WorldWideScience

Sample records for managed pine forest

  1. Nutrient Management in Pine Forests

    Science.gov (United States)

    Allan E. Tiarks

    1999-01-01

    Coastal plain soils are naturally low in fertility and many pine stands will give an economic response to fertilization, especially phosphorus. Maintaining the nutrients that are on the site by limiting displacement of logging slash during and after the harvest can be important in maintaining the productivity of the site and reducing the amount of fertilizer required...

  2. Sensitivity of pine flatwoods hydrology to climate change and forest management in Florida, USA

    Science.gov (United States)

    Jianbiao Lu; Ge Sun; Steven G. McNulty; Nicholas B. Comerford

    2009-01-01

    Pine flatwoods (a mixture of cypress wetlands and managed pine uplands) is an important ecosystem in the southeastern U.S. However, long-term hydrologic impacts of forest management and climate change on this heterogeneous landscape are not well understood. Therefore, this study examined the sensitivity of cypress-pine flatwoods...

  3. Management guide to ecosystem restoration treatments: two-aged lodgepole pine forests of central Montana, USA

    Science.gov (United States)

    Sharon M. Hood; Helen Y. Smith; David K. Wright; Lance S. Glasgow

    2012-01-01

    Lodgepole pine is one of the most widely distributed conifers in North America, with a mixed-severity rather than stand-replacement fire regime throughout much of its range. These lodgepole pine forests are patchy and often two-aged. Fire exclusion can reduce two-aged lodgepole pine heterogeneity. This management guide summarizes the effects of thinning and prescribed...

  4. Simulation of the biomass dynamics of Masson pine forest under different management

    Institute of Scientific and Technical Information of China (English)

    ZHANG Gui-lian; WANG Kai-yun; LIU Xin-wei; PENG Shao-lin

    2006-01-01

    TREE submodel affiliated with TREEDYN was used to simulate biomass dynamics of Masson pine (Pinus massoniana) forest under different managements (including thinning, clear cutting, combining thinning with clear cutting). The purpose was to represent biomass dynamics involved in its development, which can provide scientific arguments for management of Masson pine forest. The results showed the scenario that 10% or 20% of biomass of the previous year was thinned every five years from 15 to 40 years made total biomass of pine forest increase slowly and it took more time to reach a mature community; If clear cutting and thinning were combined, the case C (clear cutting at 20 years of forest age, thinning 50% of remaining biomass at 30 years of forest age, and thinning 50% of remaining biomass again at 40 years of forest age) was the best scenario which can accelerate speed of development of Masson pine forest and gained better economic values.

  5. Eighty-eight years of change in a managed ponderosa pine forest

    Science.gov (United States)

    Helen Y. Smith; Stephen F. Arno

    1999-01-01

    This publication gives an overview of structural and other ecological changes associated with forest management and fire suppression since the early 1900's in a ponderosa pine forest, the most widespread forest type in the Western United States. Three sources of information are presented: (1) changes seen in a series of repeat photographs taken between 1909 and...

  6. Effects of a Severe Mountain Pine Beetle Epidemic in Western Alberta, Canada under Two Forest Management Scenarios

    Directory of Open Access Journals (Sweden)

    Richard R. Schneider

    2010-01-01

    Full Text Available We used a simulation model to investigate possible effects of a severe mountain pine beetle (Dendroctonus ponderosae Hopkins epidemic under two management scenarios in Alberta, Canada. Our simulated outbreak was based on the current epidemic in British Columbia, which may kill close to 80% of the province's pine volume. Our two management scenarios were conventional harvest and a pine-reduction strategy modeled on a component of Alberta's Mountain Pine Beetle Management Strategy. The pine strategy seeks to reduce the number of susceptible pine stands by 75% over the next 20 years through targeted harvesting by the forest industry. Our simulations showed that the pine strategy could not be effectively implemented, even if the onset of the beetle outbreak was delayed for 20 years. Even though we increased mill capacity by 20% and directed all harvesting to high volume pine stands during the pine strategy's surge cut, the amount of highly susceptible pine was reduced by only 43%. Additional pine volume remained within mixed stands that were not targeted by the pine strategy. When the outbreak occurred in each scenario, sufficient pine remained on the landscape for the beetle to cause the timber supply to collapse. Alternative management approaches and avenues for future research are discussed.

  7. Silvicultural recommendations for the management of ponderosa pine forest

    Science.gov (United States)

    Martin Alfonso Mendoza Briseno; Mary Ann Fajvan; Juan Manuel Chacon Sotelo; Alejandro Velazquez Martinez; Antonio Quinonez. Silva

    2014-01-01

    Ponderosa pines are the most important timber producing species in Mexico, and they also represent a major portion of the Usa and Canada timber production. These pines form near pure stands with simple and stable stand structure. They suffer only occasional disturbances, and they sustain a limited capacity to hold biodiversity and other senvironmental services. The...

  8. Social demand for multiple benefits provided by Aleppo pine forest management in Catalonia, Spain

    DEFF Research Database (Denmark)

    Varela, Elsa; Jacobsen, Jette Bredahl; Mavsar, Robert

    2017-01-01

    This paper estimates the social demand for key benefits provided by Aleppo pine forests in Catalonia that can be enhanced by management. These so-called externalities are the side effects of forest management on citizens’ welfare and can be either positive or negative. The externalities addressed...... are: biodiversity (measured as the number of tree species), accessibility for practicing recreational activities, CO2 sequestration and annual burned area by wildfires. By the use of a choice experiment, an economic valuation method, we estimate in a joint manner people’s preferences...

  9. Modeling the effects of forest management on in situ and ex situ longleaf pine forest carbon stocks

    Science.gov (United States)

    C.A. Gonzalez-Benecke; L.J. Samuelson; T.A. Martin; W.P. Cropper Jr; Kurt Johnsen; T.A. Stokes; John Butnor; P.H. Anderson

    2015-01-01

    Assessment of forest carbon storage dynamics requires a variety of techniques including simulation models. We developed a hybrid model to assess the effects of silvicultural management systems on carbon (C) budgets in longleaf pine (Pinus palustris Mill.) plantations in the southeastern U.S. To simulate in situ C pools, the model integrates a growth and yield model...

  10. Impacts of logging and prescribed burning in longleaf pine forests managed under uneven-aged silviculture

    Science.gov (United States)

    Ferhat Kara; Edward Francis Loewenstein

    2015-01-01

    The longleaf pine (Pinus palustris Mill.) ecosystem has historically been very important in the southeastern United States due to its extensive area and high biodiversity. Successful regeneration of longleaf pine forests requires an adequate number of well distributed seedlings. Thus, mortality of longleaf pine seedlings during logging operations...

  11. Future Forests Webinar Series, Webinar Proceedings and Summary: Ongoing Research and Management Responses to the Mountain Pine Beetle Outbreak

    Science.gov (United States)

    M. Matonis; R. Hubbard; K. Gebert; B. Hahn; C. Regan

    2014-01-01

    The Future Forest Webinar Series facilitated dialogue between scientists and managers about the challenges and opportunities created by the mountain pine beetle (MPB) epidemic. The series consisted of six webinar facilitated by the USFS Rocky Mountain Research Station, the Northern and Rocky Mountain Regions, and the Colorado Forest Restoration Institute. The series...

  12. Assisting the U.S. Forest Service in monitoring and managing the Pacific pine marten

    Science.gov (United States)

    Force, A.; Hadley, N.; Howell, B. L.; Holsinger, K.

    2017-12-01

    Innovative partnerships that bridge institutional sectors may be key in seizing many opportunities for highly effective projects. Adventure Scientists is a nonprofit organization that works in partnership with governments, universities, businesses and other nonprofits to support their need for actionable, research-grade data. In every partnership, it is critical that responsible decision-makers are involved and in place to use the data collected, such as to inform new resource management strategies or regulatory policies. In this presentation, we will highlight our experience working on one such partnership. In 2013, the U.S. Forest Service and Adventure Scientists collaborated on a two-year project to better understand Pacific pine marten (Martes caurina), a small native carnivore, in the Olympic National Forest. In response to the species' recent disappearance, Forest managers needed to gather more accurate data on martens' presence and abundance to support species management. Adventure Scientists was in a unique position to provide the agency this needed data-collection capacity. Volunteers collected data about the marten populations by positioning and monitoring camera traps throughout the area. Utilizing our volunteer-collected data, the U.S. Forest Service was able to inform the management and protection of these threatened species in U.S Forest Service Region 6. This project was also successful in establishing the foundation for an expanded, long-term relationship with the agency, where both parties continue to explore partnership opportunities for Adventure Scientists to collect data system-wide in support of U.S. Forest Service improved land management and policy decisions.

  13. Carbon Stocks and Climate Change: Management Implications in Northern Arizona Ponderosa Pine Forests

    Directory of Open Access Journals (Sweden)

    Benjamin Bagdon

    2014-04-01

    Full Text Available Researchers have observed climate-driven shifts of forest types to higher elevations in the Southwestern US and predict further migration coupled with large-scale mortality events proportional to increases in radiative forcing. Range contractions of forests are likely to impact the total carbon stored within a stand. This study examines the dynamics of Pinus ponderosa stands under three climate change scenarios in Northern Arizona using the Climate Forest Vegetation Simulator (Climate-FVS model to project changes in carbon pools. A sample of 90 stands were grouped according to three elevational ranges; low- (1951 to 2194 m, mid- (2194 to 2499 m, and high- (2499 to 2682 m. elevation stands. Growth, mortality, and carbon stores were simulated in the Climate-FVS over a 100 year timespan. We further simulated three management scenarios for each elevational gradient and climate scenario. Management included (1 a no-management scenario, (2 an intensive-management scenario characterized by thinning from below to a residual basal area (BA of 18 m2/ha in conjunction with a prescribed burn every 10 years, and (3 a moderate-management scenario characterized by a thin-from-below treatment to a residual BA of 28 m2/ha coupled with a prescribed burn every 20 years. Results indicate that any increase in aridity due to climate change will produce substantial mortality throughout the elevational range of ponderosa pine stands, with lower elevation stands projected to experience the most devastating effects. Management was only effective for the intensive-management scenario; stands receiving this treatment schedule maintained moderately consistent levels of basal area and demonstrated a higher level of resilience to climate change relative to the two other management scenarios. The results of this study indicate that management can improve resiliency to climate change, however, resource managers may need to employ more intensive thinning treatments than

  14. Diagnosis & Correction of Soil Nutrient Limitations in Intensively managed southern pine forests

    Energy Technology Data Exchange (ETDEWEB)

    University of Florida

    2002-10-25

    Forest productivity is one manner to sequester carbon and it is a renewable energy source. Likewise, efficient use of fertilization can be a significant energy savings. To date, site-specific use of fertilization for the purpose of maximizing forest productivity has not been well developed. Site evaluation of nutrient deficiencies is primarily based on empirical approaches to soil testing and plot fertilizer tests with little consideration for soil water regimes and contributing site factors. This project uses mass flow diffusion theory in a modeling context, combined with process level knowledge of soil chemistry, to evaluate nutrient bioavailability to fast-growing juvenile forest stands growing on coastal plain Spodosols of the southeastern U.S. The model is not soil or site specific and should be useful for a wide range of soil management/nutrient management conditions. In order to use the model, field data of fast-growing southern pine needed to be measured and used in the validation of the model. The field aspect of the study was mainly to provide data that could be used to verify the model. However, we learned much about the growth and development of fast growing loblolly. Carbon allocation patterns, root shoot relationships and leaf area root relationships proved to be new, important information. The Project Objectives were to: (1) Develop a mechanistic nutrient management model based on the COMP8 uptake model. (2) Collect field data that could be used to verify and test the model. (3) Model testing.

  15. Restoring fire in lodgepole pine forests of the Intermountain west

    Science.gov (United States)

    Colin C. Hardy; Ward W. McCaughey

    1997-01-01

    We are developing new management treatments for regenerating and sustaining lodgepole pine (Pinus contorta) forests through emulation of natural disturbance processes. Lodgepole pine is the principal forest cover on over 26 million hectares in western North America. While infrequent, stand replacing fires following mountain pine beetle outbreaks are common to the...

  16. Short Communication. Resin tapping activity as a contribution to the management of maritime pine forest

    Energy Technology Data Exchange (ETDEWEB)

    Palma, A.; Pereira, J.M.; Soares, P.

    2016-07-01

    Aim of the study: In this work potential resin yield in a region of high forest ability where maritime pine is the main species was estimated in order to understand the viability of promoting resin exploitation. Area of study: This study was conducted in Castro Da ire County in central region of Portugal. Material and methods: To quantify the resin yield of trees tapped for the first time two plots were installed in a maritime pine stand with average tree age 65 years. Before the beginning of the resin tapping, dendrometric tree variables were measured. Also, in a neighbouring stand, 25 trees were selected to check the relation between tree dbh and resin yield. Gum resin from every tree was weighted during the season. Estimates of potential resin yield in Castro Daire County were made based on data from National Forest Inventory plots, resin tapping legislation and resin yield values obtained in the field. Two scenarios were considered: high and low resin yield. To understand the intentions of forest owners towards restarting resin tapping activity 16 maritime pine forest owners were interviewed. Main results: The results point out a high yield potential capacity for gum resin production in the County: values between 2,025 and 5,873 tons were obtained. Research highlights: Results may highlight the important socio-economical role of the resin tapping activity and can be used to support national forest policies to the resin sector and give forest owners motivation to reactivate resin tapping activity. (Author)

  17. Short Communication. Resin tapping activity as a contribution to the management of maritime pine forest

    Directory of Open Access Journals (Sweden)

    Amélia Palma

    2016-07-01

    Full Text Available Aim of the study: In this work potential resin yield in a region of high forest ability where maritime pine is the main species was estimated in order to understand the viability of promoting resin exploitation. Area of study: This study was conducted in Castro Daire County in central region of Portugal. Material and methods: To quantify the resin yield of trees tapped for the first time two plots were installed in a maritime pine stand with average tree age 65 years. Before the beginning of the resin tapping, dendrometric tree variables were measured. Also, in a neighbouring stand, 25 trees were selected to check the relation between tree dbh and resin yield. Gum resin from every tree was weighted during the season. Estimates of potential resin yield in Castro Daire County were made based on data from National Forest Inventory plots, resin tapping legislation and resin yield values obtained in the field. Two scenarios were considered: high and low resin yield. To understand the intentions of forest owners towards restarting resin tapping activity 16 maritime pine forest owners were interviewed. Main results: The results point out a high yield potential capacity for gum resin production in the County: values between 2,025 and 5,873 tons were obtained. Research highlights: Results may highlight the important socio-economical role of the resin tapping activity and can be used to support national forest policies to the resin sector and give forest owners motivation to reactivate resin tapping activity. Keywords: non-wood forest product; resin yield potential; forest owner.

  18. Post-fire management and recovery of a pine forest in Greece

    Directory of Open Access Journals (Sweden)

    I. Spanos

    2010-05-01

    Full Text Available The effects of management after fire in Pinus halepensis forests were assessed in northern Greece. Seeding, logging and building of log barriers were applied in burned sites and compared to a control site. Two years after treatment application, 70–80% of the ground in all sites was covered with vegetation. Seeding with herbaceous plants did not increase plant cover. Logging and building of log barriers negatively affected herbaceous species but increased woody species. During the first spring after fire, the highest numbers of P. halepensis seedlings were observed in the control site and the lowest number in the logged site. Logging and log barrier building had a negative effect on pine regeneration compared to control and seeding treatments. Woody plant composition was similar in control and seeding sites, with dominance of P. halepensis and Cistus species. A different pattern was observed in the logging and log-barrier sites with a low number of seeders and a high number of resprouter species.

  19. Effects of intensive forest management practices on insect infestation levels and loblolly pine growth

    Science.gov (United States)

    John T. Nowak; C. Wayne Berisford

    2000-01-01

    Intensive forest management practices have been shown to increase tree growth and shorten rotation time. However, they may also lead to an increased need for insect pest management because of higher infestation levels and lower action thresholds. To investigate the relationship between intensive management practices arid insect infestation, maximum growth potential...

  20. Resilience of ponderosa and lodgepole pine forests to mountain pine beetle disturbance and limited regeneration

    Science.gov (United States)

    Briggs, Jenny S.; Hawbaker, Todd J.; Vandendriesche, Don

    2015-01-01

    After causing widespread mortality in lodgepole pine forests in North America, the mountain pine beetle (MPB) has recently also affected ponderosa pine, an alternate host species that may have different levels of resilience to this disturbance. We collected field data in ponderosa pine- and lodgepole pine-dominated forests attacked by MPB in Colorado and then simulated stand growth over 200 years using the Forest Vegetation Simulator. We compared scenarios of no disturbance with scenarios of MPB-caused mortality, both with and without regeneration. Results indicated that basal area and tree density recovered to predisturbance levels relatively rapidly (within 1‐8 decades) in both forest types. However, convergence of the disturbed conditions with simulated undisturbed conditions took longer (12‐20+ decades) and was delayed by the absence of regeneration. In MPB-affected ponderosa pine forests without regeneration, basal area did not converge with undisturbed conditions within 200 years, implying lower resilience in this ecosystem. Surface fuels accumulated rapidly in both forest types after MPB-induced mortality, remaining high for 3‐6 decades in simulations. Our results suggest that future patterns of succession, regeneration, fuel loading, climate, and disturbance interactions over long time periods should be considered in management strategies addressing MPB effects in either forest type, but particularly in ponderosa pine.

  1. Influence of thinning intensity and canopy type on Scots pine stand and growth dynamics in a mixed managed forest

    Energy Technology Data Exchange (ETDEWEB)

    Primicia, I.; Artázcoz, R.; Imbert, J.B.; Puertas, F.; Traver, M.C.; Castillo, F.J.

    2016-07-01

    Aim of the study: We analysed the effects of thinning intensity and canopy type on Scots pine growth and stand dynamics in a mixed Scots pine-beech forest. Area of the study: Western Pyrenees. Material and methods: Three thinning intensities were applied in 1999 (0, 20 and 30% basal area removed) and 2009 (0, 20 and 40%) on 9 plots. Within each plot, pure pine and mixed pine-beech patches are distinguished. All pine trees were inventoried in 1999, 2009 and 2014. The effects of treatments on the tree and stand structure variables (density, basal area, stand and tree volume), on the periodic annual increment in basal area and stand and tree volume, and on mortality rates, were analysed using linear mixed effects models. Main Results: The enhancement of tree growth was mainly noticeable after the second thinning. Growth rates following thinning were similar or higher in the moderate than in the severe thinning. Periodic stand volume annual increments were higher in the thinned than in the unthinned plots, but no differences were observed between the thinned treatments. We observed an increase in the differences of the Tree volume annual increment between canopy types (mixed < pure) over time in the unthinned plots, as beech crowns developed. Research highlights: Moderate thinning is suggested as an appropriate forest practice at early pine age in these mixed forests, since it produced higher tree growth rates than the severe thinning and it counteracted the negative effect of beech on pine growth observed in the unthinned plots. (Author)

  2. Post-fire diversity and abundance in pine and eucalipt stands in Portugal: effects of biogeography, topography, forest type and post-fire management

    OpenAIRE

    Maia, P.; Keizer, J.; Vasques, A.; Abrantes, N.; Roxo, L.; Fernandes, P.; Ferreira, A.; Moreira, F.

    2014-01-01

    This study concerned the mid-term regeneration of the woody understory vegetation of pure and mixed stands of Pinus pinaster Ait. and Eucalyptus globulus Labill. in northern and central Portugal following wildfires in 2005 and 2006. Pine and eucalypt stands are the most widespread and most fire-prone forest types in Portugal. The main aim was to investigate the importance of biogeography, topography, forest type and post-fire management operations in explaining the patterns in shr...

  3. Pro-B selection method for uneven-aged management of longleaf pine forests

    Science.gov (United States)

    Dale G. Brockway; Edward F. Loewenstein; Kenneth W. Outcalt

    2015-01-01

    Interest in uneven-aged silviculture has increased since advent of ecosystem management programs, which place greater emphasis on ecological values and ecosystem services while also harvesting timber from the forest. However, traditional uneven-aged approaches (e.g., BDq) are often criticized as too complex, costly, and requiring highly-trained staff. The Proportional-...

  4. Use of Glyphosate and Imazapyr for Cogongrass (Imperata cylindrica) management in southern pine forests

    Science.gov (United States)

    Patrick J. Minogue; James H. Miller; Dwight K. Lauer

    2012-01-01

    Cogongrass (Imperata cylindrica [L.] P. Beauv. var. major [Nees] C.E. Hubb) is one of the most invasive perennial grasses worldwide and has progressively infested managed and natural habitats in the mid-South over the past 100 years. To extend past research toward the goal of eradication on forested sites, we tested the most effective herbicides (glyphosate and...

  5. What's known about managing eastern white pine

    Science.gov (United States)

    Charles R. Lockard

    1959-01-01

    At the 1957 meeting of the Northeastern Forest Research Advisory Council the comment was made that although Eastern white pine has been the most studied forest tree species in the Northeast, the only literature on the management of the species was in reports on isolated and uncoordinated studies. There was no comprehensive compendium of knowledge.

  6. Soil C and N storage and microbial biomass in US southern pine forests: Influence of forest management

    Science.gov (United States)

    J.A. Foote; T.W. Boutton; D.A. Scott

    2015-01-01

    Land management practices have strong potential to modify the biogeochemistry of forest soils, with implications for the long-term sustainability and productivity of forestlands. The Long-Term Soil Productivity (LTSP) program, a network of 62 sites across the USA and Canada, was initiated to address concerns over possible losses of soil productivity due to soil...

  7. Silvicultural Considerations in Managing Southern Pine Stands in the Context of Southern Pine Beetle

    Science.gov (United States)

    James M. Guldin

    2011-01-01

    Roughly 30 percent of the 200 million acres of forest land in the South supports stands dominated by southern pines. These are among the most productive forests in the nation. Adapted to disturbance, southern pines are relatively easy to manage with even-aged methods such as clearcutting and planting, or the seed tree and shelterwood methods with natural regeneration....

  8. Remote estimation of a managed pine forest evapotranspiration with geospatial technology

    Science.gov (United States)

    S. Panda; D.M. Amatya; G Sun; A. Bowman

    2016-01-01

    Remote sensing has increasingly been used to estimate evapotranspiration (ET) and its supporting parameters in a rapid, accurate, and cost-effective manner. The goal of this study was to develop remote sensing-based models for estimating ET and the biophysical parameters canopy conductance (gc), upper-canopy temperature, and soil moisture for a mature loblolly pine...

  9. Soil organic matter fractions in loblolly pine forests of Coastal North Carolina managed for bioenergy production

    Science.gov (United States)

    Kevan J. Minick; Brian D. Strahm; Thomas R. Fox; Eric B. Surce; Zakiya H. Leggett

    2015-01-01

    Dependence on foreign oil continues to increase, and concern over rising atmospheric CO2 and other greenhouse gases has intensified research into sustainable biofuel production. Intercropping switchgrass (Panicum virgatum L.) between planted rows of loblolly pine (Pinus taeda L.) offers an opportunity to utilize inter-row space that typically contains herbaceous and...

  10. Regeneration of different plant functional types in a Masson pine forest following pine wilt disease.

    Science.gov (United States)

    Hu, Guang; Xu, Xuehong; Wang, Yuling; Lu, Gao; Feeley, Kenneth J; Yu, Mingjian

    2012-01-01

    Pine wilt disease is a severe threat to the native pine forests in East Asia. Understanding the natural regeneration of the forests disturbed by pine wilt disease is thus critical for the conservation of biodiversity in this realm. We studied the dynamics of composition and structure within different plant functional types (PFTs) in Masson pine forests affected by pine wilt disease (PWD). Based on plant traits, all species were assigned to four PFTs: evergreen woody species (PFT1), deciduous woody species (PFT2), herbs (PFT3), and ferns (PFT4). We analyzed the changes in these PFTs during the initial disturbance period and during post-disturbance regeneration. The species richness, abundance and basal area, as well as life-stage structure of the PFTs changed differently after pine wilt disease. The direction of plant community regeneration depended on the differential response of the PFTs. PFT1, which has a higher tolerance to disturbances, became dominant during the post-disturbance regeneration, and a young evergreen-broad-leaved forest developed quickly after PWD. Results also indicated that the impacts of PWD were dampened by the feedbacks between PFTs and the microclimate, in which PFT4 played an important ecological role. In conclusion, we propose management at the functional type level instead of at the population level as a promising approach in ecological restoration and biodiversity conservation.

  11. Fire effects on Gambel oak in southwestern ponderosa pine-oak forests

    Science.gov (United States)

    Scott R. Abella; Peter Z. Fulé

    2008-01-01

    Gambel oak (Quercus gambelii) is ecologically and aesthetically valuable in southwestern ponderosa pine (Pinus ponderosa) forests. Fire effects on Gambel oak are important because fire may be used in pine-oak forests to manage oak directly or to accomplish other management objectives. We used published literature to: (1) ascertain...

  12. Forest Management

    Science.gov (United States)

    S. Hummel; K. L. O' Hara

    2008-01-01

    Global variation in forests and in human cultures means that a single method for managing forests is not possible. However, forest management everywhere shares some common principles because it is rooted in physical and biological sciences like chemistry and genetics. Ecological forest management is an approach that combines an understanding of universal processes with...

  13. Snag characteristics and dynamics following natural and artificially induced mortality in a managed loblolly pine forest

    Energy Technology Data Exchange (ETDEWEB)

    Zarnoch, Stanley J.; Vukovich, Mark A.; Kilgo, John C.; Blake, John I.

    2013-09-01

    A 14-year study of snag characteristics was established in 41- to 44-year old loblolly pine (Pinus taeda L.) stands in southeastern USA. During the initial 5.5 years, no stand manipulation or unusually high-mortality events occurred. Afterwards, three treatments were applied consisting of trees thinned and removed, trees felled and not removed, and artificial creation of snags produced by girdling and herbicide injection. The thinned treatments were designed to maintain the same live canopy density as the snag-created treatment, disregarding snags that remained standing.We monitored snag height, diameter, density, volume, and bark percentage; the number of cavities was monitored in natural snags only. During the first 5.5 years, recruitment and loss rates were stable, resulting in a stable snag population. Large snags (≥25 cm diameter) were common, but subcanopy small snags (10 to <25 cm diameter) dominated numerically. Large natural snags survived (90% quantile) significantly longer (6.0–9.4 years) than smaller snags (4.4–6.9 years). Large artificial snags persisted the longest (11.8 years). Cavities in natural snags developed within 3 years following tree death. The mean number of cavities per snag was five times greater in large versus small snags and large snags were more likely to have multiple cavities, emphasizing the importance of mature pine stands for cavity-dependent wildlife species.

  14. Soil properties in 35 y old pine and hardwood plantations after conversion from mixed pine-hardwood forest

    Science.gov (United States)

    D. Andrew Scott; Michael G. Messina

    2009-01-01

    Past management practices have changed much of the native mixed pine-hardwood forests on upland alluvial terraces of the western Gulf Coastal Plain to either pine monocultures or hardwood (angiosperm) stands. Changes in dominant tree species can alter soil chemical, biological, and physical properties and processes, thereby changing soil attributes, and ultimately,...

  15. Diurnal roosts of male evening bats (Nycticeius humeralis) in diversely managed pine-hardwood forests

    Science.gov (United States)

    Roger W. Perry; Ronald E. Thill

    2008-01-01

    We examined attributes of 45 roost sites used by 17 adult male evening bats (Nycticeius humeralis) in a diverse forested landscape within the Ouachita Mountains, Arkansas. Bats roosted in a diverse array of substrates, including live or dead Pinus echinata $15 cm diam at breast height (29% of roosts) and small (,10 cm) understory or midstory...

  16. Effects of tree size and spatial distribution on growth of ponderosa pine forests under alternative management scenarios

    Science.gov (United States)

    C.W. Woodall; C.E. Fiedler; R.E. McRoberts

    2009-01-01

    Forest ecosystems may be actively managed toward heterogeneous stand structures to provide both economic (e.g., wood production and carbon credits) and environmental benefits (e.g., invasive pest resistance). In order to facilitate wider adoption of possibly more sustainable forest stand structures, defining growth expectations among alternative management scenarios is...

  17. A revised managers handbook for red pine in the North Central Region

    Science.gov (United States)

    Daniel W. Gilmore; Brian J. Palik

    2006-01-01

    This new version of the Red Pine Managers Guide gathers up-to-date information from many disciplines to address a wide range of red pine management issues. It provides guidance on managing red pine on extended rotations with a focus on landscape-scale objectives along with the traditional forest management tools focusing on production silviculture. The insect and...

  18. Vegetation diversity of the Scots pine stands in different forest sites in the Turawa Forest District

    OpenAIRE

    Stefańska-Krzaczek, Ewa; Pech, Paweł

    2014-01-01

    The utility of phytocenotic indices in the diagnosis and classification of forest sites might be limited because of vegetation degeneration in managed forests. However, even in secondary communities it may be possible to determine indicator species, although these may differ from typical and well known plant indicators. The aim of this work was to assess the vegetation diversity of Scots pine stands in representative forest site types along a moisture and fertility gradient. In total ...

  19. Limber pine forests on the leading edge of white pine blister rust distribution in Northern Colorado

    Science.gov (United States)

    Jennifer G. Klutsch; Betsy A. Goodrich; Anna W. Schoettle

    2011-01-01

    The combined threats of the current mountain pine beetle (Dendroctonus ponderosae, MPB) epidemic with the imminent invasion of white pine blister rust (caused by the non-native fungus Cronartium ribicola, WPBR) in limber pine (Pinus flexilis) forests in northern Colorado threatens the limber pine's regeneration cycle and ecosystem function. Over one million...

  20. Forest development and carbon dynamics after mountain pine beetle outbreaks

    Science.gov (United States)

    E. Matthew. Hansen

    2014-01-01

    Mountain pine beetles periodically infest pine forests in western North America, killing many or most overstory pine stems. The surviving secondary stand structure, along with recruited seedlings, will form the future canopy. Thus, even-aged pine stands become multiaged and multistoried. The species composition of affected stands will depend on the presence of nonpines...

  1. Lizard Microhabitat and Microclimate Relationships in Southeastern Pine-Hardwood Forests Managed With Prescribed Burning and Thinning

    Science.gov (United States)

    W.B. Sutton; Y. Wang; C.J. Schweitzer; D.A. Steen

    2014-01-01

    Understanding the impacts of disturbances in forest ecosystems is essential for long-term biodiversity conservation. Many studies have evaluated wildlife responses to various disturbances but most generally do not use changes in microclimate features or crohabitat structure to explain these responses. We examined lizard responses to two common forest management...

  2. Historic forests and endemic mountain pine beetle and dwarf mistletoe

    Science.gov (United States)

    Jose Negron

    2012-01-01

    Mountain pine beetle has always been a significant disturbance agent in ponderosa and lodgepole pine forests in Colorado. Most studies have examined the impacts to forest structure associated with epidemic populations of a single disturbance agent. In this paper we address the role of endemic populations of mountain pine and their interactions with dwarf mistletoe...

  3. Variability of sun-induced chlorophyll fluorescence according to stand age-related processes in a managed loblolly pine forest.

    Science.gov (United States)

    Colombo, Roberto; Celesti, Marco; Bianchi, Remo; Campbell, Petya K E; Cogliati, Sergio; Cook, Bruce D; Corp, Lawrence A; Damm, Alexander; Domec, Jean-Christophe; Guanter, Luis; Julitta, Tommaso; Middleton, Elizabeth M; Noormets, Asko; Panigada, Cinzia; Pinto, Francisco; Rascher, Uwe; Rossini, Micol; Schickling, Anke

    2018-02-20

    Leaf fluorescence can be used to track plant development and stress, and is considered the most direct measurement of photosynthetic activity available from remote sensing techniques. Red and far-red sun-induced chlorophyll fluorescence (SIF) maps were generated from high spatial resolution images collected with the HyPlant airborne spectrometer over even-aged loblolly pine plantations in North Carolina (United States). Canopy fluorescence yield (i.e., the fluorescence flux normalized by the light absorbed) in the red and far-red peaks was computed. This quantifies the fluorescence emission efficiencies that are more directly linked to canopy function compared to SIF radiances. Fluorescence fluxes and yields were investigated in relation to tree age to infer new insights on the potential of those measurements in better describing ecosystem processes. The results showed that red fluorescence yield varies with stand age. Young stands exhibited a nearly twofold higher red fluorescence yield than mature forest plantations, while the far-red fluorescence yield remained constant. We interpreted this finding in a context of photosynthetic stomatal limitation in aging loblolly pine stands. Current and future satellite missions provide global datasets of SIF at coarse spatial resolution, resulting in intrapixel mixture effects, which could be a confounding factor for fluorescence signal interpretation. To mitigate this effect, we propose a surrogate of the fluorescence yield, namely the Canopy Cover Fluorescence Index (CCFI) that accounts for the spatial variability in canopy structure by exploiting the vegetation fractional cover. It was found that spatial aggregation tended to mask the effective relationships, while the CCFI was still able to maintain this link. This study is a first attempt in interpreting the fluorescence variability in aging forest stands and it may open new perspectives in understanding long-term forest dynamics in response to future climatic

  4. Reverting urban exotic pine forests to Macchia and indigenous ...

    African Journals Online (AJOL)

    Reverting urban exotic pine forests to Macchia and indigenous forest ... Harvesting operations were planned to make the transition from high open ... Key words: Strip-cutting, Cable yarding, Participatory planning, Shelterwood, Urban forests ...

  5. Impacts of extreme weather events and climate variability on carbon exchanges in an age-sequence of managed temperate pine forests from 2003 to 201

    Science.gov (United States)

    Arain, M. A.

    2017-12-01

    North American temperate forests are a critical component of the global carbon cycle and regional water resources. A large portion of these forests has traditionally been managed for timber production and other uses. The response of these forests, which are in different stages of development, to extreme weather events such as drought and heat stresses, climate variability and management regimes is not fully understood. In this study, eddy covariance flux measurements in an age sequence (77-, 42-, and 14-years old as of 2016) of white pine (Pinus strobus L.) plantation forests in southern Ontario, Canada are examined to determine the impact of heat and drought stresses and climate variability over a 14 year period (2003 to 2016). The mean annual net ecosystem productivity (NEP) values were 195 ± 87, 512 ±161 and 103 ± 103 g C m-2 year-1 in 77-, 42- and 14-year-old forests respectively, over the study period. The youngest forest became a net carbon sink in the fifth year of its growth. Air temperature was a dominant control on carbon fluxes and heat stress reduced photosynthesis much more as compared to ecosystem respiration in the growing season. A large decrease in annual NEP was observed during years experiencing heat waves. Drought stress had the strongest impact on the middle age forest which had the largest carbon sink and water demand. In contrast, young forest was more sensitive to heat stress, than drought. Severity of heat and drought stress impacts was highly dependent on the timing of these events. Simultaneous occurrence of heat and drought stress in the early growing season such as in 2012 and 2016 had a drastic negative impact on carbon balance in these forests due to plant-soil-atmosphere feedbacks. Future research should consider the timing of the extreme events, the stage of forest development and effects of extreme events on component fluxes. This research helps to assess the vulnerability of managed forests and their ecological and hydrological

  6. Calculating wind profiles above a pine forest

    International Nuclear Information System (INIS)

    Murphy, C.E.; Dexter, A.H.

    1978-01-01

    A major part of the environmental transport work at the Savannah River Laboratory (SRL) involves the dispersion of airborne pollutants (aerosols and gases). A major part of the Savannah River Plant (SRP) site is covered with pine forests. Because forests are ''rough'' surfaces which increase turbulence and surface shear stress and, hence, alter the dispersion patterns, the nature of the wind profiles above the forests is being investigated. Two methods for determining the surface shear caused by the atmospheric wind field over a pine plantation were compared. Friction velocity [the square root of the ratio of shearing stress over the density of air; U/sub */ = (stress/density)1/2] calculated by eddy correlation was compared with friction velocity calculated from wind profiles. Data from the first five meters above the pine forest were compared. The data indicated that there was no significant difference in the mean friction velocity measured by each method. However, there were large differences in individual values calculated by the two methods for many of the measurement periods. An attempt was made to reconcile the differences in the measured values, but no satisfactory method was found

  7. Longleaf pine forests and woodlands: old growth under fire!

    Science.gov (United States)

    Joan L. Walker

    1999-01-01

    The author discusses a once widespread forest type of the Southeast – longleaf pine dominated forests and woodlands. This system depends on fire – more or less frequent, and often of low intensity. Because human-mediated landscape fragmentation has drastically changed the behavior of fire on longleaf pine dominated landscapes, these forests and woodlands will never be...

  8. Long-term simulations of forest management impacts on carbon storage from loblolly pine plantations in the Southern U.S.

    Science.gov (United States)

    Huei-Jin Wang; Philip J. Radtke; Stephen P. Prisley

    2012-01-01

    Accounting for forest components in carbon accounting systems may be insufficient when substantial amounts of sequestered carbon are harvested and converted to wood products in use and in landfill. The potential of forest offset – in-woods aboveground carbon storage, carbon stored in harvested wood, and energy offset by burning harvested wood – from loblolly pine...

  9. An interdisciplinary, outcome-based approach to astmospheric CO2 mitigation with planted southern pine forests

    Science.gov (United States)

    Martin, T.; Fox, T.; Peter, G.; Monroe, M.

    2012-12-01

    The Pine Integrated Network: Education, Mitigation and Adaptation Project ("PINEMAP") was funded by National Institute of Food and Agriculture to produce outcomes of enhanced climate change mitigation and adaptation in planted southern pine ecosystems. The PINEMAP project leverages a strong group of existing networks to produce synergy and cooperation on applied forestry research in the region. Over the last 50 years, cooperative research on planted southern pine management among southeastern U.S. universities, government agencies, and corporate forest landowners has developed and facilitated the widespread implementation of improved genetic and silvicultural technology. The impact of these regional research cooperatives is difficult to overstate, with current members managing 55% of the privately owned planted pine forestland, and producing 95% of the pine seedlings planted each year. The PINEMAP team includes the eight major forestry cooperative research programs, scientists from eleven land grant institutions, the US Forest Service, and climate modeling and adaptation specialists associated with the multi-state SE Climate Consortium and state climate offices. Our goal is to create and disseminate the knowledge that enables landowners to: harness planted pine forest productivity to mitigate atmospheric CO2; more efficiently use nitrogen and other fertilizer inputs; and adapt their forest management to increase resilience in the face of changing climate. We integrate our team's infrastructure and expertise to: 1) develop breeding, genetic deployment and innovative management systems to increase C sequestration and resilience to changing climate of planted southern pine forests ; 2) understand interactive effects of policy, biology, and climate change on sustainable management; 3) transfer new management and genetic technologies to private industrial and non-industrial landowners; and 4) educate a diverse cross-section of the public about the relevance of forests

  10. Fire in longleaf pine stand management: an economic analysis

    Science.gov (United States)

    Rodney L. Busby; Donald G. Hodges

    1999-01-01

    A simulation analysis of the economics of using prescribed fire as a forest management tool in the management of longleaf pine (Pinus palustris Mill.) plantations was conducted. A management regime using frequent prescribed fire was compared to management regimes involving fertilization and chemical release, chemical control, and mechanical control. Determining the...

  11. Strategies, tools, and challenges for sustaining and restoring high elevation five-needle white pine forests in western North America

    Science.gov (United States)

    Robert E. Keane; Anna W. Schoettle

    2011-01-01

    Many ecologically important, five-needle white pine forests that historically dominated the high elevation landscapes of western North America are now being heavily impacted by mountain pine beetle (Dendroctonus spp.) outbreaks, the exotic disease white pine blister rust (WPBR), and altered high elevation fire regimes. Management intervention using specially designed...

  12. Simulating historical disturbance regimes and stand structures in old-forest ponderosa pine/Douglas-fir forests

    Science.gov (United States)

    Mike Hillis; Vick Applegate; Steve Slaughter; Michael G. Harrington; Helen Smith

    2001-01-01

    Forest Service land managers, with the collaborative assistance from research, applied a disturbance based restoration strategy to rehabilitate a greatly-altered, high risk Northern Rocky Mountain old-forest ponderosa pine-Douglas-fir stand. Age-class structure and fire history for the site have been documented in two research papers (Arno and others 1995, 1997)....

  13. Carbon sequestration in the New Jersey Pine Barrens under different scenarios of fire management

    Science.gov (United States)

    Robert M. Scheller; Steve Van Tuyl; Kenneth L. Clark; John Hom; Inga. La Puma

    2011-01-01

    The New Jersey Pine Barrens (NJPB) is the largest forested area along the northeastern coast of the United States. The NJPB are dominated by pine (Pinus spp.) and oak (Quercus spp.) stands that are fragmented and subject to frequent disturbance and forest management. Over long time periods (>50 years), the balance between oak...

  14. Energy balance of a pine forest

    International Nuclear Information System (INIS)

    Murphy, C.E.; Dexter, A.H.

    1978-01-01

    Studies of the energy balance of a pine forest were initiated at the Savannah River Laboratory (SRL) to gain information on the exchange of gaseous materials between the atmosphere and the forest ecosystem. This information allows better estimates of the deposition velocities of gaseous pollutants necessary for plume calculations and ecosystem modeling studies. Studies to date show that the exchange of water vapor is influenced most by diffusion resistances associated with the vegetative canopy. Vegetative and atmospheric diffusion resistance vary diurnally, with high values occurring at night and low values observed during the day. Thus, water vapor exchange is greatest during the daylight hours. Future plans include measurements of exchange of other gases such as carbon dioxide and sulfur dioxide

  15. Ecosystem carbon density and allocation across a chronosequence of longleaf pine forests

    Science.gov (United States)

    Lisa J. Samuelson; Thomas A. Stokes; John R. Butnor; Kurt H. Johnsen; Carlos A. Gonzalez-Benecke; Timothy A. Martin; Wendell P. Cropper; Pete H. Anderson; Michael R. Ramirez; John C. Lewis

    2017-01-01

    Forests can partially offset greenhouse gas emissions and contribute to climate change mitigation, mainly through increases in live biomass. We quantified carbon (C) density in 20 managed longleaf pine (Pinus palustris Mill.) forests ranging in age from 5...

  16. Tree canopy types constrain plant distributions in ponderosa pine-Gambel oak forests, northern Arizona

    Science.gov (United States)

    Scott R. Abella

    2009-01-01

    Trees in many forests affect the soils and plants below their canopies. In current high-density southwestern ponderosa pine (Pinus ponderosa) forests, managers have opportunities to enhance multiple ecosystem values by manipulating tree density, distribution, and canopy cover through tree thinning. I performed a study in northern Arizona ponderosa...

  17. Radiocesium in a Danish pine forest ecosystem

    International Nuclear Information System (INIS)

    Strandberg, Morten

    1994-01-01

    During the autumn of 1991, a Scots pine forest, Tisvilde Hegn, was investigated with respect to the distribution of radiocesium on compartments in the forest ecosystem. The sandy acidic soil is poor, with a circa 5-cm thick layer of organic soil, and clay content is very low, between 0 and 2%. Cesium from Chernobyl is still totally in the upper 5 cm, while almost half of the fallout cesium has penetrated to depths lower than 5 cm. More than 95% of the total amount of 137 Cs is in the soil compartment. The rest is mainly in the trees (3.4%) and vegetation (0.4%), moss and lichen included. The concentrations of radiocesium are highest in the endshoots of the pine trees, and lowest in the hardwood. There are indications that the Chernobyl cesium is mainly distributed in the parts of the trees that have been formed since 1986. Observed Ratios (OR) were used to characterize the ability of the different components of the forest ecosystem to accumulate radiocesium. OR is defined as the ratio between the content of 137 Cs kg -1 (dry wt.) and the deposition per meter square. In vascular plants, mosses and lichens, OR varied between 0.01 and 0.1 m 2 /kg. In fungi, it varied between 0.05 and 4.5 m 2 /kg, though generally it was between 0.2 and 1 m 2 /kg. OR ( 137 Cs kg -1 /dry wt. of meat x 137 Cs m -2 ) levels in three roe deer samples varied between 0.016 and 0.21 kg -1 /dry wt. With an annual harvest of around 70,000 animals, this might be the most important pathway of this radionuclide to man from semi-natural ecosystems in Denmark

  18. Effect of Intensive Forest Management Practices on Wood Properties and Pulp Yield of Young, Fast Growing Southern Pine

    Science.gov (United States)

    Timothy D. Faust; Alexander Clark; Charles E. Courchene; Barry D. Shiver; Monique L. Belli

    1999-01-01

    The demand for southern pine fiber is increasing. However, the land resources to produce wood fiber are decreasing. The wood industry is now using intensive cultural treatments, such as competition control, fertilization, and short rotations, to increase fiber production. The impact of these intensive environmental treatments on increased growth is positive and...

  19. Comparison of Monterey pine stress in urban and natural forests

    Science.gov (United States)

    David J. Nowak; Joe R. McBride

    1991-01-01

    Monterey pine street trees within Carmel, California and its immediate vicinity, as well as forest-grown Monterey pine within adjacent natural stands, were sampled with regard to visual stress characteristics, and various environmental and biological variables. Two stress indices were computed, one hypothesized before data collection was based on relative foliage...

  20. Interacting genes in the pine-fusiform rust forest pathosystem

    Science.gov (United States)

    H.V. Amerson; T.L. Kubisiak; S.A. Garcia; G.C. Kuhlman; C.D. Nelson; S.E. McKeand; T.J. Mullin; B. Li

    2005-01-01

    Fusiform rust (FR) disease of pines, caused by Cronartium quercuum f.sp. fusiforme (Cqf), is the most destructive disease in pine plantations of the southern U. S. The NCSU fusiform rust program, in conjunction with the USDA-Forest Service in Saucier, MS and Athens, GA, has research underway to elucidate some of the genetic interactions in this...

  1. Blister rust control in the management of western white pine

    Science.gov (United States)

    Kenneth P. Davis; Virgil D. Moss

    1940-01-01

    The forest industry of the western white pine region depends on the production of white pine as a major species on about 2,670,000 acres of commercial forest land. Continued production of this species and maintenance of the forest industry at anything approaching its present level is impossible unless the white pine blister rust is controlled. Existing merchantable...

  2. Vegetation composition and structure of southern coastal plain pine forests: An ecological comparison

    Science.gov (United States)

    Hedman, C.W.; Grace, S.L.; King, S.E.

    2000-01-01

    Longleaf pine (Pinus palustris) ecosystems are characterized by a diverse community of native groundcover species. Critics of plantation forestry claim that loblolly (Pinus taeda) and slash pine (Pinus elliottii) forests are devoid of native groundcover due to associated management practices. As a result of these practices, some believe that ecosystem functions characteristic of longleaf pine are lost under loblolly and slash pine plantation management. Our objective was to quantify and compare vegetation composition and structure of longleaf, loblolly, and slash pine forests of differing ages, management strategies, and land-use histories. Information from this study will further our understanding and lead to inferences about functional differences among pine cover types. Vegetation and environmental data were collected in 49 overstory plots across Southlands Experiment Forest in Bainbridge, GA. Nested plots, i.e. midstory, understory, and herbaceous, were replicated four times within each overstory plot. Over 400 species were identified. Herbaceous species richness was variable for all three pine cover types. Herbaceous richness for longleaf, slash, and loblolly pine averaged 15, 13, and 12 species per m2, respectively. Longleaf pine plots had significantly more (p < 0.029) herbaceous species and greater herbaceous cover (p < 0.001) than loblolly or slash pine plots. Longleaf and slash pine plots were otherwise similar in species richness and stand structure, both having lower overstory density, midstory density, and midstory cover than loblolly pine plots. Multivariate analyses provided additional perspectives on vegetation patterns. Ordination and classification procedures consistently placed herbaceous plots into two groups which we refer to as longleaf pine benchmark (34 plots) and non-benchmark (15 plots). Benchmark plots typically contained numerous herbaceous species characteristic of relic longleaf pine/wiregrass communities found in the area. Conversely

  3. Protecting and restoring longleaf pine forests on the Kisatchie National Forest in Louisiana

    Science.gov (United States)

    James D. Haywood; Michael Elliot-Smith; Finis Harris; Alton Martin

    2000-01-01

    Longleaf pine (Pinus palustris Mill.) forests once constituted a major ecosystem in the Southern United States stretching from southeastern Virginia south to central Florida and west into East Texas. These forests covered a wide range of site conditions, from wet pine flatwoods to dry mountain slopes. Intensive exploitation reduced the extent of old-...

  4. Capturing forest dependency in the central Himalayan region: Variations between Oak (Quercus spp.) and Pine (Pinus spp.) dominated forest landscapes.

    Science.gov (United States)

    Chakraborty, Anusheema; Joshi, Pawan Kumar; Sachdeva, Kamna

    2018-05-01

    Our study explores the nexus between forests and local communities through participatory assessments and household surveys in the central Himalayan region. Forest dependency was compared among villages surrounded by oak-dominated forests (n = 8) and pine-dominated forests (n = 9). Both quantitative and qualitative analyses indicate variations in the degree of dependency based on proximity to nearest forest type. Households near oak-dominated forests were more dependent on forests (83.8%) compared to households near pine-dominated forests (69.1%). Forest dependency is mainly subsistence-oriented for meeting basic household requirements. Livestock population, cultivated land per household, and non-usage of alternative fuels are the major explanatory drivers of forest dependency. Our findings can help decision and policy makers to establish nested governance mechanisms encouraging prioritized site-specific conservation options among forest-adjacent households. Additionally, income diversification with respect to alternate livelihood sources, institutional reforms, and infrastructure facilities can reduce forest dependency, thereby, allowing sustainable forest management.

  5. Establishing Pine Monocultures and Mixed Pine-Hardwood Stands on Reclaimed Surface Mined Land in Eastern Kentucky: Implications for Forest Resilience in a Changing Climate

    Directory of Open Access Journals (Sweden)

    Geoffrey Bell

    2017-10-01

    Full Text Available Surface mining and mine reclamation practices have caused significant forest loss and forest fragmentation in Appalachia. Shortleaf pine (Pinus echinata is threatened by a variety of stresses, including diseases, pests, poor management, altered fire regimes, and climate change, and the species is the subject of a widescale restoration effort. Surface mines may present opportunity for shortleaf pine restoration; however, the survival and growth of shortleaf pine on these harsh sites has not been critically evaluated. This paper presents first-year survival and growth of native shortleaf pine planted on a reclaimed surface mine, compared to non-native loblolly pine (Pinus taeda, which has been highly successful in previous mined land reclamation plantings. Pine monoculture plots are also compared to pine-hardwood polyculture plots to evaluate effects of planting mix on tree growth and survival, as well as soil health. Initial survival of shortleaf pine is low (42%, but height growth is similar to that of loblolly pine. No differences in survival or growth were observed between monoculture and polyculture treatments. Additional surveys in coming years will address longer-term growth and survival patterns of these species, as well as changes to relevant soil health endpoints, such as soil carbon.

  6. Native ectomycorrhizal fungi of limber and whitebark pine: Necessary for forest sustainability?

    Science.gov (United States)

    Cathy L. Cripps; Robert K. Antibus

    2011-01-01

    Ectomycorrhizal fungi are an important component of northern coniferous forests, including those of Pinus flexilis (limber pine) and P. albicaulis (whitebark pine) which are being decimated by white pine blister rust and mountain pine beetles. Ectomycorrhizal fungi are known to promote seedling establishment, tree health, and may play a role in forest sustainability....

  7. Changes in forest structure since 1860 in ponderosa pine dominated forests in the Colorado and Wyoming Front Range, USA

    Science.gov (United States)

    Mike A. Battaglia; Benjamin Gannon; Peter M. Brown; Paula J. Fornwalt; Antony S. Cheng; Laurie S. Huckaby

    2018-01-01

    Management practices since the late 19th century, including fire exclusion and harvesting, have altered the structure of ponderosa pine (Pinus ponderosa Douglas ex P. Lawson & C. Lawson) dominated forests across the western United States. These structural changes have the potential to contribute to uncharacteristic wildfire behavior and effects. Locally-...

  8. Conversion of natural forest to managed forest plantations decreases tree resistance to prolonged droughts

    Science.gov (United States)

    Jean-Christophe Domec; John S. King; Eric Ward; A. Christopher Oishi; Sari Palmroth; Andrew Radecki; Dave M. Bell; Guofang Miao; Michael Gavazzi; Daniel M. Johnson; Steve G. McNulty; Ge Sun; Asko. Noormets

    2015-01-01

    Throughout the southern US, past forest management practices have replaced large areas of native forests with loblolly pine plantations and have resulted in changes in forest response to extreme weather conditions. However, uncertainty remains about the response of planted versus natural species to drought across the geographical range of these forests. Taking...

  9. Silvicultural systems and cutting methods for ponderosa pine forests in the Front Range of the central Rocky Mountains

    Science.gov (United States)

    Robert R. Alexander

    1986-01-01

    Guidelines are provided to help forest managers and silviculturists develop even- and/or uneven-aged cutting practices needed to convert old-growth and mixed ponderosa pine forests in the Front Range into managed stands for a variety of resource needs. Guidelines consider stand conditions, and insect and disease susceptibility. Cutting practices are designed to...

  10. Restoration of the Native Plant Communities in Longleaf Pine Landscapes on the Kisatchie National Forest, Louisiana

    Science.gov (United States)

    James D. Haywood; Alton Martin; Finis L. Harris; Michael L. Elliott-Smith

    1998-01-01

    In January 1993, the Kisatchie National Forest and Southern Research Station began monitoring the effects of various management practices on overstory and midstory trees, shrubs, and understory woody and herbaceous vegetation in several longleaf pine (Pinus palustris Mill.) stands. The monitoring of these stands is part of several Ecosystem...

  11. Fire frequency effects on fuel loadings in pine-oak forests of the Madrean Province

    Science.gov (United States)

    Francisco J. Escobedo; Peter F. Ffolliott; Gerald J. Gottfried; Florentino Garza

    2001-01-01

    Loadings of downed woody fuels in pine-oak forests of the Madrean Province are heavier on sites in southeastern Arizona with low fire frequencies and lower on sites in northeastern Sonora, Mexico, with high fire frequencies. Low fire frequencies in southeastern Arizona are attributed largely to past land uses and the fire suppression policies of land management...

  12. 3-PG simulations of young ponderosa pine plantations under varied management intensity: why do they grow so differently?

    Science.gov (United States)

    Liang Wei; Marshall John; Jianwei Zhang; Hang Zhou; Robert Powers

    2014-01-01

    Models can be powerful tools for estimating forest productivity and guiding forest management, but their credibility and complexity are often an issue for forest managers. We parameterized a process-based forest growth model, 3-PG (Physiological Principles Predicting Growth), to simulate growth of ponderosa pine (Pinus ponderosa) plantations in...

  13. Species Composition, Tree Quality and Wood Properties of Southern Pine Stands Under Ecosystemm Management on National Forests in the Peidmont and Coastal Plain

    Science.gov (United States)

    Alexander Clark; James W. McMinn

    1999-01-01

    National Forests in the United States are under sustainable ecosystem management to conserve biodiversity, achieve sustainable conditions and improve the balance among forest values. This paper reports on a study established to identify the implications of ecosystem management strategies on natural stands in the Piedmont and Coastal Plain. The impact of partial...

  14. Forest rodents provide directed dispersal of Jeffrey pine seeds

    Science.gov (United States)

    Briggs, J.S.; Wall, S.B.V.; Jenkins, S.H.

    2009-01-01

    Some species of animals provide directed dispersal of plant seeds by transporting them nonrandomly to microsites where their chances of producing healthy seedlings are enhanced. We investigated whether this mutualistic interaction occurs between granivorous rodents and Jeffrey pine (Pinus jeffreyi) in the eastern Sierra Nevada by comparing the effectiveness of random abiotic seed dispersal with the dispersal performed by four species of rodents: deer mice (Peromyscus maniculatus), yellow-pine and long-eared chipmunks (Tamias amoenus and T. quadrimaculatus), and golden-mantled ground squirrels (Spermophilus lateralis). We conducted two caching studies using radio-labeled seeds, the first with individual animals in field enclosures and the second with a community of rodents in open forest. We used artificial caches to compare the fates of seeds placed at the range of microsites and depths used by animals with the fates of seeds dispersed abiotically. Finally, we examined the distribution and survival of naturally establishing seedlings over an eight-year period.Several lines of evidence suggested that this community of rodents provided directed dispersal. Animals preferred to cache seeds in microsites that were favorable for emergence or survival of seedlings and avoided caching in microsites in which seedlings fared worst. Seeds buried at depths typical of animal caches (5–25 mm) produced at least five times more seedlings than did seeds on the forest floor. The four species of rodents differed in the quality of dispersal they provided. Small, shallow caches made by deer mice most resembled seeds dispersed by abiotic processes, whereas many of the large caches made by ground squirrels were buried too deeply for successful emergence of seedlings. Chipmunks made the greatest number of caches within the range of depths and microsites favorable for establishment of pine seedlings. Directed dispersal is an important element of the population dynamics of Jeffrey pine, a

  15. Hydrologic Effects of Global Climate Change on a Large Drained Pine Forest

    Science.gov (United States)

    Devendra M. Amatya; Ge Sun; R. W. Skaggs; G. M Chescheir; J. E. Nettles

    2006-01-01

    A simulation study using a watershed scale forest hydrology model (DRAINWAT) was conducted to evaluate potential effects of climate change on the hydrology of a 3,000 ha managed pine forest in coastal North Carolina. The model was first validated with a five-year (1996-2000) data set fro111 the study site and then run with 50-years (1951-00) of historic weather data...

  16. Mountain pine beetles and emerging issues in the management of woodland caribou in Westcentral British Columbia

    Directory of Open Access Journals (Sweden)

    Deborah Cichowski

    2005-05-01

    Full Text Available The Tweedsmuir—Entiako caribou (Rangifer tarandus caribou herd summers in mountainous terrain in the North Tweedsmuir Park area and winters mainly in low elevation forests in the Entiako area of Westcentral British Columbia. During winter, caribou select mature lodgepole pine (Pinus contorta forests on poor sites and forage primarily by cratering through snow to obtain terrestrial lichens. These forests are subject to frequent large-scale natural disturbance by fire and forest insects. Fire suppression has been effective in reducing large-scale fires in the Entiako area for the last 40—50 years, resulting in a landscape consisting primarily of older lodgepole pine forests, which are susceptible to mountain pine beetle (Dendroctonus ponderosae attack. In 1994, mountain pine beetles were detected in northern Tweedsmuir Park and adjacent managed forests. To date, mountain pine beetles have attacked several hundred thousand hectares of caribou summer and winter range in the vicinity of Tweedsmuir Park, and Entiako Park and Protected Area. Because an attack of this scale is unprecedented on woodland caribou ranges, there is no information available on the effects of mountain pine beetles on caribou movements, habitat use or terrestrial forage lichen abundance. Implications of the mountain pine beetle epidemic to the Tweedsmuir—Entiako woodland caribou population include effects on terrestrial lichen abundance, effects on caribou movement (reduced snow interception, blowdown, and increased forest harvesting outside protected areas for mountain pine beetle salvage. In 2001 we initiated a study to investigate the effects of mountain pine beetles and forest harvesting on terrestrial caribou forage lichens. Preliminary results suggest that the abundance of Cladina spp. has decreased with a corresponding increase in kinnikinnick (Arctostaphylos uva-ursi and other herbaceous plants. Additional studies are required to determine caribou movement and

  17. Probability of infestation and extent of mortality models for mountain pine beetle in lodgepole pine forests in Colorado

    Science.gov (United States)

    Jose F. Negron; Jennifer G. Klutsch

    2017-01-01

    The mountain pine beetle, Dendroctonus ponderosae Hopkins, is a significant agent of tree mortality in lodgepole pine (Pinus contorta Dougl. ex Loud.) forests throughout western North America. A large outbreak of mountain pine beetle caused extensive tree mortality in north-central Colorado beginning in the late 1990s. We use data from a network of plots established in...

  18. Forest stand dynamics of shortleaf pine in the Ozarks

    Science.gov (United States)

    David R. Larsen

    2007-01-01

    Much has been written on the management of shortleaf pine in the Ozarks (Brinkman et al. 1965, Brinkman 1967, Brinkman and Smith 1968, Seidel and Rogers 1965, Seidel and Rogers 1966). In large portions of the Ozarks, shortleaf pine does not grow in pure stands but rather in mixes with various oak species. These mixes present unique challenges in finding the set of...

  19. Short-wave albedo of a pine forest

    Energy Technology Data Exchange (ETDEWEB)

    Kessler, A.

    1985-06-01

    In this paper nine years of continuous records of the short-wave albedo above a Scotch pine forest in middle Europe were analysed. Special emphasis was given to the dependencies of the albedo on its diurnal variation, its annual variation, the solar altitude, the structure of the stand, the cloud cover, the soil moisture and the spectral reflectance. A long-termed trend of the albedo could not be found, e.g. caused by the stand growth. Finally the annual variation of the albedo of the Scotch pine forest was compared with measurements above different surface types in middle Europe.

  20. A dendrochronological analysis of a disturbance-succession model for oak-pine forests of the Appalachian Mountains, USA

    Science.gov (United States)

    Patrick H. Brose; Thomas A. Waldrop

    2010-01-01

    Disturbance-succession models describe the relationship between the disturbance regime and the dominant tree species of a forest type. Such models are useful tools in ecosystem management and restoration, provided they are accurate. We tested a disturbance-succession model for the oak-pine (Quercus spp. - Pinus spp.) forests of the...

  1. Nitrogen cycling following mountain pine beetle disturbance in lodgepole pine forests of Greater Yellowstone

    Science.gov (United States)

    Jacob M. Griffin; Monica G. Turner; Martin Simard

    2011-01-01

    Widespread bark beetle outbreaks are currently affecting multiple conifer forest types throughout western North America, yet many ecosystem-level consequences of this disturbance are poorly understood. We quantified the effect of mountain pine beetle (Dendroctonus ponderosae) outbreak on nitrogen (N) cycling through litter, soil, and vegetation in...

  2. How resilient are southwestern ponderosa pine forests after crown fires?

    OpenAIRE

    Savage, M; Mast, J N

    2005-01-01

    The exclusion of low-severity surface fire from ponderosa pine (Pinus ponderosa P. & C. Lawson) forests of the Southwest has changed ecosystem structure and function such that severe crown fires are increasingly causing extensive stand mortality. This altered fire regime has resulted from the intersection of natural drought cycles with human activities that have suppressed natural fires for over a century. What is the trajectory of forest recovery after such fires? This study explores the reg...

  3. Forest litter stocks in Korean pine-broad-leaved forests of the southern Sikhote Alin

    Directory of Open Access Journals (Sweden)

    A. V. Ivanov

    2015-10-01

    Full Text Available The article presents the data on the forest litter of the Korean pine-broad-leaved forests of the South of Primorsky krai. The focus of the research is plantations dominated by Korean pine; areas of the main tree species with ages of 50, 80, 130 and 200 years were selected. The dynamics of the forest litter stock in the pine and broadleaved forests of different ages according to the measurement results for the season in 2014 is stated. In the studied plantation, the forest litter stock varies between 9.7–20.3 t ha-1. The greatest value of the forest litter stock is recorded in old-growth cedar forest (200 years. Relatively high power and the stock of litter are typical for young Korean pine forest that can explain the lower speed of the litter properties change against the dynamics of taxation indicators of the forest stand. The difference between the amount of the litter in the 200-year-old and remaining pine trees are statistically significant at p = 0.05. The dependence of the litter power on the age is not revealed. The coefficient of the forest litter decomposition ranges from 2.55–10.60 that characterizes the high speed of its rotting. The highest coefficient of the litter decomposition has an old-growing pine forest. The schedule of seasonal humidity fluctuations of the forest litter on the chosen plot is made; with increasing cedar forest age, the volumetric moisture content of the forest litter increases; volumetric moisture content on the plots remain relatively unchanged during the season. The area of the Korean pine forests of Primorsky State Academy of Agriculture is 6835 ha. The amount of carbon stock in the forest litter is 38.7 thousand tons C. in this area, while the system of regional assessment of the forest carbon balance estimates this index as 24.3 tons С. The data obtained can be used to adjust the coefficients of regional assessment of the forest carbon balance for cedar forests of Primorsky krai.

  4. Rapid Increases in forest understory diversity and productivity following a mountain pine beetle (Dendroctonus ponderosae outbreak in pine forests.

    Directory of Open Access Journals (Sweden)

    Gregory J Pec

    Full Text Available The current unprecedented outbreak of mountain pine beetle (Dendroctonus ponderosae in lodgepole pine (Pinus contorta forests of western Canada has resulted in a landscape consisting of a mosaic of forest stands at different stages of mortality. Within forest stands, understory communities are the reservoir of the majority of plant species diversity and influence the composition of future forests in response to disturbance. Although changes to stand composition following beetle outbreaks are well documented, information on immediate responses of forest understory plant communities is limited. The objective of this study was to examine the effects of D. ponderosae-induced tree mortality on initial changes in diversity and productivity of understory plant communities. We established a total of 110 1-m2 plots across eleven mature lodgepole pine forests to measure changes in understory diversity and productivity as a function of tree mortality and below ground resource availability across multiple years. Overall, understory community diversity and productivity increased across the gradient of increased tree mortality. Richness of herbaceous perennials increased with tree mortality as well as soil moisture and nutrient levels. In contrast, the diversity of woody perennials did not change across the gradient of tree mortality. Understory vegetation, namely herbaceous perennials, showed an immediate response to improved growing conditions caused by increases in tree mortality. How this increased pulse in understory richness and productivity affects future forest trajectories in a novel system is unknown.

  5. Rapid Increases in forest understory diversity and productivity following a mountain pine beetle (Dendroctonus ponderosae) outbreak in pine forests.

    Science.gov (United States)

    Pec, Gregory J; Karst, Justine; Sywenky, Alexandra N; Cigan, Paul W; Erbilgin, Nadir; Simard, Suzanne W; Cahill, James F

    2015-01-01

    The current unprecedented outbreak of mountain pine beetle (Dendroctonus ponderosae) in lodgepole pine (Pinus contorta) forests of western Canada has resulted in a landscape consisting of a mosaic of forest stands at different stages of mortality. Within forest stands, understory communities are the reservoir of the majority of plant species diversity and influence the composition of future forests in response to disturbance. Although changes to stand composition following beetle outbreaks are well documented, information on immediate responses of forest understory plant communities is limited. The objective of this study was to examine the effects of D. ponderosae-induced tree mortality on initial changes in diversity and productivity of understory plant communities. We established a total of 110 1-m2 plots across eleven mature lodgepole pine forests to measure changes in understory diversity and productivity as a function of tree mortality and below ground resource availability across multiple years. Overall, understory community diversity and productivity increased across the gradient of increased tree mortality. Richness of herbaceous perennials increased with tree mortality as well as soil moisture and nutrient levels. In contrast, the diversity of woody perennials did not change across the gradient of tree mortality. Understory vegetation, namely herbaceous perennials, showed an immediate response to improved growing conditions caused by increases in tree mortality. How this increased pulse in understory richness and productivity affects future forest trajectories in a novel system is unknown.

  6. Understanding old-growth red and white pine dominated forests in Ontario. Forest fragmentation and biodiversity project technical report No. 2

    Energy Technology Data Exchange (ETDEWEB)

    Carleton, T.J.; Gordon, A.M.

    1992-01-01

    In summer 1991, a variety of forest stands dominated by old specimens of white pine and red pine were sampled across a representative portion of the species' range in northcentral Ontario. Plots were established in 40 stands of those surveyed to identify the salient structural components of old-growth, to survey the floristic composition (vascular plants and autotrophic non- vascular plants), to survey site characteristics, and to estimate the links in understorey alpha diversity with site conditions and stand structure. Long-term objectives include a definition of old- growth pine forest, recognition criteria, and prospective management options. Forest stand structure was enumerated through mapping, mensurational, and age estimation techniques. Forest vegetation, including over and understorey species, was non- destructively sampled and a range of data on stand and soil-site variables was also collected in conjunction with information on stand variables peculiar to old growth forests.

  7. Has Virginia pine declined? The use of forest health monitoring and other information in the determination

    Science.gov (United States)

    William G. Burkman; William A. Bechtold

    2000-01-01

    This paper examines the current status of Virginia pine, focusing on Forest Health Monitoring (FHM) results and using Forest Inventory and Analysis (FIA) information to determine if Virginia pine is showing a decline. An examination of crown condition data from live trees in the FHM program from 1991 through 1997 showed that Virginia pine had significantly poorer crown...

  8. Resiliency of an Interior Ponderosa Pine Forest to Bark Beetle Infestations Following Fuel-Reduction and Forest-Restoration Treatments

    Directory of Open Access Journals (Sweden)

    Christopher J. Fettig

    2014-01-01

    Full Text Available Mechanical thinning and the application of prescribed fire are commonly used to restore fire-adapted forest ecosystems in the Western United States. During a 10-year period, we monitored the effects of fuel-reduction and forest-restoration treatments on levels of tree mortality in an interior ponderosa pine, Pinus ponderosa Dougl. ex Laws., forest in California. Twelve experimental plots, ranging in size from 77–144 ha, were established to create two distinct forest structural types: mid-seral stage (low structural diversity; LoD and late-seral stage (high structural diversity; HiD. Following harvesting, half of each plot was treated with prescribed fire (B. A total of 16,473 trees (8.7% of all trees died during the 10-year period. Mortality was primarily attributed to bark beetles (Coleoptera: Curculionidae, Scolytinae (10,655 trees, specifically fir engraver, Scolytus ventralis LeConte, mountain pine beetle, Dendroctonus ponderosae Hopkins, western pine beetle, D. brevicomis LeConte, pine engraver, Ips pini (Say, and, to a much lesser extent, Jeffrey pine beetle, D. jeffreyi Hopkins. Trees of all ages and size classes were killed, but mortality was concentrated in the smaller-diameter classes (19–29.2 and 29.3–39.3 cm at 1.37 m in height. Most mortality occurred three to five years following prescribed burns. Higher levels of bark beetle-caused tree mortality were observed on LoD + B (8.7% than LoD (4.2%. The application of these and other results to the   management of interior P. ponderosa forests are discussed, with an emphasis on the maintenance of large trees.

  9. Managing Sierra Nevada forests

    Science.gov (United States)

    Malcolm North

    2012-01-01

    There has been widespread interest in applying new forest practices based on concepts presented in U.S. Forest Service General Technical Report PSW-GTR-220, "An Ecosystem Management Strategy for Sierran Mixed-Conifer Forests." This collection of papers (PSW-GTR-237) summarizes the state of the science in some topics relevant to this forest management approach...

  10. Restoring forest structure and process stabilizes forest carbon in wildfire-prone southwestern ponderosa pine forests.

    Science.gov (United States)

    Hurteau, Matthew D; Liang, Shuang; Martin, Katherine L; North, Malcolm P; Koch, George W; Hungate, Bruce A

    2016-03-01

    Changing climate and a legacy of fire-exclusion have increased the probability of high-severity wildfire, leading to an increased risk of forest carbon loss in ponderosa pine forests in the southwestern USA. Efforts to reduce high-severity fire risk through forest thinning and prescribed burning require both the removal and emission of carbon from these forests, and any potential carbon benefits from treatment may depend on the occurrence of wildfire. We sought to determine how forest treatments alter the effects of stochastic wildfire events on the forest carbon balance. We modeled three treatments (control, thin-only, and thin and burn) with and without the occurrence of wildfire. We evaluated how two different probabilities of wildfire occurrence, 1% and 2% per year, might alter the carbon balance of treatments. In the absence of wildfire, we found that thinning and burning treatments initially reduced total ecosystem carbon (TEC) and increased net ecosystem carbon balance (NECB). In the presence of wildfire, the thin and burn treatment TEC surpassed that of the control in year 40 at 2%/yr wildfire probability, and in year 51 at 1%/yr wildfire probability. NECB in the presence of wildfire showed a similar response to the no-wildfire scenarios: both thin-only and thin and burn treatments increased the C sink. Treatments increased TEC by reducing both mean wildfire severity and its variability. While the carbon balance of treatments may differ in more productive forest types, the carbon balance benefits from restoring forest structure and fire in southwestern ponderosa pine forests are clear.

  11. Spatial analysis of longleaf pine stand dynamics after 60 years of management

    Science.gov (United States)

    John C. Gilbert; John S. Kush; Rebecca J. Barlow

    2012-01-01

    There are still many questions and misconceptions about the stand dynamics of naturally-regenerated longleaf pine (Pinus palustris Mill.). Since 1948, the “Farm Forty,” a forty-acre tract located on the USDA Forest Service Escambia Experimental Forest near Brewton, Alabama, has been managed to create high quality wood products, to successfully...

  12. Pines

    Science.gov (United States)

    C. Plomion; D. Chagne; D. Pot; S. Kumar; P.L. Wilcox; R.D. Burdon; D. Prat; D.G. Peterson; J. Paiva; P. Chaumeil; G.G. Vendramin; F. Sebastiani; C.D. Nelson; C.S. Echt; O. Savolainen; T.L. Kubisiak; M.T. Cervera; N. de Maria; M.N. Islam-Faridi

    2007-01-01

    Pinus is the most important genus within the Family Pinaceae and also within the gymnosperms by the number of species (109 species recognized by Farjon 2001) and by its contribution to forest ecosystems. All pine species are evergreen trees or shrubs. They are widely distributed in the northern hemisphere, from tropical areas to northern areas in America and Eurasia....

  13. Forest Insect Pest Management and Forest Management in China: An Overview

    Science.gov (United States)

    Ji, Lanzhu; Wang, Zhen; Wang, Xiaowei; An, Linli

    2011-12-01

    According to the Seventh National Forest Inventory (2004-2008), China's forests cover an area of 195.45 million ha, or 20.36% of the total land area. China has the most rapidly increasing forest resources in the world. However, China is also a country with serious forest pest problems. There are more than 8,000 species of potential forest pests in China, including insects, plant diseases, rodents and lagomorphs, and hazardous plants. Among them, 300 species are considered as economically or ecologically important, and half of these are serious pests, including 86 species of insects. Forest management and utilization have a considerable influence on the stability and sustainability of forest ecosystems. At the national level, forestry policies always play a major role in forest resource management and forest health protection. In this paper, we present a comprehensive overview of both achievements and challenges in forest management and insect pest control in China. First, we summarize the current status of forest resources and their pests in China. Second, we address the theories, policies, practices and major national actions on forestry and forest insect pest management, including the Engineering Pest Management of China, the National Key Forestry Programs, the Classified Forest Management system, and the Collective Forest Tenure Reform. We analyze and discuss three representative plantations— Eucalyptus, poplar and Masson pine plantations—with respect to their insect diversity, pest problems and pest management measures.

  14. Forest insect pest management and forest management in China: an overview.

    Science.gov (United States)

    Ji, Lanzhu; Wang, Zhen; Wang, Xiaowei; An, Linli

    2011-12-01

    According to the Seventh National Forest Inventory (2004-2008), China's forests cover an area of 195.45 million ha, or 20.36% of the total land area. China has the most rapidly increasing forest resources in the world. However, China is also a country with serious forest pest problems. There are more than 8,000 species of potential forest pests in China, including insects, plant diseases, rodents and lagomorphs, and hazardous plants. Among them, 300 species are considered as economically or ecologically important, and half of these are serious pests, including 86 species of insects. Forest management and utilization have a considerable influence on the stability and sustainability of forest ecosystems. At the national level, forestry policies always play a major role in forest resource management and forest health protection. In this paper, we present a comprehensive overview of both achievements and challenges in forest management and insect pest control in China. First, we summarize the current status of forest resources and their pests in China. Second, we address the theories, policies, practices and major national actions on forestry and forest insect pest management, including the Engineering Pest Management of China, the National Key Forestry Programs, the Classified Forest Management system, and the Collective Forest Tenure Reform. We analyze and discuss three representative plantations-Eucalyptus, poplar and Masson pine plantations-with respect to their insect diversity, pest problems and pest management measures.

  15. Understory biomass from southern pine forests as a fuel source

    Energy Technology Data Exchange (ETDEWEB)

    Ku, T.T. [Univ. of Arkansas, Monticello, AR (United States); Baker, J.B. [USDA Forest Service, Monticello, AR (United States)

    1993-12-31

    The energy crisis in the US in the late 1970s led to accelerated research on renewable energy resources. The use of woody biomass, harvested from pine forests in the southern US, as a renewable energy source would not only provide an efficient energy alternative to forest industries, but its use would also reduce understory competition and accelerate growth of overstory crop trees. This study was initiated in the early 1980s to investigate the feasibility and applicability of the use of understory vegetation as a possible energy fuel resource. All woody understory vegetation [<14 cm (<5.5 in) in dbh], on 0.2 ha (0.5 ac) plots that represented a range of stand/site conditions of pine stands located in twelve southern Arkansas counties and two northern Louisiana parishes were characterized, quantified, and harvested. Based on the biomass yield from 720 subplots nested within 40 main plots, the top five dominant species in the understory, based on number and size were: Red maple, red oaks, pines, sweetgum, and winged elm. Some other species occurring, but in smaller proportions, were flowering dogwood, beautyberry, white oaks, black gum, wax myrtle, hickories, persimmon, and ashes. Most of these species are deciduous hardwoods that provide high BTU output upon burning. The average yield of chipped understory biomass was 23.5 T/ha with no difference occurring between summer and winter harvests. A predictive model of understory biomass production was developed using a step-wise multivariate regression analysis. In relation to forest type, high density pine stands produced 53% more understory biomass than high density pine-hardwood stands. The average moisture content of biomass was significantly lower when harvested in winter than when harvested in summer.

  16. Structural and climatic determinants of demographic rates of Scots pine forests across the Iberian Peninsula.

    Science.gov (United States)

    Vilà-Cabrera, Albert; Martínez-Vilalta, Jordi; Vayreda, Jordi; Retana, Javier

    2011-06-01

    The demographic rates of tree species typically show large spatial variation across their range. Understanding the environmental factors underlying this variation is a key topic in forest ecology, with far-reaching management implications. Scots pine (Pinus sylvestris L.) covers large areas of the Northern Hemisphere, the Iberian Peninsula being its southwestern distribution limit. In recent decades, an increase in severe droughts and a densification of forests as a result of changes in forest uses have occurred in this region. Our aim was to use climate and stand structure data to explain mortality and growth patterns of Scots pine forests across the Iberian Peninsula. We used data from 2392 plots dominated by Scots pine, sampled for the National Forest Inventory of Spain. Plots were sampled from 1986 to 1996 (IFN2) and were resampled from 1997 to 2007 (IFN3), allowing for the calculation of growth and mortality rates. We fitted linear models to assess the response of growth and mortality rates to the spatial variability of climate, climatic anomalies, and forest structure. Over the period of approximately 10 years between the IFN2 and IFN3, the amount of standing dead trees increased 11-fold. Higher mortality rates were related to dryness, and growth was reduced with increasing dryness and temperature, but results also suggested that effects of climatic stressors were not restricted to dry sites only. Forest structure was strongly related to demographic rates, suggesting that stand development and competition are the main factors associated with demography. In the case of mortality, forest structure interacted with climate, suggesting that competition for water resources induces tree mortality in dry sites. A slight negative relationship was found between mortality and growth, indicating that both rates are likely to be affected by the same stress factors. Additionally, regeneration tended to be lower in plots with higher mortality. Taken together, our results

  17. Threats, status & management options for bristlecone pines and limber pines in Southern Rockies

    Science.gov (United States)

    A. W. Schoettle; K. S. Burns; F. Freeman; R. A. Sniezko

    2006-01-01

    High-elevation white pines define the most remote alpine-forest ecotones in western North America yet they are not beyond the reach of a lethal non-native pathogen. The pathogen (Cronartium ribicola), a native to Asia, causes the disease white pine blister rust (WPBR) and was introduced into western Canada in 1910. Whitebark (Pinus albicaulis) and...

  18. Are Scots pine forest edges particularly prone to drought-induced mortality?

    Science.gov (United States)

    Buras, Allan; Schunk, Christian; Zeiträg, Claudia; Herrmann, Corinna; Kaiser, Laura; Lemme, Hannes; Straub, Christoph; Taeger, Steffen; Gößwein, Sebastian; Klemmt, Hans-Joachim; Menzel, Annette

    2018-02-01

    Climate change is expected to exacerbate the frequency of drought-induced tree mortality world-wide. To better predict the associated change of species composition and forest dynamics on various scales and develop adequate adaptation strategies, more information on the mechanisms driving the often observed patchiness of tree die-back is needed. Although forest-edge effects may play an important role within the given context, only few corresponding studies exist. Here, we investigate the regional die-back of Scots pine in Franconia, Germany, after a hot and dry summer in 2015, thereby emphasizing possible differences in mortality between forest edge and interior. By means of dendroecological investigations and close-range remote sensing, we assess long-term growth performance and current tree vitality along five different forest-edge distance gradients. Our results clearly indicate a differing growth performance between edge and interior trees, associated with a higher vulnerability to drought, increased mortality rates, and lower tree vitality at the forest edge. Prior long-lasting growth decline of dead trees compared to live trees suggests depletion of carbon reserves in course of a long-term drought persisting since the 1990s to be the cause of regional Scots pine die-back. These findings highlight the forest edge as a potential focal point of forest management adaptation strategies in the context of drought-induced mortality.

  19. Evolution of a research prototype expert system for endemic populations of mountain pine beetle in lodgepole pine forests

    Science.gov (United States)

    Dale L. Bartos; Kent B. Downing

    1989-01-01

    A knowledge acquisition program was written to aid in obtaining knowledge from the experts concerning endemic populations of mountain pine beetle in lodgepole pine forest. An application expert system is then automatically generated by the knowledge acquisition program that contains the codified base of expert knowledge. Data can then be entered into the expert system...

  20. Fire, fuels, and restoration of ponderosa pine-Douglas-fir forests in the Rocky Mountains, USA

    OpenAIRE

    Baker, W. L.; Veblen, T. T.; Sherriff, R. L.

    2007-01-01

    Forest restoration in ponderosa pine and mixed ponderosa pine–Douglas fir forests in the US Rocky Mountains has been highly influenced by a historical model of frequent, low-severity surface fires developed for the ponderosa pine forests of the Southwestern USA. A restoration model, based on this low-severity fire model, focuses on thinning and prescribed burning to restore historical forest structure. However, in the US Rocky Mountains, research on fire history and forest structure, and earl...

  1. Forest floor and mineral soil respiration rates in a northern Minnesota red pine chronosequence

    Science.gov (United States)

    Powers, Matthew; Kolka, Randall; Bradford, John B.; Palik, Brian J.; Jurgensen, Martin

    2018-01-01

    We measured total soil CO2 efflux (RS) and efflux from the forest floor layers (RFF) in red pine (Pinus resinosaAit.) stands of different ages to examine relationships between stand age and belowground C cycling. Soil temperature and RS were often lower in a 31-year-old stand (Y31) than in 9-year-old (Y9), 61-year-old (Y61), or 123-year-old (Y123) stands. This pattern was most apparent during warm summer months, but there were no consistent differences in RFF among different-aged stands. RFF represented an average of 4–13% of total soil respiration, and forest floor removal increased moisture content in the mineral soil. We found no evidence of an age effect on the temperature sensitivity of RS, but respiration rates in Y61 and Y123 were less sensitive to low soil moisture than RS in Y9 and Y31. Our results suggest that soil respiration’s sensitivity to soil moisture may change more over the course of stand development than its sensitivity to soil temperature in red pine, and that management activities that alter landscape-scale age distributions in red pine forests could have significant impacts on rates of soil CO2 efflux from this forest type.

  2. Retrieval of pine forest biomass using JPL AIRSAR data

    Science.gov (United States)

    Beaudoin, A.; Letoan, T.; Zagolski, F.; Hsu, C. C.; Han, H. C.; Kong, J. A.

    1992-01-01

    The analysis of Jet Propulsion Laboratory (JPL) Airborne Synthetic Aperture Radar (AIRSAR) data over the Landes forest in South-West France revealed strong correlation between L- and especially P-band sigma degrees and the pine forest biomass. To explain the physical link of radar backscatter to biomass, a polarimetric backscattering model was developed and validated. Then the model was used in a simulation study to predict sigma degree sensitivity to undesired canopy and environmental parameters. Main results concerning the data analysis, modeling, and simulation at P-band are reported.

  3. Influence of mountain pine beetle epidemic on winter habitat conditions for Merriam's turkeys: Management implications for current and future condition

    Science.gov (United States)

    Chadwick P. Lehman; Mark A. Rumble; Michael A. Battaglia; Todd R. Mills; Lance A. Asherin

    2016-01-01

    Understanding response of ponderosa pine (Pinus ponderosa) forest development following a mountain pine beetle (MPB; Dendroctonus ponderosae) epidemic has important management implications for winter habitat conditions for Merriam’s wild turkeys (Meleagris gallopavo merriami; hereafter, turkeys). Therefore, we quantified habitat changes over time for turkeys...

  4. Ecosystem-based management in the lodgepole pine zone

    Science.gov (United States)

    Colin C. Hardy; Robert E. Keane; Catherine A. Stewart

    2000-01-01

    The significant geographic extent of lodgepole pine (Pinus contorta) in the interior West and the large proportion within the mixed-severity fire regime has led to efforts for more ecologically based management of lodgepole pine. New research and demonstration activities are presented that may provide knowledge and techniques to manage lodgepole pine...

  5. Esthetic considerations in management of shortleaf pine

    Science.gov (United States)

    Robert H. Stignani

    1986-01-01

    Application of esthetic concerns in the management of shortleaf pine or any species should be predicated on a systematic approach. Many mitigation techniques are available, but those selected will need to be carefully tailored to the specific situation and to the unique characteristics of plant communities and landforms involved. Some additional costs should be...

  6. Regional vegetation management standards for commercial pine ...

    African Journals Online (AJOL)

    Although the understanding gained from these trials allowed for the development of vegetation management standards, their operational and economic viability need to be tested on a commercial basis. Four pine trials were thus initiated to test the applicability of these standards when utilised on a commercial scale. Two of ...

  7. First report of the white pine blister rust fungus, Cronartium ribicola, infecting Pinus flexilis on Pine Mountain, Humboldt National Forest, Elko County, northeastern Nevada, U.S.A.

    Science.gov (United States)

    Detlev R. Vogler; Patricia E. Maloney; Tom Burt; Jacob W. Snelling

    2017-01-01

    In 2013, while surveying for five-needle white pine cone crops in northeastern Nevada, we observed white pine blister rust, caused by the rust pathogen Cronartium ribicola Fisch., infecting branches and stems of limber pines (Pinus flexilis James) on Pine Mountain (41.76975°N, 115.61622°W), Humboldt National Forest,...

  8. Ecosystem carbon density and allocation across a chronosequence of longleaf pine forests.

    Science.gov (United States)

    Samuelson, Lisa J; Stokes, Thomas A; Butnor, John R; Johnsen, Kurt H; Gonzalez-Benecke, Carlos A; Martin, Timothy A; Cropper, Wendell P; Anderson, Pete H; Ramirez, Michael R; Lewis, John C

    2017-01-01

    Forests can partially offset greenhouse gas emissions and contribute to climate change mitigation, mainly through increases in live biomass. We quantified carbon (C) density in 20 managed longleaf pine (Pinus palustris Mill.) forests ranging in age from 5 to 118 years located across the southeastern United States and estimated above- and belowground C trajectories. Ecosystem C stock (all pools including soil C) and aboveground live tree C increased nonlinearly with stand age and the modeled asymptotic maxima were 168 Mg C/ha and 80 Mg C/ha, respectively. Accumulation of ecosystem C with stand age was driven mainly by increases in aboveground live tree C, which ranged from ecosystem C. Live root C (sum of below-stump C, ground penetrating radar measurement of lateral root C, and live fine root C) increased with stand age and represented 4-22% of ecosystem C. Soil C was related to site index, but not to stand age, and made up 39-92% of ecosystem C. Live understory C, forest floor C, downed dead wood C, and standing dead wood C were small fractions of ecosystem C in these frequently burned stands. Stand age and site index accounted for 76% of the variation in ecosystem C among stands. The mean root-to-shoot ratio calculated as the average across all stands (excluding the grass-stage stand) was 0.54 (standard deviation of 0.19) and higher than reports for other conifers. Long-term accumulation of live tree C, combined with the larger role of belowground accumulation of lateral root C than in other forest types, indicates a role of longleaf pine forests in providing disturbance-resistant C storage that can balance the more rapid C accumulation and C removal associated with more intensively managed forests. Although other managed southern pine systems sequester more C over the short-term, we suggest that longleaf pine forests can play a meaningful role in regional forest C management. © 2016 by the Ecological Society of America.

  9. Effects of dwarf mistletoe on stand structure of lodgepole pine forests 21-28 years post-mountain pine beetle epidemic in central Oregon

    Science.gov (United States)

    Michelle C. Agne; David C. Shaw; Travis J. Woolley; Mónica E. Queijeiro-Bolaños; Mai-He. Li

    2014-01-01

    Lodgepole pine (Pinus contorta) forests are widely distributed throughout North America and are subject to mountain pine beetle (Dendroctonus ponderosae) epidemics, which have caused mortality over millions of hectares of mature trees in recent decades. Mountain pine beetle is known to influence stand structure, and has the ability to impact many forest processes....

  10. Evaluating potential fire behavior in lodgepole pine-dominated forests after a mountain pine beetle epidemic in north-central Colorado

    Science.gov (United States)

    Jennifer G. Klutsch; Mike A. Battaglia; Daniel R. West; Sheryl L. Costello; Jose F. Negron

    2011-01-01

    A mountain pine beetle outbreak in Colorado lodgepole pine forests has altered stand and fuel characteristics that affect potential fire behavior. Using the Fire and Fuels Extension to the Forest Vegetation Simulator, potential fire behavior was modeled for uninfested and mountain pine beetle-affected plots 7 years after outbreak initiation and 10 and 80% projected...

  11. Manager's handbook for red pine in the north-central states.

    Science.gov (United States)

    John W. Benzie

    1977-01-01

    Provides a key for the resource manager to use in choosing silvicultural practices for the management of red pine. Control of stand composition and growth, regulating the forest, and control of stand establishment for timber production, water, wildlife, and recreation are discussed.

  12. Effects of Climate Variability and Accelerated Forest Thinning on Watershed-Scale Runoff in Southwestern USA Ponderosa Pine Forests

    Science.gov (United States)

    Robles, Marcos D.; Marshall, Robert M.; O'Donnell, Frances; Smith, Edward B.; Haney, Jeanmarie A.; Gori, David F.

    2014-01-01

    The recent mortality of up to 20% of forests and woodlands in the southwestern United States, along with declining stream flows and projected future water shortages, heightens the need to understand how management practices can enhance forest resilience and functioning under unprecedented scales of drought and wildfire. To address this challenge, a combination of mechanical thinning and fire treatments are planned for 238,000 hectares (588,000 acres) of ponderosa pine (Pinus ponderosa) forests across central Arizona, USA. Mechanical thinning can increase runoff at fine scales, as well as reduce fire risk and tree water stress during drought, but the effects of this practice have not been studied at scales commensurate with recent forest disturbances or under a highly variable climate. Modifying a historical runoff model, we constructed scenarios to estimate increases in runoff from thinning ponderosa pine at the landscape and watershed scales based on driving variables: pace, extent and intensity of forest treatments and variability in winter precipitation. We found that runoff on thinned forests was about 20% greater than unthinned forests, regardless of whether treatments occurred in a drought or pluvial period. The magnitude of this increase is similar to observed declines in snowpack for the region, suggesting that accelerated thinning may lessen runoff losses due to warming effects. Gains in runoff were temporary (six years after treatment) and modest when compared to mean annual runoff from the study watersheds (0–3%). Nonetheless gains observed during drought periods could play a role in augmenting river flows on a seasonal basis, improving conditions for water-dependent natural resources, as well as benefit water supplies for downstream communities. Results of this study and others suggest that accelerated forest thinning at large scales could improve the water balance and resilience of forests and sustain the ecosystem services they provide. PMID

  13. Effects of climate variability and accelerated forest thinning on watershed-scale runoff in southwestern USA ponderosa pine forests.

    Directory of Open Access Journals (Sweden)

    Marcos D Robles

    Full Text Available The recent mortality of up to 20% of forests and woodlands in the southwestern United States, along with declining stream flows and projected future water shortages, heightens the need to understand how management practices can enhance forest resilience and functioning under unprecedented scales of drought and wildfire. To address this challenge, a combination of mechanical thinning and fire treatments are planned for 238,000 hectares (588,000 acres of ponderosa pine (Pinus ponderosa forests across central Arizona, USA. Mechanical thinning can increase runoff at fine scales, as well as reduce fire risk and tree water stress during drought, but the effects of this practice have not been studied at scales commensurate with recent forest disturbances or under a highly variable climate. Modifying a historical runoff model, we constructed scenarios to estimate increases in runoff from thinning ponderosa pine at the landscape and watershed scales based on driving variables: pace, extent and intensity of forest treatments and variability in winter precipitation. We found that runoff on thinned forests was about 20% greater than unthinned forests, regardless of whether treatments occurred in a drought or pluvial period. The magnitude of this increase is similar to observed declines in snowpack for the region, suggesting that accelerated thinning may lessen runoff losses due to warming effects. Gains in runoff were temporary (six years after treatment and modest when compared to mean annual runoff from the study watersheds (0-3%. Nonetheless gains observed during drought periods could play a role in augmenting river flows on a seasonal basis, improving conditions for water-dependent natural resources, as well as benefit water supplies for downstream communities. Results of this study and others suggest that accelerated forest thinning at large scales could improve the water balance and resilience of forests and sustain the ecosystem services they provide.

  14. Effects of climate variability and accelerated forest thinning on watershed-scale runoff in southwestern USA ponderosa pine forests.

    Science.gov (United States)

    Robles, Marcos D; Marshall, Robert M; O'Donnell, Frances; Smith, Edward B; Haney, Jeanmarie A; Gori, David F

    2014-01-01

    The recent mortality of up to 20% of forests and woodlands in the southwestern United States, along with declining stream flows and projected future water shortages, heightens the need to understand how management practices can enhance forest resilience and functioning under unprecedented scales of drought and wildfire. To address this challenge, a combination of mechanical thinning and fire treatments are planned for 238,000 hectares (588,000 acres) of ponderosa pine (Pinus ponderosa) forests across central Arizona, USA. Mechanical thinning can increase runoff at fine scales, as well as reduce fire risk and tree water stress during drought, but the effects of this practice have not been studied at scales commensurate with recent forest disturbances or under a highly variable climate. Modifying a historical runoff model, we constructed scenarios to estimate increases in runoff from thinning ponderosa pine at the landscape and watershed scales based on driving variables: pace, extent and intensity of forest treatments and variability in winter precipitation. We found that runoff on thinned forests was about 20% greater than unthinned forests, regardless of whether treatments occurred in a drought or pluvial period. The magnitude of this increase is similar to observed declines in snowpack for the region, suggesting that accelerated thinning may lessen runoff losses due to warming effects. Gains in runoff were temporary (six years after treatment) and modest when compared to mean annual runoff from the study watersheds (0-3%). Nonetheless gains observed during drought periods could play a role in augmenting river flows on a seasonal basis, improving conditions for water-dependent natural resources, as well as benefit water supplies for downstream communities. Results of this study and others suggest that accelerated forest thinning at large scales could improve the water balance and resilience of forests and sustain the ecosystem services they provide.

  15. Experimental test of postfire management in pine forests: impact of salvage logging versus partial cutting and nonintervention on bird-species assemblages.

    Science.gov (United States)

    Castro, Jorge; Moreno-Rueda, Gregorio; Hódar, José A

    2010-06-01

    There is an intense debate about the effects of postfire salvage logging versus nonintervention policies on regeneration of forest communities, but scant information from experimental studies is available. We manipulated a burned forest area on a Mediterranean mountain to experimentally analyze the effect of salvage logging on bird-species abundance, diversity, and assemblage composition. We used a randomized block design with three plots of approximately 25 ha each, established along an elevational gradient in a recently burned area in Sierra Nevada Natural and National Park (southeastern Spain). Three replicates of three treatments differing in postfire burned wood management were established per plot: salvage logging, nonintervention, and an intermediate degree of intervention (felling and lopping most of the trees but leaving all the biomass). Starting 1 year after the fire, we used point sampling to monitor bird abundance in each treatment for 2 consecutive years during the breeding and winter seasons (720 censuses total). Postfire burned-wood management altered species assemblages. Salvage logged areas had species typical of open- and early-successional habitats. Bird species that inhabit forests were still present in the unsalvaged treatments even though trees were burned, but were almost absent in salvage-logged areas. Indeed, the main dispersers of mid- and late-successional shrubs and trees, such as thrushes (Turdus spp.) and the European Jay (Garrulus glandarius) were almost restricted to unsalvaged treatments. Salvage logging might thus hamper the natural regeneration of the forest through its impact on assemblages of bird species. Moreover, salvage logging reduced species abundance by 50% and richness by 40%, approximately. The highest diversity at the landscape level (gamma diversity) resulted from a combination of all treatments. Salvage logging may be positive for bird conservation if combined in a mosaic with other, less-aggressive postfire

  16. Managing succession in conifer plantations: converting young red pine (Pinus resinosa Ait.) plantations to native forest types by thinning and underplantiing

    Science.gov (United States)

    William C. Parker; Ken A. Elliott; Daniel C. Dey; Eric Boysen; Steven G. Newmaster

    2001-01-01

    The effects of thinning on growth and survival of white pine (Pinus strobus L.), white ash (Fraxinus americana L.), and red oak (Quercus rubra L.), and understory plant diversity were examined in a young red pine (Pinus resinosa Ait.) plantation. Five years after thinning, seedling diameter,...

  17. Effect of forest clear cuts on plant–pollinator interactions: the case of three ericaceous subshrubs in Lithuanian pine forests

    Directory of Open Access Journals (Sweden)

    Remigijus Daubaras

    2017-03-01

    Full Text Available Managed boreal pine forests are subject to regular clear cuts causing significant disturbances to these ecosystems. It is believed that, to some extent, they resemble natural cycles of forest growth, decline, and regeneration and can benefit, e.g., mutualistic relations among plants and pollinators. To study the impact of forest management (clear cuts on pollinator visitation, we focused on three ericaceous plant species, Vaccinium myrtillus, V. vitis-idaea, and Calluna vulgaris, common elements of pine forest understory. Our observations, conducted in Lithuania, showed that there are no differences among control mature stands and clear cut areas in terms of visitation frequency for all three studied species. However, at least for C. vulgaris, a shift toward fly visits was observed in the clear cut site, showing that open areas are preferred habitats for these insects. Ants constituted an important share of visitors to flowers of V. myrtillus and C. vulgaris, suggesting their important role in reproduction of these plant species.

  18. Spatiotemporal Dynamics of Fire in Whitebark Pine Stands on two Mountains in the Lolo National Forest, Montana, USA.

    Science.gov (United States)

    Larson, E. R.; Grissino-Mayer, H. D.

    2004-12-01

    Whitebark pine (Pinus albicaulis) is a long-lived tree species that exists throughout high elevation and treeline forest communities of western North America. It is the foundation of a diminishing ecosystem that supports Clark's nutcrackers (Nucifraga columbiana), red squirrels (Tamiasciurus hudsonicus), grizzly bears (Ursus arctos), and black bears (U. americana). Several factors are directly linked to the decline of the whitebark pine ecosystem: mortality from recent and widespread mountain pine beetle (Dendroctonus ponderosae) outbreaks, infestation by the invasive white pine blister rust (Cronartium ribicola, an exotic fungal canker that weakens and eventually kills white pines), and fire suppression that may have altered the historic fire regime and enabled fire-intolerant tree species to encroach upon whitebark pine stands. The synergistic effects of these factors have led to a dramatic decline in whitebark pine communities throughout its native range, and in response land managers and conservationists have called for research to better understand the ecological dynamics of this little studied ecosystem. My research uses dendrochronology to investigate the fire history of whitebark pine stands on three mountains in the Lolo National Forest, Montana, via fire-scar and age structure analyses. I present here the results from the fire-scar analyses from Morrell Mountain where I obtained 40 cross sections from dead and down whitebark pines. Individual tree mean fire return intervals (MFRI) range from 33 to 119 years, with a stand MFRI of 49 years that includes fire scars dating to the 16th century. Fire events scarred multiple trees in AD 1754, 1796, and 1843, indicating a mixed-severity fire regime. The majority of the samples recorded a frost event in AD 1601, perhaps evidence of the AD 1600 eruption of Mt. Huaynapatina in the Peruvian Andes. My research not only provides an historical framework for land managers, but also provides an opportunity to examine long

  19. Stratification and seasonal stability of diverse bacterial communities in a Pinus merkusii (pine) forest soil in central Java, Indonesia.

    NARCIS (Netherlands)

    Krave, A.S.; Lin, B.; Braster, M.; Laverman, A.M.; van Straalen, N.M.; Roling, W.F.M.; van Verseveld, H.W.

    2002-01-01

    In Java, Indonesia, many nutrient-poor soils are intensively reforested with Pinus merkusii (pine). Information on nutrient cycles and microorganisms involved in these cycles will benefit the management of these important forests. Here, seasonal effects on the stratification of bacterial community

  20. Pre-visual detection of stress in pine forests

    Science.gov (United States)

    Olson, C. E., Jr.

    1977-01-01

    Pre-visual, or early, detection of forest stress with particular reference to detection of attacks by pine bark beetles is discussed. Preliminary efforts to obtain early detection of attacks by pine bark beetles, using MSS data from the ERIM M-7 scanner, were not sufficiently successful to demonstrate an operational capability, but indicate that joint processing of the 0.71 to 0.73, 2.00 to 2.60, and 9.3 to 11.7 micrometer bands holds some promise. Ratio processing of transformed data from the 0.45 to 0.52, 1.55 to 2.60, and 4.5 to 5.5 or 9.3 to 11.7 micrometer regions appears even more promising.

  1. Changes in Gambel oak densities in southwestern ponderosa pine forests since Euro-American settlement

    Science.gov (United States)

    Scott R. Abella; Peter Z. Fulé

    2008-01-01

    Densities of small-diameter ponderosa pine (Pinus ponderosa) trees have increased in southwestern ponderosa pine forests during a period of fire exclusion since Euro-American settlement in the late 1800s. However, less well known are potential changes in Gambel oak (Quercus gambelii) densities during this period in these forests....

  2. Tree mortality in drought-stressed mixed-conifer and ponderosa pine forests, Arizona, USA

    Science.gov (United States)

    Joseph L. Ganey; Scott C. Vojta

    2011-01-01

    We monitored tree mortality in northern Arizona (USA) mixed-conifer and ponderosa pine (Pinus ponderosa Dougl. ex Laws) forests from 1997 to 2007, a period of severe drought in this area. Mortality was pervasive, occurring on 100 and 98% of 53 mixed-conifer and 60 ponderosa pine plots (1-ha each), respectively. Most mortality was attributable to a suite of forest...

  3. Seed release in serotinous lodgepole pine forests after mountain pine beetle outbreak.

    Science.gov (United States)

    Teste, François P; Lieffers, Victor J; Landhausser, Simon M

    2011-01-01

    There are concerns that large-scale stand mortality due to mountain pine beetle (MPB) could greatly reduce natural regeneration of serotinous Rocky Mountain (RM) lodgepole pine (Pinus contorta var. latifolia) because the closed cones are held in place without the fire cue for cone opening. We selected 20 stands (five stands each of live [control], 3 years since MPB [3-yr-MPB], 6 years since MPB [6-yr-MPB], and 9 years since MPB [9-yr-MPB] mortality) in north central British Columbia, Canada. The goal was to determine partial loss of serotiny due to fall of crown-stored cones via breakage of branches and in situ opening of canopy cones throughout the 2008 and 2009 growing seasons. We also quantified seed release by the opening of forest-floor cones, loss of seed from rodent predation, and cone burial. Trees killed by MPB three years earlier dropped approximately 3.5 times more cones via branch breakage compared to live stands. After six years, MPB-killed stands had released 45% of their canopy seed bank through cone opening, cone fall due to breakage, and squirrel predation. Further losses of canopy seed banks are expected with time since we found 9-yr-MPB stands had 38% more open canopy cones. This was countered by the development of a modest forest-floor seed bank (6% of the original canopy seed bank) from burial of cones; this seed bank may be ecologically important if a fire or anthropogenic disturbance reexposes these cones. If adequate levels of regeneration are to occur, disturbances to create seedbeds must occur shortly after tree mortality, before the seed banks are lost. Our findings also suggest that the sustained seed rain (over at least nine years) after MPB outbreak may be beneficial for population growth of ground-foraging vertebrates. Our study adds insight to the seed ecology of serotinous pines under a potentially continental-wide insect outbreak, threatening vast forests adapted to regeneration after fire. Key words: biotic disturbance; cone

  4. Effects of Thinning Intensities on Soil Infiltration and Water Storage Capacity in a Chinese Pine-Oak Mixed Forest

    OpenAIRE

    Chen, Lili; Yuan, Zhiyou; Shao, Hongbo; Wang, Dexiang; Mu, Xingmin

    2014-01-01

    Thinning is a crucial practice in the forest ecosystem management. The soil infiltration rate and water storage capacity of pine-oak mixed forest under three different thinning intensity treatments (15%, 30%, and 60%) were studied in Qinling Mountains of China. The thinning operations had a significant influence on soil infiltration rate and water storage capacity. The soil infiltration rate and water storage capacity in different thinning treatments followed the order of control (nonthinning):

  5. The dynamics of pine forests in Prebaikalia under anthropogenic impact

    Directory of Open Access Journals (Sweden)

    T. A. Mikhailova

    2017-02-01

    Full Text Available Analyzed and generalized were the results of prolonged (10–25 years monitoring of condition pine Pinus sylvestris L. forests affected by technogenic pollution and high recreation load in the South Prebaikalia. The results show that both factors have similarity in the stress effect on pine tree-stands, as confirmed by alteration in morphometric parameters of tree assimilating phytomass, decrease in photosynthetic pigments level, as well as by disturbance the nutrient elements proportions in the needles. As tree crown defoliation level reaches 65–70 %, the morphometric parameters for shoots and needles are found to decrease the background level by in 1.3–4.5 times. Under technogenic pollution, the needles’ chlorophylls sum was reduced 2.8–3.5 times, level of carotenoides – to 3.9 times maximum in comparison with the background needles while under high recreation load the green pigments content was reduced 1.9–5.7 times, carotenoids content – to 5.5 times. There is a imbalance in quantitative proportions between nutritional elements under any type of stress, N : P : K proportion changes due to increase of nitrogen level and reduction of phosphorus and potassium level. Index of tree-stand vital condition was calculated on the basis of the representative parameters to analyze the long forest dynamics. Significant reduction was shown in the index in the present time and correspondingly the obvious tendency to pine forest decline in the territories polluted by Irkutsk, Shelekhov, and Angarsk-Usolie industrial centers. At the same time near Cheremkhovo and Sayansk-Zima centers there are not heavy changes in the forest’s condition; during long time a middle level of weakening is registered but in the distance 20 km – a low level of weakening. In the territories characterized by a high recreation load, a sharp trend to declining pine tree-stands vital condition was found, and most clearly it is expressed in the towns of Khuzhir (Olkhon

  6. Assessing the impact of a mountain pine beetle infestation on stand structure of lodgepole pine forests in Colorado using the Forest Inventory and Analysis Annual forest inventory

    Science.gov (United States)

    Michael T. Thompson

    2017-01-01

    The Forest Inventory and Analysis (FIA) annual inventory system began in Colorado in 2002, which coincided with the onset of a major mountain pine beetle (Dendroctonus ponderosae) epidemic. The mortality event, coupled with 11 years of annual inventory data, provided an opportunity to assess the usefulness of the FIA annual inventory system for quantifying the effects...

  7. Interactive effects of historical logging and fire exclusion on ponderosa pine forest structure in the northern Rockies.

    Science.gov (United States)

    Naficy, Cameron; Sala, Anna; Keeling, Eric G; Graham, Jon; DeLuca, Thomas H

    2010-10-01

    Increased forest density resulting from decades of fire exclusion is often perceived as the leading cause of historically aberrant, severe, contemporary wildfires and insect outbreaks documented in some fire-prone forests of the western United States. Based on this notion, current U.S. forest policy directs managers to reduce stand density and restore historical conditions in fire-excluded forests to help minimize high-severity disturbances. Historical logging, however, has also caused widespread change in forest vegetation conditions, but its long-term effects on vegetation structure and composition have never been adequately quantified. We document that fire-excluded ponderosa pine forests of the northern Rocky Mountains logged prior to 1960 have much higher average stand density, greater homogeneity of stand structure, more standing dead trees and increased abundance of fire-intolerant trees than paired fire-excluded, unlogged counterparts. Notably, the magnitude of the interactive effect of fire exclusion and historical logging substantially exceeds the effects of fire exclusion alone. These differences suggest that historically logged sites are more prone to severe wildfires and insect outbreaks than unlogged, fire-excluded forests and should be considered a high priority for fuels reduction treatments. Furthermore, we propose that ponderosa pine forests with these distinct management histories likely require distinct restoration approaches. We also highlight potential long-term risks of mechanical stand manipulation in unlogged forests and emphasize the need for a long-term view of fuels management.

  8. Forest Modeling of Jack Pine Trees for BOREAS

    Science.gov (United States)

    Moghhadam, Mahta; Saatchi, Sasan

    1994-01-01

    As a part of the intensive field campaign for the Boreal forest ecosystem-atmosphere research (BOREAS) project in August 1993, the NASA/JPL AIRSAR covered an area of about 100 km by 100 km near the Prince Albert National Park in Saskatchewan, Canada. At the same time, ground-truth measurements were made in several stands which have been selected as the primary study sites, as well as in some auxiliary sites. This paper focuses on an area including Jack Pine stands in the Nipawin area near the park.

  9. Southern pine beetle infestations in relation to forest stand conditions, previous thinning, and prescribed burning: evaluation of the Southern Pine Beetle Prevention Program

    Science.gov (United States)

    John T. Nowak; James R. Meeker; David R. Coyle; Chris A. Steiner; Cavell Brownie

    2015-01-01

    Since 2003, the Southern Pine Beetle Prevention Program (SPBPP) (a joint effort of the USDA Forest Service and Southern Group of State Foresters) has encouraged and provided cost-share assistance for silvicultural treatments to reduce stand/forest susceptibility to the southern pine beetle (SPB)(Dendroctonus frontalis Zimmermann) in the southeastern United States....

  10. Ectomycorrhizal community structure of different genotypes of Scots pine under forest nursery conditions.

    Science.gov (United States)

    Leski, Tomasz; Aucina, Algis; Skridaila, Audrius; Pietras, Marcin; Riepsas, Edvardas; Rudawska, Maria

    2010-10-01

    In this paper, we report the effect of Scots pine genotypes on ectomycorrhizal (ECM) community and growth, survival, and foliar nutrient composition of 2-year-old seedlings grown in forest bare-root nursery conditions in Lithuania. The Scots pine seeds originated from five stands from Latvia (P1), Lithuania (P2 and P3), Belarus (P4), and Poland (P5). Based on molecular identification, seven ECM fungal taxa were identified: Suillus luteus and Suillus variegatus (within the Suilloid type), Wilcoxina mikolae, Tuber sp., Thelephora terrestris, Cenococcum geophilum, and Russuloid type. The fungal species richness varied between five and seven morphotypes, depending on seed origin. The average species richness and relative abundance of most ECM morphotypes differed significantly depending on pine origin. The most essential finding of our study is the shift in dominance from an ascomycetous fungus like W. mikolae in P2 and P4 seedlings to basidiomycetous Suilloid species like S. luteus and S. variegatus in P1 and P5 seedlings. Significant differences between Scots pine origin were also found in seedling height, root dry weight, survival, and concentration of C, K, Ca, and Mg in the needles. The Spearman rank correlation coefficient revealed that survival and nutritional status of pine seedlings were positively correlated with abundance of Suilloid mycorrhizas and negatively linked with W. mikolae abundance. However, stepwise multiple regression analysis showed that only survival and magnesium content in pine needles were significantly correlated with abundance of ECM fungi, and Suilloid mycorrhizas were a main significant predictor. Our results may have implications for understanding the physiological and genetic relationship between the host tree and fungi and should be considered in management decisions in forestry and ECM fungus inoculation programs.

  11. Frequent Prescribed Burning as a Long-term Practice in Longleaf Pine Forests Does Not Affect Detrital Chemical Composition.

    Science.gov (United States)

    Coates, T Adam; Chow, Alex T; Hagan, Donald L; Wang, G Geoff; Bridges, William C; Dozier, James H

    2017-09-01

    The O horizon, or detrital layer, of forest soils is linked to long-term forest productivity and health. Fuel reduction techniques, such as prescribed fire, can alter the thickness and composition of this essential ecosystem component. Developing an understanding of the changes in the chemical composition of forest detritus due to prescribed fire is essential for forest managers and stakeholders seeking sustainable, resilient, and productive ecosystems. In this study, we evaluated fuel quantity, fuel structure, and detrital chemical composition in longleaf pine ( Miller) forests that have been frequently burned for the last 40 yr at the Tom Yawkey Wildlife Center in Georgetown, SC. Our results suggest that frequent prescribed fire reduces forest fuel quantity ( burned detritus. Our burning activities varied in the short term, consisting of annual dormant, annual growing, and biennial dormant season burns. Seasonal distinctions were present for fuel quantity and vertical fuel structure, but these differences were not noted for the benzene/phenol ratio. These results are significant as more managers consider burning existing longleaf stands while determining effective management practices for longleaf stands yet to be established. Managers of such stands can be confident that frequent, low-intensity, low-severity prescribed burns in longleaf pine forests do little to affect the long-term chemical composition of forest detritus. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  12. 75 FR 23666 - Huron-Manistee National Forests, White Pines Wind Farm Project, Mason County, MI

    Science.gov (United States)

    2010-05-04

    ... DEPARTMENT OF AGRICULTURE Forest Service Huron-Manistee National Forests, White Pines Wind Farm Project, Mason County, MI AGENCY: Forest Service, USDA. ACTION: Cancellation Notice of notice of intent to prepare an environmental impact statement. SUMMARY: The Forest Service proposed to prepare an...

  13. Short-term ecological consequences of collaborative restoration treatments in ponderosa pine forests of Colorado

    Science.gov (United States)

    Jennifer S. Briggs; Paula J. Fornwalt; Jonas A. Feinstein

    2017-01-01

    Ecological restoration treatments are being implemented at an increasing rate in ponderosa pine and other dry conifer forests across the western United States, via the USDA Forest Service’s Collaborative Forest Landscape Restoration (CFLR) program. In this program, collaborative stakeholder groups work with National Forests (NFs) to adaptively implement and monitor...

  14. Environmental impact assessment and monetary ecosystem service valuation of an ecosystem under different future environmental change and management scenarios; a case study of a Scots pine forest.

    Science.gov (United States)

    Schaubroeck, Thomas; Deckmyn, Gaby; Giot, Olivier; Campioli, Matteo; Vanpoucke, Charlotte; Verheyen, Kris; Rugani, Benedetto; Achten, Wouter; Verbeeck, Hans; Dewulf, Jo; Muys, Bart

    2016-05-15

    For a sustainable future, we must sustainably manage not only the human/industrial system but also ecosystems. To achieve the latter goal, we need to predict the responses of ecosystems and their provided services to management practices under changing environmental conditions via ecosystem models and use tools to compare the estimated provided services between the different scenarios. However, scientific articles have covered a limited amount of estimated ecosystem services and have used tools to aggregate services that contain a significant amount of subjective aspects and that represent the final result in a non-tangible unit such as 'points'. To resolve these matters, this study quantifies the environmental impact (on human health, natural systems and natural resources) in physical units and uses an ecosystem service valuation based on monetary values (including ecosystem disservices with associated negative monetary values). More specifically, the paper also focuses on the assessment of ecosystem services related to pollutant removal/generation flows, accounting for the inflow of eutrophying nitrogen (N) when assessing the effect of N leached to groundwater. Regarding water use/provisioning, evapotranspiration is alternatively considered a disservice because it implies a loss of (potential) groundwater. These approaches and improvements, relevant to all ecosystems, are demonstrated using a Scots pine stand from 2010 to 2089 for a combination of three environmental change and three management scenarios. The environmental change scenarios considered interannual climate variability trends and included alterations in temperature, precipitation, nitrogen deposition, wind speed, Particulate matter (PM) concentration and CO2 concentration. The addressed flows/ecosystem services, including disservices, are as follows: particulate matter removal, freshwater loss, CO2 sequestration, wood production, NOx emissions, NH3 uptake and nitrogen pollution/removal. The monetary

  15. Evaporation from a central Siberian pine forest

    Science.gov (United States)

    Kelliher, F. M.; Lloyd, J.; Arneth, A.; Byers, J. N.; McSeveny, T. M.; Milukova, I.; Grigoriev, S.; Panfyorov, M.; Sogatchev, A.; Varlargin, A.; Ziegler, W.; Bauer, G.; Schulze, E.-D.

    1998-03-01

    Total forest evaporation, E, understorey evaporation, Eu, and environmental variables were measured for 18 consecutive mid-summer days during July 1996 in a 215-year-old stand of Pinus sylvestris L. trees located 40 km southwest of the village of Zotino in central siberia, Russia (61°N, 89°E, 160 m asl). Tree and lichen ( Cladonia and Cladina spp.) understorey one-sided leaf and surface-area indices were 1.5 and 6.0, respectively. Daily E, measured by eddy covariance, was 0.8-2.3 mm day -1 which accounted for 15-67% of the available energy, Ra. Following 12 mm rainfall, daily E reached a maximum on the second day (the first clear day) but declined rapidly thereafter to reach minimum rates within one week. The sandy soil had a range of water content equivalent to only 4 mm water per 100 mm depth of soil. It was estimated that 38% of soil water was utilised before water deficit began to limit E. Eu, also measured by eddy covariance and by lysimeters, was 0.5 to 1.6 mm day -1 or 33-92% of E. Eu was proportional to Ra, but in response to soil drying, the slope of this linear relation declined by a factor of three to a minimum value only three days after the rainfall. Based on the measurements and climatological data, including average annual precipitation of 600 mm year -1 with half as rain during the nominal growing season (1 May to 30 September), water balance calculations suggested E was 265 mm per growing season.

  16. Thermal biology of eastern box turtles in a longleaf pine system managed with prescribed fire.

    Science.gov (United States)

    Roe, John H; Wild, Kristoffer H; Hall, Carlisha A

    2017-10-01

    Fire can influence the microclimate of forest habitats by removing understory vegetation and surface debris. Temperature is often higher in recently burned forests owing to increased light penetration through the open understory. Because physiological processes are sensitive to temperature in ectotherms, we expected fire-maintained forests to improve the suitability of the thermal environment for turtles, and for turtles to seasonally associate with the most thermally-optimal habitats. Using a laboratory thermal gradient, we determined the thermal preference range (T set ) of eastern box turtles, Terrapene carolina, to be 27-31°C. Physical models simulating the body temperatures experienced by turtles in the field revealed that surface environments in a fire-maintained longleaf pine forest were 3°C warmer than adjacent unburned mixed hardwood/pine forests, but the fire-maintained forest was never of superior thermal quality owing to wider T e fluctuations above T set and exposure to extreme and potentially lethal temperatures. Radiotracked turtles using fire-managed longleaf pine forests maintained shell temperatures (T s ) approximately 2°C above those at a nearby unburned forest, but we observed only moderate seasonal changes in habitat use which were inconsistent with thermoregulatory behavior. We conclude that turtles were not responding strongly to the thermal heterogeneity generated by fire in our system, and that other aspects of the environment are likely more important in shaping habitat associations. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Determining Nutrient Requirements For Intensively Managed Loblolly Pine Stands Using the SSAND (Soil Supply and Nutrient Demand) Model

    Science.gov (United States)

    Hector G. Adegbidi; Nicholas B. Comerford; Hua Li; Eric J. Jokela; Nairam F. Barros

    2002-01-01

    Nutrient management represents a central component of intensive silvicultural systems that are designed to increase forest productivity in southern pine stands. Forest soils throughout the South are generally infertile, and fertilizers may be applied one or more times over the course of a rotation. Diagnostic techniques, such as foliar analysis and soil testing are...

  18. Effects of overstory retention, herbicides, and fertilization on sub-canopy vegetation structure and functional group composition in loblolly pine forests restored to longleaf pine

    Science.gov (United States)

    Benjamin O. Knapp; Joan L. Walker; G. Geoff Wang; Huifeng Hu; Robert N.  Addington

    2014-01-01

    The desirable structure of longleaf pine forests, which generally includes a relatively open canopy of pines, very few woody stems in the mid-story, and a well-developed, herbaceous ground layer, provides critical habitat for flora and fauna and contributes to ecosystem function. Current efforts to restore longleaf pine to upland sites dominated by second-growth...

  19. Post-fire plant diversity and abundance in pine and eucalypt stands in Portugal : Effects of biogeography, topography, forest type and post-fire management

    NARCIS (Netherlands)

    Maia, P.; Keizer, J.; Vasques, A.; Abrantes, N.; Roxo, L.; Fernandes, P.; Ferreira, A.; Moreira, F.

    2014-01-01

    This study concerned the mid-term regeneration of the woody understory vegetation of pure and mixed stands of Pinus pinaster Ait. and Eucalyptus globulus Labill. in northern and central Portugal following wildfires in 2005 and 2006. Pine and eucalypt stands are the most widespread and most

  20. Changes in soil respiration after thinning activities in dense Aleppo pine forests

    Science.gov (United States)

    Llovet, Joan; Alonso, Macià; Cerdà, Artemi

    2015-04-01

    Forest fires are a widespread perturbation in Mediterranean areas, and they have tended to increase during the last decades (Pausas, 2004; Moreno et al, 1998). Aleppo pine (Pinus halepensis Mill) is dominant specie in some forest landscapes of western Mediterranean Basin, due to its capacity to colonize abandoned fields, and also due to afforestation practices mainly performed during the 20th century (Ruiz Navarro et al., 2009). Aleppo pine tends to die as consequence of forest fires, although it is able to disperse a high quantity of seeds which easily germinates. These dispersion and germination can result in dense forests with high inter and intra-specific competition, low diversity, low growth, and high fuel accumulation, increasing the risk of new forest fires. These forests of high density present ecological problems and management difficulties that require preventive treatments. Thinning treatments are common in these types of communities, but the management has to be oriented towards strengthening their functions. In the context of global change, better understandings of the implications of forest management practices in the carbon cycle are necessary. The objective of this study was to examine the evolution of seasonal soil respiration after treatment of selective thinning in dense Aleppo pine forests. The study area covers three localities placed in the Valencian Community (E Spain) affected by a forest fire in 1994. Thinning activities were done 16 years after the fire, reducing pine density from around 100,000 individuals per hectare to around 900 individuals per hectare. Soil respiration was measured in situ with a portable soil respiration instrument (LI-6400, LiCor, Lincoln, NB, USA) fitted with a soil respiration chamber (6400-09, LiCor, Lincoln, NB, USA). We installed 12 plots per treatment (control and thinned) and locality, being a total of 72 plots. We carried out 13 measurements covering a period of one year. We also estimated other related

  1. Ecosystem Nitrogen Retention Following Severe Bark Beetle and Salvage Logging Disturbance in Lodgepole Pine Forests: a 15N Enrichment Study

    Science.gov (United States)

    Avera, B.; Rhoades, C.; Paul, E. A.; Cotrufo, M. F.

    2017-12-01

    In recent decades, bark beetle outbreaks have caused high levels of tree mortality in lodgepole pine (Pinus contorta) dominated forests across western North America. Previous work has found increased soil mineral nitrogen (N) with tree mortality in beetle infested stands, but surprisingly little change in stream N export. These findings suggest an important role of residual live vegetation and altered soil microbial response for retaining surplus N and mitigating N losses from disturbed lodgepole forests. Post outbreak salvage of merchantable timber reduces fuel levels and promotes tree regeneration; however, the implications of the combined bark beetle and harvesting disturbances on ecosystem N retention and productivity are uncertain. To advance understanding of post-disturbance N retention we compare unlogged beetle-infested forests and salvage logged stands with post-harvest woody residue retention or removal. We applied 15N-labeled (2 atom%) and natural abundance ammonium sulfate to eight year old lodgepole pine seedlings in three replicate plots of the three forest management treatments. This approach allows us to quantify the relative contributions of N retention in soil, microbial biomass, and plant tissue. Our study targets gaps in understanding of the processes that regulate N utilization and transfer between soil and vegetation that result in effective N retention in lodgepole pine ecosystems. These findings will also help guide forest harvest and woody residue management practices in order to maintain soil productivity.

  2. Managing the world's forests.

    Science.gov (United States)

    Sharma, N; Rowe, R

    1992-06-01

    Forests play a vital role in balancing natural systems: the stabilization of global climate and the management of water and land. 30% of the earth's total land area is forested. 66% of the tropical moist forests are in Latin America and the remainder in Africa and Asia. 75% of tropical dry forests are in Africa. Temperate forests are primarily in developed countries. Deforestation and misuse of forests occurs primarily in developing countries at significant social, economic, and environmental costs. Losses have occurred in fuelwood, fodder, timber, forest products, biological diversity, habitats, genetic materials for food and medicine. The World Bank's evolving role in forestry is briefly described. Agreement has not been reached among people or nations about the most appropriate means to balance conservation and development goals. The challenge is to stabilize existing forests and increase forest planting. The causes of forest degradation must be understood. Direct causes include agricultural encroachment, cattle ranching, fuelwood gathering, commercial logging, and infrastructure development. These direct causes are driven by economic, social, and political forces: market and policy failures, population growth, and poverty. The market failures include: 1) the lack of clearly defined property rights on forest resources for now and the future, 2) the conflict between individual and societal needs, 3) the difficulty in placing a value on nonmarket environmental services and joint products, and 4) the separation between private and social costs. The solution is action at the local, national, and global levels. Countries must establish forest policy. The existing government incentives which promote deforestation must be changed. For example, concession policy and royalty systems must be corrected; explicit and implicit export subsidies on timber and forest products must be stopped. Private incentives must be established to promote planting of trees, practicing

  3. Comparison of Organic Matter Dynamics in Soil between Japanese Cedar (Cryptomeria japonica) Forest and Adjacent Japanese Red Pine (Pinus densiflora) Forest Established on Flatland

    OpenAIRE

    Terumasa, Takahashi; Akiko, Minami; Yoshito, Asano; Tatsuaki, Kobayashi; Faculty of Horticulture, Chiba Universit; Faculty of Horticulture, Chiba University:(Present)Hashikami town office; Faculty of Horticulture, Chiba University; Faculty of Horticulture, Chiba University

    1999-01-01

    In order to clarify the effects of tree species on organic matter dynamics in soil, we investigated the amount of forest floor material, leaf litter decomposition rate, soil chemical characteristics, soil respiration rate and cellulose decomposition rate in a Japanese cedar forest (cedar plot) and an adjacent Japanese red pine forest (pine plot) established on a flatland. The amount of forest floor material in the cedar plot was 34.5 Mg ha^ which was greater than that in the pine plot. Becaus...

  4. The assessment of environmentally sensitive forest road construction in Calabrian pine forest areas of Turkey.

    Science.gov (United States)

    Tunay, Metin

    2006-07-01

    Forest road construction by bulldozers in Calabrian Pine (Pinus brutia Ten.) forests on mountainous terrain of Turkey causes considerable damage to the environment and the forest standing alongside the road. This situation obliges a study of environmentally sound road construction in Turkey. This study was carried out in 4 sample sites of Antalya Forest Directorate in steep (34-50% gradient) and very steep terrain (51-70% gradient) conditions with bulldozer and excavator machine and direct damages to forest during road construction was determined, including forest area losses and damages to downhill trees in mountainous areas. It was determined that in steep terrain when excavators were used, less forest area (22.16%) was destroyed compared to bulldozers and 26.54% less area in very steep terrain. The proportion of damage on trees where bulldozer worked was nearly twofold higher than excavator was used. The results of this research show that the environmentally sensitive techniques applied for the road construction projects are considerably superior to the traditional use of bulldozers on steep slopes. The environmentally sound forest road construction by use of excavator must be considered an appropriate and reliable solution for mountainous terrain where areas of sensitive forest ecosystems are to be opened up.

  5. Timber, Browse, and Herbage on Selected Loblolly-Shortleaf Pine-Hardwood Forest Stands

    Science.gov (United States)

    Gale L. Wolters; Alton Martin; Warren P. Clary

    1977-01-01

    A thorough vegetation inventory was made on loblolly-shortleaf pine-hardwood stands scheduled by forest industry for clearcutting, site preparation, and planting to pine in north central Louisiana and southern Arkansas. Overstory timber, on the average, contained about equal proportions of softwood and hardwood basal area. Browse plants ranged from 5,500 to over 70,...

  6. Effects of salvage logging on fire risks after bark beetle outbreaks in Colorado lodgepole pine forests

    Science.gov (United States)

    Bryon J. Collins; Chuck C. Rhoades; Michael A. Battaglia; Robert M. Hubbard

    2012-01-01

    Most mature lodgepole pine (Pinus contorta var. latifolia Engelm. ex Wats.) forests in the central and southern Rocky Mountains originated after stand-replacing wildfires or logging (Brown 1975, Lotan and Perry 1983, Romme 1982). In recent years, mountain pine beetle (Dendroctonus ponderosae Hopkins) outbreaks have created a widespread, synchronous disturbance (i.e.,...

  7. Western dwarf mistletoe infects understory Jeffrey pine seedlings on Cleveland National Forest, California

    Science.gov (United States)

    Robert F. Scharpf; Detlev Vogler

    1986-01-01

    Many young, understory Jeffrey pines (Pinus jeffreyi Grev. & Balf.) were found to be infected by western dwarf mistletoe (Arceuthobium campylopodum Engelm.) on Laguna Mountain, Cleveland National Forest, in southern California. Under heavily infected overstory, about three-fourths of the young pines (about 15 years old on the...

  8. Longleaf pine site response to repeated fertilization and forest floor removal by raking and prescribed burning

    Science.gov (United States)

    Kim Ludovici; Robert Eaton; Stanley Zarnoch

    2018-01-01

    Removal of forest floor litter by pine needle raking and prescribed burning is a common practice in longleaf pine (Pinus palustris Mill.) stands on Coastal Plain sites in the Southeastern United States. Repeated removal of litter by raking and the loss of surface organic matter from controlled burns can affect the...

  9. An Old-Growth Definition for Dry and Dry-Mesic Oak-Pine Forests.

    Science.gov (United States)

    David L. White; F. Thomas. Lloyd

    1998-01-01

    Dry and dry-mesic oak-pine forests are widely distributed from New Jersey to Texas, but representative old-growth stands are rare. Historical accounts of composition, along with information from existing old-growth stands, were used to characterize this type. Shortleaf pine and white oak were the most widely distributed trees across all old-growth stands. Shortleaf was...

  10. Pest Fact Sheet 2007: Southern Pine Beetle prevention initiative: Working for healthier forests

    Science.gov (United States)

    R-8 and Southern Research Station U.S. Department of Agriculture Forest Service Forest Health Protection

    2007-01-01

    From 1999 to 2003, southern pine beetle (SPB) caused unprecedented damage to pine forests in southern Appalachian mountains. These losses severely impacted the natural resource base that supports the South's tourism and wood-based manufacturing industries and also destroyed the habitat of threatened and endangered species, such as the red-cockaded woodpecker....

  11. Water balance of pine forests: Synthesis of new and published results

    Science.gov (United States)

    Pantana Tor-ngern; Ram Oren; Sari Palmroth; Kimberly Novick; Andrew Oishi; Sune Linder; Mikaell Ottosson-Lofvenius; Torgny Nasholm

    2018-01-01

    The forest hydrologic cycle is expected to have important feedback responses to climate change, impacting processes ranging from local water supply and primary productivity to global water and energy cycles. Here, we analyzed water budgets of pine forests worldwide. We first estimated local water balance of forests dominated by two wide-ranging species: Pinus...

  12. MEMORANDUM: Application of Best Management Practices to Mechanical Silvicultural Site Preparation Activities for the Establishment of Pine Plantations in the Southeast

    Science.gov (United States)

    Memorandum to the Field, November 28, 1995, clarifying the applicability of forested wetlands best management practices to mechanical silvicultural site preparation activities for the establishment of pine plantations in the Southeast.

  13. Forest tenure and sustainable forest management

    Science.gov (United States)

    J.P. Siry; K. McGinley; F.W. Cubbage; P. Bettinger

    2015-01-01

    We reviewed the principles and key literature related to forest tenure and sustainable forest management, and then examined the status of sustainable forestry and land ownership at the aggregate national level for major forested countries. The institutional design principles suggested by Ostrom are well accepted for applications to public, communal, and private lands....

  14. Pine Plantations and Invasion Alter Fuel Structure and Potential Fire Behavior in a Patagonian Forest-Steppe Ecotone

    Directory of Open Access Journals (Sweden)

    Juan Paritsis

    2018-03-01

    Full Text Available Planted and invading non-native plant species can alter fire regimes through changes in fuel loads and in the structure and continuity of fuels, potentially modifying the flammability of native plant communities. Such changes are not easily predicted and deserve system-specific studies. In several regions of the southern hemisphere, exotic pines have been extensively planted in native treeless areas for forestry purposes and have subsequently invaded the native environments. However, studies evaluating alterations in flammability caused by pines in Patagonia are scarce. In the forest-steppe ecotone of northwestern Patagonia, we evaluated fine fuels structure and simulated fire behavior in the native shrubby steppe, pine plantations, pine invasions, and mechanically removed invasions to establish the relative ecological vulnerability of these forestry and invasion scenarios to fire. We found that pine plantations and their subsequent invasion in the Patagonian shrubby steppe produced sharp changes in fine fuel amount and its vertical and horizontal continuity. These changes in fuel properties have the potential to affect fire behavior, increasing fire intensity by almost 30 times. Pruning of basal branches in plantations may substantially reduce fire hazard by lowering the probability of fire crowning, and mechanical removal of invasion seems effective in restoring original fuel structure in the native community. The current expansion of pine plantations and subsequent invasions acting synergistically with climate warming and increased human ignitions warrant a highly vulnerable landscape in the near future for northwestern Patagonia if no management actions are undertaken.

  15. 76 FR 48120 - Black Hills National Forest, Custer, SD-Mountain Pine Beetle Response Project

    Science.gov (United States)

    2011-08-08

    ... species on lands of all ownerships in the Black Hills is ponderosa pine (Pinus ponderosae). Since 1997 the... rated as having high wildfire hazard. Since 1980, due to several factors including drought the Forest...

  16. 77 FR 10717 - Black Hills National Forest, Custer, South Dakota-Mountain Pine Beetle Response Project

    Science.gov (United States)

    2012-02-23

    .... The predominant tree species on lands of all ownerships in the Black Hills is ponderosa pine (Pinus... drought the Forest has seen a dramatic increase in acreage burned by wildfires. In that period over 250...

  17. Latent resilience in ponderosa pine forest: effects of resumed frequent fire.

    Science.gov (United States)

    Larson, Andrew J; Belote, R Travis; Cansler, C Alina; Parks, Sean A; Dietz, Matthew S

    2013-09-01

    Ecological systems often exhibit resilient states that are maintained through negative feedbacks. In ponderosa pine forests, fire historically represented the negative feedback mechanism that maintained ecosystem resilience; fire exclusion reduced that resilience, predisposing the transition to an alternative ecosystem state upon reintroduction of fire. We evaluated the effects of reintroduced frequent wildfire in unlogged, fire-excluded, ponderosa pine forest in the Bob Marshall Wilderness, Montana, USA. Initial reintroduction of fire in 2003 reduced tree density and consumed surface fuels, but also stimulated establishment of a dense cohort of lodgepole pine, maintaining a trajectory toward an alternative state. Resumption of a frequent fire regime by a second fire in 2011 restored a low-density forest dominated by large-diameter ponderosa pine by eliminating many regenerating lodgepole pines and by continuing to remove surface fuels and small-diameter lodgepole pine and Douglas-fir that established during the fire suppression era. Our data demonstrate that some unlogged, fire-excluded, ponderosa pine forests possess latent resilience to reintroduced fire. A passive model of simply allowing lightning-ignited fires to burn appears to be a viable approach to restoration of such forests.

  18. Felling-system and regeneration of pine forests on ecological-genetic-geographical basis

    Directory of Open Access Journals (Sweden)

    S. N. Sannikov

    2015-12-01

    Full Text Available A conception of the adaptation of Scots pine populations to the natural regeneration on open sites with the mosaic retained stand and mineralized soil surface on the basis of the ecological-genetic-geographical investigations in the forests of the Russia and the theory of petropsammofitness-pyrofitness (Sannikov S. N., 1983 has been substantiated. The methods of clear cuts with the seeding from surrounding forest, seed curtains and sufficiently extent of the substrate preparation for the pine selfsown have been selected and elaborated as a main organization principle of the system «felling-regeneration» in the plains pine forests of the forest zone. High regeneration efficiency of this system with the application of original aggregate for the optimal mineralization of the soil substrate (with its synchronous loosing has been shown on the example of dominating pine forest types in the subzone for-forest-steppe of the Western Siberia. The silvicultural-ecological and reproductive-genetic advantages of retaining seed curtains instead of separate seed trees have been substantiated. The basic parameters of the system «felling-regeneration», which guarantee a sufficient success of the following pine regeneration in the for-forest-steppe subzone, have been determined with the help of the methods of the mathematical imitation modeling of the pine selfsown density depending on the area and localization of seed curtains, surrounding forest and the extent of the substrate mineralization. The zonal differentiated system of the fellings and measures for the regeneration optimization in the climatically substituting pine forest types in the Western Siberia has been elaborated according to the parameters, studied earlier, on the ecological-genetic-geographical basis. The principles of this system in forest zone come to the clear strip-fellings with insemination of cuts from the seed curtains and forest walls, and to the hollow-fellings with the

  19. Manager's handbook for jack pine in the north central states.

    Science.gov (United States)

    John W. Benzie

    1977-01-01

    Provides a key for the resource manager to use in choosing silvicultural practices for the management of jack pine. Control of stand composition, growth, and stand establishment for timber production, water, wildlife, and recreation are discussed.

  20. Are we over-managing longleaf pine?

    Science.gov (United States)

    John S. Kush; Rebecca J. Barlow; John C. Gilbert

    2012-01-01

    Longleaf pine (Pinus palustris Mill.) is not loblolly (Pinus taeda L.) or slash pine (Pinus elliottii L.). There is the need for a paradigmatic shift in our thinking about longleaf pine. All too often we think of longleaf as an intolerant species, slow-grower, difficult to regenerate, and yet it dominated the pre...

  1. Assessing the Transferability of Statistical Predictive Models for Leaf Area Index Between Two Airborne Discrete Return LiDAR Sensor Designs Within Multiple Intensely Managed Loblolly Pine Forest Locations in the South-Eastern USA

    Science.gov (United States)

    Sumnall, Matthew; Peduzzi, Alicia; Fox, Thomas R.; Wynne, Randolph H.; Thomas, Valerie A.; Cook, Bruce

    2016-01-01

    Leaf area is an important forest structural variable which serves as the primary means of mass and energy exchange within vegetated ecosystems. The objective of the current study was to determine if leaf area index (LAI) could be estimated accurately and consistently in five intensively managed pine plantation forests using two multiple-return airborne LiDAR datasets. Field measurements of LAI were made using the LiCOR LAI2000 and LAI2200 instruments within 116 plots were established of varying size and within a variety of stand conditions (i.e. stand age, nutrient regime and stem density) in North Carolina and Virginia in 2008 and 2013. A number of common LiDAR return height and intensity distribution metrics were calculated (e.g. average return height), in addition to ten indices, with two additional variants, utilized in the surrounding literature which have been used to estimate LAI and fractional cover, were calculated from return heights and intensity, for each plot extent. Each of the indices was assessed for correlation with each other, and was used as independent variables in linear regression analysis with field LAI as the dependent variable. All LiDAR derived metrics were also entered into a forward stepwise linear regression. The results from each of the indices varied from an R2 of 0.33 (S.E. 0.87) to 0.89 (S.E. 0.36). Those indices calculated using ratios of all returns produced the strongest correlations, such as the Above and Below Ratio Index (ABRI) and Laser Penetration Index 1 (LPI1). The regression model produced from a combination of three metrics did not improve correlations greatly (R2 0.90; S.E. 0.35). The results indicate that LAI can be predicted over a range of intensively managed pine plantation forest environments accurately when using different LiDAR sensor designs. Those indices which incorporated counts of specific return numbers (e.g. first returns) or return intensity correlated poorly with field measurements. There were

  2. Sustainability assessment in forest management based on individual preferences.

    Science.gov (United States)

    Martín-Fernández, Susana; Martinez-Falero, Eugenio

    2018-01-15

    This paper presents a methodology to elicit the preferences of any individual in the assessment of sustainable forest management at the stand level. The elicitation procedure was based on the comparison of the sustainability of pairs of forest locations. A sustainability map of the whole territory was obtained according to the individual's preferences. Three forest sustainability indicators were pre-calculated for each point in a study area in a Scots pine forest in the National Park of Sierra de Guadarrama in the Madrid Region in Spain to obtain the best management plan with the sustainability map. We followed a participatory process involving fifty people to assess the sustainability of the forest management and the methodology. The results highlighted the demand for conservative forest management, the usefulness of the methodology for managers, and the importance and necessity of incorporating stakeholders into forestry decision-making processes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Resistance to wildfire and early regeneration in natural broadleaved forest and pine plantation

    Science.gov (United States)

    Proença, Vânia; Pereira, Henrique M.; Vicente, Luís

    2010-11-01

    The response of an ecosystem to disturbance reflects its stability, which is determined by two components: resistance and resilience. We addressed both components in a study of early post-fire response of natural broadleaved forest ( Quercus robur, Ilex aquifolium) and pine plantation ( Pinus pinaster, Pinus sylvestris) to a wildfire that burned over 6000 ha in NW Portugal. Fire resistance was assessed from fire severity, tree mortality and sapling persistence. Understory fire resistance was similar between forests: fire severity at the surface level was moderate to low, and sapling persistence was low. At the canopy level, fire severity was generally low in broadleaved forest but heterogeneous in pine forest, and mean tree mortality was significantly higher in pine forest. Forest resilience was assessed by the comparison of the understory composition, species diversity and seedling abundance in unburned and burned plots in each forest type. Unburned broadleaved communities were dominated by perennial herbs (e.g., Arrhenatherum elatius) and woody species (e.g., Hedera hibernica, Erica arborea), all able to regenerate vegetatively. Unburned pine communities presented a higher abundance of shrubs, and most dominant species relied on post-fire seeding, with some species also being able to regenerate vegetatively (e.g., Ulex minor, Daboecia cantabrica). There were no differences in diversity measures in broadleaved forest, but burned communities in pine forest shared less species and were less rich and diverse than unburned communities. Seedling abundance was similar in burned and unburned plots in both forests. The slower reestablishment of understory pine communities is probably explained by the slower recovery rate of dominant species. These findings are ecologically relevant: the higher resistance and resilience of native broadleaved forest implies a higher stability in the maintenance of forest processes and the delivery of ecosystem services.

  4. Involvement of allelopathy in inhibition of understory growth in red pine forests.

    Science.gov (United States)

    Kato-Noguchi, Hisashi; Kimura, Fukiko; Ohno, Osamu; Suenaga, Kiyotake

    2017-11-01

    Japanese red pine (Pinus densiflora Sieb. et Zucc.) forests are characterized by sparse understory vegetation although sunlight intensity on the forest floor is sufficient for undergrowth. The possible involvement of pine allelopathy in the establishment of the sparse understory vegetation was investigated. The soil of the red pine forest floor had growth inhibitory activity on six test plant species including Lolium multiflorum, which was observed at the edge of the forest but not in the forest. Two growth inhibitory substances were isolated from the soil and characterized to be 15-hydroxy-7-oxodehydroabietate and 7-oxodehydroabietic acid. Those compounds are probably formed by degradation process of resin acids. Resin acids are produced by pine and delivered into the soil under the pine trees through balsam and defoliation. Threshold concentrations of 15-hydroxy-7-oxodehydroabietate and 7-oxodehydroabietic acid for the growth inhibition of L. multiflorum were 30 and 10μM, respectively. The concentrations of 15-hydroxy-7-oxodehydroabietate and 7-oxodehydroabietic acid in the soil were 312 and 397μM, respectively, which are sufficient concentrations to cause the growth inhibition because of the threshold. These results suggest that those compounds are able to work as allelopathic agents and may prevent from the invasion of herbaceous plants into the forests by inhibiting their growth. Therefore, allelopathy of red pine may be involved in the formation of the sparse understory vegetation. Copyright © 2017 Elsevier GmbH. All rights reserved.

  5. Long-term management impacts on carbon storage in Lake States forests

    Science.gov (United States)

    Matthew Powers; Randall Kolka; Brian Palik; Rachel McDonald; Martin. Jurgensen

    2011-01-01

    We examined carbon storage following 50+ years of forest management in two long-term silvicultural studies in red pine and northern hardwood ecosystems of North America’s Great Lakes region. The studies contrasted various thinning intensities (red pine) or selection cuttings, shelterwoods, and diameter-limit cuttings (northern hardwoods) to unmanaged controls of...

  6. Managing coarse woody debris in forests of the Rocky Mountains

    Science.gov (United States)

    Russell T. Graham; Alan E. Harvey; Martin F. Jurgensen; Theresa B. Jain; Jonalea R. Tonn; Deborah S. Page-Dumroese

    1994-01-01

    Recommendations for managing coarse woody debris after timber harvest were developed for 14 habitat types, ranging from ponderosa pine (Pinus ponderosa) habitat types of Arizona to subalpine fir (Abies lasiocarpa) habitat types of western Montana. Ectomycorrhizae were used as a bioindicator of healthy, productive forest soils....

  7. Collaborative restoration effects on forest structure in ponderosa pine-dominated forests of Colorado

    Science.gov (United States)

    Jeffery B. Cannon; Kevin J. Barrett; Benjamin M. Gannon; Robert N. Addington; Mike A. Battaglia; Paula J. Fornwalt; Gregory H. Aplet; Antony S. Cheng; Jeffrey L. Underhill; Jennifer S. Briggs; Peter M. Brown

    2018-01-01

    In response to large, severe wildfires in historically fire-adapted forests in the western US, policy initiatives, such as the USDA Forest Service’s Collaborative Forest Landscape Restoration Program (CFLRP), seek to increase the pace and scale of ecological restoration. One required component of this program is collaborative adaptive management, in which monitoring...

  8. The lodgepole × jack pine hybrid zone in Alberta, Canada: a stepping stone for the mountain pine beetle on its journey East across the boreal forest?

    Science.gov (United States)

    Lusebrink, Inka; Erbilgin, Nadir; Evenden, Maya L

    2013-09-01

    Historical data show that outbreaks of the tree killing mountain pine beetle are often preceded by periods of drought. Global climate change impacts drought frequency and severity and is implicated in the range expansion of the mountain pine beetle into formerly unsuitable habitats. Its expanded range has recently reached the lodgepole × jack pine hybrid zone in central Alberta, Canada, which could act as a transition from its historical lodgepole pine host to a jack pine host present in the boreal forest. This field study tested the effects of water limitation on chemical defenses of mature trees against mountain pine beetle-associated microorganisms and on beetle brood success in lodgepole × jack pine hybrid trees. Tree chemical defenses as measured by monoterpene emission from tree boles and monoterpene concentration in needles were greater in trees that experienced water deficit compared to well-watered trees. Myrcene was identified as specific defensive compound, since it significantly increased upon inoculation with dead mountain pine beetles. Beetles reared in bolts from trees that experienced water deficit emerged with a higher fat content, demonstrating for the first time experimentally that drought conditions benefit mountain pine beetles. Further, our study demonstrated that volatile chemical emission from tree boles and phloem chemistry place the hybrid tree chemotype in-between lodgepole pine and jack pine, which might facilitate the host shift from lodgepole pine to jack pine.

  9. Vegetation ecology of eastern white pine and red pine forests in Ontario. Forest fragmentation and biodiversity project technical report No. 11

    Energy Technology Data Exchange (ETDEWEB)

    Carleton, T.J.

    1993-12-31

    This study explored changes in understory species composition and floristic diversity in eastern white pine and red pine stands in Ontario in relation to differences in site condition and stand age. It surveyed 170 natural, fire-origin stands containing at least a 10% component of red pine and white pine basal area throughout the Canadian Shield in Ontario during 1991 and 1992. The stands had not been previously logged and ranged in age from 50-300 years. Sampling was conducted using plots of fixed area. Within these plots, subplots were sampled to capture the variety of vegetation that occurred at different scales. Stand-level data were also recorded outside the fixed area plots. Detailed site data were also collected, including information on soils, topography, coarse woody debris (both standing and fallen), and the nature of the forest floor substrates.

  10. Managing impressions and forests

    OpenAIRE

    Ångman, Elin; Hallgren, Lars; Nordström, Eva-Maria

    2011-01-01

    Social interaction is an important—and often forgotten—aspect of conflicts in natural resource management (NRM). Building on the theoretical framework of symbolic interaction, this article explores how the concept of impression management during social interaction can help understand NRM conflicts. A qualitative study was carried out on a Swedish case involving a conflict over clear-cutting of a forest. To explain why the conflict escalated and destructivity increased, we investigated how the...

  11. Examining historical and current mixed-severity fire regimes in ponderosa pine and mixed-conifer forests of western North America.

    Directory of Open Access Journals (Sweden)

    Dennis C Odion

    Full Text Available There is widespread concern that fire exclusion has led to an unprecedented threat of uncharacteristically severe fires in ponderosa pine (Pinus ponderosa Dougl. ex. Laws and mixed-conifer forests of western North America. These extensive montane forests are considered to be adapted to a low/moderate-severity fire regime that maintained stands of relatively old trees. However, there is increasing recognition from landscape-scale assessments that, prior to any significant effects of fire exclusion, fires and forest structure were more variable in these forests. Biota in these forests are also dependent on the resources made available by higher-severity fire. A better understanding of historical fire regimes in the ponderosa pine and mixed-conifer forests of western North America is therefore needed to define reference conditions and help maintain characteristic ecological diversity of these systems. We compiled landscape-scale evidence of historical fire severity patterns in the ponderosa pine and mixed-conifer forests from published literature sources and stand ages available from the Forest Inventory and Analysis program in the USA. The consensus from this evidence is that the traditional reference conditions of low-severity fire regimes are inaccurate for most forests of western North America. Instead, most forests appear to have been characterized by mixed-severity fire that included ecologically significant amounts of weather-driven, high-severity fire. Diverse forests in different stages of succession, with a high proportion in relatively young stages, occurred prior to fire exclusion. Over the past century, successional diversity created by fire decreased. Our findings suggest that ecological management goals that incorporate successional diversity created by fire may support characteristic biodiversity, whereas current attempts to "restore" forests to open, low-severity fire conditions may not align with historical reference conditions in

  12. Examining historical and current mixed-severity fire regimes in ponderosa pine and mixed-conifer forests of western North America.

    Science.gov (United States)

    Odion, Dennis C; Hanson, Chad T; Arsenault, André; Baker, William L; Dellasala, Dominick A; Hutto, Richard L; Klenner, Walt; Moritz, Max A; Sherriff, Rosemary L; Veblen, Thomas T; Williams, Mark A

    2014-01-01

    There is widespread concern that fire exclusion has led to an unprecedented threat of uncharacteristically severe fires in ponderosa pine (Pinus ponderosa Dougl. ex. Laws) and mixed-conifer forests of western North America. These extensive montane forests are considered to be adapted to a low/moderate-severity fire regime that maintained stands of relatively old trees. However, there is increasing recognition from landscape-scale assessments that, prior to any significant effects of fire exclusion, fires and forest structure were more variable in these forests. Biota in these forests are also dependent on the resources made available by higher-severity fire. A better understanding of historical fire regimes in the ponderosa pine and mixed-conifer forests of western North America is therefore needed to define reference conditions and help maintain characteristic ecological diversity of these systems. We compiled landscape-scale evidence of historical fire severity patterns in the ponderosa pine and mixed-conifer forests from published literature sources and stand ages available from the Forest Inventory and Analysis program in the USA. The consensus from this evidence is that the traditional reference conditions of low-severity fire regimes are inaccurate for most forests of western North America. Instead, most forests appear to have been characterized by mixed-severity fire that included ecologically significant amounts of weather-driven, high-severity fire. Diverse forests in different stages of succession, with a high proportion in relatively young stages, occurred prior to fire exclusion. Over the past century, successional diversity created by fire decreased. Our findings suggest that ecological management goals that incorporate successional diversity created by fire may support characteristic biodiversity, whereas current attempts to "restore" forests to open, low-severity fire conditions may not align with historical reference conditions in most ponderosa

  13. Forest operations for ecosystem management

    Science.gov (United States)

    Robert B. Rummer; John Baumgras; Joe McNeel

    1997-01-01

    The evolution of modern forest resource management is focusing on ecologically sensitive forest operations. This shift in management strategies is producing a new set of functional requirements for forest operations. Systems to implement ecosystem management prescriptions may need to be economically viable over a wider range of piece sizes, for example. Increasing...

  14. Meeting global policy commitments carbon sequestration and southern pine forests

    Science.gov (United States)

    Kurt H. Johnsen; David N. Wear; R. Oren; R.O. Teskey; Felipe Sanchez; Rodney E. Will; John Butnor; D. Markewitz; D. Richter; T. Rials; H.L. Allen; J. Seiler; D. Ellsworth; Christopher Maier; G. Katul; P.M. Dougherty

    2001-01-01

    In managed forests, the amount of carbon further sequestered will be determined by (1) the increased amount of carbon in standing biomass (resulting from land-use changes and increased productivity); (2) the amount of recalcitrant carbon remaining below ground at the end of rotations; and (3) the amount of carbon sequestered in products created from harvested wood....

  15. Severity of a mountain pine beetle outbreak across a range of stand conditions in Fraser Experimental Forest, Colorado, United States

    Science.gov (United States)

    Anthony G. Vorster; Paul H. Evangelista; Thomas J. Stohlgren; Sunil Kumar; Charles C. Rhoades; Robert M. Hubbard; Antony S. Cheng; Kelly Elder

    2017-01-01

    The recent mountain pine beetle (Dendroctonus ponderosae Hopkins) outbreaks had unprecedented effects on lodgepole pine (Pinus contorta var. latifolia) in western North America. We used data from 165 forest inventory plots to analyze stand conditions that regulate lodgepole pine mortality across a wide range of stand structure and species composition at the Fraser...

  16. The status of whitebark pine along the Pacific Crest National Scenic Trail on the Umpqua National Forest.

    Science.gov (United States)

    Ellen Michaels Goheen; Donald J. Goheen; Katy Marshall; Robert S. Danchok; John A. Petrick; Diane E. White

    2002-01-01

    Because of concern over widespread population declines, the distribution, stand conditions, and health of whitebark pine (Pinus albicaulis Englem.) were evaluated along the Pacific Crest National Scenic Trail on the Umpqua National Forest. Whitebark pine occurred on 76 percent of the survey transects. In general, whitebark pine was found in stands...

  17. Understory vegetation response to mechanical mastication and other fuels treatments in a ponderosa pine forest

    Science.gov (United States)

    Jeffrey M. Kane; J. Morgan Varner; Eric E. Knapp

    2010-01-01

    Questions: What influence does mechanical mastication and other fuel treatments have on: (1) canopy and forest floor response variables that influence understory plant development; (2) initial understory vegetation cover, diversity, and composition; and (3) shrub and non-native species density in a secondgrowth ponderosa pine forest....

  18. Simulation of Landscape Pattern of Old Growth Forests of Korean Pine by Block Kringing

    Science.gov (United States)

    Wang Zhengquan; Wang Qingcheng; Zhang Yandong

    1997-01-01

    The study area was located in Liangshui Natural Reserve. Xaozing'an Mountains, Northeastern China. Korean pine forests are the typical forest ecosystems and landscapes in this region. It is a high degress of spatial and temporal heterogeneity at different scales, which effected on landscape pattern and processes. In this paper we used the data of 144 plots and...

  19. Use of Hardwood Tree Species by Birds Nesting in Ponderosa Pine Forests

    Science.gov (United States)

    Kathryn L. Purcell; Douglas A. Drynan

    2008-01-01

    We examined the use of hardwood tree species for nesting by bird species breeding in ponderosa pine (Pinus ponderosa) forests in the Sierra National Forest, California. From 1995 through 2002, we located 668 nests of 36 bird species nesting in trees and snags on four 60-ha study sites. Two-thirds of all species nesting in trees or snags used...

  20. Algological and Mycological Characterization of Soils under Pine and Birch Forests in the Pasvik Reserve

    Science.gov (United States)

    Korneikova, M. V.; Redkina, V. V.; Shalygina, R. R.

    2018-02-01

    The structure of algological and mycological complexes in Al-Fe-humus podzols (Albic Podzols) under pine and birch forests of the Pasvik Reserve is characterized. The number of micromycetes is higher in more acid soils of the pine forest, while the species diversity is greater under the birch forest. The genus Penicillium includes the largest number of species. The greatest abundance and occurrence frequency are typical for Penicillium spinulosum, P. glabrum, and Trichoderma viride in pine forest and for Umbelopsis isabellina, Mucor sp., Mortierella alpina, P. glabrum, Aspergillus ustus, Trichoderma viride, and T. koningii in birch forest. Cyanobacteria-algal cenoses of the investigated soils are predominated by green algae. Soils under birch forest are distinguished by a greater diversity of algal groups due to the presence of diatoms and xanthophytes. Species of frequent occurrence are represented by Pseudococcomyxa simplex and Parietochloris alveolaris in soils of the pine forest and by Tetracystis cf. aplanospora, Halochlorella rubescens, Pseudococcomyxa simplex, Fottea stichococcoides, Klebsormidium flaccidum, Hantzschia amphioxys, Microcoleus vaginatus, and Aphanocapsa sp. in soils under birch forest

  1. Coarse woody debris assay in northern Arizona mixed-conifer and ponderosa pine forests

    Science.gov (United States)

    Joseph L. Ganey; Scott C. Vojta

    2010-01-01

    Coarse woody debris (CWD) provides important ecosystem services in forests and affects fire behavior, yet information on amounts and types of CWD typically is limited. To provide such information, we sampled logs and stumps in mixed-conifer and ponderosa pine (Pinus ponderosa) forests in north-central Arizona. Spatial variability was prominent for all CWD parameters....

  2. Insect Pollinators of Three Rare Plants in a Florida Longleaf Pine Forest

    Science.gov (United States)

    Theresa Pitts-Singer; James L. Hanula; Joan L. Walker

    2002-01-01

    As a result of human activity, longleaf pine (Pinus palustris Miller) forests in the southern United States have been lost or drastically altered. Many of the plant species that historically occupied those forests now persist only as remnants and are classified as threatened or endangered. In order to safeguard such species, a better understanding of...

  3. DEVELOPING AN INDEX FOR FOREST PRODUCTIVITY MAPPING - A CASE STUDY FOR MARITIME PINE PRODUCTION REGULATION IN PORTUGAL

    Directory of Open Access Journals (Sweden)

    Susana Mestre

    2018-02-01

    Full Text Available ABSTRACT Productivity is very dependent on the environmental and biotic factors present at the site where the forest species of interest is present. Forest site productivity is usually assessed using empirical models applied to inventory data providing discrete predictions. While the use of GIS-based models enables building a site productivity distribution map. Therefore, the aim of this study was to derive a productivity index using multivariate statistics and coupled GIS-geostatistics to obtain a forest productivity map. To that end, a study area vastly covered by naturally regenerated forests of maritime pine in central Portugal was used. First, a productivity index (PI was built based on Factorial Correspondence Analysis (FCA by incorporating a classical site index for the species and region (Sh25 - height index model and GIS-derived environmental variables (slope and aspect. After, the PI map was obtained by multi-Gaussian kriging and used as a GIS layer to evaluate maritime pine areas by productivity class (e.g., low, intermediate and high. In the end, the area control method was applied to assess the size and the number of compartments to establish by productivity class. The management compartments of equal productivity were digitized as GIS layer and organized in a temporal progression of stands’ age regularly available for cutting each year during a 50-year schedule. The methodological approach developed in this study proved that can be used to build forest productivity maps which are crucial tools to support forest production regulation.

  4. State of pine decline in the southeastern United States

    Science.gov (United States)

    Lori Eckhardt; Mary Anne Sword Sayer; Don Imm

    2010-01-01

    Pine decline is an emerging forest health issue in the southeastern United States. Observations suggest pine decline is caused by environmental stress arising from competition, weather, insects and fungi, anthropogenic disturbances, and previous management. The problem is most severe for loblolly pine on sites that historically supported longleaf pine, are highly...

  5. The health of loblolly pine stands at Fort Benning, GA

    Science.gov (United States)

    Soung-Ryoul Ryu; G. Geoff Wang; Joan L. Walker

    2013-01-01

    Approximately two-thirds of the red-cockaded woodpecker (Picoides borealis) (RCW) groups at Fort Benning, GA, depend on loblolly pine (Pinus taeda) stands for nesting or foraging. However, loblolly pine stands are suspected to decline. Forest managers want to replace loblolly pine with longleaf pine (P. palustris...

  6. Why Mountain Pine Beetle Exacerbates a Principal-agent Relationship: Exploring Strategic Policy Responses to Beetle Attack in a Mixed Species Forest

    NARCIS (Netherlands)

    Bogle, T.; Kooten, van G.C.

    2012-01-01

    The management of public forestland is often carried out by private forest companies, in which case the landowner needs to exercise care in dealing with catastrophic natural disturbance. We use the mountain pine beetle (Dendroctonus ponderosae Hopkins, 1902) damage in British Columbia to explore how

  7. Stand restoration burning in oak-pine forests in the southern Applachians: effects on aboveground biomass and carbon and nitrogen cycling

    Science.gov (United States)

    Robert M. Hubbard; James M. Vose; Barton D. Clinton; Katherine J. Elliott; Jennifer D. Knoepp

    2004-01-01

    Understory prescribed burning is being suggested as a viable management tool for restoring degraded oak–pine forest communities in the southern Appalachians yet information is lacking on how this will affect ecosystem processes. Our objectives in this study were to evaluate the watershed scale effects of understory burning on total aboveground biomass, and the carbon...

  8. The status of our scientific understanding of lodgepole pine and mountain pine beetles - a focus on forest ecology and fire behavior

    Science.gov (United States)

    Merrill R. Kaufmann; Gregory H. Aplet; Michael G. Babler; William L. Baker; Barbara Bentz; Michael Harrington; Brad C. Hawkes; Laurie Stroh Huckaby; Michael J. Jenkins; Daniel M. Kashian; Robert E. Keane; Dominik Kulakowski; Ward McCaughey; Charles McHugh; Jose Negron; John Popp; William H. Romme; Wayne Shepperd; Frederick W. Smith; Elaine Kennedy Sutherland; Daniel Tinker; Thomas T. Veblen

    2008-01-01

    Mountain pine beetle populations have reached outbreak levels in lodgepole pine forests throughout North America. The geographic focus of this report centers on the southern Rocky Mountains of Colorado and southern Wyoming. The epidemic extends much more widely, however, from the southern Rocky Mountains in Colorado in the United States to the northern Rocky Mountains...

  9. Effects of bark beetle attack on canopy fuel flammability and crown fire potential in lodgepole pine and Engelmann spruce forests

    Science.gov (United States)

    Wesley G. Page; Martin E. Alexander; Michael J. Jenkins

    2015-01-01

    Large wildland fires in conifer forests typically involve some degree of crowning, with their initiation and propagation dependent upon several characteristics of the canopy fuels. Recent outbreaks of mountain pine beetle (Dendroctonus ponderosae Hopkins) in lodgepole pine (Pinus contorta Dougl. var. latifolia E ngelm.) forests and spruce beetle (Dendroctonus...

  10. Patterns of biomass and carbon distribution across a chronosequence of Chinese pine (Pinus tabulaeformis) forests.

    Science.gov (United States)

    Zhao, Jinlong; Kang, Fengfeng; Wang, Luoxin; Yu, Xiaowen; Zhao, Weihong; Song, Xiaoshuai; Zhang, Yanlei; Chen, Feng; Sun, Yu; He, Tengfei; Han, Hairong

    2014-01-01

    Patterns of biomass and carbon (C) storage distribution across Chinese pine (Pinus tabulaeformis) natural secondary forests are poorly documented. The objectives of this study were to examine the biomass and C pools of the major ecosystem components in a replicated age sequence of P. tabulaeformis secondary forest stands in Northern China. Within each stand, biomass of above- and belowground tree, understory (shrub and herb), and forest floor were determined from plot-level investigation and destructive sampling. Allometric equations using the diameter at breast height (DBH) were developed to quantify plant biomass. C stocks in the tree and understory biomass, forest floor, and mineral soil (0-100 cm) were estimated by analyzing the C concentration of each component. The results showed that the tree biomass of P. tabulaeformis stands was ranged from 123.8 Mg·ha-1 for the young stand to 344.8 Mg·ha-1 for the mature stand. The understory biomass ranged from 1.8 Mg·ha-1 in the middle-aged stand to 3.5 Mg·ha-1 in the young stand. Forest floor biomass increased steady with stand age, ranging from 14.9 to 23.0 Mg·ha-1. The highest mean C concentration across the chronosequence was found in tree branch while the lowest mean C concentration was found in forest floor. The observed C stock of the aboveground tree, shrub, forest floor, and mineral soil increased with increasing stand age, whereas the herb C stock showed a decreasing trend with a sigmoid pattern. The C stock of forest ecosystem in young, middle-aged, immature, and mature stands were 178.1, 236.3, 297.7, and 359.8 Mg C ha-1, respectively, greater than those under similar aged P. tabulaeformis forests in China. These results are likely to be integrated into further forest management plans and generalized in other contexts to evaluate C stocks at the regional scale.

  11. Patterns of biomass and carbon distribution across a chronosequence of Chinese pine (Pinus tabulaeformis forests.

    Directory of Open Access Journals (Sweden)

    Jinlong Zhao

    Full Text Available Patterns of biomass and carbon (C storage distribution across Chinese pine (Pinus tabulaeformis natural secondary forests are poorly documented. The objectives of this study were to examine the biomass and C pools of the major ecosystem components in a replicated age sequence of P. tabulaeformis secondary forest stands in Northern China. Within each stand, biomass of above- and belowground tree, understory (shrub and herb, and forest floor were determined from plot-level investigation and destructive sampling. Allometric equations using the diameter at breast height (DBH were developed to quantify plant biomass. C stocks in the tree and understory biomass, forest floor, and mineral soil (0-100 cm were estimated by analyzing the C concentration of each component. The results showed that the tree biomass of P. tabulaeformis stands was ranged from 123.8 Mg·ha-1 for the young stand to 344.8 Mg·ha-1 for the mature stand. The understory biomass ranged from 1.8 Mg·ha-1 in the middle-aged stand to 3.5 Mg·ha-1 in the young stand. Forest floor biomass increased steady with stand age, ranging from 14.9 to 23.0 Mg·ha-1. The highest mean C concentration across the chronosequence was found in tree branch while the lowest mean C concentration was found in forest floor. The observed C stock of the aboveground tree, shrub, forest floor, and mineral soil increased with increasing stand age, whereas the herb C stock showed a decreasing trend with a sigmoid pattern. The C stock of forest ecosystem in young, middle-aged, immature, and mature stands were 178.1, 236.3, 297.7, and 359.8 Mg C ha-1, respectively, greater than those under similar aged P. tabulaeformis forests in China. These results are likely to be integrated into further forest management plans and generalized in other contexts to evaluate C stocks at the regional scale.

  12. Tree Regeneration Spatial Patterns in Ponderosa Pine Forests Following Stand-Replacing Fire: Influence of Topography and Neighbors

    Directory of Open Access Journals (Sweden)

    Justin P. Ziegler

    2017-10-01

    Full Text Available Shifting fire regimes alter forest structure assembly in ponderosa pine forests and may produce structural heterogeneity following stand-replacing fire due, in part, to fine-scale variability in growing environments. We mapped tree regeneration in eighteen plots 11 to 15 years after stand-replacing fire in Colorado and South Dakota, USA. We used point pattern analyses to examine the spatial pattern of tree locations and heights as well as the influence of tree interactions and topography on tree patterns. In these sparse, early-seral forests, we found that all species were spatially aggregated, partly attributable to the influence of (1 aspect and slope on conifers; (2 topographic position on quaking aspen; and (3 interspecific attraction between ponderosa pine and other species. Specifically, tree interactions were related to finer-scale patterns whereas topographic effects influenced coarse-scale patterns. Spatial structures of heights revealed conspecific size hierarchies with taller trees in denser neighborhoods. Topography and heterospecific tree interactions had nominal effect on tree height spatial structure. Our results demonstrate how stand-replacing fires create heterogeneous forest structures and suggest that scale-dependent, and often facilitatory, rather than competitive, processes act on regenerating trees. These early-seral processes will establish potential pathways of stand development, affecting future forest dynamics and management options.

  13. Trends in Snag Populations in Drought-Stressed Mixed-Conifer and Ponderosa Pine Forests (1997–2007

    Directory of Open Access Journals (Sweden)

    Joseph L. Ganey

    2012-01-01

    Full Text Available Snags provide important biological legacies, resources for numerous species of native wildlife, and contribute to decay dynamics and ecological processes in forested ecosystems. We monitored trends in snag populations from 1997 to 2007 in drought-stressed mixed-conifer and ponderosa pine (Pinus ponderosa Dougl. ex Laws forests, northern Arizona. Median snag density increased by 75 and 90% in mixed-conifer and ponderosa pine forests, respectively, over this time period. Increased snag density was driven primarily by a large pulse in drought-mediated tree mortality from 2002 to 2007, following a smaller pulse from 1997 to 2002. Decay-class composition and size-class composition of snag populations changed in both forest types, and species composition changed in mixed-conifer forest. Increases in snag abundance may benefit some species of native wildlife in the short-term by providing increased foraging and nesting resources, but these increases may be unsustainable in the long term. Observed changes in snag recruitment and fall rates during the study illustrate the difficulty involved in modeling dynamics of those populations in an era of climate change and changing land management practices.

  14. White pine in the American West: A vanishing species - can we save it?

    Science.gov (United States)

    Leon F. Neuenschwander; James W. Byler; Alan E. Harvey; Geral I. McDonald; Denise S. Ortiz; Harold L. Osborne; Gerry C. Snyder; Arthur Zack

    1999-01-01

    Forest scientists ask that everyone, from the home gardener to the forest manager, help revive western white pine by planting it everywhere, even in nonforest environments such as our neighborhood streets, parks, and backyards. White pine, long ago considered the "King Pine," once dominated the moist inland forests of the Northwest, eventually spawning whole...

  15. Effects of Initial Stand Density and Climate on Red Pine Productivity within Huron National Forest, Michigan, USA

    Directory of Open Access Journals (Sweden)

    Joseph O'Brien

    2012-12-01

    Full Text Available Changes in climate are predicted to significantly affect the productivity of trees in the Great Lakes region over the next century. Forest management decisions, such as initial stand density, can promote climatic resiliency and moderate decreased productivity through the reduction of tree competition. The influences of climate (temperature and precipitation and forest management (initial stand density on the productivity of red pine (Pinus resinosa across multiple sites within Huron National Forest, Michigan, were examined using dendrochronological methods. Two common planting regimes were compared in this analysis; low initial density (1977 trees per hectare. Low initial density stands were found to have a higher climatic resilience by combining equal or greater measures of productivity, while having a reduced sensitivity to monthly and seasonal climate, particularly to summer drought.

  16. Reassessment of Loblolly Pine Decline on the Oakmulgee Ranger District, Talladega National Forest, Alabama

    Science.gov (United States)

    Nolan J. Hess; William J. Otroana; John P. Jones; Arthur J. Goddard; Charles H. Walkinshaw

    1999-01-01

    Loblolly pine (Pinus taeda L.) decline has been a management concern on the Oakmulgee Ranger District since the 1960's. The symptoms include sparse crowns, reduced radial growth, deterioration of fine roots, decline, and mortality of loblolly pine by age 50.

  17. Effects of dwarf mistletoe on stand structure of lodgepole pine forests 21-28 years post-mountain pine beetle epidemic in central Oregon.

    Directory of Open Access Journals (Sweden)

    Michelle C Agne

    Full Text Available Lodgepole pine (Pinus contorta forests are widely distributed throughout North America and are subject to mountain pine beetle (Dendroctonus ponderosae epidemics, which have caused mortality over millions of hectares of mature trees in recent decades. Mountain pine beetle is known to influence stand structure, and has the ability to impact many forest processes. Dwarf mistletoe (Arceuthobium americanum also influences stand structure and occurs frequently in post-mountain pine beetle epidemic lodgepole pine forests. Few studies have incorporated both disturbances simultaneously although they co-occur frequently on the landscape. The aim of this study is to investigate the stand structure of lodgepole pine forests 21-28 years after a mountain pine beetle epidemic with varying levels of dwarf mistletoe infection in the Deschutes National Forest in central Oregon. We compared stand density, stand basal area, canopy volume, proportion of the stand in dominant/codominant, intermediate, and suppressed cohorts, average height and average diameter of each cohort, across the range of dwarf mistletoe ratings to address differences in stand structure. We found strong evidence of a decrease in canopy volume, suppressed cohort height, and dominant/codominant cohort diameter with increasing stand-level dwarf mistletoe rating. There was strong evidence that as dwarf mistletoe rating increases, proportion of the stand in the dominant/codominant cohort decreases while proportion of the stand in the suppressed cohort increases. Structural differences associated with variable dwarf mistletoe severity create heterogeneity in this forest type and may have a significant influence on stand productivity and the resistance and resilience of these stands to future biotic and abiotic disturbances. Our findings show that it is imperative to incorporate dwarf mistletoe when studying stand productivity and ecosystem recovery processes in lodgepole pine forests because of its

  18. Effects of dwarf mistletoe on stand structure of lodgepole pine forests 21-28 years post-mountain pine beetle epidemic in central Oregon.

    Science.gov (United States)

    Agne, Michelle C; Shaw, David C; Woolley, Travis J; Queijeiro-Bolaños, Mónica E

    2014-01-01

    Lodgepole pine (Pinus contorta) forests are widely distributed throughout North America and are subject to mountain pine beetle (Dendroctonus ponderosae) epidemics, which have caused mortality over millions of hectares of mature trees in recent decades. Mountain pine beetle is known to influence stand structure, and has the ability to impact many forest processes. Dwarf mistletoe (Arceuthobium americanum) also influences stand structure and occurs frequently in post-mountain pine beetle epidemic lodgepole pine forests. Few studies have incorporated both disturbances simultaneously although they co-occur frequently on the landscape. The aim of this study is to investigate the stand structure of lodgepole pine forests 21-28 years after a mountain pine beetle epidemic with varying levels of dwarf mistletoe infection in the Deschutes National Forest in central Oregon. We compared stand density, stand basal area, canopy volume, proportion of the stand in dominant/codominant, intermediate, and suppressed cohorts, average height and average diameter of each cohort, across the range of dwarf mistletoe ratings to address differences in stand structure. We found strong evidence of a decrease in canopy volume, suppressed cohort height, and dominant/codominant cohort diameter with increasing stand-level dwarf mistletoe rating. There was strong evidence that as dwarf mistletoe rating increases, proportion of the stand in the dominant/codominant cohort decreases while proportion of the stand in the suppressed cohort increases. Structural differences associated with variable dwarf mistletoe severity create heterogeneity in this forest type and may have a significant influence on stand productivity and the resistance and resilience of these stands to future biotic and abiotic disturbances. Our findings show that it is imperative to incorporate dwarf mistletoe when studying stand productivity and ecosystem recovery processes in lodgepole pine forests because of its potential to

  19. Ecological consequences of mountain pine beetle outbreaks for wildlife in western North American forests

    Science.gov (United States)

    Saab, Victoria A.; Latif, Quresh S.; Rowland, Mary M.; Johnson, Tracey N.; Chalfoun, Anna D.; Buskirk, Steven W.; Heyward, Joslin E.; Dresser, Matthew A.

    2014-01-01

    Mountain pine beetle (Dendroctonus ponderosae) (MPB) outbreaks are increasingly prevalent in western North America, causing considerable ecological change in pine (Pinus spp.) forests with important implications for wildlife. We reviewed studies examining wildlife responses to MPB outbreaks and postoutbreak salvage logging to inform forest management and guide future research. Our review included 16 studies describing MPB outbreak relationships with 89 bird species and 6 studies describing relationships with 11 mammalian species, but no studies of reptiles or amphibians. We included studies that compared wildlife response metrics temporally (before versus after the outbreak) and spatially (across sites that varied in severity of outbreak) in relation to beetle outbreaks. Outbreaks ranged in size from 20,600 to ≥107 ha and studies occurred 1‐30 years after the peak MPB outbreak, but most studies were conducted over the short-term (i.e., ≤6 years after the peak of MPB-induced tree mortality). Birds were the only taxa studied frequently; however, high variability existed among those studies to allow many inferences, although some patterns were evident. Avian studies concluded that cavity-nesting species responded more favorably to beetle-killed forests than species with open-cup nests, and species nesting in the shrub layer favored outbreak forests compared with ground and open-cup canopy nesters that generally showed mixed relationships. Bark-drilling species as a group clearly demonstrated a positive short-term association with MPB epidemics compared with that of other foraging assemblages. Cavity-nesting birds that do not consume bark beetles (i.e., secondary cavity-nesting species and nonbark-drilling woodpeckers) also exhibited some positive responses to MPB outbreaks, although not as pronounced or consistent as those of bark-drilling woodpeckers. Mammalian responses to MPB outbreaks were mixed. Studies consistently reported negative effects of MPB

  20. Managing Southeastern US Forests for Increased Water Yield

    Science.gov (United States)

    Acharya, S.; Kaplan, D. A.; Mclaughlin, D. L.; Cohen, M. J.

    2017-12-01

    Forested lands influence watershed hydrology by affecting water quantity and quality in surface and groundwater systems, making them potentially effective tools for regional water resource planning. In this study, we quantified water use and water yield by pine forests under varying silvicultural management (e.g., high density plantation, thinning, and prescribed burning). Daily forest water use (evapotranspiration, ET) was estimated using continuously monitored soil-moisture in the root-zone at six sites across Florida (USA), each with six plots ranging in forest leaf-area index (LAI). Plots included stands with different rotational ages (from clear-cut to mature pine plantations) and those restored to more historical conditions. Estimated ET relative to potential ET (PET) was strongly associated with LAI, root-zone soil-moisture status, and site hydroclimate; these factors explained 85% of the variation in the ET:PET ratio. Annual water yield (Yw) calculated from these ET estimates and a simple water balance differed significantly among sites and plots (ranging from -0.12 cm/yr to > 100 cm/yr), demonstrating substantive influence of management regimes. LAI strongly influenced Yw in all sites, and a general linear model with forest attributes (LAI and groundcover), hydroclimate, and site characteristics explained >90% of variation in observed Yw. These results can be used to predict water yield changes under different management and climate scenarios and may be useful in the development of payment for ecosystem services approaches that identify water as an important product of forest best management practices.

  1. Manganese in the litter fall-forest floor continuum of boreal and temperate pine and spruce forest ecosystems

    DEFF Research Database (Denmark)

    Berg, Björn; Erhagen, Björn; Johansson, Maj-Britt

    2015-01-01

    We have reviewed the literature on the role of manganese (Mn) in the litter fall-to-humus subsystem. Available data gives a focus on North European coniferous forests. Manganese concentrations in pine (Pinus spp.) foliar litter are highly variable both spatially and temporally within the same lit...

  2. Participatory forest management in Ethiopia

    DEFF Research Database (Denmark)

    Yietagesu, Aklilu Ameha; Larsen, Helle Overgaard; Lemenih, Mulugeta

    2014-01-01

    Different arrangements of decentralized forest management have been promoted as alternatives to centralized and top down approaches to halt tropical deforestation and forest degradation. Ethiopia is one of the countries piloting one of these approaches. To inform future programs and projects...... it is essential to learn from existing pilots and experiences. This paper analyses five of the pilot participatory forest management (PFM) programs undertaken in Ethiopia. The study is based on the Forest User Group (FUG) members’ analyses of the programs using selected outcome variables: forest income, change...

  3. Management intensity and genetics affect loblolly pine seedling performance

    Science.gov (United States)

    Scott D. Roberts; Randall J. Rousseau; B. Landis Herrin

    2012-01-01

    Capturing potential genetic gains from tree improvement programs requires selection of the appropriate genetic stock and application of appropriate silvicultural management techniques. Limited information is available on how specific loblolly pine varietal genotypes perform under differing growing environments and management approaches. This study was established in...

  4. Comparison of bacterial and fungal communities between natural and planted pine forests in subtropical China.

    Science.gov (United States)

    Nie, Ming; Meng, Han; Li, Ke; Wan, Jia-Rong; Quan, Zhe-Xue; Fang, Chang-Ming; Chen, Jia-Kuan; Li, Bo

    2012-01-01

    To improve our understanding of the changes in bacterial and fungal diversity in natural pine and planted forests in subtropical region of China, we examined bacterial and fungal communities from a native and a nearby planted pine forest of the Mt. Lushan by constructing clone libraries of 16S and 18S rRNA genes. For bacterial communities, Proteobacteria and Acidobacteria were dominant bacterial taxa in both two types of forest soils. The Shannon-Wiener diversity index, rarefaction curve analysis, and LibShuff analysis suggest that these two forests contained similar diversity of bacterial communities. Low soil acidity (pH ≈ 4) of our study forests might be one of the most important selection factors determining growth of acidophilic Acidobacteria and Proteobacteria. However, the natural forest harbored greater level of fungal diversity than the planted forest according to the Shannon-Wiener diversity index and rarefaction curve analysis. Basidiomycota and Ascomycota were dominant fungal taxa in the soils of natural and planted forests, respectively. Our results suggest that fungal community was more sensitive than the bacterial community in characterizing the differences in plant cover impacts on the microbial flora in the natural and planted forests. The natural and planted forests may function differently due to the differences in soil fungal diversity and relative abundance.

  5. A Comment on “Management for Mountain Pine Beetle Outbreak Suppression: Does Relevant Science Support Current Policy?”

    Directory of Open Access Journals (Sweden)

    Christopher J. Fettig

    2014-04-01

    Full Text Available There are two general approaches for reducing the negative impacts of mountain pine beetle, Dendroctonus ponderosae Hopkins, on forests. Direct control involves short-term tactics designed to address current infestations by manipulating mountain pine beetle populations, and includes the use of fire, insecticides, semiochemicals, sanitation harvests, or a combination of these treatments. Indirect control is preventive, and designed to reduce the probability and severity of future infestations within treated areas by manipulating stand, forest and/or landscape conditions by reducing the number of susceptible host trees through thinning, prescribed burning, and/or alterations of age classes and species composition. We emphasize that “outbreak suppression” is not the intent or objective of management strategies implemented for mountain pine beetle in the western United States, and that the use of clear, descriptive language is important when assessing the merits of various treatment strategies.

  6. Does participatory forest management promote sustainable forest utilisation in Tanzania?

    DEFF Research Database (Denmark)

    Treue, Thorsten; Ngaga, Y.M.; Meilby, Henrik

    2014-01-01

    Over the past 20 years, Participatory Forest Management (PFM) has become a dominant forest management strategy in Tanzania, covering more than 4.1 million hectares. Sustainable forest use and supply of wood products to local people are major aims of PFM. This paper assesses the sustainability...... of forest utilisation under PFM, using estimates of forest condition and extraction rates based on forest inventories and 480 household surveys from 12 forests; seven under Community Based Forest Management (CBFM), three under Joint Forest Management (JFM) and two under government management (non......-PFM). Extraction of products is intense in forests close to Dar es Salaam, regardless of management regime. Further from Dar es Salaam, harvesting levels in forests under PFM are, with one prominent exception, broadly sustainable. Using GIS data from 116 wards, it is shown that half of the PFM forests in Tanzania...

  7. Variability of fire behavior, fire effects, and emissions in Scotch pine forests of central Siberia

    Science.gov (United States)

    D. J. McRae; Susan Conard; G. A. Ivanova; A. I. Sukhinin; Steve Baker; Y. N. Samsonov; T. W. Blake; V. A. Ivanov; A. V. Ivanov; T. V. Churkina; WeiMin Hao; K. P. Koutzenogij; Nataly Kovaleva

    2006-01-01

    As part of the Russian FIRE BEAR (Fire Effects in the Boreal Eurasia Region) Project, replicated 4-ha experimental fires were conducted on a dry Scotch pine (Pinus sylvestris)/lichen (Cladonia sp.)/feathermoss (Pleurozeum schreberi) forest site in central Siberia. Observations from the initial seven surface fires (2000-2001) ignited under a range of burning...

  8. Population growth and the decline of natural Southern yellow pine forests

    Science.gov (United States)

    David B. South; Edward R. Buckner

    2004-01-01

    Population growth has created social and economic pressures that affect the sustainability of naturally regenerated southern yellow pine forests. Major causes of this decline include (1) a shift in public attitudes regarding woods burning (from one favoring it to one that favors fire suppression) and (2) an increase in land values (especially near urban centers). The...

  9. Modeling precipitation-runoff relationships to determine water yield from a ponderosa pine forest watershed

    Science.gov (United States)

    Assefa S. Desta

    2006-01-01

    A stochastic precipitation-runoff modeling is used to estimate a cold and warm-seasons water yield from a ponderosa pine forested watershed in the north-central Arizona. The model consists of two parts namely, simulation of the temporal and spatial distribution of precipitation using a stochastic, event-based approach and estimation of water yield from the watershed...

  10. Dendroclimatic signals deduced from riparian versus upland forest interior pines in North Karelia, Finland

    DEFF Research Database (Denmark)

    Helama, Samuli; Arentoft, Birgitte W.; Collin-Haubensak, Olivier

    2013-01-01

    Radial growth of boreal tree species is only rarely studied in riparian habitats. Here we investigated chronologies of earlywood, latewood, and annual ring widths and blue intensity (BI; a surrogate to latewood density) from riparian lake shore and upland forest interior pines (Pinus sylvestris L...

  11. Summary (Songbird ecology in southwestern ponderosa pine forests: A literature review)

    Science.gov (United States)

    William M. Block; Deborah M. Finch; Joseph L. Ganey; William H. Moir

    1997-01-01

    Most ornithological studies in Southwestern ponderosa pine forests have yielded results that are applicable only to the specific location and particular conditions of the study areas (for example, Green 1979 and Hurlbert 1984). In addition, varying interpretation of similar study results by investigators has limited our ability to extend or synthesize research results...

  12. Risk Assessment for the Southern Pine Beetle

    Science.gov (United States)

    Andrew Birt

    2011-01-01

    The southern pine beetle (SPB) causes significant damage (tree mortality) to pine forests. Although this tree mortality has characteristic temporal and spatial patterns, the precise location and timing of damage is to some extent unpredictable. Consequently, although forest managers are able to identify stands that are predisposed to SPB damage, they are unable to...

  13. Ponderosa Pine Forest Restoration Treatment Longevity: Implications of Regeneration on Fire Hazard

    Directory of Open Access Journals (Sweden)

    Wade T. Tinkham

    2016-07-01

    Full Text Available Restoration of pine forests has become a priority for managers who are beginning to embrace ideas of highly heterogeneous forest structures that potentially encourages high levels of regeneration. This study utilizes stem-mapped stands to assess how simulated regeneration timing and magnitude influence longevity of reduced fire behavior by linking growth and yield model outputs to a crown fire prediction model. Treatment longevity was assessed as return time to within 10% of pre-treatment predicted wind speeds for the onset of passive (Torching and active (Crowning crown fire behavior. Treatment longevity in terms of Torching and Crowning was reduced 5 years for every 550 and 150 seedlings ha−1, respectively. Introducing regeneration as a single pulse further reduced Torching treatment longevity 10 years compared to other regeneration distributions. Crowning treatment longevity increased at higher site indices, where a 6 m increase in site index increased longevity 4.5 year. This result was contrary to expectations that canopy openings after treatments would close faster on higher productivity sites. Additionally, Torching longevity was influenced by the rate of crown recession, were reducing the recession rate decreased longevity in areas with higher site indices. These dependencies highlight a need for research exploring stand development in heterogeneous sites.

  14. Soil Respiration Declines Following Beetle - Induced Forest Mortality in a Lodgepole Pine Forest

    Science.gov (United States)

    Borkhuu, B.; Peckham, S. D.; Norton, U.; Ewers, B. E.; Pendall, E.

    2014-12-01

    Lodgepole pine (Pinus contorta var. latifolia) forests in northern Colorado and southeast Wyoming have been undergoing a major mortality event owing to mountain pine beetle (Dendroctonus ponderosae) infestation since 2007. We studied biotic and abiotic drivers of growing season soil respiration in four mature stands experiencing different levels of mortality between 2008 and 2012 in the Medicine Bow Mountains, southeastern Wyoming, USA. For five years, beetle infestation significantly altered forest structure. Stand mortality was 30% and more than 80% in stands with the lowest and highest mortality, respectively. Understory vegetation cover increased by 50% for five years following beetle infestation. Needlefall was increased by more than 50% during first two years of beetle infestation compared to the pre-disturbance period. We did not observe an immediate increase in soil respiration following beetle infestation as suggested by some researchers. Soil respiration rates in midsummer ranged from 1.4 ± 0.1 μmol m-2 s-1 in stands with highest mortality to 3.1 ± 0.2 μmol m-2s-1 in uninfested stand. Live tree basal area was the dominant factor controlling soil respiration, explaining more than 60% of the interannual and spatial variations in response to the disturbance. In addition, soil respiration was significantly correlated with fine root biomass, which explained 55% of variations, providing strong evidence that autotrophic respiration dominated the forest soil respiration flux. Furthermore, the seasonality of soil respiration was controlled mainly by mean monthly precipitation and mid-day photosynthetically active radiation. Each factor predicted from 30% to 50% of seasonal soil respiration variability with the highest correlation coefficients in stand with the lowest mortality. Our results clearly indicate that the reduction of photosynthesis in trees over the infestation period significantly reduced soil respiration. The remaining activity in dead stands may

  15. [Effect of pine plantations on soil arthropods in a high Andean forest].

    Science.gov (United States)

    León-Gamboa, Alba Lucía; Ramos, Carolina; García, Mary Ruth

    2010-09-01

    One of the most common problems in the Colombian mountains has been the replacement of native vegetation by pine plantations. Soil arthropods are a fundamental component of forest ecosystem, since they participate in the organic matter fragmentation, previous to decomposition. This role is more valuable in high altitude environments, where low temperatures limit the dynamics of biological processes, where the effects of pine plantations on soil arthropods are still not well-known. In a remnant of high-andean forest (Neusa - Colombia) and a pine plantation of about 50 years-old, it was evaluated the composition, richness and abundance of arthropods at surface (S), organic horizon (O) and mineral horizon (A) of soil, to establish the differences associated to the soil use transformation. It was used "Pitfall" sampling to register the movement of the epigeous fauna, and extraction by funnel Berlese for determining the fauna density from O and A horizons. The Shannon and Simpson indexes estimated the diversity at different places and horizons, and the trophic structure of the community was evaluated. Overall, there were collected 38 306 individuals from forest and 17 386 individuals from pine plantation, mainly distributed in Collembola (42.4%), Acari (27%), Diptera (17.6%) and Coleoptera (4.6%). The most important differences were given in the surface, where the mobilization in forest (86 individuals/day) almost triplicates the one in pine plantation (33 individuals/day). The differences in composition were given in Collembola, Araneae, Hemiptera, Homoptera and Hymenoptera. The dynamics of richness and abundance along the year had significant high values in the native forest than in the pine plantation. The general trophic structure was dominated by saprophagous (75%), followed by predators (14%) and phytophagous (9%), but in two layers of the pine plantation soil (S and O) this structural pattern was not given. Based on the results, it was concluded that pine

  16. Persistence of evapotranspiration impacts from mountain pine beetle outbreaks in lodgepole pine forests, south-central Rocky Mountains, USA

    Science.gov (United States)

    Vanderhoof, Melanie; Williams, Christopher

    2014-05-01

    The current extent and high severity (percent tree mortality) of mountain pine beetle outbreaks across western North America have been attributed to regional climate change, specifically warmer summer and winter temperatures and drier summers. These outbreaks are widespread and have potentially persistent impacts on forest evapotranspiration. The few data-driven studies have largely been restricted by the temporal availability of remote sensing products. This study utilized multiple mountain pine beetle outbreak location datasets, both current and historical, within lodgepole pine stands in the south-central Rocky Mountains. The full seasonal evapotranspiration impact of outbreak events for decades after outbreak (0 to 60 years) and the role of outbreak severity in determining that impact were quantified. We found a 30% reduction in evapotranspiration peaking at 14-20 years post-outbreak during the spring snowmelt period, when water was not limited, but a minimal reduction in evapotranspiration during the remainder of the growing season (June - August). We also found a significant increase in evapotranspiration, relative to non-attacked stands, in intermediate aged stands (20-40 years post-disturbance) corresponding with a peak in LAI and therefore transpiration. During the snow-cover months evapotranspiration initially increased with needle fall and snag fall and corresponding increases in albedo and shortwave transmission to the surface. We found that changes in evapotranspiration during all seasons dissipated by 60 years post-attack. MODIS evapotranspiration values responded most strongly to mountain pine beetle driven changes in net radiation or available energy, and vegetation cover (e.g. LAI, fPAR and EVI). It also appears that the post-attack response of evapotranspiration may be sensitive to precipitation patterns and thus the consequences of a disturbance event may depend on the directionality of climate change conditions.

  17. Season of prescribed burn in ponderosa pine forests in eastern Oregon: impact on pine mortality.

    Science.gov (United States)

    Walter G. Thies; Douglas J. Westlind; Mark. Loewen

    2005-01-01

    A study of the effects of season of prescribed burn on tree mortality was established in mixed-age ponderosa pine (Pinus ponderosa Dougl. ex Laws.) at the south end of the Blue Mountains near Burns, Oregon. Each of six previously thinned stands was subdivided into three experimental units and one of three treatments was randomly assigned to each:...

  18. Effects of thinning intensities on soil infiltration and water storage capacity in a Chinese pine-oak mixed forest.

    Science.gov (United States)

    Chen, Lili; Yuan, Zhiyou; Shao, Hongbo; Wang, Dexiang; Mu, Xingmin

    2014-01-01

    Thinning is a crucial practice in the forest ecosystem management. The soil infiltration rate and water storage capacity of pine-oak mixed forest under three different thinning intensity treatments (15%, 30%, and 60%) were studied in Qinling Mountains of China. The thinning operations had a significant influence on soil infiltration rate and water storage capacity. The soil infiltration rate and water storage capacity in different thinning treatments followed the order of control (nonthinning): soil infiltration rate and water storage capacity of pine-oak mixed forest in Qinling Mountains. The soil initial infiltration rate, stable infiltration rate, and average infiltration rate in thinning 30% treatment were significantly increased by 21.1%, 104.6%, and 60.9%, compared with the control. The soil maximal water storage capacity and noncapillary water storage capacity in thinning 30% treatment were significantly improved by 20.1% and 34.3% in contrast to the control. The soil infiltration rate and water storage capacity were significantly higher in the surface layer (0~20 cm) than in the deep layers (20~40 cm and 40~60 cm). We found that the soil property was closely related to soil infiltration rate and water storage capacity.

  19. Spatial variability of turbulent fluxes in the roughness sublayer of an even-aged pine forest

    Science.gov (United States)

    Katul, G.; Hsieh, C.-I.; Bowling, D.; Clark, K.; Shurpali, N.; Turnipseed, A.; Albertson, J.; Tu, K.; Hollinger, D.; Evans, B. M.; Offerle, B.; Anderson, D.; Ellsworth, D.; Vogel, C.; Oren, R.

    1999-01-01

    The spatial variability of turbulent flow statistics in the roughness sublayer (RSL) of a uniform even-aged 14 m (= h) tall loblolly pine forest was investigated experimentally. Using seven existing walkup towers at this stand, high frequency velocity, temperature, water vapour and carbon dioxide concentrations were measured at 15.5 m above the ground surface from October 6 to 10 in 1997. These seven towers were separated by at least 100 m from each other. The objective of this study was to examine whether single tower turbulence statistics measurements represent the flow properties of RSL turbulence above a uniform even-aged managed loblolly pine forest as a best-case scenario for natural forested ecosystems. From the intensive space-time series measurements, it was demonstrated that standard deviations of longitudinal and vertical velocities (??(u), ??(w)) and temperature (??(T)) are more planar homogeneous than their vertical flux of momentum (u(*)2) and sensible heat (H) counterparts. Also, the measured H is more horizontally homogeneous when compared to fluxes of other scalar entities such as CO2 and water vapour. While the spatial variability in fluxes was significant (> 15%), this unique data set confirmed that single tower measurements represent the 'canonical' structure of single-point RSL turbulence statistics, especially flux-variance relationships. Implications to extending the 'moving-equilibrium' hypothesis for RSL flows are discussed. The spatial variability in all RSL flow variables was not constant in time and varied strongly with spatially averaged friction velocity u(*), especially when u(*) was small. It is shown that flow properties derived from two-point temporal statistics such as correlation functions are more sensitive to local variability in leaf area density when compared to single point flow statistics. Specifically, that the local relationship between the reciprocal of the vertical velocity integral time scale (I(w)) and the arrival

  20. Forested communities of the pine mountain region, Georgia, USA

    Science.gov (United States)

    Robert Floyd; Robert Carter

    2013-01-01

    Seven landscape scale communities were identified in the Pine Mountain region having a mixture of Appalachian, Piedmont, and Coastal Plain species. The diagnostic environmental variables included elevation, B-horizon depth, A-horizon silt, topographic relative moisture index, and A-horizon potassium (K).

  1. Soil water regime under homogeneous eucalyptus and pine forests

    International Nuclear Information System (INIS)

    Lima, W.P.; Reichardt, K.

    1977-01-01

    Measurement of precipitation and monthly soil water content during two consecutive years, in 6-year old plantations of eucalypt and pine, and also in an open plot containing natural herbaceous vegetation, were used to compare the soil water regime of these vegetation covers. Precipitation was measured in the open plot with a recording and a non-recording rain gage. Soil water was assessed by the neutron scattering technique to a depth of 1,80 meters. Results indicate that there was, in general, water available in the soil over the entire period of study in all three vegetation conditions. The annual range of soil water in eucalypt, pine, and in natural herbaceous vegetation was essentially similar. The analysis of the average soil water regime showed that the soil under herbaceous vegetation was, generally, more umid than the soil under eucalypt and pine during the period of soil water recharge (September through February); during the period of soil water depletion, the opposite was true. Collectively, the results permit the conclusion that there were no adverse effects on the soil water regime which could be ascribed to reflorestation with eucalypt or pine, as compared with that observed for the natural herbaceous vegetation [pt

  2. A multi-century analysis of disturbance dynamics in pine-oak forests of the Missouri Ozark Highlands

    Science.gov (United States)

    Chad King; Rose-Marie. Muzika

    2013-01-01

    Using dendrochronology and growth release approaches, we analyzed the disturbance history of shortleaf pine (Pinus echinata Mich.) white oak (Quercus alba L.) forests in the Missouri Ozark Highlands. The objectives of this study were to (1) identify growth release events using living and remnant shortleaf pine and white oak, (2)...

  3. Earthworms, arthropods and plant litter decomposition in aspen (Populus tremuloides) and lodgepole pine(Pinus contorta) forests in Colorado, USA

    Science.gov (United States)

    Grizelle Gonzalez; Timothy R. Seastedt; Zugeily Donato

    2003-01-01

    We compared the abundance and community composition of earthworms, soil macroarthropods, and litter microarthropods to test faunal effects on plant litter decomposition rates in two forests in the subalpine in Colorado, USA. Litterbags containing recently senesced litter of Populus tremuloides (aspen) and Pinus contorta (lodgepole pine) were placed in aspen and pine...

  4. Effects of mountain pine beetle on fuels and expected fire behavior in lodgepole pine forests, Colorado, USA.

    Science.gov (United States)

    Schoennagel, Tania; Veblen, Thomas T; Negron, José F; Smith, Jeremy M

    2012-01-01

    In Colorado and southern Wyoming, mountain pine beetle (MPB) has affected over 1.6 million ha of predominantly lodgepole pine forests, raising concerns about effects of MPB-caused mortality on subsequent wildfire risk and behavior. Using empirical data we modeled potential fire behavior across a gradient of wind speeds and moisture scenarios in Green stands compared three stages since MPB attack (Red [1-3 yrs], Grey [4-10 yrs], and Old-MPB [∼30 yrs]). MPB killed 50% of the trees and 70% of the basal area in Red and Grey stages. Across moisture scenarios, canopy fuel moisture was one-third lower in Red and Grey stages compared to the Green stage, making active crown fire possible at lower wind speeds and less extreme moisture conditions. More-open canopies and high loads of large surface fuels due to treefall in Grey and Old-MPB stages significantly increased surface fireline intensities, facilitating active crown fire at lower wind speeds (>30-55 km/hr) across all moisture scenarios. Not accounting for low foliar moistures in Red and Grey stages, and large surface fuels in Grey and Old-MPB stages, underestimates the occurrence of active crown fire. Under extreme burning conditions, minimum wind speeds for active crown fire were 25-35 km/hr lower for Red, Grey and Old-MPB stands compared to Green. However, if transition to crown fire occurs (outside the stand, or within the stand via ladder fuels or wind gusts >65 km/hr), active crown fire would be sustained at similar wind speeds, suggesting observed fire behavior may not be qualitatively different among MPB stages under extreme burning conditions. Overall, the risk (probability) of active crown fire appears elevated in MPB-affected stands, but the predominant fire hazard (crown fire) is similar across MPB stages and is characteristic of lodgepole pine forests where extremely dry, gusty weather conditions are key factors in determining fire behavior.

  5. Effects of Mountain Pine Beetle on Fuels and Expected Fire Behavior in Lodgepole Pine Forests, Colorado, USA

    Science.gov (United States)

    Schoennagel, Tania; Veblen, Thomas T.; Negron, José F.; Smith, Jeremy M.

    2012-01-01

    In Colorado and southern Wyoming, mountain pine beetle (MPB) has affected over 1.6 million ha of predominantly lodgepole pine forests, raising concerns about effects of MPB-caused mortality on subsequent wildfire risk and behavior. Using empirical data we modeled potential fire behavior across a gradient of wind speeds and moisture scenarios in Green stands compared three stages since MPB attack (Red [1–3 yrs], Grey [4–10 yrs], and Old-MPB [∼30 yrs]). MPB killed 50% of the trees and 70% of the basal area in Red and Grey stages. Across moisture scenarios, canopy fuel moisture was one-third lower in Red and Grey stages compared to the Green stage, making active crown fire possible at lower wind speeds and less extreme moisture conditions. More-open canopies and high loads of large surface fuels due to treefall in Grey and Old-MPB stages significantly increased surface fireline intensities, facilitating active crown fire at lower wind speeds (>30–55 km/hr) across all moisture scenarios. Not accounting for low foliar moistures in Red and Grey stages, and large surface fuels in Grey and Old-MPB stages, underestimates the occurrence of active crown fire. Under extreme burning conditions, minimum wind speeds for active crown fire were 25–35 km/hr lower for Red, Grey and Old-MPB stands compared to Green. However, if transition to crown fire occurs (outside the stand, or within the stand via ladder fuels or wind gusts >65 km/hr), active crown fire would be sustained at similar wind speeds, suggesting observed fire behavior may not be qualitatively different among MPB stages under extreme burning conditions. Overall, the risk (probability) of active crown fire appears elevated in MPB-affected stands, but the predominant fire hazard (crown fire) is similar across MPB stages and is characteristic of lodgepole pine forests where extremely dry, gusty weather conditions are key factors in determining fire behavior. PMID:22272268

  6. A Prospectus on Restoring Late Successional Forest Structure to Eastside Pine Ecosystems Through Large-Scale, Interdisciplinary Research

    Science.gov (United States)

    Steve Zack; William F. Laudenslayer; Luke George; Carl Skinner; William Oliver

    1999-01-01

    At two different locations in northeast California, an interdisciplinary team of scientists is initiating long-term studies to quantify the effects of forest manipulations intended to accelerate andlor enhance late-successional structure of eastside pine forest ecosystems. One study, at Blacks Mountain Experimental Forest, uses a split-plot, factorial, randomized block...

  7. Strategies for preventing invasive plant outbreaks after prescribed fire in ponderosa pine forest

    Science.gov (United States)

    Symstad, Amy J.; Newton, Wesley E.; Swanson, Daniel J.

    2014-01-01

    Land managers use prescribed fire to return a vital process to fire-adapted ecosystems, restore forest structure from a state altered by long-term fire suppression, and reduce wildfire intensity. However, fire often produces favorable conditions for invasive plant species, particularly if it is intense enough to reveal bare mineral soil and open previously closed canopies. Understanding the environmental or fire characteristics that explain post-fire invasive plant abundance would aid managers in efficiently finding and quickly responding to fire-caused infestations. To that end, we used an information-theoretic model-selection approach to assess the relative importance of abiotic environmental characteristics (topoedaphic position, distance from roads), pre-and post-fire biotic environmental characteristics (forest structure, understory vegetation, fuel load), and prescribed fire severity (measured in four different ways) in explaining invasive plant cover in ponderosa pine forest in South Dakota’s Black Hills. Environmental characteristics (distance from roads and post-fire forest structure) alone provided the most explanation of variation (26%) in post-fire cover of Verbascum thapsus (common mullein), but a combination of surface fire severity and environmental characteristics (pre-fire forest structure and distance from roads) explained 36–39% of the variation in post-fire cover of Cirsium arvense (Canada thistle) and all invasives together. For four species and all invasives together, their pre-fire cover explained more variation (26–82%) in post-fire cover than environmental and fire characteristics did, suggesting one strategy for reducing post-fire invasive outbreaks may be to find and control invasives before the fire. Finding them may be difficult, however, since pre-fire environmental characteristics explained only 20% of variation in pre-fire total invasive cover, and less for individual species. Thus, moderating fire intensity or targeting areas

  8. Mountain pine beetle-killed lodgepole pine for the production of submicron lignocellulose fibrils

    Science.gov (United States)

    Ingrid Hoeger; Rolland Gleisner; Jose Negron; Orlando J. Rojas; J. Y. Zhu

    2014-01-01

    The elevated levels of tree mortality attributed to mountain pine beetle (MPB) (Dendroctonus ponderosae Hopkins) in western North American forests create forest management challenges. This investigation introduces the production of submicron or nanometer lignocellulose fibrils for value-added materials from the widely available resource represented by dead pines after...

  9. Complexity of Forest Management: Exploring Perceptions of Dutch Forest Managers

    Directory of Open Access Journals (Sweden)

    Jilske O. de Bruin

    2015-09-01

    Full Text Available Challenges of contemporary forest management are frequently referred to as complex. This article empirically studies complexity in forest management decision-making. In contrast to what is often assumed in the literature, this article starts by assuming that complexity does not just consist of an external descriptive element, but also depends on how decision-makers perceive the system at hand. This “perceived complexity” determines decision-making. We used a straightforward interpretation of perceived complexity using two criteria: the number of factors considered and the uncertainty perceived about these factors. The results show that Dutch forest managers generally consider forest management decision-making to be complicated (many factors to consider rather than complex (many uncertain factors to consider. Differences in sources of complexity confirm the individual character of perceived complexity. The factors perceived to be most relevant for decision-making (the forest itself, the organization’s objective, the cost of management, public opinion, national policies and laws, and new scientific insights and ideas are generally seen as rather certain, although “complexity reduction” may play a role that can adversely affect the quality of decision-making. Additional use of more open-ended, forward-looking methods, such as qualitative foresight tools, might enable addressing uncertainty and complexity, and thereby enhance decision-making in forest management to prepare for increasing complexity in the future.

  10. Age-related patterns of forest complexity and carbon storage in pine and aspen-birch ecosystems of northern Minnesota, USA

    International Nuclear Information System (INIS)

    Bradford, J.B.; Kastendick, D.N.

    2010-01-01

    Forest managers are now developing strategies to mitigate increases in atmospheric carbon dioxide (CO 2 ) and help stands to adapt to new climatic conditions. This study characterized the influence of stand age on carbon storage and sequestration in chronosequences of even-aged red pine and aspen-birch stands in northern Minnesota. The aim of the study was to determine the impact of age-related management strategies on carbon storage and forest complexity. The pine chronosequences ranged from 7 to 160 years. Aspen chronosequences ranged from 6 to 133 years. Field measurements of the trees were compiled into 5 carbon pools. Carbon storage variables were averaged within each stand in order to conduct a regression analysis. The study showed that forest complexity was positively related to stand age in all of the measured response variables except species richness. Relationships between compositional complexity and stand age depended on forest type. Total carbon storage also increased with age. Results of the study showed that age plays an important role in overall ecosystem carbon storage. The study can be used to provide insights into the overall costs and benefits of forest management strategies that favour younger or older forests. 45 refs., 2 figs.

  11. Management Options for a High Elevation Forest in the Alps

    Science.gov (United States)

    Jandl, R.; Jandl, N.; Schindlbacher, A.

    2013-12-01

    We explored different management strategies for a Cembran pine forest close to the timber line with respect to maintenance of the stand structure, the sequestration of carbon in the biomass and the soil, and the economical relevance of timber production. We used the forest growth simulation model Caldis for the implementation of three management intensities (zero managment, thinning every 30 years, thinning every 50 years) under two climate scenarios (IPCC A1B and B1). The soil carbon dynamics were analyzed with the simulation model Yasso07. The ecological evaluation of our simulation data showed that the extensive management with cutting interventions every 50 years allows the maintenance of the ecosystem carbon pool. Zero managment leads to the build-up of the carbon pool because the forest stand is rather unvulnerable to disturbances (bark beetle, storm). The more intensive mangement causes a decline in the ecosystem carbon pool. The economical evaluation showed the marginal relevance of the income generated by timber production. The main challenge is the compensation for the high harvesting costs (long-distance cable logging system). Even at extremely favorable market prices for timber from Cembran pine it is impossible to extract an appropriate amount of timber to justify the temporary instalment of the harvesting system and to maintain a stand density expected for a protection forest. We conclude that timber production is not a feasible object for mountain forests close to the timber line. Even in a warmer climate the productivity situation of forests close to the timberline will not change sufficiently. Therefore it will require public subsidies and personal efforts to maintain the silvicultural intensity at a level that is required for the sustainable maintenance of protection forests.

  12. Intentional systems management: managing forests for biodiversity.

    Science.gov (United States)

    A.B. Carey; B.R. Lippke; J. Sessions

    1999-01-01

    Conservation of biodiversity provides for economic, social, and environmental sustainability. Intentional management is designed to manage conflicts among groups with conflicting interests. Our goal was to ascertain if intentional management and principles of conservation of biodiversity could be combined into upland and riparian forest management strategies that would...

  13. Macromycetes diversity of pine-tree plantings on a post-fire forest site in Notecka Forest (NW Poland

    Directory of Open Access Journals (Sweden)

    Stefan Friedrich

    2014-08-01

    Full Text Available The article presents the results of a study on fungi in pine-tree plantings after the last great fire in Notecka Forest. The occurrence of 134 species of fungi and 3 species of myxomycetes was recorded in 25 permanent study areas investigated between 1993 and 1998. The particpalion of bio-ecological of macromycetes was described in the context of vegetation changes in the years following the fire.

  14. The frequency of forest fires in Scots pine stands of Tuva, Russia

    Energy Technology Data Exchange (ETDEWEB)

    Ivanova, G A; Kukavskaya, E A [Russian Academy of Sciences, Siberian Branch, V N Sukachev Institute of Forest, Akademgorodok, Krasnoyarsk, 660036 (Russian Federation); Ivanov, V A [Siberian State Technological University, Krasnoyarsk, 660049 (Russian Federation); Soja, A J, E-mail: GAIvanova@ksc.krasn.r [National Institute of Aerospace, Resident at NASA Langley Research Center, MS 420, Hampton, VA 23681-2199 (United States)

    2010-01-15

    Forest fires resulting from long periods of drought cause extensive forest ecosystem destruction and can impact on the carbon balance and air quality and feed back to the climate system, regionally and globally. Past fire frequency is reconstructed for Tuvan Scots pine stands using dendrochronology and statistics. Central Tuvan Scots pine (Pinus sylvestris) stands are subject to annual fire regimes; however high intensity fires are rare but they are responsible for most of the damage. Low, medium, and high severity fires have shaped the multi-story Scots pine communities, locally and regionally. Fire type and frequency are directly related to weather and climate and are also dependent on anthropogenic influences. The primary dry period, which promotes fire ignition and spread, in Tuva occurs in April and May. In some years, the precipitation deficit combined with high air temperatures induces long periods of drought. Unlike the typical surface fire regime, forest fires that burn during these extreme droughts often become crown fires that result in substantial forest damage and carbon release. The mean fire interval (MFI) is found to be 10.4 years in Balgazyn stands, and the landscape-scale MFI is 22.4 years. High severity, stand-replacing crown fires have a longer MFI. The warmer and dryer weather that is predicted by global climate models is evident in Tuva, and we believe that these changes in weather and climate have resulted in increased fire intensity and severity, rather than fire frequency in the Tuvan region.

  15. The frequency of forest fires in Scots pine stands of Tuva, Russia

    International Nuclear Information System (INIS)

    Ivanova, G A; Kukavskaya, E A; Ivanov, V A; Soja, A J

    2010-01-01

    Forest fires resulting from long periods of drought cause extensive forest ecosystem destruction and can impact on the carbon balance and air quality and feed back to the climate system, regionally and globally. Past fire frequency is reconstructed for Tuvan Scots pine stands using dendrochronology and statistics. Central Tuvan Scots pine (Pinus sylvestris) stands are subject to annual fire regimes; however high intensity fires are rare but they are responsible for most of the damage. Low, medium, and high severity fires have shaped the multi-story Scots pine communities, locally and regionally. Fire type and frequency are directly related to weather and climate and are also dependent on anthropogenic influences. The primary dry period, which promotes fire ignition and spread, in Tuva occurs in April and May. In some years, the precipitation deficit combined with high air temperatures induces long periods of drought. Unlike the typical surface fire regime, forest fires that burn during these extreme droughts often become crown fires that result in substantial forest damage and carbon release. The mean fire interval (MFI) is found to be 10.4 years in Balgazyn stands, and the landscape-scale MFI is 22.4 years. High severity, stand-replacing crown fires have a longer MFI. The warmer and dryer weather that is predicted by global climate models is evident in Tuva, and we believe that these changes in weather and climate have resulted in increased fire intensity and severity, rather than fire frequency in the Tuvan region.

  16. Climate change and forest plagues: the case of the pine

    OpenAIRE

    Seixas Arnaldo, P.; Oliveira, I.; Santos, J.; Leite, S.

    2011-01-01

    The pine processionary moth, Thaumetopoea pityocampa (Den. & Schiff.) (Lep., Thaumetopoeidae) is known as the most defoliating insect in Pinus and Cedrus in many countries. In the last three decades, climate change has led to a substantial expansion of its range and high attack rates in previously unaffected areas were observed. A 3-year analysis of the effect of several climatic elements on the T. pityocampa adult emergence was made and one climatic change scenario was tested in order to pre...

  17. Longleaf pine restoration in context comparisons of frequent fire forests

    Science.gov (United States)

    Seth Bigelow; Michael C. Stambaugh; Joseph J. O' Brien; Andrew J. Larson; Michael A. Battaglia

    2018-01-01

    To see a frequent-fire forest burn for the first time is to experience a remarkable teat of nature. Most people are accustomed to the slow change of forests with the seasons, not the instantaneous conversion of green and brown plant mass to smoke and char. Yet to visit such a forest a week after it bums is to see bright green shoots emerging, highlighted against a...

  18. Thirty year change in lodgepole and lodgepole/mixed conifer forest structure following 1980s mountain pine beetle outbreak in western Colorado, USA

    Science.gov (United States)

    Kristen A. Pelz; Frederick W. Smith

    2012-01-01

    Current mortality in lodgepole pine caused by mountain pine beetle (MPB) throughout much of western North America has resulted in concern about future forest structure. To better understand the long-term effects of the current mortality, and how it might differ depending on forest species composition, we measured forest vegetation and woody fuel accumulations...

  19. Strategies for managing whitebark pine in the presence of white pine blister rust [Chapter 17

    Science.gov (United States)

    Raymond J. Hoff; Dennis E. Ferguson; Geral I. McDonald; Robert E. Keane

    2001-01-01

    Whitebark pine (Pinus albicaulis) is one of many North American white pine species (Pinus subgenus Strobus) susceptible to the fungal disease white pine blister rust (Cronartium ribicola). Blister rust has caused severe mortality (often reaching nearly 100 percent) in many stands of white bark pine north of 45° latitude in western North America. The rust is slowly...

  20. White pine blister rust in northern ldaho and western Montana: alternatives for integrated management

    Science.gov (United States)

    Susan K. Hagle; Geral I. McDonald; Eugene A. Norby

    1989-01-01

    This report comprises a handbook for managing western white pine in northern ldaho and western Montana, under the threat of white pine blister rust. Various sections cover the history of the disease and efforts to combat it, the ecology of the white pine and Ribes, alternate host of the rust, and techniques for evaluating the rust hazard and attenuating it. The authors...

  1. A biologically-based individual tree model for managing the longleaf pine ecosystem

    Science.gov (United States)

    Rick Smith; Greg Somers

    1998-01-01

    Duration: 1995-present Objective: Develop a longleaf pine dynamics model and simulation system to define desirable ecosystem management practices in existing and future longleaf pine stands. Methods: Naturally-regenerated longleaf pine trees are being destructively sampled to measure their recent growth and dynamics. Soils and climate data will be combined with the...

  2. The state of mixed shortleaf pine-upland oak management in Missouri

    Science.gov (United States)

    Elizabeth M. Blizzard; David R. Larsen; Daniel C. Dey; John M. Kabrick; David Gwaze

    2007-01-01

    Mixed shortleaf pine-upland oak stands allow flexibility in type and timing of regeneration, release, and harvesting treatments for managers; provide unique wildlife and herbaceous community niches; and increase visual diversity. Most of the research to date focused on growing pure pine or oak stands, with little research on today's need to grow pine-oak mixtures...

  3. Silvicultural approaches for management of eastern white pine to minimize impacts of damaging agents

    Science.gov (United States)

    M.E. Ostry; G. Laflamme; S.A. Katovich

    2010-01-01

    Since the arrival to North America of Cronartium ribicola, management of eastern white pine has been driven by the need to avoid the actual or, in many areas, the perceived damage caused by white pine blister rust. Although white pine has lost much of its former dominance, it remains a valuable species for biotic diversity, aesthetics, wildlife...

  4. Pine straw production: from forest to front yard

    Science.gov (United States)

    Janice F. Dyer; Rebecca J. Barlow; John S. Kush; John C. Gilbert

    2012-01-01

    Southern forestry may be undergoing a paradigm shift in which timber production is not necessarily the major reason for owning forested land. However, there remains interest in generating income from the land and landowners are exploring alternatives, including agroforestry practices and production of non-timber forest products (NTFPs). One such alternative more recent...

  5. Rare Plants of the Redwood Forest and Forest Management Effects

    Science.gov (United States)

    Teresa Sholars; Clare Golec

    2007-01-01

    Coast redwood forests are predominantly a timber managed habitat type, subjected to repeated disturbances and short rotation periods. What does this repeated disturbance mean for rare plants associated with the redwood forests? Rare plant persistence through forest management activities is influenced by many factors. Persistence of rare plants in a managed landscape is...

  6. Ecological modeling for forest management in the Shawnee National Forest

    Science.gov (United States)

    Richard G. Thurau; J.F. Fralish; S. Hupe; B. Fitch; A.D. Carver

    2008-01-01

    Land managers of the Shawnee National Forest in southern Illinois are challenged to meet the needs of a diverse populace of stakeholders. By classifying National Forest holdings into management units, U.S. Forest Service personnel can spatially allocate resources and services to meet local management objectives. Ecological Classification Systems predict ecological site...

  7. The genetics of shortleaf pine (Pinus echinata mill.) with implications for restoration and management

    Science.gov (United States)

    John F. Stewart; Rodney E. Will; Barbara S. Crane; C. Dana Nelson

    2016-01-01

    Shortleaf pine (Pinus echinata Mill.) is an important commercial timber resource and forest ecosystem component in the southeastern USA. The species occurs in mainly drier sites as an early- to mid-successional species, is fireadapted, and it plays an important role in the fire ecology of the region. However, shortleaf pine genetics are not well-studied, especially in...

  8. Preempting the pathogen: Blister rust and proactive management of high-elevation pines

    Science.gov (United States)

    Sue Miller; Anna Schoettle; Kelly Burns; Richard Sniezko; Patty Champ

    2017-01-01

    White pine blister rust has been spreading through western forests since 1910, causing widespread mortality in a group that includes some of the oldest and highest-elevation pines in the United States. The disease has recently reached Colorado and is expected to travel through the southern Rockies. Although it cannot be contained, RMRS researchers and collaborators are...

  9. Phospholipid fatty acid composition of microorganisms in pine forest soils of Central Siberia

    Czech Academy of Sciences Publication Activity Database

    Evgrafova, S.Yu.; Šantrůčková, H.; Shibistova, O.B.; Elhottová, Dana; Černá, B.; Zrazhevskaya, G.K.; Lloyd, D.

    2008-01-01

    Roč. 35, č. 5 (2008), s. 452-458 ISSN 1062-3590 Grant - others:Evropská unie(XE) 03-55-1344; Ministry of Education and Science of the Russian Federation(RU) RUX0-002-KR-06 Institutional research plan: CEZ:AV0Z60660521 Keywords : phospholipid fatty acid * microorganisms * pine forest soils Subject RIV: EH - Ecology, Behaviour Impact factor: 0.082, year: 2008

  10. Relationships between spectral and bird species rarefaction curves in a brutian pine forest ecosystem

    OpenAIRE

    Özdemir, İbrahim; Mert, Ahmet; Özkan, Ulaş Yunus; Aksan, Şengül; Ünal, Yasin

    2017-01-01

    This study aimed at determining the relations betweenspectral and bird species rarefaction curves in a brutian pine forest ecosystemlocated in the Fethiye region, Turkey. Bird species were counted by fieldworkin 40 sample plots with 0.81 ha (90 x 90 m). The NDVITOA values of pixelsbelonging to each plot (pixel numbers are 36, 81 and 324 for Aster, SPOT andRapidEye, respectively) were calculated. Spectral and bird species rarefactioncurves were formed by means of EstimatesS software. The relat...

  11. Analysis of the prescribed burning practice in the pine forest of northwestern Portugal.

    Science.gov (United States)

    Fernandes, P; Botelho, H

    2004-01-01

    The ignition of low-intensity fires in the dormant season in the pine stands of north-western Portugal seeks to reduce the existing fuel hazard without compromising site quality. The purpose of this study is to characterise this practice and assess its effectiveness, based on information resulting from the normal monitoring process at the management level, and using operational guidelines, fire behaviour models and a newly developed method to classify prescribed fire severity. Although the region's humid climate strongly constrains the activity of prescribed fire, 87% of the fires analysed were undertaken under acceptable meteorological and fuel moisture conditions. In fact, most operations achieved satisfactory results. On average, prescribed fire reduces by 96% the potential intensity of a wildfire occurring under extreme weather conditions, but 36% of the treated sites would still require heavy fire fighting resources to suppress such fire, and 17% would still carry it in the tree canopy. Only 10% of the prescribed burns have an excessive impact on trees or the forest floor, while 89% (normal fire weather) or 59% (extreme fire weather) comply with both ecological integrity maintenance and wildfire protection needs. Improved planning and monitoring procedures are recommended in order to overcome the current deficiencies.

  12. Litter Decomposition and Soil Respiration Responses to Fuel-Reduction Treatments in Piedmond Loblolly Pine Forests

    Science.gov (United States)

    Mac A. Callaham; Peter H. Anderson; Thomas A. Waldrop; Darren J. Lione; Victor B. Shelburne

    2004-01-01

    As part of the National Fire and Fire Surrogate Study, we measured the short-term effects of different fuel-management practices on leaf litter decomposition and soil respiration in loblolly pine stands on the upper Piedmont of South Carolina. These stands had been subjected to a factorial arrangement of experimental fuel-management treatments that included prescribed...

  13. Vertical zonation of soil fungal community structure in a Korean pine forest on Changbai Mountain, China.

    Science.gov (United States)

    Ping, Yuan; Han, Dongxue; Wang, Ning; Hu, Yanbo; Mu, Liqiang; Feng, Fujuan

    2017-01-01

    Changbai Mountain, with intact montane vertical vegetation belts, is located at a sensitive area of global climate change and a central distribution area of Korean pine forest. Broad-leaved Korean pine mixed forest (Pinus koraiensis as an edificator) is the most representative zonal climax vegetation in the humid region of northeastern China; their vertical zonation is the most intact and representative on Changbai Mountain. In this study, we analyzed the composition and diversity of soil fungal communities in the Korean pine forest on Changbai Mountain at elevations ranging from 699 to 1177 m using Illumina High-throughput sequencing. We obtained a total 186,663 optimized sequences, with an average length of 268.81 bp. We found soil fungal diversity index was decreased with increasing elevation from 699 to 937 m and began to rise after reaching 1044 m; the richness and evenness indices were decreased with an increase in elevation. Soil fungal compositions at the phylum, class and genus levels varied significantly at different elevations, but with the same dominant fungi. Beta-diversity analysis indicated that the similarity of fungal communities decreased with an increased vertical distance between the sample plots, showing a distance-decay relationship. Variation partition analysis showed that geographic distance (mainly elevation gradient) only explained 20.53 % of the total variation of fungal community structure, while soil physicochemical factors explained 69.78 %.

  14. Diseases of lodgepole pine

    Science.gov (United States)

    Frank G. Hawksworth

    1964-01-01

    Diseases are a major concern to forest managers throughout the lodgepole pine type. In many areas, diseases constitute the primary management problem. As might be expected for a tree that has a distribution from Baja California, Mexico to the Yukon and from the Pacific to the Dakotas, the diseases of chief concern vary in different parts of the tree's range. For...

  15. Forest inventory: role in accountability for sustainable forest management

    Science.gov (United States)

    Lloyd C. Irland

    2007-01-01

    Forest inventory can play several roles in accountability for sustainable forest management. A first dimension is accountability for national performance. The new field of Criteria and Indicators is an expression of this need. A more familiar role for the U.S. Department of Agriculture Forest Service Forest Inventory and Analysis (FIA) program is for assessment and...

  16. Management of contaminated forests

    International Nuclear Information System (INIS)

    Jouve, A.; Tikhomirov, F.A.; Grebenkov, A.; Dubourg, M.; Belli, M.; Arkhipov, N.

    1996-01-01

    This paper examines the main radioecological issues, the consequence of which are the distribution of doses for critical group of populations living in the vicinity of contaminated forest after the Chernobyl accident and the effects on the forestry economy. The main problems that have to be tackled are to avert doses for the population and forest workers, mitigate the economical burden of the lost forestry production and comply with the permissible levels of radionuclides in forest products. Various options are examined with respect to their application, and their cost effectiveness in terms of dose reduction when such attribute appears to be relevant. It is found that the cost effectiveness of the various options is extremely dependant of the case in which it is intended to be applied. Little actions are available for decreasing the doses, but most of them can lead to an economical benefit

  17. Carbon sequestration in managed temperate coniferous forests under climate change

    Science.gov (United States)

    Dymond, Caren C.; Beukema, Sarah; Nitschke, Craig R.; Coates, K. David; Scheller, Robert M.

    2016-03-01

    Management of temperate forests has the potential to increase carbon sinks and mitigate climate change. However, those opportunities may be confounded by negative climate change impacts. We therefore need a better understanding of climate change alterations to temperate forest carbon dynamics before developing mitigation strategies. The purpose of this project was to investigate the interactions of species composition, fire, management, and climate change in the Copper-Pine Creek valley, a temperate coniferous forest with a wide range of growing conditions. To do so, we used the LANDIS-II modelling framework including the new Forest Carbon Succession extension to simulate forest ecosystems under four different productivity scenarios, with and without climate change effects, until 2050. Significantly, the new extension allowed us to calculate the net sector productivity, a carbon accounting metric that integrates aboveground and belowground carbon dynamics, disturbances, and the eventual fate of forest products. The model output was validated against literature values. The results implied that the species optimum growing conditions relative to current and future conditions strongly influenced future carbon dynamics. Warmer growing conditions led to increased carbon sinks and storage in the colder and wetter ecoregions but not necessarily in the others. Climate change impacts varied among species and site conditions, and this indicates that both of these components need to be taken into account when considering climate change mitigation activities and adaptive management. The introduction of a new carbon indicator, net sector productivity, promises to be useful in assessing management effectiveness and mitigation activities.

  18. Effects of mountain pine beetle on fuels and expected fire behavior in lodgepole pine forests, Colorado, USA.

    Directory of Open Access Journals (Sweden)

    Tania Schoennagel

    Full Text Available In Colorado and southern Wyoming, mountain pine beetle (MPB has affected over 1.6 million ha of predominantly lodgepole pine forests, raising concerns about effects of MPB-caused mortality on subsequent wildfire risk and behavior. Using empirical data we modeled potential fire behavior across a gradient of wind speeds and moisture scenarios in Green stands compared three stages since MPB attack (Red [1-3 yrs], Grey [4-10 yrs], and Old-MPB [∼30 yrs]. MPB killed 50% of the trees and 70% of the basal area in Red and Grey stages. Across moisture scenarios, canopy fuel moisture was one-third lower in Red and Grey stages compared to the Green stage, making active crown fire possible at lower wind speeds and less extreme moisture conditions. More-open canopies and high loads of large surface fuels due to treefall in Grey and Old-MPB stages significantly increased surface fireline intensities, facilitating active crown fire at lower wind speeds (>30-55 km/hr across all moisture scenarios. Not accounting for low foliar moistures in Red and Grey stages, and large surface fuels in Grey and Old-MPB stages, underestimates the occurrence of active crown fire. Under extreme burning conditions, minimum wind speeds for active crown fire were 25-35 km/hr lower for Red, Grey and Old-MPB stands compared to Green. However, if transition to crown fire occurs (outside the stand, or within the stand via ladder fuels or wind gusts >65 km/hr, active crown fire would be sustained at similar wind speeds, suggesting observed fire behavior may not be qualitatively different among MPB stages under extreme burning conditions. Overall, the risk (probability of active crown fire appears elevated in MPB-affected stands, but the predominant fire hazard (crown fire is similar across MPB stages and is characteristic of lodgepole pine forests where extremely dry, gusty weather conditions are key factors in determining fire behavior.

  19. Compromise Programming in forest management

    Science.gov (United States)

    Boris A. Poff; Aregai Tecle; Daniel G. Neary; Brian Geils

    2010-01-01

    Multi-objective decision-making (MODM) is an appropriate approach for evaluating a forest management scenario involving multiple interests. Today's land managers must accommodate commercial as well as non-commercial objectives that may be expressed quantitatively and/or qualitatively, and respond to social, political, economic and cultural changes. The spatial and...

  20. Water management and productivity in planted forests

    Directory of Open Access Journals (Sweden)

    J. E. Nettles

    2014-09-01

    Full Text Available As climate variability endangers water security in many parts of the world, maximizing the carbon balance of plantation forestry is of global importance. High plant water use efficiency is generally associated with lower plant productivity, so an explicit balance in resources is necessary to optimize water yield and tree growth. This balance requires predicting plant water use under different soil, climate, and planting conditions, as well as a mechanism to account for trade-offs in ecosystem services. Several strategies for reducing the water use of forests have been published but there is little research tying these to operational forestry. Using data from silvicultural and biofuel feedstock research in pine plantation ownership in the southeastern USA, proposed water management tools were evaluated against known treatment responses to estimate water yield, forest productivity, and economic outcomes. Ecosystem impacts were considered qualitatively and related to water use metrics. This work is an attempt to measure and compare important variables to make sound decisions about plantations and water use.

  1. Mountain pine beetle selectivity in old-growth ponderosa pine forests, Montana, USA.

    Science.gov (United States)

    Knapp, Paul A; Soulé, Peter T; Maxwell, Justin T

    2013-05-01

    A historically unprecedented mountain pine beetle (MPB) outbreak affected western Montana during the past decade. We examined radial growth rates (AD 1860-2007/8) of co-occurring mature healthy and MPB-infected ponderosa pine trees collected at two sites (Cabin Gulch and Kitchen Gulch) in western Montana and: (1) compared basal area increment (BAI) values within populations and between sites; (2) used carbon isotope analysis to calculate intrinsic water-use efficiency (iWUE) at Cabin Gulch; and (3) compared climate-growth responses using a suite of monthly climatic variables. BAI values within populations and between sites were similar until the last 20-30 years, at which point the visually healthy populations had consistently higher BAI values (22-34%) than the MPB-infected trees. These results suggest that growth rates two-three decades prior to the current outbreak diverged between our selected populations, with the slower-growing trees being more vulnerable to beetle infestation. Both samples from Cabin Gulch experienced upward trends in iWUE, with significant regime shifts toward higher iWUE beginning in 1955-59 for the visually healthy trees and 1960-64 for the MPB-infected trees. Drought tolerance also varied between the two populations with the visually healthy trees having higher growth rates than MPB-infected trees prior to infection during a multi-decadal period of drying summertime conditions. Intrinsic water-use efficiency significantly increased for both populations during the past 150 years, but there were no significant differences between the visually healthy and MPB-infected chronologies.

  2. Forest-management modelling

    Science.gov (United States)

    Mark J. Twery; Aaron R. Weiskittel

    2013-01-01

    Forests are complex and dynamic ecosystems comprising individual trees that can vary in both size and species. In comparison to other organisms, trees are relatively long lived (40-2000 years), quite plastic in terms of their morphology and ecological niche, and adapted to a wide variety of habitats, which can make predicting their behaviour exceedingly difficult....

  3. Effects of wildfire on densities of secondary cavity-nesting birds in ponderosa pine forests of northern Arizona

    Science.gov (United States)

    Jill K. Dwyer; William M. Block

    2000-01-01

    Many catastrophic wildfires burned throughout forests in Arizona during the spring and summer of 1996 owing to severely dry conditions. One result of these fires was a loss of preexisting tree cavities for reproduction. In ponderosa pine (Pinus ponderosa) forests most cavities are found in dead trees; therefore, snags are a very important habitat...

  4. Relationships between prescribed burning and wildfire occurrence and intensity in pine-hardwood forests in north Mississippi, USA

    Science.gov (United States)

    Stephen Brewer; Corey Rogers

    2006-01-01

    Using Geographic Information Systems and US Forest Service data, we examined relationships between prescribed burning (from 1979 to 2000) and the incidence, size, and intensity of wildfires (from 1995 to 2000) in a landscape containing formerly fire-suppressed, closed-canopy hardwood and pine-hardwood forests. Results of hazard (failure) analyses did not show an...

  5. Monoterpene emissions from a Ponderosa Pine forest. Does age matter?

    Science.gov (United States)

    Madronich, M. B.; Guenther, A. B.; Wessman, C. A.

    2011-12-01

    Determining the emissions rate of biogenic volatile organic carbon (BVOC) from plants is a challenge. Biological variability makes it difficult to assess accurately those emissions rates. It is known that photosynthetic active radiation (PAR), temperature, nutrients as well as the biology of the plant affect emissions. However, less is known about the variability of the emissions with respect to the life cycle of the plants. This study is focusing on the difference of monoterpene emission rates from mature Ponderosa Pine trees and saplings in the field. Preliminary calculations show that there is a significant difference between total monoterpene emissions in mature trees (0.24±0.04 μgC/gdwh) and saplings (0.37±0.02 μgC/gdwh).

  6. Present state and future trends of pine forests of malam jabba, swat district, Pakistan

    International Nuclear Information System (INIS)

    Siddiqui, M. F.; Arsalan, M.; Hussain, M. I.; Iqbal, J.; Wahab, M.

    2015-01-01

    Present state and future trend of pine forests of Malam Jabba, Swat district, Pakistan explored. We focused on vegetation composition, structure, diversity and forests dynamics. Thirteen stands were sampled by Point Centered Quarter method. Among all stands four monospecific forests of Pinus wallichiana attained highest density ha-1 except in one stand where Picea smithiana attained 401 trees ha-1. Unlike density, the basal area m2 ha-1 of these stands varies stand to stand. Based on floristic composition and importance value index, five different communities viz Pinus wallichiana-Picea smithiana; Picea smithiana-Pinus wallichiana; Abies pindrow-Pinus wallichiana; Pinus wallichiana-Abies pindrow; Abies pindrow-Picea smithiana and 4 monospecific forests of Pinus wallichiana were recognized. Size class structure of forests showed marked influence of anthropogenic disturbance because not a single stand showed ideal regeneration pattern (inverse J shape distribution). Future of these forests is worst due to absence trees in small size classes. Gaps are also evident in most of the forest stands. Stand diversity, richness, equitability and Simpson dominance values formulated on single stand basis. Diversity of Abides pindrow and Pinus wallichiana stand was highest because these stand occupied dominant species, while lowest diversity observed in some Pinus wallichiana and Picea smithiana stand as these stands have mark difference between the dominance of two species. In the monospecific forests, the diversity level was zero, suggesting the monopolization of resources by one species or elimination of other tree species in these stands. (author)

  7. Examining fire-induced forest changes using novel remote sensing technique: a case study in a mixed pine-oak forest

    Science.gov (United States)

    Meng, R.; Wu, J.; Zhao, F. R.; Cook, B.; Hanavan, R. P.; Serbin, S.

    2017-12-01

    Fire-induced forest changes has long been a central focus for forest ecology and global carbon cycling studies, and is becoming a pressing issue for global change biologists particularly with the projected increases in the frequency and intensity of fire with a warmer and drier climate. Compared with time-consuming and labor intensive field-based approaches, remote sensing offers a promising way to efficiently assess fire effects and monitor post-fire forest responses across a range of spatial and temporal scales. However, traditional remote sensing studies relying on simple optical spectral indices or coarse resolution imagery still face a number of technical challenges, including confusion or contamination of the signal by understory dynamics and mixed pixels with moderate to coarse resolution data (>= 30 m). As such, traditional remote sensing may not meet the increasing demand for more ecologically-meaningful monitoring and quantitation of fire-induced forest changes. Here we examined the use of novel remote sensing technique (i.e. airborne imaging spectroscopy and LiDAR measurement, very high spatial resolution (VHR) space-borne multi-spectral measurement, and high temporal-spatial resolution UAS-based (Unmanned Aerial System) imagery), in combination with field and phenocam measurements to map forest burn severity across spatial scales, quantify crown-scale post-fire forest recovery rate, and track fire-induced phenology changes in the burned areas. We focused on a mixed pine-oak forest undergoing multiple fire disturbances for the past several years in Long Island, NY as a case study. We demonstrate that (1) forest burn severity mapping from VHR remote sensing measurement can capture crown-scale heterogeneous fire patterns over large-scale; (2) the combination of VHR optical and structural measurements provides an efficient means to remotely sense species-level post-fire forest responses; (3) the UAS-based remote sensing enables monitoring of fire

  8. Managing carbon sinks by changing rotation length in European forests

    International Nuclear Information System (INIS)

    Kaipainen, Terhi; Liski, Jari; Pussinen, Ari; Karjalainen, Timo

    2004-01-01

    Elongation of rotation length is a forest management activity countries may choose to apply under Article 3.4 of the Kyoto Protocol to help them meet their commitments for reduction of greenhouse gas emissions. We used the CO2FIX model to analyze how the carbon stocks of trees, soil and wood products depend on rotation length in different European forests. Results predicted that the carbon stock of trees increased in each forest when rotation length was increased, but the carbon stock of soil decreased slightly in German and Finnish Scots pine forests; the carbon stock of wood products also decreased slightly in cases other than the Sitka spruce forest in UK. To estimate the efficiency of increasing rotation length as an Article 3.4 activity, we looked at changes in the carbon stock of trees resulting from a 20-year increase in current rotation lengths. To achieve the largest eligible carbon sink mentioned in Article 3.4 of the Kyoto Protocol, the rotation lengths need to be increased on areas varying from 0.3 to 5.1 Mha depending on the forest. This would in some forests cause 1-6% declines in harvesting possibilities. The possible decreases in the carbon stock of soil indicate that reporting the changes in the carbon stocks of forests under Article 3.4 may require measuring soil carbon

  9. Contrasting responses to drought of forest floor CO2 efflux in a loblolly pine plantation and a nearby Oak-Hickory forest

    Science.gov (United States)

    S. Palmroth; Chris A. Maier; Heather R. McCarthy; A. C. Oishi; H. S. Kim; Kurt H. Johnsen; Gabrial G. Katul; Ram Oren

    2005-01-01

    Forest floor C02 efflux (Fff) depends on vegetation type, climate, and soil physical properties. We assessed the effects of biological factors on Fff by comparing a maturing pine plantation (PP) and a nearby mature Oak-Hickory-type hardwood forest (HW). Fff was measured...

  10. Data management and analysis of ozone injury to pines

    Science.gov (United States)

    Susan Schilling; Dan Duriscoe

    1996-01-01

    This section outlines the procedures for data management and analysis developed by the data archiving group located at the USDA Forest Service’s Pacific Southwest Research Station, Riverside, California. The field data were gathered annually at approximately 33 FOREST plot locations from 1991 to 1994.

  11. Death of an ecosystem: perspectives on western white pine ecosystems of North America at the end of the twentieth century

    Science.gov (United States)

    Alan E. Harvey; James W. Byler; Geral I. McDonald; Leon F. Neuenschwander; Jonalea R. Tonn

    2008-01-01

    The effective loss of western white pine (Pinus monticola Dougl.) in the white pine ecosystem has far-reaching effects on the sustainability of local forests and both regional and global forestry issues. Continuing trends in management of this forest type has the potential to put western white pine, as well as the ecosystem it once dominated, at very...

  12. Forest changes since Euro-American settlement and ecosystem restoration in the Lake Tahoe Basin, USA

    Science.gov (United States)

    Alan H. Taylor

    2007-01-01

    Pre Euro-American settlement forest structure and fire regimes for Jeffrey pine-white fir, red fir-western white pine, and lodgepole pine forests were quantified using stumps from trees cut in the 19th century to establish a baseline reference for ecosystem management in the Lake Tahoe Basin. Contemporary forests varied in different ways compared...

  13. Threats to North American Forests from Southern Pine Beetle with Warming Winters

    Science.gov (United States)

    Lesk, Corey; Coffel, Ethan; D'Amato, Anthony W.; Dodds, Kevin; Horton, Radley M.

    2016-01-01

    In coming decades, warmer winters are likely to lift range constraints on many cold-limited forest insects. Recent unprecedented expansion of the southern pine beetle (SPB, Dendroctonus frontalis) into New Jersey, New York, Connecticut, and Massachusetts in concert with warming annual temperature minima highlights the risk that this insect pest poses to the pine forests of the northern United States and Canada under continued climate change. Here we present the first projections of northward expansion in SPB-suitable climates using a statistical bioclimatic range modeling approach and current-generation general circulation model (GCM) output under the RCP 4.5 and 8.5 emissions scenarios. Our results show that by the middle of the 21st century, the climate is likely to be suitable for SPB expansion into vast areas of previously unaffected forests throughout the northeastern United States and into southeastern Canada. This scenario would pose a significant economic and ecological risk to the affected regions, including disruption oflocal ecosystem services, dramatic shifts in forest structure, and threats to native biodiversity.

  14. Area-wide efficacy of a localized forest pest management practice

    Science.gov (United States)

    J.T. Cronin; P. Turchin; J.L. Hayes; C.A. Steiner

    1999-01-01

    Few experimental studies have examined the movement of forest pest populations, particularly in response to management tactics that disrupt the growth of pest infestations.We quantified the interinfestation patterns of dispersal of the southern pine beetle, Dendroctonus frontalis, by monitoring the fates of marked beetles after emergence from small natural infestations...

  15. Forest management type influences diversity and community composition of soil fungi across temperate forest ecosystems

    Directory of Open Access Journals (Sweden)

    Kezia eGoldmann

    2015-11-01

    Full Text Available Fungal communities have been shown to be highly sensitive towards shifts in plant diversity and species composition in forest ecosystems. However, little is known about the impact of forest management on fungal diversity and community composition of geographically separated sites. This study examined the effects of four different forest management types on soil fungal communities. These forest management types include age class forests of young managed beech (Fagus sylvatica L., with beech stands age of approximately 30 years, age class beech stands with an age of approximately 70 years, unmanaged beech stands, and coniferous stands dominated by either pine (Pinus sylvestris L. or spruce (Picea abies Karst. which are located in three study sites across Germany. Soil were sampled from 48 study plots and we employed fungal ITS rDNA pyrotag sequencing to assess the soil fungal diversity and community structure.We found that forest management type significantly affects the Shannon diversity of soil fungi and a significant interaction effect of study site and forest management on the fungal OTU richness. Consequently distinct fungal communities were detected in the three study sites and within the four forest management types, which were mainly related to the main tree species. Further analysis of the contribution of soil properties revealed that C/N ratio being the most important factor in all the three study sites whereas soil pH was significantly related to the fungal community in two study sites. Functional assignment of the fungal communities indicated that 38% of the observed communities were Ectomycorrhizal fungi (ECM and their distribution is significantly influenced by the forest management. Soil pH and C/N ratio were found to be the main drivers of the ECM fungal community composition. Additional fungal community similarity analysis revealed the presence of study site and management type specific ECM genera.This study extends our knowledge

  16. Forest Management Type Influences Diversity and Community Composition of Soil Fungi across Temperate Forest Ecosystems.

    Science.gov (United States)

    Goldmann, Kezia; Schöning, Ingo; Buscot, François; Wubet, Tesfaye

    2015-01-01

    Fungal communities have been shown to be highly sensitive toward shifts in plant diversity and species composition in forest ecosystems. However, little is known about the impact of forest management on fungal diversity and community composition of geographically separated sites. This study examined the effects of four different forest management types on soil fungal communities. These forest management types include age class forests of young managed beech (Fagus sylvatica L.), with beech stands age of approximately 30 years, age class beech stands with an age of approximately 70 years, unmanaged beech stands, and coniferous stands dominated by either pine (Pinus sylvestris L.) or spruce (Picea abies Karst.) which are located in three study sites across Germany. Soil were sampled from 48 study plots and we employed fungal ITS rDNA pyrotag sequencing to assess the soil fungal diversity and community structure. We found that forest management type significantly affects the Shannon diversity of soil fungi and a significant interaction effect of study site and forest management on the fungal operational taxonomic units richness. Consequently distinct fungal communities were detected in the three study sites and within the four forest management types, which were mainly related to the main tree species. Further analysis of the contribution of soil properties revealed that C/N ratio being the most important factor in all the three study sites whereas soil pH was significantly related to the fungal community in two study sites. Functional assignment of the fungal communities indicated that 38% of the observed communities were Ectomycorrhizal fungi (ECM) and their distribution is significantly influenced by the forest management. Soil pH and C/N ratio were found to be the main drivers of the ECM fungal community composition. Additional fungal community similarity analysis revealed the presence of study site and management type specific ECM genera. This study extends our

  17. Changing Forest Values and Ecosystem Management

    Science.gov (United States)

    David N. Bengston

    1994-01-01

    There is substantial evidence that we are currently in a period of rapid and significant change in forest values. Some have charged that managing forests in ways that are responsive to diverse and changing forest values is the main challenge faced by public forest managers. To tackle this challenge, we need to address the following questions: (1) What is the nature of...

  18. 50 CFR 35.8 - Forest management.

    Science.gov (United States)

    2010-10-01

    ... 50 Wildlife and Fisheries 6 2010-10-01 2010-10-01 false Forest management. 35.8 Section 35.8... NATIONAL WILDLIFE REFUGE SYSTEM WILDERNESS PRESERVATION AND MANAGEMENT General Rules § 35.8 Forest management. Forest management activities in a wilderness unit will be directed toward allowing natural...

  19. Role of de novo biosynthesis in ecosystem scale monoterpene emissions from a boreal Scots pine forest

    Directory of Open Access Journals (Sweden)

    R. Taipale

    2011-08-01

    Full Text Available Monoterpene emissions from Scots pine have traditionally been assumed to originate as evaporation from specialized storage pools. More recently, the significance of de novo emissions, originating directly from monoterpene biosynthesis, has been recognized. To study the role of biosynthesis at the ecosystem scale, we measured monoterpene emissions from a Scots pine dominated forest in southern Finland using the disjunct eddy covariance method combined with proton transfer reaction mass spectrometry. The interpretation of the measurements was based on a correlation analysis and a hybrid emission algorithm describing both de novo and pool emissions. During the measurement period May–August 2007, the monthly medians of daytime emissions were 200, 290, 180, and 200 μg m−2 h−1. The emissions were partly light dependent, probably due to de novo biosynthesis. The emission potential for both de novo and pool emissions exhibited a decreasing summertime trend. The ratio of the de novo emission potential to the total emission potential varied between 30 % and 46 %. Although the monthly changes were not significant, the ratio always differed statistically from zero, suggesting that the role of de novo biosynthesis was observable. Given the uncertainties in this study, we conclude that more accurate estimates of the contribution of de novo emissions are required for improving monoterpene emission algorithms for Scots pine dominated forests.

  20. Long-term changes in net radiation and its components above a pine forest and a grass surface in Germany

    International Nuclear Information System (INIS)

    Kessler, A.; Jaeger, L.

    1999-01-01

    Long-term measurements (1974–1993 and 1996, respectively) of the net radiation (Q), global radiation (G), reflected global radiation (R), long-wave atmospheric radiation (A) and thermal radiation (E) of a pine forest in Southern Germany (index p) and of a grass surface in Northern Germany (index g) are compared. The influence of changes in surface properties is discussed. There are, in the case of the pine stand, forest growth and forest management and in the case of the grass surface, the shifting of the site from a climatic garden to a horizontal roof. Both series of radiant fluxes are analyzed with respect to the influences of the weather (cloudiness, heat advection). To eliminate the different influence of the solar radiation of the two sites, it is necessary to normalize by means of the global radiation G, yielding the radiation efficiency Q/G, the albedo R/G=α and the normalized long-wave net radiation (A+E)/G. Furthermore, the long-term mean values and the long-term trend of yearly mean values are discussed and, moreover, a comparison is made of individual monthly values. Q p is twice as large as Q g . The reason for this is the higher values of G and A above the pine forest and half values of α p compared to α g . E p is only a little greater than E g . The time series of the radiation fluxes show the following trends: Q p declines continuously despite a slight increase of G p . This is mainly due to the long-wave radiation fluxes. The net radiation of the grass surface Q g shows noticeably lower values after the merging of the site. This phenomenon is also dominated by the long-wave radiation processes. Although the properties of both site surfaces alter, E p and E g remain relatively stable. A p and A g show a remarkable decrease however. The reason for this is to be found in a modification of the heat advection, showing a more pronounced impact on the more continentally exposed site (pine forest). Compared to α g , α p shows only a small

  1. Phytosociological analysis of Pine forest at Indus Kohistan, KPK, Pakistan

    International Nuclear Information System (INIS)

    Khan, A.; Iqbal, J.

    2016-01-01

    The study was carried out to describe the pine communities at Indus Kohistan valley in quantitative term. Thirty stands of relatively undisturbed vegetation were selected for sampling. Quantitative sampling was carried out by Point Centered Quarter (PCQ) method. Seven tree species were common in the Indus Kohistan valley. Cedrus deodara was recorded from twenty eight different locations and exhibited the highest mean importance value while Pinus wallichiana was recorded from 23 different locations and exhibited second highest mean importance value. Third most occurring species was Abies pindrow that attained the third highest mean importance value and Picea smithiana was recorded from eight different locations and attained fourth highest importance value while it was first dominant in one stand and second dominant in four stands. Pinus gerardiana, Quercus baloot and Taxus fuana were the rare species in this area, these species attained low mean importance value. Six communities and four monospecific stands of Cedrus deodara were recognized. Cedrus-Pinus community was the most occurring community, which was recorded from 13 different stands. The second most occurring community in the study area was Abies Pinus wallichiana which was recorded from six locations while Cedrus-Picea and Abies-Picea communities were observed at two locations each. Pinus wallichiana - Picea and Cedrus-Pinus gerardiana communities were restricted to one location. (author)

  2. StandsSIM-MD: a Management Driven forest SIMulator

    Energy Technology Data Exchange (ETDEWEB)

    Barreiro, S.; Rua, J.; Tomé, M.

    2016-07-01

    Aim of the study. The existing stand level forest simulators available in Portugal were not developed with the aim of including up-to-date model versions and were limited in terms of accounting for forest management. The simulators’ platform, sIMfLOR was recently created to implement different growth models with a common philosophy. The objective was developing one easily-updatable, user-friendly, forest management and climate change sensitive simulator capable of projecting growth for the main tree species in Portugal. Area of the study: Portugal. Material and methods: The new simulator was programmed in a modular form consisting of several modules. The growth module integrates different forest growth and yield models (empirical and process-based) for the main wood production tree species in Portugal (eucalypt, umbrella and maritime pines); whereas the management module drives the growth projections along the planning horizon according to a range of forest management approaches and climate (at present only available for eucalypt). Main results: The main result is the StandsSIM-MD Management Driven simulator that overcomes the limitations of the existing stand level simulators. It is a step forward when compared to the models currently available in the sIMfLOR platform covering more tree species, stand structures and stand compositions. It is focused on end-users and it is based on similar concepts regarding the generation of required inputs and generated outputs. Research highlights: Forest Management Driven simulations approach. Multiple Prescriptions-Per-Stand functionality. StandsSIM-MD can be used to support landowners decisions on stand forest management. StandsSIM-MD simulations at regional level can be combined with optimization routines. (Author)

  3. Utilization of the southern pines

    Energy Technology Data Exchange (ETDEWEB)

    Koch, P

    1972-01-01

    After several years out of print, this book is again available. The two-volume reference characterizes the southern pine tree as raw material and describes the process by which it is converted to use. All 10 species are considered. The book is addressed primarily to the incoming generation of researchers and industrial managers in the southern pine industry. Foremen, superintendents, quality control personnel, wood procurement men, forest managers, extension workers, professors, and students of wood technology should find the handbook of value.

  4. Municipal Forest Management in Latin America | IDRC ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    2004-01-01

    Jan 1, 2004 ... Book cover Municipal Forest Management in Latin America ... forest management schemes we could use as models to develop policies? ... Call for proposals: Innovations for the economic inclusion of marginalized youth.

  5. Evaluating the role of cutting treatments, fire and soil seed banks in an experimental framework in ponderosa pine forests of the Black Hills, South Dakota

    Science.gov (United States)

    Cody L. Wienk; Carolyn Hull Sieg; Guy R. McPherson

    2004-01-01

    Pinus ponderosa Laws. (ponderosa pine) forests have changed considerably during the past century, partly because recurrent fires have been absent for a century or more. A number of studies have explored the influence of timber harvest or burning on understory production in ponderosa pine forests, but study designs incorporating cutting and prescribed...

  6. Management of oak forests

    DEFF Research Database (Denmark)

    Löf, Magnus; Brunet, Jörg; Filyushkina, Anna

    2016-01-01

    timber production, habitats for biodiversity and cultural services, and the study analyses associated trade-offs and synergies. The three regimes were: intensive oak timber production (A), combined management for both timber production and biodiversity (B) and biodiversity conservation without management...... of wood production and cultural services. In contrast, Regime B provided a balanced delivery of timber production, biodiversity conservation and cultural services. We identified several stand-management options which provide comparatively synergistic outcomes in ecosystem services delivery. The use...

  7. Mountain Pine Beetle Dynamics and Reproductive Success in Post-Fire Lodgepole and Ponderosa Pine Forests in Northeastern Utah.

    Directory of Open Access Journals (Sweden)

    Andrew P Lerch

    Full Text Available Fire injury can increase tree susceptibility to some bark beetles (Curculionidae, Scolytinae, but whether wildfires can trigger outbreaks of species such as mountain pine beetle (Dendroctonus ponderosae Hopkins is not well understood. We monitored 1173 lodgepole (Pinus contorta var. latifolia Doug. and 599 ponderosa (Pinus ponderosa Doug. ex Law pines for three years post-wildfire in the Uinta Mountains of northeastern Utah in an area with locally endemic mountain pine beetle. We examined how the degree and type of fire injury influenced beetle attacks, brood production, and subsequent tree mortality, and related these to beetle population changes over time. Mountain pine beetle population levels were high the first two post-fire years in lodgepole pine, and then declined. In ponderosa pine, populations declined each year after initial post-fire sampling. Compared to trees with strip or failed attacks, mass attacks occurred on trees with greater fire injury, in both species. Overall, a higher degree of damage to crowns and boles was associated with higher attack rates in ponderosa pines, but additional injury was more likely to decrease attack rates in lodgepole pines. In lodgepole pine, attacks were initially concentrated on fire-injured trees, but during subsequent years beetles attacked substantial numbers of uninjured trees. In ponderosa pine, attacks were primarily on injured trees each year, although these stands were more heavily burned and had few uninjured trees. In total, 46% of all lodgepole and 56% of ponderosa pines underwent some degree of attack. Adult brood emergence within caged bole sections decreased with increasing bole char in lodgepole pine but increased in ponderosa pine, however these relationships did not scale to whole trees. Mountain pine beetle populations in both tree species four years post-fire were substantially lower than the year after fire, and wildfire did not result in population outbreaks.

  8. Mountain Pine Beetle Dynamics and Reproductive Success in Post-Fire Lodgepole and Ponderosa Pine Forests in Northeastern Utah.

    Science.gov (United States)

    Lerch, Andrew P; Pfammatter, Jesse A; Bentz, Barbara J; Raffa, Kenneth F

    2016-01-01

    Fire injury can increase tree susceptibility to some bark beetles (Curculionidae, Scolytinae), but whether wildfires can trigger outbreaks of species such as mountain pine beetle (Dendroctonus ponderosae Hopkins) is not well understood. We monitored 1173 lodgepole (Pinus contorta var. latifolia Doug.) and 599 ponderosa (Pinus ponderosa Doug. ex Law) pines for three years post-wildfire in the Uinta Mountains of northeastern Utah in an area with locally endemic mountain pine beetle. We examined how the degree and type of fire injury influenced beetle attacks, brood production, and subsequent tree mortality, and related these to beetle population changes over time. Mountain pine beetle population levels were high the first two post-fire years in lodgepole pine, and then declined. In ponderosa pine, populations declined each year after initial post-fire sampling. Compared to trees with strip or failed attacks, mass attacks occurred on trees with greater fire injury, in both species. Overall, a higher degree of damage to crowns and boles was associated with higher attack rates in ponderosa pines, but additional injury was more likely to decrease attack rates in lodgepole pines. In lodgepole pine, attacks were initially concentrated on fire-injured trees, but during subsequent years beetles attacked substantial numbers of uninjured trees. In ponderosa pine, attacks were primarily on injured trees each year, although these stands were more heavily burned and had few uninjured trees. In total, 46% of all lodgepole and 56% of ponderosa pines underwent some degree of attack. Adult brood emergence within caged bole sections decreased with increasing bole char in lodgepole pine but increased in ponderosa pine, however these relationships did not scale to whole trees. Mountain pine beetle populations in both tree species four years post-fire were substantially lower than the year after fire, and wildfire did not result in population outbreaks.

  9. Logging safety in forest management education

    Science.gov (United States)

    David Elton Fosbroke; John R. Myers

    1995-01-01

    Forest management degree programs prepare students for careers in forestry by teaching a combination of biological sciences (e.g., silvics and genetics) and business management (e.g., forest policy and timber valuation). During a 4-year degree program, students learn the impact of interest rates, equipment costs, and environmental policies on forest management and...

  10. Belowground Competition Directs Spatial Patterns of Seedling Growth in Boreal Pine Forests in Fennoscandia

    Directory of Open Access Journals (Sweden)

    E. Petter Axelsson

    2014-09-01

    Full Text Available Aboveground competition is often argued to be the main process determining patterns of natural forest regeneration. However, the theory of multiple resource limitation suggests that seedling performance also depends on belowground competition and, thus, that their relative influence is of fundamental importance. Two approaches were used to address the relative importance of above- and below-ground competition on regeneration in a nutrient-poor pine (Pinus sylvestris boreal forest. Firstly, seedling establishment beneath trees stem-girdled 12 years ago show that a substantial proportion of the seedlings were established within two years after girdling, which corresponds to a time when nutrient uptake by tree roots was severely reduced without disrupting water transport to the tree canopy, which consequently was maintained. The establishment during these two years also corresponds to abundances high enough for normal stand replacement. Secondly, surveys of regeneration within forest gaps showed that surrounding forests depressed seedlings, so that satisfactory growth occurred only more than 5 m from forest edges and that higher solar radiation in south facing edges was not enough to mediate these effects. We conclude that disruption of belowground competitive interactions mediates regeneration and, thus, that belowground competition has a strong limiting influence on seedling establishment in these forests.

  11. Structure, disturbance, and change in the bristlecone pine forests of Colorado, U.S.A

    International Nuclear Information System (INIS)

    Baker, W.L.

    1992-01-01

    To analyze trends in the structure of forests dominated by Colorado bristlecone pine (Pinus aristata Bailey) the author sampled size class structures, collected environmental data, and determined the approximate year of origin of these forests at 65 sites scattered throughout the range of P. aristata in Colorado. Cluster analysis and detrended correspondence analysis (DCA) were used to identify major trends in the size class data. The size class data suggest that P. aristata is a long-lived species that primarily regenerates following fires. The DCA results suggest that (1) the major trend in variation in structure was related to time since disturbance, and (2) Populus tremuloides Michx. is present as numerous small stems in some of the P. aristata forests regardless of the age of these forests, a role for P. tremuloides that is at odds with the traditional view of this tree as primarily a seral species in the Rocky Mountains. Many P. aristata stands originated near A.D. 1900 and between A.D. 1625 and 1700. These were warm, dry periods that might have promoted fires, and they were also periods when sunspot numbers were low. The Southern Oscillation Index did not correlate with times of abundant stand origins. Although many P. aristata forests are over 500 yr old, these forests do not appear to be stable or unchanging

  12. Tree Mortality following Prescribed Fire and a Storm Surge Event in Slash Pine (Pinus elliottii var. densa) Forests in the Florida Keys, USA

    International Nuclear Information System (INIS)

    Sah, J.P.; Ross, M.S.; Ross, M.S.; Ogurcak, D.E.; Snyder, J.R.

    2010-01-01

    In fire-dependent forests, managers are interested in predicting the consequences of prescribed burning on post fire tree mortality. We examined the effects of prescribed fire on tree mortality in Florida Keys pine forests, using a factorial design with under story type, season, and year of burn as factors. We also used logistic regression to model the effects of burn season, fire severity, and tree dimensions on individual tree mortality. Despite limited statistical power due to problems in carrying out the full suite of planned experimental burns, associations with tree and fire variables were observed. Post-fire pine tree mortality was negatively correlated with tree size and positively correlated with char height and percent crown scorch. Unlike post-fire mortality, tree mortality associated with storm surge from Hurricane Wilma was greater in the large size classes. Due to their influence on population structure and fuel dynamics, the size-selective mortality patterns following fire and storm surge have practical importance for using fire as a management tool in Florida Keys pine lands in the future, particularly when the threats to their continued existence from tropical storms and sea level rise are expected to increase.

  13. Irrigation and fertilization effects on Nantucket Pine Tip Moth (Lepidoptera: Tortricidae) Damage levels and pupal weight in an intensively-managed pine plantation.

    Energy Technology Data Exchange (ETDEWEB)

    Coyle, David, R.; Nowak, John, T.; Fettig, Christopher, J.

    2003-10-01

    The widespread application of intensive forest management practices throughout the southeastern U.S. has increased loblolly pine, Pinus taeda L., yields and shortened conventional rotation lengths. Fluctuations in Nantucket pine tip moth, Rhyacionia frustrana (Comstock), population density and subsequent damage levels have been linked to variations in management intensity. We examined the effects of two practices, irrigation and fertilization, on R. frustrana damage levels and pupal weights in an intensively-managed P. taeda plantation in South Carolina. Trees received intensive weed control and one of the following treatments; irrigation only. fertilization only, irrigation + fertilization, or control. Mean whole-tree tip moth damage levels ranged from <1 to 48% during this study. Damage levels differed significantly among treatments in two tip moth generations in 2001, but not 2000. Pupal weight was significantly heavier in fertilization compared to the irrigation treatment in 2000, but no significant differences were observed in 2001. Tree diameter. height. and aboveground volume were significantly greater in the irrigation + fertilization than in the irrigation treatment after two growing seasons. Our data suggest that intensive management practices that include irrigation and fertilization do not consistently increase R. frustrana damage levels and pupal weights as is commonly believed. However, tip moth suppression efforts in areas adjacent to our study may have partially reduced the potential impacts of R. frustrana on this experiment.

  14. Community occupancy responses of small mammals to restoration treatments in ponderosa pine forests, northern Arizona, USA.

    Science.gov (United States)

    Kalies, E L; Dickson, B G; Chambers, C L; Covington, W W

    2012-01-01

    In western North American conifer forests, wildfires are increasing in frequency and severity due to heavy fuel loads that have accumulated after a century of fire suppression. Forest restoration treatments (e.g., thinning and/or burning) are being designed and implemented at large spatial and temporal scales in an effort to reduce fire risk and restore forest structure and function. In ponderosa pine (Pinus ponderosa) forests, predominantly open forest structure and a frequent, low-severity fire regime constituted the evolutionary environment for wildlife that persisted for thousands of years. Small mammals are important in forest ecosystems as prey and in affecting primary production and decomposition. During 2006-2009, we trapped eight species of small mammals at 294 sites in northern Arizona and used occupancy modeling to determine community responses to thinning and habitat features. The most important covariates in predicting small mammal occupancy were understory vegetation cover, large snags, and treatment. Our analysis identified two generalist species found at relatively high occupancy rates across all sites, four open-forest species that responded positively to treatment, and two dense-forest species that responded negatively to treatment unless specific habitat features were retained. Our results indicate that all eight small mammal species can benefit from restoration treatments, particularly if aspects of their evolutionary environment (e.g., large trees, snags, woody debris) are restored. The occupancy modeling approach we used resulted in precise species-level estimates of occupancy in response to habitat attributes for a greater number of small mammal species than in other comparable studies. We recommend our approach for other studies faced with high variability and broad spatial and temporal scales in assessing impacts of treatments or habitat alteration on wildlife species. Moreover, since forest planning efforts are increasingly focusing on

  15. Integrating invasive grasses into carbon cycle projections: Cogongrass spread in southern pine forests

    Science.gov (United States)

    McCabe, T. D.; Flory, S. L.; Wiesner, S.; Dietze, M.

    2017-12-01

    Forested ecosystems are currently being disrupted by invasive species. One example is the invasive grass Imperata cylindrica (cogongrass), which is widespread in southeastern US pine forests. Pines forests dominate the forest cover of the southeast, and contribute to making the Southeast the United States' largest carbon sink. Cogongrass decreases the colonization of loblolly pine fine roots. If cogongrass continues to invade,this sink could be jeopardized. However, the effects of cogongrass invasion on carbon sequestration are largely unknown. We have projected the effects of elevated CO2 and changing climate on future cogongrass invasion. To test how pine stands are affected by cogongrass, cogongrass invasions were modeled using the Ecosystem Demography 2 (ED2) model, and parameterized using the Predictive Ecosystem Analyzer (PEcAn). ED2 takes into account local meteorological data, stand populations and succession, disturbance, and geochemical pools. PEcAn is a workflow that uses Bayesian sensitivity analyses and variance decomposition to quantify the uncertainty that each parameter contributes to overall model uncertainty. ED2 was run for four NEON and Ameriflux sites in the Southeast from the earliest available census of the site into 2010. These model results were compared to site measures to test for model accuracy and bias. To project the effect of elevated CO2 on cogongrass invasions, ED was run from 2006-2100 at four sites under four separate scenarios: 1) RPC4.5 CO2 and climate, 2) RPC4.5 climate only, with constant CO2 concentrations, 3) RPC4.5 Elevated CO2 only, with climate randomly selected from 2006-2026, 4) Present Day, made from randomly selected measures of CO2 and radiation from 2006-2026. Each scenario was run three times; once with cogongrass absent, once with a low cogongrass abundance, and once with a high cogongrass abundance. Model results suggest that many relevant parameters have high uncertainty due to lack of measurement. Further field

  16. Importance of Coarse Woody Debris to Avian Communities in Loblolly Pine Forests

    Energy Technology Data Exchange (ETDEWEB)

    Lohr, S.M.; Gauthreaux, S.A.; Kilgo, J.C.

    2001-06-14

    Investigates the importance of standing and down coarse woody debris to bird communities in loblolly pine forests, researchers compared breeding and nonbreeding responses of birds among two coarse woody debris removal and control treatments. Quantification of vegetation layers to determine their effects on the experimental outcome coarse woody debris removal had no effect on the nonbreeding bird community. Most breeding and nonbreeding species used habitats with sparse midstory and well-developed understory, where as sparse canopy cover and dense midstory were important to some nonbreeding species. Snag and down coarse woody debris practices that maintain a dense understory, sparse midstory and canopy will create favorable breeding habitat.

  17. Application of minidisk infiltrometer to estimate water repellency in Mediterranean pine forest soils

    Directory of Open Access Journals (Sweden)

    Alagna Vincenzo

    2017-09-01

    Full Text Available Assessment of soil water repellency (SWR was conducted in the decomposed organic floor layer (duff and in the mineral soil layer of two Mediterranean pine forests, one in Italy and the other in Spain, by the widely-used water drop penetration time (WDPT test and alternative indices derived from infiltration experiments carried out by the minidisk infiltrometer (MDI. In particular, the repellency index (RI was calculated as the adjusted ratio between ethanol and water soil sorptivities whereas the water repellency cessation time (WRCT and the specifically proposed modified repellency index (RIm were derived from the hydrophobic and wettable stages of a single water infiltration experiment. Time evolution of SWR and vegetation cover influence was also investigated at the Italian site. All indices unanimously detected severe SWR conditions in the duff of the pine forests. The mineral subsoils in the two forests showed different wettability and the clay-loam subsoil at Ciavolo forest was hydrophobic even if characterized by organic matter (OM content similar to the wettable soil of an adjacent glade. It was therefore assumed that the composition rather than the total amount of OM influenced SWR. The hydraulic conductivity of the duff differed by a factor of 3.8–5.8 between the two forested sites thus influencing the vertical extent of SWR. Indeed, the mineral subsoil of Javea showed wettable or weak hydrophobic conditions probably because leaching of hydrophobic compounds was slowed or prevented at all. Estimations of SWR according to the different indices were in general agreement even if some discrepancies were observed. In particular, at low hydrophobicity levels the SWR indices gathered from the MDI tests were able to signal sub-critical SWR conditions that were not detected by the traditional WDPT index. The WRCT and modified repellency index RIm yielded SWR estimates in reasonable agreement with those obtained with the more cumbersome RI

  18. A climate response function explaining most of the variation in the forest floor needle mass and the needle decomposition in pine forests across Europe

    DEFF Research Database (Denmark)

    Kurz-Besson, C.; Coûteaux, M.M.; Berg, Bjørn

    2006-01-01

    The forest floor needle mass and the decomposition rates of pine needle litter in a European climate transect were studied in order to estimate the impact of climate change on forest soil carbon sequestration. Eight pine forests preserved from fire were selected along a climatic latitudinal...... gradient from 40° to 60° N, from Spain and Portugal to Sweden. The forest floor (Oi and Oe layers) was sorted into five categories of increasing decomposition level according to morphological criteria. The needle mass loss in each category was determined using a linear mass density method. The needle...... and a recalcitrant one. NF was correlated with actual evapotranspiration (AET) whereas the decomposition parameters (decomposition rate of the decomposable fraction, first year mass loss, forest floor needle mass, age of the most-decomposed category) were related to a combined response function to climate (CRF...

  19. Forest management practices and silviculture. Chapter 12.

    Science.gov (United States)

    Donald A. Perala; Elon S. Verry

    2011-01-01

    This chapter is an overview of forest management and silviculture practices, and lessons learned, on the Marcell Experimental Forest (MEF). The forests there are a mosaic of natural regeneration and conifer plantations. Verry (1969) described forest-plant communities in detail for the study watersheds (Sl through S6) on the MEF. The remaining area is described in...

  20. Effects of artificial defoliation of pines on the structure and physiology of the soil fungal community of a mixed pine-spruce forest

    Science.gov (United States)

    Cullings, Ken; Raleigh, Christopher; New, Michael H.; Henson, Joan

    2005-01-01

    Loss of photosynthetic area can affect soil microbial communities by altering the availability of fixed carbon. We used denaturing gradient gel electrophoresis (DGGE) and Biolog filamentous-fungus plates to determine the effects of artificial defoliation of pines in a mixed pine-spruce forest on the composition of the fungal community in a forest soil. As measured by DGGE, two fungal species were affected significantly by the defoliation of pines (P soil fungus increased. The decrease in the amount of Cenococcum organisms may have occurred because of the formation of extensive hyphal networks by species of this genus, which require more of the carbon fixed by their host, or because this fungus is dependent upon quantitative differences in spruce root exudates. The defoliation of pines did not affect the overall composition of the soil fungal community or fungal-species richness (number of species per core). Biolog filamentous-fungus plate assays indicated a significant increase (P soil fungi and the rate at which these substrates were used, which could indicate an increase in fungal-species richness. Thus, either small changes in the soil fungal community give rise to significant increases in physiological capabilities or PCR bias limits the reliability of the DGGE results. These data indicate that combined genetic and physiological assessments of the soil fungal community are needed to accurately assess the effect of disturbance on indigenous microbial systems.

  1. Limited growth recovery after drought-induced forest dieback in very defoliated trees of two pine species

    Directory of Open Access Journals (Sweden)

    Guillermo eGuada

    2016-04-01

    Full Text Available Mediterranean pine forests display high resilience after extreme climatic events such as severe droughts. However, recent dry spells causing growth decline and triggering forest dieback challenge the capacity of some forests to recover following major disturbances. To describe how resilient the responses of forests to drought can be, we quantified growth dynamics in plantations of two pine species (Scots pine, black pine located in south-eastern Spain and showing drought-triggered dieback. Radial growth was characterized at inter- (tree-ring width and intra-annual (xylogenesis scales in three defoliation levels. It was assumed that the higher defoliation the more negative the impact of drought on tree growth. Tree-ring width chronologies were built and xylogenesis was characterized three years after the last severe drought occurred. Annual growth data and the number of tracheids produced in different stages of xylem formation were related to climate data at several time scales. Drought negatively impacted growth of the most defoliated trees in both pine species. In Scots pine, xylem formation started earlier in the non-defoliated than in the most defoliated trees. Defoliated trees presented the shortest duration of the radial-enlargement phase in both species. On average the most defoliated trees formed 60% of the number of mature tracheids formed by the non-defoliated trees in both species. Since radial enlargement is the xylogenesis phase most tightly related to final growth, this explains why the most defoliated trees grew the least due to their altered xylogenesis phases. Our findings indicate a very limited resilience capacity of drought-defoliated Scots and black pines. Moreover, droughts produce legacy effects on xylogenesis of highly defoliated trees which could not recover previous growth rates and are thus more prone to die.

  2. Modeling forest harvesting effects on landscape pattern in the Northwest Wisconsin Pine Barrens

    Science.gov (United States)

    Volker C. Radeloff; David J. Mladenoff; Eric J. Gustafson; Robert M. Scheller; Patrick A. Zollner; Hong S. Heilman; H. Resit Akcakaya

    2006-01-01

    Forest management shapes landscape patterns, and these patterns often differ significantly from those typical for natural disturbance regimes. This may affect wildlife habitat and other aspects of ecosystem function. Our objective was to examine the effects of different forest management decisions on landscape pattern in a fire adapted ecosystem. We used a factorial...

  3. StandsSIM-MD: a Management Driven forest SIMulator

    Directory of Open Access Journals (Sweden)

    Susana Barreiro

    2016-07-01

    Full Text Available Aim of the study: The existing stand level forest simulators available in Portugal were not developed with the aim of including up-to-date model versions and were limited in terms of accounting for forest management. The simulators’ platform, sIMfLOR was recently created to implement different growth models with a common philosophy. The objective was developing one easily-updatable, user-friendly, forest management and climate change sensitive simulator capable of projecting growth for the main tree species in Portugal. Area of the study: Portugal. Material and methods: The new simulator was programmed in a modular form consisting of several modules. The growth module integrates different forest growth and yield models (empirical and process-based for the main wood production tree species in Portugal (eucalypt, umbrella and maritime pines; whereas the management module drives the growth projections along the planning horizon according to a range of forest management approaches and climate (at present only available for eucalypt. Main results: The main result is the StandsSIM-MD Management Driven simulator that overcomes the limitations of the existing stand level simulators. It is a step forward when compared to the models currently available in the sIMfLOR platform covering more tree species, stand structures and stand compositions. It is focused on end-users and it is based on similar concepts regarding the generation of required inputs and generated outputs. Research highlights: -          Forest Management Driven simulations approach -          Multiple Prescriptions-Per-Stand functionality -          StandsSIM-MD can be used to support landowners decisions on stand forest management -          StandsSIM-MD simulations at regional level can be combined with optimization routines Keywords: Forest simulator, Forest Management Approaches; StandsSIM-MD; forest management.

  4. Response of brown-headed cowbirds and three host species to thinning treatments in low-elevation ponderosa pine forests along the northern Colorado Front Range

    Science.gov (United States)

    Keeley, W.H.; Germaine, Stephen S.; Stanley, Thomas R.; Spaulding, Sarah A.; Wanner, C.E.

    2013-01-01

    Thinning ponderosa pine (Pinus ponderosa) forests to achieve desired ecological conditions remains a priority in the North American west. In addition to reducing the risk of high-severity wildfires in unwanted areas, stand thinning may increase wildlife and plant diversity and provide increased opportunity for seedling recruitment. We initiated conservative (i.e. minimal removal of trees) ponderosa stand thinning treatments with the goals of reducing fire risk and improving habitat conditions for native wildlife and flora. We then compared site occupancy of brown-headed cowbirds (Molothrus ater), chipping sparrows (Spizella passerina), plumbeous vireos (Vireo plumbeus), and western wood-pewees (Contopus sordidulus) in thinned and unthinned (i.e., control) forest stands from 2007 to 2009. Survey stations located in thinned stands had 64% fewer trees/ha, 25% less canopy cover, and 23% less basal area than stations in control stands. Occupancy by all three host species was negatively associated with tree density, suggesting that these species respond favorably to forest thinning treatments in ponderosa pine forests. We also encountered plumbeous vireos more frequently in plots closer to an ecotonal (forest/grassland) edge, an association that may increase their susceptibility to edge-specialist, brood parasites like brown-headed cowbirds. Occupancy of brown-headed cowbirds was not related to forest metrics but was related to occupancy by plumbeous vireos and the other host species in aggregate, supporting previous reports on the affiliation between these species. Forest management practices that promote heterogeneity in forest stand structure may benefit songbird populations in our area, but these treatments may also confer costs associated with increased cowbird occupancy. Further research is required to understand more on the complex relationships between occupancy of cowbirds and host species, and between cowbird occupancy and realized rates of nest parasitism.

  5. Effectiveness of management interventions on forest carbon stock in planted forests in Nepal.

    Science.gov (United States)

    Dangal, Shambhu Prasad; Das, Abhoy Kumar; Paudel, Shyam Krishna

    2017-07-01

    Nepal has successfully established more than 370,000 ha of plantations, mostly with Pinus patula, in the last three and a half decades. However, intensive management of these planted forests is very limited. Despite the fact that the Kyoto Convention in 1997 recognized the role of plantations for forest-carbon sequestration, there is still limited knowledge on the effects of management practices and stand density on carbon-sequestration of popular plantation species (i.e. Pinus patula) in Nepal. We carried out case studies in four community forests planted between 1976 and 1990 to assess the impacts of management on forest carbon stocks. The study found that the average carbon stock in the pine plantations was 217 Mg C ha -1 , and was lower in forests with intensively managed plantations (214.3 Mg C ha -1 ) than in traditionally managed plantations (219 Mg C ha -1 ). However, it was the reverse in case of soil carbon, which was higher (78.65 Mg C ha -1 ) in the forests with intensive management. Though stand density was positively correlated with carbon stock, the proportionate increment in carbon stock was lower with increasing stand density, as carbon stock increased by less than 25% with a doubling of stand density (300-600). The total carbon stock was higher in plantations aged between 25 and 30 years compared to those aged between 30 and 35 years. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Historic Frequency and Severity of Fire in Whitebark Pine Forests of the Cascade Mountain Range, USA

    Directory of Open Access Journals (Sweden)

    Michael P. Murray

    2018-02-01

    Full Text Available Whitebark pine (Pinus albicaulis Engelm. is a foundation species of high elevation forest ecosystems in the Cascade Mountain Range of Oregon, Washington, and British Columbia. We examined fire evidence on 55 fire history sites located in the Cascade Range. To estimate dates of historic fires we analyzed 57 partial cross-sections from fire-scarred trees plus 700 increment cores. The resulting 101 fire events indicate fire has been a widespread component of Cascadian whitebark pine stands. Results are site specific and vary considerably. Whitebark pine stands appear to burn in a variety of severities and frequencies. Sites where fire intervals were detected ranged from 9 to 314 years, with a median of 49 years, and averaging 67 years. Fire intervals shortened significantly with higher latitudes. In assessing the most recent fire event at each site, overall, 56 percent burned as stand replacing events. In the 20th century, the number of fires diminished significantly. Due to conservation imperatives, re-introducing fire should be undertaken with extreme care to avoid substantial mortality of this endangered species.

  7. INTEGRATED SUSTAINABLE MANGROVE FOREST MANAGEMENT

    Directory of Open Access Journals (Sweden)

    Cecep Kusmana

    2015-07-01

    Full Text Available Mangrove forest as a renewable resource must be managed based on sustainable basis in which the benefits of ecological, economic and social from the forest have to equity concern in achieving the optimum forest products and services in fulfill the needs of recent generation without destruction of future generation needs and that does not undesirable effects on the physical and social environment. This Sustainable Forest Management (SFM practices needs the supporting of sustainability in the development of social, economic and environment (ecological sounds simultaneously, it should be run by the proper institutional and regulations. In operational scale, SFM need integration in terms of knowledge, technical, consultative of stakeholders, coordination among sectors and other stakeholders, and considerations of ecological inter-relationship in which mangroves as an integral part of both a coastal ecosystem and a watershed (catchment area. Some tools have been developed to measure the performent of SFM, such as initiated by ITTO at 1992 and followed by Ministry of Forestry of Indonesia (1993, CIFOR (1995, LEI (1999, FSC (1999, etc., however, the true nuance of SFM’s performance is not easy to be measured. 

  8. Average Stand Age from Forest Inventory Plots Does Not Describe Historical Fire Regimes in Ponderosa Pine and Mixed-Conifer Forests of Western North America.

    Directory of Open Access Journals (Sweden)

    Jens T Stevens

    Full Text Available Quantifying historical fire regimes provides important information for managing contemporary forests. Historical fire frequency and severity can be estimated using several methods; each method has strengths and weaknesses and presents challenges for interpretation and verification. Recent efforts to quantify the timing of historical high-severity fire events in forests of western North America have assumed that the "stand age" variable from the US Forest Service Forest Inventory and Analysis (FIA program reflects the timing of historical high-severity (i.e. stand-replacing fire in ponderosa pine and mixed-conifer forests. To test this assumption, we re-analyze the dataset used in a previous analysis, and compare information from fire history records with information from co-located FIA plots. We demonstrate that 1 the FIA stand age variable does not reflect the large range of individual tree ages in the FIA plots: older trees comprised more than 10% of pre-stand age basal area in 58% of plots analyzed and more than 30% of pre-stand age basal area in 32% of plots, and 2 recruitment events are not necessarily related to high-severity fire occurrence. Because the FIA stand age variable is estimated from a sample of tree ages within the tree size class containing a plurality of canopy trees in the plot, it does not necessarily include the oldest trees, especially in uneven-aged stands. Thus, the FIA stand age variable does not indicate whether the trees in the predominant size class established in response to severe fire, or established during the absence of fire. FIA stand age was not designed to measure the time since a stand-replacing disturbance. Quantification of historical "mixed-severity" fire regimes must be explicit about the spatial scale of high-severity fire effects, which is not possible using FIA stand age data.

  9. Average Stand Age from Forest Inventory Plots Does Not Describe Historical Fire Regimes in Ponderosa Pine and Mixed-Conifer Forests of Western North America.

    Science.gov (United States)

    Stevens, Jens T; Safford, Hugh D; North, Malcolm P; Fried, Jeremy S; Gray, Andrew N; Brown, Peter M; Dolanc, Christopher R; Dobrowski, Solomon Z; Falk, Donald A; Farris, Calvin A; Franklin, Jerry F; Fulé, Peter Z; Hagmann, R Keala; Knapp, Eric E; Miller, Jay D; Smith, Douglas F; Swetnam, Thomas W; Taylor, Alan H

    Quantifying historical fire regimes provides important information for managing contemporary forests. Historical fire frequency and severity can be estimated using several methods; each method has strengths and weaknesses and presents challenges for interpretation and verification. Recent efforts to quantify the timing of historical high-severity fire events in forests of western North America have assumed that the "stand age" variable from the US Forest Service Forest Inventory and Analysis (FIA) program reflects the timing of historical high-severity (i.e. stand-replacing) fire in ponderosa pine and mixed-conifer forests. To test this assumption, we re-analyze the dataset used in a previous analysis, and compare information from fire history records with information from co-located FIA plots. We demonstrate that 1) the FIA stand age variable does not reflect the large range of individual tree ages in the FIA plots: older trees comprised more than 10% of pre-stand age basal area in 58% of plots analyzed and more than 30% of pre-stand age basal area in 32% of plots, and 2) recruitment events are not necessarily related to high-severity fire occurrence. Because the FIA stand age variable is estimated from a sample of tree ages within the tree size class containing a plurality of canopy trees in the plot, it does not necessarily include the oldest trees, especially in uneven-aged stands. Thus, the FIA stand age variable does not indicate whether the trees in the predominant size class established in response to severe fire, or established during the absence of fire. FIA stand age was not designed to measure the time since a stand-replacing disturbance. Quantification of historical "mixed-severity" fire regimes must be explicit about the spatial scale of high-severity fire effects, which is not possible using FIA stand age data.

  10. Influence of ecological and botanical factors on the culture of black pine (Pinus nigra and proposed future management in Šumadija region (Central Serbia

    Directory of Open Access Journals (Sweden)

    Šikanja Severin

    2017-06-01

    Full Text Available All ecological aspects have been analysed and studied: botanical factors at black pine cultures in the area of Šumadija. Cultures of black pine of age 33 and 55−60 years within five experimental fields can be found in (1 good habitats, (2 medium habitats and (3 bad habitats were analysed in order to see how the same aged cultures act in different habitats. We analysed all the plants that appear as terrestrial flora, all the plants that occur as a shrub vegetation and, finally, floor trees. We analysed all the biotic and abiotic factors. The measures for most appropriate care for the cultures of black pine. Black pine in Serbia reaches its highest elevation amplitude in Europe and covers most diverse habitats and soil, mainly because of its visibly pronounced ecological modesty. For this reason, the black pine is one of the most usable kinds of artificial afforestation in the Republic of Serbia at all devastated, treeless terrain in the oak belt, where there is a danger that through the action of erosion, soil degradation occurs. That in the management unit, Gružansko Lepeničke, Jaseničke forests, to answer all the questions, the pine, when it comes to artificially established black lines on the same or on different sites and the same and the various soils, as when it comes to tending these crops. It should be noted that of the 125,000 ha conifer cultures in the Republic of Serbia, 86 000 ha of trees were all pines, roughly 70% of all conifer cultures. Of the 86 000 ha pine, 65,200 ha was occupied by black pine, which is about 70%. In the above,Management Unit separate the five sample plots of 25 acres in size.

  11. Ground beetles as indicators of past management of old-growth forests

    Directory of Open Access Journals (Sweden)

    Mazzei A

    2017-06-01

    Full Text Available Old-growth forests are terrestrial ecosystems with the highest level of biodiversity and the main environments for the study of conservation and dynamics of the forest system. In Mediterranean Europe, two millennia of human exploitation deeply altered the structural complexity of the native forests. Some animal groups, including insects, may be used as a proxy of such changes. In this paper we explored the possible effects of forest management on the functional diversity (species traits of carabid beetle communities. Three old-growth forests of the Sila National Park were sampled by pitfall traps set up in pure beech, beech-silver fir and Calabrian black pine forests. In each forest, five managed vs. five unmanaged stands were considered. Managed sites were exploited until the sixties of the past century and then left unmanaged. More than 6000 carabid specimens belonging to 23 species were collected. The functional diversity in carabid groups is influenced by forest management especially in beech and beech-silver fir stands. Body size, specialized predators, endemic species and forest species were negatively affected by stand management. On the contrary, omnivorous ground beetles populations (or species with a high dispersal power (macropterous and large geographic distribution were positively influenced by stand management. In pine forests the old-growth community seems less sensitive to past management and more affected by soil evolution. Soil erosion and disturbance may reduce species diversity of ground beetles. Anyway, the composition of the carabid community shows that 50-60 years of forest restoration are enough for the reconstruction of a fairly diverse assemblage reflecting a “subclimax” situation.

  12. Net Ecosystem Fluxes of Hydrocarbons from a Ponderosa Pine Forest in Colorado

    Science.gov (United States)

    Rhew, R. C.; Turnipseed, A. A.; Ortega, J. V.; Smith, J. N.; Guenther, A. B.; Shen, S.; Martinez, L.; Koss, A.; Warneke, C.; De Gouw, J. A.; Deventer, M. J.

    2015-12-01

    Light (C2-C4) alkenes, light alkanes and isoprene (C5H8) are non-methane hydrocarbons that play important roles in the photochemical production of tropospheric ozone and in the formation of secondary organic aerosols. Natural terrestrial fluxes of the light hydrocarbons are poorly characterized, with global emission estimates based on limited field measurements. In 2014, net fluxes of these compounds were measured at the Manitou Experimental Forest Observatory, a semi-arid ponderosa pine forest in the Colorado Rocky Mountains and site of the prior BEACHON campaigns. Three field intensives were conducted between June 17 and August 10, 2014. Net ecosystem flux measurements utilized a relaxed eddy accumulation system coupled to an automated gas chromatograph. Summertime average emissions of ethene and propene were up to 90% larger than those observed from a temperate deciduous forest. Ethene and propene fluxes were also correlated to each other, similar to the deciduous forest study. Emissions of isoprene were small, as expected for a coniferous forest, and these fluxes were not correlated with either ethene or propene. Unexpected emissions of light alkanes were also observed, and these showed a distinct diurnal cycle. Understory flux measurements allowed for the partitioning of fluxes between the surface and the canopy. Full results from the three field intensives will be compared with environmental variables in order to parameterize the fluxes for use in modeling emissions.

  13. Forest structure and plant diversity in maritime pine (Pinus pinaster Ait.) stands in central Spain

    Energy Technology Data Exchange (ETDEWEB)

    Osorio, L. F.; Bravo, F.; Zaldivar, P.; Pando, V.

    2009-07-01

    The relationship between forest structure and plant diversity in Mediterranean Maritime pine stands (Pinus pinaster Ait.) in the Iberian Range (Spain) was studied. Forty eight stands were sampled. In each, a circular plot (15 m radius) and a transect (25*1 m{sup 2}) were established to estimate stand variables and record presence and abundance of vascular species respectively. Canonical correlation analysis (CCA), simple correlations and multiple stepwise linear regressions were used to explore the relationship between plant diversity and forest structure. Correlation between diversity measurements and stand variables is very weak, but significant correlations were found when evaluating each set of variables separately. Presence and cover of some species (for instance, Veronica arvensis L. or Micropyrum tenellum (L.) Link) is correlated with stand variables; however, determination coefficients found in step-by-step regression are not significant. (Author) 34 refs.

  14. Emissions of BVOC from lodgepole pine in response to mountain pine beetle attack in high and low mortality forest stands

    Directory of Open Access Journals (Sweden)

    T. R. Duhl

    2013-01-01

    Full Text Available In this screening study, biogenic volatile organic compound (BVOC emissions from intact branches of lodgepole pine (Pinus contorta trees were measured from trees at two forested sites that have been impacted differently by the mountain pine beetle (MPB, with one having higher mortality and the other with lower mortality. Differences in the amounts and chemical diversity of BVOC between the two sites and from apparently healthy trees versus trees in different stages of MPB attack are presented, as well as (for one site observed seasonal variability in emissions. A brief comparison is made of geological and climatic characteristics as well as prior disturbances (both natural and man-made at each site. Trees sampled at the site experiencing high MPB-related tree mortality had lower chemodiversity in terms of monoterpene (MT emission profiles, while profiles were more diverse at the lower-mortality site. Also at the higher-mortality site, MPB-infested trees in various stages of decline had lower emissions of sesquiterpenes (SQTs compared to healthy trees, while at the site with lower mortality, MPB-survivors had significantly higher SQT emissions during part of the growing season when compared to both uninfested and newly infested trees. SQT profiles differed between the two sites and, like monoterpene and oxygenated VOC profiles, varied through the season. For the low-mortality site in which repeated measurements were made over the course of the early summer–late fall, higher chemical diversity was observed in early- compared to late-season measurements for all compound classes investigated (MT, oxygenated VOC, and SQT, with the amount of change appearing to correlate to the MPB status of the trees studied. Emissions of 2-methyl-3-buten-2-ol (MBO had a distinct seasonal signal but were not much different between healthy or infested trees, except in trees with dead needles, from which emissions of this compound were negligible, and in late

  15. Transpiration and CO2 fluxes of a pine forest: modelling the undergrowth effect

    Directory of Open Access Journals (Sweden)

    V. Rivalland

    2005-02-01

    Full Text Available A modelling study is performed in order to quantify the relative effect of allowing for the physiological properties of an undergrowth grass sward on total canopy water and carbon fluxes of the Le-Bray forest (Les-Landes, South-western France. The Le-Bray forest consists of maritime pine and an herbaceous undergrowth (purple moor-grass, which is characterised by a low stomatal control of transpiration, in contrast to maritime pine. A CO2-responsive land surface model is used that includes responses of woody and herbaceous species to water stress. An attempt is made to represent the properties of the undergrowth vegetation in the land surface model Interactions between Soil, Biosphere, and Atmosphere, CO2-responsive, ISBA-A-gs. The new adjustment allows for a fairly different environmental response between the forest canopy and the understory in a simple manner. The model's simulations are compared with long term (1997 and 1998 micro-meteorological measurements over the Le-Bray site. The fluxes of energy, water and CO2, are simulated with and without the improved representation of the undergrowth vegetation, and the two simulations are compared with the observations. Accounting for the undergrowth permits one to improve the model's scores. A simple sensitivity experiment shows the behaviour of the model in response to climate change conditions, and the understory effect on the water balance and carbon storage of the forest. Accounting for the distinct characteristics of the undergrowth has a substantial and positive effect on the model accuracy and leads to a different response to climate change scenarios.

  16. Interaction of an invasive bark beetle with a native forest pathogen: Potential effect of dwarf mistletoe on range expansion of mountain pine beetle in jack pine forests

    Science.gov (United States)

    Jennifer Klutsch; Nadir Erbilgin

    2012-01-01

    In recent decades, climate change has facilitated shifts in species ranges that have the potential to significantly affect ecosystem dynamics and resilience. Mountain pine beetle (Dendroctonus ponderosae) is expanding east from British Columbia, where it has killed millions of pine trees, primarily lodgepole pine (Pinus contorta...

  17. Southern pine beetle in loblolly pine: simulating within stand interactions using the process model SPBLOBTHIN

    Science.gov (United States)

    Brian Strom; J. R. Meeker; J. Bishir; James Roberds; X. Wan

    2016-01-01

    Pine stand density is a key determinant of damage resulting from attacks by the southern pine beetle (SPB, Dendroctonus frontalis Zimm.). High-density stands of maturing loblolly pine (Pinus taeda L.) are at high risk for losses to SPB, and reducing stand density is the primary tool available to forest managers for preventing and mitigating damage. Field studies are...

  18. Modelling water and {sup 36}Cl cycling in a Belgian pine forest - Model for {sup 36}Cl cycling in a Belgian pine forest

    Energy Technology Data Exchange (ETDEWEB)

    Vives i Batlle, Jordi; Vandenhove, Hildegarde; Gielen, Sienke [Belgian Nuclear Research Centre, Boeretang 200, 2400 Mol (Belgium)

    2014-07-01

    A simplified, 1-D soil-groundwater-vegetation model to represent the cycling of water and of {sup 36}Cl in a Belgian Scots pine forest is presented and discussed. The model contains a soil column with layers of different (but uniform) field capacity and soil porosity, which are penetrated by tree roots. Flow through porous media is assumed to circulate according to Darcy and Philips laws, using empirical soil hydraulic properties without recourse to Richards' equation. The vegetation is represented by means of a compartment model including simplified representation of sap flow, translocation and litterfall in relation to different parts of the tree. The water table height is variable according to the balance between precipitation, capillary rise, solar radiation, plant uptake and evapotranspiration. The influence of local fluvial sources of water can also be evaluated in a simplified way as a losing/gaining stream input to the soil column. Time dependent data on temperature, solar irradiation, rainfall, crop coefficient and leaf area index (LAI) are used as input to the model in order to calculate evapotranspiration and a simplified approach to foliar interception. The chlorine flux follows the water flux in both soil and the trees, using retardation in soil and experimentally measured translocation factors within the plant. The chlorine flux is optimised and validated with recourse to a previous {sup 36}Cl compartment model. Although considered to be a relatively simple model, initial results suggest a reasonable consistency between previously published water balance and field measurements in a Scots pine stand from the vicinity of Mol, Belgium. The mean soil water content is predicted to be around 25%, the plant water is stored in the order roots > plant above roots > leaf surfaces, water table height below ground fluctuates between 2.1 and 2.6 m compared with a measured water table height of 1.8 - 20 m and pine transpiration is less than 1.2 mm/d compared

  19. White pines, blister rust, and management in the Southwest

    Science.gov (United States)

    D. A. Conklin; M Fairweather; D Ryerson; B Geils; D Vogler

    2009-01-01

    White pines in New Mexico and Arizona are threatened by the invasive disease white pine blister rust, Cronartium ribicola. Blister rust is already causing severe damage to a large population of southwestern white pine in the Sacramento Mountains of southern New Mexico. Recent detection in northern and western New Mexico suggests that a major expansion of the...

  20. Climate Drives Episodic Conifer Establishment after Fire in Dry Ponderosa Pine Forests of the Colorado Front Range, USA

    Directory of Open Access Journals (Sweden)

    Monica T. Rother

    2017-05-01

    Full Text Available In recent years, warming climate and increased fire activity have raised concern about post-fire recovery of western U.S. forests. We assessed relationships between climate variability and tree establishment after fire in dry ponderosa pine forests of the Colorado Front Range. We harvested and aged over 400 post-fire juvenile ponderosa pine (Pinus ponderosa and Douglas-fir (Pseudotsuga menziesii trees using an improved tree-ring based approach that yielded annually-resolved dates and then assessed relationships between climate variability and pulses of tree establishment. We found that tree establishment was largely concentrated in years of above-average moisture availability in the growing season, including higher amounts of precipitation and more positive values of the Palmer Drought Severity Index. Under continued climate change, drier conditions associated with warming temperatures may limit forest recovery after fire, which could result in lower stand densities or shifts to non-forested vegetation in some areas.

  1. Forest Resource Management Plans: A Sustainability Approach

    Science.gov (United States)

    Pile, Lauren S.; Watts, Christine M.; Straka, Thomas J.

    2012-01-01

    Forest Resource Management Plans is the capstone course in many forestry and natural resource management curricula. The management plans are developed by senior forestry students. Early management plans courses were commonly technical exercises, often performed on contrived forest "tracts" on university-owned or other public lands, with a goal of…

  2. Content of chemical elements in tree rings of lodgepole pine and whitebark pine from a subalpine Sierra Nevada forest

    Science.gov (United States)

    David L. Peterson; Darren R. Anderson

    1990-01-01

    The wood of lodgepole pines and whitebark pines from a high elevation site in the east central Sierra Nevada of California was analyzed for chemical content to determine whether there were any temporal patterns of chemical distribution in tree rings. Cores were taken from 10 trees of each species and divided into 5-year increments for chemical analysis. Correlation...

  3. The Missouri Ozark Forest Ecosystem Project: the effects of forest management on the forest ecosystem

    Science.gov (United States)

    Brian Brookshire; Carl Hauser

    1993-01-01

    The effects of forest management on non-timber resources are of growing concern to forest managers and the public. While many previous studies have reported effects of stand-level treatments (less than 15 ha) on various stand-level attributes, few studies have attempted to document the influence of forest management on the biotic and abiotic characteristics of entire...

  4. Non-indigenous plant species and their ecological range in Central European pine (Pinus sylvestris L.) forests

    OpenAIRE

    Zerbe , Stefan; Wirth , Petra

    2006-01-01

    International audience; In this study, forest ecosystems were analysed with regard to the occurrence and ecological range of non-indigenous plant species. Pine forests in the NE German lowland, which naturally and anthropogenically occur on a broad range of different sites, were taken as an example. The analysis is based on a data set of about 2 300 vegetation plots. The ecological range was assessed applying Ellenberg's ecological indicator values. Out of a total of 362 taxa recorded in the ...

  5. Rapid Turnover and Minimal Accretion of Mineral Soil Carbon During 60-Years of Pine Forest Growth on Previously Cultivated Land

    Science.gov (United States)

    Richter, D., Jr.; Mobley, M. L.; Billings, S. A.; Markewitz, D.

    2016-12-01

    At the Calhoun Long-Term Soil-Ecosystem field experiment (1957-present), reforestation of previously cultivated land over fifty years nearly doubled soil organic carbon (SOC) in surface soils (0 to 7.5-cm) but these gains were offset by significant SOC losses in subsoils (35 to 60-cm). Nearly all of the accretions in surface soils amounted to gains in light fraction SOC, whereas losses at depth were associated with silt and clay-sized particles. These changes are documented in the Calhoun Long-Term Soil-Ecosystem (LTSE) study that resampled soil from 16 plots about every five years and archived all soil samples from four soil layers within the upper 60-cm of mineral soil. We combined soil bulk density, density fractionation, stable isotopes, and radioisotopes to explore changes in SOC and soil organic nitrogen (SON) associated with five decades of the growth of a loblolly pine secondary forest. Isotopic signatures showed relatively large accumulations of contemporary forest-derived carbon in surface soils, and no accumulation of forest-derived carbon in subsoils. We interpret results to indicate that land-use change from cotton fields to secondary pine forests drove soil biogeochemical and hydrological changes that enhanced root and microbial activity and SOM decomposition in subsoils. As pine stands matured and are now transitioning to mixed pines and hardwoods, demands on soil organic matter for nutrients to support aboveground growth has eased due to pine mortality, and bulk SOM and SON and their isotopes in subsoils have stabilized. We anticipate major changes in the next fifty years as 1957 pine trees transition to hardwoods. This study emphasizes the importance of long-term experiments and deep soil measurements when characterizing SOC and SON responses to land use change. There is a remarkable paucity of E long-term soil data deeper than 30 cm.

  6. Influence of climate and land use on historical surface fires in pine-oak forests, Sierra Madre Occidental, Mexico

    Science.gov (United States)

    Emily K. Heyerdahl; Ernesto Alvarado

    2003-01-01

    The rugged mountains of the Sierra Madre Occidental, in north-central Mexico, support a mosaic of diverse ecosystems. Of these, the high-elevation, temperate pine-oak forests are ecologically significant for their extensiveness and biodiversity. They cover nearly half the land area in the states of Durango and Chihuahua (42%), and comprise a similar percentage of the...

  7. Presence of Nitrosospiral cluster 2 bacteria corresponds to N transformation rates in nine acid Scots pine forest soils.

    NARCIS (Netherlands)

    Nugroho, R. Adi; Roling, W.F.M.; Laverman, A.M.; Zoomer, R.; Verhoef, H.A.

    2005-01-01

    The relation between environmental factors and the presence of ammonia-oxidising bacteria (AOB), and its consequences for the N transformation rates were investigated in nine Scots pine (Pinus sylvestris L.) forest soils. In general, the diversity in AOB appears to be strikingly low compared to

  8. Hydrologic effects of size and location of harvesting on a large drained pine forest on organic soils

    Science.gov (United States)

    Devendra M. Amatya; Kim Hyunwoo; George M. Chescheir; R. Wayne Nettles Skaggs

    2008-01-01

    A calibrated DRAINWAT model was used to evaluate long -term hydrologic effects of conversion to agriculture of a 30 km2 pine forest on mostly organic soils in North Carolina, USA. Fifty years of weather data were used for determining baseline outflows. Simulation revealed that increased mean annual outflow was significant only for a 75% conversion at both upstream and...

  9. Influence of elevation on bark beetle (Coleoptera: Curculionidae, Scolytinae) community structure and flight periodicity in ponderosa pine forests of Arizona

    Science.gov (United States)

    Kelly K. Williams; Joel D. McMillin; Tom E. DeGomez; Karen M. Clancy; Andy Miller

    2008-01-01

    We examined abundance and flight periodicity of five Ips and six Dendroctonus species (Coleoptera: Curculionidae, Scolytinae) among three different elevation bands in ponderosa pine (Pinus ponderosa Douglas ex. Lawson) forests of northcentral Arizona. Bark beetle populations were monitored at 10 sites in each of three elevation...

  10. Effects of low intensity prescribed fires on ponderosa pine forests in wilderness areas of Zion National Park, Utah

    Science.gov (United States)

    Henry V. Bastian

    2001-01-01

    Vegetation and fuel loading plots were monitored and sampled in wilderness areas treated with prescribed fire. Changes in ponderosa pine (Pinus ponderosa) forest structure tree species and fuel loading are presented. Plots were randomly stratified and established in burn units in 1995. Preliminary analysis of nine plots 2 years after burning show litter was reduced 54....

  11. Chemical composition of needles and cambial activity of stems of Scots pine trees affected by air pollutants in Polish forests

    Science.gov (United States)

    Wojciech Dmuchowski; Ewa U. Kurczynska; Wieslaw Wloch

    1998-01-01

    The impact of environmental pollution is defined for the chemical composition of Scots pine (Pinus sylvestris L.) needles and cambial activity in the tree stems in Polish forests. The research investigated 20-year-old trees growing in two areas in significantly different levels of pollution. The highly polluted area was located near the Warsaw...

  12. Dynamics and stratification of functional groups of micro- and mesoarthropods in the organic layer of a Scots pine forest.

    NARCIS (Netherlands)

    Berg, M.P.; Kniese, J.P.; Bedaux, J.J.M.; Verhoef, H.A.

    1998-01-01

    This paper addresses the abundance, biomass and microstratification of functional groups of micro- and mesoarthropods inhabiting the organic layers of a Scots pine forest (Pinus sylvestris L.). An experiment using stratified litterbags, containing organic material of four degradation stages, i.e.,

  13. Biology and pathology of Ribes and their implications for management of white pine blister rust

    Science.gov (United States)

    P. J. Zambino

    2010-01-01

    Ribes (currants and gooseberries) are telial hosts for the introduced and invasive white pine blister rust fungus, Cronartium ribicola. Knowledge of wild and introduced Ribes helps us understand the epidemiology of blister rust on its aecial hosts, white pines, and develop disease control and management strategies. Ribes differ by species in their contribution to...

  14. Adaptation of forest management to climate change as perceived by forest owners and managers in Belgium

    OpenAIRE

    Sousa-Silva, Rita; Ponette, Quentin; Verheyen, Kris; Van Herzele, Ann; Muys, Bart

    2016-01-01

    Background Climate change is likely to cause significant modifications in forests. Rising to this challenge may require adaptation of forest management, and therefore should trigger proactive measures by forest managers, but it is unclear to what extent this is already happening. Methods The survey carried out in this research assesses how forest stakeholders in Belgium perceive the role of their forest management in the context of climate change and the impediments that limit their...

  15. Water and Energy Balances of Loblolly Pine Plantation Forests during a Full Stand Rotation

    Science.gov (United States)

    Sun, G.; Mitra, B.; Domec, J. C.; Gavazi, M.; Yang, Y.; Tian, S.; Zietlow, D.; McNulty, S.; King, J.; Noormets, A.

    2017-12-01

    partitioning of precipitation and solar energy in pine forests. In addition, we conclude that accessible groundwater was important factor for stabilizing forest water and energy balances during a drought in the lower coastal ecosystems.

  16. Fire regime in a Mexican forest under indigenous resource management.

    Science.gov (United States)

    Fulé, Peter Z; Ramos-Gómez, Mauro; Cortés-Montaño, Citlali; Miller, Andrew M

    2011-04-01

    The Rarámuri (Tarahumara) people live in the mountains and canyons of the Sierra Madre Occidental of Chihuahua, Mexico. They base their subsistence on multiple-use strategies of their natural resources, including agriculture, pastoralism, and harvesting of native plants and wildlife. Pino Gordo is a Rarámuri settlement in a remote location where the forest has not been commercially logged. We reconstructed the forest fire regime from fire-scarred trees, measured the structure of the never-logged forest, and interviewed community members about fire use. Fire occurrence was consistent throughout the 19th and 20th centuries up to our fire scar collection in 2004. This is the least interrupted surface-fire regime reported to date in North America. Studies from other relict sites such as nature reserves in Mexico or the USA have all shown some recent alterations associated with industrialized society. At Pino Gordo, fires recurred frequently at the three study sites, with a composite mean fire interval of 1.9 years (all fires) to 7.6 years (fires scarring 25% or more of samples). Per-sample fire intervals averaged 10-14 years at the three sites. Approximately two-thirds of fires burned in the season of cambial dormancy, probably during the pre-monsoonal drought. Forests were dominated by pines and contained many large living trees and snags, in contrast to two nearby similar forests that have been logged. Community residents reported using fire for many purposes, consistent with previous literature on fire use by indigenous people. Pino Gordo is a valuable example of a continuing frequent-fire regime in a never-harvested forest. The Rarámuri people have actively conserved this forest through their traditional livelihood and management techniques, as opposed to logging the forest, and have also facilitated the fire regime by burning. The data contribute to a better understanding of the interactions of humans who live in pine forests and the fire regimes of these

  17. Growing season soil moisture following restoration treatments of varying intensity in semi-arid ponderosa pine forests

    Science.gov (United States)

    O'Donnell, F. C.; Springer, A. E.; Sankey, T.; Masek Lopez, S.

    2014-12-01

    Forest restoration projects are being planned for large areas of overgrown semi-arid ponderosa pine forests of the Southwestern US. Restoration involves the thinning of smaller trees and prescribed or managed fire to reduce tree density, restore a more natural fire regime, and decrease the risk of catastrophic wildfire. The stated goals of these projects generally reduced plant water stress and improvements in hydrologic function. However, little is known about how to design restoration treatments to best meet these goals. As part of a larger project on snow cover, soil moisture, and groundwater recharge, we measured soil moisture, an indicator of plant water status, in four pairs of control and restored sites near Flagstaff, Arizona. The restoration strategies used at the sites range in both amount of open space created and degree of clustering of the remaining trees. We measured soil moisture using 30 cm vertical time domain reflectometry probes installed on 100 m transects at 5 m intervals so it would be possible to analyze the spatial pattern of soil moisture. Soil moisture was higher and more spatially variable in the restored sites than the control sites with differences in spatial pattern among the restoration types. Soil moisture monitoring will continue until the first snow fall, at which point measurements of snow depth and snow water equivalent will be made at the same locations.

  18. Short-Term Belowground Responses to Thinning and Burning Treatments in Southwestern Ponderosa Pine Forests of the USA

    Directory of Open Access Journals (Sweden)

    Steven T. Overby

    2016-02-01

    Full Text Available Microbial-mediated decomposition and nutrient mineralization are major drivers of forest productivity. As landscape-scale fuel reduction treatments are being implemented throughout the fire-prone western United States of America, it is important to evaluate operationally how these wildfire mitigation treatments alter belowground processes. We quantified these important belowground components before and after management-applied fuel treatments of thinning alone, thinning combined with prescribed fire, and prescribed fire in ponderosa pine (Pinus ponderosa stands at the Southwest Plateau, Fire and Fire Surrogate site, Arizona. Fuel treatments did not alter pH, total carbon and nitrogen (N concentrations, or base cations of the forest floor (O horizon or mineral soil (0–5 cm during this 2-year study. In situ rates of net N mineralization and nitrification in the surface mineral soil (0–15 cm increased 6 months after thinning with prescribed fire treatments; thinning only resulted in net N immobilization. The rates returned to pre-treatment levels after one year. Based on phospholipid fatty acid composition, microbial communities in treated areas were similar to untreated areas (control in the surface organic horizon and mineral soil (0–5 cm after treatments. Soil potential enzyme activities were not significantly altered by any of the three fuel treatments. Our results suggest that a variety of one-time alternative fuel treatments can reduce fire hazard without degrading soil fertility.

  19. Carbon and water fluxes from ponderosa pine forests disturbed by wildfire and thinning.

    Science.gov (United States)

    Dore, S; Kolb, T E; Montes-Helu, M; Eckert, S E; Sullivan, B W; Hungate, B A; Kaye, J P; Hart, S C; Koch, G W; Finkral, A

    2010-04-01

    Disturbances alter ecosystem carbon dynamics, often by reducing carbon uptake and stocks. We compared the impact of two types of disturbances that represent the most likely future conditions of currently dense ponderosa pine forests of the southwestern United States: (1) high-intensity fire and (2) thinning, designed to reduce fire intensity. High-severity fire had a larger impact on ecosystem carbon uptake and storage than thinning. Total ecosystem carbon was 42% lower at the intensely burned site, 10 years after burning, than at the undisturbed site. Eddy covariance measurements over two years showed that the burned site was a net annual source of carbon to the atmosphere whereas the undisturbed site was a sink. Net primary production (NPP), evapotranspiration (ET), and water use efficiency were lower at the burned site than at the undisturbed site. In contrast, thinning decreased total ecosystem carbon by 18%, and changed the site from a carbon sink to a source in the first posttreatment year. Thinning also decreased ET, reduced the limitation of drought on carbon uptake during summer, and did not change water use efficiency. Both disturbances reduced ecosystem carbon uptake by decreasing gross primary production (55% by burning, 30% by thinning) more than total ecosystem respiration (TER; 33-47% by burning, 18% by thinning), and increased the contribution of soil carbon dioxide efflux to TER. The relationship between TER and temperature was not affected by either disturbance. Efforts to accurately estimate regional carbon budgets should consider impacts on carbon dynamics of both large disturbances, such as high-intensity fire, and the partial disturbance of thinning that is often used to prevent intense burning. Our results show that thinned forests of ponderosa pine in the southwestern United States are a desirable alternative to intensively burned forests to maintain carbon stocks and primary production.

  20. Response of water use efficiency to summer drought in a boreal Scots pine forest in Finland

    Science.gov (United States)

    Gao, Yao; Markkanen, Tiina; Aurela, Mika; Mammarella, Ivan; Thum, Tea; Tsuruta, Aki; Yang, Huiyi; Aalto, Tuula

    2017-09-01

    The influence of drought on plant functioning has received considerable attention in recent years, however our understanding of the response of carbon and water coupling to drought in terrestrial ecosystems still needs to be improved. A severe soil moisture drought occurred in southern Finland in the late summer of 2006. In this study, we investigated the response of water use efficiency to summer drought in a boreal Scots pine forest (Pinus sylvestris) on the daily time scale mainly using eddy covariance flux data from the Hyytiälä (southern Finland) flux site. In addition, simulation results from the JSBACH land surface model were evaluated against the observed results. Based on observed data, the ecosystem level water use efficiency (EWUE; the ratio of gross primary production, GPP, to evapotranspiration, ET) showed a decrease during the severe soil moisture drought, while the inherent water use efficiency (IWUE; a quantity defined as EWUE multiplied with mean daytime vapour pressure deficit, VPD) increased and the underlying water use efficiency (uWUE, a metric based on IWUE and a simple stomatal model, is the ratio of GPP multiplied with a square root of VPD to ET) was unchanged during the drought. The decrease in EWUE was due to the stronger decline in GPP than in ET. The increase in IWUE was because of the decreased stomatal conductance under increased VPD. The unchanged uWUE indicates that the trade-off between carbon assimilation and transpiration of the boreal Scots pine forest was not disturbed by this drought event at the site. The JSBACH simulation showed declines of both GPP and ET under the severe soil moisture drought, but to a smaller extent compared to the observed GPP and ET. Simulated GPP and ET led to a smaller decrease in EWUE but a larger increase in IWUE because of the severe soil moisture drought in comparison to observations. As in the observations, the simulated uWUE showed no changes in the drought event. The model deficiencies exist

  1. Assessing economic tradeoffs in forest management.

    Science.gov (United States)

    Ernie Niemi; Ed. Whitelaw

    1999-01-01

    Method is described for assessing the competing demands for forest resources in a forest management plan by addressing economics values, economic impacts, and perceptions of fairness around each demand. Economics trends and forces that shape the dynamic ecosystem-economy relation are developed. The method is demonstrated through an illustrative analysis of a forest-...

  2. Solid Waste Management in Recreational Forest Areas.

    Science.gov (United States)

    Spooner, Charles S.

    The Forest Service, U. S. Department of Agriculture, requested the Bureau of Solid Waste Management to conduct a study of National Forest recreation areas to establish waste generation rates for major recreation activities and to determine the cost of solid waste handling for selected Forest Service Districts. This report describes the 1968 solid…

  3. Forest Interpreter's Primer on Fire Management.

    Science.gov (United States)

    Zelker, Thomas M.

    Specifically prepared for the use of Forest Service field-based interpreters of the management, protection, and use of forest and range resources and the associated human, cultural, and natural history found on these lands, this book is the second in a series of six primers on the multiple use of forest and range resources. Following an…

  4. Pinus albicaulis Engelm. (Whitebark Pine in Mixed-Species Stands throughout Its US Range: Broad-Scale Indicators of Extent and Recent Decline

    Directory of Open Access Journals (Sweden)

    Sara A. Goeking

    2018-03-01

    Full Text Available We used data collected from >1400 plots by a national forest inventory to quantify population-level indicators for a tree species of concern. Whitebark pine (Pinus albicaulis has recently experienced high mortality throughout its US range, where we assessed the area of land with whitebark pine present, size-class distribution of individual whitebark pine, growth rates, and mortality rates, all with respect to dominant forest type. As of 2016, 51% of all standing whitebark pine trees in the US were dead. Dead whitebark pines outnumbered live ones—and whitebark pine mortality outpaced growth—in all size classes ≥22.8 cm diameter at breast height (DBH, across all forest types. Although whitebark pine occurred across 4.1 million ha in the US, the vast majority of this area (85% and of the total number of whitebark pine seedlings (72% fell within forest types other than the whitebark pine type. Standardized growth of whitebark pines was most strongly correlated with the relative basal area of whitebark pine trees (rho = 0.67; p < 0.01, while both standardized growth and mortality were moderately correlated with relative whitebark pine stem density (rho = 0.39 and 0.40; p = 0.031 and p < 0.01, respectively. Neither growth nor mortality were well correlated with total stand basal area, total stem density, or stand mean diameter. The abundance, extent, and relative growth vs. mortality rates of whitebark pine in multiple forest types presents opportunities for management to encourage whitebark pine recruitment in mixed-species stands. The lodgepole pine forest type contained more whitebark pine seedlings (35% than any other forest type, suggesting that this forest type represents a potential management target for silvicultural treatments that seek to facilitate the recruitment of whitebark pine seedlings into larger size classes. National forest inventories in other countries may use a similar approach to assess species of concern.

  5. A review of precipitation and temperature control on seedling emergence and establishment for ponderosa and lodgepole pine forest regeneration

    Science.gov (United States)

    Petrie, Matthew; Wildeman, A.M.; Bradford, John B.; Hubbard, R.M.; Lauenroth, W.K.

    2016-01-01

    The persistence of ponderosa pine and lodgepole pine forests in the 21st century depends to a large extent on how seedling emergence and establishment are influenced by driving climate and environmental variables, which largely govern forest regeneration. We surveyed the literature, and identified 96 publications that reported data on dependent variables of seedling emergence and/or establishment and one or more independent variables of air temperature, soil temperature, precipitation and moisture availability. Our review suggests that seedling emergence and establishment for both species is highest at intermediate temperatures (20 to 25 °C), and higher precipitation and higher moisture availability support a higher percentage of seedling emergence and establishment at daily, monthly and annual timescales. We found that ponderosa pine seedlings may be more sensitive to temperature fluctuations whereas lodgepole pine seedlings may be more sensitive to moisture fluctuations. In a changing climate, increasing temperatures and declining moisture availability may hinder forest persistence by limiting seedling processes. Yet, only 23 studies in our review investigated the effects of driving climate and environmental variables directly. Furthermore, 74 studies occurred in a laboratory or greenhouse, which do not often replicate the conditions experienced by tree seedlings in a field setting. It is therefore difficult to provide strong conclusions on how sensitive emergence and establishment in ponderosa and lodgepole pine are to these specific driving variables, or to investigate their potential aggregate effects. Thus, the effects of many driving variables on seedling processes remain largely inconclusive. Our review stresses the need for additional field and laboratory studies to better elucidate the effects of driving climate and environmental variables on seedling emergence and establishment for ponderosa and lodgepole pine.

  6. Overstory tree status following thinning and burning treatments in mixed pine-hardwood stands on the William B. Bankhead National Forest, Alabama

    Science.gov (United States)

    Callie Jo Schweitzer; Yong Wang

    2013-01-01

    Prescribed burning and thinning are intermediate stand treatments whose consequences when applied in mixed pine-hardwood stands are unknown. The William B. Bankhead National Forest in northcentral Alabama has undertaken these two options to move unmanaged, 20- to 50-year-old loblolly pine (Pinus taeda L.) plantations towards upland hardwood-dominated...

  7. First report of Fusarium proliferatum causing Fusarium root disease on sugar pine (Pinus lambertiana) in a forest container nursery in California

    Science.gov (United States)

    J. E. Stewart; K. Otto; G. A. Cline; Kas Dumroese; Ned Klopfenstein; M. -S. Kim

    2016-01-01

    Fusarium species, specifically F. commune, F. proliferatum, and F. solani, can cause severe damping-off and root disease in container and bareroot forest nurseries throughout North America. Many conifer and hardwood species can be affected, but Douglas-fir (Pseudotsuga menziesii), western white pine (Pinus monticola), and ponderosa pine (P. ponderosa) are known to be...

  8. Short-term ecological consequences of collaborative restoration treatments in ponderosa pine forests of Colorado

    Science.gov (United States)

    Briggs, Jenny S.; Fornwalt, Paula J.; Feinstein, Jonas A.

    2017-01-01

    Ecological restoration treatments are being implemented at an increasing rate in ponderosa pine and other dry conifer forests across the western United States, via the USDA Forest Service’s Collaborative Forest Landscape Restoration (CFLR) program. In this program, collaborative stakeholder groups work with National Forests (NFs) to adaptively implement and monitor ecological restoration treatments intended to offset the effects of many decades of anthropogenic stressors. We initiated a novel study to expand the scope of treatment effectiveness monitoring efforts in one of the first CFLR landscapes, Colorado’s Front Range. We used a Before/After/Control/Impact framework to evaluate the short-term consequences of treatments on numerous ecological properties. We collected pre-treatment and one year post-treatment data on NF and partner agencies’ lands, in 66 plots distributed across seven treatment units and nearby untreated areas. Our results reflected progress toward several treatment objectives: treated areas had lower tree density and basal area, greater openness, no increase in exotic understory plants, no decrease in native understory plants, and no decrease in use by tree squirrels and ungulates. However, some findings suggested the need for adaptive modification of both treatment prescriptions and monitoring protocols: treatments did not promote heterogeneity of stand structure, and monitoring methods may not have been robust enough to detect changes in surface fuels. Our study highlights both the effective aspects of these restoration treatments, and the importance of initiating and continuing collaborative science-based monitoring to improve the outcomes of broad-scale forest restoration efforts.

  9. Forest Fire Smoldering Emissions from Ponderosa Pine Duff in Central Washington

    Science.gov (United States)

    Baker, S. P.; Lincoln, E.; Page, W.; Richardson, M.

    2017-12-01

    Forest fire smoldering combustion is a significant contribution to pollution and carbon emissions. Smoldering combustion produces the majority of carbon monoxide (CO), methane (CH4), volatile organic compounds (VOC), and fine particulate matter (PM2.5) emitted by forest fires when it occurs. The emission factor for PM2.5 and many VOCs are correlated with the modified combustion efficiency (MCE), which is the ratio of CO2 emitted, to the sum of emitted CO2 and CO. MCE is a measure of the relative ratio of flaming and smoldering combustion, but its relationship to the physical fire process is poorly studied. We measured carbon emission rates and individual emission factors for CO, CO2, CH4, and VOC's from smoldering combustion on Ponderosa pine /Douglas-Fir forest sites in central Washington. The emission factor results are linked with concurrent thermal measurements made at various depths in the duff and surface IR camera imagery. The MCE value ranged from .80 to .91 and are correlated with emission factors for 24 carbon compounds. Other data collected were fuel moistures and duff temperatures at depth increments. This goal of this research is the creation of a database to better predict the impacts of air pollution resulting from burns leading to smoldering combustion.

  10. Resilience to seasonal heat wave episodes in a Mediterranean pine forest.

    Science.gov (United States)

    Tatarinov, Fedor; Rotenberg, Eyal; Maseyk, Kadmiel; Ogée, Jérôme; Klein, Tamir; Yakir, Dan

    2016-04-01

    Short-term, intense heat waves (hamsins) are common in the eastern Mediterranean region and provide an opportunity to study the resilience of forests to such events that are predicted to increase in frequency and intensity. The response of a 50-yr-old Aleppo pine (Pinus halepensis) forest to hamsin events lasting 1-7 d was studied using 10 yr of eddy covariance and sap flow measurements. The highest frequency of heat waves was c. four per month, coinciding with the peak productivity period (March-April). During these events, net ecosystem carbon exchange (NEE) and canopy conductance (gc ) decreased by c. 60%, but evapotranspiration (ET) showed little change. Fast recovery was also observed with fluxes reaching pre-stress values within a day following the event. NEE and gc showed a strong response to vapor pressure deficit that weakened as soil moisture decreased, while sap flow was primarily responding to changes in soil moisture. On an annual scale, heat waves reduced NEE and gross primary productivity by c. 15% and 4%, respectively. Forest resilience to short-term extreme events such as heat waves is probably a key to its survival and must be accounted for to better predict the increasing impact on productivity and survival of such events in future climates. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  11. Retention of seed trees fails to lifeboat ectomycorrhizal fungal diversity in harvested Scots pine forests.

    Science.gov (United States)

    Varenius, Kerstin; Lindahl, Björn D; Dahlberg, Anders

    2017-09-01

    Fennoscandian forestry has in the past decades changed from natural regeneration of forests towards replantation of clear-cuts, which negatively impacts ectomycorrhizal fungal (EMF) diversity. Retention of trees during harvesting enables EMF survival, and we therefore expected EMF communities to be more similar to those in old natural stands after forest regeneration using seed trees compared to full clear-cutting and replanting. We sequenced fungal internal transcribed spacer 2 (ITS2) amplicons to assess EMF communities in 10- to 60-year-old Scots pine stands regenerated either using seed trees or through replanting of clear-cuts with old natural stands as reference. We also investigated local EMF communities around retained old trees. We found that retention of seed trees failed to mitigate the impact of harvesting on EMF community composition and diversity. With increasing stand age, EMF communities became increasingly similar to those in old natural stands and permanently retained trees maintained EMF locally. From our observations, we conclude that EMF communities, at least common species, post-harvest are more influenced by environmental filtering, resulting from environmental changes induced by harvest, than by the continuity of trees. These results suggest that retention of intact forest patches is a more efficient way to conserve EMF diversity than retaining dispersed single trees. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  12. Ponderosa pine ecosystems

    Science.gov (United States)

    Russell T. Graham; Theresa B. Jain

    2005-01-01

    Ponderosa pine is a wide-ranging conifer occurring throughout the United States, southern Canada, and northern Mexico. Since the 1800s, ponderosa pine forests have fueled the economies of the West. In western North America, ponderosa pine grows predominantly in the moist and dry forests. In the Black Hills of South Dakota and the southern portion of its range, the...

  13. Effects of artificial defoliation of pines on the structure and physiology of the soil fungal community of a mixed pine-spruce forest

    Science.gov (United States)

    Cullings, Ken; Raleigh, Christopher; New, Michael H.; Henson, Joan

    2005-01-01

    Loss of photosynthetic area can affect soil microbial communities by altering the availability of fixed carbon. We used denaturing gradient gel electrophoresis (DGGE) and Biolog filamentous-fungus plates to determine the effects of artificial defoliation of pines in a mixed pine-spruce forest on the composition of the fungal community in a forest soil. As measured by DGGE, two fungal species were affected significantly by the defoliation of pines (P the frequency of members of the ectomycorrhizal fungus genus Cenococcum decreased significantly, while the frequency of organisms of an unidentified soil fungus increased. The decrease in the amount of Cenococcum organisms may have occurred because of the formation of extensive hyphal networks by species of this genus, which require more of the carbon fixed by their host, or because this fungus is dependent upon quantitative differences in spruce root exudates. The defoliation of pines did not affect the overall composition of the soil fungal community or fungal-species richness (number of species per core). Biolog filamentous-fungus plate assays indicated a significant increase (P the number of carbon substrates utilized by the soil fungi and the rate at which these substrates were used, which could indicate an increase in fungal-species richness. Thus, either small changes in the soil fungal community give rise to significant increases in physiological capabilities or PCR bias limits the reliability of the DGGE results. These data indicate that combined genetic and physiological assessments of the soil fungal community are needed to accurately assess the effect of disturbance on indigenous microbial systems.

  14. Aerial survey of red pine plantations for sirococcus shoot blight. Forest research report No. 46

    Energy Technology Data Exchange (ETDEWEB)

    1994-01-01

    A total of 849 red pine plantation diagrams were collected from the forest community and sketched onto 1:50,000 scale topographic maps. An aerial assessment was conducted beginning in the western counties in October 1990 and continuing eastward through to February 1991. Visual assessments were made for occurrence and severity of symptoms according to the average percentage of shoots affected per infected tree. General assessments on the height of plantations were also made, and each plantation was labelled as young (less than or equal to 3 m in height), pole (between 4 m and 6 m in height), or immature-mature (greater than 6 m in height). This research provides the results of the survey.

  15. Effects of drought and irrigation on ecosystem functioning in a mature Scots pine forest

    Science.gov (United States)

    Dobbertin, Matthias; Brunner, Ivano; Egli, Simon; Eilmann, Britta; Graf Pannatier, Eisabeth; Schleppi, Patrick; Zingg, Andreas; Rigling, Andreas

    2010-05-01

    Climate change is expected to increase temperature and reduce summer precipitation in Switzerland. To study the expected effects of increased drought in mature forests two different approaches are in general possible: water can be partially or completely removed from the ecosystems via above- or below-canopy roofs or water can be added to already drought-prone ecosystems. Both methods have advantages and disadvantages. In our study water was added to a mature 90-year old Scots pine (Pinus sylvestris L.) forest with a few singe pubescent oaks (Quercus pubescens Willd.), located in the valley bottom of the driest region of Switzerland (Valais). In Valais, Scots pines are declining, usually with increased mortality rates following drought years. It was therefore of special interest to study here how water addition is changing forest ecosystem functioning. The irrigation experiment started in the summer of 2003. Out of eight 0.1 ha experimental plots, four were randomly selected for irrigation, the other four left as a control. Irrigation occurred during rainless nights between April and October, doubling the annual rainfall amount from 650 to 1300 mm. Irrigation water, taken from a near-by irrigation channel, added some nutrients to the plots, but nutrients which were deficient on the site, e.g. nitrogen and phosphorus, were not altered. Tree diameter, tree height and crown width were assessed before the start of the irrigation in winter 2002/2003 and after 7 years of the experiment in 2009/2010. Tree crown transparency (lack of foliage) and leaf area index (LAI) were annually assessed. Additionally, tree mortality was annually evaluated. Mycorrhizal fruit bodies were identified and counted at weekly intervals from 2003 until 2007. Root samples were taken in 2004 and 2005. In 2004 and 2005 wood formation of thirteen trees was analysed in weekly or biweekly intervals using the pinning method. These trees were felled in 2006 for stem, shoot and needle growth analysis

  16. The role of coarse woody debris in southeastern pine forests; preliminary results from a large-scale experiment.

    Energy Technology Data Exchange (ETDEWEB)

    McCay Timothy, S.; Hanula, James, L.; Loeb, Susan, C.; Lohr, Steven, M.; McMinn, James, W.; Wright-Miley. Bret, D.

    2002-08-01

    McCay, Timothy S., James L. Hanula, Susan C. Loeb, Steven M. Lohr, James W. McMinn, and Bret D. Wright-Miley. 2002. The role of coarse woody debris in southeastern pine forests; preliminary results from a large-scale experiment. 135-144. In: Proceedings of the symposium on the ecology and management of dead wood in western forests. 1999 November 2-4; Reno, NV. Gen. Tech. Rep. PSW-GTR-181. Albany, CA: Pacific Southwest Research Station, Forest Service, U.S. Department of Agriculture 949 p. ABSTRACT: We initiated a long-term experiment involving manipulation of coarse woody debris (CWD) at the Savannah River National Environmental Research Park in the upper Coastal Plain of South Carolina. Each of four 9.3-ha plots in each of four blocks was subject to one of the following treatments: removal of all snags and fallen logs, removal of fallen logs only, felling and girdling to simulate a catastrophic pulse of CWD, and control. Removal treatments were applied in 1996, and the felling or snag-creation treatment will be applied in 2000-2001. Monitoring of invertebrate, herptile, avian, and mammalian assemblages and CWD dynamics began immediately after CWD removal and continues through the present. Removal treatments resulted in a fivefold to tenfold reduction in CWD abundance. To date, significant differences among treatments have only been detected for a few animal taxa. However, preliminary results underscore the benefits of large-scale experiments. This experiment allowed unambiguous tests of hypotheses regarding the effect of CWD abundance on fauna. Coupled with studies of habitat use and trophic interactions, the experimental approach may result in stronger inferences regarding the function of CWD than results obtained through natural history observation or uncontrolled correlative studies.

  17. Defoliating Insect Mass Outbreak Affects Soil N Fluxes and Tree N Nutrition in Scots Pine Forests

    Directory of Open Access Journals (Sweden)

    Maren M. Grüning

    2017-06-01

    Full Text Available Biotic stress by mass outbreaks of defoliating pest insects does not only affect tree performance by reducing its photosynthetic capacity, but also changes N cycling in the soil of forest ecosystems. However, how insect induced defoliation affects soil N fluxes and, in turn, tree N nutrition is not well-studied. In the present study, we quantified N input and output fluxes via dry matter input, throughfall, and soil leachates. Furthermore, we investigated the effects of mass insect herbivory on tree N acquisition (i.e., organic and inorganic 15N net uptake capacity of fine roots as well as N pools in fine roots and needles in a Scots pine (Pinus sylvestris L. forest over an entire vegetation period. Plots were either infested by the nun moth (Lymantria monacha L. or served as controls. Our results show an increased N input by insect feces, litter, and throughfall at the infested plots compared to controls, as well as increased leaching of nitrate. However, the additional N input into the soil did not increase, but reduce inorganic and organic net N uptake capacity of Scots pine roots. N pools in the fine roots and needles of infested trees showed an accumulation of total N, amino acid-N, protein-N, and structural N in the roots and the remaining needles as a compensatory response triggered by defoliation. Thus, although soil N availability was increased via surplus N input, trees did not respond with an increased N acquisition, but rather invested resources into defense by accumulation of amino acid-N and protein-N as a survival strategy.

  18. Defoliating Insect Mass Outbreak Affects Soil N Fluxes and Tree N Nutrition in Scots Pine Forests.

    Science.gov (United States)

    Grüning, Maren M; Simon, Judy; Rennenberg, Heinz; L-M-Arnold, Anne

    2017-01-01

    Biotic stress by mass outbreaks of defoliating pest insects does not only affect tree performance by reducing its photosynthetic capacity, but also changes N cycling in the soil of forest ecosystems. However, how insect induced defoliation affects soil N fluxes and, in turn, tree N nutrition is not well-studied. In the present study, we quantified N input and output fluxes via dry matter input, throughfall, and soil leachates. Furthermore, we investigated the effects of mass insect herbivory on tree N acquisition (i.e., organic and inorganic 15 N net uptake capacity of fine roots) as well as N pools in fine roots and needles in a Scots pine ( Pinus sylvestris L.) forest over an entire vegetation period. Plots were either infested by the nun moth ( Lymantria monacha L.) or served as controls. Our results show an increased N input by insect feces, litter, and throughfall at the infested plots compared to controls, as well as increased leaching of nitrate. However, the additional N input into the soil did not increase, but reduce inorganic and organic net N uptake capacity of Scots pine roots. N pools in the fine roots and needles of infested trees showed an accumulation of total N, amino acid-N, protein-N, and structural N in the roots and the remaining needles as a compensatory response triggered by defoliation. Thus, although soil N availability was increased via surplus N input, trees did not respond with an increased N acquisition, but rather invested resources into defense by accumulation of amino acid-N and protein-N as a survival strategy.

  19. Stand-replacing wildfires increase nitrification for decades in southwestern ponderosa pine forests.

    Science.gov (United States)

    Kurth, Valerie J; Hart, Stephen C; Ross, Christopher S; Kaye, Jason P; Fulé, Peter Z

    2014-05-01

    Stand-replacing wildfires are a novel disturbance within ponderosa pine (Pinus ponderosa) forests of the southwestern United States, and they can convert forests to grasslands or shrublands for decades. While most research shows that soil inorganic N pools and fluxes return to pre-fire levels within a few years, we wondered if vegetation conversion (ponderosa pine to bunchgrass) following stand-replacing fires might be accompanied by a long-term shift in N cycling processes. Using a 34-year stand-replacing wildfire chronosequence with paired, adjacent unburned patches, we examined the long-term dynamics of net and gross nitrogen (N) transformations. We hypothesized that N availability in burned patches would become more similar to those in unburned patches over time after fire as these areas become re-vegetated. Burned patches had higher net and gross nitrification rates than unburned patches (P < 0.01 for both), and nitrification accounted for a greater proportion of N mineralization in burned patches for both net (P < 0.01) and gross (P < 0.04) N transformation measurements. However, trends with time-after-fire were not observed for any other variables. Our findings contrast with previous work, which suggested that high nitrification rates are a short-term response to disturbance. Furthermore, high nitrification rates at our site were not simply correlated with the presence of herbaceous vegetation. Instead, we suggest that stand-replacing wildfire triggers a shift in N cycling that is maintained for at least three decades by various factors, including a shift from a woody to an herbaceous ecosystem and the presence of fire-deposited charcoal.

  20. The influence of pine forests of different ages on the biological activity of layland soils in the middle Angara River basin

    Science.gov (United States)

    Sorokina, O. A.; Sorokin, N. D.

    2007-05-01

    The influence of pine forests of different ages (from 25 to 85 years) restoring on old plow land soils is reflected in the biological processes proceeding in them. The drastic decrease in the absolute and relative number of actinomycetes, along with an increase of the fungal population in the microbial complexes of the soils (within the whole profiles), indicates that the microbocenoses acquire “forest” properties. In the soils under the younger pine forests, the processes of microbiological mineralization and specific respiration activity are more active than in the soils under the older pine forests. With the age of the pine forests, the soil profiles become more differentiated according to the eluvial-illuvial type.

  1. Modeling Forest Structural Parameters in the Mediterranean Pines of Central Spain using QuickBird-2 Imagery and Classification and Regression Tree Analysis (CART

    Directory of Open Access Journals (Sweden)

    José A. Delgado

    2012-01-01

    Full Text Available Forest structural parameters such as quadratic mean diameter, basal area, and number of trees per unit area are important for the assessment of wood volume and biomass and represent key forest inventory attributes. Forest inventory information is required to support sustainable management, carbon accounting, and policy development activities. Digital image processing of remotely sensed imagery is increasingly utilized to assist traditional, more manual, methods in the estimation of forest structural attributes over extensive areas, also enabling evaluation of change over time. Empirical attribute estimation with remotely sensed data is frequently employed, yet with known limitations, especially over complex environments such as Mediterranean forests. In this study, the capacity of high spatial resolution (HSR imagery and related techniques to model structural parameters at the stand level (n = 490 in Mediterranean pines in Central Spain is tested using data from the commercial satellite QuickBird-2. Spectral and spatial information derived from multispectral and panchromatic imagery (2.4 m and 0.68 m sided pixels, respectively served to model structural parameters. Classification and Regression Tree Analysis (CART was selected for the modeling of attributes. Accurate models were produced of quadratic mean diameter (QMD (R2 = 0.8; RMSE = 0.13 m with an average error of 17% while basal area (BA models produced an average error of 22% (RMSE = 5.79 m2/ha. When the measured number of trees per unit area (N was categorized, as per frequent forest management practices, CART models correctly classified 70% of the stands, with all other stands classified in an adjacent class. The accuracy of the attributes estimated here is expected to be better when canopy cover is more open and attribute values are at the lower end of the range present, as related in the pattern of the residuals found in this study. Our findings indicate that attributes derived from

  2. Effects of different thinning systems on the economic value of ecosystem services: A case-study in a black pine peri-urban forest in Central Italy

    Directory of Open Access Journals (Sweden)

    Alessandro Paletto

    2017-12-01

    Full Text Available Sustainable Forest Management (SFM should be able to produce an optimal level of bundle of Ecosystem Services (ES, thus ensuring more resilient forest ecosystems also creating benefits for local population and human well-being. Yet, choosing between alternative forest management practices is not straightforward as it necessarily involves ES trade-offs. Forest management decisions have to reconcile the socio-economic and ecological contributions of forest ecosystems by fostering a synergistic relation between multiple ES while lowering ES trade-offs. The aim of the study is to analyze different forest management practices (selective and traditional thinning in black pine peri-urban forest in Central Italy, by investigating their contribution in terms of provisioning (wood production, cultural (recreational benefits, regulating (climate change mitigation ES. For each management option was performed: (1 the biophysical assessment of selected ES by using primary data and calculating indicators for wood production with special regard to biomass for energy use (living trees and deadwood volume harvested, recreational benefits (tourists’ preferences for each forest management practice, climate change mitigation (carbon sequestration in above-ground and below-ground biomass, and (2 the economic valuation of wood production, recreational benefits and climate change mitigation ES using direct and indirect methods (environmental evaluation techniques. The results show that the effects of the selective thinning on ES is higher that the effects of the traditional thinning. The economic value of the three ES provided by traditional and selective thinning are respectively: bioenergy production 154.2 € ha-1 yr-1 and 223.3 € ha-1 yr-1; recreational benefits 193.2 € ha-1 yr-1 and 231.9 € ha-1 yr-1; carbon sequestration 29.0 € ha-1 yr-1and 36.2 € ha-1 yr-1. The integrated (biophysical and economic assessment of ES in addition to the trade

  3. Estimating long-term carbon sequestration patterns in even- and uneven-aged southern pine stands

    Science.gov (United States)

    Don C. Bragg; James M. Guldin

    2010-01-01

    Carbon (C) sequestration has become an increasingly important consideration for forest management in North America, and has particular potential in pine-dominated forests of the southern United States. Using existing literature on plantations and long-term studies of naturally regenerated loblolly (Pinus taeda) and shortleaf (Pinus echinata) pine-dominated stands on...

  4. Carbon and Water Exchanges in a Chronosequence of Temperate White Pine Forest

    Science.gov (United States)

    Arain, M.; Restrepo, N.; Pejam, M.; Khomik, M.

    2003-12-01

    Quantification of carbon sink or source strengths of temperate forest ecosystems, growing in northern mid-latitudes, is essential to resolve uncertainties in carbon balance of the world's terrestrial ecosystems. Long-term flux measurements are needed to quantify seasonal and annual variability of carbon and water exchanges from these ecosystems and to relate the variability to environmental and physiological factors. Such long-term measurements are of particular interest for different stand developmental stages. An understanding of environmental control factors is necessary to improve predictive capabilities of terrestrial carbon and water cycles. A long-term year-round measurement program has been initiated to observe energy, water vapour, and carbon dioxide fluxes in a chronosequence of white pine (Pinus Strobus) forests in southeastern Canada. White pine is an important species in the North American landscape because of its ability to adapt to dry environments. White pine efficiently grows on coarse and sandy soils, where other deciduous and conifer species cannot survive. Generally, it is the first woody species to flourish after disturbances such as fire and clearing. The climate at the study site is temperate, with a mean annual temperature of 8 degree C and a mean annual precipitation of about 800 mm. The growing season is one of the longest in Canada, with at least 150 frost-free days. Measurements at the site began in June 2002 and are continuing at present. Flux measurements at the 60 year old stand are being made using a close-path eddy covariance (EC) system, while fluxes at the three younger stands (30, 15 and 1 year old) are being measured over 10 to 20 day periods using a roving open-path EC system Soil respiration is being measured every 2-weeks across 50-m transects at all four sites using a mobile chamber system (LI-COR 6400). The mature stand was a sink of carbon with annual NEP value of 140 g C m-2 from June 2002 to May 2003. Gross ecosystem

  5. Susceptibility of ponderosa pine, Pinus ponderosa (Dougl. Ex Laws.), to mountain pine beetle, Dendroctonus ponderosae Hopkins, attack in uneven-aged stands in the Black Hills of South Dakota and Wyoming USA

    Science.gov (United States)

    Jose F. Negron; Kurt Allen; Blaine Cook; John R. Withrow

    2008-01-01

    Mountain pine beetle, Dendroctonus ponderosae Hopkins can cause extensive tree mortality in ponderosa pine, Pinus ponderosa Dougl. ex Laws., forests in the Black Hills of South Dakota and Wyoming. Most studies that have examined stand susceptibility to mountain pine beetle have been conducted in even-aged stands. Land managers...

  6. Tree Mortality following Prescribed Fire and a Storm Surge Event in Slash Pine (Pinus elliottii var. densa Forests in the Florida Keys, USA

    Directory of Open Access Journals (Sweden)

    Jay P. Sah

    2010-01-01

    Full Text Available In fire-dependent forests, managers are interested in predicting the consequences of prescribed burning on postfire tree mortality. We examined the effects of prescribed fire on tree mortality in Florida Keys pine forests, using a factorial design with understory type, season, and year of burn as factors. We also used logistic regression to model the effects of burn season, fire severity, and tree dimensions on individual tree mortality. Despite limited statistical power due to problems in carrying out the full suite of planned experimental burns, associations with tree and fire variables were observed. Post-fire pine tree mortality was negatively correlated with tree size and positively correlated with char height and percent crown scorch. Unlike post-fire mortality, tree mortality associated with storm surge from Hurricane Wilma was greater in the large size classes. Due to their influence on population structure and fuel dynamics, the size-selective mortality patterns following fire and storm surge have practical importance for using fire as a management tool in Florida Keys pinelands in the future, particularly when the threats to their continued existence from tropical storms and sea level rise are expected to increase.

  7. Tree mortality following prescribed fire and a storm surge event in Slash Pine (pinus elliottii var. densa) forests in the Florida Keys, USA

    Science.gov (United States)

    Sah, Jay P.; Ross, Michael S.; Snyder, James R.; Ogurcak, Danielle E.

    2010-01-01

    In fire-dependent forests, managers are interested in predicting the consequences of prescribed burning on postfire tree mortality. We examined the effects of prescribed fire on tree mortality in Florida Keys pine forests, using a factorial design with understory type, season, and year of burn as factors. We also used logistic regression to model the effects of burn season, fire severity, and tree dimensions on individual tree mortality. Despite limited statistical power due to problems in carrying out the full suite of planned experimental burns, associations with tree and fire variables were observed. Post-fire pine tree mortality was negatively correlated with tree size and positively correlated with char height and percent crown scorch. Unlike post-fire mortality, tree mortality associated with storm surge from Hurricane Wilma was greater in the large size classes. Due to their influence on population structure and fuel dynamics, the size-selective mortality patterns following fire and storm surge have practical importance for using fire as a management tool in Florida Keys pinelands in the future, particularly when the threats to their continued existence from tropical storms and sea level rise are expected to increase.

  8. Forest pest management in a changing world

    Science.gov (United States)

    Andrew M. Liebhold

    2012-01-01

    The scope, context and science guiding forest pest management have evolved and are likely to continue changing into the future. Here, I present six areas of advice to guide practitioners in the implementation of forest pest management. First, human dimensions will continue to play a key role in most pest problems and should always be a primary consideration in...

  9. Tapping into the Forest Management Assistance Programs

    Science.gov (United States)

    John L. Greene; Terry K. Haines

    1998-01-01

    Use of federal and state forest management assistance programs can enable nonindustial private forest owners to reduce their management expenses and practice better stewardship. This paper summarizes six federal and twelve state assistance programs available to owners in the North Central states. It also describes how to calculate the amount of a government...

  10. Management for Mountain Pine Beetle Outbreak Suppression: Does Relevant Science Support Current Policy?

    Directory of Open Access Journals (Sweden)

    Diana L. Six

    2014-01-01

    Full Text Available While the use of timber harvests is generally accepted as an effective approach to controlling bark beetles during outbreaks, in reality there has been a dearth of monitoring to assess outcomes, and failures are often not reported. Additionally, few studies have focused on how these treatments affect forest structure and function over the long term, or our forests’ ability to adapt to climate change. Despite this, there is a widespread belief in the policy arena that timber harvesting is an effective and necessary tool to address beetle infestations. That belief has led to numerous proposals for, and enactment of, significant changes in federal environmental laws to encourage more timber harvests for beetle control. In this review, we use mountain pine beetle as an exemplar to critically evaluate the state of science behind the use of timber harvest treatments for bark beetle suppression during outbreaks. It is our hope that this review will stimulate research to fill important gaps and to help guide the development of policy and management firmly based in science, and thus, more likely to aid in forest conservation, reduce financial waste, and bolster public trust in public agency decision-making and practice.

  11. 25 CFR 163.10 - Management of Indian forest land.

    Science.gov (United States)

    2010-04-01

    ... 25 Indians 1 2010-04-01 2010-04-01 false Management of Indian forest land. 163.10 Section 163.10... Forest Management and Operations § 163.10 Management of Indian forest land. (a) The Secretary shall undertake forest land management activities on Indian forest land, either directly or through contracts...

  12. Individual variability of Scots pine Pinus sylvestris L. by the drought resistance features in forest-steppe pine forests of south Siberia

    Directory of Open Access Journals (Sweden)

    N. A. Tikhonova

    2016-10-01

    Full Text Available The drought resistance of trees in the Scots pine Pinus sylvestris L. populations was studied under forest steppe conditions of southern Siberia. We found large differences amongthe treesin the time and rate of needles dehydration. In the populations of the more arid growing conditions (Shira, Balgazyn the rate of loss 50 % of the water was three to four times lower than in the population of the more favorable conditions for growth (Minusinsk. It has been established that the variability of water-holding capacity of needles from individual trees in populations varies from high to very high levels. On the contrary, for the water absorption capacity of needles characteristically has variability, as within population and between them. Is marked a great assessment reliability of water holding capacity of the needles under the pooled analysis of absolute and relative indicators of dynamics of the needles degradration. We investigated the correlation of needles’ water retention signs with a height and heterozygosity of trees. It was found that under more favorable conditions of the growth the large part of sample are the trees with a direct connection between heterozygosity and drought resistance of tree and in the worst conditions – with a reverse. The correlations of water-holding capacity of needles with the height of the tree are ambiguous: in the Minusinsk sample, the most of drought-resistant trees are characterized by better growth, in Balgazyn population – conversely. Some dwarf individuals from the Balgazyn and Shira populations in terms of drought tolerance are at same level as the typical trees, among the less drought-resistant trees found as dwarfs, and typical trees. It was concluded that there are trees in populations with different strategies to adaptation to the moisture deficit.

  13. Principles and practices for the restoration of ponderosa pine and dry mixed-conifer forests of the Colorado Front Range

    Science.gov (United States)

    Robert N. Addington; Gregory H. Aplet; Mike A. Battaglia; Jennifer S. Briggs; Peter M. Brown; Antony S. Cheng; Yvette Dickinson; Jonas A. Feinstein; Kristen A. Pelz; Claudia M. Regan; Jim Thinnes; Rick Truex; Paula J. Fornwalt; Benjamin Gannon; Chad W. Julian; Jeffrey L. Underhill; Brett Wolk

    2018-01-01

    Wildfires have become larger and more severe over the past several decades on Colorado’s Front Range, catalyzing greater investments in forest management intended to mitigate wildfire risks. The complex ecological, social, and political context of the Front Range, however, makes forest management challenging, especially where multiple management goals including forest...

  14. Simulation of the Effect of Intensive Forest Management on Forest Production in Sweden

    Directory of Open Access Journals (Sweden)

    Ola Rosvall

    2011-03-01

    Full Text Available The effects of intensifying the management of 15% of the Swedish forest land on potential future forest production over a 100-year period were investigated in a simulation study. The intensive management treatments, which were introduced over a period of 50 years, were: intensive fertilization of Norway spruce (IntFert; bulking-up Norway spruce elite populations using somatic embryogenesis (SE-seedlings; planting of lodgepole pine, hybrid larch, and Sitka spruce (Contorta, Larch, and Sitka; fertilization with wood ash on peatlands (Wood ash; and conventional fertilization in mature forests (ConFert. Potential sites for applying intensive forest management (IFM to sites with low nature conservation values were determined with a nature conservation score (NCS. Four different scenarios were simulated: “Base scenario”, which aimed at reducing the negative impact on nature conservation values, “Fast implementation”, “No IntFert” (IntFert was not used, and “Large Forest Companies”, where the majority of plots were selected on company land. Total yields during the 100-year simulation period were about 85–92% higher for the intensive forest management scenarios than for the reference scenario (business as usual. In the “No IntFert” scenario total production was 1.8% lower and in the “Large Forest Companies” scenario total production was 4.8% lower than in the “Base scenario”. “Fast implementation” of IFM increased yield by 15% compared to the “Base scenario”. Norway spruce SE-seedlings and IntFert gave the highest yields, measured as total production during the 100-year simulation period, but relative to the yields in the reference scenario, the highest increases in yield were for Contorta. The “Base scenario” and “No IntFert” gave the highest yields for plots with the lowest NCS, but plots with higher NCS had to be used in the “Fast implementation” and “Large Forest Companies” scenarios. More than

  15. Simulating post-wildfire forest trajectories under alternative climate and management scenarios.

    Science.gov (United States)

    Tarancón, Alicia Azpeleta; Fulé, Peter Z; Shive, Kristen L; Sieg, Carolyn H; Meador, Andrew Sánchez; Strom, Barbara

    Post-fire predictions of forest recovery under future climate change and management actions are necessary for forest managers to make decisions about treatments. We applied the Climate-Forest Vegetation Simulator (Climate-FVS), a new version of a widely used forest management model, to compare alternative climate and management scenarios in a severely burned multispecies forest of Arizona, USA. The incorporation of seven combinations of General Circulation Models (GCM) and emissions scenarios altered long-term (100 years) predictions of future forest condition compared to a No Climate Change (NCC) scenario, which forecast a gradual increase to high levels of forest density and carbon stock. In contrast, emissions scenarios that included continued high greenhouse gas releases led to near-complete deforestation by 2111. GCM-emissions scenario combinations that were less severe reduced forest structure and carbon stock relative to NCC. Fuel reduction treatments that had been applied prior to the severe wildfire did have persistent effects, especially under NCC, but were overwhelmed by increasingly severe climate change. We tested six management strategies aimed at sustaining future forests: prescribed burning at 5, 10, or 20-year intervals, thinning 40% or 60% of stand basal area, and no treatment. Severe climate change led to deforestation under all management regimes, but important differences emerged under the moderate scenarios: treatments that included regular prescribed burning fostered low density, wildfire-resistant forests composed of the naturally dominant species, ponderosa pine. Non-fire treatments under moderate climate change were forecast to become dense and susceptible to severe wildfire, with a shift to dominance by sprouting species. Current U.S. forest management requires modeling of future scenarios but does not mandate consideration of climate change effects. However, this study showed substantial differences in model outputs depending on climate

  16. Impacts of participatory forest management on species composition and forest structure in Ethiopia

    DEFF Research Database (Denmark)

    Yietagesu, Aklilu Ameha; Meilby, Henrik; Feyisa, Gudina Legese

    2016-01-01

    The present study assesses the impacts of decentralized forest management on forest conditions in Ethiopian Montane forests. We compared observed densities of different tree species and size categories in forests managed by local forest user groups (FUGs) and the government. We used forest...

  17. Climate change will restrict ponderosa pine forest regeneration in the 21st century in absence of disturbance

    Science.gov (United States)

    Petrie, M. D.; Bradford, J. B.; Hubbard, R. M.; Lauenroth, W. K.; Andrews, C.

    2016-12-01

    The persistence of ponderosa pine forests and the ability for these forests to colonize new habitats in the 21st century will be influenced by how climate change supports ponderosa pine regeneration through the demographic processes of seed production, germination and survival. Yet, the way that climate change may support or restrict the frequency of successful regeneration is unclear. We developed a quantitative, criteria-based framework to estimate ponderosa pine regeneration potential (RP: a metric from 0-1) in response to climate forcings and environmental conditions. We used the SOILWAT ecosystem water balance model to simulate drivers of air and soil temperature, evaporation and soil moisture availability for 47 ponderosa pine sites across the western United States, using meteorological data from 1910-2014, and projections from nine General Circulation Models and the RCP 8.5 emissions scenario for 2020-2099. Climate change simulations increased the success of early developmental stages of seed production and germination, and supported 49.7% higher RP in 2020-2059 compared to averages from 1910-2014. As temperatures increased in 2060-2099, survival scores decreased, and RP was reduced by 50.3% compared to 1910-2014. Although the frequency of years with high RP did not change in 2060-2099 (12% of years), the frequency of years with very low RP increased from 25% to 58% of years. Thus, climate change will initially support higher RP and more favorable years in 2020-2059, yet will reduce average RP and the frequency of years with moderate regeneration support in 2060-2099. Forest regeneration is complex and not fully-understood, but our results suggest it is likely that climate change alone will instigate restrictions to the persistence and expansion of ponderosa pine in the 21st century.

  18. Soil microbial activity in Aleppo pine stands naturally regenerated after fire: silvicultural management and induced drought

    Directory of Open Access Journals (Sweden)

    D. Moya

    2013-01-01

    Full Text Available In post-fire restoration, early monitoring is mandatory to check impacts and ecosystem responses to apply proper management according to social standards and ecological conditions. In areas where the natural regeneration was successful, excessive tree density can be found which induces to high intraspecific competence and assisted restoration management could be adequate. In addition, climatic changes will have large impacts on vegetation productivity and resilience since the regional models for south-eastern Spain predicts a rainfall decrease of about 20% and temperature increase of 4.5 ºC. The microbial biomass could be used as indicator of ecosystem recovery, since it is negatively affected by wildfires and depends on fire characteristics, vegetation and soil properties. Our aim is to determine how forest management may affect the ecosystem recovery in different climatic scenarios, included drought scenarios with and without forest management (thinning.We compared soil physicochemical properties and microbial activity in four scenarios: unmanaged and thinned stands in two rainfall scenarios (under induced drought. The study areas were set close to Yeste (Albacete where Aleppo pine forest were burned in summer 1994 (nearly 14000 ha. We set sixteen rectangular plots (150 m2; 15 m ×10 m implementing experimental silvicultural treatments: thinning eight plots in 2004, reducing the naturally recovered tree density from about 12000 to 1600 pine trees ha-1. In addition, in half the plots, we induced drought conditions from about 500 to 400 mm (20% from March 2009. In every plot, we monitored temperature at ground level (Ts, 10 cm depth (T10d and soil relative humidity (RH. Taking into account season of the year and canopy coverage, we collected soil samples in mid-winter (ending January 2011 and mid-spring (ending May 2011 under pine trees and in bare soil. The soil samples were used to evaluate soil physicochemical properties and soil microbial

  19. Monitoring endophyte populations in pine plantations and native oak forests in Northern Spain

    Energy Technology Data Exchange (ETDEWEB)

    Martinez-Alvarez, P.; Martin-Garcia, J.; Rodriguez-Ceinos, S.; Diez, J. J.

    2012-07-01

    The replacement of native forest with plantations of other species may have important impacts on ecosystems. Some of these impacts have been widely studied, but very little is known about the effects on fungal communities and specifically endo phytic fungi. In this study, endophyte assemblages in pine plantations (Pinus sylvestris, P. nigra and P. pinaster) and native oak forests (Quercus pyrenaica) in the north of the province of Palencia (Spain) were analyzed. For this purpose, samples of needles/leaves and twigs were collected from three trees in each of three plots sampled per host species. The samples were later processed in the laboratory to identify all of the endo phytic species present. In addition, an exhaustive survey was carried out of the twelve sites to collect data on the environmental, crown condition, dendrometric and soil variables that may affect the distribution of the fungi. The endophyte assemblages isolated from P. sylvestris and P. nigra were closely related to each other, but were different from those isolated from P. pinaster. The endophytes isolated from Q. pyrenaica were less closely related to those from the other hosts, and therefore preservation of oak stands is important to prevent the loss of fungal diversity. Finally, the distribution of the endophyte communities was related to some of the environmental variables considered. (Author) 42 refs.

  20. Impacts of forest and land management on biodiversity and carbon

    Science.gov (United States)

    Valerie Kapos; Werner A. Kurz; Toby Gardner; Joice Ferreira; Manuel Guariguata; Lian Pin Koh; Stephanie Mansourian; John A. Parrotta; Nokea Sasaki; Christine B. Schmitt; Jos Barlow; Markku Kanninen; Kimiko Okabe; Yude Pan; Ian D. Thompson; Nathalie van Vliet

    2012-01-01

    Changes in the management of forest and non-forest land can contribute significantly to reducing emissions from deforestation and forest degradation. Such changes can include both forest management actions - such as improving the protection and restoration of existing forests, introducing ecologically responsible logging practices and regenerating forest on degraded...

  1. The effect of temperature on forest production in Canada, Finland and Sweden. Predicted effects of a global warming on production of lodgepole pine and Scots pine in the northern boreal forest

    International Nuclear Information System (INIS)

    Fries, Anders

    1998-01-01

    The aims of this study were to analyse relationships between forest production and climatic factors under different biogeoclimatic conditions and, thus, to enhance our ability to predict changes in production following temperature increases. Production in the IUFRO 70/71 provenance test series with lodgepole pine (Pinus contorta var. latifolia) was correlated to climate data from adjacent meteorological stations. Field-tests in Canada (British Columbia and the Yukon) and Scandinavia (Finland and Sweden) were evaluated about 20 years after planting. The temperature regime was strongly correlated to forest production in the northern boreal forest regions. The temperature during the growing season as a whole and the length of it seem to be more important than the maximum summer temperature. The relationship between production and temperature was weaker in Canada than in Scandinavia, and production increased generally more on poor and intermediate sites than on rich sites. According to the presented algorithms, an increase in the temperature sum from 600 to 1200 degree days, would theoretically result in an increase in site index of between 5 and 13 m for lodgepole pine, and slightly lower for Scots pine. The highest increases would occur in Scandinavia. Temperature plots show that, especially in northern Scandinavia, a higher mean temperature would prolong the growing season, and this may make short spells with above 0 deg C-temperatures during the dormant period. Together with drought during the growing season, this may increase the frequency of climate-related frost damage

  2. Comparison of vegetation patterns and soil nutrient relations in an oak-pine forest and a mixed deciduous forest on Long Island, New York

    Energy Technology Data Exchange (ETDEWEB)

    Peterson, S.C.; Curtis, P.S.

    1980-11-01

    An analysis of soil nutrient relations in two forest communities on Long Island, NY, yielded a correlation between the fertility of the top-soil and vegetational composition. The oak-pine forest soils at Brookhaven National Laboratory contain lower average concentrations of NH/sub 3/, Ca, K, and organic matter than the mixed deciduous forest soils in the Stony Brook area. The pH of the topsoil is also more acidic at Brookhaven. The observed differences between localities are greater than within-locality differences between the two soil series tested (Plymouth and Riverhead), which are common to both localities. Nutrient concentrations in the subsoil are not consistently correlated with either locality or soil series, although organic matter and NH/sub 3/ show significantly higher concentrations at Stony Brook. Supporting data on density and basal area of trees and coverage of shrubs and herbs also reveals significant variation between the two forest communities. An ordination of the vegetation data shows higher similarity within than between localities, while no obvious pattern of within-locality variation due to soil series treatments is apparent. These data support the hypothesis that fertility gradients may influence forest community composition and structure. This hypothesis is discussed with reference to vegetation-soil interactions and other factors, such as frequency of burning, which may direct the future development of the Brookhaven oak-pine forest.

  3. Post-fire wood management alters water stress, growth, and performance of pine regeneration in a Mediterranean ecosystem

    Science.gov (United States)

    Maranon-Jimenez, Sara; Castro, Jorge; Querejeta, José Ignacio; Fernandez-Ondono, Emilia; Allen, Craig D.

    2013-01-01

    Extensive research has focused on comparing the impacts of post-fire salvage logging versus those of less aggressive management practices on forest regeneration. However, few studies have addressed the effects of different burnt-wood management options on seedling/sapling performance, or the ecophysiological mechanisms underlying differences among treatments. In this study, we experimentally assess the effects of post-fire management of the burnt wood on the growth and performance of naturally regenerating pine seedlings (Pinus pinaster). Three post-fire management treatments varying in degree of intervention were implemented seven months after a high-severity wildfire burned Mediterranean pine forests in the Sierra Nevada, southeast Spain: (a) “No Intervention” (NI, all burnt trees left standing); (b) “Partial Cut plus Lopping” (PCL, felling most of the burnt trees, cutting off branches, and leaving all the biomass on site without mastication); and (c) “Salvage Logging” (SL, felling the burnt trees, piling up the logs and masticating the fine woody debris). Three years after the fire, the growth, foliar nutrient concentrations, and leaf carbon, nitrogen and oxygen isotopic composition (δ13C, δ18O and δ15N) of naturally regenerating seedlings were measured in all the treatments. Pine seedlings showed greatest vigor and size in the PCL treatment, whereas growth was poorest in SL. The nutrient concentrations were similar among treatments, although greater growth in the two treatments with residual wood present indicated higher plant uptake. Seedlings in the SL treatment showed high leaf δ13C and δ18O values indicating severe water stress, in contrast to significantly alleviated water stress indications in the PCL treatment. Seedling growth and physiological performance in NI was intermediate between that of PCL and SL. After six growing seasons, P. pinaster saplings in PCL showed greater growth and cone production than SL saplings. In summary

  4. Initial Response of Pine Seedlings and Weeds to Dried Sewage Sludge in Rehabilitation of an Eroded Forest Site

    Science.gov (United States)

    Charles R. Berry

    1977-01-01

    Dried sewage sludge was applied at rates of 0, 17, 34, and 69 metric tons/ha on a badly eroded forest site in the Piedmont region of northeast Georgia. Production of weed bio mass varied directly with amount of sludge applied. Heigh growth for both shortleafand loblolly pine seedlings appeared to be greater on plots receiving 17 metric tons of sludge/ha, bu differences...

  5. Pile burning creates a fifty-year legacy of openings in regenerating lodgepole pine forests in Colorado

    Science.gov (United States)

    Charles C. Rhoades; Paula J. Fornwalt

    2015-01-01

    Pile burning is a common means of disposing the woody residues of logging and for post-harvest site preparation operations, in spite of the practice’s potential negative effects. To examine the long-term implications of this practice we established a 50-year sequence of pile burns within recovering clear cuts in lodgepole pine forests. We compared tree, shrub and...

  6. Burn Severity Dominates Understory Plant Community Response to Fire in Xeric Jack Pine Forests

    Directory of Open Access Journals (Sweden)

    Bradley D. Pinno

    2016-04-01

    Full Text Available Fire is the most common disturbance in northern boreal forests, and large fires are often associated with highly variable burn severities across the burnt area. We studied the understory plant community response to a range of burn severities and pre-fire stand age four growing seasons after the 2011 Richardson Fire in xeric jack pine forests of northern Alberta, Canada. Burn severity had the greatest impact on post-fire plant communities, while pre-fire stand age did not have a significant impact. Total plant species richness and cover decreased with disturbance severity, such that the greatest richness was in low severity burns (average 28 species per 1-m2 quadrat and plant cover was lowest in the high severity burns (average 16%. However, the response of individual plant groups differed. Lichens and bryophytes were most common in low severity burns and were effectively eliminated from the regenerating plant community at higher burn severities. In contrast, graminoid cover and richness were positively related to burn severity, while forbs did not respond significantly to burn severity, but were impacted by changes in soil chemistry with increased cover at pH >4.9. Our results indicate the importance of non-vascular plants to the overall plant community in this harsh environment and that the plant community is environmentally limited rather than recruitment or competition limited, as is often the case in more mesic forest types. If fire frequency and severity increase as predicted, we may see a shift in plant communities from stress-tolerant species, such as lichens and ericaceous shrubs, to more colonizing species, such as certain graminoids.

  7. Whole-tree and forest floor removal from a loblolly pine plantation have no effect on forest floor CO2 efflux 10 years after harvest

    Science.gov (United States)

    John R. Butnor; Kurt H. Johnsen; Felipe G. Sanchez

    2006-01-01

    Intensive management of southern pine plantations has yielded multifold increases in productivity over the last half century. The process of harvesting merchantable material and preparing a site for planting can lead to a considerable loss of organic matter. Intensively managed stands may experience more frequent disturbance as rotations decrease in length, exposing...

  8. Hybridization Leads to Loss of Genetic Integrity in Shortleaf Pine: Unexpected Consequences of Pine Management and Fire Suppression

    Science.gov (United States)

    Charles G. Tauer; John F. Stewart; Rodney E. Will; Curtis J. Lilly; James M. Guldin; C. Dana Nelson

    2012-01-01

    Hybridization between shortleaf pine and loblolly pine is causing loss of genetic integrity (the tendency of a population to maintain its genotypes over generations) in shortleaf pine, a species already exhibiting dramatic declines due to land-use changes. Recent findings indicate hybridization has increased in shortleaf pine stands from 3% during the 1950s to 45% for...

  9. Carbon balance of a partially harvested mixed conifer forest following mountain pine beetle attack and its comparison to a clear-cut

    Directory of Open Access Journals (Sweden)

    A. Mathys

    2013-08-01

    Full Text Available The recent mountain pine beetle (MPB outbreak has had an impact on the carbon (C cycling of lodgepole pine forests in British Columbia. This study examines how partial harvesting as a forest management response to MPB infestation affects the net ecosystem production (NEP of a mixed conifer forest (MPB-09 in Interior BC. MPB-09 is a 70-year-old stand that was partially harvested in 2009 after it had been attacked by MPB. Using the eddy-covariance technique, the C dynamics of the stand were studied over two years and compared to an adjacent clear-cut (MPB-09C over the summertime. The annual NEP at MPB-09 increased from −108 g C m−2 in 2010 to −57 g C m−2 in 2011. The increase of NEP was due to the associated increase in annual gross ecosystem photosynthesis (GEP from 812 g C m−2 in 2010 to 954 g C m−2 in 2011, exceeding the increase in annual respiration (Re from 920 g C m−2 to 1011 g C m−2 during the two years. During the four month period between June and September 2010, NEP at MPB-09C was −103 g C m−2, indicating high C losses in the clear-cut. MPB-09 was a C sink during the growing season of both years, increasing from 9 g C m−2 in 2010 to 47 g C m−2 in 2011. The increase of NEP in the partially harvested stand amounted to a recovery corresponding to a 26% increase in the maximum assimilation rate in the second year. This study shows that retaining the healthy residual forest can result in higher C sequestration of MPB-attacked stands compared to clear-cut harvesting.

  10. Distribution of black carbon in ponderosa pine forest floor and soils following the High Park wildfire

    Science.gov (United States)

    Boot, C. M.; Haddix, M.; Paustian, K.; Cotrufo, M. F.

    2015-05-01

    Biomass burning produces black carbon (BC), effectively transferring a fraction of the biomass C from an actively cycling pool to a passive C pool, which may be stored in the soil. Yet the timescales and mechanisms for incorporation of BC into the soil profile are not well understood. The High Park fire (HPF), which occurred in northwestern Colorado in the summer of 2012, provided an opportunity to study the effects of both fire severity and geomorphology on properties of carbon (C), nitrogen (N) and BC in the Cache La Poudre River drainage. We sampled montane ponderosa pine forest floor (litter plus O-horizon) and soils at 0-5 and 5-15 cm depth 4 months post-fire in order to examine the effects of slope and burn severity on %C, C stocks, %N and BC. We used the benzene polycarboxylic acid (BPCA) method for quantifying BC. With regard to slope, we found that steeper slopes had higher C : N than shallow slopes but that there was no difference in BPCA-C content or stocks. BC content was greatest in the forest floor at burned sites (19 g BPCA-C kg-1 C), while BC stocks were greatest in the 5-15 cm subsurface soils (23 g BPCA-C m-2). At the time of sampling, unburned and burned soils had equivalent BC content, indicating none of the BC deposited on the land surface post-fire had been incorporated into either the 0-5 or 5-15 cm soil layers. The ratio of B6CA : total BPCAs, an index of the degree of aromatic C condensation, suggested that BC in the 5-15 cm soil layer may have been formed at higher temperatures or experienced selective degradation relative to the forest floor and 0-5 cm soils. Total BC soil stocks were relatively low compared to other fire-prone grassland and boreal forest systems, indicating most of the BC produced in this system is likely lost, either through erosion events, degradation or translocation to deeper soils. Future work examining mechanisms for BC losses from forest soils will be required for understanding the role BC plays in the global

  11. Switchgrass (Panicum virgatum Intercropping within Managed Loblolly Pine (Pinus taeda Does Not Affect Wild Bee Communities

    Directory of Open Access Journals (Sweden)

    Joshua W. Campbell

    2016-11-01

    Full Text Available Intensively-managed pine (Pinus spp. have been shown to support diverse vertebrate communities, but their ability to support invertebrate communities, such as wild bees, has not been well-studied. Recently, researchers have examined intercropping switchgrass (Panicum virgatum, a native perennial, within intensively managed loblolly pine (P. taeda plantations as a potential source for cellulosic biofuels. To better understand potential effects of intercropping on bee communities, we investigated visitation of bees within three replicates of four treatments of loblolly pine in Mississippi, U.S.A.: 3–4 year old pine plantations and 9–10 year old pine plantations with and without intercropped switchgrass. We used colored pan traps to capture bees during the growing seasons of 2013 and 2014. We captured 2507 bees comprised of 18 different genera during the two-year study, with Lasioglossum and Ceratina being the most common genera captured. Overall, bee abundances were dependent on plantation age and not presence of intercropping. Our data suggests that switchgrass does not negatively impact or promote bee communities within intensively-managed loblolly pine plantations.

  12. Switchgrass (Panicum virgatum) Intercropping within Managed Loblolly Pine (Pinus taeda) Does Not Affect Wild Bee Communities.

    Science.gov (United States)

    Campbell, Joshua W; Miller, Darren A; Martin, James A

    2016-11-04

    Intensively-managed pine ( Pinus spp.) have been shown to support diverse vertebrate communities, but their ability to support invertebrate communities, such as wild bees, has not been well-studied. Recently, researchers have examined intercropping switchgrass ( Panicum virgatum ), a native perennial, within intensively managed loblolly pine ( P. taeda ) plantations as a potential source for cellulosic biofuels. To better understand potential effects of intercropping on bee communities, we investigated visitation of bees within three replicates of four treatments of loblolly pine in Mississippi, U.S.A.: 3-4 year old pine plantations and 9-10 year old pine plantations with and without intercropped switchgrass. We used colored pan traps to capture bees during the growing seasons of 2013 and 2014. We captured 2507 bees comprised of 18 different genera during the two-year study, with Lasioglossum and Ceratina being the most common genera captured. Overall, bee abundances were dependent on plantation age and not presence of intercropping. Our data suggests that switchgrass does not negatively impact or promote bee communities within intensively-managed loblolly pine plantations.

  13. Evaluation of funnel traps for characterizing the bark beetle (Coleoptera: Scolytidae) communities in ponderosa pine forests of north-central Arizona.

    Science.gov (United States)

    Hayes, Christopher J; DeGomez, Tom E; Clancy, Karen M; Williams, Kelly K; McMillin, Joel D; Anhold, John A

    2008-08-01

    Lindgren funnel traps baited with aggregation pheromones are widely used to monitor and manage populations of economically important bark beetles (Coleoptera: Scolytidae). This study was designed to advance our understanding of how funnel trap catches assess bark beetle communities and relative abundance of individual species. In the second year (2005) of a 3-yr study of the bark beetle community structure in north-central Arizona pine (Pinus spp.) forests, we collected data on stand structure, site conditions, and local bark beetle-induced tree mortality at each trap site. We also collected samples of bark from infested (brood) trees near trap sites to identify and determine the population density of bark beetles that were attacking ponderosa pine, Pinus ponderosa Douglas ex Lawson, in the area surrounding the traps. Multiple regression models indicated that the number of Dendroctonus and Ips beetles captured in 2005 was inversely related to elevation of the trap site, and positively associated with the amount of ponderosa pine in the stand surrounding the site. Traps located closer to brood trees also captured more beetles. The relationship between trap catches and host tree mortality was weak and inconsistent in forest stands surrounding the funnel traps, suggesting that trap catches do not provide a good estimate of local beetle-induced tree mortality. However, pheromone-baited funnel trap data and data from gallery identification in bark samples produced statistically similar relative abundance profiles for the five species of bark beetles that we examined, indicating that funnel trap data provided a good assessment of species presence and relative abundance.

  14. Natural regeneration in Iberian pines: A review of dynamic processes and proposals for management

    Directory of Open Access Journals (Sweden)

    Rafael Calama

    2017-10-01

    Full Text Available Aim of study: Designing adequate silvicultural systems for natural regeneration of a forest species requires sound knowledge of the underlying ecological subprocesses: flowering and fruiting, seed dispersal and predation, seed germination, seedling emergence and seedling survival. The main objective of the present work is to carry out a review on the current knowledge about the different subprocesses governing the regeneration process for the main Iberian Pinus species, in order to propose scientifically based management schedules. Area of study: The review focuses on the five main native Pinus species within their most representative areas in the Iberian Peninsula: Pinus nigra in Cuenca mountains, Pinus sylvestris in Sierra de Guadarrama, Pinus pinaster and Pinus pinea in the Northern Plateau and Pinus halepensis in Catalonia Material and methods: Firstly, currently available information on spatiotemporal dynamics and influential factors is introduced for each subprocess and species. Secondly, current regeneration strategies are characterized and the main bottlenecks are identified. Finally, alternative silvicultural practices proposed on the light of the previous information are presented. Main results: Different climate-mediated bottlenecks have been identified to limit natural regeneration of the Iberian pine species, with seed predation and initial seedling survival among the most influential. New approaches focusing on more gradual regeneration fellings, extended rotation periods, prevent big gaps and program fellings on mast years are presented. Research highlights: Natural regeneration of the studied species exhibit an intermittent temporal pattern, which should be aggravated under drier scenarios. More flexible management schedules should fulfil these limitations.

  15. Natural regeneration in Iberian pines: A review of dynamic processes and proposals for management

    Energy Technology Data Exchange (ETDEWEB)

    Calama, R.; Manso, R.; Lucas-Borja, M.E.; Espelta, J.M.; Piqué, M.; Bravo, F.; Peso, C. del; Pardos, M.

    2017-11-01

    Aim of study: Designing adequate silvicultural systems for natural regeneration of a forest species requires sound knowledge of the underlying ecological subprocesses: flowering and fruiting, seed dispersal and predation, seed germination, seedling emergence and seedling survival. The main objective of the present work is to carry out a review on the current knowledge about the different subprocesses governing the regeneration process for the main Iberian Pinus species, in order to propose scientifically based management schedules. Area of study: The review focuses on the five main native Pinus species within their most representative areas in the Iberian Peninsula: Pinus nigra in Cuenca mountains, Pinus sylvestris in Sierra de Guadarrama, Pinus pinaster and Pinus pinea in the Northern Plateau and Pinus halepensis in Catalonia Material and methods: Firstly, currently available information on spatiotemporal dynamics and influential factors is introduced for each subprocess and species. Secondly, current regeneration strategies are characterized and the main bottlenecks are identified. Finally, alternative silvicultural practices proposed on the light of the previous information are presented. Main results: Different climate-mediated bottlenecks have been identified to limit natural regeneration of the Iberian pine species, with seed predation and initial seedling survival among the most influential. New approaches focusing on more gradual regeneration fellings, extended rotation periods, prevent big gaps and program fellings on mast years are presented. Research highlights: Natural regeneration of the studied species exhibit an intermittent temporal pattern, which should be aggravated under drier scenarios. More flexible management schedules should fulfil these limitations.

  16. Natural regeneration in Iberian pines: A review of dynamic processes and proposals for management

    International Nuclear Information System (INIS)

    Calama, R.; Manso, R.; Lucas-Borja, M.E.; Espelta, J.M.; Piqué, M.; Bravo, F.; Peso, C. del; Pardos, M.

    2017-01-01

    Aim of study: Designing adequate silvicultural systems for natural regeneration of a forest species requires sound knowledge of the underlying ecological subprocesses: flowering and fruiting, seed dispersal and predation, seed germination, seedling emergence and seedling survival. The main objective of the present work is to carry out a review on the current knowledge about the different subprocesses governing the regeneration process for the main Iberian Pinus species, in order to propose scientifically based management schedules. Area of study: The review focuses on the five main native Pinus species within their most representative areas in the Iberian Peninsula: Pinus nigra in Cuenca mountains, Pinus sylvestris in Sierra de Guadarrama, Pinus pinaster and Pinus pinea in the Northern Plateau and Pinus halepensis in Catalonia Material and methods: Firstly, currently available information on spatiotemporal dynamics and influential factors is introduced for each subprocess and species. Secondly, current regeneration strategies are characterized and the main bottlenecks are identified. Finally, alternative silvicultural practices proposed on the light of the previous information are presented. Main results: Different climate-mediated bottlenecks have been identified to limit natural regeneration of the Iberian pine species, with seed predation and initial seedling survival among the most influential. New approaches focusing on more gradual regeneration fellings, extended rotation periods, prevent big gaps and program fellings on mast years are presented. Research highlights: Natural regeneration of the studied species exhibit an intermittent temporal pattern, which should be aggravated under drier scenarios. More flexible management schedules should fulfil these limitations.

  17. Surface and canopy fuels vary widely in 24-yr old postfire lodgepole pine forests

    Science.gov (United States)

    Nelson, K. N.; Turner, M.; Romme, W. H.; Tinker, D. B.

    2013-12-01

    Extreme fire seasons have become common in western North America, and the extent of young postfire forests has grown as fire frequency and annual area burned have increased. These young forests will set the stage for future fires, but an assessment of fuel loads in young forests is lacking. The rate of fuel re-accumulation and fuels variability in postfire forest landscapes is needed to anticipate future fire occurrence and behavior in the American West. We studied fuel characteristics in young lodgepole pine forests that regenerated after the 1988 fires in Yellowstone National Park to address two questions: (1) How do surface fuel characteristics change with time-since-fire? (2) How do canopy and surface fuels vary across the Yellowstone landscape 24 years postfire? During summer 2012, we re-measured surface fuels in 11 plots that were established in 1996 (8 yrs post fire), and we measured surface and canopy fuels in 82 stands (each 0.25 ha) distributed across the Yellowstone post-1988 fire landscape. In the remeasured plots, surface fuel loads generally increased over the last 16 years. One-hr fuels did not change between sample dates, but all other fuel classes (i.e., 10-hr, 100-hr, and 1000-hr) increased by a factor of two or three. Within the sample timeframe, variability of fuel loads within stands decreased significantly. The coefficients of variation decreased for all fuel classes by 23% to 67%. Data from the 82 plots revealed that canopy and surface fuels in 24-year-old stands varied tremendously across the Yellowstone landscape. Live tree densities spanned 0 to 344,067 trees ha-1, producing a mean available canopy fuel load of 7.7 Mg ha-1 and a wide range from 0 to 47 Mg ha-1. Total surface fuel loads averaged 130 Mg ha-1 and ranged from 49 to 229 Mg ha-1, of which 90% was in the 1000-hr fuel class. The mass of fine surface fuels (i.e., litter/duff, 1-hr, 10-hr, and herbaceous fuels) and canopy fuels (i.e., foliage and 1-hr branches) were strongly and

  18. The Massabesic Experimental Forest

    Science.gov (United States)

    Thomas W. McConkey; Wendell E. Smith

    1958-01-01

    White pine and fire! These two - the tree and its destroyer, fire - are keys to the history and present make-up of the research program on the Massabesic Experimental Forest at Alfred, Maine. The Forest was established in the late 1930's to study the management of eastern white pine. During World War II, it was shut down, and reopened again in 1946. Then, in 1947...

  19. Understanding predation: implications toward forest management

    Science.gov (United States)

    Harvey R. Smith

    1991-01-01

    It is generally accepted that when gypsy moths rest in the litter survival is low due to predation by ground-foraging generalist predators and that predation can maintain these populations indefinitely. Forest Service research on predators of gypsy moth continues to focus on population dynamics, the mechanisms of predation and forest management implications.

  20. Culture and resource management: factors affecting forests

    Science.gov (United States)

    Marjorie C. Falanruw

    1992-01-01

    Efforts to manage Pacific Island forest resources are more likely to succeed if they are based on an understanding of the cultural framework of land use activities. This paper explores the relationship between agricultural systems, population density, culture, and use of forest resources on the islands of Yap. Agricultural intensification is related to population...

  1. Eastern national forests: managing for nontimber products

    Science.gov (United States)

    James L. Chamberlain; Robert J. Bush; A.L. Hammett; Philip A. Araman

    2002-01-01

    Many products are harvested from the forests of the eastern United States that are not timber-based but originate from plant materials. Over the past decade, concern has grown about the sustainability of the forest resources from which these products originate, and an associated interest in managing for these products has materialized. A content analysis of the...

  2. Diversity, abundance, and host relationships of avian malaria and related haemosporidians in New Mexico pine forests

    Directory of Open Access Journals (Sweden)

    Rosario A. Marroquin-Flores

    2017-08-01

    Full Text Available Avian malaria and related haemosporidian parasites (genera Haemoproteus, Plasmodium, and Leucocytozoon affect bird demography, species range limits, and community structure, yet they remain unsurveyed in most bird communities and populations. We conducted a community-level survey of these vector-transmitted parasites in New Mexico, USA, to describe their diversity, abundance, and host associations. We focused on the breeding-bird community in the transition zone between piñon-juniper woodland and ponderosa pine forests (elevational range: 2,150–2,460 m. We screened 186 birds representing 49 species using both standard PCR and microscopy techniques to detect infections of all three avian haemosporidian genera. We detected infections in 68 out of 186 birds (36.6%, the highest proportion of which were infected with Haemoproteus (20.9%, followed by Leucocytozoon (13.4%, then Plasmodium (8.0%. We sequenced mtDNA for 77 infections representing 43 haplotypes (25 Haemoproteus, 12 Leucocytozoon, 6 Plasmodium. When compared to all previously known haplotypes in the MalAvi and GenBank databases, 63% (27 of the haplotypes we recovered were novel. We found evidence for host specificity at the avian clade and species level, but this specificity was variable among parasite genera, in that Haemoproteus and Leucocytozoon were each restricted to three avian groups (out of six, while Plasmodium occurred in all groups except non-passerines. We found striking variation in infection rate among host species, with nearly universal infection among vireos and no infection among nuthatches. Using rarefaction and extrapolation, we estimated the total avian haemosporidian diversity to be 70 haplotypes (95% CI [43–98]; thus, we may have already sampled ∼60% of the diversity of avian haemosporidians in New Mexico pine forests. It is possible that future studies will find higher diversity in microhabitats or host species that are under-sampled or unsampled in the

  3. Modelling the Distribution of Forest-Dependent Species in Human-Dominated Landscapes: Patterns for the Pine Marten in Intensively Cultivated Lowlands.

    Directory of Open Access Journals (Sweden)

    Alessandro Balestrieri

    Full Text Available In recent years, the "forest-specialist" pine marten Martes martes has been reported to also occur also in largely fragmented, lowland landscapes of north-western Italy. The colonization of such an apparently unsuitable area provided the opportunity for investigating pine marten ecological requirements and predicting its potential south- and eastwards expansion. We collected available pine marten occurrence data in the flood plain of the River Po (N Italy and relate them to 11 environmental variables by developing nine Species Distribution Models. To account for inter-model variability we used average ensemble predictions (EP. EP predicted a total of 482 suitable patches (8.31% of the total study area for the pine marten. The main factors driving pine marten occurrence in the western River Po plain were the distance from watercourses and the distance from woods. EP suggested that the pine marten may further expand in the western lowland, whilst the negligible residual wood cover of large areas in the central and eastern plain makes the habitat unsuitable for the pine marten, except for some riparian corridors and the pine wood patches bordering the Adriatic coast. Based on our results, conservation strategies should seek to preserve remnant forest patches and enhance the functional connectivity provided by riparian corridors.

  4. Terrestrial lichen response to partial cutting in lodgepole pine forests on caribou winter range in west-central British Columbia

    Directory of Open Access Journals (Sweden)

    Michaela J. Waterhouse

    2011-09-01

    Full Text Available In west-central British Columbia, terrestrial lichens located in older, lodgepole pine (Pinus contorta forests are important winter forage for woodland caribou (Rangifer tarandus caribou. Clearcut harvesting effectively removes winter forage habitat for decades, so management approaches based on partial cutting were designed to maintain continuous lichen-bearing habitat for caribou. This study tested a group selection system, based on removal of 33% of the forest every 80 years in small openings (15 m diameter, and two irregular shelterwood treatments (whole-tree and stem-only harvesting methods where 50% of the stand area is cut every 70 years in 20 to 30 m diameter openings. The abundance of common terrestrial lichens among the partial cutting and no-harvest treatments was compared across five replicate blocks, pre-harvest (1995 and post-harvest (1998, 2000 and 2004. The initial loss of preferred forage lichens (Cladonia, Cladina, Cetraria and Stereocaulon was similar among harvesting treatments, but there was greater reduction in these lichens in the openings than in the residual forest. After eight years, forage lichens in the group selection treatment recovered to pre-harvest amounts, while lichen in the shelterwood treatments steadily increased from 49 to 57% in 1998 to about 70% of pre-harvest amounts in 2004. Although not part of the randomized block design, there was substantially less lichen in three adjacent clearcut blocks than in the partial cuts. Regression analysis pre- and post-harvest indicated that increased cover of trees, shrubs, herbs, woody debris and logging slash corresponded with decreased forage lichen abundance. In the short-term, forestry activities that minimize inputs of woody debris, control herb and shrub development, and moderate the changes in light and temperatures associated with canopy removal will lessen the impact on lichen. Implementation of stand level prescriptions is only one aspect of caribou habitat

  5. Effects of variable retention harvesting on natural tree regeneration in Pinus resinosa (red pine) forests

    Science.gov (United States)

    Margaret W. Roberts; Anthony W. D' Amato; Christel C. Kern; Brian J. Palik

    2017-01-01

    Concerns over loss of ecosystem function and biodiversity in managed forests have led to the development of silvicultural approaches that meet ecological goals as well as sustain timber production. Variable Retention Harvest (VRH) practices, which maintain mature overstory trees across harvested areas, have been suggested as an approach to balance these objectives;...

  6. Twenty-Five year (1982-2007) history of lodgepole pine dwarf mistletoe animal vectors and ethephon control on the Fraser Experimental Forest in Colorado

    Science.gov (United States)

    Thomas. Nicholls

    2009-01-01

    This is a summary of the 25-year history of studies of mammal and bird vectors of lodgepole pine dwarf mistletoe (Arceuthobium americanum), ethephon control of dwarf mistletoe, and the ecology of the most important dwarf mistletoe vector, the gray jay (Persisoreus canadensis), on the USDA Forest Service, Fraser Experimental Forest...

  7. Forest attributes and fuel loads of riparian vs. upland stands in mountain pine beetle infested watersheds, southern Rocky Mountains [Chapter 13

    Science.gov (United States)

    Kathleen A. Dwire; Roberto A. Bazan; Robert Hubbard

    2015-01-01

    Extensive outbreaks of mountain pine beetle (MPB), spruce beetle (SB), and other insects are altering forest stand structure throughout the Western United States, and thereby increasing the natural heterogeneity of fuel distribution. Riparian forests frequently occur as narrow linear features in the landscape mosaic and can contribute to the spatial complexity of...

  8. Optimization Forest Thinning Measures for Carbon Budget in a Mixed Pine-Oak Stand of the Qingling Mountains, China: A Case Study

    Directory of Open Access Journals (Sweden)

    Lin Hou

    2016-11-01

    Full Text Available Forest thinning is a silviculture treatment for sustainable forest management. It may promote growth of the remaining individuals by decreasing stand density, reducing competition, and increasing light and nutrient availability to increase carbon sequestration in the forest ecosystem. However, the action also increases carbon loss simultaneously by reducing carbon and other nutrient inputs as well as exacerbating soil CO2 efflux. To achieve a maximum forest carbon budget, the central composite design with two independent variables (thinning intensity and thinning residual removal rate was explored in a natural pine-oak mixed stand in the Qinling Mountains, China. The net primary productivity of living trees was estimated and soil CO2 efflux was stimulated by the Yasso07 model. Based on two years observation, the preliminary results indicated the following. Evidently chemical compounds of the litter of the tree species affected soil CO2 efflux stimulation. The thinning residual removal rate had a larger effect than thinning intensity on the net ecosystem productivity. When the selective thinning intensity and residual removal rate was 12.59% and 66.62% concurrently, the net ecosystem productivity reached its maximum 53.93 t·ha−1·year−1. The lower thinning intensity and higher thinning residual removal rated benefited the net ecosystem productivity.

  9. Variability in snowpack accumulation and ablation associated with mountain pine beetle infestation in western forests

    Science.gov (United States)

    Biederman, J. A.; Harpold, A. A.; Gochis, D. J.; Reed, D.; Brooks, P. D.

    2010-12-01

    Seasonal snowcover is a primary source of water to urban and agricultural regions in the western United States, where Mountain Pine Beetle (MPB) has caused rapid and extensive changes to vegetation in montane forests. Levels of MPB infestation in these seasonally snow-covered systems are unprecedented, and it is unknown how this will affect water yield, especially in changing climate conditions. To address this unknown we ask: How does snow accumulation and ablation vary across forest with differing levels of impact? Our study areas in the Rocky Mountains of CO and WY are similar in latitude, elevation and forest structure before infestation, but they vary in the intensity and timing of beetle infestation and tree mortality. We present a record for winter 2010 that includes continuous snow depth as well as stand-scale snow surveys at maximum accumulation. Additional measurements include snowfall, net radiation, temperature and wind speed as well as characterization of forest structure by leaf area index. In a stand uninfested by MPB, maximum snow depth was fairly uniform under canopy (mean = 86 cm, coefficient of variation = 0.021), while canopy gaps showed greater and more variable depth (mean = 117 cm, CV = 0.111). This is consistent with several studies demonstrating that snowfall into canopy gaps depends upon gap size, orientation, wind speed and storm size. In a stand impacted in 2007, snow depth under canopy was less uniform, and there were smaller differences in both mean depth and variability between canopy (mean = 93 cm, CV = 0.072) and gaps (mean = 97 cm, CV = 0.070), consistent with decreased canopy density. In a more recently infested (2009) stand with an intermediate level of MPB impact, mean snow depths were similar between canopy (96 cm, CV = 0.016) and gaps (95 cm, CV = 0.185) but gaps showed much greater variability, suggesting controls similar to those in effect in the uninfested stand. We further use these data to model snow accumulation and

  10. Using soil quality indicators for monitoring sustainable forest management

    Science.gov (United States)

    James A. Burger; Garland Gray; D. Andrew Scott

    2010-01-01

    Most private and public forest land owners and managers are compelled to manage their forests sustainably, which means management that is economically viable,environmentally sound, and socially acceptable. To meet this mandate, the USDA Forest Service protects the productivity of our nation’s forest soils by monitoring and evaluating management activities to ensure...

  11. Trends in soil-vegetation dynamics in burned Mediterranean pine forests: the effects of soil properties

    Science.gov (United States)

    Wittenberg, L.; Malkinson, D.

    2009-04-01

    Fire can impact a variety of soil physical and chemical properties. These changes may result, given the fire severity and the local conditions, in decreased infiltration and increased runoff and erosion rates. Most of these changes are caused by complex interactions among eco-geomorphic processes which affect, in turn, the rehabilitation dynamics of the soil and the regeneration of the burnt vegetation. Following wildfire events in two forests growing on different soil types, we investigated runoff, erosion, nutrient export (specifically nitrogen and phosphorous) and vegetation recovery dynamics. The Biriya forest site, burned during the 2006 summer, is composed of two dominant lithological types: soft chalk and marl which are relatively impermeable. The rocks are usually overlain by relatively thick, up of to 80 cm, grayish-white Rendzina soil, which contains large amounts of dissolved carbonate. These carbonates serve as a limiting factor for vegetation growth. The planted forest in Biriya is comprised of monospecific stands of Pinus spp. and Cupressus spp. The Mt. Carmel area, which was last burned in the 2005 spring, represents a system of varied Mediterranean landscapes, differentiated by lithology, soils and vegetation. Lithology is mainly composed of limestone, dolomite, and chalk. The dominant soil is Brown Rendzina whilst in some locations Grey Rendzina and Terra Rossa can be found. The local vegetation is composed mainly of a complex of pine (Pinus halepensis), oak (Quercus calliprinos), Pistacia lentiscus and associations At each site several 3X3 m monitoring plots were established to collect runoff and sediment. In-plot vegetation changes were monitored by a sequence of aerial photographs captured using a 6 m pole-mounted camera. At the terra-rosa sites (Mt. Carmel) mean runoff coefficients were 2.18% during the first year after the fire and 1.6% in the second. Mean erosion rates also decreased, from 42 gr/m2 to 4 gr/m2. The recovering vegetation was

  12. 78 FR 23491 - National Forest System Land Management Planning; Correction

    Science.gov (United States)

    2013-04-19

    ... Management Planning; Correction AGENCY: Forest Service, USDA. ACTION: Correcting amendment. SUMMARY: This..., revising, and monitoring land management plans (the planning rule). The National Forest Management Act... Land Management Planning Rule Final Programmatic Environmental Impact Statement of January 2012. List...

  13. Eddy covariance fluxes of acyl peroxy nitrates (PAN, PPN and MPAN above a Ponderosa pine forest

    Directory of Open Access Journals (Sweden)

    G. M. Wolfe

    2009-01-01

    Full Text Available During the Biosphere Effects on AeRosols and Photochemistry EXperiment 2007 (BEARPEX-2007, we observed eddy covariance (EC fluxes of speciated acyl peroxy nitrates (APNs, including peroxyacetyl nitrate (PAN, peroxypropionyl nitrate (PPN and peroxymethacryloyl nitrate (MPAN, above a Ponderosa pine forest in the western Sierra Nevada. All APN fluxes are net downward during the day, with a median midday PAN exchange velocity of −0.3 cm s−1; nighttime storage-corrected APN EC fluxes are smaller than daytime fluxes but still downward. Analysis with a standard resistance model shows that loss of PAN to the canopy is not controlled by turbulent or molecular diffusion. Stomatal uptake can account for 25 to 50% of the observed downward PAN flux. Vertical gradients in the PAN thermal decomposition (TD rate explain a similar fraction of the flux, suggesting that a significant portion of the PAN flux into the forest results from chemical processes in the canopy. The remaining "unidentified" portion of the net PAN flux (~15% is ascribed to deposition or reactive uptake on non-stomatal surfaces (e.g. leaf cuticles or soil. Shifts in temperature, moisture and ecosystem activity during the summer – fall transition alter the relative contribution of stomatal uptake, non-stomatal uptake and thermochemical gradients to the net PAN flux. Daytime PAN and MPAN exchange velocities are a factor of 3 smaller than those of PPN during the first two weeks of the measurement period, consistent with strong intra-canopy chemical production of PAN and MPAN during this period. Depositional loss of APNs can be 3–21% of the gross gas-phase TD loss depending on temperature. As a source of nitrogen to the biosphere, PAN deposition represents approximately 4–19% of that due to dry deposition of nitric acid at this site.

  14. Quantum Yields in Mixed-Conifer Forests and Ponderosa Pine Plantations

    Science.gov (United States)

    Wei, L.; Marshall, J. D.; Zhang, J.

    2008-12-01

    Most process-based physiological models require canopy quantum yield of photosynthesis as a starting point to simulate carbon sequestration and subsequently gross primary production (GPP). The quantum yield is a measure of photosynthetic efficiency expressed in moles of CO2 assimilated per mole of photons absorbed; the process is influenced by environmental factors. In the summer 2008, we measured quantum yields on both sun and shade leaves for four conifer species at five sites within Mica Creek Experimental Watershed (MCEW) in northern Idaho and one conifer species at three sites in northern California. The MCEW forest is typical of mixed conifer stands dominated by grand fir (Abies grandis (Douglas ex D. Don) Lindl.). In northern California, the three sites with contrasting site qualities are ponderosa pine (Pinus ponderosa C. Lawson var. ponderosa) plantations that were experimentally treated with vegetation control, fertilization, and a combination of both. We found that quantum yields in MCEW ranged from ~0.045 to ~0.075 mol CO2 per mol incident photon. However, there were no significant differences between canopy positions, or among sites or tree species. In northern California, the mean value of quantum yield of three sites was 0.051 mol CO2/mol incident photon. No significant difference in quantum yield was found between canopy positions, or among treatments or sites. The results suggest that these conifer species maintain relatively consistent quantum yield in both MCEW and northern California. This consistency simplifies the use of a process-based model to accurately predict forest productivity in these areas.

  15. Forest thinning and soil respiration in a ponderosa pine plantation in the Sierra Nevada.

    Science.gov (United States)

    Tang, Jianwu; Qi, Ye; Xu, Ming; Misson, Laurent; Goldstein, Allen H

    2005-01-01

    Soil respiration is controlled by soil temperature, soil water, fine roots, microbial activity, and soil physical and chemical properties. Forest thinning changes soil temperature, soil water content, and root density and activity, and thus changes soil respiration. We measured soil respiration monthly and soil temperature and volumetric soil water continuously in a young ponderosa pine (Pinus ponderosa Dougl. ex P. Laws. & C. Laws.) plantation in the Sierra Nevada Mountains in California from June 1998 to May 2000 (before a thinning that removed 30% of the biomass), and from May to December 2001 (after thinning). Thinning increased the spatial homogeneity of soil temperature and respiration. We conducted a multivariate analysis with two independent variables of soil temperature and water and a categorical variable representing the thinning event to simulate soil respiration and assess the effect of thinning. Thinning did not change the sensitivity of soil respiration to temperature or to water, but decreased total soil respiration by 13% at a given temperature and water content. This decrease in soil respiration was likely associated with the decrease in root density after thinning. With a model driven by continuous soil temperature and water time series, we estimated that total soil respiration was 948, 949 and 831 g C m(-2) year(-1) in the years 1999, 2000 and 2001, respectively. Although thinning reduced soil respiration at a given temperature and water content, because of natural climate variability and the thinning effect on soil temperature and water, actual cumulative soil respiration showed no clear trend following thinning. We conclude that the effect of forest thinning on soil respiration is the combined result of a decrease in root respiration, an increase in soil organic matter, and changes in soil temperature and water due to both thinning and interannual climate variability.

  16. Ethene, propene, butene and isoprene emissions from a ponderosa pine forest measured by relaxed eddy accumulation

    Science.gov (United States)

    Rhew, Robert C.; Deventer, Malte Julian; Turnipseed, Andrew A.; Warneke, Carsten; Ortega, John; Shen, Steve; Martinez, Luis; Koss, Abigail; Lerner, Brian M.; Gilman, Jessica B.; Smith, James N.; Guenther, Alex B.; de Gouw, Joost A.

    2017-11-01

    Alkenes are reactive hydrocarbons that influence local and regional atmospheric chemistry by playing important roles in the photochemical production of tropospheric ozone and in the formation of secondary organic aerosols. The simplest alkene, ethene (ethylene), is a major plant hormone and ripening agent for agricultural commodities. The group of light alkenes (C2-C4) originates from both biogenic and anthropogenic sources, but their biogenic sources are poorly characterized, with limited field-based flux observations. Here we report net ecosystem fluxes of light alkenes and isoprene from a semiarid ponderosa pine forest in the Rocky Mountains of Colorado, USA using the relaxed eddy accumulation (REA) technique during the summer of 2014. Ethene, propene, butene and isoprene emissions have strong diurnal cycles, with median daytime fluxes of 123, 95, 39 and 17 µg m-2 h-1, respectively. The fluxes were correlated with each other, followed general ecosystem trends of CO2 and water vapor, and showed similar sunlight and temperature response curves as other biogenic VOCs. The May through October flux, based on measurements and modeling, averaged 62, 52, 24 and 18 µg m-2 h-1 for ethene, propene, butene and isoprene, respectively. The light alkenes contribute significantly to the overall biogenic source of reactive hydrocarbons: roughly 18 % of the dominant biogenic VOC, 2-methyl-3-buten-2-ol. The measured ecosystem scale fluxes are 40-80 % larger than estimates used for global emissions models for this type of ecosystem.

  17. Thermal conditions within tree cavities in ponderosa pine (Pinus ponderosa) forests: potential implications for cavity users

    Science.gov (United States)

    Vierling, Kerri T.; Lorenz, Teresa J.; Cunningham, Patrick; Potterf, Kelsi

    2017-11-01

    Tree cavities provide critical roosting and breeding sites for multiple species, and thermal environments in these cavities are important to understand. Our objectives were to (1) describe thermal characteristics in cavities between June 3 and August 9, 2014, and (2) investigate the environmental factors that influence cavity temperatures. We placed iButtons in 84 different cavities in ponderosa pine (Pinus ponderosa) forests in central Washington, and took hourly measurements for at least 8 days in each cavity. Temperatures above 40 °C are generally lethal to developing avian embryos, and 18% of the cavities had internal temperatures of ≥ 40 °C for at least 1 h of each day. We modeled daily maximum cavity temperature, the amplitude of daily cavity temperatures, and the difference between the mean internal cavity and mean ambient temperatures as a function of several environmental variables. These variables included canopy cover, tree diameter at cavity height, cavity volume, entrance area, the hardness of the cavity body, the hardness of the cavity sill (which is the wood below the cavity entrance which forms the barrier between the cavity and the external environment), and sill width. Ambient temperature had the largest effect size for maximum cavity temperature and amplitude. Larger trees with harder sills may provide more thermally stable cavity environments, and decayed sills were positively associated with maximum cavity temperatures. Summer temperatures are projected to increase in this region, and additional research is needed to determine how the thermal environments of cavities will influence species occupancy, breeding, and survival.

  18. Forest management educational needs in South African forestry ...

    African Journals Online (AJOL)

    The survey results confirm that, although forest managers still need a core technical toolbox, they are also required to address multiple issues and require a broader 'package' of skills. Keywords: business; economics; forest education; forest management; South African forest industry; survey instrument. Southern Forests ...

  19. Growth and structure of a young Aleppo pine planted forest after thinning for diversification and wildfire prevention

    Directory of Open Access Journals (Sweden)

    J. Ruiz-Mirazo

    2013-04-01

    Full Text Available Aim of study: In the Mediterranean, low timber-production forests are frequently thinned to promote biodiversity and reduce wildfire risk, but few studies in the region have addressed such goals. The aim of this research was to compare six thinning regimes applied to create a fuelbreak in a young Aleppo pine (Pinus halepensis Mill. planted forest.Area of study: A semiarid continental high plateau in south-eastern Spain.Material and Methods: Three thinning intensities (Light, Medium and Heavy were combined with two thinning methods: i Random (tree selection, and ii Regular (tree spacing. Tree growth and stand structure measurements were made four years following treatments.Main results: Heavy Random thinning successfully transformed the regular tree plantation pattern into a close-to-random spatial tree distribution. Heavy Regular thinning (followed by the Medium Regular and Heavy Random regimes significantly reduced growth in stand basal area and biomass. Individual tree growth, in contrast, was greater in Heavy and Medium thinnings than in Light ones, which were similar to the Control.Research highlights: Heavy Random thinning seemed the most appropriate in a youngAleppo pine planted forest to reduce fire risk and artificial tree distribution simultaneously. Light Regular thinning avoids understocking the stand and may be the most suitable treatment for creating a fuelbreak when the undergrowth poses a high fire risk.Keywords: Pinus halepensis; Mediterranean; Forest structure; Tree growth; Wildfire risk; Diversity.

  20. Early density management of longleaf pine reduces susceptibility to ice storm damage

    Science.gov (United States)

    Timothy B. Harrington; Thaddeus A. Harrington

    2016-01-01

    The Pax winter storm of February 2014 caused widespread damage to forest stands throughout the southeastern U.S. In a long-term study of savanna plant community restoration at the Savannah River Site, Aiken, SC, precommercial thinning (PCT) of 8- to 11-year-old plantations of longleaf pine (Pinus palustris) in 1994 reduced...

  1. Advances in the control and management of the southern pine bark beetles

    Science.gov (United States)

    T. Evan Nebeker

    2004-01-01

    Management of members of the southern pine bark beetle guild, which consists of five species, is a continually evolving process. A number of management strategies and tactics have remained fairly constant over time as new ones are being added. These basic practices include doing nothing, direct control, and indirect control. This chapter focuses primarily on the latter...

  2. Satellite Image-based Estimates of Snow Water Equivalence in Restored Ponderosa Pine Forests in Northern Arizona

    Science.gov (United States)

    Sankey, T.; Springer, A. E.; O'Donnell, F. C.; Donald, J.; McVay, J.; Masek Lopez, S.

    2014-12-01

    The U.S. Forest Service plans to conduct forest restoration treatments through the Four Forest Restoration Initiative (4FRI) on hundreds of thousands of acres of ponderosa pine forest in northern Arizona over the next 20 years with the goals of reducing wildfire hazard and improving forest health. The 4FRI's key objective is to thin and burn the forests to create within-stand openings that "promote snowpack accumulation and retention which benefit groundwater recharge and watershed processes at the fine (1 to 10 acres) scale". However, little is known about how these openings created by restoration treatments affect snow water equivalence (SWE) and soil moisture, which are key parts of the water balance that greatly influence water availability for healthy trees and for downstream water users in the Sonoran Desert. We have examined forest canopy cover by calculating a Normalized Difference Vegetation Index (NDVI), a key indicator of green vegetation cover, using Landsat satellite data. We have then compared NDVI between treatments at our study sites in northern Arizona and have found statistically significant differences in tree canopy cover between treatments. The control units have significantly greater forest canopy cover than the treated units. The thinned units also have significantly greater tree canopy cover than the thin-and-burn units. Winter season Landsat images have also been analyzed to calculate Normalized Difference Snow Index (NDSI), a key indicator of snow water equivalence and snow accumulation at the treated and untreated forests. The NDSI values from these dates are examined to determine if snow accumulation and snow water equivalence vary between treatments at our study sites. NDSI is significantly greater at the treated units than the control units. In particular, the thinned forest units have significantly greater snow cover than the control units. Our results indicate that forest restoration treatments result in increased snow pack

  3. Artificial recharge of groundwater through sprinkling infiltration: impacts on forest soil and the nutrient status and growth of Scots pine.

    Science.gov (United States)

    Nöjd, Pekka; Lindroos, Antti-Jussi; Smolander, Aino; Derome, John; Lumme, Ilari; Helmisaari, Heljä-Sisko

    2009-05-01

    We studied the chemical changes in forest soil and the effects on Scots pine trees caused by continuous sprinkling infiltration over a period of two years, followed by a recovery period of two years. Infiltration increased the water input onto the forest soil by a factor of approximately 1000. After one year of infiltration, the pH of the organic layer had risen from about 4.0 to 6.7. The NH(4)-N concentration in the organic layer increased, most probably due to the NH(4) ions in the infiltration water, as the net N mineralization rate did not increase. Sprinkling infiltration initiated nitrification in the mineral soil. Macronutrient concentrations generally increased in the organic layer and mineral soil. An exception, however, was the concentration of extractable phosphorus, which decreased strongly during the infiltration period and did not show a recovery within two years. The NO(3)-N and K concentrations had reverted back to their initial level during the two-year recovery period, while the concentrations of Ca, Mg and NH(4)-N were still elevated. Nutrient concentrations in the pine needles increased on the infiltrated plots. However, the needle P concentration increased, despite the decrease in plant-available P in the soil. Despite the increase in the nutrient status, there were some visible signs of chlorosis in the current-year needles after two years of infiltration. The radial growth of the pines more than doubled on the infiltrated plots, which suggests that the very large increase in the water input onto the forest floor had no adverse effect on the functioning of the trees. However, a monitoring period of four years is not sufficient for detecting potential long term detrimental effects on forest trees.

  4. Extreme late-summer drought causes neutral annual carbon balance in southwestern ponderosa pine forests and grasslands

    International Nuclear Information System (INIS)

    Kolb, Thomas; Dore, Sabina; Montes-Helu, Mario

    2013-01-01

    We assessed the impacts of extreme late-summer drought on carbon balance in a semi-arid forest region in Arizona. To understand drought impacts over extremes of forest cover, we measured net ecosystem production (NEP), gross primary production (GPP), and total ecosystem respiration (TER) with eddy covariance over five years (2006–10) at an undisturbed ponderosa pine (Pinus ponderosa) forest and at a former forest converted to grassland by intense burning. Drought shifted annual NEP from a weak source of carbon to the atmosphere to a neutral carbon balance at the burned site and from a carbon sink to neutral at the undisturbed site. Carbon fluxes were particularly sensitive to drought in August. Drought shifted August NEP at the undisturbed site from sink to source because the reduction of GPP (70%) exceeded the reduction of TER (35%). At the burned site drought shifted August NEP from weak source to neutral because the reduction of TER (40%) exceeded the reduction of GPP (20%). These results show that the lack of forest recovery after burning and the exposure of undisturbed forests to late-summer drought reduce carbon sink strength and illustrate the high vulnerability of forest carbon sink strength in the southwest US to predicted increases in intense burning and precipitation variability. (letter)

  5. Extreme late-summer drought causes neutral annual carbon balance in southwestern ponderosa pine forests and grasslands

    Science.gov (United States)

    Kolb, Thomas; Dore, Sabina; Montes-Helu, Mario

    2013-03-01

    We assessed the impacts of extreme late-summer drought on carbon balance in a semi-arid forest region in Arizona. To understand drought impacts over extremes of forest cover, we measured net ecosystem production (NEP), gross primary production (GPP), and total ecosystem respiration (TER) with eddy covariance over five years (2006-10) at an undisturbed ponderosa pine (Pinus ponderosa) forest and at a former forest converted to grassland by intense burning. Drought shifted annual NEP from a weak source of carbon to the atmosphere to a neutral carbon balance at the burned site and from a carbon sink to neutral at the undisturbed site. Carbon fluxes were particularly sensitive to drought in August. Drought shifted August NEP at the undisturbed site from sink to source because the reduction of GPP (70%) exceeded the reduction of TER (35%). At the burned site drought shifted August NEP from weak source to neutral because the reduction of TER (40%) exceeded the reduction of GPP (20%). These results show that the lack of forest recovery after burning and the exposure of undisturbed forests to late-summer drought reduce carbon sink strength and illustrate the high vulnerability of forest carbon sink strength in the southwest US to predicted increases in intense burning and precipitation variability.

  6. Sugar pine management—an annotated bibliography

    Science.gov (United States)

    James L. Averell; John C. Crowell; Clarence R. Quick; Gilbert H. Schubert

    1955-01-01

    The purposes of this bibliography are to enumerate and describe publications that have a bearing on the growing of sugar pine for timber production. It is intended primarily for the information of forest managers, and it includes mainly those articles which appeared to pertain rather directly to management. Although a careful search was made for titles, no claim is...

  7. Effects of wildfire on soil water repellency in pine and eucalypt forest in central Portugal

    Science.gov (United States)

    Faria, Sílvia; Eufemia Varela, María.; Keizer, Jan Jacob

    2010-05-01

    Soil water repellency is a naturally occurring phenomenon that can be intensified by soil heating during fires. Fire-induced or -enhanced water repellency, together with the loss of plant cover, is widely regarded as a key factor in increased surface runoff and accelerated erosion in recently burnt areas. The present study is part of the EROSFIRE-II project, whose main aim is to assess and predict post-wildfire hydrological and erosion processes at multiple spatial scales, ranging from micro-plot (Pinus pinaster and Eucaliptus globulus). In addition, two similar but long unburned slopes were selected in the immediate surroundings. For a period of 10 months, starting November 2008, water repellency and moisture content of the 0-5 cm topsoil layer were measured in the field at monthly intervals. Repellency was measured using the ‘Molarity of an Ethanol Droplet' (MED) test, soil moisture content using a DECAGON EC5 sensor. The results revealed a very strong repellency (ethanol classes 6-7) at all four sites during the first sampling period in November 2008, suggesting that the immediate wildfire effects were minor for both forest types. In the subsequent 5 to 6 months, however, there was a definite tendency for higher ethanol classes at the recently burnt than the adjacent unburned sites. Especially in the case of the pine stands, this tendency was inverted during the remaining months. The above-mentioned differences between the neighboring sites reflected more pronounced temporal patters in the case of the unburned sites, where median repellency levels corresponded none to slight severity ratings from December to March (pine) or April (eucalypt). Such seasonal drops in repellency were considerably shorter at the two burnt sites (1-2 months) and also less pronounced, without median ethanol classes becoming zero as occurred at the burnt sites. The seasonal repellency patterns at the unburned sites could be explained rather well by changes in soil moisture content

  8. Impact of mountain pine beetle induced mortality on forest carbon and water fluxes

    International Nuclear Information System (INIS)

    E Reed, David; Ewers, Brent E; Pendall, Elise

    2014-01-01

    Quantifying impacts of ecological disturbance on ecosystem carbon and water fluxes will improve predictive understanding of biosphere—atmosphere feedbacks. Tree mortality caused by mountain pine bark beetles (Dendroctonus ponderosae) is hypothesized to decrease photosynthesis and water flux to the atmosphere while increasing respiration at a rate proportional to mortality. This work uses data from an eddy-covariance flux tower in a bark beetle infested lodgepole pine (Pinus contorta) forest to test ecosystem responses during the outbreak. Analyses were conducted on components of carbon (C) and water fluxes in response to disturbance and environmental factors (solar radiation, soil water content and vapor pressure deficit). Maximum CO 2 uptake did not change as tree basal area mortality increased from 30 to 78% over three years of beetle disturbance. Growing season evapotranspiration varied among years while ecosystem water use efficiency (the ratio of net CO 2 uptake to water vapor loss) did not change. Between 2009 and 2011, canopy water conductance increased from 98.6 to 151.7 mmol H 2 O m −2 s −1 . Ecosystem light use efficiency of photosynthesis increased, with quantum yield increasing by 16% during the outbreak as light increased below the mature tree canopy and illuminated remaining vegetation more. Overall net ecosystem productivity was correlated with water flux and hence water availability. Average weekly ecosystem respiration, derived from light response curves and standard Ameriflux protocols for CO 2 flux partitioning into respiration and gross ecosystem productivity, did not change as mortality increased. Separate effects of increased respiration and photosynthesis efficiency largely canceled one another out, presumably due to increased diffuse light in the canopy and soil organic matter decomposition resulting in no change in net CO 2 exchange. These results agree with an emerging consensus in the literature demonstrating CO 2 and H 2 O dynamics

  9. Litter and dead wood dynamics in ponderosa pine forests along a 160-year chronosequence.

    Science.gov (United States)

    Hall, S A; Burke, I C; Hobbs, N T

    2006-12-01

    Disturbances such as fire play a key role in controlling ecosystem structure. In fire-prone forests, organic detritus comprises a large pool of carbon and can control the frequency and intensity of fire. The ponderosa pine forests of the Colorado Front Range, USA, where fire has been suppressed for a century, provide an ideal system for studying the long-term dynamics of detrital pools. Our objectives were (1) to quantify the long-term temporal dynamics of detrital pools; and (2) to determine to what extent present stand structure, topography, and soils constrain these dynamics. We collected data on downed dead wood, litter, duff (partially decomposed litter on the forest floor), stand structure, topographic position, and soils for 31 sites along a 160-year chronosequence. We developed a compartment model and parameterized it to describe the temporal trends in the detrital pools. We then developed four sets of statistical models, quantifying the hypothesized relationship between pool size and (1) stand structure, (2) topography, (3) soils variables, and (4) time since fire. We contrasted how much support each hypothesis had in the data using Akaike's Information Criterion (AIC). Time since fire explained 39-80% of the variability in dead wood of different size classes. Pool size increased to a peak as material killed by the fire fell, then decomposed rapidly to a minimum (61-85 years after fire for the different pools). It then increased, presumably as new detritus was produced by the regenerating stand. Litter was most strongly related to canopy cover (r2 = 77%), suggesting that litter fall, rather than decomposition, controls its dynamics. The temporal dynamics of duff were the hardest to predict. Detrital pool sizes were more strongly related to time since fire than to environmental variables. Woody debris peak-to-minimum time was 46-67 years, overlapping the range of historical fire return intervals (1 to > 100 years). Fires may therefore have burned under a

  10. Liming with powdered oil-shale ash in a heavily damaged forest ecosystem. 1.The effect on forest soil in a pine stand

    International Nuclear Information System (INIS)

    Terasmaa, T.; Sepp, S.

    1994-01-01

    A fertilization and liming experiment with mineral fertilizers and powdered oil-shale ash was carried out in a heavily damaged 50-year-old Scots pine ecosystem in South Estonia. In Estonia, where electric power is produced mainly in big oil-shale-fired power plants, huge quantities of SO 2 are flying into the atmosphere through the chimneys of the plants. However, it is characteristic of Estonia that simultaneously with comparatively high SO 2 pollution the proton load has been quite low because of big amounts of alkali c ash emitted together with SO 2 into the atmosphere through the chimneys of the thermal power plants. Therefore, acid rains are not frequent in Estonia. Acid precipitation here is caused mainly by SO 2 released in the central part of Europe. In Estonia acid rains are most frequently registered in the southern area of the country. At times rains with pH values below 5.1 (even 4.0 and lower) have been registered there. This is also the region where quite severely damaged pine forests can be found. As a rule, these forests grow on acid sandy soils poor in nutrients and bases. The aim of the present study was to investigate the possibility of using oil shale ash as a liming agent in a forest ecosystem for protecting forest soils from acidification and, together with some mineral fertilizers, for improving the health of injured pine stands. In Estonia the most easily available liming agent is powdered oil-shale ash, which has been widely used as a lime fertilizer for agricultural crops but so far has not been tested for liming forests on mineral soils. The comparison of the present study with the liming experiments carried out with limestone in Finland shows that the effect of oil-shale ash treatment of acid sandy soils to raise pH values and to reduce other characteristics of soil acidity was more effective than limestone liming of mineral soils in Finnish forests. The present study demonstrates that powdered oil-shale ash is highly effective in short

  11. Rapid increase in log populations in drought-stressed mixed-conifer and ponderosa pine forests in northern Arizona

    Science.gov (United States)

    Joseph L. Ganey; Scott C. Vojta

    2012-01-01

    Down logs provide important ecosystem services in forests and affect surface fuel loads and fire behavior. Amounts and kinds of logs are influenced by factors such as forest type, disturbance regime, forest man-agement, and climate. To quantify potential short-term changes in log populations during a recent global- climate-change type drought, we sampled logs in mixed-...

  12. PARTICIPATORY FOREST MANAGEMENT FOR THE SUSTAINABLE MANAGEMENT OF THE SUNDARBANS MANGROVE FOREST

    OpenAIRE

    Anjan Kumer Dev Roy; Khorshed Alam

    2012-01-01

    Peopleâs participation in forest management has become successful in many countries of the world. The Sundarbans is the single largest mangrove forest in the world, bearing numerous values and holding importance from economic, social and ecological perspectives. It is the direct and indirect sources of the livelihood of 3.5 million people. As a reserve forest, government is always providing extra care through state monopolies for its management with the introduction of policies and guidelines...

  13. Recreation in whitebark pine ecosystems: Demand, problems, and management strategies

    Science.gov (United States)

    David N. Cole

    1990-01-01

    Whitebark pine ecosystems are an important element of many of the most spectacular high-elevation landscapes in the western United States. They occupy upper subalpine and timberline zones in the prime recreation lands of the Cascades, the Sierra Nevada, and the Northern Rocky Mountains. This paper explores the nature of the recreational opportunities that the whitebark...

  14. Nine years of irrigation cause vegetation and fine root shifts in a water-limited pine forest.

    Directory of Open Access Journals (Sweden)

    Claude Herzog

    Full Text Available Scots pines (Pinus sylvestris L. in the inner-Alpine dry valleys of Switzerland have suffered from increased mortality during the past decades, which has been caused by longer and more frequent dry periods. In addition, a proceeding replacement of Scots pines by pubescent oaks (Quercus pubescens Willd. has been observed. In 2003, an irrigation experiment was performed to track changes by reducing drought pressure on the natural pine forest. After nine years of irrigation, we observed major adaptations in the vegetation and shifts in Scots pine fine root abundance and structure. Irrigation permitted new plant species to assemble and promote canopy closure with a subsequent loss of herb and moss coverage. Fine root dry weight increased under irrigation and fine roots had a tendency to elongate. Structural composition of fine roots remained unaffected by irrigation, expressing preserved proportions of cellulose, lignin and phenolic substances. A shift to a more negative δ13C signal in the fine root C indicates an increased photosynthetic activity in irrigated pine trees. Using radiocarbon (14C measurement, a reduced mean age of the fine roots in irrigated plots was revealed. The reason for this is either an increase in newly produced fine roots, supported by the increase in fine root biomass, or a reduced lifespan of fine roots which corresponds to an enhanced turnover rate. Overall, the responses belowground to irrigation are less conspicuous than the more rapid adaptations aboveground. Lagged and conservative adaptations of tree roots with decadal lifespans are challenging to detect, hence demanding for long-term surveys. Investigations concerning fine root turnover rate and degradation processes under a changing climate are crucial for a complete understanding of C cycling.

  15. Phenology of the Pine Bark Adelgid, Pineus strobi (Hemiptera: Adelgidae), in White Pine Forests of Southwestern Virginia.

    Science.gov (United States)

    Wantuch, Holly A; Kuhar, Thomas P; Salom, Scott M

    2017-12-08

    The pine bark adelgid, Pineus strobi Hartig (Hemiptera: Adelgidae), is a native herbivore of eastern white pine, Pinus strobus L. (Pinales: Pinaceae), in eastern North America. P. strobi does not appear to have any dominant overwintering lifestage in southwest Virginia, as it does in its northern range. Eggs can be found consistently from late March through early December and may be produced sporadically later throughout the winter during warm periods. Two distinct generations were observed in the spring, after which life stage frequencies overlapped. Adult body size varied seasonally and was greatest in the spring. The present study constitutes the first recording of phenological details of the P. strobi in its southern range, informing biological control efforts aimed at closely related invasive pests. The phenological plasticity observed between northern and southern P. strobi populations provides insight into the potential effects of climate on the population dymanics of this and related species. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  16. Management effects on carbon fluxes in boreal forests (Invited)

    Science.gov (United States)

    Lindroth, A.; Mölder, M.; Lagergren, F.; Vestin, P.; Hellström, M.; Sundqvist, E.; Norunda Bgs Team

    2010-12-01

    Disturbance by management or natural causes such as wind throw or fire are believed to be one of the main factors that are controlling the carbon balance of vegetation. In Northern Europe a large fraction of the forest area is managed with clear cutting and thinning as the main silvicultural methods. The effect of clear-cutting on carbon dioxide exchanges were studied in different chrono-sequences located in Sweden, Finland, UK and France, respectively. The combined results from these studies showed that a simple model could be developed describing relative net ecosystem exchange as a function of relative rotation length (age). A stand with a rotation length of 100 years, typical for Swedish conditions, looses substantial amounts of carbon during the first 12-15 years and the time it takes to reach cumulative balance after clear-cut, is 25-30 years. The mean net ecosystem exchange over the whole rotation length equals 50% of the maximum uptake. An interesting question is if it is possible to harvest without the substantial carbon losses that take place after clear-cutting. Selective harvest by thinning could potentially be such a method. We therefore studied the effect of thinning on soil and ecosystem carbon fluxes in a mixed pine and spruce forest in Central Sweden, the Norunda forest, located in the semi-boreal zone at 60.08°N, 17.48 °E. The CO2 fluxes from the forest were measured by eddy covariance method and soil effluxes were measured by automatic chambers. Maximum canopy height of the ca. 100 years-old forest was 28 m. The stand was composed of ca 72% pine, 28% before the thinning while the composition after the thinning became 82% pine and 18% spruce. The thinning was made in November/December 2008 in a half- circle from the tower with a radius of 200 m. The LAI decreased from 4.5 to 2.8 after the thinning operation. Immediately after the thinning, we found significantly higher soil effluxes, probably due to increased decomposition of dead roots. The

  17. Responses of Isolated Wetland Herpetofauna to Upland Forest Management

    International Nuclear Information System (INIS)

    Russell, K.R.; Hanlin, H.G.; Wigley, T.B.; Guynn, D.C. Jr.

    2002-01-01

    Measurement of responses of herpetofauna at isolated wetlands in the Coastal Plain of South Carolina to disturbance of adjacent loblolly pine forest. Many species of isolated wetland herpetofauna in the Southeastern Coastal Plain may tolerate some disturbance in adjacent upland stands. Responses of isolated wetland herpetofauna to upland silviculture and the need for adjacent forested buffers likely depend on the specific landscape context in which the wetlands occur and composition of the resident herpetofaunal community

  18. 77 FR 21161 - National Forest System Land Management Planning

    Science.gov (United States)

    2012-04-09

    ... 219 National Forest System Land Management Planning; Final Rule #0;#0;Federal Register / Vol. 77 , No... Forest Service 36 CFR Part 219 RIN 0596-AD02 National Forest System Land Management Planning AGENCY... Agriculture is adopting a new National Forest System land management planning rule (planning rule). The new...

  19. Private forest owners and invasive plants: risk perception and management

    Science.gov (United States)

    A. Paige Fischer; Susan Charnley

    2012-01-01

    We investigated nonindustrial private forest (NIPF) owners' invasive plant risk perceptions and mitigation practices using statistical analysis of mail survey data and qualitative analysis of interview data collected in Oregon's ponderosa pine zone. We found that 52% of the survey sample was aware of invasive plant species considered problematic by local...

  20. Simulating Effects of Forest Management Practices on Pesticide.

    Science.gov (United States)

    M.C. Smith; W.G. Knisel; J.L. Michael; D.G. Neary

    1993-01-01

    The GLEAMS model pesticide component was modified to simulate up to 245 pesticides simultaneously, and the revised model was used to pesticide pesticide application windows for forest site preparation and pine release. Five herbicides were made for soils representing four hydrologic soil groups in four climatic regions of the southeastern United States. Five herbicides...

  1. Restoring southern Ontario forests by managing succession in conifer plantations

    Science.gov (United States)

    William C. Parker; Ken A. Elliott; Daniel C. Dey; Eric Boysen

    2008-01-01

    Thinning and underplanting of conifer plantations to promote natural succession in southern Ontario's forests for restoration purposes was examined in a young red pine (Pinus resinosa Ait.) plantation. Eleven years after application of five thinning treatments, seedling diameter, height, and stem volume of planted white ash (Fraxinus...

  2. Proceedings of the California Forest Soils Council Conference on Forest Soils Biology and Forest Management

    Science.gov (United States)

    Robert F. Powers; Donald L. Hauxwell; Gary M. Nakamura

    2000-01-01

    Biotic properties of forest soil are the linkages connecting forest vegetation with an inert rooting medium to create a dynamic, functioning ecosystem. But despite the significance of these properties, managers have little awareness of the biotic world beneath their feet. Much of our working knowledge of soil biology seems anchored in myth and misunderstanding. To...

  3. Liming with powdered oil-shale ash in a heavily damaged forest ecosystem. 2.The effect on forest condition in a pine stand

    International Nuclear Information System (INIS)

    Terasmaa, T.; Pikk, J.

    1995-01-01

    First years after the treatment (in 1987) of forest soil with mineral fertilizers and powdered oil-shale ash in a heavily damaged 50-year-old Scots pine ecosystem showed a comparatively small effect (B<0.95) of liming on the stand characters. However, in comparison with the effect of only NPK fertilization on the volume growth and the health state of trees, liming (NPK+oil-shale ash) tended to increase the positive influence of fertilizers. Under the influence of oil-shale ash the mortality of the trees was lower, the density of the stand rose more, and the mean radial increment of trees was by 26% greater than after the NPK treatment without a lime agent. On the whole, the effect of oil-shale ash liming on the growth and health condition of the pine stand was not high. However, the first results of its experimental use on mineral forest soil cannot serve as the basis for essential conclusions. Still, the results give us some assurance to continue our experimental work with powdered oil-shale ash in forests with the purpose of regulating the high acidity of forest soils in some sites to gain positive shifts in the forest life. Taking into account the low price of the powdered oil-shale ash and the plentiful resources of this liming material in Estonia, even a small trend towards an improvement of forest condition on poor sandy soils would be a satisfactory final result of the work. It is essential to note that oil-shale ash is not only a simple liming material, but also a lime fertilizer consisting of numerous chemical elements necessary for plant growth. 2 tabs., 3 figs., 18 refs

  4. Seasonality and Management Affect Land Surface Temperature Differences Between Loblolly Pine and Switchgrass Ecosystems in Central Virginia

    Science.gov (United States)

    Ahlswede, B.; Thomas, R. Q.; O'Halloran, T. L.; Rady, J.; LeMoine, J.

    2017-12-01

    Changes in land-use and land management can have biogeochemical and biophysical effects on local and global climate. While managed ecosystems provide known food and fiber benefits, their influence on climate is less well quantified. In the southeastern United States, there are numerous types of intensely managed ecosystems but pine plantations and switchgrass fields represent two biogeochemical and biophysical extremes; a tall, low albedo forest with trees harvested after multiple decades vs. a short, higher albedo C4 grass field that is harvested annually. Despite the wide spread use of these ecosystems for timber and bioenergy, a quantitative, empirical evaluation of the net influence of these ecosystems on climate is lacking because it requires measuring both the greenhouse gas and energy balance of the ecosystems while controlling for the background weather and soil environment. To address this need, we established a pair of eddy flux towers in these ecosystems that are co-located (1.5 km apart) in Central Virginia and measured the radiative energy, non-radiative energy and carbon fluxes, along with associated biometeorology variables; the paired site has run since April 2016. During the first 1.5 years (two growing seasons), we found strong seasonality in the difference in surface temperature between the two ecosystems. In the growing seasons, both sites had similar surface temperature despite higher net radiation in pine. Following harvest of the switchgrass in September, the switchgrass temperatures increased relative to pine. In the winter, the pine ecosystem was warmer. We evaluate the drivers of these intra-annual dynamics and compare the climate influence of these biophysical differences to the differences in carbon fluxes between the sites using a suite of established climate regulation services metrics. Overall, our results show tradeoffs exist between the biogeochemical and biophysical climate services in managed ecosystems in the southeastern United

  5. Allozyme variation of bishop pine associated with pygmy forest soils in northern California

    Science.gov (United States)

    Constance I. Millar

    1989-01-01

    Two races of bishop pine (Pinus muricata D. Don) meet in a narrow contact zone near sea level along the Sonoma County coast, northern California. The races previously were identified by foliar ("blue" in north, "green" in south), monoterpene, and allozyme differences. Disjunct stands of blue bishop pine were observed at higher elevations along a...

  6. Entropy dynamics in cone production of longleaf pine forests in the southeastern United States

    Science.gov (United States)

    Xiongwen Chen; Dale G. Brockway; Qinfeng Guo

    2016-01-01

    Sporadic temporal patterns of seed production are a challenge for the regeneration and restoration of longleaf pine, which is a keystone component of an endangered ecosystem in the southeastern United States. In this study, long-term data for longleaf pine cone production, collected at six sites across the southeastern region, was examined from the perspective of...

  7. Longleaf pine ecosystem restoration: the role of the USDA Forest Service

    Science.gov (United States)

    Charles K. McMahon; D.J. Tomczak; R.M. Jeffers

    1998-01-01

    The greater longleaf pine ecosystem once occupied over 90 million acres from southeastern Virginia, south to central Florida, and west to eastern Texas. Today less than 3 million acres remain, with much of the remaining understory communities in an unhealthy state. A number of public and private conservation organizations are conducting collaborative longleaf pine...

  8. Spatial patterns of longleaf pine (Pinus palustris) seedling eastablishment on the croatan national forest, North Carolina

    Science.gov (United States)

    Chadwick R. Avery; Susan Cohen; Kathleen C. Parker; John S. Kush

    2004-01-01

    Ecological research aimed at determining optimal conditions for longleaf pine regeneration has become increasingly important in efforts @ restore the longleaf pine ecosystem. Numerous authors have concluded that a negative relationship exists between the occurrence of seedlings and the occurrence of mature trees; however, observed field conditions in several North...

  9. Pruning dwarf mistletoe brooms reduces stress on Jeffrey pines, Cleveland National Forest, California

    Science.gov (United States)

    Robert F. Scharpf; Richard S. Smith; Detlev Vogler

    1987-01-01

    Western dwarf mistletoe (Arceuthobium campylopodum) is a damaging parasite of Jeffrey pines (Pinus jeffreyi) in southern California. Infected branches that develop into brooms are believed to reduce tlee vigor and increase mortality. Brooms were pruned from Jeffrey pines with varying levels of dwarf mistletoe infection and live...

  10. Perceptions of forest resource use and management in two village ...

    African Journals Online (AJOL)

    Perceptions of forest resource use and management in two village ... parts of the developing world in terms of their use and management of natural forest resources ... Neither group was aware of current or future management strategies for the ...

  11. Management of community forests in Tamil Nadu

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, J

    1986-04-01

    The community has greatly benefited from payment of 50 percent of the sale proceeds of the forests. Most of the fuelwood generated in these forests finds its way to urban channels since there is no real fuel scarcity in rural Tamil Nadu. To channelise assets generated in community forests and to meet rural requirements of the people, a reorientation of management practices is necessary. The present rotation period of 10 years designed mainly for the production of fuel wood needs to be lengthened. (Refs. 6).

  12. Implementation of Participatory Forest Management in Kenya

    DEFF Research Database (Denmark)

    Thygesen, S. H.; Løber, Trine; Skensved, E.M.

    2016-01-01

    This paper analyzes the distribution of powers before and after the implementation of participatory forest management (PFM) in Kenya. The paper is a case study of the Karima forest in the Central Highlands of Kenya. The study relies primarily on 34 semi-structured interviews with key actors...... of the forest communities and weak downward accountability relations. Finally, it illustrates a planning process, which has weaknesses in participation and inclusiveness. Consequently, the paper suggests three areas for PFM policy reform in Kenya: (i) the role (powers) and function of CFAs; (ii) benefit sharing...

  13. The Influence of Forest Management Regimes on Deforestation in a Central Indian Dry Deciduous Forest Landscape

    OpenAIRE

    Shivani Agarwal; Harini Nagendra; Rucha Ghate

    2016-01-01

    This research examines the impact of forest management regimes, with various degrees of restriction, on forest conservation in a dry deciduous Indian forest landscape. Forest change is mapped using Landsat satellite images from 1977, 1990, 1999, and 2011. The landscape studied has lost 1478 km2 of dense forest cover between 1977 and 2011, with a maximum loss of 1002 km2 of dense forest between 1977 and 1990. The number of protected forest areas has increased, concomitant with an increase in r...

  14. Forest Health Management and Detection of Invasive Forest Insects

    Directory of Open Access Journals (Sweden)

    Kaelyn Finley

    2016-05-01

    Full Text Available The objectives of this review paper are to provide an overview of issues related to forest health and forest entomology, explain existing methods for forest insect pest detection, and provide background information on a case study of emerald ash borer. Early detection of potentially invasive insect species is a key aspect of preventing these species from causing damage. Invasion management efforts are typically more feasible and efficient if they are applied as early as possible. Two proposed approaches for detection are highlighted and include dendroentomology and near infrared spectroscopy (NIR. Dendroentomology utilizes tree ring principles to identify the years of outbreak and the dynamics of past insect herbivory on trees. NIR has been successfully used for assessing various forest health concerns (primarily hyperspectral imaging and decay in trees. Emerald ash borer (EAB (Agrilus planipennis, is a non-native beetle responsible for widespread mortality of several North American ash species (Fraxinus sp.. Current non-destructive methods for early detection of EAB in specific trees are limited, which restricts the effectiveness of management efforts. Ongoing research efforts are focused on developing methods for early detection of emerald ash borer.

  15. Effect of forest fragmentation on the epiphytic lichen cover of pine trunks on the example taiga town

    Directory of Open Access Journals (Sweden)

    Gaigysh Irina Sergeevna

    2012-06-01

    Full Text Available The main characteristics of epiphytic lichen cover on pine trunks depending on the area of natural pine forest in Kostomuksha (north Karelia were analysed. The town of Kostomuksha was built so that to provide the conservation of forest sites. 56 fragments with the area of 0.04 - 6.13 ha were studied. The average area of fragment is 0.62 ha, with 49 fragments (88% having the area less than 1 ha. Biodiversity and lichen cover were studied in the each fragment with using framework 10x20 cm. 1792 sample plots were made on 448 trees. The total lichens cover varies from 0 to 85%,averaging 10%. 25 species of lichens were found. The number of species in the sample plots varies from 0 to 9. Dominant species found are Hypogymnia physodes, Parmeliopsis ambigua, P. hyperopta, Imshaugia aleurites, Cladonia. Species Alectoria sarmentosa, Cladonia macilenta, Pseudevernia fufruraceae, Bryoria fremontii were less common. It was shown that the main parameters of lichen cover are closely related to the size of the area left in the city forest fragments. The maximum values of species diversity and cover of lichens were found in the fragments of more 1-2 hectares.

  16. Growth and structure of a young Aleppo pine planted forest after thinning for diversification and wildfire prevention

    Energy Technology Data Exchange (ETDEWEB)

    Ruiz-Mirazo, J.; Gonzalez-Rebollar, J. L.

    2013-05-01

    Aim of study: In the Mediterranean, low timber-production forests are frequently thinned to promote biodiversity and reduce wildfire risk, but few studies in the region have addressed such goals. The aim of this research was to compare six thinning regimes applied to create a fuel break in a young Aleppo pine (Pinus halepensis Mill.) planted forest. Area of study: A semiarid continental high plateau in south-eastern Spain. Material and Methods: Three thinning intensities (Light, Medium and Heavy) were combined with two thinning methods: i) Random (tree selection), and ii) Regular (tree spacing). Tree growth and stand structure measurements were made four years following treatments. Main results: Heavy Random thinning successfully transformed the regular tree plantation pattern into a close-to-random spatial tree distribution. Heavy Regular thinning (followed by the Medium Regular and Heavy Random regimes) significantly reduced growth in stand basal area and biomass. Individual tree growth, in contrast, was greater in Heavy and Medium thinnings than in Light ones, which were similar to the Control. Research highlights: Heavy Random thinning seemed the most appropriate in a young Aleppo pine planted forest to reduce fire risk and artificial tree distribution simultaneously. Light Regular thinning avoids under stocking the stand and may be the most suitable treatment for creating a fuel break when the undergrowth poses a high fire risk. (Author) 35 refs.

  17. Dynamic equilibrium of radiocesium with stable cesium within the soil-mushroom system in Turkish pine forest

    International Nuclear Information System (INIS)

    Karadeniz, Ozlem; Yaprak, Guenseli

    2007-01-01

    Mushrooms and soils collected from pine forests in Izmir, Turkey were measured for radiocesium and stable Cs in 2002. The ranges of 137 Cs and stable Cs concentrations in mushrooms were 9.84 ± 1.67 to 401 ± 3.85 Bq kg -1 dry weight and 0.040 ± 0.004 to 11.3 ± 1.09 mg kg -1 dry weight, respectively. The concentrations of 137 Cs and stable Cs in soils were 0.29 ± 0.18 to 161 ± 1.12 Bq kg -1 dry weight and 0.14 ± 0.004 to 1.44 ± 0.045 mg kg -1 dry weight, respectively. Even though different species were included, the concentration ratios of 137 Cs to stable Cs were fairly constant for samples collected at the same forest site, and were in the same order of magnitude as the 137 Cs to stable Cs ratios for the organic soil layers. The soil-to-mushroom transfer factors of 137 Cs and stable Cs were in the range of 0.19-3.15 and 0.17-12.3, respectively. The transfer factors of 137 Cs were significantly correlated to those of stable Cs. - The 137 Cs/ 133 Cs ratios observed in mushroom samples and in organic layers shows that 137 Cs is well mixed with stable Cs within the biological cycle in the studied pine forest

  18. Zoning of the Russian Federation territory based on forest management and forest use intensity

    Directory of Open Access Journals (Sweden)

    A. A. Маrtynyuk

    2016-02-01

    Full Text Available Over extended periods issues of forest management intensification are important in all aspects of Russian forest sector development. Sufficient research has been done in silviculture, forest planning and forest economics to address forest management intensification targets. Systems of our national territory forest management and forest economics zoning due to specifics of timber processing and forest area infrastructure have been developed. Despite sufficient available experience in sustainable forest management so far intensification issues were addressed due to development of new woodlands without proper consideration of forest regeneration and sustainable forest management operations. It resulted in forest resource depletion and unfavorable substitution of coniferous forests with less valuable softwood ones in considerable territories (especially accessible for transport. The situation is complicated since degree of forest ecosystem changes is higher in territories with high potential productivity. Ongoing changes combined with the present effective forest management system resulted in a situation where development of new woodlands is impossible without heavy investments in road construction; meanwhile road construction is unfeasible due to distances to timber processing facilities. In the meantime, changes in forest legislation, availability of forest lease holding, and promising post-logging forest regeneration technologies generate new opportunities to increase timber volumes due to application of other procedures practically excluding development of virgin woodlands. With regard to above, the Russian territory was zoned on a basis of key factors that define forest management and forest use intensification based on forest ecosystem potential productivity and area transport accessibility. Based on available data with GIS analysis approach (taking into consideration value of various factors the Russian Federation forest resources have been

  19. [Effects of selective cutting on the carbon density and net primary productivity of a mixed broadleaved-Korean pine forest in Northeast China].

    Science.gov (United States)

    Liu, Qi; Cai, Hui-Ying; Jin, Guang-Ze

    2013-10-01

    To accurately quantify forest carbon density and net primary productivity (NPP) is of great significance in estimating the role of forest ecosystems in global carbon cycle. By using the forest inventory and allometry approaches, this paper measured the carbon density and NPP of the virgin broadleaved-Korean pine (Pinus koraiensis) forest and of the broadleaved-Korean pine forest after 34 years selective-cutting (the cutting intensity was 30%, and the cutting trees were in large diameter class). The total carbon density of the virgin and selective-cutting broadleaved-Korean pine forests was (397.95 +/- 93.82) and (355.61 +/- 59.37) t C x hm(-2), respectively. In the virgin forest, the carbon density of the vegetation, debris, and soil accounted for 31.0%, 3.1%, and 65.9% of the total carbon pool, respectively; in the selective-cutting forest, the corresponding values were 31.7%, 2.9%, and 65.4%, respectively. No significant differences were observed in the total carbon density and the carbon density of each component between the two forests. The total NPP of the virgin and selective-cutting forests was (36.27 +/- 0.36) and (6.35 +/- 0.70) t C x hm(-2) x a(-1), among which, the NPP of overstory, understory, and fine roots in virgin forest and selective-cutting forest accounted for 60.3%, 2.0%, and 37.7%, and 66.1%, 2.0%, and 31.2%, respectively. No significant differences were observed in the total NPP and the contribution rate of each component between the two forests. However, the ratios of the needle and broadleaf NPPs of the virgin and selective-cutting forests were 47.24:52.76 and 20.48:79.52, respectively, with a significant difference. The results indicated that the carbon density and NPP of the broadleaved-Korean pine forest after 34 years selective-cutting recovered to the levels of the virgin broadleaved-Korean pine forest.

  20. Areas of Agreement and Disagreement Regarding Ponderosa Pine and Mixed Conifer Forest Fire Regimes: A Dialogue with Stevens et al.

    Directory of Open Access Journals (Sweden)

    Dennis C Odion

    Full Text Available In a recent PLOS ONE paper, we conducted an evidence-based analysis of current versus historical fire regimes and concluded that traditionally defined reference conditions of low-severity fire regimes for ponderosa pine (Pinus ponderosa and mixed-conifer forests were incomplete, missing considerable variability in forest structure and fire regimes. Stevens et al. (this issue agree that high-severity fire was a component of these forests, but disagree that one of the several sources of evidence, stand age from a large number of forest inventory and analysis (FIA plots across the western USA, support our findings that severe fire played more than a minor role ecologically in these forests. Here we highlight areas of agreement and disagreement about past fire, and analyze the methods Stevens et al. used to assess the FIA stand-age data. We found a major problem with a calculation they used to conclude that the FIA data were not useful for evaluating fire regimes. Their calculation, as well as a narrowing of the definition of high-severity fire from the one we used, leads to a large underestimate of conditions consistent with historical high-severity fire. The FIA stand age data do have limitations but they are consistent with other landscape-inference data sources in supporting a broader paradigm about historical variability of fire in ponderosa and mixed-conifer forests than had been traditionally recognized, as described in our previous PLOS paper.

  1. Areas of Agreement and Disagreement Regarding Ponderosa Pine and Mixed Conifer Forest Fire Regimes: A Dialogue with Stevens et al.

    Science.gov (United States)

    Odion, Dennis C; Hanson, Chad T; Baker, William L; DellaSala, Dominick A; Williams, Mark A

    2016-01-01

    In a recent PLOS ONE paper, we conducted an evidence-based analysis of current versus historical fire regimes and concluded that traditionally defined reference conditions of low-severity fire regimes for ponderosa pine (Pinus ponderosa) and mixed-conifer forests were incomplete, missing considerable variability in forest structure and fire regimes. Stevens et al. (this issue) agree that high-severity fire was a component of these forests, but disagree that one of the several sources of evidence, stand age from a large number of forest inventory and analysis (FIA) plots across the western USA, support our findings that severe fire played more than a minor role ecologically in these forests. Here we highlight areas of agreement and disagreement about past fire, and analyze the methods Stevens et al. used to assess the FIA stand-age data. We found a major problem with a calculation they used to conclude that the FIA data were not useful for evaluating fire regimes. Their calculation, as well as a narrowing of the definition of high-severity fire from the one we used, leads to a large underestimate of conditions consistent with historical high-severity fire. The FIA stand age data do have limitations but they are consistent with other landscape-inference data sources in supporting a broader paradigm about historical variability of fire in ponderosa and mixed-conifer forests than had been traditionally recognized, as described in our previous PLOS paper.

  2. Management Conflicts in Cameroonian Community Forests

    Directory of Open Access Journals (Sweden)

    Driss Ezzine de Blas

    2011-03-01

    Full Text Available Cameroonian community forests were designed and implemented to meet the general objectives of forest management decentralization for democratic and community management. The spread of management conflicts all over the country has shown that these broad expectations have not been met. We describe conflicts occurring in 20 community forests by types of actors and processes involved. We argue that a number of external (community vs. external actors and internal (intra-community conflicts are part of the causes blocking the expected outcome of Cameroonian community forests, fostering bad governance and loss of confidence. Rent appropriation and control of forest resources appear as systemic or generalized conflicts. While community forest support projects have tended to focus on capacity building activities, less direct attention has been given to these systemic problems. We conclude that some factors like appropriate leadership, and spending of logging receipts on collective benefits (direct and indirect are needed to minimize conflicts. Government and development agencies should concentrate efforts on designing concrete tools for improving financial transparency while privileging communities with credible leaders.

  3. Investigation of radiocesium in fungi in a Danish Scotch pine forest ecosystem

    International Nuclear Information System (INIS)

    Strandberg, M.

    1992-01-01

    During the autumn of 1991 a boreal Scotch pine forest, Tisvilde Hegn, was investigated with respect to the ratio 137 Cs fungi / 137 Cs soil m 2 /kg in the occurring fungi. Observed Ratios (OR) (fungi/soil) m 2 /kg were determined Totally (TOR), for Chernobyl cesium (COR), Fallout cesium totally (FOR tot ) and Fallout cesium in the upper 5 cm of soil (FOR 0-5 ) separately. The soil is sand under an approximately 5 cm thick layer of organic soil, the clay content is very low, between 0 and 2%. Cesium from Chernobyl is still totally in the upper 5 cm's, while almost half of the fallout cesium has penetrated to depths lower than 5 cm's. In the soil and litter there are 923 Bq 137 Cs deriving from Chernobyl and 2212 Bq 137 Cs deriving from weapon testing in the fifties and sixties. Observed Ratios (OR) BqCs-137/kgd.m. fungi/soil were measured in a number of fungi. In the fungi TOR varied between 0 and 6.6 m 2 /kg, though generally it was between 0.2 and 1.3 m 2 /kg. COR varied between 0 and 10.9 m 2 /kg with a general variation between 0.3 and 3.3 m 2 /kg. FOR tot varied between 0 and 5 m 2 /kg with a general variation between 0.1 and 0.9 m 2 /kg. FOR 0-5 varied between 0 and 8.5 m 2 /kg with a general variation between 0.2 and 1.5 m 2 /kg. Although there is exceptions, e.g Tricholoma portentosum, the general trend is that the Observed Ratio of the Chernobyl cesium is the highest, generally 50-200% higher than the OR of the fallout cesium in the upper 5 cm. (au) (10 refs.)

  4. Forest nursery management in Chile

    Science.gov (United States)

    Rene Escobar R.; Manuel Sanchez O.; Guillermo Pereira C.

    2002-01-01

    The forest economy in Chile is based on products from artificial reforestation efforts on approximately 2 million ha. From these, about 1.5 million ha (75%) are planted with Pinus radiata, 400,000 ha (20%) with species of Eucalyptus, principally E. globulus and E. nitens, and the rest (5%) composed by other...

  5. Post-harvest seedling recruitment following mountain pine beetle infestation of Colorado lodgepole pine stands: A comparison using historic survey records

    Science.gov (United States)

    Byron J. Collins; Charles C. Rhoades; Jeffrey Underhill; Robert M. Hubbard

    2010-01-01

    The extent and severity of overstory lodgepole pine (Pinus contorta var. latifolia Engelm. ex Wats.) mortality from mountain pine beetle (Dendroctonus ponderosae Hopkins) has created management concerns associated with forest regeneration, wildfire risk, human safety, and scenic, wildlife, and watershed resources in western North America. Owing to the unprecedented...

  6. Management of tropical forests for products and energy

    Science.gov (United States)

    John I. Zerbe

    1992-01-01

    Tropical forests have always been sources for prized timbers, rubber, tannin, and other forest products for use worldwide. However, with the recent concern regarding global change, the importance of effective forest products management and utilization has increased significantly. The USDA Forest Service's Forest Products Laboratory at Madison, Wisconsin, has...

  7. Local and landscape-scale biotic correlates of mistletoe distribution in Mediterranean pine forests

    Energy Technology Data Exchange (ETDEWEB)

    Roura-Pascual, N.; Brotons, L.; Garcia, D.; Zamora, R.; Caceres, M. de

    2012-11-01

    The study of the spatial patterns of species allows the examination of hypotheses on the most plausible ecological processes and factors determining their distribution. To investigate the determinants of parasite species on Mediterranean forests at regional scales, occurrence data of the European Misletoe (Viscum album) in Catalonia (NE Iberian Peninsula) were extracted from forest inventory data and combined with different types of explanatory variables by means of generalized linear mixed models. The presence of mistletoes in stands of Pinus halepensis seems to be determined by multiple factors (climatic conditions, and characteristics of the host tree and landscape structure) operating at different spatial scales, with the availability of orchards of Olea europaea in the surroundings playing a relevant role. These results suggest that host quality and landscape structure are important mediators of plant-plant and plant-animal interactions and, therefore, management of mistletoe populations should be conducted at both local (i.e. clearing of infected host trees) and landscape scales (e.g. controlling the availability of nutrient-rich food sources that attract bird dispersers). Research and management at landscape-scales are necessary to anticipate the negative consequence of land-use changes in Mediterranean forests. (Author) 38 refs.

  8. Measuring the Effects of Disturbance & Climate on the CO2 & Energy Exchange of Ponderosa Pine Forests in the Pacific Northwest: Integration of Eddy Flux, Plant and Soil Measurements

    Energy Technology Data Exchange (ETDEWEB)

    Beverly E. Law; Larry Mahrt

    2007-01-05

    The goal is to quantify and understand the influence of climate and disturbance on ecosystem processes and thus net carbon uptake by forests. The objective is to combine tower and ground-based observations to quantify the effects of disturbance on processes controlling carbon storage and CO{sub 2} and energy exchange in varying climatic conditions. Specific objectives are: (1) Investigate the effects of logging and fire on carbon storage and carbon dioxide and energy exchange in chronosequences of ponderosa pine, using consistent methodology; (2) Determine key environmental factors controlling carbon storage and carbon dioxide and energy exchange in these forests through a combination of measurements and process modeling; and (3) Assess spatial variation of the concentrations and transport in complex terrain. The eddy covariance method is used for measurements of CO2, water vapor, and energy exchanges in a chronosequence of ponderosa pine forests (burned in 2002 wildfire, 10 year-old stand, 90 year-old mature stand). The mature stand has been an AmeriFlux site since 2000 (following previous flux sites in young and old stands initiated in 1996). In addition to the eddy covariance measurements, a large suite of biological processes and ecosystem properties are determined for the purpose of developing independent forest carbon budgets and NEP estimates; these include photosynthesis, stand respiration, soil CO{sub 2} fluxes, annual litterfall, foliar chemistry, and bole increment, and soil organic matter among other parameters. The measurements are being integrated and evaluated with two ecosystem models (BIOME-BGC and SPA). Such analyses are needed to assess regional terrestrial ecosystem carbon budgets. The results will contribute scientific understanding of carbon processes, and will provide comprehensive data sets for forest managers and those preparing national carbon inventories to use in assessments of carbon sequestration in relation to interannual climate

  9. Sustainable Forest Management in Cameroon Needs More than Approved Forest Management Plans

    Directory of Open Access Journals (Sweden)

    Paolo Omar. Cerutti

    2008-12-01

    Full Text Available One of the main objectives of the 1994 Cameroonian forestry law is to improve the management of production forests by including minimum safeguards for sustainability into compulsory forest management plans. As of 2007, about 3.5 million hectares (60% of the productive forests are harvested following the prescriptions of 49 approved management plans. The development and implementation of these forest management plans has been interpreted by several international organizations as long awaited evidence that sustainable management is applied to production forests in Cameroon. Recent reviews of some plans have concluded, however, that their quality was inadequate. This paper aims at taking these few analyses further by assessing the actual impacts that approved management plans have had on sustainability and harvesting of commercial species. We carry out an assessment of the legal framework, highlighting a fundamental flaw, and a thorough comparison between data from approved management plans and timber production data. Contrary to the principles adhered to by the 1994 law, we find that the government has not yet succeeded in implementing effective minimum sustainability safeguards and that, in 2006, 68% of the timber production was still carried out as though no improved management rules were in place. The existence of a number of approved management plans cannot be used a proxy for proof of improved forest management.

  10. Synthesis of lower treeline limber pine (Pinus flexilis) woodland knowledge, research needs, and management considerations

    Science.gov (United States)

    Robert E. Means

    2011-01-01

    Lower treeline limber pine woodlands have received little attention in peer-reviewed literature and in management strategies. These ecologically distinct systems are thought to be seed repositories between discontinuous populations in the northern and central Rocky Mountains, serving as seed sources for bird dispersal between distinct mountain ranges. Their position on...

  11. Whole-tree bark and wood properties of loblolly pine from intensively managed plantations

    Science.gov (United States)

    Finto Antony; Laurence R. Schimleck; Richard F. Daniels; Alexander Clark; Bruce E. Borders; Michael B. Kane; Harold E. Burkhart

    2015-01-01

    A study was conducted to identify geographical variation in loblolly pine bark and wood properties at the whole-tree level and to quantify the responses in whole-tree bark and wood properties following contrasting silvicultural practices that included planting density, weed control, and fertilization. Trees were destructively sampled from both conventionally managed...

  12. A hydroeconomic modeling framework for optimal integrated management of forest and water

    Science.gov (United States)

    Garcia-Prats, Alberto; del Campo, Antonio D.; Pulido-Velazquez, Manuel

    2016-10-01

    Forests play a determinant role in the hydrologic cycle, with water being the most important ecosystem service they provide in semiarid regions. However, this contribution is usually neither quantified nor explicitly valued. The aim of this study is to develop a novel hydroeconomic modeling framework for assessing and designing the optimal integrated forest and water management for forested catchments. The optimization model explicitly integrates changes in water yield in the stands (increase in groundwater recharge) induced by forest management and the value of the additional water provided to the system. The model determines the optimal schedule of silvicultural interventions in the stands of the catchment in order to maximize the total net benefit in the system. Canopy cover and biomass evolution over time were simulated using growth and yield allometric equations specific for the species in Mediterranean conditions. Silvicultural operation costs according to stand density and canopy cover were modeled using local cost databases. Groundwater recharge was simulated using HYDRUS, calibrated and validated with data from the experimental plots. In order to illustrate the presented modeling framework, a case study was carried out in a planted pine forest (Pinus halepensis Mill.) located in south-western Valencia province (Spain). The optimized scenario increased groundwater recharge. This novel modeling framework can be used in the design of a "payment for environmental services" scheme in which water beneficiaries could contribute to fund and promote efficient forest management operations.

  13. Southern Pine Beetle Information System (SPBIS)

    Science.gov (United States)

    Valli Peacher

    2011-01-01

    The southern pine beetle (SPB) is the most destructive forest insect in the South. The SPB attacks all species of southern pine, but loblolly and shortleaf are most susceptible. The Southern Pine Beetle Information System (SPBIS) is the computerized database used by the national forests in the Southern Region for tracking individual southern pine beetle infestations....

  14. Forest carbon management in the United States: 1600-2100

    Science.gov (United States)

    Richard A. Birdsey; Kurt Pregitzer; Alan Lucier

    2006-01-01

    This paper reviews the effects of past forest management on carbon stocks in the United States, and the challenges for managing forest carbon resources in the 21st century. Forests in the United States were in approximate carbon balance with the atmosphere from 1600-1800. Utilization and land clearing caused a large pulse of forest carbon emissions during the 19th...

  15. Modeling the Carbon Implications of Ecologically-Based Forest Management

    Science.gov (United States)

    2015-08-01

    Fule, P.Z., Moore, M.M., Hart, S.C., Kolb , T.E., Mast, J.N., Sackett, S.S., Wagner, M.R., 1997. Restoring ecosystem health in ponderosa pine forests of...Botanical Society 129, 289-297. Dore, S., Kolb , T.E., Montes-Helu, M., Sullivan, B.W., Winslow, W.D., Hart, S.C., Kaye, J.P., Koch, G.W...Dore, S., M. Montes-Helu, S.C. Hart, B.A. Hungate, G.W. Koch, J.B. Moon, A.J. Finkral, T.E. Kolb . 2012. Recovery of ponderosa pine ecosystem carbon and

  16. Modeling the Carbon Implications of Ecologically Based Forest Management

    Science.gov (United States)

    2015-08-20

    Fule, P.Z., Moore, M.M., Hart, S.C., Kolb , T.E., Mast, J.N., Sackett, S.S., Wagner, M.R., 1997. Restoring ecosystem health in ponderosa pine forests of...Botanical Society 129, 289-297. Dore, S., Kolb , T.E., Montes-Helu, M., Sullivan, B.W., Winslow, W.D., Hart, S.C., Kaye, J.P., Koch, G.W...Dore, S., M. Montes-Helu, S.C. Hart, B.A. Hungate, G.W. Koch, J.B. Moon, A.J. Finkral, T.E. Kolb . 2012. Recovery of ponderosa pine ecosystem carbon and

  17. Lengthened cold stratification improves bulk whitebark pine germination

    Science.gov (United States)

    Nathan Robertson; Kent Eggleston; Emily Overton; Marie McLaughlin

    2013-01-01

    Crucial to the restoration of whitebark pine (Pinus albicaulis) ecosystems is the ability of forest managers to locate, propagate, and reintroduce viable, disease-resistant populations to these jeopardized systems. Currently, one of the most limiting steps in this process is the slow, labor-in - tensive, and expensive process of producing whitebark seedlings at forest...

  18. Relationships between net photosynthesis and foliar nitrogen concentrations in a loblobby pine forest ecosystem grown in elevated atmospheric carbon dioxide

    International Nuclear Information System (INIS)

    Springer, C. J.; Thomas, R. B.; Delucia, E. H.

    2005-01-01

    The effects of elevated carbon dioxide concentration on the relationship between light-saturated net photosynthesis and area-based foliar nitrogen concentration in the canopy of a loblobby pine forest at the Duke Forest FACE experiment was examined. Two overstory and four understory tree species were examined at their growth carbon dioxide concentrations during the early summer and late summer of 1999, 2001 and 2002. Light-saturated net photosynthesis and foliar nitrogen relationship were compared to determine if the stimulatory effects of elevated carbon dioxide on net photosynthesis had declined. Results at all three sample times showed no difference in either the slopes, or in the y-intercepts of the net photosynthesis-foliar nitrogen relationship when measured at common carbon dioxide concentrations. Net photosynthesis was also unaffected by growth in elevated carbon dioxide, indicating that these overstory and understory trees continued to show strong stimulation of photosynthesis by elevated carbon dioxide. 46 refs., 6 tabs., 3 figs

  19. Long-Term Studies of Prescribed Burning in Loblolly Pine Forests of the Southeastern Coastal Plain

    Science.gov (United States)

    Thomas A. Waldrop; David H. van Lear; F. Thomas Lloyd; William R. Harms

    1987-01-01

    Prescribed fire provides many benefits in southern pine A study begun in 1946 provides a unique opportunity stands. to observe long-term changes in understory vegetation, soil properties, and overstory tree growth caused by repeated burning.

  20. Carbon and nitrogen accumulation in forest floor and surface soil under different geographic origins of Maritime pine (Pinus pinaster Aiton.) plantations

    Energy Technology Data Exchange (ETDEWEB)

    Ozdemir, E.; Oral, H. V.; Akburak, S.; Makineci, E.; Yilmaz, E.

    2013-09-01

    Aim of study: To determine if plantations consisting of different geographic origins of the Maritime pine (Pinus pinaster Aiton.) could have altered C and N stocks in the forest floor and surface soils. Area of study: Forest floor and mineral soil C and N stocks were measured in four adjacent plantations of different geographic origins of Maritime pine (Gironde, Toulon, Corsica and Spain) and adjacent primary native Sessile oak (Quercus petraea L.) at Burunsuz region in Belgrad Forest where is located in the Istanbul province in the Marmara geographical region between 41° 09’-41° 12’ N latitude and 28° 54’-29° 00’ E longitude in Turkey. Material and methods: Plots were compared as common garden experiments without replications. 15 surface soil (0-10 cm) and 15 forest floor samples were taken from each Maritime pine origins and adjacent native Sessile oak forest. C and N contents were determined on LECO Truspec 2000 CN analyzer. The statistical significance of the results was evaluated by one-way Analysis of Variance (ANOVA). Research highlights: Forest floor carbon mass, nitrogen concentration and nitrogen mass of forest floor showed a significant difference among origins. Soil carbon mass and nitrogen mass did not significantly differ among investigated plots. (Author)

  1. Carbon and nitrogen accumulation in forest floor and surface soil under different geographic origins of Maritime pine (Pinus pinaster Aiton. plantations

    Directory of Open Access Journals (Sweden)

    E. Ozdemir

    2013-07-01

    Full Text Available Aim of study : To determine if plantations consisting of different geographic origins of the Maritime pine (Pinus pinaster Aiton. could have altered C and N stocks in the forest floor and surface soils.Area of study : Forest floor and mineral soil C and N stocks were measured in four adjacent plantations of different geographic origins of Maritime pine (Gironde, Toulon, Corsica and Spain and adjacent primary native Sessile oak (Quercus petraea L. at Burunsuz region in Belgrad Forest where is located in the Istanbul province in the Marmara geographical region between 41°09' -41°12' N latitude and 28°54' - 29°00' E longitude in Turkey.Material and Methods : Plots were compared as common garden experiments without replications. 15 surface soil (0-10 cm and 15 forest floor samples were taken from each Maritime pine origins and adjacent native Sessile oak forest. C and N contents were determined on LECO Truspec 2000 CN analyzer. The statistical significance of the results was evaluated by one-way Analysis of Variance (ANOVA.Research highlights : Forest floor carbon mass, nitrogen concentration and nitrogen mass of forest floor showed a significant difference among origins. Soil carbon mass and nitrogen mass did not significantly differ among investigated plots.Keywords: carbon sequestration; C/N ratio; decomposition; exotic; tree provenance.

  2. Managing Forest Conflicts: Perspectives of Indonesia’s Forest Management Unit Directors

    Directory of Open Access Journals (Sweden)

    Larry A. Fisher

    2017-04-01

    Full Text Available Recent expansion of the forestry and plantation sectors in Indonesia has intensified agrarian and natural resource conflicts, and created increased awareness of the social, economic and environmental impacts of these disputes. Addressing these disputes is a critical issue in advancing Indonesia’s commitment to sustainable forest management. The Forest Management Units (Kesatuan Pengelolaan Hutan, or KPH, have become the pivotal structural element for managing all state forests at the local level, with responsibility for conventional forest management and policy implementation (establishing management boundaries, conducting forest inventory, and developing forest management plans, as well as the legal mandate to communicate and work with indigenous people and local communities. This paper presents the results of a national survey of all currently functioning KPH units, the first of its kind ever conducted with KPH leadership, to obtain a system-wide perspective of the KPHs’ role, mandate, and capacity for serving as effective intermediaries in managing forest conflicts in Indonesia. The survey results show that the KPHs are still in a very initial stage of development, and are struggling with a complex and rapidly evolving policy and institutional framework. The most common conflicts noted by respondents included forest encroachment, tenure disputes, boundary conflicts, and illegal logging and land clearing. KPH leadership views conflict resolution as among their primary duties and functions, and underscored the importance of more proactive and collaborative approaches for addressing conflict, many seeing themselves as capable facilitators and mediators. Overall, these results juxtapose a generally constructive view by KPH leadership over their role and responsibility in addressing forest management conflicts, with an extremely challenging social, institutional, and political setting. The KPHs can certainly play an important role as local

  3. Assessing the Defoliation of Pine Forests in a Long Time-Series and Spatiotemporal Prediction of the Defoliation Using Landsat Data

    Directory of Open Access Journals (Sweden)

    Chenghao Zhu

    2018-02-01

    Full Text Available Pine forests (Pinus tabulaeformis have been in danger of defoliation by a caterpillar in the west Liaoning province of China for more than thirty years. This paper aims to assess and predict the degree of damage to pine forests by using remote sensing and ancillary data. Through regression analysis of the pine foliage remaining ratios of field plots with several vegetation indexes of Landsat data, a feasible inversion model was obtained to detect the degree of damage using the Normalized Difference Infrared Index of 5th band (NDII5. After comparing the inversion result of the degree of damage to the pine in 29 years and the historical damage record, quantized results of damage assessment in a long time-series were accurately obtained. Based on the correlation analysis between meteorological variables and the degree of damage from 1984 to 2015, the average degree of damage was predicted in temporal scale. By adding topographic and other variables, a linear prediction model in spatiotemporal scale was constructed. The spatiotemporal model was based on 5015 public pine points for 24 years and reached 0.6169 in the correlation coefficient. This paper provided a feasible and quantitative method in the spatiotemporal prediction of forest pest occurrence by remote sensing.

  4. Seasonal Pattern of Decomposition and N, P, and C Dynamics in Leaf litter in a Mongolian Oak Forest and a Korean Pine Plantation

    Directory of Open Access Journals (Sweden)

    Jaeeun Sohng

    2014-10-01

    Full Text Available Distinct seasons and diverse tree species characterize temperate deciduous forests in NE Asia, but large areas of deciduous forests have been converted to conifer plantations. This study was conducted to understand the effects of seasons and tree species on leaf litter decomposition in a temperate forest. Using the litterbag method, the decomposition rate and nitrogen, phosphorous, and carbon dynamics of Mongolian oak (Quercus mongolica, Korean pine (Pinus koraiensis, and their mixed leaf litter were compared for 24 months in a Mongolian oak stand, an adjacent Korean pine plantation, and a Mongolian oak—Korean pine mixed stand. The decomposition rates of all the leaf litter types followed a pattern of distinct seasonal changes: most leaf litter decomposition occurred during the summer. Tree species was less influential on the leaf litter decomposition. The decomposition rates among different leaf litter types within the same stand were not significantly different, indicating no mixed litter effect. The immobilization of leaf litter N and P lasted for 14 months. Mongolian oak leaf litter and Korean pine leaf litter showed different N and P contents and dynamics during the decomposition, and soil P2O5 was highest in the Korean pine plantation, suggesting effects of plantation on soil nutrient budget.

  5. Mountain pine beetle infestation of lodgepole pine in areas of water diversion.

    Science.gov (United States)

    Smolinski, Sharon L; Anthamatten, Peter J; Bruederle, Leo P; Barbour, Jon M; Chambers, Frederick B

    2014-06-15

    The Rocky Mountains have experienced extensive infestations from the mountain pine beetle (Dendroctonus ponderosae Hopkins), affecting numerous pine tree species including lodgepole pine (Pinus contorta Dougl. var. latifolia). Water diversions throughout the Rocky Mountains transport large volumes of water out of the basins of origin, resulting in hydrologic modifications to downstream areas. This study examines the hypothesis that lodgepole pine located below water diversions exhibit an increased incidence of mountain pine beetle infestation and mortality. A ground survey verified diversion structures in a portion of Grand County, Colorado, and sampling plots were established around two types of diversion structures, canals and dams. Field studies assessed mountain pine beetle infestation. Lodgepole pines below diversions show 45.1% higher attack and 38.5% higher mortality than lodgepole pines above diversions. These findings suggest that water diversions are associated with increased infestation and mortality of lodgepole pines in the basins of extraction, with implications for forest and water allocation management. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. In situ secondary organic aerosol formation from ambient pine forest air using an oxidation flow reactor

    Science.gov (United States)

    Palm, Brett B.; Campuzano-Jost, Pedro; Ortega, Amber M.; Day, Douglas A.; Kaser, Lisa; Jud, Werner; Karl, Thomas; Hansel, Armin; Hunter, James F.; Cross, Eben S.; Kroll, Jesse H.; Peng, Zhe; Brune, William H.; Jimenez, Jose L.

    2016-03-01

    An oxidation flow reactor (OFR) is a vessel inside which the concentration of a chosen oxidant can be increased for the purpose of studying SOA formation and aging by that oxidant. During the BEACHON-RoMBAS (Bio-hydro-atmosphere interactions of Energy, Aerosols, Carbon, H2O, Organics & Nitrogen-Rocky Mountain Biogenic Aerosol Study) field campaign, ambient pine forest air was oxidized by OH radicals in an OFR to measure the amount of SOA that could be formed from the real mix of ambient SOA precursor gases, and how that amount changed with time as precursors changed. High OH concentrations and short residence times allowed for semicontinuous cycling through a large range of OH exposures ranging from hours to weeks of equivalent (eq.) atmospheric aging. A simple model is derived and used to account for the relative timescales of condensation of low-volatility organic compounds (LVOCs) onto particles; condensational loss to the walls; and further reaction to produce volatile, non-condensing fragmentation products. More SOA production was observed in the OFR at nighttime (average 3 µg m-3 when LVOC fate corrected) compared to daytime (average 0.9 µg m-3 when LVOC fate corrected), with maximum formation observed at 0.4-1.5 eq. days of photochemical aging. SOA formation followed a similar diurnal pattern to monoterpenes, sesquiterpenes, and toluene+p-cymene concentrations, including a substantial increase just after sunrise at 07:00 local time. Higher photochemical aging (> 10 eq. days) led to a decrease in new SOA formation and a loss of preexisting OA due to heterogeneous oxidation followed by fragmentation and volatilization. When comparing two different commonly used methods of OH production in OFRs (OFR185 and OFR254-70), similar amounts of SOA formation were observed. We recommend the OFR185 mode for future forest studies. Concurrent gas-phase measurements of air after OH oxidation illustrate the decay of primary VOCs, production of small oxidized organic

  7. In situ secondary organic aerosol formation from ambient pine forest air using an oxidation flow reactor

    Directory of Open Access Journals (Sweden)

    B. B. Palm

    2016-03-01

    Full Text Available An oxidation flow reactor (OFR is a vessel inside which the concentration of a chosen oxidant can be increased for the purpose of studying SOA formation and aging by that oxidant. During the BEACHON-RoMBAS (Bio-hydro-atmosphere interactions of Energy, Aerosols, Carbon, H2O, Organics & Nitrogen–Rocky Mountain Biogenic Aerosol Study field campaign, ambient pine forest air was oxidized by OH radicals in an OFR to measure the amount of SOA that could be formed from the real mix of ambient SOA precursor gases, and how that amount changed with time as precursors changed. High OH concentrations and short residence times allowed for semicontinuous cycling through a large range of OH exposures ranging from hours to weeks of equivalent (eq. atmospheric aging. A simple model is derived and used to account for the relative timescales of condensation of low-volatility organic compounds (LVOCs onto particles; condensational loss to the walls; and further reaction to produce volatile, non-condensing fragmentation products. More SOA production was observed in the OFR at nighttime (average 3 µg m−3 when LVOC fate corrected compared to daytime (average 0.9 µg m−3 when LVOC fate corrected, with maximum formation observed at 0.4–1.5 eq. days of photochemical aging. SOA formation followed a similar diurnal pattern to monoterpenes, sesquiterpenes, and toluene+p-cymene concentrations, including a substantial increase just after sunrise at 07:00 local time. Higher photochemical aging (> 10 eq. days led to a decrease in new SOA formation and a loss of preexisting OA due to heterogeneous oxidation followed by fragmentation and volatilization. When comparing two different commonly used methods of OH production in OFRs (OFR185 and OFR254-70, similar amounts of SOA formation were observed. We recommend the OFR185 mode for future forest studies. Concurrent gas-phase measurements of air after OH oxidation illustrate the decay of primary VOCs, production

  8. De novo assembly of maritime pine transcriptome: implications for forest breeding and biotechnology.

    Science.gov (United States)

    Canales, Javier; Bautista, Rocio; Label, Philippe; Gómez-Maldonado, Josefa; Lesur, Isabelle; Fernández-Pozo, Noe; Rueda-López, Marina; Guerrero-Fernández, Dario; Castro-Rodríguez, Vanessa; Benzekri, Hicham; Cañas, Rafael A; Guevara, María-Angeles; Rodrigues, Andreia; Seoane, Pedro; Teyssier, Caroline; Morel, Alexandre; Ehrenmann, François; Le Provost, Grégoire; Lalanne, Céline; Noirot, Céline; Klopp, Christophe; Reymond, Isabelle; García-Gutiérrez, Angel; Trontin, Jean-François; Lelu-Walter, Marie-Anne; Miguel, Celia; Cervera, María Teresa; Cantón, Francisco R; Plomion, Christophe; Harvengt, Luc; Avila, Concepción; Gonzalo Claros, M; Cánovas, Francisco M

    2014-04-01

    Maritime pine (Pinus pinasterAit.) is a widely distributed conifer species in Southwestern Europe and one of the most advanced models for conifer research. In the current work, comprehensive characterization of the maritime pine transcriptome was performed using a combination of two different next-generation sequencing platforms, 454 and Illumina. De novo assembly of the transcriptome provided a catalogue of 26 020 unique transcripts in maritime pine trees and a collection of 9641 full-length cDNAs. Quality of the transcriptome assembly was validated by RT-PCR amplification of selected transcripts for structural and regulatory genes. Transcription factors and enzyme-encoding transcripts were annotated. Furthermore, the available sequencing data permitted the identification of polymorphisms and the establishment of robust single nucleotide polymorphism (SNP) and simple-sequence repeat (SSR) databases for genotyping applications and integration of translational genomics in maritime pine breeding programmes. All our data are freely available at SustainpineDB, the P. pinaster expressional database. Results reported here on the maritime pine transcriptome represent a valuable resource for future basic and applied studies on this ecological and economically important pine species. © 2013 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  9. Late Holocene geomorphic record of fire in ponderosa pine and mixed-conifer forests, Kendrick Mountain, northern Arizona, USA

    Science.gov (United States)

    Jenkins, S.E.; Hull, Sieg C.; Anderson, D.E.; Kaufman, D.S.; Pearthree, P.A.

    2011-01-01

    Long-term fire history reconstructions enhance our understanding of fire behaviour and associated geomorphic hazards in forested ecosystems. We used 14C ages on charcoal from fire-induced debris-flow deposits to date prehistoric fires on Kendrick Mountain, northern Arizona, USA. Fire-related debris-flow sedimentation dominates Holocene fan deposition in the study area. Radiocarbon ages indicate that stand-replacing fire has been an important phenomenon in late Holocene ponderosa pine (Pinus ponderosa) and ponderosa pine-mixed conifer forests on steep slopes. Fires have occurred on centennial scales during this period, although temporal hiatuses between recorded fires vary widely and appear to have decreased during the past 2000 years. Steep slopes and complex terrain may be responsible for localised crown fire behaviour through preheating by vertical fuel arrangement and accumulation of excessive fuels. Holocene wildfire-induced debris flow events occurred without a clear relationship to regional climatic shifts (decadal to millennial), suggesting that interannual moisture variability may determine fire year. Fire-debris flow sequences are recorded when (1) sufficient time has passed (centuries) to accumulate fuels; and (2) stored sediment is available to support debris flows. The frequency of reconstructed debris flows should be considered a minimum for severe events in the study area, as fuel production may outpace sediment storage. ?? IAWF 2011.

  10. Radioecology and management of contaminated forests

    International Nuclear Information System (INIS)

    Rantavaara, A.; Aro, L.

    2003-01-01

    public. Credible and well-informed intervention is important for all those involved in forestry and using forests. The aim of this paper is to describe the evidence for effectiveness in reduction of 137 Cs uptake, and to appraise practicability of some forest management methods having potential for remediation of contaminated forests. (orig.)

  11. Managing carbon sequestration and storage in northern hardwood forests

    Science.gov (United States)

    Eunice A. Padley; Deahn M. Donner; Karin S. Fassnacht; Ronald S. Zalesny; Bruce Birr; Karl J. Martin

    2011-01-01

    Carbon has an important role in sustainable forest management, contributing to functions that maintain site productivity, nutrient cycling, and soil physical properties. Forest management practices can alter ecosystem carbon allocation as well as the amount of total site carbon.

  12. Forest and Water Management for Mitigating the effects of Climate ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Forest and Water Management for Mitigating the effects of Climate Change in the ... forest, agriculture and water management strategies play in both adaptation to and ... IDRC joins more than 800 international delegates at the Resilient Cities ...

  13. Soil Organic Carbon assessment on two different forest management

    Science.gov (United States)

    Fernández Minguillón, Alex; Sauras Yera, Teresa; Vallejo Calzada, Ramón

    2017-04-01

    Soil Organic Carbon assessment on two different forest management. A.F. Minguillón1, T. Sauras1, V.R: Vallejo1. 1 Departamento de Biología Evolutiva, Ecología y Ciencias Ambientales, Universidad de Barcelona, Avenida Diagonal 643, 03080 Barcelona, Spain. Soils from arid and semiarid zones are characterized by a low organic matter content from scarce plant biomass and it has been proposed that these soils have a big capacity to carbon sequestration. According to IPCC ARS WG2 (2014) report and WG3 draft, increase carbon storage in terrestrial ecosystems has been identified such a potential tool for mitigation and adaptation to climate change. In ecological restoration context improve carbon sequestration is considered a management option with multiple benefits (win-win-win). Our work aims to analyze how the recently developed restoration techniques contributed to increases in terrestial ecosystem carbon storage. Two restoration techniques carried out in the last years have been evaluated. The study was carried out in 6 localities in Valencian Community (E Spain) and organic horizons of two different restoration techniques were evaluated; slash brush and thinning Aleppo pine stands. For each technique, carbon stock and its physical and chemical stability has been analysed. Preliminary results point out restoration zones acts as carbon sink due to (1) the relevant necromass input produced by slash brush increases C stock on the topsoil ;(2) Thinning increase carbon accumulation in vegetation.

  14. Resilience of Mediterranean terrestrial ecosystems and fire severity in semiarid areas: Responses of Aleppo pine forests in the short, mid and long term.

    Science.gov (United States)

    González-De Vega, S; De Las Heras, J; Moya, D

    2016-12-15

    In recent decades, the fire regime of the Mediterranean Basin has been disturbed by various factors: climate change; forest management policies; land cover; changed landscape. Size and severity have notably increased, which in turn have increased large fires events with >500ha burned (high severity). In spite of Mediterranean ecosystems' high resilience to fire, these changes have implied more vulnerability and reduced natural recovery with irreparable long-term negative effects. Knowledge of the response of ecosystems to increasing severity, mainly in semiarid areas, is still lacking, which is needed to rehabilitate and restore burned areas. Our approach assessed the resilience concept by focusing on the recovery of ecosystem functions and services, measured as changes in the composition and diversity of plant community vegetation and structure. This will be validated in the long term as a model of ecosystem response. Also, depending on the pre-fire characteristics of vegetation, fire severity and the post-fire management, this approach will lead to tools that can be applied to implement post-fire restoration efforts in order to help decision making in planning activities. Regarding Mediterranean ecosystems' ability to recover after wildfires, this study concludes that pre-fire communities are resilient in these fire-prone areas, but the window for natural recovery in semiarid areas of Aleppo pine forest in SE Iberian Peninsula varied from 3 to 15 post-fire years. Fire severity was also key for effects on the ecosystem: the vegetation types of areas burned with low and medium severity recovered naturally, while those areas with a high-severity burn induced shrublands. We concluded that very strong regeneration activity exists in the short term, and that the negative effects of medium- and high-severity fire are evidenced in the mid and long term, which affect natural recovery. Adaptive forest management to rehabilitate and restore burned Mediterranean ecosystems

  15. Forest Management_MCD Issue2 2007

    African Journals Online (AJOL)

    for biodiversity on Earth, and this biodiversity is found mainly in Madagascar's .... Standardized models are appropriate .... this had little effect on its forest management policy until very recently. ... In the mid - 1980s, Madagascar's political climate began to change as ..... A selection correction for cloud cover in satellite images.

  16. Does participatory forest management change household attitudes ...

    African Journals Online (AJOL)

    user

    The study assessed the impact of participatory forest management (PFM) on ... southern Africa failed to evict people and this led to the ... to knowledge generation, social learning, and adaptation ... tools and strong arguments for and against their effect- .... engage in discussions and story–telling to better understand the.

  17. Forest management guidelines for controlling wild grapevines

    Science.gov (United States)

    H. Clay Smith

    1984-01-01

    Grapevines (Vitis spp.) are becoming a major problem to forest managers in the Appalachians, especially when clearcutting is done on highly productive hardwood sites. Where present, grapevines can reduce tree quality and growth, and eventually kill the tree. Silvical characteristics of grapevines are discussed as background for grapevine control....

  18. Perspectives of Forest Management Planning: Slovenian and Croatian Experience

    OpenAIRE

    Bončina, Andrej; Čavlović, Juro

    2009-01-01

    Drawing upon the historical framework of origin and development, and a long tradition in forest management planning in Slovenia and Croatia, and based on a survey of literature and research to date, this paper addresses problems and perspectives of forest management planning. Comparison is made of forest management planning concepts, which generally differ from country to country in terms of natural, social and economic circumstances. Impacts of forest management planning on the condition and...

  19. Forest Management as an Element of Environment Development

    Science.gov (United States)

    Jaszczak, Roman; Gołojuch, Piotr; Wajchman-Świtalska, Sandra; Miotke, Mariusz

    2017-12-01

    The implementation of goals of modern forestry requires a simultaneous consideration of sustainable development of forests, protection, needs of the environment development, as well as maintaining a balance between functions of forests. In the current multifunctional forest model, rational forest management assumes all of its tasks as equally important. Moreover, its effects are important factors in the nature and environment protection. The paper presents legal conditions related to the definitions of forest management concepts and sustainable forest management. Authors present a historical outline of human's impact on the forest and its consequences for the environment. The selected aspects of forest management (eg. forest utilization, afforestation, tourism and recreation) and their role in the forest environment have been discussed.

  20. Seasonal dynamics of Boletus edulis and Lactarius deliciosus extraradical mycelium in pine forests of central Spain.

    Science.gov (United States)

    De la Varga, Herminia; Águeda, Beatriz; Ágreda, Teresa; Martínez-Peña, Fernando; Parladé, Javier; Pera, Joan

    2013-07-01

    The annual belowground dynamics of extraradical soil mycelium and sporocarp production of two ectomycorrhizal fungi, Boletus edulis and Lactarius deliciosus, have been studied in two different pine forests (Pinar Grande and Pinares Llanos, respectively) in Soria (central Spain). Soil samples (five per plot) were taken monthly (from September 2009 to August 2010 in Pinar Grande and from September 2010 to September 2011 in Pinares Llanos) in eight permanent plots (four for each site). B. edulis and L. deliciosus extraradical soil mycelium was quantified by real-time polymerase chain reaction, with DNA extracted from soil samples, using specific primers and TaqMan® probes. The quantities of B. edulis soil mycelium did not differ significantly between plots, but there was a significant difference over time with a maximum in February (0.1576 mg mycelium/g soil) and a minimum in October (0.0170 mg mycelium/g soil). For L. deliciosus, significant differences were detected between plots and over time. The highest amount of mycelium was found in December (1.84 mg mycelium/g soil) and the minimum in February (0.0332 mg mycelium/g soil). B. edulis mycelium quantities were positively correlated with precipitation of the current month and negatively correlated with the mean temperature of the previous month. Mycelium biomass of L. deliciosus was positively correlated with relative humidity and negatively correlated with mean temperature and radiation. No significant correlation between productivity of the plots with the soil mycelium biomass was observed for any of the two species. No correlations were found between B. edulis sporocarp production and weather parameters. Sporocarp production of L. deliciosus was positively correlated with precipitation and relative humidity and negatively correlated with maximum and minimum temperatures. Both species have similar distribution over time, presenting an annual dynamics characterized by a seasonal variability, with a clear increase