WorldWideScience

Sample records for management facilities groundwate

  1. Design, placement, and sampling of groundwater monitoring wells for the management of hazardous waste disposal facilities

    International Nuclear Information System (INIS)

    Tsai, S.Y.

    1988-01-01

    Groundwater monitoring is an important technical requirement in managing hazardous waste disposal facilities. The purpose of monitoring is to assess whether and how a disposal facility is affecting the underlying groundwater system. This paper focuses on the regulatory and technical aspects of the design, placement, and sampling of groundwater monitoring wells for hazardous waste disposal facilities. Such facilities include surface impoundments, landfills, waste piles, and land treatment facilities. 8 refs., 4 figs

  2. Mixed Waste Management Facility (MWMF) groundwater monitoring report

    International Nuclear Information System (INIS)

    1993-03-01

    During fourth quarter 1992, nine constituents exceeded final Primary Drinking Water Standards (PDWS) in one or more groundwater samples from monitoring wells at the Mixed Waste Management Facility (MWMF) and adjacent facilities. As in previous quarters, tritium and trichloroethylene were the most widespread constituents. Fifty-seven (48%) of the 120 monitoring wells, contained elevated tritium activities, and 23 (19%) contained elevated trichloroethylene concentrations. Total alpha-emitting radium, tetrachloroethylene, chloroethene, cadmium, 1,1-dichloroethylene, lead, or nonvolatile beta levels exceeded standards in one or more wells. During 1992, elevated levels of 13 constituents were found in one or more of 80 of the 120 groundwater monitoring wells (67%) at the MWMF and adjacent facilities. Tritium and trichloroethylene exceeded their final PDWS more frequently and more consistently than did other constituents. Tritium activity exceeded its final PDWS m 67 wells and trichloroethylene was. elevated in 28 wells. Lead, tetrachloroethylene, total alpha-emitting radium, gross alpha, cadmium, chloroethene, 1,1-dichloroethylene 1,2-dichloroethane, mercury, or nitrate exceeded standards in one or more wells during the year. Nonvolatile beta exceeded its drinking water screening level in 3 wells during the year

  3. Mixed Waste Management Facility Groundwater Monitoring Report, Fourth Quarter 1998 and 1998 Summary

    International Nuclear Information System (INIS)

    Chase, J.

    1999-01-01

    During fourth quarter 1998, ten constituents exceeded final Primary Drinking Water Standards (PDWS) in groundwater samples from downgradient monitoring wells at the Mixed Waste Management Facility. No constituents exceeded final PDWS in samples from the upgradient monitoring wells

  4. Metallurgical Laboratory Hazardous Waste Management Facility groundwater monitoring report: Third quarter 1993

    International Nuclear Information System (INIS)

    1993-12-01

    During third quarter 1993, samples from AMB groundwater monitoring wells at the Metallurgical Laboratory Hazardous Waste Management Facility were analyzed for certain heavy metals, indicator parameters, radionuclides, volatile organic compounds, and other constituents. Eight parameters exceeded standards during the quarter. As in previous quarters, tetrachloroethylene and trichloroethylene exceeded final Primary Drinking Water Standards; and aluminum, iron, lead, manganese, pH, and total organic halogens exceeded the Savannah River Site Flag 2 criteria in one or more of the wells. Groundwater flow direction and rate in the water-table unit were similar to previous quarters

  5. 1999 Annual Mixed Waste Management Facility Groundwater Correction - Action Report (Volumes I, II, and III)

    International Nuclear Information System (INIS)

    Chase, J.

    2000-01-01

    This Corrective Action Report (CAR) for the Mixed Waste Management Facility (MWMF) is being prepared to comply with the Resource Conservation and Recovery Act (RCRA) Permit Number SC1 890 008 989, dated October 31, 1999. This CAR compiles and presents all groundwater sampling and monitoring activities that are conducted at the MWMF. As set forth in previous agreements with South Carolina Department of Health and Environmental Control (SCDHEC), all groundwater associated with the Burial Ground Complex (BGC) (comprised of the MWMF, Low-Level Radioactive Waste Disposal Facility, and Old Radioactive Waste Burial Ground) will be addressed under this RCRA Permit. This CAR is the first to be written for the MWMF and presents monitoring activities and results as an outcome of Interim Status and limited Permitted Status activities. All 1999 groundwater monitoring activities were conducted while the MWMF was operated during Interim Status. Changes to the groundwater monitoring program were made upon receipt of the RCRA Permit, where feasible. During 1999, 152 single-screened and six multi-screened groundwater monitoring wells at the BGC monitored groundwater quality in the uppermost aquifer as required by the South Carolina Hazardous Waste Management Regulations (SCHWMR), settlement agreements 87-52-SW and 91-51-SW, and RCRA Permit SC1 890 008 989. However, overall compliance with the recently issued RCRA Permit could not be implemented until the year 2000 due to the effective date of the RCRA Permit and scheduling of groundwater monitoring activities. Changes have been made to the groundwater monitoring network to meet Permit requirements for all 2000 sampling events

  6. Mixed Waste Management Facility (MWMF) groundwater monitoring report: Third quarter 1993

    Energy Technology Data Exchange (ETDEWEB)

    1993-12-01

    During third quarter 1993, eight constituents exceeded final Primary Drinking Water Standards in groundwater samples from downgradient monitoring wells at the Mixed Waste Management Facility, the Old Burial Ground, the E-Area Vaults, and the proposed Hazardous Waste/Mixed Waste Disposal Vaults. As in previous quarters, tritium and trichloroethylene were the most widespread constituents Chloroethene (vinyl chloride), 1,1-dichloroethylene, dichloromethane (methylene chloride), lead, mercury, or tetrachloroethylene also exceeded standards in one or more wells. The elevated constituents were found in Aquifer Zone IIB{sub 2} (Water Table) and Aquifer Zone IIB{sub 1} (Barnwell/McBean) wells. No elevated constituents were exhibited in Aquifer Unit IIA (Congaree) wells. The groundwater flow directions and rates in the three hydrostratigraphic units were similar to those of previous quarters.

  7. Application of optimization modeling to groundwater remediation at US Department of Energy facilities

    International Nuclear Information System (INIS)

    Bakr, A.A.; Dal Santo, D.J.; Smalley, R.C.; Phillips, E.C.

    1988-01-01

    This paper outlines and explores the fundamentals of the current strategies for groundwater hydraulic and quality management modeling and presents a scheme for the application of such strategies to DOE facilities. The discussion focuses on the DOE-Savannah River Operations (DOE-SR) facility. Remediation of contaminated groundwater at active and abandoned waste disposal sites has become a major element of environmental programs. Traditional groundwater remediation programs (e.g., pumping and treatment) may not represent optimal water quality management strategies at sites to be remediated. Complex, interrelated environmental (geologic/geohydrologic), institutional, engineering, and economic conditions at a site may require a more comprehensive management strategy. Groundwater management models based on the principles of operations research have been developed and used to determine optimal management strategies for water resources needs and for hypothetical remediation programs. Strategies for groundwater remediation programs have ranged from the simple removal of groundwater to complex, hydraulic gradient control programs involving groundwater removal, treatment, and recharge

  8. Novel S-35 Intrinsic Tracer Method for Determining Groundwater Travel Time near Managed Aquifer Recharge Facilities

    Science.gov (United States)

    Urióstegui, S. H.; Bibby, R. K.; Esser, B. K.; Clark, J. F.

    2013-12-01

    Identifying groundwater travel times near managed aquifer recharge (MAR) facilities is a high priority for protecting public and environmental health. For MAR facilities in California that incorporate tertiary wastewater into their surface-spreading recharge practices, the target subsurface residence time is >9 months to allow for the natural inactivation and degradation of potential contaminants (less time is needed for full advanced treated water). Established intrinsic groundwater tracer techniques such as tritium/helium-3 dating are unable to resolve timescales of method using a naturally occurring radioisotope of sulfur, sulfur-35 (S-35). After its production in the atmosphere by cosmic ray interaction with argon, S-35 enters the hydrologic cycle as dissolved sulfate through precipitation The short half-life of S-35 (3 months) is ideal for investigating recharge and transport of MAR groundwater on the method, however, has not been applied to MAR operations because of the difficulty in measuring S-35 with sufficient sensitivity in high-sulfate waters. We have developed a new method and have applied it at two southern California MAR facilities where groundwater travel times have previously been characterized using deliberate tracers: 1) Rio Hondo Spreading Grounds in Los Angeles County, and 2) Orange County Groundwater Recharge Facilities in Orange County. Reasonable S-35 travel times of method also identified seasonal patterns in subsurface travel times, which may not be revealed by a deliberate tracer study that is dependent on the hydrologic conditions during the tracer injection period.

  9. Annual report for RCRA groundwater monitoring projects at Hanford Site facilities for 1995

    International Nuclear Information System (INIS)

    Hartman, M.J.

    1996-02-01

    This report presents the annual hydrogeologic evaluation of 19 Resource Conservation and Recovery Act of 1976 facilities and 1 nonhazardous waste facility at the US Department of Energy's Hanford Site. Although most of the facilities no longer receive dangerous waste, a few facilities continue to receive dangerous waste constituents for treatment, storage, or disposal. The 19 Resource Conservation and Recovery Act facilities comprise 29 waste management units. Nine of the units are monitored under groundwater quality assessment status because of elevated levels of contamination indicator parameters. The impact of those units on groundwater quality, if any, is being investigated. If dangerous waste or waste constituents have entered groundwater, their concentration profiles, rate, and extent of migration are evaluated. Groundwater is monitored at the other 20 units to detect leakage, should it occur. This report provides an interpretation of groundwater data collected at the waste management units between October 1994 and September 1995. Groundwater quality is described for the entire Hanford Site. Widespread contaminants include nitrate, chromium, carbon tetrachloride, tritium, and other radionuclides

  10. Annual report for RCRA groundwater monitoring projects at Hanford site facilities for 1994

    International Nuclear Information System (INIS)

    1995-02-01

    This report presents the annual hydrogeologic evaluation of 19 Resource Conservation and Recovery Act of 1976 facilities and 1 nonhazardous waste facility at the U.S. Department of Energy's Hanford Site. Although most of the facilities no longer receive dangerous waste, a few facilities continue to receive dangerous waste constituents for treatment, storage, or disposal. The 19 Resource Conservation and Recovery Act facilities comprise 29 waste management units. Nine of the units are monitored under groundwater quality assessment status because of elevated levels of contamination indicator parameters. The impact of those units on groundwater quality, if any, is being investigated. If dangerous waste or waste constituents have entered groundwater, their concentration profiles, rate, and extent of migration are evaluated. Groundwater is monitored at the other 20 units to detect leakage, should it occur. This report provides an interpretation of groundwater data collected at the waste management units between October 1993 and September 1994. Groundwater quality is described for the entire Hanford Site. Widespread contaminants include nitrate, chromium, carbon tetrachloride, tritium, and other radionuclides

  11. Metallurgical Laboratory Hazardous Waste Management Facility groundwater monitoring report. First quarter 1995

    International Nuclear Information System (INIS)

    1995-06-01

    During first quarter 1995, samples from AMB groundwater monitoring wells at the Metallurgical Laboratory Hazardous Waste Management Facility (Met Lab HWMF) were analyzed for selected heavy metals, field measurements, radionuclides, volatile organic compounds, and other constituents. Six parameters exceeded standards during the quarter. As in previous quarters, tetrachloroethylene and trichloroethylene exceeded final Primary Drinking Water Standards (PDWS). Total organic halogens exceeded its Savannah River Site (SRS) Flag 2 criterion during first quarter 1995 as in fourth quarter 1994. Aluminum, iron, and manganese, which were not analyzed for during fourth quarter 1994, exceeded the Flag 2 criteria in at least two wells each during first quarter 1995. Groundwater flow direction and rate in the M-Area Aquifer Zone were similar to previous quarters. Conditions affecting the determination of groundwater flow directions and rates in the Upper Lost Lake Aquifer Zone, Lower Lost Lake Aquifer Zone, and the Middle Sand Aquifer Zone of the Crouch Branch Confining Unit were also similar to previous quarters

  12. M-Area hazardous waste management facility groundwater monitoring report -- first quarter 1994. Volume 1

    International Nuclear Information System (INIS)

    Evans, C.S.; Washburn, F.; Jordan, J.; Van Pelt, R.

    1994-05-01

    This report describes the groundwater monitoring and corrective action program at the M-Area Hazardous Waste Management Facility (HWMF) at the Savannah River Site (SRS) during first quarter 1994 as required by South Carolina Hazardous Waste Permit SC1-890-008-989 and section 264.100(g) of the South Carolina Hazardous Waste Management Regulations. During first quarter 1994, 42 point-of-compliance (POC) wells at the M-Area HWMF were sampled for drinking water parameters

  13. Mixed waste management facility groundwater monitoring report. Fourth quarter 1995 and 1995 summary

    International Nuclear Information System (INIS)

    1996-03-01

    During fourth quarter 1995, seven constituents exceeded final Primary Drinking Water Standards (PDWS) in groundwater samples from downgradient monitoring wells at the Mixed Waste Management Facility. No constituents exceeded final PDWS in samples from the upgradient monitoring wells. As in previous quarters, tritium and trichloroethylene were the most widespread elevated constituents. Chloroethene, gross alpha, lead, mercury, and tetrachloroethylene also exceeded final PDWS in one or more wells. Elevated constituents were found in numerous Aquifer Zone IIB 2 (Water Table) and Aquifer Zone IIB 1 (Barnwell/McBean) wells and in three Aquifer Unit IIA (Congaree) wells. The groundwater flow directions and rates in the three hydrostratigraphic units were similar to those of previous quarters

  14. Mixed waste management facility groundwater monitoring report. Fourth quarter 1996 and 1996 summary

    International Nuclear Information System (INIS)

    1997-03-01

    During fourth quarter 1996, nine constituents exceeded final Primary Drinking Water Standards (PDWS) in groundwater samples from downgradient monitoring wells at the Mixed Waste Management Facility. No constituents exceeded final PDWS in samples from the upgradient monitoring wells. As in previous quarters, tritium and trichloroethylene were the most widespread elevated constituents. Carbon tetrachloride, chloroethene, chloroform, 1,1-dichloroethylene, dichloromethane, gross alpha, and tetrachloroethylene also exceeded final PDWS in one or more wells. Elevated constituents were found in numerous Aquifer Zone llB2 (Water Table) and Aquifer Zone llB1 (Barnwell/McBean) wells and in six Aquifer Unit IIA (Congaree) wells. The groundwater flow directions and rates in the three hydrostratigraphic units were similar to those of previous quarters

  15. Mixed Waste Management Facility (MWMF) groundwater monitoring report. Fourth quarter 1992 and 1992 summary

    Energy Technology Data Exchange (ETDEWEB)

    1993-03-01

    During fourth quarter 1992, nine constituents exceeded final Primary Drinking Water Standards (PDWS) in one or more groundwater samples from monitoring wells at the Mixed Waste Management Facility (MWMF) and adjacent facilities. As in previous quarters, tritium and trichloroethylene were the most widespread constituents. Fifty-seven (48%) of the 120 monitoring wells, contained elevated tritium activities, and 23 (19%) contained elevated trichloroethylene concentrations. Total alpha-emitting radium, tetrachloroethylene, chloroethene, cadmium, 1,1-dichloroethylene, lead, or nonvolatile beta levels exceeded standards in one or more wells. During 1992, elevated levels of 13 constituents were found in one or more of 80 of the 120 groundwater monitoring wells (67%) at the MWMF and adjacent facilities. Tritium and trichloroethylene exceeded their final PDWS more frequently and more consistently than did other constituents. Tritium activity exceeded its final PDWS m 67 wells and trichloroethylene was. elevated in 28 wells. Lead, tetrachloroethylene, total alpha-emitting radium, gross alpha, cadmium, chloroethene, 1,1-dichloroethylene 1,2-dichloroethane, mercury, or nitrate exceeded standards in one or more wells during the year. Nonvolatile beta exceeded its drinking water screening level in 3 wells during the year.

  16. Mixed Waste Management Facility (MWMF) groundwater monitoring report

    International Nuclear Information System (INIS)

    1993-06-01

    During first quarter 1993, eight constituents exceeded final Primary Drinking Water Standards in groundwater samples from downgradient monitoring wells at the Mixed Waste anagement Facility, the Old Burial Ground, the E-Area Vaults, and the proposed Hazardous Waste/Mixed Waste Disposal Vaults (HWMWDV). As in previous quarters, tritium and trichloroethylene were the most widespread constituents. Tetrachloroethylene, chloroethene, 1,1-dichloroethylene, gross alpha, lead, or nonvolatile beta levels also exceeded standards in one or more wells. The elevated constituents were found primarily in Aquifer Zone IIB 2 (Water Table) and Aquifer Zone IIB 1 , (Barnwell/McBean) wells. However, several Aquifer Unit IIA (Congaree) wells also contained elevated constituent levels. The groundwater flow directions and rates in the three hydrostratigraphic units were similar to previous quarters

  17. Metallurgical Laboratory Hazardous Waste Management Facility groundwater monitoring report. Third quarter, 1994

    International Nuclear Information System (INIS)

    1994-12-01

    During third quarter 1994, samples from AMB groundwater monitoring wells at the Metallurgical Laboratory Hazardous Waste Management Facility (Met Lab HWMF) were analyzed for selected heavy metals, indicator parameters, radionuclides, volatile organic compounds, and other constituents. Eight parameters exceeded standards during the quarter. As in previous quarters, tetrachloroethylene and trichloroethylene exceeded final Primary Drinking Water Standards (PDWS). Bis(2-ethylhexyl) phthalate exceeded final PDWS in one well. Aluminum, iron, manganese, tin, and total organic halogens exceeded the Savannah River Site (SRS) Flag 2 criteria. Groundwater flow direction and rate in the M-Area Aquifer Zone were similar to previous quarters. Conditions affecting determination of groundwater flow directions and rates in the Upper Lost Lake Aquifer Zone, Lower Lost Lake Aquifer Zone, and the Middle Sand Aquifer Zone of the Crouch Branch Confining Unit were also similar to previous quarters. During second quarter 1994, SRS received South Carolina Department of Health and Environmental Control approval for constructing five point-of-compliance wells and two plume definition wells near the Met Lab HWMF. This project began in July 1994 and is complete; however, analytical data from these wells is not available yet

  18. F-Area Hazardous Waste Management Facility groundwater monitoring report, Third and fourth quarters 1995: Volume 1

    International Nuclear Information System (INIS)

    1996-03-01

    Groundwater at the F-Area Hazardous Waste Management Facility (HWMF) is monitored in compliance with applicable regulations. Monitoring results are compared to the South Carolina Department of Health and Environmental Control (SCDHEC) Groundwater Protection Standard (GWPS). Historically and currently, gross alpha, nitrates, nonvolatile beta, and tritium are among the primary constituents to exceed standards. Numerous other radionuclides and hazardous constituents also exceed the GWPS in the groundwater during the second half of 1995, notably cadmium, lead, radium-226, radium-228, strontium-90, and total alpha-emitting radium. The elevated constituents were found primarily in the water table (aquifer zone IIB 2 ), however, several other aquifer unit monitoring wells contained elevated levels of constituents. Water-level maps indicate that the groundwater flow rates and directions at the F-Area HWMF have remained relatively constant since the basins ceased to be active in 1988

  19. Groundwater protection plan for the Environmental Restoration Disposal Facility

    International Nuclear Information System (INIS)

    Weekes, D.C.; Jaeger, G.K.; McMahon, W.J.; Ford, B.H.

    1996-01-01

    This document is the groundwater protection plan for the Environmental Restoration Disposal Facility (ERDF) Project. This plan is prepared based on the assumption that the ERDF will receive waste containing hazardous/dangerous constituents, radioactive constituents, and combinations of both. The purpose of this plan is to establish a groundwater monitoring program that (1) meets the intent of the applicable or relevant and appropriate requirements, (2) documents baseline groundwater conditions, (3) monitors those conditions for change, and (4) allows for modifications to groundwater sampling if required by the leachate management program. Groundwater samples indicate the occurrence of preexisting groundwater contamination in the uppermost unconfined aquifer below the ERDF Project site, as a result of past waste-water discharges in the 200 West Area. Therefore, it is necessary for the ERDF to establish baseline groundwater quality conditions and to monitor changes in the baseline over time. The groundwater monitoring program presented in this plan will provide the means to assess onsite and offsite impacts to the groundwater. In addition, a separate leachate management program will provide an indication of whether the liners are performing within design standards

  20. H-Area Hazardous Waste Management Facility groundwater monitoring report, Third and fourth quarters 1995: Volume 1

    International Nuclear Information System (INIS)

    1996-03-01

    Groundwater at the H-Area Hazardous Waste Management Facility (HWMF) is monitored in compliance with applicable regulations. Monitoring results are compared to the South Carolina Department of Health and Environmental control (SCDHEC) Groundwater Protection Standard (GWPS). Historically as well as currently, nitrate-nitrite as nitrogen, nonvolatile beta, and tritium have been among the primary constituents to exceed standards. Other radionuclides and hazardous constituents also exceeded the GWPS in the second half of 1995. Elevated constituents were found primarily in the water table (Aquifer Zone IIB 2 ), however, constitutents exceeding standards also occurred in several different aquifer zones monitoring wells. Water-level maps indicate that the groundwater flow rates and directions at the H-Area HWMF have remained relatively constant since the basins ceased to be active in 1988

  1. Mixed Waste Management Facility (MWMF) groundwater monitoring report. Fourth quarter 1993 and 1993 summary

    Energy Technology Data Exchange (ETDEWEB)

    Butler, C.T.

    1994-03-01

    During fourth quarter 1993, 10 constituents exceeded final Primary Drinking Water Standards in groundwater samples from downgradient monitoring wells at the Mixed Waste Management Facility, the Old Burial Ground, the E-Area Vaults, and the proposed Hazardous Waste/Mixed Waste Disposal Vaults. As in previous quarters, tritium and trichloroethylene were the most widespread elevated constituents. Carbon tetrachloride, chloroform, chloroethane (vinyl chloride), 1,1-dichloroethylene, dichloromethane (methylene chloride), lead, mercury, or tetrachloroethylene also exceeded standards in one or more wells. Elevated constituents were found in numerous Aquifer Zone 2B{sub 2} (Water Table) and Aquifer Zone 2B{sub 1}, (Barnwell/McBean) wells and in two Aquifer Unit 2A (Congaree) wells. The groundwater flow direction and rates in the three hydrostratigraphic units were similar to those of previous quarters.

  2. Hanford Site Groundwater Protection Management Program: Revision 1

    International Nuclear Information System (INIS)

    1993-11-01

    Groundwater protection is a national priority that is promulgated in a variety of environmental regulations at local, state, and federal levels. To effectively coordinate and ensure compliance with applicable regulations, the US Department of Energy has issued DOE Order 5400.1 (now under revision) that requires all US Department of Energy facilities to prepare separate groundwater protection program descriptions and plans. This document describes the Groundwater Protection Management Program for the Hanford Site located in the state of Washington. DOE Order 5400.1 specifies that the Groundwater Protection Management Program cover the following general topical areas: (1) documentation of the groundwater regime, (2) design and implementation of a groundwater monitoring program to support resource management and comply with applicable laws and regulations, (3) a management program for groundwater protection and remediation, (4) a summary and identification of areas that may be contaminated with hazardous waste, (5) strategies for controlling these sources, (6) a remedial action program, and (7) decontamination and decommissioning and related remedial action requirements. Many of the above elements are covered by existing programs at the Hanford Site; thus, one of the primary purposes of this document is to provide a framework for coordination of existing groundwater protection activities. Additionally, it describes how information needs are identified and can be incorporated into existing or proposed new programs. The Groundwater Protection Management Program provides the general scope, philosophy, and strategies for groundwater protection/management at the Hanford Site. Subtier documents provide the detailed plans for implementing groundwater-related activities and programs. Related schedule and budget information are provided in the 5-year plan for environmental restoration and waste management at the Hanford Site

  3. Mixed Waste Management Facility groundwater monitoring report: Third quarter 1994

    International Nuclear Information System (INIS)

    1994-12-01

    Currently, 125 wells monitor groundwater quality in the uppermost aquifer beneath the Mixed Waste Management Facility (MWMF) at the Savannah River Site. Samples from the wells are analyzed for selected heavy metals, herbicides/pesticides, indicator parameters, radionuclides, volatile organic compounds, and other constituents. As in previous quarters, tritium and trichloroethylene were the most widespread elevated constituents during third quarter 1994. Sixty-four (51%) of the 125 monitoring wells contained elevated tritium activities. Trichloroethylene concentrations exceeded the final PDWS in 22 (18%) wells. Chloroethene, 1,1-dichloroethylene, and tetrachloroethylene, elevated in one or more wells during third quarter 1994, also occurred in elevated levels during second quarter 1994. These constituents generally were elevated in the same wells during both quarters. Gross alpha, which was elevated in only one well during second quarter 1994, was elevated again during third quarter. Mercury, which was elevated during first quarter 1994, was elevated again in one well. Dichloromethane was elevated in two wells for the first time in several quarters

  4. Description of work for routine groundwater sampling at the Environmental Restoration Disposal Facility

    International Nuclear Information System (INIS)

    Ford, B.H.

    1996-09-01

    This document provides a description of work and field implementation guidance for routine (post-baseline) groundwater monitoring sampling program at the Environmental Restoration Disposal Facility. The purpose of this program is to (1) meet the intent of the applicable or relevant and appropriate requirements; (2) document baseline groundwater conditions; (3) monitor those conditions for change; and (4) allow for modifications to groundwater sampling if required by the leachate management program

  5. Metallurgical Laboratory Hazardous Waste Management Facility groundwater monitoring report

    International Nuclear Information System (INIS)

    Thompson, C.Y.

    1993-03-01

    During fourth quarter 1992, samples from 18 groundwater monitoring wells of the AMB series at the Metallurgical Laboratory Hazardous Waste Management Facility were analyzed for certain heavy metals, indicator parameters, radionuclides, volatile organic compounds, and other constituents. Six parameters exceeded final Primary Drinking Water Standards (PDWS) and the Savannah River Site Flag 2 criteria during the quarter. The results for fourth quarter 1992 are fairly consistent with the rest of the year's data. Tetrachloroethylene exceeded the final PDWS in well AMB 4D only two of the four quarters; in the other three wells in which it was elevated, it was present at similar levels throughout the year. Trichloroethylene consistently exceeded its PDWS in wells AMB 4A, 4B, 4D, 5, and 7A during the year. Trichloroethylene was elevated in well AMB 6 only during third and fourth quarters and in well AMB 7 only during fourth quarter. Total alpha-emitting radium was above the final PDWS for total radium in well AMB 5 at similar levels throughout the year and exceeded the PDWS during one of the three quarters it was analyzed for (third quarter 1992) in well AMB 10B

  6. Simulant composition for the Mixed Waste Management Facility (MWMF) groundwater remediation project

    International Nuclear Information System (INIS)

    Siler, J.L.

    1992-01-01

    A project has been initiated at the request of ER to study and remediate the groundwater contamination at the Mixed Waste Management Facility (MWMF). This water contains a wide variety of both inorganics (e.g., sodium) and organics (e.g., benzene, trichloroethylene). Most compounds are present in the ppB range, and certain components (e.g., trichloroethylene, silver) are present at concentrations that exceed the primary drinking water standards (PDWS). These compounds must be reduced to acceptable levels as per RCRA and CERCLA orders. This report gives a listing of the important constituents which are to be included in a simulant to model the MWMF aquifer. This simulant will be used to evaluate the feasibility of various state of the art separation/destruction processes for remediating the aquifer

  7. M-Area and Metallurgical Laboratory Hazardous Waste Management Facilities Groundwater Monitoring and Corrective-Action Report, First and Second Quarters 1999, Volume III

    International Nuclear Information System (INIS)

    Chase, J.

    1999-01-01

    This report describes the groundwater monitoring and corrective-action program at the M-Area Hazardous Waste Management Facility (HWMF) and the Metallurgical Laboratory (Met Lab) HWMF at the Savannah River Site (SRS) during the first and second quarters 1999

  8. Mixed Waste Management Facility (MWMF) groundwater monitoring report. First quarter 1993

    Energy Technology Data Exchange (ETDEWEB)

    1993-06-01

    During first quarter 1993, eight constituents exceeded final Primary Drinking Water Standards in groundwater samples from downgradient monitoring wells at the Mixed Waste anagement Facility, the Old Burial Ground, the E-Area Vaults, and the proposed Hazardous Waste/Mixed Waste Disposal Vaults (HWMWDV). As in previous quarters, tritium and trichloroethylene were the most widespread constituents. Tetrachloroethylene, chloroethene, 1,1-dichloroethylene, gross alpha, lead, or nonvolatile beta levels also exceeded standards in one or more wells. The elevated constituents were found primarily in Aquifer Zone IIB{sub 2} (Water Table) and Aquifer Zone IIB{sub 1}, (Barnwell/McBean) wells. However, several Aquifer Unit IIA (Congaree) wells also contained elevated constituent levels. The groundwater flow directions and rates in the three hydrostratigraphic units were similar to previous quarters.

  9. Groundwater Monitoring Plan for the 1301-N, 1324-N/NA, and 1325-N RCRA Facilities

    International Nuclear Information System (INIS)

    Hartman, Mary J.

    2001-01-01

    The 1301-N and 1325-N Liquid Waste Disposal Facilities, the 1324-N Surface Impoundment, and the 1324-NA Percolation Pond, located in the 100 N Area of the Hanford Site, are regulated under the Resource Conservation and Recovery Act of 1976 (RCRA). The closure plans for these facilities stipulate that groundwater is monitored according to the 100-N Pilot Project: Proposed Consolidated Groundwater Monitoring Program (BHI-00725). This document supplements the consolidated plan by providing information on sampling and analysis protocols, quality assurance, data management, and a conceptual model for the RCRA sites. Monitoring well networks, constituents, and sampling frequency remain the same as in the consolidated plan or the previous groundwater monitoring plan (Hartman 1996)

  10. A model for managing sources of groundwater pollution

    Science.gov (United States)

    Gorelick, Steven M.

    1982-01-01

    The waste disposal capacity of a groundwater system can be maximized while maintaining water quality at specified locations by using a groundwater pollutant source management model that is based upon linear programing and numerical simulation. The decision variables of the management model are solute waste disposal rates at various facilities distributed over space. A concentration response matrix is used in the management model to describe transient solute transport and is developed using the U.S. Geological Survey solute transport simulation model. The management model was applied to a complex hypothetical groundwater system. Large-scale management models were formulated as dual linear programing problems to reduce numerical difficulties and computation time. Linear programing problems were solved using a numerically stable, available code. Optimal solutions to problems with successively longer management time horizons indicated that disposal schedules at some sites are relatively independent of the number of disposal periods. Optimal waste disposal schedules exhibited pulsing rather than constant disposal rates. Sensitivity analysis using parametric linear programing showed that a sharp reduction in total waste disposal potential occurs if disposal rates at any site are increased beyond their optimal values.

  11. Integrated groundwater data management

    Science.gov (United States)

    Fitch, Peter; Brodaric, Boyan; Stenson, Matt; Booth, Nathaniel; Jakeman, Anthony J.; Barreteau, Olivier; Hunt, Randall J.; Rinaudo, Jean-Daniel; Ross, Andrew

    2016-01-01

    The goal of a data manager is to ensure that data is safely stored, adequately described, discoverable and easily accessible. However, to keep pace with the evolution of groundwater studies in the last decade, the associated data and data management requirements have changed significantly. In particular, there is a growing recognition that management questions cannot be adequately answered by single discipline studies. This has led a push towards the paradigm of integrated modeling, where diverse parts of the hydrological cycle and its human connections are included. This chapter describes groundwater data management practices, and reviews the current state of the art with enterprise groundwater database management systems. It also includes discussion on commonly used data management models, detailing typical data management lifecycles. We discuss the growing use of web services and open standards such as GWML and WaterML2.0 to exchange groundwater information and knowledge, and the need for national data networks. We also discuss cross-jurisdictional interoperability issues, based on our experience sharing groundwater data across the US/Canadian border. Lastly, we present some future trends relating to groundwater data management.

  12. Management of Brackish Groundwater Extraction, San Diego-Tijuana area, USA and Mexico

    Science.gov (United States)

    Danskin, W. R.

    2017-12-01

    Management of brackish groundwater extraction from coastal sediment in the transboundary San Diego-Tijuana area, USA and Mexico, involves monitoring storage depletion, seawater intrusion, and land subsidence. In 2017, five additional extraction wells were installed, doubling capacity of the Reynolds Groundwater Desalination Facility. Environmental permits to expand capacity of the facility, and the recently-enacted Sustainable Groundwater Management Act (SGMA) by the State of California require monitoring the possible adverse effects of the additional extraction. Fortuitously, over the past 14 years, 12 deep multiple-depth, monitoring-well sites were installed by the United States Geological Survey (USGS) to aid in mapping the coastal geology and groundwater conditions. Now these sites are being used for groundwater management. Storage depletion is monitored daily via water levels measured using transducers installed permanently in each of the 4-6 piezometers at each site and transmitted automatically to the Internet. Seawater intrusion is tracked annually via electromagnetic geophysical logging in the deepest piezometer at each site, 500-800 meters below land surface, about twice the depth of the extraction wells. Land subsidence is determined annually from surveys of reference points installed at the well sites and from Interferometric Synthetic Aperature Radar (InSAR) satellite data. Management also involves use of a regional hydrologic model to simulate the likely location and timing of future storage depletion, seawater intrusion, and land subsidence.

  13. 3Q/4Q98 Annual M-Area and Metallurgical Laboratory Hazardous Waste Management Facility Groundwater Monitoring and Correction-Action Report, Volumes I, II, and III

    International Nuclear Information System (INIS)

    Chase, J.

    1999-01-01

    This report describes the groundwater monitoring and corrective-action program at the M-Area Hazardous Waste Management Facility (HWMF) and the Metallurgical Laboratory (Met Lab) HWMF at the Savannah River Site (SRS) during 1998

  14. Martin Marietta Energy Systems, Inc., Groundwater Program Management Plan

    International Nuclear Information System (INIS)

    Early, T.O.

    1994-05-01

    The purpose of the Martin Marietta Energy Systems, Inc., (Energy Systems) Groundwater Program Management Plan is to define the function, organizational structure (including associated matrix organizations), interfaces, roles and responsibilities, authority, and relationship to the Department of Energy for the Energy Systems Groundwater Program Office (GWPO). GWPO is charged with the responsibility of coordinating all components of the groundwater program for Energy Systems. This mandate includes activities at the three Oak Ridge facilities [Oak Ridge National Laboratory, the Oak Ridge Y-12 Plant, and the Oak Ridge K-25 Site], as well as the Paducah and Portsmouth Gaseous Diffusion Plants

  15. Martin Marietta Energy Systems, Inc., Groundwater Program Management Plan

    Energy Technology Data Exchange (ETDEWEB)

    Early, T.O.

    1994-05-01

    The purpose of the Martin Marietta Energy Systems, Inc., (Energy Systems) Groundwater Program Management Plan is to define the function, organizational structure (including associated matrix organizations), interfaces, roles and responsibilities, authority, and relationship to the Department of Energy for the Energy Systems Groundwater Program Office (GWPO). GWPO is charged with the responsibility of coordinating all components of the groundwater program for Energy Systems. This mandate includes activities at the three Oak Ridge facilities [Oak Ridge National Laboratory, the Oak Ridge Y-12 Plant, and the Oak Ridge K-25 Site], as well as the Paducah and Portsmouth Gaseous Diffusion Plants.

  16. Groundwater Quality Assessment for Waste Management Area U: First Determination

    Energy Technology Data Exchange (ETDEWEB)

    Hodges, Floyd N.; Chou, Charissa J.

    2000-08-04

    As a result of the most recent recalculation one of the indicator parameters, specific conductance, exceeded its background value in downgradient well 299-W19-41, triggering a change from detection monitoring to groundwater quality assessment program. The major contributors to the higher specific conductance are nonhazardous constituents (i.e., sodium, calcium, magnesium, chloride, sulfate, and bicarbonate). Nitrate, chromium, and technetium-99 are present and are increasing; however, they are significantly below their drinking waster standards. Interpretation of groundwater monitoring data indicates that both the nonhazardous constituents causing elevated specific conductance in groundwater and the tank waste constituents present in groundwater at the waste management area are a result of surface water infiltration in the southern portion of the facility. There is evidence for both upgradient and waste management area sources for observed nitrate concentrations. There is no indication of an upgradient source for the observed chromium and technetium-99.

  17. Groundwater Managment Districts

    Data.gov (United States)

    Kansas Data Access and Support Center — This dataset outlines the location of the five Groundwater Management Districts in Kansas. GMDs are locally formed and elected boards for regional groundwater...

  18. Tailings management best practice: a case study of the McClean Lake JEB Tailings Management Facility

    International Nuclear Information System (INIS)

    Tremblay, M.A.J.; Rowson, J.

    2005-01-01

    COGEMA Resources Inc. (which is part of the Areva Group) is a Canadian company with its head office in Saskatoon, Saskatchewan. It owns and operates mining and milling facilities in Northern Saskatchewan, which produce uranium concentrate. McClean Lake Operation commenced production in 1999 and its tailings management facility represents the state of the art for tailings management in the uranium industry in Canada. Tailings disposal has the potential to cause effects in the surrounding receiving environment primarily through migration of soluble constituents from the facility to surface water receptors. In-pit disposal or mill tailings has become the standard in the uranium mining industry in Northern Saskatchewan. This method or tailings management demonstrates advances in terms of worker radiation protection and containment of soluble constituents both during operations and into the long term. Sub-aqueous deposition of tailings protects personnel from exposure to radiation and airborne emissions and prevents freezing of tailings, which can hinder consolidation. The continuous inflow of groundwater to the facility is achieved during operations, through control of water levels within the facility. This ensures hydrodynamic containment, which prevents migration of soluble radionuclides and heavy metals into the surrounding aquifer during operations. The environmental performance of the decommissioned facility depends upon the rate of release of contaminants to the receiving environment. The rate of constituent loading to the receiving environment will ultimately be governed by the concentrations of soluble constituents within the tailings mass, the mechanisms for release from the tailings to the surrounding groundwater system, and transport of constituents within the groundwater pathway to the receiving environment. The tailings preparation process was designed to convert arsenic into a stable form to reduce soluble concentrations within the tailings mass. The

  19. Dynamic optimal control of groundwater remediation with management periods: Linearized and quasi-Newton approaches

    International Nuclear Information System (INIS)

    Culver, T.B.

    1991-01-01

    Several modifications of the linear-quadratic regulator (LQR) optimization algorithm are developed, and the computational efficiency of each algorithm with respect to groundwater remediation is evaluated. In each case, the optimization model is combined with a finite element groundwater flow and transport simulation model to determine the optimal time-varying pump-and-treat policy. The first modification of the LQR algorithm incorporated management periods, which are groups of simulation time steps during which the pumping policy remains constant. Management periods reduced the total computational demand, as measured by the CPU time, by as much as 85% compared to the time needed for the LQR solution without management periods. Complexity analysis revealed that computational savings of equal or greater magnitude can be expected in general for groundwater remediation applications and for many other applications of dynamic control. The LQR algorithm with management periods was further modified by assuming steady-state hydraulics within a management period (SSLQR), which simplifies the derivatives of the transition equation. A quasi-Newton differential dynamic programming (QNDDP) was formulated by approximating the complicated second derivatives of the transition equation using a Broyden rank-one approximation. QNDDP converged to the optimal policy for the test problem significantly faster than the LQR algorithm, requiring approximately half the computational time. With the test problem expanded to include the capacity of the treatment facility as a state variable, QNDDP with management periods can determine the optimal treatment facility capacity. With many management periods, the addition of the capital costs of the treatment facility changed the optimal policy so that the required treatment facility capacity was reduced

  20. Tetracycline residues and tetracycline resistance genes in groundwater impacted by swine production facilities

    Science.gov (United States)

    Mackie, R.I.; Koike, S.; Krapac, I.; Chee-Sanford, J.; Maxwell, Susan; Aminov, R.I.

    2006-01-01

    Antibiotics are used at therapeutic levels to treat disease; at slightly lower levels as prophylactics; and at low, subtherapeutic levels for growth promotion and improvement of feed efficiency. Over 88% of swine producers in the United States gave antimicrobials to grower/finisher pigs in feed as a growth promoter in 2000. It is estimated that ca. 75% of antibiotics are not absorbed by animals and are excreted in urine and feces. The extensive use of antibiotics in swine production has resulted in antibiotic resistance in many intestinal bacteria, which are also excreted in swine feces, resulting in dissemination of resistance genes into the environment.To assess the impact of manure management on groundwater quality, groundwater samples have been collected near two swine confinement facilities that use lagoons for manure storage and treatment. Several key contaminant indicators-including inorganic ions, antibiotics, and antibiotic resistance genes-were analyzed in groundwater collected from the monitoring wells. Chloride, ammonium, potassium, and sodium were predominant inorganic constituents in the manure samples and served as indicators of groundwater contamination. Based on these analyses, shallow groundwater has been impacted by lagoon seepage at both sites. Liquid chromatography-mass spectroscopy (LC-MS) was used to measure the dissolved concentrations of tetracycline, chlortetracycline, and oxytetracycline in groundwater and manure. Although tetracyclines were regularly used at both facilities, they were infrequently detected in manure samples and then at relatively trace concentrations. Concentrations of all tetracyclines and their breakdown products in the groundwater sampled were generally less than 0.5 ??g/L.Bacterial tetracycline resistance genes served as distinct genotypic markers to indicate the dissemination and mobility of antibiotic resistance genes that originated from the lagoons. Applying PCR to genomic DNA extracted from the lagoon and

  1. 3Q/4Q99 Annual M-Area and Metallurgical Laboratory Hazardous Waste Management Facilities Groundwater Monitoring and Corrective-Action Report - Third and Fourth Quarters 1999 - Volumes I and II

    International Nuclear Information System (INIS)

    Chase, J.

    2000-01-01

    This report describes the groundwater monitoring and corrective-action program at the M-Area Hazardous Waste Management Facility (HWMF) and the Metallurgical Laboratory (Met Lab) HWMF at the Savannah River Site (SRS) during 1999

  2. Groundwater: from mystery to management

    International Nuclear Information System (INIS)

    Narasimhan, T N

    2009-01-01

    Groundwater has been used for domestic and irrigation needs from time immemorial. Yet its nature and occurrence have always possessed a certain mystery because water below the land surface is invisible and relatively inaccessible. The influence of this mystery lingers in some tenets that govern groundwater law. With the birth of modern geology during the late nineteenth century, groundwater science became recognized in its own right. Over the past two centuries, groundwater has lost its shroud of mystery, and its scientific understanding has gradually grown hand-in-hand with its development for human use. Groundwater is a component of the hydrological cycle, vital for human sustenance. Its annual renewability from precipitation is limited, and its chemical quality is vulnerable to degradation by human action. In many parts of the world, groundwater extraction is known to greatly exceed its renewability. Consequently, its rational management to benefit present and future generations is a matter of deep concern for many nations. Groundwater management is a challenging venture, requiring an integration of scientific knowledge with communal will to adapt to constraints of a finite common resource. As scientists and policy makers grapple with the tasks of groundwater management, it is instructive to reflect on the evolution of groundwater knowledge from its initial phase of demystification at the beginning of the nineteenth century, through successive phases of technological conquest, scientific integration, discovery of unintended consequences and the present recognition of an imperative for judicious management. The following retrospective provides a broad context for unifying the technical contributions that make up this focus issue on groundwater resources, climate and vulnerability.

  3. GROUNDWATER PROTECTION MANAGEMENT PROGRAM DESCRIPTION.

    Energy Technology Data Exchange (ETDEWEB)

    PAQUETTE,D.E.; BENNETT,D.B.; DORSCH,W.R.; GOODE,G.A.; LEE,R.J.; KLAUS,K.; HOWE,R.F.; GEIGER,K.

    2002-05-31

    THE DEPARTMENT OF ENERGY ORDER 5400.1, GENERAL ENVIRONMENTAL PROTECTION PROGRAM, REQUIRES THE DEVELOPMENT AND IMPLEMENTATION OF A GROUNDWATER PROTECTION PROGRAM. THE BNL GROUNDWATER PROTECTION MANAGEMENT PROGRAM DESCRIPTION PROVIDES AN OVERVIEW OF HOW THE LABORATORY ENSURES THAT PLANS FOR GROUNDWATER PROTECTION, MONITORING, AND RESTORATION ARE FULLY DEFINED, INTEGRATED, AND MANAGED IN A COST EFFECTIVE MANNER THAT IS CONSISTENT WITH FEDERAL, STATE, AND LOCAL REGULATIONS.

  4. Sustainable groundwater management in California

    Science.gov (United States)

    Phillips, Steven P.; Rogers, Laurel Lynn; Faunt, Claudia

    2015-12-01

    The U.S. Geological Survey (USGS) uses data collection, modeling tools, and scientific analysis to help water managers plan for, and assess, hydrologic issues that can cause “undesirable results” associated with groundwater use. This information helps managers understand trends and investigate and predict effects of different groundwater-management strategies.

  5. Groundwater protection management program plan

    International Nuclear Information System (INIS)

    1992-06-01

    US Department of Energy (DOE) Order 5400.1 requires the establishment of a groundwater protection management program to ensure compliance with DOE requirements and applicable Federal, state, and local laws and regulations. The Uranium Mill Tailings Remedial Action (UMTRA) Project Office has prepared a ''Groundwater Protection Management Program Plan'' (groundwater protection plan) of sufficient scope and detail to reflect the program's significance and address the seven activities required in DOE Order 5400.1, Chapter 3, for special program planning. The groundwater protection plan highlights the methods designed to preserve, protect, and monitor groundwater resources at UMTRA Project processing and disposal sites. The plan includes an overview of the remedial action status at the 24 designated processing sites and identifies project technical guidance documents and site-specific documents for the UMTRA groundwater protection management program. In addition, the groundwater protection plan addresses the general information required to develop a water resources protection strategy at the permanent disposal sites. Finally, the plan describes ongoing activities that are in various stages of development at UMTRA sites (long-term care at disposal sites and groundwater restoration at processing sites). This plan will be reviewed annually and updated every 3 years in accordance with DOE Order 5400.1

  6. Results of RCRA groundwater quality assessment at the 216-B-3 Pond Facility

    International Nuclear Information System (INIS)

    Barnett, D.B.; Teel, S.S.

    1997-06-01

    This document describes a groundwater quality assessment of the 216-B-3 pond system, a Resources Conservation and Recovery act of 1976 (RCRA) waste facility. In 1990, sampling and chemical analysis of groundwater underlying the facility indicated that the contamination indicator parameters, total organic halogens (TOX), and total organic carbon (TOC) had exceeded established limits in two wells. This discovery placed the facility into RCRA groundwater assessment status and subsequently led to a more detailed hydrochemical analysis of groundwater underlying the facility. Comprehensive chemical analyses of groundwater samples from 1994 through 1996 revealed one compound, tris (2-chloroethyl) phosphate (TRIS2CH), that may have contributed to elevated TOX concentrations. No compound was identified as a contributor to TOC. Detailed evaluations of TOX, TOC, and TRIS2CH and comparison of occurrences of these parameters led to conclusions that (1) with few exceptions, these constituents occur at low concentrations below or near limits of quantitation; (2) it is problematic whether the low concentrations of TRIS2CH represent a contaminant originating from the facility or if it is a product of well construction; and (3) given the low and diminishing concentration of TOX, TOC, and TRIS2CH, no further investigation into the occurrent of these constituents is justified. Continued groundwater monitoring should include an immediate recalculation of background critical means of upgradient/downgradient comparisons and a return to seminannual groundwater monitoring under a RCRA indicator parameter evaluation program

  7. 1Q/2Q00 M-Area and Metallurgical Laboratory Hazardous Waste Management Facilities Groundwater Monitoring and Corrective-Action Report - First and Second Quarters 2000 - Volumes I, II, and II

    Energy Technology Data Exchange (ETDEWEB)

    Chase, J.

    2000-10-24

    This report describes the groundwater monitoring and corrective-action program at the M-Area Hazardous Waste Management Facility (HWMF) and the Metallurgical Laboratory (Met Lab) HWMF at the Savannah River site (SRS) during first and second quarters of 2000.

  8. 1Q/2Q00 M-Area and Metallurgical Laboratory Hazardous Waste Management Facilities Groundwater Monitoring and Corrective-Action Report - First and Second Quarters 2000 - Volumes I, II, and II

    International Nuclear Information System (INIS)

    Chase, J.

    2000-01-01

    This report describes the groundwater monitoring and corrective-action program at the M-Area Hazardous Waste Management Facility (HWMF) and the Metallurgical Laboratory (Met Lab) HWMF at the Savannah River site (SRS) during first and second quarters of 2000

  9. Estimation of contaminant transport in groundwater beneath radioactive waste disposal facilities

    International Nuclear Information System (INIS)

    Wang, J.C.; Tauxe, J.D.; Lee, D.W.

    1995-01-01

    Performance assessments are required for low-level radioactive waste disposal facilities to demonstrate compliance with the performance objectives contained in either 10 CFR 61, open-quotes Licensing Requirements for Land Disposal of Radioactive Waste,close quotes or U.S. Department of Energy Order 5820.2A, open-quotes Radioactive Waste Management.close quotes The purpose of a performance assessment is to provide detailed, site-specific analyses of all credible pathways by which radionuclides could escape from the disposal facility into the environment. Among these, the groundwater pathway analysis usually involves complex numerical simulations. This paper demonstrates that the use of simpler analytical models avoids the complexity and opacity of the numerical simulations while capturing the essential physical behavior of a site

  10. Characterization of groundwater flow for near surface disposal facilities

    International Nuclear Information System (INIS)

    2001-02-01

    The main objective of this report is to provide a description of the site investigation techniques and modelling approaches that can be used to characterise the flow of subsurface water at near surface disposal facilities in relation to the various development stages of the repositories. As one of the main goals of defining groundwater flow is to establish the possible contaminant migration, certain aspects related to groundwater transport are also described. Secondary objectives are to discuss the implications of various groundwater conditions with regard to the performance of the isolation systems

  11. DOE groundwater protection strategy

    International Nuclear Information System (INIS)

    Lichtman, S.

    1988-01-01

    EH is developing a DOE-wide Groundwater Quality Protection Strategy to express DOE's commitment to the protection of groundwater quality at or near its facilities. This strategy responds to a September 1986 recommendation of the General Accounting Office. It builds on EPA's August 1984 Ground-Water Protection Strategy, which establishes a classification system designed to protect groundwater according to its value and vulnerability. The purposes of DOE's strategy are to highlight groundwater protection as part of current DOE programs and future Departmental planning, to guide DOE managers in developing site-specific groundwater protection practices where DOE has discretion, and to guide DOE's approach to negotiations with EPA/states where regulatory processes apply to groundwater protection at Departmental facilities. The strategy calls for the prevention of groundwater contamination and the cleanup of groundwater commensurate with its usefulness. It would require long-term groundwater protection with reliance on physical rather than institutional control methods. The strategy provides guidance on providing long-term protection of groundwater resources; standards for new remedial actions;guidance on establishing points of compliance; requirements for establishing classification review area; and general guidance on obtaining variances, where applicable, from regulatory requirements. It also outlines management tools to implement this strategy

  12. Groundwater monitoring plan: 200 Areas treated effluent disposal facility (Project W-049H)

    International Nuclear Information System (INIS)

    Barnett, D.B.; Davis, J.D.; Collard, L.B.; Freeman, P.B.; Chou, C.J.

    1995-04-01

    This groundwater monitoring plan provides information that supports the US Department of Energy's application (DOE-RL 1994) for waste water discharge permit No. WA-ST-4502 from the State of Washington, under the auspices of Washington Administrative Code 173-216. The monitoring plan has two functions: (1) to summarize the results of a 3-yr characterization of the current hydrogeology and groundwater quality of the discharge site and (2) to provide plans for evaluating the effects of the facility's operation on groundwater quality and document compliance with applicable groundwater quality standards. Three wells were drilled to define the stratigraphy, evaluate sediment characteristics, and establish a groundwater monitoring net work for the discharge facility. These wells monitor groundwater quality upgradient and downgradient in the uppermost aquifer. This report proposes plans for continuing the monitoring of groundwater quality and aquifer characteristics after waste water discharges begin

  13. Hydrologic management at the Hanford nuclear waste facility

    International Nuclear Information System (INIS)

    Deju, R.A.; Gephart, R.E.

    1975-05-01

    Since 1944 the Hanford Reservation, located in south-central Washington, has been a site for radioactive waste storage and disposal. Many Hanford research programs are directed toward minimizing and managing the release of radionuclides into the environment. Hydrologic management of the Hanford facility involves such activities as regional and local geohydrologic characterization studies, environmental monitoring, groundwater management, and specific hydrologic research programs. This paper briefly examines each of these activities and reviews the progress to date in understanding the hydrologic flow regime existing beneath the Reservation. (U.S.)

  14. Waste-management activities for groundwater protection, Savannah River Plant, Aiken, South Carolina

    International Nuclear Information System (INIS)

    1987-12-01

    Management of hazardous, low-level radioactive, and mixed waste for groundwater protection at the Savannah River Plant (SRP), Aiken, South Carolina is proposed. The preferred disposal alternative would involve modification of the SRP waste-management program to comply with all groundwater-protection requirements by implementing the following actions: (1) removal of wastes at selected existing waste sites to the extent practicable and implementing closure and groundwater remedial actions as required by applicable state and federal regulations; (2) establishment of a combination of retrievable storage, above ground, and below ground disposal facilities; and (3) continuation of the use of seepage and containment basins for the periodic discharge of reactor disassembly-basin purge. Groundwater contamination of aquifers would be controlled, improving on-site groundwater as well as surface water quality. Associated public health risks, as well as risks associated with atmospheric releases, would be reduced. Risks from releases of transuranic and high level wastes, volatile organic compounds, heavy metals, radionuclides, and other miscellaneous chemical would be contained. Some sites would be removed from public use. Other adverse impacts could include local and transitory on-site groundwater drawdown effects and minor short-term terrestrial impacts due to the use of borrow pits for backfill. Wildlife-habitat impacts could result due to land clearing and development

  15. A Review of Distributed Parameter Groundwater Management Modeling Methods

    Science.gov (United States)

    Gorelick, Steven M.

    1983-04-01

    Models which solve the governing groundwater flow or solute transport equations in conjunction with optimization techniques, such as linear and quadratic programing, are powerful aquifer management tools. Groundwater management models fall in two general categories: hydraulics or policy evaluation and water allocation. Groundwater hydraulic management models enable the determination of optimal locations and pumping rates of numerous wells under a variety of restrictions placed upon local drawdown, hydraulic gradients, and water production targets. Groundwater policy evaluation and allocation models can be used to study the influence upon regional groundwater use of institutional policies such as taxes and quotas. Furthermore, fairly complex groundwater-surface water allocation problems can be handled using system decomposition and multilevel optimization. Experience from the few real world applications of groundwater optimization-management techniques is summarized. Classified separately are methods for groundwater quality management aimed at optimal waste disposal in the subsurface. This classification is composed of steady state and transient management models that determine disposal patterns in such a way that water quality is protected at supply locations. Classes of research missing from the literature are groundwater quality management models involving nonlinear constraints, models which join groundwater hydraulic and quality simulations with political-economic management considerations, and management models that include parameter uncertainty.

  16. Assessment of groundwater management at Hanford

    International Nuclear Information System (INIS)

    Deju, R.A.

    1975-01-01

    A comprehensive review of the groundwater management and environmental monitoring programs at the Hanford reservation was initiated in 1973. A large number of recommendations made as a result of this review are summarized. The purpose of the Hanford Hydrology Program is to maintain a groundwater surveillance network to assess contamination of the natural water system. Potential groundwater contamination is primarily a function of waste management decisions. The review revealed that although the hydrology program would greatly benefit from additional improvements, it is adequate to predict levels of contaminants present in the groundwater system. Studies are presently underway to refine advanced mathematical models to use results of the hydrologic investigation in forecasting the response of the system to different long-term management decisions. No information was found which indicates that a hazard through the groundwater pathway presently exists as a result of waste operations at Hanford. (CH)

  17. Groundwater Monitoring Plan for the Z-Area Saltstone Facility

    International Nuclear Information System (INIS)

    Wells, D.

    2002-01-01

    Groundwater monitoring has been conducted at the Z-Area Saltstone Disposal Facility since 1987. At that time, groundwater monitoring was not required by the industrial landfill regulations, but a modest monitoring program was required by the operating permit. In 1996 SRS proposed a program based on direct push sampling. This program called for biennial direct push sampling within 25 feet of each waste-containing cell with additional samples being taken in areas where excessive cracking had been observed. The direct push proposal was accepted by The South Carolina Department of Health and Environmental Control (SCDHEC). The Industrial Solid Waste Landfill Regulations were revised in 1998 and now include requirements for groundwater monitoring. The major elements of those regulations and their application at Z-Area are discussed. These are a point of compliance, groundwater protection standards, the groundwater monitoring system, sampling and analysis, and data evaluation and reporting

  18. Ecosystem services in sustainable groundwater management.

    Science.gov (United States)

    Tuinstra, Jaap; van Wensem, Joke

    2014-07-01

    The ecosystem services concept seems to get foothold in environmental policy and management in Europe and, for instance, The Netherlands. With respect to groundwater management there is a challenge to incorporate this concept in such a way that it contributes to the sustainability of decisions. Groundwater is of vital importance to societies, which is reflected in the presented overview of groundwater related ecosystem services. Classifications of these services vary depending on the purpose of the listing (valuation, protection, mapping et cetera). Though the scientific basis is developing, the knowledge-availability still can be a critical factor in decision making based upon ecosystem services. The examples in this article illustrate that awareness of the value of groundwater can result in balanced decisions with respect to the use of ecosystem services. The ecosystem services concept contributes to this awareness and enhances the visibility of the groundwater functions in the decision making process. The success of the ecosystem services concept and its contribution to sustainable groundwater management will, however, largely depend on other aspects than the concept itself. Local and actual circumstances, policy ambitions and knowledge availability will play an important role. Solutions can be considered more sustainable when more of the key elements for sustainable groundwater management, as defined in this article, are fully used and the presented guidelines for long term use of ecosystem services are respected. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Waste Isolation Pilot Plant Groundwater Protection Management Program Plan

    International Nuclear Information System (INIS)

    1993-01-01

    The DOE has mandated in DOE Order 5400.1 that its operations will be conducted in an environmentally safe manner. The Waste Isolation Pilot Plant (WIPP) will comply with DOE Order 5400.1 and will conduct its operations in a manner that ensures the safety of the environment and the public. This document outlines how the WIPP will protect and preserve groundwater within and surrounding the WIPP facility. Groundwater protection is just one aspect of the WIPP environmental protection effort. The WIPP groundwater surveillance program is designed to determine statistically if any changes are occurring in groundwater characteristics within and surrounding the WIPP facility. If a change is noted, the cause will be determined and appropriate corrective action initiated

  20. Environmental Sciences Division Groundwater Program Office

    International Nuclear Information System (INIS)

    1993-01-01

    This first edition of the Martin Marietta Energy Systems, Inc., (Energy Systems) Groundwater Program Annual Report summarizes the work carried out by the Energy Systems GWPO for fiscal year (FY) 1993. This introductory section describes the GWPO's staffing, organization, and funding sources. The GWPO is responsible for coordination and oversight for all components of the groundwater program at the three Oak Ridge facilities [ORNL, the Oak Ridge Y-12 Plant, and the Oak Ridge K-25 Site], and the PGDP and PORTS, respectively. Several years ago, Energy systems senior management recognized that the manner in which groundwater activities were conducted at the five facilities could result in unnecessary duplication of effort, inadequate technical input to decisions related to groundwater issues, and could create a perception within the regulatory agencies of a confusing and inconsistent approach to groundwater issues at the different facilities. Extensive interactions among management from Environmental Compliance, Environmental Restoration (ER), Environmental Sciences Division, Environmental Safety and Health, and the five facilities ultimately led to development of a net technical umbrella organization for groundwater. On April 25, 1991, the GWPO was authorized to be set up within ORNL thereby establishing a central coordinating office that would develop a consistent technical and administrative direction for the groundwater programs of all facilities and result in compliance with all relevant U.S. Environmental Protection Agency (EPA) regulations such as RCRA and Comprehensive Environmental Restoration, Compensation and Liability Act (CERCLA) as well as U.S. Department of Energy (DOE) regulations and orders. For example, DOE Order 5400.1, issued on November 9, 1988, called for each DOE facility to develop an environmental monitoring program for all media (e.g., air, surface water, and groundwater)

  1. Liquid effluent retention facility final-status groundwater monitoring plan

    International Nuclear Information System (INIS)

    Sweeney, M.D.; Chou, C.J.; Bjornstad, B.N.

    1997-09-01

    The following sections describe the groundwater-monitoring program for the Liquid Effluent Retention Facility (LERF). The LERF is regulated under the Resource Conservation and Recovery Act of 1976 (RCRA). The LERF is included in the open-quotes Dangerous Waste Portion of the Resource Conservation and Recovery Act Permit for the Treatment, Storage, and Disposal of Dangerous Waste, Permit WA890008967close quotes, (referred to herein as the Permit) (Ecology 1994) and is subject to final-status requirements for groundwater monitoring (WAC 173-303-645). This document describes a RCRA/WAC groundwater detection-monitoring program for groundwater in the uppermost aquifer system at the LERF. This plan describes the LERF monitoring network, constituent list, sampling schedule, statistical methods, and sampling and analysis protocols that will be employed for the LERF. This plan will be used to meet the groundwater monitoring requirements from the time the LERF becomes part of the Permit and through the post-closure care period, until certification of final closure

  2. A proposed groundwater management framework for municipalities ...

    African Journals Online (AJOL)

    A proposed groundwater management framework for municipalities in South Africa. ... Hence, the Water Research Commission (WRC) has commissioned a project ... and available tools to achieve sustainable groundwater management reflect ...

  3. Administrative limits for tritium concentrations found in non-potable groundwater at nuclear power facilities

    International Nuclear Information System (INIS)

    Parker, R.; Hart, D.; WIllert, C.

    2012-01-01

    Currently, there is a regulatory limit available for tritium in drinking water, but no such limit for non-potable groundwater. Voluntary administrative limits for site groundwater may be established at nuclear power facilities to ensure minimal risk to human health and the environment, and provide guidance for investigation or other actions intended to prevent exceedances of future regulatory or guideline limits. This work presents a streamlined approach for nuclear power facilities to develop three tiers of administrative limits for tritium in groundwater so that facilities can identify abnormal/uncontrolled releases of tritium at an early stage, and take appropriate actions to investigate, control, and protect groundwater. Tier 1 represents an upper limit of background, Tier 2 represents a level between background and Tier 3, and Tier 3 represents a risk-based concentration protective of down-gradient receptors. (author)

  4. Groundwater monitoring plan for the Hanford Site 200 Area Treated Effluent Disposal Facility

    International Nuclear Information System (INIS)

    DB Barnett

    2000-01-01

    Seven years of groundwater monitoring at the 200 Area Treated Effluent Disposal Facility (TEDF) have shown that the uppermost aquifer beneath the facility is unaffected by TEDF effluent. Effluent discharges have been well below permitted and expected volumes. Groundwater mounding from TEDF operations predicted by various models has not been observed, and waterlevels in TEDF wells have continued declining with the dissipation of the nearby B Pond System groundwater mound. Analytical results for constituents with enforcement limits indicate that concentrations of all these are below Practical Quantitation Limits, and some have produced no detections. Likewise, other constituents on the permit-required list have produced results that are mostly below sitewide background. Comprehensive geochemical analyses of groundwater from TEDF wells has shown that most constituents are below background levels as calculated by two Hanford Site-wide studies. Additionally, major ion proportions and anomalously low tritium activities suggest that groundwater in the aquifer beneath the TEDF has been sequestered from influences of adjoining portions of the aquifer and any discharge activities. This inference is supported by recent hydrogeologic investigations which indicate an extremely slow rate of groundwater movement beneath the TEDF. Detailed evaluation of TEDF-area hydrogeology and groundwater geochemistry indicate that additional points of compliance for groundwater monitoring would be ineffective for this facility, and would produce ambiguous results. Therefore, the current groundwater monitoring well network is retained for continued monitoring. A quarterly frequency of sampling and analysis is continued for all three TEDF wells. The constituents list is refined to include only those parameters key to discerning subtle changes in groundwater chemistry, those useful in detecting general groundwater quality changes from upgradient sources, or those retained for comparison with end

  5. Key policy choices in groundwater quality management

    International Nuclear Information System (INIS)

    Batie, S.S.; Diebel, P.L.

    1990-01-01

    The fundamental policy choice of who has the right to do what to whom is a pivotal issue of governance. Over the last few decades, the answer to that question has become more restrictive to those who own and use natural resources as inputs into production processes. Increasingly, the beneficiaries of new policy initiatives are those who desire higher protection of groundwater quality. With respect to groundwater management, policy design increasingly reflects such diverse interests as agriculturists, industrialists, homeowners, local government officials and state officials. Policy design is becoming complex, in part because of this diversity and in part because scientific uncertainty hampers informed policy design. No umbrella federal legislation exists for managing groundwater resources. EPA's role has been mainly an advisory one on groundwater issues. The difficulties and responsibilities of protecting groundwater thus remain with the states. For the near future, it is the states that will address key policy choices with respect to groundwater quality management issues

  6. Evaluating data worth for ground-water management under uncertainty

    Science.gov (United States)

    Wagner, B.J.

    1999-01-01

    A decision framework is presented for assessing the value of ground-water sampling within the context of ground-water management under uncertainty. The framework couples two optimization models-a chance-constrained ground-water management model and an integer-programing sampling network design model-to identify optimal pumping and sampling strategies. The methodology consists of four steps: (1) The optimal ground-water management strategy for the present level of model uncertainty is determined using the chance-constrained management model; (2) for a specified data collection budget, the monitoring network design model identifies, prior to data collection, the sampling strategy that will minimize model uncertainty; (3) the optimal ground-water management strategy is recalculated on the basis of the projected model uncertainty after sampling; and (4) the worth of the monitoring strategy is assessed by comparing the value of the sample information-i.e., the projected reduction in management costs-with the cost of data collection. Steps 2-4 are repeated for a series of data collection budgets, producing a suite of management/monitoring alternatives, from which the best alternative can be selected. A hypothetical example demonstrates the methodology's ability to identify the ground-water sampling strategy with greatest net economic benefit for ground-water management.A decision framework is presented for assessing the value of ground-water sampling within the context of ground-water management under uncertainty. The framework couples two optimization models - a chance-constrained ground-water management model and an integer-programming sampling network design model - to identify optimal pumping and sampling strategies. The methodology consists of four steps: (1) The optimal ground-water management strategy for the present level of model uncertainty is determined using the chance-constrained management model; (2) for a specified data collection budget, the monitoring

  7. Water management of the uranium production facility in Brazil (Caetite, BA): potential impacts over groundwater quality

    International Nuclear Information System (INIS)

    Lamego, Fernando; Santos, Robson Rodger; Silva, L. Ferreira da; Fernandes, Horst Monken

    2008-01-01

    The uranium unit of Caetite - in charge of all the 'yellow cake' produced in Brazil - is located in the semi-arid Northeast region at Bahia State. The geological uranium content of the ore is 3000 ppm, which is mainly associated with albite (NaAlSi 8 O 8 ), and its extraction is achieved by means of a Heap-Leach process. This process has a low water demand, which is supplied by a network of wells, but can contribute to change the groundwater quality and in some cases the extinguishing of wells was observed. The managing of liquid mining wastes formed by drainage waters from mine pit and solid waste piles is not enough to avoid unwarranted releases in the environment, which turn necessary the waste treatment through passing them into the industrial plant in order to reduce radionuclide concentrations. The groundwater is Na-HCO 3 type water and relative high concentration of Cl are observed in some groundwater. It seems that levels of uranium in groundwaters are mainly a consequence of the complexation of the metal by carbonates (or other anions) and not by any sort of the contamination of these waters by the drainage accumulated in the open pit. The speciation modelling allows identifying some areas where the replenishment of the aquifer is more active, but in general the recharge is a fast process run by direct infiltration. The stable isotope data (δ 2 H and δ 18 O) showed that evaporation plays a role during the infiltration, causing the groundwater salinization. These data discard the possibility that groundwater salinization was caused by discharge of deeper saline groundwater through faults associated to a regional groundwater flow system. The presence of an active shallow groundwater flow system offers better possibility for sustainable use of the groundwater resources in this semi-arid region of Brazil. (author)

  8. Waste Isolation Pilot Plant Groundwater Protection Management Program Plan

    International Nuclear Information System (INIS)

    2005-01-01

    The DOE established the Groundwater Monitoring Program (GMP) (WP 02-1) to monitor groundwater resources at WIPP. In the past, the GMP was conducted to establish background data of existing conditions of groundwater quality and quantity in the WIPP vicinity, and to develop and maintain a water quality database as required by regulation. Today the GMP is conducted consistent with 204.1.500 NMAC (New Mexico Administrative Code), 'Adoption of 40 CFR [Code of Federal Regulations] Part 264,'specifically 40 CFR 264.90 through 264.101. These sections of 20.4.1 NMAC provide guidance for detection monitoring of groundwater that is, or could be, affected by waste management activities at WIPP. Detection monitoring at WIPP is designed to detect contaminants in the groundwater long before the general population is exposed. Early detection will allow cleanup efforts to be accomplished before any exposure to the general population can occur. Title 40 CFR Part 264, Subpart F, stipulates minimum requirements of Resource Conservation and Recovery Act of 1976 (42 United States Code [U.S.C.] 6901 et seq.) (RCRA) groundwater monitoring programs including the number and location of monitoring wells; sampling and reporting schedules; analytical methods and accuracy requirements; monitoring parameters; and statistical treatment of monitoring data. This document outlines how WIPP intends to protect and preserve groundwater within the WIPP Land Withdrawal Area (WLWA). Groundwater protection is just one aspect of the WIPP environmental protection effort. An overview of the entire environmental protection effort can be found in DOE/WIPP 99-2194, Waste Isolation Pilot Plant Environmental Monitoring Plan. The WIPP GMP is designed to statistically determine if any changes are occurring in groundwater characteristics within and surrounding the WIPP facility. If a change is noted, the cause will then be determined and the appropriate corrective action(s) initiated.

  9. Waste Isolation Pilot Plant Groundwater Protection Management Program Plan

    Energy Technology Data Exchange (ETDEWEB)

    Washington Regulatory and Environmental Services

    2005-07-01

    The DOE established the Groundwater Monitoring Program (GMP) (WP 02-1) to monitor groundwater resources at WIPP. In the past, the GMP was conducted to establish background data of existing conditions of groundwater quality and quantity in the WIPP vicinity, and to develop and maintain a water quality database as required by regulation. Today the GMP is conducted consistent with 204.1.500 NMAC (New MexicoAdministrative Code), "Adoption of 40 CFR [Code of Federal Regulations] Part 264,"specifically 40 CFR §264.90 through §264.101. These sections of 20.4.1 NMAC provide guidance for detection monitoring of groundwater that is, or could be, affected by waste management activities at WIPP. Detection monitoring at WIPP is designed to detect contaminants in the groundwater long before the general population is exposed. Early detection will allow cleanup efforts to be accomplished before any exposure to the general population can occur. Title 40 CFR Part 264, Subpart F, stipulates minimum requirements of Resource Conservation and Recovery Act of 1976 (42 United States Code [U.S.C.] §6901 et seq.) (RCRA) groundwater monitoring programs including the number and location of monitoring wells; sampling and reporting schedules; analytical methods and accuracy requirements; monitoring parameters; and statistical treatment of monitoring data. This document outlines how WIPP intends to protect and preserve groundwater within the WIPP Land Withdrawal Area (WLWA). Groundwater protection is just one aspect of the WIPP environmental protection effort. An overview of the entire environmental protection effort can be found in DOE/WIPP 99-2194, Waste Isolation Pilot Plant Environmental Monitoring Plan. The WIPP GMP is designed to statistically determine if any changes are occurring in groundwater characteristics within and surrounding the WIPP facility. If a change is noted, the cause will then be determined and the appropriate corrective action(s) initiated.

  10. 200 West Groundwater Aggregate Area management study report

    International Nuclear Information System (INIS)

    1993-01-01

    This report presents the results of an aggregate area management study (AAMS) for the 200 West Groundwater Aggregate Area in the 200 Areas of the US Department of Energy (DOE) Hanford Site in Washington State. This scoping level study provides the basis for initiating Remedial Investigation/Feasibility Study (RI/FS) activities under the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) or Resource Conservation and Recovery Act (RCRA), Facility Investigations (Rlq) and Corrective Measures Studies (CMS) under RCRA. This report also integrates select RCRA treatment, storage or disposal (TSD) closure activities with CERCLA and RCRA past practice investigations

  11. Environmental implementation plan: Chapter 7, Groundwater protection

    International Nuclear Information System (INIS)

    Wells, D.

    1994-01-01

    The Savannah River Site (SRS) uses large quantities of groundwater for drinking, processing, and non-contact cooling. Continued industrial and residential growth along with additional agricultural irrigation in areas adjacent to SRS will increase the demand for groundwater. This increasing demand will require a comprehensive management system to ensure the needed quality and quantity of groundwater is available for all users. The Groundwater Protection Program and the Waste Management Program establish the overall framework for protecting this resource. Ground water under SRS is monitored extensively for radiological, hazardous, and water quality constituents. Groundwater quality is known to have been affected at 33 onsite locations, but none of the contaminant plumes have migrated offsite. Onsite and offsite drinking water supplies are monitored to ensure they are not impacted. The site has more than 1800 monitoring wells from which groundwater samples are analyzed for radiological and non-radiological constituents. SRS is complying with all applicable regulations related to groundwater protection, waste treatment, and waste disposal. The existing waste storage facilities are permitted or are being permitted. Existing hazardous- and mixed-waste storage facilities are being included in the site Resource Conservation and Recovery Act (RCRA) Part B Permit. Part B permitting has been initiated for many of the planned hazardous- and mixed-waste treatment and disposal facilities

  12. STRATEGIC ISSUES GROUNDWATER EXTRACTION MANAGEMENT IN RUSSIA

    Directory of Open Access Journals (Sweden)

    Ekaterina I. Golovina

    2017-05-01

    Full Text Available Water is a key component of our environment; it is a renewable, limited and vulnerable natural resource, which provides economic, social, and environmental well-being of the population. The most promising source of drinking water supply is groundwater usage. Drinking and industrial groundwater is one of the most important components of the groundwater mineral resource base in the Russian Federation. Modern system of groundwater extraction management and state regulation is currently imperfect and has definite disadvantages, among them - lack of control over natural resources by the state, an old system of tax rates for the use of groundwater, commercialization stage of licensing, the budget deficit, which is passed on other spheres of the national economy. This article provides general information about the state of groundwater production and supply in Russia, negative trends of groundwater usage, some actions for the improvement in the system of groundwater’s fund management are suggested. The most important amendments of the law “About mineral resources” are overviewed, effects of these changes are revealed and recommendations for future groundwater extraction regulation are given.

  13. H-Area Hazardous Waste Management Facility Corrective Action Report, Third and Fourth Quarter 1998, Volumes I and II

    International Nuclear Information System (INIS)

    Chase, J.

    1999-01-01

    The groundwater in the uppermost aquifer beneath the H-Area Hazardous Waste Management Facility (HWMF), also known as the H-Area Seepage Basins, at the Savannah Site (SRS) is monitored periodically for selected hazardous and radioactive constituents. This report presents the results of the required groundwater monitoring program

  14. Scoping Calculations for Potential Groundwater Impacts from Operation of the APT Facility at SRS

    International Nuclear Information System (INIS)

    Thibault, J.J.

    1999-01-01

    The purpose of this study was to determine the potential travel times and paths of the postulated activated groundwater beneath the facility and to examine the fate and transport of this activated groundwater

  15. Do Groundwater Management Plans Work? A statistical evaluation of the effectiveness of groundwater management plans towards achieving water supply and environmental objectives under a changing climate.

    Science.gov (United States)

    White, E.; Peterson, T. J.; Costelloe, J. F.; Western, A. W.; Carrara, E.

    2017-12-01

    Regulation of groundwater through the use of management plans is becoming increasingly prevalent as global groundwater levels decline. But plans are seldom systematically and quantitatively assessed for effectiveness. Instead, the state of an aquifer is commonly considered a proxy for plan effectiveness despite a lack of casaulity. Groundwater managers face myraid challenges such as finite resources, conflicting uses and the uncertainty inherent in any groundwater investigation. Groundwater models have been used to provide insights into what may happen to the aquifer under various levels of stress. Generally, these models simulate the impact of predefined stresses for a certain time-span. However, this is not how management occurs in reality. Managers only see a fraction of the aquifer and use this limited knowledgeto make aquifer-wide decisions. Also, management changes over time in response to aquifer state, and groundwater management plans commonly contain trigger levels in monitoring wells that prompt management intervention. In this way there is a feedback between the aquifer state and management that is rarely captured by groundwater management models. To capture this management/aquifer feedback, groundwater management was structured as a systems control problem, and using this framework, a testability assessment rubric developed. The rubric was applied to 15 Australian groundwater management plans and 47% of plans were found to be testable. To numerically quantify the effectiveness of groundwater managment, the impact of extraction restrictions was probabilistically assessed by simulating "the act of management" of a simple unconfined groundwater system using MODFLOW and Flopy. Water managers were privy only to head levels in a varying number of grid cells assigned as monitoring wells, and used that limited information to make allocation decisions at each time step. Extraction rates for each simulated management period were determined based upon the observed

  16. Groundwater monitoring plan for the Hanford Site 216-B-3 pond RCRA facility

    International Nuclear Information System (INIS)

    Barnett, D.B.; Chou, C.J.

    1998-06-01

    The 216-B-3 pond system was a series of ponds for disposal of liquid effluent from past Hanford production facilities. In operation since 1945, the B Pond system has been a RCRA facility since 1986, with Resource Conservation and Recovery Act (RCRA) interim-status groundwater monitoring in place since 1988. In 1994, discharges were diverted from the main pond, where the greatest potential for contamination was thought to reside, to the 3C expansion pond. In 1997, all discharges to the pond system were discontinued. In 1990, the B Pond system was elevated from detection groundwater monitoring to an assessment-level status because total organic halogens and total organic carbon were found to exceed critical means in two wells. Subsequent groundwater quality assessment failed to find any specific hazardous waste contaminant that could have accounted for the exceedances, which were largely isolated in occurrence. Thus, it was recommended that the facility be returned to detection-level monitoring

  17. Results of phase 1 groundwater quality assessment for Single-Shell Tank Waste Management Areas B-BX-BY at the Hanford Site

    Energy Technology Data Exchange (ETDEWEB)

    Narbutovskih, S.M.

    1998-02-01

    Pacific Northwest National Laboratory conducted a Phase 1 (or first determination) groundwater quality assessment for the US Department of Energy, Richland Operations Office, in accordance with the Federal Facility Compliance Agreement. The purpose of the assessment was to determine if the Single-Shell Tank Waste Management Area (WMA) B-BX-BY has impacted groundwater quality. This report will document the evidence demonstrating that the WMA has impacted groundwater quality.

  18. Results of phase 1 groundwater quality assessment for Single-Shell Tank Waste Management Areas B-BX-BY at the Hanford Site

    International Nuclear Information System (INIS)

    Narbutovskih, S.M.

    1998-02-01

    Pacific Northwest National Laboratory conducted a Phase 1 (or first determination) groundwater quality assessment for the US Department of Energy, Richland Operations Office, in accordance with the Federal Facility Compliance Agreement. The purpose of the assessment was to determine if the Single-Shell Tank Waste Management Area (WMA) B-BX-BY has impacted groundwater quality. This report will document the evidence demonstrating that the WMA has impacted groundwater quality

  19. A proposed groundwater management framework for municipalities ...

    African Journals Online (AJOL)

    Groundwater is not being perceived as an important water resource and therefore has been given limited attention in South. Africa. This is reflected in general ... Research Commission (WRC) has commissioned a project to develop a Groundwater Management Framework that incorpo- rates all aspects of groundwater ...

  20. Impact of Spatial Pumping Patterns on Groundwater Management

    Science.gov (United States)

    Yin, J.; Tsai, F. T. C.

    2017-12-01

    Challenges exist to manage groundwater resources while maintaining a balance between groundwater quantity and quality because of anthropogenic pumping activities as well as complex subsurface environment. In this study, to address the impact of spatial pumping pattern on groundwater management, a mixed integer nonlinear multi-objective model is formulated by integrating three objectives within a management framework to: (i) maximize total groundwater withdrawal from potential wells; (ii) minimize total electricity cost for well pumps; and (iii) attain groundwater level at selected monitoring locations as close as possible to the target level. Binary variables are used in the groundwater management model to control the operative status of pumping wells. The NSGA-II is linked with MODFLOW to solve the multi-objective problem. The proposed method is applied to a groundwater management problem in the complex Baton Rouge aquifer system, southeastern Louisiana. Results show that (a) non-dominated trade-off solutions under various spatial distributions of active pumping wells can be achieved. Each solution is optimal with regard to its corresponding objectives; (b) operative status, locations and pumping rates of pumping wells are significant to influence the distribution of hydraulic head, which in turn influence the optimization results; (c) A wide range of optimal solutions is obtained such that decision makers can select the most appropriate solution through negotiation with different stakeholders. This technique is beneficial to finding out the optimal extent to which three objectives including water supply concern, energy concern and subsidence concern can be balanced.

  1. Groundwater management in northern Iraq

    Science.gov (United States)

    Stevanovic, Zoran; Iurkiewicz, Adrian

    2009-03-01

    Groundwater is vital and the sole resource in most of the studied region of northern Iraq. It has a significant role in agriculture, water supply and health, and the elimination of poverty in rural areas. Although Iraq is currently dramatically disturbed by complex political and socio-economic problems, in its northern part, i.e. the Kurdish-inhabited region, fast urbanization and economic expansion are visible everywhere. Monitoring and water management schemes are necessary to prevent aquifer over-exploitation in the region. Artificial recharge with temporary runoff water, construction of subsurface dams and several other aquifer management and regulation measures have been designed, and some implemented, in order to improve the water situation. Recommendations, presented to the local professionals and decision-makers in water management, include creation of Water Master Plans and Water User Associations, synchronization of drilling programmes, rehabilitation of the existing well fields, opening of new well fields, and the incorporation of new spring intakes in some areas with large groundwater reserves, as well as construction of numerous small-scale schemes for initial in situ water treatment where saline groundwater is present.

  2. Overview of groundwater management approaches at salinisation risk

    Science.gov (United States)

    Polemio, Maurizio; Zuffianò, Livia Emanuela

    2013-04-01

    All natural waters contain dissolved minerals from interactions with atmospheric and soil gases, mixing with other solutions, and/or interactions with the biosphere and lithosphere. In many cases, these processes result in natural waters containing solute or salinity above concentrations recommended for a specified use, which creates significant social and economic problems. Groundwater salinisation can be caused by natural phenomena and anthropogenic activities. For the former case, we can distinguish terrestrial and marine phenomena. Approximately 16% of the total area of continental earth is potentially involved in groundwater salinisation. Seawater intrusion can be considered to be the primary phenomenon to be studied in terms of groundwater salinisation. Three schematic approaches to the protection of groundwater via salinisation mitigation and/or groundwater salinity improvement are described based on the classifications of the primary salinisation sources and focusing on the effect of seawater intrusion. The complexity of these approaches generally increases due to difficulties caused by groundwater quality and quantity degradation and increased demand for quality water. In order from the lowest to the highest complexity, these approaches are the engineering approach, the discharge management approach, and the water and land management approach. The engineering approach is realised on the local or detailed scale with the purpose of controlling the salinisation, optimising the well discharge with specific technical solutions and/or completing works to improve the quality and/or quantity of the discharged fresh groundwater. The discharge management approach encompasses at least an entire coastal aquifer and defines rules concerning groundwater utilisation and well discharge. The water and land management approach should be applied on the regional scale. Briefly, this approach becomes necessary when one or more need creates an overall framework of high

  3. Occurrence of steroid hormones and antibiotics in shallow groundwater impacted by livestock waste control facilities

    Science.gov (United States)

    Bartelt-Hunt, Shannon; Snow, Daniel D.; Damon-Powell, Teyona; Miesbach, David

    2011-04-01

    Wastewater impoundments at concentrated animal feeding operations (CAFOs) represent a potential source of veterinary pharmaceuticals and steroid hormone contamination to shallow groundwater. This study investigates the occurrence of seventeen veterinary pharmaceuticals and thirteen steroid hormones and hormone metabolites in lagoons and adjacent groundwater at operating swine and beef cattle facilities. These sites were chosen because subsurface geology and previous monitoring of nitrate, ammonia and chloride levels in shallow ground water strongly indicated direct infiltration, and as such represent worst cases for ground water contamination by waste water. Pharmaceutical compounds detected in samples obtained from cattle facilities include sulfamerazine; sulfamethazine; erythromycin; monensin; tiamulin; and sulfathiazole. Lincomycin; ractopamine; sulfamethazine; sulfathiazole; erythromycin; tiamulin and sulfadimethoxine were detected in wastewater samples obtained from swine facilities. Steroid hormones were detected less frequently than veterinary pharmaceuticals in this study. Estrone, testosterone, 4-androstenedione, and androsterone were detected in wastewater impoundments at concentrations ranging from 30 to 3600 ng/L, while only estrone and testosterone were detected in groundwater samples at concentrations up to 390 ng/L. The co-occurrence of veterinary pharmaceutical and steroid hormone contamination in groundwater at these locations and the correlation between pharmaceutical occurrence in lagoon wastewater and hydraulically downgradient groundwater indicates that groundwater underlying some livestock wastewater impoundments is susceptible to contamination by veterinary pharmaceuticals and steroid hormones originating in wastewater lagoons.

  4. Occurrence of steroid hormones and antibiotics in shallow groundwater impacted by livestock waste control facilities.

    Science.gov (United States)

    Bartelt-Hunt, Shannon; Snow, Daniel D; Damon-Powell, Teyona; Miesbach, David

    2011-04-25

    Wastewater impoundments at concentrated animal feeding operations (CAFOs) represent a potential source of veterinary pharmaceuticals and steroid hormone contamination to shallow groundwater. This study investigates the occurrence of seventeen veterinary pharmaceuticals and thirteen steroid hormones and hormone metabolites in lagoons and adjacent groundwater at operating swine and beef cattle facilities. These sites were chosen because subsurface geology and previous monitoring of nitrate, ammonia and chloride levels in shallow ground water strongly indicated direct infiltration, and as such represent worst cases for ground water contamination by waste water. Pharmaceutical compounds detected in samples obtained from cattle facilities include sulfamerazine; sulfamethazine; erythromycin; monensin; tiamulin; and sulfathiazole. Lincomycin; ractopamine; sulfamethazine; sulfathiazole; erythromycin; tiamulin and sulfadimethoxine were detected in wastewater samples obtained from swine facilities. Steroid hormones were detected less frequently than veterinary pharmaceuticals in this study. Estrone, testosterone, 4-androstenedione, and androsterone were detected in wastewater impoundments at concentrations ranging from 30 to 3600ng/L, while only estrone and testosterone were detected in groundwater samples at concentrations up to 390ng/L. The co-occurrence of veterinary pharmaceutical and steroid hormone contamination in groundwater at these locations and the correlation between pharmaceutical occurrence in lagoon wastewater and hydraulically downgradient groundwater indicates that groundwater underlying some livestock wastewater impoundments is susceptible to contamination by veterinary pharmaceuticals and steroid hormones originating in wastewater lagoons. Copyright © 2010 Elsevier B.V. All rights reserved.

  5. RCRA groundwater data analysis protocol for the Hanford Site, Washington

    International Nuclear Information System (INIS)

    Chou, C.J.; Jackson, R.L.

    1992-04-01

    The Resource Conservation and Recovery Act of 1976 (RCRA) groundwater monitoring program currently involves site-specific monitoring of 20 facilities on the Hanford Site in southeastern Washington. The RCRA groundwater monitoring program has collected abundant data on groundwater quality. These data are used to assess the impact of a facility on groundwater quality or whether remediation efforts under RCRA corrective action programs are effective. Both evaluations rely on statistical analysis of groundwater monitoring data. The need for information on groundwater quality by regulators and environmental managers makes statistical analysis of monitoring data an important part of RCRA groundwater monitoring programs. The complexity of groundwater monitoring programs and variabilities (spatial, temporal, and analytical) exhibited in groundwater quality variables indicate the need for a data analysis protocol to guide statistical analysis. A data analysis protocol was developed from the perspective of addressing regulatory requirements, data quality, and management information needs. This data analysis protocol contains four elements: data handling methods; graphical evaluation techniques; statistical tests for trend, central tendency, and excursion analysis; and reporting procedures for presenting results to users

  6. Integrated groundwater management: An overview of concepts and challenges

    Science.gov (United States)

    Jakeman, Anthony J.; Barreteau, Olivier; Hunt, Randall J.; Rinaudo, Jean-Daniel; Ross, Andrew; Jakeman, Anthony J.; Barreteau, Olivier; Hunt, Randall J.; Rinaudo, Jean-Daniel; Ross, Andrew

    2016-01-01

    Managing water is a grand challenge problem and has become one of humanity’s foremost priorities. Surface water resources are typically societally managed and relatively well understood; groundwater resources, however, are often hidden and more difficult to conceptualize. Replenishment rates of groundwater cannot match past and current rates of depletion in many parts of the world. In addition, declining quality of the remaining groundwater commonly cannot support all agricultural, industrial and urban demands and ecosystem functioning, especially in the developed world. In the developing world, it can fail to even meet essential human needs. The issue is: how do we manage this crucial resource in an acceptable way, one that considers the sustainability of the resource for future generations and the socioeconomic and environmental impacts? In many cases this means restoring aquifers of concern to some sustainable equilibrium over a negotiated period of time, and seeking opportunities for better managing groundwater conjunctively with surface water and other resource uses. However, there are many, often-interrelated, dimensions to managing groundwater effectively. Effective groundwater management is underpinned by sound science (biophysical and social) that actively engages the wider community and relevant stakeholders in the decision making process. Generally, an integrated approach will mean “thinking beyond the aquifer”, a view which considers the wider context of surface water links, catchment management and cross-sectoral issues with economics, energy, climate, agriculture and the environment. The aim of the book is to document for the first time the dimensions and requirements of sound integrated groundwater management (IGM). The primary focus is on groundwater management within its system, but integrates linkages beyond the aquifer. The book provides an encompassing synthesis for researchers, practitioners and water resource managers on the concepts and

  7. Groundwater flow analysis using mixed hybrid finite element method for radioactive waste disposal facilities

    International Nuclear Information System (INIS)

    Aoki, Hiroomi; Shimomura, Masanori; Kawakami, Hiroto; Suzuki, Shunichi

    2011-01-01

    In safety assessments of radioactive waste disposal facilities, ground water flow analysis are used for calculating the radionuclide transport pathway and the infiltration flow rate of groundwater into the disposal facilities. For this type of calculations, the mixed hybrid finite element method has been used and discussed about the accuracy of ones in Europe. This paper puts great emphasis on the infiltration flow rate of groundwater into the disposal facilities, and describes the accuracy of results obtained from mixed hybrid finite element method by comparing of local water mass conservation and the reliability of the element breakdown numbers among the mixed hybrid finite element method, finite volume method and nondegenerated finite element method. (author)

  8. The Grand Challenge of Basin-Scale Groundwater Quality Management Modelling

    Science.gov (United States)

    Fogg, G. E.

    2017-12-01

    The last 50+ years of agricultural, urban and industrial land and water use practices have accelerated the degradation of groundwater quality in the upper portions of many major aquifer systems upon which much of the world relies for water supply. In the deepest and most extensive systems (e.g., sedimentary basins) that typically have the largest groundwater production rates and hold fresh groundwaters on decadal to millennial time scales, most of the groundwater is not yet contaminated. Predicting the long-term future groundwater quality in such basins is a grand scientific challenge. Moreover, determining what changes in land and water use practices would avert future, irreversible degradation of these massive freshwater stores is a grand challenge both scientifically and societally. It is naïve to think that the problem can be solved by eliminating or reducing enough of the contaminant sources, for human exploitation of land and water resources will likely always result in some contamination. The key lies in both reducing the contaminant sources and more proactively managing recharge in terms of both quantity and quality, such that the net influx of contaminants is sufficiently moderate and appropriately distributed in space and time to reverse ongoing groundwater quality degradation. Just as sustainable groundwater quantity management is greatly facilitated with groundwater flow management models, sustainable groundwater quality management will require the use of groundwater quality management models. This is a new genre of hydrologic models do not yet exist, partly because of the lack of modeling tools and the supporting research to model non-reactive as well as reactive transport on large space and time scales. It is essential that the contaminant hydrogeology community, which has heretofore focused almost entirely on point-source plume-scale problems, direct it's efforts toward the development of process-based transport modeling tools and analyses capable

  9. Groundwater Management at Varamin Plain: The Consideration of Stochastic and Environmental Effects

    International Nuclear Information System (INIS)

    Najafi Alamdarlo, H.; Ahmadian, M.; Khalilian, S.

    2016-01-01

    Groundwater is one of the common resources in Varamin Plain, but due to over extraction it has been exposed to ruin. This phenomenon will lead to economic and environmental problems. On the other hand, the world is expected to face with more stochastic events of water supply. Furthermore, incorporating stochastic consideration of water supply becomes more acute in designing water facilities. Therefore, the strategies should be applied to improve managing resources and increase the efficiency of irrigation system. Hence, in this study the effect of efficiency improvement of irrigation system on the exploitation of groundwater and cropping pattern is examined in deterministic and stochastic condition using Nash bargaining theory. The results showed that farmers in B scenario are more willing to cooperate and as a result of their cooperation, they lose only 3 percentages of their present value of the objective function. Therefore, the efficiency improvement of irrigation system can result in improving the cooperation between farmers and increasing the amount of reserves.Groundwater is one of the common resources in Varamin Plain, but due to over extraction it has been exposed to ruin. This phenomenon will lead to economic and environmental problems. On the other hand, the world is expected to face with more stochastic events of water supply. Furthermore, incorporating stochastic consideration of water supply becomes more acute in designing water facilities. Therefore, the strategies should be applied to improve managing resources and increase the efficiency of irrigation system. Hence, in this study the effect of efficiency improvement of irrigation system on the exploitation of groundwater and cropping pattern is examined in deterministic and stochastic condition using Nash bargaining theory. The results showed that farmers in B scenario are more willing to cooperate and as a result of their cooperation, they lose only 3 percentages of their present value of the

  10. Internet Portal For A Distributed Management of Groundwater

    Science.gov (United States)

    Meissner, U. F.; Rueppel, U.; Gutzke, T.; Seewald, G.; Petersen, M.

    The management of groundwater resources for the supply of German cities and sub- urban areas has become a matter of public interest during the last years. Negative headlines in the Rhein-Main-Area dealt with cracks in buildings as well as damaged woodlands and inundated agriculture areas as an effect of varying groundwater levels. Usually a holistic management of groundwater resources is not existent because of the complexity of the geological system, the large number of involved groups and their divergent interests and a lack of essential information. The development of a network- based information system for an efficient groundwater management was the target of the project: ?Grundwasser-Online?[1]. The management of groundwater resources has to take into account various hydro- geological, climatic, water-economical, chemical and biological interrelations [2]. Thus, the traditional approaches in information retrieval, which are characterised by a high personnel and time expenditure, are not sufficient. Furthermore, the efficient control of the groundwater cultivation requires a direct communication between the different water supply companies, the consultant engineers, the scientists, the govern- mental agencies and the public, by using computer networks. The presented groundwater information system consists of different components, especially for the collection, storage, evaluation and visualisation of groundwater- relevant information. Network-based technologies are used [3]. For the collection of time-dependant groundwater-relevant information, modern technologies of Mobile Computing have been analysed in order to provide an integrated approach in the man- agement of large groundwater systems. The aggregated information is stored within a distributed geo-scientific database system which enables a direct integration of simu- lation programs for the evaluation of interactions in groundwater systems. Thus, even a prognosis for the evolution of groundwater states

  11. Real-Time Management of Groundwater Resources Based on Wireless Sensors Networks

    Directory of Open Access Journals (Sweden)

    Qingguo Zhou

    2018-01-01

    Full Text Available Groundwater plays a vital role in the arid inland river basins, in which the groundwater management is critical to the sustainable development of area economy and ecology. Traditional sustainable management approaches are to analyze different scenarios subject to assumptions or to construct simulation–optimization models to obtain optimal strategy. However, groundwater system is time-varying due to exogenous inputs. In this sense, the groundwater management based on static data is relatively outdated. As part of the Heihe River Basin (HRB, which is a typical arid river basin in Northwestern China, the Daman irrigation district was selected as the study area in this paper. First, a simulation–optimization model was constructed to optimize the pumping rates of the study area according to the groundwater level constraints. Three different groundwater level constraints were assigned to explore sustainable strategies for groundwater resources. The results indicated that the simulation–optimization model was capable of identifying the optimal pumping yields and satisfy the given constraints. Second, the simulation–optimization model was integrated with wireless sensors network (WSN technology to provide real-time features for the management. The results showed time-varying feature for the groundwater management, which was capable of updating observations, constraints, and decision variables in real time. Furthermore, a web-based platform was developed to facilitate the decision-making process. This study combined simulation and optimization model with WSN techniques and meanwhile attempted to real-time monitor and manage the scarce groundwater resource, which could be used to support the decision-making related to sustainable management.

  12. Tritium monitoring in groundwater and evaluation of model predictions for the Hanford Site 200 Area Effluent Treatment Facility

    International Nuclear Information System (INIS)

    Barnett, D.B.; Bergeron, M.P.; Cole, C.R.; Freshley, M.D.; Wurstner, S.K.

    1997-08-01

    The Effluent Treatment Facility (ETF) disposal site, also known as the State-Approved Land Disposal Site (SALDS), receives treated effluent containing tritium, which is allowed to infiltrate through the soil column to the water table. Tritium was first detected in groundwater monitoring wells around the facility in July 1996. The SALDS groundwater monitoring plan requires revision of a predictive groundwater model and reevaluation of the monitoring well network one year from the first detection of tritium in groundwater. This document is written primarily to satisfy these requirements and to report on analytical results for tritium in the SALDS groundwater monitoring network through April 1997. The document also recommends an approach to continued groundwater monitoring for tritium at the SALDS. Comparison of numerical groundwater models applied over the last several years indicate that earlier predictions, which show tritium from the SALDS approaching the Columbia River, were too simplified or overly robust in source assumptions. The most recent modeling indicates that concentrations of tritium above 500 pCi/L will extend, at most, no further than ∼1.5 km from the facility, using the most reasonable projections of ETF operation. This extent encompasses only the wells in the current SALDS tritium-tracking network

  13. Windows of Opportunity for Groundwater Management

    Science.gov (United States)

    Foster, T.; Brozovic, N.; Butler, A. P.

    2015-12-01

    To date, there has been little attention focused on how the value and effectiveness of groundwater management is influenced by the timing of regulatory intervention relative to aquifer depletion. To address this question, we develop an integrated framework that couples an agro-economic model of farmers' field-level irrigation decision-making with a model of a groundwater abstraction borehole. Unlike existing models that only consider the impact of aquifer depletion on groundwater extraction costs, our model also captures the dynamic changes in well productivity and how these in turn affect crop yields and farmer incomes. We use our model to analyze how the value of imposing groundwater quotas is affected by the prior level of depletion before regulations are introduced. Our results demonstrate that there is a range of aquifer conditions within which regulating groundwater use will deliver long-term economic benefits for farmers. In this range, restricting abstraction rates slows the rate of change in well yields and, as a result, increases agricultural production over the simulated planning horizon. Contrastingly, when current saturated thickness is outside this range, regulating groundwater use will provide negligible social benefits and will impose large negative impacts on farm-level profits. We suggest that there are 'windows of opportunity' for managing aquifer depletion that are a function of local hydrology as well as economic characteristics. Regulation that is too early will harm the rural economy needlessly, while regulation that is too late will be unable to prevent aquifer exhaustion. The insights from our model can be a valuable tool to help inform policy decisions about when, and at what level, regulations should be implemented in order to maximize the benefits obtained from limited groundwater resources.

  14. An introduction and overview of DRAFT CSA Standard N288.7 Groundwater Protection at Class I Nuclear Facilities and Uranium Mines and Mills

    Energy Technology Data Exchange (ETDEWEB)

    DeWilde, J., E-mail: john_dewilde@golder.com [Golder Associates Ltd., Whitby, ON (Canada); Klukas, M.; Audet, M., E-mail: marc.audet@cnl.ca [Canadian Nuclear Laboratories, Chalk River, ON (Canada)

    2015-07-01

    The DRAFT CSA Standard N288.7 entitled Groundwater Protection at Class I Nuclear Facilities and Uranium Mines and Mills is currently under development and is anticipated to publish in June of 2015. This draft standard identifies a process for the protection and monitoring of groundwater at nuclear facilities but may also be used at any facility (i.e. nuclear facilities that are not Class I or non-nuclear facilities). The paper discusses the background to the draft standard, the formalized methodology described in the draft standard and provides some input on implementation. The paper is intended for people that have responsibilities related to groundwater protection at facilities that may need to comply with the draft standard or any site/facility that has some form of groundwater monitoring program. (author)

  15. Sustainable Groundwater Management Using Economic Incentive Approach

    Science.gov (United States)

    Yan, T.; Shih, J.; Sanchirico, J. N.

    2006-12-01

    Although groundwater accounts for about 20% of the water consumption in the US, recent urban development, land use changes and agricultural activities in many regions (for example, Chesapeake Bay and eastern shore of Maryland) have resulted in deleterious impacts on groundwater quality. These impacts have dramatically increased potential human health and ecological system risks. One example is nitrogen pollution delivered to local waterways from septic systems via groundwater. Conventional approaches for nitrogen removal, such as pumping and treatment (nitrification-denitrification) process, tend to be expensive. On the other hand, economic incentive approaches (such as marketable permits) have the potential to increase the efficiency of environmental policy by reducing compliance costs for regulated entities and individuals and/or achieving otherwise uneconomical pollution reduction. The success of the sulfur dioxide trading market has led to the creation of trading markets for other pollutants, especially at the regional, state, and smaller (e.g. watershed) scales. In this paper, we develop an integrated framework, which includes a groundwater flow and transport model, and a conceptual management model. We apply this framework to a synthetic set up which includes one farm and two development areas in order to investigate the potential of using economic incentive approaches for groundwater quality management. The policy analysis is carried out by setting up the objective of the modeling framework to minimize the total cost of achieving groundwater quality goals at specific observation point using either a transferable development right (TDR) system between development areas and/or using a tax for fertilizer usage in the farm area. The TDR system consists of a planning agency delineating a region into restricted-use (e.g., agriculture, open space) and high intensity zones (e.g., residential, commercial uses). The agency then endows landowners in the restricted area

  16. Groundwater management in land administration : A spatio-temporal perspective

    NARCIS (Netherlands)

    Ghawana, T.; Hespanha, J.P.; Zevenbergen, J.A.; Van Oosterom, P.J.M.

    2010-01-01

    Although the use of land and water is intertwined, specifics for groundwater management are not effectively dealt with in the laws and other institutional mechanisms related to land. Provisions for groundwater aspects in land management are there, but with a focus on the land itself. Land rights and

  17. Management of groundwater in farmed pond area using risk-based regulation.

    Science.gov (United States)

    Huang, Jun-Ying; Liao, Chiao-Miao; Lin, Kao-Hung; Lee, Cheng-Haw

    2014-09-01

    Blackfoot disease (BFD) had occurred seriously in the Yichu, Hsuehchia, Putai, and Peimen townships of Chia-Nan District of Taiwan in the early days. These four townships are the districts of fishpond cultivation domestically in Taiwan. Groundwater becomes the main water supply because of short income in surface water. The problems of over pumping in groundwater may not only result in land subsidence and seawater intrusion but also be harmful to the health of human giving rise to the bioaccumulation via food chain in groundwater with arsenic (As). This research uses sequential indicator simulation (SIS) to characterize the spatial arsenic distribution in groundwater in the four townships. Risk assessment is applied to explore the dilution ratio (DR) of groundwater utilization, which is defined as the ratio showing the volume of groundwater utilization compared to pond water, for fish farming in the range of target cancer risk (TR) especially on the magnitude of 10(-4)~10(-6). Our study results reveal that the 50th percentile of groundwater DRs served as a regulation standard can be used to perform fish farm groundwater management for a TR of 10(-6). For a TR of 5 × 10(-6), we suggest using the 75th percentile of DR for groundwater management. For a TR of 10(-5), we suggest using the 95th percentile of the DR standard for performing groundwater management in fish farm areas. For the TR of exceeding 5 × 10(-5), we do not suggest establishing groundwater management standards under these risk standards. Based on the research results, we suggest that establishing a TR at 10(-5) and using the 95th percentile of DR are best for groundwater management in fish farm areas.

  18. Management of Nitrate m Groundwater: A Simulation Study

    Directory of Open Access Journals (Sweden)

    M. Ahmed

    2001-01-01

    Full Text Available Agriculture may cause nitrate and other chemicals to enter into groundwater systems. Nitrate in drinking water is considered a health hazard. A study was conducted to assess the extent of nitrate pollution of groundwater caused by agriculture and to evaluate the possibility of using the LEACHN model to manage nitrate entry into groundwater of agricultural areas of Al-Batinah, which is the most important agricultural region of Oman. Groundwater samples were collected and analyzed to assess the problem and to detect possible trends. Soil sampling and analyses were done to demonstrate the difference in the nitrate concentration in agricultural and non-agricultural soils. A questionnaire survey was conducted to gather information on agricultural practices, fertilizer input, and other possible sources of nitrate pollution. Results from the study show that 23% of groundwater samples have a concentration of nitrate-N concentration of 10 mg/l and 34% samples exceed 8 mg/l. Agricultural soils have higher levels of nitrate compared to non- agricultural soils. Results also demonstrate that nitrate levels in groundwater in Al-Batinah are rising. Application of the ‘LEACHN’ model demonstrated its suitability for use as a management tool to reduce nitrate leaching to groundwater by controlling fertilizer and water input.

  19. Annual Report for 2008 - 2009 Detection Monitoring at the Environmental Management Waste Management Facility, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    Walker J.R.

    2010-03-01

    This annual Environmental Monitoring Report (EMR) presents results of environmental monitoring performed during fiscal year (FY) 2009 (October 1, 2008 - September 30, 2009) at the Environmental Management Waste Management Facility (EMWMF). The EMWMF is an operating state-of-the-art hazardous waste landfill located in Bear Creek Valley (BCV) west of the U.S. Department of Energy (DOE) Y-12 National Security Complex (Y-12) on the DOE Oak Ridge Reservation (ORR) in Oak Ridge, Tennessee (Appendix A, Fig. A.1). Opened in 2002 and operated by a DOE prime contractor, Bechtel Jacobs Company LLC (BJC), the EMWMF was built specifically to accommodate disposal of acceptable solid wastes generated from Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA) remedial actions for former waste sites and buildings that have been impacted by past DOE operations on the ORR and at DOE sites off the ORR within the state of Tennessee. Environmental monitoring at the EMWMF is performed to detect and monitor the impact of facility operations on groundwater, surface water, stormwater, and air quality and to determine compliance with applicable or relevant and appropriate requirements (ARARs) specified in governing CERCLA decision documents. Annually, the EMR presents an evaluation of the groundwater, surface water, stormwater, and air monitoring data with respect to the applicable EMWMF performance standards. The purpose of the evaluation is to: (1) identify monitoring results that indicate evidence of a contaminant release from the EMWMF to groundwater, surface water, stormwater, or air, and (2) recommend appropriate changes to the associated sampling and analysis requirements, including sampling locations, methods, and frequencies; field measurements; or laboratory analytes that may be warranted in response to the monitoring data. Sect. 2 of this annual EMR provides background information relevant to environmental monitoring at the landfill, including

  20. Ecohydrology and Its Relation to Integrated Groundwater Management

    Science.gov (United States)

    Hunt, Randall J.; Hayashi, Masaki; Batelaan, Okke

    2016-01-01

    In the twentieth century, groundwater characterization focused primarily on easily measured hydraulic metrics of water storage and flows. Twenty-first century concepts of groundwater availability, however, encompass other factors having societal value, such as ecological well-being. Effective ecohydrological science is a nexus of fundamental understanding derived from two scientific disciplines: (1) ecology, where scale, thresholds, feedbacks and tipping points for societal questions form the basis for the ecologic characterization, and (2) hydrology, where the characteristics, magnitude, and timing of water flows are characterized for a defined system of interest. In addition to ecohydrology itself, integrated groundwater management requires input from resource managers to understand which areas of the vast world of ecohydrology are important for decision making. Expectations of acceptable uncertainty, or even what ecohydrological outputs have utility, are often not well articulated within societal decision making frameworks, or within the science community itself. Similarly, “acceptable levels of impact” are difficult to define. Three examples are given to demonstrate the use of ecohydrological considerations for long-term sustainability of groundwater resources and their related ecosystem function. Such examples illustrate the importance of accommodating ecohydrogeological aspects into integrated groundwater management of the twenty-first century, regardless of society, climate, or setting.

  1. Review: Optimization methods for groundwater modeling and management

    Science.gov (United States)

    Yeh, William W.-G.

    2015-09-01

    Optimization methods have been used in groundwater modeling as well as for the planning and management of groundwater systems. This paper reviews and evaluates the various optimization methods that have been used for solving the inverse problem of parameter identification (estimation), experimental design, and groundwater planning and management. Various model selection criteria are discussed, as well as criteria used for model discrimination. The inverse problem of parameter identification concerns the optimal determination of model parameters using water-level observations. In general, the optimal experimental design seeks to find sampling strategies for the purpose of estimating the unknown model parameters. A typical objective of optimal conjunctive-use planning of surface water and groundwater is to minimize the operational costs of meeting water demand. The optimization methods include mathematical programming techniques such as linear programming, quadratic programming, dynamic programming, stochastic programming, nonlinear programming, and the global search algorithms such as genetic algorithms, simulated annealing, and tabu search. Emphasis is placed on groundwater flow problems as opposed to contaminant transport problems. A typical two-dimensional groundwater flow problem is used to explain the basic formulations and algorithms that have been used to solve the formulated optimization problems.

  2. Results of Phase I groundwater quality assessment for single-shell tank waste management areas T and TX-TY at the Hanford Site

    International Nuclear Information System (INIS)

    Hodges, F.N.

    1998-01-01

    Pacific Northwest National Laboratory (PNNL) conducted a Phase I, Resource Conservation and Recovery Act of 1976 (RCRA) groundwater quality assessment for the Richland Field Office of the U.S. Department of Energy (DOE-RL) under the requirements of the Federal Facility Compliance Agreement. The purpose of the investigation was to determine if the Single-Shell Tank Waste Management Areas (WMAs) T and TX-TY have impacted groundwater quality. Waste Management Areas T and TX-TY, located in the northern part of the 200 West Area of the Hanford Site, contain the 241-T, 241-TX, and 241-TY tank farms and ancillary waste systems. These two units are regulated under RCRA interim-status regulations (under 40 CFR 265.93) and were placed in assessment groundwater monitoring because of elevated specific conductance in downgradient wells. Anomalous concentrations of technetium-99, chromium, nitrate, iodine-129, and cobalt-60 also were observed in some downgradient wells. Phase I assessment, allowed under 40 CFR 265, provides the owner-operator of a facility with the opportunity to show that the observed contamination has a source other than the regulated unit. For this Phase I assessment, PNNL evaluated available information on groundwater chemistry and past waste management practices in the vicinity of WMAs T and TX-TY. Background contaminant concentrations in the vicinity of WMAs T and TX-TY are the result of several overlapping contaminant plumes resulting from past-practice waste disposal operations. This background has been used as baseline for determining potential WMA impacts on groundwater

  3. Geospatial Data Management Platform for Urban Groundwater

    Science.gov (United States)

    Gaitanaru, D.; Priceputu, A.; Gogu, C. R.

    2012-04-01

    Due to the large amount of civil work projects and research studies, large quantities of geo-data are produced for the urban environments. These data are usually redundant as well as they are spread in different institutions or private companies. Time consuming operations like data processing and information harmonisation represents the main reason to systematically avoid the re-use of data. The urban groundwater data shows the same complex situation. The underground structures (subway lines, deep foundations, underground parkings, and others), the urban facility networks (sewer systems, water supply networks, heating conduits, etc), the drainage systems, the surface water works and many others modify continuously. As consequence, their influence on groundwater changes systematically. However, these activities provide a large quantity of data, aquifers modelling and then behaviour prediction can be done using monitored quantitative and qualitative parameters. Due to the rapid evolution of technology in the past few years, transferring large amounts of information through internet has now become a feasible solution for sharing geoscience data. Furthermore, standard platform-independent means to do this have been developed (specific mark-up languages like: GML, GeoSciML, WaterML, GWML, CityML). They allow easily large geospatial databases updating and sharing through internet, even between different companies or between research centres that do not necessarily use the same database structures. For Bucharest City (Romania) an integrated platform for groundwater geospatial data management is developed under the framework of a national research project - "Sedimentary media modeling platform for groundwater management in urban areas" (SIMPA) financed by the National Authority for Scientific Research of Romania. The platform architecture is based on three components: a geospatial database, a desktop application (a complex set of hydrogeological and geological analysis

  4. Management of Ground and Groundwater Contamination on a Compact Site Constrained by Ongoing Activities

    International Nuclear Information System (INIS)

    Eilbeck, K.E.; Reeve, P.

    2009-01-01

    Sellafield Site is a compact and complex site which since the 1940's has been home to a range of facilities associated with the production and reprocessing of fissile material. The site contains the UK equivalent of the Chicago Pile-1 reactor, Hanford B Reactor, Rocky Flats Buildings 771 and 774, West Valley Main Process Plant Building, Savannah River Vitrification Plant, Savannah River MOX Plant, Savannah River F Canyon, Hanford 222 Analytical Laboratory, Savannah River K-, L-, and P-Basins, and the Fort St. Vrain Reactor all in an area of approximately 1000 acres. Spent fuel reprocessing is still undertaken on site; however waste management and decommissioning activities are of increasing importance. These include the emptying and removal of fragile ponds and silos containing significant radioactive inventories, the decommissioning of reactors (including the world's first commercial reactor for power generation and the Windscale Piles, the site of a reactor fire in the late 1950's) and the construction of a new generation of vitrification and encapsulation plants. Leaks, spills and on-site disposals during the site's industrial lifetime have resulted in a legacy of fission products and other radionuclides in the ground and groundwater. Volumes of contaminated ground have been estimated as being as much as 18 million m 3 and an estimated below ground inventory of approximately 1.8 E16 Bq. These have all occurred within close proximity to a range of receptors including farm land and the sea. The cramped nature of the facilities on site, overlapping source terms and ongoing decommissioning, waste management and operating activities all raise significant challenges in the management and remediation of contaminated land and groundwater. The strategy to address these challenges includes: 1. Data collection, management and interpretation. The congested nature of the site and the age of some of the monitoring facilities has resulted in particular difficulties. For

  5. Groundwater Protection Program Management Plan for the U.S. Department of Energy Y-12 National Security Complex, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    Elvado Environmental LLC; Environmental Compliance Department Environment, Safety, and Health Division Y-12 National Security Complex

    2004-03-31

    This document presents the Groundwater Protection Program (GWPP) management plan for the U.S. Department of Energy (DOE) Y-12 National Security Complex (hereafter referenced as Y-12). The Y-12 GWPP functions as the primary point-of-contact for groundwater-related issues at Y-12, provides stewardship of the extensive network of groundwater monitoring wells at Y-12, and serves as a resource for technical expertise, support, and historical data for groundwater-related activities at Y-12. These organizational functions each serve the primary programmatic purpose of the GWPP, which is to ensure that groundwater monitoring activities within areas under Y-12 administrative control provide representative data in compliance with the multiple purposes of applicable state and federal regulations, DOE orders, and the corporate policies of BWXT Y-12, L.L.C. (hereafter referenced as BWXT), the Y-12 management and operations (M&O) contractor for DOE. This GWPP management plan addresses the requirements of DOE Order 450.1 (BWXT Y12 S/RID) regarding the implementation of a site-wide approach for groundwater protection at each DOE facility. Additionally, this plan is a ''living'' document that is reviewed annually, revised and reissued every three years, and is formatted to provide for updating individual sections independent of the rest of the document. Section 2 includes a short description of the groundwater system at Y-12, the history of groundwater monitoring at Y-12 and the corresponding evolution of the GWPP, and an overview of ongoing Y-12 groundwater monitoring activities. Section 3 describes the key elements of the GWPP management strategy. Organizational roles and responsibilities of GWPP personnel are outlined in Section 4. Section 5 presents an overview of the GWPP project plans for applicable programmatic elements. Section 6 lists the reports, plans, and documents that are referenced for technical and administrative details.

  6. The X-625 Groundwater Treatment Facility: A field-scale test of trichloroethylene dechlorination using iron filings for the X-120/X-749 groundwater plume

    International Nuclear Information System (INIS)

    Liang, L.; West, O.R.; Korte, N.E.

    1997-09-01

    The dehalogenation of chlorinated solvents by zero-valence iron has recently become the subject of intensive research and development as a potentially cost-effective, passive treatment for contaminated groundwater through reactive barriers. Because of its successful application in the laboratory and other field sites, the X-625 Groundwater Treatment Facility (GTF) was constructed to evaluate reactive barrier technology for remediating trichloroethylene (TCE)-contaminated groundwater at the Portsmouth Gaseous Diffusion Plant (PORTS). The X-625 GTF was built to fulfill the following technical objectives: (1) to test reactive barrier materials (e.g., iron filings) under realistic groundwater conditions for long term applications, (2) to obtain rates at which TCE degrades and to determine by-products for the reactive barrier materials tested, and (3) to clean up the TCE-contaminated water in the X-120 plume. The X-625 is providing important field-scale and long-term for the evaluation and design of reactive barriers at PORTS. The X-625 GTS is a unique facility not only because it is where site remediation is being performed, but it is also where research scientists and process engineers can test other promising reactive barrier materials. In addition, the data collected from X-625 GTF can be used to evaluate the technical and economic feasibility of replacing the activated carbon units in the pump-and-treat facilities at PORTS

  7. Integrated groundwater resource management in Indus Basin using satellite gravimetry and physical modeling tools.

    Science.gov (United States)

    Iqbal, Naveed; Hossain, Faisal; Lee, Hyongki; Akhter, Gulraiz

    2017-03-01

    Reliable and frequent information on groundwater behavior and dynamics is very important for effective groundwater resource management at appropriate spatial scales. This information is rarely available in developing countries and thus poses a challenge for groundwater managers. The in situ data and groundwater modeling tools are limited in their ability to cover large domains. Remote sensing technology can now be used to continuously collect information on hydrological cycle in a cost-effective way. This study evaluates the effectiveness of a remote sensing integrated physical modeling approach for groundwater management in Indus Basin. The Gravity Recovery and Climate Experiment Satellite (GRACE)-based gravity anomalies from 2003 to 2010 were processed to generate monthly groundwater storage changes using the Variable Infiltration Capacity (VIC) hydrologic model. The groundwater storage is the key parameter of interest for groundwater resource management. The spatial and temporal patterns in groundwater storage (GWS) are useful for devising the appropriate groundwater management strategies. GRACE-estimated GWS information with large-scale coverage is valuable for basin-scale monitoring and decision making. This frequently available information is found useful for the identification of groundwater recharge areas, groundwater storage depletion, and pinpointing of the areas where groundwater sustainability is at risk. The GWS anomalies were found to favorably agree with groundwater model simulations from Visual MODFLOW and in situ data. Mostly, a moderate to severe GWS depletion is observed causing a vulnerable situation to the sustainability of this groundwater resource. For the sustainable groundwater management, the region needs to implement groundwater policies and adopt water conservation techniques.

  8. Data management implementation plan for the site characterization of the Waste Area Grouping 1 Groundwater Operable Unit at Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    Ball, T.S.; Nickle, E.B.

    1994-10-01

    The Waste Area Grouping (WAG) 1 Groundwater Operable Unit (OU) at Oak Ridge National Laboratory (ORNL) in Oak Ridge, Tennessee, is undergoing a site characterization. This project is not mandated by the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA); therefore, no formalized meetings for data quality objective (DQO) development were held. Internally, DQOs were generated by the project team based on the end uses of the data to be collected. The 150-acre WAG 1 is contained within the ORNL security area. It includes all of the former ORNL radioisotope research, production, and maintenance facilities; former waste management areas; and some former administrative facilities. The goal of the WAG 1 Groundwater Site Characterization is to provide the necessary data on the nature and extent of groundwater contamination with an acceptable level of uncertainty to support the selection of remedial alternatives and to identify additional data needs for future actions. Primary objectives for the site characterization are: (1) To identify and characterize contaminant migration pathways based on the collection of groundwater data; (2) to identify sources of groundwater contamination and evaluate remedial actions which could be implemented to control or eliminate these sources; and (3) To conduct groundwater monitoring in support of other OUs in WAG 1 and the ORNL Groundwater OU

  9. Sustainable Facilities Management

    DEFF Research Database (Denmark)

    Nielsen, Susanne Balslev; Elle, Morten; Hoffmann, Birgitte

    2004-01-01

    The Danish public housing sector has more than 20 years of experience with sustainable facilities management based on user involvement. The paper outlines this development in a historical perspective and gives an analysis of different approaches to sustainable facilities management. The focus...... is on the housing departments and strateies for the management of the use of resources. The research methods used are case studies based on interviews in addition to literature studies. The paper explores lessons to be learned about sustainable facilities management in general, and points to a need for new...

  10. Groundwater screening evaluation/monitoring plan: 200 Area Treated Effluent Disposal Facility (Project W-049H). Revision 1

    International Nuclear Information System (INIS)

    Barnett, D.B.; Davis, J.D.; Collard, L.B.; Freeman, P.B.; Chou, C.J.

    1995-05-01

    This report consists of the groundwater screening evaluation required by Section S.8 of the State Waste Discharge Permit for the 200 Area TEDF. Chapter 1.0 describes the purpose of the groundwater monitoring plan. The information in Chapter 2.0 establishes a water quality baseline for the facility and is the groundwater screening evaluation. The following information is included in Chapter 2.0: Facility description;Well locations, construction, and development data; Geologic and hydrologic description of the site and affected area; Ambient groundwater quality and current use; Water balance information; Hydrologic parameters; Potentiometric map, hydraulic gradients, and flow velocities; Results of infiltration and hydraulic tests; Groundwater and soils chemistry sampling and analysis data; Statistical evaluation of groundwater background data; and Projected effects of facility operation on groundwater flow and water quality. Chapter 3.0 defines, based on the information in Chapter 2.0, how effects of the TEDF on the environment will be evaluated and how compliance with groundwater quality standards will be documented in accordance with the terms and conditions of the permit. Chapter 3.0 contains the following information: Media to be monitored; Wells proposed as the point of compliance in the uppermost aquifer; Basis for monitoring well network and evidence of monitoring adequacy; Contingency planning approach for vadose zone monitoring wells; Which field parameters will be measured and how measurements will be made; Specification of constituents to be sampled and analyzed; and Specification of the sampling and analysis procedures that will be used. Chapter 4.0 provides information on how the monitoring results will be reported and the proposed frequency of monitoring and reporting. Chapter 5.0 lists all the references cited in this monitoring plan. These references should be consulted for additional or more detailed information

  11. Coupling Agent-Based and Groundwater Modeling to Explore Demand Management Strategies for Shared Resources

    Science.gov (United States)

    Al-Amin, S.

    2015-12-01

    Municipal water demands in growing population centers in the arid southwest US are typically met through increased groundwater withdrawals. Hydro-climatic uncertainties attributed to climate change and land use conversions may also alter demands and impact the replenishment of groundwater supply. Groundwater aquifers are not necessarily confined within municipal and management boundaries, and multiple diverse agencies may manage a shared resource in a decentralized approach, based on individual concerns and resources. The interactions among water managers, consumers, and the environment influence the performance of local management strategies and regional groundwater resources. This research couples an agent-based modeling (ABM) framework and a groundwater model to analyze the effects of different management approaches on shared groundwater resources. The ABM captures the dynamic interactions between household-level consumers and policy makers to simulate water demands under climate change and population growth uncertainties. The groundwater model is used to analyze the relative effects of management approaches on reducing demands and replenishing groundwater resources. The framework is applied for municipalities located in the Verde River Basin, Arizona that withdraw groundwater from the Verde Formation-Basin Fill-Carbonate aquifer system. Insights gained through this simulation study can be used to guide groundwater policy-making under changing hydro-climatic scenarios for a long-term planning horizon.

  12. Municipal waste management and groundwater contamination processes in Córdoba Province, Argentina

    Directory of Open Access Journals (Sweden)

    Daniel Emilio Martínez

    2010-12-01

    Full Text Available In Coronel Moldes, Argentina, waste management practices consist in municipal waste being tipped directly onto an area of sand dunes at the municipal waste disposal site (MWDS. Moreover, untreated liquid waste from septic tanks and latrines from urban areas are discharged in the same place. This co-disposal waste management is very common in many regions of Argentina and its impact on the groundwater of Coronel Moldes has not been evaluated. The study area is located in the vicinity of a MWDS in a flatlands environment that is typical of Argentina. The main objective of this study was to evaluate the impacts on groundwater quality of current waste management practices in order to consider the requirement for new guidelines for sustainable groundwater management. Three groundwater monitoring wells were installed up-, across- and down-gradient of the MWDS. The principal aquifer is formed by sandy silt sediments (loess. Groundwater levels in the area of the MWDS are between 5.6 m and 7.8 m. The Vulnerability index indicates that groundwater in this area has a high vulnerability. Groundwater in the vicinity of the MWDS shows elevated electrical conductivity, high concentrations of Cl-, Na+, and HCO3- ions, COD, BOD5 and aerobic bacteria and less dissolved oxygen than the background values indicating the presence of organic matter. Municipal waste management represents a significant omission in current groundwater protection policy at Coronel Moldes. Strict supervision of solid and liquid municipal waste disposal needs to be instigated in order to ensure that the groundwater remains free of contamination and to allow a sustainable environmental management.

  13. Groundwater quality assessment for the Bear Creek Hydrogeologic Regime at the Y-12 Plant: 1991 groundwater quality data and calculated rate of contaminant migration

    Energy Technology Data Exchange (ETDEWEB)

    1992-02-01

    The report contains groundwater and surface water quality data obtained during the 1991 calendar year at several hazardous and non- hazardous waste management facilities associated with the US Department of Energy (DOE) Y-12 Plant (Figure 1). These sites are southwest of the Y-12 Plant complex within the Bear Creek Hydrogeologic Regime (BCHR), which is one of three regimes defined for the purposes of groundwater and surface-water quality monitoring and remediation (Figure 2). The Environmental Management Department of the Y-12 Plant Health, Safety, Environment, and Accountability (HSEA) Division manages the monitoring activities in each regime as part of the Y-12 Plant Groundwater Protection Program (GWPP).

  14. Groundwater quality assessment for the Bear Creek Hydrogeologic Regime at the Y-12 Plant: 1991 groundwater quality data and calculated rate of contaminant migration

    International Nuclear Information System (INIS)

    1992-02-01

    The report contains groundwater and surface water quality data obtained during the 1991 calendar year at several hazardous and non- hazardous waste management facilities associated with the US Department of Energy (DOE) Y-12 Plant (Figure 1). These sites are southwest of the Y-12 Plant complex within the Bear Creek Hydrogeologic Regime (BCHR), which is one of three regimes defined for the purposes of groundwater and surface-water quality monitoring and remediation (Figure 2). The Environmental Management Department of the Y-12 Plant Health, Safety, Environment, and Accountability (HSEA) Division manages the monitoring activities in each regime as part of the Y-12 Plant Groundwater Protection Program (GWPP)

  15. Approaches to hazard-oriented groundwater management based on multivariate analysis of groundwater quality

    OpenAIRE

    Page, Rebecca Mary

    2011-01-01

    Drinking water extracted near rivers in alluvial aquifers is subject to potential microbial contamination due to rapidly infiltrating river water during high discharge events. The heterogeneity of river-groundwater interaction and hydrogeological characteristics of the aquifer renders a complex pattern of groundwater quality. The quality of the extracted drinking water can be managed using decision support and HACCP (Hazard Analysis and Critical Control Point) systems, but the detection of po...

  16. Groundwater management under uncertainty using a stochastic multi-cell model

    Science.gov (United States)

    Joodavi, Ata; Zare, Mohammad; Ziaei, Ali Naghi; Ferré, Ty P. A.

    2017-08-01

    The optimization of spatially complex groundwater management models over long time horizons requires the use of computationally efficient groundwater flow models. This paper presents a new stochastic multi-cell lumped-parameter aquifer model that explicitly considers uncertainty in groundwater recharge. To achieve this, the multi-cell model is combined with the constrained-state formulation method. In this method, the lower and upper bounds of groundwater heads are incorporated into the mass balance equation using indicator functions. This provides expressions for the means, variances and covariances of the groundwater heads, which can be included in the constraint set in an optimization model. This method was used to formulate two separate stochastic models: (i) groundwater flow in a two-cell aquifer model with normal and non-normal distributions of groundwater recharge; and (ii) groundwater management in a multiple cell aquifer in which the differences between groundwater abstractions and water demands are minimized. The comparison between the results obtained from the proposed modeling technique with those from Monte Carlo simulation demonstrates the capability of the proposed models to approximate the means, variances and covariances. Significantly, considering covariances between the heads of adjacent cells allows a more accurate estimate of the variances of the groundwater heads. Moreover, this modeling technique requires no discretization of state variables, thus offering an efficient alternative to computationally demanding methods.

  17. The Legal Framework for Groundwater Allocation in Quebec: Towards Integrated Water Management

    Directory of Open Access Journals (Sweden)

    Hugo Tremblay

    2008-09-01

    Full Text Available This paper aims at providing a model of the legal framework for groundwater allocation in the province of Quebec (Canada, identifying its potential deficiencies and suggesting possible improvements. In Quebec, groundwater is a res communis. The right to use it is tied to real estate property. This right forms the basis of the legal framework for the management of groundwater quantity. However, according to statutory law, the actual use of groundwater also depends on governmental authorisations that limit quantities used. The main statutory instrument for managing the resource is the Groundwater Catchment Regulation (GWCR, which aims at conflict prevention between first users and new users by means of governmental authorisations. In agricultural areas, an additional authorisation regime indirectly prioritises agricultural groundwater uses. Finally, legal mechanisms addressing conflicts between water users rely on the general litigation framework provided by Quebec law without establishing an order of priority for the different uses of the resource. According to Integrated Water Resources Management, four aspects of the legal framework for groundwater quantity management can be modified to increase the efficiency of the allocation regime: 1 provisions should be made to preserve a residual environmental flow; 2 an order of priority should be established between the different uses to minimise conflict; 3 the scope of the regime should be extended to all groundwater users to increase its efficiency; 4 stakeholders should participate in the management of the resource.

  18. Lessons Learned From The 200 West Pump And Treatment Facility Construction Project At The US DOE Hanford Site - A Leadership For Energy And Environmental Design (LEED) Gold-Certified Facility

    International Nuclear Information System (INIS)

    Dorr, Kent A.; Ostrom, Michael J.; Freeman-Pollard, Jhivaun R.

    2012-01-01

    CH2M Hill Plateau Remediation Company (CHPRC) designed, constructed, commissioned, and began operation of the largest groundwater pump and treatment facility in the U.S. Department of Energy's (DOE) nationwide complex. This one-of-a-kind groundwater pump and treatment facility, located at the Hanford Nuclear Reservation Site (Hanford Site) in Washington State, was built in an accelerated manner with American Recovery and Reinvestment Act (ARRA) funds and has attained Leadership in Energy and Environmental Design (LEED) GOLD certification, which makes it the first non-administrative building in the DOE Office of Environmental Management complex to earn such an award. There were many contractual, technical, configuration management, quality, safety, and LEED challenges associated with the design, procurement, construction, and commissioning of this $95 million, 52,000 ft groundwater pump and treatment facility. This paper will present the Project and LEED accomplishments, as well as Lessons Learned by CHPRC when additional ARRA funds were used to accelerate design, procurement, construction, and commissioning of the 200 West Groundwater Pump and Treatment (2W PandT) Facility to meet DOE's mission of treating contaminated groundwater at the Hanford Site with a new facility by June 28, 2012

  19. Lessons Learned From The 200 West Pump And Treatment Facility Construction Project At The US DOE Hanford Site - A Leadership For Energy And Environmental Design (LEED) Gold-Certified Facility

    Energy Technology Data Exchange (ETDEWEB)

    Dorr, Kent A. [CH2M HILL Plateau Remediation Company, Richland, WA (United States); Ostrom, Michael J. [CH2M HILL Plateau Remediation Company, Richland, WA (United States); Freeman-Pollard, Jhivaun R. [CH2M HILL Plateau Remediation Company, Richland, WA (United States)

    2012-11-14

    CH2M Hill Plateau Remediation Company (CHPRC) designed, constructed, commissioned, and began operation of the largest groundwater pump and treatment facility in the U.S. Department of Energy's (DOE) nationwide complex. This one-of-a-kind groundwater pump and treatment facility, located at the Hanford Nuclear Reservation Site (Hanford Site) in Washington State, was built in an accelerated manner with American Recovery and Reinvestment Act (ARRA) funds and has attained Leadership in Energy and Environmental Design (LEED) GOLD certification, which makes it the first non-administrative building in the DOE Office of Environmental Management complex to earn such an award. There were many contractual, technical, configuration management, quality, safety, and LEED challenges associated with the design, procurement, construction, and commissioning of this $95 million, 52,000 ft groundwater pump and treatment facility. This paper will present the Project and LEED accomplishments, as well as Lessons Learned by CHPRC when additional ARRA funds were used to accelerate design, procurement, construction, and commissioning of the 200 West Groundwater Pump and Treatment (2W P&T) Facility to meet DOE's mission of treating contaminated groundwater at the Hanford Site with a new facility by June 28, 2012.

  20. Recharge Net Metering to Incentivize Sustainable Groundwater Management

    Science.gov (United States)

    Fisher, A. T.; Coburn, C.; Kiparsky, M.; Lockwood, B. S.; Bannister, M.; Camara, K.; Lozano, S.

    2016-12-01

    Stormwater runoff has often been viewed as a nuisance rather than a resource, but with passage of the Sustainable Groundwater Management Act (2014), many basins in California are taking a fresh look at options to enhance groundwater supplies with excess winter flows. In some basins, stormwater can be used for managed aquifer recharge (MAR), routing surface water to enhance groundwater resources. As with many public infrastructure programs, financing for stormwater-MAR projects can be a challenge, and there is a need for incentives that will engage stakeholders and offset operation and maintenance costs. The Pajaro Valley Water Management Agency (PVWMA), in central costal California, recently launched California's first Recharge Net Metering (ReNeM) program. MAR projects that are part of the ReNeM program are intended to generate ≥100 ac-ft/yr of infiltration benefit during a normal water year. A team of university and Resource Conservation District partners will collaborate to identify and assess potential project sites, screening for hydrologic conditions, expected runoff, ease and cost of project construction, and ability to measure benefits to water supply and quality. The team will also collect data and samples to measure the performance of each operating project. Groundwater wells within the PVWMA's service area are metered, and agency customers pay an augmentation fee for each unit of groundwater pumped. ReNeM projects will earn rebates of augmentation fees based on the amount of water infiltrated, with rebates calculated using a formula that accounts for uncertainties in the fate of infiltrated water, and inefficiencies in recovery. The pilot ReNeM program seeks to contribute 1000 ac-ft/yr of infiltration benefit by the end of the initial five-year operating period. ReNeM offers incentives that are distinct from those derived from traditional groundwater banking, and thus offers the potential for an innovative addition to the portfolio of options for

  1. Impacts of swine manure pits on groundwater quality

    International Nuclear Information System (INIS)

    Krapac, I.G.; Dey, W.S.; Roy, W.R.; Smyth, C.A.; Storment, E.; Sargent, S.L.; Steele, J.D.

    2002-01-01

    New information is presented on impacts on groundwater by manure storage in deep ground pits. - Manure deep-pits are commonly used to store manure at confined animal feeding operations. However, previous to this study little information had been collected on the impacts of deep-pits on groundwater quality to provide science-based guidance in formulating regulations and waste management strategies that address risks to human health and the environment. Groundwater quality has been monitored since January 1999 at two hog finishing facilities in Illinois that use deep-pit systems for manure storage. Groundwater samples were collected on a monthly basis and analyzed for inorganic and bacteriological constituent concentrations. The two sites are located in areas with geologic environments representing different vulnerabilities for local groundwater contamination. One site is underlain by more than 6 m of clayey silt, and 7-36 m of shale. Concentrations of chloride, ammonium, phosphate, and potassium indicated that local groundwater quality had not been significantly impacted by pit leakage from this facility. Nitrate concentrations were elevated near the pit, often exceeding the 10 mg N/l drinking water standard. Isotopic nitrate signatures suggested that the nitrate was likely derived from soil organic matter and fertilizer applied to adjacent crop fields. At the other site, sandstone is located 4.6-6.1 m below land surface. Chloride concentrations and δ 15 N and δ 18 O values of dissolved nitrate indicated that this facility may have limited and localized impacts on groundwater. Other constituents, including ammonia, potassium, phosphate, and sodium were generally at or less than background concentrations. Trace- and heavy-metal concentrations in groundwater samples collected from both facilities were at concentrations less than drinking water standards. The concentration of inorganic constituents in the groundwater would not likely impact human health. Fecal

  2. Impacts of swine manure pits on groundwater quality

    Energy Technology Data Exchange (ETDEWEB)

    Krapac, I.G.; Dey, W.S.; Roy, W.R.; Smyth, C.A.; Storment, E.; Sargent, S.L.; Steele, J.D

    2002-12-01

    New information is presented on impacts on groundwater by manure storage in deep ground pits. - Manure deep-pits are commonly used to store manure at confined animal feeding operations. However, previous to this study little information had been collected on the impacts of deep-pits on groundwater quality to provide science-based guidance in formulating regulations and waste management strategies that address risks to human health and the environment. Groundwater quality has been monitored since January 1999 at two hog finishing facilities in Illinois that use deep-pit systems for manure storage. Groundwater samples were collected on a monthly basis and analyzed for inorganic and bacteriological constituent concentrations. The two sites are located in areas with geologic environments representing different vulnerabilities for local groundwater contamination. One site is underlain by more than 6 m of clayey silt, and 7-36 m of shale. Concentrations of chloride, ammonium, phosphate, and potassium indicated that local groundwater quality had not been significantly impacted by pit leakage from this facility. Nitrate concentrations were elevated near the pit, often exceeding the 10 mg N/l drinking water standard. Isotopic nitrate signatures suggested that the nitrate was likely derived from soil organic matter and fertilizer applied to adjacent crop fields. At the other site, sandstone is located 4.6-6.1 m below land surface. Chloride concentrations and {delta}{sup 15}N and {delta}{sup 18}O values of dissolved nitrate indicated that this facility may have limited and localized impacts on groundwater. Other constituents, including ammonia, potassium, phosphate, and sodium were generally at or less than background concentrations. Trace- and heavy-metal concentrations in groundwater samples collected from both facilities were at concentrations less than drinking water standards. The concentration of inorganic constituents in the groundwater would not likely impact human

  3. Evaluation of groundwater monitoring results at the Hanford Site 200 Area Treated Effluent Disposal Facility

    International Nuclear Information System (INIS)

    Barnett, D.B.

    1998-09-01

    The Hanford Site 200 Area Treated Effluent Disposal Facility (TEDF) has operated since June 1995. Groundwater monitoring has been conducted quarterly in the three wells surrounding the facility since 1992, with contributing data from nearby B Pond System wells. Cumulative hydrologic and geochemical information from the TEDF well network and other surrounding wells indicate no discernable effects of TEDF operations on the uppermost aquifer in the vicinity of the TEDF. The lateral consistency and impermeable nature of the Ringold Formation lower mud unit, and the contrasts in hydraulic conductivity between this unit and the vadose zone sediments of the Hanford formation suggest that TEDF effluent is spreading laterally with negligible mounding or downward movement into the uppermost aquifer. Hydrographs of TEDF wells show that TEDF operations have had no detectable effects on hydraulic heads in the uppermost aquifer, but show a continuing decay of the hydraulic mound generated by past operations at the B Pond System. Comparison of groundwater geochemistry from TEDF wells and other, nearby RCRA wells suggests that groundwater beneath TEDF is unique; different from both effluent entering TEDF and groundwater in the B Pond area. Tritium concentrations, major ionic proportions, and lower-than-background concentrations of other species suggest that groundwater in the uppermost aquifer beneath the TEDF bears characteristics of water in the upper basalt confined aquifer system. This report recommends retaining the current groundwater well network at the TEDF, but with a reduction of sampling/analysis frequency and some modifications to the list of constituents sought

  4. Depletion mapping and constrained optimization to support managing groundwater extraction

    Science.gov (United States)

    Fienen, Michael N.; Bradbury, Kenneth R.; Kniffin, Maribeth; Barlow, Paul M.

    2018-01-01

    Groundwater models often serve as management tools to evaluate competing water uses including ecosystems, irrigated agriculture, industry, municipal supply, and others. Depletion potential mapping—showing the model-calculated potential impacts that wells have on stream baseflow—can form the basis for multiple potential management approaches in an oversubscribed basin. Specific management approaches can include scenarios proposed by stakeholders, systematic changes in well pumping based on depletion potential, and formal constrained optimization, which can be used to quantify the tradeoff between water use and stream baseflow. Variables such as the maximum amount of reduction allowed in each well and various groupings of wells using, for example, K-means clustering considering spatial proximity and depletion potential are considered. These approaches provide a potential starting point and guidance for resource managers and stakeholders to make decisions about groundwater management in a basin, spreading responsibility in different ways. We illustrate these approaches in the Little Plover River basin in central Wisconsin, United States—home to a rich agricultural tradition, with farmland and urban areas both in close proximity to a groundwater-dependent trout stream. Groundwater withdrawals have reduced baseflow supplying the Little Plover River below a legally established minimum. The techniques in this work were developed in response to engaged stakeholders with various interests and goals for the basin. They sought to develop a collaborative management plan at a watershed scale that restores the flow rate in the river in a manner that incorporates principles of shared governance and results in effective and minimally disruptive changes in groundwater extraction practices.

  5. Results of the groundwater quality assessment program at the 216-A-29 ditch RCRA facility

    International Nuclear Information System (INIS)

    Votava, J.M.

    1995-01-01

    This report presents the findings of the groundwater quality assessment program for the 216-A-29 Ditch. The information presented in this report Ditch have affected the quality of the groundwater in the unconfined aquifer beneath the facility. The results indicate that the 216-A-29 Ditch is the source of elevated specific conductance in well 299-E25-35 and that the source is nonhazardous. This report describes the current monitoring status of the 216-A-29 Ditch, groundwater chemical data interpretation, and recommends the reinstatement of an indicator-evaluation monitoring program in accordance with 40 CFR 265.93(d)(6)

  6. Hanford statewide groundwater flow and transport model calibration report

    International Nuclear Information System (INIS)

    Law, A.; Panday, S.; Denslow, C.; Fecht, K.; Knepp, A.

    1996-04-01

    This report presents the results of the development and calibration of a three-dimensional, finite element model (VAM3DCG) for the unconfined groundwater flow system at the Hanford Site. This flow system is the largest radioactively contaminated groundwater system in the United States. Eleven groundwater plumes have been identified containing organics, inorganics, and radionuclides. Because groundwater from the unconfined groundwater system flows into the Columbia River, the development of a groundwater flow model is essential to the long-term management of these plumes. Cost effective decision making requires the capability to predict the effectiveness of various remediation approaches. Some of the alternatives available to remediate groundwater include: pumping contaminated water from the ground for treatment with reinjection or to other disposal facilities; containment of plumes by means of impermeable walls, physical barriers, and hydraulic control measures; and, in some cases, management of groundwater via planned recharge and withdrawals. Implementation of these methods requires a knowledge of the groundwater flow system and how it responds to remedial actions

  7. Extreme groundwater levels caused by extreme weather conditions - the highest ever measured groundwater levels in Middle Germany and their management

    Science.gov (United States)

    Reinstorf, F.; Kramer, S.; Koch, T.; Pfützner, B.

    2017-12-01

    Extreme weather conditions during the years 2009 - 2011 in combination with changes in the regional water management led to maximum groundwater levels in large areas of Germany in 2011. This resulted in extensive water logging, with problems especially in urban areas near rivers, where water logging produced huge problems for buildings and infrastructure. The acute situation still exists in many areas and requires the development of solution concepts. Taken the example of the Elbe-Saale-Region in the Federal State of Saxony-Anhalt, were a pilot research project was carried out, the analytical situation, the development of a management tool and the implementation of a groundwater management concept are shown. The central tool is a coupled water budget - groundwater flow model. In combination with sophisticated multi-scale parameter estimation, a high-resolution groundwater level simulation was carried out. A decision support process with an intensive stakeholder interaction combined with high-resolution simulations enables the development of a management concept for extreme groundwater situations in consideration of sustainable and environmentally sound solutions mainly on the base of passive measures.

  8. A Multi-Methodology for improving Adelaide's Groundwater Management

    Science.gov (United States)

    Batelaan, Okke; Banks, Eddie; Batlle-Aguilar, Jordi; Breciani, Etienne; Cook, Peter; Cranswick, Roger; Smith, Stan; Turnadge, Chris; Partington, Daniel; Post, Vincent; Pool Ramirez, Maria; Werner, Adrian; Xie, Yueqing; Yang, Yuting

    2015-04-01

    Groundwater is a strategic and vital resource in South Australia playing a crucial role in sustaining a healthy environment, as well as supporting industries and economic development. In the Adelaide metropolitan region ten different aquifer units have been identified, extending to more than 500 m below sea level. Although salinity within most of these aquifers is variable, water suitable for commercial, irrigation and/or potable use is predominantly found in the deeper Tertiary aquifers. Groundwater currently contributes only 9000 ML/yr of Adelaide's total water consumption of 216,000 ML, while in the Northern Adelaide Plains 17000 ML/yr is used. However, major industries, market gardeners, golf courses, and local councils are highly dependent on this resource. Despite recent rapid expansion in managed aquifer recharge, and the potential for increased extraction of groundwater, particularly for the commercial and irrigation supplies, little is known about the sources and ages of Adelaide's groundwater. The aim of this study is therefore to provide a robust conceptualisation of Adelaide's groundwater system. The study focuses on three important knowledge gaps: 1. Does groundwater flow from the Adelaide Hills into the sedimentary aquifers on the plains? 2. What is the potential for encroachment of seawater if groundwater extraction increases? 3. How isolated are the different aquifers, or does water leak from one to the other? A multi-tool approach has been used to improve the conceptual understanding of groundwater flow processes; including the installation of new groundwater monitoring wells from the hills to the coast, an extensive groundwater sampling campaign of new and existing groundwater wells for chemistry and environmental tracers analysis, and development of a regional scale numerical model rigorously tested under different scenario conditions. The model allows quantification of otherwise hardly quantifiable quantities such as flow across fault zones and

  9. The Heterogeneous Impacts of Groundwater Management Policies in the Republican River Basin of Colorado

    Science.gov (United States)

    Hrozencik, R. A.; Manning, D. T.; Suter, J. F.; Goemans, C.; Bailey, R. T.

    2017-12-01

    Groundwater is a critical input to agricultural production across the globe. Current groundwater pumping rates frequently exceed recharge, often by a substantial amount, leading to groundwater depletion and potential declines in agricultural profits over time. As a result, many regions reliant on irrigated agriculture have proposed policies to manage groundwater use. Even when gains from aquifer management exist, there is little information about how policies affect individual producers sharing the resource. In this paper, we investigate the variability of groundwater management policy impacts across heterogeneous agricultural producers. To measure these impacts, we develop a hydroeconomic model that captures the important role of well capacity, productivity of water, and weather uncertainty. We use the model to simulate the impacts of groundwater management policies on producers in the High Plains aquifer of eastern Colorado and compare outcomes to a no-policy baseline. The management policies considered include a pumping fee, a quantity restriction, and an irrigated acreage fee. We find that well capacity and soil type affect policy impacts but in ways that can qualitatively differ across policy type. Model results have important implications for the distributional impacts and political acceptability of groundwater management policies.

  10. Nitrate contamination of groundwater: A conceptual management framework

    International Nuclear Information System (INIS)

    Almasri, Mohammad N.

    2007-01-01

    In many countries, public concern over the deterioration of groundwater quality from nitrate contamination has grown significantly in recent years. This concern has focused increasingly on anthropogenic sources as the potential cause of the problem. Evidence indicates that the nitrate (NO 3 ) levels routinely exceed the maximum contaminant level (MCL) of 10 mg/l NO 3 -N in many aquifer systems that underlie agriculture-dominated watersheds. Degradation of groundwater quality due to nitrate pollution along with the increasing demand for potable water has motivated the adoption of restoration actions of the contaminated aquifers. Restoration efforts have intensified the dire need for developing protection alternatives and management options such that the ultimate nitrate concentrations at the critical receptors are below the MCL. This paper presents a general conceptual framework for the management of groundwater contamination from nitrate. The management framework utilizes models of nitrate fate and transport in the unsaturated and saturated zones to simulate nitrate concentration at the critical receptors. To study the impact of different management options considering both environmental and economic aspects, the proposed framework incorporates a component of a multi-criteria decision analysis. To enhance spatiality in model development along with the management options, the utilization of a land use map is depicted for the allocation and computation of on-ground nitrogen loadings from the different sources

  11. The Importance of Institutional Design for Distributed Local-Level Governance of Groundwater: The Case of California’s Sustainable Groundwater Management Act

    Directory of Open Access Journals (Sweden)

    Michael Kiparsky

    2017-09-01

    Full Text Available In many areas of the world, groundwater resources are increasingly stressed, and unsustainable use has become common. Where existing mechanisms for governing groundwater are ineffective or nonexistent, new ones need to be developed. Local level groundwater governance provides an intriguing alternative to top-down models, with the promise of enabling management to better match the diversity of physical and social conditions in groundwater basins. One such example is emerging in California, USA, where new state law requires new local agencies to self-organize and act to achieve sustainable groundwater management. In this article, we draw on insights from research on common pool resource management and natural resources governance to develop guidelines for institutional design for local groundwater governance, grounded in California’s developing experience. We offer nine criteria that can be used as principles or standards in the evaluation of institutional design for local level groundwater governance: scale, human capacity, funding, authority, independence, representation, participation, accountability, and transparency. We assert that local governance holds promise as an alternative to centralized governance in some settings but that its success will depend heavily on the details of its implementation. Further, for local implementation to achieve its promise, there remain important complementary roles for centralized governance. California’s developing experience with local level groundwater management in dozens of basins across the state provides a unique opportunity to test and assess the importance and influence of these criteria.

  12. Shallow groundwater intrusion to deeper depths caused by construction and drainage of a large underground facility. Estimation using 3H, CFCs and SF6 as trace materials

    International Nuclear Information System (INIS)

    Hagiwara, Hiroki; Iwatsuki, Teruki; Hasegawa, Takuma; Nakata, Kotaro; Tomioka, Yuichi

    2015-01-01

    This study evaluates a method to estimate shallow groundwater intrusion in and around a large underground research facility (Mizunami Underground Research Laboratory-MIU). Water chemistry, stable isotopes (δD and δ 18 O), tritium ( 3 H), chlorofluorocarbons (CFCs) and sulfur hexafluoride (SF 6 ) in groundwater were monitored around the facility (from 20 m down to a depth of 500 m), for a period of 5 years. The results show that shallow groundwater inflows into deeper groundwater at depths of between 200–400 m. In addition, the content of shallow groundwater estimated using 3 H and CFC-12 concentrations is up to a maximum of about 50%. This is interpreted as the impact on the groundwater environment caused by construction and operation of a large facility over several years. The concomitant use of 3 H and CFCs is an effective method to determine the extent of shallow groundwater inflow caused by construction of an underground facility. (author)

  13. Development of a Groundwater Management Model for the Project Shoal Area

    Energy Technology Data Exchange (ETDEWEB)

    G. Lamorey; S. Bassett; R. Schumer; D. Boyle; G. Pohll; J. Chapman

    2006-09-01

    This document describes the development of a user-friendly and efficient groundwater management model of the Project Shoal Area (PSA and surrounding area that will allow the U.S. Department of Energy and State of Nevada personnel to evaluate the impact of proposed water-use scenarios. The management model consists of a simple hydrologic model within an interactive groundwater management framework. This framework is based on an object user interface that was developed by the U.S. Geological Survey and has been used by the Desert Research Institute researchers and others to couple disparate environmental resource models, manage temporal and spatial data, and evaluate model results for management decision making. This framework was modified and applied to the PSA and surrounding Fairview Basin. The utility of the management model was demonstrated through the application of hypothetical future scenarios including mineral mining, regional expansion of agriculture, and export of water to large urban areas outside the region. While the results from some of the scenarios indicated potential impacts to groundwater levels near the PSA and others did not, together they demonstrate the utility of the management tool for the evaluation of proposed changes in groundwater use in or near the PSA.

  14. Looking at groundwater research landscape of Jakarta Basin for better water management

    Science.gov (United States)

    Irawan, Dasapta Erwin; Priyambodho, Adhi; Novianti Rachmi, Cut; Maulana Wibowo, Dimas

    2017-07-01

    Based on our experience, defining the gap between what we know and what we don’t know is the hardest part in proposing water management strategy. Many techniques have been introduced to make this stage easier, and one of them is bibliometric analysis. The following paper is the second part of our bibliometric project in the search for a gap in the water resources research in Jakarta. This paper starts to analyse the visualisations that had been extracted from the previous paper based on our database. Using the keyword “groundwater Jakarta”, we managed to get 70 relevant papers. Several visualisations have been built using open source applications. Word cloud analysis shows that the trend to discuss groundwater in scientific sense had only been started in the early 2000’s. This is presumably due to the emerging regional autonomy in which forcing regions to understand their groundwater setting before creating a management strategy. More papers in the later time has been induced by more geo-hazards (land subsidence and floods) resulted in the vast groundwater pumping. More and more resources have been utilized to get more groundwater data. Water scientists by then understood that these hazards had been started long before the 2000’s. This had become the starting point of data era later on. The next era will be the era of water management. Hydrologists had been proposing integrated water management Jakarta and its nearby groundwater basins. Most of them have been strongly suggested to manage all water bodies, rainfall, surface water, and groundwater as one system. In the 2010’s we identify more papers are discussing in water quality following the vast discussion in water quantity in the previous era. People have been more aware the importance of quality in providing water system for the citizen. Then five years later, we believe that water researchers have also put their mind in the interactions between surface water and groundwater, especially in the

  15. Inexact Socio-Dynamic Modeling of Groundwater Contamination Management

    Science.gov (United States)

    Vesselinov, V. V.; Zhang, X.

    2015-12-01

    Groundwater contamination may alter the behaviors of the public such as adaptation to such a contamination event. On the other hand, social behaviors may affect groundwater contamination and associated risk levels such as through changing ingestion amount of groundwater due to the contamination. Decisions should consider not only the contamination itself, but also social attitudes on such contamination events. Such decisions are inherently associated with uncertainty, such as subjective judgement from decision makers and their implicit knowledge on selection of whether to supply water or reduce the amount of supplied water under the scenario of the contamination. A socio-dynamic model based on the theories of information-gap and fuzzy sets is being developed to address the social behaviors facing the groundwater contamination and applied to a synthetic problem designed based on typical groundwater remediation sites where the effects of social behaviors on decisions are investigated and analyzed. Different uncertainties including deep uncertainty and vague/ambiguous uncertainty are effectively and integrally addressed. The results can provide scientifically-defensible decision supports for groundwater management in face of the contamination.

  16. Groundwater Protection Program Management Plan For The U.S. Department Of Energy Y-12 National Security Complex, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    Elvado Environmental, LLC

    2009-09-01

    This document presents the Groundwater Protection Program (GWPP) management plan for the U.S. Department of Energy (DOE) Y-12 National Security Complex (hereafter referenced as Y-12). The Y-12 GWPP functions as the primary point-of-contact for groundwater-related issues at Y-12, provides stewardship of the extensive network of groundwater monitoring wells at Y-12, and serves as a resource for technical expertise, support, and historical data for groundwater-related activities at Y-12. These organizational functions each serve the primary programmatic purpose of the GWPP, which is to ensure that groundwater monitoring activities within areas under Y-12 administrative control provide representative data in compliance with the multiple purposes of applicable state and federal regulations, DOE orders, and the corporate policies of Babcock & Wilcox Technical Services Y-12 LLC (hereafter referenced as B&W Y-12), the Y-12 management and operations (M&O) contractor for DOE. B&W Y-12 is a new corporate name, assumed in January 2007, for the company formerly known as BWXT Y-12, L.L.C., hereafter referenced as BWXT. This GWPP management plan addresses the requirements of DOE Order 450.1A Environmental Protection Program (hereafter referenced as DOE O 450.1A), which emphasize a site-wide approach for groundwater protection at each DOE facility through implementation of groundwater surveillance monitoring. Additionally, this plan addresses the relevant and applicable GWPP elements and goals described in the DOE O 450.1A technical guidance documents issued in June 2004 (DOE 2004) and May 2005 (DOE 2005). This GWPP management plan is a 'living' document that is reviewed annually, revised and reissued every three years, and is formatted to provide for updating individual sections independent of the rest of the document. Section 2 includes a short description of the groundwater system at Y-12, the history of groundwater monitoring at Y-12 and the corresponding evolution of the GWPP

  17. Progress toward the development of a ground-water velocity model for the radioactive waste management facility, Savannah River Plant, South Carolina: Quarterly report

    International Nuclear Information System (INIS)

    Parizek, R.R.; Root, R.W. Jr.

    1984-01-01

    This report presents the status and results of work performed to develop a numerical groundwater velocity model for the radioactive waste management facility at the Savannah River Plant (SRP). Work dealt with developing a hydrologic budget for the McQueen Branch drainage basin. Two hydrologic budgets were developed, covering two periods of time. The first period was from November 1, 1982 to May 19, 1984; the second period was from March 1, 1983 to March 31, 1984. Total precipitation for this period was 52.48 inches, all as rainfall. Water levels measured in wells in the basin quarterly, monthly, and continuously showed basically the same response over the period of the study. Maximum fluctuation of water levels of wells in the basin was five to seven feet during the study. Stream discharge measurements in McQueen Branch showed base flow varying between 1.5 and 5.7 cfs. Lowest base flow occurred during the summer, when evapotranspiration was greatest. Some impact of daily ground-water evapotranspiration from the Branch floodplain was seen in continuous stream records. These daily effects peaked in magnitude during the summer, disappeared during winter, and gradually returned during spring. Underflow past the Branch gauging station out of the basin was determined to be negligible. Leakage downward through the Green Clay is difficult to determine but is believed to be small, based on the overall results of the budget study

  18. 48 CFR 970.3770 - Facilities management.

    Science.gov (United States)

    2010-10-01

    ... 48 Federal Acquisition Regulations System 5 2010-10-01 2010-10-01 false Facilities management. 970... REGULATIONS DOE MANAGEMENT AND OPERATING CONTRACTS Facilities Management Contracting 970.3770 Facilities management. ...

  19. Hanford ground-water data base management guide and user's manual

    International Nuclear Information System (INIS)

    Mitchell, P.J.; Argo, R.S.; Bradymire, S.L.; Newbill, C.A.

    1985-05-01

    This management guide and user's manual is a working document for the computerized Hanford Ground-water Data Base maintained by the Geosciences Research and Engineering Department at Pacific Northwest Laboratory for the Hanford Ground-Water Surveillance Program. The program is managed by the Occupational and Environmental Protection Department for the US Department of Energy. The data base is maintained to provide rapid access to data that are rountinely collected from ground-water monitoring wells at the Hanford site. The data include water levels, sample analyses, geologic descriptions and well construction information of over 3000 existing or destroyed wells. These data are used to monitor water quality and for the evaluation of ground-water flow and pollutant transport problems. The management guide gives instructions for maintenance of the data base on the Digital Equipment Corporation PDP 11/70 Computer using the CIRMIS (Comprehensive Information Retrieval and Model Input Sequence) data base management software developed at Pacific Northwest Laboratory. Maintenance activities include inserting, modifying and deleting data, making back-up copies of the data base, and generating tables for annual monitoring reports. The user's guide includes instructions for running programs to retrieve the data in the form of listings of graphical plots. 3 refs

  20. An approach to managing cumulative effects to groundwater resources in the Alberta oil sands

    International Nuclear Information System (INIS)

    Fennell, J.; Forrest, Francine; Klebek, Margaret

    2011-01-01

    In the Athabasca region of Northern Alberta, oil sands activity has raised many concerns over how mining and extracting processes might affect groundwater quality and quantity. The groundwater management framework was developed by Alberta Environment to address these concerns by identifying and managing the potential environmental effects of oil sands activity on groundwater in a science-based manner. This paper develops the framework using risk identification and performance monitoring. The decision-making approach was conducted using decision support tools such as modeling, monitoring and management. Results showed the complexity and variability of groundwater conditions in the Athabasca region and pointed out that knowledge in this area is still developing. This paper presented how the groundwater management framework was developed and pointed out that it will have to be updated as new information arrives.

  1. Radio-Ecological Conditions of Groundwater in the Area of Uranium Mining and Milling Facility - 13525

    International Nuclear Information System (INIS)

    Titov, A.V.; Semenova, M.P.; Seregin, V.A.; Isaev, D.V.; Metlyaev, E.G.; Glagolev, A.V.; Klimova, T.I.; Sevtinova, E.B.; Zolotukhina, S.B.; Zhuravleva, L.A.

    2013-01-01

    Manmade chemical and radioactive contamination of groundwater is one of damaging effects of the uranium mining and milling facilities. Groundwater contamination is of special importance for the area of Priargun Production Mining and Chemical Association, JSC 'PPMCA', because groundwater is the only source of drinking water. The paper describes natural conditions of the site, provides information on changes of near-surface area since the beginning of the company, illustrates the main trends of contaminators migration and assesses manmade impact on the quality and mode of near-surface and ground waters. The paper also provides the results of chemical and radioactive measurements in groundwater at various distances from the sources of manmade contamination to the drinking water supply areas. We show that development of deposits, mine water discharge, leakages from tailing dams and cinder storage facility changed general hydro-chemical balance of the area, contributed to new (overlaid) aureoles and flows of scattering paragenetic uranium elements, which are much smaller in comparison with natural ones. However, increasing flow of groundwater stream at the mouth of Sukhoi Urulyungui due to technological water infiltration, mixing of natural water with filtration streams from industrial reservoirs and sites, containing elevated (relative to natural background) levels of sulfate-, hydro-carbonate and carbonate- ions, led to the development and moving of the uranium contamination aureole from the undeveloped field 'Polevoye' to the water inlet area. The aureole front crossed the southern border of water inlet of drinking purpose. The qualitative composition of groundwater, especially in the southern part of water inlet, steadily changes for the worse. The current Russian intervention levels of gross alpha activity and of some natural radionuclides including 222 Rn are in excess in drinking water; regulations for fluorine and manganese concentrations are also in excess

  2. Radio-Ecological Conditions of Groundwater in the Area of Uranium Mining and Milling Facility - 13525

    Energy Technology Data Exchange (ETDEWEB)

    Titov, A.V.; Semenova, M.P.; Seregin, V.A.; Isaev, D.V.; Metlyaev, E.G. [FSBU SRC A.I.Burnasyan Federal Medical Biophysical Center of FMBA of Russia, Zhivopisnaya Street, 46, Moscow (Russian Federation); Glagolev, A.V.; Klimova, T.I.; Sevtinova, E.B. [FSESP ' Hydrospecgeologiya' (Russian Federation); Zolotukhina, S.B.; Zhuravleva, L.A. [FSHE ' Centre of Hygiene and Epidemiology no. 107' under FMBA of Russia (Russian Federation)

    2013-07-01

    Manmade chemical and radioactive contamination of groundwater is one of damaging effects of the uranium mining and milling facilities. Groundwater contamination is of special importance for the area of Priargun Production Mining and Chemical Association, JSC 'PPMCA', because groundwater is the only source of drinking water. The paper describes natural conditions of the site, provides information on changes of near-surface area since the beginning of the company, illustrates the main trends of contaminators migration and assesses manmade impact on the quality and mode of near-surface and ground waters. The paper also provides the results of chemical and radioactive measurements in groundwater at various distances from the sources of manmade contamination to the drinking water supply areas. We show that development of deposits, mine water discharge, leakages from tailing dams and cinder storage facility changed general hydro-chemical balance of the area, contributed to new (overlaid) aureoles and flows of scattering paragenetic uranium elements, which are much smaller in comparison with natural ones. However, increasing flow of groundwater stream at the mouth of Sukhoi Urulyungui due to technological water infiltration, mixing of natural water with filtration streams from industrial reservoirs and sites, containing elevated (relative to natural background) levels of sulfate-, hydro-carbonate and carbonate- ions, led to the development and moving of the uranium contamination aureole from the undeveloped field 'Polevoye' to the water inlet area. The aureole front crossed the southern border of water inlet of drinking purpose. The qualitative composition of groundwater, especially in the southern part of water inlet, steadily changes for the worse. The current Russian intervention levels of gross alpha activity and of some natural radionuclides including {sup 222}Rn are in excess in drinking water; regulations for fluorine and manganese

  3. Facility management and energy efficiency -- analysis and recommendations; Facility Management und Energieeffizienz: Analyse und Handlungsempfehlungen

    Energy Technology Data Exchange (ETDEWEB)

    Staub, P.; Weibel, K.; Zaugg, T. [Pom and Consulting Ltd., Zuerich (Switzerland); Lang, R. [Gruenberg and Partner Ltd., Zuerich (Switzerland); Frei, Ch. [Herzog Kull Group, Aarau (Switzerland)

    2001-07-01

    This final report presents the results of a study made on how facility management (FM) is positioned in enterprises and on how energy management can be integrated into the facility management process. Also, recommendations are made on the actions that are considered necessary to improve the understanding of facility management and energy management. The findings of an analysis made of the results of a survey among 200 enterprises, 20 interviews and 5 case studies are presented. The authors state that, in spite of the relatively small sample taken - mostly larger enterprises - trends in facility management and energy management could be shown. The findings of the survey, such as the relative importance of the integration of energy topics in facility management and the need for standardised indicators and benchmarking, are discussed in detail. Also, it is noted that the success of FM is in part due to delegation of responsibility to smaller business units or even to individual employees. The market potential for FM services is examined, with yearly growth rates of up to 20%. The importance of anchoring FM strategies at the top level of management is stressed, as is the need for promotion of the idea of facility management and training concepts for those responsible for its implementation.

  4. Quarterly report of RCRA groundwater monitoring data for period October 1 through December 31, 1994

    International Nuclear Information System (INIS)

    1995-04-01

    Hanford Site interim-status groundwater monitoring projects are conducted as either background, indicator parameter evaluation, or groundwater quality assessment monitoring programs as defined in the Resource Conservation and Recovery Act of 1976 (RCRA); and open-quotes Interim Status Standards for Owners and Operators of Hazardous Waste Treatment, Storage, and Disposal Facilitiesclose quotes (Title 40 Code of Federal Regulations [CFR] Part 265), as amended. Compliance with the 40 CFR 265 regulations is required by the Washington Administrative Code (WAC) 173-303. This report contains data from Hanford Site groundwater monitoring projects. The location of each facility is shown. Westinghouse Hanford Company (WHC) manages the RCRA groundwater monitoring projects for federal facilities on the Hanford Site. Performing project management, preparing groundwater monitoring plans, well network design and installation, specifying groundwater data needs, performing quality control (QC) oversight, data management, and preparing project sampling schedules are all parts of this responsibility. Pacific Northwest Laboratory (PNL) administers the contract for analytical services and provides groundwater sampling services to WHC for the RCRA groundwater monitoring program. This quarterly report contains data received between October and December 1994, which are the cutoff dates for this reporting period. This report may contain not only data from the October through December quarter, but also data from earlier sampling events that were not previously reported

  5. Evaluation of the Validity of Groundwater Samples Obtained Using the Purge Water Management System at SRS

    International Nuclear Information System (INIS)

    Beardsley, C.C.

    1999-01-01

    trends to the present time. The latter line of evidence is considered to be the most powerful in demonstrating that representative samples are being acquired by the PWMS because it is highly unlikely that previously existing concentration trends would continue if resampling had occurred.Standard procedure for obtaining protocol groundwater monitoring samples at the Savannah River Site (SRS) calls for extracting or ''purging'' sufficient quantities of groundwater to allow removal of stagnant water and to allow certain key indicator parameters to stabilize prior to collection of samples. The water extracted from a well prior to sample collection is termed ''purge water'' and must be managed in an approved fashion if it contains hazardous and/or radiological constituents that exceed specified health-based limits described in the Investigation Derived Waste Management Plan (WSRC, 1994). Typical management practices include containerization, transportation, treatment, and disposal via Clean Water Act -permitted facilities.A technology for handling purge water that eliminates the need to containerize and transport this water to a disposal facility has been developed. This technology, termed the Purge Water Management System (PWMS), is currently under pilot stage deployment at SRS. The PWMS is a ''closed-loop'', non-contact system used to collect and return purge water to the originating aquifer after a sampling event without significantly altering the water quality. A schematic drawing of the PWMS is in Figure 1. The system has been successfully demonstrated at both a ''clean'' well, P-26D, and a ''contaminated'' well, MCB-5, by comparing chemical concentration data obtained by PWMS sampling against the historical data record for each of these wells (Hiergesell et al., 1996). In both cases the PWMS was found to yield sample results that were indistinguishable from the results of the historical protocol sampling conducted at those same wells.For any method used to

  6. Samarbejdsformer og Facilities Management

    DEFF Research Database (Denmark)

    Storgaard, Kresten

    Resultater fra en surveyundersøgelse om fordele og ulemper ved forskellige samarbejdsformer indenfor Facilities Management fremlægges.......Resultater fra en surveyundersøgelse om fordele og ulemper ved forskellige samarbejdsformer indenfor Facilities Management fremlægges....

  7. High-risk facilities. Emergency management in nuclear, chemical and hazardous waste facilities

    International Nuclear Information System (INIS)

    Kloepfer, Michael

    2012-01-01

    The book on emergency management in high-risk facilities covers the following topics: Change in the nuclear policy, risk management of high-risk facilities as a constitutional problem - emergency management in nuclear facilities, operational mechanisms of risk control in nuclear facilities, regulatory surveillance responsibilities for nuclear facilities, operational mechanism of the risk control in chemical plants, regulatory surveillance responsibilities for chemical facilities, operational mechanisms of the risk control in hazardous waste facilities, regulatory surveillance responsibilities for hazardous waste facilities, civil law consequences in case of accidents in high-risk facilities, criminal prosecution in case of accidents in high-risk facilities, safety margins as site risk for emission protection facilities, national emergency management - strategic emergency management structures, warning and self-protection of the public in case of CBRN hazards including aspects of the psych-social emergency management.

  8. Z-Area Saltstone Disposal Facility Groundwater Monitoring Report. 1997 Annual Report

    International Nuclear Information System (INIS)

    Roach, J.L. Jr.

    1997-12-01

    Samples from the ZBG wells at the Z-Area Saltstone Disposal Facility are analyzed for constituents required by South Carolina Department of Health and Environmental Control (SCDHEC) Industrial Solid Waste Permit number-sign 025500-1603 (formerly IWP-217). No constituents were reported above SCDHEC-proposed groundwater monitoring standards or final Primary Drinking Water Standards during first or third quareters 1997. No constituents were detected above SRS flagging criteria during first or third quarters 1997

  9. Calendar year 1995 groundwater quality report for the Chestnut Ridge Hydrogeological Regime, Oak Ridge Y-12 Plant, Oak Ridge, Tennessee. 1995 Groundwater quality data and calculated rate of contaminant migration

    International Nuclear Information System (INIS)

    1996-02-01

    This annual groundwater quality report (GWQR) contains groundwater quality data obtained during the 1995 calendar year (CY) at several hazardous and nonhazardous waste management facilities associated with the U.S. Department of Energy (DOE) Y-12 Plant located on the DOE Oak Ridge Reservation (ORR) southeast of Oak Ridge, Tennessee. These sites are located south of the Y-12 Plant in the Chestnut Ridge Hydrogeologic Regime (Chestnut Ridge Regime), which is one of three regimes defined for the purposes of groundwater quality monitoring at the Y-12 Plant. The Environmental Management Department of the Y-12 Plant Health, Safety, Environment, and Accountability (HSEA) Organization manages the groundwater monitoring activities in each regime as part of the Y-12 Plant Groundwater Protection Program (GWPP). The U.S. Environmental Protection Agency (EPA) identification number for the Y-12 Plant is TN

  10. Lessons Learned from the 200 West Pump and Treatment Facility Construction Project at the US DOE Hanford Site - A Leadership for Energy and Environmental Design (LEED) Gold-Certified Facility

    Energy Technology Data Exchange (ETDEWEB)

    Dorr, Kent A.; Ostrom, Michael J.; Freeman-Pollard, Jhivaun R.

    2013-01-11

    CH2M Hill Plateau Remediation Company (CHPRC) designed, constructed, commissioned, and began operation of the largest groundwater pump and treatment facility in the U.S. Department of Energy’s (DOE) nationwide complex. This one-of-a-kind groundwater pump and treatment facility, located at the Hanford Nuclear Reservation Site (Hanford Site) in Washington State, was built to an accelerated schedule with American Recovery and Reinvestment Act (ARRA) funds. There were many contractual, technical, configuration management, quality, safety, and Leadership in Energy and Environmental Design (LEED) challenges associated with the design, procurement, construction, and commissioning of this $95 million, 52,000 ft groundwater pump and treatment facility to meet DOE’s mission objective of treating contaminated groundwater at the Hanford Site with a new facility by June 28, 2012. The project team’s successful integration of the project’s core values and green energy technology throughout design, procurement, construction, and start-up of this complex, first-of-its-kind Bio Process facility resulted in successful achievement of DOE’s mission objective, as well as attainment of LEED GOLD certification, which makes this Bio Process facility the first non-administrative building in the DOE Office of Environmental Management complex to earn such an award.

  11. Impacts of Continuous Electron Beam Accelerator Facility operations on groundwater and surface water: Appendix 9

    International Nuclear Information System (INIS)

    Lee, D.W.

    1986-04-01

    The operation of the proposed Continuous Electron Beam Accelerator Facility (CEBAF) at Newport News, Virginia, is expected to result in the activation and subsequent contamination of water resources in the vicinity of the accelerator. Since the proposed site is located in the headwaters of the watershed supplying Big Bethel Reservoir, concern has been expressed about possible contamination of water resources used for consumption. Data characterizing the surface water and groundwater regime in the site area are limited. A preliminary geotechnical investigation of the site has been completed (LAW 1985). This investigation concluded that groundwater flow is generally towards the southeast at an estimated velocity of 2.5 m/y. This conclusion is based on groundwater and soil boring data and is very preliminary in nature. This analysis makes use of the data and conclusions developed during the preliminary geotechnical investigation to provide an upper-bound assessment of radioactive contamination from CEBAF operations. A site water balance was prepared to describe the behavior of the hydrologic environment that is in close agreement with the observed data. The transport of contamination in the groundwater regime is assessed using a one-dimensional model. The groundwater model includes the mechanisms of groundwater flow, groundwater recharge, radioactive decay, and groundwater activation. The model formulation results in a closed-form, exact, analytic solution of the concentration of contamination in the groundwater. The groundwater solution is used to provide a source term for a surface-water analysis. The surface-water and groundwater models are prepared for steady state conditions such that they represent conservative evaluations of CEBAF operations

  12. Calendar year 1994 groundwater quality report for the Bear Creek hydrogeologic regime, Y-12 Plant, Oak Ridge, Tennessee. 1994 Groundwater quality data interpretations and proposed program modifications

    International Nuclear Information System (INIS)

    1995-10-01

    This groundwater quality report (GWQR) contains an evaluation of the groundwater quality data obtained during the 1994 calendar year (CY) at several hazardous and non-hazardous waste management facilities at the US Department of Energy (DOE) Y-12 Plant. These sites lie in Bear Creek Valley (BCV) west of the Y-12 Plant within the boundaries of the Bear Creek Hydrogeologic Regime which is one of three hydrogeologic regimes defined for the purposes of groundwater quality monitoring. The Environmental Management Department manages the groundwater monitoring activities under the auspices of the Y-12 Plant Groundwater Protection Program (GWPP). The purpose of the GWPP is to characterize the hydrogeology and to monitor groundwater quality at the Y-12 Plant and surrounding area to protect local groundwater resources. The annual GWQR for the Bear Creek Regime is completed in two parts. Part 1 consists primarily of data appendices and serves as a reference for the groundwater quality data obtained each CY. Part 2 (this report) contains an evaluation of the data with respect to regime-wide groundwater quality, summarizes the status and findings of ongoing hydrogeologic studies, describes changes in monitoring priorities, and presents planned modifications to the groundwater sampling and analysis activities

  13. Contribution of the multi-attribute value theory to conflict resolution in groundwater management - application to the Mancha Oriental groundwater system, Spain

    Science.gov (United States)

    Apperl, B.; Pulido-Velazquez, M.; Andreu, J.; Karjalainen, T. P.

    2015-03-01

    The implementation of the EU Water Framework Directive demands participatory water resource management approaches. Decision making in groundwater quantity and quality management is complex because of the existence of many independent actors, heterogeneous stakeholder interests, multiple objectives, different potential policies, and uncertain outcomes. Conflicting stakeholder interests have often been identified as an impediment to the realisation and success of water regulations and policies. The management of complex groundwater systems requires the clarification of stakeholders' positions (identifying stakeholder preferences and values), improving transparency with respect to outcomes of alternatives, and moving the discussion from the selection of alternatives towards the definition of fundamental objectives (value-thinking approach), which facilitates negotiation. The aims of the study are to analyse the potential of the multi-attribute value theory for conflict resolution in groundwater management and to evaluate the benefit of stakeholder incorporation into the different stages of the planning process, to find an overall satisfying solution for groundwater management. The research was conducted in the Mancha Oriental groundwater system (Spain), subject to intensive use of groundwater for irrigation. A complex set of objectives and attributes was defined, and the management alternatives were created by a combination of different fundamental actions, considering different implementation stages and future changes in water resource availability. Interviews were conducted with representative stakeholder groups using an interactive platform, showing simultaneously the consequences of changes in preferences to the alternative ranking. Results show that the approval of alternatives depends strongly on the combination of measures and the implementation stages. Uncertainties in the results were notable, but did not influence the alternative ranking heavily. The

  14. Contribution of the Multi Attribute Value Theory to conflict resolution in groundwater management. Application to the Mancha Oriental groundwater system, Spain

    Science.gov (United States)

    Apperl, B.; Andreu, J.; Karjalainen, T. P.; Pulido-Velazquez, M.

    2014-09-01

    The implementation of the EU Water Framework Directive demands participatory water resource management approaches. Decision making in groundwater quantity and quality management is complex because of the existence of many independent actors, heterogeneous stakeholder interests, multiple objectives, different potential policies, and uncertain outcomes. Conflicting stakeholder interests have been often identified as an impediment to the realization and success of water regulations and policies. The management of complex groundwater systems requires clarifying stakeholders' positions (identifying stakeholders preferences and values), improving transparency with respect to outcomes of alternatives, and moving the discussion from the selection of alternatives towards definition of fundamental objectives (value-thinking approach), what facilitates negotiation. The aims of the study are to analyse the potential of the multi attribute value theory for conflict resolution in groundwater management and to evaluate the benefit of stakeholder incorporation in the different stages of the planning process to find an overall satisfying solution for groundwater management. The research was conducted in the Mancha Oriental groundwater system (Spain), subject to an intensive use of groundwater for irrigation. A complex set of objectives and attributes were defined, and the management alternatives were created by a combination of different fundamental actions, considering different implementation stages and future changes in water resources availability. Interviews were conducted with representative stakeholder groups using an interactive platform, showing simultaneously the consequences of changes of preferences to the alternative ranking. Results show that the acceptation of alternatives depends strongly on the combination of measures and the implementation stages. Uncertainties of the results were notable but did not influence heavily on the alternative ranking. The expected

  15. Facility Management's Role in Organizational Sustainability

    Science.gov (United States)

    Adams, Gregory K.

    2013-01-01

    Facility managers have questions about sustainability. How do an organization's physical facilities--its built environment--and the management of them, influence the sustainability of the organization or institution as a whole? How important is Facility Management (FM) to the overall sustainability profile of an organization? Facility managers…

  16. Pickering Nuclear site wide groundwater monitoring system

    International Nuclear Information System (INIS)

    DeWilde, J.; Chin-Cheong, D.; Lledo, C.; Wootton, R.; Belanger, D.; Hansen, K.

    2001-01-01

    Ontario Power Generation Inc. (OPG) is continuing its efforts to understand the chemical and physical characteristics of the groundwater flow systems beneath the Pickering Nuclear Generating Station (PNGS). To this end, OPG constructed a site-wide Groundwater Monitoring System (GMS) at the PNGS to provide support to other ongoing environmental investigations and to provide a means to monitor current and future groundwater environmental issues. This paper will present the results of this work, including the development of a state-of-the-art data management system for storage and retrieval of environmental data for the site, which has applications for other power generation facilities. (author)

  17. Lessons Learned from the 200 West Pump and Treatment Facility Construction Project at the US DOE Hanford Site - A Leadership for Energy and Environmental Design (LEED) Gold-Certified Facility - 13113

    Energy Technology Data Exchange (ETDEWEB)

    Dorr, Kent A.; Freeman-Pollard, Jhivaun R.; Ostrom, Michael J. [CH2M HILL Plateau Remediation Company, P.O. Box 1600, MSIN R4-41, 99352 (United States)

    2013-07-01

    CH2M Hill Plateau Remediation Company (CHPRC) designed, constructed, commissioned, and began operation of the largest groundwater pump and treatment facility in the U.S. Department of Energy's (DOE) nationwide complex. This one-of-a-kind groundwater pump and treatment facility, located at the Hanford Nuclear Reservation Site (Hanford Site) in Washington State, was built to an accelerated schedule with American Recovery and Reinvestment Act (ARRA) funds. There were many contractual, technical, configuration management, quality, safety, and Leadership in Energy and Environmental Design (LEED) challenges associated with the design, procurement, construction, and commissioning of this $95 million, 52,000 ft groundwater pump and treatment facility to meet DOE's mission objective of treating contaminated groundwater at the Hanford Site with a new facility by June 28, 2012. The project team's successful integration of the project's core values and green energy technology throughout design, procurement, construction, and start-up of this complex, first-of-its-kind Bio Process facility resulted in successful achievement of DOE's mission objective, as well as attainment of LEED GOLD certification (Figure 1), which makes this Bio Process facility the first non-administrative building in the DOE Office of Environmental Management complex to earn such an award. (authors)

  18. Lessons Learned from the 200 West Pump and Treatment Facility Construction Project at the US DOE Hanford Site - A Leadership for Energy and Environmental Design (LEED) Gold-Certified Facility - 13113

    International Nuclear Information System (INIS)

    Dorr, Kent A.; Freeman-Pollard, Jhivaun R.; Ostrom, Michael J.

    2013-01-01

    CH2M Hill Plateau Remediation Company (CHPRC) designed, constructed, commissioned, and began operation of the largest groundwater pump and treatment facility in the U.S. Department of Energy's (DOE) nationwide complex. This one-of-a-kind groundwater pump and treatment facility, located at the Hanford Nuclear Reservation Site (Hanford Site) in Washington State, was built to an accelerated schedule with American Recovery and Reinvestment Act (ARRA) funds. There were many contractual, technical, configuration management, quality, safety, and Leadership in Energy and Environmental Design (LEED) challenges associated with the design, procurement, construction, and commissioning of this $95 million, 52,000 ft groundwater pump and treatment facility to meet DOE's mission objective of treating contaminated groundwater at the Hanford Site with a new facility by June 28, 2012. The project team's successful integration of the project's core values and green energy technology throughout design, procurement, construction, and start-up of this complex, first-of-its-kind Bio Process facility resulted in successful achievement of DOE's mission objective, as well as attainment of LEED GOLD certification (Figure 1), which makes this Bio Process facility the first non-administrative building in the DOE Office of Environmental Management complex to earn such an award. (authors)

  19. Surplus Facilities Management Program

    International Nuclear Information System (INIS)

    Coobs, J.H.

    1983-01-01

    This is the second of two programs that are concerned with the management of surplus facilities. The facilities in this program are those related to commercial activities, which include the three surplus experimental and test reactors [(MSRE, HRE-2, and the Low Intensity Test Reactor (LITR)] and seven experimental loops at the ORR. The program is an integral part of the Surplus Facilities Management Program, which is a national program administered for DOE by the Richland Operations Office. Very briefly reported here are routine surveillance and maintenance of surplus radioactively contaminated DOE facilities awaiting decommissioning

  20. Groundwater pumping effects on contaminant loading management in agricultural regions.

    Science.gov (United States)

    Park, Dong Kyu; Bae, Gwang-Ok; Kim, Seong-Kyun; Lee, Kang-Kun

    2014-06-15

    Groundwater pumping changes the behavior of subsurface water, including the location of the water table and characteristics of the flow system, and eventually affects the fate of contaminants, such as nitrate from agricultural fertilizers. The objectives of this study were to demonstrate the importance of considering the existing pumping conditions for contaminant loading management and to develop a management model to obtain a contaminant loading design more appropriate and practical for agricultural regions where groundwater pumping is common. Results from this study found that optimal designs for contaminant loading could be determined differently when the existing pumping conditions were considered. This study also showed that prediction of contamination and contaminant loading management without considering pumping activities might be unrealistic. Motivated by these results, a management model optimizing the permissible on-ground contaminant loading mass together with pumping rates was developed and applied to field investigation and monitoring data from Icheon, Korea. The analytical solution for 1-D unsaturated solute transport was integrated with the 3-D saturated solute transport model in order to approximate the fate of contaminants loaded periodically from on-ground sources. This model was further expanded to manage agricultural contaminant loading in regions where groundwater extraction tends to be concentrated in a specific period of time, such as during the rice-growing season, using a method that approximates contaminant leaching to a fluctuating water table. The results illustrated that the simultaneous management of groundwater quantity and quality was effective and appropriate to the agricultural contaminant loading management and the model developed in this study, which can consider time-variant pumping, could be used to accurately estimate and to reasonably manage contaminant loading in agricultural areas. Copyright © 2014 Elsevier Ltd. All

  1. Towards sustainable groundwater use: Setting long-term goals, backcasting, and managing adaptively

    Science.gov (United States)

    Gleeson, T.; Alley, W.M.; Allen, D.M.; Sophocleous, M.A.; Zhou, Y.; Taniguchi, M.; Vandersteen, J.

    2012-01-01

    The sustainability of crucial earth resources, such as groundwater, is a critical issue. We consider groundwater sustainability a value-driven process of intra- and intergenerational equity that balances the environment, society, and economy. Synthesizing hydrogeological science and current sustainability concepts, we emphasize three sustainability approaches: setting multigenerational sustainability goals, backcasting, and managing adaptively. As most aquifer problems are long-term problems, we propose that multigenerational goals (50 to 100 years) for water quantity and quality that acknowledge the connections between groundwater, surface water, and ecosystems be set for many aquifers. The goals should be set by a watershed- or aquifer-based community in an inclusive and participatory manner. Policies for shorter time horizons should be developed by backcasting, and measures implemented through adaptive management to achieve the long-term goals. Two case histories illustrate the importance and complexity of a multigenerational perspective and adaptive management. These approaches could transform aquifer depletion and contamination to more sustainable groundwater use, providing groundwater for current and future generations while protecting ecological integrity and resilience. ?? 2011, The Author(s). Ground Water ?? 2011, National Ground Water Association.

  2. Evaluation of alternative groundwater-management strategies for the Bureau of Reclamation Klamath Project, Oregon and California

    Science.gov (United States)

    Wagner, Brian J.; Gannett, Marshall W.

    2014-01-01

    The water resources of the upper Klamath Basin, in southern Oregon and northern California, are managed to achieve various complex and interconnected purposes. Since 2001, irrigators in the Bureau of Reclamation Klamath Irrigation Project (Project) have been required to limit surface-water diversions to protect habitat for endangered freshwater and anadromous fishes. The reductions in irrigation diversions have led to an increased demand for groundwater by Project irrigators, particularly in drought years. The potential effects of sustained pumping on groundwater and surface-water resources have caused concern among Federal and state agencies, Indian tribes, wildlife groups, and groundwater users. To aid in the development of a viable groundwater-management strategy for the Project, the U.S. Geological Survey, in collaboration with the Klamath Water and Power Agency and the Oregon Water Resources Department, developed a groundwater-management model that links groundwater simulation with techniques of constrained optimization. The overall goal of the groundwater-management model is to determine the patterns of groundwater pumping that, to the extent possible, meet the supplemental groundwater demands of the Project. To ensure that groundwater development does not adversely affect groundwater and surface-water resources, the groundwater-management model includes constraints to (1) limit the effects of groundwater withdrawal on groundwater discharge to streams and lakes that support critical habitat for fish listed under the Endangered Species Act, (2) ensure that drawdowns do not exceed limits allowed by Oregon water law, and (3) ensure that groundwater withdrawal does not adversely affect agricultural drain flows that supply a substantial portion of water for irrigators and wildlife refuges in downslope areas of the Project. Groundwater-management alternatives were tested and designed within the framework of the Klamath Basin Restoration Agreement (currently [2013

  3. Groundwater management institutions to protect riparian habitat

    Science.gov (United States)

    Orr, Patricia; Colby, Bonnie

    2004-12-01

    Groundwater pumping affects riparian habitat when it causes the water table to drop beyond the reach of riparian plants. Riparian habitat provides services that are not directly traded in markets, as is the case with many environmental amenities. There is no direct market where one may buy or sell the mix of services provided by a riparian corridor. The objective of this article is to review groundwater management mechanisms and assess their strengths and weaknesses for preserving the ecological integrity of riparian areas threatened by groundwater pumping. Policy instruments available to those concerned with the effects of groundwater pumping on riparian areas fall into three broad categories: (1) command and control (CAC), (2) incentive-based economic instruments, and (3) cooperative/suasive strategies. The case of the San Pedro River illustrates multiple and overlapping strategies applied in an ongoing attempt to reverse accumulating damage to a riparian ecosystem. Policy makers in the United States can choose among a broad menu of policy options to protect riparian habitat from groundwater pumping. They can capitalize on the clarity of command-and-control strategies, the flexibility and less obtrusive nature of incentive-based economic strategies, and the benefits that collaborative efforts can bring in the form of mutual consideration. While collaborative problem solving and market-based instruments are important policy tools, experience indicates that a well-formulated regulatory structure to limit regional groundwater pumping is an essential component of an effective riparian protection strategy.

  4. Groundwater/Vadose Zone Integration Project Management Plan

    International Nuclear Information System (INIS)

    Hughes, M. C.

    1999-01-01

    This Project Management Plan (PMP) defines the authorities, roles, and responsibilities of the US Department of Energy (DOE), Richland Operations Office (RL) and those contractor organizations participating in the Hanford Site' s Groundwater/Vadose Zone (GW/VZ) Integration Project. The PMP also describes the planning and control systems, business processes, and other management tools needed to properly and consistently conduct the Integration Project scope of work

  5. Capital Ideas for Facilities Management.

    Science.gov (United States)

    Golding, Stephen T.; Gordon, Janet; Gravina, Arthur

    2001-01-01

    Asserting that just like chief financial officers, higher education facilities specialists must maximize the long-term performance of assets under their care, describes strategies for strategic facilities management. Discusses three main approaches to facilities management (insourcing, cosourcing, and outsourcing) and where boards of trustees fit…

  6. Facility management in kinderschoenen : Facility management in de kinderopvang

    NARCIS (Netherlands)

    Ronald Beckers

    2008-01-01

    Begin dit jaar heft Academie Diedenoort FM aan de Hogeschool van Arnhem en Nijmegen, tijdens een studiemiddag een toelichting gegeven op het vakgebied facility management aan een aantal financiële managers van organisaties die zich bezighouden met kinderopvang. In die branche staat het fm-vakgebid

  7. Quarterly report of RCRA groundwater monitoring data for period April 1 through June 30, 1994

    International Nuclear Information System (INIS)

    1994-10-01

    Hanford Site interim-status groundwater monitoring projects are conducted as either background, indicator parameter evaluation, or groundwater quality assessment monitoring programs as defined in the Resource Conservation and Recovery Act of 1976 (RCRA); and ''Interim Status Standards for Owners and Operators of Hazardous Waste Treatment, Storage, and Disposal Facilities,'' as amended (40 Code of Federal Regulations [CFR] 265). Compliance with the 40 CFR 265 regulations is required by the Washington Administrative Code (WAC) 173-303. This report contains data from Hanford Site groundwater monitoring projects. Westinghouse Hanford Company manages RCRA groundwater monitoring projects for federal facilities on the Hanford Site. Project management, specifying data needs, performing quality control oversight, managing data, and preparing project sampling schedules are all parts of this responsibility. This quarterly report contains data received between May 20 and August 19, 1994, which are the cutoff dates for this reporting period. This report may contain not only data from the April through June quarter but also data from earlier sampling events that were not previously reported

  8. Applications of Satellite Data to Support Improvements in Irrigation and Groundwater Management in California

    Science.gov (United States)

    Melton, F. S.; Huntington, J. L.; Johnson, L.; Guzman, A.; Morton, C.; Zaragoza, I.; Dexter, J.; Rosevelt, C.; Michaelis, A.; Nemani, R. R.; Cahn, M.; Temesgen, B.; Trezza, R.; Frame, K.; Eching, S.; Grimm, R.; Hall, M.

    2017-12-01

    In agricultural regions around the world, threats to water supplies from drought and groundwater depletion are driving increased demand for tools to advance agricultural water use efficiency and support sustainable groundwater management. Satellite mapping of evapotranspiration (ET) from irrigated agricultural lands can provide agricultural producers and water resource managers with information that can be used to both optimize ag water use and improve estimates of groundwater withdrawals for irrigation. We describe the development of two remote sensing-based tools for ET mapping in California, including important lessons in terms of system design, partnership development, and transition to operations. For irrigation management, the integration of satellite data and surface sensor networks to provide timely delivery of information on crop water requirements can make irrigation scheduling more practical, convenient, and accurate. Developed through a partnership between NASA and the CA Department of Water Resources, the Satellite Irrigation Management Support (SIMS) framework integrates satellite data with information from agricultural weather networks to map crop canopy development and crop water requirements at the scale of individual fields. Information is distributed to agricultural producers and water managers via a web-based interface and web data services. SIMS also provides an API that facilitates integration with other irrigation decision support tools, such as CropManage and IrriQuest. Field trials using these integrated tools have shown that they can be used to sustain yields while improving water use efficiency and nutrient management. For sustainable groundwater management, the combination of satellite-derived estimates of ET and data on surface water deliveries for irrigation can increase the accuracy of estimates of groundwater pumping. We are developing an OpenET platform to facilitate access to ET data from multiple models and accelerate operational

  9. Potential of Computerized Maintenance Management System in Facilities Management

    Directory of Open Access Journals (Sweden)

    Noor Farisya Azahar

    2014-07-01

    Full Text Available For some time it has been clear that managing buildings or estates has been carried out in the context of what has become known as facilities management. British Institute of Facilities Management defined facilities management is the integration of multi-disciplinary activities within the built environment and the management of their impact upon people and the workplace. Effective facilities management is vital to the success of an organisation by contributing to the delivery of its strategic and operational objectives. Maintenance of buildings should be given serious attention before (stage design, during and after a building is completed. But total involvement in building maintenance is after the building is completed and during its operations. Residents of and property owners require their building to look attractive, durable and have a peaceful indoor environment and efficient. The objective of the maintenance management system is to stream line the vast maintenance information system to improve the productivity of an industrial plant. a good maintenance management system makes equipment and facilities available. This paper will discuss the fundamental steps of maintenance management program and Computerized Maintenance Management System (CMMS

  10. CLAIMS OF SUSTAINABLE FACILITIES MANAGEMENT

    DEFF Research Database (Denmark)

    Nielsen, Susanne Balslev

    Purpose: The purpose of the paper is to provide an overview of current practices within the emergent management discipline: Sustainable Facilities Management (SFM). Background: To develop a sustainable society, facilities managers must become change agents for sustainability in the built...... environment. Facilities Management (FM) is contributing to the environmental, social and economical problems, but can at the same time also be a part of the solution. However, to integrate sustainability in FM is still an emergent niche within FM, and the examples of SFM so far seems to come out of very......-creating of new socio-technical services and technologies These SFM understandings are concluded to be coexisting claims of SFM definitions. Practical Implications: Facilities managers will be able to identify the mindset behind different services and technologies that are promoted as SFM. But maybe just...

  11. Hydro-environmental management of groundwater resources: A fuzzy-based multi-objective compromise approach

    Science.gov (United States)

    Alizadeh, Mohammad Reza; Nikoo, Mohammad Reza; Rakhshandehroo, Gholam Reza

    2017-08-01

    Sustainable management of water resources necessitates close attention to social, economic and environmental aspects such as water quality and quantity concerns and potential conflicts. This study presents a new fuzzy-based multi-objective compromise methodology to determine the socio-optimal and sustainable policies for hydro-environmental management of groundwater resources, which simultaneously considers the conflicts and negotiation of involved stakeholders, uncertainties in decision makers' preferences, existing uncertainties in the groundwater parameters and groundwater quality and quantity issues. The fuzzy multi-objective simulation-optimization model is developed based on qualitative and quantitative groundwater simulation model (MODFLOW and MT3D), multi-objective optimization model (NSGA-II), Monte Carlo analysis and Fuzzy Transformation Method (FTM). Best compromise solutions (best management policies) on trade-off curves are determined using four different Fuzzy Social Choice (FSC) methods. Finally, a unanimity fallback bargaining method is utilized to suggest the most preferred FSC method. Kavar-Maharloo aquifer system in Fars, Iran, as a typical multi-stakeholder multi-objective real-world problem is considered to verify the proposed methodology. Results showed an effective performance of the framework for determining the most sustainable allocation policy in groundwater resource management.

  12. Waste management facility remediation and decommissioning at a national nuclear research site

    International Nuclear Information System (INIS)

    Cameron, D.J.; Dolinar, G.M.; Killey, R.W.D.

    1994-01-01

    Historic waste management practices at eight locations on AECL's Chalk River site have resulted in the formation of contaminated groundwater plumes, some of which have surfaced and contaminated surface materials. A priority setting process has been used to establish a plan of attack that will lead to the eventual decommissioning of these facilities. In general terms, the preferred approach is to install impermeable covers to prevent further leaching of waste sources and to prevent escape of leachate to the biosphere, followed by cleanup of surface contamination and remediation of aquifers. Final disposal of the waste sources would be delayed for perhaps 20 years. Substantial progress has been made in the treatment of contaminated groundwater, with one field installation in place and another under development. This paper describes how the prioritization task was tackled to produce a long term plan of action and describes initial interventions that have been attempted and their results. 4 refs., 3 tabs., 3 figs

  13. Computer-Aided Facilities Management Systems (CAFM).

    Science.gov (United States)

    Cyros, Kreon L.

    Computer-aided facilities management (CAFM) refers to a collection of software used with increasing frequency by facilities managers. The six major CAFM components are discussed with respect to their usefulness and popularity in facilities management applications: (1) computer-aided design; (2) computer-aided engineering; (3) decision support…

  14. Proceedings of the fifth international groundwater conference on the assessment and management of groundwater resources in hard rock systems with special reference to basaltic terrain

    International Nuclear Information System (INIS)

    Thangarajan, M.; Mayilswami, C.; Kulkarni, P.S.; Singh, V.P.

    2012-01-01

    Groundwater resources in hard rock regions with limited renewable potential have to be managed judiciously to ensure adequate supplies of dependable quantity and quality. It is a natural resource with economic, strategic and environmental value, which is under stress both due to changing climatic and anthropogenic factors. Therefore the management strategies need to be aimed at sustenance of this limited resource. In India, and also elsewhere in the world major parts of the semi-arid regions are characterized by hard rocks and it is of vital importance to understand the nature of the aquifer systems and its current stress conditions. Though the achievements through scientific development in exploration and exploitation are commendable, it has adversely affected the hard rock aquifer system, both in terms of quantity and quality; which is of major concern today. In order to reverse the situation, better management strategy of groundwater resources needs to be devised for prevention of further degradation of quality and meeting out the future demand of quantity. This necessitates: understanding the flow mechanism, evaluating the potential and evolving optimal utilization schemes, and assessing and monitoring quality in the changing scenario of anthropogenically induced agricultural, urban, industrial and climatic change. The groundwater flow mechanism through fractures in hard rocks is yet to be fully understood in terms of fracture geometry and its relation to groundwater flow. The characterization of flow geometry in basaltic aquifer is yet to be fully explored. Groundwater pollution due to anthropogenic factors is very slow process with long-term impacts on carbon cycle and global climatic change on one hand and quality on the other. It is generally recognized that the prevention of groundwater pollution is cheaper than its remedial measures in the long run. Furthermore, because of the nature of groundwater flow and the complexity and management uncertainty of

  15. Understanding Political Will in Groundwater Management: Comparing Yemen and Ethiopia

    Directory of Open Access Journals (Sweden)

    Frank van Steenbergen

    2015-02-01

    Full Text Available This paper explores the role of politics in water management, in particular, comparing groundwater management in Yemen and Ethiopia. It tries to understand the precise meaning of the often-quoted term 'political will' in these different contexts and compares the autocratic and oligarchic system in Yemen with the dominant party 'developmental state' in Ethiopia. The links between these political systems and the institutional domain are described as well as the actual management of groundwater on the ground. Whereas the Ethiopian state is characterised by the use of hard power and soft ideational power, the system in Yemen relies at most on soft negotiating power. There is a strong link between the political system, the positioning of different parties and access to power, the role of central and local governments, the propensity to plan and vision, the effectiveness of government organisations, the extent of corruption, the influence of informal governance mechanisms, the scope for private initiative and the political interest in groundwater management and development in general. More important than political will per se is political capacity – the ability to implement and regulate.

  16. Action COST 621 »Groundwater management of coastal karstic aquifers«

    Directory of Open Access Journals (Sweden)

    Metka Petrič

    2002-12-01

    Full Text Available COST 621 »Groundwater management of coastal karstic aquifers” is an international project in the frame of the European Union in which 12 European countries, including Slovenia, took an active part in the years 1997-2002. The main objective of the Action is to increase the knowledge necessary to establish criteria for improving groundwaterresource utilisation in karstic coastal aquifers and for recovering groundwater resource in aquifers over-exploited and salinised due to sea water intrusion. Based on gathered results “Guidelines for the groundwater management of coastal karstic aquifers” were compiled and will be published as a special booklet. In this way the dissemination of the results will be provided.

  17. Corrective Measures Study Modeling Results for the Southwest Plume - Burial Ground Complex/Mixed Waste Management Facility

    International Nuclear Information System (INIS)

    Harris, M.K.

    1999-01-01

    Groundwater modeling scenarios were performed to support the Corrective Measures Study and Interim Action Plan for the southwest plume of the Burial Ground Complex/Mixed Waste Management Facility. The modeling scenarios were designed to provide data for an economic analysis of alternatives, and subsequently evaluate the effectiveness of the selected remedial technologies for tritium reduction to Fourmile Branch. Modeling scenarios assessed include no action, vertical barriers, pump, treat, and reinject; and vertical recirculation wells

  18. CY2003 RCRA GROUNDWATER MONITORING WELL SUMMARY REPORT

    International Nuclear Information System (INIS)

    MARTINEZ, C.R.

    2003-01-01

    This report describes the calendar year (CY) 2003 field activities associated with the installation of two new groundwater monitoring wells in the A-AX Waste Management Area (WMA) and four groundwater monitoring wells in WMA C in the 200 East Area of the Hanford Nuclear Reservation. All six wells were installed by Fluor Hanford Inc. (FH) for CH2M Hill Hanford Group, Inc. (CHG) in support of Draft Hanford Facility Agreement and Consent Order (Tri-Party Agreement) M-24-00 milestones and ''Resource Conservation and Recovery Act of 1976'' (RCRA) groundwater monitoring requirements. Drilling data for the six wells are summarized in Table 1

  19. Assessing the effects of urbanization and climate change on groundwater management in China

    Science.gov (United States)

    Hua, S.; Zheng, C.

    2017-12-01

    Groundwater is expected to be more vulnerable in the future due to climate change coupled with rapid urbanization. Thus, protecting future groundwater resources under the impact of urbanization and climate change is necessary towards more sustainable groundwater resource development. This study is intended to shed lights on how water managers may plan for the adverse effects of urbanization and climate change on groundwater quality. A new approach is presented in which the groundwater vulnerability under future climate change scenarios is employed as a constraint to urban expansion. An original form of the Land Transformation Model (LTM) and a revised LTM simulation are applied to model the urbanization. The results indicated that there would be a notable and uneven urban growth between 2010 and 2050. Future groundwater vulnerability is expected to shift significantly under future climate change scenarios. The results of the revised LTM project more urban expansion in the central regions of China, while those of the original LTM project urban expansion in throughout China, although the two projections have the same areas of expansion. The urban expansion simulated by the original LTM follows the historical trend under the drivers of socioeconomic, political and geographic factors. However, the revised LTM drives the urban expansion to the regions with relatively lower groundwater vulnerability, in contrast to the historical trend. This study demonstrates that the integration of LTM and future groundwater vulnerability in the urban planning can better protect the groundwater resource and promote more sustainable socioeconomic development. The methodology developed in this study provides water managers and city planners a useful groundwater management tool for mitigating the risks associated with rapid urbanization and climate change.

  20. Groundwater Management Innovations in the High Plains Aquifer, USA: A possible path towards sustainability? (Invited)

    Science.gov (United States)

    Sophocleous, M. A.

    2009-12-01

    The U.S. High Plains aquifer, one of the largest freshwater aquifer systems in the world covering parts of eight US states, continues to decline, threatening the long-term viability of the region’s irrigation-based economy. The theory of the commons has meaningful messages for High-Plains jurisdictions as no private incentive exists to save for tomorrow, and agricultural prosperity depends on mining water from large portions of the aquifer. The eight High Plains states take different approaches to the development and management of the aquifer based on each state’s body of water laws that abide by different legal doctrines, on which Federal laws are superposed, thus creating difficulties in integrated regional water management efforts. Although accumulating hydrologic stresses and competing demands on groundwater resources are making groundwater management increasingly complex, they are also leading to innovative approaches to the management of groundwater supplies, and those are highlighted in this presentation as good examples for emulation in managing groundwater resources. The highlighted innovations include (1) the Texas Groundwater Availability Modeling program, (2) Colorado’s water-augmentation program, (3) Kansas’ Intensive Groundwater Use Control Area policy, (4) the Kansas Groundwater Management Districts’ “safe yield” policies, (5) the water-use reporting program in Kansas, (6) the Aquifer Storage and Recovery program of the City of Wichita, Kansas, and (7) Nebraska’s Natural Resources Districts. It is concluded that the fragmented and piecemeal institutional arrangements for managing the supplies and quality of water are unlikely to be sufficient to meet the water challenges of the future. A number of recommendations for enhancing the sustainability of the aquifer are presented, including the formation of an interstate groundwater commission for the High Plains aquifer along the lines of the Delaware and Susquehanna River Basins

  1. Groundwater resources: conservation and management: proceedings of the sixteenth national symposium on environment

    International Nuclear Information System (INIS)

    Puranik, V.D.; Ramachandran, T.V.; Saradhi, I.V.; Sahu, S.K.; Prathibha, P.

    2008-01-01

    The main theme of this volume is conservation and management of groundwater resources. The topics covered are groundwater for sustainable development, problems perspectives and challenges, monitoring and modeling of pollutants and their transport, waste management, environmental radioactivity and environmental awareness and biodiversity. Papers relevant to INIS are indexed separately

  2. Sport Facility Planning and Management. Sport Management Library.

    Science.gov (United States)

    Farmer, Peter J.; Mulrooney, Aaron L.; Ammon, Rob, Jr.

    Students of sports facilities management will need to acquire a wide variety of managerial skills and knowledge in order to be adequately prepared to plan and manage these facilities. This textbook offers students a mix of practical examples and recognized theory to help them in the planning, constructing, promoting, and managing of sports…

  3. Spatial variability analysis of combining the water quality and groundwater flow model to plan groundwater and surface water management in the Pingtung plain

    Science.gov (United States)

    Chen, Ching-Fang; Chen, Jui-Sheng; Jang, Cheng-Shin

    2014-05-01

    As a result of rapid economic growth in the Pingtung Plain, the use of groundwater resources has changed dramatically. The groundwater is quite rich in the Pingtung plain and the most important water sources. During the several decades, a substantial amount of groundwater has been pumped for the drinking, irrigation and aquaculture water supplies. However, because the sustainable use concept of groundwater resources is lack, excessive pumping of groundwater causes the occurrence of serious land subsidence and sea water intrusion. Thus, the management and conservation of groundwater resources in the Pingtung plain are considerably critical. This study aims to assess the conjunct use effect of groundwater and surface water in the Pingtung plain on recharge by reducing the amount of groundwater extraction. The groundwater quality variability and groundwater flow models are combined to spatially analyze potential zones of groundwater used for multi-purpose in the Pingtung Plain. First, multivariate indicator kriging (MVIK) is used to analyze spatial variability of groundwater quality based on drinking, aquaculture and irrigation water quality standards, and probabilistically delineate suitable zones in the study area. Then, the groundwater flow model, Processing MODFLOW (PMWIN), is adopted to simulate groundwater flow. The groundwater flow model must be conducted by the calibration and verification processes, and the regional groundwater recovery is discussed when specified water rights are replaced by surface water in the Pingtung plain. Finally, the most suitable zones of reducing groundwater use are determined for multi-purpose according to combining groundwater quality and quantity. The study results can establish a sound and low-impact management plan of groundwater resources utilization for the multi-purpose groundwater use, and prevent decreasing ground water tables, and the occurrence of land subsidence and sea water intrusion in the Pingtung plain.

  4. Pre/post-closure assessment of groundwater pharmaceutical fate in a wastewater‑facility-impacted stream reach

    Science.gov (United States)

    Bradley, Paul M.; Barber, Larry B.; Clark, Jimmy M.; Duris, Joseph W.; Foreman, William T.; Furlong, Edward T.; Givens, Carrie E.; Hubbard, Laura E.; Hutchinson, Kasey J.; Journey, Celeste A.; Keefe, Steffanie H.; Kolpin, Dana W.

    2016-01-01

    Pharmaceutical contamination of contiguous groundwater is a substantial concern in wastewater-impacted streams, due to ubiquity in effluent, high aqueous mobility, designed bioactivity, and to effluent-driven hydraulic gradients. Wastewater treatment facility (WWTF) closures are rare environmental remediation events; offering unique insights into contaminant persistence, long-term wastewater impacts, and ecosystem recovery processes. The USGS conducted a combined pre/post-closure groundwater assessment adjacent to an effluent-impacted reach of Fourmile Creek, Ankeny, Iowa, USA. Higher surface-water concentrations, consistent surface-water to groundwater concentration gradients, and sustained groundwater detections tens of meters from the stream bank demonstrated the importance of WWTF effluent as the source of groundwater pharmaceuticals as well as the persistence of these contaminants under effluent-driven, pre-closure conditions. The number of analytes (110 total) detected in surface water decreased from 69 prior to closure down to 8 in the first post-closure sampling event approximately 30 d later, with a corresponding 2 order of magnitude decrease in the cumulative concentration of detected analytes. Post-closure cumulative concentrations of detected analytes were approximately 5 times higher in proximal groundwater than in surface water. About 40% of the 21 contaminants detected in a downstream groundwater transect immediately before WWTF closure exhibited rapid attenuation with estimated half-lives on the order of a few days; however, a comparable number exhibited no consistent attenuation during the year-long post-closure assessment. The results demonstrate the potential for effluent-impacted shallow groundwater systems to accumulate pharmaceutical contaminants and serve as long-term residual sources, further increasing the risk of adverse ecological effects in groundwater and the near-stream ecosystem.

  5. Management of groundwater in urban centers: A case study; Greater Dammam Metropolitan Area

    International Nuclear Information System (INIS)

    Abderrahman, Walid A.; Elamin, Abdalla S.; Al-Harazin, Ibrahim M.; Eqnaibi, Badie S.

    2007-01-01

    Effective management of groundwater resources in urban centers of arid regions is vital for sustainable development and groundwater protection especially with rapid growth of water demands under water stress conditions. Greater Dammam Metropolitan Area is a good example of rapid growing urban center due to comprehensive development and population growth. The water demand has increased by many times during the last three decades. Groundwater from local aquifers namely Dammam and Umm Er Radhuma, supplies more than 85% of the total water demands. The aquifers have been subjected to extensive and increasing groundwater pumping especially during last three decades. Negative impacts such as significant decline in water levels have been experienced in the area. A new groundwater management scheme in terms of improving the long-term water pumping policies is required for protection of the aquifers groundwater productivity. A special numerical simulation model of the multi-aquifer system including Dammam and Umm Er Radhuma aquifers has been developed to assess the behavior of the aquifer system under long term water stresses in Dammam Metropolitan Area. The developed numerical simulation model has been utilized to predict the responses of the aquifer system in terms of decline in terms of water level under different pumping schemes from the two aquifers during the next 30 years. The model results have postulated the importance of Umm Er Radhuma (UER) aquifer as a major water supply source to Dammam Metropolitan Area, as well as potential recharge source of more than 30% of the total water pumped from Dammam aquifer. These findings have been utilized in improving present and future groundwater management and conservation for the study area. Similar techniques can be used to improve the groundwater management in other parts of the country as well as other arid regions. (author)

  6. 7 CFR 210.13 - Facilities management.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 4 2010-01-01 2010-01-01 false Facilities management. 210.13 Section 210.13... Participation § 210.13 Facilities management. Link to an amendment published at 74 FR 66216, Dec. 15, 2009. (a..., the added text is set forth as follows: § 210.13 Facilities management. (c) Food safety program. The...

  7. New Ideas on Facilities Management.

    Science.gov (United States)

    Grimm, James C.

    1986-01-01

    Examines trends in facilities management relating to products and people. Reviews new trends in products, including processes, techniques, and programs that are being expounded by business and industry. Discusses the "people factors" involved in facilities management. (ABB)

  8. Aquifers of Arkansas: protection, management, and hydrologic and geochemical characteristics of groundwater resources in Arkansas

    Science.gov (United States)

    Kresse, Timothy M.; Hays, Phillip D.; Merriman, Katherine R.; Gillip, Jonathan A.; Fugitt, D. Todd; Spellman, Jane L.; Nottmeier, Anna M.; Westerman, Drew A.; Blackstock, Joshua M.; Battreal, James L.

    2014-01-01

    Sixteen aquifers in Arkansas that currently serve or have served as sources of water supply are described with respect to existing groundwater protection and management programs, geology, hydrologic characteristics, water use, water levels, deductive analysis, projections of hydrologic conditions, and water quality. State and Federal protection and management programs are described according to regulatory oversight, management strategies, and ambient groundwater-monitoring programs that currently (2013) are in place for assessing and protecting groundwater resources throughout the State.

  9. Quarterly report of RCRA groundwater monitoring data for period April 1, 1993 through June 30, 1993

    Energy Technology Data Exchange (ETDEWEB)

    Jungers, D.K.

    1993-10-01

    Hanford Site interim-status groundwater monitoring projects are conducted as either background, indicator parameter evaluation, or groundwater quality assessment monitoring programs. This report contains data from Hanford Site groundwater monitoring projects. Westinghouse Hanford Company (WHC) manages the RCRA groundwater monitoring projects for federal facilities on the Hanford Site. Project management, specifying data needs, performing quality control (QC) oversight, managing data, and preparing project sampling schedules are all parts of this responsibility. Pacific Northwest Laboratory (PNL) administers the contract for analytical services and provides groundwater sampling services to WHC for the RCRA groundwater monitoring program. This quarterly report contains data received between May 24 and August 20, 1993, which are the cutoff dates for this reporting period. This report may contain not only data from samples collected during the April through June quarter but also data from earlier sampling events that were not previously reported.

  10. Assisting community management of groundwater: Irrigator attitudes in two watersheds in Rajasthan and Gujarat, India

    Science.gov (United States)

    Varua, M. E.; Ward, J.; Maheshwari, B.; Oza, S.; Purohit, R.; Hakimuddin; Chinnasamy, P.

    2016-06-01

    The absence of either state regulations or markets to coordinate the operation of individual wells has focussed attention on community level institutions as the primary loci for sustainable groundwater management in Rajasthan and Gujarat, India. The reported research relied on theoretical propositions that livelihood strategies, groundwater management and the propensity to cooperate are associated with the attitudinal orientations of well owners in the Meghraj and Dharta watersheds, located in Gujarat and Rajasthan respectively. The research tested the hypothesis that attitudes to groundwater management and farming practices, household income and trust levels of assisting agencies were not consistent across the watersheds, implying that a targeted approach, in contrast to default uniform programs, would assist communities craft rules to manage groundwater across multiple hydro-geological settings. Hierarchical cluster analysis of attitudes held by survey respondents revealed four statistically significant discrete clusters, supporting acceptance of the hypothesis. Further analyses revealed significant differences in farming practices, household wealth and willingness to adapt across the four groundwater management clusters. In conclusion, the need to account for attitudinal diversity is highlighted and a framework to guide the specific design of processes to assist communities craft coordinating instruments to sustainably manage local aquifers described.

  11. Streamflow depletion by wells--Understanding and managing the effects of groundwater pumping on streamflow

    Science.gov (United States)

    Barlow, Paul M.; Leake, Stanley A.

    2012-11-02

    Groundwater is an important source of water for many human needs, including public supply, agriculture, and industry. With the development of any natural resource, however, adverse consequences may be associated with its use. One of the primary concerns related to the development of groundwater resources is the effect of groundwater pumping on streamflow. Groundwater and surface-water systems are connected, and groundwater discharge is often a substantial component of the total flow of a stream. Groundwater pumping reduces the amount of groundwater that flows to streams and, in some cases, can draw streamflow into the underlying groundwater system. Streamflow reductions (or depletions) caused by pumping have become an important water-resource management issue because of the negative impacts that reduced flows can have on aquatic ecosystems, the availability of surface water, and the quality and aesthetic value of streams and rivers. Scientific research over the past seven decades has made important contributions to the basic understanding of the processes and factors that affect streamflow depletion by wells. Moreover, advances in methods for simulating groundwater systems with computer models provide powerful tools for estimating the rates, locations, and timing of streamflow depletion in response to groundwater pumping and for evaluating alternative approaches for managing streamflow depletion. The primary objective of this report is to summarize these scientific insights and to describe the various field methods and modeling approaches that can be used to understand and manage streamflow depletion. A secondary objective is to highlight several misconceptions concerning streamflow depletion and to explain why these misconceptions are incorrect.

  12. Landfill gas management facilities design guidelines

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-03-15

    In British Columbia, municipal solid waste landfills generate over 1000 tonnes of methane per year; landfill gas management facilities are required to improve the environmental performance of solid waste landfills. The aim of this document, developed by the British Columbia Ministry of the Environment, is to provide guidance for the design, installation, and operation of landfill gas management facilities to address odor and pollutant emissions issues and also address health and safety issues. A review of technical experience and best practices in landfill gas management facilities was carried out, as was as a review of existing regulations related to landfill gas management all over the world. This paper provides useful information to landfill owners, operators, and other professionals for the design of landfill gas management facilities which meet the requirements of landfill gas management regulations.

  13. Technical merits and leadership in facility management

    OpenAIRE

    Shoemaker, Jerry J

    1997-01-01

    After almost ten years of experience and formal education in design, construction, and facility operations and maintenance, the challenges and complexity of facility management still seem overwhelming and intangible. This document explores those complexities and challenges, and presents several philosophies and strategies practiced in facility management. The document is divided into six chapters; the introduction, facility management and leadership, building systems, facility operations, fac...

  14. Expediting Groundwater Sampling at Hanford and Making It Safer

    International Nuclear Information System (INIS)

    Connell, Carl W. Jr.; Carr, Jennifer S.; Hildebrand, R. Douglas; Schatz, Aaron L.; Conley, S. F.; Brown, W. L.

    2013-01-01

    The CH2M HILL Plateau Remediation Company (CHPRC) manages the groundwater monitoring programs at the Department of Energy's 586-square-mile Hanford site in southeastern Washington state. These programs are regulated by the Resource Conservation and Recovery Act (RCRA), the Comprehensive Environmental Response Compensation and Liability Act (CERCLA), and the Atomic Energy Act (AEA). The purpose of monitoring is to track existing groundwater contamination from past practices, as well as other potential contamination that might originate from RCRA treatment, storage, and disposal (TSD) facilities. An integral part of the groundwater-monitoring program involves taking samples of the groundwater and measuring the water levels in wells scattered across the site. Each year, more than 1,500 wells are accessed for a variety of reasons

  15. FACILITIES MANAGEMENT AT CERN

    CERN Multimedia

    2002-01-01

    Recently we have been confronted with difficulties concerning services which are part of a new contract for facilities management. Please see below for some information about this contract. Following competitive tendering and the Finance Committee decision, the contract was awarded to the Swiss firm 'Facilities Management Network (FMN)'. The owners of FMN are two companies 'M+W Zander' and 'Avireal', both very experienced in this field of facilities management. The contract entered into force on 1st July 2002. CERN has grouped together around 20 different activities into this one contract, which was previously covered by separate contracts. The new contract includes the management and execution of many activities, in particular: Guards and access control; cleaning; operation and maintenance of heating plants, cooling and ventilation equipment for buildings not related to the tunnel or the LHC; plumbing; sanitation; lifts; green areas and roads; waste disposal; and includes a centralised helpdesk for these act...

  16. Numerical simulation of groundwater flow in LILW Repository site:I. Groundwater flow modeling

    Energy Technology Data Exchange (ETDEWEB)

    Park, Koung Woo; Ji, Sung Hoon; Kim, Chun Soo; Kim, Kyoung Su [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Kim, Ji Yeon [Korea Hydro and Nuclear Power Co. Ltd., Seoul (Korea, Republic of)

    2008-12-15

    Based on the site characterization works in a low and intermediate level waste (LILW) repository site, the numerical simulations for groundwater flow were carried out in order to understand the groundwater flow system of repository site. To accomplish the groundwater flow modeling in the repository site, the discrete fracture network (DFN) model was constructed using the characteristics of fracture zones and background fractures. At result, the total 10 different hydraulic conductivity(K) fields were obtained from DFN model stochastically and K distributions of constructed mesh were inputted into the 10 cases of groundwater flow simulations in FEFLOW. From the total 10 numerical simulation results, the simulated groundwater levels were strongly governed by topography and the groundwater fluxes were governed by locally existed high permeable fracture zones in repository depth. Especially, the groundwater table was predicted to have several tens meters below the groundwater table compared with the undisturbed condition around disposal silo after construction of underground facilities. After closure of disposal facilities, the groundwater level would be almost recovered within 1 year and have a tendency to keep a steady state of groundwater level in 2 year.

  17. A Program Management Framework for Facilities Managers

    Science.gov (United States)

    King, Dan

    2012-01-01

    The challenge faced by senior facility leaders is not how to execute a single project, but rather, how to successfully execute a large program consisting of hundreds of projects. Senior facilities officers at universities, school districts, hospitals, airports, and other organizations with extensive facility inventories, typically manage project…

  18. Nuclear energy: Environmental issues at DOE's nuclear defense facilities

    International Nuclear Information System (INIS)

    1986-01-01

    GAO's review of nine Department of Energy defense facilities identified a number of significant environmental issues: (1) eight facilities have groundwater contaminated with radioactive and/or hazardous substances to high levels; (2) six facilities have soil contamination in unexpected areas, including offsite locations; (3) four facilities are not in full compliance with the Clean Water Act; and (4) all nine facilities are significantly changing their waste disposal practices to obtain a permit under the Resource Conservation and Recovery Act. GAO is recommending that DOE develop and overall groundwater and soil protection strategy that would provide a better perspective on the environmental risks and impacts associated with operating DOE's nuclear defense facilities. GAO also recommends that DOE allow outside independent inspections of the disposal practices used for any waste DOE self-regulates and revise its order governing the management of hazardous and mixed waste

  19. F-Area Hazardous Waste Management Facility Corrective Action Report - Third and Fourth Quarter 1999, Volumes I and II

    International Nuclear Information System (INIS)

    Chase, J.

    2000-01-01

    Savannah River Site (SRS) monitors groundwater quality at the F-Area Hazardous Waste management Facility (HWMF) and provides results of this monitoring to the South Carolina Department of Health and Environmental Control (SCDHEC) semiannually as required by the Resource Conservation and Recovery Act (RCRA) permit. SRS also performs monthly sampling of the Wastewater Treatment Unit (WTU) effluent in accordance with Section C of the Underground Injection Control (UIC) application

  20. Economic, social and resource management factors influencing groundwater trade: Evidence from Victoria, Australia

    Science.gov (United States)

    Gill, Bruce; Webb, John; Stott, Kerry; Cheng, Xiang; Wilkinson, Roger; Cossens, Brendan

    2017-07-01

    In Victoria, Australia, most groundwater resources are now fully allocated and opportunities for new groundwater development can only occur through trading of license entitlements. Groundwater usage has rarely exceeded 50% of the available licensed volume, even in the 2008/9 drought year, and 50 to 70% of individual license holders use less than 5% of their allocation each year. However, little groundwater trading is occurring at present. Interviews were conducted with groundwater license holders and water brokers to investigate why the Victorian groundwater trade market is underdeveloped. Responses show there is a complex mix of social, economic, institutional and technical reasons. Barriers to trade are influenced by the circumstances of each groundwater user, administrative process and resource management rules. Water brokers deal with few trades at low margins and noted unrealistic selling prices and administrative difficulties. Irrigators who have successfully traded identify that there are few participants in trading, technical appraisals are expensive and administrative requirements and fees are burdensome, especially when compared to surface water trading. Opportunities to facilitate trade include groundwater management plan refinement and improved information provision. Simplifying transaction processes and costs, demonstrating good resource stewardship and preventing third party impacts from trade could address some concerns raised by market participants. There are, however, numerous individual circumstances that inhibit groundwater trading, so it is unlikely that policy and process changes alone could increase usage rates without greater demand for groundwater or more favourable farming economic circumstances.

  1. Waste analysis plan for the 200 area effluent treatment facility and liquid effluent retention facility

    International Nuclear Information System (INIS)

    Ballantyne, N.A.

    1995-01-01

    This waste analysis plan (WAP) has been prepared for startup of the 200 Area Effluent Treatment Facility (ETF) and operation of the Liquid Effluent Retention Facility (LERF), which are located on the Hanford Facility, Richland, Washington. This WAP documents the methods used to obtain and analyze representative samples of dangerous waste managed in these units, and of the nondangerous treated effluent that is discharged to the State-Approved Land Disposal System (SALDS). Groundwater Monitoring at the SALDS will be addressed in a separate plan

  2. The future of facility management in Finland

    OpenAIRE

    Boateng, Ernest

    2011-01-01

    The objective of this study was to investigate the feasible future of facility management in Finland in order to provide an overview of the future of facility management. This is intended to serve as a guideline for the educational sector, facility management service companies, and the Facility management association in Finland (FIFMA) for future development. Qualitative method, precisely semi-structured/unstructured interview was adopted to address the problems in this study. The study c...

  3. Groundwater Monitoring Plan for the Z-Area Saltstone Disposal Facility, Revision 3

    International Nuclear Information System (INIS)

    WELLS, DANIEL

    2005-01-01

    Groundwater monitoring has been conducted at the Z-Area Saltstone Disposal Facility since 1987. At that time, groundwater monitoring was not required by the industrial landfill regulations, but a modest monitoring program was required by the operating permit. At the time of the 1996 permit renewal, it was determined that a more robust monitoring program was needed. The draft permit required new monitoring wells within 25 feet of each active disposal cell. As an alternative, SRS proposed a program based on direct push sampling. This program called for biennial direct push sampling within 25 feet of each waste-containing cell with additional samples being taken in areas where excessive cracking had been observed. The direct push proposal was accepted by The South Carolina Department of Health and Environmental Control (SCDHEC), and was incorporated by reference into the Z-Area Saltstone Industrial Solid Waste Permit, No.025500-1603. The Industrial Solid Waste Landfill Regulations were revised in 1998 and now include specific requirements for groundwater monitoring. SRS's plan for complying with those regulations is discussed below. The plan calls for a return to traditional monitoring with permanent wells. It also proposes a more technically sound monitoring list based on the actual composition of saltstone

  4. New Trends in Facility Asset Management.

    Science.gov (United States)

    Adams, Matt

    2000-01-01

    Explains new, positive trends in facility asset management that encompasses greater acceptance and involvement of facility managers in the financial planning process, greater awareness of the need for maintenance, and facility administrators taking a greater role with business officers. The new climate for alternative renewal financing proposals…

  5. Hanford Ground-Water Data Base management guide

    International Nuclear Information System (INIS)

    Rieger, J.T.; Mitchell, P.J.; Muffett, D.M.; Fruland, R.M.; Moore, S.B.; Marshall, S.M.

    1990-02-01

    This guide describes the Hanford Ground-Water Data Base (HGWDB), a computerized data base used to store hydraulic head, sample analytical, temperature, geologic, and well-structure information for ground-water monitoring wells on the Hanford Site. These data are stored for the purpose of data retrieval for report generation and also for historical purposes. This guide is intended as an aid to the data base manager and the various staff authorized to enter and verify data, maintain the data base, and maintain the supporting software. This guide focuses on the structure of the HGWDB, providing a fairly detailed description of the programs, files, and parameters. Data-retrieval instructions for the general user of the HGWDB will be found in the HGWDB User's Manual. 6 figs

  6. Presenting a conceptual model of data collection to manage the groundwater quality

    Directory of Open Access Journals (Sweden)

    Nourbakhsh Zahra

    2017-12-01

    Full Text Available A conceptual model was proposed in the present study, which highlighted important independent and dependent variables in order to managing the groundwater quality. Furthermore, the methods of selection of variable and collection of related data were explained. The study was carried out in the Tajan Plain, north of Iran; 50 drinking wells were considered as sampling points. In this model the Analytical Hierarchy Process (AHP was proposed to select the indicator water quality parameters. According to expert opinions and characteristics of the study area ten factors were chosen as variables influencing the quality of groundwater (land use types, lithology units, geology units, distance of wells to the outlet, distance to the residential areas, direction toward the residential areas, depth of the groundwater table, the type of aquifer, transmissivity and population. Geographic Information System (AecGIS 9.3 was used to manage the spatial-based variables and the data of non-spatial-based variables were obtained from relevant references. A database, which contains all collected data related to groundwater quality management in the studied area, was created as the output of the model. The output of this conceptual model can be used as an input for quantitative and mathematical models. Results show that 6 parameters (sulphate, iron, nitrate, electrical conductivity, calcium, and total dissolved solids (TDS were the best indicators for groundwater quality analysis in the area. More than 50% of the wells were drilled in the depth of groundwater table about 5 meters, in this low depth pollutants can load into the wells and also 78% of the wells are located within 5 km from the urban area; it can be concluded from this result that the intensive urban activities could affect groundwater quality.

  7. 40 CFR 792.31 - Testing facility management.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 31 2010-07-01 2010-07-01 true Testing facility management. 792.31... facility management. For each study, testing facility management shall: (a) Designate a study director as... appropriately tested for identity, strength, purity, stability, and uniformity, as applicable. (e) Assure that...

  8. 40 CFR 160.31 - Testing facility management.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Testing facility management. 160.31... GOOD LABORATORY PRACTICE STANDARDS Organization and Personnel § 160.31 Testing facility management. For each study, testing facility management shall: (a) Designate a study director as described in § 160.33...

  9. RCRA [Resource Conservation and Recovery Act] ground-water monitoring projects for Hanford facilities: Annual progress report for 1988

    International Nuclear Information System (INIS)

    Fruland, R.M.; Lundgren, R.E.

    1989-04-01

    This report describes the progress during 1988 of 14 Hanford Site ground-water monitoring projects covering 16 hazardous waste facilities and 1 nonhazardous waste facility (the Solid Waste Landfill). Each of the projects is being conducted according to federal regulations based on the Resource Conservation and Recovery Act (RCRA) of 1976 and the State of Washington Administrative Code. 21 refs., 23 figs., 8 tabs

  10. Mitigating risks related to facilities management.

    Science.gov (United States)

    O'Neill, Daniel P; Scarborough, Sydney

    2013-07-01

    By looking at metrics focusing on the functionality, age, capital investment, transparency, and sustainability (FACTS) of their organizations' facilities, facilities management teams can build potential business cases to justify upgrading the facilities. A FACTS analysis can ensure that capital spent on facilities will produce a higher or more certain ROI than alternatives. A consistent process for managing spending helps to avoid unexpected spikes that cost the enterprise more in the long run.

  11. Factors influencing groundwater quality: towards an integrated management approach.

    Science.gov (United States)

    De Giglio, O; Quaranta, A; Barbuti, G; Napoli, C; Caggiano, G; Montagna, M T

    2015-01-01

    The safety of groundwater resources is a serious issue, particularly when these resources are the main source of water for drinking, irrigation and industrial use in coastal areas. In Italy, 85% of the water used by the public is of underground origin. The aim of this report is to analyze the main factors that make groundwater vulnerable. Soil characteristics and filtration capacity can promote or hinder the diffusion of environmental contaminants. Global climate change influences the prevalence and degree of groundwater contamination. Anthropic pressure causes considerable exploitation of water resources, leading to reduced water availability and the progressive deterioration of water quality. Management of water quality will require a multidisciplinary, dynamic and practical approach focused on identifying the measures necessary to reduce contamination and mitigate the risks associated with the use of contaminated water resources.

  12. Håndbog i Facilities Management

    DEFF Research Database (Denmark)

    Jensen, Per Anker

    Facilities Management (FM) er et nyt nøgleord som mange nu anvender i forskellige forbindelser og sammenhænge. Dette hænger i høj grad sammen med manglen på en fælles dansk referenceramme for FM, der har givet frit spillerum for de mange forskellige definitioner af det engelske ord. Dansk...... Facilities Management netværk (DFM netværk) har i mange år arbejdet for en fælles definition af begrebet sammen med arbejdet for udbredelsen af kendskabet til FM, herunder uddannelse, erfaringsudveksling m.v. DFM netværk har udgivet en Håndbog i Facilities Management i samarbejde med bogens forfatter Per...

  13. Calendar year 1993 groundwater quality report for the Chestnut Ridge Hydrogeologic Regime Y-12 Plant, Oak Ridge, Tennessee. 1993 Groundwater quality data interpretations and proposed program modifications

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-09-01

    This groundwater quality report (GWQR) contains an evaluation of the groundwater quality data obtained during the 1993 calendar year (CY) at several hazardous and non-hazardous waste management facilities associated with the US DOE Y-12 Plant located on the DOE Oak Ridge Reservation (ORR) southeast of Oak Ridge, Tennessee. The groundwater quality data are presented in Part 1 of the GWQR submitted by Martin Marietta Energy Systems, Inc. to the Tennessee Department of Environment and Conservation (TDEC) in February 1994. Groundwater quality data evaluated in this report were obtained at several hazardous and non-hazardous waste management sites located within the Chestnut Ridge Hydrogeologic Regime (Chestnut Ridge Regime). The Chestnut Ridge Regime encompasses a section of Chestnut Ridge south of the Y-12 Plant and is one of three hydrogeologic regimes defined for the purposes of groundwater quality monitoring at the plant. The Environmental Management Department of the Y-12 Plant Health, Safety, Environment, and Accountability Organization manages the groundwater monitoring activities in each regime as part of the Y-12 Plant Groundwater Protection Program (GWPP). The annual GWQR for the Chestnut Ridge Regime is completed in two parts. Part 1 consists primarily of data appendices and serves as a reference for the groundwater quality data obtained each CY under the lead of the Y-12 Plant GWPP. Because it contains information needed to comply with Resource Conservation and Recovery Act (RCRA) interim status assessment monitoring and reporting requirements, the Part 1 GWQR is submitted to the TDEC by the RCRA reporting deadline (March 1 of the following CY). Part 2 (this report) contains an evaluation of the data with respect to regime-wide groundwater quality, presents the findings and status of ongoing hydrogeologic studies, describes changes in monitoring priorities, and presents planned modifications to the groundwater sampling and analysis activities.

  14. Calendar year 1993 groundwater quality report for the Chestnut Ridge Hydrogeologic Regime Y-12 Plant, Oak Ridge, Tennessee. 1993 Groundwater quality data interpretations and proposed program modifications

    International Nuclear Information System (INIS)

    1994-09-01

    This groundwater quality report (GWQR) contains an evaluation of the groundwater quality data obtained during the 1993 calendar year (CY) at several hazardous and non-hazardous waste management facilities associated with the US DOE Y-12 Plant located on the DOE Oak Ridge Reservation (ORR) southeast of Oak Ridge, Tennessee. The groundwater quality data are presented in Part 1 of the GWQR submitted by Martin Marietta Energy Systems, Inc. to the Tennessee Department of Environment and Conservation (TDEC) in February 1994. Groundwater quality data evaluated in this report were obtained at several hazardous and non-hazardous waste management sites located within the Chestnut Ridge Hydrogeologic Regime (Chestnut Ridge Regime). The Chestnut Ridge Regime encompasses a section of Chestnut Ridge south of the Y-12 Plant and is one of three hydrogeologic regimes defined for the purposes of groundwater quality monitoring at the plant. The Environmental Management Department of the Y-12 Plant Health, Safety, Environment, and Accountability Organization manages the groundwater monitoring activities in each regime as part of the Y-12 Plant Groundwater Protection Program (GWPP). The annual GWQR for the Chestnut Ridge Regime is completed in two parts. Part 1 consists primarily of data appendices and serves as a reference for the groundwater quality data obtained each CY under the lead of the Y-12 Plant GWPP. Because it contains information needed to comply with Resource Conservation and Recovery Act (RCRA) interim status assessment monitoring and reporting requirements, the Part 1 GWQR is submitted to the TDEC by the RCRA reporting deadline (March 1 of the following CY). Part 2 (this report) contains an evaluation of the data with respect to regime-wide groundwater quality, presents the findings and status of ongoing hydrogeologic studies, describes changes in monitoring priorities, and presents planned modifications to the groundwater sampling and analysis activities

  15. Cryogenic Fluid Management Facility

    Science.gov (United States)

    Eberhardt, R. N.; Bailey, W. J.

    1985-01-01

    The Cryogenic Fluid Management Facility is a reusable test bed which is designed to be carried within the Shuttle cargo bay to investigate the systems and technologies associated with the efficient management of cryogens in space. Cryogenic fluid management consists of the systems and technologies for: (1) liquid storage and supply, including capillary acquisition/expulsion systems which provide single-phase liquid to the user system, (2) both passive and active thermal control systems, and (3) fluid transfer/resupply systems, including transfer lines and receiver tanks. The facility contains a storage and supply tank, a transfer line and a receiver tank, configured to provide low-g verification of fluid and thermal models of cryogenic storage and transfer processes. The facility will provide design data and criteria for future subcritical cryogenic storage and transfer system applications, such as Space Station life support, attitude control, power and fuel depot supply, resupply tankers, external tank (ET) propellant scavenging, and ground-based and space-based orbit transfer vehicles (OTV).

  16. Legal regime of water management facilities

    Directory of Open Access Journals (Sweden)

    Salma Jožef

    2013-01-01

    Full Text Available The paper analyzes the legal regime of water management facilities in the light of Serbian, foreign and European law. Different divisions of water management facilities are carried out (to public and private ones, natural and artificial ones, etc., with determination of their legal relevance. Account is taken of the issue of protection from harmful effects of waters to such facilities, as well. The paper points also to rules on the water management facilities, from acts of planning, to individual administrative acts and measures for maintenance of required qualitative and quantitative condition of waters, depending on their purpose (general use or special, commercial use o waters. Albeit special rules on water management facilities exist, due to the natural interlocking between all the components of the environment (water, air and soil, a comprehensive approach is required. A reference is made to other basic principles of protection of water management facilities as well, such as the principle of prevention, principle of sustainable development and the principle "polluter pays". The last one represents the achievement of contemporary law, which deviates from the idea accepted in the second half of 20th century that supported the socialization of risk from harmful effects of waters.

  17. Systems management of facilities agreements

    International Nuclear Information System (INIS)

    Blundell, A.

    1998-01-01

    The various types of facilities agreements, the historical obstacles to implementation of agreement management systems and the new opportunities emerging as industry is beginning to make an effort to overcome these obstacles, are reviewed. Barriers to computerized agreement management systems (lack of consistency, lack of standards, scarcity of appropriate computer software) are discussed. Characteristic features of a model facilities agreement management system and the forces driving the changing attitudes towards such systems (e.g. mergers) are also described

  18. Calendar year 1993 groundwater quality report for the Chestnut Ridge Hydrogeologic Regime, Y-12 Plant, Oak Ridge, Tennessee. 1993 groundwater quality data and calculated rate of contaminant migration, Part 1

    Energy Technology Data Exchange (ETDEWEB)

    1994-02-01

    This annual groundwater report contains groundwater quality data obtained during the 1993 calendar year (CY) at several hazardous and non-hazardous waste-management facilities associated with the US Department of Energy (DOE) Y-12 Plant located on the DOE Oak Ridge Reservation (ORR) southeast of Oak Ridge, Tennessee. These sites are located south of the Y-12 Plant in the Chestnut Ridge Hydrogeologic Regime (Chestnut Ridge Regime), which is one of three regimes defined for the purposes of groundwater quality monitoring at the Y-12 Plant. The Environmental Management Department of the Y-12 Plant Health, Safety, Environment, and Accountability Organization manages the groundwater monitoring activities in each regime as part of the Y-12 Plant Groundwater Protection Program (GWPP). The annual groundwater report for the Chestnut Ridge Regime is completed in two-parts; Part 1 (this report) containing the groundwater quality data and Part 2 containing a detailed evaluation of the data. The primary purpose of this report is to serve as a reference for the groundwater quality data obtained each year under the lead of the Y-12 Plant GWPP. However, because it contains information needed to comply with Resource Conservation and Recovery Act (RCRA) interim status assessment monitoring and reporting requirements, this report is submitted to the Tennessee Department of Health and Environment (TDEC) by the RCRA reporting deadline.

  19. Groundwater quality assessment for the Chestnut Ridge Hydrogeologic Regime at the Y-12 Plant

    International Nuclear Information System (INIS)

    1992-08-01

    This report contains an evaluation of groundwater quality data obtained during the 1991 calendar year at several hazardous and non-hazardous waste-management facilities associated with the US Department of Energy Y- 12 Plant. These sites are located south of the Y- 12 Plant in the Chestnut Ridge Hydrogeologic Regime (CRHR), which is one of three regimes defined for the purposes of groundwater and surface-water quality monitoring. Section 2.0 of this report contains background information regarding groundwater monitoring at the waste-management sites located in the CRHR. An overview of the hydrogeologic system in the CRHR is provided in Section 3.0. A discussion of the interpretive assumptions used in evaluating the 1991 assessment data and detailed descriptions of groundwater quality in the regime are presented

  20. Value Adding Management: A New Facilities Management Concept

    DEFF Research Database (Denmark)

    Jensen, Per Anker; Katchamart, Akarapong

    2011-01-01

    Purpose: To investigate how Facilities Management (FM) can add value and develop a management concept that can assist facilities managers in implementing value adding strategies and practices. Theory: The study is based on the management model for FM included in the European FM standards, recent...... is investigated, tested and discussed based on a case study of an international corporation. Findings: The study shows that the management model for FM creates a relevant starting point but also that stakeholder and relationship management is an essential aspect of Value Adding Management. The case study confirms...... the relevance of the basic concept and provides an important example of how Value Adding Management can be implemented and added value measured. Originality/value: The study develops a concept of Value Adding Management, which is new in FM literature. It is expected to increase the awareness of the impacts...

  1. Application of a Groundwater Modeling Tool for Managing Hydrologically Connected Area in State of Nebraska, US

    Science.gov (United States)

    Li, R.; Flyr, B.; Bradley, J.; Pun, M.; Schneider, J.; Wietjes, J.; Chinta, S.

    2014-12-01

    Determination of the nature and degree of hydrologically connected groundwater and surface water resources is of paramount importance to integrated water management within the State of Nebraska to understand the impact of water uses on available supplies, such as depletion of streams and aquifers caused by groundwater pumping. The ability to quantify effects of surface water-groundwater hydrologic connection and interactions, is regarded as one of the most important steps towards effectively managing water resources in Nebraska and provides the basis for designating management areas. Designation of management areas allows the state and other management entities to focus various efforts and resources towards those projects that have the greatest impact to water users. Nebraska Department of Natural Resources (NDNR) developed a groundwater modeling tool, Cycle Well Analysis, to determine the areas defined to have a high degree of connectivity between groundwater and surface water (in accordance with the state regulations). This tool features two graphic user interfaces to allow the analysis to be fully compatible with most MODFLOW-based numerical groundwater models currently utilized by NDNR. Case studies showed that the tool, in combination of Geographic Information Systems (GIS), can be used to quantify the degree of stream depletion and delineate the boundary of hydrologically connected areas within different political boundaries and subbasins in Nebraska. This approach may be applied to other regions with similar background and need for integrated water management.

  2. Knowledge management and information tools for building maintenance and facility management

    CERN Document Server

    Talamo, Cinzia

    2015-01-01

    This book describes the latest methods and tools for the management of information within facility management services and explains how it is possible to collect, organize, and use information over the life cycle of a building in order to optimize the integration of these services and improve the efficiency of processes. The coverage includes presentation and analysis of basic concepts, procedures, and international standards in the development and management of real estate inventories, building registries, and information systems for facility management. Models of strategic management are discussed and the functions and roles of the strategic management center, explained.  Detailed attention is also devoted to building information modeling (BIM) for facility management and potential interactions between information systems and BIM applications. Criteria for evaluating information system performance are identified, and guidelines of value in developing technical specifications for facility management service...

  3. Groundwater flow modeling for near-field of a hypothetical near-surface disposal facility

    International Nuclear Information System (INIS)

    Park, H. Y.; Park, J. W.; Jang, G. M.; Kim, C. R.

    2000-01-01

    For a hypothetical near-surface radioactive disposal facility, the behavior of groundwater flow around the near-field of disposal vault located at the unsaturated zone were analyzed. Three alternative conceptual models proposed as the hydraulic barrier layer design were simulated to assess the hydrologic performance of engineered barriers for the facility. In order to evaluate the seepage possibility of the infiltrated water passed through the final disposal cover after the facility closure, the flow path around and water flux through each disposal vault were compared. The hydrologic parameters variation that accounts for the long-term aging and degradation of the cover and engineered materials was considered in the simulations. The results showed that it is necessary to construct the hydraulic barrier at the upper and sides of the vault, and that, for this case, achieving design hydraulic properties of bentonite/sand mixture barrier in the as-built condition is crucial to limit the seepage into the waste

  4. Hybrid Genetic Algorithm - Local Search Method for Ground-Water Management

    Science.gov (United States)

    Chiu, Y.; Nishikawa, T.; Martin, P.

    2008-12-01

    Ground-water management problems commonly are formulated as a mixed-integer, non-linear programming problem (MINLP). Relying only on conventional gradient-search methods to solve the management problem is computationally fast; however, the methods may become trapped in a local optimum. Global-optimization schemes can identify the global optimum, but the convergence is very slow when the optimal solution approaches the global optimum. In this study, we developed a hybrid optimization scheme, which includes a genetic algorithm and a gradient-search method, to solve the MINLP. The genetic algorithm identifies a near- optimal solution, and the gradient search uses the near optimum to identify the global optimum. Our methodology is applied to a conjunctive-use project in the Warren ground-water basin, California. Hi- Desert Water District (HDWD), the primary water-manager in the basin, plans to construct a wastewater treatment plant to reduce future septic-tank effluent from reaching the ground-water system. The treated wastewater instead will recharge the ground-water basin via percolation ponds as part of a larger conjunctive-use strategy, subject to State regulations (e.g. minimum distances and travel times). HDWD wishes to identify the least-cost conjunctive-use strategies that control ground-water levels, meet regulations, and identify new production-well locations. As formulated, the MINLP objective is to minimize water-delivery costs subject to constraints including pump capacities, available recharge water, water-supply demand, water-level constraints, and potential new-well locations. The methodology was demonstrated by an enumerative search of the entire feasible solution and comparing the optimum solution with results from the branch-and-bound algorithm. The results also indicate that the hybrid method identifies the global optimum within an affordable computation time. Sensitivity analyses, which include testing different recharge-rate scenarios, pond

  5. Groundwater simulation and management models for the upper Klamath Basin, Oregon and California

    Science.gov (United States)

    Gannett, Marshall W.; Wagner, Brian J.; Lite, Kenneth E.

    2012-01-01

    The upper Klamath Basin encompasses about 8,000 square miles, extending from the Cascade Range east to the Basin and Range geologic province in south-central Oregon and northern California. The geography of the basin is dominated by forested volcanic uplands separated by broad interior basins. Most of the interior basins once held broad shallow lakes and extensive wetlands, but most of these areas have been drained or otherwise modified and are now cultivated. Major parts of the interior basins are managed as wildlife refuges, primarily for migratory waterfowl. The permeable volcanic bedrock of the upper Klamath Basin hosts a substantial regional groundwater system that provides much of the flow to major streams and lakes that, in turn, provide water for wildlife habitat and are the principal source of irrigation water for the basin's agricultural economy. Increased allocation of surface water for endangered species in the past decade has resulted in increased groundwater pumping and growing interest in the use of groundwater for irrigation. The potential effects of increased groundwater pumping on groundwater levels and discharge to springs and streams has caused concern among groundwater users, wildlife and Tribal interests, and State and Federal resource managers. To provide information on the potential impacts of increased groundwater development and to aid in the development of a groundwater management strategy, the U.S. Geological Survey, in collaboration with the Oregon Water Resources Department and the Bureau of Reclamation, has developed a groundwater model that can simulate the response of the hydrologic system to these new stresses. The groundwater model was developed using the U.S. Geological Survey MODFLOW finite-difference modeling code and calibrated using inverse methods to transient conditions from 1989 through 2004 with quarterly stress periods. Groundwater recharge and agricultural and municipal pumping are specified for each stress period. All

  6. Management of Decommissioning on a Multi-Facility Site

    International Nuclear Information System (INIS)

    Laraia, Michele; McIntyre, Peter; Visagie, Abrie

    2008-01-01

    The management of the decommissioning of multi-facility sites may be inadequate or inappropriate if based on approaches and strategies developed for sites consisting of only a single facility. The varied nature of activities undertaken, their interfaces and their interdependencies are likely to complicate the management of decommissioning. These issues can be exacerbated where some facilities are entering the decommissioning phase while others are still operational or even new facilities are being built. Multi-facility sites are not uncommon worldwide but perhaps insufficient attention has been paid to optimizing the overall site decommissioning in the context of the entire life cycle of facilities. Decommissioning management arrangements need to be established taking a view across the whole site. A site-wide decommissioning management system is required. This should include a project evaluation and approval process and specific arrangements to manage identified interfaces and interdependencies. A group should be created to manage decommissioning across the site, ensuring adequate and consistent practices in accordance with the management system. Decommissioning management should be aimed at the entire life cycle of facilities. In the case of multi facility sites, the process becomes more complex and decommissioning management arrangements need to be established with a view to the whole site. A site decommissioning management system, a group that is responsible for decommissioning on site, a site project evaluation and approval process and specific arrangements to manage the identified interfaces are key areas of a site decommissioning management structure that need to be addressed to ensure adequate and consistent decommissioning practices. A decommissioning strategy based on single facilities in a sequential manner is deemed inadequate

  7. Natural recharge to sustainable yield from the barind aquifer: a tool in preparing effective management plan of groundwater resources.

    Science.gov (United States)

    Monirul Islam, Md; Kanungoe, P

    2005-01-01

    This paper presents the results of water balance study and aquifer simulation modeling for preliminary estimation of the recharge rate and sustainable yield for the semi arid Barind Tract region of Bangladesh. The outcomes of the study are likely to be useful for planning purposes. It is found from detailed water balance study for the area that natural recharge rates in the Barind Tract vary widely year to year. It may have resulted from the method used for the calculation. If the considered time interval had been smaller than the monthly rainfall, the results could have been different. Aquifer Simulation Modeling (ASM) for the Barind aquifer is used to estimate long-term sustainable yield of the groundwater considering limiting drawdown from the standpoint of economic pumping cost. In managing a groundwater basin efficiently and effectively, evaluation of the maximum annual groundwater yield of the basin that can be withdrawn and used without producing any undesirable effect is one of the most important issues. In investigating such recharge rate, introduction of certain terms such as sustainable yield and safe yield has been accompanied. Development of this area involves proper utilization of this vast land, which is possible only through ensured irrigation for agriculture. The Government of Bangladesh has a plan to develop irrigation facilities by optimum utilization of available ground and surface water. It is believed that the groundwater table is lowering rapidly and the whole region is in an acute state of deforestation. Indiscriminate groundwater development may accelerate deforestation trend. In this context estimation of actual natural recharge rate to the aquifer and determination of sustainable yield will assist in proper management and planning of environmentally viable abstraction schemes. It is revealed from the study that the sustainable yield of ground water (204 mm/y) is somewhat higher than the long-term annual average recharge (152.7 mm) to the

  8. Screening criteria for siting waste management facilities: Regional Management Plan

    International Nuclear Information System (INIS)

    1986-01-01

    The Midwest Interstate Low-Level Radioactive Waste Commission (Midwest Compact) seeks to define and place into operation a system for low-level waste management that will protect the public health and safety and the environment from the time the waste leaves its point of origin. Once the system is defined it will be necessary to find suitable sites for the components of that waste management system. The procedure for siting waste management facilities that have been chosen by the compact is one in which a host state is chosen for each facility. The host state is then given the freedom to select the site. Sites will be needed of low-level waste disposal facilities. Depending on the nature of the waste management system chosen by the host state, sites may also be needed for regional waste treatment facilities, such as compactors or incinerators. This report provides example criteria for use in selecting sites for low-level radioactive waste treatment and disposal facilities. 14 refs

  9. Two graphical user interfaces for managing and analyzing MODFLOW groundwater-model scenarios

    Science.gov (United States)

    Banta, Edward R.

    2014-01-01

    Scenario Manager and Scenario Analyzer are graphical user interfaces that facilitate the use of calibrated, MODFLOW-based groundwater models for investigating possible responses to proposed stresses on a groundwater system. Scenario Manager allows a user, starting with a calibrated model, to design and run model scenarios by adding or modifying stresses simulated by the model. Scenario Analyzer facilitates the process of extracting data from model output and preparing such display elements as maps, charts, and tables. Both programs are designed for users who are familiar with the science on which groundwater modeling is based but who may not have a groundwater modeler’s expertise in building and calibrating a groundwater model from start to finish. With Scenario Manager, the user can manipulate model input to simulate withdrawal or injection wells, time-variant specified hydraulic heads, recharge, and such surface-water features as rivers and canals. Input for stresses to be simulated comes from user-provided geographic information system files and time-series data files. A Scenario Manager project can contain multiple scenarios and is self-documenting. Scenario Analyzer can be used to analyze output from any MODFLOW-based model; it is not limited to use with scenarios generated by Scenario Manager. Model-simulated values of hydraulic head, drawdown, solute concentration, and cell-by-cell flow rates can be presented in display elements. Map data can be represented as lines of equal value (contours) or as a gradated color fill. Charts and tables display time-series data obtained from output generated by a transient-state model run or from user-provided text files of time-series data. A display element can be based entirely on output of a single model run, or, to facilitate comparison of results of multiple scenarios, an element can be based on output from multiple model runs. Scenario Analyzer can export display elements and supporting metadata as a Portable

  10. Facility management research in the Netherlands

    NARCIS (Netherlands)

    Thijssen, Thomas; van der Voordt, Theo; Mobach, Mark P.

    This article provides a brief overview of the history and development of facility management research in the Netherlands and indicates future directions. Facility management as a profession has developed from single service to multi-services and integral services over the past 15 years.

  11. Interactions of water quality and integrated groundwater management: Examples from the United States and Europe: Chapter 14

    Science.gov (United States)

    Warner, Kelly L.; Barataud, Fabienne; Hunt, Randall J.; Benoit, Marc; Anglade, Juliette; Borchardt, Mark A.

    2015-01-01

    Groundwater is available in many parts of the world, but the quality of the water may limit its use. Contaminants can limit the use of groundwater through concerns associated with human health, aquatic health, economic costs, or even societal perception. Given this broad range of concerns, this chapter focuses on examples of how water quality issues influence integrated groundwater management. One example evaluates the importance of a naturally occurring contaminant Arsenic (As) for drinking water supply, one explores issues resulting from agricultural activities on the land surface and factors that influence related groundwater management, and the last examines unique issues that result from human-introduced viral pathogens for groundwater-derived drinking water vulnerability. The examples underscore how integrated groundwater management lies at the intersections of environmental characterization, engineering constraints, societal needs, and human perception of acceptable water quality. As such, water quality factors can be a key driver for societal decision making.

  12. Assessment and Monitoring of Nutrient Management in Irrigated Agriculture for Groundwater Quality Protection

    Science.gov (United States)

    Harter, T.; Davis, R.; Smart, D. R.; Brown, P. H.; Dzurella, K.; Bell, A.; Kourakos, G.

    2017-12-01

    Nutrient fluxes to groundwater have been subject to regulatory assessment and control only in a limited number of countries, including those in the European Union, where the Water Framework Directive requires member countries to manage groundwater basis toward achieving "good status", and California, where irrigated lands will be subject to permitting, stringent nutrient monitoring requirements, and development of practices that are protective of groundwater. However, research activities to rigorously assess agricultural practices for their impact on groundwater have been limited and instead focused on surface water protection. For groundwater-related assessment of agricultural practices, a wide range of modeling tools has been employed: vulnerability studies, nitrogen mass balance assessments, crop-soil-system models, and various statistical tools. These tools are predominantly used to identify high risk regions, practices, or crops. Here we present the development of a field site for rigorous in-situ evaluation of water and nutrient management practices in an irrigated agricultural setting. Integrating groundwater monitoring into agricultural practice assessment requires large research plots (on the order of 10s to 100s of hectares) and multi-year research time-frames - much larger than typical agricultural field research plots. Almonds are among the most common crops in California with intensive use of nitrogen fertilizer and were selected for their high water quality improvement potential. Availability of an orchard site with relatively vulnerable groundwater conditions (sandy soils, water table depth less than 10 m) was also important in site selection. Initial results show that shallow groundwater concentrations are commensurate with nitrogen leaching estimates obtained by considering historical, long-term field nitrogen mass balance and groundwater dynamics.

  13. Use of an integrated human health/ecological risk assessment to develop a long-term groundwater/site management plan for a sour gas facility

    International Nuclear Information System (INIS)

    Swanson, S.M.; Shaw, R.D.; McClymont, G.; Nadeau, S.

    1995-01-01

    An integrated human health and ecological risk assessment was used to quantify the level of risk associated with the off-site movement of contaminants via groundwater and soils at a medium-sized gas processing facility in southern Alberta. The study incorporated three key aspects: (1) integration; (2) consultation; and, (3) pro-active remedial actions. Integration was complete, beginning with the Problem Formulation stage and progressing through Risk Characterization and Risk Management. This integration was reflected in a multidisciplinary team of hydrogeologists, biologists and human health specialists. Several lessons emerged from the integrated approach: (1) spending 2/3 of the time and resources on Problem Formulation prevented later problems; (2) the different perspectives provided by the various specialists helped reveal the relative importance of pathways and ecological receptors (3) clear, consistent screening procedures for contaminants of concern and receptors were very effective with stakeholders; (4) exposure scenarios that incorporated common-sense situations (although still conservative) contributed to the credibility of the risk analysis; and, (5) an innovative combination of toxicity testing and chemical analysis helped delineate the boundaries of the potentially contaminated area for both human and ecological receptors in a cost effective manner. Consultation included directly affected parties, regulatory personnel and community members. The consultation extended through the project, with key ''buy-in'' points during Problem Formulation and Risk Characterization/Management. Pro-active remedial action included the removal of contaminant sources in the 1980's, a pump-and-treat system and extensive monitoring. These actions showed commitment and set the stage for credible risk-based mitigation and long-term monitoring

  14. Groundwater quality assessment for the Bear Creek Hydrogeologic Regime at the Y-12 Plant

    International Nuclear Information System (INIS)

    1992-08-01

    This report contains an evaluation of the groundwater and surface-water quality data obtained during the 1991 calendar year at several management facilities associated with the US Department of Energy Y-12 Plant. These sites are southwest of the Y-12 plant complex within the Bear Creek Hydrogeologic Regime (BCHR) which is one of three regimes defined for the purposes of groundwater and surface-water quality monitoring. Section 2.0 of this report contains background information regarding groundwater monitoring at the waste-management sites located in the BCHR. An overview of the hydrogeologic system in the BCHR is provided in Section 3.0. A discussion of the interpretive assumptions used in evaluating the 1991 assessment data and detailed descriptions of groundwater and surface-water quality in the regime are presented in Section 4.0. Findings of the 1991 monitoring program are summarized in Section 5.0. Proposed modifications to the groundwater and surface-water quality monitoring program in the BCHR are presented

  15. 20 CFR 638.303 - Site selection and facilities management.

    Science.gov (United States)

    2010-04-01

    ... 20 Employees' Benefits 3 2010-04-01 2010-04-01 false Site selection and facilities management. 638... Facilities Management § 638.303 Site selection and facilities management. (a) The Job Corps Director shall... center, facilities engineering and real estate management will be conducted by the Job Corps Director or...

  16. A Regional Groundwater Observatory to Enhance Analysis and Management of Water Resources

    Science.gov (United States)

    Yoder, A. M.; Maples, S.; Hatch, N. R.; Fogg, G. E.

    2017-12-01

    Timely, effective management of groundwater often does not happen because timely information on the state of the groundwater system is seldom available. A groundwater observatory for monitoring real-time groundwater level fluctuations is being developed in the American-Cosumnes groundwater system of Sacramento County, California. The observatory records the consequences of complex interplay between pumpage, recharge, drought, and floods in the context of a heterogeneous stratigraphic framework that has been extensively characterized with more than 1,100 well logs. Preliminary results show increases in recharge caused by removal of flood control levees to allow more frequent floodplain inundation as well as consequences of the 2012-16 drought followed by the wet winter of 2016-17. Comparison of recharge rates pre- and post-levee breach restoration show significant increases in recharge, despite the presence of fine-grained floodplain soils. Estimated total recharge corresponded closely with the frequency and magnitude of flood events in any given water year. The lowest value calculated for estimated recharge was from 2012-2013, 490 +/- 220 ac-ft (0.65 +/- 0.29 ac-ft per acre). The highest estimated recharge value calculated was for the 2015-2016 water year and was 3180 +/- 1430 ac-ft (2.83 +/- 1.27 ac-ft per acre). These preliminary numbers will be updated with more comprehensive estimates based on a full analysis of the 2016-17 data. The increase in data transfer efficiency afforded by the observatory can be widely used by the many parties reliant on Central Valley groundwater and can serve as a model for real-time data collection in support of California's Sustainable Groundwater Management Act, passed in 2014.

  17. Chemical constraints of groundwater management in the Yucatan peninsula, Mexico

    Science.gov (United States)

    Back, W.; Lesser, J.M.

    1981-01-01

    Two critical objectives of water management in the Yucatan are: (1) to develop regional groundwater supplies for an expanding population and tourism based on the Mayan archeological sites and excellent beaches; and (2) to control groundwater pollution in a chemically sensitive system made vulnerable by geologic conditions. The Yucatan peninsula is a coastal plain underlain by permeable limestone and has an annual rainfall of more than 1000 mm. Such a setting should provide abundant supplies of water; however, factors of climate and hydrogeology have combined to form a hydrologic system with chemical boundaries that decrease the amount of available fresh water. Management of water resources has long had a major influence on the cultural and economic development of the Yucatan. The Mayan culture of the northern Yucatan developed by extensive use of groundwater. The religion was water-oriented and the Mayan priests prayed to Chac, the water god, for assistance in water management primarily to decrease the severity of droughts. The Spaniards arrived in 1517 and augmented the supplies by digging wells, which remained the common practice for more than 300 years. Many wells now have been abandoned because of serious problems of pollution resulting from the use of a sewage disposal well adjacent to each supply well. The modern phase of water management began in 1959 when the Secretari??a de Recursos Hidra??ulicos (S.R.H.) was charged with the responsibility for both scientific investigations and development programmes for water-supply and sewage-disposal systems for cities, villages and islands. ?? 1981.

  18. 3D Geospatial Models for Visualization and Analysis of Groundwater Contamination at a Nuclear Materials Processing Facility

    Science.gov (United States)

    Stirewalt, G. L.; Shepherd, J. C.

    2003-12-01

    Analysis of hydrostratigraphy and uranium and nitrate contamination in groundwater at a former nuclear materials processing facility in Oklahoma were undertaken employing 3-dimensional (3D) geospatial modeling software. Models constructed played an important role in the regulatory decision process of the U.S. Nuclear Regulatory Commission (NRC) because they enabled visualization of temporal variations in contaminant concentrations and plume geometry. Three aquifer systems occur at the site, comprised of water-bearing fractured shales separated by indurated sandstone aquitards. The uppermost terrace groundwater system (TGWS) aquifer is composed of terrace and alluvial deposits and a basal shale. The shallow groundwater system (SGWS) aquifer is made up of three shale units and two sandstones. It is separated from the overlying TGWS and underlying deep groundwater system (DGWS) aquifer by sandstone aquitards. Spills of nitric acid solutions containing uranium and radioactive decay products around the main processing building (MPB), leakage from storage ponds west of the MPB, and leaching of radioactive materials from discarded equipment and waste containers contaminated both the TGWS and SGWS aquifers during facility operation between 1970 and 1993. Constructing 3D geospatial property models for analysis of groundwater contamination at the site involved use of EarthVision (EV), a 3D geospatial modeling software developed by Dynamic Graphics, Inc. of Alameda, CA. A viable 3D geohydrologic framework model was initially constructed so property data could be spatially located relative to subsurface geohydrologic units. The framework model contained three hydrostratigraphic zones equivalent to the TGWS, SGWS, and DGWS aquifers in which groundwater samples were collected, separated by two sandstone aquitards. Groundwater data collected in the three aquifer systems since 1991 indicated high concentrations of uranium (>10,000 micrograms/liter) and nitrate (> 500 milligrams

  19. Fast Flux Test Facility, Sodium Storage Facility project-specific project management plan

    International Nuclear Information System (INIS)

    Shank, D.R.

    1994-01-01

    This Project-Specific Project Management Plan describes the project management methods and controls used by the WHC Projects Department to manage Project 03-F-031. The Sodium Storage Facility provides for storage of the 260,000 gallons of sodium presently in the FFTF Plant. The facility will accept the molten sodium transferred from the FFTF sodium systems, and store the sodium in a solid state under an inert cover gas until such time as a Sodium Reaction Facility is available for final disposal of the sodium

  20. Fast Flux Test Facility, Sodium Storage Facility project-specific project management plan

    Energy Technology Data Exchange (ETDEWEB)

    Shank, D.R.

    1994-12-29

    This Project-Specific Project Management Plan describes the project management methods and controls used by the WHC Projects Department to manage Project 03-F-031. The Sodium Storage Facility provides for storage of the 260,000 gallons of sodium presently in the FFTF Plant. The facility will accept the molten sodium transferred from the FFTF sodium systems, and store the sodium in a solid state under an inert cover gas until such time as a Sodium Reaction Facility is available for final disposal of the sodium.

  1. Environmental Assessment and Finding of No Significant Impact: Interim Measures for the Mixed Waste Management Facility Groundwater at the Burial Ground Complex at the Savannah River Site

    Energy Technology Data Exchange (ETDEWEB)

    N/A

    1999-12-08

    The U. S. Department of Energy (DOE) prepared this environmental assessment (EA) to analyze the potential environmental impacts associated with the proposed interim measures for the Mixed Waste Management Facility (MW) groundwater at the Burial Ground Complex (BGC) at the Savannah River Site (SRS), located near Aiken, South Carolina. DOE proposes to install a small metal sheet pile dam to impound water around and over the BGC groundwater seepline. In addition, a drip irrigation system would be installed. Interim measures will also address the reduction of volatile organic compounds (VOCS) from ''hot-spot'' regions associated with the Southwest Plume Area (SWPA). This action is taken as an interim measure for the MWMF in cooperation with the South Carolina Department of Health and Environmental Control (SCDHEC) to reduce the amount of tritium seeping from the BGC southwest groundwater plume. The proposed action of this EA is being planned and would be implemented concurrent with a groundwater corrective action program under the Resource Conservation and Recovery Act (RCRA). On September 30, 1999, SCDHEC issued a modification to the SRS RCRA Part B permit that adds corrective action requirements for four plumes that are currently emanating from the BGC. One of those plumes is the southwest plume. The RCRA permit requires SRS to submit a corrective action plan (CAP) for the southwest plume by March 2000. The permit requires that the initial phase of the CAP prescribe a remedy that achieves a 70-percent reduction in the annual amount of tritium being released from the southwest plume area to Fourmile Branch, a nearby stream. Approval and actual implementation of the corrective measure in that CAP may take several years. As an interim measure, the actions described in this EA would manage the release of tritium from the southwest plume area until the final actions under the CAP can be implemented. This proposed action is expected to reduce the

  2. Groundwater quota versus tiered groundwater pricing : two cases of groundwater management in north-west China

    NARCIS (Netherlands)

    Aarnoudse, Eefje; Qu, Wei; Bluemling, B.; Herzfeld, Thomas

    2017-01-01

    Difficulties in monitoring groundwater extraction cause groundwater regulations to fail worldwide. In two counties in north-west China local water authorities have installed smart card machines to monitor and regulate farmers’ groundwater use. Data from a household survey and in-depth interviews are

  3. ICT Adoption in Facilities Management Supply Chain

    DEFF Research Database (Denmark)

    Scupola, Ada

    2012-01-01

    This article involves a qualitative study of factors impacting the adoption of ICT solutions in the Danish facility management supply chain. The results show that there are a number of drivers and barriers that influence the adoption of ICT solutions in this service sector. These have been grouped...... concerned with ICT adoption, operations and service management (especially facilities management) as well as operation managers and ICT managers....

  4. Research on the contamination levels of norovirus in food facilities using groundwater in South Korea, 2015-2016.

    Science.gov (United States)

    Lee, Jeong Su; Joo, In Sun; Ju, Si Yeon; Jeong, Min Hee; Song, Yun-Hee; Kwak, Hyo Sun

    2018-09-02

    Norovirus (NoV) is a major pathogenic virus that is responsible for foodborne and waterborne gastroenteritis outbreaks. Groundwater is an important source of drinking water and is used in agriculture and food manufacturing processes. This study investigated norovirus contamination of groundwater treatment systems at 1360 sites in seven metropolitan areas and nine provinces in 2015-2016. Temperature, pH, residual chlorine, and turbidity content were assessed to analyze the water quality. In 2015, six sites were positive for the presence of NoV (0.88%) and in 2016, two sites were positive (0.29%); in total, NoV was detected in 8 of the 1360 sample sites (0.59%) investigated. Identified genotypes of NoV in groundwater included GI.5, 9 and GII.4, 6, 13, 17, and 21. GII.17 was the most prevalent genotype in treated groundwater used in the food industry. This dominance of GII.17 was corroborated by NoV infection outbreak cases and the results of a survey of coastal waters in South Korea in 2014-2015. Although a low detection rate was observed in this study, NoV is a pathogen that can spread extensively. Therefore, it is necessary to periodically monitor levels of norovirus which is responsible for food poisoning in groundwater. This is a first report to reveal epidemic genotype shift of norovirus in groundwater treatment system of food facilities in South Korea. Our results may contribute to the enhancement of public health and sanitary conditions by providing molecular epidemiological information on groundwater NoV. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Improved water resource management for a highly complex environment using three-dimensional groundwater modelling

    Science.gov (United States)

    Moeck, Christian; Affolter, Annette; Radny, Dirk; Dressmann, Horst; Auckenthaler, Adrian; Huggenberger, Peter; Schirmer, Mario

    2018-02-01

    A three-dimensional groundwater model was used to improve water resource management for a study area in north-west Switzerland, where drinking-water production is close to former landfills and industrial areas. To avoid drinking-water contamination, artificial groundwater recharge with surface water is used to create a hydraulic barrier between the contaminated sites and drinking-water extraction wells. The model was used for simulating existing and proposed water management strategies as a tool to ensure the utmost security for drinking water. A systematic evaluation of the flow direction between existing observation points using a developed three-point estimation method for a large number of scenarios was carried out. It is demonstrated that systematically applying the developed methodology helps to identify vulnerable locations which are sensitive to changing boundary conditions such as those arising from changes to artificial groundwater recharge rates. At these locations, additional investigations and protection are required. The presented integrated approach, using the groundwater flow direction between observation points, can be easily transferred to a variety of hydrological settings to systematically evaluate groundwater modelling scenarios.

  6. The origin and evolution of safe-yield policies in the Kansas groundwater management districts

    Science.gov (United States)

    Sophocleous, M.

    2000-01-01

    The management of groundwater resources in Kansas continues to evolve. Declines in the High Plains aquifer led to the establishment of groundwater management districts in the mid-1970s and reduced streamflows prompted the enactment of minimum desirable streamflow standards in the mid-1980s. Nonetheless, groundwater levels and streamflows continued to decline, although at reduced rates compared to premid-1980s rates. As a result, "safe-yield" policies were revised to take into account natural groundwater discharge in the form of stream baseflow. These policies, although a step in the right direction, are deficient in several ways. In addition to the need for more accurate recharge data, pumping-induced streamflow depletion, natural stream losses, and groundwater evapotranspiration need to be accounted for in the revised safe-yield policies. Furthermore, the choice of the 90% flow-duration statistic as a measure of baseflow needs to be reevaluated, as it significantly underestimates mean baseflow estimated from baseflow separation computer programs; moreover, baseflow estimation needs to be refined and validated. ?? 2000 International Association for Mathematical Geology.

  7. Does PDC Belong in Facilities Management?

    Science.gov (United States)

    Dessoff, Alan

    2012-01-01

    Whether planning, design, and construction (PDC) of buildings should be part of facilities management, with its traditional operations and maintenance functions, or separated from it, has been a divisive question on many campuses for a long time. Now, although it is not happening everywhere, facilities managers at a number of institutions, public…

  8. Linking denitrification and infiltration rates during managed groundwater recharge.

    Science.gov (United States)

    Schmidt, Calla M; Fisher, Andrew T; Racz, Andrew J; Lockwood, Brian S; Huertos, Marc Los

    2011-11-15

    We quantify relations between rates of in situ denitrification and saturated infiltration through shallow, sandy soils during managed groundwater recharge. We used thermal methods to determine time series of point-specific flow rates, and chemical and isotopic methods to assess denitrification progress. Zero order denitrification rates between 3 and 300 μmol L(-1) d(-1) were measured during infiltration. Denitrification was not detected at times and locations where the infiltration rate exceeded a threshold of 0.7 ± 0.2 m d(-1). Pore water profiles of oxygen and nitrate concentration indicated a deepening of the redoxocline at high flow rates, which reduced the thickness of the zone favorable for denitrification. Denitrification rates were positively correlated with infiltration rates below the infiltration threshold, suggesting that for a given set of sediment characteristics, there is an optimal infiltration rate for achieving maximum nitrate load reduction and improvements to water supply during managed groundwater recharge. The extent to which results from this study may be extended to other managed and natural hydrologic settings remains to be determined, but the approach taken in this study should be broadly applicable, and provides a quantitative link between shallow hydrologic and biogeochemical processes.

  9. 21 CFR 58.31 - Testing facility management.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Testing facility management. 58.31 Section 58.31... management. For each nonclinical laboratory study, testing facility management shall: (a) Designate a study... appropriately tested for identity, strength, purity, stability, and uniformity, as applicable. (e) Assure that...

  10. Digital Aquifer - Integrating modeling, technical, software and policy aspects to develop a groundwater management tool

    Science.gov (United States)

    Tirupathi, S.; McKenna, S. A.; Fleming, K.; Wambua, M.; Waweru, P.; Ondula, E.

    2016-12-01

    Groundwater management has traditionally been observed as a study for long term policy measures to ensure that the water resource is sustainable. IBM Research, in association with the World Bank, extended this traditional analysis to include realtime groundwater management by building a context-aware, water rights management and permitting system. As part of this effort, one of the primary objectives was to develop a groundwater flow model that can help the policy makers with a visual overview of the current groundwater distribution. In addition, the system helps the policy makers simulate a range of scenarios and check the sustainability of the groundwater resource in a given region. The system also enables a license provider to check the effect of the introduction of a new well on the existing wells in the domain as well as the groundwater resource in general. This process simplifies how an engineer will determine if a new well should be approved. Distance to the nearest well neighbors and the maximum decreases in water levels of nearby wells are continually assessed and presented as evidence for an engineer to make the final judgment on approving the permit. The system also facilitates updated insights on the amount of groundwater left in an area and provides advice on how water fees should be structured to balance conservation and economic development goals. In this talk, we will discuss the concept of Digital Aquifer, the challenges in integrating modeling, technical and software aspects to develop a management system that helps policy makers and license providers with a robust decision making tool. We will concentrate on the groundwater model developed using the analytic element method that plays a very important role in the decision making aspects. Finally, the efficiency of this system and methodology is shown through a case study in Laguna Province, Philippines, which was done in collaboration with the National Water Resource Board, Philippines and World

  11. Facilities Management Practices in Malaysia: A Literature Review

    Directory of Open Access Journals (Sweden)

    Isa Nordiana Mohd

    2016-01-01

    Full Text Available Facilities management in Malaysia has been practiced for decades. The development of its formal practice parallels the improvement of the built environment in the nation. Involvement of the public and private sectors teaming up in arranging the National Asset and Facilities Management (NAFAM in demonstrates the vital collaboration in the facilities management area in Malaysia. Facilities management is seen distinctively as indicated by diverse geographical locations, interests and schools of thought. Facilities management is delegated a service-based industry which gives proficient counsel and administration of clients’ building facilities including residential, commercial, industrial, airports terminals and offices. The aim of this paper is to review the gaps that exist, especially on how FM is being practice in comparison with the published FM body of knowledge. Very relying upon literature, this paper discovered a gap that is an unclear description of current FM applications. This research aims to give new bits of knowledge to upgrade comprehension of FM execution in Malaysia.

  12. A guide to the management of tailings facilities

    International Nuclear Information System (INIS)

    Bedard, C.; Ferguson, K.; Gladwin, D.; Lang, D.; Maltby, J.; McCann, M.; Poirier, P.; Schwenger, R.; Vezina, S.; West, S.; Duval, J.; Gardiner, E.; Jansons, K.; Lewis, B.; Matthews, J.; Mchaina, D.; Puro, M.; Siwik, R.; Welch, D.

    1998-01-01

    The 'Guide to the Management of Tailings Facilities' has been developed by the Mining Association of Canada in an effort to provide guidance to its member companies on sound practices for the safe and environmentally responsible management of tailings facilities. The guide is a reference tool to help companies ensure that they are managing their tailings facilities responsibly, integrating environmental and safety considerations in a consistent manner, with continuous improvement in the operation of tailings facilities. The key to managing tailings responsibly is consistent application of engineering capabilities through the full life cycle. The guide provides a basis for the development of customized tailings management systems to address specific needs at individual operations, and deals with environmental impacts, mill tailing characteristics, tailings facility studies and plans, dam and related structure design, and control and monitoring. Aspects relating to tailings facility siting, design, construction, operation, decommissioning and closure are also fully treated. 1 tab., 3 figs

  13. Prioritization and accelerated remediation of groundwater contamination in the 200 Areas of the Hanford Site, Washington

    International Nuclear Information System (INIS)

    Wittreich, C.D.; Ford, B.H.

    1993-04-01

    The Hanford Site, operated by the US Department of Energy (DOE), occupies about 1,450 km 2 (560 mi 2 ) of the southeastern part of Washington State north of the confluence of the Yakima and Columbia Rivers. The Hanford Site is organized into numerically designated operational areas. The 200 Areas, located near the center of the Hanford Site, encompasses the 200 West, East and North Areas and cover an area of over 40 km 2 . The Hanford Site was originally designed, built, and operated to produce plutonium for nuclear weapons using production reactors and chemical reprocessing plants. Operations in the 200 Areas were mainly related to separation of special nuclear materials from spent nuclear fuel and contain related chemical and fuel processing and waste management facilities. Large quantities of chemical and radioactive waste associated with these processes were often disposed to the environment via infiltration structures such as cribs, ponds, ditches. This has resulted in over 25 chemical and radionuclide groundwater plumes, some of which have reached the Columbia River. An Aggregate Area Management Study program was implemented under the Hanford Federal Facility Agreement and Consent Order to assess source and groundwater contamination and develop a prioritized approach for managing groundwater remediation in the 200 Areas. This included a comprehensive evaluation of existing waste disposal and environmental monitoring data and the conduct of limited field investigations (DOE-RL 1992, 1993). This paper summarizes the results of groundwater portion of AAMS program focusing on high priority contaminant plume distributions and the groundwater plume prioritization process. The objectives of the study were to identify groundwater contaminants of concern, develop a conceptual model, refine groundwater contaminant plume maps, and develop a strategy to expedite the remediation of high priority contaminants through the implementation of interim actions

  14. Rationales behind irrationality of decision making in groundwater quality management.

    Science.gov (United States)

    Ronen, Daniel; Sorek, Shaul; Gilron, Jack

    2012-01-01

    This issue paper presents how certain policies regarding management of groundwater quality lead to unexpected and undesirable results, despite being backed by seemingly reasonable assumptions. This happened in part because the so-called reasonable decisions were not based on an integrative and quantitative methodology. The policies surveyed here are: (1) implementation of a program for aquifer restoration to pristine conditions followed, after failure, by leaving it to natural attenuation; (2) the "Forget About The Aquifer" (FATA) approach, while ignoring possible damage that contaminated groundwater can inflict on the other environmental systems; (3) groundwater recharge in municipal areas while neglecting the presence of contaminants in the unsaturated zone and conditions exerted by upper impervious surfaces; (4) the Soil Aquifer Treatment (SAT) practice considering aquifers to be "filters of infinite capacity"; and (5) focusing on well contamination vs. aquifer contamination to conveniently defer grappling with the problem of the aquifer as a whole. Possible reasons for the failure of these seemingly rational policies are: (1) the characteristic times of processes associated with groundwater that are usually orders of magnitude greater than the residence times of decision makers in their managerial position; (2) proliferation of improperly trained "groundwater experts" or policymakers with sectoral agendas alongside legitimate differences of opinion among groundwater scientists; (3) the neglect of the cyclic nature of natural phenomena; and (4) ignoring future long-term costs because of immediate costs. © 2011, The Author(s). Ground Water © 2011, National Ground Water Association.

  15. The Evolution of Cooperation in Managed Groundwater Systems: An Agent-Based Modelling Approach

    Science.gov (United States)

    Castilla Rho, J. C.; Mariethoz, G.; Rojas, R. F.; Andersen, M. S.; Kelly, B. F.; Holley, C.

    2014-12-01

    Human interactions with groundwater systems often exhibit complex features that hinder the sustainable management of the resource. This leads to costly and persistent conflicts over groundwater at the catchment scale. One possible way to address these conflicts is by gaining a better understanding of how social and groundwater dynamics coevolve using agent-based models (ABM). Such models allow exploring 'bottom-up' solutions (i.e., self-organised governance systems), where the behaviour of individual agents (e.g., farmers) results in the emergence of mutual cooperation among groundwater users. There is significant empirical evidence indicating that this kind of 'bottom-up' approach may lead to more enduring and sustainable outcomes, compared to conventional 'top-down' strategies such as centralized control and water right schemes (Ostrom 1990). New modelling tools are needed to study these concepts systematically and efficiently. Our model uses a conceptual framework to study cooperation and the emergence of social norms as initially proposed by Axelrod (1986), which we adapted to groundwater management. We developed an ABM that integrates social mechanisms and the physics of subsurface flow. The model explicitly represents feedback between groundwater conditions and social dynamics, capturing the spatial structure of these interactions and the potential effects on cooperation levels in an agricultural setting. Using this model, we investigate a series of mechanisms that may trigger norms supporting cooperative strategies, which can be sustained and become stable over time. For example, farmers in a self-monitoring community can be more efficient at achieving the objective of sustainable groundwater use than government-imposed regulation. Our coupled model thus offers a platform for testing new schemes promoting cooperation and improved resource use, which can be used as a basis for policy design. Importantly, we hope to raise awareness of agent-based modelling as

  16. Two passive groundwater treatment installations at DOE facilities

    International Nuclear Information System (INIS)

    Barton, W.D.; Craig, P.M.; Stone, W.C.

    1997-01-01

    Groundwater is being successfully treated by reactive media at two DOE sites. Passive treatment utilizing containerized treatment media has been installed on a radioactive groundwater seep at Oak Ridge National Lab, Oak Ridge, Tennessee, and on a TCE plume at the Portsmouth Gaseous Diffusion Plant in Piketon, Ohio. In both applications, flow is conducted by gravity through canisters of reactive treatment media. The canister-based treatment installation at ORNL utilizes a natural sodium-chabazite zeolite to remove radiological cations (Sr, Cs) from contaminated groundwater at greater than 99.9% efficiency. Portsmouth is currently conducting tests on three different types of treatment media for reductive dehalogenation of TCE

  17. Waste Isolation Pilot Plant Groundwater Protection Management Program Plan

    Energy Technology Data Exchange (ETDEWEB)

    Washington TRU Solutions

    2002-09-24

    U.S. Department of Energy (DOE) Order 5400.1, General Environmental Protection Program, requires each DOE site to prepare a Groundwater Protection Management Program Plan. This document fulfills the requirement for the Waste Isolation Pilot Plant (WIPP). This document was prepared by the Hydrology Section of the Westinghouse TRU Solutions LLC (WTS) Environmental Compliance Department, and it is the responsibility of this group to review the plan annually and update it every three years. This document is not, nor is it intended to be, an implementing document that sets forth specific details on carrying out field projects or operational policy. Rather, it is intended to give the reader insight to the groundwater protection philosophy at WIPP.

  18. SECONDARY WASTE MANAGEMENT STRATEGY FOR EARLY LOW ACTIVITY WASTE TREATMENT

    Energy Technology Data Exchange (ETDEWEB)

    TW, CRAWFORD

    2008-07-17

    This study evaluates parameters relevant to River Protection Project secondary waste streams generated during Early Low Activity Waste operations and recommends a strategy for secondary waste management that considers groundwater impact, cost, and programmatic risk. The recommended strategy for managing River Protection Project secondary waste is focused on improvements in the Effiuent Treatment Facility. Baseline plans to build a Solidification Treatment Unit adjacent to Effluent Treatment Facility should be enhanced to improve solid waste performance and mitigate corrosion of tanks and piping supporting the Effiuent Treatment Facility evaporator. This approach provides a life-cycle benefit to solid waste performance and reduction of groundwater contaminants.

  19. Calendar year 1993 groundwater quality report for the Upper East Fork Poplar Creek hydrogeologic regime Y-12 Plant, Oak Ridge, Tennessee: 1993 groundwater quality data interpretations and proposed program modifications

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-10-01

    This Groundwater Quality Report (GWQR) contains an evaluation of the groundwater quality data obtained during the 1993 calendar year (CY) at the U.S. Department of Energy (DOE) Y-12 Plant located on the DOE Oak Ridge Reservation (ORR) southeast of Oak Ridge, Tennessee (Figure 1). The groundwater quality data are presented in Part 1 of the GWQR submitted by Martin Marietta Energy Systems, Inc. (Energy Systems) to the Tennessee Department of Environment and Conservation (TDEC) in February 1994 (HSW Environmental Consultants, Inc. 1994a). Groundwater quality data evaluated in this report were obtained at several hazardous and non-hazardous waste management facilities and underground storage tanks (USTS) located within the Upper East Fork Poplar Creek Hydrogeologic Regime (East Fork Regime). The Environmental Management Department of the Y-12 Plant Health, Safety, Environment, and Accountability Organization manages the groundwater monitoring activities in each regime under the auspices of the Y-12 Plant Groundwater Protection Program (GWPP). The purpose of the GWPP is to characterize the hydrogeology and to monitor groundwater quality at the Y-12 Plant and surrounding area to provide for protection of groundwater resources consistent with federal, state, and local requirements and in accordance with DOE Orders and Energy Systems corporate policy. The annual GWQR for the East Fork Regime is completed in two parts. Part 1 consists primarily of data appendices and serves as a reference for the groundwater quality data obtained each CY under the lead of the Y-12 Plant GWPP. Part 2 (this report) contains an evaluation of the data with respect to regime-wide groundwater quality, presents the findings and status of ongoing hydrogeologic studies, describes changes in monitoring priorities, and presents planned modifications to the groundwater sampling and analysis program for the following calendar year.

  20. Calendar year 1993 groundwater quality report for the Upper East Fork Poplar Creek hydrogeologic regime Y-12 Plant, Oak Ridge, Tennessee: 1993 groundwater quality data interpretations and proposed program modifications

    International Nuclear Information System (INIS)

    1994-10-01

    This Groundwater Quality Report (GWQR) contains an evaluation of the groundwater quality data obtained during the 1993 calendar year (CY) at the U.S. Department of Energy (DOE) Y-12 Plant located on the DOE Oak Ridge Reservation (ORR) southeast of Oak Ridge, Tennessee (Figure 1). The groundwater quality data are presented in Part 1 of the GWQR submitted by Martin Marietta Energy Systems, Inc. (Energy Systems) to the Tennessee Department of Environment and Conservation (TDEC) in February 1994 (HSW Environmental Consultants, Inc. 1994a). Groundwater quality data evaluated in this report were obtained at several hazardous and non-hazardous waste management facilities and underground storage tanks (USTS) located within the Upper East Fork Poplar Creek Hydrogeologic Regime (East Fork Regime). The Environmental Management Department of the Y-12 Plant Health, Safety, Environment, and Accountability Organization manages the groundwater monitoring activities in each regime under the auspices of the Y-12 Plant Groundwater Protection Program (GWPP). The purpose of the GWPP is to characterize the hydrogeology and to monitor groundwater quality at the Y-12 Plant and surrounding area to provide for protection of groundwater resources consistent with federal, state, and local requirements and in accordance with DOE Orders and Energy Systems corporate policy. The annual GWQR for the East Fork Regime is completed in two parts. Part 1 consists primarily of data appendices and serves as a reference for the groundwater quality data obtained each CY under the lead of the Y-12 Plant GWPP. Part 2 (this report) contains an evaluation of the data with respect to regime-wide groundwater quality, presents the findings and status of ongoing hydrogeologic studies, describes changes in monitoring priorities, and presents planned modifications to the groundwater sampling and analysis program for the following calendar year

  1. Data management facility for JT-60

    International Nuclear Information System (INIS)

    Ohasa, K.; Kurimoto, K.; Mochizuki, O.

    1983-01-01

    This study considers the Data Management Facility which is provided for unified management of various diagnostics data with JT-60 experiments. This facility is designed for the purpose of data access. There are about 30 kinds of diagnostic devices that are classified by diagnostic objects equipped for JT-60 facility. It gathers the diagnostic date about 10 Mega Byte per each discharge. Those diagnostic data are varied qualitatively and quantitatively by experimental purpose. Other fundamental information like discharge condition, adjustive value for diagnostic devices is required to process those gathered data

  2. Towards sustainable groundwater management in Karst aquifers in semi-arid environments: Central West Bank, Palestine

    Science.gov (United States)

    Jebreen, H.; Banning, A.; Wohnlich, S.

    2017-12-01

    The Central West Bank (CWB) is characterized by karstified carbonate aquifers in the semiarid climate zone, where groundwater resources are frequently threatened by overexploitation and pollution. Despite often limited system knowledge, quantitative and qualitative factors such as groundwater recharge rate, aquifer parameters, flow and transport dynamics, anthropogenic impacts, and groundwater vulnerability need to be assessed. Therefore, sustainable groundwater use in the CWB is of critical importance. In the present study, we explore the scale of the groundwater problems in CWB as well as the possibility of sustainable management through different scenarios: 1) Managed aquifer recharge using a water balance model, stable isotopes (2H & 18O) and chloride mass balance, 2) Geochemical evolution and renewability of groundwater, and 3) Anthropogenic impacts. A total of 20 spring water samples were collected and analyzed for pH, electrical conductivity, total dissolved solids (TDS), hardness, major-ion chemistry (Cl-, HCO3-, SO42-, Na+, K+, Ca2+ and Mg2+), trace elements (Li, Be, Al, Ba, Tl, Pb, Bi, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, Rb, Sr, Mo, Ag and Cd), microbiological data (total and fecal coliforms bacteria), and stable isotopes (2H & 18O). The results show a spatialized recharge rate, which ranges from 111-211 mm/year, representing 17-33 % of the long-term mean annual rainfall. The mean annual actual evapotranspiration was about 19-37 % of precipitation. The chemical composition of groundwater of the study area is strongly influenced by rock-water interaction, dissolution and deposition of carbonate and silicate minerals. Stable isotopes show that precipitation is the source of recharge to the groundwater system. All analyzed spring waters are suitable for irrigation but not for drinking purposes. This studýs results can serve as a basis for decision makers, and will lead to an increased understanding of the sustainable management of the Central West Bank

  3. Facility Environmental Management System

    Data.gov (United States)

    Federal Laboratory Consortium — This is the Web site of the Federal Highway Administration's (FHWA's) Turner-Fairbank Highway Research Center (TFHRC) facility Environmental Management System (EMS)....

  4. Technical Merits and Leadership in Facility Management

    National Research Council Canada - National Science Library

    Shoemaker, Jerry

    1997-01-01

    .... The document is divided into six chapters; the introduction, facility management and leadership, building systems, facility operations, facility maintenance strategies, and the conclusion and final analysis...

  5. Water resources management strategies and its implications on hydrodynamic and hydrochemical changes of costal groundwater: Case of Grombalia shallow aquifer, NE Tunisia

    Science.gov (United States)

    Lachaal, Fethi; Chekirbane, Anis; Chargui, Sameh; Sellami, Haykel; Tsujimura, Maki; Hezzi, Hmida; Faycel, Jelassi; Mlayah, Ammar

    2016-12-01

    Information on groundwater quantity as well as quality is required by water managers and decision-makers for defining a sustainable management strategy. This requires a comprehensive assessment of the surface water and groundwater resources. This paper provides an assessment of water resources management strategy in the Grombalia region (Northeast Tunisia) and its impact on quantity and quality evolution of groundwater resources based on an approach that combines (i) hydro-climatic data, (ii) field monitoring, (iii) historic piezometric records, and (iv) geochemical and stable isotopes (δ18O and δ2H) analyses. We apply this approach to identify the origin of the various water resources and outline how the actual water management impact the quantity and quality of the groundwater in the region. As consequence of poor water resources management, the shallow groundwater levels have been disrupted: a groundwater rise is observed in the centre and a piezometric drawdown is observed in the upstream regions. Groundwater quality degradation was registered especially in the centre and downstream zones.

  6. Groundwater flow model management and case studies in Emilia-Romagna (Italy

    Directory of Open Access Journals (Sweden)

    Andrea Chahoud

    2013-03-01

    Full Text Available The use of groundwater modeling to support the planning and management of water resources is a possible goal of a long and detailed course of study and research. The present work concerns some applications carried out within the aquifers of the Emilia-Romagna plain in northern Italy. The main features of the developed and available mathematical models are reported as well as the geological and hydrogeological description of the analyzed aquifers. The main operational choices that have characterized the implementation of all models and their continuous development and updating are discussed. Activity has been focused to maintain active the data stream between the models to improve their functionality along with time to give a basis for models management. Models have been used in different applications which indicate the potential for their use with targeted objectives of planning and management. Two examples at two different scales are given: the first shows the application to the entire aquifer of the Emilia-Romagna region, which has been able to adapt simulations to new groundwater bodies defined in accordance with 2000/60/EC directive, the current regulatory framework for the planning of water resources. This framework provides for the establishment of programs of measures whose level of effectiveness can be estimated with the support of models. The second concerns a more detailed scale model in reference to a specific evaluation of feasibility of an intervention of artificial recharge. The management approach used here is the result of over 10 years development and application and now allows to apply numerical models in a role of systematic service in support of the institutions involved in planning and management of groundwater resources.

  7. Metallurgical Laboratory (HWMF) Groundwater Monitoring Report, Fourth Quarter 1994

    International Nuclear Information System (INIS)

    Chase, J.A.

    1995-03-01

    Groundwater flow direction and rate in the M-Area Aquifer Zone were similar to previous quarters. Conditions affecting determination of groundwater flow directions and rates in the Upper Lost Lake Aquifer Zone, Lower Lost Lake Aquifer Zone, and the Middle Sand Aquifer Zone of the Crouch Branch Confining Units were also similar to previous quarters. During second quarter 1994, SRS received South Carolina Department of Health and Environmental Control approval for constructing five point-of-compliance wells and two plume definition wells near the Met Lab Hazardous Waste Management Facility. This project began in July 1994 and is complete; however, analytical data from these wells are not yet available

  8. Waste management considerations in nuclear facility decommissioning

    International Nuclear Information System (INIS)

    Elder, H.K.; Murphy, E.S.

    1981-01-01

    Decommissioning of nuclear facilities involves the management of significant quantities of radioactive waste. This paper summarizes information on volumes of waste requiring disposal and waste management costs developed in a series of decommissioning studies performed for the U.S. Nuclear Regulatory Commission by the Pacific Northwest Laboratory. These studies indicate that waste management is an important cost factor in the decommissioning of nuclear facilities. Alternatives for managing decommissioning wastes are defined and recommendations are made for improvements in waste management practices

  9. Calendar year 1994 groundwater quality report for the Upper East Fork Poplar Creek Hydrogeologic Regime, Y-12 Plant, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1995-10-01

    This groundwater quality report (GWQR) contains an evaluation of the groundwater quality data obtained during the 1994 calendar year (CY) at several waste-management facilities and a petroleum fuel underground storage tank (UST) site at the US Department of Energy (DOE) Y-12 Plant located on the DOE Oak Ridge Reservation (ORR) southeast of Oak Ridge, Tennessee. These sites lie within the boundaries of the Upper East Fork Poplar Creek Hydrogeologic Regime (East Fork Regime), which is one of three hydrogeologic regimes defined for the purposes of groundwater quality monitoring at the Y-12 Plant. The Environmental Management Department of the Y-12 Plant Health, Safety, Environment, and Accountability (HSEA) Organization manages the groundwater monitoring activities in each regime under the auspices of the Y-12 Plant Groundwater Protection Program (GWPP). The purpose of the GWPP is to characterize the hydrogeology and to monitor groundwater quality at the Y-12 Plant and surrounding area to ensure protection of local groundwater resources in accordance with federal, state, and local regulations, DOE Orders, and Lockheed Martin Energy Systems, Inc. (Energy Systems) corporate policy

  10. Hanford Site grundwater protection management program

    International Nuclear Information System (INIS)

    1989-10-01

    Groundwater protection has emerged over the past few years as a national priority that has been promulgated in a variety of environmental regulations at both the state and federal level. In order to effectively coordinate and ensure compliance with applicable regulations, the US Department of Energy (DOE) requires all DOE facilities to prepare separate groundwater protection program descriptions and plans (groundwater activities were formerly included as a subpart of environmental protection programs). This document is for the Hanford Site located in the state of Washington. The DOE Order specifies that the groundwater protection management program cover the following general topical areas: (1) documentation of the groundwater regime, (2) design and implementation of a groundwater monitoring program to support resource management and comply with applicable laws and regulations, (3) a management program for groundwater protection and remediation, (4) a summary and identification of areas that may be contaminated with hazardous waste, (5) strategies for controlling these sources, (6) a remedial action program, and (7) decontamination and decommissioning and related remedial action requirements. 14 refs., 19 figs., 2 tabs

  11. DKIST facility management system integration

    Science.gov (United States)

    White, Charles R.; Phelps, LeEllen

    2016-07-01

    The Daniel K. Inouye Solar Telescope (DKIST) Observatory is under construction at Haleakalā, Maui, Hawai'i. When complete, the DKIST will be the largest solar telescope in the world. The Facility Management System (FMS) is a subsystem of the high-level Facility Control System (FCS) and directly controls the Facility Thermal System (FTS). The FMS receives operational mode information from the FCS while making process data available to the FCS and includes hardware and software to integrate and control all aspects of the FTS including the Carousel Cooling System, the Telescope Chamber Environmental Control Systems, and the Temperature Monitoring System. In addition it will integrate the Power Energy Management System and several service systems such as heating, ventilation, and air conditioning (HVAC), the Domestic Water Distribution System, and the Vacuum System. All of these subsystems must operate in coordination to provide the best possible observing conditions and overall building management. Further, the FMS must actively react to varying weather conditions and observational requirements. The physical impact of the facility must not interfere with neighboring installations while operating in a very environmentally and culturally sensitive area. The FMS system will be comprised of five Programmable Automation Controllers (PACs). We present a pre-build overview of the functional plan to integrate all of the FMS subsystems.

  12. Facility management i fremtidens bankdrift

    OpenAIRE

    Vollan, Silje Steen

    2015-01-01

    Facility Management (FM) er et relativt ungt fagområde som er i sterk utvikling. Bank og finansbransjen har hatt en tradisjon med å eie og forvalte egne bygninger, noe som har gitt et underbevisst fokus på FM. Økt digitalisering fører til at bankene står overfor nye utfordringer og muligheter. Nye produkter og tjenester dukker opp og dette fører til at FM enheten utfordres med høyere krav til profesjonalitet og effektivitet. Internasjonale trender i markedet viser at flere facility management...

  13. Groundwater quality assessment for the Upper East Fork Poplar Creek Hydrogeologic Regime at the Y-12 Plant. 1991 groundwater quality data and calculated rate of contaminant migration

    Energy Technology Data Exchange (ETDEWEB)

    1992-02-01

    This report contains groundwater quality data obtained during the 1991 calendar year at several waste management facilities and petroleum fuel underground storage tank (UST) sites associated with the Y-12 Plant. These sites are within the Upper East Fork Poplar Creek Hydrogeologic Regime (UEFPCHR), which is one of three regimes defined for the purposes of groundwater and surface-water quality monitoring and remediation. This report was prepared for informational purposes. Included are the analytical data for groundwater samples collected from selected monitoring wells during 1991 and the results for quality assurance/quality control (QA/QC) samples associated with each groundwater sample. This report also contains summaries of selected data, including ion-charge balances for each groundwater sample, a summary of analytical results for nitrate (a principle contaminant in the UEFPCHR), results of volatile organic compounds (VOCs) analyses validated using the associated QA/QC sample data, a summary of trace metal concentrations which exceeded drinking-water standards, and a summary of radiochemical analyses and associated counting errors.

  14. Ground Water Monitoring Requirements for Hazardous Waste Treatment, Storage and Disposal Facilities

    Science.gov (United States)

    The groundwater monitoring requirements for hazardous waste treatment, storage and disposal facilities (TSDFs) are just one aspect of the Resource Conservation and Recovery Act (RCRA) hazardous waste management strategy for protecting human health and the

  15. Seismic design of low-level nuclear waste repositories and toxic waste management facilities

    International Nuclear Information System (INIS)

    Chung, D.H.; Bernreuter, D.L.

    1984-01-01

    Identification of the elements of typical hazardous waste facilities (HFWs) that are the major contributors to the risk are focussed on as the elements which require additional considerations in the design and construction of low-level nuclear waste management repositories and HWFs. From a recent study of six typical HWFs it was determined that the factors that contribute most to the human and environmental risk fall into four basic categories: geologic and seismological conditions at each HWF; engineered structures at each HWF; environmental conditions at each HWF; and nature of the material being released. In selecting and carrying out the six case studies, three groups of hazardous waste facilities were examined: generator industries which treat or temporarily store their own wastes; generator facilities which dispose of their own hazardous wastes on site; and industries in the waste treatment and disposal business. The case studies have a diversity of geologic setting, nearby settlement patterns, and environments. Two sites are above a regional aquifer, two are near a bay important to regional fishing, one is in rural hills, and one is in a desert, although not isolated from nearby towns and a groundwater/surface-water system. From the results developed in the study, it was concluded that the effect of seismic activity on hazardous facilities poses a significant risk to the population. Fifteen reasons are given for this conclusion

  16. The Sellafield contaminated land and groundwater management project: Characterisation of a complex nuclear facility

    International Nuclear Information System (INIS)

    Cruickshak, Julian

    2012-01-01

    The Sellafield site in North West England is one of the oldest and largest nuclear sites in the world, with a 70 year industrial history of processing and power generation. At certain points in time this industrial activity has affected the quality of land on parts of the site and one of the main tasks for Sellafield Ltd is to understand and control the legacy of ground contamination to ensure protection of the workforce, the public and the environment. Sellafield Ltd has recently completed a multi-million Pound investigation of the most complex part of the site in order to understand the impact of the various known and potential sources of contamination. The constraints of working in a challenging operational environment required both the use of tried and tested approaches and experimentation with innovative techniques. As experience was gained during implementation of the project, the characterisation plan was evolved and adapted to ensure a successful outcome. The presentation will outline the role and importance of characterising land and groundwater at Sellafield, explain how the site investigation strategy and techniques were designed to meet the challenge and describe the performance of the investigation in practice. It will conclude with a summary of how the results will be used to better support ongoing safety and environmental management and to aid the development of strategy and planning for the future. (author)

  17. XML Based Scientific Data Management Facility

    Science.gov (United States)

    Mehrotra, P.; Zubair, M.; Bushnell, Dennis M. (Technical Monitor)

    2002-01-01

    The World Wide Web consortium has developed an Extensible Markup Language (XML) to support the building of better information management infrastructures. The scientific computing community realizing the benefits of XML has designed markup languages for scientific data. In this paper, we propose a XML based scientific data management ,facility, XDMF. The project is motivated by the fact that even though a lot of scientific data is being generated, it is not being shared because of lack of standards and infrastructure support for discovering and transforming the data. The proposed data management facility can be used to discover the scientific data itself, the transformation functions, and also for applying the required transformations. We have built a prototype system of the proposed data management facility that can work on different platforms. We have implemented the system using Java, and Apache XSLT engine Xalan. To support remote data and transformation functions, we had to extend the XSLT specification and the Xalan package.

  18. Ground-water protection activities of the US Nuclear Regulatory Commission

    International Nuclear Information System (INIS)

    1987-02-01

    This report evaluates the internal consistency of NRC's ground-water protection programs. These programs have evolved consistently with growing public concerns about the significance of ground-water contamination and environmental impacts. Early NRC programs provided for protection of the public health and safety by minimizing releases of radionuclides. More recent programs have included provisions for minimizing releases of nonradiological constituents, mitigating environmental impacts, and correcting ground-water contamination. NRC's ground-water protection programs are categorized according to program areas, including nuclear materials and waste management (NMSS), nuclear reactor operation (NRR), confirmatory research and standards development (RES), inspection and enforcement (IE), and agreement state programs (SP). Based on analysis of existing ground-water protection programs within NRC, the interoffice Ground-water Protection Group has identified several inconsistencies between and within program areas. These inconsistencies include: (1) different definitions of the term ''ground-water,'' (2) variable regulation of nonradiological constituents in ground water, (3) different design periods for ground-water protection, and (4) different scopes and rigor of ground-water assessments. The second inconsistency stems from differences in statutory authority granted to the NRC. The third inconsistency is rationalized by recognizing differences in perceived risks associated with nuclear facilities. The Ground-water Protection Group will document its analysis of the remaining inconsistencies and make recommendations to reconcile or eliminate them in a subsequent report

  19. Groundwater Quality Assessment for Waste Management Area U: First Determination

    Energy Technology Data Exchange (ETDEWEB)

    FN Hodges; CJ Chou

    2000-08-04

    Waste Management Area U (TWA U) is located in the 200 West Area of the Hanford Site. The area includes the U Tank Farm, which contains 16 single-shell tanks and their ancillary equipment and waste systems. WMA U is regulated under the Resource Conservation and Recovery Act of 1976 (RCRA) as stipulated in 40 CFR Part 265, Subpart F, which is incorporated into the Washington State dangerous waste regulations (WAC 173-303400) by reference. Groundwater monitoring at WMA U has been guided by an interim status indicator evaluation program. As a result of changes in the direction of groundwater flow, background values for the WMA have been recalculated several times during its monitoring history. The most recent recalculation revealed that one of the indicator parameters, specific conductance, exceeded its background value in downgradient well 299-W19-41. This triggered a change from detection monitoring to a groundwater quality assessment program. The major contributors to the higher specific conductance are nonhazardous constituents, such as bicarbonate, calcium, chloride, magnesium, sodium and sulfate. Chromium, nitrate, and technetium-99 are present and are increasing; however, they are significantly below their drinking water standards. The objective of this study is to determine whether the increased concentrations of chromium, nitrate, and technetium-99 in groundwater are from WMA U or from an upgradient source. Interpretation of groundwater monitoring data indicates that both the nonhazardous constituents causing elevated specific conductance in groundwater and the tank waste constituents present in groundwater at the WMA are a result of surface water infiltration in the southern portion of the WMA. There is evidence that both upgradient and WMA sources contribute to the nitrate concentrations that were detected. There is no indication of an upgradient source for the chromium and technetium-99 that was detected. Therefore, a source of contamination appears to

  20. Groundwater Quality Assessment for Waste Management Area U: First Determination

    International Nuclear Information System (INIS)

    FN Hodges; CJ Chou

    2000-01-01

    Waste Management Area U (TWA U) is located in the 200 West Area of the Hanford Site. The area includes the U Tank Farm, which contains 16 single-shell tanks and their ancillary equipment and waste systems. WMA U is regulated under the Resource Conservation and Recovery Act of 1976 (RCRA) as stipulated in 40 CFR Part 265, Subpart F, which is incorporated into the Washington State dangerous waste regulations (WAC 173-303400) by reference. Groundwater monitoring at WMA U has been guided by an interim status indicator evaluation program. As a result of changes in the direction of groundwater flow, background values for the WMA have been recalculated several times during its monitoring history. The most recent recalculation revealed that one of the indicator parameters, specific conductance, exceeded its background value in downgradient well 299-W19-41. This triggered a change from detection monitoring to a groundwater quality assessment program. The major contributors to the higher specific conductance are nonhazardous constituents, such as bicarbonate, calcium, chloride, magnesium, sodium and sulfate. Chromium, nitrate, and technetium-99 are present and are increasing; however, they are significantly below their drinking water standards. The objective of this study is to determine whether the increased concentrations of chromium, nitrate, and technetium-99 in groundwater are from WMA U or from an upgradient source. Interpretation of groundwater monitoring data indicates that both the nonhazardous constituents causing elevated specific conductance in groundwater and the tank waste constituents present in groundwater at the WMA are a result of surface water infiltration in the southern portion of the WMA. There is evidence that both upgradient and WMA sources contribute to the nitrate concentrations that were detected. There is no indication of an upgradient source for the chromium and technetium-99 that was detected. Therefore, a source of contamination appears to

  1. Service quality for facilities management in hospitals

    CERN Document Server

    Sui Pheng, Low

    2016-01-01

    This book examines the Facilities Management (FM) of hospitals and healthcare facilities, which are among the most complex, costly and challenging kind of buildings to manage. It presents and evaluates the FM service quality standards in Singapore’s hospitals from the patient’s perspective, and provides recommendations on how to successfully improve FM service quality and achieve higher patient satisfaction. The book also features valuable supplementary materials, including a checklist of 32 key factors for successful facilities management and another checklist of 24 service attributes for hospitals to achieve desirable service quality in connection with facilities management. The book adopts a unique approach of combining service quality and quality theory to provide a more holistic view of how FM service quality can be achieved in hospitals. It also integrates three instruments, namely the SERVQUAL model, the Kano model and the QFD model to yield empirical results from surveys for implementation in hosp...

  2. Groundwater quality assessment for the Upper East Fork Poplar Creek Hydrogeologic Regime at the Y-12 Plant

    International Nuclear Information System (INIS)

    1992-08-01

    This report contains an evaluation of the groundwater quality data obtained during the 1991 calendar year at several hazardous and non-hazardous waste management facilities and underground storage tanks (USTs) associated with the US Department of Energy Y-12 Plant. These sites are within the Upper East Fork Poplar Creek Hydrogeologic Regime (UEFPCHR), which is one of three regimes defined for the purposes of groundwater and surfacewater quality monitoring. Section 2.0 of this report contains background information regarding groundwater monitoring at the waste-management sites and USTs located in the UEFPCHR. An overview of the hydrogeologic system in the UEFPCHR is provided in Section 3.0. A discussion of the interpretive assumptions used in evaluating the 1991 assessment data, and detailed descriptions of groundwater quality are presented in Section 4.0. Findings of the 1991 monitoring program are summarized in Section 5.0. Proposed modifications to the groundwater quality monitoring program in the UEFPCHR are presented

  3. Evaluation of the groundwater flow model for southern Utah and Goshen Valleys, Utah, updated to conditions through 2011, with new projections and groundwater management simulations

    Science.gov (United States)

    Brooks, Lynette E.

    2013-01-01

    The U.S. Geological Survey (USGS), in cooperation with the Southern Utah Valley Municipal Water Association, updated an existing USGS model of southern Utah and Goshen Valleys for hydrologic and climatic conditions from 1991 to 2011 and used the model for projection and groundwater management simulations. All model files used in the transient model were updated to be compatible with MODFLOW-2005 and with the additional stress periods. The well and recharge files had the most extensive changes. Discharge to pumping wells in southern Utah and Goshen Valleys was estimated and simulated on an annual basis from 1991 to 2011. Recharge estimates for 1991 to 2011 were included in the updated model by using precipitation, streamflow, canal diversions, and irrigation groundwater withdrawals for each year. The model was evaluated to determine how well it simulates groundwater conditions during recent increased withdrawals and drought, and to determine if the model is adequate for use in future planning. In southern Utah Valley, the magnitude and direction of annual water-level fluctuation simulated by the updated model reasonably match measured water-level changes, but they do not simulate as much decline as was measured in some locations from 2000 to 2002. Both the rapid increase in groundwater withdrawals and the total groundwater withdrawals in southern Utah Valley during this period exceed the variations and magnitudes simulated during the 1949 to 1990 calibration period. It is possible that hydraulic properties may be locally incorrect or that changes, such as land use or irrigation diversions, occurred that are not simulated. In the northern part of Goshen Valley, simulated water-level changes reasonably match measured changes. Farther south, however, simulated declines are much less than measured declines. Land-use changes indicate that groundwater withdrawals in Goshen Valley are possibly greater than estimated and simulated. It is also possible that irrigation

  4. 7 CFR 205.271 - Facility pest management practice standard.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Facility pest management practice standard. 205.271... Requirements § 205.271 Facility pest management practice standard. (a) The producer or handler of an organic facility must use management practices to prevent pests, including but not limited to: (1) Removal of pest...

  5. 41 CFR 102-72.40 - What are facility management delegations?

    Science.gov (United States)

    2010-07-01

    ... 41 Public Contracts and Property Management 3 2010-07-01 2010-07-01 false What are facility management delegations? 102-72.40 Section 102-72.40 Public Contracts and Property Management Federal Property... AUTHORITY Delegation of Authority § 102-72.40 What are facility management delegations? Facility management...

  6. Assessing groundwater policy with coupled economic-groundwater hydrologic modeling

    Science.gov (United States)

    Mulligan, Kevin B.; Brown, Casey; Yang, Yi-Chen E.; Ahlfeld, David P.

    2014-03-01

    This study explores groundwater management policies and the effect of modeling assumptions on the projected performance of those policies. The study compares an optimal economic allocation for groundwater use subject to streamflow constraints, achieved by a central planner with perfect foresight, with a uniform tax on groundwater use and a uniform quota on groundwater use. The policies are compared with two modeling approaches, the Optimal Control Model (OCM) and the Multi-Agent System Simulation (MASS). The economic decision models are coupled with a physically based representation of the aquifer using a calibrated MODFLOW groundwater model. The results indicate that uniformly applied policies perform poorly when simulated with more realistic, heterogeneous, myopic, and self-interested agents. In particular, the effects of the physical heterogeneity of the basin and the agents undercut the perceived benefits of policy instruments assessed with simple, single-cell groundwater modeling. This study demonstrates the results of coupling realistic hydrogeology and human behavior models to assess groundwater management policies. The Republican River Basin, which overlies a portion of the Ogallala aquifer in the High Plains of the United States, is used as a case study for this analysis.

  7. Mining wastewater management and its effects on groundwater and ecosystems.

    Science.gov (United States)

    Celebi, A; Ozdemir, S

    2014-01-01

    Large-scale mining activities have a huge impact on the environment. Determination of the size of the effect and monitoring it is vital. In this study, risk assessment studies in mining areas and the effect of mining on groundwater and ecosystems were investigated. Best management practices and risk assessment steps were determined, especially in areas with huge amounts of mining wastewater. The pollution of groundwater and its reaching humans is a risk of major importance. Our study showed, using many cases with different parameters and countries, that the management of mining wastewater is vital. Environmental impact assessments and monitoring studies must be carried out before operation and at the closure of the mine. Policies must be in place and ready to apply. Factors of climate, geology, ecology and human health must be considered over a long period. Currently, only the developed countries are applying policies and paying attention to the risk. International assessments and health risk assessments should be carried out according to international standards.

  8. The Palouse Basin Participatory Model Pilot Project: A Participatory Approach to Bi-state Groundwater Management

    Science.gov (United States)

    Beall, A.; Fiedler, F.; Boll, J.; Cosens, B.; Harris, C.

    2008-12-01

    In March 2008, The University of Idaho Waters of the West, the Palouse Basin Aquifer Committee and its Citizen Advisory Group undertook a pilot project to explore the use of participatory modeling to assist with water resource management decisions. The Palouse basin supplies Moscow, Idaho, Pullman, Washington, and surrounding communities with high quality groundwater. However, water levels in the major aquifer systems have been declining since records have been kept. Solutions are complicated by jurisdictional considerations and limited alternatives for supply. We hope that by using a participatory approach major conflicts will be avoided. Group system dynamics modeling has been used for various environmental concerns such as air quality, biological management, water quality and quantity. These models create a nexus of science, policy, and economic and social concerns, which enhances discussion of issues surrounding the use of natural resources. Models may be developed into educational and or decision support tools which can be used to assist with planning processes. The long-term goal of the Palouse basin project is to develop such a model. The pilot project participants include hydrologists, facility operators, policy makers and local citizens. The model they have developed integrates issues such as scientific uncertainty, groundwater volumes, and potential conservation measures and costs. Preliminary results indicate that participants are satisfied with the approach and are looking to use the model for education and to help direct potential research. We will present the results of the pilot project, including the developed model and insights from the process.

  9. Metering management at the plutonium research and development facilities

    International Nuclear Information System (INIS)

    Hirata, Masaru; Miyamoto, Fujio; Kurosawa, Makoto; Abe, Jiro; Sakai, Haruyuki; Suzuki, Tsuneo.

    1996-01-01

    Nuclear fuel research laboratory of the Oarai Research Laboratory of the Japan Atomic Energy Research Institute is an R and D facility to treat with plutonium and processes various and versatile type samples in chemical and physical form for use of various experimental researches even though on much small amount. Furthermore, wasted and plutonium samples are often transported to other KMP and MBA such as radioactive waste management facility, nuclear reactor facility and so forth. As this facility is a place to treat plutonium important on the safeguards, it is a facility necessary for detection and allowance actions and for detail managements on the metering management data to report to government and IAEA in each small amount sample and different configuration. In this paper, metering management of internationally regulated matters and metering management system using a work station newly produced in such small scale facility were introduced. (G.K.)

  10. EUGRIS: ''European Substainable Land and Groundwater Management Information System''

    Energy Technology Data Exchange (ETDEWEB)

    Frauenstein, J. [Federal Environmental Agency (UBA), Berlin (Germany)

    2003-07-01

    The presentation outlines and Accompanying Measure with the FP 5 to develop an web based EUropean Sustainable Land and GRoundwater Management Information System information system (EUGRIS). The management of contaminated land and groundwater requires an interdisciplinary approach and a considerable amount of supporting technical information and knowledge. EUGRIS will provide a generally available comprehensive and overarching information and innovation resource, to support both research and practical contaminated land and groundwater management. EUGRI is a gateway to provide a 'one stop shop' for information provided by research projects, legislation, standards, best practice and other technical guidance and policy/regulatory publications from the EC, participating Member and Accession States and from various international networks dealing with groundwater and land management issues. Different types of user can access information through different windows according to their needs. EUGRIS will provide its visitors with summary information (digests) and links to sources of more detailed and/or original information in a scaleable holistic and contexturally meaningful way. EUGRIS is being built in three stages: the design of the information system, the development of its software implementation, and the population of the system with information. The presentation is focussed on the concept of the development of the information system with the individual work packages. In the second part of the lecture in particular the work procedures are presented for the content wise replenishment by EUGRIS. The data collation for the proven pilot countries and the production of a European research data base, which opens contents and results of European-wide locked and current projects, form the emphasis thereby. (orig.)

  11. A Study on the Development and Application of Spatial-TDR Sensor for the Management of Groundwater at Riverside

    Directory of Open Access Journals (Sweden)

    Mincheol Park

    2018-04-01

    Full Text Available For sustainable use of water and land, efficient management of river water and groundwater at riverside is required for development. For this purpose, both the groundwater as well as the unsaturated areas should be measured and managed. However, existing point-type sensors have physical limitations. In this study, we developed a spatial-TDR (Time-Domain reflectometer sensor and calibration algorithm for efficient management of riverside groundwater and conducted laboratory and field experiments on whether groundwater level and the unsaturated area can be measured. The rod-type probe shown in ASTM (American Society for Testing and Materials D 6780-05 was modified into a steel wire-type sensing line so that it could be penetrated into the boring hole. The developed sensing line with steel wire is superior in transport and construction to make observations on the groundwater level, but it requires a separate filtering and calibration procedure because it contains a relatively large amount of noise. The raw data of the electric waveform is filtered by applying the moving-average method and the discrete Fourier transform (DFT. The calibration equation for the voltage of electric pulse and degree of saturation of soil calculated in laboratory experiments can be used to calculate the groundwater level and the unsaturated area of the real embankment. The spatial-TDR sensor developed in this study can measure both the groundwater level and the unsaturated area by improving the physical limit of the existing point-TDR sensor of probe-type. Therefore, it can greatly help efficient management of groundwater at riverside. It is necessary to put them into practical use through continuous improvement and experimental verification.

  12. Analyses of infrequent (quasi-decadal) large groundwater recharge events in the northern Great Basin: Their importance for groundwater availability, use, and management

    Science.gov (United States)

    Masbruch, Melissa D.; Rumsey, Christine; Gangopadhyay, Subhrendu; Susong, David D.; Pruitt, Tom

    2016-01-01

    There has been a considerable amount of research linking climatic variability to hydrologic responses in the western United States. Although much effort has been spent to assess and predict changes in surface water resources, little has been done to understand how climatic events and changes affect groundwater resources. This study focuses on characterizing and quantifying the effects of large, multiyear, quasi-decadal groundwater recharge events in the northern Utah portion of the Great Basin for the period 1960–2013. Annual groundwater level data were analyzed with climatic data to characterize climatic conditions and frequency of these large recharge events. Using observed water-level changes and multivariate analysis, five large groundwater recharge events were identified with a frequency of about 11–13 years. These events were generally characterized as having above-average annual precipitation and snow water equivalent and below-average seasonal temperatures, especially during the spring (April through June). Existing groundwater flow models for several basins within the study area were used to quantify changes in groundwater storage from these events. Simulated groundwater storage increases per basin from a single recharge event ranged from about 115 to 205 Mm3. Extrapolating these amounts over the entire northern Great Basin indicates that a single large quasi-decadal recharge event could result in billions of cubic meters of groundwater storage. Understanding the role of these large quasi-decadal recharge events in replenishing aquifers and sustaining water supplies is crucial for long-term groundwater management.

  13. Simulation of the impact of managed aquifer recharge on the groundwater system in Hanoi, Vietnam

    Science.gov (United States)

    Glass, Jana; Via Rico, Daniela A.; Stefan, Catalin; Nga, Tran Thi Viet

    2018-05-01

    A transient numerical groundwater flow model using MODFLOW-NWT was set up and calibrated for Hanoi city, Vietnam, to understand the local groundwater flow system and to suggest solutions for sustainable water resource management. Urban development in Hanoi has caused a severe decline of groundwater levels. The present study evaluates the actual situation and investigates the suitability of managed aquifer recharge (MAR) to stop further depletion of groundwater resources. The results suggest that groundwater is being overexploited, as vast cones of depression exist in parts of the study area. Suitable locations to implement two MAR techniques—riverbank filtration and injection wells—were identified using multi-criteria decision analysis based on geographic information system (GIS). Three predictive scenarios were simulated. The relocation of pumping wells towards the Red River to induce riverbank filtration (first scenario) demonstrates that groundwater levels can be increased, especially in the depression cones. Groundwater levels can also be improved locally by the infiltration of surplus water into the upper aquifer (Holocene) via injection wells during the rainy season (second scenario), but this is not effective to raise the water table in the depression cones. Compared to the first scenario, the combination of riverbank filtration and injection wells (third scenario) shows a slightly raised overall water table. Groundwater flow modeling suggests that local overexploitation can be stopped by a smart relocation of wells from the main depression cones and the expansion of riverbank filtration. This could also avoid further land subsidence while the city's water demand is met.

  14. Groundwater Remediation in a Floodplain Aquifer at Shiprock, New Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Peterson, Dave [Navarro Research and Engineering; Miller, David [Navarro Research and Engineering; Kautsky, Mark [U. S. Department of Energy, Office of Legacy Management; Dander, David [Navarro Research and Engineering; Nofchissey, Joni [Navajo Nation Division of Natural Resources

    2016-03-06

    A uranium- and vanadium-ore-processing mill operated from 1954 to 1968 within the Navajo Nation near Shiprock, New Mexico. By September 1986, all tailings and structures on the former mill property were encapsulated in a disposal cell built on top of two existing tailings piles on the Shiprock site (the site) [1]. Local groundwater was contaminated by multiple inorganic constituents as a result of the milling operations. The U.S. Department of Energy (DOE) took over management of the site in 1978 as part of the Uranium Mill Tailings Remedial Action (UMTRA) Project. The DOE Office of Legacy Management currently manages ongoing activities at the former mill facility, including groundwater remediation. Remediation activities are designed primarily to reduce the concentrations and total plume mass of the mill-related contaminants sulfate, uranium, and nitrate. In addition to contaminating groundwater in alluvial and bedrock sediments directly below the mill site, ore processing led to contamination of a nearby floodplain bordering the San Juan River. Groundwater in a shallow alluvial aquifer beneath the floodplain is strongly influenced by the morphology of the river channel as well as changing flows in the river, which provides drainage for regional runoff from the San Juan Mountains of Colorado. As part of a recent study of the floodplain hydrology, a revised conceptual model was developed for the alluvial aquifer along with an updated status of contaminant plumes that have been impacted by more than 10 years of groundwater pumping for site remediation purposes. Several findings from the recent study will be discussed here.

  15. Calendar year 1995 groundwater quality report for the Upper East Fork Poplar Creek Hydrogeologic Regime Y-12 Plant, Oak Ridge Tennessee. 1995 Groundwater quality data interpretations and proposed program modifications

    International Nuclear Information System (INIS)

    1996-08-01

    This groundwater quality report (GWQR) contains an evaluation of the groundwater quality data obtained during the 1995 calendar year (CY) at several waste management facilities associated with the US Department of Energy (DOE) Y-12 Plant located on the DOE Oak Ridge Reservation (ORR) southeast of Oak Ridge, Tennessee. These sites lie within the boundaries of the Upper East Fork Poplar Creek Hydrogeologic Regime (East Fork Regime), which is one of three hydrogeologic regimes defined for the purposes of groundwater quality monitoring at the Y-12 Plant. The Environmental Management Department of the Y-12 Plant Health, Safety, Environment, and Accountability (HSEA) Organization manages the groundwater monitoring activities in each regime under the auspices of the Y-12 Plant Groundwater Protection Program (GWPP). The purpose of the GWPP is to characterize the hydrogeology and to monitor groundwater quality at the Y-12 Plant and surrounding area to ensure protection of local groundwater resources in accordance with federal, state, and local regulations, DOE Orders, and Lockheed Martin Energy Systems, Inc. (Energy Systems) corporate policy. The annual GWQR for the East Fork Regime is completed in two parts. Part I consists primarily of data appendices and serves as a reference for the groundwater quality data obtained each CY under the lead of the Y-12 Plant GWPP. Because it contains information needed to comply with reporting requirements of Resource Conservation and Recovery Act (RCRA) interim status assessment monitoring, the Part I GWQR is submitted to the Tennessee Department of Environment and Conservation (TDEC) by the RCRA reporting deadline (March 1 of the following CY); Energy Systems submitted the 1995 Part I GWQR for the East Fork Regime to the TDEC in February 1996. Part 2 (this report) contains an evaluation of the data with respect to regime-wide groundwater quality

  16. World Class Facilities Management

    DEFF Research Database (Denmark)

    Malmstrøm, Ole Emil; Jensen, Per Anker

    2013-01-01

    Alle der med entusiasme arbejder med Facilities Management drømmer om at levere World Class. DFM drømmer om at skabe rammer og baggrund for, at vi i Danmark kan bryste os at være blandt de førende på verdensplan. Her samles op på, hvor tæt vi er på at nå drømmemålet.......Alle der med entusiasme arbejder med Facilities Management drømmer om at levere World Class. DFM drømmer om at skabe rammer og baggrund for, at vi i Danmark kan bryste os at være blandt de førende på verdensplan. Her samles op på, hvor tæt vi er på at nå drømmemålet....

  17. Sustainability and the facilities management in Malaysia

    Directory of Open Access Journals (Sweden)

    Asbollah Asra Zaliza

    2016-01-01

    Full Text Available Facilities Management (FM in the industry of environment involves numerous expertise, especially from the management side. Other than that, technology and finance are the other factors involved as well. One essential aspect of FM, other than the emphasis on technical operation, is its performance. In parallel, the performance does impact occupant behaviour and, at the same time, this performance does affect the environment. In short, this indicates that FM is in a key position to participate in delivering a sustainable environment for the industry of built environment. Sustainable facilities Management (SFM is crucial because buildings consume more resources which will, in consequence, negatively impact the environment and generate large amounts of waste. This justifies the importance of sustainability under the umbrella of facilities management. However, FM is quite new in Malaysia’s environment. Government agencies, such as JKR, have adopted and are practicing FM at the moment. Fortunately, there has been an increasing trend and awareness of SFM adoption. Therefore, this paper aims to understand and identify the contribution and practices of Sustainable Facilities Management (SFM in Malaysia; focusing on the development taken in regards to SFM.

  18. 1997 Comprehensive TNX Area Annual Groundwater and Effectiveness Monitoring Report

    International Nuclear Information System (INIS)

    Chase, J.

    1998-04-01

    Shallow groundwater beneath the TNX Area at the Savannah River Site (SRS) has been contaminated with chlorinated volatile organic compounds (CVOCs) such as trichloroethylene (TCE) and carbon tetrachloride. In November 1994, an Interim Record of Decision (IROD) was agreed to and signed by the U. S. Department of Energy (DOE), the Environmental Protection Agency (EPA), and the South Carolina Department of Health ampersand Environmental Control (SCDHEC). The Interim Record of Decision requires the installation of a hybrid groundwater corrective action (HGCA) to stabilize the plume of groundwater contamination and remove CVOCs dissolved in the groundwater. The hybrid groundwater corrective action included a recovery well network, purge water management facility, air stripper, and an airlift recirculation well. The recirculation well was dropped pursuant to a test that indicated it to be ineffective at the TNX Area. Consequently, the groundwater corrective action was changed from a hybrid to a single action, pump-and-treat approach. The Interim Action (IA) T-1 air stripper system began operation on September 16, 1996. a comprehensive groundwater monitoring program was initiated to measure the effectiveness of the system. As of December 31, 1997, the system has treated 32 million gallons of contaminated groundwater removed 32 pounds of TCE. The recovery well network created a 'capture zone' that stabilized the plume of contaminated groundwater

  19. 1997 Comprehensive TNX Area Annual Groundwater and Effectiveness Monitoring Report

    Energy Technology Data Exchange (ETDEWEB)

    Chase, J.

    1998-04-01

    Shallow groundwater beneath the TNX Area at the Savannah River Site (SRS) has been contaminated with chlorinated volatile organic compounds (CVOCs) such as trichloroethylene (TCE) and carbon tetrachloride. In November 1994, an Interim Record of Decision (IROD) was agreed to and signed by the U. S. Department of Energy (DOE), the Environmental Protection Agency (EPA), and the South Carolina Department of Health {ampersand} Environmental Control (SCDHEC). The Interim Record of Decision requires the installation of a hybrid groundwater corrective action (HGCA) to stabilize the plume of groundwater contamination and remove CVOCs dissolved in the groundwater. The hybrid groundwater corrective action included a recovery well network, purge water management facility, air stripper, and an airlift recirculation well. The recirculation well was dropped pursuant to a test that indicated it to be ineffective at the TNX Area. Consequently, the groundwater corrective action was changed from a hybrid to a single action, pump-and-treat approach. The Interim Action (IA) T-1 air stripper system began operation on September 16, 1996. a comprehensive groundwater monitoring program was initiated to measure the effectiveness of the system. As of December 31, 1997, the system has treated 32 million gallons of contaminated groundwater removed 32 pounds of TCE. The recovery well network created a `capture zone` that stabilized the plume of contaminated groundwater.

  20. Los Alamos Plutonium Facility Waste Management System

    International Nuclear Information System (INIS)

    Smith, K.; Montoya, A.; Wieneke, R.; Wulff, D.; Smith, C.; Gruetzmacher, K.

    1997-01-01

    This paper describes the new computer-based transuranic (TRU) Waste Management System (WMS) being implemented at the Plutonium Facility at Los Alamos National Laboratory (LANL). The Waste Management System is a distributed computer processing system stored in a Sybase database and accessed by a graphical user interface (GUI) written in Omnis7. It resides on the local area network at the Plutonium Facility and is accessible by authorized TRU waste originators, count room personnel, radiation protection technicians (RPTs), quality assurance personnel, and waste management personnel for data input and verification. Future goals include bringing outside groups like the LANL Waste Management Facility on-line to participate in this streamlined system. The WMS is changing the TRU paper trail into a computer trail, saving time and eliminating errors and inconsistencies in the process

  1. Strategies for transdisciplinary research on peri-urban groundwater management in the Ganges delta

    Science.gov (United States)

    Hermans, Leon; Thissen, Wil; Gomes, Sharlene; Banerjee, Poulomi; Narain, Vishal; Salehin, Mashfiqus; Hasan, Rezaul; Barua, Anamika; Alam Khan, Shah; Bhattacharya, Samir; Kempers, Remi; Banerjee, Parthasarathi; Hossain, Zakir; Majumdar, Binoy; Hossain, Riad

    2016-04-01

    Transdisciplinary science transcends disciplinary boundaries. The reasons to engage in transdisciplinary science are many and include the desire to nurture a more direct relationship between science and society, as well as the desire to explain phenomena that cannot be explained by any of the existing disciplinary bodies of knowledge in isolation. Both reasons also reinforce each other, as reality often features a level of complexity that demands and inspires the combination of scientific knowledge from various disciplines. The challenge in transdisciplinary science, however, is not so much to cross disciplinary boundaries, but to ensure an effective connection between disciplines. This contribution reports on the strategy used in a transdisciplinary research project to address groundwater management in peri-urban areas in the Ganges delta. Groundwater management in peri-urban areas in rapidly urbanizing deltas is affected by diverse forces such as rapid population growth, increased economic activity and changing livelihood patterns, and other forces which result in a growing pressure on available groundwater resources. Understanding the intervention possibilities for a more sustainable groundwater management in these peri-urban areas requires an understanding of the dynamic interplay between various sub-systems, such as the physical groundwater system, the water using activities in households and livelihoods, and the institutional system of formal and informal rules that are used by various parties to access groundwater resources and to distribute the associated societal and economic costs and benefits. The ambition in the reported project is to contribute both new scientific knowledge, as well as build capacity with peri-urban stakeholders to improve the sustainability and equitability of local groundwater management. This is done by combining science and development activities, led by different organizations. The scientific component further consists of three

  2. Construction Management for Conventional Facilities of Proton Accelerator

    International Nuclear Information System (INIS)

    Kim, Jun Yeon; Cho, Jin Sam; Lee, Jae Sang

    2008-05-01

    Proton Engineering Frontier Project, puts its aim to building 100MeV 20mA linear proton accelerator which is national facility for NT, BT, IT, and future technologies, expected to boost up the national industry competitiveness. This R and D, Construction Management is in charge of the supportive works as site selection, architecture and engineering of conventional facilities, and overall construction management. The major goals of this work are as follows: At first, architecture and engineering of conventional facilities. Second, construction management, audit and inspection on construction of conventional facilities. Lastly, cooperation with the project host organization for adjusting technical issues of overall construction. In this research, We reviewed the basic design and made a detail design of conventional facilities. Preparation for construction license, site improvement and access road construction is fulfilled. Also, we made the technical support for project host as follows : selection of project host organization and host site selection, construction technical work for project host organization and procedure management

  3. Development and implementation of a comprehensive groundwater protection program at the Savannah River Plant

    International Nuclear Information System (INIS)

    Gordon, D.E.

    1984-01-01

    The major goals of the groundwater protection program are to evaluate the impact on groundwater quality as a result of Savannah River Plant operations, to take corrective measures as required to restore or protect groundwater quality, and to ensure that future operations do not adversely affect the quality or availability of the groundwater resources at the site. The specific elements of this program include (1) continuation of an extensive groundwater monitoring program, (2) assessment of waste disposal sites for impacts on groundwater quality, (3) implementation of mitigative actions, as required, to restore or protect groundwater quality, (4) incorporation of groundwater protection concepts in the design of new production and waste management facilities, and (5) review of site utilization of groundwater resources to ensure compatibility with regional needs. The major focal points of the groundwater protection program are the assessment of waste disposal sites for impacts on groundwater quality and the implementation of remedial action projects. Many locations at SRP have been used as waste disposal sites for a variety of liquid and solid wastes. Field investigations are ongoing to determine the nature and extent of any contamination in the sediments and groundwater at these waste sites on a priority basis. Remedial action has been initiated. Certain aspects of the groundwater protection program have been identified as key to the success in achieving the desired objectives. Key elements of the program have included early identification of all the potential sources for groundwater contamination, development of an overall strategy for waste site assessment and mitigation, use of a flexible computerized system for data base management, and establishing good relationships with regulatory agencies. 10 references, 6 figures, 4 tables

  4. Calendar year 1993 groundwater quality report for the Chestnut Ridge Hydrogeologic Regime, Y-12 Plant, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1994-02-01

    This annual groundwater report contains groundwater quality data obtained during the 1993 calendar year (CY) at several hazardous and non-hazardous waste-management facilities associated with the US Department of Energy (DOE) Y-12 Plant located on the DOE Oak Ridge Reservation (ORR) southeast of Oak Ridge, Tennessee. These sites are located south of the Y-12 Plant in the Chestnut Ridge Hydrogeologic Regime (Chestnut Ridge Regime), which is one of three regimes defined for the purposes of groundwater quality monitoring at the Y-12 Plant. The Environmental Management Department of the Y-12 Plant Health, Safety, Environment, and Accountability Organization manages the groundwater monitoring activities in each regime as part of the Y-12 Plant Groundwater Protection Program (GWPP). The annual groundwater report for the Chestnut Ridge Regime is completed in two-parts; Part 1 (this report) containing the groundwater quality data and Part 2 containing a detailed evaluation of the data. The primary purpose of this report is to serve as a reference for the groundwater quality data obtained each year under the lead of the Y-12 Plant GWPP. However, because it contains information needed to comply with Resource Conservation and Recovery Act (RCRA) interim status assessment monitoring and reporting requirements, this report is submitted to the Tennessee Department of Health and Environment (TDEC) by the RCRA reporting deadline

  5. Groundwater Modeling in Support of Water Resources Management and Planning under Complex Climate, Regulatory, and Economic Stresses

    Directory of Open Access Journals (Sweden)

    Emin C. Dogrul

    2016-12-01

    Full Text Available Groundwater is an important resource that meets part or all of the water demand in many developed basins. Since it is an integral part of the hydrologic cycle, management of groundwater resources must consider not only the management of surface flows but also the variability in climate. In addition, agricultural and urban activities both affect the availability of water resources and are affected by it. Arguably, the Central Valley of the State of California, USA, can be considered a basin where all stresses that can possibly affect the management of groundwater resources seem to have come together: a vibrant economy that depends on water, a relatively dry climate, a disparity between water demand and availability both in time and space, heavily managed stream flows that are susceptible to water quality issues and sea level rise, degradation of aquifer conditions due to over-pumping, and degradation of the environment with multiple species becoming endangered. Over the past fifteen years, the California Department of Water Resources has developed and maintained the Integrated Water Flow Model (IWFM to aid in groundwater management and planning under complex, and often competing, requirements. This paper will describe features of IWFM as a generic modeling tool, and showcase several of its innovative applications within California.

  6. RCRA Assessment Plan for Single-Shell Tank Waste Management Area S-SX at the Hanford Site

    International Nuclear Information System (INIS)

    Chou, C.J.; Johnson, V.G.

    1999-01-01

    A groundwater quality assessment plan was prepared for waste management area S-SX at the Hanford Site. Groundwater monitoring is conducted at this facility in accordance with Title 40, Code of Federal Regulation (CFR) Part 265, Subpart F [and by reference of Washington Administrative Code (WAC) 173-303-400(3)]. The facility was placed in assessment groundwater monitoring program status after elevated waste constituents and indicator parameter measurements (i.e., chromium, technetium-99 and specific conductance) in downgradient monitoring wells were observed and confirmed. A first determination, as allowed under 40 CFR 265.93(d), provides the owner/operator of a facility an opportunity to demonstrate that the regulated unit is not the source of groundwater contamination. Based on results of the first determination it was concluded that multiple source locations in the waste management area could account for observed spatial and temporal groundwater contamination patterns. Consequently, a continued investigation is required. This plan, developed using the data quality objectives process, is intended to comply with the continued investigation requirement. Accordingly, the primary purpose of the present plan is to determine the rate and extent of dangerous waste (hexavalent chromium and nitrate) and radioactive constituents (e.g., technetium-99) in groundwater and to determine their concentrations in groundwater beneath waste management area S-SX. Comments and concerns expressed by the Washington State Department of Ecology on the initial waste management area S-SX assessment report were addressed in the descriptive narrative of this plan as well as in the planned activities. Comment disposition is documented in a separate addendum to this plan

  7. Y-12 Plant Groundwater Protection Program: Groundwater and surface water sampling and analysis plan for Calendar Year 1998

    International Nuclear Information System (INIS)

    1997-09-01

    This plan provides a description of the groundwater and surface water quality monitoring activities planned for calendar year (CY) 1998 at the Department of Energy (DOE) Y-12 Plant. These monitoring activities are managed by the Y-12 Plant Environmental Compliance Organization through the Y-12 Plant Groundwater Protection Program (GWPP). Groundwater and surface water monitoring during CY 1998 will be performed in three hydrogeologic regimes at the Y-12 Plant: the Bear Creek Hydrogeologic Regime (Bear Creek Regime), the Upper East Fork Poplar Creek Hydrogeologic Regime (East Fork Regime), and the Chestnut Ridge Hydrogeologic Regime (Chestnut Ridge Regime). The Bear Creek and East Fork regimes are located within Bear Creek Valley, and the Chestnut Ridge Regime is located south of the Y-12 Plant. Groundwater and surface water monitoring will be performed during CY 1998 to comply with: (1) requirements specified in Resource Conservation and Recover Act (RCRA) post-closure permits regarding RCRA corrective action monitoring and RCRA detection monitoring; (2) Tennessee Department of Environment and Conservation regulations governing detection monitoring at nonhazardous solid waste management facilities; and (3) DOE Order 5400.1 surveillance monitoring and exit pathway monitoring. Data from some of the sampling locations in each regime will be used to meet the requirements of more than one of the monitoring drivers listed above. Modifications to the CY 1998 monitoring program may be necessary during implementation. For example, changes in regulatory requirements may alter the parameters specified for selected monitoring wells, or wells could be removed from the planned monitoring network. All modifications to the monitoring program will be approved by the Y-12 Plant GWPP manager and documented as addenda to this sampling and analysis plan

  8. Y-12 Plant Groundwater Protection Program Groundwater and Surface Water sampling and Analysis Plan for Calendar Year 2000

    International Nuclear Information System (INIS)

    1999-01-01

    This plan provides a description of the groundwater and surface water quality monitoring activities planned for calendar year (CY) 2000 at the U.S. Department of Energy (DOE) Y-12 Plant that will be managed by tie Y-12 Plant Groundwater Protection Program (GWPP). Groundwater and surface water monitoring during CY 2000 will be performed in three hydrogeologic regimes at the Y-12 Plant: the Bear Creek Hydrogeologic Regime (Bear Creek Regime), the Upper East Fork Poplar Creek Hydrogeologic Regime (East Fork Regime), and the Chestnut Ridge Hydrogeologic Regime (Chestnut Ridge Regime). The Bear Creek and East Fork regimes are located in Bear Creek Valley, and the Chestnut Ridge Regime is located south of the Y-12 Plant (Figure 1). Groundwater and surface water monitoring performed under the auspices of the Y-12 Plant GWPP during CY 2000 will comply with: Tennessee Department of Environment and Conservation regulations governing detection monitoring at nonhazardous Solid Waste Disposal Facilities (SWDF); and DOE Order 5400.1 surveillance monitoring and exit pathway/perimeter monitoring. Some of the data collected for these monitoring drivers also will be used to meet monitoring requirements of the Integrated Water Quality Program, which is managed by Bechtel Jacobs Company LLC. Data from five wells that are monitored for SWDF purposes in the Chestnut Ridge Regime will be used to comply with requirements specified in the Resource Conservation and Recovery Act post closure permit regarding corrective action monitoring. Modifications to the CY 2000 monitoring program may be necessary during implementation. Changes in regulatory or programmatic requirements may alter the analytes specified for selected monitoring wells, or wells could be added or removed from the planned monitoring network. All modifications to the monitoring program will be approved by the Y-12 Plant GWPP manager and documented as addenda to this sampling and analysis plan

  9. Devising a groundwater monitoring strategy for a geologic repository for radioactive waste

    International Nuclear Information System (INIS)

    Leonhart, L.S.; DeLuca, F.A.; Sheahan, N.T.; West, L.M.

    1981-01-01

    This paper represents a topical treatment of the subject of groundwater monitoring as it relates to the particular needs of high-level nuclear waste disposal facilities using the Basalt Waste Isolation Project (BWIP) as a specific reference. While the involvement with management of high-level radioactive wastes and the design and operation of repository facilities is presently parochial to the federal government and certain prime contractors, it is believed that the technical aspects involved with this groundwater monitoring example provide an interesting comparison with those encountered at near-surface and underground-injection, hazardous waste disposal operations. In particular, the integration of several program facets ranging from baselining parameters to validation of predictive models into a comprehensive strategy may be of interest. It is hoped that this type of conceptual exchange will be beneficial to all concerned

  10. Knowledge Map of Facilities Management

    DEFF Research Database (Denmark)

    Nenonen, Suvi; Jensen, Per Anker; Lindahl, Göran

    2014-01-01

    both the research community and FM-practitioners can develop new models for identifying knowledge needs and gaps and to improve knowledge sharing and knowledge flow and thus the fulfilment of their mission and goals. Knowledge maps can also help in organizing research activities and analysing......Purpose This paper aims to draft a knowledge map of the fragmented and multidisciplinary research of and relevant to FM. Facilities management knowledge map is a tool for presenting what relevant data and knowledge, a.k.a. knowledge, resides in different disciplines. Knowledge mapping is a step...... in creating an inventory of knowledge (i.e. the knowledge base) and developing/improving the processes of knowledge sharing in research, education and practice. Theory Knowledge mapping is discussed in terms of knowledge management. The research is connected to knowledge mapping in the facilities management...

  11. Framework to evaluate the worth of hydraulic conductivity data for optimal groundwater resources management in ecologically sensitive areas

    Science.gov (United States)

    Feyen, Luc; Gorelick, Steven M.

    2005-03-01

    We propose a framework that combines simulation optimization with Bayesian decision analysis to evaluate the worth of hydraulic conductivity data for optimal groundwater resources management in ecologically sensitive areas. A stochastic simulation optimization management model is employed to plan regionally distributed groundwater pumping while preserving the hydroecological balance in wetland areas. Because predictions made by an aquifer model are uncertain, groundwater supply systems operate below maximum yield. Collecting data from the groundwater system can potentially reduce predictive uncertainty and increase safe water production. The price paid for improvement in water management is the cost of collecting the additional data. Efficient data collection using Bayesian decision analysis proceeds in three stages: (1) The prior analysis determines the optimal pumping scheme and profit from water sales on the basis of known information. (2) The preposterior analysis estimates the optimal measurement locations and evaluates whether each sequential measurement will be cost-effective before it is taken. (3) The posterior analysis then revises the prior optimal pumping scheme and consequent profit, given the new information. Stochastic simulation optimization employing a multiple-realization approach is used to determine the optimal pumping scheme in each of the three stages. The cost of new data must not exceed the expected increase in benefit obtained in optimal groundwater exploitation. An example based on groundwater management practices in Florida aimed at wetland protection showed that the cost of data collection more than paid for itself by enabling a safe and reliable increase in production.

  12. The transport of antibiotic resistance genes and residues in groundwater near swine production facilities

    Science.gov (United States)

    Lin, Y. F.; Yannarell, A. C.; Mackie, R. I.; Krapac, I. G.; Chee-Sanford, J. S.; Koike, S.

    2008-12-01

    The use of antibiotics at concentrated animal feeding operations (CAFOs) for disease prevention, disease treatment, and growth promotion can contribute to the spread of antibiotic compounds, their breakdown products, and antibiotic resistant bacteria and/or the genes that confer resistance. In addition, constitutive use of antibiotics at sub-therapeutic levels can select for antibiotic resistance among the bacteria that inhabit animal intestinal tracts, onsite manure treatment facilities, and any environments receiving significant inputs of manure (e.g. through waste lagoon leakage or fertilizer amendments to farm soils). If the antibiotic resistant organisms persist in these new environments, or if they participate in genetic exchanges with the native microflora, then CAFOs may constitute a significant reservoir for the spread of antibiotic resistance to the environment at large. Our results have demonstrated that leakage from waste treatment lagoons can influence the presence and persistence of tetracycline resistance genes in the shallow aquifer adjacent to swine CAFOs, and molecular phylogeny allowed us to distinguish "native" tetracycline resistance genes in control groundwater wells from manure-associated genes introduced from the lagoon. We have also been able to detect the presence of erythromycin resistance genes in CAFO surface and groundwater even though erythromycin is strictly reserved for use in humans and thus is not utilized at any of these sites. Ongoing research, including modeling of particle transport in groundwater, will help to determine the potential spatial and temporal extent of CAFO-derived antibiotic resistance.

  13. Groundwater Capture Zones

    Data.gov (United States)

    Iowa State University GIS Support and Research Facility — Source water protection areas are delineated for each groundwater-based public water supply system using available geologic and hydrogeologic information to...

  14. Optimized Management of Groundwater Resources in Kish Island: A Sensitivity Analysis of Optimal Strategies in Response to Environmental Changes

    Directory of Open Access Journals (Sweden)

    Davood Mahmoodzadeh

    2016-05-01

    Full Text Available Groundwater in coastal areas is an essential source of freshwater that warrants protection from seawater intrusion as a priority based on an optimal management plan. Proper optimal management strategies can be developed using a variety of decision-making models. The present study aims to investigate the impacts of environmental changes on groundwater resources. For this purpose, a combined simulation-optimization model is employed that incorporates the SUTRA numerical model and the evolutionaty method of ant colony optimization. The fresh groundwater lens in Kish Island is used as a case study and different scenarios are considered for the likely enviromental changes. Results indicate that while variations in recharge rate form an important factor in the fresh groundwater lens, land-surface inundation due to rises in seawater level, especially in low-lying lands, is the major factor affecting the lens. Furthermore, impacts of environmental changes when effected into the Kish Island aquifer optimization management plan have led to a reduction of more than 20% in the allowable water extraction, indicating the high sensitivity of groundwater resources management plans in small islands to such variations.

  15. Application of Artificial Neural Networks to Complex Groundwater Management Problems

    International Nuclear Information System (INIS)

    Coppola, Emery; Poulton, Mary; Charles, Emmanuel; Dustman, John; Szidarovszky, Ferenc

    2003-01-01

    As water quantity and quality problems become increasingly severe, accurate prediction and effective management of scarcer water resources will become critical. In this paper, the successful application of artificial neural network (ANN) technology is described for three types of groundwater prediction and management problems. In the first example, an ANN was trained with simulation data from a physically based numerical model to predict head (groundwater elevation) at locations of interest under variable pumping and climate conditions. The ANN achieved a high degree of predictive accuracy, and its derived state-transition equations were embedded into a multiobjective optimization formulation and solved to generate a trade-off curve depicting water supply in relation to contamination risk. In the second and third examples, ANNs were developed with real-world hydrologic and climate data for different hydrogeologic environments. For the second problem, an ANN was developed using data collected for a 5-year, 8-month period to predict heads in a multilayered surficial and limestone aquifer system under variable pumping, state, and climate conditions. Using weekly stress periods, the ANN substantially outperformed a well-calibrated numerical flow model for the 71-day validation period, and provided insights into the effects of climate and pumping on water levels. For the third problem, an ANN was developed with data collected automatically over a 6-week period to predict hourly heads in 11 high-capacity public supply wells tapping a semiconfined bedrock aquifer and subject to large well-interference effects. Using hourly stress periods, the ANN accurately predicted heads for 24-hour periods in all public supply wells. These test cases demonstrate that the ANN technology can solve a variety of complex groundwater management problems and overcome many of the problems and limitations associated with traditional physically based flow models

  16. Risk management study for the retired Hanford Site facilities

    International Nuclear Information System (INIS)

    Coles, G.A.; Shultz, M.V.; Taylor, W.E.

    1993-04-01

    Risk from retired surplus facilities has always been assumed to be low at the Hanford Site as the facilities are inactive and have few potentials for causing an offsite hazardous material release. However,the fatal accident that occurred in the spring of 1992 in which an employee fell through a deteriorated roof at the 105-F Reactor Building has raised the possibility that retired facilities represent a greater risk than was originally assumed. Therefore, Westinghouse Hanford Company and the US Department of Energy management have determined that facility risk management strategies and programmatic plans should be reevaluated to assure risks are identified and appropriate corrective action plans are developed. To evaluate risk management strategies, accurate risk information about the current and projected condition of the facilities must be developed. This work procedure has been created to address the development of accurate and timely risk information. By using the evaluation results in this procedure, it will be possible to create a prioritized baseline for managing facility risk until all retired surplus facilities are demolished

  17. Waste Management Facilities Cost Information Report

    Energy Technology Data Exchange (ETDEWEB)

    Feizollahi, F.; Shropshire, D.

    1992-10-01

    The Waste Management Facility Cost Information (WMFCI) Report, commissioned by the US Department of Energy (DOE), develops planning life-cycle cost (PLCC) estimates for treatment, storage, and disposal facilities. This report contains PLCC estimates versus capacity for 26 different facility cost modules. A procedure to guide DOE and its contractor personnel in the use of estimating data is also provided. Estimates in the report apply to five distinctive waste streams: low-level waste, low-level mixed waste, alpha contaminated low-level waste, alpha contaminated low-level mixed waste, and transuranic waste. The report addresses five different treatment types: incineration, metal/melting and recovery, shredder/compaction, solidification, and vitrification. Data in this report allows the user to develop PLCC estimates for various waste management options.

  18. Waste Management Facilities Cost Information Report

    International Nuclear Information System (INIS)

    Feizollahi, F.; Shropshire, D.

    1992-10-01

    The Waste Management Facility Cost Information (WMFCI) Report, commissioned by the US Department of Energy (DOE), develops planning life-cycle cost (PLCC) estimates for treatment, storage, and disposal facilities. This report contains PLCC estimates versus capacity for 26 different facility cost modules. A procedure to guide DOE and its contractor personnel in the use of estimating data is also provided. Estimates in the report apply to five distinctive waste streams: low-level waste, low-level mixed waste, alpha contaminated low-level waste, alpha contaminated low-level mixed waste, and transuranic waste. The report addresses five different treatment types: incineration, metal/melting and recovery, shredder/compaction, solidification, and vitrification. Data in this report allows the user to develop PLCC estimates for various waste management options

  19. Prediction Uncertainty and Groundwater Management: Approaches to get the Most out of Probabilistic Outputs

    Science.gov (United States)

    Peeters, L. J.; Mallants, D.; Turnadge, C.

    2017-12-01

    Groundwater impact assessments are increasingly being undertaken in a probabilistic framework whereby various sources of uncertainty (model parameters, model structure, boundary conditions, and calibration data) are taken into account. This has resulted in groundwater impact metrics being presented as probability density functions and/or cumulative distribution functions, spatial maps displaying isolines of percentile values for specific metrics, etc. Groundwater management on the other hand typically uses single values (i.e., in a deterministic framework) to evaluate what decisions are required to protect groundwater resources. For instance, in New South Wales, Australia, a nominal drawdown value of two metres is specified by the NSW Aquifer Interference Policy as trigger-level threshold. In many cases, when drawdowns induced by groundwater extraction exceed two metres, "make-good" provisions are enacted (such as the surrendering of extraction licenses). The information obtained from a quantitative uncertainty analysis can be used to guide decision making in several ways. Two examples are discussed here: the first of which would not require modification of existing "deterministic" trigger or guideline values, whereas the second example assumes that the regulatory criteria are also expressed in probabilistic terms. The first example is a straightforward interpretation of calculated percentile values for specific impact metrics. The second examples goes a step further, as the previous deterministic thresholds do not currently allow for a probabilistic interpretation; e.g., there is no statement that "the probability of exceeding the threshold shall not be larger than 50%". It would indeed be sensible to have a set of thresholds with an associated acceptable probability of exceedance (or probability of not exceeding a threshold) that decreases as the impact increases. We here illustrate how both the prediction uncertainty and management rules can be expressed in a

  20. Calendar year 1995 groundwater quality report for the upper east Fork Poplar Creek Hydrogeologic regime, Oak Ridge Y-12 Plant, Oak Ridge, Tennessee. 1995 Groundwater quality data and calculated rate of contaminant migration

    International Nuclear Information System (INIS)

    1996-02-01

    This annual groundwater quality report (GWQR) contains groundwater and surface water quality data obtained during the 1995 calendar year (CY) at several waste management facilities associated with the U.S. Department of Energy (DOE) Y-12 Plant located on the DOE Oak Ridge Reservation (ORR) southeast of Oak Ridge, Tennessee. The U.S. Environmental Protection Agency (EPA) identification number for the Y-12 Plant is TN3 89 009 0001. The sites addressed by this document are located within the Upper East Fork Poplar Creek Hydrogeologic Regime (East Fork Regime). The East Fork Regime, which is one of three hydrogeologic regimes defined for the purposes of groundwater quality monitoring at the Y-12 Plant, encompasses the Y-12 Plant

  1. Technical Merits and Leadership in Facility Management

    National Research Council Canada - National Science Library

    Shoemaker, Jerry

    1997-01-01

    After almost ten years of experience and formal education in design, construction, and facility operations and maintenance, the challenges and complexity of facility management still seem overwhelming and intangible...

  2. Optimizing water resources management in large river basins with integrated surface water-groundwater modeling: A surrogate-based approach

    Science.gov (United States)

    Wu, Bin; Zheng, Yi; Wu, Xin; Tian, Yong; Han, Feng; Liu, Jie; Zheng, Chunmiao

    2015-04-01

    Integrated surface water-groundwater modeling can provide a comprehensive and coherent understanding on basin-scale water cycle, but its high computational cost has impeded its application in real-world management. This study developed a new surrogate-based approach, SOIM (Surrogate-based Optimization for Integrated surface water-groundwater Modeling), to incorporate the integrated modeling into water management optimization. Its applicability and advantages were evaluated and validated through an optimization research on the conjunctive use of surface water (SW) and groundwater (GW) for irrigation in a semiarid region in northwest China. GSFLOW, an integrated SW-GW model developed by USGS, was employed. The study results show that, due to the strong and complicated SW-GW interactions, basin-scale water saving could be achieved by spatially optimizing the ratios of groundwater use in different irrigation districts. The water-saving potential essentially stems from the reduction of nonbeneficial evapotranspiration from the aqueduct system and shallow groundwater, and its magnitude largely depends on both water management schemes and hydrological conditions. Important implications for water resources management in general include: first, environmental flow regulation needs to take into account interannual variation of hydrological conditions, as well as spatial complexity of SW-GW interactions; and second, to resolve water use conflicts between upper stream and lower stream, a system approach is highly desired to reflect ecological, economic, and social concerns in water management decisions. Overall, this study highlights that surrogate-based approaches like SOIM represent a promising solution to filling the gap between complex environmental modeling and real-world management decision-making.

  3. Groundwater Monitoring Report Central Nevada Test Area, Corrective Action Unit 443

    Energy Technology Data Exchange (ETDEWEB)

    None

    2008-04-01

    This report presents the 2007 groundwater monitoring results collected by the U.S. Department of Energy (DOE) Office of Legacy Management (LM) for the Central Nevada Test Area (CNTA) Corrective Action Unit (CAU) 443. Responsibility for the environmental site restoration of the CNTA was transferred from the DOE Office of Environmental Management (DOE-EM) to DOE-LM on October 1, 2006. Requirements for CAU 443 are specified in the Federal Facility Agreement and Consent Order (FFACO 2005) entered into by DOE, the U.S. Department of Defense, and the State of Nevada and includes groundwater monitoring in support of site closure. This is the first groundwater monitoring report prepared by DOE-LM for the CNTA The CNTA is located north of U.S. Highway 6, approximately 30 miles north of Warm Springs in Nye County, Nevada (Figure 1). Three emplacement boreholes, UC-1, UC-3, and UC-4, were drilled at the CNTA for underground nuclear weapons testing. The initial underground nuclear test, Project Faultless, was conducted in borehole UC-1 at a depth of 3,199 feet (ft) (975 meters) below ground surface on January 19, 1968. The yield of the Project Faultless test was estimated to be 0.2 to 1 megaton (DOE 2004). The test resulted in a down-dropped fault block visible at land surface (Figure 2). No further testing was conducted at the CNTA, and the site was decommissioned as a testing facility in 1973.

  4. Public Facilities Management and Action Research for Sustainability

    DEFF Research Database (Denmark)

    Galamba, Kirsten Ramskov

    Current work is the main product of a PhD study with the initial working title ‘Sustainable Facilities Management’ at Centre for Facilities Management – Realdania Research, DTU Management 1. December 2008 – 30. November 2011. Here the notion of Public Sustainable Facilities Management (FM......) is analysed in the light of a change process in a Danish Municipal Department of Public Property. Three years of Action Research has given a unique insight in the reality in a Municipal Department of Public Property, and as to how a facilitated change process can lead to a more holistic and sustainable...

  5. AEM and NMR: Tools for the Future of Groundwater Management

    Science.gov (United States)

    Abraham, J. D.; Cannia, J. C.; Lawrie, K.

    2012-12-01

    Within the world, understanding groundwater resources and their management are growing in importance to society as groundwater resources are stressed by drought and continued development. To minimize conflicts, tools and techniques need to be applied to support knowledge-based decisions and management. Airborne electromagnetic (AEM) surveys provide high-quality subsurface data not available from any other source for building the complex hydrogeologic frameworks needed by water-resource managers for effective groundwater management. Traditionally, point data, such as borehole logs, borehole geophysics, surface geophysics, and aquifer tests were interpolated over long distances to create hydrogeologic frameworks. These methods have enjoyed a long history of being the best available technology to inform our understanding of groundwater and how it moves. The AEM techniques proivde pathway for geoscientists to follow to develop more accurate descriptions of the hydrogeological framework. However, the critical and challenging measurements in characterizing aquifers include effective porosity and hydraulic conductivity. These parameters are not reliable derived from AEM. Typically, values for effective porosity and hydraulic conductivity are derived by lithological comparisons with published data; direct measurements of hydraulic conductivity acquired by a few constant head aquifer tests or slug tests; and expensive and time consuming laboratory measurements of cores which can be biased by sampling and the difficulty of making measurements on unconsolidated materials. Aquifer tests are considered to be the best method to gather information on hydraulic conductivity but are rare because of cost and difficult logistics. Also they are unique in design and interpretation from site to site. Nuclear Magnetic Resonance (NMR) can provide a direct measurement of the presence of water in the pore space of aquifer materials. Detection and direct measurement is possible due to the

  6. FFTF [Fast Flux Test Facility] management

    International Nuclear Information System (INIS)

    Bennett, C.L.

    1986-11-01

    Fuel Management at the Fast Flux Test Facility (FFTF) involves more than just the usual ex-core and in-core management of standard fuel and non-fuel components between storage locations and within the core since it is primarily an irradiation test facility. This mission involves testing an ever increasing variety of fueled and non-fueled experiments, each having unique requirements on the reactor core as well as having its own individual impact on the reload design. This paper describes the fuel management process used by the Westinghouse Hanford Company Core Engineering group that has led to the successful reload design of nine operating cycles and the irradiation of over 120 tests

  7. Assessing regional groundwater stress for nations using multiple data sources with the groundwater footprint

    International Nuclear Information System (INIS)

    Gleeson, Tom; Wada, Yoshihide

    2013-01-01

    Groundwater is a critical resource for agricultural production, ecosystems, drinking water and industry, yet groundwater depletion is accelerating, especially in a number of agriculturally important regions. Assessing the stress of groundwater resources is crucial for science-based policy and management, yet water stress assessments have often neglected groundwater and used single data sources, which may underestimate the uncertainty of the assessment. We consistently analyze and interpret groundwater stress across whole nations using multiple data sources for the first time. We focus on two nations with the highest national groundwater abstraction rates in the world, the United States and India, and use the recently developed groundwater footprint and multiple datasets of groundwater recharge and withdrawal derived from hydrologic models and data synthesis. A minority of aquifers, mostly with known groundwater depletion, show groundwater stress regardless of the input dataset. The majority of aquifers are not stressed with any input data while less than a third are stressed for some input data. In both countries groundwater stress affects agriculturally important regions. In the United States, groundwater stress impacts a lower proportion of the national area and population, and is focused in regions with lower population and water well density compared to India. Importantly, the results indicate that the uncertainty is generally greater between datasets than within datasets and that much of the uncertainty is due to recharge estimates. Assessment of groundwater stress consistently across a nation and assessment of uncertainty using multiple datasets are critical for the development of a science-based rationale for policy and management, especially with regard to where and to what extent to focus limited research and management resources. (letter)

  8. A review of sustainable facilities management knowledge and practice

    Directory of Open Access Journals (Sweden)

    Baaki Timothy Kurannen

    2016-01-01

    Full Text Available Sustainability is seen as a far-reaching issue now, and one which the facilities management [FM] profession cannot overlook. This paper explores current sustainable facilities management [SFM] knowledge and practice with specific focus on performance as part of a research focus toward proposing a sustainable FM performance management framework for sustainable healthcare waste management in Malaysia. This paper utilized a review of extant literature on the subject of SFM, FM performance and FM development in Malaysia as source of information. Findings reflect the increasing recognition of the need for the strategic FM function, and how facilities managers are best positioned to drive organizations’ sustainability agendas. In Malaysian context, this recognition is barely evident as findings show FM practice is still immature and predominantly operational. Unlike developed FM markets, FM relevance in Malaysia is being driven by the public sector. Also findings show a disharmony between organizations’ sustainability priority areas and the responsibilities for facilities managers to execute them where the sustainability policy of organizations prioritize one FM service and the facilities managers’ responsibilities prioritize another. As most of SFM implementation is driven by legislation this seems to strengthen the position that, organizations continue to view support services as non-value-adding, as unavoidable liabilities. The implication of this is the pressure on the FM function to continually express its strategic relevance to organizations by tangible value-adding performance output. This creates a new perspective to measuring and managing facilities performance. This paper therefore elevates the importance of FM performance management in SFM context taking into account the peculiar position of the facilities manager. This is seen as a way forward for FM to better express its value to the organization

  9. An Application of Business Process Management to Health Care Facilities.

    Science.gov (United States)

    Hassan, Mohsen M D

    The purpose of this article is to help health care facility managers and personnel identify significant elements of their facilities to address, and steps and actions to follow, when applying business process management to them. The ABPMP (Association of Business Process Management Professionals) life-cycle model of business process management is adopted, and steps from Lean, business process reengineering, and Six Sigma, and actions from operations management are presented to implement it. Managers of health care facilities can find in business process management a more comprehensive approach to improving their facilities than Lean, Six Sigma, business process reengineering, and ad hoc approaches that does not conflict with them because many of their elements can be included under its umbrella. Furthermore, the suggested application of business process management can guide and relieve them from selecting among these approaches, as well as provide them with specific steps and actions that they can follow. This article fills a gap in the literature by presenting a much needed comprehensive application of business process management to health care facilities that has specific steps and actions for implementation.

  10. Guidelines for operator competence - Optimising facility management processes; Leitfaden Betreiberkompetenz. Schritt fuer Schritt Facility Management Prozesse optimieren

    Energy Technology Data Exchange (ETDEWEB)

    Moser, R

    2005-06-15

    This brochure issued by IFMA (International Facility Management Association) Switzerland and the Swiss Federal Office of Energy (SFOE) presents interactive guidelines for energy management in the area of facility management. These guidelines are based on the results of a project carried out by the International Energy Agency's Annex 40 'Operator competence'. The guidelines provide a step-by-step guide from initial analysis through to successful project completion and answer many questions that may crop up during the process. The focus is placed on energy aspects. Tools and 14 sample process descriptions are provided along with practical examples. Theoretical aspects are also presented and discussed, including models for operator roles and the processes involved. Also, change, risk and knowledge management are examined. Notes and information on possibilities for further education are presented.

  11. Guidelines for operator competence - Optimising facility management processes; Leitfaden Betreiberkompetenz. Schritt fuer Schritt Facility Management Prozesse optimieren

    Energy Technology Data Exchange (ETDEWEB)

    Moser, R.

    2005-06-15

    This brochure issued by IFMA (International Facility Management Association) Switzerland and the Swiss Federal Office of Energy (SFOE) presents interactive guidelines for energy management in the area of facility management. These guidelines are based on the results of a project carried out by the International Energy Agency's Annex 40 'Operator competence'. The guidelines provide a step-by-step guide from initial analysis through to successful project completion and answer many questions that may crop up during the process. The focus is placed on energy aspects. Tools and 14 sample process descriptions are provided along with practical examples. Theoretical aspects are also presented and discussed, including models for operator roles and the processes involved. Also, change, risk and knowledge management are examined. Notes and information on possibilities for further education are presented.

  12. The use of surrogates for an optimal management of coupled groundwater-agriculture hydrosystems

    Science.gov (United States)

    Grundmann, J.; Schütze, N.; Brettschneider, M.; Schmitz, G. H.; Lennartz, F.

    2012-04-01

    For ensuring an optimal sustainable water resources management in arid coastal environments, we develop a new simulation based integrated water management system. It aims at achieving best possible solutions for groundwater withdrawals for agricultural and municipal water use including saline water management together with a substantial increase of the water use efficiency in irrigated agriculture. To achieve a robust and fast operation of the management system regarding water quality and water quantity we develop appropriate surrogate models by combining physically based process modelling with methods of artificial intelligence. Thereby we use an artificial neural network for modelling the aquifer response, inclusive the seawater interface, which was trained on a scenario database generated by a numerical density depended groundwater flow model. For simulating the behaviour of high productive agricultural farms crop water production functions are generated by means of soil-vegetation-atmosphere-transport (SVAT)-models, adapted to the regional climate conditions, and a novel evolutionary optimisation algorithm for optimal irrigation scheduling and control. We apply both surrogates exemplarily within a simulation based optimisation environment using the characteristics of the south Batinah region in the Sultanate of Oman which is affected by saltwater intrusion into the coastal aquifer due to excessive groundwater withdrawal for irrigated agriculture. We demonstrate the effectiveness of our methodology for the evaluation and optimisation of different irrigation practices, cropping pattern and resulting abstraction scenarios. Due to contradicting objectives like profit-oriented agriculture vs. aquifer sustainability a multi-criterial optimisation is performed.

  13. Risk management activities at the DOE Class A reactor facilities

    International Nuclear Information System (INIS)

    Sharp, D.A.; Hill, D.J.; Linn, M.A.; Atkinson, S.A.; Hu, J.P.

    1993-01-01

    The probabilistic risk assessment (PRA) and risk management group of the Association for Excellence in Reactor Operation (AERO) develops risk management initiatives and standards to improve operation and increase safety of the DOE Class A reactor facilities. Principal risk management applications that have been implemented at each facility are reviewed. The status of a program to develop guidelines for risk management programs at reactor facilities is presented

  14. Quality management in nuclear facilities decommissioning

    International Nuclear Information System (INIS)

    Garonis, Omar H.

    2002-01-01

    Internationally, the decommissioning organizations of nuclear facilities carry out the decommissioning according to the safety requirements established for the regulatory bodies. Some of them perform their activities in compliance with a quality assurance system. This work establishes standardization through a Specifications Requirement Document, for the management system of the nuclear facilities decommissioning organizations. It integrates with aspects of the quality, environmental, occupational safety and health management systems, and also makes these aspects compatible with all the requirements of the nuclear industry recommended for the International Atomic Energy Agency (IAEA). (author)

  15. Performance assessment techniques for groundwater recovery and treatment systems

    Energy Technology Data Exchange (ETDEWEB)

    Kirkpatrick, G.L. [Environmental Resources Management, Inc., Exton, PA (United States)

    1993-03-01

    Groundwater recovery and treatment (pump and treat systems) continue to be the most commonly selected remedial technology for groundwater restoration and protection programs at hazardous waste sites and RCRA facilities nationwide. Implementing a typical groundwater recovery and treatment system includes the initial assessment of groundwater quality, characterizing aquifer hydrodynamics, recovery system design, system installation, testing, permitting, and operation and maintenance. This paper focuses on methods used to assess the long-term efficiency of a pump and treat system. Regulatory agencies and industry alike are sensitive to the need for accurate assessment of the performance and success of groundwater recovery systems for contaminant plume abatement and aquifer restoration. Several assessment methods are available to measure the long-term performance of a groundwater recovery system. This paper presents six assessment techniques: degree of compliance with regulatory agency agreement (Consent Order of Record of Decision), hydraulic demonstration of system performance, contaminant mass recovery calculation, system design and performance comparison, statistical evaluation of groundwater quality and preferably, integration of the assessment methods. Applying specific recovery system assessment methods depends upon the type, amount, and quality of data available. Use of an integrated approach is encouraged to evaluate the success of a groundwater recovery and treatment system. The methods presented in this paper are for engineers and corporate management to use when discussing the effectiveness of groundwater remediation systems with their environmental consultant. In addition, an independent (third party) system evaluation is recommended to be sure that a recovery system operates efficiently and with minimum expense.

  16. Arrangement of disposal holes according to the features of groundwater flow

    Energy Technology Data Exchange (ETDEWEB)

    Ko, Nak Youl; Baik, Min Hoon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-12-15

    Based on the results of groundwater flow system modeling for a hypothetical deep geological repository site, quantitative and spatial distributions of groundwater flow rates at the positions of deposition holes, groundwater travel length and time from the positions to the surface environment were analyzed and used to suggest a method for determining locations of deposition holes. The hydraulic head values at the depth of the deposition holes and a particle tracking method were used to calculate the groundwater flow rates and groundwater travel length and time, respectively. From the results, an approach to designing a layout of deposition holes was suggested by selecting relatively favorable positions for maintaining performance of the disposal facility and screening some positions of deposition holes that did not comply with specific constraints for the groundwater flow rates, travel length and time. In addition, a method for determining a geometrical direction for extension of the disposal facility was discussed. Designing the layout of deposition holes with the information of groundwater flow at the disposal depth can contribute to secure performance and safety of the disposal facility.

  17. The precautionary principle and chemicals management: The example of perfluoroalkyl acids in groundwater.

    Science.gov (United States)

    Cousins, Ian T; Vestergren, Robin; Wang, Zhanyun; Scheringer, Martin; McLachlan, Michael S

    2016-09-01

    Already in the late 1990s microgram-per-liter levels of perfluorooctane sulfonate (PFOS) were measured in water samples from areas where fire-fighting foams were used or spilled. Despite these early warnings, the problems of groundwater, and thus drinking water, contaminated with perfluoroalkyl and polyfluoroalkyl substances (PFASs) including PFOS are only beginning to be addressed. It is clear that this PFAS contamination is poorly reversible and that the societal costs of clean-up will be high. This inability to reverse exposure in a reasonable timeframe is a major motivation for application of the precautionary principle in chemicals management. We conclude that exposure can be poorly reversible; 1) due to slow elimination kinetics in organisms, or 2) due to poorly reversible environmental contamination that leads to continuous exposure. In the second case, which is relevant for contaminated groundwater, the reversibility of exposure is not related to the magnitude of a chemical's bioaccumulation potential. We argue therefore that all PFASs entering groundwater, irrespective of their perfluoroalkyl chain length and bioaccumulation potential, will result in poorly reversible exposures and risks as well as further clean-up costs for society. To protect groundwater resources for future generations, society should consider a precautionary approach to chemicals management and prevent the use and release of highly persistent and mobile chemicals such as PFASs. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Nevada Test Site 2000 Annual Data Report: Groundwater Monitoring Program Area 5 Radioactive Waste Management Site

    Energy Technology Data Exchange (ETDEWEB)

    Y. E.Townsend

    2001-02-01

    This report is a compilation of the calendar year 2000 groundwater sampling results from the Area 5 Radioactive Waste Management Site (RWMS). Contamination indicator data are presented in control chart and tabular form with investigation levels (IL) indicated. Gross water chemistry data are presented in graphical and tabular form. Other information in the report includes, the Cumulative Chronology for Area 5 RWMS Groundwater Monitoring Program, a brief description of the site hydrogeology, and the groundwater sampling procedure.

  19. Nevada Test Site 2000 Annual Data Report: Groundwater Monitoring Program Area 5 Radioactive Waste Management Site

    International Nuclear Information System (INIS)

    Y. E.Townsend

    2001-01-01

    This report is a compilation of the calendar year 2000 groundwater sampling results from the Area 5 Radioactive Waste Management Site (RWMS). Contamination indicator data are presented in control chart and tabular form with investigation levels (IL) indicated. Gross water chemistry data are presented in graphical and tabular form. Other information in the report includes, the Cumulative Chronology for Area 5 RWMS Groundwater Monitoring Program, a brief description of the site hydrogeology, and the groundwater sampling procedure

  20. F/H seepage basin groundwater influent, effluent, precipitated sludge characterization task technical plan

    International Nuclear Information System (INIS)

    Siler, J.L.

    1993-01-01

    A treatability study to support the development of a remediation system which would reduce the contaminant levels in groundwater removed from the aquifers in the vicinity of the F/H seepage basins and southwest of the Mixed Waste Management Facility (MWMF) at the Savannah River facility was conducted. Proposed changes in the remediation system require an additional study to determine whether precipitated sludge generated from the proposed remediation system will be hazardous as defined by RCRA. Several contaminants, such as lead and mercury, are above the groundwater protection standards. The presence of radionuclides and other contaminants in the sludge does not present a problem provided that the sludge can pass the Toxicity Characteristic Leaching Procedure (TCLP) test. The study has been developed in such a manner as to cover the possible range of treatment options that may be used

  1. Monitoring and Assessing Groundwater Impacts on Vegetation Health in Groundwater Dependent Ecosystems

    Science.gov (United States)

    Rohde, M. M.; Ulrich, C.; Howard, J.; Sweet, S.

    2017-12-01

    Sustainable groundwater management is important for preserving our economy, society, and environment. Groundwater supports important habitat throughout California, by providing a reliable source of water for these Groundwater Dependent Ecosystems (GDEs). Groundwater is particularly important in California since it supplies an additional source of water during the dry summer months and periods of drought. The drought and unsustainable pumping practices have, in some areas, lowered groundwater levels causing undesirable results to ecosystems. The Sustainable Groundwater Management Act requires local agencies to avoid undesirable results in the future, but the location and vulnerabilities of the ecosystems that depend on groundwater and interconnected surface water is often poorly understood. This presentation will feature results from a research study conducted by The Nature Conservancy and Lawrence Berkeley National Laboratory that investigated how changes in groundwater availability along an interconnected surface water body can impact the overall health of GDEs. This study was conducted in California's Central Valley along the Cosumnes River, and situated at the boundary of a high and a medium groundwater basin: South American Basin (Sacramento Hydrologic Region) and Cosumnes Basin (San Joaquin Hydrologic Region). By employing geophysical methodology (electrical resistivity tomography) in this study, spatial changes in groundwater availability were determined under groundwater-dependent vegetation. Vegetation survey data were also applied to this study to develop ecosystem health indicators for groundwater-dependent vegetation. Health indicators for groundwater-dependent vegetation were found to directly correlate with groundwater availability, such that greater availability to groundwater resulted in healthier vegetation. This study provides a case study example on how to use hydrological and biological data for setting appropriate minimum thresholds and

  2. Study on archive management for nuclear facility decommissioning projects

    International Nuclear Information System (INIS)

    Huang Ling; Gong Jing; Luo Ning; Liao Bing; Zhou Hao

    2011-01-01

    This paper introduces the main features and status of the archive management for nuclear facility decommissioning projects, and explores and discusses the countermeasures in its archive management. Taking the practice of the archive management system of a reactor decommissioning project as an example, the paper illustrates the establishment of archive management system for the nuclear facility decommissioning projects. The results show that the development of a systematic archive management principle and system for nuclear decommissioning projects and the construction of project archives for the whole process from the design to the decommissioning by digitalized archive management system are one effective route to improve the complete, accurate and systematic archiving of project documents, to promote the standardization and effectiveness of the archive management and to ensure the traceability of the nuclear facility decommissioning projects. (authors)

  3. Groundwater Management in Mining Areas. Proceedings of the 2nd Image-Train Advanced Study Course

    International Nuclear Information System (INIS)

    Prokop, G.; Younger, P.; Roehl, K.E.

    2004-01-01

    Innovative Management of Groundwater Resources in Europe - training and RTD coordination (IMAGE-TRAIN) has the ambition to improve cooperation and interaction between ongoing research projects in the field of soil and groundwater contamination and to communicate new technology achievements to young scientists by means of training courses. The 2nd IMAGE-TRAIN advanced study course focussed on mine water management. This report includes reviews papers of the key-note lectures dealing with flooded mines, mine water pollution, in-situ remediation technologies (uranium mine), and mine water regulation. Those reviews of INIS database scope are indexed separately. (nevyjel)

  4. 41 CFR 102-74.10 - What is the basic facility management policy?

    Science.gov (United States)

    2010-07-01

    ... facility management policy? 102-74.10 Section 102-74.10 Public Contracts and Property Management Federal Property Management Regulations System (Continued) FEDERAL MANAGEMENT REGULATION REAL PROPERTY 74-FACILITY MANAGEMENT General Provisions § 102-74.10 What is the basic facility management policy? Executive agencies...

  5. Health and Safety Management for Small-scale Methane Fermentation Facilities

    Science.gov (United States)

    Yamaoka, Masaru; Yuyama, Yoshito; Nakamura, Masato; Oritate, Fumiko

    In this study, we considered health and safety management for small-scale methane fermentation facilities that treat 2-5 ton of biomass daily based on several years operation experience with an approximate capacity of 5 t·d-1. We also took account of existing knowledge, related laws and regulations. There are no qualifications or licenses required for management and operation of small-scale methane fermentation facilities, even though rural sewerage facilities with a relative similar function are required to obtain a legitimate license. Therefore, there are wide variations in health and safety consciousness of the operators of small-scale methane fermentation facilities. The industrial safety and health laws are not applied to the operation of small-scale methane fermentation facilities. However, in order to safely operate a small-scale methane fermentation facility, the occupational safety and health management system that the law recommends should be applied. The aims of this paper are to clarify the risk factors in small-scale methane fermentation facilities and encourage planning, design and operation of facilities based on health and safety management.

  6. ESCO as Innovative Facilities Management in Danish Municipalities

    DEFF Research Database (Denmark)

    Jensen, Jesper Ole; Oesten, Pimmie; Nielsen, Susanne Balslev

    2010-01-01

     Purpose:  Increasing energy efficiency of existing buildings is high on the Facility Management (FM) agenda, therefore building owners and FM Managers need insight into a variety of organizational possibilities for energy renovation projects. This paper explores how ESCO can foster innovative....... It is the first publication from the project "Energy Service Concepts" carried out at the Danish Centre for Facilities Management (www.cfm.dtu.dk). Results have not been published before....

  7. Soil and groundwater contamination with heavy metals at two scrap iron and metal recycling facilities

    DEFF Research Database (Denmark)

    Jensen, Dorthe Lærke; Holm, P. E.; Christensen, Thomas Højlund

    2000-01-01

    Field studies were performed at two actual scrap iron and metal recycling facilities in order to evaluate the extent of heavy metal migration into subsoil and groundwater caused by more than 25 years of handling scrap directly on the ground without any measures to prevent leaching. Surface soil...... samples, called `scrap dirt', representing the different activities on the two recycling facilities, all showed very high concentrations of lead (Pb), copper (Cu) and zinc (Zn), high concentrations of cadmium (Cd) , chromium (Cr) and nickel (Ni) and somewhat elevated concentrations of many other metals....... In particular high concentrations were found for Pb at the car-battery salvage locations (13 to 26 g Pb kg±1) and Cu at the cable burning location (22 g Cu kg±1) at one site. The migration of metals below the surface in general (except at the car-battery salvage locations) was very limited even after...

  8. Remediation of the Highland Drive South Ravine, Port Hope, Ontario: Contaminated Groundwater Discharge Management Using Permeable Reactive Barriers and Contaminated Sediment Removal - 13447

    Energy Technology Data Exchange (ETDEWEB)

    Smyth, David; Roos, Gillian [Golder Associates Ltd., 2390 Argentia Road, Mississauga, ON L5N 5Z7 (Canada); Ferguson Jones, Andrea [MMM Group Ltd., 100 Commerce Valley Drive West, Thornhill, ON L3T 0A1 (Canada); Case, Glenn [AECL Port Hope Area Initiative Management Office, 115 Toronto Road, Port Hope, ON L1A 3S4 (Canada); Yule, Adam [Public Works and Government Services Canada, 4900 Yonge Street, 11th Floor, Toronto, ON, M2N 6A6 (Canada)

    2013-07-01

    The Highland Drive South Ravine (HDSR) is the discharge area for groundwater originating from the Highland Drive Landfill, the Pine Street North Extension (PSNE) roadbed parts of the Highland Drive roadbed and the PSNE Consolidation Site that contain historical low-level radioactive waste (LLRW). The contaminant plume from these LLRW sites contains elevated concentrations of uranium and arsenic and discharges with groundwater to shallow soils in a wet discharge area within the ravine, and directly to Hunt's Pond and Highland Drive South Creek, which are immediately to the south of the wet discharge area. Remediation and environmental management plans for HDSR have been developed within the framework of the Port Hope Project and the Port Hope Area Initiative. The LLRW sites will be fully remediated by excavation and relocation to a new Long-Term Waste Management Facility (LTWMF) as part of the Port Hope Project. It is projected, however, that the groundwater contaminant plume between the remediated LLRW sites and HDSR will persist for several hundreds of years. At the HDSR, sediment remediation within Hunt's Ponds and Highland Drive South Creek, excavation of the existing and placement of clean fill will be undertaken to remove current accumulations of solid-phase uranium and arsenic associated with the upper 0.75 m of soil in the wet discharge area, and permeable reactive barriers (PRBs) will be used for in situ treatment of contaminated groundwater to prevent the ongoing discharge of uranium and arsenic to the area in HDSR where shallow soil excavation and replacement has been undertaken. Bench-scale testing using groundwater from HDSR has confirmed excellent treatment characteristics for both uranium and arsenic using permeable reactive mixtures containing granular zero-valent iron (ZVI). A sequence of three PRBs containing ZVI and sand in backfilled trenches has been designed to intercept the groundwater flow system prior to its discharge to the ground

  9. Remediation of the Highland Drive South Ravine, Port Hope, Ontario: Contaminated Groundwater Discharge Management Using Permeable Reactive Barriers and Contaminated Sediment Removal - 13447

    International Nuclear Information System (INIS)

    Smyth, David; Roos, Gillian; Ferguson Jones, Andrea; Case, Glenn; Yule, Adam

    2013-01-01

    The Highland Drive South Ravine (HDSR) is the discharge area for groundwater originating from the Highland Drive Landfill, the Pine Street North Extension (PSNE) roadbed parts of the Highland Drive roadbed and the PSNE Consolidation Site that contain historical low-level radioactive waste (LLRW). The contaminant plume from these LLRW sites contains elevated concentrations of uranium and arsenic and discharges with groundwater to shallow soils in a wet discharge area within the ravine, and directly to Hunt's Pond and Highland Drive South Creek, which are immediately to the south of the wet discharge area. Remediation and environmental management plans for HDSR have been developed within the framework of the Port Hope Project and the Port Hope Area Initiative. The LLRW sites will be fully remediated by excavation and relocation to a new Long-Term Waste Management Facility (LTWMF) as part of the Port Hope Project. It is projected, however, that the groundwater contaminant plume between the remediated LLRW sites and HDSR will persist for several hundreds of years. At the HDSR, sediment remediation within Hunt's Ponds and Highland Drive South Creek, excavation of the existing and placement of clean fill will be undertaken to remove current accumulations of solid-phase uranium and arsenic associated with the upper 0.75 m of soil in the wet discharge area, and permeable reactive barriers (PRBs) will be used for in situ treatment of contaminated groundwater to prevent the ongoing discharge of uranium and arsenic to the area in HDSR where shallow soil excavation and replacement has been undertaken. Bench-scale testing using groundwater from HDSR has confirmed excellent treatment characteristics for both uranium and arsenic using permeable reactive mixtures containing granular zero-valent iron (ZVI). A sequence of three PRBs containing ZVI and sand in backfilled trenches has been designed to intercept the groundwater flow system prior to its discharge to the ground surface

  10. COGEMA's UMF [Uranium Management Facility

    International Nuclear Information System (INIS)

    Lamorlette, G.; Bertrand, J.P.

    1988-01-01

    The French government-owned corporation, COGEMA, is responsible for the nuclear fuel cycle. This paper describes the activities at COGEMA's Pierrelatte facility, especially its Uranium Management Facility. UF6 handling and storage is described for natural, enriched, depleted, and reprocessed uranium. UF6 quality control specifications, sampling, and analysis (halocarbon and volatile fluorides, isotopic analysis, uranium assay, and impurities) are described. In addition, the paper discusses the filling and cleaning of containers and security at UMF

  11. Facility Management Innovation (FMI)

    NARCIS (Netherlands)

    Mobach, Mark P.; Nardelli, Giulia; Kok, Herman; Konkol, Jennifer; Alexander, Keith; Alexander, Keith

    2014-01-01

    This current green paper deals with innovation in facility management (FM), a subject which is at the heart of Working Group 3, in benefit of the EuroFM Research Network. It aims to stimulate discussion and further collaborative work, and to generate new knowledge for the European FM community. We

  12. Spatial analysis and simulation tools for groundwater management: the FREEWAT platform

    Directory of Open Access Journals (Sweden)

    Rudy Rossetto

    2017-09-01

    Full Text Available FREEWAT is an HORIZON 2020 project financed by the EU Commission under the call WATER INNOVATION: BOOSTING ITS VALUE FOR EUROPE. FREEWAT main result is an open source and public domain GIS-integrated modeling environment for the simulation of groundwater quantity and quality, with an integrated water management and planning module. FREEWAT aims at promoting water resource management by simplifying the application of the Water Framework Directive and other EU water-related Directives. To this scope, the FREEWAT platform results from the integration in the QGIS Desktop of spatially distributed and physically-based codes (mostly belonging to the USGS MODFLOW family, which allow to get a deep insight in groundwater dynamics, taking into account the space and time variability of stresses which control the hydrological cycle. This is attempted in a unique GIS environment, where large spatial datasets can be managed and visualized. In this paper, a review of the tools/modules integrated in FREEWAT for data pre-processing and model implementation is provided. FREEWAT applicability was demonstrated through running 14 case studies, in the general framework of an innovative participatory approach, which consists in involving technical staff and relevant stakeholders (in primis policy and decision makers during modeling activities, thus creating a common environment to enhance science and evidence-based decision making in water resource management.

  13. Mapping groundwater quality distinguishing geogenic and anthropogenic contribution using NBL

    Science.gov (United States)

    Preziosi, Elisabetta; Ducci, Daniela; Condesso de Melo, Maria Teresa; Parrone, Daniele; Sellerino, Mariangela; Ghergo, Stefano; Oliveira, Joana; Ribeiro, Luis

    2015-04-01

    Groundwaters are threatened by anthropic activities and pollution is interesting a large number of aquifers worldwide. Qualitative and quantitative monitoring is required to assess the status and track its evolution in time and space especially where anthropic pressures are stronger. Up to now, groundwater quality mapping has been performed separately from the assessment of its natural status, i.e. the definition of the natural background level of a particular element in a particular area or groundwater body. The natural background level (NBL) of a substance or element allows to distinguish anthropogenic pollution from contamination of natural origin in a population of groundwater samples. NBLs are the result of different atmospheric, geological, chemical and biological interaction processes during groundwater infiltration and circulation. There is an increasing need for the water managers to have sound indications on good quality groundwater exploitation. Indeed the extension of a groundwater body is often very large, in the order of tens or hundreds of square km. How to select a proper location for good quality groundwater abstraction is often limited to a question of facility for drilling (access, roads, authorizations, etc.) or at the most related to quantitative aspects driven by geophysical exploration (the most promising from a transmissibility point of view). So how to give indications to the administrators and water managers about the exploitation of good quality drinking water? In the case of anthropic contamination, how to define which area is to be restored and to which threshold (e.g. background level) should the concentration be lowered through the restoration measures? In the framework of a common project between research institutions in Italy (funded by CNR) and Portugal (funded by FCT), our objective is to establish a methodology aiming at merging together 1) the evaluation of NBL and 2) the need to take into account the drinking water standards

  14. Economic impacts of urban flooding in South Florida: Potential consequences of managing groundwater to prevent salt water intrusion.

    Science.gov (United States)

    Czajkowski, Jeffrey; Engel, Vic; Martinez, Chris; Mirchi, Ali; Watkins, David; Sukop, Michael C; Hughes, Joseph D

    2018-04-15

    High-value urban zones in coastal South Florida are considered particularly vulnerable to salt water intrusion into the groundwater-based, public water supplies caused by sea level rise (SLR) in combination with the low topography, existing high water table, and permeable karst substrate. Managers in the region closely regulate water depths in the extensive South Florida canal network to control closely coupled groundwater levels and thereby reduce the risk of saltwater intrusion into the karst aquifer. Potential SLR adaptation strategies developed by local managers suggest canal and groundwater levels may have to be increased over time to prevent the increased salt water intrusion risk to groundwater resources. However, higher canal and groundwater levels cause the loss of unsaturated zone storage and lead to an increased risk of inland flooding when the recharge from rainfall exceeds the capacity of the unsaturated zone to absorb it and the water table reaches the surface. Consequently, higher canal and groundwater levels are also associated with increased risk of economic losses, especially during the annual wet seasons. To help water managers and urban planners in this region better understand this trade-off, this study models the relationships between flood insurance claims and groundwater levels in Miami-Dade County. Via regression analyses, we relate the incurred number of monthly flood claims in 16 Miami-Dade County watersheds to monthly groundwater levels over the period from 1996 to 2010. We utilize these estimated statistical relationships to further illustrate various monthly flood loss scenarios that could plausibly result, thereby providing an economic quantification of a "too much water" trade-off. Importantly, this understanding is the first of its kind in South Florida and is exceedingly useful for regional-scale hydro-economic optimization models analyzing trade-offs associated with high water levels. Copyright © 2017 Elsevier B.V. All rights

  15. Management challenges faced by managers of New Zealand long-term care facilities.

    Science.gov (United States)

    Madas, E; North, N

    2000-01-01

    This article reports on a postal survey of 78 long-term care managers in one region of New Zealand, of whom 45 (58%) responded. Most long-term care managers (73.2%) were middle-aged females holding nursing but not management qualifications. Most long-term care facilities (69%) tended to be stand-alone facilities providing a single type of care (rest home or continuing care hospital). The most prominent issues facing managers were considered to be inadequate funding to match the growing costs of providing long-term care and occupancy levels. Managers believed that political/regulatory, economic and social factors influenced these issues. Despite a turbulent health care environment and the challenges facing managers, long-term care managers reported they were coping well and valued networking.

  16. Construction Management for Conventional Facilities of Proton Accelerator

    International Nuclear Information System (INIS)

    Kim, Jun Yeon; Cho, Jang Hyung; Cho, Sung Won

    2013-01-01

    Proton Engineering Frontier Project, puts its aim to building 100MeV 20mA linear proton accelerator which is national facility for NT, BT, IT, and future technologies, expected to boost up the national industry competitiveness. This R and D, Construction Management is in charge of the supportive works such as site selection, architecture and engineering of conventional facilities, and overall construction management. The major goals of this work are as follows: At first, architecture and engineering of conventional facilities. Second, construction management, supervision and inspection on construction of conventional facilities. Lastly, cooperation with the project host organization, Gyeongju city, for adjusting technically interrelated work during construction. In this research, We completed the basic, detail, and field changed design of conventional facilities. Acquisition of necessary construction and atomic license, radiation safety analysis, site improvement, access road construction were successfully done as well. Also, we participated in the project host related work as follows: Project host organization and site selection, construction technical work for project host organization and procedure management, etc. Consequently, we so fulfilled all of the own goals which were set up in the beginning of this construction project that we could made contribution for installing and running PEFP's developed 100MeV 20mA linear accelerator

  17. Groundwater sustainability strategies

    Science.gov (United States)

    Gleeson, Tom; VanderSteen, Jonathan; Sophocleous, Marios A.; Taniguchi, Makoto; Alley, William M.; Allen, Diana M.; Zhou, Yangxiao

    2010-01-01

    Groundwater extraction has facilitated significant social development and economic growth, enhanced food security and alleviated drought in many farming regions. But groundwater development has also depressed water tables, degraded ecosystems and led to the deterioration of groundwater quality, as well as to conflict among water users. The effects are not evenly spread. In some areas of India, for example, groundwater depletion has preferentially affected the poor. Importantly, groundwater in some aquifers is renewed slowly, over decades to millennia, and coupled climate–aquifer models predict that the flux and/or timing of recharge to many aquifers will change under future climate scenarios. Here we argue that communities need to set multigenerational goals if groundwater is to be managed sustainably.

  18. Safe waste management practices in beryllium facilities

    International Nuclear Information System (INIS)

    Bhat, P.N.; Soundararajan, S.; Sharma, D.N.

    2012-01-01

    Beryllium, an element with the atomic symbol Be, atomic number 4, has very high stiffness to weight ratio and low density. It has good electrical conductive properties with low coefficient of thermal expansion. These properties make the metal beryllium very useful in varied technological endeavours, However, beryllium is recognised as one of the most toxic metals. Revelation of toxic effects of beryllium resulted in institution of stringent health and safety practices in beryllium handling facilities. The waste generated in such facilities may contain traces of beryllium. Any such waste should be treated as toxic waste and suitable safe waste management practices should be adopted. By instituting appropriate waste management practice and through a meticulously incorporated safety measures and continuous surveillance exercised in such facilities, total safety can be ensured. This paper broadly discusses health hazards posed by beryllium and safe methods of management of beryllium bearing wastes. (author)

  19. Managing facilities in a Scandinavian manner:

    DEFF Research Database (Denmark)

    Elle, Morten; Engelmark, Jesper; Jørgensen, Bo

    2004-01-01

    Presents the aims and needs of research in facilities management (FM) at the section of Planning and Management of Building Processes at BYG*DTU. As the building stock in Denmark is rapidly increasing, socio-demographic developments implies profound changes in both the needs of inhabitants and th...

  20. Daily storage management of hydroelectric facilities

    NARCIS (Netherlands)

    Chappin, E.J.L.; Ferrero, M.; Lazzeroni, P.; Lukszo, Z.; Olivero, M.; Repetto, M.

    2012-01-01

    This work presents a management procedure for hydroelectric facilities with daily storage. The water storage gives an additional degree of freedom allowing to shift in time power production when it is more convenient and to work at the maximum efficiency of hydraulic turbine. The management is

  1. Calendar year 1995 groundwater quality report for the Beak Creek Hydrogeologic Regime, Y-12 Plant, Oak Ridge, Tennessee. Part 2: 1995 groundwater quality data interpretations

    International Nuclear Information System (INIS)

    1996-08-01

    This annual groundwater quality report (GWQR) contains an evaluation of the groundwater and surface water monitoring data obtained during the 1995 calendar year (CY) for several hazardous and nonhazardous waste management facilities associated with the US DOE Y-12 Plant. The sites addressed by this document are located in Bear Creek Valley (BCV) west of the Y-12 Plant complex within the Bear Creek Hydrogeologic Regime. The Bear Creek Regime is one of three hydrogeologic regimes defined for the purposes of groundwater and surface water quality monitoring at the Y-12 Plant. The purpose of the GWPP is to characterize the hydrogeology and to monitor groundwater quality at the Y-12 Plant and surrounding area to provide for protection of groundwater resources consistent with federal, state, and local requirements. Each annual Part 2 GWQR addresses RCRA interim status reporting requirements regarding assessment of the horizontal and vertical extent of groundwater contamination. This report includes background information regarding the extent of groundwater and surface water contamination in the Bear Creek Regime based on the conceptual models described in the remedial investigation report (Section 2); a summary of the groundwater and surface water monitoring activities performed during CY 1995 (Section 3.0); analysis and interpretation of the CY 1995 monitoring data for groundwater (Section 4.0) and surface water (Section 5.0); a summary of conclusions and recommendations (Section 6.0); and a list of cited references (Section 7.0). Appendices contain diagrams, graphs, data tables, and summaries and the evaluation and decision criteria for data screening

  2. Calendar year 1995 groundwater quality report for the Beak Creek Hydrogeologic Regime, Y-12 Plant, Oak Ridge, Tennessee. Part 2: 1995 groundwater quality data interpretations

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-08-01

    This annual groundwater quality report (GWQR) contains an evaluation of the groundwater and surface water monitoring data obtained during the 1995 calendar year (CY) for several hazardous and nonhazardous waste management facilities associated with the US DOE Y-12 Plant. The sites addressed by this document are located in Bear Creek Valley (BCV) west of the Y-12 Plant complex within the Bear Creek Hydrogeologic Regime. The Bear Creek Regime is one of three hydrogeologic regimes defined for the purposes of groundwater and surface water quality monitoring at the Y-12 Plant. The purpose of the GWPP is to characterize the hydrogeology and to monitor groundwater quality at the Y-12 Plant and surrounding area to provide for protection of groundwater resources consistent with federal, state, and local requirements. Each annual Part 2 GWQR addresses RCRA interim status reporting requirements regarding assessment of the horizontal and vertical extent of groundwater contamination. This report includes background information regarding the extent of groundwater and surface water contamination in the Bear Creek Regime based on the conceptual models described in the remedial investigation report (Section 2); a summary of the groundwater and surface water monitoring activities performed during CY 1995 (Section 3.0); analysis and interpretation of the CY 1995 monitoring data for groundwater (Section 4.0) and surface water (Section 5.0); a summary of conclusions and recommendations (Section 6.0); and a list of cited references (Section 7.0). Appendices contain diagrams, graphs, data tables, and summaries and the evaluation and decision criteria for data screening.

  3. Artificial recharge of groundwater and its role in water management

    Science.gov (United States)

    Kimrey, J.O.

    1989-01-01

    This paper summarizes and discusses the various aspects and methods of artificial recharge with particular emphasis on its uses and potential role in water management in the Arabian Gulf region. Artificial recharge occurs when man's activities cause more water to enter an aquifer, either under pumping or non-pumping conditions, than otherwise would enter the aquifer. Use of artificial recharge can be a practical means of dealing with problems of overdraft of groundwater. Methods of artificial recharge may be grouped under two broad types: (a) water spreading techniques, and (b) well-injection techniques. Successful use of artificial recharge requires a thorough knowledge of the physical and chemical characteristics of the aquifier system, and extensive onsite experimentation and tailoring of the artificial-recharge technique to fit the local or areal conditions. In general, water spreading techniques are less expensive than well injection and large quantities of water can be handled. Water spreading can also result in significant improvement in quality of recharge waters during infiltration and movement through the unsaturated zone and the receiving aquifer. In comparison, well-injection techniques are often used for emplacement of fresh recharge water into saline aquifer zones to form a manageable lens of fresher water, which may later be partially withdrawn for use or continue to be maintained as a barrier against salt-water encroachment. A major advantage in use of groundwater is its availability, on demand to wells, from a natural storage reservoir that is relatively safe from pollution and from damage by sabotage or other hostile action. However, fresh groundwater occurs only in limited quantities in most of the Arabian Gulf region; also, it is heavily overdrafted in many areas, and receives very little natural recharge. Good use could be made of artificial recharge by well injection in replenishing and managing aquifers in strategic locations if sources of

  4. Groundwater Discharge of Legacy Nitrogen to River Networks: Linking Regional Groundwater Models to Streambed Groundwater-Surface Water Exchange and Nitrogen Processing

    Science.gov (United States)

    Barclay, J. R.; Helton, A. M.; Briggs, M. A.; Starn, J. J.; Hunt, A.

    2017-12-01

    Despite years of management, excess nitrogen (N) is a pervasive problem in many aquatic ecosystems. More than half of surface water in the United States is derived from groundwater, and widespread N contamination in aquifers from decades of watershed N inputs suggest legacy N discharging from groundwater may contribute to contemporary N pollution problems in surface waters. Legacy N loads to streams and rivers are controlled by both regional scale flow paths and fine-scale processes that drive N transformations, such as groundwater-surface water exchange across steep redox gradients that occur at stream bed interfaces. Adequately incorporating these disparate scales is a challenge, but it is essential to understanding legacy N transport and making informed management decisions. We developed a regional groundwater flow model for the Farmington River, a HUC-8 basin that drains to the Long Island Sound, a coastal estuary that suffers from elevated N loads despite decades of management, to understand broad patterns of regional transport. To evaluate and refine the regional model, we used thermal infrared imagery paired with vertical temperature profiling to estimate groundwater discharge at the streambed interface. We also analyzed discharging groundwater for multiple N species to quantify fine scale patterns of N loading and transformation via denitrification at the streambed interface. Integrating regional and local estimates of groundwater discharge of legacy N to river networks should improve our ability to predict spatiotemporal patterns of legacy N loading to and transformation within surface waters.

  5. Groundwater well services site safety and health plan

    International Nuclear Information System (INIS)

    Tuttle, B.G.

    1996-08-01

    This Site Specific Health and Safety Plan covers well servicing in support of the Environmental Restoration Contractor Groundwater Project. Well servicing is an important part of environmental restoration activities supporting several pump and treat facilities and assisting in evaluation and servicing of various groundwater wells throughout the Hanford Site. Remediation of contaminated groundwater is a major part of the ERC project. Well services tasks help enhance groundwater extraction/injection as well as maintain groundwater wells for sampling and other hydrologic testing and information gathering

  6. Groundwater Modeling in Support of Water Resources Management and Planning under Complex Climate, Regulatory, and Economic Stresses

    OpenAIRE

    Emin C. Dogrul; Charles F. Brush; Tariq N. Kadir

    2016-01-01

    Groundwater is an important resource that meets part or all of the water demand in many developed basins. Since it is an integral part of the hydrologic cycle, management of groundwater resources must consider not only the management of surface flows but also the variability in climate. In addition, agricultural and urban activities both affect the availability of water resources and are affected by it. Arguably, the Central Valley of the State of California, USA, can be considered a basin wh...

  7. Conjunctive Surface and Groundwater Management in Utah. Implications for Oil Shale and Oil Sands Development

    Energy Technology Data Exchange (ETDEWEB)

    Keiter, Robert [Univ. of Utah, Salt Lake City, UT (United States); Ruple, John [Univ. of Utah, Salt Lake City, UT (United States); Tanana, Heather [Univ. of Utah, Salt Lake City, UT (United States); Holt, Rebecca [Univ. of Utah, Salt Lake City, UT (United States)

    2011-12-01

    Unconventional fuel development will require scarce water resources. In an environment characterized by scarcity, and where most water resources are fully allocated, prospective development will require minimizing water use and seeking to use water resources in the most efficient manner. Conjunctive use of surface and groundwater provides just such an opportunity. Conjunctive use includes two main practices: First, integrating surface water diversions and groundwater withdrawals to maximize efficiency and minimize impacts on other resource users and ecological processes. Second, conjunctive use includes capturing surplus or unused surface water and injecting or infiltrating that water into groundwater aquifers in order to increase recharge rates. Conjunctive management holds promise as a means of addressing some of the West's most intractable problems. Conjunctive management can firm up water supplies by more effectively capturing spring runoff and surplus water, and by integrating its use with groundwater withdrawals; surface and groundwater use can be further integrated with managed aquifer recharge projects. Such integration can maximize water storage and availability, while simultaneously minimizing evaporative loss, reservoir sedimentation, and surface use impacts. Any of these impacts, if left unresolved, could derail commercial-scale unconventional fuel development. Unconventional fuel developers could therefore benefit from incorporating conjunctive use into their development plans. Despite its advantages, conjunctive use is not a panacea. Conjunctive use means using resources in harmony to maximize and stabilize long-term supplies it does not mean maximizing the use of two separate but interrelated resources for unsustainable short-term gains and it cannot resolve all problems or provide water where no unappropriated water exists. Moreover, conjunctive use may pose risks to ecological values forgone when water that would otherwise remain in a stream

  8. Construction of BIM-based SMART-ITL Facility Management System

    International Nuclear Information System (INIS)

    Jeon, Woo-Jin; Yi, Sung-Jae; Park, Hyun-Sik; Ryu, Sung-Uk; Bae, Hwang; Hwang, Sang-Chul; Min, Byung-Eui

    2015-01-01

    The flow area and volume are scaled down to 1/49. The ratio of the hydraulic diameter is 1/7. Therefore, SMART-ITL is a large-scale thermalhydraulic test facility with about 45 m height, which is consisted of 10 m underground and 35 m from the ground level. Until now, the management of design data and maintenance of large scale test facilities have been managed based on hard-copy information. Recently, Thermal Hydraulics Safety Research Division (THSRD) at Korea Atomic Energy Research Institute (KAERI) has developed Facility Management System (FMS) based Building Information Modeling (BIM) to manage its design data more effectively for these large scale test facilities of SMART-ITL and ATLAS, and this BIM technology has been applied to SMART-ITL at the first. This study proposed a method of effective management and maintenance of design data applied to the SMART-ITL. That is, a FMS was developed based on the BIM technology for SMART-ITL. Figure 2 shows an overview of FMS development process based on BIM technology. SMART-ITL FMS facilitates its management and maintenance more effectively and accurately by 3- dimensional visualization. It enables the shape information of large scale test facilities to be visualized intuitively in a virtual space, and the efficient maintenance of data and instruments is possible by linking 3D shape information

  9. Construction of BIM-based SMART-ITL Facility Management System

    Energy Technology Data Exchange (ETDEWEB)

    Jeon, Woo-Jin; Yi, Sung-Jae; Park, Hyun-Sik; Ryu, Sung-Uk; Bae, Hwang [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Hwang, Sang-Chul; Min, Byung-Eui [DDRsoft Co., Daejeon (Korea, Republic of)

    2015-10-15

    The flow area and volume are scaled down to 1/49. The ratio of the hydraulic diameter is 1/7. Therefore, SMART-ITL is a large-scale thermalhydraulic test facility with about 45 m height, which is consisted of 10 m underground and 35 m from the ground level. Until now, the management of design data and maintenance of large scale test facilities have been managed based on hard-copy information. Recently, Thermal Hydraulics Safety Research Division (THSRD) at Korea Atomic Energy Research Institute (KAERI) has developed Facility Management System (FMS) based Building Information Modeling (BIM) to manage its design data more effectively for these large scale test facilities of SMART-ITL and ATLAS, and this BIM technology has been applied to SMART-ITL at the first. This study proposed a method of effective management and maintenance of design data applied to the SMART-ITL. That is, a FMS was developed based on the BIM technology for SMART-ITL. Figure 2 shows an overview of FMS development process based on BIM technology. SMART-ITL FMS facilitates its management and maintenance more effectively and accurately by 3- dimensional visualization. It enables the shape information of large scale test facilities to be visualized intuitively in a virtual space, and the efficient maintenance of data and instruments is possible by linking 3D shape information.

  10. Facility information management system; Shisetsu joho kanri system

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-01-10

    A facility management system (FMS) was developed as a tool for efficiently operating and managing building facilities and related equipment. The maintenance management data is designed to be collected through automatic formation of data base by using a work flow function and releasing the daily business from paper work. The data base thus formed can be retrieved and displayed by utilizing a network system. The plan view for construction facilities is made a minute plan comparable to the ground plan by taking in DXF type drawing data such as a completion drawing, making it a colored display for example to create an intuitive expression understandable at first sight. The plan is controlled by the level including equipment classification and is capable of superimposed display. Detailed management data is displayed by mouse clicking of registered icons, allowing required information to be readily taken out. (translated by NEDO)

  11. An isotopic view of water and nitrate transport through the vadose zone in Oregon's southern Willamette Valley's Groundwater Management Area

    Science.gov (United States)

    Brooks, J. R.; Pearlstein, S.; Hutchins, S.; Faulkner, B. R.; Rugh, W.; Willard, K.; Coulombe, R.; Compton, J.

    2017-12-01

    Groundwater nitrate contamination affects thousands of households in Oregon's southern Willamette Valley and many more across the USA. The southern Willamette Valley Groundwater Management Area (GWMA) was established in 2004 due to nitrate levels in the groundwater exceeding the human health standard of 10 mg nitrate-N L-1. Much of the nitrogen (N) inputs to the GWMA comes from agricultural fertilizers, and thus efforts to reduce N inputs to groundwater are focused upon improving N management. However, the effectiveness of these improvements on groundwater quality is unclear because of the complexity of nutrient transport through the vadose zone and long groundwater residence times. Our objective was to focus on vadose zone transport and understand the dynamics and timing of N and water movement below the rooting zone in relation to N management and water inputs. Stable isotopes are a powerful tool for tracking water movement, and understanding N transformations. In partnership with local farmers and state agencies, we established lysimeters and groundwater wells in multiple agricultural fields in the GWMA, and have monitored nitrate, nitrate isotopes, and water isotopes weekly for multiple years. Our results indicate that vadose zone transport is highly complex, and the residence time of water collected in lysimeters was much longer than expected. While input precipitation water isotopes were highly variable over time, lysimeter water isotopes were surprisingly consistent, more closely resembling long-term precipitation isotope means rather than recent precipitation isotopic signatures. However, some particularly large precipitation events with unique isotopic signatures revealed high spatial variability in transport, with some lysimeters showing greater proportions of recent precipitation inputs than others. In one installation where we have groundwater wells and lysimeters at multiple depths, nitrate/nitrite concentrations decreased with depth. N concentrations

  12. Integrated Facilities Management and Fixed Asset Accounting.

    Science.gov (United States)

    Golz, W. C., Jr.

    1984-01-01

    A record of a school district's assets--land, buildings, machinery, and equipment--can be a useful management tool that meets accounting requirements and provides appropriate information for budgeting, forecasting, and facilities management. (MLF)

  13. Monitoring and Management of Karstic Coastal Groundwater in a Changing Environment (Southern Italy: A Review of a Regional Experience

    Directory of Open Access Journals (Sweden)

    Maurizio Polemio

    2016-04-01

    Full Text Available The population concentration in coastal areas and the increase of groundwater discharge in combination with the peculiarities of karstic coastal aquifers constitute a huge worldwide problem, which is particularly relevant for coastal aquifers of the Mediterranean basin. This paper offers a review of scientific activities realized to pursue the optimal utilization of Apulian coastal groundwater. Apulia, with a coastline extending for over 800 km, is the Italian region with the largest coastal karst aquifers. Apulian aquifers have suffered both in terms of water quality and quantity. Some regional regulations were implemented from the 1970s with the purpose of controlling the number of wells, well locations, and well discharge. The practical effects of these management criteria, the temporal and spatial trend of recharge, groundwater quality, and seawater intrusion effects are discussed based on long-term monitoring. The efficacy of existing management tools and the development of predictive scenarios to identify the best way to reconcile irrigation and demands for high-quality drinking water have been pursued in a selected area. The Salento peninsula was selected as the Apulian aquifer portion exposed to the highest risk of quality degradation due to seawater intrusion. The capability of large-scale numerical models in groundwater management was tested, particularly for achieving forecast scenarios to evaluate the impacts of climate change on groundwater resources. The results show qualitative and quantitative groundwater trends from 1930 to 2060 and emphasize the substantial decrease of the piezometric level and a serious worsening of groundwater salinization due to seawater intrusion.

  14. How can facility managers add value?

    DEFF Research Database (Denmark)

    Jensen, Per Anker; van der Voordt, Theo

    2015-01-01

    Recent years have seen a growing interest in the concept of added value of facilities management (FM) and corporate real estate management (CREM), and how to attain and measure it. There is a wide variety of definitions in use, and recognition of different types of added value, such as user value...

  15. Healthcare waste management: current practices in selected healthcare facilities, Botswana.

    Science.gov (United States)

    Mbongwe, Bontle; Mmereki, Baagi T; Magashula, Andrew

    2008-01-01

    Healthcare waste management continues to present an array of challenges for developing countries, and Botswana is no exception. The possible impact of healthcare waste on public health and the environment has received a lot of attention such that Waste Management dedicated a special issue to the management of healthcare waste (Healthcare Wastes Management, 2005. Waste Management 25(6) 567-665). As the demand for more healthcare facilities increases, there is also an increase on waste generation from these facilities. This situation requires an organised system of healthcare waste management to curb public health risks as well as occupational hazards among healthcare workers as a result of poor waste management. This paper reviews current waste management practices at the healthcare facility level and proposes possible options for improvement in Botswana.

  16. Establishing indices for groundwater contamination risk assessment in the vicinity of hazardous waste landfills in China

    International Nuclear Information System (INIS)

    Li Ying; Li Jinhui; Chen Shusheng; Diao Weihua

    2012-01-01

    Groundwater contamination by leachate is the most damaging environmental impact over the entire life of a hazardous waste landfill (HWL). With the number of HWL facilities in China rapidly increasing, and considering the poor status of environmental risk management, it is imperative that effective environmental risk management methods be implemented. A risk assessment indices system for HWL groundwater contamination is here proposed, which can simplify the risk assessment procedure and make it more user-friendly. The assessment framework and indices were drawn from five aspects: source term, underground media, leachate properties, risk receptors and landfill management quality, and a risk assessment indices system consisting of 38 cardinal indicators was established. Comparison with multimedia models revealed that the proposed indices system was integrated and quantitative, that input data for it could be easily collected, and that it could be widely used for environmental risk assessment (ERA) in China. - Highlights: ► No comprehensive environmental risk assessment method for hazardous waste management is proposed in China. ► An assessment indices system is established for groundwater contamination in the vicinity of hazardous waste landfill. ► All indicators are quantitative and applicable in China. - Capsule: This research identified critical indices and established a system for environmental risk assessment for groundwater contamination in the vicinity of HWLs in China.

  17. Dismantlement and Radioactive Waste Management of DPRK Nuclear Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Jooho, W.; Baldwin, G. T.

    2005-04-01

    One critical aspect of any denuclearization of the Democratic People’s Republic of Korea (DPRK) involves dismantlement of its nuclear facilities and management of their associated radioactive wastes. The decommissioning problem for its two principal operational plutonium facilities at Yongbyun, the 5MWe nuclear reactor and the Radiochemical Laboratory reprocessing facility, alone present a formidable challenge. Dismantling those facilities will create radioactive waste in addition to existing inventories of spent fuel and reprocessing wastes. Negotiations with the DPRK, such as the Six Party Talks, need to appreciate the enormous scale of the radioactive waste management problem resulting from dismantlement. The two operating plutonium facilities, along with their legacy wastes, will result in anywhere from 50 to 100 metric tons of uranium spent fuel, as much as 500,000 liters of liquid high-level waste, as well as miscellaneous high-level waste sources from the Radiochemical Laboratory. A substantial quantity of intermediate-level waste will result from disposing 600 metric tons of graphite from the reactor, an undetermined quantity of chemical decladding liquid waste from reprocessing, and hundreds of tons of contaminated concrete and metal from facility dismantlement. Various facilities for dismantlement, decontamination, waste treatment and packaging, and storage will be needed. The shipment of spent fuel and liquid high level waste out of the DPRK is also likely to be required. Nuclear facility dismantlement and radioactive waste management in the DPRK are all the more difficult because of nuclear nonproliferation constraints, including the call by the United States for “complete, verifiable and irreversible dismantlement,” or “CVID.” It is desirable to accomplish dismantlement quickly, but many aspects of the radioactive waste management cannot be achieved without careful assessment, planning and preparation, sustained commitment, and long

  18. Dismantlement and Radioactive Waste Management of DPRK Nuclear Facilities

    International Nuclear Information System (INIS)

    Jooho, W.; Baldwin, G.T.

    2005-01-01

    One critical aspect of any denuclearization of the Democratic People's Republic of Korea (DPRK) involves dismantlement of its nuclear facilities and management of their associated radioactive wastes. The decommissioning problem for its two principal operational plutonium facilities at Yongbyun, the 5MWe nuclear reactor and the Radiochemical Laboratory reprocessing facility, alone present a formidable challenge. Dismantling those facilities will create radioactive waste in addition to existing inventories of spent fuel and reprocessing wastes. Negotiations with the DPRK, such as the Six Party Talks, need to appreciate the enormous scale of the radioactive waste management problem resulting from dismantlement. The two operating plutonium facilities, along with their legacy wastes, will result in anywhere from 50 to 100 metric tons of uranium spent fuel, as much as 500,000 liters of liquid high-level waste, as well as miscellaneous high-level waste sources from the Radiochemical Laboratory. A substantial quantity of intermediate-level waste will result from disposing 600 metric tons of graphite from the reactor, an undetermined quantity of chemical decladding liquid waste from reprocessing, and hundreds of tons of contaminated concrete and metal from facility dismantlement. Various facilities for dismantlement, decontamination, waste treatment and packaging, and storage will be needed. The shipment of spent fuel and liquid high level waste out of the DPRK is also likely to be required. Nuclear facility dismantlement and radioactive waste management in the DPRK are all the more difficult because of nuclear nonproliferation constraints, including the call by the United States for 'complete, verifiable and irreversible dismantlement,' or 'CVID.' It is desirable to accomplish dismantlement quickly, but many aspects of the radioactive waste management cannot be achieved without careful assessment, planning and preparation, sustained commitment, and long completion times

  19. Facility management progettare, misurare, gestire e remunerare i servizi

    CERN Document Server

    Tronconi, Oliviero

    2014-01-01

    Il valore aggiunto del Facility Management consiste in una nuova dimensione e importanza dell'organizzazione: quella del fornitore che si affianca all'azienda/cliente per supportarla e risolvere qualsiasi problema inerente ai suoi diversi servizi/bisogni. Questo valore deriva da una maggior capacità di coordinamento e gestione del fornitore/partner e da una più elevata motivazione e qualità professionale delle risorse impiegate. Ma il contributo più significativo risiede della capacità di incrementare la qualità delle informazioni e, quindi, la conoscenza sui processi attuati e sui risultati raggiunti. Il Facility Management è, nella sua accezione più evoluta, il passaggio dal "fare artigianale" alla "gestione delle informazioni che sono causa ed effetto del fare". Una gestione sistematica che deve originare un più alto livello di conoscenza dei processi e che costituisce l'essenza, il nucleo fondamentale del Facility Management. Nella chiave di lettura proposta dal volume, il Facility Management è ...

  20. Quantifying Third-Party Impacts and Environmental Externalities from a Cap-And-Trade System for Groundwater Management

    Science.gov (United States)

    Khan, H. F.; Yang, Y. C. E.; Brown, C.

    2016-12-01

    Economic decision models, such as the cap-and-trade system, have been shown to be useful in the context of groundwater management. A uniformly applied cap-and-trade system can however result in significant spatially and temporally varying hydrogeologic impacts that reduce public welfare. Hydrological challenges associated with the cap-and-trade system for groundwater management include establishing appropriate system boundaries, setting system-wide sustainable yield and limiting third party impacts from extractions. Given these challenges, these economic models need to be supplemented with physically based hydrogeologic models that are able to represent the spatial and temporal heterogeneity in conditions across a region. This investigation assesses third-party impacts and environmental externalities resulting from a cap-and-trade system in a sub-basin of the Republican River Basin, overlying the Ogallala aquifer in the High Plains of the United States. The economic model is coupled with a calibrated physically based groundwater model. The cap-and-trade system is developed using a multi-agent system model where individual benefits of each self-interested agent are maximized subject to bounds on irrigation requirements and water use permits. We then compare the performance of the cap-and-trade system with a smart groundwater market which, in addition to a cap on total groundwater extraction, also incorporates streamflow constraints. The results quantify third-party impacts and environmental externalities resulting from uncontrolled trading. This analysis demonstrates the value added by a well-designed cap-and-trade system able to account for basin-wide heterogeneity in hydrogeologic and ecological conditions by establishing trading limits, managing inter-area transfers and setting exchange rates for permit trading.

  1. Investigation of Contaminated Groundwater at Solid Waste Management Unit 12, Naval Weapons Station Charleston, North Charleston, South Carolina, 2008

    Science.gov (United States)

    Vroblesky, Don A.; Petkewich, Matthew D.

    2009-01-01

    The U.S. Geological Survey and the Naval Facilities Engineering Command Southeast investigated natural and engineered remediation of chlorinated volatile organic compound (VOC) groundwater contamination at Solid Waste Management Unit 12 at the Naval Weapons Station Charleston, North Charleston, South Carolina, beginning in 2000. The primary contaminants of interest in the study are tetrachloroethene, 1,1,1-trichloroethane, trichloroethene, cis-1,2-dichloroethene, vinyl chloride, 1,1-dichloroethane, and 1,1-dichloroethene. Engineered remediation aspects at the site consist of a zero-valent-iron permeable reactive barrier (PRB) installed in December 2002 intercepting the contamination plume and a phytoremediation test stand of loblolly pine trees planted in the source area in May 2003. The U.S. Geological Survey planted an additional phytoremediation test stand of loblolly pine trees on the upgradient side of the southern end of the PRB in February 2008. At least once during the summer, however, the trees were inadvertently mowed during lawn cutting activity. The PRB along the main axis of the contaminant plume appears to be actively removing contamination. In contrast to the central area of the PRB, the data from the southern end of the PRB indicate that contaminants are moving around the PRB. Concentrations in wells upgradient from the PRB showed a general decrease in VOC concentrations. VOC concentrations in some wells in the forest downgradient from the PRB showed a sharp increase in 2005, followed by a decrease in 2006. Farther downgradient in the forest, the VOC concentrations began to increase in 2007 and continued to increase into 2008. The VOC-concentration changes in groundwater beneath the forest appear to indicate movement of a groundwater-contaminant pulse through the forest. It also is possible that the data may represent lateral shifting of the plume in response to changes in groundwater-flow direction.

  2. Groundwater Protection Program Management Plan for the U.S. Department of Energy Y-12 National Security Complex, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    None

    2001-06-01

    This document presents the Groundwater Protection Program (GWPP) management plan for the U.S. Department of Energy (DOE) Y-12 National Security Complex (hereafter referenced as Y-12). The Y-12 GWPP functions as the primary point-of-contact for groundwater-related issues at Y-12, provides stewardship of the extensive network of groundwater monitoring wells at Y-12, and serves as a resource for technical expertise, support, and historical data for groundwater-related activities at Y-12. These organizational functions each serve the primary programmatic purpose of the GWPP, which is to ensure that groundwater monitoring activities within areas under Y-12 administrative control provide representative data in compliance with the multiple purposes of applicable state and federal regulations, DOE orders, and the corporate policies of BWXT Y-12, L.L.C. (hereafter referenced as BWXT Y-12), the Y-12 management and operations (M and O) subcontractor for DOE.

  3. Criticality management of Tokai reprocessing facility

    Energy Technology Data Exchange (ETDEWEB)

    Nojiri, Ichiro [Japan Nuclear Cycle Development Inst., Tokai, Ibaraki (Japan)

    2001-01-01

    In fuel cycle centers a number of equipment and vessels of various types and of complex design are used in several processes, i.e. dissolution of spent fuels, separation and storage of uranium and plutonium from fission products and transuranium elements. For each processes, Monte Carlo codes are frequently applied to manage the fuel criticality. Safety design depends largely on specific features of each facilities. The present report describes status of criticality management for main processes in Tokai Reprocessing Facility, JNC, and the criticality conditions specifically existing there. The guiding principle throughout consists of mass control, volume control, design (form) control, concentration control, and control due to employment of neutron poisons. (S. Ohno)

  4. Best practices for managing large CryoEM facilities.

    Science.gov (United States)

    Alewijnse, Bart; Ashton, Alun W; Chambers, Melissa G; Chen, Songye; Cheng, Anchi; Ebrahim, Mark; Eng, Edward T; Hagen, Wim J H; Koster, Abraham J; López, Claudia S; Lukoyanova, Natalya; Ortega, Joaquin; Renault, Ludovic; Reyntjens, Steve; Rice, William J; Scapin, Giovanna; Schrijver, Raymond; Siebert, Alistair; Stagg, Scott M; Grum-Tokars, Valerie; Wright, Elizabeth R; Wu, Shenping; Yu, Zhiheng; Zhou, Z Hong; Carragher, Bridget; Potter, Clinton S

    2017-09-01

    This paper provides an overview of the discussion and presentations from the Workshop on the Management of Large CryoEM Facilities held at the New York Structural Biology Center, New York, NY on February 6-7, 2017. A major objective of the workshop was to discuss best practices for managing cryoEM facilities. The discussions were largely focused on supporting single-particle methods for cryoEM and topics included: user access, assessing projects, workflow, sample handling, microscopy, data management and processing, and user training. Crown Copyright © 2017. Published by Elsevier Inc. All rights reserved.

  5. Insights and participatory actions driven by a socio-hydrogeological approach for groundwater management: the Grombalia Basin case study (Tunisia)

    Science.gov (United States)

    Tringali, C.; Re, V.; Siciliano, G.; Chkir, N.; Tuci, C.; Zouari, K.

    2017-08-01

    Sustainable groundwater management strategies in water-scarce countries need to guide future decision-making processes pragmatically, by simultaneously considering local needs, environmental problems and economic development. The socio-hydrogeological approach named `Bir Al-Nas' has been tested in the Grombalia region (Cap Bon Peninsula, Tunisia), to evaluate the effectiveness of complementing hydrogeochemical and hydrogeological investigations with the social dimension of the issue at stake (which, in this case, is the identification of groundwater pollution sources). Within this approach, the social appraisal, performed through social network analysis and public engagement of water end-users, allowed hydrogeologists to get acquainted with the institutional dimension of local groundwater management, identifying issues, potential gaps (such as weak knowledge transfer among concerned stakeholders), and the key actors likely to support the implementation of the new science-based management practices resulting from the ongoing hydrogeological investigation. Results, hence, go beyond the specific relevance for the Grombaila basin, showing the effectiveness of the proposed approach and the importance of including social assessment in any given hydrogeological research aimed at supporting local development through groundwater protection measures.

  6. Længerevarende samarbejder inden for Facilities Management

    DEFF Research Database (Denmark)

    Storgaard, Kresten; Friis, Freja

    Længerevarende strategiske samarbejde er interessant, fordi det anses for en måde at fremme produktivitet og forretning for både kunder og leverandører. I rapportenfremlægges resultaterne fra en caseanalyse blandt leverandører og købere af Facilities Management.......Længerevarende strategiske samarbejde er interessant, fordi det anses for en måde at fremme produktivitet og forretning for både kunder og leverandører. I rapportenfremlægges resultaterne fra en caseanalyse blandt leverandører og købere af Facilities Management....

  7. The influence of conceptual model uncertainty on management decisions for a groundwater-dependent ecosystem in karst

    DEFF Research Database (Denmark)

    Gondwe, Bibi Ruth Neuman; Merediz-Alonso, Gonzalo; Bauer-Gottwein, Peter

    2011-01-01

    abstractions and pollution threatens the fresh water resource, and consequently the ecosystem integrity of both Sian Ka’an and the adjacent coastal environment. Seven different catchment-scale conceptual models were implemented in a distributed hydrological modelling approach. Equivalent porous medium...... to preserve water resources and maintain ecosystem services. Multiple Model Simulation highlights the impact of model structure uncertainty on management decisions using several plausible conceptual models. Multiple Model Simulation was used for this purpose on the Yucatan Peninsula, which is one of the world......Groundwater management in karst is often based on limited hydrologic understanding of the aquifer. The geologic heterogeneities controlling the water flow are often insufficiently mapped. As karst aquifers are very vulnerable to pollution, groundwater protection and land use management are crucial...

  8. Federal facilities compliance act waste management

    International Nuclear Information System (INIS)

    Bowers, J.; Gates-Anderson, D.; Hollister, R.; Painter, S.

    1999-01-01

    Site Treatment Plans (STPs) developed through the Federal Facilities Compliance Act pose many technical and administrative challenges. Legacy wastes managed under these plans require Land Disposal Restriction (LDR) compliance through treatment and ultimate disposal. Although capacity has been defined for most of the Department of Energy wastes, many waste streams require further characterization and many need additional treatment and handling beyond LDR criteria to be able to dispose of the waste. At Lawrence Livermore National Laboratory (LLNL), the Hazardous Waste Management Division has developed a comprehensive Legacy Waste Program. The program directs work to manage low level and mixed wastes to ensure compliance with nuclear facility rules and its STP. This paper provides a survey of work conducted on these wastes at LLNL. They include commercial waste treatment and disposal, diverse forms of characterization, inventory maintenance and reporting, on-site treatment, and treatability studies. These activities are conducted in an integrated fashion to meet schedules defined in the STP. The processes managing wastes are dynamic due to required integration of administrative, regulatory, and technical concerns spanning the gamut to insure safe proper disposal

  9. Technical options for the remediation of contaminated groundwater

    Energy Technology Data Exchange (ETDEWEB)

    1999-06-01

    This report provides a description of the nature and extent of problems related to radioactive groundwater contamination by outlining the environmental impacts, the sources of contamination and the contaminants of concern radionuclides and their associated contaminants - the main exposure pathways and transport processes and the assessment of risks associated with contaminated groundwater. The main emphasis of this report is on methodologies used in groundwater remediation and available technologies. The methodology section outlines the importance of an initial scoping analysis including the evaluation of uncertainties of the available data and the necessity for defining clear objectives for data collection. This is then followed by comprehensive site characterization, setting of goals and developing alternatives which will be analysed in detail. Available technologies are grouped generally into in situ methods aiming at a containment of the contaminants in place and engineered treatment methods involving an alteration of groundwater flow, quantity and/or quality to achieve compliance with set goals. Groundwater remediation by natural flushing allows the natural groundwater movement and geochemical processes to decrease the contaminant concentrations to acceptable levels over a specified period of time. This method is increasingly accepted in areas where the use of groundwater can be temporarily restricted or engineered cleanup methods do not offer particular advantage over the natural processes. The application of technological methods for remediating contaminated groundwaters has to be considered in conjunction with management options such as diversion and development of alternative water sources. The experience with groundwater contamination accrued in IAEA Member States is concentrated in those countries with active uranium mining and milling facilities and nuclear energy programmes. This experience is reported in the Annexes, which include case studies. It

  10. Technical options for the remediation of contaminated groundwater

    International Nuclear Information System (INIS)

    1999-06-01

    This report provides a description of the nature and extent of problems related to radioactive groundwater contamination by outlining the environmental impacts, the sources of contamination and the contaminants of concern radionuclides and their associated contaminants - the main exposure pathways and transport processes and the assessment of risks associated with contaminated groundwater. The main emphasis of this report is on methodologies used in groundwater remediation and available technologies. The methodology section outlines the importance of an initial scoping analysis including the evaluation of uncertainties of the available data and the necessity for defining clear objectives for data collection. This is then followed by comprehensive site characterization, setting of goals and developing alternatives which will be analysed in detail. Available technologies are grouped generally into in situ methods aiming at a containment of the contaminants in place and engineered treatment methods involving an alteration of groundwater flow, quantity and/or quality to achieve compliance with set goals. Groundwater remediation by natural flushing allows the natural groundwater movement and geochemical processes to decrease the contaminant concentrations to acceptable levels over a specified period of time. This method is increasingly accepted in areas where the use of groundwater can be temporarily restricted or engineered cleanup methods do not offer particular advantage over the natural processes. The application of technological methods for remediating contaminated groundwaters has to be considered in conjunction with management options such as diversion and development of alternative water sources. The experience with groundwater contamination accrued in IAEA Member States is concentrated in those countries with active uranium mining and milling facilities and nuclear energy programmes. This experience is reported in the Annexes, which include case studies. It

  11. SLIMarray: Lightweight software for microarray facility management

    Directory of Open Access Journals (Sweden)

    Marzolf Bruz

    2006-10-01

    Full Text Available Abstract Background Microarray core facilities are commonplace in biological research organizations, and need systems for accurately tracking various logistical aspects of their operation. Although these different needs could be handled separately, an integrated management system provides benefits in organization, automation and reduction in errors. Results We present SLIMarray (System for Lab Information Management of Microarrays, an open source, modular database web application capable of managing microarray inventories, sample processing and usage charges. The software allows modular configuration and is well suited for further development, providing users the flexibility to adapt it to their needs. SLIMarray Lite, a version of the software that is especially easy to install and run, is also available. Conclusion SLIMarray addresses the previously unmet need for free and open source software for managing the logistics of a microarray core facility.

  12. Facility Management as a Way of Reducing Costs in Transport Companies

    Science.gov (United States)

    Matusova, Dominika; Gogolova, Martina

    2017-10-01

    For facility management exists a several interpretations. These interpretations emerged progressively. At the time of the notion of facility management was designed to manage an administrative building, in the United States (US). They can ensure their operation and maintenance. From the US, this trend is further moved to Europe and now it start becoming a current and actual topic also in Slovakia. Facility management is contractually agreed scheme of services, semantically recalls traditional building management. There by finally pushed for activities related to real estates. For facility management is fundamental - certification and certification systems. Therefore, is essential to know, the cost structure of certification. The most commonly occurring austerity measures include: heat pumps, use of renewable energy, solar panels and water savings. These measures can reduce the cost.

  13. Impact of Drought on Groundwater and Soil Moisture - A Geospatial Tool for Water Resource Management

    Science.gov (United States)

    Ziolkowska, J. R.; Reyes, R.

    2016-12-01

    For many decades, recurring droughts in different regions in the US have been negatively impacting ecosystems and economic sectors. Oklahoma and Texas have been suffering from exceptional and extreme droughts in 2011-2014, with almost 95% of the state areas being affected (Drought Monitor, 2015). Accordingly, in 2011 alone, around 1.6 billion were lost in the agricultural sector alone as a result of drought in Oklahoma (Stotts 2011), and 7.6 billion in Texas agriculture (Fannin 2012). While surface water is among the instant indicators of drought conditions, it does not translate directly to groundwater resources that are the main source of irrigation water. Both surface water and groundwater are susceptible to drought, while groundwater depletion is a long-term process and might not show immediately. However, understanding groundwater availability is crucial for designing water management strategies and sustainable water use in the agricultural sector and other economic sectors. This paper presents an interactive geospatially weighted evaluation model and a tool at the same time to analyze groundwater resources that can be used for decision support in water management. The tool combines both groundwater and soil moisture changes in Oklahoma and Texas in 2003-2014, thus representing the most important indicators of agricultural and hydrological drought. The model allows for analyzing temporal and geospatial long-term drought at the county level. It can be expanded to other regions in the US and the world. The model has been validated with the Palmer Drought Index Severity Index to account for other indicators of meteorological drought. It can serve as a basis for an upcoming socio-economic and environmental analysis of drought events in the short and long-term in different geographic regions.

  14. The Role of Transdisciplinary Approach and Community Participation in Village Scale Groundwater Management: Insights from Gujarat and Rajasthan, India

    Directory of Open Access Journals (Sweden)

    Basant Maheshwari

    2014-11-01

    Full Text Available Sustainable use of groundwater is becoming critical in India and requires effective participation from local communities along with technical, social, economic, policy and political inputs. Access to groundwater for farming communities is also an emotional and complex issue as their livelihood and survival depends on it. In this article, we report on transdisciplinary approaches to understanding the issues, challenges and options for improving sustainability of groundwater use in States of Gujarat and Rajasthan, India. In this project, called Managed Aquifer Recharge through Village level Intervention (MARVI, the research is focused on developing a suitable participatory approach and methodology with associated tools that will assist in improving supply and demand management of groundwater. The study was conducted in the Meghraj watershed in Aravalli district, Gujarat, and the Dharta watershed in Udaipur district, Rajasthan, India. The study involved the collection of hydrologic, agronomic and socio-economic data and engagement of local village and school communities through their role in groundwater monitoring, field trials, photovoice activities and education campaigns. The study revealed that availability of relevant and reliable data related to the various aspects of groundwater and developing trust and support between local communities, NGOs and government agencies are the key to moving towards a dialogue to decide on what to do to achieve sustainable use of groundwater. The analysis of long-term water table data indicated considerable fluctuation in groundwater levels from year to year or a net lowering of the water table, but the levels tend to recover during wet years. This provides hope that by improving management of recharge structures and groundwater pumping, we can assist in stabilizing the local water table. Our interventions through Bhujal Jankaars (BJs, (a Hindi word meaning “groundwater informed” volunteers, schools

  15. Radionuclide migration in groundwater. Annual progress report for 1982

    International Nuclear Information System (INIS)

    Robertson, D.E.; Toste, A.P.; Abel, K.H.; Brodzinski, R.L.

    1984-01-01

    Research has continued at a low-level waste disposal facility to characterize the physicochemical species of radionuclides migrating in groundwater. This facility consists of an unlined basin and connecting trench which receives effluent water containing low levels of a wide variety of fission and activation products and trace amounts of transuranic radionuclides. The effluent water percolates through the soil and a small fraction of it emerges at seepage springs located some 260 meters from the trench. The disposal basin and trench are very efficient in retaining most of the radionuclides, but trace amounts of a number of radionuclides existing in mobile chemical forms migrate in the groundwater from the trench to the springs. This facility provides the opportunity for characterizing the rates and mechanisms of radionuclide migration in groundwaters, identifying retardation processes, and validating geochemical models. 13 references, 25 figures, 23 tables

  16. Organization and management for decommissioning of large nuclear facilities

    International Nuclear Information System (INIS)

    2000-01-01

    For nuclear facilities, decommissioning is the final phase in the life-cycle after siting, design, construction, commissioning and operation. It is a complex process involving operations such as detailed surveys, decontamination and dismantling of plant equipment and facilities, demolition of buildings and structures, and management of resulting waste and other materials, whilst taking into account aspects of health and safety of the operating personnel and the general public, and protection of the environment. Careful planning and management is essential to ensure that decommissioning is accomplished in a safe and cost effective manner. Guidance on organizational aspects may lead to better decision making, reductions in time and resources, lower doses to the workers and reduced impact on public health and the environment. The objective of this report is to provide information and guidance on the organization and management aspects for the decommissioning of large nuclear facilities which will be useful for licensees responsible for discharging these responsibilities. The information contained in the report may also be useful to policy makers, regulatory bodies and other organizations interested in the planning and management of decommissioning. In this report, the term 'decommissioning' refers to those actions that are taken at the end of the useful life of a nuclear facility in withdrawing it from service with adequate regard for the health and safety of workers and members of the public and for the protection of the environment. The term 'large nuclear facilities' involves nuclear power plants, large nuclear research reactors and other fuel cycle facilities such as reprocessing plants, fuel conversion, fabrication and enrichment plants, as well as spent fuel storage and waste management plants. Information on the planning and management for decommissioning of smaller research reactors or other small nuclear facilities can be found elsewhere. The report covers

  17. Groundwater management based on monitoring of land subsidence and groundwater levels in the Kanto Groundwater Basin, Central Japan

    Science.gov (United States)

    Furuno, K.; Kagawa, A.; Kazaoka, O.; Kusuda, T.; Nirei, H.

    2015-11-01

    Over 40 million people live on and exploit the groundwater resources of the Kanto Plain. The Plain encompasses metropolitan Tokyo and much of Chiba Prefecture. Useable groundwater extends to the base of the Kanto Plain, some 2500 to 3000 m below sea level. Much of the Kanto Plain surface is at sea level. By the early 1970s, with increasing urbanization and industrial expansion, local overdraft of groundwater resources caused major ground subsidence and damage to commercial and residential structures as well as to local and regional infrastructure. Parts of the lowlands around Tokyo subsided to 4.0 m below sea level; particularly affected were the suburbs of Funabashi and Gyotoku in western Chiba. In the southern Kanto Plain, regulations, mainly by local government and later by regional agencies, led to installation of about 500 monitoring wells and almost 5000 bench marks by the 1990's. Many of them are still working with new monitoring system. Long-term monitoring is important. The monitoring systems are costly, but the resulting data provide continuous measurement of the "health" of the Kanto Groundwater Basin, and thus permit sustainable use of the groundwater resource.

  18. Assessing the role of climate and resource management on groundwater dependent ecosystem changes in arid environments with the Landsat archive

    Science.gov (United States)

    Huntington, Justin; McGwire, Kenneth C.; Morton, Charles; Snyder, Keirith A.; Peterson, Sarah; Erickson, Tyler; Niswonger, Richard G.; Carroll, Rosemary W.H.; Smith, Guy; Allen, Richard

    2016-01-01

    Groundwater dependent ecosystems (GDEs) rely on near-surface groundwater. These systems are receiving more attention with rising air temperature, prolonged drought, and where groundwater pumping captures natural groundwater discharge for anthropogenic use. Phreatophyte shrublands, meadows, and riparian areas are GDEs that provide critical habitat for many sensitive species, especially in arid and semi-arid environments. While GDEs are vital for ecosystem services and function, their long-term (i.e. ~ 30 years) spatial and temporal variability is poorly understood with respect to local and regional scale climate, groundwater, and rangeland management. In this work, we compute time series of NDVI derived from sensors of the Landsat TM, ETM +, and OLI lineage for assessing GDEs in a variety of land and water management contexts. Changes in vegetation vigor based on climate, groundwater availability, and land management in arid landscapes are detectable with Landsat. However, the effective quantification of these ecosystem changes can be undermined if changes in spectral bandwidths between different Landsat sensors introduce biases in derived vegetation indices, and if climate, and land and water management histories are not well understood. The objective of this work is to 1) use the Landsat 8 under-fly dataset to quantify differences in spectral reflectance and NDVI between Landsat 7 ETM + and Landsat 8 OLI for a range of vegetation communities in arid and semiarid regions of the southwestern United States, and 2) demonstrate the value of 30-year historical vegetation index and climate datasets for assessing GDEs. Specific study areas were chosen to represent a range of GDEs and environmental conditions important for three scenarios: baseline monitoring of vegetation and climate, riparian restoration, and groundwater level changes. Google's Earth Engine cloud computing and environmental monitoring platform is used to rapidly access and analyze the Landsat archive

  19. Hanford Sitewide Groundwater Remediation Strategy

    International Nuclear Information System (INIS)

    Knepp, A.J.; Isaacs, J.D.

    1997-09-01

    This document fulfills the requirements of the Hanford Federal Facility Agreement and Consent Order, Milestone M-13-81, to develop a concise statement of strategy that describe show the Hanford Site groundwater remediation will be accomplished. The strategy addresses objectives and goals, prioritization of activities, and technical approaches for groundwater cleanup. The strategy establishes that the overall goal of groundwater remediation on the Hanford Site is to restore groundwater to its beneficial uses in terms of protecting human health and the environment, and its use as a natural resource. The Hanford Future Site Uses Working Group established two categories for groundwater commensurate with various proposed landuses: (1) restricted use or access to groundwater in the Central Plateau and in a buffer zone surrounding it and (2) unrestricted use or access to groundwater for all other areas. In recognition of the Hanford Future Site Uses Working Group and public values, the strategy establishes that the sitewide approach to groundwater cleanup is to remediate the major plumes found in the reactor areas that enter the Columbia River and to contain the spread and reduce the mass of the major plumes found in the Central Plateau

  20. A coupled stochastic inverse-management framework for dealing with nonpoint agriculture pollution under groundwater parameter uncertainty

    Science.gov (United States)

    Llopis-Albert, Carlos; Palacios-Marqués, Daniel; Merigó, José M.

    2014-04-01

    In this paper a methodology for the stochastic management of groundwater quality problems is presented, which can be used to provide agricultural advisory services. A stochastic algorithm to solve the coupled flow and mass transport inverse problem is combined with a stochastic management approach to develop methods for integrating uncertainty; thus obtaining more reliable policies on groundwater nitrate pollution control from agriculture. The stochastic inverse model allows identifying non-Gaussian parameters and reducing uncertainty in heterogeneous aquifers by constraining stochastic simulations to data. The management model determines the spatial and temporal distribution of fertilizer application rates that maximizes net benefits in agriculture constrained by quality requirements in groundwater at various control sites. The quality constraints can be taken, for instance, by those given by water laws such as the EU Water Framework Directive (WFD). Furthermore, the methodology allows providing the trade-off between higher economic returns and reliability in meeting the environmental standards. Therefore, this new technology can help stakeholders in the decision-making process under an uncertainty environment. The methodology has been successfully applied to a 2D synthetic aquifer, where an uncertainty assessment has been carried out by means of Monte Carlo simulation techniques.

  1. Waste management facility acceptance - some findings

    International Nuclear Information System (INIS)

    Sigmon, B.

    1987-01-01

    Acceptance of waste management facilities remains a significant problem, despite years of efforts to reassure potential host communities. The tangible economic benefits from jobs, taxes, and expenditures are generally small, while the intangible risks of environmental or other impacts are difficult to evaluate and understand. No magic formula for winning local acceptance has yet been found. Limited case study and survey work does suggest some pitfalls to be avoided and some directions to be pursued. Among the most significant is the importance that communities place on controlling their own destiny. Finding a meaningful role for communities in the planning and operation of waste management facilities is a challenge that would-be developers should approach with the same creativity that characterizes their technical efforts

  2. Nitrogen and phosphorus budgets for the Yucatán littoral: An approach for groundwater management.

    Science.gov (United States)

    Arandacirerol, Nancy; Comín, Francisco; Herrera-Silveira, Jorge

    2011-01-01

    Human activities have altered the balance of ecosystems to the detriment of natural environments. Eutrophication is a serious risk in Yucatán, a state in the eastern peninsula of México where groundwater supplies the only freshwater to a karst shelf environment. While economic development in Yucatán is increasing, environmental awareness is lagging, and efficient waste treatment systems are lacking. To assess potential nitrogen and phosphorus inputs into the coastal zone of Yucatán, we analyzed government reports and the chemical composition of groundwater and aquaculture wastewater. Swine, poultry, and tourism are revealed as the main continental nutrient sources, while groundwater with high nitrate concentrations is the principal coastal nutrient source, a pattern similar to other river discharges around the world. This study demonstrates that environmental risk management practices must be implemented in the Yucatán region to protect groundwater quality.

  3. Revised ground-water monitoring compliance plan for the 183-H Solar Evaporation Basins

    International Nuclear Information System (INIS)

    1986-09-01

    This document contains ground-water monitoring plans for a mixed waste storage facility located on the Hanford Site in southeastern Washington State. This facility has been used since 1973 for storage of mixed wastes, which contain both chemicals and radionuclides. The ground-water monitoring plans presented here represent revision and expansion of an effort in June 1985. At that time, a facility-specific monitoring program was implemented at the 183-H Basins as part of the regulatory compliance effort being conducted on the Hanford Site. This monitoring program was based on the ground-water monitoring requirements for interimstatus facilities, which are those facilities that do not yet have final permits, but are authorized to continue interim operations while engaged in the permitting process. The program initially implemented for the 183-H Basins was designed to be an alternate program, which is required instead of the standard detection program when a facility is known or suspected to have contaminated the ground water in the uppermost aquifer. This effort, named the RCRA Compliance Ground-Water Monitoring Project for the 183-H Basins, was implemented. A supporting project involving ground-water flow modeling for the area surrounding the 183-H Basins was also initiated during 1985. Those efforts and the results obtained are described in subsequent chapters of this document. 26 refs., 55 figs., 14 tabs

  4. Software for modelling groundwater transport and contaminant migration

    International Nuclear Information System (INIS)

    Gishkelyuk, I.A.

    2008-01-01

    Facilities of modern software for modeling of groundwater transport and process of contaminant distribution are considered. Advantages of their application are discussed. The comparative analysis of mathematical modeling software of 'Groundwater modeling system' and 'Earth Science Module' from 'COMSOL Multiphysics' is carried out. (authors)

  5. Does identity shape leadership and management practice? Experiences of PHC facility managers in Cape Town, South Africa

    Science.gov (United States)

    Daire, Judith; Gilson, Lucy

    2014-01-01

    In South Africa, as elsewhere, Primary Health Care (PHC) facilities are managed by professional nurses. Little is known about the dimensions and challenges of their job, or what influences their managerial practice. Drawing on leadership and organizational theory, this study explored what the job of being a PHC manager entails, and what factors influence their managerial practice. We specifically considered whether the appointment of professional nurses as facility managers leads to an identity transition, from nurse to manager. The overall intention was to generate ideas about how to support leadership development among PHC facility managers. Adopting case study methodology, the primary researcher facilitated in-depth discussions (about their personal history and managerial experiences) with eight participating facility managers from one geographical area. Other data were collected through in-depth interviews with key informants, document review and researcher field notes/journaling. Analysis involved data triangulation, respondent and peer review and cross-case analysis. The experiences show that the PHC facility manager’s job is dominated by a range of tasks and procedures focused on clinical service management, but is expected to encompass action to address the population and public health needs of the surrounding community. Managing with and through others, and in a complex system, requiring self-management, are critical aspects of the job. A range of personal, professional and contextual factors influence managerial practice, including professional identity. The current largely facility-focused management practice reflects the strong nursing identity of managers and broader organizational influences. However, three of the eight managers appear to self-identify an emerging leadership identity and demonstrate related managerial practices. Nonetheless, there is currently limited support for an identity transition towards leadership in this context. Better

  6. Identifying Effective Policy and Technologic Reforms for Sustainable Groundwater Management in Oman

    Science.gov (United States)

    Madani, K.; Zekri, S.; Karimi, A.

    2014-12-01

    Oman has gone through three decades of efforts aimed at addressing groundwater over-pumping and the consequent seawater intrusion. Example of measures adopted by the government since the 1990's include a vast subsidy program of irrigation modernization, a freeze on drilling new wells, delimitation of several no-drill zones, a crop substitution program, re-use of treated wastewater and construction of recharge dams. With no major success through these measures, the government laid the ground for water quotas by creating a new regulation in 1995. Nevertheless, groundwater quotas have not been enforced to date due to the high implementation and monitoring costs of traditional flow meters. This presentation discusses how sustainable groundwater management can be secured in Oman using a suit of policy and technologic reforms at a reasonable economic, political and practical cost. Data collected from farms with smart meters and low-cost wireless smart irrigation systems have been used to propose sustainable groundwater withdrawal strategies for Oman using a detailed hydro-economic model that couples a MODFLOW-SEAWAT model of the coastal aquifers with a dynamic profit maximization model. The hydro-economic optimization model was flexible to be run both as a social planner model to maximize the social welfare in the region, and as an agent-based model to capture the behavior of farmers interested in maximizing their profits independently. This flexibility helped capturing the trade-off between the optimality of the social planner solution developed at the system's level and its practicality (stability) with respect to the concerns and behaviors of the profit-maximizing farmers. The idetified promising policy and technolgical reforms for Oman include strict enforcement of groundwater quotas, smart metering, changing crop mixes, improving irrigation technologies, and revising geographical distribution of the farming activities. The presentation will discuss how different

  7. 41 CFR 102-74.15 - What are the facility management responsibilities of occupant agencies?

    Science.gov (United States)

    2010-07-01

    ... 41 Public Contracts and Property Management 3 2010-07-01 2010-07-01 false What are the facility management responsibilities of occupant agencies? 102-74.15 Section 102-74.15 Public Contracts and Property... PROPERTY 74-FACILITY MANAGEMENT Facility Management § 102-74.15 What are the facility management...

  8. Application of Facility Management in Brownfield Conversion

    Directory of Open Access Journals (Sweden)

    Wernerová Eva

    2016-12-01

    Full Text Available The subject of this paper covers two issues, namely the issue of brownfields and their conversion and the issue of Facility Management, which offers the possibility of applying its principles and tools for extending the benefit of the construction works as a tool for active access to care for the property. This paper aims to link these two topics and to identify the possibility of applying Facility Management in the conversation process of revitalization of brownfields so that subsequent commissioning eliminates the risk of future costly operation and relapse of the revitalized building into the category of brownfields.

  9. Greening Federal Facilities: An Energy, Environmental, and Economic Resource Guide for Federal Facility Managers and Designers; Second Edition

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, A.

    2001-05-16

    Greening Federal Facilities, Second Edition, is a nuts-and-bolts resource guide compiled to increase energy and resource efficiency, cut waste, and improve the performance of Federal buildings and facilities. The guide highlights practical actions that facility managers, design and construction staff, procurement officials, and facility planners can take to save energy and money, improve the comfort and productivity of employees, and benefit the environment. It supports a national effort to promote energy and environmental efficiency in the nation's 500,000 Federal buildings and facilities. Topics covered include current Federal regulations; environmental and energy decision-making; site and landscape issues; building design; energy systems; water and wastewater; materials; waste management, and recycling; indoor environmental quality; and managing buildings.

  10. Groundwater quality assessment for the Upper East Fork Poplar Creek Hydrogeologic Regime at the Y-12 Plant

    International Nuclear Information System (INIS)

    1992-02-01

    This report contains groundwater quality data obtained during the 1991 calendar year at several waste management facilities and petroleum fuel underground storage tank (UST) sites associated with the Y-12 Plant. These sites are within the Upper East Fork Poplar Creek Hydrogeologic Regime (UEFPCHR), which is one of three regimes defined for the purposes of groundwater and surface-water quality monitoring and remediation. This report was prepared for informational purposes. Included are the analytical data for groundwater samples collected from selected monitoring wells during 1991 and the results for quality assurance/quality control (QA/QC) samples associated with each groundwater sample. This report also contains summaries of selected data, including ion-charge balances for each groundwater sample, a summary of analytical results for nitrate (a principle contaminant in the UEFPCHR), results of volatile organic compounds (VOCs) analyses validated using the associated QA/QC sample data, a summary of trace metal concentrations which exceeded drinking-water standards, and a summary of radiochemical analyses and associated counting errors

  11. Graphics-based nuclear facility modeling and management

    International Nuclear Information System (INIS)

    Rod, S.R.

    1991-07-01

    Nuclear waste management facilities are characterized by their complexity, many unprecedented features, and numerous competing design requirements. This paper describes the development of comprehensive descriptive databases and three-dimensional models of nuclear waste management facilities and applies the database/model to an example facility. The important features of the facility database/model are its abilities to (1) process large volumes of site data, plant data, and nuclear material inventory data in an efficient, integrated manner; (2) produce many different representations of the data to fulfill information needs as they arise; (3) create a complete three-dimensional solid model of the plant with all related information readily accessible; and (4) support complete, consistent inventory control and plant configuration control. While the substantive heart of the system is the database, graphic visualization of the data vastly improves the clarity of the information presented. Graphic representations are a convenient framework for the presentation of plant and inventory data, allowing all types of information to be readily located and presented in a manner that is easily understood. 2 refs., 5 figs., 1 tab

  12. Improvement of management systems for nuclear facilities

    International Nuclear Information System (INIS)

    2005-01-01

    The area of Quality Management/ Quality Assurance has been changed dramatically over the past years. The nuclear facilities moved from the 'traditional' Quality Assurance approach towards Quality Management Systems, and later a new concept of Integrated Management Systems was introduced. The IAEA is developing a new set of Standards on Integrated Management Systems, which will replace the current 50-C-Q/SG-Q1-Q14 Code. The new set of document will require the integration of all management areas into one coherent management system. The new set of standards on Management Systems promotes the concept of the Integrated Management Systems. Based on new set a big number of documents are under preparation. These documents will address the current issues in the management systems area, e.g. Management of Change, Continuous Improvement, Self-assessment, and Attributes of effective management, etc. Currently NPES is providing a number of TC projects and Extra Budgetary Programmes to assist Member States in this area. The new Standards on Management Systems will be published in 2006. A number of Regulatory bodies already indicated that they would take the new Management System Standards as a basis for the national regulation. This fact will motivate a considerable change in the management of nuclear utilities, requiring a new approach. This activity is suitable for all IAEA Members States with large or limited nuclear capabilities. The service is directed to provide assistance for the management of all organizations carrying on or regulating nuclear activities and facilities

  13. A guideline for interpersonal capabilities enhancement to support sustainable facility management practice

    Science.gov (United States)

    Sarpin, Norliana; Kasim, Narimah; Zainal, Rozlin; Noh, Hamidun Mohd

    2018-04-01

    Facility management is the key phase in the development cycle of an assets and spans over a considerable length of time. Therefore, facility managers are in a commanding position to maximise the potential of sustainability through the development phases from construction, operation, maintenance and upgrade leading to decommission and deconstruction. Sustainability endeavours in facility management practices will contribute to reducing energy consumption, waste and running costs. Furthermore, it can also help in improving organisational productivity, financial return and community standing of the organisation. Facility manager should be empowered with the necessary knowledge and capabilities at the forefront facing sustainability challenge. However, literature studies show a gap between the level of awareness, specific knowledge and the necessary skills required to pursue sustainability in the facility management professional. People capability is considered as the key enabler in managing the sustainability agenda as well as being central to the improvement of competency and innovation in an organisation. This paper aims to develop a guidelines for interpersonal capabilities to support sustainability in facility management practice. Starting with a total of 7 critical interpersonal capabilities factors identified from previous questionnaire survey, the authors conducted an interview with 3 experts in facility management to assess the perceived importance of these factors. The findings reveal a set of guidelines for the enhancement of interpersonal capabilities among facility managers by providing what can be done to acquire these factors and how it can support the application of sustainability in their practice. The findings of this paper are expected to form the basis of a mechanism framework developed to equip facility managers with the right knowledge, to continue education and training and to develop new mind-sets to enhance the implementation of sustainability

  14. A hydrostratigraphical approach to support environmentally safe siting of a mining waste facility at Rautuvaara, Finland

    DEFF Research Database (Denmark)

    Howett, Peter J.; Salonen, Veli-Pekka; Hyttinen, Outi

    2015-01-01

    A hydrostratigraphical approach to support environmentally safe siting of a mining waste facility at Rautuvaara, Finland Based on the construction of a detailed sedimentological model, hydrostratigraphy and local groundwater/surface water flows, this paper analyses the Niesajoki river valley...... of the valley. The thickness and complexity of sediments varied across the study area. To the E/SE of the valley, sediments are thick (~40 m), and more complex., In contrast the S/W/NW of the area, sediments are thinner (~10 m) and more simple. Groundwater is found to flow towards the centre of the valley...... and along its axis, where a bedrock controlled divide forms two groundwater basins. Based on the results of this research, it is suggested that any future expansion of the tailings facility should be restricted to the western and southern side of the valley, where waters are more manageable....

  15. Facilities management and corporate real estate management : FM/CREM or FREM?

    NARCIS (Netherlands)

    van der Voordt, Theo

    2017-01-01

    Purpose: This paper aims to explore similarities and dissimilarities between facilities management (FM) and corporate real estate management (CREM) regarding its history and key issues, and whether the similarities may result in a further integration of FM and CREM. Design/methodology/approach:

  16. Technical framework for groundwater restoration

    International Nuclear Information System (INIS)

    1991-04-01

    This document provides the technical framework for groundwater restoration under Phase II of the Uranium Mill Tailings Remedial Action (UMTRA) Project. A preliminary management plan for Phase II has been set forth in a companion document titled ''Preplanning Guidance Document for Groundwater Restoration''. General principles of site characterization for groundwater restoration, restoration methods, and treatment are discussed in this document to provide an overview of standard technical approaches to groundwater restoration

  17. Results of Phase I groundwater quality assessment for single-shell tank waste management Area S-SX at the Hanford Site

    International Nuclear Information System (INIS)

    Johnson, V.G.; Chou, C.J.

    1998-01-01

    Pacific Northwest National Laboratory (PNNL) conducted a Phase I, Resource Conservation and Recovery Act of 1976 (RCRA) groundwater quality assessment for the Richland Field Office of the U.S. Department of Energy (DOE-RL), in accordance with the Federal Facility Compliance Agreement. The purpose of the investigation was to determine if the Single-Shell Tank Waste Management Area (WMA) S-SX has impacted groundwater quality. The WMA is located in the southern portion of the 200 West Area of the Hanford Site and consists of the 241-S and 241-SX tank farms and ancillary waste systems. The unit is regulated under RCRA interim-status regulations (40 CFR 265, Subpart F) and was placed in assessment groundwater monitoring (40 CFR 265.93 [d]) in August 1996 because of elevated specific conductance and technetium-99, a non-RCRA co-contaminant, in downgradient monitoring wells. Major findings of the assessment are summarized below: (1) Distribution patterns for radionuclides and RCRA/dangerous waste constituents indicate WMA S-SX has contributed to groundwater contamination observed in downgradient monitoring wells. (2) Drinking water standards for nitrate and technetium-99 are currently exceeded in one RCRA-compliant well (299-W22-46) located at the southeastern comer of the SX tank farm. (3) Technetium-99, nitrate, and chromium concentrations in downgradient well 299-W22-46 (the well with the highest current concentrations) appear to be declining after reaching maximum concentrations in May 1997. (4) Cesium-137 and strontium-90, major constituents of concern in single-shell tank waste, were not detected in any of the RCRA-compliant wells in the WMA network, including the well with the highest current technetium-99 concentrations (299-W22-46). (5) Low but detectable strontium-90 and cesium-137 were found in one old well (2-W23-7), located inside and between the S and SX tank farms

  18. Contaminated groundwater characterization at the Chalk River Laboratories, Ontario, Canada

    Energy Technology Data Exchange (ETDEWEB)

    Schilk, A.J.; Robertson, D.E.; Thomas, C.W.; Lepel, E.A. [Pacific Northwest National Lab., Richland, WA (United States); Champ, D.R.; Killey, R.W.D.; Young, J.L.; Cooper, E.L. [Chalk River Labs., Chalk River, Ontario (Canada)

    1993-03-01

    The licensing requirements for the disposal of low-level radioactive waste (10 CFR 61) specify the performance objectives and technical requisites for federal and commercial land disposal facilities, the ultimate goal of which is to contain the buried wastes so that the general population is adequately protected from harmful exposure to any released radioactive materials. A major concern in the operation of existing and projected waste disposal sites is subterranean radionuclide transport by saturated or unsaturated flow, which could lead to the contamination of groundwater systems as well as uptake by the surrounding biosphere, thereby directly exposing the general public to such materials. Radionuclide transport in groundwater has been observed at numerous commercial and federal waste disposal sites [including several locations within the waste management area of Chalk River Laboratories (CRL)], yet the physico-chemical processes that lead to such migration are still not completely understood. In an attempt to assist in the characterization of these processes, an intensive study was initiated at CRL to identify and quantify the mobile radionuclide species originating from three separate disposal sites: (a) the Chemical Pit, which has received aqueous wastes containing various radioisotopes, acids, alkalis, complexing agents and salts since 1956, (b) the Reactor Pit, which has received low-level aqueous wastes from a reactor rod storage bay since 1956, and (c) the Waste Management Area C, a thirty-year-old series of trenches that contains contaminated solid wastes from CRL and various regional medical facilities. Water samples were drawn downgradient from each of the above sites and passed through a series of filters and ion-exchange resins to retain any particulate and dissolved or colloidal radionuclide species, which were subsequently identified and quantified via radiochemical separations and gamma spectroscopy. These groundwaters were also analyzed for anions

  19. US DOE surplus facilities management program (SFMP). International technology exchange activities

    International Nuclear Information System (INIS)

    Broderick, J.

    1986-01-01

    The Surplus Facilities Management Program is one of five remedial action programs established by the US Department of Energy (DOE) to eliminate potential hazards to the public and environment from radioactive contamination. These programs provide remedial actions at various facilities and sites previously used by the US Government in national atomic energy programs. Included are uranium ore milling sites, nuclear materials production plants, and research and development facilities. The DOE's five remedial action programs are: the Grand Junction Remedial Action Project; the Formerly Utilized Sites Remedial Action Project; the West Valley Demonstration Project; and the Surplus Facilities Management Program. The Surplus Facilities Management Program (SWMP) was established by DOE in 1978. There are presently over 300 shutdown facilities in the SFMP located at sites across the United States and in Puerto Rico. In some cases, remedial action involves decontaminating and releasing a facility for some other use. In other instances, facilities are completely demolished and removed from the site

  20. Groundwater Vulnerability Regions of Iowa

    Data.gov (United States)

    Iowa State University GIS Support and Research Facility — The regions onThis map represent areas with similar hydrogeologic characteristics thought to represent similar potentials for contamination of groundwater and/or...

  1. Predisposal Management of Radioactive Waste from Nuclear Fuel Cycle Facilities. Specific Safety Guide

    International Nuclear Information System (INIS)

    2016-01-01

    This Safety Guide provides guidance on the predisposal management of all types of radioactive waste (including spent nuclear fuel declared as waste and high level waste) generated at nuclear fuel cycle facilities. These waste management facilities may be located within larger facilities or may be separate, dedicated waste management facilities (including centralized waste management facilities). The Safety Guide covers all stages in the lifetime of these facilities, including their siting, design, construction, commissioning, operation, and shutdown and decommissioning. It covers all steps carried out in the management of radioactive waste following its generation up to (but not including) disposal, including its processing (pretreatment, treatment and conditioning). Radioactive waste generated both during normal operation and in accident conditions is considered

  2. F-Area Hazardous Waste Management Facility Semiannual Corrective Action Report, First and Second Quarter 1998, Volume I and II

    International Nuclear Information System (INIS)

    Chase, J.

    1998-01-01

    This report addresses groundwater quality and monitoring data during first and second quarter 1998 for the F-Area Hazardous Waste management Facility (HWMF). The report fulfills the semiannual reporting requirements of Module III, Section D, of the 1995 Resource Conservation and Recovery Act (RCRA) Renewal Permit (South Carolina Hazardous and Mixed Waste Permit SC1-890-008-989), effective October 5, 1995 (hereafter referred to as the RCRA permit), and Section C of the Underground Injection Control Permit Application hereafter referred to as the Section C of the Underground Injection Control Permit Application (hereafter referred to as the UIC permit). The HWMF is described in the Introduction to Module III, Section C, of the RCRA permit

  3. Hazardous waste management: Reducing the risk

    International Nuclear Information System (INIS)

    Goldman, B.A.; Hulme, J.A.; Johnson, C.

    1986-01-01

    Congress has strengthened the laws under which active hazardous waste facilities are regulated. Nevertheless, after visiting a number of active treatment, storage, and disposal facilities, the Council on Economic Priorities (CEP) found that not only do generators not know which facilities are the best, but that the EPA has not always selected the best facilities to receive wastes removed from Superfund sites. Other facilities were better managed, better located, and better at using more advanced technologies than the facilities the EPA selected. In fact, of the ten facilities CEP evaluated in detail the EPA chose the one that performed worst - CECOS International, Inc. in Williamsburg, Ohio - to receive Superfund wastes in more instances than any of the other nine facilities. Data from a house subcommittee survey indicate that almost half of the operating hazardous waste facilities the EPA chose to receive wastes removed from Superfund sites may have contaminated groundwater. Some of the chosen facilities may even be partially responsible for a share of the wastes they are being paid to clean up. Hazardous waste management strategies and technology, how to evaluate facilities, and case studies of various corporations and hazardous waste management facilities are discussed

  4. An Isotopic view of water and nitrogen transport through the vadose zone in Oregon's southern Willamette Valley's Groundwater Management Area

    Science.gov (United States)

    Background/Question/MethodsGroundwater nitrate contamination affects thousands of households in Oregon's southern Willamette Valley and many more across the Pacific Northwest. The southern Willamette Valley Groundwater Management Area (SWV GWMA) was established in 2004 due to nit...

  5. NORTH CAROLINA GROUNDWATER RECHARGE RATES 1994

    Science.gov (United States)

    North Carolina Groundwater Recharge Rates, from Heath, R.C., 1994, Ground-water recharge in North Carolina: North Carolina State University, as prepared for the NC Department of Environment, Health and Natural Resources (NC DEHNR) Division of Enviromental Management Groundwater S...

  6. 2008 Groundwater Monitoring Report Central Nevada Test Area, Corrective Action Unit 443

    Energy Technology Data Exchange (ETDEWEB)

    None

    2009-03-01

    This report presents the 2008 groundwater monitoring results collected by the U.S. Department of Energy (DOE) Office of Legacy Management (LM) for the Central Nevada Test Area (CNTA) Subsurface Corrective Action Unit (CAU) 443. Responsibility for the environmental site restoration of the CNTA was transferred from the DOE Office of Environmental Management (DOE-EM) to DOE-LM on October 1, 2006. The environmental restoration process and corrective action strategy for CAU 443 are conducted in accordance with the Federal Facility Agreement and Consent Order (FFACO 2005) entered into by DOE, the U.S. Department of Defense, and the State of Nevada. The corrective action strategy for the site includes proof-of-concept monitoring in support of site closure. This report summarizes investigation activities associated with CAU 443 that were conducted at the site during fiscal year 2008. This is the second groundwater monitoring report prepared by DOE-LM for the CNTA.

  7. 2008 Groundwater Monitoring Report Central Nevada Test Area, Corrective Action Unit 443

    International Nuclear Information System (INIS)

    2009-01-01

    This report presents the 2008 groundwater monitoring results collected by the U.S. Department of Energy (DOE) Office of Legacy Management (LM) for the Central Nevada Test Area (CNTA) Subsurface Corrective Action Unit (CAU) 443. Responsibility for the environmental site restoration of the CNTA was transferred from the DOE Office of Environmental Management (DOE-EM) to DOE-LM on October 1, 2006. The environmental restoration process and corrective action strategy for CAU 443 are conducted in accordance with the Federal Facility Agreement and Consent Order (FFACO 2005) entered into by DOE, the U.S. Department of Defense, and the State of Nevada. The corrective action strategy for the site includes proof-of-concept monitoring in support of site closure. This report summarizes investigation activities associated with CAU 443 that were conducted at the site during fiscal year 2008. This is the second groundwater monitoring report prepared by DOE-LM for the CNTA

  8. Hazardous waste management plan, Savannah River Plant

    International Nuclear Information System (INIS)

    Phifer, M.A.

    1984-06-01

    All SRP waste storage, disposal, and recycling facilities that have received hazardous waste, low-level radioactive hazardous waste (mixed waste) or process waste since 1980 have been evaluated by EPA standards. Generally the waste storage areas meet all applicable standards. However, additional storage facilities currently estimated at $2 million and waste disposal facilities currently estimated at $20 million will be required for proper management of stored waste. The majority of the disposal facilities are unlined earthen basins that receive hazardous or process wastes and have or have the potential to contaminate groundwater. To come into compliance with the groundwater standards the influents to the basins will be treated or discontinued, the basins will be decommissioned, groundwater monitoring will be conducted, and remedial actions will be taken as necessary. The costs associated with these basin actions are not completely defined and will increase from present estimates. A major cost which has not been resolved is associated with the disposal of the sludge produced from the treatment plants and basin decommissioning. The Low-Level Radioactive Burial Ground which is also a disposal facility has received mixed waste; however, it does not meet the standards for hazardous waste landfills. In order to properly handle mixed wastes additional storage facilities currently estimated at $500,000 will be provided and options for permanent disposal will be investigated

  9. Review: Groundwater development and management in the Deccan Traps (basalts) of western India

    Science.gov (United States)

    Limaye, Shrikant Daji

    2010-05-01

    The Deccan Traps or the basalts of western India are the largest exposure of basic lava flows covering about 500,000 km2. Groundwater occurrence in the Deccan Traps is in phreatic condition in the weathered zone above the hard rock and in semi-confined condition in the fissures, fractures, joints, cooling cracks, lava flow junctions and in the inter-trappean beds between successive lava flows, within the hard rock. Dug wells, dug-cum-bored wells and boreholes or bore wells are commonly used for obtaining groundwater. The yield is small, usually in the range of 1-100 m3/day. The average land holding per farming family is only around 2 ha. Recently, due to the ever increasing number of dug wells and deep bore wells, the water table has been falling in several watersheds, especially in those lying in the semi-arid region of the traps, so that now the emphasis has shifted from development to sustainable management. Issues like climatic change, poverty mitigation in villages, sustainable development, rapid urbanization of the population, and resource pollution have invited the attention of politicians, policy makers, government agencies and non-governmental organizations towards watershed management, forestation, soil and water conservation, recharge augmentation and, above all, the voluntary control of groundwater abstraction in the Deccan Traps terrain.

  10. M-area hazardous waste management facility groundwater monitoring and corrective-action report, First quarter 1995, Volume 1

    International Nuclear Information System (INIS)

    1995-05-01

    This report, in three volumes, describes the ground water monitoring and c corrective-action program at the M-Area Hazardous Waste Management Facility (HWMF) at the Savannah River Site (SRS) during the fourth quarter 1994 and first quarter 1995. Concise description of the program and considerable data documenting the monitoring and remedial activities are included in the document. This is Volume 1 covering the following topics: sampling and results; hydrogeologic assessment; water quality assessment; effectiveness of the corrective-action program; corrective-action system operation and performance; monitoring and corrective-action program assessment; proposed monitoring and corrective-action program modifications. Also included are the following appendicies: A-standards; B-flagging criteria; C-figures; D-monitoring results tables; E-data quality/usability assessment

  11. Sampling and analysis plan for the site characterization of the waste area Grouping 1 groundwater operable unit at Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    1994-11-01

    Waste Area Grouping (WAG) 1 at Oak Ridge National Laboratory (ORNL) includes all of the former ORNL radioisotope research, production, and maintenance facilities; former waste management areas; and some former administrative buildings. Site operations have contaminated groundwater, principally with radiological contamination. An extensive network of underground pipelines and utilities have contributed to the dispersal of contaminants to a known extent. In addition, karst geology, numerous spills, and pipeline leaks, together with the long and varied history of activities at specific facilities at ORNL, complicate contaminant migration-pathway analysis and source identification. To evaluate the extent of contamination, site characterization activity will include semiannual and annual groundwater sampling, as well as monthly water level measurements (both manual and continuous) at WAG 1. This sampling and analysis plan provides the methods and procedures to conduct site characterization for the Phase 1 Remedial Investigation of the WAG 1 Groundwater Operable Unit

  12. Modeling Effects of Groundwater Basin Closure, and Reversal of Closure, on Groundwater Quality

    Science.gov (United States)

    Pauloo, R.; Guo, Z.; Fogg, G. E.

    2017-12-01

    Population growth, the expansion of agriculture, and climate uncertainties have accelerated groundwater pumping and overdraft in aquifers worldwide. In many agricultural basins, a water budget may be stable or not in overdraft, yet disconnected ground and surface water bodies can contribute to the formation of a "closed" basin, where water principally exits the basin as evapotranspiration. Although decreasing water quality associated with increases in Total Dissolved Solids (TDS) have been documented in aquifers across the United States in the past half century, connections between water quality declines and significant changes in hydrologic budgets leading to closed basin formation remain poorly understood. Preliminary results from an analysis with a regional-scale mixing model of the Tulare Lake Basin in California indicate that groundwater salinization resulting from open to closed basin conversion can operate on a decades-to-century long time scale. The only way to reverse groundwater salinization caused by basin closure is to refill the basin and change the hydrologic budget sufficiently for natural groundwater discharge to resume. 3D flow and transport modeling, including the effects of heterogeneity based on a hydrostratigraphic facies model, is used to explore rates and time scales of groundwater salinization and its reversal under different water and land management scenarios. The modeling is also used to ascertain the extent to which local and regional heterogeneity need to be included in order to appropriately upscale the advection-dispersion equation in a basin scale groundwater quality management model. Results imply that persistent managed aquifer recharge may slow groundwater salinization, and complete reversal may be possible at sufficiently high water tables.

  13. Temporal-Spatial Evolution of Groundwater Nitrogen Pollution Over Seven Years in a Highly Urbanized City in the Southern China.

    Science.gov (United States)

    He, Xiaorui; Qian, Jiazhong; Liu, Zufa; Lu, Yuehan; Ma, Lei; Zhao, Weidong; Kang, Bo

    2017-12-01

    Understanding the temporospatial variation in nitrogen pollution in groundwater and the associated controlling factors is important to establish management practices that ensure sustainable use of groundwater. In this study, we analyzed inorganic nitrogen content (nitrate, nitrite, and ammonium) in 1164 groundwater samples from shallow, middle-deep, and deep aquifers in Zhanjiang, a highly urbanized city in the southern China. Our data span a range of 7 years from 2005 to 2011. Results show that shallow aquifers had been heavily contaminated by nitrate and ammonium. Temporal patterns show that N contamination levels remained high and relatively stable over time in urban areas. This stability and high concentration is hypothesized as a result of uncontrolled, illicit sewer discharges from nearby business facilities. Groundwater in urban land and farmland displays systematic differences in geochemical characteristics. Collectively, our findings demonstrate the importance of continuously monitoring groundwater quality and strictly regulating sewage discharges in Zhanjiang.

  14. Adaptive management: a paradigm for remediation of public facilities

    Energy Technology Data Exchange (ETDEWEB)

    Janecky, David R [Los Alamos National Laboratory; Whicker, Jeffrey J [Los Alamos National Laboratory; Doerr, Ted B [NON LANL

    2009-01-01

    Public facility restoration planning traditionally focused on response to natural disasters and hazardous materials accidental releases. These plans now need to integrate response to terrorist actions. Therefore, plans must address a wide range of potential vulnerabilities. Similar types of broad remediation planning are needed for restoration of waste and hazardous material handling areas and facilities. There are strong similarities in damage results and remediation activities between unintentional and terrorist actions; however, the uncertainties associated with terrorist actions result in a re-evaluation of approaches to planning. Restoration of public facilities following a release of a hazardous material is inherently far more complex than in confined industrial settings and has many unique technical, economic, social, and political challenges. Therefore, they arguably involve a superset of drivers, concerns and public agencies compared to other restoration efforts. This superset of conditions increases complexity of interactions, reduces our knowledge of the initial conditions, and even condenses the timeline for restoration response. Therefore, evaluations of alternative restoration management approaches developed for responding to terrorist actions provide useful knowledge for large, complex waste management projects. Whereas present planning documents have substantial linearity in their organization, the 'adaptive management' paradigm provides a constructive parallel operations paradigm for restoration of facilities that anticipates and plans for uncertainty, multiple/simUltaneous public agency actions, and stakeholder participation. Adaptive management grew out of the need to manage and restore natural resources in highly complex and changing environments with limited knowledge about causal relationships and responses to restoration actions. Similarities between natural resource management and restoration of a facility and surrounding area

  15. Adaptive Management: A Paradigm for Remediation of Public Facilities

    International Nuclear Information System (INIS)

    Janecky, D.R.; Whicker, J.J.; Doerr, T.B.

    2009-01-01

    Public facility restoration planning traditionally focused on response to natural disasters and hazardous materials accidental releases. These plans now need to integrate response to terrorist actions. Therefore, plans must address a wide range of potential vulnerabilities. Similar types of broad remediation planning are needed for restoration of waste and hazardous material handling areas and facilities. There are strong similarities in damage results and remediation activities between unintentional and terrorist actions; however, the uncertainties associated with terrorist actions result in a re-evaluation of approaches to planning. Restoration of public facilities following a release of a hazardous material is inherently far more complex than in confined industrial settings and has many unique technical, economic, social, and political challenges. Therefore, they arguably involve a superset of drivers, concerns and public agencies compared to other restoration efforts. This superset of conditions increases complexity of interactions, reduces our knowledge of the initial conditions, and even condenses the timeline for restoration response. Therefore, evaluations of alternative restoration management approaches developed for responding to terrorist actions provide useful knowledge for large, complex waste management projects. Whereas present planning documents have substantial linearity in their organization, the 'adaptive management' paradigm provides a constructive parallel operations paradigm for restoration of facilities that anticipates and plans for uncertainty, multiple/simultaneous public agency actions, and stakeholder participation. Adaptive management grew out of the need to manage and restore natural resources in highly complex and changing environments with limited knowledge about causal relationships and responses to restoration actions. Similarities between natural resource management and restoration of a facility and surrounding area(s) after a

  16. Does identity shape leadership and management practice? Experiences of PHC facility managers in Cape Town, South Africa.

    Science.gov (United States)

    Daire, Judith; Gilson, Lucy

    2014-09-01

    In South Africa, as elsewhere, Primary Health Care (PHC) facilities are managed by professional nurses. Little is known about the dimensions and challenges of their job, or what influences their managerial practice. Drawing on leadership and organizational theory, this study explored what the job of being a PHC manager entails, and what factors influence their managerial practice. We specifically considered whether the appointment of professional nurses as facility managers leads to an identity transition, from nurse to manager. The overall intention was to generate ideas about how to support leadership development among PHC facility managers. Adopting case study methodology, the primary researcher facilitated in-depth discussions (about their personal history and managerial experiences) with eight participating facility managers from one geographical area. Other data were collected through in-depth interviews with key informants, document review and researcher field notes/journaling. Analysis involved data triangulation, respondent and peer review and cross-case analysis. The experiences show that the PHC facility manager's job is dominated by a range of tasks and procedures focused on clinical service management, but is expected to encompass action to address the population and public health needs of the surrounding community. Managing with and through others, and in a complex system, requiring self-management, are critical aspects of the job. A range of personal, professional and contextual factors influence managerial practice, including professional identity. The current largely facility-focused management practice reflects the strong nursing identity of managers and broader organizational influences. However, three of the eight managers appear to self-identify an emerging leadership identity and demonstrate related managerial practices. Nonetheless, there is currently limited support for an identity transition towards leadership in this context. Better

  17. F-Area Seepage Basins groundwater monitoring report

    International Nuclear Information System (INIS)

    1992-09-01

    This progress report from the Savannah River Plant for second quarter 1992 includes discussion on the following topics: description of facilities; hydrostratigraphic units; monitoring well nomenclature; integrity of the monitoring well network; groundwater monitoring data; analytical results exceeding standards; tritium, nitrate, and pH time-trend data; water levels; groundwater flow rates and directions; upgradient versus downgradient results

  18. F-Area Seepage Basins groundwater monitoring report

    International Nuclear Information System (INIS)

    1992-06-01

    This progress report from the Savannah River Plant for first quarter 1992 includes discussion on the following topics: description of facilities; hydrostratigraphic units; monitoring well nomenclature; integrity of the monitoring well network; groundwater monitoring data; analytical results exceeding standards; tritium, nitrate, and pH time-trend data; water levels; groundwater flow rates and directions; upgradient versus downgradient results

  19. Life Management and Safety of Nuclear Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Fabbri, S.; Diluch, A.; Vega, G., E-mail: fabbri@cnea.gov.ar [Comisión Nacional de Energía Atómica, Buenos Aires (Argentina)

    2014-10-15

    The nuclear programme in Argentina includes: nuclear power and related supplies, medical and industrial applications, waste management, research and development and human training. Nuclear facilities require life management programs that allow a safe operation. Safety is the first priority for designers and operators. This can be attained with defence in depth: regular inspections and maintenance procedures to minimize failure risks. CNEA objectives in this area are to possess the necessary capability to give safe and fast technical support. Within this scheme, one of the main activities undertaken by CNEA is to provide technological assistance to the nuclear plants and research reactors. As a consequence of an increasing concern about safety and ageing a Life Management Department for safe operation was created to take care of these subjects. The goal is to elaborate a Safety Evaluation Process for the critical components of nuclear plants and other facilities. The overall objectives of a safety process are to ensure a continuous safe, reliable and effective operation of nuclear facilities and it means the implementation of the defence in deep concept to enhance safety for the protection of the public, the workers and the environment. (author)

  20. The mixed waste management facility

    International Nuclear Information System (INIS)

    Streit, R.D.

    1995-10-01

    During FY96, the Mixed Waste Management Facility (MWMF) Project has the following major objectives: (1) Complete Project Preliminary Design Review (PDR). (2) Complete final design (Title II) of MWMF major systems. (3) Coordinate all final interfaces with the Decontamination and Waste Treatment Facility (DWTF) for facility utilities and facility integration. (4) Begin long-lead procurements. (5) Issue Project Baseline Revision 2-Preliminary Design (PB2), modifying previous baselines per DOE-requested budget profiles and cost reduction. Delete Mediated Electrochemical Oxidation (MEO) as a treatment process for initial demonstration. (6) Complete submittal of, and ongoing support for, applications for air permit. (7) Begin detailed planning for start-up, activation, and operational interfaces with the Laboratory's Hazardous Waste Management Division (HWM). In achieving these objectives during FY96, the Project will incorporate and implement recent DOE directives to maximize the cost savings associated with the DWTF/MWMF integration (initiated in PB1.2); to reduce FY96 new Budget Authority to ∼$10M (reduced from FY97 Validation of $15.3M); and to keep Project fiscal year funding requirements largely uniform at ∼$10M/yr. A revised Project Baseline (i.e., PB2), to be issued during the second quarter of FY96, will address the implementation and impact of this guidance from an overall Project viewpoint. For FY96, the impact of this guidance is that completion of final design has been delayed relative to previous baselines (resulting from the delay in the completion of preliminary design); ramp-up in staffing has been essentially eliminated; and procurements have been balanced through the Project to help balance budget needs to funding availability

  1. Delivering Sustainable Facilities Management in Danish Housing Estates

    DEFF Research Database (Denmark)

    Nielsen, Susanne Balslev; Jensen, Jesper Ole; Jensen, Per Anker

    2009-01-01

    Housing plays a central role in sustainable development due to large resource consumption and as transition agent towards sustainable lifestyles. The aim is to evaluate current practice of housing administration in Denmark in order to evaluate if and how sustainable facilities management is suppo......Housing plays a central role in sustainable development due to large resource consumption and as transition agent towards sustainable lifestyles. The aim is to evaluate current practice of housing administration in Denmark in order to evaluate if and how sustainable facilities management...... is supporting social, economical and environmental sustainable development. Sustainable facility management (SFM) is as an 'umbrella' for various ways of reducing flows of energy, water and waste in the daily operation of the buildings, for instance by regular monitoring the consumption, by using 'green......-setting including the ownership of the building, the organisation of daily operation, the roles and relation between stakeholders are equally important in order to utilise the monitoring as a mean for transformation towards sustainable buildings and lifestyles....

  2. Chlorine-36 investigations of groundwater infiltration in the Exploratory Studies Facility at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Levy, S.S.; Fabryka-Martin, J.T.; Dixon, P.R.; Liu, B.; Turin, H.J.; Wolfsberg, A.V.

    1997-01-01

    Chlorine-36, including the natural cosmogenic component and the component produced during atmospheric nuclear testing in the 1950's and 1960's (bomb pulse), is being used as an isotopic tracer for groundwater infiltration studies at Yucca Mountain, a potential nuclear waste repository. Rock samples have been collected systematically in the Exploratory Studies Facility (ESF), and samples were also collected from fractures, faults, and breccia zones. Isotopic ratios indicative of bomb-pulse components in the water ( 36 Cl/Cl values > 1,250 x 10 -15 ), signifying less than 40-yr travel times from the surface, have been detected at a few locations within the Topopah Spring Tuff, the candidate host rock for the repository. The specific features associated with the high 36 Cl/Cl values are predominantly cooling joints and syngenetic breccias, but most of the sites are in the general vicinity of faults. The non-bomb pulse samples have 36 Cl/Cl values interpreted to indicate groundwater travel times of at least a few thousand to possibly several hundred thousand years. Preliminary numerical solute-travel experiments using the FEHM (Finite Element Heat and Mass transfer) code demonstrate consistency between these interpreted ages and the observed 36 Cl/Cl values but do not validate the interpretations

  3. 40 CFR 271.12 - Requirements for hazardous waste management facilities.

    Science.gov (United States)

    2010-07-01

    ... Requirements for Final Authorization § 271.12 Requirements for hazardous waste management facilities. The State shall have standards for hazardous waste management facilities which are equivalent to 40 CFR parts 264... 40 Protection of Environment 26 2010-07-01 2010-07-01 false Requirements for hazardous waste...

  4. How to manage future groundwater resource of China under climate change and urbanization: An optimal stage investment design from modern portfolio theory.

    Science.gov (United States)

    Hua, Shanshan; Liang, Jie; Zeng, Guangming; Xu, Min; Zhang, Chang; Yuan, Yujie; Li, Xiaodong; Li, Ping; Liu, Jiayu; Huang, Lu

    2015-11-15

    Groundwater management in China has been facing challenges from both climate change and urbanization and is considered as a national priority nowadays. However, unprecedented uncertainty exists in future scenarios making it difficult to formulate management planning paradigms. In this paper, we apply modern portfolio theory (MPT) to formulate an optimal stage investment of groundwater contamination remediation in China. This approach generates optimal weights of investment to each stage of the groundwater management and helps maximize expected return while minimizing overall risk in the future. We find that the efficient frontier of investment displays an upward-sloping shape in risk-return space. The expected value of groundwater vulnerability index increases from 0.6118 to 0.6230 following with the risk of uncertainty increased from 0.0118 to 0.0297. If management investment is constrained not to exceed certain total cost until 2050 year, the efficient frontier could help decision makers make the most appropriate choice on the trade-off between risk and return. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Is it working? A look at the changing nutrient practices in Oregon's Southern Willamette Valley Groundwater Management Area

    Science.gov (United States)

    Pearlstein, S.; Compton, J.; Eldridge, A.; Henning, A.; Selker, J. S.; Brooks, J. R.; Schmitz, D.

    2016-12-01

    Groundwater nitrate contamination affects thousands of households in the southern Willamette Valley and many more across the Pacific Northwest. The southern Willamette Valley Groundwater Management Area (SWV GWMA) was established in 2004 due to nitrate levels in the groundwater exceeding the human health standard of 10 mg nitrate-N L-1. Much of the nitrogen inputs to the GWMA comes from agricultural nitrogen use, and thus efforts to reduce N inputs to groundwater are focused upon improving N management. Previous work in the 1990s in the Willamette Valley by researchers at Oregon State University determined the importance of cover crops and irrigation practices and made recommendations to the local farm community for reducing nitrogen (N) leaching. We are currently re-sampling many of the same fields studied by OSU to examine the influence of current crops and nutrient management practices on nitrate leaching below the rooting zone. This study represents important crops currently grown in the GWMA and includes four grass fields, three vegetable row-crop fields, two peppermint and wheat fields, and one each of hazelnuts and blueberries. New nutrient management practices include slow release fertilizers and precision agriculture approaches in some of the fields. Results from the first two years of sampling show nitrate leaching is lower in some crops like row crops grown for seed and higher in others like perennial rye grass seed when compared to the 1990s data. We will use field-level N input-output balances in order to determine the N use efficiency and compare this across crops and over time. The goal of this project is to provide information and tools that will help farmers, managers and conservation groups quantify the water quality benefits of management practices they are conducting or funding.

  6. Quality-assurance and data management plan for groundwater activities by the U.S. Geological Survey in Kansas, 2014

    Science.gov (United States)

    Putnam, James E.; Hansen, Cristi V.

    2014-01-01

    As the Nation’s principle earth-science information agency, the U.S. Geological Survey (USGS) is depended on to collect data of the highest quality. This document is a quality-assurance plan for groundwater activities (GWQAP) of the Kansas Water Science Center. The purpose of this GWQAP is to establish a minimum set of guidelines and practices to be used by the Kansas Water Science Center to ensure quality in groundwater activities. Included within these practices are the assignment of responsibilities for implementing quality-assurance activities in the Kansas Water Science Center and establishment of review procedures needed to ensure the technical quality and reliability of the groundwater products. In addition, this GWQAP is intended to complement quality-assurance plans for surface-water and water-quality activities and similar plans for the Kansas Water Science Center and general project activities throughout the USGS. This document provides the framework for collecting, analyzing, and reporting groundwater data that are quality assured and quality controlled. This GWQAP presents policies directing the collection, processing, analysis, storage, review, and publication of groundwater data. In addition, policies related to organizational responsibilities, training, project planning, and safety are presented. These policies and practices pertain to all groundwater activities conducted by the Kansas Water Science Center, including data-collection programs, interpretive and research projects. This report also includes the data management plan that describes the progression of data management from data collection to archiving and publication.

  7. Groundwater Quality Sampling and Analysis Plan for Environmental Monitoring Waste Area Grouping 6 at Oak Ridge National Laboratory. Environmental Restoration Program

    International Nuclear Information System (INIS)

    1995-09-01

    This Sampling and Analysis Plan addresses groundwater quality sampling and analysis activities that will be conducted in support of the Environmental Monitoring Plan for Waste Area Grouping (WAG) 6. WAG 6 is a shallow-burial land disposal facility for low-level radioactive waste at the Oak Ridge National Laboratory, a research facility owned by the US Department of Energy and managed by Martin Marietta Energy Systems, Inc. (Energy Systems). Groundwater sampling will be conducted by Energy Systems at 45 wells within WAG 6. The samples will be analyzed for various organic, inorganic, and radiological parameters. The information derived from the groundwater quality monitoring, sampling, and analysis will aid in evaluating relative risk associated with contaminants migrating off-WAG, and also will fulfill Resource Conservation and Recovery Act (RCRA) interim permit monitoring requirements. The sampling steps described in this plan are consistent with the steps that have previously been followed by Energy Systems when conducting RCRA sampling

  8. Groundwater depletion in Central Mexico: Use of GRACE and InSAR to support water resources management

    Science.gov (United States)

    Castellazzi, Pascal; Martel, Richard; Rivera, Alfonso; Huang, Jianliang; Pavlic, Goran; Calderhead, Angus I.; Chaussard, Estelle; Garfias, Jaime; Salas, Javier

    2016-08-01

    Groundwater deficits occur in several areas of Central Mexico, where water resource assessment is limited by the availability and reliability of field data. In this context, GRACE and InSAR are used to remotely assess groundwater storage loss in one of Mexico's most important watersheds in terms of size and economic activity: the Lerma-Santiago-Pacifico (LSP). In situ data and Land Surface Models are used to subtract soil moisture and surface water storage changes from the total water storage change measured by GRACE satellites. As a result, groundwater mass change time-series are obtained for a 12 years period. ALOS-PALSAR images acquired from 2007 to 2011 were processed using the SBAS-InSAR algorithm to reveal areas subject to ground motion related to groundwater over-exploitation. In the perspective of providing guidance for groundwater management, GRACE and InSAR observations are compared with official water budgets and field observations. InSAR-derived subsidence mapping generally agrees well with official water budgets, and shows that deficits occur mainly in cities and irrigated agricultural areas. GRACE does not entirely detect the significant groundwater losses largely reported by official water budgets, literature and InSAR observations. The difference is interpreted as returns of wastewater to the groundwater flow systems, which limits the watershed scale groundwater depletion but suggests major impacts on groundwater quality. This phenomenon is enhanced by ground fracturing as noticed in the field. Studying the fate of the extracted groundwater is essential when comparing GRACE data with higher resolution observations, and particularly in the perspective of further InSAR/GRACE combination in hydrogeology.

  9. Considering groundwater use to improve the assessment of groundwater pumping for irrigation in North Africa

    Science.gov (United States)

    Massuel, Sylvain; Amichi, Farida; Ameur, Fatah; Calvez, Roger; Jenhaoui, Zakia; Bouarfa, Sami; Kuper, Marcel; Habaieb, Hamadi; Hartani, Tarik; Hammani, Ali

    2017-09-01

    Groundwater resources in semi-arid areas and especially in the Mediterranean face a growing demand for irrigated agriculture and, to a lesser extent, for domestic uses. Consequently, groundwater reserves are affected and water-table drops are widely observed. This leads to strong constraints on groundwater access for farmers, while managers worry about the future evolution of the water resources. A common problem for building proper groundwater management plans is the difficulty in assessing individual groundwater withdrawals at regional scale. Predicting future trends of these groundwater withdrawals is even more challenging. The basic question is how to assess the water budget variables and their evolution when they are deeply linked to human activities, themselves driven by countless factors (access to natural resources, public policies, market, etc.). This study provides some possible answers by focusing on the assessment of groundwater withdrawals for irrigated agriculture at three sites in North Africa (Morocco, Tunisia and Algeria). Efforts were made to understand the different features that influence irrigation practices, and an adaptive user-oriented methodology was used to monitor groundwater withdrawals. For each site, different key factors affecting the regional groundwater abstraction and its past evolution were identified by involving farmers' knowledge. Factors such as farmer access to land and groundwater or development of public infrastructures (electrical distribution network) are crucial to decode the results of well inventories and assess the regional groundwater abstraction and its future trend. This leads one to look with caution at the number of wells cited in the literature, which could be oversimplified.

  10. A research-based profile of a Dutch excellent facility manager

    NARCIS (Netherlands)

    Roos-Mink, Anke; Offringa, Johan; de Boer, Esther; Heijne-Penninga, Marjolein; Mobach, Mark P.; Wolfensberger, Marca; Balslev Nielsen, S.; Anker Jensen, P.

    2016-01-01

    Purpose - This paper aims to establish the profile of an excellent facility manager in The Netherlands.Design/methodology/approach − As part of a large-scale study on profiles of excellent professionals, a study was carried out to find the key characteristics of an excellent facility manager. Three

  11. Software application for a total management of a radioactive facility

    International Nuclear Information System (INIS)

    Mirpuri, E.; Escudero, R.; Macias, M.T.; Perez, J.; Sanchez, A.; Usera, F.

    2008-01-01

    The use of radiological material and/or equipment that generate ionizing radiation is widely extended in biological research. In every laboratory there are a large variety of methods, operations, techniques, equipment, radioisotopes and users related to the work with ionizing radiation. In order to control the radioactive material, users and the whole facility a large number of documents, databases and information is necessary to be created by the manager of the Radioactivity Facility. This kind of information is characterized by a constant and persistent manipulation and includes information of great importance such as the general management of the radioactive material and waste management, exposed workers vigilance, controlled areas access, laboratory and equipment reservations, radiological inspections, etc. These activities are often complicated by the fact that the main manager of the radioactive facility is also in charge of bio-safety and working prevention issues so the documents to generate and manipulate and the procedures to develop are multiplied. A procedure to access and manage all these files is highly recommended in order to optimize the general management of the facility, avoiding loss of information, automating all the activities and allowing data necessary for control easily accessible. In this work we present a software application for a total management of the facility. This software has been developed by the collaboration of six of the most important research centers from Spain in coordination with the company 'Appize soluciones'. This is a flexible and versatile application that adapts to any specific need of every research center, providing the appropriate reports and checklist that speed up to general management and increase the ease of writing the official documents, including the Operations Book. (author)

  12. Radioactive Waste Management and Nuclear Facility Decommissioning Progress in Iraq - 13216

    Energy Technology Data Exchange (ETDEWEB)

    Al-Musawi, Fouad; Shamsaldin, Emad S.; Jasim, Hadi [Ministry of Science and Technology (MoST), Al-Jadraya, P.O. Box 0765, Baghdad (Iraq); Cochran, John R. [Sandia National Laboratories1, New Mexico, Albuquerque New Mexico 87185 (United States)

    2013-07-01

    Management of Iraq's radioactive wastes and decommissioning of Iraq's former nuclear facilities are the responsibility of Iraq's Ministry of Science and Technology (MoST). The majority of Iraq's former nuclear facilities are in the Al-Tuwaitha Nuclear Research Center located a few kilometers from the edge of Baghdad. These facilities include bombed and partially destroyed research reactors, a fuel fabrication facility and radioisotope production facilities. Within these facilities are large numbers of silos, approximately 30 process or waste storage tanks and thousands of drums of uncharacterised radioactive waste. There are also former nuclear facilities/sites that are outside of Al-Tuwaitha and these include the former uranium processing and waste storage facility at Jesira, the dump site near Adaya, the former centrifuge facility at Rashdiya and the former enrichment plant at Tarmiya. In 2005, Iraq lacked the infrastructure needed to decommission its nuclear facilities and manage its radioactive wastes. The lack of infrastructure included: (1) the lack of an organization responsible for decommissioning and radioactive waste management, (2) the lack of a storage facility for radioactive wastes, (3) the lack of professionals with experience in decommissioning and modern waste management practices, (4) the lack of laws and regulations governing decommissioning or radioactive waste management, (5) ongoing security concerns, and (6) limited availability of electricity and internet. Since its creation eight years ago, the MoST has worked with the international community and developed an organizational structure, trained staff, and made great progress in managing radioactive wastes and decommissioning Iraq's former nuclear facilities. This progress has been made, despite the very difficult implementing conditions in Iraq. Within MoST, the Radioactive Waste Treatment and Management Directorate (RWTMD) is responsible for waste management and the

  13. Radioactive Waste Management and Nuclear Facility Decommissioning Progress in Iraq - 13216

    International Nuclear Information System (INIS)

    Al-Musawi, Fouad; Shamsaldin, Emad S.; Jasim, Hadi; Cochran, John R.

    2013-01-01

    Management of Iraq's radioactive wastes and decommissioning of Iraq's former nuclear facilities are the responsibility of Iraq's Ministry of Science and Technology (MoST). The majority of Iraq's former nuclear facilities are in the Al-Tuwaitha Nuclear Research Center located a few kilometers from the edge of Baghdad. These facilities include bombed and partially destroyed research reactors, a fuel fabrication facility and radioisotope production facilities. Within these facilities are large numbers of silos, approximately 30 process or waste storage tanks and thousands of drums of uncharacterised radioactive waste. There are also former nuclear facilities/sites that are outside of Al-Tuwaitha and these include the former uranium processing and waste storage facility at Jesira, the dump site near Adaya, the former centrifuge facility at Rashdiya and the former enrichment plant at Tarmiya. In 2005, Iraq lacked the infrastructure needed to decommission its nuclear facilities and manage its radioactive wastes. The lack of infrastructure included: (1) the lack of an organization responsible for decommissioning and radioactive waste management, (2) the lack of a storage facility for radioactive wastes, (3) the lack of professionals with experience in decommissioning and modern waste management practices, (4) the lack of laws and regulations governing decommissioning or radioactive waste management, (5) ongoing security concerns, and (6) limited availability of electricity and internet. Since its creation eight years ago, the MoST has worked with the international community and developed an organizational structure, trained staff, and made great progress in managing radioactive wastes and decommissioning Iraq's former nuclear facilities. This progress has been made, despite the very difficult implementing conditions in Iraq. Within MoST, the Radioactive Waste Treatment and Management Directorate (RWTMD) is responsible for waste management and the Iraqi Decommissioning

  14. Groundwater quality assessment plan for single-shell tank waste management Area U at the Hanford Site

    International Nuclear Information System (INIS)

    FN Hodges; CJ Chou

    2000-01-01

    Waste Management Area U (WMA U) includes the U Tank Farm, is currently regulated under RCRA interim-status regulations, and is scheduled for closure probably post-2030. Groundwater monitoring has been under an evaluation program that compared general contaminant indicator parameters from downgradient wells to background values established from upgradient wells. One of the indicator parameters, specific conductance, exceeded its background value in one downgradient well triggering a change from detection monitoring to a groundwater quality assessment program. The objective of the first phase of this assessment program is to determine whether the increased concentrations of nitrate and chromium in groundwater are from WMA U or from an upgradient source. Based on the results of the first determination, if WMA U is not the source of contamination, then the site will revert to detection monitoring. If WMA U is the source, then a second part of the groundwater quality assessment plan will be prepared to define the rate and extent of migration of contaminants in the groundwater and their concentrations

  15. Utilizing Interns in Facilities Management

    Science.gov (United States)

    Judkins, Clarissa; Morris, John P.; Molocznik, Chuck

    2011-01-01

    Facilities management is rapidly changing and developing from a position an individual stumbles into--or work one's way up through--to a discipline and vocation all of its own. There is a need for a collaborative strategy among leaders in practice, education, and research to share knowledge and experience and to establish professional and ethical…

  16. Risk management guidelines for petroleum storage tank sites

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-10-01

    These guidelines provide a site management process designed particularly for soil and groundwater pollution originating from existing or former petroleum storage tank (PST) facilities and provide uniform standards for the remediation of polluted PST sites in Alberta. The numerical criteria, risk management objectives and technical information described in this document were compiled from four documents including Remediation Guidelines for Petroleum Storage Tank Sites 1994, the Canada-Wide Standards for Petroleum Hydrocarbons in Soil, Alberta Soil and Water Quality Guidelines for Hydrocarbons at Upstream Oil and Gas Facilities, and Guidelines for Managing Risks at Contaminated Sites in Alberta. The changes in these updated guidelines reflect new remediation criteria and provide a process for determining alternate site-specific management objectives for more petroleum storage tank sites. The guidelines were developed using a risk-based approach that ensures the protection of human health, safety and the environment. The guidelines apply to aboveground and underground storage tank facilities that contain gasoline, diesel, heating oil, and aviation fuel. The guidelines specify requirements by Alberta Environment and the Alberta Fire Code. The chapter on risk management process included information on site investigation, determination of soil type, pollution source removal, land use assessment, selection of exposure pathways, depth of remediation, human inhalation and groundwater protection pathways, and verification of remediation. figs, 4 tabs., 2 appendices.

  17. Ground-water monitoring under RCRA

    International Nuclear Information System (INIS)

    Coalgate, J.

    1993-11-01

    In developing a regulatory strategy for the disposal of hazardous waste under the Resource Conservation and Recovery Act (RCRA), protection of ground-water resources was the primary goal of the Environmental Protection Agency (EPA). EPA's ground-water protection strategy seeks to minimize the potential for hazardous wastes and hazardous constituents in waste placed in land disposel units to migrate into the environment. This is achieved through liquids management (limiting the placement of liquid wastes in or on the land, requiring the use of liners beneath waste, installing leachate collection systems and run-on and run-off controls, and covering wastes at closure). Ground-water monitoring serves to detect any failure in EPA's liquids management strategy so that ground-water contamination can be detected and addressed as soon as possible

  18. An Isotopic View of Water and Nitrate Transport Through the Vadose Zone in Oregon’s Southern Willamette Valley’s Groundwater Management Area (S-GWMA)

    Science.gov (United States)

    Groundwater nitrate contamination affects thousands of households in Oregon’s southern Willamette Valley and many more across the USA. The southern Willamette Valley Groundwater Management Area (GWMA) was established in 2004 due to nitrate levels in the groundwater exceedi...

  19. 25 Years Of Environmental Remediation In The General Separations Area Of The Savannah River Site: Lessons Learned About What Worked And What Did Not Work In Soil And Groundwater Cleanup

    International Nuclear Information System (INIS)

    Blount, Gerald; Thibault, Jeffrey; Millings, Margaret; Prater, Phil

    2015-01-01

    The Savannah River Site (SRS) is owned and administered by the US Department of Energy (DOE). SRS covers an area of approximately 900 square kilometers. The General Separation Area (GSA) is located roughly in the center of the SRS and includes: radioactive material chemical separations facilities, radioactive waste tank farms, a variety of radioactive seepage basins, and the radioactive waste burial grounds. Radioactive wastes were disposed in the GSA from the mid-1950s through the mid-1990s. Radioactive operations at the F Canyon began in 1954; radioactive operations at H Canyon began in 1955. Waste water disposition to the F and H Seepage Basins began soon after operations started in the canyons. The Old Radioactive Waste Burial Ground (ORWBG) began operations in 1952 to manage solid waste that could be radioactive from all the site operations, and ceased receiving waste in 1972. The Mixed Waste Management Facility (MWMF) and Low Level Radioactive Waste Disposal Facility (LLRWDF) received radioactive solid waste from 1969 until 1995. Environmental legislation enacted in the 1970s, 1980s, and 1990s led to changes in waste management and environmental cleanup practices at SRS. The US Congress passed the Clean Air Act in 1970, and the Clean Water Act in 1972; the Resource Conservation and Recovery Act (RCRA) was enacted in 1976; the Comprehensive Environmental Response Compensation, and Liability Act (CERCLA) was enacted by Congress in 1980; the Federal Facilities Compliance Act (FFCA) was signed into law in 1992. Environmental remediation at the SRS essentially began with a 1987 Settlement Agreement between the SRS and the State of South Carolina (under the South Carolina Department of Health and Environmental Control - SCDHEC), which recognized linkage between many SRS waste management facilities and RCRA. The SRS manages several of the larger groundwater remedial activities under RCRA for facilities recognized early on as environmental problems. All subsequent

  20. Facilities Management and Corporate Real Estate Management as Value Drivers: How to Manage and Measure Adding Value

    DEFF Research Database (Denmark)

    Facilities Management (FM) and Corporate Real Estate Management (CREM) are two closely related and relatively new management disciplines with developing international professions and increasing academic attention. Both disciplines have from the outset a strong focus on controlling and reducing cost...... for real estate, facilities and related services. In recent years there has been a change towards putting more focus on how FM/CREM can add value to the organisation. The book is research based with a focus on guidance to practice. It offers a transdisciplinary approach, integrating academic knowledge from...

  1. Predictive Analytics to Support Real-Time Management in Pathology Facilities.

    Science.gov (United States)

    Lessard, Lysanne; Michalowski, Wojtek; Chen Li, Wei; Amyot, Daniel; Halwani, Fawaz; Banerjee, Diponkar

    2016-01-01

    Predictive analytics can provide valuable support to the effective management of pathology facilities. The introduction of new tests and technologies in anatomical pathology will increase the volume of specimens to be processed, as well as the complexity of pathology processes. In order for predictive analytics to address managerial challenges associated with the volume and complexity increases, it is important to pinpoint the areas where pathology managers would most benefit from predictive capabilities. We illustrate common issues in managing pathology facilities with an analysis of the surgical specimen process at the Department of Pathology and Laboratory Medicine (DPLM) at The Ottawa Hospital, which processes all surgical specimens for the Eastern Ontario Regional Laboratory Association. We then show how predictive analytics could be used to support management. Our proposed approach can be generalized beyond the DPLM, contributing to a more effective management of pathology facilities and in turn to quicker clinical diagnoses.

  2. National Ignition Facility Configuration Management Plan

    International Nuclear Information System (INIS)

    Cabral, S G; Moore, T L

    2002-01-01

    This Configuration Management Plan (CMP) describes the technical and administrative management process for controlling the National Ignition Facility (NIF) Project configuration. The complexity of the NIF Project (i.e., participation by multiple national laboratories and subcontractors involved in the development, fabrication, installation, and testing of NIF hardware and software, as well as construction and testing of Project facilities) requires implementation of the comprehensive configuration management program defined in this plan. A logical schematic illustrating how the plan functions is provided in Figure 1. A summary of the process is provided in Section 4.0, Configuration Change Control. Detailed procedures that make up the overall process are referenced. This CMP is consistent with guidance for managing a project's configuration provided in Department of Energy (DOE) Order 430.1, Guide PMG 10, ''Project Execution and Engineering Management Planning''. Configuration management is a formal discipline comprised of the following four elements: (1) Identification--defines the functional and physical characteristics of a Project and uniquely identifies the defining requirements. This includes selection of components of the end product(s) subject to control and selection of the documents that define the project and components. (2) Change management--provides a systematic method for managing changes to the project and its physical and functional configuration to ensure that all changes are properly identified, assessed, reviewed, approved, implemented, tested, and documented. (3) Data management--ensures that necessary information on the project and its end product(s) is systematically recorded and disseminated for decision-making and other uses. Identifies, stores and controls, tracks status, retrieves, and distributes documents. (4) Assessments and validation--ensures that the planned configuration requirements match actual physical configurations and

  3. RCRA facility investigation report for the 200-PO-1 operable unit. Revision 1

    International Nuclear Information System (INIS)

    1997-05-01

    This Resource Conservation and Recovery Act (RCRA) Facility Investigation (RFI) report is prepared in support of the RFI/corrective measures study process for the 200-PO-1 Groundwater Operable Unit in the 200 East Area of the Hanford Site. This report summarizes existing information on this operable unit presented in the 200 East and PUREX Aggregate Area Management Study Reports, contaminant specific studies, available modeling data, and groundwater monitoring data summary reports. Existing contaminant data are screened against current regulatory limits to determine contaminants of potential concern (COPC). Each identified COPC is evaluated using well-specific and plume trend analyses

  4. Groundwater quality sampling and analysis plan for environmental monitoring in Waste Area Grouping 6 at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    1994-03-01

    This Sampling and Analysis Plan addresses groundwater quality sampling and analysis activities that will be conducted in support of the Environmental Monitoring Plan for Waste Area Grouping (WAG) 6. WAG 6 is a shallow-burial land disposal facility for low-level radioactive waste at the Oak Ridge National Laboratory, a research facility owned by the US Department of energy and managed by martin Marietta Energy Systems, Inc. (Energy Systems). Groundwater sampling will be conducted by Energy Systems at 45 wells within WAG 6. The samples will be analyzed for various organic, inorganic, and radiological parameters. The information derived from the groundwater quality monitoring, sampling, and analysis will aid in evaluating relative risk associated with contaminants migrating off-WAG, and also will fulfill Resource Conservation and Recovery Act (RCRA) interim permit monitoring requirements. The sampling steps described in this plan are consistent with the steps that have previously been followed by Energy Systems when conducting RCRA sampling.

  5. Groundwater quality sampling and analysis plan for environmental monitoring in Waste Area Grouping 6 at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1994-03-01

    This Sampling and Analysis Plan addresses groundwater quality sampling and analysis activities that will be conducted in support of the Environmental Monitoring Plan for Waste Area Grouping (WAG) 6. WAG 6 is a shallow-burial land disposal facility for low-level radioactive waste at the Oak Ridge National Laboratory, a research facility owned by the US Department of energy and managed by martin Marietta Energy Systems, Inc. (Energy Systems). Groundwater sampling will be conducted by Energy Systems at 45 wells within WAG 6. The samples will be analyzed for various organic, inorganic, and radiological parameters. The information derived from the groundwater quality monitoring, sampling, and analysis will aid in evaluating relative risk associated with contaminants migrating off-WAG, and also will fulfill Resource Conservation and Recovery Act (RCRA) interim permit monitoring requirements. The sampling steps described in this plan are consistent with the steps that have previously been followed by Energy Systems when conducting RCRA sampling

  6. Investigation of Ground-Water Contamination at Solid Waste Management Unit 12, Naval Weapons Station Charleston, North Charleston, South Carolina

    Science.gov (United States)

    Vroblesky, Don A.; Casey, Clifton C.; Petkewich, Matthew D.; Lowery, Mark A.; Conlon, Kevin J.; Harrelson, Larry G.

    2007-01-01

    The U.S. Geological Survey and the Naval Facilities Engineering Command Southeast investigated natural and engineered remediation of chlorinated volatile organic compound ground-water contamination at Solid Waste Management Unit 12 at the Naval Weapons Station Charleston, North Charleston, South Carolina. The primary contaminants of interest are tetrachloroethene, 1,1,1-trichloroethane, trichloroethene, cis-1,2-dichloroethene, vinyl chloride, 1,1-dichloroethane, and 1,1-dichloroethene. In general, the hydrogeology of Solid Waste Management Unit 12 consists of a surficial aquifer, composed of sand to clayey sand, overlain by dense clay that extends from about land surface to a depth of about 8 to 10 feet and substantially limits local recharge. During some months in the summer, evapotranspiration and limited local recharge result in ground-water level depressions in the forested area near wells 12MW-12S and 12MW-17S, seasonally reflecting the effects of evapotranspiration. Changes in surface-water levels following Hurricane Gaston in 2004 resulted in a substantial change in the ground-water levels at the site that, in turn, may have caused lateral shifting of the contaminant plume. Hydraulic conductivity, determined by slug tests, is higher along the axis of the plume in the downgradient part of the forests than adjacent to the plume, implying that there is some degree of lithologic control on the plume location. Hydraulic conductivity, hydraulic gradient, sulfur-hexafluoride measurements, and historical data indicate that ground-water flow rates are substantially slower in the forested area relative to upgradient areas. The ground-water contamination, consisting of chlorinated volatile organic compounds, extends eastward in the surficial aquifer from the probable source area near a former underground storage tank. Engineered remediation approaches include a permeable reactive barrier and phytoremediation. The central part of the permeable reactive barrier along the

  7. Establishing indices for groundwater contamination risk assessment in the vicinity of hazardous waste landfills in China.

    Science.gov (United States)

    Li, Ying; Li, Jinhui; Chen, Shusheng; Diao, Weihua

    2012-06-01

    Groundwater contamination by leachate is the most damaging environmental impact over the entire life of a hazardous waste landfill (HWL). With the number of HWL facilities in China rapidly increasing, and considering the poor status of environmental risk management, it is imperative that effective environmental risk management methods be implemented. A risk assessment indices system for HWL groundwater contamination is here proposed, which can simplify the risk assessment procedure and make it more user-friendly. The assessment framework and indices were drawn from five aspects: source term, underground media, leachate properties, risk receptors and landfill management quality, and a risk assessment indices system consisting of 38 cardinal indicators was established. Comparison with multimedia models revealed that the proposed indices system was integrated and quantitative, that input data for it could be easily collected, and that it could be widely used for environmental risk assessment (ERA) in China. Crown Copyright © 2012. Published by Elsevier Ltd. All rights reserved.

  8. Calendar year 1995 groundwater quality report for the Chestnut Ridge Hydrogeologic Regime Y-12 Plant, Oak Ridge, Tennessee. Part 2: 1995 groundwater quality data interpretations and proposed program modifications

    International Nuclear Information System (INIS)

    1996-08-01

    This groundwater quality report (GWQR) contains an evaluation of the groundwater monitoring data obtained during calendar year (CY) 1995 from monitoring wells and springs located at or near several hazardous and non-hazardous waste management facilities associated with the Y-12 Plant. These sites are within the boundaries of the Chestnut Ridge Hydrogeologic Regime, which is one of three hydrogeologic regimes defined for the purposes of the Y-12 Plant Groundwater Protection Program (GWPP). The objectives of the GWPP are to provide the monitoring data necessary for compliance with applicable federal, state, and local regulations, DOE Orders, and Lockheed Martin Energy Systems, Inc. corporate policy. The following evaluation of the data is organized into background regulatory information and site descriptions, an overview of the hydrogeologic framework, a summary of the CY 1995 groundwater monitoring programs and associated sampling and analysis activities, analysis and interpretation of the data for inorganic, organic, and radiological analytes, a summary of conclusions and recommendations, and a list of cited references. Appendix A contains supporting maps, cross sections, diagrams, and graphs; data tables and summaries are in Appendix B. Detailed descriptions of the data screening and evaluation criteria are included in Appendix C

  9. Groundwater surveillance plan for the Oak Ridge Reservation

    International Nuclear Information System (INIS)

    Forstrom, J.M.; Smith, E.D.; Winters, S.L.; McMaster, W.M.

    1994-07-01

    US Department of Energy (DOE) Order 5400.1 requires the preparation of environmental monitoring plans and implementation of environmental monitoring programs for all DOE facilities. The order identifies two distinct components of environmental monitoring, namely effluent monitoring and environmental surveillance. In general, effluent monitoring has the objectives of characterizing contaminants and demonstrating compliance with applicable standards and permit requirements, whereas environmental surveillance has the broader objective of monitoring the effects of DOE activities on on- and off-site environmental and natural resources. The purpose of this document is to support the Environmental Monitoring Plan for the Oak Ridge Reservation (ORR) by describing the groundwater component of the environmental surveillance program for the DOE facilities on the ORR. The distinctions between groundwater effluent monitoring and groundwater surveillance have been defined in the Martin Marietta Energy Systems, Inc., Groundwater Surveillance Strategy. As defined in the strategy, a groundwater surveillance program consists of two parts, plant perimeter surveillance and off-site water well surveillance. This document identifies the sampling locations, parameters, and monitoring frequencies for both of these activities on and around the ORR and describes the rationale for the program design. The program was developed to meet the objectives of DOE Order 5400.1 and related requirements in DOE Order 5400.5 and to conform with DOE guidance on environmental surveillance and the Energy Systems Groundwater Surveillance Strategy

  10. Data base dictionary for the Oak Ridge Reservation Hydrology and Geology Study Groundwater Data Base

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, B.K.

    1993-04-01

    The Oak Ridge Reservation Hydrology and Geology Study (ORRHAGS) Groundwater Data Base has been compiled to consolidate groundwater data from the three US Department of Energy facilities located on the Oak Ridge Reservation: the Oak Ridge K-25 Site, the Oak Ridge National Laboratory, and the Oak Ridge Y-12 Plant. Each of these facilities maintains its own groundwater and well construction data bases. Data were extracted from the existing data bases, converted to a consistent format, and integrated into the ORRHAGS Groundwater Data Base structures. This data base dictionary describes the data contained in the ORRHAGS Groundwater Data Base and contains information on data base structure, conventions, contents, and use.

  11. Air sparging of organic compounds in groundwater

    International Nuclear Information System (INIS)

    Hicks, P.M.

    1994-01-01

    Soils and aquifers containing organic compounds have been traditionally treated by excavation and disposal of the soil and/or pumping and treating the groundwater. These remedial options are often not practical or cost effective solutions. A more favorable alternative for removal of the adsorbed/dissolved organic compounds would be an in situ technology. Air sparging will remove volatile organic compounds from both the adsorbed and dissolved phases in the saturated zone. This technology effectively creates a crude air stripper below the aquifer where the soil acts as the ''packing''. The air stream that contacts dissolved/adsorbed phase organics in the aquifer induces volatilization. A case history illustrates the effectiveness of air sparging as a remedial technology for addressing organic compounds in soil and groundwater. The site is an operating heavy equipment manufacturing facility in central Florida. The soil and groundwater below a large building at the facility was found to contain primarily diesel type petroleum hydrocarbons during removal of underground storage tanks. The organic compounds identified in the groundwater were Benzene, Xylenes, Ethylbenzene and Toluenes (BTEX), Methyl tert-Butyl Ether (MTBE) and naphthalenes in concentrations related to diesel fuel

  12. Uplatnění metody benchmarking v rámci Facility management

    OpenAIRE

    Jiroutová, Monika

    2009-01-01

    This bachelor study dissertates about the possibilities of benchmarking application in the field of Facility Management. Theoretical part describes basic characteristics and elementary terms and methods of benchmarking process in Facility Management. In the practical part ten companies providing facility services are compared on the basis of a number of indices. Every company is briefly described. On the results of performed analysis the evolution of the Facility Management in Czech Republic ...

  13. A distributed data base management facility for the CAD/CAM environment

    Science.gov (United States)

    Balza, R. M.; Beaudet, R. W.; Johnson, H. R.

    1984-01-01

    Current/PAD research in the area of distributed data base management considers facilities for supporting CAD/CAM data management in a heterogeneous network of computers encompassing multiple data base managers supporting a variety of data models. These facilities include coordinated execution of multiple DBMSs to provide for administration of and access to data distributed across them.

  14. Geohydrologic conditions at the Nuclear Fuel Reprocessing Plant and Waste-Management Facilities at the western New York Nuclear Service Center, Cattaraugus County, New York

    International Nuclear Information System (INIS)

    Bergeron, M.P.; Kappel, W.M.; Yager, R.M.

    1987-01-01

    A nuclear-fuel reprocessing plant, a high-level radioactive liquid-waste tank complex, and related waste facilities occupy 100 hectares (ha) within the Western New York Nuclear Service Center near West Valley, NY. The facilities are underlain by glacial and postglacial deposits that fill an ancestral bedrock valley. The main plant facilities are on an elevated plateau referred to as the north plateau. Groundwater on the north plateau moves laterally within a surficial sand and gravel from the main plant building to areas northeast, east, and southeast of the facilities. The sand and gravel ranges from 1 to 10 m thick and has a hydraulic conductivity ranging from 0.1 to 7.9 m/day. Two separate burial grounds, a 4-ha area for low-level radioactive waste disposal and a 2.9-ha area for disposal of higher-level waste are excavated into a clay-rich till that ranges from 22 to 28 m thick. Migration of an organic solvent from the area of higher level waste at shallow depth in the till suggests that a shallow, fractured, oxidized, and weathered till is a significant pathway for lateral movement of groundwater. Below this zone, groundwater moves vertically downward through the till to recharge a lacustrine silt and fine sand. Within the saturated parts of the lacustrine unit, groundwater moves laterally to the northeast toward Buttermilk Creek. Hydraulic conductivity of the till, based on field and laboratory analyses, ranges from 0.000018 to 0.000086 m/day

  15. Performance assessment for the class L-II disposal facility

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    This draft radiological performance assessment (PA) for the proposed Class L-II Disposal Facility (CIIDF) on the Oak Ridge Reservation (ORR) has been prepared to demonstrate compliance with the requirements of the US Department of Energy Order 5820.2A. This PA considers the disposal of low-level radioactive wastes (LLW) over the operating life of the facility and the long-term performance of the facility in providing protection to public health and the environment. The performance objectives contained in the order require that the facility be managed to accomplish the following: (1) Protect public health and safety in accordance with standards specified in environmental health orders and other DOE orders. (2) Ensure that external exposure to the waste and concentrations of radioactive material that may be released into surface water, groundwater, soil, plants, and animals results in an effective dose equivalent (EDE) that does not exceed 25 mrem/year to a member of the public. Releases to the atmosphere shall meet the requirements of 40 CFR Pt. 61. Reasonable effort should be made to maintain releases of radioactivity in effluents to the general environment as low as reasonably achievable. (1) Ensure that the committed EDEs received by individual who inadvertently may intrude into the facility after the loss of active institutional control (100 years) will not exceed 100 mrem/year for continuous exposure of 500 mrem for a single acute exposure. (4) Protect groundwater resources, consistent with federal, state, and local requirements.

  16. Risk management study for the retired Hanford Site facilities: Risk management executive summary

    International Nuclear Information System (INIS)

    Coles, G.A.; Shultz, M.V.; Taylor, W.E.

    1994-02-01

    This document provides a cost-comparison evaluation for implementing certain risk-reduction measures and their effect on the overall risk of the 100 and 200 Area retired, surplus facilities. The evaluation is based on conditions that existed at the time the risk evaluation team performed facility investigations, and does not acknowledge risk-reduction measures that occurred soon after risk identification. This evaluation is one part of an overall risk management study for these facilities. The retired facilities investigated for this evaluation are located in the 100 and 200 Areas of the 1450-km 2 Hanford Site. The Hanford Site is a semiarid tract of land in southeastern Washington State. The nearest population center is Richland, Washington, (population 32,000) 30 km southeast of the 200 Area. This document is the first in a four volume series that comprise the risk management study for the retired, surplus facilities. Volume 2 is the risk evaluation work procedure; volume 3 provides the results for the risk evaluation; and volume 4 is the risk-reduction cost comparison

  17. Coastal Forests and Groundwater: Using Case Studies to Understand the Effects of Drivers and Stressors for Resource Management

    Directory of Open Access Journals (Sweden)

    Timothy J. Callahan

    2017-03-01

    Full Text Available Forests are receiving more attention for the ecosystem goods and services they provide and the potential change agents that may affect forest health and productivity. Highlighting case examples from coastal forests in South Carolina, USA, we describe groundwater processes with respect to stressors and potential responses of a wetland-rich forested landscape, the roles that this area has served, and the need for water resource data to inform forest management decisions. Forested lands in the southeastern U.S. coastal plain provide a rich set of goods and services for the region, and in one case, the Francis Marion National Forest acts as a buffer to urbanization from the surrounding Charleston metropolitan area. Information from two decades of studies in the forested watersheds there may inform scientists and managers in other coastal forested systems. The common hydrological theme in this region, which has a higher average annual rainfall (1370 mm than the annual potential evapotranspiration (PET = 1135 mm, is a shallow (<3 m water table condition that supports a large range of natural wetlands and also creates management challenges across the region. Modest changes in the position of the water table can lead to either groundwater flooding and concomitant management challenges for forest services, or ecosystem stresses related to dry conditions in wetlands during times of below-normal precipitation or due to groundwater withdrawal. Development pressures have also stressed forest resources through the extraction of materials such as timber and sand mining, and the conversion to housing construction materials. These areas are also targeted for land development, to meet housing demands. In this paper, we discuss the role of groundwater in coastal forests and highlight opportunities for collaborative studies to better inform forest resource management.

  18. National Ignition Facility Site Management Plan

    International Nuclear Information System (INIS)

    Roberts, V.

    1997-01-01

    The purpose of the NIF Site Management Plan is to describe the roles, responsibilities, and interfaces for the major NIF Project organizations involved in construction of the facility, installation and acceptance testing of special equipment, and the NIF activation. The plan also describes the resolution of priorities and conflicts. The period covered is from Critical Decision 3 (CD3) through the completion of the Project. The plan is to be applied in a stepped manner. The steps are dependent on different elements of the project being passed from the Conventional Facilities (CF) Construction Manager (CM), to the Special Equipment (SE) CMs, and finally to the Activation/ Start-Up (AS) CM. These steps are defined as follows: The site will be coordinated by CF through Project Milestone 310, end of conventional construction. The site is defined as the fenced area surrounding the facility and the CF laydown and storage areas. The building utilities that are installed by CF will be coordinated by CF through the completion of Project Milestone 310, end of conventional construction. The building utilities are defined as electricity, compressed air, de-ionized water, etc. Upon completion of the CF work, the Optics Assembly Building/Laser and Target Area Building (OAB/LTAB) will be fully operational. At that time, an Inertial Confinement Fusion (ICF) Program building coordinator will become responsible for utilities and site activities. * Step 1. Mid-commissioning (temperature stable, +1 degree C) of an area (e.g., Laser Bay 2, OAB) will precipitate the turnover of that area (within the four walls) from CF to SE. * Step 2. Interior to the turned-over space, SE will manage all interactions, including those necessary by CF. * Step 3. As the SE acceptance testing procedures (ATPS) are completed, AS will take over the management of the area and coordinate all interactions necessary by CF and SE. For each step, the corresponding CMs for CF, SE, or AS will be placed in charge of

  19. National Ignition Facility Site Management Plan

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, V.

    1997-09-01

    The purpose of the NIF Site Management Plan is to describe the roles, responsibilities, and interfaces for the major NIF Project organizations involved in construction of the facility, installation and acceptance testing of special equipment, and the NIF activation. The plan also describes the resolution of priorities and conflicts. The period covered is from Critical Decision 3 (CD3) through the completion of the Project. The plan is to be applied in a stepped manner. The steps are dependent on different elements of the project being passed from the Conventional Facilities (CF) Construction Manager (CM), to the Special Equipment (SE) CMs, and finally to the Activation/ Start-Up (AS) CM. These steps are defined as follows: The site will be coordinated by CF through Project Milestone 310, end of conventional construction. The site is defined as the fenced area surrounding the facility and the CF laydown and storage areas. The building utilities that are installed by CF will be coordinated by CF through the completion of Project Milestone 310, end of conventional construction. The building utilities are defined as electricity, compressed air, de-ionized water, etc. Upon completion of the CF work, the Optics Assembly Building/Laser and Target Area Building (OAB/LTAB) will be fully operational. At that time, an Inertial Confinement Fusion (ICF) Program building coordinator will become responsible for utilities and site activities. * Step 1. Mid-commissioning (temperature stable, +1{degree}C) of an area (e.g., Laser Bay 2, OAB) will precipitate the turnover of that area (within the four walls) from CF to SE. * Step 2. Interior to the turned-over space, SE will manage all interactions, including those necessary by CF. * Step 3. As the SE acceptance testing procedures (ATPS) are completed, AS will take over the management of the area and coordinate all interactions necessary by CF and SE. For each step, the corresponding CMs for CF, SE, or AS will be placed in charge of

  20. Predictive Analytics to Support Real-Time Management in Pathology Facilities

    Science.gov (United States)

    Lessard, Lysanne; Michalowski, Wojtek; Chen Li, Wei; Amyot, Daniel; Halwani, Fawaz; Banerjee, Diponkar

    2016-01-01

    Predictive analytics can provide valuable support to the effective management of pathology facilities. The introduction of new tests and technologies in anatomical pathology will increase the volume of specimens to be processed, as well as the complexity of pathology processes. In order for predictive analytics to address managerial challenges associated with the volume and complexity increases, it is important to pinpoint the areas where pathology managers would most benefit from predictive capabilities. We illustrate common issues in managing pathology facilities with an analysis of the surgical specimen process at the Department of Pathology and Laboratory Medicine (DPLM) at The Ottawa Hospital, which processes all surgical specimens for the Eastern Ontario Regional Laboratory Association. We then show how predictive analytics could be used to support management. Our proposed approach can be generalized beyond the DPLM, contributing to a more effective management of pathology facilities and in turn to quicker clinical diagnoses. PMID:28269873

  1. Biosafety and biosecurity measures: management of biosafety level 3 facilities.

    Science.gov (United States)

    Zaki, Adel N

    2010-11-01

    With the increasing biological threat from emerging infectious diseases and bioterrorism, it has become essential for governments around the globe to increase awareness and preparedness for identifying and containing those agents. This article introduces the basic concepts of laboratory management, laboratory biosafety and laboratory biosecurity. Assessment criteria for laboratories' biorisk should include both biosafety and biosecurity measures. The assessment requires setting specific goals and selecting management approaches. In order to implement technologies at the laboratory working level, a management team should be created whose role is to implement biorisk policies, rules and regulations appropriate for that facility. Rules and regulations required by government authorities are presented, with special emphasis on methods for air control, and liquid and solid waste management. Management and biorisk measures and appropriate physical facilities must keep pace, ensuring efficient facilities that protect workers, the environment, the product (research, diagnostic and/or vaccine) and the biological pathogen. Published by Elsevier B.V.

  2. Groundwater regulation and integrated planning

    Science.gov (United States)

    Quevauviller, Philippe; Batelaan, Okke; Hunt, Randall J.

    2016-01-01

    The complex nature of groundwater and the diversity of uses and environmental interactions call for emerging groundwater problems to be addressed through integrated management and planning approaches. Planning requires different levels of integration dealing with: the hydrologic cycle (the physical process) including the temporal dimension; river basins and aquifers (spatial integration); socioeconomic considerations at regional, national and international levels; and scientific knowledge. The great natural variation in groundwater conditions obviously affects planning needs and options as well as perceptions from highly localised to regionally-based approaches. The scale at which planning is done therefore needs to be carefully evaluated against available policy choices and options in each particular setting. A solid planning approach is based on River Basin Management Planning (RBMP), which covers: (1) objectives that management planning are designed to address; (2) the way various types of measures fit into the overall management planning; and (3) the criteria against which the success or failure of specific strategies or interventions can be evaluated (e.g. compliance with environmental quality standards). A management planning framework is to be conceived as a “living” or iterated document that can be updated, refined and if necessary changed as information and experience are gained. This chapter discusses these aspects, providing an insight into European Union (EU), United States and Australia groundwater planning practices.

  3. Grout treatment facility dangerous waste permit application

    International Nuclear Information System (INIS)

    1992-07-01

    The Grout Treatment Facility (GTF) will provide permanent disposal for approximately 43 Mgal of low-level radioactive liquid waste currently being stored in underground tanks on the Hanford Site. The first step in permanent disposal is accomplished by solidifying the liquid waste with cementitious dry materials. The resulting grout is cast within underground vaults. This report on the GTF contains information on the following: Geologic data, hydrologic data, groundwater monitoring program, information, detection monitoring program, groundwater characterization drawings, building emergency plan--grout treatment facility, response action plan for grout treatment facility, Hanford Facility contingency plan, training course descriptions, overview of the Hanford Facility Grout Performance, assessment, bland use and zoning map, waste minimization plan, cover design engineering report, and clay liners (ADMIXTURES) in semiarid environments

  4. Managing Educational Facilities and Students' Enrolment in ...

    African Journals Online (AJOL)

    DR Nneka

    Indexed African Journals Online: www.ajol.info. An International ... Key Words: Students Enrolment, Managing, Educational Facilities, Nigeria ... positive relationship with standard and quality of educational system (Nwagwu, 1978: Adesina ...

  5. Radioactive waste management from nuclear facilities

    International Nuclear Information System (INIS)

    2005-06-01

    This report has been published as a NSA (Nuclear Systems Association, Japan) commentary series, No. 13, and documents the present status on management of radioactive wastes produced from nuclear facilities in Japan and other countries as well. Risks for radiation accidents coming from radioactive waste disposal and storage together with risks for reactor accidents from nuclear power plants are now causing public anxiety. This commentary concerns among all high-level radioactive waste management from nuclear fuel cycle facilities, with including radioactive wastes from research institutes or hospitals. Also included is wastes produced from reactor decommissioning. For low-level radioactive wastes, the wastes is reduced in volume, solidified, and removed to the sites of storage depending on their radioactivities. For high-level radioactive wastes, some ten thousand years must be necessary before the radioactivity decays to the natural level and protection against seismic or volcanic activities, and terrorist attacks is unavoidable for final disposals. This inevitably results in underground disposal at least 300 m below the ground. Various proposals for the disposal and management for this and their evaluation techniques are described in the present document. (S. Ohno)

  6. Professional Development through Organizational Assessment: Using APPA's Facilities Management Evaluation Program

    Science.gov (United States)

    Medlin, E. Lander; Judd, R. Holly

    2013-01-01

    APPA's Facilities Management Evaluation Program (FMEP) provides an integrated system to optimize organizational performance. The criteria for evaluation not only provide a tool for organizational continuous improvement, they serve as a compelling leadership development tool essential for today's facilities management professional. The senior…

  7. Understanding and Managing Aging of Spent Nuclear Fuel and Facility Components in Wet Storage

    International Nuclear Information System (INIS)

    Johnson, A. B.

    2007-01-01

    Storage of nuclear fuel after it has been discharged from reactors has become the leading spent fuel management option. Many storage facilities are being required to operate longer than originally anticipated. Aging is a term that has emerged to focus attention on the consequences of extended operation on systems, structures, and components that comprise the storage facilities. The key to mitigation of age-related degradation in storage facilities is to implement effective strategies to understand and manage aging of the facility materials. A systematic approach to preclude serious effects of age-related degradation is addressed in this paper, directed principally to smaller facilities (test and research reactors). The first need is to assess the materials that comprise the facility and the environments that they are subject to. Access to historical data on facility design, fabrication, and operation can facilitate assessment of expected materials performance. Methods to assess the current condition of facility materials are summarized in the paper. Each facility needs an aging management plan to define the scope of the management program, involving identification of the materials that need specific actions to manage age-related degradation. For each material identified, one or more aging management programs are developed and become part of the plan Several national and international organizations have invested in development of comprehensive and systematic approaches to aging management. A method developed by the US Nuclear Regulatory Commission is recommended as a concise template to organize measures to effectively manage age-related degradation of storage facility materials, including the scope of inspection, surveillance, and maintenance that is needed to assure successful operation of the facility over its required life. Important to effective aging management is a staff that is alert for evidence of materials degradation and committed to carry out the aging

  8. Numerical simulation of groundwater and surface-water interactions in the Big River Management Area, central Rhode Island

    Science.gov (United States)

    Masterson, John P.; Granato, Gregory E.

    2013-01-01

    The Rhode Island Water Resources Board is considering use of groundwater resources from the Big River Management Area in central Rhode Island because increasing water demands in Rhode Island may exceed the capacity of current sources. Previous water-resources investigations in this glacially derived, valley-fill aquifer system have focused primarily on the effects of potential groundwater-pumping scenarios on streamflow depletion; however, the effects of groundwater withdrawals on wetlands have not been assessed, and such assessments are a requirement of the State’s permitting process to develop a water supply in this area. A need for an assessment of the potential effects of pumping on wetlands in the Big River Management Area led to a cooperative agreement in 2008 between the Rhode Island Water Resources Board, the U.S. Geological Survey, and the University of Rhode Island. This partnership was formed with the goal of developing methods for characterizing wetland vegetation, soil type, and hydrologic conditions, and monitoring and modeling water levels for pre- and post-water-supply development to assess potential effects of groundwater withdrawals on wetlands. This report describes the hydrogeology of the area and the numerical simulations that were used to analyze the interaction between groundwater and surface water in response to simulated groundwater withdrawals. The results of this analysis suggest that, given the hydrogeologic conditions in the Big River Management Area, a standard 5-day aquifer test may not be sufficient to determine the effects of pumping on water levels in nearby wetlands. Model simulations showed water levels beneath Reynolds Swamp declined by about 0.1 foot after 5 days of continuous pumping, but continued to decline by an additional 4 to 6 feet as pumping times were increased from a 5-day simulation period to a simulation period representative of long-term average monthly conditions. This continued decline in water levels with

  9. Information security management system planning for CBRN facilities

    Energy Technology Data Exchange (ETDEWEB)

    Lenaeu, Joseph D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); O' Neil, Lori Ross [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Leitch, Rosalyn M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Glantz, Clifford S. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Landine, Guy P. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Bryant, Janet L. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Lewis, John [National Nuclear Lab., Workington (United Kingdom); Mathers, Gemma [National Nuclear Lab., Workington (United Kingdom); Rodger, Robert [National Nuclear Lab., Workington (United Kingdom); Johnson, Christopher [National Nuclear Lab., Workington (United Kingdom)

    2015-12-01

    The focus of this document is to provide guidance for the development of information security management system planning documents at chemical, biological, radiological, or nuclear (CBRN) facilities. It describes a risk-based approach for planning information security programs based on the sensitivity of the data developed, processed, communicated, and stored on facility information systems.

  10. Information security management system planning for CBRN facilities

    International Nuclear Information System (INIS)

    Lenaeu, Joseph D.; O'Neil, Lori Ross; Leitch, Rosalyn M.; Glantz, Clifford S.; Landine, Guy P.; Bryant, Janet L.; Lewis, John; Mathers, Gemma; Rodger, Robert; Johnson, Christopher

    2015-01-01

    The focus of this document is to provide guidance for the development of information security management system planning documents at chemical, biological, radiological, or nuclear (CBRN) facilities. It describes a risk-based approach for planning information security programs based on the sensitivity of the data developed, processed, communicated, and stored on facility information systems.

  11. Management of water resources to control groundwater levels in the southern area of the western Nile delta, Egypt

    Directory of Open Access Journals (Sweden)

    Mohamed M. Sobeih

    2017-10-01

    Full Text Available The present study was initiated with the objective of simulating and predicting the effect of future development on the groundwater flow and levels. This supports applications for future planning and wise management of water resources. The study area extends south of El Nubariya canal including Sadat City area and its vicinities in the western Nile delta region. A numerical groundwater flow model (MODFLOW has been employed to simulate flow and get the budget of groundwater in the study area. The model showed that about 28,101,041 m3/day of surface water is infiltrated to groundwater dominantly from canals and excess irrigation water. About the same quantity (28,101,052 m3/day, is discharged from groundwater through production wells, open drains and through some reaches of canals. Three development scenarios were simulated to give predictions of the impact of future increasing recharge, construction of new canal and new open drains, and also increased pumping on the groundwater levels in the study area.

  12. Fall 2010 Semiannual (III.H. and I.U.) Report for the HWMA/RCRA Post Closure Permit for the INTEC Waste Calcining Facility and the CPP 601/627/640 Facility at the INL Site

    Energy Technology Data Exchange (ETDEWEB)

    Boehmer, Ann

    2010-11-01

    The Waste Calcining Facility is located at the Idaho Nuclear Technology and Engineering Center. In 1999, the Waste Calcining Facility was closed under an approved Hazardous Waste Management Act/Resource Conservation and Recovery Act (HWMA/RCRA) Closure Plan. Vessels and spaces were grouted and then covered with a concrete cap. The Idaho Department of Environmental Quality issued a final HWMA/RCRA post-closure permit on September 15, 2003, with an effective date of October 16, 2003. This permit sets forth procedural requirements for groundwater characterization and monitoring, maintenance, and inspections of the Waste Calcining Facility to ensure continued protection of human health and the environment. The post closure permit also includes semiannual reporting requirements under Permit Conditions III.H. and I.U. These reporting requirements have been combined into this single semiannual report, as agreed between the Idaho Cleanup Project and Idaho Department of Environmental Quality. The Permit Condition III.H. portion of this report includes a description and the results of field methods associated with groundwater monitoring of the Waste Calcining Facility. Analytical results from groundwater sampling, results of inspections and maintenance of monitoring wells in the Waste Calcining Facility groundwater monitoring network, and results of inspections of the concrete cap are summarized. The Permit Condition I.U. portion of this report includes noncompliances not otherwise required to be reported under Permit Condition I.R. (advance notice of planned changes to facility activity which may result in a noncompliance) or Permit Condition I.T. (reporting of noncompliances which may endanger human health or the environment). This report also provides groundwater sampling results for wells that were installed and monitored as part of the Phase 1 post-closure period of the landfill closure components in accordance with HWMA/RCRA Landfill Closure Plan for the CPP-601 Deep

  13. Pore pressure measurement plan of near field rock used on three dimensional groundwater flow analysis in demonstration test of cavern type disposal facility

    International Nuclear Information System (INIS)

    Onuma, Kazuhiro; Terada, Kenji; Matsumura, Katsuhide; Koyama, Toshihiro; Yajima, Kazuaki

    2008-01-01

    Demonstration test of underground cavern type disposal facilities is planed though carrying out construction of full scale engineering barrier system which simulated in the underground space in full scale and under actual environment. This test consists of three part, these are construction test, performance test and measurement test. Behavior of near field rock mass is measured about hydrological behavior under and after construction to evaluate effect at test facility. To make plan of pore pressure measurement, three dimensional groundwater flow analysis has been carried out. Based on comparison of analysis before and after test, detail plan has been studied. (author)

  14. South-East Iowa Groundwater Vulnerability Regions

    Data.gov (United States)

    Iowa State University GIS Support and Research Facility — The regions on this map represent areas with similar hydro- geologic characteristics thought to represent similar potentials for contamination of groundwater and/or...

  15. North-East Iowa Groundwater Vulnerability Regions

    Data.gov (United States)

    Iowa State University GIS Support and Research Facility — The regions on this map represent areas with similar hydro-geologic characteristics thought to represent similar potentials for contamination of groundwater and/or...

  16. North-West Iowa Groundwater Vulnerability Regions

    Data.gov (United States)

    Iowa State University GIS Support and Research Facility — The regions on this map represent areas with similar hydro-geologic characteristics thought to represent similar potentials for contamination of groundwater and/or...

  17. South-West Iowa Groundwater Vulnerability Regions

    Data.gov (United States)

    Iowa State University GIS Support and Research Facility — The regions on this map represent areas with similar hydro- geologic characteristics thought to represent similar potentials for contamination of groundwater and/or...

  18. Compendium of ordinances for groundwater protection

    Energy Technology Data Exchange (ETDEWEB)

    1990-08-01

    Groundwater is an extremely important resource in the Tennessee Valley. Nearly two-thirds of the Tennessee Valley's residents rely, at least in part, on groundwater supplies for drinking water. In rural areas, approximately ninety-five percent of residents rely on groundwater for domestic supplies. Population growth and economic development increase the volume and kinds of wastes requiring disposal which can lead to groundwater contamination. In addition to disposal which can lead to groundwater contamination. In addition to disposal problems associated with increases in conventional wastewater and solid waste, technological advancements in recent decades have resulted in new chemicals and increased usage in agriculture, industry, and the home. Unfortunately, there has not been comparable progress in identifying the potential long-term effects of these chemicals, in managing them to prevent contamination of groundwater, or in developing treatment technologies for removing them from water once contamination has occurred. The challenge facing residence of the Tennessee Valley is to manage growth and economic and technological development in ways that will avoid polluting the groundwater resource. Once groundwater has been contaminated, cleanup is almost always very costly and is sometimes impractical or technically infeasible. Therefore, prevention of contamination -- not remedial treatment--is the key to continued availability of usable groundwater. This document discusses regulations to aid in this prevention.

  19. THE COMBINED USE OF BUSINESS MANAGEMENT WITH FACILITY MANAGEMENT AS AN OPTION FOR INTELLIGENT BUILDING

    Directory of Open Access Journals (Sweden)

    Andreas Dittmar Weise

    2014-01-01

    Full Text Available Words like Business Management (BM and Facility Management (FM are well known as separate management methods. FM offers transparency about their property costs and exploitation, starting from the planning phase until its demolition. The investor sees this in the property invested capital and its recoverable yield. This means they also want a profit with their real estates. Besides this, changes in the social and environmental requirements become necessary to adapt the properties. The solution is called Intelligent Building. Its primary aim is to collect and select previous knowledge and information about Facility Management and Business Management. It is an application, mainly with sight to characterize and describe the possibilities of use of intelligent buildings as a combination of Facility and Business Management. This paper is an indirect survey carried out through a documental procedure in the form of a bibliographic research and theoretician study. Intelligent Building as combination of FM and BM is new, but in our times necessary to satisfy the needs of the demand. This type of building needs to be flexible in its structure and services, open for changes in environmental requirements, e.g. saving energy, and needs a lot of technology to realize their functions. Consequently, it will be sustainable for a value enhancement. With a Computer Aided Facilities Management system this is possible and the company will be more flexible in relation to the competitors and future changes.

  20. Nuclear facilities maintenance in the core of management-advanced trend in IBM Maximo asset management applications

    International Nuclear Information System (INIS)

    Seino, Satoshi; Ujihara, Satoshi; Kikuyama, Kaoru

    2009-01-01

    European and US plant owners have attached importance to plant maintenance, such as prompt grasp of plant states, implementation of maintenance and planning of maintenance programs, as one of asset management. The US advanced trend was introduced in this feature article through the applications of IBM Maximo Asset Management for nuclear facilities maintenance. World trends of nuclear power and related problems, need of nuclear facilities management, key items for introduction of maintenance management systems, required systems for nuclear maintenance management and introduction of functions of the IBM strategic asset management solution-Maximo were described respectively. (T. Tanaka)