to assist satisfy regulatory requirements and to improve plant operating efficiency. ABB Combustion Engineering Nuclear Systems (ABB-CE) has an active program to develop a state-of-the-art Plant Information Management System (IMS) for its advanced light water reactor, the System 80+TM Standard Plant Design. This program is supported by ABB's Product Data Management (PDM) and Computer Aided Engineering (CAE) efforts world wide. This paper describes the System 80+ plant IMS and how it will be used during the entire life cycle of the plant. (author)

  6. The System 80+ Standard Plant Information Management System

    International Nuclear Information System (INIS)

    Turk, R.S.; Bryan, R.E.

    1998-01-01

    Historically, electric nuclear power plant owners, following the completion of construction and startup, have been left with a mountain of hard-copy documents and drawings. Hundreds of thousands of hours are spent searching for relevant documents and, in most cases, the documents found require many other documents and drawings to fully understand the design basis. All too often the information is incomplete, and eventually becomes obsolete. In the U.S., utilities spend millions of dollars to discover design basis information and update as-built data for each plant. This information must then be stored in an easily accessed usable form to assist satisfy regulatory requirements and to improve plant operating efficiency. ABB Combustion Engineering Nuclear Systems (ABB-CE) has an active program to develop a state-of-the-art Plant Information Management System (IMS) for its advanced light water reactor, the System 80+TM Standard Plant Design. This program is supported by ABB's Product Data Management (PDM) and Computer Aided Engineering (CAE) efforts world wide. This paper describes the System 80+ plant IMS and how it will be used during the entire life cycle of the plant. (author)

  7. Baobab Laboratory Information Management System: Development of an Open-Source Laboratory Information Management System for Biobanking.

    Science.gov (United States)

    Bendou, Hocine; Sizani, Lunga; Reid, Tim; Swanepoel, Carmen; Ademuyiwa, Toluwaleke; Merino-Martinez, Roxana; Meuller, Heimo; Abayomi, Akin; Christoffels, Alan

    2017-04-01

    A laboratory information management system (LIMS) is central to the informatics infrastructure that underlies biobanking activities. To date, a wide range of commercial and open-source LIMSs are available and the decision to opt for one LIMS over another is often influenced by the needs of the biobank clients and researchers, as well as available financial resources. The Baobab LIMS was developed by customizing the Bika LIMS software ( www.bikalims.org ) to meet the requirements of biobanking best practices. The need to implement biobank standard operation procedures as well as stimulate the use of standards for biobank data representation motivated the implementation of Baobab LIMS, an open-source LIMS for Biobanking. Baobab LIMS comprises modules for biospecimen kit assembly, shipping of biospecimen kits, storage management, analysis requests, reporting, and invoicing. The Baobab LIMS is based on the Plone web-content management framework. All the system requirements for Plone are applicable to Baobab LIMS, including the need for a server with at least 8 GB RAM and 120 GB hard disk space. Baobab LIMS is a server-client-based system, whereby the end user is able to access the system securely through the internet on a standard web browser, thereby eliminating the need for standalone installations on all machines.

  8. Management systems for environmental restoration projects

    International Nuclear Information System (INIS)

    Harbert, R.R.

    1990-01-01

    This paper reports that the success fo large environmental restoration projects depends on sound management systems to guide the team of organizations and individuals responsible for the project. Public concern about and scrutiny of these environmental projects increase the stakes for those involved in the management of projects. The Department of Energy (DOE) Formerly Utilized Sites Remedial Action Program (FUSRAP) uses a system approach to performing and improving the work necessary to meet FUSRAP objectives. This approach to preforming and improving the work necessary to meet FUSRAP objectives. This approach is based upon management criteria embodied in DOE cost and schedule control system and the quality assurance requirements. The project team used complementary criteria to develop a system of related parts and processes working together to accomplish the goals of the project

  9. Facility information management system; Shisetsu joho kanri system

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-01-10

    A facility management system (FMS) was developed as a tool for efficiently operating and managing building facilities and related equipment. The maintenance management data is designed to be collected through automatic formation of data base by using a work flow function and releasing the daily business from paper work. The data base thus formed can be retrieved and displayed by utilizing a network system. The plan view for construction facilities is made a minute plan comparable to the ground plan by taking in DXF type drawing data such as a completion drawing, making it a colored display for example to create an intuitive expression understandable at first sight. The plan is controlled by the level including equipment classification and is capable of superimposed display. Detailed management data is displayed by mouse clicking of registered icons, allowing required information to be readily taken out. (translated by NEDO)

  10. 3D GEO-INFORMATION REQUIREMENTS FOR DISASTER AND EMERGENCY MANAGEMENT

    Directory of Open Access Journals (Sweden)

    E. Demir Ozbek

    2016-06-01

    Full Text Available A conceptual approach is proposed to define 3D geo-information requirement for different types of disasters. This approach includes components such as Disaster Type-Sector-Actor-Process-Activity-Task-Data. According to disaster types processes, activities, tasks, sectors, and responsible and operational actors are derived. Based on the tasks, the needed level of detail for 3D geo-information model is determined. The levels of detail are compliant with the 3D international standard CityGML. After a brief introduction on the disaster phases and geo-information requirement for actors to perform the tasks, the paper discusses the current situation of disaster and emergency management in Turkey and elaborates on components of conceptual approach. This paper discusses the 3D geo-information requirements for the tasks to be used in the framework of 3D geo-information model for Disaster and Emergency Management System in Turkey. The framework is demonstrated for an industrial fire case in Turkey.

  11. Searching your site`s management information systems

    Energy Technology Data Exchange (ETDEWEB)

    Marquez, W.; Rollin, C. [S.M. Stoller Corp., Boulder, CO (United States)

    1994-12-31

    The Department of Energy`s guidelines for the Baseline Environmental Management Report (BEMR) encourage the use of existing data when compiling information. Specific systems mentioned include the Progress Tracking System, the Mixed-Waste Inventory Report, the Waste Management Information System, DOE 4700.1-related systems, Programmatic Environmental Impact Statement (PEIS) data, and existing Work Breakdown Structures. In addition to these DOE-Headquarters tracking and reporting systems, there are a number of site systems that will be relied upon to produce the BEMR, including: (1) site management control and cost tracking systems; (2) commitment/issues tracking systems; (3) program-specific internal tracking systems; (4) Site material/equipment inventory systems. New requirements have often prompted the creation of new, customized tracking systems. This is a very time and money consuming process. As the BEMR Management Plan emphasizes, an effort should be made to use the information in existing tracking systems. Because of the wealth of information currently available from in-place systems, development of a new tracking system should be a last resort.

  12. Justification of computational methods to ensure information management systems

    Directory of Open Access Journals (Sweden)

    E. D. Chertov

    2016-01-01

    Full Text Available Summary. Due to the diversity and complexity of organizational management tasks a large enterprise, the construction of an information management system requires the establishment of interconnected complexes of means, implementing the most efficient way collect, transfer, accumulation and processing of information necessary drivers handle different ranks in the governance process. The main trends of the construction of integrated logistics management information systems can be considered: the creation of integrated data processing systems by centralizing storage and processing of data arrays; organization of computer systems to realize the time-sharing; aggregate-block principle of the integrated logistics; Use a wide range of peripheral devices with the unification of information and hardware communication. Main attention is paid to the application of the system of research of complex technical support, in particular, the definition of quality criteria for the operation of technical complex, the development of information base analysis methods of management information systems and define the requirements for technical means, as well as methods of structural synthesis of the major subsystems of integrated logistics. Thus, the aim is to study on the basis of systematic approach of integrated logistics management information system and the development of a number of methods of analysis and synthesis of complex logistics that are suitable for use in the practice of engineering systems design. The objective function of the complex logistics management information systems is the task of gathering systems, transmission and processing of specified amounts of information in the regulated time intervals with the required degree of accuracy while minimizing the reduced costs for the establishment and operation of technical complex. Achieving the objective function of the complex logistics to carry out certain organization of interaction of information

  13. An Asset Management System for School Buildings in Quebec

    Science.gov (United States)

    Gerbasi, Dino; Marchand, Gilles

    2005-01-01

    Presented here are the major reasons why an asset management system (AMS) is needed, a brief history of their evolution and a description of the initiative undertaken by Quebec to implement such a system. The appendix contains the recommended basic requirements for an asset management system. (Contains 1 figure and 4 footnotes.)

  14. INTEGRATION OF ENVIRONMENTAL MANAGEMENT SYSTEM

    Directory of Open Access Journals (Sweden)

    Tomescu Ada Mirela

    2012-07-01

    Full Text Available The relevance of management as significant factor of business activity can be established on various management systems. These will help to obtain, organise, administrate, evaluate and control particulars: information, quality, environmental protection, health and safety, various resources (time, human, finance, inventory etc. The complexity of nowadays days development, forced us to think ‘integrated’. Sustainable development principles require that environment management policies and practices are not good in themselves but also integrate with all other environmental objectives, and with social and economic development objectives. The principles of sustainable development involve that environment management policies and practices. These are not sound in them-self but also integrate with all other environmental objectives, and with social and economic development objectives. Those objectives were realized, and followed by development of strategies to effects the objective of sustainable development. Environmental management should embrace recent change in the area of environmental protection, and suit the recently regulations of the field -entire legal and economic, as well as perform management systems to meet the requirements of the contemporary model for economic development. These changes are trailed by abandon the conventional approach of environmental protection and it is replaced by sustainable development (SD. The keys and the aims of Cleaner Productions (CP are presented being implemented in various companies as a non-formalised environmental management system (EMS. This concept is suggested here as a proper model for practice where possible environmental harmful technologies are used -e.g. Rosia Montana. Showing the features and the power of CP this paper is a signal oriented to involve the awareness of policy-makers and top management of diverse Romanian companies. Many companies in European countries are developing

  15. Key Technologies in the Context of Future Networks: Operational and Management Requirements

    Directory of Open Access Journals (Sweden)

    Lorena Isabel Barona López

    2016-12-01

    Full Text Available The concept of Future Networks is based on the premise that current infrastructures require enhanced control, service customization, self-organization and self-management capabilities to meet the new needs in a connected society, especially of mobile users. In order to provide a high-performance mobile system, three main fields must be improved: radio, network, and operation and management. In particular, operation and management capabilities are intended to enable business agility and operational sustainability, where the addition of new services does not imply an excessive increase in capital or operational expenditures. In this context, a set of key-enabled technologies have emerged in order to aid in this field. Concepts such as Software Defined Network (SDN, Network Function Virtualization (NFV and Self-Organized Networks (SON are pushing traditional systems towards the next 5G network generation.This paper presents an overview of the current status of these promising technologies and ongoing works to fulfill the operational and management requirements of mobile infrastructures. This work also details the use cases and the challenges, taking into account not only SDN, NFV, cloud computing and SON but also other paradigms.

  16. Research on pipe welding information management system basedon RFID

    Directory of Open Access Journals (Sweden)

    Liu Xun

    2016-01-01

    Full Text Available This paper introduces the construction background, construction target and construction principle of the pipe welding management system based on RFID. Then, describes the specific requirements of the system. The basic principle and key technology of the system are introduced. The structure of the system (including the system design, the selections of handheld devices and high frequency passive RFID tags is described .Then the system management software designs (including software structure, the main functions of the management center system and the main functions of the handheld detection system are described in detail. Finally, the management system is implemented, and it is deployed to several Gas Co, which has chieved good results.

  17. System engineering and configuration management in ITER

    International Nuclear Information System (INIS)

    Chiocchio, S.; Martin, E.; Barabaschi, P.; Bartels, Hans Werner; How, J.; Spears, W.

    2007-01-01

    The construction of ITER will represent a major challenge for the fusion community at large, because of the intrinsic complexity of the tokamak design, the large number of different systems which are all essential for its operation, the worldwide distribution of the design activities and the unusual procurement scheme based on a combination of in-kind and directly funded deliverables. A key requirement for the success of such a large project is that a systematic approach to ensure the consistency of the design with the required performance is adopted. Also, effective project management methods, tools and working practices must be deployed to facilitate the communication and collaboration among the institutions and industries involved in the project. The authors have been involved in the definition and practical implementation of the design integration and configuration control structure inside ITER and in the system engineering process during the selection and optimization of the machine configuration. In parallel, they have assessed design, drawing and documentation management software to be used for the construction phase. Here, they describe the experience gained in recent years, explain the drivers behind the selection of the documents and drawings management systems, and illustrate the scope and issues of the configuration management activities to ensure the congruence of the design, to control and track the design changes and to manage the interfaces among the ITER systems

  18. Environmental management systems

    OpenAIRE

    Misiak, Małgorzata

    2016-01-01

    Considering environmental protection requirements in business operations may, in the long run, determine if a lasting comparative advantage can be achieved. That is why our textbook, rich in case studies, identifies not only the threats a business may pose to the environment but stresses the ways of reducing its negative impact. It discusses, among other things, the concept of corporate social responsibility, environmental management systems, methods and the importance of eco-labelling goods ...

  19. KNOWLEDGE MANAGEMENT SYSTEM DESIGN AT HUMAN RESOURCES DIVISION

    Directory of Open Access Journals (Sweden)

    Yanti Yanti

    2009-05-01

    Full Text Available The Human Resources Division of a company is a vital division. Most of the time, they perform their work manually, and therefore creating limitations to their capacity. The knowledge contained is very important for human resources development and subsequently for developing the company. In order to manage this knowledge well, the company shall require a knowledge management system. This knowledge management system would be a solution to be used for the company to manage all knowledge contained in that particular division. Phases in designing knowledge managements starts from analyzing knowledge sources of the company, knowledge identification and definition, and determining knowledge goals. Knowledge management systems contain many functions such as collecting, recording and managing the knowledge and sharing this to all related employees easily. The company may also use knowledge management systems to share and inform employees regarding updates of information, news and/or activity regarding the employees themselves. Information from knowledge management systems may also be used by employees to monitor their performance and thereby increasing it. Knowledge management systems may also help employees in their learning activities.Keywords: knowledge management, human resources, employee

  20. Tank waste remediation system risk management plan

    International Nuclear Information System (INIS)

    Zimmerman, B.D.

    1998-01-01

    The purpose of the Tank Waste Remediation System (TWRS) Risk Management Plan is to describe a consistent approach to risk management such that TWRS Project risks are identified and managed to achieve TWRS Project success. The Risk Management Plan implements the requirements of the Tank Waste Remediation System Systems Engineering Management Plan in the area of risk management. Figure ES-1 shows the relationship of the TWRS Risk Management Plan to other major TWRS Project documents. As the figure indicates, the Risk Management Plan is a tool used to develop and control TWRS Project work. It provides guidance on how TWRS Project risks will be assessed, analyzed, and handled, and it specifies format and content for the risk management lists, which are a primary product of the risk management process. In many instances, the Risk Management Plan references the TWRS Risk Management Procedure, which provides more detailed discussion of many risk management activities. The TWRS Risk Management Plan describes an ongoing program within the TWRS Project. The Risk Management Plan also provides guidance in support of the TWRS Readiness To-Proceed (RTP) assessment package

  1. Integrated Management System Incorporating Quality Management and Management of Environment, Health and Occupational Safety

    International Nuclear Information System (INIS)

    Manchev, B.; Nenkova, B.; Tomov, E.

    2012-01-01

    Risk Engineering Ltd is a Bulgarian private company founded in 1990 to provide engineering and consulting services applicable to each and every field of the energy sector. Since its establishment Risk Engineering Ltd develops, implement and apply a System for quality assurance, certified for the first time by BVQI (now Bureau Veritas Certification) in 1999 for conformity with the standard ISO 9001:1994. Later on, in connection with the revision of the standards of ISO 9000 series and introduction of the standard ISO 9001:2000 a Quality Management System in conformity with the standard ISO 9001:2000 was developed, introduced and certified. At present, Risk Engineering Ltd has got developed, documented, introduced and certified by Lloyd's Register Quality Assurance (LRQA) Quality Management System in compliance with ISO 9001:2008 on the process approach basis. On this basis and including the requirements of the ISO 14001:2004 (regarding the environment) and OHSAS 18001:2007 (regarding the health and occupational safety), Risk Engineering Ltd has developed and introduced Integrated Management System aim at achieving and demonstrating good results regarding protection of the environment, health and occupational safety. The processes under control by the Integrated Management System and applicable at the company are divided in two general types: A) Management processes: Strategic management and Management of the human resources. B) Processes describing the main activities: design/development process; project management; management of industrial projects and technical infrastructure project; construction, installation, repair and operation of power industry facilities; commercial activities and marketing; investigation of energy efficiency of industrial systems and certification of buildings regarding energy efficiency; consulting activity in the field of industry and energy as well as consultant in accordance with the Law of the Spatial Planning; management of the

  2. Information management system for KNGR

    International Nuclear Information System (INIS)

    Moon, Chankook; Yoo, Keunbae; Lee, Jinkie; Park, Jaemoon

    1996-01-01

    Information management system(IMS) is under development by Korea Electric Power COrporation(KEPCO) joined with KOrea Power Engineering Company(KOPEC) since early 1993 in accordance with Korean Next Generation Reactor(KNGR) project schedule, which is divided into three phases: Phase I(1993-1994), Phase II(1995-Feb.1998), Phase III(1998-2001). Necessity of creating IMS comes from two main purposes: one is from client requirement as described on Electric Power Research Institute(EPRI) Utility Requirement Document(URD) top-tier, the other is from supplier's need to improve productivity whatever it is motivated by management or working group. To satisfy both consumer's and producer's requirements we have set up goals of IMS, to provide configuration management based on network and reliable integrated data base through KNGR's life cycle: i.e.,chronologically, siting, designing, construction, operation and maintenance, and decommissioning. This paper will show what we have done to make the concept during Phase I, and what is a current problem and what will be done through Phase II and III

  3. Information management system for KNGR

    Energy Technology Data Exchange (ETDEWEB)

    Moon, Chankook; Yoo, Keunbae; Lee, Jinkie [Korea Electric Power Corporation, Seoul (Korea, Republic of); Park, Jaemoon [Korea Power Engineering Co., Inc., Daejeon (Korea, Republic of)

    1996-04-15

    Information management system(IMS) is under development by Korea Electric Power COrporation(KEPCO) joined with KOrea Power Engineering Company(KOPEC) since early 1993 in accordance with Korean Next Generation Reactor(KNGR) project schedule, which is divided into three phases: Phase I(1993-1994), Phase II(1995-Feb.1998), Phase III(1998-2001). Necessity of creating IMS comes from two main purposes: one is from client requirement as described on Electric Power Research Institute(EPRI) Utility Requirement Document(URD) top-tier, the other is from supplier's need to improve productivity whatever it is motivated by management or working group. To satisfy both consumer's and producer's requirements we have set up goals of IMS, to provide configuration management based on network and reliable integrated data base through KNGR's life cycle: i.e.,chronologically, siting, designing, construction, operation and maintenance, and decommissioning. This paper will show what we have done to make the concept during Phase I, and what is a current problem and what will be done through Phase II and III.

  4. Recommended Skill Requirements of Recent Management Information Systems Graduates for Employment: A Modified Delphi Study

    Science.gov (United States)

    Strnad, Michael A., Sr.

    2013-01-01

    The purpose of this Modified Delphi study was to achieve a consensus and forecast a prediction from expert IT hiring managers on what skills are required of MIS graduates for employment. In doing so, guidance could be provided to academic leaders who design curricula for MIS students on the required skills for employment. This study was conducted…

  5. DKIST facility management system integration

    Science.gov (United States)

    White, Charles R.; Phelps, LeEllen

    2016-07-01

    The Daniel K. Inouye Solar Telescope (DKIST) Observatory is under construction at Haleakalā, Maui, Hawai'i. When complete, the DKIST will be the largest solar telescope in the world. The Facility Management System (FMS) is a subsystem of the high-level Facility Control System (FCS) and directly controls the Facility Thermal System (FTS). The FMS receives operational mode information from the FCS while making process data available to the FCS and includes hardware and software to integrate and control all aspects of the FTS including the Carousel Cooling System, the Telescope Chamber Environmental Control Systems, and the Temperature Monitoring System. In addition it will integrate the Power Energy Management System and several service systems such as heating, ventilation, and air conditioning (HVAC), the Domestic Water Distribution System, and the Vacuum System. All of these subsystems must operate in coordination to provide the best possible observing conditions and overall building management. Further, the FMS must actively react to varying weather conditions and observational requirements. The physical impact of the facility must not interfere with neighboring installations while operating in a very environmentally and culturally sensitive area. The FMS system will be comprised of five Programmable Automation Controllers (PACs). We present a pre-build overview of the functional plan to integrate all of the FMS subsystems.

  6. Smart Shipboard Power System Operation and Management

    DEFF Research Database (Denmark)

    Kanellos, Fotis D.; Anvari-Moghaddam, Amjad; Guerrero, Josep M.

    2016-01-01

    as all-electric ships (AESs), the need for more cost-effective and emission-aware solutions is augmented. Such onboard systems are prone to sudden load variations due to the changing weather conditions as well as mission profile, thus they require effective power management systems (PMSs) to operate...... optimally under different working conditions. In this paper, coordinated optimal power management at the supply/demand side of a given AES is studied with regard to different objectives and related technical/environmental constraints. The optimal power management problem is formulated as a mixed...

  7. Application of Risk Management for Control and Monitoring Systems

    CERN Document Server

    Grau, S; Balda, F; Chouvelon, A

    2001-01-01

    This paper presents an application of the state of the art and new trends for risk management of safety-related control and monitoring systems, currently applied in the industry. These techniques not only enable to manage safety and reliability issues but they also help in the control of quality and economic factors affected by the availability and maintenance of the system. The method includes an unambiguous definition of the system in terms of functions and a systematic analysis of hazardous situations, undesired events and possible malfunctions. It also includes the identification and quantification of the risk associated to the system. The required risk reduction is specified in terms of safety integrity levels. The safety integrity level results in requirements, preventive measures, possible improvements and recommendations to assure the satisfactory management of the risk.

  8. Review and evaluation of the Nuclear Materials Management and Safeguards System (NMMSS). Volume 1. Comparison of DOE nuclear materials information system requirements with NMMSS capabilities and recommendations for NMMSS improvements

    International Nuclear Information System (INIS)

    1984-03-01

    This report documents the result of a review of the Nuclear Materials Management and Safeguards System (NMMSS), a Department of Energy nuclear materials control and accountability data base and information processing system. This review was performed to determine what data are required from the NMMSS, how it is collected, and how it is used. Based upon the review, NMMSS deficiencies and excess capabilities were identified and a draft set of requirements for the nuclear materials information system that the Office of Safeguards and Security (OSS) should be supporting as well as recommendations for attaining that capability

  9. The interactive on-site inspection system: An information management system to support arms control inspections

    Energy Technology Data Exchange (ETDEWEB)

    DeLand, S.M.; Widney, T.W.; Horak, K.E.; Caudell, R.B.; Grose, E.M.

    1996-12-01

    The increasing use of on-site inspection (OSI) to meet the nation`s obligations with recently signed treaties requires the nation to manage a variety of inspection requirements. This document describes a prototype automated system to assist in the preparation and management of these inspections.

  10. A systems engineering approach to implementation of safety management systems in the Norwegian fishing fleet

    International Nuclear Information System (INIS)

    McGuinness, Edgar; Utne, Ingrid B.

    2014-01-01

    The fishing industry is plagued by a long history of fatality and injury occurrence. Commercial fishing is hence recognized as the most dangerous and difficult of professional callings, in all jurisdictions. Fishing vessels have their own unique set of hazards, a myriad collection of complex occupational accident potentials, barely controlled, co-existing in a perilous work environment. The work in this article is directed by the Norwegian Systematic Health, Environmental and Safety Activities in Enterprises (1997) (Internal Control Regulations [1]), the ISM Code [2] for vessels and their recent applicability to the fishing fleet of Norway. Both safety management works place requirements on the vessel operators and crew to actively manage safety as an on-going concern. The application of these safety management system (SMS) control documents to fishing vessels is just the latest instalment in a continual drive to improve safety in this sector. The difficulty is that there has been no previous systematic approach to safety within the fishing fleet. This article uses the tenants of systems engineering to determine the requirements for such a SMS, detailing the limiting factors and restrictive issues of this complex operating environment. - Highlights: • Systems engineer is applied as a tool for determining requirements for design and construction of a safety management system (SMS). • Outlining a simplistic format, identifying, designingand facilitating improvement opportunities in the conduction and application of SMS’s on fishing vessels. • Knowledge provision is a key requirement of management systems, through provision of understanding, detail orientation and applicable skills for realization. • Outlining, what is to be done and how it is to be completed to accomplish compliance with pertinent legislative requirements. • Promoting a combination of documentation and communication arrangements by which the actionsnecessary for management can be

  11. 12 CFR 652.10 - Investment management and requirements.

    Science.gov (United States)

    2010-01-01

    ... 12 Banks and Banking 6 2010-01-01 2010-01-01 false Investment management and requirements. 652.10... MORTGAGE CORPORATION FUNDING AND FISCAL AFFAIRS Investment Management § 652.10 Investment management and... policies for managing your non-program investment activities. Your board must also ensure that management...

  12. Embedded Systems for Smart Appliances and Energy Management

    CERN Document Server

    Neumann, Peter; Mahlknecht, Stefan

    2013-01-01

    This book provides a comprehensive introduction to embedded systems for smart appliances and energy management, bringing together for the first time a multidisciplinary blend of topics from embedded systems, information technology and power engineering.  Coverage includes challenges for future resource distribution grids, energy management in smart appliances, micro energy generation, demand response management, ultra-low power stand by, smart standby and communication networks in home and building automation.   Provides a comprehensive, multidisciplinary introduction to embedded systems for smart appliances and energy management; Equips researchers and engineers with information required to succeed in designing energy management for smart appliances; Includes coverage of resource distribution grids, energy management in smart appliances, micro energy generation, demand response management, ultra-low power stand by, smart standby and communication networks in home and building automation.  

  13. Sequencing Information Management System (SIMS). Final report

    Energy Technology Data Exchange (ETDEWEB)

    Fields, C.

    1996-02-15

    A feasibility study to develop a requirements analysis and functional specification for a data management system for large-scale DNA sequencing laboratories resulted in a functional specification for a Sequencing Information Management System (SIMS). This document reports the results of this feasibility study, and includes a functional specification for a SIMS relational schema. The SIMS is an integrated information management system that supports data acquisition, management, analysis, and distribution for DNA sequencing laboratories. The SIMS provides ad hoc query access to information on the sequencing process and its results, and partially automates the transfer of data between laboratory instruments, analysis programs, technical personnel, and managers. The SIMS user interfaces are designed for use by laboratory technicians, laboratory managers, and scientists. The SIMS is designed to run in a heterogeneous, multiplatform environment in a client/server mode. The SIMS communicates with external computational and data resources via the internet.

  14. 45 CFR 2553.73 - What are grants management requirements?

    Science.gov (United States)

    2010-10-01

    ... 45 Public Welfare 4 2010-10-01 2010-10-01 false What are grants management requirements? 2553.73 Section 2553.73 Public Welfare Regulations Relating to Public Welfare (Continued) CORPORATION FOR NATIONAL... § 2553.73 What are grants management requirements? What rules govern a sponsor's management of grants? (a...

  15. Peculiarities of the risk management system organization in current conditions

    OpenAIRE

    MIKHIN P.O.

    2014-01-01

    Risk-management system organization problem is topical nowadays. The innovation activity is defined as an activity vulnerable to risk and needs more attention. The basic approaches and elements of organization structure development in risk-management system are considered to find out the best structure for business modelling usage. Balance and combination of risk-management system types are required in current conditions.

  16. SGDes project. Decommissioning management system of Enresa

    International Nuclear Information System (INIS)

    Fernandez Lopez, M.; Julian, A. de

    2013-01-01

    ENRESA, the public company responsible for managing radioactive waste produced in spain and nuclear facilities decommissioning work, has developed a management information system (SGDes) for the decommissioning of nuclear power plants, critical for the company. SGDes system is capable of responding to operational needs for efficient, controlled and secure way. Dismantling activities require a rigorous operations control within highly specialized, process systematization and safety framework, both the human and technological point of view. (Author)

  17. Project risk management in complex petrochemical system

    Directory of Open Access Journals (Sweden)

    Kirin Snežana

    2012-01-01

    Full Text Available Investigation of risk in complex industrial systems, as well as evaluation of main factors influencing decision making and implementation process using large petrochemical company as an example, has proved the importance of successful project risk management. This is even more emphasized when analyzing systems with complex structure, i.e. with several organizational units. It has been shown that successful risk management requires modern methods, based on adequate application of statistical analysis methods.

  18. The Management System for Nuclear Installations. Safety Guide (Spanish Edition)

    International Nuclear Information System (INIS)

    2017-01-01

    This Safety Guide is applicable throughout the lifetime of a nuclear installation, including any subsequent period of institutional control, until there is no significant residual radiation hazard. For a nuclear installation, the lifetime includes site evaluation, design, construction, commissioning, operation and decommissioning. These stages in the lifetime of a nuclear installation may overlap. This Safety Guide may be applied to nuclear installations in the following ways: (a) To support the development, implementation, assessment and improvement of the management system of those organizations responsible for research, site evaluation, design, construction, commissioning, operation and decommissioning of a nuclear installation; (b) As an aid in the assessment by the regulatory body of the adequacy of the management system of a nuclear installation; (c) To assist an organization in specifying to a supplier, via contractual documentation, any specific element that should be included within the supplier's management system for the supply of products. This Safety Guide follows the structure of the Safety Requirements publication on The Management System for Facilities and Activities, whereby: (a) Section 2 provides recommendations on implementing the management system, including recommendations relating to safety culture, grading and documentation. (b) Section 3 provides recommendations on the responsibilities of senior management for the development and implementation of an effective management system. (c) Section 4 provides recommendations on resource management, including guidance on human resources, infrastructure and the working environment. (d) Section 5 provides recommendations on how the processes of the installation can be specified and developed, including recommendations on some generic processes of the management system. (e) Section 6 provides recommendations on the measurement, assessment and improvement of the management system of a nuclear

  19. Application of Total Quality Management (TQM Requirements in Risk Management in Construction Projects in Iraq

    Directory of Open Access Journals (Sweden)

    Entisar K. Al-Geelawee

    2016-06-01

    Full Text Available Total quality management considers one of the modern scientific entrances which practiced by productivity service organizations alike to provide appropriate quality required outputs according to the needs and desires of customers manage , enable the organization seeking to continue and grow in light of the increasing competition from the satisfy and provide the appropriate total quality management requirements whenever led to face risks that they may have in a manner in which they can be addressed and find ways to avoid them in the future when repeated. The research has consist of two main parts firstly have included a review of the most important concepts of total quality management in addition to the concept of risk analysis and management in construction projects and how to apply the concept of total quality management in the risk analysis and management. Second part included the practical part of the research, which was open and closed questionnaire for experts in the construction industry to obtain required informations for the application of total quality management requirements in risk management in construction projects in Iraq. One of the main findings of the research is that top management support has a high impact on risk management in addition to continuous improvement, training and education, while the participation of all employees in the organization and constant stimulation and focusing on the customer as one of the total quality management requirements had a moderate impact on risk management.

  20. 45 CFR 92.20 - Standards for financial management systems.

    Science.gov (United States)

    2010-10-01

    ... with the financial reporting requirements of the grant or subgrant. (2) Accounting records. Grantees... advances to the grantees. (c) An awarding agency may review the adequacy of the financial management system... 45 Public Welfare 1 2010-10-01 2010-10-01 false Standards for financial management systems. 92.20...

  1. 45 CFR 602.20 - Standards for financial management systems.

    Science.gov (United States)

    2010-10-01

    ... financial reporting requirements of the grant or subgrant. (2) Accounting records. Grantees and subgrantees... advances to the grantees. (c) An awarding agency may review the adequacy of the financial management system... 45 Public Welfare 3 2010-10-01 2010-10-01 false Standards for financial management systems. 602.20...

  2. 14 CFR 1273.20 - Standards for financial management systems.

    Science.gov (United States)

    2010-01-01

    ... financial reporting requirements of the grant or subgrant. (2) Accounting records. Grantees and subgrantees... advances to the grantees. (c) An awarding agency may review the adequacy of the financial management system... 14 Aeronautics and Space 5 2010-01-01 2010-01-01 false Standards for financial management systems...

  3. 10 CFR 600.220 - Standards for financial management systems.

    Science.gov (United States)

    2010-01-01

    ... financial reporting requirements of the grant or subgrant. (2) Accounting records. Grantees and subgrantees... advances to the grantees. (c) An awarding agency may review the adequacy of the financial management system... 10 Energy 4 2010-01-01 2010-01-01 false Standards for financial management systems. 600.220...

  4. Managing Cuscuta gronovii (Swamp Dodder in Cranberry Requires an Integrated Approach

    Directory of Open Access Journals (Sweden)

    Hilary A. Sandler

    2010-02-01

    Full Text Available Dodders (Cuscuta spp. are parasitic plants that threaten the sustainability of many crops. Because this parasite is very adept and successful from biological and ecological perspectives, a single control strategy is unlikely to provide sufficient economic control. Dodder (C. gronovii is a particularly serious pest in commercial cranberry (Vaccinium macrocarpon production. Multiple viable strategies must be integrated and tailored into a weed management plan to provide acceptable control. The key to sustainable management of this serious pest will require a combination of chemical and cultural approaches, supported by understanding the complicated nature of dodder biology. Research from small fruit production systems like cranberry into the biology of dodder (e.g., germination patterns, host preference, use of plant growth regulators may provide insights that could ultimately be useful for other crop system management plans. This paper will present the current knowledge base for integrated management of dodder in cranberry as well as highlight relevant research from other crops and potential topics for future research.

  5. Regulatory requirements on management of radioactive material safe transport in China

    International Nuclear Information System (INIS)

    Chu, C.

    2016-01-01

    Since 1980s, the IAEA Regulation for safe transport of radioactive material was introduced into China; the regulatory system of China began with international standards, and walked towards the institutionalized. In 2003 the National People’s Congress (NPC) promulgated “the Act on the Prevention of Radioactive Pollution of the People's Republic of China”. In 2009 “Regulation for the Safe Transport of Radioactive Material” (Referred to “Regulation”) was promulgated by the State Council. Subsequently, the National Nuclear Safety Administration (NNSA) began to formulate executive detailed department rules, regulations guidelines and standards. The present system of acts, regulations and standards on management of safe transport of radioactive material in China and future planning were introduced in this paper. Meanwhile, the paper described the specific administration requirements of the Regulation on classification management of radioactive materials, license management of transport packaging including design, manufacture and use, licensing management of transport activities and the provisions of illegal behaviors arising in safe transport of radioactive material. (author)

  6. 28 CFR 70.21 - Standards for financial management systems.

    Science.gov (United States)

    2010-07-01

    ... 28 Judicial Administration 2 2010-07-01 2010-07-01 false Standards for financial management..., HOSPITALS AND OTHER NON-PROFIT ORGANIZATIONS Post-Award Requirements Financial and Program Management § 70.21 Standards for financial management systems. (a) Recipients must relate financial data to...

  7. Procedure for Electronic Management of Rulemaking and Other Docketed Records in the Federal Docket Management System

    Science.gov (United States)

    This procedure identifies the specific requirements, processes and supporting documents EPA uses to electronically manage rulemaking and other docketed records in the Federal Docket Management System (FDMS).

  8. Rucio, the next-generation Data Management system in ATLAS

    CERN Document Server

    Serfon, C; The ATLAS collaboration; Beermann, T; Garonne, V; Goossens, L; Lassnig, M; Nairz, A; Vigne, R

    2014-01-01

    Rucio is the next-generation of Distributed Data Management (DDM) system benefiting from recent advances in cloud and "Big Data" computing to address HEP experiments scaling requirements. Rucio is an evolution of the ATLAS DDM system Don Quijote 2 (DQ2), which has demonstrated very large scale data management capabilities with more than 160 petabytes spread worldwide across 130 sites, and accesses from 1,000 active users. However, DQ2 is reaching its limits in terms of scalability, requiring a large number of support staff to operate and being hard to extend with new technologies. Rucio addresses these issues by relying on new technologies to ensure system scalability, cover new user requirements and employ new automation framework to reduce operational overheads. In this talk, we will present the history of the DDM project and the experience of data management operation in ATLAS computing. Thus, We will show the key concepts of Rucio, including its data organization. The Rucio design, and the technology it e...

  9. An engineering code to analyze hypersonic thermal management systems

    Science.gov (United States)

    Vangriethuysen, Valerie J.; Wallace, Clark E.

    1993-01-01

    Thermal loads on current and future aircraft are increasing and as a result are stressing the energy collection, control, and dissipation capabilities of current thermal management systems and technology. The thermal loads for hypersonic vehicles will be no exception. In fact, with their projected high heat loads and fluxes, hypersonic vehicles are a prime example of systems that will require thermal management systems (TMS) that have been optimized and integrated with the entire vehicle to the maximum extent possible during the initial design stages. This will not only be to meet operational requirements, but also to fulfill weight and performance constraints in order for the vehicle to takeoff and complete its mission successfully. To meet this challenge, the TMS can no longer be two or more entirely independent systems, nor can thermal management be an after thought in the design process, the typical pervasive approach in the past. Instead, a TMS that was integrated throughout the entire vehicle and subsequently optimized will be required. To accomplish this, a method that iteratively optimizes the TMS throughout the vehicle will not only be highly desirable, but advantageous in order to reduce the manhours normally required to conduct the necessary tradeoff studies and comparisons. A thermal management engineering computer code that is under development and being managed at Wright Laboratory, Wright-Patterson AFB, is discussed. The primary goal of the code is to aid in the development of a hypersonic vehicle TMS that has been optimized and integrated on a total vehicle basis.

  10. Methodology for assessing performance of waste management systems

    International Nuclear Information System (INIS)

    Meshkov, N.K.; Herzenberg, C.L.; Camasta, S.F.

    1988-01-01

    The newly revised draft DOE Order 5820.2, Chapter 3, requires that DOE low-level waste shall be managed on a systematic basis using the most appropriate combination of waste generation reduction, segregation, treatment, and disposal practices so that the radioactive components are contained and the overall cost effectiveness is minimized. This order expects each site to prepare and maintain an overall waste management systems performance assessment supporting the combination of waste management practices used in generation reduction segregation, treatment, packaging, storage, and disposal. A document prepared by EG and G Idaho, Inc. for the Department of Energy called Guidance for Conduct of Waste Management Systems Performance Assessment is specifically intended to provide the approach necessary to meet the systems performance assessment requirement of DOE Order 5820.2, Chapter 3, and other applicable state regulations dealing with LLW (low-level radioactive wastes). Methods and procedures are needed for assessing the performance of a waste management system. This report addresses this need. The purpose of the methodology provided in this report is to select the optimal way to manage particular sets of waste streams from generation to disposal in a safe and cost-effective manner, and thereby assist the DOE LLW mangers in complying with the DOE Order 5820.2, Chapter 3, and the associated guidance document

  11. Introduction to Management Information system

    OpenAIRE

    Mishra, Umakant

    2013-01-01

    A Management Information System (MIS) is a systematic organization and presentation of information that is generally required by the management of an organization for taking better decisions for the organization. The MIS data may be derived from various units of the organization or from other sources. However it is very difficult to say the exact structure of MIS as the structure and goals of different types of organizations are different. Hence both the data and structure of MIS is dependent...

  12. Advantages and Limitations of Integrated Management System: the Theoretical Viewpoint

    Directory of Open Access Journals (Sweden)

    Agota Giedrė Raišienė

    2013-08-01

    Full Text Available Purpose. The goal of the paper is to discuss the potential benefits and to highlight the drawbacks of integrated management system for organizations that seek to improve management process.Methodology. Methods of the research were used: analysis of a scientific and special literature that presents the requirements, models and results of integrated management systems studies, and analysis of statistical data to assess actuality of integrated management systems for enterprises in Lithuania.Findings. Summarizing research findings, it should be stated that the implementation of management system integration should be based on provision of social responsibility and holistic approach to the organization. It requires the long-term united efforts of leaders in a strategic hierarchical level and high organizational maturity to ensure the fluency of the running stages of planning management system integration, preparing documentations, implementing and realizing integrated management system. Also it is necessary to purify the conception of integrated management system in organizational context. Theoretical analysis of integrated management systems show, that all of the management systems can not be well integrated in principle. They can only be partly integrated and coordinated. A need to question the level of integration of management systems is very important as in scientific discourse as in practice. It is important to mark, that the number of organizations, that seek to optimize management processes by implementing the integrated management systems is rapidly increasing in Lithuania, too. It shows that benefit associated with integration of management systems is apprehensible in Lithuania. Advantages of integrated management systems can certainly become even stronger if scientists and practicians join their forces in search of methods of organizational management development.Research limitations. The research limitations related to a lack of

  13. System-centred tobacco management: from 'whole-person' to 'whole-system' change.

    Science.gov (United States)

    Bonevski, Billie

    2014-01-01

    Patient-centred tobacco management is a pragmatic approach for helping smokers achieve their goals in terms of either cessation or harm reduction. However, the success of the approach is dependent on clinicians embracing and delivering it as intended. There are a number of structural and systemic organisational barriers which are limiting clinician-delivered patient-centred tobacco dependence. In response, 'whole system' approaches which help support clinicians in the delivery of patient-centred tobacco management are required. Health system changes to support clinicians and facilitate the delivery of patient-centred tobacco management are worth further investigation, particularly in settings where tobacco smoking rates are high. © 2013 Australasian Professional Society on Alcohol and other Drugs.

  14. 49 CFR 1105.9 - Coastal Zone Management Act requirements.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 8 2010-10-01 2010-10-01 false Coastal Zone Management Act requirements. 1105.9... ENVIRONMENTAL LAWS § 1105.9 Coastal Zone Management Act requirements. (a) If the proposed action affects land or water uses within a State coastal zone designated pursuant to the Coastal Zone Management Act (16 U.S.C...

  15. 23 CFR 972.214 - Federal lands congestion management system (CMS).

    Science.gov (United States)

    2010-04-01

    ... 23 Highways 1 2010-04-01 2010-04-01 false Federal lands congestion management system (CMS). 972... § 972.214 Federal lands congestion management system (CMS). (a) For purposes of this section, congestion... interference. For those FWS transportation systems that require a CMS, in both metropolitan and non...

  16. Technology Requirements for Information Management

    Science.gov (United States)

    Graves, Sara; Knoblock, Craig A.; Lannom, Larry

    2002-01-01

    This report provides the results of a panel study conducted into the technology requirements for information management in support of application domains of particular government interest, including digital libraries, mission operations, and scientific research. The panel concluded that it was desirable to have a coordinated program of R&D that pursues a science of information management focused on an environment typified by applications of government interest - highly distributed with very large amounts of data and a high degree of heterogeneity of sources, data, and users.

  17. A Process Management System for Networked Manufacturing

    Science.gov (United States)

    Liu, Tingting; Wang, Huifen; Liu, Linyan

    With the development of computer, communication and network, networked manufacturing has become one of the main manufacturing paradigms in the 21st century. Under the networked manufacturing environment, there exist a large number of cooperative tasks susceptible to alterations, conflicts caused by resources and problems of cost and quality. This increases the complexity of administration. Process management is a technology used to design, enact, control, and analyze networked manufacturing processes. It supports efficient execution, effective management, conflict resolution, cost containment and quality control. In this paper we propose an integrated process management system for networked manufacturing. Requirements of process management are analyzed and architecture of the system is presented. And a process model considering process cost and quality is developed. Finally a case study is provided to explain how the system runs efficiently.

  18. Costs of Tractor Ownership under Different Management Systems in ...

    African Journals Online (AJOL)

    Costs of Tractor Ownership under Different Management Systems in Nigeria. ... It requires high initial capital investment. ... making management plans and decisions especially in comparing different tractor types and models thereby assisting ...

  19. Formalization of software requirements for information systems using fuzzy logic

    Science.gov (United States)

    Yegorov, Y. S.; Milov, V. R.; Kvasov, A. S.; Sorokoumova, S. N.; Suvorova, O. V.

    2018-05-01

    The paper considers an approach to the design of information systems based on flexible software development methodologies. The possibility of improving the management of the life cycle of information systems by assessing the functional relationship between requirements and business objectives is described. An approach is proposed to establish the relationship between the degree of achievement of business objectives and the fulfillment of requirements for the projected information system. It describes solutions that allow one to formalize the process of formation of functional and non-functional requirements with the help of fuzzy logic apparatus. The form of the objective function is formed on the basis of expert knowledge and is specified via learning from very small data set.

  20. Requirement Analysis for the Collaborative Supply and Logistics Management of Fresh Agricultural Products

    Directory of Open Access Journals (Sweden)

    Li Jun

    2017-01-01

    Full Text Available Issues and concerns for food safety, agro-processing, and the environmental and ecological impact of food production have been attracted many research interests. Traceability and logistics management of fresh agricultural products is faced with the technological challenges including food product label and identification, activity/process characterization, information systems for the supply chain, i.e., from farm to table. Application of information technologies for food processing and logistics industry in the fields of smart packaging and materials, automation and control technology, standards and their application scenarios, and production management principles were wildly studied. A collaborative research project for the supply and logistics of fresh agricultural products in Tianjin was performed. System analysis for the logistics management information system is studied. The model-driven business transformation, an approach uses formal models to explicitly define the structure and behavior of a business, is applied for the review and analysis process. Requirements for the logistic management solutions are proposed. Development of this research is crucial for the solution integration of supply and logistic management information system for fresh agricultural products.

  1. Software requirements management based on use cases

    International Nuclear Information System (INIS)

    Xiao Jin

    2009-01-01

    In this paper, the requirements management based on use cases is theoretically explored, and a multi-layer use-case model is introduced, which combined with three levels of use cases and a single use-case refinement model. Through the practice in a software project, the multi-layer use-case model provides a good solution on how to control the requirements scope and change, and provides the balance of work assignment between customer departments, information management departments and software development outsourcing team. (authors)

  2. Application of the management system for facilities and activities. Safety guide

    International Nuclear Information System (INIS)

    2006-01-01

    This Safety Guide supports the Safety Requirements publication on The Management System for Facilities and Activities. It provides generic guidance to aid in establishing, implementing, assessing and continually improving a management system that complies with the requirements established. In addition to this Safety Guide, there are a number of Safety Guides for specific technical areas. Together these provide all the guidance necessary for implementing these requirements. This publication supersedes Safety Series No. 50-SG-Q1-Q7 (1996). The guidance provided here may be used by organizations in the following ways: - To assist in the development of the management systems of organizations directly responsible for operating facilities and activities and providing services for: Nuclear facilities; Activities using sources of ionizing radiation; Radioactive waste management; The transport of radioactive material; Radiation protection activities; Any other practices or circumstances in which people may be exposed to radiation from naturally occurring or artificial sources; The regulation of such facilities and activities; - To assist in the development of the management systems of the relevant regulatory bodies; - By the operator, to specify to a supplier, via contractual documentation, any guidance of this Safety Guide that should be included in the supplier's management system for the supply and delivery of products

  3. Integrated Management System - Scope, Possibilities And Methodology

    Science.gov (United States)

    Čekanová, Katarína

    2015-06-01

    Organizations are becoming more aware of the importance of integrated management systems (IMS). Interest in this subject indicates that IMS are seen as "management systems of the future". Based on this, the aim of this articles characterizes the possibility of building IMS through the identification of common elements and specific requirements in accordance with the ISO 9001, ISO 14001 and OHSAS 18001 professional references. Part of the article is the methodology of building IMS in the organization.

  4. Advantages and Limitations of Integrated Management System: the Theoretical Viewpoint

    Directory of Open Access Journals (Sweden)

    Agota Giedrė Raišienė

    2011-08-01

    Full Text Available Purpose. The goal of the paper is to discuss the potential benefits and to highlight the drawbacks of integrated management system for organizations that seek to improve management process.Methodology. Methods of the research were used: analysis of a scientific and special literature that presents the requirements, models and results of integrated management systems studies, and analysis of statistical data to assess actuality of integrated management systems for enterprises in Lithuania.Findings. Summarizing research findings, it should be stated that the implementation of management system integration should be based on provision of social responsibility and holistic approach to the organization. It requires the long-term united efforts of leaders in a strategic hierarchical level and high organizational maturity to ensure the fluency of the running stages of planning management system integration, preparing documentations, implementing and realizing integrated management system. Also it is necessary to purify the conception of integrated management system in organizational context. Theoretical analysis of integrated management systems show, that all of the management systems can not be well integrated in principle. They can only be partly integrated and coordinated. A need to question the level of integration of managementsystems is very important as in scientific discourse as in practice. It is important to mark, that the number of organizations, that seek to optimize management processes by implementing the integrated management systems is rapidly increasing in Lithuania, too. It shows that benefit associated with integration of management systems is apprehensible in Lithuania. Advantages of integrated management systems can certainly become even stronger if scientists and practicians join their forces in search of methods of organizational management development.Research limitations. The research limitations related to a lack of integrated

  5. Federal Emergency Management Information System (FEMIS) system administration guide. Version 1.3

    Energy Technology Data Exchange (ETDEWEB)

    Burford, M.J.; Burnett, R.A.; Downing, T.R. [and others

    1996-12-01

    The Federal Emergency Management Information System (FEMIS) is an emergency management planning and analysis tool that was developed by the (Pacific Northwest National Laboratory) (PNNL) under the direction of the U.S. Army Chemical Biological Defense Command. The FEMIS System Administration Guide defines FEMIS hardware and software requirements and gives instructions for installing the FEMIS software package. 91 This document also contains information on the following: software installation for the FEMIS data servers, communication server, mail server, and the emergency management workstations; distribution media loading and FEMIS installation validation and troubleshooting; and system management of FEMIS users, login, privileges, and usage. The system administration utilities (tools), available in the FEMIS client software, are described for user accounts and site profile. This document also describes the installation and use of system and database administration utilities that will assist in keeping the FEMIS system running in an operational environment.

  6. Organic blueberry production systems: management of plant nutrition, irrigation requirements, and weeds

    Science.gov (United States)

    A long-term systems trial was established to evaluate management practices for organic production of northern highbush blueberry (Vaccinium corymbosum L.). The factorial experiment included two planting bed treatments (flat and raised beds), source and rate of fertilizer (feather meal and fish emuls...

  7. Airport Economics: Management Control Financial Reporting Systems

    Science.gov (United States)

    Buchbinder, A.

    1972-01-01

    The development of management control financial reporting systems for airport operation is discussed. The operation of the system to provide the reports required for determining the specific revenue producing facilities of airports is described. The organization of the cost reporting centers to show the types of information provided by the system is analyzed.

  8. Knowledge management: An abstraction of knowledge base and database management systems

    Science.gov (United States)

    Riedesel, Joel D.

    1990-01-01

    Artificial intelligence application requirements demand powerful representation capabilities as well as efficiency for real-time domains. Many tools exist, the most prevalent being expert systems tools such as ART, KEE, OPS5, and CLIPS. Other tools just emerging from the research environment are truth maintenance systems for representing non-monotonic knowledge, constraint systems, object oriented programming, and qualitative reasoning. Unfortunately, as many knowledge engineers have experienced, simply applying a tool to an application requires a large amount of effort to bend the application to fit. Much work goes into supporting work to make the tool integrate effectively. A Knowledge Management Design System (KNOMAD), is described which is a collection of tools built in layers. The layered architecture provides two major benefits; the ability to flexibly apply only those tools that are necessary for an application, and the ability to keep overhead, and thus inefficiency, to a minimum. KNOMAD is designed to manage many knowledge bases in a distributed environment providing maximum flexibility and expressivity to the knowledge engineer while also providing support for efficiency.

  9. Advanced order management in ERM systems: the tic-tac-toe algorithm

    Science.gov (United States)

    Badell, Mariana; Fernandez, Elena; Puigjaner, Luis

    2000-10-01

    The concept behind improved enterprise resource planning systems (ERP) systems is the overall integration of the whole enterprise functionality into the management systems through financial links. Converting current software into real management decision tools requires crucial changes in the current approach to ERP systems. This evolution must be able to incorporate the technological achievements both properly and in time. The exploitation phase of plants needs an open web-based environment for collaborative business-engineering with on-line schedulers. Today's short lifecycles of products and processes require sharp and finely tuned management actions that must be guided by scheduling tools. Additionally, such actions must be able to keep track of money movements related to supply chain events. Thus, the necessary outputs require financial-production integration at the scheduling level as proposed in the new approach of enterprise management systems (ERM). Within this framework, the economical analysis of the due date policy and its optimization become essential to manage dynamically realistic and optimal delivery dates with price-time trade-off during the marketing activities. In this work we propose a scheduling tool with web-based interface conducted by autonomous agents when precise economic information relative to plant and business actions and their effects are provided. It aims to attain a better arrangement of the marketing and production events in order to face the bid/bargain process during e-commerce. Additionally, management systems require real time execution and an efficient transaction-oriented approach capable to dynamically adopt realistic and optimal actions to support marketing management. To this end the TicTacToe algorithm provides sequence optimization with acceptable tolerances in realistic time.

  10. FULCRUM - A dam safety management and alert system

    Energy Technology Data Exchange (ETDEWEB)

    Butt, Cameron; Greenaway, Graham [Knight Piesold Ltd., Vancouver, (Canada)

    2010-07-01

    Efficient management of instrumentation, monitoring and inspection data are the keys to safe performance and dam structure stability. This paper presented a data management system, FULCRUM, developed for dam safety management. FULCRUM is a secure web-based data management system which simplifies the process of data collection, processing and analysis of the information. The system was designed to organize and coordinate dam safety management requirements. Geotechnical instrumentation such as piezometers or inclinometers and operating data can be added to the database. Data from routine surveillance and engineering inspection can also be incorporated into the database. The system provides users with immediate access to historical and recent data. The integration of a GIS system allows for rapid assessment of the project site. Customisable alerting protocols can be set to identify and respond quickly to significant changes in operating conditions and potential impacts on dam safety.

  11. Management Systems and Safety Culture in the Nuclear Energy Sector (ISO 9001 & GS-R-3)

    International Nuclear Information System (INIS)

    Smetnik, A.; Murlis, D.

    2016-01-01

    Nowadays, the enterprises of the Rosatom State Nuclear Energy Corporation that provides products and services to foreign customers should rely on the requirements to the management systems established by the IAEA Standard GS-R-3 “The management system for facilities and activities”. This results from the fact that in order to enter foreign markets, Russian suppliers have to meet foreign requirements related to quality assurance, protection of the environment, nuclear and radiation safety, etc. For instance, the Finnish customer “Fennovoima” requires full compliance of the management systems of the Russian companies involved in the construction of the Hanhikivi-1 NPP with the GS-R-3 Standard. ISO 9001 quality management systems were widely implemented in the nuclear industry enterprises in Russia. The assessment of compliance of the quality management systems with the established requirements is carried out by the certification bodies. The same relates to the environmental management systems that are implemented at the majority of nuclear industry facilities in Russia. But due to their uniqueness and associated significant risks, the nuclear industry enterprises have to meet current safety requirements and principles established in the IAEA Safety Standards, such as safety culture and risk management.

  12. Chemistry management system for nuclear power plants

    International Nuclear Information System (INIS)

    Nagasawa, Katsumi; Maeda, Katsuji

    1998-01-01

    Recently, the chemistry management in the nuclear power plants has been changing from the problem solution to the predictive diagnosis and maintenance. It is important to maintain the integrity of plant operation by an adequate chemistry control. For these reasons, many plant operation data and chemistry analysis data should be collected and treated effectively to evaluate chemistry condition of the nuclear power plants. When some indications of chemistry anomalies occur, quick and effective root cause evaluation and countermeasures should be required. The chemistry management system has been developed as to provide sophisticate chemistry management in the nuclear power plants. This paper introduces the concept and functions of the chemistry management system for the nuclear power plants. (author)

  13. Integrated Management System, Configuration and Document Control for Research Reactors

    International Nuclear Information System (INIS)

    Steynberg, B.J.; Bruyn, J.F. du

    2017-01-01

    An integrated management system is a single management framework establishing all the processes necessary for the organisation to address all its goals and objectives. Very often only quality, environment and health & safety goals are included when referred to an integrated management system. However, within the research reactor environment such system should include goals pertinent to economic, environmental, health, operational, quality, safeguards, safety, security, and social considerations. One of the important objectives of an integrated management is to create the environment for a healthy safety culture. Configuration management is a disciplined process that involves both management and technical direction to establish and document the design requirements and the physical configuration of the research reactor and to ensure that they remain consistent with each other and the documentation. Configuration is the combination of the physical, functional, and operational characteristics of the structures, systems, and components (SSCs) or parts of the research reactor, operation, or activity. The basic objectives and general principles of configuration management are the same for all research reactors. The objectives of configuration management are to: a) Establish consistency among design requirements, physical configuration, and documentation (including analyses, drawings, and procedures) for the research reactor; b) Maintain this consistency throughout the life of the research reactor, particularly as changes are being made; and c) Retain confidence in the safety of the research reactor. The key elements needed to manage the configuration of research reactors are design requirements, work control, change control, document control, and configuration management assessments. The objective of document control is to ensure that only the most recently approved versions of documents are used in the process of operating, maintaining, and modifying the research reactor

  14. Management information system on radiation protection

    Energy Technology Data Exchange (ETDEWEB)

    Grossi, Pablo Andrade; Souza, Leonardo Soares de; Figueiredo, Geraldo Magela, E-mail: pabloag@cdtn.b, E-mail: lss@cdtn.b, E-mail: gmf@cdtn.b [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2011-07-01

    Considering the flux complexity and the multi source information of all radiation protection activities on nuclear organizations, an effective management information system based on technology, information and people is necessary to improve the safety on all processes and operations subjected to radiation risks. An effective management information system is an essential tool to highlight the strengths and weaknesses and identify behaviors and trends on the activities requiring radiation protection programs. Such kind of distinct knowledge is useful to reach an effective management and support the human decision-making on nuclear organization. This paper presents a management information system based on Brazilian directives and regulations on radiation protection. Due to its generic characteristics, this radiation protection control system can be implemented on any nuclear organization by reediting the non restricted parameters which could differ considering all facilities and laboratories expected on-site with diverse technologies applications. This system can be considered as a powerful tool applied on the continuous management of radiation protection activities on nuclear organizations and research institutes as well as for long term planning, not only indicating how the safety activities are going, but why they are not going as well as planned where that is the case. (author)

  15. Management information system on radiation protection

    International Nuclear Information System (INIS)

    Grossi, Pablo Andrade; Souza, Leonardo Soares de; Figueiredo, Geraldo Magela

    2011-01-01

    Considering the flux complexity and the multi source information of all radiation protection activities on nuclear organizations, an effective management information system based on technology, information and people is necessary to improve the safety on all processes and operations subjected to radiation risks. An effective management information system is an essential tool to highlight the strengths and weaknesses and identify behaviors and trends on the activities requiring radiation protection programs. Such kind of distinct knowledge is useful to reach an effective management and support the human decision-making on nuclear organization. This paper presents a management information system based on Brazilian directives and regulations on radiation protection. Due to its generic characteristics, this radiation protection control system can be implemented on any nuclear organization by reediting the non restricted parameters which could differ considering all facilities and laboratories expected on-site with diverse technologies applications. This system can be considered as a powerful tool applied on the continuous management of radiation protection activities on nuclear organizations and research institutes as well as for long term planning, not only indicating how the safety activities are going, but why they are not going as well as planned where that is the case. (author)

  16. Requirements for Semantic Educational Recommender Systems in Formal E-Learning Scenarios

    Directory of Open Access Journals (Sweden)

    Jesus G. Boticario

    2011-07-01

    Full Text Available This paper analyzes how recommender systems can be applied to current e-learning systems to guide learners in personalized inclusive e-learning scenarios. Recommendations can be used to overcome current limitations of learning management systems in providing personalization and accessibility features. Recommenders can take advantage of standards-based solutions to provide inclusive support. To this end we have identified the need for developing semantic educational recommender systems, which are able to extend existing learning management systems with adaptive navigation support. In this paper we present three requirements to be considered in developing these semantic educational recommender systems, which are in line with the service-oriented approach of the third generation of learning management systems, namely: (i a recommendation model; (ii an open standards-based service-oriented architecture; and (iii a usable and accessible graphical user interface to deliver the recommendations.

  17. Security Requirements Management in Software Product Line Engineering

    Science.gov (United States)

    Mellado, Daniel; Fernández-Medina, Eduardo; Piattini, Mario

    Security requirements engineering is both a central task and a critical success factor in product line development due to the complexity and extensive nature of product lines. However, most of the current product line practices in requirements engineering do not adequately address security requirements engineering. Therefore, in this chapter we will propose a security requirements engineering process (SREPPLine) driven by security standards and based on a security requirements decision model along with a security variability model to manage the variability of the artefacts related to security requirements. The aim of this approach is to deal with security requirements from the early stages of the product line development in a systematic way, in order to facilitate conformance with the most relevant security standards with regard to the management of security requirements, such as ISO/IEC 27001 and ISO/IEC 15408.

  18. Optimal Multi-Level Lot Sizing for Requirements Planning Systems

    OpenAIRE

    Earle Steinberg; H. Albert Napier

    1980-01-01

    The wide spread use of advanced information systems such as Material Requirements Planning (MRP) has significantly altered the practice of dependent demand inventory management. Recent research has focused on development of multi-level lot sizing heuristics for such systems. In this paper, we develop an optimal procedure for the multi-period, multi-product, multi-level lot sizing problem by modeling the system as a constrained generalized network with fixed charge arcs and side constraints. T...

  19. CORPORATIVE MOTIVES ON IMPLEMENTATION OF INTEGRATED MANAGEMENT SYSTEM (IMS

    Directory of Open Access Journals (Sweden)

    Dragan Rajkovic

    2009-09-01

    Full Text Available Integration of management systems for quality, environment, health and risk management as well as corporative social responsibilities is workable corporative approach to reduce costs, effective use of resources, higher motivation of employees and better fulfillment of requirements of social engagements and stakeholders. This paper presents contents of literature and review of a company motives on integrated management system (IMS implementation, namely factors affecting the IMS implementation.

  20. Balanced Scorecard Based Performance Measurement & Strategic Management System

    OpenAIRE

    Permatasari, Paulina

    2006-01-01

    Developing strategy and performance measurement are an integral part of management control system. Making strategic decision about planning and controlling require information regarding how different subunits in organization work. To be effective, performance measurement, both financial and non-financial must motivate manager and employees at different levels to force goal accomplishment and organization strategic. An organization's measurement system strongly affects the behavior of people b...

  1. Learning Management Systems: Are They Knowledge Management Tools?

    Directory of Open Access Journals (Sweden)

    Bayan Aref Abu Shawar

    2010-03-01

    Full Text Available The new adventure of online world has helped to improve many domains and sectors. Knowledge management era which originally related to business sector is now required in industry, health, or any institute that needs to manage its knowledge. Education is no exception! The advancement in computers speed and memory, and the growth of Internet usage are behind the inspiration of e-learning approach. In which the computer is used as a medium to deliver and share educational materials and knowledge instead of face-to-face tutoring. This makes education available to any one, any place, and any time as learner need. This paper presents the relationship between knowledge management and learning management system (LMS that is used in e-learning paradigms. A detailed description of the LMS used at Arab Open University (AOU is included in this paper. We claim that the LMS used at AOU can be considered as a knowledge management tool.

  2. Access Control Management for SCADA Systems

    Science.gov (United States)

    Hong, Seng-Phil; Ahn, Gail-Joon; Xu, Wenjuan

    The information technology revolution has transformed all aspects of our society including critical infrastructures and led a significant shift from their old and disparate business models based on proprietary and legacy environments to more open and consolidated ones. Supervisory Control and Data Acquisition (SCADA) systems have been widely used not only for industrial processes but also for some experimental facilities. Due to the nature of open environments, managing SCADA systems should meet various security requirements since system administrators need to deal with a large number of entities and functions involved in critical infrastructures. In this paper, we identify necessary access control requirements in SCADA systems and articulate access control policies for the simulated SCADA systems. We also attempt to analyze and realize those requirements and policies in the context of role-based access control that is suitable for simplifying administrative tasks in large scale enterprises.

  3. Lean Management Systems in Radiology: Elements for Success.

    Science.gov (United States)

    Schultz, Stacy R; Ruter, Royce L; Tibor, Laura C

    2016-01-01

    This article is a review of the literature on Lean and Lean Management Systems and how they have been implemented in healthcare organizations and particularly in radiology departments. The review focuses on the elements required for a successful implementation of Lean by applying the principles of a Lean Management System instead of a Lean tools-only approach. This review shares the successes and failures from healthcare organizations' efforts to improve the quality and safety of the services they provide. There are a limited number of healthcare organizations in the literature who have shared their experiences and additional research is necessary to determine whether a Lean Management System is a viable alternative to the current management structure in healthcare.

  4. Instruction of the CSN on the requirements of the system of management of the nuclear power plants; Instruccion del CSN sobre los requisitos del sistema de gestion de las instalaciones nucleares

    Energy Technology Data Exchange (ETDEWEB)

    Cid, R.; Santo, A. de; Gil Montes, B.; Toca, A.

    2008-07-01

    The Western European Nations Regulatory Authorities (WENRA) performed a nuclear safety requirements harmonization task, as a result of this work and its implementation, the Spanish Nuclear Safety Counsel (CSN) has the commitment to issue its own Regulation Safety Instructions) to identify the WENRA to level nuclear safety requirements, and to incorporate it in the Spanish regulatory pyramid. However, the Spain nuclear installations meet these requirements through the original criteria to fulfill the regulation of the country that supply the NSSS design, these requirements are not incorporated in our regulation. One of the issues, identified by WENRA, is the implementation of the management system requirements in accord with the IAEA GS-R-3 The Management System for Facilities and Activities. As these regards, the CSN has developed a Safety Instruction, basically endorsing the IAEA GS-R-3. The Safety Instruction is actually in a phase of external comments and should be issued by june 2008. This paper describes the bases for the Safety Instruction, summarises the requirements that would meet the management system for nuclear installations and the activities to perform for its implementations. (Author)

  5. 20 CFR 670.535 - Are Job Corps centers required to establish behavior management systems?

    Science.gov (United States)

    2010-04-01

    ... behavior management systems? 670.535 Section 670.535 Employees' Benefits EMPLOYMENT AND TRAINING... systems? (a) Yes, each Job Corps center must establish and maintain its own student incentives system to encourage and reward students' accomplishments. (b) The Job Corps center must establish and maintain a...

  6. End-to-end requirements management for multiprojects in the construction industry

    DEFF Research Database (Denmark)

    Wörösch, Michael

    Performance Concrete and insulation materials – is used. By means of action research and interviews of case project staff it has become evident that many elements of formalized requirements management are missing in the case project. To fill those gaps and be able to manage requirements end...... with regards to requirements management. As the literature study gives little new information, a series of interviews are initiated with experts from industry and universities. Those interviews reveal major shortcomings in the way requirements are handled in Danish construction companies today. In order...... to give managers of construction projects a useful and guiding tool for formally managing requirements that is rooted in practice, the “Conceptual requirements management framework”, is created. The framework builds upon the gathered empirical data, obtained by action research, interviews, and available...

  7. A generalization information management system applied to electrical distribution

    Energy Technology Data Exchange (ETDEWEB)

    Geisler, K.I.; Neumann, S.A.; Nielsen, T.D.; Bower, P.K. (Empros Systems International (US)); Hughes, B.A.

    1990-07-01

    This article presents a system solution approach that meets the requirements being imposed by industry trends and the electric utility customer. Specifically, the solution addresses electric distribution management systems. Electrical distribution management is a particularly well suited area of application because it involves a high diversity of tasks, which are currently supported by a proliferation of automated islands. Islands of automation which currently exist include (among others) distribution operations, load management, automated mapping, facility management, work order processing, and planning.

  8. Implementation of the Quality Management System in the telecommunications companies

    OpenAIRE

    Menshikova Ekaterina; Khazanov Oleg; Styazhkin Mark

    2016-01-01

    This article describes the advantages of the implementing of the quality management system based on ISO 9001 in the telecommunications companies. The stages of the implementation of the quality management system in the telecommunications companies are discussed. The map of the main process and criteria of processes is developed. The expediency of implementing the quality management system based on the requirements of ISO 9001 in Telecommunications is showed.

  9. Analysis of the Apollo spacecraft operational data management system. Executive summary

    Science.gov (United States)

    1971-01-01

    A study was made of Apollo, Skylab, and several other data management systems to determine those techniques which could be applied to the management of operational data for future manned spacecraft programs. The results of the study are presented and include: (1) an analysis of present data management systems, (2) a list of requirements for future operational data management systems, (3) an evaluation of automated data management techniques, and (4) a plan for data management applicable to future space programs.

  10. Management review of nuclear material control and accounting systems

    International Nuclear Information System (INIS)

    1975-06-01

    Section 70.58, ''Fundamental Nuclear Material Controls,'' of 10 CFR Part 70, ''Special Nuclear Materials,'' requires, in paragraph 70.58(c), that certain licensees authorized to possess more than one effective kilogram of special nuclear material establish a management system to provide for the development, revision, implementation, and enforcement of nuclear material control and accounting procedures. Such a system must provide for a review of the nuclear material control system at least every 12 months. This guide describes the purpose and scope, personnel qualifications, depth of detail, and procedures that are acceptable to the NRC staff for the management review of nuclear material control systems required under paragraph 70.58(c) of 10 CFR Part 70. (U.S.)

  11. System Engineering Management and Implementation Plan for Project W-211, ''Initial Tank Retrieval Systems'' (ITRS)

    International Nuclear Information System (INIS)

    VAN BEEK, J.E.

    2000-01-01

    This systems Engineering Management and Implementation Plan (SEMIP) describes the Project W-211 implementation of the Tank Farm Contractor Systems Engineering Management Plan (TFC SEMP). The SEMIP defines the systems engineering products and processes used by the project to comply with the TFC SEMP, and provides the basis for tailoring systems engineering processes by applying a graded approach to identify appropriate systems engineering requirements for W-211

  12. System Engineering Management and Implementation Plan for Project W-211 Initial Tank Retrieval Systems (ITRS)

    Energy Technology Data Exchange (ETDEWEB)

    VAN BEEK, J.E.

    2000-05-05

    This systems Engineering Management and Implementation Plan (SEMIP) describes the Project W-211 implementation of the Tank Farm Contractor Systems Engineering Management Plan (TFC SEMP). The SEMIP defines the systems engineering products and processes used by the project to comply with the TFC SEMP, and provides the basis for tailoring systems engineering processes by applying a graded approach to identify appropriate systems engineering requirements for W-211.

  13. Natural resource management information systems: a guide to design

    Energy Technology Data Exchange (ETDEWEB)

    Tschanz, J.F.; Kennedy, A.S.

    1975-07-01

    Resource management requires the timely supply of intelligible, concise information to facilitate the variety of decisions needed. A distinctive component of information useful in resource management is its spatial content. The first portion of this guidebook sketches the resource management needs for spatial information, indicating not only the variety of resource management contexts, but also the variety of information/data handling approaches that exist. Within this diversity, common structural characteristics for all spatial information/data handling can be perceived, and the remainder of the guidebook outlines the general structure of a resource management information system and a process for designing such a system. Three basic elements of the information system are data base management, data retrieval and processing, and system support. Equally important are the interfaces through which the system is linked to its community of users, data supply, and available information system technology.

  14. Models of Human Information Requirements: "When Reasonable Aiding Systems Disagree"

    Science.gov (United States)

    Corker, Kevin; Pisanich, Gregory; Shafto, Michael (Technical Monitor)

    1994-01-01

    Aircraft flight management and Air Traffic Control (ATC) automation are under development to maximize the economy of flight and to increase the capacity of the terminal area airspace while maintaining levels of flight safety equal to or better than current system performance. These goals are being realized by the introduction of flight management automation aiding and operations support systems on the flight deck and by new developments of ATC aiding systems that seek to optimize scheduling of aircraft while potentially reducing required separation and accounting for weather and wake vortex turbulence. Aiding systems on both the flight deck and the ground operate through algorithmic functions on models of the aircraft and of the airspace. These models may differ from each other as a result of variations in their models of the immediate environment. The resultant flight operations or ATC commands may differ in their response requirements (e.g. different preferred descent speeds or descent initiation points). The human operators in the system must then interact with the automation to reconcile differences and resolve conflicts. We have developed a model of human performance including cognitive functions (decision-making, rule-based reasoning, procedural interruption recovery and forgetting) that supports analysis of the information requirements for resolution of flight aiding and ATC conflicts. The model represents multiple individuals in the flight crew and in ATC. The model is supported in simulation on a Silicon Graphics' workstation using Allegro Lisp. Design guidelines for aviation automation aiding systems have been developed using the model's specification of information and team procedural requirements. Empirical data on flight deck operations from full-mission flight simulation are provided to support the model's predictions. The paper describes the model, its development and implementation, the simulation test of the model predictions, and the empirical

  15. Integrated dynamic modeling and management system mission analysis

    Energy Technology Data Exchange (ETDEWEB)

    Lee, A.K.

    1994-12-28

    This document summarizes the mission analysis performed on the Integrated Dynamic Modeling and Management System (IDMMS). The IDMMS will be developed to provide the modeling and analysis capability required to understand the TWRS system behavior in terms of the identified TWRS performance measures. The IDMMS will be used to demonstrate in a verified and validated manner the satisfactory performance of the TWRS system configuration and assurance that the requirements have been satisfied.

  16. Integrated dynamic modeling and management system mission analysis

    International Nuclear Information System (INIS)

    Lee, A.K.

    1994-01-01

    This document summarizes the mission analysis performed on the Integrated Dynamic Modeling and Management System (IDMMS). The IDMMS will be developed to provide the modeling and analysis capability required to understand the TWRS system behavior in terms of the identified TWRS performance measures. The IDMMS will be used to demonstrate in a verified and validated manner the satisfactory performance of the TWRS system configuration and assurance that the requirements have been satisfied

  17. Environmental Compliance Management System

    International Nuclear Information System (INIS)

    Brownson, L.W.; Krsul, T.; Peralta, R.A.; Knudson, D.A.; Rosignolo, C.L.

    1992-01-01

    Argonne National Laboratory (ANL) is developing the Environmental Compliance Management System (ECMS) as a comprehensive, cost-effective tool to ensure (1) that the Laboratory complies with all applicable federal and state environmental laws and regulations, (2) that environmental issues and concerns are recognized and considered in the early phases of projects; and (3) that Laboratory personnel conduct Laboratory operations in the most environmentally acceptable manner. The ECMS is an expert computer system which is designed to allow project engineers to perform an environmental evaluation of their projects. The system includes a Master Program which collects basic project information, provide utility functions, and access the environmental expert modules, environmental expert system modules for each federal and state environmental law which allows the user to obtain specific information on how an individual law may affect his project; and site-specific databases which contain information necessary for effective management of the site under environmental regulations. The ECMS will have the capability to complete and print many of the necessary environmental forms required by federal and state agencies, including the Department of Energy

  18. Requirements management: A CSR's perspective

    Science.gov (United States)

    Thompson, Joanie

    1991-01-01

    The following subject areas are covered: customer service overview of network service request processing; Customer Service Representative (CSR) responsibility matrix; extract from a sample Memorandum of Understanding; Network Service Request Form and its instructions sample notification of receipt; and requirements management in the NASA Science Internet.

  19. FAILSAFE Health Management for Embedded Systems

    Science.gov (United States)

    Horvath, Gregory A.; Wagner, David A.; Wen, Hui Ying; Barry, Matthew

    2010-01-01

    The FAILSAFE project is developing concepts and prototype implementations for software health management in mission- critical, real-time embedded systems. The project unites features of the industry-standard ARINC 653 Avionics Application Software Standard Interface and JPL s Mission Data System (MDS) technology (see figure). The ARINC 653 standard establishes requirements for the services provided by partitioned, real-time operating systems. The MDS technology provides a state analysis method, canonical architecture, and software framework that facilitates the design and implementation of software-intensive complex systems. The MDS technology has been used to provide the health management function for an ARINC 653 application implementation. In particular, the focus is on showing how this combination enables reasoning about, and recovering from, application software problems.

  20. Systems engineering management plan for the Salt Repository Project

    International Nuclear Information System (INIS)

    Neff, J.O.

    1986-08-01

    This document presents the plan for using systems engineering in conducting and managing the technical work of the Salt Repository Project (SRP) of the US Department of Energy's Civilian Radioactive Waste Management Program. The need for preparing a Systems Engineering Management Plan (SEMP) is traced back to relevant DOE directives. These directives are interpreted as SRP requirements in the context of the Mined Geologic Disposal System. The strategy for conducting systems engineering on the SRP, including the role of the systems engineering process, is then described. The SEMP also designates who in the project organization will be responsible for carrying out the activities. Finally, the management tools that are used to implement the systems engineering process, including associated documentation on the SRP, are described

  1. ISO 9000 Quality Management System

    Science.gov (United States)

    Hadjicostas, Evsevios

    The ISO 9000 series describes a quality management system applicable to any organization. In this chapter we present the requirements of the standard in a way that is as close as possible to the needs of analytical laboratories. The sequence of the requirements follows that in the ISO 9001:2008 standard. In addition, the guidelines for performance improvement set out in the ISO 9004 are reviewed. Both standards should be used as a reference as well as the basis for further elaboration.

  2. Status of Technical Requirements Development for Maintenance Effectiveness Management

    International Nuclear Information System (INIS)

    Ahn, Sang Kyu; Kim, Yun Il; Lee, Chang Ju; Chang, Gun Hyun

    2012-01-01

    It is well known that proper maintenance at nuclear power plant is essential to plant safety and that there is a clear link between effective maintenance and safety as it relates to such factors as the number of transients and challenges to safety systems and the associated need for operability, availability, and reliability of safety equipment. Good maintenance is also important in providing assurance that failures of non-safety related structures, systems, and components (SSCs) that could initiate, adversely affect, or mitigate a transient or an accident are also minimized. Maintenance is also important to ensure that design assumptions and margins in the original design basis are maintained and are not degraded to an unacceptable level. Therefore, good maintenance practice at nuclear power plants is of utmost importance in protecting public health and safety. This paper introduces the status of the development of regulatory technical requirements (Drafts) for utility's management of maintenance effectiveness. The process of Maintenance Effectiveness Management is shown in Figure 1

  3. Workflow management in large distributed systems

    International Nuclear Information System (INIS)

    Legrand, I; Newman, H; Voicu, R; Dobre, C; Grigoras, C

    2011-01-01

    The MonALISA (Monitoring Agents using a Large Integrated Services Architecture) framework provides a distributed service system capable of controlling and optimizing large-scale, data-intensive applications. An essential part of managing large-scale, distributed data-processing facilities is a monitoring system for computing facilities, storage, networks, and the very large number of applications running on these systems in near realtime. All this monitoring information gathered for all the subsystems is essential for developing the required higher-level services—the components that provide decision support and some degree of automated decisions—and for maintaining and optimizing workflow in large-scale distributed systems. These management and global optimization functions are performed by higher-level agent-based services. We present several applications of MonALISA's higher-level services including optimized dynamic routing, control, data-transfer scheduling, distributed job scheduling, dynamic allocation of storage resource to running jobs and automated management of remote services among a large set of grid facilities.

  4. Workflow management in large distributed systems

    Science.gov (United States)

    Legrand, I.; Newman, H.; Voicu, R.; Dobre, C.; Grigoras, C.

    2011-12-01

    The MonALISA (Monitoring Agents using a Large Integrated Services Architecture) framework provides a distributed service system capable of controlling and optimizing large-scale, data-intensive applications. An essential part of managing large-scale, distributed data-processing facilities is a monitoring system for computing facilities, storage, networks, and the very large number of applications running on these systems in near realtime. All this monitoring information gathered for all the subsystems is essential for developing the required higher-level services—the components that provide decision support and some degree of automated decisions—and for maintaining and optimizing workflow in large-scale distributed systems. These management and global optimization functions are performed by higher-level agent-based services. We present several applications of MonALISA's higher-level services including optimized dynamic routing, control, data-transfer scheduling, distributed job scheduling, dynamic allocation of storage resource to running jobs and automated management of remote services among a large set of grid facilities.

  5. 76 FR 3697 - Risk Management Requirements for Derivatives Clearing Organizations

    Science.gov (United States)

    2011-01-20

    ... Part II Commodity Futures Trading Commission 17 CFR Part 39 Risk Management Requirements for... RIN 3038-AC98 Risk Management Requirements for Derivatives Clearing Organizations AGENCY: Commodity... (Participant and Product Eligibility), D (Risk Management), E (Settlement Procedures), F (Treatment of Funds...

  6. The Air Force Air Program and Information Management System (APIMS): A flexible tool for managing your Title V Operating Permits

    Energy Technology Data Exchange (ETDEWEB)

    Weston, A.A.; Gordon, S.R.

    1999-07-01

    The Air Force Command Core System (CCS) is an integrated, activity-based risk management system designed to support the information needs of Environment, Safety, and Occupational Health (ESOH) professionals. These professionals are responsible for managing a complex and often dynamic set of requirements, and therefore, have a need for an information system that can readily be customized to meet their specific needs. This dynamic environment also drives the need for flexibility in the system. The Air Program Information Management System (APIMS) is a module within CCS designed to not only manage permit compliance and emission inventories, but also support the monitoring, recordkeeping, and reporting requirements related to air quality issues. This paper will describe the underlying foundation of CCS, the information linkages within the database, and then summarize the functionality available within the APIMS module to support the Air Quality Managers' information needs, placing emphasis on the flexibility the system provides to manage Title V Operating Permits.

  7. Drainage facility management system : final report, June 2009.

    Science.gov (United States)

    2009-06-01

    This research project identified requirements for a drainage facility management system for the Oregon Department of Transportation. It also estimated the personnel resources needed to collect the inventory to populate such a system with data. A tota...

  8. Domain Specific Language for Modeling Waste Management Systems

    DEFF Research Database (Denmark)

    Zarrin, Bahram

    environmental technologies i.e. solid waste management systems. Flow-based programming is used to support concurrent execution of the processes, and provides a model-integration language for composing processes from homogeneous or heterogeneous domains. And a domain-specific language is used to define atomic......In order to develop sustainable waste management systems with considering life cycle perspective, scientists and domain experts in environmental science require readily applicable tools for modeling and evaluating the life cycle impacts of the waste management systems. Practice has proved...... a domain specific language for modeling of waste-management systems on the basis of our framework. We evaluate the language by providing a set of case studies. The contributions of this thesis are; addressing separation of concerns in Flow-based programming and providing the formal specification of its...

  9. TWRS configuration management requirement source document

    International Nuclear Information System (INIS)

    Vann, J.M.

    1997-01-01

    The TWRS Configuration Management (CM) Requirement Source document prescribes CM as a basic product life-cycle function by which work and activities are conducted or accomplished. This document serves as the requirements basis for the TWRS CM program. The objective of the TWRS CM program is to establish consistency among requirements, physical/functional configuration, information, and documentation for TWRS and TWRS products, and to maintain this consistency throughout the life-cycle of TWRS and the product, particularly as changes are being made

  10. Information management for enabling systems medicine

    Directory of Open Access Journals (Sweden)

    Ganzinger Matthias

    2017-09-01

    Full Text Available Systems medicine is a data-oriented approach in research and clinical practice to support study and treatment of complex diseases. It relies on well-defined information management processes providing comprehensive and up to date information as basis for electronic decision support. The authors suggest a three-layer information technology (IT architecture for systems medicine and a cyclic data management approach including a knowledge base that is dynamically updated by extract, transform, and load (ETL procedures. Decision support is suggested as case-based and rule-based components. Results are presented via a user interface to acknowledging clinical requirements in terms of time and complexity. The systems medicine application was implemented as a prototype.

  11. 17 CFR 240.17i-4 - Internal risk management control system requirements for supervised investment bank holding...

    Science.gov (United States)

    2010-04-01

    ... 17 Commodity and Securities Exchanges 3 2010-04-01 2010-04-01 false Internal risk management... Supervised Investment Bank Holding Company Rules § 240.17i-4 Internal risk management control system...) As part of its internal risk management control system, a supervised investment bank holding company...

  12. Predisposal management of radioactive waste. General safety requirements. Pt. 5

    International Nuclear Information System (INIS)

    2009-01-01

    The objective of this Safety Requirements publication is to establish, the requirements that must be satisfied in the predisposal management of radioactive waste. This publication sets out the objectives, criteria and requirements for the protection of human health and the environment that apply to the siting, design, construction, commissioning, operation and shutdown of facilities for the predisposal management of radioactive waste, and the requirements that must be met to ensure the safety of such facilities and activities. This Safety Requirements publication applies to the predisposal management of radioactive waste of all types and covers all the steps in its management from its generation up to its disposal, including its processing (pretreatment, treatment and conditioning), storage and transport. Such waste may arise from the commissioning, operation and decommissioning of nuclear facilities; the use of radionuclides in medicine, industry, agriculture, research and education; the processing of materials that contain naturally occurring radionuclides; and the remediation of contaminated areas. The introduction of the document (Section 1) informs about its objective, scope and structure. The protection of human health and the environment is considered in Section 2 of this publication. Section 3 establishes requirements for the responsibilities associated with the predisposal management of radioactive waste. Requirements for the principal approaches to and the elements of the predisposal management of radioactive waste are established in Section 4. Section 5 establishes requirements for the safe development and operation of predisposal radioactive waste management facilities and safe conduct of activities. The Annex presents a discussion of the consistency of the safety requirements established in this publication with the fundamental safety principles

  13. The development of an advanced information management system

    International Nuclear Information System (INIS)

    Kim, Seung Hwan

    2005-01-01

    Performing a PSA requires a lot of data to analyze, to evaluate the risk, to trace the process of results and to verify the results. KAERI is developing a PSA information database system, AIMS (Advanced Information Management System for PSA). The objective of AIMS development is to integrate and computerize all the distributed information of a PSA into a system and to enhance the accessibility to PSA information for all PSA related activities. We designed the PSA information database system for the following purposes: integrated PSA information management software, sensitivity analysis, quality assurance, anchor to another reliability database. The AIMS consists of a PSA Information database, Information browsing (searching) modules, and PSA automatic quantification manager modules

  14. The development of an advanced information management system

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Seung Hwan [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    2005-07-01

    Performing a PSA requires a lot of data to analyze, to evaluate the risk, to trace the process of results and to verify the results. KAERI is developing a PSA information database system, AIMS (Advanced Information Management System for PSA). The objective of AIMS development is to integrate and computerize all the distributed information of a PSA into a system and to enhance the accessibility to PSA information for all PSA related activities. We designed the PSA information database system for the following purposes: integrated PSA information management software, sensitivity analysis, quality assurance, anchor to another reliability database. The AIMS consists of a PSA Information database, Information browsing (searching) modules, and PSA automatic quantification manager modules.

  15. Quality management systems for your in vitro fertilization clinic's laboratory: Why bother?

    Science.gov (United States)

    Olofsson, Jan I; Banker, Manish R; Sjoblom, Late Peter

    2013-01-01

    Several countries have in recent years introduced prescribed requirements for treatment and monitoring of outcomes, as well as a licensing or accreditation requirement for in vitro fertilization (IVF) clinics and their laboratories. It is commonplace for Assisted Reproductive Technology (ART) laboratories to be required to have a quality control system. However, more effective Total Quality Management systems are now being implemented by an increasing number of ART clinics. In India, it is now a requirement to have a quality management system in order to be accredited and to help meet customer demand for improved delivery of ART services. This review contains the proceedings a quality management session at the Indian Fertility Experts Meet (IFEM) 2010 and focuses on the creation of a patient-oriented best-in-class IVF laboratory.

  16. Development of the environmental data management system

    International Nuclear Information System (INIS)

    Tatebe, Kazuaki; Suzuki, Yurina; Shirato, Seiichi; Sato, Yoshinori

    2012-02-01

    The recent society requires business activities with environmental consideration to every enterprise. Also, Japanese laws require those activities. For example, 'Law Concerning the Promotion of Business Activities with Environmental Consideration by Specified Corporations, etc, by Facilitating Access to Environmental Information, and Other Measures' (Environmental Consideration Law) mandates publication of a report relating to the activities of environmental consideration to each enterprise above designated size. 'Act on the Rational Use of Energy' mandates the report of the results of energy consumption and the long-term plan of the rational use of energy. Moreover, 'Act on Promotion of Global Warming Countermeasures' mandates the report of the greenhouse gas emissions. In addition to those, 'Water Pollution Control Law', 'Waste Management and Public Cleaning Law' and other environmental laws as well as environmental ordinances require business activities with environmental consideration to all companies. So, it is very important for Japan Atomic Energy Agency (JAEA) to report business activities with environmental consideration in order to build up trustful relations with the nation and communities. The Environmental Data Management System has been developed as the data base of business activities with environmental consideration in JAEA and as the means to promote the activities at every site and office of JAEA. This report summarizes the structure of the Environmental Data Management System, kinds of environmental performance data treated by the system, and gathering methods of the data. (author)

  17. Evaluation of Workflow Management Systems - A Meta Model Approach

    Directory of Open Access Journals (Sweden)

    Michael Rosemann

    1998-11-01

    Full Text Available The automated enactment of processes through the use of workflow management systems enables the outsourcing of the control flow from application systems. By now a large number of systems, that follow different workflow paradigms, are available. This leads to the problem of selecting the appropriate workflow management system for a given situation. In this paper we outline the benefits of a meta model approach for the evaluation and comparison of different workflow management systems. After a general introduction on the topic of meta modeling the meta models of the workflow management systems WorkParty (Siemens Nixdorf and FlowMark (IBM are compared as an example. These product specific meta models can be generalized to meta reference models, which helps to specify a workflow methodology. Exemplary, an organisational reference meta model is presented, which helps users in specifying their requirements for a workflow management system.

  18. A data management system to enable urgent natural disaster computing

    Science.gov (United States)

    Leong, Siew Hoon; Kranzlmüller, Dieter; Frank, Anton

    2014-05-01

    Civil protection, in particular natural disaster management, is very important to most nations and civilians in the world. When disasters like flash floods, earthquakes and tsunamis are expected or have taken place, it is of utmost importance to make timely decisions for managing the affected areas and reduce casualties. Computer simulations can generate information and provide predictions to facilitate this decision making process. Getting the data to the required resources is a critical requirement to enable the timely computation of the predictions. An urgent data management system to support natural disaster computing is thus necessary to effectively carry out data activities within a stipulated deadline. Since the trigger of a natural disaster is usually unpredictable, it is not always possible to prepare required resources well in advance. As such, an urgent data management system for natural disaster computing has to be able to work with any type of resources. Additional requirements include the need to manage deadlines and huge volume of data, fault tolerance, reliable, flexibility to changes, ease of usage, etc. The proposed data management platform includes a service manager to provide a uniform and extensible interface for the supported data protocols, a configuration manager to check and retrieve configurations of available resources, a scheduler manager to ensure that the deadlines can be met, a fault tolerance manager to increase the reliability of the platform and a data manager to initiate and perform the data activities. These managers will enable the selection of the most appropriate resource, transfer protocol, etc. such that the hard deadline of an urgent computation can be met for a particular urgent activity, e.g. data staging or computation. We associated 2 types of deadlines [2] with an urgent computing system. Soft-hard deadline: Missing a soft-firm deadline will render the computation less useful resulting in a cost that can have severe

  19. Software control and system configuration management: A systems-wide approach

    Science.gov (United States)

    Petersen, K. L.; Flores, C., Jr.

    1984-01-01

    A comprehensive software control and system configuration management process for flight-crucial digital control systems of advanced aircraft has been developed and refined to insure efficient flight system development and safe flight operations. Because of the highly complex interactions among the hardware, software, and system elements of state-of-the-art digital flight control system designs, a systems-wide approach to configuration control and management has been used. Specific procedures are implemented to govern discrepancy reporting and reconciliation, software and hardware change control, systems verification and validation testing, and formal documentation requirements. An active and knowledgeable configuration control board reviews and approves all flight system configuration modifications and revalidation tests. This flexible process has proved effective during the development and flight testing of several research aircraft and remotely piloted research vehicles with digital flight control systems that ranged from relatively simple to highly complex, integrated mechanizations.

  20. Resilience Management System And Development Of Resilience Capability On Site Workers

    OpenAIRE

    Komatsubara, Akinori

    2013-01-01

    When we consider the safety of socio-technical or safety critical systems, discussions from three layers are required; safety strategy, safety management and safety activity. In this study, development of resilience safety from the three layers is discussed. For the safety management layer, this study proposes resilience management system (RMS) as the style of safety management system (SMS) for resilience safety approach. Two cases at Japanese companies to enhance attitude and non-technical s...

  1. Dual-Use Aspects of System Health Management

    Science.gov (United States)

    Owens, P. R.; Jambor, B. J.; Eger, G. W.; Clark, W. A.

    1994-01-01

    System Health Management functionality is an essential part of any space launch system. Health management functionality is an integral part of mission reliability, since it is needed to verify the reliability before the mission starts. Health Management is also a key factor in life cycle cost reduction and in increasing system availability. The degree of coverage needed by the system and the degree of coverage made available at a reasonable cost are critical parameters of a successful design. These problems are not unique to the launch vehicle world. In particular, the Intelligent Vehicle Highway System, commercial aircraft systems, train systems, and many types of industrial production facilities require various degrees of system health management. In all of these applications, too, the designers must balance the benefits and costs of health management in order to optimize costs. The importance of an integrated system is emphasized. That is, we present the case for considering health management as an integral part of system design, rather than functionality to be added on at the end of the design process. The importance of maintaining the system viewpoint is discussed in making hardware and software tradeoffs and in arriving at design decisions. We describe an approach to determine the parameters to be monitored in any system health management application. This approach is based on Design of Experiments (DOE), prototyping, failure modes and effects analyses, cost modeling and discrete event simulation. The various computer-based tools that facilitate the approach are discussed. The approach described originally was used to develop a fault tolerant avionics architecture for launch vehicles that incorporated health management as an integral part of the system. Finally, we discuss generalizing the technique to apply it to other domains. Several illustrations are presented.

  2. [Document management systems to support quality management systems at university hospitals - an interview-based study].

    Science.gov (United States)

    Holderried, Martin; Bökel, Ann-Catrin; Ochsmann, Elke

    2018-05-01

    In order to save and control the processes and quality of medical services, a suitable steering system of all relevant documents is essential from the point of view of clinical quality management. Systems supporting an automated steering system of documents are called document management systems (DMS), and they also enter the healthcare sector. The use of DMS in the German healthcare sector has hardly been investigated so far. To close this knowledge gap, interviews were carried out with German university hospitals over a six-month period and subjected to a qualitative content analysis according to Mayring. In total, 25 university hospitals agreed to participate in this study, 19 of which have been working with a digital DMS for about six years on average. There was a great variety among the IT systems used. Document management and usability of the DMS as well as its integration into existing IT structures were key decision-making criteria for the selection of a digital DMS. In general, the long-term usability of the DMS is supported by regular evaluation of one's own requirements for the system, administration and training programs. In addition, DMS have a positive effect on patient safety and the quality of medical care. Copyright © 2018. Published by Elsevier GmbH.

  3. Integrated software system for low level waste management

    International Nuclear Information System (INIS)

    Worku, G.

    1995-01-01

    In the continually changing and uncertain world of low level waste management, many generators in the US are faced with the prospect of having to store their waste on site for the indefinite future. This consequently increases the set of tasks performed by the generators in the areas of packaging, characterizing, classifying, screening (if a set of acceptance criteria applies), and managing the inventory for the duration of onsite storage. When disposal sites become available, it is expected that the work will require re-evaluating the waste packages, including possible re-processing, re-packaging, or re-classifying in preparation for shipment for disposal under the regulatory requirements of the time. In this day and age, when there is wide use of computers and computer literacy is at high levels, an important waste management tool would be an integrated software system that aids waste management personnel in conducting these tasks quickly and accurately. It has become evident that such an integrated radwaste management software system offers great benefits to radwaste generators both in the US and other countries. This paper discusses one such approach to integrated radwaste management utilizing some globally accepted radiological assessment software applications

  4. THE QUESTION OF DEVELOPMENT OF AUTOMATED SYSTEMS FOR TRAFFIC MANAGEMENT

    Directory of Open Access Journals (Sweden)

    V. Shirin

    2015-12-01

    Full Text Available The current systems and methods for automated traffic management in cities are analyzed. The management in cities is analyzed. The management levels are specified. There were fermulated the general requirements, objectives and funnctions of the automated sistems for traffic management with regard to the modern transport problems as well as proposed their aditional managemrnt and infor-maton functions. A phased approach to the implementation of projects on creation of automated sys-tems of traffic management is offered.

  5. Monitored Retrievable Storage System Requirements Document. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    1994-03-01

    This Monitored Retrievable Storage System Requirements Document (MRS-SRD) describes the functions to be performed and technical requirements for a Monitored Retrievable Storage (MRS) facility subelement and the On-Site Transfer and Storage (OSTS) subelement. The MRS facility subelement provides for temporary storage, at a Civilian Radioactive Waste Management System (CRWMS) operated site, of spent nuclear fuel (SNF) contained in an NRC-approved Multi-Purpose Canister (MPC) storage mode, or other NRC-approved storage modes. The OSTS subelement provides for transfer and storage, at Purchaser sites, of spent nuclear fuel (SNF) contained in MPCs. Both the MRS facility subelement and the OSTS subelement are in support of the CRWMS. The purpose of the MRS-SRD is to define the top-level requirements for the development of the MRS facility and the OSTS. These requirements include design, operation, and decommissioning requirements to the extent they impact on the physical development of the MRS facility and the OSTS. The document also presents an overall description of the MRS facility and the OSTS, their functions (derived by extending the functional analysis documented by the Physical System Requirements (PSR) Store Waste Document), their segments, and the requirements allocated to the segments. In addition, the top-level interface requirements of the MRS facility and the OSTS are included. As such, the MRS-SRD provides the technical baseline for the MRS Safety Analysis Report (SAR) design and the OSTS Safety Analysis Report design.

  6. Task management in the new ATLAS production system

    International Nuclear Information System (INIS)

    De, K; Golubkov, D; Klimentov, A; Potekhin, M; Vaniachine, A

    2014-01-01

    This document describes the design of the new Production System of the ATLAS experiment at the LHC [1]. The Production System is the top level workflow manager which translates physicists' needs for production level processing and analysis into actual workflows executed across over a hundred Grid sites used globally by ATLAS. As the production workload increased in volume and complexity in recent years (the ATLAS production tasks count is above one million, with each task containing hundreds or thousands of jobs) there is a need to upgrade the Production System to meet the challenging requirements of the next LHC run while minimizing the operating costs. In the new design, the main subsystems are the Database Engine for Tasks (DEFT) and the Job Execution and Definition Interface (JEDI). Based on users' requests, DEFT manages inter-dependent groups of tasks (Meta-Tasks) and generates corresponding data processing workflows. The JEDI component then dynamically translates the task definitions from DEFT into actual workload jobs executed in the PanDA Workload Management System [2]. We present the requirements, design parameters, basics of the object model and concrete solutions utilized in building the new Production System and its components.

  7. 24 CFR 964.120 - Resident management corporation requirements.

    Science.gov (United States)

    2010-04-01

    ... 24 Housing and Urban Development 4 2010-04-01 2010-04-01 false Resident management corporation... § 964.120 Resident management corporation requirements. A resident management corporation must consist... resident council, so long as each such council: (1) Approves the establishment of the corporation; and (2...

  8. 1993 baseline solid waste management system description

    International Nuclear Information System (INIS)

    Armacost, L.L.; Fowler, R.A.; Konynenbelt, H.S.

    1994-02-01

    Pacific Northwest Laboratory has prepared this report under the direction of Westinghouse Hanford Company. The report provides an integrated description of the system planned for managing Hanford's solid low-level waste, low-level mixed waste, transuranic waste, and transuranic mixed waste. The primary purpose of this document is to illustrate a collective view of the key functions planned at the Hanford Site to handle existing waste inventories, as well as solid wastes that will be generated in the future. By viewing this system as a whole rather than as individual projects, key facility interactions and requirements are identified and a better understanding of the overall system may be gained. The system is described so as to form a basis for modeling the system at various levels of detail. Model results provide insight into issues such as facility capacity requirements, alternative system operating strategies, and impacts of system changes (ie., startup dates). This description of the planned Hanford solid waste processing system: defines a baseline system configuration; identifies the entering waste streams to be managed within the system; identifies basic system functions and waste flows; and highlights system constraints. This system description will evolve and be revised as issues are resolved, planning decisions are made, additional data are collected, and assumptions are tested and changed. Out of necessity, this document will also be revised and updated so that a documented system description, which reflects current system planning, is always available for use by engineers and managers. It does not provide any results generated from the many alternatives that will be modeled in the course of analyzing solid waste disposal options; such results will be provided in separate documents

  9. Development of a Web-based CANDU Core Management Procedure Automation System

    International Nuclear Information System (INIS)

    Lee, Sanghoon; Kim, Eunggon; Park, Daeyou; Yeom, Choongsub; Suh, Hyungbum; Kim, Sungmin

    2006-01-01

    CANDU reactor core needs efficient core management to increase safety, stability, high performance as well as to decrease operational cost. The most characteristic feature of CANDU is so called 'on-power refueling' i.e., there is no shutdown during refueling in opposition to that of PWR. Although this on-power refueling increases the efficiency of the plant, it requires heavy operational task and difficulties in real time operation such as regulating power distribution, burnup distribution, LZC statistics, the position of control devices and so on. To enhance the CANDU core management, there are several approaches to help operator and reduce difficulties, one of them is the COMOS (CANDU Core On-line Monitoring System). It has developed as an online core surveillance system based on the standard incre instrumentation and the numerical analysis codes such as RFSP (Reactor Fueling Simulation Program). As the procedure is getting more complex and the number of programs is increased, it is required that integrated and cooperative system. So, KHNP and IAE have been developing a new web-based system which can support effective and accurate reactor operational environment called COMPAS that means CANDU cOre Management Procedure Automation System. To ensure development of successful system, several steps of identifying requirements have been performed and Software Requirement Specification (SRS) document was developed. In this paper we emphasis on the how to keep consistency between the requirements and system products by applying requirement traceability methodology

  10. Advanced Approach to Information Security Management System Model for Industrial Control System

    Directory of Open Access Journals (Sweden)

    Sanghyun Park

    2014-01-01

    Full Text Available Organizations make use of important information in day-to-day business. Protecting sensitive information is imperative and must be managed. Companies in many parts of the world protect sensitive information using the international standard known as the information security management system (ISMS. ISO 27000 series is the international standard ISMS used to protect confidentiality, integrity, and availability of sensitive information. While an ISMS based on ISO 27000 series has no particular flaws for general information systems, it is unfit to manage sensitive information for industrial control systems (ICSs because the first priority of industrial control is safety of the system. Therefore, a new information security management system based on confidentiality, integrity, and availability as well as safety is required for ICSs. This new ISMS must be mutually exclusive of an ICS. This paper provides a new paradigm of ISMS for ICSs, which will be shown to be more suitable than the existing ISMS.

  11. Advanced approach to information security management system model for industrial control system.

    Science.gov (United States)

    Park, Sanghyun; Lee, Kyungho

    2014-01-01

    Organizations make use of important information in day-to-day business. Protecting sensitive information is imperative and must be managed. Companies in many parts of the world protect sensitive information using the international standard known as the information security management system (ISMS). ISO 27000 series is the international standard ISMS used to protect confidentiality, integrity, and availability of sensitive information. While an ISMS based on ISO 27000 series has no particular flaws for general information systems, it is unfit to manage sensitive information for industrial control systems (ICSs) because the first priority of industrial control is safety of the system. Therefore, a new information security management system based on confidentiality, integrity, and availability as well as safety is required for ICSs. This new ISMS must be mutually exclusive of an ICS. This paper provides a new paradigm of ISMS for ICSs, which will be shown to be more suitable than the existing ISMS.

  12. Advanced Approach to Information Security Management System Model for Industrial Control System

    Science.gov (United States)

    2014-01-01

    Organizations make use of important information in day-to-day business. Protecting sensitive information is imperative and must be managed. Companies in many parts of the world protect sensitive information using the international standard known as the information security management system (ISMS). ISO 27000 series is the international standard ISMS used to protect confidentiality, integrity, and availability of sensitive information. While an ISMS based on ISO 27000 series has no particular flaws for general information systems, it is unfit to manage sensitive information for industrial control systems (ICSs) because the first priority of industrial control is safety of the system. Therefore, a new information security management system based on confidentiality, integrity, and availability as well as safety is required for ICSs. This new ISMS must be mutually exclusive of an ICS. This paper provides a new paradigm of ISMS for ICSs, which will be shown to be more suitable than the existing ISMS. PMID:25136659

  13. 7 CFR 3015.169 - Equipment management requirements.

    Science.gov (United States)

    2010-01-01

    ... following requirements (including replacement equipment) until such actions as transfer, replacement or... transfer, replacement, or disposal of the equipment. (b) Every two years, at a minimum, a physical... 7 Agriculture 15 2010-01-01 2010-01-01 false Equipment management requirements. 3015.169 Section...

  14. Using geospatial solutions to meet distribution integrity management requirements

    Energy Technology Data Exchange (ETDEWEB)

    McElroy, Robert A. [New Century Software, Inc., Fort Collins, CO (United States)

    2010-07-01

    In the United States, incidents on gas distribution pipelines kill on average 10 persons per year in addition to causing 40 serious injuries and millions of dollars of property damage. In order to remedy to this situation, the US Department of Transportation/Pipeline Hazardous Materials Safety Administration enacted new regulations requiring operators to develop distribution integrity management programs (DIMP) which must include: knowledge and identification of threats, evaluation of risk, identification and implementation of measures to address risks, performance measuring, periodic evaluation and improvement and results reporting. The aim of this paper is to show how geographic information systems (GIS) can help operators meet each requirement of the DIMP regulations. This discussion showed that GIS can help in identifying and quantifying the threats to the distribution system and in assessing the consequences of an incident. Investing in GIS will not only help operators in complying with the regulations but will also help them make economically sound, risk-based decisions.

  15. Environmental Management System

    Science.gov (United States)

    Goals Recycling Green Purchasing Pollution Prevention Reusing Water Resources Environmental Management Stewardship » Environmental Protection » Environmental Management System Environmental Management System An Environmental Management System is a systematic method for assessing mission activities, determining the

  16. A Use Case Methodology to Handle Conflicting Controller Requirements for Future Power Systems

    DEFF Research Database (Denmark)

    Heussen, Kai; Uslar, Mathias; Tornelli, Carlo

    2015-01-01

    This paper proposes a standards based requirements elicitation and analysis strategy tailored for smart grid control structure development. Control structures in electric power systems often span across several systems and stakeholders. Requirements elicitation for such control systems therefore...... requires coordination across many stakeholders and it is challenging to achieve a consistent design. To enable an iterative and distributed development we suggest a conflict management approach as a modular element of the design strategy, focusing on conflict identification and tracing. The idea...

  17. The Research on Safety Management Information System of Railway Passenger Based on Risk Management Theory

    Science.gov (United States)

    Zhu, Wenmin; Jia, Yuanhua

    2018-01-01

    Based on the risk management theory and the PDCA cycle model, requirements of the railway passenger transport safety production is analyzed, and the establishment of the security risk assessment team is proposed to manage risk by FTA with Delphi from both qualitative and quantitative aspects. The safety production committee is also established to accomplish performance appraisal, which is for further ensuring the correctness of risk management results, optimizing the safety management business processes and improving risk management capabilities. The basic framework and risk information database of risk management information system of railway passenger transport safety are designed by Ajax, Web Services and SQL technologies. The system realizes functions about risk management, performance appraisal and data management, and provides an efficient and convenient information management platform for railway passenger safety manager.

  18. A distribution management system

    Energy Technology Data Exchange (ETDEWEB)

    Jaerventausta, P; Verho, P; Kaerenlampi, M; Pitkaenen, M [Tampere Univ. of Technology (Finland); Partanen, J [Lappeenranta Univ. of Technology (Finland)

    1998-08-01

    The development of new distribution automation applications is considerably wide nowadays. One of the most interesting areas is the development of a distribution management system (DMS) as an expansion to the traditional SCADA system. At the power transmission level such a system is called an energy management system (EMS). The idea of these expansions is to provide supporting tools for control center operators in system analysis and operation planning. Nowadays the SCADA is the main computer system (and often the only) in the control center. However, the information displayed by the SCADA is often inadequate, and several tasks cannot be solved by a conventional SCADA system. A need for new computer applications in control center arises from the insufficiency of the SCADA and some other trends. The latter means that the overall importance of the distribution networks is increasing. The slowing down of load-growth has often made network reinforcements unprofitable. Thus the existing network must be operated more efficiently. At the same time larger distribution areas are for economical reasons being monitored at one control center and the size of the operation staff is decreasing. The quality of supply requirements are also becoming stricter. The needed data for new applications is mainly available in some existing systems. Thus the computer systems of utilities must be integrated. The main data source for the new applications in the control center are the AM/FM/GIS (i.e. the network database system), the SCADA, and the customer information system (CIS). The new functions can be embedded in some existing computer system. This means a strong dependency on the vendor of the existing system. An alternative strategy is to develop an independent system which is integrated with other computer systems using well-defined interfaces. The latter approach makes it possible to use the new applications in various computer environments, having only a weak dependency on the

  19. Configuration management program plan for Hanford site systems engineering

    International Nuclear Information System (INIS)

    Hoffman, A.G.

    1994-01-01

    This plan establishes the integrated configuration management program for the evolving technical baseline developed through the systems engineering process. This configuration management program aligns with the criteria identified in the DOE Standard, DOE-STD-1073-93. Included are specific requirements for control of the systems engineering RDD-100 database, and electronic data incorporated in the database that establishes the Hanford site technical baseline

  20. Effectiveness of Quality Management System (QMS) on Construction Projects

    OpenAIRE

    Behnam Neyestani

    2016-01-01

    Quality management system (QMS) provides generic guidance and requirements for establishing an appropriate quality management procedure, in order to lower cost, increase productivity, customer's satisfaction, and market share in the organizations since the last two-decade. In construction industry, it can assist the companies to achieve successfully their objectives, and ensure that all phases of construction project consistently meet client's requirements (need). The main aim of this article...

  1. 40 CFR 271.12 - Requirements for hazardous waste management facilities.

    Science.gov (United States)

    2010-07-01

    ... Requirements for Final Authorization § 271.12 Requirements for hazardous waste management facilities. The State shall have standards for hazardous waste management facilities which are equivalent to 40 CFR parts 264... 40 Protection of Environment 26 2010-07-01 2010-07-01 false Requirements for hazardous waste...

  2. Operations management system advanced automation: Fault detection isolation and recovery prototyping

    Science.gov (United States)

    Hanson, Matt

    1990-01-01

    The purpose of this project is to address the global fault detection, isolation and recovery (FDIR) requirements for Operation's Management System (OMS) automation within the Space Station Freedom program. This shall be accomplished by developing a selected FDIR prototype for the Space Station Freedom distributed processing systems. The prototype shall be based on advanced automation methodologies in addition to traditional software methods to meet the requirements for automation. A secondary objective is to expand the scope of the prototyping to encompass multiple aspects of station-wide fault management (SWFM) as discussed in OMS requirements documentation.

  3. Estimation of crop water requirements using remote sensing for operational water resources management

    Science.gov (United States)

    Vasiliades, Lampros; Spiliotopoulos, Marios; Tzabiras, John; Loukas, Athanasios; Mylopoulos, Nikitas

    2015-06-01

    An integrated modeling system, developed in the framework of "Hydromentor" research project, is applied to evaluate crop water requirements for operational water resources management at Lake Karla watershed, Greece. The framework includes coupled components for operation of hydrotechnical projects (reservoir operation and irrigation works) and estimation of agricultural water demands at several spatial scales using remote sensing. The study area was sub-divided into irrigation zones based on land use maps derived from Landsat 5 TM images for the year 2007. Satellite-based energy balance for mapping evapotranspiration with internalized calibration (METRIC) was used to derive actual evapotranspiration (ET) and crop coefficient (ETrF) values from Landsat TM imagery. Agricultural water needs were estimated using the FAO method for each zone and each control node of the system for a number of water resources management strategies. Two operational strategies of hydro-technical project development (present situation without operation of the reservoir and future situation with the operation of the reservoir) are coupled with three water demand strategies. In total, eight (8) water management strategies are evaluated and compared. The results show that, under the existing operational water resources management strategies, the crop water requirements are quite large. However, the operation of the proposed hydro-technical projects in Lake Karla watershed coupled with water demand management measures, like improvement of existing water distribution systems, change of irrigation methods, and changes of crop cultivation could alleviate the problem and lead to sustainable and ecological use of water resources in the study area.

  4. Intelligent information system for waste management; Jaetehuollon aelykaes tietojaerjestelmae

    Energy Technology Data Exchange (ETDEWEB)

    Nuortio, T. [Kuopio Univ. (Finland)

    2005-07-01

    'iWaste - Intelligent Information System for Waste Management' - was a joint project of the University of Kuopio and the Tampere University of Technology. The main objective of the project was to improve the management and use of waste management data. Also the project focused on the development of information management systems. The results of the project are numerous. A study of the present state of information management in the field of waste management was carried out. The studied aspects were for example information needs of different actors and their requirements for the information quality, communication requirements among different actors, and the characteristics and applications of the software products. The conceptual data model of waste management was developed and resulted as the hyper document for connecting waste and information management specialists, and for research and educational purposes. Also, this model can be used for the development of political regulation. Methodologies and models for processing data into information for decision making were developed. The methodologies and models include e.g. data mining techniques, prediction of waste generation and optimisation of waste pick-up and transport. (orig.)

  5. When Serious Project Management is a Critical Business Requirement

    Science.gov (United States)

    Jansma, P. A.; Gibby, L.; Chambers, C.; Joines, J.; Egger, R.

    2000-01-01

    When serious project management is a critical business requirement, project managers need to integrate cost, schedule and technical scope of work across the project, and apply earned value management (EVM).

  6. Establishing the user requirements for the research reactor decommissioning database system

    International Nuclear Information System (INIS)

    Park, S. K.; Park, H. S.; Lee, G. W.; Park, J. H.

    2002-01-01

    In generally, so much information and data will be raised during the decommissioning activities. It is need a systematical electric system for the management of that. A database system for the decommissioning information and data management from the KRR-1 and 2 decommissioning project is developing now. All information and data will be put into this database system and retrieval also. For the developing the DB system, the basic concept, user requirements were established the then set up the system for categorizing the information and data. The entities of tables for input the data was raised and categorized and then converted the code. The ERD (Entity Relation Diagram) was also set up to show their relation. In need of the developing the user interface system for retrieval the data, is should be studied the analyzing on the relation between the input and output the data. Through this study, as results, the items of output tables are established and categorized according to the requirement of the user interface system for the decommissioning information and data. These tables will be used for designing the prototype and be set up by several feeds back for establishing the decommissioning database system

  7. Application of the Management System for Facilities and Activities. Safety Guide

    International Nuclear Information System (INIS)

    2009-01-01

    This publication provides guidance for following the requirements for management systems that integrate safety, health, security, quality assurance and environmental objectives. A successful management system ensures that nuclear safety matters are not dealt with in isolation but are considered within the context of all these objectives. The aim of this publication is to assist Member States to establish and implement effective management systems that coherently integrate all aspects of managing nuclear facilities and activities. Contents: 1. Introduction; 2. Management system; 3. Management responsibility; 4. Resource management; 5. Process implementation; 6. Measurement, assessment and improvement; Appendix I: Transition to an integrated management system; Appendix II: Activities in the document control process; Appendix III: Activities in the procurement process; Appendix IV: Performance of independent assessments; Annex I: Electronic document management system; Annex II: Media for record storage; Annex III: Record retention and storage; Glossary.

  8. Department of Energy Emergency Management Functional Requirements Study

    International Nuclear Information System (INIS)

    1987-05-01

    This Study, the Emergency Management Functional Requirements Study (EMFRS), identifies the physical environment, information resources, and equipment required in the DOE Headquarters Emergency Operations Center (EOC) to support the DOE staff in managing an emergency. It is the first step toward converting the present Forrestal EOC into a practical facility that will function well in each of the highly diverse types of emergencies in which the Department could be involved. 2 figs

  9. Tool management in manufacturing systems equipped with CNC machines

    Directory of Open Access Journals (Sweden)

    Giovanni Tani

    1997-12-01

    Full Text Available This work has been carried out for the purpose of realizing an automated system for the integrated management of tools within a company. By integrating planning, inspection and tool-room functions, automated tool management can ensure optimum utilization of tools on the selected machines, guaranteeing their effective availability. The first stage of the work consisted of defining and developing a Tool Management System whose central nucleus is a unified Data Base for all of the tools, forming part of the company's Technological Files (files on machines, materials, equipment, methods, etc., interfaceable with all of the company departments that require information on tools. The system assigns code numbers to the individual components of the tools and file them on the basis of their morphological and functional characteristics. The system is also designed to effect assemblies of tools, from which are obtained the "Tool Cards" required for compiling working cycles (CAPP, for CAM programming and for the Tool-room where the tools are physically prepared. Methods for interfacing with suitable systems for the aforesaid functions have also been devised

  10. Bank Customers Management System

    Directory of Open Access Journals (Sweden)

    Ebubeogu Amarachukwu Felix

    2015-08-01

    Full Text Available ABSTRACT The purpose of this project is in partial fulfilment of the requirements of Bachelor of Science Hon in Information Technology. The Design and development of this Bank customers Management system provides a more secured approach in managing bank customers information which strengthens the relationships between banks and their customers by providing the right solutions that uses a multi-level security to improve customer satisfaction. The technology used in developing this project is ASP.NET and the programming language used to develop this project is C and the IDE used is Microsoft Visual Studio 2013 professional in designing the front end while the back end uses Microsoft SQL Server 2012.

  11. Defense Nuclear Material Stewardship Integrated Inventory Information Management System (IIIMS).

    Energy Technology Data Exchange (ETDEWEB)

    Aas, Christopher A.; Lenhart, James E.; Bray, Olin H.; Witcher, Christina Jenkin

    2004-11-01

    Sandia National Laboratories was tasked with developing the Defense Nuclear Material Stewardship Integrated Inventory Information Management System (IIIMS) with the sponsorship of NA-125.3 and the concurrence of DOE/NNSA field and area offices. The purpose of IIIMS was to modernize nuclear materials management information systems at the enterprise level. Projects over the course of several years attempted to spearhead this modernization. The scope of IIIMS was broken into broad enterprise-oriented materials management and materials forecasting. The IIIMS prototype was developed to allow multiple participating user groups to explore nuclear material requirements and needs in detail. The purpose of material forecasting was to determine nuclear material availability over a 10 to 15 year period in light of the dynamic nature of nuclear materials management. Formal DOE Directives (requirements) were needed to direct IIIMS efforts but were never issued and the project has been halted. When restarted, duplicating or re-engineering the activities from 1999 to 2003 is unnecessary, and in fact future initiatives can build on previous work. IIIMS requirements should be structured to provide high confidence that discrepancies are detected, and classified information is not divulged. Enterprise-wide materials management systems maintained by the military can be used as overall models to base IIIMS implementation concepts upon.

  12. Integration of Standardized Management Systems: A Dilemma?

    Directory of Open Access Journals (Sweden)

    Manuel Ferreira Rebelo

    2015-06-01

    Full Text Available The growing proliferation of management systems standards (MSSs, and their individualized implementation, is a real problem faced by organizations. On the other hand, MSSs are aimed at improving efficiency and effectiveness of organizational responses in order to satisfy the requirements, needs and expectations of the stakeholders. Each organization has its own identity and this is an issue that cannot be neglected; hence, two possible approaches can be attended. First, continue with the implementation of individualized management systems (MSs; or, integrate the several MSSs versus related MSs into an integrated management system (IMS. Therefore, in this context, organizations are faced with a dilemma, as a result of the increasing proliferation and diversity of MSSs. This paper takes into account the knowledge gained through a case study conducted in the context of a Portuguese company and unveils some of the advantages and disadvantages of integration. A methodology is also proposed and presented to support organizations in developing and structuring the integration process of their individualized MSs, and consequently minimize problems that are generators of inefficiencies, value destruction and loss of competitiveness. The obtained results provide relevant information that can support Top Management decision in solving that dilemma and consequently promote a successful integration, including a better control of business risks associated to MSSs requirements and enhancing sustainable performance, considering the context in which organizations operate.

  13. Research Perspectives for Material Requirements Planning Systems. Paper No. 434.

    Science.gov (United States)

    Berry, W. L.; Whybark, D. Clay

    Material requirements planning (MRP) systems are described as management tools for planning and controlling production operations. A wide variety of industries and production organizations are credited as reporting significant operating improvements in such areas as inventory control, production scheduling, delivery performance, and production…

  14. Transforming an EPA QA/R-2 quality management plan into an ISO 9002 quality management system.

    Science.gov (United States)

    Kell, R A; Hedin, C M; Kassakhian, G H; Reynolds, E S

    2001-01-01

    The Environmental Protection Agency's (EPA) Office of Emergency and Remedial Response (OERR) requires environmental data of known quality to support Superfund hazardous waste site projects. The Quality Assurance Technical Support (QATS) Program is operated by Shaw Environmental and Infrastructure, Inc. to provide EPA's Analytical Operations Center (AOC) with performance evaluation samples, reference materials, on-site laboratory auditing capabilities, data audits (including electronic media data audits), methods development, and other support services. The new QATS contract awarded in November 2000 required that the QATS Program become ISO 9000 certified. In a first for an EPA contractor, the QATS staff and management successfully transformed EPA's QA/R-2 type Quality Management Plan into a Quality Management System (QMS) that complies with the requirements of the internationally recognized ISO 9002 standard and achieved certification in the United States, Canada, and throughout Europe. The presentation describes how quality system elements of ISO 9002 were implemented on an already existing quality system. The psychological and organizational challenges of the culture change in QATS' day-to-day operations will be discussed for the benefit of other ISO 9000 aspirants.

  15. Respiratory care management information systems.

    Science.gov (United States)

    Ford, Richard M

    2004-04-01

    Hospital-wide computerized information systems evolved from the need to capture patient information and perform billing and other financial functions. These systems, however, have fallen short of meeting the needs of respiratory care departments regarding work load assessment, productivity management, and the level of outcome reporting required to support programs such as patient-driven protocols. The respiratory care management information systems (RCMIS) of today offer many advantages over paper-based systems and hospital-wide computer systems. RCMIS are designed to facilitate functions specific to respiratory care, including assessing work demand, assigning and tracking resources, charting, billing, and reporting results. RCMIS incorporate mobile, point-of-care charting and are highly configurable to meet the specific needs of individual respiratory care departments. Important and substantial benefits can be realized with an RCMIS and mobile, wireless charting devices. The initial and ongoing costs of an RCMIS are justified by increased charge capture and reduced costs, by way of improved productivity and efficiency. It is not unusual to recover the total cost of an RCMIS within the first year of its operation. In addition, such systems can facilitate and monitor patient-care protocols and help to efficiently manage the vast amounts of information encountered during the practitioner's workday. Respiratory care departments that invest in RCMIS have an advantage in the provision of quality care and in reducing expenses. A centralized respiratory therapy department with an RCMIS is the most efficient and cost-effective way to monitor work demand and manage the hospital-wide allocation of respiratory care services.

  16. Design of investment management optimization system for power grid companies under new electricity reform

    Science.gov (United States)

    Yang, Chunhui; Su, Zhixiong; Wang, Xin; Liu, Yang; Qi, Yongwei

    2017-03-01

    The new normalization of the economic situation and the implementation of a new round of electric power system reform put forward higher requirements to the daily operation of power grid companies. As an important day-to-day operation of power grid companies, investment management is directly related to the promotion of the company's operating efficiency and management level. In this context, the establishment of power grid company investment management optimization system will help to improve the level of investment management and control the company, which is of great significance for power gird companies to adapt to market environment changing as soon as possible and meet the policy environment requirements. Therefore, the purpose of this paper is to construct the investment management optimization system of power grid companies, which includes investment management system, investment process control system, investment structure optimization system, and investment project evaluation system and investment management information platform support system.

  17. Information management system study results. Volume 2: IMS study results appendixes

    Science.gov (United States)

    1971-01-01

    Computer systems program specifications are presented for the modular space station information management system. These are the computer program contract end item, data bus system, data bus breadboard, and display interface adapter specifications. The performance, design, tests, and qualification requirements are established for the implementation of the information management system. For Vol. 1, see N72-19972.

  18. Development of Human Factor Management Requirements and Human Error Classification for the Prevention of Railway Accident

    International Nuclear Information System (INIS)

    Kwak, Sang Log; Park, Chan Woo; Shin, Seung Ryoung

    2008-08-01

    Railway accident analysis results show that accidents cased by human factors are not decreasing, whereas H/W related accidents are steadily decreasing. For the efficient management of human factors, many expertise on design, conditions, safety culture and staffing are required. But current safety management activities on safety critical works are focused on training, due to the limited resource and information. In order to improve railway safety, human factors management requirements for safety critical worker and human error classification is proposed in this report. For this accident analysis, status of safety measure on human factor, safety management system on safety critical worker, current safety planning is analysis

  19. Design and Data Management System

    Science.gov (United States)

    Messer, Elizabeth; Messer, Brad; Carter, Judy; Singletary, Todd; Albasini, Colby; Smith, Tammy

    2007-01-01

    The Design and Data Management System (DDMS) was developed to automate the NASA Engineering Order (EO) and Engineering Change Request (ECR) processes at the Propulsion Test Facilities at Stennis Space Center for efficient and effective Configuration Management (CM). Prior to the development of DDMS, the CM system was a manual, paper-based system that required an EO or ECR submitter to walk the changes through the acceptance process to obtain necessary approval signatures. This approval process could take up to two weeks, and was subject to a variety of human errors. The process also requires that the CM office make copies and distribute them to the Configuration Control Board members for review prior to meetings. At any point, there was a potential for an error or loss of the change records, meaning the configuration of record was not accurate. The new Web-based DDMS eliminates unnecessary copies, reduces the time needed to distribute the paperwork, reduces time to gain the necessary signatures, and prevents the variety of errors inherent in the previous manual system. After implementation of the DDMS, all EOs and ECRs can be automatically checked prior to submittal to ensure that the documentation is complete and accurate. Much of the configuration information can be documented in the DDMS through pull-down forms to ensure consistent entries by the engineers and technicians in the field. The software also can electronically route the documents through the signature process to obtain the necessary approvals needed for work authorization. The workflow of the system allows for backups and timestamps that determine the correct routing and completion of all required authorizations in a more timely manner, as well as assuring the quality and accuracy of the configuration documents.

  20. SUGERE - a unified system for waste management

    International Nuclear Information System (INIS)

    Silva, Eliane Magalhaes Pereira da; Vasconcelos, Vanderley de; Senne Junior, Murillo; Jordao, Elizabete

    2005-01-01

    Generation and disposal of wastes has been responsible for many economical, ecological and public health problems. In order to manage hazardous wastes in an environment friendly manner, many technical and administrative procedures should be implemented, including prevention, control of generation, and final disposal. A software named SUGERE - a unified system for waste management - is being developed. It is an easy to use tool that integrates all the steps involved in hazardous and radioactive waste management. This system is intended to help generators, transporters and owners of treatment, storage and disposal facilities to manage hazardous and radioactive wastes, by assuring compliance with environmental laws and consumer requirements. This paper presents the current status of the SUGERE software, developed using Borland Delphi package. The nuclear industry is used as a reference for developing this work. (author)

  1. Solid waste information and tracking system server conversion project management plan

    International Nuclear Information System (INIS)

    MAY, D.L.

    1999-01-01

    The Project Management Plan governing the conversion of Solid Waste Information and Tracking System (SWITS) to a client-server architecture. The Solid Waste Information and Tracking System Project Management Plan (PMP) describes the background, planning and management of the SWITS conversion. Requirements and specification documentation needed for the SWITS conversion will be released as supporting documents

  2. IAEA Safety Standards on Management Systems and Safety Culture

    International Nuclear Information System (INIS)

    Persson, Kerstin Dahlgren

    2007-01-01

    The IAEA has developed a new set of Safety Standard for applying an integrated Management System for facilities and activities. The objective of the new Safety Standards is to define requirements and provide guidance for establishing, implementing, assessing and continually improving a Management System that integrates safety, health, environmental, security, quality and economic related elements to ensure that safety is properly taken into account in all the activities of an organization. With an integrated approach to management system it is also necessary to include the aspect of culture, where the organizational culture and safety culture is seen as crucial elements of the successful implementation of this management system and the attainment of all the goals and particularly the safety goals of the organization. The IAEA has developed a set of service aimed at assisting it's Member States in establishing. Implementing, assessing and continually improving an integrated management system. (author)

  3. Incident Management in Academic Information System using ITIL Framework

    Science.gov (United States)

    Palilingan, V. R.; Batmetan, J. R.

    2018-02-01

    Incident management is very important in order to ensure the continuity of a system. Information systems require incident management to ensure information systems can provide maximum service according to the service provided. Many of the problems that arise in academic information systems come from incidents that are not properly handled. The objective of this study aims to find the appropriate way of incident management. The incident can be managed so it will not be a big problem. This research uses the ITIL framework to solve incident problems. The technique used in this study is a technique adopted and developed from the service operations section of the ITIL framework. The results of this research found that 84.5% of incidents appearing in academic information systems can be handled quickly and appropriately. 15.5% incidents can be escalated so as to not cause any new problems. The model of incident management applied to make academic information system can run quickly in providing academic service in a good and efficient. The incident management model implemented in this research is able to manage resources appropriately so as to quickly and easily manage incidents.

  4. The effect of requirements prioritization on avionics system conceptual design

    Science.gov (United States)

    Lorentz, John

    This dissertation will provide a detailed approach and analysis of a new collaborative requirements prioritization methodology that has been used successfully on four Coast Guard avionics acquisition and development programs valued at $400M+. A statistical representation of participant study results will be discussed and analyzed in detail. Many technically compliant projects fail to deliver levels of performance and capability that the customer desires. Some of these systems completely meet "threshold" levels of performance; however, the distribution of resources in the process devoted to the development and management of the requirements does not always represent the voice of the customer. This is especially true for technically complex projects such as modern avionics systems. A simplified facilitated process for prioritization of system requirements will be described. The collaborative prioritization process, and resulting artifacts, aids the systems engineer during early conceptual design. All requirements are not the same in terms of customer priority. While there is a tendency to have many thresholds inside of a system design, there is usually a subset of requirements and system performance that is of the utmost importance to the design. These critical capabilities and critical levels of performance typically represent the reason the system is being built. The systems engineer needs processes to identify these critical capabilities, the associated desired levels of performance, and the risks associated with the specific requirements that define the critical capability. The facilitated prioritization exercise is designed to collaboratively draw out these critical capabilities and levels of performance so they can be emphasized in system design. Developing the purpose, scheduling and process for prioritization events are key elements of systems engineering and modern project management. The benefits of early collaborative prioritization flow throughout the

  5. Engineering Supply Management System: The Next Generation

    Science.gov (United States)

    1991-09-01

    010 Partia! receipts 0018 Automatic inventory update 0 048 Discrepant material 0 004 Order processing requirements Transaction reversal capability 0 012...August 1991. 2-5 sys.em’s modules that support the DEH’s needs are the Sales Order Processing , Register Sales, Purchase Order Processing , Inventory...modular system developed by PIC Business Systems, Incorporated. This system possesses Order Processing , Inventory Management, Purchase Orders, and

  6. Laboratory Information Systems Management and Operations.

    Science.gov (United States)

    Cucoranu, Ioan C

    2015-06-01

    The main mission of a laboratory information system (LIS) is to manage workflow and deliver accurate results for clinical management. Successful selection and implementation of an anatomic pathology LIS is not complete unless it is complemented by specialized information technology support and maintenance. LIS is required to remain continuously operational with minimal or no downtime and the LIS team has to ensure that all operations are compliant with the mandated rules and regulations. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Sustainable Water Management in Urban, Agricultural, and Natural Systems

    Directory of Open Access Journals (Sweden)

    Tess Russo

    2014-12-01

    Full Text Available Sustainable water management (SWM requires allocating between competing water sector demands, and balancing the financial and social resources required to support necessary water systems. The objective of this review is to assess SWM in three sectors: urban, agricultural, and natural systems. This review explores the following questions: (1 How is SWM defined and evaluated? (2 What are the challenges associated with sustainable development in each sector? (3 What are the areas of greatest potential improvement in urban and agricultural water management systems? And (4 What role does country development status have in SWM practices? The methods for evaluating water management practices range from relatively simple indicator methods to integration of multiple models, depending on the complexity of the problem and resources of the investigators. The two key findings and recommendations for meeting SWM objectives are: (1 all forms of water must be considered usable, and reusable, water resources; and (2 increasing agricultural crop water production represents the largest opportunity for reducing total water consumption, and will be required to meet global food security needs. The level of regional development should not dictate sustainability objectives, however local infrastructure conditions and financial capabilities should inform the details of water system design and evaluation.

  8. Monitoring of performance management using Quality Assurance Indicators and ISO requirement

    Directory of Open Access Journals (Sweden)

    Dargahi H

    2007-06-01

    Full Text Available Background: Quality assurance is a prevention-oriented system that can be used to improve the quality of care, increase productivity and monitor the performance management in clinical laboratories. ISO 9001: 2000 requirements are a collection of management and technical systems designed to implement quality assurance and monitor performance management in organizations. Methods: A checklist was prepared to monitor the preanalytical, analytical and postanalytical stages of laboratory performance management in 16 areas and all laboratory activities in 14 of the clinical laboratories of the Tehran University of Medical Sciences (TUMS hospitals. Collected data were stored and statistically analyzed using SPSS software. Results: The best performance, in which 77.73% of quality assurance indicators were observed, was found in Sina Hospital. However, only 57.56% of these indicators were fulfilled at Farabi Hospital, with the lowest-level performance among the clinical laboratories of TUMS hospitals. The highest level of compliance with quality assurance indicators was in the hematology departments and for facility demands in management areas. Overall, quality assurance indicators were appropriately followed in only 7% of the clinical laboratories. Conclusion: The average quality assurance observation rate in the clinical laboratories studied was 67.22%, which is insufficient and must be remedied with stricter enforcement of the ISO 9001: 2000 regulations.

  9. Quality management systems for your in vitro fertilization clinic′s laboratory: Why bother?

    Directory of Open Access Journals (Sweden)

    Jan I Olofsson

    2013-01-01

    Full Text Available Several countries have in recent years introduced prescribed requirements for treatment and monitoring of outcomes, as well as a licensing or accreditation requirement for in vitro fertilization (IVF clinics and their laboratories. It is commonplace for Assisted Reproductive Technology (ART laboratories to be required to have a quality control system. However, more effective Total Quality Management systems are now being implemented by an increasing number of ART clinics. In India, it is now a requirement to have a quality management system in order to be accredited and to help meet customer demand for improved delivery of ART services. This review contains the proceedings a quality management session at the Indian Fertility Experts Meet (IFEM 2010 and focuses on the creation of a patient-oriented best-in-class IVF laboratory.

  10. Bridge Management Systems

    DEFF Research Database (Denmark)

    Thoft-Christensen, Palle

    In this paper bridge management systems are discussed with special emphasis on management systems for reinforced concrete bridges. Management systems for prestressed concrete bridges, steel bridges, or composite bridges can be developed in a similar way....

  11. DEVELOPMENT OF A METADATA MANAGEMENT SYSTEM FOR AN INTERDISCIPLINARY RESEARCH PROJECT

    Directory of Open Access Journals (Sweden)

    C. Curdt

    2012-07-01

    Full Text Available In every interdisciplinary, long-term research project it is essential to manage and archive all heterogeneous research data, produced by the project participants during the project funding. This has to include sustainable storage, description with metadata, easy and secure provision, back up, and visualisation of all data. To ensure the accurate description of all project data with corresponding metadata, the design and implementation of a metadata management system is a significant duty. Thus, the sustainable use and search of all research results during and after the end of the project is particularly dependent on the implementation of a metadata management system. Therefore, this paper will describe the practical experiences gained during the development of a scientific research data management system (called the TR32DB including the corresponding metadata management system for the multidisciplinary research project Transregional Collaborative Research Centre 32 (CRC/TR32 'Patterns in Soil-Vegetation-Atmosphere Systems'. The entire system was developed according to the requirements of the funding agency, the user and project requirements, as well as according to recent standards and principles. The TR32DB is basically a combination of data storage, database, and web-interface. The metadata management system was designed, realized, and implemented to describe and access all project data via accurate metadata. Since the quantity and sort of descriptive metadata depends on the kind of data, a user-friendly multi-level approach was chosen to cover these requirements. Thus, the self-developed CRC/TR32 metadata framework is designed. It is a combination of general, CRC/TR32 specific, as well as data type specific properties.

  12. The Design of Integrated Logistics Management System of an Industrial Company

    Directory of Open Access Journals (Sweden)

    Hart Martin

    2017-01-01

    Full Text Available In the contemporary global business markets environment, when the business markets are getting more and more commercial, there are growing demand for effective management of material flows. The effectivity and effectiveness of planning, management and control the material flows across an industrial company and its distribution networks, represents one of the main pillar regarding the high level of competitive advantage within the frame of supply chains. Thus, the company information management system design should have also included a module of integrated logistics management system to ensure required level of material flow management effectivity and effectiveness. The article deals with brief description of the issues on company management, company information management systems and logistics management. Further it’s stated the methodology to created integrated logistics management system, which is containing the methodics to design logistics management sub-systems of purchasing, manufacturing, distribution and reverse material flows. The essential methodics of the stated methodology is the methodics to create independent demand forecasting sub-system.

  13. Federal Emergency Management Information Systems (FEMIS), System Administration Guide FEMIS: Phase 1, Version 1.1u

    Energy Technology Data Exchange (ETDEWEB)

    Cerna, P.A.; Conner, W.M.; Curtis, L.M. [and others

    1995-06-01

    The Federal Emergency Management Information System (FEMIS) is an emergency management planning and analysis tool that is being developed under the direction of the U.S. Army Chemical Biological Defense Command. The FEMIS System Administration Guide defines FEMIS hardware and software requirements and gives instructions for installing the FEMIS software package.

  14. Development of Earned Value Management System in PP Construction Project

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sang-Hyun; Moon, Byeong-Suk [KHNP-CRI, Daejeon (Korea, Republic of)

    2014-10-15

    The NPP construction project has been determined in the form of a rather lump-sum contract with little details in resource requirements and estimations. Therefore, Earned Value Management System (EVMS) needs to be applied to the NPP projects in order to incorporate scope, schedule and cost targeting efficient and to control effective resource. The NPP projects in Korea have not applied EVMS. EVMS has phased in NPP construction project by Korea Hydro and Nuclear Power Co., Ltd (KHNP), playing the role of project master manager in NPP construction in Korea. This study presented the EVMS unlike other system. Accordingly, EVMS is expected to reduce risks and increase efficiency in the NPP project. The NPP construction project is a technology ntensive multi-construction project that should be based on economics and stability and that takes over ten years to complete, requiring investment of billions of dollars, a great number of persons concerned, and a vast store of human and material resources. KHNP is phasing EVMS in NPP construction project for overseas contracts and the efficient management, the paper presented the pilot EVMS in KHNP. It expected to control and identify of NPP construction projects by using EVMS as a computerized management tool which is quantitative and objective management criteria. It is necessary to improve of the contract system related EVM for enterprise system, and the effort will be required, such as on-site support and training so that this can be done in collaboration with the relevant stakeholders.

  15. Emerging Requirements for Technology Management: A Sector-based Scenario Planning Approach

    Directory of Open Access Journals (Sweden)

    Simon Patrick Philbin

    2013-09-01

    Full Text Available Identifying the emerging requirements for technology management will help organisations to prepare for the future and remain competitive. Indeed technology management as a discipline needs to develop and respond to societal and industrial needs as well as the corresponding technology challenges. Therefore, following a review of technology forecasting methodologies, a sector-based scenario planning approach has been used to derive the emerging requirements for technology management. This structured framework provided an analytical lens to focus on the requirements for managing technology in the healthcare, energy and higher education sectors over the next 5-10 years. These requirements include the need for new business models to support the adoption of technologies; integration of new technologies with existing delivery channels; management of technology options including R&D project management; technology standards, validation and interoperability; and decision-making tools to support technology investment.

  16. 28 CFR 66.20 - Standards for financial management systems.

    Science.gov (United States)

    2010-07-01

    ... financial reporting requirements of the grant or subgrant. (2) Accounting records. Grantees and subgrantees... advances to the grantees. (c) An awarding agency may review the adequacy of the financial management system... 28 Judicial Administration 2 2010-07-01 2010-07-01 false Standards for financial management...

  17. Building Quality into Learning Management Systems – An Architecture-Centric Approach

    NARCIS (Netherlands)

    Avgeriou, P.; Retalis, Simos; Skordalakis, Manolis

    2003-01-01

    The design and development of contemporary Learning Management Systems (LMS), is largely focused on satisfying functional requirements, rather than quality requirements, thus resulting in inefficient systems of poor software and business quality. In order to remedy this problem there is a research

  18. Integrated Management System – Scope, Possibilities And Methodology

    Directory of Open Access Journals (Sweden)

    Čekanová Katarína

    2015-06-01

    Full Text Available Organizations are becoming more aware of the importance of integrated management systems (IMS. Interest in this subject indicates that IMS are seen as “management systems of the future”. Based on this, the aim of this articles characterizes the possibility of building IMS through the identification of common elements and specific requirements in accordance with the ISO 9001, ISO 14001 and OHSAS 18001 professional references. Part of the article is the methodology of building IMS in the organization.

  19. Management of Leaks in Hydrogen Production, Delivery, and Storage Systems

    Energy Technology Data Exchange (ETDEWEB)

    Rawls, G

    2006-04-27

    A systematic approach to manage hydrogen leakage from components is presented. Methods to evaluate the quantity of hydrogen leakage and permeation from a system are provided by calculation and testing sensitivities. The following technology components of a leak management program are described: (1) Methods to evaluate hydrogen gas loss through leaks; (2) Methods to calculate opening areas of crack like defects; (3) Permeation of hydrogen through metallic piping; (4) Code requirements for acceptable flammability limits; (5) Methods to detect flammable gas; (6) Requirements for adequate ventilation in the vicinity of the hydrogen system; (7) Methods to calculate dilution air requirements for flammable gas mixtures; and (8) Concepts for reduced leakage component selection and permeation barriers.

  20. An ontological framework for requirement change management in distributed environment

    International Nuclear Information System (INIS)

    Khatoon, A.; Hafeez, Y.; Ali, T.

    2014-01-01

    Global Software Development (GSD) is getting fame in the software industry gradually. However, in GSD, multiple and diverse stakeholders are involved in the development of complex software systems. GSD introduces several challenges, i.e. physical distance, time zone, culture difference, language barriers. As requirements play a significant role in any software development. The greatest challenge in GSD environment is to maintain a consistent view of the system even if the requirements change. But at the same time single change in the requirement might affect several other modules. In GSD different people use terms and have different ways of expressing the concepts for which people at remote sites are unable to get uniformity regarding the semantics of the terms. In a global environment requires effective communication and coordination. However, to overcome inconsistencies and ambiguities among the team members and to make the team members aware of the consistent view, a shared and common understanding is required. In this paper an approach beneficial to software industry has been proposed, focusing on changing requirements in a Global Software Development environment. A case study has been used for the evaluation of the proposed approach. Therefore, Requirements change management process has been improved by applying the approach of the case study. The proposed approach is beneficial to the software development organizations where frequent changes occur. It guided the software industry to provide the common understandings to all the development teams residing in remote locations. (author)