WorldWideScience

Sample records for mammoth mountain california

  1. Magmatic carbon dioxide emissions at Mammoth Mountain, California

    Science.gov (United States)

    Farrar, Christopher D.; Neil, John M.; Howle, James F.

    1999-01-01

    Carbon dioxide (CO2) of magmatic origin is seeping out of the ground in unusual quantities at several locations around the flanks of Mammoth Mountain, a dormant volcano in Eastern California. The most recent volcanic activity on Mammoth Mountain was steam eruptions about 600 years ago, but seismic swarms and long-period earthquakes over the past decade are evidence of an active magmatic system at depth. The CO2 emission probably began in 1990 but was not recognized until 1994. Seismic swarms and minor ground deformation during 1989, believed to be results of a shallow intrusion of magma beneath Mammoth Mountain, probably triggered the release of CO2, which persists in 1998. The CO2 gas is at ambient temperatures and emanates diffusely from the soil surface rather than flowing from distinct vents. The CO2 has collected in the soil by displacing air in the pore spaces and reaches concentrations of greater than 95 percent by volume in places. The total area affected by high CO2 concentrations and high CO2 flux from the soil surface was estimated at 60 hectares in 1997. Coniferous forest covering about 40 hectares has been killed by high CO2 concentrations in the root zone. In more than 300 soil-gas samples collected from depths of 0.5 to 2 m in 1995, CO2 concentrations ranged from background levels (less than 1 percent) to greater than 95 percent by volume. At 250 locations, CO2 flux was measured using a closed chamber in 1996; values, in grams per square meter per day, ranged from background (less than 25) to more than 30,000. On the basis of these data, the total emission of magmatic CO2 in 1996 is estimated to be about 530 megagrams per day. Concentrations of CO2 exceeding Occupational Safety and Health Administration standards have been measured in pits dug in soil and snow, in poorly ventilated buildings, and in below-ground valve-boxes around Mammoth Mountain. CO2 concentrations greater than 10 percent in poorly ventilated spaces are not uncommon on some parts

  2. Eruptive history of Mammoth Mountain and its mafic periphery, California

    Science.gov (United States)

    Hildreth, Wes; Fierstein, Judy

    2016-07-13

    This report and accompanying geologic map portray the eruptive history of Mammoth Mountain and a surrounding array of contemporaneous volcanic units that erupted in its near periphery. The moderately alkaline Mammoth eruptive suite, basaltic to rhyodacitic, represents a discrete new magmatic system, less than 250,000 years old, that followed decline of the subalkaline rhyolitic system active beneath adjacent Long Valley Caldera since 2.2 Ma (Hildreth, 2004). The scattered vent array of the Mammoth system, 10 by 20 km wide, is unrelated to the rangefront fault zone, and its broad nonlinear footprint ignores both Long Valley Caldera and the younger Mono-Inyo rangefront vent alignment.

  3. Vertical Distribution of Ozone and Nitric Acid Vapor on the Mammoth Mountain, Eastern Sierra Nevada, California

    Directory of Open Access Journals (Sweden)

    Andrzej Bytnerowicz

    2002-01-01

    Full Text Available In August and September 1999 and 2000, concentrations of ozone (O3 and nitric acid vapor (HNO3 were monitored at an elevation gradient (2184–3325 m on the Mammoth Mountain, eastern Sierra Nevada, California. Passive samplers were used for monitoring exposure to tropospheric O3 and HNO3 vapor. The 2-week average O3 concentrations ranged between 45 and 72 ppb, while HNO3 concentrations ranged between 0.06 and 0.52 μg/m3. Similar ranges of O3 and HNO3 were determined for 2 years of the study. No clear effects of elevation on concentrations of the two pollutants were detected. Concentrations of HNO3 were low and at the background levels expected for the eastern Sierra Nevada, while the measured concentrations of O3 were elevated. High concentrations of ozone in the study area were confirmed with an active UV absorption O3 monitor placed at the Mammoth Mountain Peak (September 5–14, 2000, average 24-h concentration of 56 ppb.

  4. Unraveling the dynamics of magmatic CO2 degassing at Mammoth Mountain, California

    Science.gov (United States)

    Pfeiffer, Loic; Wanner, Christoph; Lewicki, Jennifer L.

    2018-01-01

    The accumulation of magmatic CO2 beneath low-permeability barriers may lead to the formation of CO2-rich gas reservoirs within volcanic systems. Such accumulation is often evidenced by high surface CO2 emissions that fluctuate over time. The temporal variability in surface degassing is believed in part to reflect a complex interplay between deep magmatic degassing and the permeability of degassing pathways. A better understanding of the dynamics of CO2 degassing is required to improve monitoring and hazards mitigation in these systems. Owing to the availability of long-term records of CO2 emissions rates and seismicity, Mammoth Mountain in California constitutes an ideal site towards such predictive understanding. Mammoth Mountain is characterized by intense soil CO2 degassing (up to ∼1000 t d−1) and tree kill areas that resulted from leakage of CO2 from a CO2-rich gas reservoir located in the upper ∼4 km. The release of CO2-rich fluids from deeper basaltic intrusions towards the reservoir induces seismicity and potentially reactivates faults connecting the reservoir to the surface. While this conceptual model is well-accepted, there is still a debate whether temporally variable surface CO2 fluxes directly reflect degassing of intrusions or variations in fault permeability. Here, we report the first large-scale numerical model of fluid and heat transport for Mammoth Mountain. We discuss processes (i) leading to the initial formation of the CO2-rich gas reservoir prior to the occurrence of high surface CO2 degassing rates and (ii) controlling current CO2 degassing at the surface. Although the modeling settings are site-specific, the key mechanisms discussed in this study are likely at play at other volcanic systems hosting CO2-rich gas reservoirs. In particular, our model results illustrate the role of convection in stripping a CO2-rich gas phase from a rising hydrothermal fluid and leading to an accumulation of a large mass of CO2 (∼107–108

  5. Unraveling the dynamics of magmatic CO2 degassing at Mammoth Mountain, California

    Science.gov (United States)

    Peiffer, Loïc; Wanner, Christoph; Lewicki, Jennifer L.

    2018-02-01

    The accumulation of magmatic CO2 beneath low-permeability barriers may lead to the formation of CO2-rich gas reservoirs within volcanic systems. Such accumulation is often evidenced by high surface CO2 emissions that fluctuate over time. The temporal variability in surface degassing is believed in part to reflect a complex interplay between deep magmatic degassing and the permeability of degassing pathways. A better understanding of the dynamics of CO2 degassing is required to improve monitoring and hazards mitigation in these systems. Owing to the availability of long-term records of CO2 emissions rates and seismicity, Mammoth Mountain in California constitutes an ideal site towards such predictive understanding. Mammoth Mountain is characterized by intense soil CO2 degassing (up to ∼1000 t d-1) and tree kill areas that resulted from leakage of CO2 from a CO2-rich gas reservoir located in the upper ∼4 km. The release of CO2-rich fluids from deeper basaltic intrusions towards the reservoir induces seismicity and potentially reactivates faults connecting the reservoir to the surface. While this conceptual model is well-accepted, there is still a debate whether temporally variable surface CO2 fluxes directly reflect degassing of intrusions or variations in fault permeability. Here, we report the first large-scale numerical model of fluid and heat transport for Mammoth Mountain. We discuss processes (i) leading to the initial formation of the CO2-rich gas reservoir prior to the occurrence of high surface CO2 degassing rates and (ii) controlling current CO2 degassing at the surface. Although the modeling settings are site-specific, the key mechanisms discussed in this study are likely at play at other volcanic systems hosting CO2-rich gas reservoirs. In particular, our model results illustrate the role of convection in stripping a CO2-rich gas phase from a rising hydrothermal fluid and leading to an accumulation of a large mass of CO2 (∼107-108 t) in a shallow

  6. Decadal-scale variability of diffuse CO2 emissions and seismicity revealed from long-term monitoring (1995–2013) at Mammoth Mountain, California, USA

    Science.gov (United States)

    Werner, Cynthia A.; Bergfeld, Deborah; Farrar, Chris; Doukas, Michael P.; Kelly, Peter; Kern, Christoph

    2014-01-01

    Mammoth Mountain, California, is a dacitic volcano that has experienced several periods of unrest since 1989. The onset of diffuse soil CO2 emissions at numerous locations on the flanks of the volcano began in 1989–1990 following an 11-month period of heightened seismicity. CO2 emission rates were measured yearly from 1995 to 2013 at Horseshoe Lake (HSL), the largest tree kill area on Mammoth Mountain, and measured intermittently at four smaller degassing areas around Mammoth from 2006 to 2013. The long-term record at HSL shows decadal-scale variations in CO2 emissions with two peaks in 2000–2001 and 2011–2012, both of which follow peaks in seismicity by 2–3 years. Between 2000 and 2004 emissions gradually declined during a seismically quiet period, and from 2004 to 2009 were steady at ~ 100 metric tonnes per day (t d− 1). CO2emissions at the four smaller tree-kill areas also increased by factors of 2–3 between 2006 and 2011–2012, demonstrating a mountain-wide increase in degassing. Delays between the peaks in seismicity and degassing have been observed at other volcanic and hydrothermal areas worldwide, and are thought to result from an injection of deep CO2-rich fluid into shallow subsurface reservoirs causing a pressurization event with a delayed transport to the surface. Such processes are consistent with previous studies at Mammoth, and here we highlight (1) the mountain-wide response, (2) the characteristic delay of 2–3 years, and (3) the roughly decadal reoccurrence interval for such behavior. Our best estimate of total CO2 degassing from Mammoth Mountain was 416 t d− 1 in 2011 during the peak of emissions, over half of which was emitted from HSL. The cumulative release of CO2 between 1995 and 2013 from diffuse emissions is estimated to be ~ 2–3 Mt, and extrapolation back to 1989 gives ~ 4.8 Mt. This amount of CO2 release is similar to that produced by the mid-sized (VEI 3) 2009 eruption of Redoubt Volcano in Alaska (~ 2.3

  7. Fluid-faulting interactions: Fracture-mesh and fault-valve behavior in the February 2014 Mammoth Mountain, California, earthquake swarm

    Science.gov (United States)

    Shelly, David R.; Taira, Taka’aki; Prejean, Stephanie; Hill, David P.; Dreger, Douglas S.

    2015-01-01

    Faulting and fluid transport in the subsurface are highly coupled processes, which may manifest seismically as earthquake swarms. A swarm in February 2014 beneath densely monitored Mammoth Mountain, California, provides an opportunity to witness these interactions in high resolution. Toward this goal, we employ massive waveform-correlation-based event detection and relative relocation, which quadruples the swarm catalog to more than 6000 earthquakes and produces high-precision locations even for very small events. The swarm's main seismic zone forms a distributed fracture mesh, with individual faults activated in short earthquake bursts. The largest event of the sequence, M 3.1, apparently acted as a fault valve and was followed by a distinct wave of earthquakes propagating ~1 km westward from the updip edge of rupture, 1–2 h later. Late in the swarm, multiple small, shallower subsidiary faults activated with pronounced hypocenter migration, suggesting that a broader fluid pressure pulse propagated through the subsurface.

  8. Hourly mass and snow energy balance measurements from Mammoth Mountain, CA USA, 2011-2017

    Science.gov (United States)

    Bair, Edward H.; Davis, Robert E.; Dozier, Jeff

    2018-03-01

    The mass and energy balance of the snowpack govern its evolution. Direct measurement of these fluxes is essential for modeling the snowpack, yet there are few sites where all the relevant measurements are taken. Mammoth Mountain, CA USA, is home to the Cold Regions Research and Engineering Laboratory and University of California - Santa Barbara Energy Site (CUES), one of five energy balance monitoring sites in the western US. There is a ski patrol study site on Mammoth Mountain, called the Sesame Street Snow Study Plot, with automated snow and meteorological instruments where new snow is hand-weighed to measure its water content. There is also a site at Mammoth Pass with automated precipitation instruments. For this dataset, we present a clean and continuous hourly record of selected measurements from the three sites covering the 2011-2017 water years. Then, we model the snow mass balance at CUES and compare model runs to snow pillow measurements. The 2011-2017 period was marked by exceptional variability in precipitation, even for an area that has high year-to-year variability. The driest year on record, and one of the wettest years, occurred during this time period, making it ideal for studying climatic extremes. This dataset complements a previously published dataset from CUES containing a smaller subset of daily measurements. In addition to the hand-weighed SWE, novel measurements include hourly broadband snow albedo corrected for terrain and other measurement biases. This dataset is available with a digital object identifier: https://doi.org/10.21424/R4159Q.

  9. Geothermal space/water heating for Mammoth Lakes Village, California. Quarterly technical progress report, 13 December 1976-12 March 1977

    Energy Technology Data Exchange (ETDEWEB)

    Sims, A.V.; Racine, W.C.

    1977-01-01

    During the second three months of this feasibility study to determine the technical, economic and environmental feasibility of heating Mammoth Lakes Village, California using geothermal energy, the following work was accomplished. A saturation survey of the number and types of space and water heaters currently in use in the Village was completed. Electric energy and ambient temperature metering equipment was installed. Peak heating demand for Mammoth Lakes was estimated for the years 1985, 1990 and 2000. Buildings were selected which are considered typical of Mammoth Lakes in terms of their heating systems to be used in estimating the cost of installing hydronic heating systems in Mammoth. Block diagrams and an order of magnitude cost comparison were prepared for high-temperature and low-temperature geothermal district heating systems. Models depicting a geothermal district heating system and a geothermal-electric power plant were designed, built and delivered to ERDA in Washington. Local input to the feasibility study was obtained from representatives of the State of California Departments of Transportation and Fish and Game, US Forest Service, and Mono County Planning Department.

  10. Long Period Earthquakes Beneath California's Young and Restless Volcanoes

    Science.gov (United States)

    Pitt, A. M.; Dawson, P. B.; Shelly, D. R.; Hill, D. P.; Mangan, M.

    2013-12-01

    The newly established USGS California Volcano Observatory has the broad responsibility of monitoring and assessing hazards at California's potentially threatening volcanoes, most notably Mount Shasta, Medicine Lake, Clear Lake Volcanic Field, and Lassen Volcanic Center in northern California; and Long Valley Caldera, Mammoth Mountain, and Mono-Inyo Craters in east-central California. Volcanic eruptions occur in California about as frequently as the largest San Andreas Fault Zone earthquakes-more than ten eruptions have occurred in the last 1,000 years, most recently at Lassen Peak (1666 C.E. and 1914-1917 C.E.) and Mono-Inyo Craters (c. 1700 C.E.). The Long Valley region (Long Valley caldera and Mammoth Mountain) underwent several episodes of heightened unrest over the last three decades, including intense swarms of volcano-tectonic (VT) earthquakes, rapid caldera uplift, and hazardous CO2 emissions. Both Medicine Lake and Lassen are subsiding at appreciable rates, and along with Clear Lake, Long Valley Caldera, and Mammoth Mountain, sporadically experience long period (LP) earthquakes related to migration of magmatic or hydrothermal fluids. Worldwide, the last two decades have shown the importance of tracking LP earthquakes beneath young volcanic systems, as they often provide indication of impending unrest or eruption. Herein we document the occurrence of LP earthquakes at several of California's young volcanoes, updating a previous study published in Pitt et al., 2002, SRL. All events were detected and located using data from stations within the Northern California Seismic Network (NCSN). Event detection was spatially and temporally uneven across the NCSN in the 1980s and 1990s, but additional stations, adoption of the Earthworm processing system, and heightened vigilance by seismologists have improved the catalog over the last decade. LP earthquakes are now relatively well-recorded under Lassen (~150 events since 2000), Clear Lake (~60 events), Mammoth Mountain

  11. Effects of Atmospheric Dynamics on CO2 Seepage at Mammoth Mountain, California USA

    Directory of Open Access Journals (Sweden)

    Egemen Ogretim

    2013-12-01

    Full Text Available In the past few decades, atmospheric effects on the variation of seepage from soil have been studied in disciplines such as volcanology, environmental protection, safety and health hazard avoidance. Recently, monitoring of potential leakage from the geologic sequestration of carbon has been added to this list. Throughout these diverse fields, barometric pumping and presence of steady winds are the two most commonly investigated atmospheric factors. These two factors have the effect of pumping gas into and out of the unsaturated zone, and sweeping the gas in the porous medium. This study focuses on two new factors related to atmosphere in order to explain the CO2 seepage anomalies observed at the Horseshoe Lake tree kill near Mammoth Mountain, CA, where the temporal variation of seepage due to a storm event could not be explained by the two commonly studied effects. First, the interaction of the lower atmospheric dynamics and the ground topography is considered for its effect on the seepage variation over an area that is linked through high-porosity, high-permeability soils and/or fracture networks. Second, the regional pressure fronts that impose significant pressure oscillation over an area are studied. The comparison of the computer simulation results with the experimental measurements suggests that the seepage anomaly observed at the Horseshoe Lake Tree Kill could be due to the unsteady effects caused by regional pressure fronts.

  12. Late Quaternary sea-level history and the antiquity of mammoths (Mammuthus exilis and Mammuthus columbi), Channel Islands NationalPark, California, USA

    Science.gov (United States)

    Muhs, Daniel R.; Simmons, Kathleen R.; Groves, Lindsey T.; McGeehin, John P.; Schumann, R. Randall; Agenbroad, Larry D.

    2015-01-01

    Fossils of Columbian mammoths (Mammuthus columbi) and pygmy mammoths (Mammuthus exilis) have been reported from Channel Islands National Park, California. Most date to the last glacial period (Marine Isotope Stage [MIS] 2), but a tusk of M. exilis (or immature M. columbi) was found in the lowest marine terrace of Santa Rosa Island. Uranium-series dating of corals yielded ages from 83.8 ± 0.6 ka to 78.6 ± 0.5 ka, correlating the terrace with MIS 5.1, a time of relatively high sea level. Mammoths likely immigrated to the islands by swimming during the glacial periods MIS 6 (~ 150 ka) or MIS 8 (~ 250 ka), when sea level was low and the island–mainland distance was minimal, as during MIS 2. Earliest mammoth immigration to the islands likely occurred late enough in the Quaternary that uplift of the islands and the mainland decreased the swimming distance to a range that could be accomplished by mammoths. Results challenge the hypothesis that climate change, vegetation change, and decreased land area from sea-level rise were the causes of mammoth extinction at the Pleistocene/Holocene boundary on the Channel Islands. Pre-MIS 2 mammoth populations would have experienced similar or even more dramatic changes at the MIS 6/5.5 transition.

  13. Chemical source characterization of residential wood combustion emissions in Denver, Colorado; Bakersfield, California; and Mammoth Lakes, California

    International Nuclear Information System (INIS)

    Houck, J.E.; Goulet, J.M.; Chow, J.C.; Watson, J.G.

    1989-01-01

    The chemical composition of residential wood combustion particulate emissions was determined for fireplaces and woodstoves. Burn rates, burn patterns, wood burning appliances, and cordwood types characteristic of Denver, Colorado; Bakersfield, California; and Mammoth Lakes, California, were used during sample collection. Samples were collected using a dilution/cooling system to ensure that condensible compounds were captured. Analyses for 44 chemical species were conducted. Source profiles for use in chemical mass balance (CMB) modeling were calculated from the analytical data. The principal chemical species comprising the profiles were organic compounds and elemental carbon. The minor chemical species were sulfur, chlorine, potassium, sodium, calcium, zinc, nitrate, and ammonium. Virtually all potassium was in a water-soluble form, and sulfur emissions between fireplaces and woodstoves were noted. Area-specific source profiles for fireplaces, woodstoves, and overall residential wood combustion are presented

  14. Sub-fossil beetle assemblages associated with the "mammoth fauna" in the Late Pleistocene localities of the Ural Mountains and West Siberia.

    Science.gov (United States)

    Zinovyev, Evgeniy

    2011-01-01

    The distribution of beetles at the end of the Middle Pleninglacial (=terminal Quaternary) was examined based on sub-fossil material from the Ural Mountains and Western Siberia, Russia. All relevant localities of fossil insects have similar radiocarbon dates, ranging between 33,000 and 22,000 C14 years ago. Being situated across the vast territory from the southern Ural Mountains in the South to the middle Yamal Peninsula in the North, they allow latitudinal changes in beetle assemblages of that time to be traced. These beetles lived simultaneously with mammals of the so-called "mammoth fauna" with mammoth, bison, and wooly rhinoceros, the often co-occurring mega-mammalian bones at some of the sites being evidence of this. The beetle assemblages found between 59° and 57°N appear to be the most interesting. Their bulk is referred to as a "mixed" type, one which includes a characteristic combination of arcto-boreal, boreal, steppe and polyzonal species showing no analogues among recent insect complexes. These peculiar faunas seem to have represented a particular zonal type, which disappeared since the end of the Last Glaciation to arrive here with the extinction of the mammoth biota. In contrast, on the sites lying north of 60°N, the beetle communities were similar to modern sub-arctic and arctic faunas, yet with the participation of some sub-boreal steppe components, such as Poecilus ravus Lutshnik and Carabus sibiricus Fischer-Waldheim. This information, when compared with our knowledge of synchronous insect faunas from other regions of northern Eurasia, suggests that the former distribution of beetles in this region could be accounted for both by palaeo-environmental conditions and the impact of grazing by large ruminant mammals across the so-called "mammoth savannas".

  15. Sub-fossil beetle assemblages associated with the “mammoth fauna” in the Late Pleistocene localities of the Ural Mountains and West Siberia

    Directory of Open Access Journals (Sweden)

    Evgeniy Zinovyev

    2011-05-01

    Full Text Available The distribution of beetles at the end of the Middle Pleninglacial (=terminal Quaternary was examined based on sub-fossil material from the Ural Mountains and Western Siberia, Russia. All relevant localities of fossil insects have similar radiocarbon dates, ranging between 33,000 and 22,000 C14 years ago. Being situated across the vast territory from the southern Ural Mountains in the South to the middle Yamal Peninsula in the North, they allow latitudinal changes in beetle assemblages of that time to be traced. These beetles lived simultaneously with mammals of the so-called “mammoth fauna” with mammoth, bison, and wooly rhinoceros, the often co-occurring mega-mammalian bones at some of the sites being evidence of this. The beetle assemblages found between 59° and 57°N appear to be the most interesting. Their bulk is referred to as a “mixed” type, one which includes a characteristic combination of arcto-boreal, boreal, steppe and polyzonal species showing no analogues among recent insect complexes. These peculiar faunas seem to have represented a particular zonal type, which disappeared since the end of the Last Glaciation to arrive here with the extinction of the mammoth biota. In contrast, on the sites lying north of 60°N, the beetle communities were similar to modern sub-arctic and arctic faunas, yet with the participation of some sub-boreal steppe components, such as Poecilus ravus Lutshnik and Carabus sibiricus Fischer-Waldheim. This information, when compared with our knowledge of synchronous insect faunas from other regions of northern Eurasia, suggests that the former distribution of beetles in this region could be accounted for both by palaeo-environmental conditions and the impact of grazing by large ruminant mammals across the so-called “mammoth savannas”.

  16. Feasibility of geothermal space/water heating for Mammoth Lakes Village, California. Final report, September 1976--September 1977

    Energy Technology Data Exchange (ETDEWEB)

    Sims, A.V.; Racine, W.C.

    1977-12-01

    Results of a study to determine the technical, economic, and environmental feasibility of geothermal district heating for Mammoth Lakes Village, California are reported. The geothermal district heating system selected is technically feasible and will use existing technology in its design and operation. District heating can provide space and water heating energy for typical customers at lower cost than alternative sources of energy. If the district heating system is investor owned, lower costs are realized after five to six years of operation, and if owned by a nonprofit organization, after zero to three years. District heating offers lower costs than alternatives much sooner in time if co-generation and/or DOE participation in system construction are included in the analysis. During a preliminary environmental assessment, no potential adverse environmental impacts could be identified of sufficient consequence to preclude the construction and operation of the proposed district heating system. A follow-on program aimed at implementing district heating in Mammoth is outlined.

  17. Integrated thermal infrared imaging and Structure-from-Motion photogrametry to map apparent temperature and radiant hydrothermal heat flux at Mammoth Mountain, CA USA

    Science.gov (United States)

    Lewis, Aaron; George Hilley,; Lewicki, Jennifer L.

    2015-01-01

    This work presents a method to create high-resolution (cm-scale) orthorectified and georeferenced maps of apparent surface temperature and radiant hydrothermal heat flux and estimate the radiant hydrothermal heat emission rate from a study area. A ground-based thermal infrared (TIR) camera was used to collect (1) a set of overlapping and offset visible imagery around the study area during the daytime and (2) time series of co-located visible and TIR imagery at one or more sites within the study area from pre-dawn to daytime. Daytime visible imagery was processed using the Structure-from-Motion photogrammetric method to create a digital elevation model onto which pre-dawn TIR imagery was orthorectified and georeferenced. Three-dimensional maps of apparent surface temperature and radiant hydrothermal heat flux were then visualized and analyzed from various computer platforms (e.g., Google Earth, ArcGIS). We demonstrate this method at the Mammoth Mountain fumarole area on Mammoth Mountain, CA. Time-averaged apparent surface temperatures and radiant hydrothermal heat fluxes were observed up to 73.7 oC and 450 W m-2, respectively, while the estimated radiant hydrothermal heat emission rate from the area was 1.54 kW. Results should provide a basis for monitoring potential volcanic unrest and mitigating hydrothermal heat-related hazards on the volcano.

  18. Monitoring ground-surface heating during expansion of the Casa Diablo production well field at Mammoth Lakes, California

    Science.gov (United States)

    Bergfeld, D.; Vaughan, R. Greg; Evans, William C.; Olsen, Eric

    2015-01-01

    The Long Valley hydrothermal system supports geothermal power production from 3 binary plants (Casa Diablo) near the town of Mammoth Lakes, California. Development and growth of thermal ground at sites west of Casa Diablo have created concerns over planned expansion of a new well field and the associated increases in geothermal fluid production. To ensure that all areas of ground heating are identified prior to new geothermal development, we obtained high-resolution aerial thermal infrared imagery across the region. The imagery covers the existing and proposed well fields and part of the town of Mammoth Lakes. Imagery results from a predawn flight on Oct. 9, 2014 readily identified the Shady Rest thermal area (SRST), one of two large areas of ground heating west of Casa Diablo, as well as other known thermal areas smaller in size. Maximum surface temperatures at 3 thermal areas were 26–28 °C. Numerous small areas with ground temperatures >16 °C were also identified and slated for field investigations in summer 2015. Some thermal anomalies in the town of Mammoth Lakes clearly reflect human activity.Previously established projects to monitor impacts from geothermal power production include yearly surveys of soil temperatures and diffuse CO2 emissions at SRST, and less regular surveys to collect samples from fumaroles and gas vents across the region. Soil temperatures at 20 cm depth at SRST are well correlated with diffuse CO2 flux, and both parameters show little variation during the 2011–14 field surveys. Maximum temperatures were between 55–67 °C and associated CO2 discharge was around 12–18 tonnes per day. The carbon isotope composition of CO2 is fairly uniform across the area ranging between –3.7 to –4.4 ‰. The gas composition of the Shady Rest fumarole however has varied with time, and H2S concentrations in the gas have been increasing since 2009.

  19. 76 FR 41753 - Sierra National Forest, Bass Lake Ranger District, California, Grey's Mountain Ecosystem...

    Science.gov (United States)

    2011-07-15

    ..., California, Grey's Mountain Ecosystem Restoration Project AGENCY: Forest Service, USDA. ACTION: Notice of...: Background Information: The Grey's Mountain Ecosystem Restoration Project (Madera County, California) lies... vegetation. Currently, vegetation within the Grey's Mountain Ecosystem Restoration Project has changed from...

  20. Bacterial community in ancient permafrost alluvium at the Mammoth Mountain (Eastern Siberia).

    Science.gov (United States)

    Brouchkov, Anatoli; Kabilov, Marsel; Filippova, Svetlana; Baturina, Olga; Rogov, Victor; Galchenko, Valery; Mulyukin, Andrey; Fursova, Oksana; Pogorelko, Gennady

    2017-12-15

    Permanently frozen (approx. 3.5Ma) alluvial Neogene sediments exposed in the Aldan river valley at the Mammoth Mountain (Eastern Siberia) are unique, ancient, and poorly studied permafrost environments. So far, the structure of the indigenous bacterial community has remained unknown. Use of 16S metagenomic analysis with total DNA isolation using DNA Spin Kit for Soil (MO-Bio) and QIAamp DNA Stool Mini Kit (Qiagen) has revealed the major and minor bacterial lineages in the permafrost alluvium sediments. In sum, 61 Operational Taxonomic Units (OTUs) with 31,239 reads (Qiagen kit) and 15,404 reads (Mo-Bio kit) could be assigned to the known taxa. Only three phyla, Bacteroidetes, Proteobacteria and Firmicutes, comprised >5% of the OTUs abundance and accounted for 99% of the total reads. OTUs pertaining to the top families (Chitinophagaceae, Caulobacteraceae, Sphingomonadaceae, Bradyrhizobiaceae, Halomonadaceae) held >90% of reads. The abundance of Actinobacteria was less (0.7%), whereas members of other phyla (Deinococcus-Thermus, Cyanobacteria/Chloroplast, Fusobacteria, and Acidobacteria) constituted a minor fraction of reads. The bacterial community in the studied ancient alluvium differs from other permafrost sediments, mainly by predominance of Bacteroidetes (>52%). The diversity of this preserved bacterial community has the potential to cause effects unknown if prompted to thaw and spread with changing climate. Therefore, this study elicits further reason to study how reintroduction of these ancient bacteria could affect the surrounding ecosystem, including current bacterial species. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Isotopic paleoecology of Clovis mammoths from Arizona

    Science.gov (United States)

    Metcalfe, Jessica Z.; Longstaffe, Fred J.; Ballenger, Jesse A. M.; Vance Haynes, C., Jr.

    2011-11-01

    The causes of megafaunal extinctions in North America have been widely debated but remain poorly understood. Mammoths (Mammuthus spp.) in the American Southwest were hunted by Clovis people during a period of rapid climate change, just before the regional onset of Younger Dryas cooling and mammoth extirpation. Thus, these mammoths may provide key insights into late Pleistocene extinction processes. Here we reconstruct the seasonal diet and climatic conditions experienced by mammoths in the San Pedro Valley of Arizona, using the carbon (13C/12C) and oxygen (18O/16O) isotope compositions of tooth enamel. These records suggest that Clovis mammoths experienced a warm, dry climate with sufficient summer rainfall to support seasonal C4 plant growth. Monsoon intensity may have been reduced relative to the preceding time period, but there is no isotopic evidence for severe drought. However, it is possible that the "Clovis drought", inferred from stratigraphic evidence, occurred suddenly at the end of the animals' lives and thus was not recorded in the enamel isotopic compositions. Unlike mammoths that lived before the Last Glacial Maximum, Clovis mammoths regularly increased C4 grass consumption during summer, probably seeking seasonally green grasslands farther from the river valley. This predictable seasonal behavior may have made mammoths easier to locate by Clovis hunters. Furthermore, Clovis mammoths probably had no previous experience of such sudden climatic change as is believed to have occurred at the time of their extinction.

  2. Biologic Rhythms Derived from Siberian Mammoths Hairs

    Energy Technology Data Exchange (ETDEWEB)

    M Spilde; A Lanzirotti; C Qualls; G Phillips; A Ali; L Agenbroad; O Appenzeller

    2011-12-31

    Hair is preserved for millennia in permafrost; it enshrines a record of biologic rhythms and offers a glimpse at chronobiology as it was in extinct animals. Here we compare biologic rhythms gleaned from mammoth's hairs with those of modern human hair. Four mammoths' hairs came from varying locations in Siberia 4600 km, four time zones, apart ranging in age between 18,000 and 20,000 years before present. We used two contemporaneous human hairs for comparison. Power spectra derived from hydrogen isotope ratios along the length of the hairs gave insight into biologic rhythms, which were different in the mammoths depending on location and differed from humans. Hair growth for mammoths was {approx}31 cms/year and {approx}16 cms/year for humans. Recurrent annual rhythms of slow and fast growth varying from 3.4 weeks/cycles to 8.7 weeks/cycles for slow periods and 1.2 weeks/cycles to 2.2 weeks/cycles for fast periods were identified in mammoth's hairs. The mineral content of mammoth's hairs was measured by electron microprobe analysis (k-ratios), which showed no differences in sulfur amongst the mammoth hairs but significantly more iron then in human hair. The fractal nature of the data derived from the hairs became evident in Mandelbrot sets derived from hydrogen isotope ratios, mineral content and geographic location. Confocal microscopy and scanning electron microscopy showed varied degrees of preservation of the cuticle largely independent of age but not location of the specimens. X-ray fluorescence microprobe and fluorescence computed micro-tomography analyses allowed evaluation of metal distribution and visualization of hollow tubes in the mammoth's hairs. Seasonal variations in iron and copper content combined with spectral analyses gave insights into variation in food intake of the animals. Biologic rhythms gleaned from power spectral plots obtained by modern methods revealed life style and behavior of extinct mega-fauna.

  3. Biologic rhythms derived from Siberian mammoths' hairs.

    Directory of Open Access Journals (Sweden)

    Mike Spilde

    Full Text Available Hair is preserved for millennia in permafrost; it enshrines a record of biologic rhythms and offers a glimpse at chronobiology as it was in extinct animals. Here we compare biologic rhythms gleaned from mammoth's hairs with those of modern human hair. Four mammoths' hairs came from varying locations in Siberia 4600 km, four time zones, apart ranging in age between 18,000 and 20,000 years before present. We used two contemporaneous human hairs for comparison. Power spectra derived from hydrogen isotope ratios along the length of the hairs gave insight into biologic rhythms, which were different in the mammoths depending on location and differed from humans. Hair growth for mammoths was ∼31 cms/year and ∼16 cms/year for humans. Recurrent annual rhythms of slow and fast growth varying from 3.4 weeks/cycles to 8.7 weeks/cycles for slow periods and 1.2 weeks/cycles to 2.2 weeks/cycles for fast periods were identified in mammoth's hairs. The mineral content of mammoth's hairs was measured by electron microprobe analysis (k-ratios, which showed no differences in sulfur amongst the mammoth hairs but significantly more iron then in human hair. The fractal nature of the data derived from the hairs became evident in Mandelbrot sets derived from hydrogen isotope ratios, mineral content and geographic location. Confocal microscopy and scanning electron microscopy showed varied degrees of preservation of the cuticle largely independent of age but not location of the specimens. X-ray fluorescence microprobe and fluorescence computed micro-tomography analyses allowed evaluation of metal distribution and visualization of hollow tubes in the mammoth's hairs. Seasonal variations in iron and copper content combined with spectral analyses gave insights into variation in food intake of the animals. Biologic rhythms gleaned from power spectral plots obtained by modern methods revealed life style and behavior of extinct mega-fauna.

  4. Phosphorus mobilizing consortium Mammoth P™ enhances plant growth

    Science.gov (United States)

    Bell, Colin; Mancini, Lauren M.; Lee, Melanie N.; Conant, Richard T.; Wallenstein, Matthew D.

    2016-01-01

    Phosphorus (P) is a critical nutrient used to maximize plant growth and yield. Current agriculture management practices commonly experience low plant P use efficiency due to natural chemical sorption and transformations when P fertilizer is applied to soils. A perplexing challenge facing agriculture production is finding sustainable solutions to deliver P more efficiently to plants. Using prescribed applications of specific soil microbial assemblages to mobilize soil bound—P to improve crop nutrient uptake and productivity has rarely been employed. We investigated whether inoculation of soils with a bacterial consortium developed to mobilize soil P, named Mammoth PTM, could increase plant productivity. In turf, herbs, and fruits, the combination of conventional inorganic fertilizer combined with Mammoth PTM increased productivity up to twofold compared to the fertilizer treatments without the Mammoth PTM inoculant. Jalapeño plants were found to bloom more rapidly when treated with either Mammoth P. In wheat trials, we found that Mammoth PTM by itself was able to deliver yields equivalent to those achieved with conventional inorganic fertilizer applications and improved productivity more than another biostimulant product. Results from this study indicate the substantial potential of Mammoth PTM to enhance plant growth and crop productivity. PMID:27326379

  5. Groundwater quality in the Klamath Mountains, California

    Science.gov (United States)

    Bennett, George L.; Fram, Miranda S.

    2014-01-01

    Groundwater provides more than 40 percent of California’s drinking water. To protect this vital resource, the State of California created the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The Priority Basin Project of the GAMA Program provides a comprehensive assessment of the State’s groundwater quality and increases public access to groundwater-quality information. The Klamath Mountains constitute one of the study units being evaluated.

  6. Climate change, humans, and the extinction of the woolly mammoth.

    Directory of Open Access Journals (Sweden)

    David Nogués-Bravo

    2008-04-01

    Full Text Available Woolly mammoths inhabited Eurasia and North America from late Middle Pleistocene (300 ky BP [300,000 years before present], surviving through different climatic cycles until they vanished in the Holocene (3.6 ky BP. The debate about why the Late Quaternary extinctions occurred has centred upon environmental and human-induced effects, or a combination of both. However, testing these two hypotheses-climatic and anthropogenic-has been hampered by the difficulty of generating quantitative estimates of the relationship between the contraction of the mammoth's geographical range and each of the two hypotheses. We combined climate envelope models and a population model with explicit treatment of woolly mammoth-human interactions to measure the extent to which a combination of climate changes and increased human pressures might have led to the extinction of the species in Eurasia. Climate conditions for woolly mammoths were measured across different time periods: 126 ky BP, 42 ky BP, 30 ky BP, 21 ky BP, and 6 ky BP. We show that suitable climate conditions for the mammoth reduced drastically between the Late Pleistocene and the Holocene, and 90% of its geographical range disappeared between 42 ky BP and 6 ky BP, with the remaining suitable areas in the mid-Holocene being mainly restricted to Arctic Siberia, which is where the latest records of woolly mammoths in continental Asia have been found. Results of the population models also show that the collapse of the climatic niche of the mammoth caused a significant drop in their population size, making woolly mammoths more vulnerable to the increasing hunting pressure from human populations. The coincidence of the disappearance of climatically suitable areas for woolly mammoths and the increase in anthropogenic impacts in the Holocene, the coup de grâce, likely set the place and time for the extinction of the woolly mammoth.

  7. Soil efflux and total emission rates of magmatic CO2 at the horseshoe lake tree kill, mammoth mountain, California, 1995-1999

    Science.gov (United States)

    Gerlach, T.M.; Doukas, M.P.; McGee, K.A.; Kessler, R.

    2001-01-01

    We report the results of eight soil CO2 efflux surveys by the closed circulation chamber method at the Horseshoe Lake tree kill (HLTK) - the largest tree kill on Mammoth Mountain. The surveys were undertaken from 1995 to 1999 to constrain total HLTK CO2 emissions and to evaluate occasional efflux surveys as a surveillance tool for the tree kills. HLTK effluxes range from 1 to > 10,000 g m -2 day -1 (grams CO2 per square meter per day); they are not normally distributed. Station efflux rates can vary by 7-35% during the course of the 8- to 16-h surveys. Disturbance of the upper 2 cm of ground surface causes effluxes to almost double. Semivariograms of efflux spatial covariance fit exponential or spherical models; they lack nugget effects. Efflux contour maps and total CO2 emission rates based on exponential, spherical, and linear kriging models of survey data are nearly identical; similar results are also obtained with triangulation models, suggesting that the kriging models are not seriously distorted by the lack of normal efflux distributions. In addition, model estimates of total CO2 emission rates are relatively insensitive to the measurement precision of the efflux rates and to the efflux value used to separate magmatic from forest soil sources of CO2. Surveys since 1997 indicate that, contrary to earlier speculations, a termination of elevated CO2 emissions at the HLTK is unlikely anytime soon. The HLTK CO2 efflux anomaly fluctuated greatly in size and intensity throughout the 1995-1999 surveys but maintained a N-S elongation, presumably reflecting fault control of CO2 transport from depth. Total CO2 emission rates also fluctuated greatly, ranging from 46 to 136 t day-1 (metric tons CO2 per day) and averaging 93 t day-1. The large inter-survey variations are caused primarily by external (meteorological) processes operating on time scales of hours to days. The externally caused variations can mask significant changes occurring at depth; a striking example is

  8. Extreme insular dwarfism evolved in a mammoth.

    Science.gov (United States)

    Herridge, Victoria L; Lister, Adrian M

    2012-08-22

    The insular dwarfism seen in Pleistocene elephants has come to epitomize the island rule; yet our understanding of this phenomenon is hampered by poor taxonomy. For Mediterranean dwarf elephants, where the most extreme cases of insular dwarfism are observed, a key systematic question remains unresolved: are all taxa phyletic dwarfs of a single mainland species Palaeoloxodon antiquus (straight-tusked elephant), or are some referable to Mammuthus (mammoths)? Ancient DNA and geochronological evidence have been used to support a Mammuthus origin for the Cretan 'Palaeoloxodon' creticus, but these studies have been shown to be flawed. On the basis of existing collections and recent field discoveries, we present new, morphological evidence for the taxonomic status of 'P'. creticus, and show that it is indeed a mammoth, most probably derived from Early Pleistocene Mammuthus meridionalis or possibly Late Pliocene Mammuthus rumanus. We also show that Mammuthus creticus is smaller than other known insular dwarf mammoths, and is similar in size to the smallest dwarf Palaeoloxodon species from Sicily and Malta, making it the smallest mammoth species known to have existed. These findings indicate that extreme insular dwarfism has evolved to a similar degree independently in two elephant lineages.

  9. The angus mammoth: A decades-old scientific controversy resolved

    Science.gov (United States)

    Holen, S.R.; May, D.W.; Mahan, S.A.

    2011-01-01

    The Angus Mammoth site in south-central Nebraska has been controversial since its discovery in 1931 when a fluted artifact was reported to be associated with the mammoth. For nearly 80 years it has not been known if Angus was a paleontol??gica! site predating the human occupation of North America as has been asserted by some geologists and paleontologists, or an archaeological site dating to the late Pleistocene as has been advocated by some archaeologists. Geomorphic study and luminescence dating have finally solved the problem after nearly eight decades. Although microwear and technological analyses have determined that the Angus biface is an authentic artifact, TL and IRSL dates have shown that the matrix above the mammoth is much too old for a mammoth/fluted point association to be valid. Copyright ??2011 by the Society for American Archaeology.

  10. Elephantid Genomes Reveal the Molecular Bases of Woolly Mammoth Adaptations to the Arctic

    Directory of Open Access Journals (Sweden)

    Vincent J. Lynch

    2015-07-01

    Full Text Available Woolly mammoths and living elephants are characterized by major phenotypic differences that have allowed them to live in very different environments. To identify the genetic changes that underlie the suite of woolly mammoth adaptations to extreme cold, we sequenced the nuclear genome from three Asian elephants and two woolly mammoths, and we identified and functionally annotated genetic changes unique to woolly mammoths. We found that genes with mammoth-specific amino acid changes are enriched in functions related to circadian biology, skin and hair development and physiology, lipid metabolism, adipose development and physiology, and temperature sensation. Finally, we resurrected and functionally tested the mammoth and ancestral elephant TRPV3 gene, which encodes a temperature-sensitive transient receptor potential (thermoTRP channel involved in thermal sensation and hair growth, and we show that a single mammoth-specific amino acid substitution in an otherwise highly conserved region of the TRPV3 channel strongly affects its temperature sensitivity.

  11. Large-scale Homogenization of Bulk Materials in Mammoth Silos

    NARCIS (Netherlands)

    Schott, D.L.

    2004-01-01

    This doctoral thesis concerns the large-scale homogenization of bulk materials in mammoth silos. The objective of this research was to determine the best stacking and reclaiming method for homogenization in mammoth silos. For this purpose a simulation program was developed to estimate the

  12. Three-dimensional electrical resistivity model of the hydrothermal system in Long Valley Caldera, California, from magnetotellurics

    Science.gov (United States)

    Peacock, Jared R.; Mangan, Margaret T.; McPhee, Darcy K.; Wannamaker, Phil E.

    2016-01-01

    Though shallow flow of hydrothermal fluids in Long Valley Caldera, California, has been well studied, neither the hydrothermal source reservoir nor heat source has been well characterized. Here a grid of magnetotelluric data were collected around the Long Valley volcanic system and modeled in 3-D. The preferred electrical resistivity model suggests that the source reservoir is a narrow east-west elongated body 4 km below the west moat. The heat source could be a zone of 2–5% partial melt 8 km below Deer Mountain. Additionally, a collection of hypersaline fluids, not connected to the shallow hydrothermal system, is found 3 km below the medial graben, which could originate from a zone of 5–10% partial melt 8 km below the south moat. Below Mammoth Mountain is a 3 km thick isolated body containing fluids and gases originating from an 8 km deep zone of 5–10% basaltic partial melt.

  13. Cloning the mammoth: a complicated task or just a dream?

    Science.gov (United States)

    Loi, Pasqualino; Saragusty, Joseph; Ptak, Grazyna

    2014-01-01

    Recently there has been growing interest in applying the most advanced embryological tools, particularly cloning, to bring extinct species back to life, with a particular focus on the woolly mammoth (Mammuthus primigenius). Mammoth's bodies found in the permafrost are relatively well preserved, with identifiable nuclei in their tissues. The purpose of this chapter is to review the literature published on the topic, and to present the strategies potentially suitable for a mammoth cloning project, with a frank assessment of their feasibility and the ethical issues involved.

  14. The evolutionary and phylogeographic history of woolly mammoths: a comprehensive mitogenomic analysis

    Science.gov (United States)

    Chang, Dan; Knapp, Michael; Enk, Jacob; Lippold, Sebastian; Kircher, Martin; Lister, Adrian; MacPhee, Ross D. E.; Widga, Christopher; Czechowski, Paul; Sommer, Robert; Hodges, Emily; Stümpel, Nikolaus; Barnes, Ian; Dalén, Love; Derevianko, Anatoly; Germonpré, Mietje; Hillebrand-Voiculescu, Alexandra; Constantin, Silviu; Kuznetsova, Tatyana; Mol, Dick; Rathgeber, Thomas; Rosendahl, Wilfried; Tikhonov, Alexey N.; Willerslev, Eske; Hannon, Greg; Lalueza-Fox, Carles; Joger, Ulrich; Poinar, Hendrik; Hofreiter, Michael; Shapiro, Beth

    2017-01-01

    Near the end of the Pleistocene epoch, populations of the woolly mammoth (Mammuthus primigenius) were distributed across parts of three continents, from western Europe and northern Asia through Beringia to the Atlantic seaboard of North America. Nonetheless, questions about the connectivity and temporal continuity of mammoth populations and species remain unanswered. We use a combination of targeted enrichment and high-throughput sequencing to assemble and interpret a data set of 143 mammoth mitochondrial genomes, sampled from fossils recovered from across their Holarctic range. Our dataset includes 54 previously unpublished mitochondrial genomes and significantly increases the coverage of the Eurasian range of the species. The resulting global phylogeny confirms that the Late Pleistocene mammoth population comprised three distinct mitochondrial lineages that began to diverge ~1.0–2.0 million years ago (Ma). We also find that mammoth mitochondrial lineages were strongly geographically partitioned throughout the Pleistocene. In combination, our genetic results and the pattern of morphological variation in time and space suggest that male-mediated gene flow, rather than large-scale dispersals, was important in the Pleistocene evolutionary history of mammoths. PMID:28327635

  15. Anaerobic Cultures from Preserved Tissues of Baby Mammoth

    Science.gov (United States)

    Pikuta, Elena V.; Hoover, Richard B.; Fisher, Daniel

    2011-01-01

    Microbiological analysis of several cold-preserved tissue samples from the Siberian baby mammoth known as Lyuba revealed a number of culturable bacterial strains that were grown on anaerobic media at 4 C. Lactic acid produced by LAB (lactic acid bacteria) group, usually by members of the genera Carnobacterium and Lactosphera, appears to be a wonderful preservative that prevents other bacteria from over-dominating a system. Permafrost and lactic acid preserved the body of this one-month old baby mammoth and kept it in exceptionally good condition, resulting in this mammoth being the most complete such specimen ever recovered. The diversity of novel anaerobic isolates was expressed on morphological, physiological and phylogenetic levels. Here we discuss the specifics of the isolation of new strains, differentiation from trivial contamination, and preliminary results for the characterization of cultures.

  16. BLANCO MOUNTAIN AND BLACK CANYON ROADLESS AREAS, CALIFORNIA.

    Science.gov (United States)

    Diggles, Michael F.; Rains, Richard L.

    1984-01-01

    The mineral survey of the Blanco Mountain and Black Canyon Roadless Areas, California indicated that areas of probable and substantiated mineral-resource potential exist only in the Black Canyon Roadless Area. Gold with moderate amounts of lead, silver, zinc, and tungsten, occurs in vein deposits and in tactite. The nature of the geological terrain indicates little likelihood for the occurrence of energy resources in the roadless areas. Detailed geologic mapping might better define the extent of gold mineralization. Detailed stream-sediment sampling and analysis of heavy-mineral concentrations could better define tungsten resource potential.

  17. On the importance of stratigraphic control for vertebrate fossil sites in Channel Islands National Park, California, USA: Examples from new Mammuthus finds on San Miguel Island

    Science.gov (United States)

    Pigati, Jeffery S.; Muhs, Daniel R.; McGeehin, John P.

    2016-01-01

    Quaternary vertebrate fossils, most notably mammoth remains, are relatively common on the northern Channel Islands of California. Well-preserved cranial, dental, and appendicular elements of Mammuthus exilis (pygmy mammoth) and Mammuthus columbi (Columbian mammoth) have been recovered from hundreds of localities on the islands during the past half-century or more. Despite this paleontological wealth, the geologic context of the fossils is described in the published literature only briefly or not at all, which has hampered the interpretation of associated 14C ages and reconstruction of past environmental conditions. We recently discovered a partial tusk, several large bones, and a tooth enamel plate (all likely mammoth) at two sites on the northwest flank of San Miguel Island, California. At both localities, we documented the stratigraphic context of the fossils, described the host sediments in detail, and collected charcoal and terrestrial gastropod shells for radiocarbon dating. The resulting 14C ages indicate that the mammoths were present on San Miguel Island between ∼20 and 17 ka as well as between ∼14 and 13 ka (thousands of calibrated 14C years before present), similar to other mammoth sites on San Miguel, Santa Cruz, and Santa Rosa Islands. In addition to documenting the geologic context and ages of the fossils, we present a series of protocols for documenting and reporting geologic and stratigraphic information at fossil sites on the California Channel Islands in general, and in Channel Islands National Park in particular, so that pertinent information is collected prior to excavation of vertebrate materials, thus maximizing their scientific value.

  18. The Mammoth Cave system, Kentucky, USA; El sistema de la Mammoth Cave, Kentucky, EE.UU

    Energy Technology Data Exchange (ETDEWEB)

    Palmer, A. N.

    2016-07-01

    Mammoth Cave is the main attraction of Mammoth Cave National Park. For several decades it has been the longest known cave in the world and currently contains 652 km in 2016 of surveyed passages. It is located in the heart of an extensive karst plateau, in which the stratal dip averages only one degree. The cave is part of a drainage basin of more than 200 km{sup 2}. The cave has been known to local inhabitants for several millennia and contains a rich trove of archaeological and historical artifacts. It contains many speleo biota including several rare and endangered species and has been designated a World Heritage Site and an International Biosphere Reserve (UNESCO). Its many passage levels and sediments contain a record of the fluvial history of most of south-eastern North America. (Author)

  19. Raman spectroscopy of efflorescent sulfate salts from Iron Mountain Mine Superfund Site, California

    Science.gov (United States)

    Sobron, Pablo; Alpers, Charles N.

    2013-01-01

    The Iron Mountain Mine Superfund Site near Redding, California, is a massive sulfide ore deposit that was mined for iron, silver, gold, copper, zinc, and pyrite intermittently for nearly 100 years. As a result, both water and air reached the sulfide deposits deep within the mountain, producing acid mine drainage consisting of sulfuric acid and heavy metals from the ore. Particularly, the drainage water from the Richmond Mine at Iron Mountain is among the most acidic waters naturally found on Earth. The mineralogy at Iron Mountain can serve as a proxy for understanding sulfate formation on Mars. Selected sulfate efflorescent salts from Iron Mountain, formed from extremely acidic waters via drainage from sulfide mining, have been characterized by means of Raman spectroscopy. Gypsum, ferricopiapite, copiapite, melanterite, coquimbite, and voltaite are found within the samples. This work has implications for Mars mineralogical and geochemical investigations as well as for terrestrial environmental investigations related to acid mine drainage contamination.

  20. Raman spectroscopy of efflorescent sulfate salts from Iron Mountain Mine Superfund Site, California.

    Science.gov (United States)

    Sobron, Pablo; Alpers, Charles N

    2013-03-01

    The Iron Mountain Mine Superfund Site near Redding, California, is a massive sulfide ore deposit that was mined for iron, silver, gold, copper, zinc, and pyrite intermittently for nearly 100 years. As a result, both water and air reached the sulfide deposits deep within the mountain, producing acid mine drainage consisting of sulfuric acid and heavy metals from the ore. Particularly, the drainage water from the Richmond Mine at Iron Mountain is among the most acidic waters naturally found on Earth. The mineralogy at Iron Mountain can serve as a proxy for understanding sulfate formation on Mars. Selected sulfate efflorescent salts from Iron Mountain, formed from extremely acidic waters via drainage from sulfide mining, have been characterized by means of Raman spectroscopy. Gypsum, ferricopiapite, copiapite, melanterite, coquimbite, and voltaite are found within the samples. This work has implications for Mars mineralogical and geochemical investigations as well as for terrestrial environmental investigations related to acid mine drainage contamination.

  1. Three-Dimensional P-wave Velocity Structure Beneath Long Valley Caldera, California, Using Local-Regional Double-Difference Tomography

    Science.gov (United States)

    Menendez, H. M.; Thurber, C. H.

    2011-12-01

    Eastern California's Long Valley Caldera (LVC) and the Mono-Inyo Crater volcanic systems have been active for the past ~3.6 million years. Long Valley is known to produce very large silicic eruptions, the last of which resulted in the formation of a 17 km by 32 km wide, east-west trending caldera. Relatively recent unrest began between 1978-1980 with five ML ≥ 5.7 non-double-couple (NDC) earthquakes and associated aftershock swarms. Similar shallow seismic swarms have continued south of the resurgent dome and beneath Mammoth Mountain, surrounding sites of increased CO2 gas emissions. Nearly two decades of increased volcanic activity led to the 1997 installation of a temporary three-component array of 69 seismometers. This network, deployed by the Durham University, the USGS, and Duke University, recorded over 4,000 high-frequency events from May to September. A local tomographic inversion of 283 events surrounding Mammoth Mountain yielded a velocity structure with low Vp and Vp/Vs anomalies at 2-3 km bsl beneath the resurgent dome and Casa Diablo hot springs. These anomalies were interpreted to be CO2 reservoirs (Foulger et al., 2003). Several teleseismic and regional tomography studies have also imaged low Vp anomalies beneath the caldera at ~5-15 km depth, interpreted to be the underlying magma reservoir (Dawson et al., 1990; Weiland et al., 1995; Thurber et al., 2009). This study aims to improve the resolution of the LVC regional velocity model by performing tomographic inversions using the local events from 1997 in conjunction with regional events recorded by the Northern California Seismic Network (NCSN) between 1980 and 2010 and available refraction data. Initial tomographic inversions reveal a low velocity zone at ~2 to 6 km depth beneath the caldera. This structure may simply represent the caldera fill. Further iterations and the incorporation of teleseismic data may better resolve the overall shape and size of the underlying magma reservoir.

  2. Full-Wave Ambient Noise Tomography of the Long Valley Volcanic Region (California)

    Science.gov (United States)

    Flinders, A. F.; Shelly, D. R.; Dawson, P. B.; Hill, D. P.; Shen, Y.

    2017-12-01

    In the late 1970s, and throughout the 1990s, Long Valley Caldera (California) experienced intense periods of unrest characterized by uplift of the resurgent dome, earthquake swarms, and CO2 emissions around Mammoth Mountain. While modeling of the uplift and gravity changes support the possibility of new magmatic intrusions beneath the caldera, geologic interpretations conclude that the magmatic system underlying the caldera is moribund. Geophysical studies yield diverse versions of a sizable but poorly resolved low-velocity zone at depth (> 6km), yet whether this zone is indicative of a significant volume of crystal mush, smaller isolated pockets of partial melt, or magmatic fluids, is inconclusive. The nature of this low-velocity zone, and the state of volcano's magmatic system, carry important implications for the significance of resurgent-dome inflation and the nature of associated hazards. To better characterize this low-velocity zone we present preliminary results from a 3D full-waveform ambient-noise seismic tomography model derived from the past 25 years of vertical component broadband and short-period seismic data. This new study uses fully numerical solutions of the wave equation to account for the complex wave propagation in a heterogeneous, 3D earth model, including wave interaction with topography. The method ensures that wave propagation is modeled accurately in 3D, enabling the full use of seismic records. By using empirical Green's functions, derived from ambient noise and modeled as Rayleigh surface waves, we are able to extend model resolution to depths beyond the limits of previous local earthquake studies. The model encompasses not only the Long Valley Caldera, but the entire Long Valley Volcanic Region, including Mammoth Mountain and the Mono Crater/Inyo Domes volcanic chain.

  3. Fire effects on the Point Reyes Mountain Beaver at Point Reyes National Seashore, California

    Science.gov (United States)

    Fellers, Gary M.; Pratt, David; Griffin, Jennifer L.

    2004-01-01

    In October 1995, a wildlands fire burned 5,000 ha on the Point Reyes peninsula, California, USA. In most of the nonforested areas, the fire effectively cleared the ground of litter and vegetation and revealed thousands of Point Reyes mountain beaver (Aplodontia rufa phaea) burrow openings. In the first 6 months after the fire, we surveyed burned coastal scrub and riparian habitat to (1) count the number of burrow openings that existed at the time of the fire, and (2) evaluate whether signs of post-fire mountain beaver activity were evident. We estimated that only 0.4–1.7% of mountain beavers within the burn area survived the fire and immediate post-fire period. We monitored mountain beaver activity for 5 years at 8 sites where mountain beavers survived, and found little or no recovery. We estimate that the mountain beaver population will take 15–20 years post-fire to recover.

  4. Paleomagnetic contributions to the Klamath Mountains terrane puzzle-a new piece from the Ironside Mountain batholith, northern California

    Science.gov (United States)

    Mankinen, Edward A.; Gromme, C. Sherman; Irwin, W. Porter

    2013-01-01

    We obtained paleomagnetic samples from six sites within the Middle Jurassic Ironside Mountain batholith (~170 Ma), which constitutes the structurally lowest part of the Western Hayfork terrane, in the Klamath Mountains province of northern California and southern Oregon. Structural attitudes measured in the coeval Hayfork Bally Meta-andesite were used to correct paleomagnetic data from the batholith. Comparing the corrected paleomagnetic pole with a 170-Ma reference pole for North America indicates 73.5° ± 10.6° of clockwise rotation relative to the craton. Nearly one-half of this rotation may have occurred before the terrane accreted to the composite Klamath province at ~168 Ma. No latitudinal displacement of the batholith was detected.

  5. The Mammoth Cave system, Kentucky, USA

    International Nuclear Information System (INIS)

    Palmer, A. N.

    2016-01-01

    Mammoth Cave is the main attraction of Mammoth Cave National Park. For several decades it has been the longest known cave in the world and currently contains 652 km in 2016 of surveyed passages. It is located in the heart of an extensive karst plateau, in which the stratal dip averages only one degree. The cave is part of a drainage basin of more than 200 km 2 . The cave has been known to local inhabitants for several millennia and contains a rich trove of archaeological and historical artifacts. It contains many speleo biota including several rare and endangered species and has been designated a World Heritage Site and an International Biosphere Reserve (UNESCO). Its many passage levels and sediments contain a record of the fluvial history of most of south-eastern North America. (Author)

  6. Collection of radiocarbon dates on the mammoths ( Mammuthus primigenius) and other genera of Wrangel Island, northeast Siberia, Russia

    Science.gov (United States)

    Vartanyan, Sergey L.; Arslanov, Khikmat A.; Karhu, Juha A.; Possnert, Göran; Sulerzhitsky, Leopold D.

    2008-07-01

    We present and discuss a full list of radiocarbon dates for woolly mammoth and other species of the Mammoth fauna available from Wrangel Island, northeast Siberia, Russia. Most of the radiocarbon dates are published here for the first time. Of the124 radiocarbon dates on mammoth bone, 106 fall between 3700 and 9000 yr ago. We believe these dates bracket the period of mammoth isolation on Wrangel Island and their ultimate extinction, which we attribute to natural causes. The absence of dates between 9-12 ka probably indicates a period when mammoths were absent from Wrangel Island. Long bone dimensions of Holocene mammoths from Wrangel Island indicate that these animals were comparable in size to those on the mainland; although they were not large animals, neither can they be classified as dwarfs. Occurrence of mammoth Holocene refugia on the mainland is suggested. Based on other species of the Mammoth fauna that have also been radiocarbon on Wrangel Island, including horse, bison, musk ox and woolly rhinoceros, it appears that the mammoth was the only species of that fauna that inhabited Wrangel Island in the mid-Holocene.

  7. Geologic quadrangle maps of the United States: geology of the Casa Diablo Mountain quadrangle, California

    Science.gov (United States)

    Rinehart, C. Dean; Ross, Donald Clarence

    1957-01-01

    The Casa Diablo Mountain quadrangle was mapped in the summers of 1952 and 1953 by the U.S. Geological Survey in cooperation with the California State Division of Mines as part of a study of potential tungsten-bearing areas.

  8. Transient Simulation of the Multi-SERTTA Experiment with MAMMOTH

    Energy Technology Data Exchange (ETDEWEB)

    Ortensi, Javier [Idaho National Lab. (INL), Idaho Falls, ID (United States); Baker, Benjamin [Idaho National Lab. (INL), Idaho Falls, ID (United States); Wang, Yaqi [Idaho National Lab. (INL), Idaho Falls, ID (United States); Schunert, Sebastian [Idaho National Lab. (INL), Idaho Falls, ID (United States); deHart, Mark [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2017-07-11

    This work details the MAMMOTH reactor physics simulations of the Static Environment Rodlet Transient Test Apparatus (SERTTA) conducted at Idaho National Laboratory in FY-2017. TREAT static-environment experiment vehicles are being developed to enable transient testing of Pressurized Water Reactor (PWR) type fuel specimens, including fuel concepts with enhanced accident tolerance (Accident Tolerant Fuels, ATF). The MAMMOTH simulations include point reactor kinetics as well as spatial dynamics for a temperature-limited transient. The strongly coupled multi-physics solutions of the neutron flux and temperature fields are second order accurate both in the spatial and temporal domains. MAMMOTH produces pellet stack powers that are within 1.5% of the Monte Carlo reference solutions. Some discrepancies between the MCNP model used in the design of the flux collars and the Serpent/MAMMOTH models lead to higher power and energy deposition values in Multi-SERTTA unit 1. The TREAT core results compare well with the safety case computed with point reactor kinetics in RELAP5-3D. The reactor period is 44 msec, which corresponds to a reactivity insertion of 2.685% delta k/k$. The peak core power in the spatial dynamics simulation is 431 MW, which the point kinetics model over-predicts by 12%. The pulse width at half the maximum power is 0.177 sec. Subtle transient effects are apparent at the beginning insertion in the experimental samples due to the control rod removal. Additional difference due to transient effects are observed in the sample powers and enthalpy. The time dependence of the power coupling factor (PCF) is calculated for the various fuel stacks of the Multi-SERTTA vehicle. Sample temperatures in excess of 3100 K, the melting point UO$_2$, are computed with the adiabatic heat transfer model. The planned shaped-transient might introduce additional effects that cannot be predicted with PRK models. Future modeling will be focused on the shaped-transient by improving the

  9. Transient Simulation of the Multi-SERTTA Experiment with MAMMOTH

    International Nuclear Information System (INIS)

    Ortensi, Javier; Baker, Benjamin; Wang, Yaqi; Schunert, Sebastian; DeHart, Mark

    2017-01-01

    This work details the MAMMOTH reactor physics simulations of the Static Environment Rodlet Transient Test Apparatus (SERTTA) conducted at Idaho National Laboratory in FY-2017. TREAT static-environment experiment vehicles are being developed to enable transient testing of Pressurized Water Reactor (PWR) type fuel specimens, including fuel concepts with enhanced accident tolerance (Accident Tolerant Fuels, ATF). The MAMMOTH simulations include point reactor kinetics as well as spatial dynamics for a temperature-limited transient. The strongly coupled multi-physics solutions of the neutron flux and temperature fields are second order accurate both in the spatial and temporal domains. MAMMOTH produces pellet stack powers that are within 1.5% of the Monte Carlo reference solutions. Some discrepancies between the MCNP model used in the design of the flux collars and the Serpent/MAMMOTH models lead to higher power and energy deposition values in Multi-SERTTA unit 1. The TREAT core results compare well with the safety case computed with point reactor kinetics in RELAP5-3D. The reactor period is 44 msec, which corresponds to a reactivity insertion of 2.685% delta k/k$. The peak core power in the spatial dynamics simulation is 431 MW, which the point kinetics model over-predicts by 12%. The pulse width at half the maximum power is 0.177 sec. Subtle transient effects are apparent at the beginning insertion in the experimental samples due to the control rod removal. Additional difference due to transient effects are observed in the sample powers and enthalpy. The time dependence of the power coupling factor (PCF) is calculated for the various fuel stacks of the Multi-SERTTA vehicle. Sample temperatures in excess of 3100 K, the melting point UO$ 2 $, are computed with the adiabatic heat transfer model. The planned shaped-transient might introduce additional effects that cannot be predicted with PRK models. Future modeling will be focused on the shaped-transient by improving the

  10. 78 FR 69363 - Lake Tahoe Basin Management Unit, California, Heavenly Mountain Resort Epic Discovery Project

    Science.gov (United States)

    2013-11-19

    ... DEPARTMENT OF AGRICULTURE Forest Service Lake Tahoe Basin Management Unit, California, Heavenly Mountain Resort Epic Discovery Project AGENCY: Lake Tahoe Basin Management Unit, Forest Service, USDA...: The Epic Discovery Project is intended to enhance summer activities in response to the USDA Forest...

  11. Development of State Interindustry Models for Rocky Mountain Region and California

    Energy Technology Data Exchange (ETDEWEB)

    Sathaye, Jayant A.; Kunin, Leonard

    1976-02-01

    Interindustry tables have been developed for the eight Rocky Mountain States and California. These tables are based on the 367-order 1967 national interindustry table. The national matrix was expanded to 404 sectors by disaggregating the seven minerals industries to 44 industries. The state tables can be used for energy and other resource analysis. Regional impacts of alternate development strategies can be evaluated with their use. A general computer program has been developed to facilitate construction of state interindustry tables.

  12. Complete mitochondrial genome and phylogeny of Pleistocene mammoth Mammuthus primigenius.

    Directory of Open Access Journals (Sweden)

    Evgeny I Rogaev

    2006-03-01

    Full Text Available Phylogenetic relationships between the extinct woolly mammoth (Mammuthus primigenius, and the Asian (Elephas maximus and African savanna (Loxodonta africana elephants remain unresolved. Here, we report the sequence of the complete mitochondrial genome (16,842 base pairs of a woolly mammoth extracted from permafrost-preserved remains from the Pleistocene epoch--the oldest mitochondrial genome sequence determined to date. We demonstrate that well-preserved mitochondrial genome fragments, as long as approximately 1,600-1700 base pairs, can be retrieved from pre-Holocene remains of an extinct species. Phylogenetic reconstruction of the Elephantinae clade suggests that M. primigenius and E. maximus are sister species that diverged soon after their common ancestor split from the L. africana lineage. Low nucleotide diversity found between independently determined mitochondrial genomic sequences of woolly mammoths separated geographically and in time suggests that north-eastern Siberia was occupied by a relatively homogeneous population of M. primigenius throughout the late Pleistocene.

  13. Complete genomes reveal signatures of demographic and genetic declines in the woolly mammoth

    Science.gov (United States)

    Palkopoulou, Eleftheria; Mallick, Swapan; Skoglund, Pontus; Enk, Jacob; Rohland, Nadin; Li, Heng; Omrak, Ayça; Vartanyan, Sergey; Poinar, Hendrik; Götherström, Anders; Reich, David; Dalén, Love

    2015-01-01

    Summary The processes leading up to species extinctions are typically characterized by prolonged declines in population size and geographic distribution, followed by a phase in which populations are very small and may be subject to intrinsic threats, including loss of genetic diversity and inbreeding [1]. However, whether such genetic factors have had an impact on species prior to their extinction is unclear [2, 3]; examining this would require a detailed reconstruction of a species’ demographic history as well as changes in genome-wide diversity leading up to its extinction. Here, we present high-quality complete genome sequences from two woolly mammoths (Mammuthus primigenius). The first mammoth was sequenced at 17.1-fold coverage, and dates to ~4,300 years before present, constituting one of the last surviving individuals on Wrangel Island. The second mammoth, sequenced at 11.2-fold coverage, was obtained from a ~44,800 year old specimen from the Late Pleistocene population in northeastern Siberia. The demographic trajectories inferred from the two genomes are qualitatively similar and reveal a population bottleneck during the Middle or Early Pleistocene, and a more recent severe decline in the ancestors of the Wrangel mammoth at the end of the last glaciation. A comparison of the two genomes shows that the Wrangel mammoth has a 20% reduction in heterozygosity as well as a 28-fold increase in the fraction of the genome that is comprised of runs of homozygosity. We conclude that the population on Wrangel Island, which was the last surviving woolly mammoth population, was subject to reduced genetic diversity shortly before it became extinct. PMID:25913407

  14. Intraspecific phylogenetic analysis of Siberian woolly mammoths using complete mitochondrial genomes

    DEFF Research Database (Denmark)

    Gilbert, M Thomas P; Drautz, Daniela I; Lesk, Arthur M

    2008-01-01

    We report five new complete mitochondrial DNA (mtDNA) genomes of Siberian woolly mammoth (Mammuthus primigenius), sequenced with up to 73-fold coverage from DNA extracted from hair shaft material. Three of the sequences present the first complete mtDNA genomes of mammoth clade II. Analysis...... to indicate any important functional difference between genomes belonging to the two clades, suggesting that the loss of clade II more likely is due to genetic drift than a selective sweep....

  15. Preliminary geologic map of the Black Mountain area northeast of Victorville, San Bernardino County, California

    Science.gov (United States)

    Stone, Paul

    2006-01-01

    The Black Mountain area is in the Mojave Desert about 20 km northeast of Victorville, California. The geology of this area is of interest primarily for its excellent exposures of the early Mesozoic Fairview Valley Formation, a sequence of weakly metamorphosed sedimentary rocks including a thick, commercially important unit of limestone conglomerate that has been mined for cement at Black Mountain Quarry for several decades. Recent geochronologic work has shown that the Fairview Valley Formation is probably of Early Jurassic age. This preliminary geologic map of the Black Mountain area depicts the stratigraphic and structural relations of the Fairview Valley Formation and the associated rocks, most notably the overlying Sidewinder Volcanics of Early(?), Middle, and Late(?) Jurassic age. The map is based on new field studies by the author designed to clarify details of the stratigraphy and structure unresolved by previous investigations. The map is considered preliminary because the ages of some geologic units critical for a satisfactory understanding of the stratigraphic and structural framework remain unknown. The map area also includes a segment of the Helendale Fault, one of several faults of known or inferred late Cenozoic right-lateral displacement that make up the Eastern California Shear Zone. The fault is marked by aligned northeast-facing scarps in Pleistocene or older alluvial deposits and the underlying bedrock units. Relations in the map area suggest that right-lateral displacement on the Helendale Fault probably does not exceed 2 km, a conclusion compatible with previous estimates of displacement on this fault based on relations both within and outside the Black Mountain area.

  16. Fumio Matsumura--accomplishments at the University of California, Davis, and in the Sierra Nevada Mountains.

    Science.gov (United States)

    Seiber, James N

    2015-05-01

    Fumio Matsumura joined the University of California, Davis, faculty in 1987 where he served as founding director of the Center for Environmental Health Sciences, associate director of the U.C. Toxic Substances Research and Teaching Program, and chair of the Department of Environmental Toxicology. He was an active affiliate with the NIEHS-funded Superfund Basic Research Program and the NIH Comprehensive Cancer Center. He was in many instances a primary driver or otherwise involved in most activities related to environmental toxicology at Davis, including the education of students in environmental biochemistry and ecotoxicology. A significant part of his broad research program was focused on the long range transport of chemicals such as toxaphene, PCBs and related contaminants used or released in California to the Sierra Nevada mountains, downwind of the urban and agricultural regions of the state. He hypothesized that these chemical residues adversely affected fish and wildlife, and particularly the declining populations of amphibians in Sierra Nevada streams and lakes. Fumio and his students and colleagues found residues of toxaphene and PCBs at higher elevations, an apparent result of atmospheric drift and deposition in the mountains. Fumio and his wife Teruko had personal interests in, and a love of the mountains, as avid skiers, hikers, and outdoor enthusiasts. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. Early Tertiary magmatism and probable Mesozoic fabrics in the Black Mountains, Death Valley, California

    Science.gov (United States)

    Miller, Martin G.; Friedman, Richard M.

    1999-01-01

    We report two early Tertiary U-Pb zircon ages for pegmatite from the Black Mountains of Death Valley, California. These ages, 54.7 ± 0.6 Ma and 56 ± 3 Ma, are unique for much of southeastern California. The samples belong to a pegmatite suite that occupies part of the footwall of the Badwater turtleback, a late Tertiary extensional feature; similar but undated pegmatite intrudes the footwalls of the Copper Canyon and Mormon Point turtlebacks farther south. The pegmatite suite demonstrates that fabric development on the turtlebacks was at least a two-stage process. Fabrics cut by these pegmatites likely formed during the Mesozoic, whereas those that involve them formed during late Tertiary extension.

  18. Anatomy, death, and preservation of a woolly mammoth (Mammuthus primigenius) calf, Yamal Peninsula, northwest Siberia

    NARCIS (Netherlands)

    Fisher, Daniel C.; Tikhonov, Alexei N.; Kosintsev, Pavel A.; Rountrey, Adam N.; Buigues, Bernard; van der Plicht, Johannes

    2012-01-01

    A well-preserved woolly mammoth calf found in northwest Siberia offers unique opportunities to investigate mammoth anatomy, behavior, life history and taphonomy. Analysis of the fluvial setting where the specimen was found suggests it was derived from eroding bluffs during ice-out flooding in June

  19. Palaeo-environmental and dietary analysis of intestinal contents of a mammoth calf (Yamal Peninsula, northwest Siberia)

    Science.gov (United States)

    van Geel, Bas; Fisher, Daniel C.; Rountrey, Adam N.; van Arkel, Jan; Duivenvoorden, Joost F.; Nieman, Aline M.; van Reenen, Guido B. A.; Tikhonov, Alexei N.; Buigues, Bernard; Gravendeel, Barbara

    2011-12-01

    Intestinal samples from the one-month-old Siberian mammoth calf 'Lyuba' were studied using light microscopy and ancient DNA to reconstruct its palaeo-environment and diet. The palynological record indicates a 'mammoth steppe'. At least some pollen of arboreal taxa was reworked, and thus the presence of trees on the landscape is uncertain. In addition to visual comparison of 11 microfossil spectra, a PCA analysis contributed to diet reconstruction. This yielded two clusters: one of samples from the small intestine and the other of large-intestine samples, indicating compositional differences in food remains along the intestinal tract, possibly reflecting different episodes of ingestion. Based on observed morphological damage we conclude that the cyperaceous plant remains and some remains of dwarf willows were originally eaten by a mature mammoth, most likely Lyuba's mother. The mammoth calf probably unintentionally swallowed well-preserved mosses and mineral particles while eating fecal material deposited on a soil surface covered with mosses. Coprophagy may have been a common habit for mammoths, and we therefore propose that fecal material should not be used to infer season of death of mammoths. DNA sequences of trnL and rbcL genes amplified from ancient DNA extracted from intestinal samples confirmed and supplemented plant identifications based on microfossils and macro-remains. Results from different extraction methods and barcoding markers complemented each other and show the value of longer protocols in addition to fast and commercially available extraction kits.

  20. Mammoth and Elephant Phylogenetic Relationships: Mammut Americanum, the Missing Outgroup

    Directory of Open Access Journals (Sweden)

    Ludovic Orlando

    2007-01-01

    Full Text Available At the morphological level, the woolly mammoth has most often been considered as the sister-species of Asian elephants, but at the DNA level, different studies have found support for proximity with African elephants. Recent reports have increased the available sequence data and apparently solved the discrepancy, finding mammoths to be most closely related to Asian elephants. However, we demonstrate here that the three competing topologies have similar likelihood, bayesian and parsimony supports. The analysis further suggests the inadequacy of using Sirenia or Hyracoidea as outgroups. We therefore argue that orthologous sequences from the extinct American mastodon will be required to defi nitively solve this long-standing question.

  1. Feline infectious peritonitis in a mountain lion (Puma concolor), California, USA.

    Science.gov (United States)

    Stephenson, Nicole; Swift, Pamela; Moeller, Robert B; Worth, S Joy; Foley, Janet

    2013-04-01

    Feline infectious peritonitis (FIP) is a fatal immune-mediated vasculitis of felids caused by a mutant form of a common feline enteric virus, feline enteric coronavirus. The virus can attack many organ systems and causes a broad range of signs, commonly including weight loss and fever. Regardless of presentation, FIP is ultimately fatal and often presents a diagnostic challenge. In May 2010, a malnourished young adult male mountain lion (Puma concolor) from Kern County, California, USA was euthanized because of concern for public safety, and a postmortem examination was performed. Gross necropsy and histopathologic examination revealed necrotizing, multifocal myocarditis; necrotizing, neutrophilic, and histiocytic myositis and vasculitis of the tunica muscularis layer of the small and large intestines; and embolic, multifocal, interstitial pneumonia. Feline coronavirus antigen was detected in both the heart and intestinal tissue by immunohistochemistry. A PCR for coronavirus performed on kidney tissue was positive, confirming a diagnosis of FIP. Although coronavirus infection has been documented in mountain lions by serology, this is the first confirmed report of FIP.

  2. Hydrogeology of the Mammoth Spring groundwater basin and vicinity, Markagunt Plateau, Garfield, Iron, and Kane Counties, Utah

    Science.gov (United States)

    Spangler, Lawrence E.

    2012-01-01

    The Markagunt Plateau, in southwestern Utah, lies at an altitude of about 9,500 feet, largely within Dixie National Forest. The plateau is capped primarily by Tertiary- and Quaternary-age volcanic rocks that overlie Paleocene- to Eocene-age limestone of the Claron Formation, which forms escarpments on the west and south sides of the plateau. In the southwestern part of the plateau, an extensive area of sinkholes has formed that resulted primarily from dissolution of the underlying limestone and subsequent subsidence and (or) collapse of the basalt, producing sinkholes as large as 1,000 feet across and 100 feet deep. Karst development in the Claron Formation likely has been enhanced by high infiltration rates through the basalt. Numerous large springs discharge from the volcanic rocks and underlying limestone on the Markagunt Plateau, including Mammoth Spring, one of the largest in Utah, with discharge that ranges from less than 5 to more than 300 cubic feet per second (ft3/s). In 2007, daily mean peak discharge of Mammoth Spring was bimodal, reaching 54 and 56 ft3/s, while daily mean peak discharge of the spring in 2008 and in 2009 was 199 ft3/s and 224 ft3/s, respectively. In both years, the rise from baseflow, about 6 ft3/s, to peak flow occurred over a 4- to 5-week period. Discharge from Mammoth Spring accounted for about 54 percent of the total peak streamflow in Mammoth Creek in 2007 and 2008, and about 46 percent in 2009, and accounted for most of the total streamflow during the remainder of the year. Results of major-ion analyses for water samples collected from Mammoth and other springs on the plateau during 2006 to 2009 indicated calcium-bicarbonate type water, which contained dissolved-solids concentrations that ranged from 91 to 229 milligrams per liter. Concentrations of major ions, trace elements, and nutrients did not exceed primary or secondary drinking-water standards; however, total and fecal coliform bacteria were present in water from Mammoth and

  3. San Gabriel Mountains, California, Radar image, color as height

    Science.gov (United States)

    2000-01-01

    This topographic radar image shows the relationship of the urban area of Pasadena, California to the natural contours of the land. The image includes the alluvial plain on which Pasadena and the Jet Propulsion Laboratory sit, and the steep range of the San Gabriel Mountains. The mountain front and the arcuate valley running from upper left to the lower right are active fault zones, along which the mountains are rising. The chaparral-covered slopes above Pasadena are also a prime area for wildfires and mudslides. Hazards from earthquakes, floods and fires are intimately related to the topography in this area. Topographic data and other remote sensing images provide valuable information for assessing and mitigating the natural hazards for cities along the front of active mountain ranges.This image combines two types of data from the Shuttle Radar Topography Mission. The image brightness corresponds to the strength of the radar signal reflected from the ground, while colors show the elevation as measured by SRTM. Colors range from blue at the lowest elevations to white at the highest elevations. This image contains about 2300 meters (7500 feet) of total relief. White speckles on the face of some of the mountains are holes in the data caused by steep terrain. These will be filled using coverage from an intersecting pass.The Shuttle Radar Topography Mission (SRTM), launched on February 11,2000, uses the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour in 1994. The mission is designed to collect three-dimensional measurements of the Earth's surface. To collect the 3-D data, engineers added a 60-meter-long (200-foot) mast, an additional C-band imaging antenna and improved tracking and navigation devices. The mission is a cooperative project between the National Aeronautics and Space Administration (NASA), the National Imagery and Mapping Agency (NIMA) and the

  4. Carbon and nutrient contents in soils from the Kings River Experimental Watersheds, Sierra Nevada Mountains, California

    Science.gov (United States)

    D.W. Johnson; C.T. Hunsaker; D.W. Glass; B.M. Rau; B.A. Roath

    2011-01-01

    Soil C and nutrient contents were estimated for eight watersheds in two sites (one high elevation, Bull, and one low elevation, Providence) in the Kings River Experimental Watersheds in the western Sierra Nevada Mountains of California. Eighty-seven quantitative pits were dug to measure soil bulk density and total rock content, while three replicate surface samples...

  5. Long Valley Caldera-Mammoth Mountain unrest: The knowns and unknowns

    Science.gov (United States)

    Hill, David P.

    2017-01-01

    This perspective is based largely on my study of the Long Valley Caldera (California, USA) over the past 40 years. Here, I’ll examine the “knowns” and the “known unknowns” of the complex tectonic–magmatic system of the Long Valley Caldera volcanic complex. I will also offer a few brief thoughts on the “unknown unknowns” of this system.

  6. Palaeoecological caracterisation of the mammoth steppe at Final Pleistocene in Central Ukraine from zooarchaeology, stable isotope analyses and direct radiocarbon dating

    Science.gov (United States)

    Péan, Stéphane; Drucker, Dorothée.; Bocherens, Hervé; Haesaerts, Paul; Valladas, Hélène; Stupak, Dmytro; Nuzhnyi, Dmytro

    2010-05-01

    In the Central Ukraine area of the Middle Dnipro Basin, including the Desna river valley, there are exceptional Upper Palaeolithic open air sites with mammoth bone dwelling structures. Mezhyrich is one of these settlements, which are attributed to the Epigravettian cultural facies and occurred in a periglacial environment, during Oxygen Isotope Stage (OIS) 2. Mammoth bone buildings are surrounded by pits, which are filled with archaeological material (tools, hunting weapons, ivory and bone ornaments) and bones of mammoth and other large mammals such as hare, fox, wolf, horse. A new site Buzhanka 2 has yielded a pit which could be related to an expected dwelling structure. These Final Pleistocene sites are particularly appropriate to shed new light upon the relation between man and environment at the time of the mammoth steppe disappearance. Multidisciplinar studies have been carried on, to cross results from zooarchaeology of the pit contents, carbon and nitrogen stable isotope (13C and 15N) analyses of bone collagen, direct 14C dates on mammal bones and microstratigraphic analyses of the loessic sediment. With almost twenty 14C dates available, from mammoth and wolf bones and from charcoals, Mezhyrich is the best dated Epigravettian mammoth bone dwelling site: around 14 500 years BP. Mammoth treatment is zooarchaeologically evidenced in Buzhanka 2, but limited excavated areas do not allow to interpret their procurement yet. In Mezhyrich, consumption of mammoth meat is evidenced from the pit contents, coming from a few juveniles and young adults, probably hunted. The bones used in the dwelling structure no. 4, which are attributed to at least 37 individuals, have two different origins: mostly isolated elements gathered from other deposits, natural accumulations or previous kill sites; a few skeletal portions in anatomical position taken from at least one quite freshly dead mammoth body, for instance a hunted individual. From the stable isotope analyses, it appears

  7. Nuclear Gene Indicates Coat-Color Polymorphism in Mammoths

    DEFF Research Database (Denmark)

    Römpler, Holger; Rohland, Nadin; Lalueza-Fox, Carles

    2006-01-01

    By amplifying the melanocortin type 1 receptor from the woolly mammoth, we can report the complete nucleotide sequence of a nuclear-encoded gene from an extinct species. We found two alleles and show that one allele produces a functional protein whereas the other one encodes a protein with strongly...

  8. 800,000 year old mammoth DNA, modern elephant DNA or PCR artefact?

    Science.gov (United States)

    Binladen, Jonas; Gilbert, M Thomas P; Willerslev, Eske

    2007-02-22

    Poulakakis and colleagues (Poulakakis et al. 2006: Biol. Lett. 2, 451-454), report the recovery of 'authentic' mammoth DNA from an 800,000-year-old fragment of bone excavated on the island of Crete. In light of results from other ancient DNA studies that indicate how DNA survival is unlikely in samples, which are recovered from warm environments and are relatively old (e.g. more than 100,000 years), these findings come as a great surprise. Here, we show that problems exist with the methodological approaches used in the study. First, the nested PCR technique as reported is nonsensical--one of the second round 'nested' primers falls outside the amplicon of the first round PCR. More worryingly, the binding region of one of the first round primers (Elcytb320R) falls within the short 43 base pair reported mammoth sequence, specifically covering two of the three reportedly diagnostic Elephas polymorphisms. Finally, we demonstrate using a simple BLAST search in GenBank that the claimed 'uniquely derived character state' for mammoths is in fact also found within modern elephants.

  9. Was Frozen Mammoth or Giant Ground Sloth Served for Dinner at The Explorers Club?

    Directory of Open Access Journals (Sweden)

    Jessica R Glass

    Full Text Available Accounts of woolly mammoths (Mammuthus primigenius preserved so well in ice that their meat is still edible have a long history of intriguing the public and influencing paleontological thought on Quaternary extinctions and climate, with some scientists resorting to catastrophism to explain the instantaneous freezing necessary to preserve edible meat. Famously, members of The Explorers Club purportedly dined on frozen mammoth from Alaska, USA, in 1951. This event, well received by the press and general public, became an enduring legend for the Club and popularized the notorious annual tradition of serving rare and exotic food at Club dinners that continues to this day. The Yale Peabody Museum holds a sample of meat preserved from the 1951 meal, interestingly labeled as a South American giant ground sloth (Megatherium, not mammoth. We sequenced a fragment of the mitochondrial cytochrome-b gene and studied archival material to verify its identity, which if genuine, would extend the range of Megatherium over 600% and alter our views on ground sloth evolution. Our results indicate that the meat was not mammoth or Megatherium but green sea turtle (Chelonia mydas. The prehistoric dinner was likely an elaborate publicity stunt. Our study emphasizes the value of museums collecting and curating voucher specimens, particularly those used for evidence of extraordinary claims.

  10. San Gabriel Mountains, California, Shaded relief, color as height

    Science.gov (United States)

    2000-01-01

    This topographic image shows the relationship of the urban area of Pasadena, California to the natural contours of the land. The image includes the alluvial plain on which Pasadena and the Jet Propulsion Laboratory sit, and the steep range of the San Gabriel Mountains. The mountain front and the arcuate valley running from upper left to the lower right are active fault zones, along which the mountains are rising. The chaparral-covered slopes above Pasadena are also a prime area for wildfires and mudslides. Hazards from earthquakes, floods and fires are intimately related to the topography in this area. Topographic data and other remote sensing images provide valuable information for assessing and mitigating the natural hazards for cities along the front of active mountain ranges.This shaded relief image was generated using topographic data from the Shuttle Radar Topography Mission. A computer-generated artificial light source illuminates the elevation data to produce a pattern of light and shadows. Slopes facing the light appear bright, while those facing away are shaded. On flatter surfaces, the pattern of light and shadows can reveal subtle features in the terrain. Colors show the elevation as measured by SRTM. Colors range from blue at the lowest elevations to white at the highest elevations. This image contains about 2300 meters (7500 feet) of total relief. White speckles on the face of some of the mountains are holes in the data caused by steep terrain. These will be filled using coverage from an intersecting pass.The Shuttle Radar Topography Mission (SRTM), launched on February 11,2000, uses the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour in 1994. The mission is designed to collect three-dimensional measurements of the Earth's surface. To collect the 3-D data, engineers added a 60-meter-long (200-foot) mast, an additional C-band imaging antenna

  11. Passive Sampler for Measurements of Atmospheric Nitric Acid Vapor (HNO3 Concentrations

    Directory of Open Access Journals (Sweden)

    Andrzej Bytnerowicz

    2001-01-01

    Full Text Available Nitric acid (HNO3 vapor is an important nitrogenous air pollutant responsible for increasing saturation of forests with nitrogen and direct injury to plants. The USDA Forest Service and University of California researchers have developed a simple and inexpensive passive sampler for monitoring air concentrations of HNO3. Nitric acid is selectively absorbed on 47-mm Nylasorb nylon filters with no interference from particulate NO3-. Concentrations determined with the passive samplers closely corresponded with those measured with the co-located honeycomb annular denuder systems. The PVC protective caps of standardized dimensions protect nylon filters from rain and wind and allow for reliable measurements of ambient HNO3 concentrations. The described samplers have been successfully used in Sequoia National Park, the San Bernardino Mountains, and on Mammoth Mountain in California.

  12. Preliminary Geologic Map of the Little Piute Mountains, California; a Digital Database

    Science.gov (United States)

    Howard, Keith A.; Dennis, Michael L.; Karlstrom, Karl; Phelps, Geoffrey A.

    1997-01-01

    Introduction The Little Piute Mountains in the eastern Mojave Desert expose a series of folds and thrust faults involving metamorphosed Paleozoic strata (Miller and others, 1982; Stone and others, 1983). Detailed mapping of these structures was undertaken to help elucidate regional Mesozoic structural evolution. Earlier geologic maps were prepared by Cooksley (1960a,b,c,d, generalized by Bishop, 1964) and Stone and others (1983). Deformed and metamorphosed Paleozoic and Triassic rocks form a stratal succession that was originally deposited in shallow seas on the North American craton. Based on lithologic sequence the units are correlated with unmetamorphosed equivalents 200 km to the northeast in the Grand Canyon, Arizona, and 35-50 km to the west in the Marble, Ship, and Providence Mountains, California (Stone and others, 1983). The Paleozoic sequence rests nonconformably on a heterogeneous basement of polydeformed Early Proterozoic gneiss (Miller and others, 1982; Wooden and Miller, 1990). Triassic and older rocks were deformed, metamorphosed to staurolite or andalusite grade, and intruded concordantly at their base by Late Cretaceous granodiorite (Miller and others, 1982).

  13. Neutron activation and track analysis of the newly found bones of the southern mammoths and dinosaurs

    International Nuclear Information System (INIS)

    Vasidov, A.; Osinskaya, N.S.; Saidullaev, B.J.; Akhmadshaev, A.

    2016-01-01

    The bones of southern mammoths and dinosaur had been discovered in the territory of Uzbekistan in 2005-2014. The main aim of the work was a study of profiles of radiogenic and some of elements in bones of mammoths and dinosaur, and the element comparisons with standard bones and its soils by instrumental neutron activation and track analysis. In bones of the mammoths and dinosaur were registered a high contents of uranium and rare earth elements by instrumental neutron activation analysis. The radon concentrations in samples were measured in isolated plastic chambers by solid state nuclear track detectors type of CR-39 within 35 days. The values of radon exhalation rates were determined very more in ancient bones than in standard bones and soils. (author)

  14. The diet and environment of mammoths in North-East Russia reconstructed from the contents of their feces

    NARCIS (Netherlands)

    Kirillova, Irina V.; Argant, J.; Lapteva, E. G.; Korona, O. M.; van der Plicht, J.; Zinovyev, E. V.; Kotov, A. A.; Chernova, O. F.; Fadeeva, E. O.; Baturina, O. A.; Kabilov, M. R.; Shidlovskiy, F. K.; Zanina, O. G.

    2016-01-01

    Mammoth feces from northern Yakutia and western Chukotka were investigated in a multidisciplinary study. Radiocarbon dating of the Yakutian mammoth dung yielded ca 42 ka BP and the age of the feces from Chukotka is older than 45 ka BP. The two sites are located about 15,000 km from each other and

  15. Volcanic unrest and hazard communication in Long Valley Volcanic Region, California

    Science.gov (United States)

    Hill, David P.; Mangan, Margaret T.; McNutt, Stephen R.

    2017-01-01

    The onset of volcanic unrest in Long Valley Caldera, California, in 1980 and the subsequent fluctuations in unrest levels through May 2016 illustrate: (1) the evolving relations between scientists monitoring the unrest and studying the underlying tectonic/magmatic processes and their implications for geologic hazards, and (2) the challenges in communicating the significance of the hazards to the public and civil authorities in a mountain resort setting. Circumstances special to this case include (1) the sensitivity of an isolated resort area to media hype of potential high-impact volcanic and earthquake hazards and its impact on potential recreational visitors and the local economy, (2) a small permanent population (~8000), which facilitates face-to-face communication between scientists monitoring the hazard, civil authorities, and the public, and (3) the relatively frequent turnover of people in positions of civil authority, which requires a continuing education effort on the nature of caldera unrest and related hazards. Because of delays associated with communication protocols between the State and Federal governments during the onset of unrest, local civil authorities and the public first learned that the U.S. Geological Survey was about to release a notice of potential volcanic hazards associated with earthquake activity and 25-cm uplift of the resurgent dome in the center of the caldera through an article in the Los Angeles Times published in May 1982. The immediate reaction was outrage and denial. Gradual acceptance that the hazard was real required over a decade of frequent meetings between scientists and civil authorities together with public presentations underscored by frequently felt earthquakes and the onset of magmatic CO2 emissions in 1990 following a 11-month long earthquake swarm beneath Mammoth Mountain on the southwest rim of the caldera. Four fatalities, one on 24 May 1998 and three on 6 April 2006, underscored the hazard posed by the CO2

  16. The mummified brain of a pleistocene woolly mammoth (Mammuthus primigenius) compared with the brain of the extant African elephant (Loxodonta africana).

    Science.gov (United States)

    Kharlamova, Anastasia S; Saveliev, Sergei V; Protopopov, Albert V; Maseko, Busisiwe C; Bhagwandin, Adhil; Manger, Paul R

    2015-11-01

    This study presents the results of an examination of the mummified brain of a pleistocene woolly mammoth (Mammuthus primigenius) recovered from the Yakutian permafrost in Siberia, Russia. This unique specimen (from 39,440-38,850 years BP) provides the rare opportunity to compare the brain morphology of this extinct species with a related extant species, the African elephant (Loxodonta africana). An anatomical description of the preserved brain of the woolly mammoth is provided, along with a series of quantitative analyses of various brain structures. These descriptions are based on visual inspection of the actual specimen as well as qualitative and quantitative comparison of computed tomography imaging data obtained for the woolly mammoth in comparison with magnetic resonance imaging data from three African elephant brains. In general, the brain of the woolly mammoth specimen examined, estimated to weigh between 4,230 and 4,340 g, showed the typical shape, size, and gross structures observed in extant elephants. Quantitative comparative analyses of various features of the brain, such as the amygdala, corpus callosum, cerebellum, and gyrnecephalic index, all indicate that the brain of the woolly mammoth specimen examined has many similarities with that of modern African elephants. The analysis provided here indicates that a specific brain type representative of the Elephantidae is likely to be a feature of this mammalian family. In addition, the extensive similarities between the woolly mammoth brain and the African elephant brain indicate that the specializations observed in the extant elephant brain are likely to have been present in the woolly mammoth. © 2015 Wiley Periodicals, Inc.

  17. Measurement of the Spectral Absorption of Liquid Water in Melting Snow With an Imaging Spectrometer

    Science.gov (United States)

    Green, Robert O.; Dozier, Jeff

    1995-01-01

    Melting of the snowpack is a critical parameter that drives aspects of the hydrology in regions of the Earth where snow accumulates seasonally. New techniques for measurement of snow melt over regional scales offer the potential to improve monitoring and modeling of snow-driven hydrological processes. In this paper we present the results of measuring the spectral absorption of liquid water in a melting snowpack with the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS). AVIRIS data were acquired over Mammoth Mountain, in east central California on 21 May 1994 at 18:35 UTC. The air temperature at 2926 m on Mammoth Mountain at site A was measured at 15-minute intervals during the day preceding the AVIRIS data acquisition. At this elevation. the air temperature did not drop below freezing the night of the May 20 and had risen to 6 degrees Celsius by the time of the overflight on May 21. These temperature conditions support the presence of melting snow at the surface as the AVIRIS data were acquired.

  18. Preliminary Geologic Map of the the Little Piute Mountains, San Bernardino County, California

    Science.gov (United States)

    Howard, Keith A.; Dennis, Michael L.; Karlstrom, Karl E.; Phelps, Geoffrey A.

    1995-01-01

    Introduction The Little Piute Mountains in the eastern Mojave Desert expose a series of folds and thrust faults involving metamorphosed Paleozoic strata (Miller and others, 1982; Stone and others, 1983). Detailed mapping of these structures was undertaken to help elucidate regional Mesozoic structural evolution. Earlier geologic maps were prepared by Cooksley (1960a,b,c,d, generalized by Bishop, 1964) and Stone and others (1983). Deformed and metamorphosed Paleozoic and Triassic rocks form a stratal succession that was originally deposited in shallow seas on the North American craton. Based on lithologic sequence the units are correlated with unmetamorphosed equivalents 200 km to the northeast in the Grand Canyon, Arizona, and 35-50 km to the west in the Marble, Ship, and Providence Mountains, California (Stone and others, 1983). The Paleozoic sequence rests nonconformably on a heterogeneous basement of polydeformed Early Proterozoic gneiss (Miller and others, 1982; Wooden and Miller, 1990). Triassic and older rocks were deformed, metamorphosed to staurolite or andalusite grade, and intruded concordantly at their base by Late Cretaceous granodiorite (Miller and others, 1982).

  19. Ozone distribution and phytotoxic potential in mixed conifer forests of the San Bernardino Mountains, southern California

    International Nuclear Information System (INIS)

    Bytnerowicz, Andrzej; Arbaugh, Michael; Schilling, Susan; Fraczek, Witold; Alexander, Diane

    2008-01-01

    In the San Bernardino Mountains of southern California, ozone (O 3 ) concentrations have been elevated since the 1950s with peaks reaching 600 ppb and summer seasonal averages >100 ppb in the 1970s. During that period increased mortality of ponderosa and Jeffrey pines occurred. Between the late 1970s and late1990s, O 3 concentrations decreased with peaks ∼180 ppb and ∼60 ppb seasonal averages. However, since the late 1990s concentrations have not changed. Monitoring during summers of 2002-2006 showed that O 3 concentrations (2-week averages) for individual years were much higher in western sites (58-69 ppb) than eastern sites (44-50 ppb). Potential O 3 phytotoxicity measured as various exposure indices was very high, reaching SUM00 - 173.5 ppm h, SUM60 - 112.7 ppm h, W126 - 98.3 ppm h, and AOT40 - 75 ppm h, representing the highest values reported for mountain areas in North America and Europe. - Although peak ozone concentrations have greatly decreased in the San Bernardino Mountains, very high ozone phytotoxic potential remains

  20. Micrometeorite Impacts in Beringian Mammoth Tusks and a Bison Skull

    Energy Technology Data Exchange (ETDEWEB)

    Hagstrum, Jonathon T.; Firestone, Richard B; West, Allen; Stefanka, Zsolt; Revay, Zsolt

    2010-02-03

    We have discovered what appear to be micrometeorites imbedded in seven late Pleistocene Alaskan mammoth tusks and a Siberian bison skull. The micrometeorites apparently shattered on impact leaving 2 to 5 mm hemispherical debris patterns surrounded by carbonized rings. Multiple impacts are observed on only one side of the tusks and skull consistent with the micrometeorites having come from a single direction. The impact sites are strongly magnetic indicating significant iron content. We analyzed several imbedded micrometeorite fragments from both tusks and skull with laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) and X-ray fluorescence (XRF). These analyses confirm the high iron content and indicate compositions highly enriched in nickel and depleted in titanium, unlike any natural terrestrial sources. In addition, electron microprobe (EMP) analyses of a Fe-Ni sulfide grain (tusk 2) show it contains between 3 and 20 weight percent Ni. Prompt gamma-ray activation analysis (PGAA) of a particle extracted from the bison skull indicates ~;;0.4 mg of iron, in agreement with a micrometeorite ~;;1 mm in diameter. In addition, scanning electron microscope (SEM) images and XRF analyses of the skull show possible entry channels containing Fe-rich material. The majority of tusks (5/7) have a calibrated weighted mean 14C age of 32.9 +- 1.8 ka BP, which coincides with the onset of significant declines<36 ka ago in Beringian bison, horse, brown bear, and mammoth populations, as well as in mammoth genetic diversity. It appears likely that the impacts and population declines are related events, although their precise nature remains to be determined.

  1. Mountain Plover [ds109

    Data.gov (United States)

    California Natural Resource Agency — Point locations representing observations of mountain plover (Charadrius montanus) feeding and roosting flocks (and occasional individuals) documented during an...

  2. 800,000 year old mammoth DNA, modern elephant DNA or PCR artefact?

    DEFF Research Database (Denmark)

    Binladen, Jonas; Gilbert, M Thomas P; Willerslev, Eske

    2007-01-01

    Poulakakis and colleagues (Poulakakis et al. 2006: Biol. Lett. 2, 451-454), report the recovery of 'authentic' mammoth DNA from an 800,000-year-old fragment of bone excavated on the island of Crete. In light of results from other ancient DNA studies that indicate how DNA survival is unlikely...... in samples, which are recovered from warm environments and are relatively old (e.g. more than 100,000 years), these findings come as a great surprise. Here, we show that problems exist with the methodological approaches used in the study. First, the nested PCR technique as reported is nonsensical...... polymorphisms. Finally, we demonstrate using a simple BLAST search in GenBank that the claimed 'uniquely derived character state' for mammoths is in fact also found within modern elephants. Udgivelsesdato: 2007-Feb-22...

  3. Radiographic appearance of the feet of mammoth donkeys and the finding of subclinical laminitis

    International Nuclear Information System (INIS)

    Walker, M.; Taylor, T.; Slater, M.; Hood, D.; Weir, V.; Elslander, J.

    1995-01-01

    All feet of 10 clinically sound mammoth donkeys (Group I) were radiographed to determine the appearance of the distal phalanx. The distal phalanges had blunted to concave-shaped dorsal solar margins which varied in appearance from slight to pronounced. The distal phalanges of the forefeet were wider than those of the hindfeet, and also were positioned a greater distance from the dorsal aspect of the hoof wall. The greater distance between the dorsal aspect of the hoof wall and the distal phalanges seemed related to the presence of a periosteal-like bony proliferation on the dorsum of the distal phalanx. This bony proliferation occurred in those distal phalanges which also had radiographic findings consistent with pedal osteitis. Next, all feet of 5 additional mammoth donkeys (Group II) that were to be necropsied for various reasons, were examined similarly to Group I, necropsied and found to have laminitis. Only 2 of these 5 donkeys had been lame; only one had rotation of the distal phalanges (in the forefeet). Radiographic data from the 4 donkeys without rotation seemed most similar to that found in those Group I donkeys which had periosteal reactions on their distal phalanges. Conclusions from this study were that: 1) feet of mammoth donkeys have some anatomic differences from those of domestic horses, 2) subclinical laminitis and pedal osteitis can occur in mammoth donkeys, 3) rotation of the distal phalanx occurs in some, but not all laminitic donkeys, 4) laminitic changes may be more pronounced in their fore than in their hindfeet, and 5) additional studies of donkeys need to be done, examining both proven normal and confirmed laminitic feet

  4. Genomic DNA sequences from mastodon and woolly mammoth reveal deep speciation of forest and savanna elephants.

    Directory of Open Access Journals (Sweden)

    Nadin Rohland

    2010-12-01

    Full Text Available To elucidate the history of living and extinct elephantids, we generated 39,763 bp of aligned nuclear DNA sequence across 375 loci for African savanna elephant, African forest elephant, Asian elephant, the extinct American mastodon, and the woolly mammoth. Our data establish that the Asian elephant is the closest living relative of the extinct mammoth in the nuclear genome, extending previous findings from mitochondrial DNA analyses. We also find that savanna and forest elephants, which some have argued are the same species, are as or more divergent in the nuclear genome as mammoths and Asian elephants, which are considered to be distinct genera, thus resolving a long-standing debate about the appropriate taxonomic classification of the African elephants. Finally, we document a much larger effective population size in forest elephants compared with the other elephantid taxa, likely reflecting species differences in ancient geographic structure and range and differences in life history traits such as variance in male reproductive success.

  5. Genetic variation at hair length candidate genes in elephants and the extinct woolly mammoth

    Directory of Open Access Journals (Sweden)

    Tisdale Michele

    2009-09-01

    Full Text Available Abstract Background Like humans, the living elephants are unusual among mammals in being sparsely covered with hair. Relative to extant elephants, the extinct woolly mammoth, Mammuthus primigenius, had a dense hair cover and extremely long hair, which likely were adaptations to its subarctic habitat. The fibroblast growth factor 5 (FGF5 gene affects hair length in a diverse set of mammalian species. Mutations in FGF5 lead to recessive long hair phenotypes in mice, dogs, and cats; and the gene has been implicated in hair length variation in rabbits. Thus, FGF5 represents a leading candidate gene for the phenotypic differences in hair length notable between extant elephants and the woolly mammoth. We therefore sequenced the three exons (except for the 3' UTR and a portion of the promoter of FGF5 from the living elephantid species (Asian, African savanna and African forest elephants and, using protocols for ancient DNA, from a woolly mammoth. Results Between the extant elephants and the mammoth, two single base substitutions were observed in FGF5, neither of which alters the amino acid sequence. Modeling of the protein structure suggests that the elephantid proteins fold similarly to the human FGF5 protein. Bioinformatics analyses and DNA sequencing of another locus that has been implicated in hair cover in humans, type I hair keratin pseudogene (KRTHAP1, also yielded negative results. Interestingly, KRTHAP1 is a pseudogene in elephantids as in humans (although fully functional in non-human primates. Conclusion The data suggest that the coding sequence of the FGF5 gene is not the critical determinant of hair length differences among elephantids. The results are discussed in the context of hairlessness among mammals and in terms of the potential impact of large body size, subarctic conditions, and an aquatic ancestor on hair cover in the Proboscidea.

  6. Initial Testing of the Microscopic Depletion Implementation in the MAMMOTH Reactor Physics Application

    Energy Technology Data Exchange (ETDEWEB)

    Ortensi, J. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Wang, Y. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Schunert, S. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Ganapol, B. D. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Gleicher, F. N. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Baker, B. [Idaho National Lab. (INL), Idaho Falls, ID (United States); DeHart, M. D. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-09-01

    Present and new nuclear fuels that will be tested at the Transient Reactor Test (TREAT) facility will be analyzed with the MAMMOTH reactor physics application, currently under development, at Idaho National Laboratory. MAMMOTH natively couples the BISON, RELAP-7, and Rattlesnake applications within the MOOSE framework. This system allows the irradiation of fuel from beginning of life in a nuclear reactor until it is placed in TREAT for fuel testing within the same analysis mesh and, thus, retaining a very high level of resolution and fidelity. The calculation of the isotopic distribution in fuel requires the solution to the decay and transmutation equations coupled to the neutron transport equation. The Chebyshev Rational Approximation Method (CRAM) is the current state-of-the-art in the field, as was chosen to be the solver for the decay and transmutation equations. This report shows that the implementation of the CRAM solver within MAMMOTH is correct with various analytic benchmarks for decay and transmutation of nuclides. The results indicate that the solutions with CRAM order 16 achieve the level of precision of the benchmark. The CRAM solutions show little sensitivity to the time step size and consistently produce a high level of accuracy for isotopic decay for time steps of 1x10^11 years. Comparisons to DRAGON5 with 297 isotopes yield comparable results, but some differences need to be further analyzed.

  7. Preserved filamentous microbial biosignatures in the Brick Flat gossan, Iron Mountain, California

    Science.gov (United States)

    Williams, Amy J.; Sumner, Dawn Y.; Alpers, Charles N.; Karunatillake, Suniti; Hofmann, Beda A

    2015-01-01

    A variety of actively precipitating mineral environments preserve morphological evidence of microbial biosignatures. One such environment with preserved microbial biosignatures is the oxidized portion of a massive sulfide deposit, or gossan, such as that at Iron Mountain, California. This gossan may serve as a mineralogical analogue to some ancient martian environments due to the presence of oxidized iron and sulfate species, and minerals that only form in acidic aqueous conditions, in both environments. Evaluating the potential biogenicity of cryptic textures in such martian gossans requires an understanding of how microbial textures form biosignatures on Earth. The iron-oxide-dominated composition and morphology of terrestrial, nonbranching filamentous microbial biosignatures may be distinctive of the underlying formation and preservation processes. The Iron Mountain gossan consists primarily of ferric oxide (hematite), hydrous ferric oxide (HFO, predominantly goethite), and jarosite group minerals, categorized into in situ gossan, and remobilized iron deposits. We interpret HFO filaments, found in both gossan types, as HFO-mineralized microbial filaments based in part on (1) the presence of preserved central filament lumina in smooth HFO mineral filaments that are likely molds of microbial filaments, (2) mineral filament formation in actively precipitating iron-oxide environments, (3) high degrees of mineral filament bending consistent with a flexible microbial filament template, and (4) the presence of bare microbial filaments on gossan rocks. Individual HFO filaments are below the resolution of the Mars Curiosity and Mars 2020 rover cameras, but sinuous filaments forming macroscopic matlike textures are resolvable. If present on Mars, available cameras may resolve these features identified as similar to terrestrial HFO filaments and allow subsequent evaluation for their biogenicity by synthesizing geochemical, mineralogical, and morphological analyses. Sinuous

  8. When CO2 kills: effects of magmatic CO2 flux on belowground biota at Mammoth Mountain, CA

    Science.gov (United States)

    McFarland, J.; Waldrop, M. P.; Mangan, M.

    2011-12-01

    The biomass, composition, and activity of the soil microbial community is tightly linked to the composition of the aboveground plant community. Microorganisms in aerobic surface soils, both free-living and plant-associated are largely structured by the availability of growth limiting carbon (C) substrates derived from plant inputs. When C availability declines following a catastrophic event such as the death of large swaths of trees, the number and composition of microorganisms in soil would be expected to decline and/or shift to unique microorganisms that have better survival strategies under starvation conditions. High concentrations of volcanic cold CO2 emanating from Mammoth Mountain near Horseshoe Lake on the southwestern edge of Long Valley Caldera, CA has resulted in a large kill zone of tree species, and associated soil microbial species. In July 2010, we assessed belowground microbial community structure in response to disturbance of the plant community along a gradient of soil CO2 concentrations grading from 80% (no plant life). We employed a microbial community fingerprinting technique (automated ribosomal intergenic spacer analysis) to determine changes in overall community composition for three broad functional groups: fungi, bacteria, and archaea. To evaluate changes in ectomycorrhizal fungal associates along the CO2 gradient, we harvested root tips from lodgepole pine seedlings collected in unaffected forest as well as at the leading edge of colonization into the kill zone. We also measured soil C fractions (dissolved organic C, microbial biomass C, and non-extractable C) at 10 and 30 cm depth, as well as NH4+. Not surprisingly, our results indicate a precipitous decline in soil C, and microbial C with increasing soil CO2; phospholipid fatty acid analysis in conjunction with community fingerprinting indicate both a loss of fungal diversity as well as a dramatic decrease in biomass as one proceeds further into the kill zone. This observation was

  9. Stratigraphy and paleogeographic significance of the Pennsylvanian-Permian Bird Spring Formation in the Ship Mountains, southeastern California

    Science.gov (United States)

    Stone, Paul; Stevens, Calvin H.; Howard, Keith A.; Hoisch, Thomas D.

    2013-01-01

    A thick sequence of limestone, dolomite, and minor sandstone assigned to the Pennsylvanian and lower Permian Bird Spring Formation is exposed in the Ship Mountains about 85 kilometers (km) southwest of Needles, California, in the eastern Mojave Desert. These strata provide a valuable reference section of the Bird Spring Formation in a region where rocks of this age are not extensively exposed. This section, which is about 900 meters (m) thick, is divided into five informal members. Strata of the Bird Spring Formation in the Ship Mountains originated as shallow-water marine deposits on the broad, southwest-trending continental shelf of western North America. Perpendicular to the shelf, the paleogeographic position of the Ship Mountains section is intermediate between those of the thicker, less terrigenous, more seaward section of the Bird Spring Formation in the Providence Mountains, 55 km to the northwest, and the thinner, more terrigenous, more landward sections of the Supai Group near Blythe, 100 km to the southeast. Parallel to the shelf, the Ship Mountains section is comparable in lithofacies and inferred paleogeographic position to sections assigned to the Callville Limestone and overlying Pakoon Limestone in northwestern Arizona and southeastern Nevada, 250 km to the northeast. Deposition of the Bird Spring Formation followed a major rise in eustatic sea level at about the Mississippian- Pennsylvanian boundary. The subsequent depositional history was controlled by episodic changes in eustatic sea level, shelf subsidence rates, and sediment supply. Subsidence rates could have been influenced by coeval continental-margin tectonism to the northwest.

  10. Mammoth orbitofrontal neurofibromatosis with herniating meningo-encephalocele

    Directory of Open Access Journals (Sweden)

    Dhanraj Prema

    2010-01-01

    Full Text Available We are presenting a mammoth orbito-frontal neurofibroma with a herniating meningo-encephalocele in a 23 year old African male. The tumour measured 87cm Χ 54cm and occupied the right orbito-temporo-facial region and had destroyed the right orbit. A pre operative embolization of the feeding vessels was followed by a one stage near total excision of the tumour and repair of the meningo-encephalocele in hypotensive anaesthesia. The excised tumour weighed 8 Kg and, to the best of our knowledge, is the largest orbito-facial neurofibroma reported in literature.

  11. The role of climate and vegetation on woolly mammoth extinction on St. Paul Island, Alaska and megafauna extinction in North America in the late Quaternary

    Science.gov (United States)

    Wang, Y.; Porter, W.; Miller, P. A.; Graham, R. W.; Williams, J. W.

    2016-12-01

    Estimate of megafauna behaviors dynamically under associated environmental factors is important to understand the mechanisms and causes of the late Quaternary megafaunal extinctions. On St. Paul Island, an isolated remnant of the Bering Land Bridge, a late-surviving population of woolly mammoth (Mammuthus primigenius) persisted until 5,600 cal BP, while 37 out of 54 megafauna species in the continent of North America, all herbivores, went extinct at the end of Pleistocene between 13,800 and 11,500 cal BP. Proposed natural drivers of the extinction events include abrupt temperature changes, food resource loss and freshwater shortage. Here we tested these three hypothesized mechanisms, using a physiological model (Niche Mapper) to estimate individual megafauna behaviors from the perspectives of metabolic rate, individual vegetation and freshwater requirement under simulated climates from Community Climate System Model version 3 (CCSM3), vegetation reconstructions based on dynamic LPJ-GUESS model and woolly mammoth and megafauna species trait data reconstructed based on mammal fossils. Preliminary simulations of woolly mammoth on St. Paul Island point to the importance of net vegetation primary productivity and freshwater availability as limits on the carrying capacity of St. Paul for mammoth populations, with a low carrying capacity in the middle Holocene making this population highly vulnerable to extinction. Results also indicate that the abrupt warming based around 14,000 cal BP in Bering land bridge on CCSM3 simulations causes woolly mammoth extinction, by driving metabolic rate high up beyond the active basic metabolic rate. Analysis suggests a positive relationship between temperature and metabolic rate, and woolly mammoth would go extinct when summer temperature is up to 12 °C or higher. However the temperature reconstructed based on regional proxies is relatively stable compared to CCSM3 simulations, and leads to stable metabolic rate of woolly mammoth and

  12. Heat and Groundwater Flow in the San Gabriel Mountains, California

    Science.gov (United States)

    Newman, A. A.; Becker, M.; Laton, W. R., Jr.

    2017-12-01

    Groundwater flow paths in mountainous terrain often vary widely in both time and space. Such systems remain difficult to characterize due to fracture-dominated flow paths, high topographic relief, and sparse hydrologic data. We develop a hydrogeologic conceptual model of the Western San Gabriel Mountains in Southern California based on geophysical, thermal, and hydraulic head data. Boreholes are located along the San Gabriel Fault Zone (SGFZ) and cover a wide range of elevations to capture the heterogeneity of the hydrogeologic system. Long term (2016-2017) monitoring of temperature and hydraulic head was carried out in four shallow (300-600m depth) boreholes within the study area using fiber-optic distributed temperature sensing (DTS). Borehole temperature profiles were used to assess the regional groundwater flow system and local flows in fractures intersecting the borehole. DTS temperature profiles were compared with available borehole geophysical logs and head measurements collected with grouted vibrating wire pressure transducers (VWPT). Spatial and temporal variations in borehole temperature profiles suggest that advective heat transfer due to fluid flow affected the subsurface thermal regime. Thermal evidence of groundwater recharge and/or discharge and flow through discrete fractures was found in all four boreholes. Analysis of temporal changes to the flow system in response to seasonal and drilling-induced hydraulic forcing was useful in reducing ambiguities in noisy datasets and estimating interborehole relationships. Acoustic televiewer logs indicate fractures were primarily concentrated in densely fractured intervals, and only a minor decrease of fracture density was observed with depth. Anomalously high hydraulic gradients across the SGFZ suggest that the feature is a potential barrier to lateral flow. However, transient thermal anomalies consistent with groundwater flow within the SGFZ indicate this feature may be a potential conduit to vertical flow

  13. Geologic map of the Providence Mountains in parts of the Fountain Peak and adjacent 7.5' quadrangles, San Bernardino County, California

    Science.gov (United States)

    Stone, Paul; Miller, David M.; Stevens, Calvin H.; Rosario, Jose J.; Vazquez, Jorge A.; Wan, Elmira; Priest, Susan S.; Valin, Zenon C.

    2017-03-22

    IntroductionThe Providence Mountains are in the eastern Mojave Desert about 60 km southeast of Baker, San Bernardino County, California. This range, which is noted for its prominent cliffs of Paleozoic limestone, is part of a northeast-trending belt of mountainous terrain more than 100 km long that also includes the Granite Mountains, Mid Hills, and New York Mountains. Providence Mountains State Recreation Area encompasses part of the range, the remainder of which is within Mojave National Preserve, a large parcel of land administered by the National Park Service. Access to the Providence Mountains is by secondary roads leading south and north from Interstate Highways 15 and 40, respectively, which bound the main part of Mojave National Preserve.The geologic map presented here includes most of Providence Mountains State Recreation Area and land that surrounds it on the north, west, and south. This area covers most of the Fountain Peak 7.5′ quadrangle and small adjacent parts of the Hayden quadrangle to the north, the Columbia Mountain quadrangle to the northeast, and the Colton Well quadrangle to the east. The map area includes representative outcrops of most of the major geologic elements of the Providence Mountains, including gneissic Paleoproterozoic basement rocks, a thick overlying sequence of Neoproterozoic to Triassic sedimentary rocks, Jurassic rhyolite that intrudes and overlies the sedimentary rocks, Jurassic plutons and associated dikes, Miocene volcanic rocks, and a variety of Quaternary surficial deposits derived from local bedrock units. The purpose of the project was to map the area in detail, with primary emphasis on the pre-Quaternary units, to provide an improved stratigraphic, structural, and geochronologic framework for use in land management applications and scientific research.

  14. Proteomic analysis of a pleistocene mammoth femur reveals more than one hundred ancient bone proteins

    DEFF Research Database (Denmark)

    Cappellini, Enrico; Jensen, Lars Juhl; Szklarczyk, Damian Milosz

    2012-01-01

    We used high-sensitivity, high-resolution tandem mass spectrometry to shotgun sequence ancient protein remains extracted from a 43 000 year old woolly mammoth (Mammuthus primigenius) bone preserved in the Siberian permafrost. For the first time, 126 unique protein accessions, mostly low-abundance......We used high-sensitivity, high-resolution tandem mass spectrometry to shotgun sequence ancient protein remains extracted from a 43 000 year old woolly mammoth (Mammuthus primigenius) bone preserved in the Siberian permafrost. For the first time, 126 unique protein accessions, mostly low......-abundance extracellular matrix and plasma proteins, were confidently identified by solid molecular evidence. Among the best characterized was the carrier protein serum albumin, presenting two single amino acid substitutions compared to extant African (Loxodonta africana) and Indian (Elephas maximus) elephants. Strong...

  15. Integration of OpenMC methods into MAMMOTH and Serpent

    Energy Technology Data Exchange (ETDEWEB)

    Kerby, Leslie [Idaho National Lab. (INL), Idaho Falls, ID (United States); Idaho State Univ., Idaho Falls, ID (United States); DeHart, Mark [Idaho National Lab. (INL), Idaho Falls, ID (United States); Tumulak, Aaron [Idaho National Lab. (INL), Idaho Falls, ID (United States); Univ. of Michigan, Ann Arbor, MI (United States)

    2016-09-01

    OpenMC, a Monte Carlo particle transport simulation code focused on neutron criticality calculations, contains several methods we wish to emulate in MAMMOTH and Serpent. First, research coupling OpenMC and the Multiphysics Object-Oriented Simulation Environment (MOOSE) has shown promising results. Second, the utilization of Functional Expansion Tallies (FETs) allows for a more efficient passing of multiphysics data between OpenMC and MOOSE. Both of these capabilities have been preliminarily implemented into Serpent. Results are discussed and future work recommended.

  16. Quantifying the controls on potential soil production rates: a case study of the San Gabriel Mountains, California

    Directory of Open Access Journals (Sweden)

    J. D. Pelletier

    2017-08-01

    Full Text Available The potential soil production rate, i.e., the upper limit at which bedrock can be converted into transportable material, limits how fast erosion can occur in mountain ranges in the absence of widespread landsliding in bedrock or intact regolith. Traditionally, the potential soil production rate has been considered to be solely dependent on climate and rock characteristics. Data from the San Gabriel Mountains of California, however, suggest that topographic steepness may also influence potential soil production rates. In this paper I test the hypothesis that topographically induced stress opening of preexisting fractures in the bedrock or intact regolith beneath hillslopes of the San Gabriel Mountains increases potential soil production rates in steep portions of the range. A mathematical model for this process predicts a relationship between potential soil production rates and average slope consistent with published data. Once the effects of average slope are accounted for, a small subset of the data suggests that cold temperatures may limit soil production rates at the highest elevations of the range due to the influence of temperature on vegetation growth. These results suggest that climate and rock characteristics may be the sole controls on potential soil production rates as traditionally assumed but that the porosity of bedrock or intact regolith may evolve with topographic steepness in a way that enhances the persistence of soil cover in compressive-stress environments. I develop an empirical equation that relates potential soil production rates in the San Gabriel Mountains to the average slope and a climatic index that accounts for temperature limitations on soil production rates at high elevations. Assuming a balance between soil production and erosion rates on the hillslope scale, I illustrate the interrelationships among potential soil production rates, soil thickness, erosion rates, and topographic steepness that result from the

  17. Use of an analog site near Raymond, California, to develop equipment and methods for characterizing a potential high-level, nuclear waste repository site at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Umari, A.M.J.; Geldon, A.; Patterson, G.; Gemmell, J.; Earle, J.; Darnell, J.

    1994-01-01

    Yucca Mountain, Nevada, currently is being investigated by the U.S. Geological Survey as a potential site for a high-level nuclear waste repository. Planned hydraulic-stress and tracer tests in fractured, tuffaceous rocks below the water table at Yucca Mountain will require work at depths in excess of 1,300 feet. To facilitate prototype testing of equipment and methods to be used in aquifer tests at Yucca Mountain, an analog site was selected in the foothills of the Sierra Nevada near Raymond, California. Two of nine 250- to 300-feet deep wells drilled into fractured, granitic rocks at the Raymond site have been instrumented with packers, pressure transducers, and other equipment that will be used at Yucca Mountain. Aquifer tests conducted at the Raymond site to date have demonstrated a need to modify some of the equipment and methods conceived for use at Yucca Mountain

  18. Effects of groundwater pumping on the sustainability of a mountain wetland complex, Yosemite National Park, California

    Directory of Open Access Journals (Sweden)

    David J. Cooper

    2015-03-01

    Full Text Available Study Region: We analyzed the effects of groundwater pumping on a mountain wetland complex, Yosemite National Park, California, USA. Study Focus: Groundwater pumping from mountain meadows is common in many regions of the world. However, few quantitative analyses exist of the hydrologic or ecological effects of pumping. New Hydrological Insights for the Region: Daily hydraulic head and water table variations at sampling locations within 100 m of the pumping well were strongly correlated with the timing and duration of pumping. The effect of pumping varied by distance from the pumping well, depth of the water table when the pumping started, and that water year's snow water equivalent (SWE. Pumping in years with below average SWE and/or early melting snow pack, resulted in a water table decline to the base of the fen peat body by mid summer. Pumping in years with higher SWE and later melting snowpack, resulted in much less water level drawdown from the same pumping schedule. Predictive modeling scenarios showed that, even in a dry water year like 2004, distinct increases in fen water table elevation can be achieved with reductions in pumping. A high water table during summers following low snowpack water years had a more significant influence on vegetation composition than depth of water table in wet years or peat thickness, highlighting the impact of water level drawdown on vegetation. Keywords: Fen, Groundwater pumping, Modeling, Mountain meadow, Water table, Wetlands

  19. Assessing the spatial variability of mountain precipitation in California's Sierra Nevada using the Airborne Snow Observatory

    Science.gov (United States)

    Brandt, T.; Deems, J. S.; Painter, T. H.; Dozier, J.

    2016-12-01

    In California's Sierra Nevada, 10 or fewer winter storms are responsible for most of the annual precipitation, which falls mostly as snow. Presently, surface stations are used to measure the dynamics of mountain precipitation. However, even in places like the Sierra Nevada—one of the most gauged regions in the world—the paucity of surface stations can lead to large errors in precipitation thereby biasing both total water year and short-term streamflow forecasts. Remotely sensed snow depth and water equivalent, at a time scale that resolves storms, might provide a novel solution to the problems of: (1) quantifying the spatial variability of mountain precipitation; and (2) assessing gridded precipitation products that are mostly based on surface station interpolation. NASA's Airborne Snow Observatory (ASO), an imaging spectrometer and LiDAR system, has measured snow in the Tuolumne River Basin in California's Sierra Nevada for the past four years, 2013-2016; and, measurements will continue. Principally, ASO monitors the progression of melt for water supply forecasting, nonetheless, a number of flights bracketed storms allowing for estimates of snow accumulation. In this study we examine a few of the ASO recorded storms to determine both the basin and subbasin orographic effect as well as the spatial patterns in total precipitation. We then compare these results to a number of gridded climate products and weather models including: Daymet, the Parameter-elevation Regressions on Independent Slopes Model (PRISM), the North American Land Data Assimilation System (NLDAS-2), and the Weather Research and Forecasting (WRF) model. Finally, to put each ASO recorded storm into context, we use a climatology produced from snow pillows and the North American Regional Reanalysis (NARR) for 2014-2016 to examine key accumulation events, and classify storms based on their integrated water vapor flux.

  20. Chronology of Miocene-Pliocene deposits at Split Mountain Gorge, Southern California: A record of regional tectonics and Colorado River evolution

    Science.gov (United States)

    Dorsey, R.J.; Fluette, A.; McDougall, K.; Housen, B.A.; Janecke, S.U.; Axen, G.J.; Shirvell, C.R.

    2007-01-01

    Late Miocene to early Pliocene deposit at Split Mountain Gorge, California, preserve a record of basinal response to changes in regional tectonics, paleogeography, and evolution of the Colorado River. The base of the Elephant Trees Formation, magnetostratigraphically dated as 8.1 ?? 0.4 Ma, provides the earliest well-dated record of extension in the southwestern Salton Trough. The oldest marine sediments are ca. 6.3 Ma. The nearly synchronous timing of marine incursion in the Salton Trough and northern Gulf of California region supports a model for localization of Pacific-North America plate motion in the Gulf ca. 6 Ma. The first appearance of Colorado River sand at the Miocene-Pliocene boundary (5.33 Ma) suggests rapid propagation of the river to the Salton Trough, and supports a lake-spillover hypothesis for initiation of the lower Colorado River. ?? 2007 Geological Society of America.

  1. The first radiocarbon data of bone remains of mammoth faunal forms in northwestern Russia

    NARCIS (Netherlands)

    Nikonov, A. A.; Van der Plicht, J.; Kotlyakov, V.M.

    Unlike in the neighboring territories, the distribution and the period of habitation of late Pleistocene mammoth complex animals in the northwestern area of Russia had not been studied until recently. This article fills in this gap using the bone material from the Zoological Institute of the Russian

  2. Status of aeromagnetic survey coverage of Yucca Mountain and vicinity to a radius of about 140 kilometers, southwestern Nevada and southeastern California, 1992

    International Nuclear Information System (INIS)

    Sikora, R.F.; Ponce, D.A.; Oliver, H.W.

    1993-01-01

    Fifty aeromagnetic surveys in the southwestern part of Nevada and the southeastern part of California have been evaluated to assess the quality and coverage of aeromagnetic data within 140 kilometers (km) of a potential nuclear waste repository at Yucca Mountain, Nevada. The compilation shows that all the study area is covered by aeromagnetic surveys, but in some areas, particularly in the Death Valley region, new surveys flown with closer flight line spacing and lower elevations than the existing coverage are needed. In addition, the California part of the study area needs to be analytically continued downward to 305 meters (m) above ground level to provide a consistent data set for interpretation of subsurface geologic structures

  3. Exhumation of the Black Mountains in Death Valley, California, with new thermochronometric data from the Badwater Turtleback

    Science.gov (United States)

    Sizemore, T. M.; Cemen, I.; Wielicki, M. M.; Stockli, D. F.; Heizler, M. T.; Lutz, B. M.

    2017-12-01

    The Black Mountains, in Death Valley, California, are one of the key areas to better understand Basin and Range extension because they contain Cenozoic igneous and sedimentary rocks overlying mid- to deep-crustal, 1.74 Ga basement gneiss with abundant fault striations, large-scale extensional folds, and tectonite fabrics containing top-to-the-northwest shear-sense indicators. These rocks make up the footwall of three prominent, high-relief "turtleback" fault surfaces in the western flank of the Black Mountains, which are thought to have accommodated a significant amount of strain in the Death Valley area. It is unknown whether the missing Paleozoic and Mesozoic strata in the Black Mountains were removed in association with high-angle faulting, or along a continuous detachment surface with a rolling-hinge style of faulting as the hanging wall moved to the west, now forming the Panamint Range. The turtlebacks play an important role in resolving this question because they are commonly cited as containing conflicting evidence of both hypotheses. To provide insight into this problem, we are building an exhumation model across the Black Mountains using previously published thermochronometric data as well as new transect-based (U-Th)/He and Ar-Ar thermochronology and U-Pb geochronology for the Badwater turtleback. The model will provide a four-dimensional view of the exhumation history of the Black Mountains, to serve as evidence for either of the two previously mentioned hypotheses, or possibly some other style of exhumation. Additionally, we will compare the exhumation history of the Black Mountains to that of the Panamint Range using previously published data and interpretations. Our preliminary zircon U-Pb data suggest a crystallization age for the gneissic rocks on the Badwater turtleback of 1.74 Ga (207Pb/206Pb, 2σ error=31.8 Ma, n=6) with two younger populations at 1.46 Ga (207Pb/206Pb, 2σ error=51.8 Ma, n=3) and 79.6 Ma (206Pb/238U, 2σ error=10.0 Ma, n=2

  4. Climate contributes to zonal forest mortality in Southern California's San Jacinto Mountains

    Science.gov (United States)

    Fellows, A.; Goulden, M.

    2010-12-01

    An estimated 4.6 million trees died over ~375,000 acres of Southern California forest in 2002-2004. This mortality punctuated a decline in forest health that has been attributed to air pollution, stem densification, or drought. Bark beetles were the proximate cause of most tree death but the underlying cause of this extensive mortality is arguably poor forest health. We investigated the contributions that climate, particularly drought, played in tree mortality and how physiological drought stress may have structured the observed patterns of mortality. Field surveys showed that conifer mortality was zonal in the San Jacinto Mountains of Southern California. The proportion of conifer mortality increased with decreasing elevation (p=0.01). Mid-elevation conifers (White Fir, Incense Cedar, Coulter Pine, Sugar Pine, Ponderosa and Jeffrey Pine) died in the lower portions of their respective ranges, which resulted in an upslope lean in species’ distribution and an upslope shift in species’ mean elevation. Long-term precipitation (P) is consistent with elevation over the conifer elevation range (p=0.43). Potential evapotranspiration (ET) estimated by Penman Monteith declines with elevation by nearly half over the same range. These trends suggest that ET, more than P, is critical in structuring the elevational trend in drought stress and may have contributed to the patterns of mortality that occurred in 2002-04. Physiological measurements in a mild drought year (2009) showed late summer declines in plant water availability with decreasing elevation (p < 0.01) and concomitant reductions in carbon assimilation and stomatal conductance with decreasing elevation. We tie these observations together with a simple water balance model.

  5. Potential climatic refugia in semi-arid, temperate mountains: plant and arthropod assemblages associated with rock glaciers, talus slopes, and their forefield wetlands, Sierra Nevada, California, USA

    Science.gov (United States)

    Constance I. Millar; Robert D. Westfall; Angela Evenden; Jeffrey G. Holmquist; Jutta Schmidt-Gengenbach; Rebecca S. Franklin; Jan Nachlinger; Diane L. Delany

    2015-01-01

    Unique thermal and hydrologic regimes of rock-glacier and periglacial talus environments support little-studied mountain ecosystems. We report the first studies of vascular plant and arthropod diversity for these habitats in the central Sierra Nevada, California, USA. Surfaces of active rock glaciers develop scattered islands of soil that provide habitat for vegetation...

  6. Home range characteristics of fishers in California

    Science.gov (United States)

    W. J. Zielinski; R. L. Truex; G. A. Schmidt; F. V. Schlexer; K. N. Schmidt; R. H. Barrett

    2004-01-01

    The fisher (Martes pennanti) is a forest mustelid that historically occurred in California from the mixed conifer forests of the north coast, east to the southern Cascades, and south throughout the Sierra Nevada. Today fishers in California occur only in 2 disjunct populations in the northwestern mountains and the...

  7. Equatorial origin for Lower Jurassic radiolarian chert in the Franciscan Complex, San Rafael Mountains, southern California

    Science.gov (United States)

    Hagstrum, J.T.; Murchey, B.L.; Bogar, R.S.

    1996-01-01

    Lower Jurassic radiolarian chert sampled at two localities in the San Rafael Mountains of southern California (???20 km north of Santa Barbara) contains four components of remanent magnetization. Components A, B???, and B are inferred to represent uplift, Miocene volcanism, and subduction/accretion overprint magnetizations, respectively. The fourth component (C), isolated between 580?? and 680??C, shows a magnetic polarity stratigraphy and is interpreted as a primary magnetization acquired by the chert during, or soon after, deposition. Both sequences are late Pliensbachian to middle Toarcian in age, and an average paleolatitude calculated from all tilt-corrected C components is 1?? ?? 3?? north or south. This result is consistent with deposition of the cherts beneath the equatorial zone of high biologic productivity and is similar to initial paleolatitudes determined for chert blocks in northern California and Mexico. This result supports our model in which deep-water Franciscan-type cherts were deposited on the Farallon plate as it moved eastward beneath the equatorial productivity high, were accreted to the continental margin at low paleolatitudes, and were subsequently distributed northward by strike-slip faulting associated with movements of the Kula, Farallon, and Pacific plates. Upper Cretaceous turbidites of the Cachuma Formation were sampled at Agua Caliente Canyon to determine a constraining paleolatitude for accretion of the Jurassic chert sequences. These apparently unaltered rocks, however, were found to be completely overprinted by the A component of magnetization. Similar in situ directions and demagnetization behaviors observed in samples of other Upper Cretaceous turbidite sequences in southern and Baja California imply that these rocks might also give unreliable results.

  8. Stream capture to form Red Pass, northern Soda Mountains, California

    Science.gov (United States)

    Miller, David; Mahan, Shannon

    2014-01-01

    Red Pass, a narrow cut through the Soda Mountains important for prehistoric and early historic travelers, is quite young geologically. Its history of downcutting to capture streams west of the Soda Mountains, thereby draining much of eastern Fort Irwin, is told by the contrast in alluvial fan sediments on either side of the pass. Old alluvial fan deposits (>500 ka) were shed westward off an intact ridge of the Soda Mountains but by middle Pleistocene time, intermediate-age alluvial fan deposits (~100 ka) were laid down by streams flowing east through the pass into Silurian Valley. The pass was probably formed by stream capture driven by high levels of groundwater on the west side. This is evidenced by widespread wetland deposits west of the Soda Mountains. Sapping and spring discharge into Silurian Valley over millennia formed a low divide in the mountains that eventually was overtopped and incised by a stream. Lessons include the importance of groundwater levels for stream capture and the relatively youthful appearance of this ~100-200 ka feature in the slowly changing Mojave Desert landscape.

  9. Shrinking windows of opportunity for oak seedling establishment in southern California mountains

    Science.gov (United States)

    Davis, Frank W.; Sweet, Lynn C.; Serra-Diaz, Josep M.; Franklin, Janet; McCullough, Ian M.; Flint, Alan L.; Flint, Lorraine E.; Dingman, John; Regan, Helen M.; Syphard, Alexandra D.; Hannah, Lee; Redmond, Kelly; Moritz, Max A.

    2016-01-01

    Seedling establishment is a critical step that may ultimately govern tree species’ distribution shifts under environmental change. Annual variation in the location of seed rain and microclimates results in transient “windows of opportunity” for tree seedling establishment across the landscape. These establishment windows vary at fine spatiotemporal scales that are not considered in most assessments of climate change impacts on tree species range dynamics and habitat displacement. We integrate field seedling establishment trials conducted in the southern Sierra Nevada and western Tehachapi Mountains of southern California with spatially downscaled grids of modeled water-year climatic water deficit (CWDwy) and mean August maximum daily temperature (Tmax) to map historical and projected future microclimates suitable for establishment windows of opportunity for Quercus douglasii, a dominant tree species of warm, dry foothill woodlands, and Q. kelloggii, a dominant of cooler, more mesic montane woodlands and forests. Based on quasi-binomial regression models, Q. douglasii seedling establishment is significantly associated with modeled CWDwy and to a lesser degree with modeled Tmax. Q. kelloggii seedling establishment is most strongly associated with Tmax and best predicted by a two-factor model including CWDwy and Tmax. Establishment niche models are applied to explore recruitment window dynamics in the western Tehachapi Mountains, where these species are currently widespread canopy dominants. Establishment windows are projected to decrease by 50–95%, shrinking locally to higher elevations and north-facing slopes by the end of this century depending on the species and climate scenario. These decreases in establishment windows suggest the potential for longer-term regional population declines of the species. While many additional processes regulate seedling establishment and growth, this study highlights the need to account for topoclimatic controls and

  10. Triggered seismicity and deformation between the Landers, California, and Little Skull Mountain, Nevada, earthquakes

    Science.gov (United States)

    Bodin, Paul; Gomberg, Joan

    1994-01-01

    This article presents evidence for the channeling of strain energy released by the Ms = 7.4 Landers, California, earthquake within the eastern California shear zone (ECSZ). We document an increase in seismicity levels during the 22-hr period starting with the Landers earthquake and culminating 22 hr later with the Ms = 5.4 Little Skull Mountain (LSM), Nevada, earthquake. We evaluate the completeness of regional seismicity catalogs during this period and find that the continuity of post-Landers strain release within the ECSZ is even more pronounced than is evident from the catalog data. We hypothesize that regional-scale connectivity of faults within the ECSZ and LSM region is a critical ingredient in the unprecedented scale and distribution of remotely triggered earthquakes and geodetically manifest strain changes that followed the Landers earthquake. The viability of static strain changes as triggering agents is tested using numerical models. Modeling results illustrate that regional-scale fault connectivity can increase the static strain changes by approximately an order of magnitude at distances of at least 280 km, the distance between the Landers and LSM epicenters. This is possible for models that include both a network of connected faults that slip “sympathetically” and realistic levels of tectonic prestrain. Alternatively, if dynamic strains are a more significant triggering agent than static strains, ECSZ structure may still be important in determining the distribution of triggered seismic and aseismic deformation.

  11. Management of Giant Sequoia on Mountain Home Demonstration State Forest

    Science.gov (United States)

    Norman J. Benson

    1986-01-01

    Established in 1946, the Mountain Home Demonstration State Forest, Tulare County, California, is managed by the California Department of Forestry. It is a multiple-use forest with recreation as its primary focus, although timber management has always played an important role. Giant sequoia (Sequoiadendron giganteum [Lindl. ] Buchholz) occurs in...

  12. Investigation of the influence of wall stiffness on the stress ratio in mammoth silos

    NARCIS (Netherlands)

    van Leeuwenstijn, P.L.L.; van Leeuwenstijn, P.L.L.; van Wijk, L.A.; van Wijk, L.A.; Haaker, G.

    1994-01-01

    To calculate the stresses on the walls of silos, it is necessary to have a good estimate of the ratio of horizontal to vertical stress. This ratio however is not known precisely, especially in cases of static stress as found in a mammoth silo. In this paper the influence of the wall stiffness on the

  13. Approved wind energy sites - Kern County, CA (Tehachapi Mountains)

    Energy Technology Data Exchange (ETDEWEB)

    1984-01-01

    Rising out of the California desert near Mojave, California, are the Tehachapi Mountains - a rugged chain of wind swept hills. Up until 1981, this land was used almost exclusively by local ranchers for grazing beef cattle. But, in a raging December blizzard, a dedicated band of men and women threw the switch and fed the first wind-generated electrical power into Southern California Edison's grid. That single event drastically changed land use patterns in the Tehachapi's.

  14. Stratigraphic and structural framework of Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Spengler, R.W.; Fox, K.F. Jr.

    1988-01-01

    Yucca Mountain is located within the southwestern Nevada volcanic field, ∼140 km northwest of Las Vegas, Nevada, and 50 km northeast of Death Valley, California. The mountain consist of a series of long, linear, north-trending volcanic ridges that approach an 1800-m maximum elevation near The Prow. The broad intermontane alluviated valleys of Crater Flat, the Amargosa Desert, and Jackass Flats, averaging 800 to 1100 m in elevation, form the western, southern, and eastern margins of Yucca Mountain, respectively. North of The Prow, Yucca Mountain merges with other volcanic highlands that flank the southern rim of the Timber Mountain-Oasis Valley caldera complex. The stratigraphy and structure of the area are discussed. Future geologic studies will attempt to determine if faults extend beneath Yucca Mountain, and, if present, their potential effects on the hydrologic and tectonic regimes

  15. Fractured genetic connectivity threatens a southern california puma (Puma concolor population.

    Directory of Open Access Journals (Sweden)

    Holly B Ernest

    Full Text Available Pumas (Puma concolor; also known as mountain lions and cougars in southern California live among a burgeoning human population of roughly 20 million people. Yet little is known of the consequences of attendant habitat loss and fragmentation, and human-caused puma mortality to puma population viability and genetic diversity. We examined genetic status of pumas in coastal mountains within the Peninsular Ranges south of Los Angeles, in San Diego, Riverside, and Orange counties. The Santa Ana Mountains are bounded by urbanization to the west, north, and east, and are separated from the eastern Peninsular Ranges to the southeast by a ten lane interstate highway (I-15. We analyzed DNA samples from 97 pumas sampled between 2001 and 2012. Genotypic data for forty-six microsatellite loci revealed that pumas sampled in the Santa Ana Mountains (n = 42 displayed lower genetic diversity than pumas from nearly every other region in California tested (n = 257, including those living in the Peninsular Ranges immediately to the east across I-15 (n = 55. Santa Ana Mountains pumas had high average pairwise relatedness, high individual internal relatedness, a low estimated effective population size, and strong evidence of a bottleneck and isolation from other populations in California. These and ecological findings provide clear evidence that Santa Ana Mountains pumas have been experiencing genetic impacts related to barriers to gene flow, and are a warning signal to wildlife managers and land use planners that mitigation efforts will be needed to stem further genetic and demographic decay in the Santa Ana Mountains puma population.

  16. Updates to the Generation of Physics Data Inputs for MAMMOTH Simulations of the Transient Reactor Test Facility - FY2016

    Energy Technology Data Exchange (ETDEWEB)

    Ortensi, Javier [Idaho National Lab. (INL), Idaho Falls, ID (United States); Baker, Benjamin Allen [Idaho National Lab. (INL), Idaho Falls, ID (United States); Schunert, Sebastian [Idaho National Lab. (INL), Idaho Falls, ID (United States); Wang, Yaqi [Idaho National Lab. (INL), Idaho Falls, ID (United States); Gleicher, Frederick Nathan [Idaho National Lab. (INL), Idaho Falls, ID (United States); DeHart, Mark David [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-06-01

    The INL is currently evolving the modeling and simulation (M&S) capability that will enable improved core operation as well as design and analysis of TREAT experiments. This M&S capability primarily uses MAMMOTH, a reactor physics application being developed under Multi-physics Object Oriented Simulation Environment (MOOSE) framework. MAMMOTH allows the coupling of a number of other MOOSE-based applications. This second year of work has been devoted to the generation of a deterministic reference solution for the full core, the preparation of anisotropic diffusion coefficients, the testing of the SPH equivalence method, and the improvement of the control rod modeling. In addition, this report includes the progress made in the modeling of the M8 core configuration and experiment vehicle since January of this year.

  17. Making Connections. A Curriculum and Activity Guide to Mammoth Cave National Park. [Grades] K-3.

    Science.gov (United States)

    National Park Service (Dept. of Interior), Washington, DC.

    Kentucky's Mammoth Cave National Park is important because of its diversity of life on the surface and underground. Some of the plants in the park include trees such as oaks, hickories, tulip poplars, sycamores, and many types of bushes. The animal population is also very diverse and includes bats, squirrels, deer, raccoons, opossums, chipmunks,…

  18. Smog nitrogen and the rapid acidification of forest soil, San Bernardino Mountains, southern California.

    Science.gov (United States)

    Wood, Yvonne A; Fenn, Mark; Meixner, Thomas; Shouse, Peter J; Breiner, Joan; Allen, Edith; Wu, Laosheng

    2007-03-21

    We report the rapid acidification of forest soils in the San Bernardino Mountains of southern California. After 30 years, soil to a depth of 25 cm has decreased from a pH (measured in 0.01 M CaCl2) of 4.8 to 3.1. At the 50-cm depth, it has changed from a pH of 4.8 to 4.2. We attribute this rapid change in soil reactivity to very high rates of anthropogenic atmospheric nitrogen (N) added to the soil surface (72 kg ha(-1) year(-1)) from wet, dry, and fog deposition under a Mediterranean climate. Our research suggests that a soil textural discontinuity, related to a buried ancient landsurface, contributes to this rapid acidification by controlling the spatial and temporal movement of precipitation into the landsurface. As a result, the depth to which dissolved anthropogenic N as nitrate (NO3) is leached early in the winter wet season is limited to within the top approximately 130 cm of soil where it accumulates and increases soil acidity.

  19. Smog Nitrogen and the Rapid Acidification of Forest Soil, San Bernardino Mountains, Southern California

    Directory of Open Access Journals (Sweden)

    Yvonne A. Wood

    2007-01-01

    Full Text Available We report the rapid acidification of forest soils in the San Bernardino Mountains of southern California. After 30 years, soil to a depth of 25 cm has decreased from a pH (measured in 0.01 M CaCl2 of 4.8 to 3.1. At the 50-cm depth, it has changed from a pH of 4.8 to 4.2. We attribute this rapid change in soil reactivity to very high rates of anthropogenic atmospheric nitrogen (N added to the soil surface (72 kg ha–1 year–1 from wet, dry, and fog deposition under a Mediterranean climate. Our research suggests that a soil textural discontinuity, related to a buried ancient landsurface, contributes to this rapid acidification by controlling the spatial and temporal movement of precipitation into the landsurface. As a result, the depth to which dissolved anthropogenic N as nitrate (NO3 is leached early in the winter wet season is limited to within the top ~130 cm of soil where it accumulates and increases soil acidity.

  20. Use of digital Munsell color space to assist interretation of imaging spectrometer data: Geologic examples from the northern Grapevine Mountains, California and Nevada

    Science.gov (United States)

    Kruse, F. A.; Knepper, D. H., Jr.; Clark, R. N.

    1986-01-01

    Techniques using Munsell color transformations were developed for reducing 128 channels (or less) of Airborne Imaging Spectrometer (AIS) data to a single color-composite-image suitable for both visual interpretation and digital analysis. Using AIS data acquired in 1984 and 1985, limestone and dolomite roof pendants and sericite-illite and other clay minerals related to alteration were mapped in a quartz monzonite stock in the northern Grapevine Mountains of California and Nevada. Field studies and laboratory spectral measurements verify the mineralogical distributions mapped from the AIS data.

  1. Palaeoenvironment and geoconservation of mammoths from the Nosak loess-palaeosol sequence (Drmno, northeastern Serbia): Initial results and perspectives

    DEFF Research Database (Denmark)

    Markovic, Slobodan B.; Korac, Miomir; Mrdic, Nemanja

    2014-01-01

    A Quaternary site at Drmno (comprising of Middle and Late Pleistocene loessepalaeosol sequences) near Kostolac, northeast Serbia, attracted attention from the general public and scientists, when several steppe mammoth and other mammal skeletons from Middle Pleistocene fluvial deposits were discov...

  2. Holocene and latest Pleistocene oblique dextral faulting on the southern Inyo Mountains fault, Owens Lake basin, California

    Science.gov (United States)

    Bacon, S.N.; Jayko, A.S.; McGeehin, J.P.

    2005-01-01

    The Inyo Mountains fault (IMF) is a more or less continuous range-front fault system, with discontinuous late Quaternary activity, at the western base of the Inyo Mountains in Owens Valley, California. The southern section of the IMF trends ???N20??-40?? W for at least 12 km at the base of and within the range front near Keeler in Owens Lake basin. The southern IMF cuts across a relict early Pliocene alluvial fan complex, which has formed shutter ridges and northeast-facing scarps, and which has dextrally offset, well-developed drainages indicating long-term activity. Numerous fault scarps along the mapped trace are northeast-facing, mountain-side down, and developed in both bedrock and younger alluvium, indicating latest Quaternary activity. Latest Quaternary multiple- and single-event scarps that cut alluvium range in height from 0.5 to 3.0 m. The penultimate event on the southern IMF is bracketed between 13,310 and 10,590 cal years B.P., based on radiocarbon dates from faulted alluvium and fissure-fill stratigraphy exposed in a natural wash cut. Evidence of the most recent event is found at many sites along the mapped fault, and, in particular, is seen in an ???0.5-m northeast-facing scarp and several right-stepping en echelon ???0.5-m-deep depressions that pond fine sediment on a younger than 13,310 cal years B.P. alluvial fan. A channel that crosses transverse to this scarp is dextrally offset 2.3 ?? 0.8 m, providing a poorly constrained oblique slip rate of 0.1-0. 3 m/ k.y. The identified tectonic geomorphology and sense of displacement demonstrate that the southern IMF accommodates predominately dextral slip and should be integrated into kinematic fault models of strain distribution in Owens Valley.

  3. Paleomagnetism of Jurassic radiolarian chert above the Coast Range ophiolite at Stanley Mountain, California, and implications for its paleogeographic origins

    Science.gov (United States)

    Hagstrum, J.T.; Murchey, B.L.

    1996-01-01

    Upper Jurassic red tuffaceous chert above the Coast Range ophiolite at Stanley Mountain, California (lat 35??N, long 240??E), contains three components of remanent magnetization. The first component (A; removed by ???100-???200 ??C) has a direction near the present-day field for southern California and is probably a recently acquired thermoviscous magnetization. A second component (B; removed between ???100 and ???600 ??C) is identical to that observed by previous workers in samples of underlying pillow basalt and overlying terrigenous sedimentary rocks. This component has constant normal polarity and direction throughout the entire section, although these rocks were deposited during a mixed polarity interval of the geomagnetic field. The B magnetization, therefore, is inferred to be a secondary magnetization acquired during accretion, uplift, or Miocene volcanism prior to regional clockwise rotation. The highest temperature component (C; removed between ???480 and 680 ??C) is of dual polarity and is tentatively interpreted as a primary magnetization, although it fails a reversal test possibly due to contamination by B. Separation of the B and C components is best shown by samples with negative-inclination C directions, and a corrected mean direction using only these samples indicates an initial paleolatitude of 32??N ?? 8??. Paleobiogeographic models relating radiolarian faunal distribution patterns to paleolatitude have apparently been incorrectly calibrated using the overprint B component. Few other paleomagnetic data have been incorporated in these models, and faunal distribution patterns are poorly known and mostly unqualified. The available data, therefore, do not support formation of the Coast Range ophiolite at Stanley Mountain near the paleoequator or accretion at ???10??N paleolatitude, as has been previously suggested based on paleomagnetic data, but indicate deposition near expected paleolatitudes for North America (35??N ?? 4??) during Late Jurassic

  4. Mitogenome evolution in the last surviving woolly mammoth population reveals neutral and functional consequences of small population size

    NARCIS (Netherlands)

    Pecnerova, Patricia; Palkopoulou, E.; Wheat, Christopher W.; Skoglund, Pontus; Vartanyan, Sergey; Tikhonov, Alexei; Nikolskiy, Pavel; van der Plicht, Johannes; Diez-del-Molino, David; Dalen, Love

    2017-01-01

    The onset of the Holocene was associated with a global temperature increase, which led to a rise in sea levels and isolation of the last surviving population of woolly mammoths on Wrangel Island. Understanding what happened with the population’s genetic diversity at the time of the isolation and

  5. Photomosaics and event evidence from the Frazier Mountain paleoseismic site, trench 1, cuts 1–4, San Andreas Fault Zone, southern California (2007–2009)

    Science.gov (United States)

    Scharer, Katherine M.; Fumal, Tom E.; Weldon, Ray J.; Streig, Ashley R.

    2014-01-01

    The Frazier Mountain paleoseismic site is located at the northwest end of the Mojave section of the San Andreas Fault, in a small, closed depression at the base of Frazier Mountain near Tejon Pass, California (lat 34.8122° N., long 118.9034° W.). The site was known to contain a good record of earthquakes due to previous excavations by Lindvall and others (2002). This report provides data resulting from four nested excavations, or cuts, along trench 1 (T1) in 2007 and 2009 at the Frazier Mountain site. The four cuts were excavated progressively deeper and wider in an orientation perpendicular to the San Andreas Fault, exposing distal fan and marsh sediments deposited since ca. A.D. 1200. The results of the trenching show that earthquakes that ruptured the site have repeatedly produced a small depression or sag on the surface, which is subsequently infilled with sand and silt deposits. This report provides high-resolution photomosaics and logs for the T1 cuts, a detailed stratigraphic column for the deposits, and a table summarizing all of the evidence for ground rupturing paleoearthquakes logged in the trenches.

  6. Tocuila Mammoths, Basin of Mexico: Late Pleistocene-Early Holocene stratigraphy and the geological context of the bone accumulation

    Science.gov (United States)

    Gonzalez, Silvia; Huddart, David; Israde-Alcántara, Isabel; Dominguez-Vazquez, Gabriela; Bischoff, James

    2014-07-01

    We report new stratigraphic, tephrochronology and dating results from the Tocuila Mammoth site in the Basin of Mexico. At the site there is evidence for a thin meteorite airburst layer dated between 10,878 and 10,707 cal BC at the onset of the Younger Dryas (YD) cool period. The Upper Toluca Pumice (UTP) tephra marker, caused by a Plinian eruption of the Nevado de Toluca volcano, dated from 10,666 to 10,612 cal BC, is above that layer. The eruption must have caused widespread environmental disruption in the region with evidence of extensive reworking and channelling by the Lake Texcoco shoreline and contributed to the widespread death and/or extinction of megafaunal populations, as suggested by earlier authors, but the new work reinforces the view that both catastrophic events must have caused large environmental disruption in a short time period of around two hundred years. There is no evidence for megafauna (mammoths, sabre toothed cats, camels, bison, glyptodonts) after the UTP volcanic event and subsequent lahars in the Basin of Mexico. At Tocuila, although there are some in situ tephra markers in nearshore lake sediments, such as the Great Basaltic Ash (GBA) and the UTP Ash, there is evidence of much reworking of several tephra populations in various combinations. The mammoth bone accumulation is reworked in a lahar sequence (volcanic mudflow) derived from several source sediments but associated with the major UTP Plinian eruption. Paleoindian populations were also present in the Basin of Mexico during the YD period, where several Paleoindian skeletons were found associated with the UTP ash deposits, e.g. Metro Man, Chimalhuacan Man and Tlapacoya Man.

  7. Earthquake-induced water-level fluctuations at Yucca Mountain, Nevada, June 1992

    International Nuclear Information System (INIS)

    O'Brien, G.M.

    1993-01-01

    This report presents earthquake-induced water-level and fluid-pressure data for wells in the Yucca Mountain area, Nevada, during June 1992. Three earthquakes occurred which caused significant water-level and fluid-pressure responses in wells. Wells USW H-5 and USW H-6 are continuously monitored to detect short-term responses caused by earthquakes. Two wells, monitored hourly, had significant, longer-term responses in water level following the earthquakes. On June 28, 1992, a 7.5-magnitude earthquake occurred near Landers, California causing an estimated maximum water-level change of 90 centimeters in well USW H-5. Three hours later a 6.6-magnitude earthquake occurred near Big Bear Lake, California; the maximum water-level fluctuation was 20 centimeters in well USW H-5. A 5.6-magnitude earthquake occurred at Little Skull Mountain, Nevada, on June 29, approximately 23 kilometers from Yucca Mountain. The maximum estimated short-term water-level fluctuation from the Little Skull Mountain earthquake was 40 centimeters in well USW H-5. The water level in well UE-25p number-sign 1, monitored hourly, decreased approximately 50 centimeters over 3 days following the Little Skull Mountain earthquake. The water level in UE-25p number-sign 1 returned to pre-earthquake levels in approximately 6 months. The water level in the lower interval of well USW H-3 increased 28 centimeters following the Little Skull Mountain earthquake. The Landers and Little Skull Mountain earthquakes caused responses in 17 intervals of 14 hourly monitored wells, however, most responses were small and of short duration. For several days following the major earthquakes, many smaller magnitude aftershocks occurred causing measurable responses in the continuously monitored wells

  8. Monitoring and research on the Bi-State Distinct Population Segment of greater sage-grouse (Centrocercus urophasianus) in the Pine Nut Mountains, California and Nevada—Study progress report, 2011–15

    Science.gov (United States)

    Coates, Peter S.; Andrle, Katie M.; Ziegler, Pilar T.; Casazza, Michael L.

    2016-09-29

    The Bi-State distinct population segment (DPS) of greater sage-grouse (Centrocercus urophasianus) that occurs along the Nevada–California border was proposed for listing as threatened under the Endangered Species Act (ESA) by the U.S. Fish and Wildlife Service (FWS) in October 2013. However, in April 2015, the FWS determined that the Bi-State DPS no longer required protection under the ESA and withdrew the proposed rule to list the Bi-State DPS (U.S. Fish and Wildlife Service, 2015). The Bi-State DPS occupies portions of Alpine, Mono, and Inyo Counties in California, and Douglas, Esmeralda, Lyon, Carson City, and Mineral Counties in Nevada. Unique threats facing this population include geographic isolation, expansion of single-leaf pinyon (Pinus monophylla) and Utah juniper (Juniperus osteosperma), anthropogenic activities, and recent changes in predator communities. Estimating population vital rates, identifying seasonal habitat, quantifying threats, and identifying movement patterns are important first steps in developing effective sage-grouse management and conservation plans. During 2011–15, we radio- and Global Positioning System (GPS)-marked (2012–14 only) 44, 47, 17, 9, and 3 sage-grouse, respectively, for a total of 120, in the Pine Nut Mountains Population Management Unit (PMU). No change in lek attendance was detected at Mill Canyon (maximum=18 males) between 2011 and 2012; however, 1 male was observed in 2014 and no males were observed in 2013 and 2015. Males were observed near Bald Mountain in 2013, making it the first year this lek was observed to be active during the study period. Males were observed at a new site in the Buckskin Range in 2014 during trapping efforts and again observed during surveys in 2015. Findings indicate that pinyon-juniper is avoided by sage-grouse during every life stage. Nesting females selected increased sagebrush cover, sagebrush height, and understory horizontal cover, and brood-rearing females selected similar areas

  9. Watching the Creation of Southern California's Largest Reservoir

    Science.gov (United States)

    2001-01-01

    The new Diamond Valley Lake Reservoir near the city of Hemet in Riverside County is billed as the largest earthworks construction project in U.S.history. Construction began in 1995 and involved 31 million cubic meters of foundation excavation and 84 million cubic meters of embankment construction. This set of MISR images captures the most recent phase in the reservoir's activation. At the upper left is a natural-color view acquired by the instrument's vertical-viewing (nadir) camera on March 14, 2000 (Terra orbit 1273), shortly after the Metropolitan Water District began filling the reservoir with water from the Colorado River and Northern California. Water appears darker than the surrounding land. The image at the upper right was acquired nearly one year later on March 1, 2001 (Terra orbit 6399), and shows a clear increase in the reservoir's water content. When full, the lake will hold nearly a trillion liters of water.According to the Metropolitan Water District, the 7 kilometer x 3 kilometer reservoir nearly doubles Southern California's above-groundwater storage capacity. In addition to routine water management, Diamond Valley Lake is designed to provide protection against drought and a six-month emergency supply in the event of earthquake damage to a major aqueduct. In the face of electrical power shortages, it is also expected to reduce dependence on the pumping of water from northern mountains during the high-demand summer months. An unexpected result of site excavation was the uncovering of mastodon and mammoth skeletons along with bones from extinct species not previously thought to have been indigenous to the area, such as the giant long-horned bison and North American lion. A museum and interpretive center is being built to protect these finds.The lower MISR image, from May 20, 2001 (Terra orbit 7564), is a false-color view combining data from the instrument's 26-degree forward view (displayed as blue) with data from the 26-degree backward view

  10. Three-month performance evaluation of the Nanometrics, Inc., Libra Satellite Seismograph System in the northern California Seismic Network

    Science.gov (United States)

    Oppenheimer, David H.

    2000-01-01

    In 1999 the Northern California Seismic Network (NCSN) purchased a Libra satellite seismograph system from Nanometrics, Inc to assess whether this technology was a cost-effective and robust replacement for their analog microwave system. The system was purchased subject to it meeting the requirements, criteria and tests described in Appendix A. In early 2000, Nanometrics began delivery of various components of the system, such as the hub and remote satellite dish and mounting hardware, and the NCSN installed and assembled most equipment in advance of the arrival of Nanometrics engineers to facilitate the configuration of the system. The hub was installed in its permanent location, but for logistical reasons the "remote" satellite hardware was initially configured at the NCSN for testing. During the first week of April Nanometrics engineers came to Menlo Park to configure the system and train NCSN staff. The two dishes were aligned with the satellite, and the system was fully operational in 2 days with little problem. Nanometrics engineers spent the remaining 3 days providing hands-on training to NCSN staff in hardware/software operation, configuration, and maintenance. During the second week of April 2000, NCSN staff moved the entire remote system of digitizers, dish assembly, and mounting hardware to Mammoth Lakes, California. The system was reinstalled at the Mammoth Lakes water treatment plant and communications successfully reestablished with the hub via the satellite on 14 April 2000. The system has been in continuous operation since then. This report reviews the performance of the Libra system for the three-month period 20 April 2000 through 20 July 2000. The purpose of the report is to assess whether the system passed the acceptance tests described in Appendix A. We examine all data gaps reported by NCSN "gap list" software and discuss their cause.

  11. First finding of a mammoth female ( Mammuthus primigenius Blum.) on the Taimyr Peninsula

    Science.gov (United States)

    Kirillova, I. V.; Shidlovskiy, F. K.; Khasanov, B. F.

    2011-02-01

    The first finding of a mammoth female skeleton from the Kastykhtakh River valley, Taimyr Peninsula, is described. The skeleton consists of 104 elements including the skull and lower jaw; small distal limb bones, tail vertebrae, and one tusk are absent. There are teeth of the two last changes in the jaws. The skeleton elements have individual features: sigmoid contact of the low second and third molars, crack in the neural arch of the atlas, and false joint and calluses on places of the rib fractures. The calibrated radiocarbon dating of the tubular bone is 32 070-30 565 yr (Kargin interglacial time).

  12. Preliminary results of studies of the Valea Morilor Upper Palaeolithic site (Chisinau, Republic of Moldova) : A new camp of mammoth hunters

    NARCIS (Netherlands)

    Obada, Teodor; van der Plicht, Johannes; Markova, Anastasia; Prepelitsa, Afanasie

    2012-01-01

    Preliminary results are presented from the studies of a newly found Paleolithic site - Valea Morilor (Chisingu, Republic of Moldova). The excavations produced unquestionable evidence of mammoth hunting (Mammuthus primigenius Blumenbach, 1799). Excavations of 2009-2010 opened an area of 1264 m(2).

  13. Pesticides and Population Declines of California Alpine Frogs

    Science.gov (United States)

    Airborne pesticides from the Central Valley of California have been implicated as a cause for population declines of several amphibian species, with the strongest evidence for the mountain yellow-legged frog complex (Rana muscosa and R. sierrae) in the Sierra Nevada. We measured ...

  14. Full Core TREAT Kinetics Demonstration Using Rattlesnake/BISON Coupling Within MAMMOTH

    Energy Technology Data Exchange (ETDEWEB)

    Ortensi, Javier [Idaho National Lab. (INL), Idaho Falls, ID (United States); DeHart, Mark D. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Gleicher, Frederick N. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Wang, Yaqi [Idaho National Lab. (INL), Idaho Falls, ID (United States); Alberti, Anthony L. [Oregon State Univ., Corvallis, OR (United States); Palmer, Todd S. [Oregon State Univ., Corvallis, OR (United States)

    2015-08-01

    This report summarizes key aspects of research in evaluation of modeling needs for TREAT transient simulation. Using a measured TREAT critical measurement and a transient for a small, experimentally simplified core, Rattlesnake and MAMMOTH simulations are performed building from simple infinite media to a full core model. Cross sections processing methods are evaluated, various homogenization approaches are assessed and the neutronic behavior of the core studied to determine key modeling aspects. The simulation of the minimum critical core with the diffusion solver shows very good agreement with the reference Monte Carlo simulation and the experiment. The full core transient simulation with thermal feedback shows a significantly lower power peak compared to the documented experimental measurement, which is not unexpected in the early stages of model development.

  15. Concentrations, Deposition, and Effects of Nitrogenous Pollutants in Selected California Ecosystems

    Directory of Open Access Journals (Sweden)

    Andrzej Bytnerowicz

    2001-01-01

    Full Text Available Atmospheric deposition of nitrogen (N in California ecosystems is ecologically significant and highly variable, ranging from about 1 to 45 kg/ha/year. The lowest ambient concentrations and deposition values are found in the eastern and northern parts of the Sierra Nevada Mountains and the highest in parts of the San Bernardino and San Gabriel Mountains that are most exposed to the Los Angeles air pollution plume. In the Sierra Nevada Mountains, N is deposited mostly in precipitation, although dry deposition may also provide substantial amounts of N. On the western slopes of the Sierra Nevada, the majority of airborne N is in reduced forms as ammonia (NH3 and particulate ammonium (NH4+ from agricultural activities in the California Central Valley. In southern California, most of the N air pollution is in oxidized forms as nitrogen oxides (NOx, nitric acid (HNO3, and particulate nitrate (NO3– resulting from fossil fuel combustion and subsequent complex photochemical reactions. In southern California, dry deposition of gases and particles provides most (up to 95% of the atmospheric N to forests and other ecosystems. In the mixed-conifer forest zone, elevated deposition of N may initially benefit growth of vegetation, but chronic effects may be expressed as deterioration of forest health and sustainability. HNO3 vapor alone has a potential for toxic effects causing damage of foliar surfaces of pines and oaks. In addition, dry deposition of predominantly HNO3 has lead to changes in vegetation composition and contamination of ground- and stream water where terrestrial N loading is high. Long-term, complex interactions between N deposition and other environmental stresses such as elevated ozone (O3, drought, insect infestations, fire suppression, or intensive land management practices may affect water quality and sustainability of California forests and other ecosystems.

  16. 75 FR 17430 - Hopper Mountain, Bitter Creek, and Blue Ridge National Wildlife Refuges, Kern, San Luis Obispo...

    Science.gov (United States)

    2010-04-06

    ...] Hopper Mountain, Bitter Creek, and Blue Ridge National Wildlife Refuges, Kern, San Luis Obispo, Tulare... Wildlife Refuges (NWRs) located in Kern, San Luis Obispo, Tulare, and Ventura counties of California. We... developing a CCP for Hopper Mountain, Bitter Creek, and Blue Ridge NWRs in Kern, San Luis Obispo, Tulare, and...

  17. Substitutions in woolly mammoth hemoglobin confer biochemical properties adaptive for cold tolerance

    DEFF Research Database (Denmark)

    Campbell, Kevin L.; Roberts, Jason E.E.; Watson, Laura N.

    2010-01-01

    We have genetically retrieved, resurrected and performed detailed structure-function analyses on authentic woolly mammoth hemoglobin to reveal for the first time both the evolutionary origins and the structural underpinnings of a key adaptive physiochemical trait in an extinct species. Hemoglobin...... binds and carries O2; however, its ability to offload O2 to respiring cells is hampered at low temperatures, as heme deoxygenation is inherently endothermic (that is, hemoglobin-O2 affinity increases as temperature decreases). We identify amino acid substitutions with large phenotypic effect...... the Pleistocene period. This powerful new approach to directly analyze the genetic and structural basis of physiological adaptations in an extinct species adds an important new dimension to the study of natural selection....

  18. Histology of a Woolly Mammoth (Mammuthus primigenius) Preserved in Permafrost, Yamal Peninsula, Northwest Siberia.

    Science.gov (United States)

    Papageorgopoulou, Christina; Link, Karl; Rühli, Frank J

    2015-06-01

    In 2007, the baby woolly mammoth (Mammuthus primigenius) named Lyuba was found frozen in the Siberian tundra permafrost along the Yuribey River. She was proclaimed the best-preserved mammoth discovery. As part of the endoscopic examination of Lyuba, tissue samples of hair, muscle, and internal organs were taken. The sectioned biopsies were stained using standard and special histological stains. In general, the microscopic preservation of the tissue was good although no clearly identifiable cell nuclei were found by standard staining methods. Only a few cell nuclei could be identified in some samples when fluorescence stained with DAPI. The best-preserved structures were collagen fibers and muscle tissue, which gave some structural resemblance to the organs. In the hairs, evidence of pigmentation, a scaly surface, diagonal intra-hair structures, and a medulla were seen. Fat droplets could be identified with Sudan Red in the subcutaneous fat sample and in several organs. Bacteria were seen on the lumen side of the small intestine and caecum, and in the liver and lung tissue. In addition, fungi and pollen were seen in the lung sample. In the wall of the caecum and small intestine, blood vessels and nerves were visualized. Iron was identified in the vivianite sample. Some biopsies compared well structurally with the African elephant tissue sections. The histological findings support the theory that Lyuba drowned in muddy water. The microscopic tissue preservation and cell nuclei destruction indicate that Lyuba's body underwent at least one freeze-thaw cycle. © 2015 Wiley Periodicals, Inc.

  19. Acid mine drainage biogeochemistry at Iron Mountain, California

    Directory of Open Access Journals (Sweden)

    Gihring Thomas M

    2004-06-01

    Full Text Available The Richmond Mine at Iron Mountain, Shasta County, California, USA provides an excellent opportunity to study the chemical and biological controls on acid mine drainage (AMD generation in situ, and to identify key factors controlling solution chemistry. Here we integrate four years of field-based geochemical data with 16S rRNA gene clone libraries and rRNA probe-based studies of microbial population structure, cultivation-based metabolic experiments, arsenopyrite surface colonization experiments, and results of intermediate sulfur species kinetics experiments to describe the Richmond Mine AMD system. Extremely acidic effluent (pH between 0.5 and 0.9 resulting from oxidation of approximately 1 × 105 to 2 × 105 moles pyrite/day contains up to 24 g/1 Fe, several g/1 Zn and hundreds of mg/l Cu. Geochemical conditions change markedly over time, and are reflected in changes in microbial populations. Molecular analyses of 232 small subunit ribosomal RNA (16S rRNA gene sequences from six sites during a sampling time when lower temperature (0.8 conditions predominated show the dominance of Fe-oxidizing prokaryotes such as Ferroplasma and Leptospirillum in the primary drainage communities. Leptospirillum group III accounts for the majority of Leptospirillum sequences, which we attribute to anomalous physical and geochemical regimes at that time. A couple of sites peripheral to the main drainage, "Red Pool" and a pyrite "Slump," were even higher in pH (>1 and the community compositions reflected this change in geochemical conditions. Several novel lineages were identified within the archaeal Thermoplasmatales order associated with the pyrite slump, and the Red Pool (pH 1.4 contained the only population of Acidithiobacillus. Relatively small populations of Sulfobacillus spp. and Acidithiobacillus caldus may metabolize elemental sulfur as an intermediate species in the oxidation of pyritic sulfide to sulfate. Experiments show that elemental sulfur which

  20. Groundwater-quality data in the Klamath Mountains study unit, 2010: results from the California GAMA Program

    Science.gov (United States)

    Mathany, Timothy M.; Belitz, Kenneth

    2014-01-01

    Groundwater quality in the 8,806-square-mile Klamath Mountains (KLAM) study unit was investigated by the U.S. Geological Survey (USGS) from October to December 2010, as part of the California State Water Resources Control Board (SWRCB) Groundwater Ambient Monitoring and Assessment (GAMA) Program’s Priority Basin Project (PBP). The GAMA-PBP was developed in response to the California Groundwater Quality Monitoring Act of 2001 and is being conducted in collaboration with the SWRCB and Lawrence Livermore National Laboratory (LLNL). The KLAM study unit was the thirty-third study unit to be sampled as part of the GAMA-PBP. The GAMA Klamath Mountains study was designed to provide a spatially unbiased assessment of untreated-groundwater quality in the primary aquifer system and to facilitate statistically consistent comparisons of untreated-groundwater quality throughout California. The primary aquifer system is defined by the perforation intervals of wells listed in the California Department of Public Health (CDPH) database for the KLAM study unit. Groundwater quality in the primary aquifer system may differ from the quality in the shallower or deeper water-bearing zones; shallower groundwater may be more vulnerable to surficial contamination. In the KLAM study unit, groundwater samples were collected from sites in Del Norte, Siskiyou, Humboldt, Trinity, Tehama, and Shasta Counties, California. Of the 39 sites sampled, 38 were selected by using a spatially distributed, randomized grid-based method to provide statistical representation of the primary aquifer system in the study unit (grid sites), and the remaining site was non-randomized (understanding site). The groundwater samples were analyzed for basic field parameters, organic constituents (volatile organic compounds [VOCs] and pesticides and pesticide degradates), inorganic constituents (trace elements, nutrients, major and minor ions, total dissolved solids [TDS]), radon-222, gross alpha and gross beta

  1. A bibliography of Klamath Mountains geology, California and Oregon, listing authors from Aalto to Zucca for the years 1849 to Mid-2003

    Science.gov (United States)

    Irwin, William P.

    2003-01-01

    This bibliography of Klamath Mountains geology was begun, although not in a systematic or comprehensive way, when, in 1953, I was assigned the task of preparing a report on the geology and mineral resources of the drainage basins of the Trinity, Klamath, and Eel Rivers in northwestern California. During the following 40 or more years, I maintained an active interest in the Klamath Mountains region and continued to collect bibliographic references to the various reports and maps of Klamath geology that came to my attention. When I retired in 1989 and became a Geologist Emeritus with the Geological Survey, I had a large amount of bibliographic material in my files. Believing that a comprehensive bibliography of a region is a valuable research tool, I have expended substantial effort to make this bibliography of the Klamath Mountains as complete as is reasonably feasible. My aim was to include all published reports and maps that pertain primarily to the Klamath Mountains, as well as all pertinent doctoral and master's theses. In addition, I included reports in which the Klamath Mountains are of significance but not the primary focus; these latter kinds are mostly reports that correlate the Klamath terranes with those of other provinces, that compare the genesis of Klamath rocks with those elsewhere, or that include the Klamath Mountains in a continental framework. Reports describing the geology of the overlap sequences such as the Great Valley sequence, Hornbrook Formation, and Tertiary sediments and volcanics are included where those rocks lie within the limits of the Klamath Mountains province, but are only selectively included where the overlap sequences are mainly peripheral to the province. The alphabetical part of the bibliography consists of approximately 1700 entries. The list of primary references probably is virtually complete through 1994 and includes some 1995 references. The earliest reference is to James Dwight Dana in 1849. In order to restrict the size

  2. Mechanisms controlling the impact of multi-year drought on mountain hydrology

    Science.gov (United States)

    Roger C. Bales; Michael L. Goulden; Carolyn T. Hunsaker; Martha H. Conklin; Peter C. Hartsough; Anthony T. O’Geen; Jan W. Hopmans; Mohammad Safeeq

    2018-01-01

    Mountain runoff ultimately reflects the difference between precipitation (P) and evapotranspiration (ET), as modulated by biogeophysical mechanisms that intensify or alleviate drought impacts. These modulating mechanisms are seldom measured and not fully understood. The impact of the warm 2012–15 California drought on the...

  3. The Reclaim Screw in Mammoth Silos Operating on a Free Surface: Comparison Between Horizontal and Inclined Operation on Free Flowing Bulk Solids

    NARCIS (Netherlands)

    Oosterhuis, E.J.; Schott, Dingena; van Wijk, Arjen

    2004-01-01

    Although the screw conveyor, operating on a free surface, has been used for years as reclaim and storage equipment in mammoth silos, there is no documented knowledge about its spill characteristics. Research at Delft University of Technology together with ESI Eurosilo B.V. on the inclined use of the

  4. Ground-water altitudes and well data, Nye County, Nevada, and Inyo County, California

    International Nuclear Information System (INIS)

    Ciesnik, M.S.

    1995-01-01

    This report contains ground-water altitudes and well data for wells located in Nye County, Nevada, and Inyo County, California, south of Yucca Mountain, Nevada, the potential site for a high-level nuclear waste repository. Data are from wells whose coordinates are within the Beatty and Death Valley Junction, California-Nevada maps from the US Geological Survey, scale 1:100,000 (30-minute x 60-minute quadrangle). Compilation of these data was made to provide a reference for numerical models of ground-water flow at Yucca Mountain and its vicinity. Water-level measurements were obtained from the US Geological Survey National Water Information System (NWIS) data base, and span the period of October 1951 to May 1991; most measurements were made from 1980 to 1990

  5. Groundwater quality in Coachella Valley, California

    Science.gov (United States)

    Dawson, Barbara J. Milby; Belitz, Kenneth

    2012-01-01

    Groundwater provides more than 40 percent of California’s drinking water. To protect this vital resource, the State of California created the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The Priority Basin Project of the GAMA Program provides a comprehensive assessment of the State’s groundwater quality and increases public access to groundwater-quality information. Coachella Valley is one of the study areas being evaluated. The Coachella study area is approximately 820 square miles (2,124 square kilometers) and includes the Coachella Valley groundwater basin (California Department of Water Resources, 2003). Coachella Valley has an arid climate, with average annual rainfall of about 6 inches (15 centimeters). The runoff from the surrounding mountains drains to rivers that flow east and south out of the study area to the Salton Sea. Land use in the study area is approximately 67 percent (%) natural, 21% agricultural, and 12% urban. The primary natural land cover is shrubland. The largest urban areas are the cities of Indio and Palm Springs (2010 populations of 76,000 and 44,000, respectively). Groundwater in this basin is used for public and domestic water supply and for irrigation. The main water-bearing units are gravel, sand, silt, and clay derived from surrounding mountains. The primary aquifers in Coachella Valley are defined as those parts of the aquifers corresponding to the perforated intervals of wells listed in the California Department of Public Health database. Public-supply wells in Coachella Valley are completed to depths between 490 and 900 feet (149 to 274 meters), consist of solid casing from the land surface to a depth of 260 to 510 feet (79 to 155 meters), and are screened or perforated below the solid casing. Recharge to the groundwater system is primarily runoff from the surrounding mountains, and by direct infiltration of irrigation. The primary sources of discharge are pumping wells, evapotranspiration, and underflow to

  6. Mammoth ecosystem: Climatic areal, animal's density and cause of extinctions

    Science.gov (United States)

    Zimov, S.; Zimov, N.; Zimova, G.; Chapin, S. F.

    2008-12-01

    During the last glaciations Mammoth Ecosystem (ME) occupied territory from present-day France to Canada and from the Arctic islands to China. This ecosystem played major role in global carbon cycle and human settling around the planet. Causes of extinction of this ecosystem are debatable. Analyses of hundreds of radiocarbon dates of ME animal fossil remains showed that warming and moistening of climate wasn't accompanied by animal extinction. On the opposite, on the north right after the warming rise of herbivore population was observed. Reconstruction of ME climatic areal showed that its climatic optimum lies within range of annual precipitation of 200-350 mm and average summer temperatures of +8-+12oC which corresponds with modern climate of Northern Siberia. Analyses of bones and skeletons concentrations in permafrost of Northern Siberia showed that animal density in ME was similar to African savannah. That was a high productive ecosystem that could sustain in wide variety of climates because numerous herbivores maintained there pastures themselves.

  7. Sensitivity of streamflow to climate change in California

    Science.gov (United States)

    Grantham, T.; Carlisle, D.; Wolock, D.; McCabe, G. J.; Wieczorek, M.; Howard, J.

    2015-12-01

    Trends of decreasing snowpack and increasing risk of drought are looming challenges for California water resource management. Increasing vulnerability of the state's natural water supplies threatens California's social-economic vitality and the health of its freshwater ecosystems. Despite growing awareness of potential climate change impacts, robust management adaptation has been hindered by substantial uncertainty in future climate predictions for the region. Down-scaled global climate model (GCM) projections uniformly suggest future warming of the region, but projections are highly variable with respect to the direction and magnitude of change in regional precipitation. Here we examine the sensitivity of California surface water supplies to climate variation independently of GCMs. We use a statistical approach to construct predictive models of monthly streamflow based on historical climate and river basin features. We then propagate an ensemble of synthetic climate simulations through the models to assess potential streamflow responses to changes in temperature and precipitation in different months and regions of the state. We also consider the range of streamflow change predicted by bias-corrected downscaled GCMs. Our results indicate that the streamflow in the xeric and coastal mountain regions of California is more sensitive to changes in precipitation than temperature, whereas streamflow in the interior mountain region responds strongly to changes in both temperature and precipitation. Mean climate projections for 2025-2075 from GCM ensembles are highly variable, indicating streamflow changes of -50% to +150% relative to baseline (1980-2010) for most months and regions. By quantifying the sensitivity of streamflow to climate change, rather than attempting to predict future hydrologic conditions based on uncertain GCM projections, these results should be more informative to water managers seeking to assess, and potentially reduce, the vulnerability of surface

  8. The character and causes of flash flood occurrence changes in mountainous small basins of Southern California under projected climatic change

    Directory of Open Access Journals (Sweden)

    Theresa M. Modrick

    2015-03-01

    Full Text Available Study region: Small watersheds (O[25 km2] in the mountain regions of southern California comprise the study region. Study focus: This paper examines changes in flash flood occurrence in southern California resulting from projected climatic change. The methodology synthesizes elements of meteorological modeling, hydrology and geomorphology into an integrated modeling approach to define flash flood occurrence in a systematic and consistent way on a regional basis with high spatial and temporal resolution appropriate for flash flooding. A single climate model with three-dimensional atmospheric detail was used as input to drive simulations for historical and future periods. New hydrological insights for the region: Results indicate an increase in flash flood occurrence for the study region. For two distributed hydrologic models employed, the increase in flash flood occurrence frequency is on average between 30% and 40%. Regional flash flood occurrence is characterized by near saturation of the upper soil layer, and wider ranges in lower soil layer saturation and in precipitation. Overall, a decrease in the total number of precipitation events was found, although with increased precipitation intensity, increased event duration, and higher soil saturation conditions for the 21st century. This combination could signify more hazardous conditions, with fewer precipitation events but higher rainfall intensity and over soils with higher initial soil moisture saturation, leading to more frequent occurrence of flash floods. Keywords: Flash flooding, Climate change, Soil moisture, Precipitation, Distributed hydrologic modeling

  9. Microbial activity at Yucca Mountain

    International Nuclear Information System (INIS)

    Horn, J.M.; Meike, A.

    1995-01-01

    The U.S. Department of Energy is engaged in a suitability study for a potential geological repository at Yucca Mountain, Nevada, for the containment and storage of commercially generated spent fuel and defense high-level nuclear waste. There is growing recognition of the role that biotic factors could play in this repository, either directly through microbially induced corrosion (MIC), or indirectly by altering the chemical environment or contributing to the transport of radionuclides. As a first step toward describing and predicting these processes, a workshop was held on April 10-12, 1995, in Lafayette, California. The immediate aims of the workshop were: (1) To identify microbially related processes relevant to the design of a radioactive waste repository under conditions similar to those at Yucca Mountain. (2) To determine parameters that are critical to the evaluation of a disturbed subterranean environment. (3) To define the most effective means of investigating the factors thus identified

  10. Microbial activity at Yucca Mountain

    Energy Technology Data Exchange (ETDEWEB)

    Horn, J.M.; Meike, A.

    1995-09-25

    The U.S. Department of Energy is engaged in a suitability study for a potential geological repository at Yucca Mountain, Nevada, for the containment and storage of commercially generated spent fuel and defense high-level nuclear waste. There is growing recognition of the role that biotic factors could play in this repository, either directly through microbially induced corrosion (MIC), or indirectly by altering the chemical environment or contributing to the transport of radionuclides. As a first step toward describing and predicting these processes, a workshop was held on April 10-12, 1995, in Lafayette, California. The immediate aims of the workshop were: (1) To identify microbially related processes relevant to the design of a radioactive waste repository under conditions similar to those at Yucca Mountain. (2) To determine parameters that are critical to the evaluation of a disturbed subterranean environment. (3) To define the most effective means of investigating the factors thus identified.

  11. California State Waters Map Series: offshore of San Gregorio, California

    Science.gov (United States)

    Cochrane, Guy R.; Dartnell, Peter; Greene, H. Gary; Watt, Janet T.; Golden, Nadine E.; Endris, Charles A.; Phillips, Eleyne L.; Hartwell, Stephen R.; Johnson, Samuel Y.; Kvitek, Rikk G.; Erdey, Mercedes D.; Bretz, Carrie K.; Manson, Michael W.; Sliter, Ray W.; Ross, Stephanie L.; Dieter, Bryan E.; Chin, John L.; Cochran, Susan A.; Cochrane, Guy R.; Cochran, Susan A.

    2014-01-01

    In 2007, the California Ocean Protection Council initiated the California Seafloor Mapping Program (CSMP), designed to create a comprehensive seafloor map of high-resolution bathymetry, marine benthic habitats, and geology within the 3-nautical-mile limit of California's State Waters. The CSMP approach is to create highly detailed seafloor maps through collection, integration, interpretation, and visualization of swath sonar data, acoustic backscatter, seafloor video, seafloor photography, high-resolution seismic-reflection profiles, and bottom-sediment sampling data. The map products display seafloor morphology and character, identify potential marine benthic habitats, and illustrate both the surficial seafloor geology and shallow (to about 100 m) subsurface geology. The Offshore of San Gregorio map area is located in northern California, on the Pacific coast of the San Francisco Peninsula about 50 kilometers south of the Golden Gate. The map area lies offshore of the Santa Cruz Mountains, part of the northwest-trending Coast Ranges that run roughly parallel to the San Andreas Fault Zone. The Santa Cruz Mountains lie between the San Andreas Fault Zone and the San Gregorio Fault system. The nearest significant onshore cultural centers in the map area are San Gregorio and Pescadero, both unincorporated communities with populations well under 1,000. Both communities are situated inland of state beaches that share their names. No harbor facilities are within the Offshore of San Gregorio map area. The hilly coastal area is virtually undeveloped grazing land for sheep and cattle. The coastal geomorphology is controlled by late Pleistocene and Holocene slip in the San Gregorio Fault system. A westward bend in the San Andreas Fault Zone, southeast of the map area, coupled with right-lateral movement along the San Gregorio Fault system have caused regional folding and uplift. The coastal area consists of high coastal bluffs and vertical sea cliffs. Coastal promontories in

  12. The mountain pine beetle and whitebark pine waltz: Has the music changed?

    Science.gov (United States)

    Barbara J. Bentz; Greta Schen-Langenheim

    2007-01-01

    The mountain pine beetle, Dendroctonus ponderosae Hopkins (Coleoptera: Curculionidae, Scolytinae) (MPB), is a bark beetle native to western North American forests, spanning wide latitudinal and elevational gradients. MPB infest and reproduce within the phloem of most Pinus species from northern Baja California in Mexico to central British Columbia in...

  13. Monitoring Phytophthora ramorum distribution in streams within California watersheds

    Science.gov (United States)

    S.K. Murphy; C. Lee; Y. Valachovic; J. Bienapfl; W. Mark; A. Jirka; D.R. Owen; T.F. Smith; D.M. Rizzo

    2008-01-01

    One hundred-thirteen sites were established in perennial watercourses and sampled for 1 to 3 years between 2004 and 2006 to monitor for presence of Phytophthora ramorum throughout coastal central and northern California watersheds as well as portions of the Sierra Nevada mountain range (Murphy and others 2006). The majority of the monitored...

  14. Groundwater quality in the Antelope Valley, California

    Science.gov (United States)

    Dawson, Barbara J. Milby; Belitz, Kenneth

    2012-01-01

    Groundwater provides more than 40 percent of California’s drinking water. To protect this vital resource, the State of California created the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The Priority Basin Project of the GAMA Program provides a comprehensive assessment of the State’s groundwater quality and increases public access to groundwater-quality information. Antelope Valley is one of the study areas being evaluated. The Antelope study area is approximately 1,600 square miles (4,144 square kilometers) and includes the Antelope Valley groundwater basin (California Department of Water Resources, 2003). Antelope Valley has an arid climate and is part of the Mojave Desert. Average annual rainfall is about 6 inches (15 centimeters). The study area has internal drainage, with runoff from the surrounding mountains draining towards dry lakebeds in the lower parts of the valley. Land use in the study area is approximately 68 percent (%) natural (mostly shrubland and grassland), 24% agricultural, and 8% urban. The primary crops are pasture and hay. The largest urban areas are the cities of Palmdale and Lancaster (2010 populations of 152,000 and 156,000, respectively). Groundwater in this basin is used for public and domestic water supply and for irrigation. The main water-bearing units are gravel, sand, silt, and clay derived from surrounding mountains. The primary aquifers in Antelope Valley are defined as those parts of the aquifers corresponding to the perforated intervals of wells listed in the California Department of Public Health database. Public-supply wells in Antelope Valley are completed to depths between 360 and 700 feet (110 to 213 meters), consist of solid casing from the land surface to a depth of 180 to 350 feet (55 to 107 meters), and are screened or perforated below the solid casing. Recharge to the groundwater system is primarily runoff from the surrounding mountains, and by direct infiltration of irrigation and sewer and septic

  15. Incipient Evolution of the Eastern California Shear Zone through a Transpressional Zone along the San Andreas Fault in the San Bernardino Mountains, California

    Science.gov (United States)

    Cochran, W. J.; Spotila, J. A.

    2017-12-01

    Measuring long-term accumulation of strike-slip displacements and transpressional uplift is difficult where strain is accommodated across wide shear zones, as opposed to a single major fault. The Eastern California Shear Zone (ECSZ) in southern California accommodates dextral shear across several strike-slip faults, and is potentially migrating and cutting through a formerly convergent zone of the San Bernardino Mountains (SBM). The advection of crust along the San Andreas fault to the SE has forced these two tectonic regimes into creating a nexus of interacting strike-slip faults north of San Gorgonio Pass. These elements make this region ideal for studying complex fault interactions, evolving fault geometries, and deformational overprinting within a wide shear zone. Using high-resolution topography and field mapping, this study aims to test whether diffuse, poorly formed strike-slip faults within the uplifted SBM block are nascent elements of the ECSZ. Topographic resolution of ≤ 1m was achieved using both lidar and UAV surveys along two Quaternary strike-slip faults, namely the Lake Peak fault and Lone Valley faults. Although the Lone Valley fault cuts across Quaternary alluvium, the geomorphic expression is obscured, and may be the result of slow slip rates. In contrast, the Lake Peak fault is located high elevations north of San Gorgonio Peak in the SBM, and displaces Quaternary glacial deposits. The deposition of large boulders along the escarpment also obscures the apparent magnitude of slip along the fault. Although determining fault offset is difficult, the Lake Peak fault does display evidence for minor right-lateral displacement, where the magnitude of slip would be consistent with individual faults within the ECSZ (i.e. ≤ 1 mm/yr). Compared to the preservation of displacement along strike-slip faults located within the Mojave Desert, the upland region of the SBM adds complexity for measuring fault offset. The distribution of strain across the entire

  16. Development of a reliable method for determining sex for a primitive rodent, the Point Arena mountain beaver (Aplodontia rufa nigra)

    Science.gov (United States)

    Kristine L. Pilgrim; William J. Zielinski; Fredrick V. Schlexer; Michael K. Schwartz

    2012-01-01

    The mountain beaver (Aplodontia rufa) is a primitive species of rodent, often considered a living fossil. The Point Arena mountain beaver (Aplodontia rufa nigra) is an endangered subspecies that occurs in a very restricted range in northern California. Efforts to recover this taxon have been limited by the lack of knowledge on their demography, particularly sex and age...

  17. Turbulence and Mountain Wave Conditions Observed with an Airborne 2-Micron Lidar

    Science.gov (United States)

    Teets, Edward H., Jr.; Ehernberger, Jack; Bogue, Rodney; Ashburn, Chris

    2007-01-01

    Joint efforts by the National Aeronautics and Space Administration (NASA), the Department of Defense, and industry partners are enhancing the capability of airborne wind and turbulence detection. The Airborne Coherent Lidar for Advanced In-Flight Measurements (ACLAIM) was flown on three series of flights to assess its capability over a range of altitudes, air mass conditions, and gust phenomena. This paper describes the observation of mountain waves and turbulence induced by mountain waves over the Tehachapi and Sierra Nevada mountain ranges in southern California by lidar onboard the NASA Airborne Science DC-8 airplane. The examples in this paper compare lidar-predicted mountain waves and wave-induced turbulence to subsequent aircraft-measured true airspeed. Airplane acceleration data is presented describing the effects of the wave-induced turbulence on the DC-8 airplane. Highlights of the lidar-predicted airspeed from the two flights show increases of 12 m/s at the mountain wave interface and peak-to-peak airspeed changes of 10 m/s and 15 m/s in a span of 12 s in moderate turbulence.

  18. Paleontology and paleoecology of guano deposits in Mammoth Cave, Kentucky, USA

    Science.gov (United States)

    Widga, Chris; Colburn, Mona

    2015-05-01

    Bat guano deposits are common in the Mammoth Cave system (Kentucky, USA). Paleontological remains associated with these deposits are important records of local landscape changes. Recent excavations in the cave suggest that vertebrate remains in most of these deposits are dominated by Chiroptera. Although no extinct fauna were identified, the presence of a large roost of Tadarida brasiliensis in the Chief City section is beyond the northern extent of its current range suggesting that this deposit dates to an undetermined interglacial period. Stable isotope analyses of Tadarida-associated guano indicate a C3 prey signature characteristic of forested habitat. This was unexpected since this species is typically associated with open environments. Further ecomorphological analysis of wing shape trends in interglacial, Holocene, and historic-aged assemblages indicate that interglacial faunas are dominated by fast-flying, open-space taxa (T. brasiliensis) while late Holocene and Historic assemblages contain more taxa that utilized closed forest or forest gaps.

  19. Klamath Mountains Ecoregion: Chapter 13 in Status and trends of land change in the Western United States--1973 to 2000

    Science.gov (United States)

    Sleeter, Benjamin M.; Calzia, James P.

    2012-01-01

    The Klamath Mountains Ecoregion covers approximately 47,791 km2 (18,452 mi2) of the Klamath and Siskiyou Mountains of northern California and southern Oregon (fig. 1) (Omernik, 1987; U.S. Environmental Protection Agency, 1997). The ecoregion is flanked by the Coast Range Ecoregion to the west, the Southern and Central California Chaparral and Oak Woodlands Ecoregion to the south, the Cascades and the Eastern Cascades Slopes and Foothills Ecoregions to the east, and the Willamette Valley Ecoregion to the north. The mild Mediterranean climate of the ecoregion is characterized by hot, dry summers and wet winters; the amount of winter moisture varies within the ecoregion, decreasing from west to east. The Klamath–Siskiyou Mountains region is widely recognized as an important biodiversity hotspot (Whittaker, 1960; Kruckeberg, 1984; Wagner, 1997; DellaSala and others, 1999), containing more than 3,500 plant species, more than 200 of which are endemic (Sawyer, 2007). A biological assessment by DellaSala and others (1999) ranked the Klamath–Siskiyou Mountains region as the fifth richest coniferous forest in terms of species diversity. In addition, the International Union for the Conservation of Nature considers the region an area of notable botanical importance (Wagner, 1997). Twenty-nine different species of conifers can be found in the Klamath Mountains Ecoregion (Sawyer, 1996).

  20. Relations Between Rainfall and Postfire Debris-Flow and Flood Magnitudes for Emergency-Response Planning, San Gabriel Mountains, Southern California

    Science.gov (United States)

    Cannon, Susan H.; Boldt, Eric M.; Kean, Jason W.; Laber, Jayme; Staley, Dennis M.

    2010-01-01

    Following wildfires, emergency-response and public-safety agencies are faced often with making evacuation decisions and deploying resources both well in advance of each coming winter storm and during storms themselves. Information critical to this process is provided for recently burned areas in the San Gabriel Mountains of southern California. The National Weather Service (NWS) issues Quantitative Precipitation Forecasts (QPFs) for the San Gabriel Mountains twice a day, at approximately 4 a.m. and 4 p.m., along with unscheduled updates when conditions change. QPFs provide estimates of rainfall totals in 3-hour increments for the first 12-hour period and in 6-hour increments for the second 12-hour period. Estimates of one-hour rainfall intensities can be provided in the forecast narrative, along with probable peak intensities and timing, although with less confidence than rainfall totals. A compilation of information on the hydrologic response to winter storms from recently burned areas in southern California steeplands was used to develop a system for classifying the magnitude of the postfire hydrologic response. The four-class system is based on a combination of the reported volume of individual debris flows, the consequences of these events in an urban setting, and the spatial extent of the response to the triggering storm. Threshold rainfall conditions associated with debris flow and floods of different magnitude classes are defined by integrating local rainfall data with debris-flow and flood magnitude information. The within-storm rainfall accumulations (A) and durations (D) above which magnitude I events are expected are defined by A=0.3D0.6. The function A=0.5D0.6 defines the within-storm rainfall accumulations and durations above which a magnitude III event will occur in response to a regional-scale storm, and a magnitude II event will occur if the storm affects only a few drainage basins. The function A=1.0D0.5defines the rainfall conditions above which

  1. Air Pollution Distribution Patterns in the San Bernardino Mountains of Southern California: a 40-Year Perspective

    Directory of Open Access Journals (Sweden)

    Andrzej Bytnerowicz

    2007-01-01

    Full Text Available Since the mid-1950s, native pines in the San Bernardino Mountains (SBM in southern California have shown symptoms of decline. Initial studies in 1963 showed that ozone (O3 generated in the upwind Los Angeles Basin was responsible for the injury and decline of sensitive trees. Ambient O3 decreased significantly by the mid-1990s, resulting in decreased O3 injury and improved tree growth. Increased growth of trees may also be attributed to elevated atmospheric nitrogen (N deposition. Since most of the N deposition to mixed conifer forest stands in the SBM results from dry deposition of nitric acid vapor (HNO3 and ammonia (NH3, characterization of spatial and temporal distribution of these two pollutants has become essential. Although maximum daytime O3 concentrations over last 40 years have significantly decreased (~3-fold, seasonal means have been reduced much less (~1.5-fold, with 2-week long means occasionally exceeding 100 ppb in the western part of the range. In the same area, significantly elevated concentrations of HNO3 and NH3, up to 17.5 and 18.5 μg/m3 as 2-week averages, respectively, have been determined. Elevated levels of O3 and increased N deposition together with long-term drought predispose the SBM forests to massive bark beetle attacks making them susceptible to catastrophic fires.

  2. Reconnaissance geologic map of the Dubakella Mountain 15 quadrangle, Trinity, Shasta, and Tehama Counties, California

    Science.gov (United States)

    Irwin, William P.; Yule, J. Douglas; Court, Bradford L.; Snoke, Arthur W.; Stern, Laura A.; Copeland, William B.

    2011-01-01

    The Dubakella Mountain 15' quadrangle is located just south of the Hayfork quadrangle and just east of the Pickett Peak quadrangle. It spans a sequence of four northwest-trending tectonostratigraphic terranes of the Klamath Mountains geologic province that includes, from east to west, the Eastern Hayfork, Western Hayfork, Rattlesnake Creek, and Western Jurassic terranes, as well as, in the southwest corner of the quadrangle, part of a fifth terrane, the Pickett Peak terrane of the Coast Ranges geologic province. The Eastern Hayfork terrane is a broken formation and melange of volcanic and sedimentary rocks that include blocks of limestone and chert. The limestone contains late Permian microfossils of Tethyan faunal affinity. The chert contains radiolarians of Mesozoic age, mostly Triassic, but none clearly Jurassic. The Western Hayfork terrane is an andesitic volcanic arc that consists mainly of agglomerate, tuff, argillite, and chert, and includes the Wildwood pluton. That pluton is related to the Middle Jurassic (about 170 Ma) Ironside Mountain batholith that is widely exposed farther north beyond the Dubakella Mountain quadrangle. The Rattlesnake Creek terrane is a highly disrupted ophiolitic melange of probable Late Triassic or Early Jurassic age. Although mainly ophiolitic, the melange includes blocks of plutonic rocks (about 200 Ma) of uncertain genetic relation. Some scattered areas of well-bedded mildly slaty detrital rocks of the melange appear similar to Galice Formation (unit Jg) and may be inliers of the nearby Western Jurassic terrane. The Western Jurassic terrane consists mainly of slaty to phyllitic argillite, graywacke, and stretched-pebble conglomerate and is correlative with the Late Jurassic Galice Formation of southwestern Oregon. The Pickett Peak terrane, the most westerly of the succession of terranes of the Dubakella Mountain quadrangle, is mostly fine-grained schist that includes the blueschist facies mineral lawsonite and is of Early

  3. Temporal and spatial trends in streamwater nitrate concentrations in the San Bernardino mountains, southern California

    Science.gov (United States)

    Mark E. Fenn; Mark A. Poth

    1999-01-01

    We report streamwater nitrate (NO,) concentrations for December 1995 to September 1998 from 19 sampling sites across a N deposition gradient in the San Bernardino Mountains. Streamwater NO3- concentrations in Devil Canyon (DC), a high-pollution area, and in previously reported data from the San Gabriel Mountains 40 km...

  4. Magnetic properties and emplacement of the Bishop tuff, California

    Science.gov (United States)

    Palmer, H.C.; MacDonald, W.D.; Gromme, C.S.; Ellwood, B.B.

    1996-01-01

    Anisotropy of magnetic susceptibility (AMS) and characteristic remanence were measured for 45 sites in the 0.76 Ma Bishop tuff, eastern California. Thirty-three sites were sampled in three stratigraphic sections, two in Owens gorge south of Long Valley caldera, and the third in the Adobe lobe north of Long Valley. The remaining 12 sites are widely distributed, but of limited stratigraphic extent. Weakly indurated, highly porous to dense, welded ash-flow tuffs were sampled. Saturation magnetization vs temperature experiments indicate two principal iron oxide phases: low Ti magnetites with 525-570 ??C Curie temperatures, and maghemite with 610??-640??C Curie temperatures. AF demagnetization spectra of isothermal remanent magnetizations are indicative of magnetite/maghemite predominantly in the multidomain to pseudo-single domain size ranges. Remeasurement of AMS after application of saturating direct fields indicates that randomly oriented single-domain grains are also present. The degree of anisotropy is only a few percent, typical of tuffs. The AMS ellipsoids are oblate with Kmin axes normal to subhorizontal foliation and Kmax axes regionally aligned with published source vents. For 12 of 16 locality means, Kmax axes plunge sourceward, confirming previous observations regarding flow sense. Topographic control on flow emplacement is indicated by the distribution of tuff deposits and by flow directions inferred from Kmax axes. Deposition east of the Benton range occurred by flow around the south end of the range and through two gaps (Benton notch and Chidago gap). Flow down Mammoth pass of the Sierra Nevada is also evident. At least some of the Adobe lobe in the northeast flowed around the west end of Glass mountain. Eastward flow directions in the upper Owens gorge and southeast directions in the lower Owens gorge are parallel to the present canyon, suggesting that the present drainage has been established along the pre-Bishop paleodrainage. Characteristic remanence

  5. Rocky Mountain spotted fever in Mexico: past, present, and future.

    Science.gov (United States)

    Álvarez-Hernández, Gerardo; Roldán, Jesús Felipe González; Milan, Néstor Saúl Hernández; Lash, R Ryan; Behravesh, Casey Barton; Paddock, Christopher D

    2017-06-01

    Rocky Mountain spotted fever, a tick-borne zoonosis caused by Rickettsia rickettsii, is among the most lethal of all infectious diseases in the Americas. In Mexico, the disease was first described during the early 1940s by scientists who carefully documented specific environmental determinants responsible for devastating outbreaks in several communities in the states of Sinaloa, Sonora, Durango, and Coahuila. These investigators also described the pivotal roles of domesticated dogs and Rhipicephalus sanguineus sensu lato (brown dog ticks) as drivers of epidemic levels of Rocky Mountain spotted fever. After several decades of quiescence, the disease re-emerged in Sonora and Baja California during the early 21st century, driven by the same environmental circumstances that perpetuated outbreaks in Mexico during the 1940s. This Review explores the history of Rocky Mountain spotted fever in Mexico, current epidemiology, and the multiple clinical, economic, and social challenges that must be considered in the control and prevention of this life-threatening illness. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Late Neogene deformation of the Chocolate Mountains Anticlinorium: Implications for deposition of the Bouse Formation and early evolution of the Lower Colorado River

    Science.gov (United States)

    Beard, Sue; Haxel, Gordon B.; Dorsey, Rebecca J.; McDougall, Kristin A.; Jacobsen, Carl E.

    2016-01-01

    Deformation related to late Neogene dextral shear can explain a shift from an estuarine to lacustrine depositional environment in the southern Bouse Formation north of Yuma, Arizona. We infer that late Neogene deformation in the Chocolate Mountain Anticlinorium (CMA) created a barrier that blocked an estuary inlet, and that pre-existing and possibly active structures subsequently controlled the local course of the lower Colorado River. Structural patterns summarized below suggest that the CMA absorbed transpressional strain caused by left-stepping segments of dextral faults of the San Andreas fault system and/or the eastern California shear zone and Gulf of California shear zone. For this hypothesis to be correct, about 200-250 m of post-6 Ma, pre- ~5.3 Ma uplift along the CMA crest would be required to cut off a marine inlet. The 220-km-long CMA, cored by the early Paleogene Orocopia Schist subduction complex, extends from the Orocopia Mountains (Calif.) southeastward through the Chocolate Mountains (parallel to the southern San Andreas fault). Where Highway 78 crosses the Chocolate Mountains (Fig. 1), the CMA turns eastward through the Black Mountain-Picacho area (Calif.) and Trigo Mountains (Ariz.) into southwest Arizona. It separates southernmost Bouse Formation outcrops of the Blythe basin from subsurface Bouse outcrops to the south in the Yuma area. South of Blythe basin the CMA is transected by the lower Colorado River along a circuitous path. Here we focus on the geology of an area between the central Chocolate Mountains and the Yuma Proving Grounds in Arizona. Specific landmarks include the southeast Chocolate Mountains, Midway Mountains, Peter Kane Mountain, Black Mountain, Picacho Peak, and Gavilan Hills. For simplicity, we refer to this as the eastern Chocolate Mountains.

  7. The Geologic Story of the Uinta Mountains

    Science.gov (United States)

    Hansen, Wallace R.

    1969-01-01

    The opening of the West after the Civil War greatly stimulated early geologic exploration west of the 100th Meridian. One of the areas first studied, the Uinta Mountains region, gained wide attention as a result of the explorations of three Territorial Surveys, one headed by John Wesley Powell, one by Clarence King, and one by Ferdinand V. Hayden. Completion of the Union Pacific Railroad across southern Wyoming 100 years ago, in 1869, materially assisted geologic exploration, and the railheads at Green River and Rock Springs greatly simplified the outfitting of expeditions into the mountains. The overlap of the Powell, King, and Hayden surveys in the Uinta Mountains led to efforts that were less concerted than competitive and not without acrimony. Many parts of the area were seen by all three parties at almost the same time. Duplication was inevitable, of course, but all three surveys contributed vast quantities of new knowledge to the storehouse of geology, and many now-basic concepts arose from their observations. Powell's area of interest extended mainly southward from the Uinta Mountains to the Grand Canyon, including the boundless plateaus and canyons of southern Utah and northern Arizona. King's survey extended eastward from the High Sierra in California to Cheyenne, Wyoming, and encompassed a swath of country more than 100 miles wide. Hayden's explorations covered an immense region of mountains and basins from Yellowstone Park in Wyoming southeast throughout most of Colorado. Powell first entered the Uinta Mountains in the fall of 1868, having traveled north around the east end of the range from the White River country to Green River, Wyoming, then south over a circuitous route to Flaming Gorge and Browns Park, and finally back to the White River, where he spent the winter. In 1869, after reexamining much of the area visited the previous season, Powell embarked on his famous 'first boat trip' down the Green and Colorado Rivers. This trip was more exploratory

  8. Utilizing HyspIRI Prototype Data for Geological Exploration Applications: A Southern California Case Study

    Directory of Open Access Journals (Sweden)

    Wendy M. Calvin

    2016-02-01

    Full Text Available The purpose of this study was to demonstrate the value of the proposed Hyperspectral Infrared Imager (HyspIRI instrument for geological mapping applications. HyspIRI-like data were collected as part of the HyspIRI airborne campaign that covered large regions of California, USA, over multiple seasons. This work focused on a Southern California area, which encompasses Imperial Valley, the Salton Sea, the Orocopia Mountains, the Chocolate Mountains, and a variety of interesting geological phenomena including fumarole fields and sand dunes. We have mapped hydrothermal alteration, lithology and thermal anomalies, demonstrating the value of this type of data for future geologic exploration activities. We believe HyspIRI will be an important instrument for exploration geologists as data may be quickly manipulated and used for remote mapping of hydrothermal alteration minerals, lithology and temperature anomalies.

  9. Western dwarf mistletoe infects understory Jeffrey pine seedlings on Cleveland National Forest, California

    Science.gov (United States)

    Robert F. Scharpf; Detlev Vogler

    1986-01-01

    Many young, understory Jeffrey pines (Pinus jeffreyi Grev. & Balf.) were found to be infected by western dwarf mistletoe (Arceuthobium campylopodum Engelm.) on Laguna Mountain, Cleveland National Forest, in southern California. Under heavily infected overstory, about three-fourths of the young pines (about 15 years old on the...

  10. California State Waters Map Series—Offshore of Santa Cruz, California

    Science.gov (United States)

    Cochrane, Guy R.; Dartnell, Peter; Johnson, Samuel Y.; Erdey, Mercedes D.; Golden, Nadine E.; Greene, H. Gary; Dieter, Bryan E.; Hartwell, Stephen R.; Ritchie, Andrew C.; Finlayson, David P.; Endris, Charles A.; Watt, Janet T.; Davenport, Clifton W.; Sliter, Ray W.; Maier, Katherine L.; Krigsman, Lisa M.; Cochrane, Guy R.; Cochran, Susan A.

    2016-03-24

    IntroductionIn 2007, the California Ocean Protection Council initiated the California Seafloor Mapping Program (CSMP), designed to create a comprehensive seafloor map of high-resolution bathymetry, marine benthic habitats, and geology within the limit of California’s State Waters. The CSMP approach is to create highly detailed seafloor maps through collection, integration, interpretation, and visualization of swath sonar data, acoustic backscatter, seafloor video, seafloor photography, high-resolution seismic-reflection profiles, and bottom-sediment sampling data. The map products display seafloor morphology and character, identify potential marine benthic habitats, and illustrate both the surficial seafloor geology and shallow subsurface geology.The Offshore of Santa Cruz map area is located in central California, on the Pacific Coast about 98 km south of San Francisco. The city of Santa Cruz (population, about 63,000), the largest incorporated city in the map area and the county seat of Santa Cruz County, lies on uplifted marine terraces between the shoreline and the northwest-trending Santa Cruz Mountains, part of California’s Coast Ranges. All of California’s State Waters in the map area is part of the Monterey Bay National Marine Sanctuary.The map area is cut by an offshore section of the San Gregorio Fault Zone, and it lies about 20 kilometers southwest of the San Andreas Fault Zone. Regional folding and uplift along the coast has been attributed to a westward bend in the San Andreas Fault Zone and to right-lateral movement along the San Gregorio Fault Zone. Most of the coastal zone is characterized by low, rocky cliffs and sparse, small pocket beaches backed by low, terraced hills. Point Santa Cruz, which forms the north edge of Monterey Bay, provides protection for the beaches in the easternmost part of the map area by sheltering them from the predominantly northwesterly waves.The shelf in the map area is underlain by variable amounts (0 to 25 m) of

  11. Geohydrology and evapotranspiration at Franklin Lake Playa, Inyo County, California

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1990-12-01

    Franklin Lake playa is one of the principal discharge areas of the Furnace Creek Ranch-Alkali Flat ground-water-flow system in southern Nevada and adjacent California. Yucca Mountain, Nevada, located within this flow system, is being evaluated by the US Department of Energy to determine its suitability as a potential site for a high-level nuclear-waste repository. To assist the US Department of Energy with its evaluation of the Yucca Mountain site, the US Geological Survey developed a parameter-estimation model of the Furnace Creek Ranch-Alkali Flat ground-water-flow system. Results from sensitivity analyses made using the parameter-estimation model indicated that simulated rates of evapotranspiration at Franklin Lake playa had the largest effect on the calculation of transmissivity values at Yucca Mountain of all the model-boundary conditions and, therefore, that evapotranspiration required careful definition. 72 refs., 59 figs., 26 tab.

  12. Geohydrology and evapotranspiration at Franklin Lake Playa, Inyo County, California

    International Nuclear Information System (INIS)

    1990-01-01

    Franklin Lake playa is one of the principal discharge areas of the Furnace Creek Ranch-Alkali Flat ground-water-flow system in southern Nevada and adjacent California. Yucca Mountain, Nevada, located within this flow system, is being evaluated by the US Department of Energy to determine its suitability as a potential site for a high-level nuclear-waste repository. To assist the US Department of Energy with its evaluation of the Yucca Mountain site, the US Geological Survey developed a parameter-estimation model of the Furnace Creek Ranch-Alkali Flat ground-water-flow system. Results from sensitivity analyses made using the parameter-estimation model indicated that simulated rates of evapotranspiration at Franklin Lake playa had the largest effect on the calculation of transmissivity values at Yucca Mountain of all the model-boundary conditions and, therefore, that evapotranspiration required careful definition. 72 refs., 59 figs., 26 tab

  13. Increased site fertility and litter decomposition rate in high-pollution sites in the San Bernardino Mountains

    Science.gov (United States)

    Mark E. Fenn

    1991-01-01

    Some possible factors causing enhanced litter decomposition in high-pollution sites in the San Bernardino Mountains of southern California were investigated. Nitrogen concentration of soil, as well as foliage and litter of ponderosa pine (Pinus ponderosa Laws.) and Jeffrey pine (Pinus jeffreyi Grev. & Balf.) were greater in...

  14. A common language of landscape representation: New Zealand and California painting in the nineteenth century

    Directory of Open Access Journals (Sweden)

    Heath Schenker

    1995-10-01

    Full Text Available In the nineteenth century, landscape painters in California and New Zealand shared a common language of landscape representation, looking at untamed coasts and rugged mountains through a lens shaped by two centuries of European artistic tradition. Explored in this paper is the influence of the picturesque tradition in New Zealand and California art in the nineteenth century. Ideological functions of landscape painting are identified: that is, ways artists in both New Zealand and California appropriated the landscape to support certain cultural, political and social agendas. Their work represents not only the land but the myths inscribed upon it by bourgeois culture.

  15. AGUA TIBIA PRIMITIVE AREA, CALIFORNIA.

    Science.gov (United States)

    Irwin, William P.; Thurber, Horace K.

    1984-01-01

    The Agua Tibia Primitive Area in southwestern California is underlain by igneous and metamorphic rocks that are siilar to those widely exposed throughout much of the Peninsular Ranges. To detect the presence of any concealed mineral deposits, samples of stream sediments were collected along the various creeks that head in the mountain. As an additional aid in evaluating the mineral potential, an aeromagnetic survey was made and interpreted. A search for records of past or existing mining claims within the primitive area was made but none was found. Evidence of deposits of metallic or nonmetallic minerals was not seen during the study.

  16. Relations between Rainfall and Postfire Debris-Flow- and Flood-Event Magnitudes for Emergency-Response Planning, San Gabriel Mountains, Southern California, USA

    Science.gov (United States)

    Cannon, Susan; Collins, Larry; Boldt, Eric; Staley, Dennis

    2010-05-01

    Following wildfires, emergency-response and public-safety agencies are often faced with making evacuation decisions and deploying resources both well in advance of each coming winter storm and during storm events themselves. We here provide information critical to this process for recently burned areas in the San Gabriel Mountains of southern California. The National Weather Service (NWS) issues Quantitative Precipitation Forecasts (QPFs) for the San Gabriel Mountains twice a day, at approximately 4 am and 4 pm, along with unscheduled updates when conditions change. QPFs provide estimates of rainfall totals in 3-hour increments for the first 12-hour period and in 6-hour increments for the second. Estimates of one-hour rainfall intensities can be provided in the forecast narrative, along with probable peak intensities and timing, although with less confidence than rainfall totals. A compilation of information on the hydrologic response to winter storm events from recently burned areas in southern California was used to develop a system for classifying the magnitude of postfire hydrologic events. The three-class system is based on differences between the reported volume of individual debris flows, the consequences of these events in an urban setting, and the spatial extent of the response to the triggering storm. Threshold rainfall conditions that may lead to debris flow and floods of different magnitude classes are defined by integrating local rainfall data with debris-flow- and flood-event magnitude information. The within-storm rainfall accumulations (A) and durations (D) below which Magnitude I events are expected, and above which Magnitude II events may occur, are defined by A=0.4D0.55. The function A=0.6D0.50 defines the within-storm rainfall accumulations and durations above which a Magnitude III event will occur in response to a regional-scale storm, and a Magnitude II event will occur if the storm affects only a few drainage basins. The function A=1.1D0

  17. Groundwater quality in the Indian Wells Valley, California

    Science.gov (United States)

    Dawson, Barbara J. Milby; Belitz, Kenneth

    2012-01-01

    Groundwater provides more than 40 percent of California’s drinking water. To protect this vital resource, the State of California created the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The Priority Basin Project of the GAMA Program provides a comprehensive assessment of the State’s groundwater quality and increases public access to groundwater-quality information. Indian Wells Valley is one of the study areas being evaluated. The Indian Wells study area is approximately 600 square miles (1,554 square kilometers) and includes the Indian Wells Valley groundwater basin (California Department of Water Resources, 2003). Indian Wells Valley has an arid climate and is part of the Mojave Desert. Average annual rainfall is about 6 inches (15 centimeters). The study area has internal drainage, with runoff from the surrounding mountains draining towards dry lake beds in the lower parts of the valley. Land use in the study area is approximately 97.0 percent (%) natural, 0.4% agricultural, and 2.6% urban. The primary natural land cover is shrubland. The largest urban area is the city of Ridgecrest (2010 population of 28,000). Groundwater in this basin is used for public and domestic water supply and for irrigation. The main water-bearing units are gravel, sand, silt, and clay derived from the Sierra Nevada to the west and from the other surrounding mountains. Recharge to the groundwater system is primarily runoff from the Sierra Nevada and to the west and from the other surrounding mountains. Recharge to the groundwater system is primarily runoff from the Sierra Nevada and direct infiltration from irrigation and septic systems. The primary sources of discharge are pumping wells and evapotranspiration near the dry lakebeds. The primary aquifers in the Indian Wells study area are defined as those parts of the aquifers corresponding to the perforated intervals of wells listed in the California Department of Public Health database. Public-supply wells in

  18. THE APPLICATION OF MAMMOTH FOR A DETAILED TIGHTLY COUPLED FUEL PIN SIMULATION WITH A STATION BLACKOUT

    Energy Technology Data Exchange (ETDEWEB)

    Gleicher, Frederick; Ortensi, Javier; DeHart, Mark; Wang, Yaqi; Schunert, Sebastian; Novascone, Stephen; Hales, Jason; Williamson, Rich; Slaughter, Andrew; Permann, Cody; Andrs, David; Martineau, Richard

    2016-09-01

    Accurate calculation of desired quantities to predict fuel behavior requires the solution of interlinked equations representing different physics. Traditional fuels performance codes often rely on internal empirical models for the pin power density and a simplified boundary condition on the cladding edge. These simplifications are performed because of the difficulty of coupling applications or codes on differing domains and mapping the required data. To demonstrate an approach closer to first principles, the neutronics application Rattlesnake and the thermal hydraulics application RELAP-7 were coupled to the fuels performance application BISON under the master application MAMMOTH. A single fuel pin was modeled based on the dimensions of a Westinghouse 17x17 fuel rod. The simulation consisted of a depletion period of 1343 days, roughly equal to three full operating cycles, followed by a station blackout (SBO) event. The fuel rod was depleted for 1343 days for a near constant total power loading of 65.81 kW. After 1343 days the fission power was reduced to zero (simulating a reactor shut-down). Decay heat calculations provided the time-varying energy source after this time. For this problem, Rattlesnake, BISON, and RELAP-7 are coupled under MAMMOTH in a split operator approach. Each system solves its physics on a separate mesh and, for RELAP-7 and BISON, on only a subset of the full problem domain. Rattlesnake solves the neutronics over the whole domain that includes the fuel, cladding, gaps, water, and top and bottom rod holders. Here BISON is applied to the fuel and cladding with a 2D axi-symmetric domain, and RELAP-7 is applied to the flow of the circular outer water channel with a set of 1D flow equations. The mesh on the Rattlesnake side can either be 3D (for low order transport) or 2D (for diffusion). BISON has a matching ring structure mesh for the fuel so both the power density and local burn up are copied accurately from Rattlesnake. At each depletion time

  19. Selected ground-water data for Yucca Mountain Region, southern Nevada and eastern California, through December 22

    International Nuclear Information System (INIS)

    La Camera, R.J.; Westenburg, C.L.

    1994-01-01

    The U.S. Geological Survey, in support of the U.S. Department of Energy, Yucca Mountain Site-Characterization Project, collects, compiles, and summarizes hydrologic data in the Yucca Mountain region. The data are collected to allow assessments of ground-water resources during studies to determine the potential suitability of Yucca Mountain for storing high-level nuclear waste. Data on ground-water levels at 36 sites, ground-water discharge at 6 sites, ground-water quality at 19 sites, and ground-water withdrawals within Crater Flat, Jackass Flats, Mercury Valley, and the Amargosa Desert are presented. Data on ground-water levels, discharges, and withdrawals collected by other agencies (or as part of other programs) are included to further indicate variations through time at selected monitoring locations. Data are included in this report from 1910 through 1992

  20. Canine Distemper in an isolated population of fishers (Martes pennanti) from California

    Science.gov (United States)

    Stefan m. Keller; Mourad Gabriel; Karen A. Terio; Edward J. Dubovi; Elizabeth Van Wormer; Rick Sweitzer; Reginald Barret; Craig Thompson; Kathryn Purcell; Linda Munson

    2012-01-01

    Four fishers (Martes pennanti) from an insular population in the southern Sierra Nevada Mountains, California, USA died as a consequence of an infection with canine distemper virus (CDV) in 2009. Three fishers were found in close temporal and spatial relationship; the fourth fisher died 4 mo later at a 70 km distance from the initial group. Gross...

  1. Plutons and accretionary episodes of the Klamath Mountains, California and Oregon

    Science.gov (United States)

    Irwin, William P.; Wooden, Joseph L.

    1999-01-01

    The Klamath Mountains consist of various accreted terranes and include many plutons that range in composition from gabbro to granodiorite. Some of the plutons (preaccretionary plutons) were parts of terranes before the terranes accreted; others (accretionary plutons) intruded during or after the accretion of their host terrane(s). This report attempts to (1) graphically illustrate how the Klamath Mountains grew by the accretion of allochthonous oceanic terranes during early Paleozoic to Cretaceous times, (2) identify the plutons as either preaccretionary or accretionary, and (3) genetically relate the plutonic intrusions to specific accretionary episodes. The eight accretionary episodes portrayed in this report are similar to those shown by Irwin and Mankinen (1998) who briefly described the basis for the timing of the episodes and who illustrated the ~110 degrees of clockwise rotation of the Klamath Mountains since Early Devonian time. Each episode is named for the accreting terrane. In all episodes (Figs. 1-8), the heavy black line represents a fault that separates the accreting oceanic rocks on the left from earlier accreted terranes on the right. The preaccretionary plutons are shown within the accreting oceanic crustal rocks to the left of the heavy black line, and the accretionary plutons in most instances are shown intruding previously accreted terranes to the right. Episodes earlier than the Central Metamorphic episode (Fig. 1), and that may have been important in the formation of the early Paleozoic nucleous of the province (the Eastern Klamath terrane), are not known. The 'Present Time' distribution of the accreted terranes and plutons is shown at a large scale in Figure 9. The schematic vertical section (Fig. 10) depicts the terranes as a stack of horizontal slabs that include or are intruded by vertical plutons. Note that at their base the ~170 Ma preaccretionary plutons of the Western Hayfork subterrane are truncated by the ~164 Ma Salt Creek

  2. REGIONAL ANALYSIS OF INORGANIC NITROGEN YIELD AND RETENTION IN HIGH-ELEVATION ECOSYSTEMS OF THE SIERRA NEVADA AND ROCKY MOUNTAINS

    Science.gov (United States)

    Yields and retention of inorganic nitrogen (DIN) and nitrate concentrations in surface runoff are summarized for 28 high elevation watersheds in the Sierra Nevada, California and Rocky Mountains of Wyoming and Colorado. Catchments ranged in elevation from 2475 to 3603 m and from...

  3. 40Ar/39Ar laster fusion and K-Ar ages from Lathrop Wells, Nevada, and Cima, California: The age of the latest volcanic activity in the Yucca Mountain area

    International Nuclear Information System (INIS)

    Turrin, B.D.; Champion, D.E.

    1991-01-01

    K-Ar and 40 Ar/ 39 Ar ages from the Lathrop Wells volcanic center, Nevada, and from the Cima volcanic field, California, indicate that the recently reported 20-ka age estimate for the Lathrop Wells volcanic center is incorrect. Instead, an age of 119 ± 11 to 141 ± 10 ka is indicated for the Lathrop Wells volcanic center. This age corrected is concordant with the ages determined by two independent isotopic geochronometric techniques and with the stratigraphy of surficial deposits in the Yucca Mountain region. In addition, paleomagnetic data and radiometric age data indicate only two volcanic events at the Lathrop Wells volcanic center that are probably closely linked in time, not as many as five as recently reported. 32 refs., 2 figs., 2 tabs

  4. Geological literature on the San Joaquin Valley of California

    Science.gov (United States)

    Maher, J.C.; Trollman, W.M.; Denman, J.M.

    1973-01-01

    The following list of references includes most of the geological literature on the San Joaquin Valley and vicinity in central California (see figure 1) published prior to January 1, 1973. The San Joaquin Valley comprises all or parts of 11 counties -- Alameda, Calaveras, Contra Costa, Fresno, Kern, Kings, Madera, Merced, San Joaquin, Stanislaus, and Tulare (figure 2). As a matter of convenient geographical classification the boundaries of the report area have been drawn along county lines, and to include San Benito and Santa Clara Counties on the west and Mariposa and Tuolumne Counties on the east. Therefore, this list of geological literature includes some publications on the Diablo and Temblor Ranges on the west, the Tehachapi Mountains and Mojave Desert on the south, and the Sierra Nevada Foothills and Mountains on the east.

  5. How to analyse a Big Bang of data: the mammoth project at the Cern physics laboratory in Geneva to recreate the conditions immediately after the universe began requires computing power on an unprecedented scale

    CERN Multimedia

    Thomas, Kim

    2005-01-01

    How to analyse a Big Bang of data: the mammoth project at the Cern physics laboratory in Geneva to recreate the conditions immediately after the universe began requires computing power on an unprecedented scale

  6. Airborne Pesticides as an Unlikely Cause for Population Declines of Alpine Frogs in the Sierra Nevada, California

    Science.gov (United States)

    Airborne pesticides from the Central Valley of California have been implicated as a cause for population declines of several amphibian species, with the strongest evidence for the mountain yellow-legged frog complex (Rana muscosa and R. sierrae) in the Sierra Nevada. We measured...

  7. Multi-Physics Simulation of TREAT Kinetics using MAMMOTH

    Energy Technology Data Exchange (ETDEWEB)

    DeHart, Mark; Gleicher, Frederick; Ortensi, Javier; Alberti, Anthony; Palmer, Todd

    2015-11-01

    With the advent of next generation reactor systems and new fuel designs, the U.S. Department of Energy (DOE) has identified the need for the resumption of transient testing of nuclear fuels. DOE has decided that the Transient Reactor Test Facility (TREAT) at Idaho National Laboratory (INL) is best suited for future testing. TREAT is a thermal neutron spectrum nuclear test facility that is designed to test nuclear fuels in transient scenarios. These specific fuels transient tests range from simple temperature transients to full fuel melt accidents. The current TREAT core is driven by highly enriched uranium (HEU) dispersed in a graphite matrix (1:10000 U-235/C atom ratio). At the center of the core, fuel is removed allowing for the insertion of an experimental test vehicle. TREAT’s design provides experimental flexibility and inherent safety during neutron pulsing. This safety stems from the graphite in the driver fuel having a strong negative temperature coefficient of reactivity resulting from a thermal Maxwellian shift with increased leakage, as well as graphite acting as a temperature sink. Air cooling is available, but is generally used post-transient for heat removal. DOE and INL have expressed a desire to develop a simulation capability that will accurately model the experiments before they are irradiated at the facility, with an emphasis on effective and safe operation while minimizing experimental time and cost. At INL, the Multi-physics Object Oriented Simulation Environment (MOOSE) has been selected as the model development framework for this work. This paper describes the results of preliminary simulations of a TREAT fuel element under transient conditions using the MOOSE-based MAMMOTH reactor physics tool.

  8. Status of the peregrine falcon in the Rocky Mountains and the southwestern United States, Baja California, and Mexico (south of Texas)

    Science.gov (United States)

    Porter, Ron; Craig, G.R.; Ellis, D.H.; Enderson, J.H.; Hunt, W.G.; Schaeffer, Philip P.; Ehlers, Sharyn M.

    1978-01-01

    About 31 pairs of peregrines still nest north of Mexico, from Idaho and Montana south through West Texas, New Mexico and Arizona. At least thirty-six additional pairs nest in Mexico. Although the nesting sites are occupied, the tissues of the peregrine?s prey species still contain high concentrations of pesticides. The eggs in some Rocky Mountain eyries have shells which are precariously thin and have high residue levels of DDE in their contents. Increasing economic development is encroaching on the peregrine habitat throughout its range in western North America. In Baja California. and Mexico south of Texas this involves increased agricultural activity including use of organochlorine pesticides, increased tourism and increased use of the Gulf of California both for commercial and sport fishing, with their potential disturbance of eyrie sites and reduction of the peregrine?s aquatic feeding prey base. As the fish in the Gulf decrease in number, some of the avian species on which peregrines prey will likewise decrease. This ultimately may effect the peregrine. These factors may have been involved in the demise of the peregrine on Baja California?s Pacific coast. Furthermore, throughout its range, residential, industrial, mining, geothermal, recreational and other types of development and land use practices sometimes destroy habitat essential to the survival of the peregrine. A recent request for the protection of an historical site in California as Critical Habitat under Section 7 of the Endangered Species Act was rejected because peregrines, although observed there, were not known to have produced eggs or young at the site for several decades. With inadequate protection of abandoned, but still suitable, historical eyrie sites, the peregrine may have an insufficient number of eyries to reoccupy in recovery attempts. The lack of present occupancy of a site, without biological evidence that the site is no longer suitable for reoccupancy, is insufficient cause to give

  9. California State Waters Map Series: offshore of Half Moon Bay, California

    Science.gov (United States)

    Cochrane, Guy R.; Dartnell, Peter; Greene, H. Gary; Johnson, Samuel Y.; Golden, Nadine E.; Hartwell, Stephen R.; Dieter, Bryan E.; Manson, Michael W.; Sliter, Ray W.; Ross, Stephanie L.; Watt, Janet T.; Endris, Charles A.; Kvitek, Rikk G.; Phillips, Eleyne L.; Erdey, Mercedes D.; Chin, John L.; Bretz, Carrie K.

    2014-01-01

    In 2007, the California Ocean Protection Council initiated the California Seafloor Mapping Program (CSMP), designed to create a comprehensive seafloor map of high-resolution bathymetry, marine benthic habitats, and geology within the 3-nautical-mile limit of California’s State Waters. The CSMP approach is to create highly detailed seafloor maps through collection, integration, interpretation, and visualization of swath sonar data, acoustic backscatter, seafloor video, seafloor photography, high-resolution seismic-reflection profiles, and bottom-sediment sampling data. The map products display seafloor morphology and character, identify potential marine benthic habitats, and illustrate both the surficial seafloor geology and shallow (to about 100 m) subsurface geology. The Offshore of Half Moon Bay map area is located in northern California, on the Pacific coast of the San Francisco Peninsula about 40 kilometers south of the Golden Gate. The city of Half Moon Bay, which is situated on the east side of the Half Moon Bay embayment, is the nearest significant onshore cultural center in the map area, with a population of about 11,000. The Pillar Point Harbor at the north edge of Half Moon Bay offers a protected landing for boats and provides other marine infrastructure. The map area lies offshore of the Santa Cruz Mountains, part of the northwest-trending Coast Ranges that run roughly parallel to the San Andreas Fault Zone. The Santa Cruz Mountains lie between the San Andreas Fault Zone and the San Gregorio Fault system. The flat coastal area, which is the most recent of numerous marine terraces, was formed by wave erosion about 105 thousand years ago. The higher elevation of this same terrace west of the Half Moon Bay Airport is caused by uplift on the Seal Cove Fault, a splay of the San Gregorio Fault Zone. Although originally incised into the rising terrain horizontally, the ancient terrace surface has been gently folded into a northwest-plunging syncline by

  10. Revival of extinct species using nuclear transfer: hope for the mammoth, true for the Pyrenean ibex, but is it time for "conservation cloning"?

    Science.gov (United States)

    Piña-Aguilar, Raul E; Lopez-Saucedo, Janet; Sheffield, Richard; Ruiz-Galaz, Lilia I; Barroso-Padilla, Jose de J; Gutiérrez-Gutiérrez, Antonio

    2009-09-01

    Recent accomplishments in the fields of nuclear transfer and genomics, such as the cloned offspring production from frozen mouse cells, cryopreserved at not too low temperatures without cryoprotectors; or the sequencing of wooly mammoth genome, have opened the opportunity for the revival of extinct species. As expected, they are receiving a lot of publicity in the media and also scientific attention. Furthermore, it was recently published the "revival" of the first extinct subspecie: the Pyrenean ibex (Capra pyrenaica pyrenaica), a wild goat extinct in 2000. This strengthens the field of cloning as it had been tarnished by induced pluripotent stem cells (iPS) and other methods of reprogramming. However, for biological conservation purposes, cloning is not generally accepted as an alternative for animal conservation, and there is an ongoing debate between reproductive scientists and conservation specialists. Although we believe that nuclear transfer technologies have an opportunity in conservation efforts for some species that are on the brink of extinction and that population status, geographical isolation, reproductive characteristics, and human pressure create a situation that is almost unsustainable. In this article we discuss the barriers in cloning mammoths and cloning controversies in conservation from a zoological perspective, citing the species that might benefit from nuclear transfer techniques in the arduous journey so as not to disappear forever from this, our world.

  11. Interstratified arkosic and volcanic rocks of the Miocene Spanish Canyon Formation, Alvord Mountain area, California: descriptions and interpretations

    Science.gov (United States)

    Buesch, David C.

    2014-01-01

    The Spanish Canyon Foundation in the Alvord Mountain area, California, varies from about 50 to 120 m thick and records the interstratification of arkosic sandstone and conglomerate with tuffaceous deposits and lava flows. In the lower third of the formation, arkosic sandstone and conglomerate are interstratified with tuffaceous deposits. Some tuffs might have been deposited as primary, nonwelded to partially welded ignimbrites or fallout tephra. Many of the tuffaceous deposits represent redeposited material that formed tuffaceous sandstone, and many of these deposits contain arkosic grains that represent mixing of different source matieral. Arkosic sandstone, and especially conglomerate (some with maximum clast lengths up to 1 m), represent intermittent incursions of coarser plutoniclastic fan deposits into other finer grained and mostly volcaniclastic basin deposits. After deposition of the 18.78 Ma Peach Spring Tuff, the amount of tuffaceous material decreased. The upper two-thirds of the formation has arkosic sandstone and conglomerate interstratified with two olivine basalt lave flows. locally, conglomerate clasts in this part of the section have maximum lengths up to 1 m. Many tuffaceous and arkosic sandstone beds of the Spanish Canyon Formation have tabular to broad (low-relief) lenticular geometry, and locally, some arkosic conglomerate fills channels as much as 1.5 m deep. These bedforms are consistent with deposition in medial to distal alluvial-fan or fluvial environments; some finer-grained deposits might have formed in lacustrine environments.

  12. The Taimyr Peninsula and the Severnaya Zemlya archipelago, Arctic Russia

    DEFF Research Database (Denmark)

    Möller, Per; Alexanderson, Helena; Funder, Svend Visby

    2015-01-01

    to the west. From the Kara Sea shelf this advance only reached c. 100 km inland, over some limited parts of NW Taimyr. The Severnaya Zemlya islands were only locally glaciated at this time. The lowlands south of the Byrranga Mountains have been a terrestrial “Mammoth steppe” environment during the last c. 50...

  13. Population genetics and biological control of goldspotted oak borer, an invasive pest of California oaks

    Science.gov (United States)

    Vanessa Lopez; Paul F. Rugman-Jones; Tom W. Coleman; Richard Stouthamer; Mark Hoddle

    2015-01-01

    California’s oak woodlands are threatened by the recent introduction of goldspotted oak borer (Agrilus auroguttatus). This invasive wood-borer is indigenous to mountain ranges in southern Arizona where its low population densities may be due to the presence of co-evolved, host-specific natural enemies. Reuniting A. auroguttatus...

  14. Groundwater quality in the Mojave area, California

    Science.gov (United States)

    Dawson, Barbara J. Milby; Belitz, Kenneth

    2012-01-01

    Groundwater provides more than 40 percent of California’s drinking water. To protect this vital resource, the State of California created the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The Priority Basin Project of the GAMA Program provides a comprehensive assessment of the State’s groundwater quality and increases public access to groundwater-quality information. Four groundwater basins along the Mojave River make up one of the study areas being evaluated. The Mojave study area is approximately 1,500 square miles (3,885 square kilometers) and includes four contiguous groundwater basins: Upper, Middle, and Lower Mojave River Groundwater Basins, and the El Mirage Valley (California Department of Water Resources, 2003). The Mojave study area has an arid climate, and is part of the Mojave Desert. Average annual rainfall is about 6 inches (15 centimeters). Land use in the study area is approximately 82 percent (%) natural (mostly shrubland), 4% agricultural, and 14% urban. The primary crops are pasture and hay. The largest urban areas are the cities of Victorville, Hesperia, and Apple Valley (2010 populations of 116,000, 90,000 and 69,000, respectively). Groundwater in these basins is used for public and domestic water supply and for irrigation. The main water-bearing units are gravel, sand, silt, and clay derived from surrounding mountains. The primary aquifers in the Mojave study area are defined as those parts of the aquifers corresponding to the perforated intervals of wells listed in the California Department of Public Health database. Public-supply wells in the Mojave study area are completed to depths between 200 and 600 feet (18 to 61 meters), consist of solid casing from the land surface to a depth of 130 to 420 feet (40 to 128 meters), and are screened or perforated below the solid casing. Recharge to the groundwater system is primarily runoff from the mountains to the south, mostly through the Mojave River channel. The primary sources

  15. 77 FR 68813 - Notice of Availability of the Draft Environmental Impact Statement and Environmental Impact...

    Science.gov (United States)

    2012-11-16

    ...In accordance with the National Environmental Policy Act of 1969, as amended (NEPA); the Federal Land Policy and Management Act of 1976, as amended; and the California Environmental Quality Act of 1970 (CEQA); the Bureau of Land Management (BLM) Bishop Field Office, Bishop, California; the United States Forest Service (USFS) Inyo National Forest; and the Great Basin Unified Air Pollution Control District (GBUAPCD) (a California state agency) have prepared a Draft Environmental Impact Statement (EIS)/Environmental Impact Report (EIR) for the proposed Casa Diablo IV Geothermal Development Project near the Town of Mammoth Lakes in Mono County, California. This notice announces the opening of the public comment period.

  16. Data on snow chemistry of the Cascade-Sierra Nevada Mountains

    Science.gov (United States)

    Laird, L.B.; Taylor, Howard E.; Lombard, R.E.

    1986-01-01

    Snow chemistry data were measured for solutes found in snow core samples collected from the Cascade-Sierra Nevada Mountains from late February to mid-March 1983. The data are part of a study to assess geographic variations in atmospheric deposition in Washington, Oregon, and California. The constituents and properties include pH and concentrations of hydrogen ion, calcium, magnesium, sodium, potassium, chloride, sulfate, nitrate, fluoride, phosphate, ammonium, iron, aluminum, manganese, copper, cadmium, lead, and dissolved organic carbon. Concentrations of arsenic and bromide were below the detection limit. (USGS)

  17. Alpine Plant Monitoring for Global Climate Change; Analysis of the Four California GLORIA Target Regions

    Science.gov (United States)

    Dennis, A.; Westfall, R. D.; Millar, C. I.

    2007-12-01

    The Global Observation Research Initiative in Alpine Environments (GLORIA) is an international research project with the goal to assess climate-change impacts on vegetation in alpine environments worldwide. Standardized protocols direct selection of each node in the network, called a Target Region (TR), which consists of a set of four geographically proximal mountain summits at elevations extending from treeline to the nival zone. For each summit, GLORIA specifies a rigorous mapping and sampling design for data collection, with re-measurement intervals of five years. Whereas TRs have been installed in six continents, prior to 2004 none was completed in North America. In cooperation with the Consortium for Integrated Climate Research in Western Mountains (CIRMOUNT), California Native Plant Society, and the White Mountain Research Station, four TRs have been installed in California: two in the Sierra Nevada and two in the White Mountains. We present comparative results from analyses of baseline data across these four TRs. The number of species occurring in the northern Sierra (Tahoe) TR was 35 (16 not found in other TRs); in the central Sierra (Dunderberg) TR 65 species were found. In the White Mountains, 54 species were found on the granitic/volcanic soils TR and 46 (19 not found in other TRs) on the dolomitic soils TR. In all, we observed 83 species in the Sierra Nevada range TRs and 75 in the White Mountain TRs. Using a mixed model ANOVA of percent cover from summit-area-sections and quadrat data, we found primary differences to be among mountain ranges. Major soil differences (dolomite versus non-dolomite) also contribute to floristic differentiation. Aspect did not seem to contribute significantly to diversity either among or within target regions. Summit floras in each target region comprised groups of two distinct types of species: those with notably broad elevational ranges and those with narrow elevational ranges. The former we propose to be species that

  18. Mammoths inside the Alps during the last glacial period: Radiocarbon constraints from Austria and palaeoenvironmental implications

    Science.gov (United States)

    Spötl, Christoph; Reimer, Paula J.; Göhlich, Ursula B.

    2018-06-01

    This study examines remains of the woolly mammoth (Mammuthus primigenius) found inside the Austrian Alps, an area occupied by an extensive ice-stream network during the Last Glacial Maximum. The data demonstrate that these cold steppe-adapted animals locally migrated several tens of kilometers into alpine valleys. Radiocarbon analyses constrain the age of these fossils to the first half of Marine Isotope Stage 3, documenting ice-free conditions in major valleys at that time. We also provide a list of all traceable Austrian sites of Mammuthus primigenius, totaling about 230 localities, compiled through 15 museums and collections in Austria. The vast majority of these findings are from the corridors of the Danube and Mur rivers and their tributaries and the adjacent loess-covered foreland of the Alps, areas that were never ice-covered during Pleistocene glaciations.

  19. Historical and contemporary DNA indicate fisher decline and isolation occurred prior to the European settlement of California

    Science.gov (United States)

    Jody M. Tucker; Michael K. Schwartz; Richard L. Truex; Kristine L. Pilgrim; Fred W. Allendorf

    2012-01-01

    Establishing if species contractions were the result of natural phenomena or human induced landscape changes is essential for managing natural populations. Fishers (Martes pennanti) in California occur in two geographically and genetically isolated populations in the northwestern mountains and southern Sierra Nevada. Their isolation is hypothesized to have resulted...

  20. Ozone, nitric acid, and ammonia air pollution is unhealthy for people and ecosystems in southern Sierra Nevada, California

    Science.gov (United States)

    R. Cisneros; A. Bytnerowicz; D. Schweizer; S. Zhong; S. Traina; D.H. Bennett

    2010-01-01

    Two-week average concentrations of ozone (O3), nitric acid vapor (HNO3) and ammonia (NH3) were measured with passive samplers during the 2002 summer season across the central Sierra Nevada Mountains, California, along the San Joaquin River drainage. Elevated concentrations of the pollutants were...

  1. Movement ecology and seasonal distribution of mountain yellow-legged frogs, Rana muscosa, in a high-elevation Sierra Nevada basin.

    Science.gov (United States)

    K.L. Pope; K.R. Matthews

    2001-01-01

    Movement ecology and seasonal distribution of mountain yellow-legged frogs (Rana muscosa) in Dusy Basin (3470 m), Kings Canyon National Park, California, were characterized using passive integrated transponder (PIT) surveys and visual encounter surveys. We individually PIT-tagged 500 frogs during the summers of 1997 and 1998 and monitored these individuals during seven...

  2. Ecogeochemistry of the subsurface food web at pH 0-2.5 in Iron Mountain, California, U.S.A.

    Science.gov (United States)

    Robbins, E.I.; Rodgers, T.M.; Alpers, Charles N.; Nordstrom, D. Kirk

    2000-01-01

    Pyrite oxidation in the underground mining environment of Iron Mountain, California, has created the most acidic pH values ever reported in aquatic systems. Sulfate values as high as 120 000 mg l-1 and iron as high as 27 600 mg l-1 have been measured in the mine water, which also carries abundant other dissolved metals including Al, Zn, Cu, Cd, Mn, Sb and Pb. Extreme acidity and high metal concentrations apparently do not preclude the presence of an underground acidophilic food web, which has developed with bacterial biomass at the base and heliozoans as top predators. Slimes, oil-like films, flexible and inflexible stalactites, sediments, water and precipitates were found to have distinctive communities. A variety of filamentous and non-filamentous bacteria grew in slimes in water having pH values < 1.0. Fungal hyphae colonize stalactites dripping pH 1.0 water; they may help to form these drip structures. Motile hypotrichous ciliates and bdelloid rotifers are particularly abundant in slimes having a pH of 1.5. Holdfasts of the iron bacterium Leptothrix discophora attach to biofilms covering pools of standing water having a pH of 2.5 in the mine. The mine is not a closed environment - people, forced air flow and massive flushing during high intensity rainfall provide intermittent contact between the surface and underground habitats, so the mine ecosystem probably is not a restricted one.

  3. Stand- and landscape-scale selection of large trees by fishers in the Rocky Mountains of Montana and Idaho

    Science.gov (United States)

    Michael K. Schwartz; Nicholas J. DeCesare; Benjamin S. Jimenez; Jeffrey P. Copeland; Wayne E. Melquist

    2013-01-01

    The fisher (Pekania pennanti; formerly known as Martes pennanti) is a North American endemic mustelid with a geographic distribution that spans much of the boreal forests of North America. In the Northern Rocky Mountain (NRM) fishers have been the focus of Endangered Species Act (ESA) listing decisions. Habitat studies of West Coast fishers in California have...

  4. Mechanisms controlling the impact of multi-year drought on mountain hydrology.

    Science.gov (United States)

    Bales, Roger C; Goulden, Michael L; Hunsaker, Carolyn T; Conklin, Martha H; Hartsough, Peter C; O'Geen, Anthony T; Hopmans, Jan W; Safeeq, Mohammad

    2018-01-12

    Mountain runoff ultimately reflects the difference between precipitation (P) and evapotranspiration (ET), as modulated by biogeophysical mechanisms that intensify or alleviate drought impacts. These modulating mechanisms are seldom measured and not fully understood. The impact of the warm 2012-15 California drought on the heavily instrumented Kings River basin provides an extraordinary opportunity to enumerate four mechanisms that controlled the impact of drought on mountain hydrology. Two mechanisms intensified the impact: (i) evaporative processes have first access to local precipitation, which decreased the fractional allocation of P to runoff in 2012-15 and reduced P-ET by 30% relative to previous years, and (ii) 2012-15 was 1 °C warmer than the previous decade, which increased ET relative to previous years and reduced P-ET by 5%. The other two mechanisms alleviated the impact: (iii) spatial heterogeneity and the continuing supply of runoff from higher elevations increased 2012-15 P-ET by 10% relative to that expected for a homogenous basin, and iv) drought-associated dieback and wildfire thinned the forest and decreased ET, which increased 2016 P-ET by 15%. These mechanisms are all important and may offset each other; analyses that neglect one or more will over or underestimate the impact of drought and warming on mountain runoff.

  5. Potential increase in floods in California's Sierra Nevada under future climate projections

    Science.gov (United States)

    Das, T.; Dettinger, M.D.; Cayan, D.R.; Hidalgo, H.G.

    2011-01-01

    California's mountainous topography, exposure to occasional heavily moisture-laden storm systems, and varied communities and infrastructures in low lying areas make it highly vulnerable to floods. An important question facing the state-in terms of protecting the public and formulating water management responses to climate change-is "how might future climate changes affect flood characteristics in California?" To help address this, we simulate floods on the western slopes of the Sierra Nevada Mountains, the state's primary catchment, based on downscaled daily precipitation and temperature projections from three General Circulation Models (GCMs). These climate projections are fed into the Variable Infiltration Capacity (VIC) hydrologic model, and the VIC-simulated streamflows and hydrologic conditions, from historical and from projected climate change runs, allow us to evaluate possible changes in annual maximum 3-day flood magnitudes and frequencies of floods. By the end of the 21st Century, all projections yield larger-than-historical floods, for both the Northern Sierra Nevada (NSN) and for the Southern Sierra Nevada (SSN). The increases in flood magnitude are statistically significant (at p models, while under the third scenario, GFDL CM2. 1, frequencies remain constant or decline slightly, owing to an overall drying trend. These increases appear to derive jointly from increases in heavy precipitation amount, storm frequencies, and days with more precipitation falling as rain and less as snow. Increases in antecedent winter soil moisture also play a role in some areas. Thus, a complex, as-yet unpredictable interplay of several different climatic influences threatens to cause increased flood hazards in California's complex western Sierra landscapes. ?? 2011 Springer Science+Business Media B.V.

  6. Conservation assessment for the Siskiyou Mountains salamander and Scott Bar salamander in northern California.

    Energy Technology Data Exchange (ETDEWEB)

    Vinikour, W. S.; LaGory, K. E.; Adduci, J. J.; Environmental Science Division

    2006-10-20

    The purpose of this conservation assessment is to summarize existing knowledge regarding the biology and ecology of the Siskiyou Mountains salamander and Scott Bar salamander, identify threats to the two species, and identify conservation considerations to aid federal management for persistence of the species. The conservation assessment will serve as the basis for a conservation strategy for the species.

  7. The contributions of Donald Lee Johnson to understanding the Quaternary geologic and biogeographic history of the California Channel Islands

    Science.gov (United States)

    Muhs, Daniel R.

    2013-01-01

    Over a span of 50 years, native Californian Donald Lee Johnson made a number of memorable contributions to our understanding of the California Channel Islands. Among these are (1) recognizing that carbonate dunes, often cemented into eolianite and derived from offshore shelf sediments during lowered sea level, are markers of glacial periods on the Channel Islands; (2) identifying beach rock on the Channel Islands as the northernmost occurrence of this feature on the Pacific Coast of North America; (3) recognizing of the role of human activities in historic landscape modification; (4) identifying both the biogenic and pedogenic origins of caliche “ghost forests” and laminar calcrete forms on the Channel Islands; (5) providing the first soil maps of several of the islands, showing diverse pathways of pedogenesis; (6) pointing out the importance of fire in Quaternary landscape history on the Channel Islands, based on detailed stratigraphic studies; and (7), perhaps his greatest contribution, clarifying the origin of Pleistocene pygmy mammoths on the Channel Islands, due not to imagined ancient land bridges, but rather the superb swimming abilities of proboscideans combined with lowered sea level, favorable paleowinds, and an attractive paleovegetation on the Channel Islands. Don was a classic natural historian in the great tradition of Charles Darwin and George Gaylord Simpson, his role models. Don’s work will remain important and useful for many years and is an inspiration to those researching the California Channel Islands today.

  8. Native Americans and Yucca Mountain: A revised and updated summary report on research undertaken between 1987 and 1991

    International Nuclear Information System (INIS)

    Fowler, C.S.

    1991-01-01

    This report consists of Yucca Mountain Project bibliographies. It is the appendix to a report that summarizes data collected between September 1986 and September 1988 relative to Native American concerns involving the potential siting of a high-level nuclear waste repository at Yucca Mountain, Nevada. The data were collected from Western Shoshone and Southern Paiute people upon whose aboriginal lands the repository potentially is to be located. Western Shoshone people involved in the study were those resident or affiliated with reservation communities at Yomba and Duckwater, Nevada, and Death Valley, California. Southern Paiute people were at reservation communities at Moapa and Las Vegas. Additional persons of Western Shoshone and Southern Paiute descent were interviewed at Beatty, Tonopah, Caliente, Pahrump, and Las Vegas, Nevada. The work was part of a larger project of socioeconomic studies for the State of Nevada's Nuclear Waste Projects office, conducted by Mountain West of Phoenix, Arizona

  9. Effects of creating two forest structures and using prescribed fire on coarse woody debris in northeastern California, USA

    Science.gov (United States)

    Fabian C. C. Uzoh; Carl N. Skinner

    2009-01-01

    Little is known about the dynamics of coarse woody debris (CWD) in forests that were originally characterized by frequent, low-moderate intensity fires. We investigated effects of prescribed burning at the Blacks Mountain Experimental Forest in northeastern California following creation of two stand structure conditions: 1) high structural diversity (HiD) that included...

  10. Geologic map of the west half of the Blythe 30' by 60' quadrangle, Riverside County, California and La Paz County, Arizona

    Science.gov (United States)

    Stone, Paul

    2006-01-01

    The Blythe 30' by 60' quadrangle is located along the Colorado River between southeastern California and western Arizona. This map depicts the geology of the west half of the Blythe quadrangle, which is mostly in California. The map area is a desert terrain consisting of mountain ranges surrounded by extensive alluvial fans and plains, including the flood plain of the Colorado River which covers the easternmost part of the area. Mountainous parts of the area, including the Big Maria, Little Maria, Riverside, McCoy, and Mule Mountains, consist of structurally complex rocks that range in age from Proterozoic to Miocene. Proterozoic gneiss and granite are overlain by Paleozoic to Early Jurassic metasedimentary rocks (mostly marble, quartzite, and schist) that are lithostratigraphically similar to coeval formations of the Colorado Plateau region to the east. The Paleozoic to Jurassic strata were deposited on the tectonically stable North American craton. These rocks are overlain by metamorphosed Jurassic volcanic rocks and are intruded by Jurassic plutonic rocks that represent part of a regionally extensive, northwest-trending magmatic arc. The overlying McCoy Mountains Formation, a very thick sequence of weakly metamorphosed sandstone and conglomerate of Jurassic(?) and Cretaceous age, accumulated in a rapidly subsiding depositional basin south of an east-trending belt of deformation and east of the north-trending Cretaceous Cordilleran magmatic arc. The McCoy Mountains Formation and older rocks were deformed, metamorphosed, and locally intruded by plutonic rocks in the Late Cretaceous. In Oligocene(?) to Miocene time, sedimentary and minor volcanic deposits accumulated locally, and the area was deformed by faulting. Tertiary rocks and their Proterozoic basement in the Riverside and northeastern Big Maria Mountains are in the upper plate of a low-angle normal (detachment) fault that lies within a region of major Early to Middle Miocene crustal extension. Surficial

  11. Ecogeochemistry of the subsurface food web at pH 0–2.5 in Iron Mountain, California, U.S.A.

    Science.gov (United States)

    Robbins, Eleanora I.; Rodgers , Teresa M.; Alpers, Charles N.; Nordstrom, D. Kirk

    2000-01-01

    Pyrite oxidation in the underground mining environment of Iron Mountain, California, has created the most acidic pH values ever reported in aquatic systems. Sulfate values as high as 120 000 mg l−1 and iron as high as 27 600 mg l−1 have been measured in the mine water, which also carries abundant other dissolved metals including Al, Zn, Cu, Cd, Mn, Sb and Pb. Extreme acidity and high metal concentrations apparently do not preclude the presence of an underground acidophilic food web, which has developed with bacterial biomass at the base and heliozoans as top predators. Slimes, oil-like films, flexible and inflexible stalactites, sediments, water and precipitates were found to have distinctive communities. A variety of filamentous and non-filamentous bacteria grew in slimes in water having pH values <1.0. Fungal hyphae colonize stalactites dripping pH 1.0 water; they may help to form these drip structures. Motile hypotrichous ciliates and bdelloid rotifers are particularly abundant in slimes having a pH of 1.5. Holdfasts of the iron bacterium Leptothrix discophora attach to biofilms covering pools of standing water having a pH of 2.5 in the mine. The mine is not a closed environment – people, forced air flow and massive flushing during high intensity rainfall provide intermittent contact between the surface and underground habitats, so the mine ecosystem probably is not a restricted one.

  12. An Overview of the GOLD Experiment Between the ETS-6 Satellite and the Table Mountain Facility

    Science.gov (United States)

    Wilson, K. E.

    1996-01-01

    The Ground/Orbiter Lasercomm Demonstration is a demonstration of optical communications between the Japanese Engineering Test Satellite (ETS-VI) and an optical ground transmitting and receiving station at the Table Mountain Facility in Wrightwood, California. Laser transmissions to the satellite are performed for approximately 4 hours every third night when the satellite is at apogee above Table Mountain. The experiment requires the coordination of resources at the Communications Research Laboratory (CRL), JPL, the National Aeronautics and Space Development Agency (NASDA) Tsukuba tracking station, and NASA's Deep Space Network at Goldstone, California, to generate and transmit real-time commands and receive telemetry from the ETS-VI. Transmissions to the ETS-VI began in November 1995 and are scheduled to last into the middle of January 1996, when the satellite is expected to be eclipsed by the Earth's shadow for a major part of its orbit. The eclipse is expected to last for about 2 months, and during this period there will be limited electrical power available on board the satellite. NASDA plans to restrict experiments with the ETS-VI during this period, and no laser transmissions are planned. Posteclipse experiments are currently being negotiated. GOLD is a joint NASA-CRL experiment that is being conducted by JPL in coordination with CRL and NASDA.

  13. Dynamical Downscaling of GCM Simulations: Toward the Improvement of Forecast Bias over California

    Energy Technology Data Exchange (ETDEWEB)

    Chin, H S

    2008-09-24

    The effects of climate change will mostly be felt on local to regional scales. However, global climate models (GCMs) are unable to produce reliable climate information on the scale needed to assess regional climate-change impacts and variability as a result of coarse grid resolution and inadequate model physics though their capability is improving. Therefore, dynamical and statistical downscaling (SD) methods have become popular methods for filling the gap between global and local-to-regional climate applications. Recent inter-comparison studies of these downscaling techniques show that both downscaling methods have similar skill in simulating the mean and variability of present climate conditions while they show significant differences for future climate conditions (Leung et al., 2003). One difficulty with the SD method is that it relies on predictor-predict and relationships, which may not hold in future climate conditions. In addition, it is now commonly accepted that the dynamical downscaling with the regional climate model (RCM) is more skillful at the resolving orographic climate effect than the driving coarser-grid GCM simulations. To assess the possible societal impacts of climate changes, many RCMs have been developed and used to provide a better projection of future regional-scale climates for guiding policies in economy, ecosystem, water supply, agriculture, human health, and air quality (Giorgi et al., 1994; Leung and Ghan, 1999; Leung et al., 2003; Liang et al., 2004; Kim, 2004; Duffy et al., 2006). Although many regional climate features, such as seasonal mean and extreme precipitation have been successfully captured in these RCMs, obvious biases of simulated precipitation remain, particularly the winter wet bias commonly seen in mountain regions of the Western United States. The importance of regional climate research over California is not only because California has the largest population in the nation, but California has one of the most

  14. Environmental exposures to agrochemicals in the Sierra Nevada mountain range

    Science.gov (United States)

    LeNoir, J.; Aston, L.; Data, S.; Fellers, G.; McConnell, L.; Sieber, J.

    2000-01-01

    The release of pesticides into the environment may impact human and environmental health. Despite the need for environmental exposure data, few studies quantify exposures in urban areas and even fewer determine exposures to wildlife in remote areas. Although it is expected that concentrations in remote regions will be low, recent studies suggest that even low concentrations may have deleterious effects on wildlife. Many pesticides are known to interfere with the endocrine systems of humans and wildlife, adversely affecting growth, development, and behavior. This chapter reviews the fate and transport of pesticides applied in the Central Valley of California and quantifies their subsequent deposition into the relatively pristine Sierra Nevada Mountain Range.

  15. A preliminary assessment of earthquake ground shaking hazard at Yucca Mountain, Nevada and implications to the Las Vegas region

    International Nuclear Information System (INIS)

    Wong, I.G.; Green, R.K.; Sun, J.I.; Pezzopane, S.K.; Abrahamson, N.A.; Quittmeyer, R.C.

    1996-01-01

    As part of early design studies for the potential Yucca Mountain nuclear waste repository, the authors have performed a preliminary probabilistic seismic hazard analysis of ground shaking. A total of 88 Quaternary faults within 100 km of the site were considered in the hazard analysis. They were characterized in terms of their probability o being seismogenic, and their geometry, maximum earthquake magnitude, recurrence model, and slip rate. Individual faults were characterized by maximum earthquakes that ranged from moment magnitude (M w ) 5.1 to 7.6. Fault slip rates ranged from a very low 0.00001 mm/yr to as much as 4 mm/yr. An areal source zone representing background earthquakes up to M w 6 1/4 = 1/4 was also included in the analysis. Recurrence for these background events was based on the 1904--1994 historical record, which contains events up to M w 5.6. Based on this analysis, the peak horizontal rock accelerations are 0.16, 0.21, 0.28, and 0.50 g for return periods of 500, 1,000, 2,000, and 10,000 years, respectively. In general, the dominant contributor to the ground shaking hazard at Yucca Mountain are background earthquakes because of the low slip rates of the Basin and Range faults. A significant effect on the probabilistic ground motions is due to the inclusion of a new attenuation relation developed specifically for earthquakes in extensional tectonic regimes. This relation gives significantly lower peak accelerations than five other predominantly California-based relations used in the analysis, possibly due to the lower stress drops of extensional earthquakes compared to California events. Because Las Vegas is located within the same tectonic regime as Yucca Mountain, the seismic sources and path and site factors affecting the seismic hazard at Yucca Mountain also have implications to Las Vegas. These implications are discussed in this paper

  16. A tale of 10 plutons - Revisited: Age of granitic rocks in the White Mountains, California and Nevada

    Science.gov (United States)

    McKee, E.H.; Conrad, J.E.

    1996-01-01

    40Ar/39Ar incremental heating analysis and conventional K-Ar age determinations on plutonic rocks of the White Mountains define two stages of magmatic emplacement: Late Cretaceous, between ca. 90 Ma and 75 Ma, and Middle-Late Jurassic, between ca. 180 and 140 Ma. The Jurassic stage can be divided into two substages, 180-165 Ma and 150-140 Ma. Thermal effects of the younger plutons on the older granitoids partially to completely reset ages, making it difficult to determine the age of emplacement and cooling of several of the plutons even by 40Ar/39Ar incremental heating analyses. New data together with published ages and regional geochronological synthesis of the Sierra Nevada batholith indicate that regions within the batholith have coherent periods or episodes of magmatic activity. In the White Mountains and Sierra Nevada directly to the west there was little or no activity in Early Jurassic and Early Cretaceous time; magmatism took place during relatively short intervals of 15 m.y. or less in the Middle and Late Jurassic and Late Cretaceous periods. The new K-Ar and 40Ar/39Ar analyses of granitoids from the White Mountains help, but do not completely clarify the complex history of emplacement, cooling, and reheating of the batholith.

  17. Mountains

    Science.gov (United States)

    Regina M. Rochefort; Laurie L. Kurth; Tara W. Carolin; Robert R. Mierendorf; Kimberly Frappier; David L. Steenson

    2006-01-01

    This chapter concentrates on subalpine parklands and alpine meadows of southern British Columbia, Washington, Oregon, and western Montana. These areas lie on the flanks of several mountain ranges including the Olympics, the Cascades of Oregon and Washington, and the Coast Mountains in British Columbia.

  18. Tracking lichen community composition changes due to declining air quality over the last century: the Nash legacy in Southern California

    Science.gov (United States)

    Jennifer Riddell; Sarah Jovan; Pamela E. Padgett; Ken. Sweat

    2011-01-01

    Southern California's South Coast Air Basin includes the heavily urbanized Los Angeles and Orange counties, the inland urban and suburban areas, and the surrounding mountain ranges. Historically high air pollution makes the region a natural laboratory for investigating human impacts on natural systems. Regional lichen distribution records from the early 1900s...

  19. Native Americans and Yucca Mountain: A revised and updated summary report on research undertaken between 1987 and 1991; Volume 2

    Energy Technology Data Exchange (ETDEWEB)

    Fowler, C.S. [Cultural Resources Consultants Ltd., Reno, NV (United States)

    1991-10-15

    This report consists of Yucca Mountain Project bibliographies. It is the appendix to a report that summarizes data collected between September 1986 and September 1988 relative to Native American concerns involving the potential siting of a high-level nuclear waste repository at Yucca Mountain, Nevada. The data were collected from Western Shoshone and Southern Paiute people upon whose aboriginal lands the repository potentially is to be located. Western Shoshone people involved in the study were those resident or affiliated with reservation communities at Yomba and Duckwater, Nevada, and Death Valley, California. Southern Paiute people were at reservation communities at Moapa and Las Vegas. Additional persons of Western Shoshone and Southern Paiute descent were interviewed at Beatty, Tonopah, Caliente, Pahrump, and Las Vegas, Nevada. The work was part of a larger project of socioeconomic studies for the State of Nevada`s Nuclear Waste Projects office, conducted by Mountain West of Phoenix, Arizona.

  20. Mineral and Vegetation Maps of the Bodie Hills, Sweetwater Mountains, and Wassuk Range, California/Nevada, Generated from ASTER Satellite Data

    Science.gov (United States)

    Rockwell, Barnaby W.

    2010-01-01

    Multispectral remote sensing data acquired by the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) were analyzed to identify and map minerals, vegetation groups, and volatiles (water and snow) in support of geologic studies of the Bodie Hills, Sweetwater Mountains, and Wassuk Range, California/Nevada. Digital mineral and vegetation mapping results are presented in both portable document format (PDF) and ERDAS Imagine format (.img). The ERDAS-format files are suitable for integration with other geospatial data in Geographic Information Systems (GIS) such as ArcGIS. The ERDAS files showing occurrence of 1) iron-bearing minerals, vegetation, and water, and 2) clay, sulfate, mica, carbonate, Mg-OH, and hydrous quartz minerals have been attributed according to identified material, so that the material detected in a pixel can be queried with the interactive attribute identification tools of GIS and image processing software packages (for example, the Identify Tool of ArcMap and the Inquire Cursor Tool of ERDAS Imagine). All raster data have been orthorectified to the Universal Transverse Mercator (UTM) projection using a projective transform with ground-control points selected from orthorectified Landsat Thematic Mapper data and a digital elevation model from the U.S. Geological Survey (USGS) National Elevation Dataset (1/3 arc second, 10 m resolution). Metadata compliant with Federal Geographic Data Committee (FGDC) standards for all ERDAS-format files have been included, and contain important information regarding geographic coordinate systems, attributes, and cross-references. Documentation regarding spectral analysis methodologies employed to make the maps is included in these cross-references.

  1. Crustal-scale tilting of the central Salton block, southern California

    Science.gov (United States)

    Dorsey, Rebecca; Langenheim, Victoria

    2015-01-01

    The southern San Andreas fault system (California, USA) provides an excellent natural laboratory for studying the controls on vertical crustal motions related to strike-slip deformation. Here we present geologic, geomorphic, and gravity data that provide evidence for active northeastward tilting of the Santa Rosa Mountains and southern Coachella Valley about a horizontal axis oriented parallel to the San Jacinto and San Andreas faults. The Santa Rosa fault, a strand of the San Jacinto fault zone, is a large southwest-dipping normal fault on the west flank of the Santa Rosa Mountains that displays well-developed triangular facets, narrow footwall canyons, and steep hanging-wall alluvial fans. Geologic and geomorphic data reveal ongoing footwall uplift in the southern Santa Rosa Mountains, and gravity data suggest total vertical separation of ∼5.0–6.5 km from the range crest to the base of the Clark Valley basin. The northeast side of the Santa Rosa Mountains has a gentler topographic gradient, large alluvial fans, no major active faults, and tilted inactive late Pleistocene fan surfaces that are deeply incised by modern upper fan channels. Sediments beneath the Coachella Valley thicken gradually northeast to a depth of ∼4–5 km at an abrupt boundary at the San Andreas fault. These features all record crustal-scale tilting to the northeast that likely started when the San Jacinto fault zone initiated ca. 1.2 Ma. Tilting appears to be driven by oblique shortening and loading across a northeast-dipping southern San Andreas fault, consistent with the results of a recent boundary-element modeling study.

  2. Modeling and Prediction of Wildfire Hazard in Southern California, Integration of Models with Imaging Spectrometry

    Science.gov (United States)

    Roberts, Dar A.; Church, Richard; Ustin, Susan L.; Brass, James A. (Technical Monitor)

    2001-01-01

    Large urban wildfires throughout southern California have caused billions of dollars of damage and significant loss of life over the last few decades. Rapid urban growth along the wildland interface, high fuel loads and a potential increase in the frequency of large fires due to climatic change suggest that the problem will worsen in the future. Improved fire spread prediction and reduced uncertainty in assessing fire hazard would be significant, both economically and socially. Current problems in the modeling of fire spread include the role of plant community differences, spatial heterogeneity in fuels and spatio-temporal changes in fuels. In this research, we evaluated the potential of Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) and Airborne Synthetic Aperture Radar (AIRSAR) data for providing improved maps of wildfire fuel properties. Analysis concentrated in two areas of Southern California, the Santa Monica Mountains and Santa Barbara Front Range. Wildfire fuel information can be divided into four basic categories: fuel type, fuel load (live green and woody biomass), fuel moisture and fuel condition (live vs senesced fuels). To map fuel type, AVIRIS data were used to map vegetation species using Multiple Endmember Spectral Mixture Analysis (MESMA) and Binary Decision Trees. Green live biomass and canopy moisture were mapped using AVIRIS through analysis of the 980 nm liquid water absorption feature and compared to alternate measures of moisture and field measurements. Woody biomass was mapped using L and P band cross polarimetric data acquired in 1998 and 1999. Fuel condition was mapped using spectral mixture analysis to map green vegetation (green leaves), nonphotosynthetic vegetation (NPV; stems, wood and litter), shade and soil. Summaries describing the potential of hyperspectral and SAR data for fuel mapping are provided by Roberts et al. and Dennison et al. To utilize remotely sensed data to assess fire hazard, fuel-type maps were translated

  3. Recent population trends of mountain goats in the Olympic Mountains, Washington

    Science.gov (United States)

    Jenkins, Kurt J.; Happe, Patricia J.; Beirne, Katherine F.; Hoffman, Roger A.; Griffin, Paul C.; Baccus, William T.; Fieberg, John

    2012-01-01

    Mountain goats (Oreamnos americanus) were introduced in Washington's Olympic Mountains during the 1920s. The population subsequently increased in numbers and expanded in range, leading to concerns by the 1970s over the potential effects of non-native mountain goats on high-elevation plant communities in Olympic National Park. The National Park Service (NPS) transplanted mountain goats from the Olympic Mountains to other ranges between 1981 and 1989 as a means to manage overabundant populations, and began monitoring population trends of mountain goats in 1983. We estimated population abundance of mountain goats during 18–25 July 2011, the sixth survey of the time series, to assess current population status and responses of the population to past management. We surveyed 39 sample units, comprising 39% of the 59,615-ha survey area. We estimated a population of 344 ± 72 (90% confidence interval [CI]) mountain goats in the survey area. Retrospective analysis of the 2004 survey, accounting for differences in survey area boundaries and methods of estimating aerial detection biases, indicated that the population increased at an average annual rate of 4.9% since the last survey. That is the first population growth observed since the cessation of population control measures in 1990. We postulate that differences in population trends observed in western, eastern, and southern sections of the survey zone reflected, in part, a variable influence of climate change across the precipitation gradient in the Olympic Mountains.

  4. Nutrient fluxes from coastal California catchments with suburban development

    Science.gov (United States)

    Melack, J. M.; Leydecker, A.; Beighley, E.; Robinson, T.; Coombs, S.

    2005-12-01

    Numerous streams originate in the mountains fringing California's coast and transport nutrients into coastal waters. In central California, these streams traverse catchments with land covers including chaparral, grazed grasslands, orchards, industrial agriculture and suburban and urban development. Fluvial nutrient concentrations and fluxes vary as a function of these land covers and as a function of considerable fluctuations in rainfall. As part of a long-term investigation of mobilization and fluvial transport of nutrients in catchments bordering the Santa Barbara Channel we have intensively sampled nutrient concentrations and measured discharge during storm and base flows in multiple catchments and subcatchments. Volume-weighted mean concentrations of nitrate generally ranged from 5 to 25 micromolar in undeveloped areas, increased to about 100 micromolar for suburban and most agricultural catchments, and were in excess of 1000 micromolar in catchments with greenhouse-based agriculture. Phosphate concentrations ranged from 2 to 20 micromolar among the catchments. These data are used to examine the premise that the suburbanized portion of the catchments is the primary source of nutrients to the streams.

  5. Advances in global mountain geomorphology

    Science.gov (United States)

    Slaymaker, Olav; Embleton-Hamann, Christine

    2018-05-01

    Three themes in global mountain geomorphology have been defined and reinforced over the past decade: (a) new ways of measuring, sensing, and analyzing mountain morphology; (b) a new emphasis on disconnectivity in mountain geomorphology; and (c) the emergence of concerns about the increasing influence of anthropogenic disturbance of the mountain geomorphic environment, especially in intertropical mountains where population densities are higher than in any other mountain region. Anthropogenically induced hydroclimate change increases geomorphic hazards and risks but also provides new opportunities for mountain landscape enhancement. Each theme is considered with respect to the distinctiveness of mountain geomorphology and in relation to important advances in research over the past decade. The traditional reliance on the high energy condition to define mountain geomorphology seems less important than the presence of unique mountain landforms and landscapes and the distinctive ways in which human activity and anthropogenically induced hydroclimate change are transforming mountain landscapes.

  6. Acidic deposition in California: findings from a program of monitoring and effects research

    Energy Technology Data Exchange (ETDEWEB)

    Takemoto, B.K.; Croes, B.E.; Brown, S.M.; Motallebi, N.; Westerdahl, F.D.; Margolis, H.G.; Cahill, B.T.; Mueller, M.D.; Holmes, J.R. [California Environmental Protection Agency, Sacramento, CA (United States). Research Division

    1995-12-01

    California`s 14-year, 25 million dollar acidic deposition program has studied the causes and effects of acidic air pollutants. In contrast to the eastern United States where sulfur-derived (S-derived) by-products from coal combustion dominate precipitation chemistry, nitrogen-derived (N-derived) acids predominate in wet and dry deposition in California. Adverse effects on the human lung have not been observed after short-term exposures to acidity, but extended exposures to ambient acidity may pose a chronic risk. No irreversible, adverse effects on surface waters in the Sierra Nevada mountain range or to the state`s forests have been found due to extent acidic inputs. The longer-term outlook for forests is less certain because the impacts observed elsewhere occurred after decades of S and N deposition, but at lower ambient ozone levels. Ozone is the major air pollutant stressor for forests, but atmospheric N has the potential to cause adverse changes in soil nutrient cycling. Impacts on man-made materials in southern California (e.g. galvanized steel) were found to be minor. While California does not have an ambient air quality standard for acidic air pollutants, emission of precursors have declined since the 1960s due to changes in industrial practices, improvements in technology and adoption of control measures for ozone. Lowering emission from motor vehicles will be emphasized to prevent future increases in N deposition. 67 refs., 4 figs., 2 tabs.

  7. The dynamic behaviour of the mammoth in the Spanish fortress, L’Aquila, Italy

    Directory of Open Access Journals (Sweden)

    Casarin Filippo

    2015-01-01

    Full Text Available The fossil remains of a “Mammuthus Meridionalis” were found the 25th of march 1954 in a lime quarry close to the city of L’Aquila. The Mammoth skeleton was soon “reconstructed” on a forged iron frame, and it was located in one of the main halls of the Spanish fortress in L’Aquila. A comprehensive restoration was recently completed (2013-2015, also considering the study of the adequacy of the supporting frame, which demonstrated to survive the relevant 2009 l’Aquila earthquake. After a laser-scanner survey, allowing to build a very detailed Finite Element model, Operational Modal Analysis was employed in order to obtain the dynamic identification of the structure. Results of the experimental activities explained the capacity of the structure to bear the 2009 main shock, since the natural frequencies demonstrated to be quite reduced. The structure acted as a “natural” seismic device, avoiding to reach its Ultimate Limit State however paying the toll of relevant displacements. The seismic motion caused several cracks at the edge of the bones, indicating the non-fulfilment of the ALS (damage Limit State of Artistic contents. A proposal for seismic isolation and redesign of the supporting frame was then discussed. The paper illustrates the scientific activities assisting the restoration intervention, entailing a multidisciplinary approach, in the fields of restoration, palaeontology and seismic engineering.

  8. Oceanographic data collected during the Sanctuary Quest: Investigating Marine Sanctuaries 2002 on NOAA Ship McArthur in North Pacific Ocean, California coast from 2002-04-24 to 2002-06-20 (NODC Accession 0072307)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The U.S. coast from southern California to Washington state features vast areas of submerged mountain ranges, canyons, plateaus, volcanoes, basins, rocky outcrops,...

  9. Characterizing the proposed geologic repository for high-level radioactive waste at Yucca Mountain, Nevada: hydrology and geochemistry

    Science.gov (United States)

    Stuckless, John S.; Levich, Robert A.

    2012-01-01

    This hydrology and geochemistry volume is a companion volume to the 2007 Geological Society of America Memoir 199, The Geology and Climatology of Yucca Mountain and Vicinity, Southern Nevada and California, edited by Stuckless and Levich. The work in both volumes was originally reported in the U.S. Department of Energy regulatory document Yucca Mountain Site Description, for the site characterization study of Yucca Mountain, Nevada, as the proposed U.S. geologic repository for high-level radioactive waste. The selection of Yucca Mountain resulted from a nationwide search and numerous committee studies during a period of more than 40 yr. The waste, largely from commercial nuclear power reactors and the government's nuclear weapons programs, is characterized by intense penetrating radiation and high heat production, and, therefore, it must be isolated from the biosphere for tens of thousands of years. The extensive, unique, and often innovative geoscience investigations conducted at Yucca Mountain for more than 20 yr make it one of the most thoroughly studied geologic features on Earth. The results of these investigations contribute extensive knowledge to the hydrologic and geochemical aspects of radioactive waste disposal in the unsaturated zone. The science, analyses, and interpretations are important not only to Yucca Mountain, but also to the assessment of other sites or alternative processes that may be considered for waste disposal in the future. Groundwater conditions, processes, and geochemistry, especially in combination with the heat from radionuclide decay, are integral to the ability of a repository to isolate waste. Hydrology and geochemistry are discussed here in chapters on unsaturated zone hydrology, saturated zone hydrology, paleohydrology, hydrochemistry, radionuclide transport, and thermally driven coupled processes affecting long-term waste isolation. This introductory chapter reviews some of the reasons for choosing to study Yucca Mountain as a

  10. Characterizing the proposed geologic repository for high-level radioactive waste at Yucca Mountain, Nevada--hydrology and geochemistry

    Science.gov (United States)

    Stuckless, John S.; Levich, Robert A.

    2012-01-01

    This hydrology and geochemistry volume is a companion volume to the 2007 Geological Society of America Memoir 199, The Geology and Climatology of Yucca Mountain and Vicinity, Southern Nevada and California, edited by Stuckless and Levich. The work in both volumes was originally reported in the U.S. Department of Energy regulatory document Yucca Mountain Site Description, for the site characterization study of Yucca Mountain, Nevada, as the proposed U.S. geologic repository for high-level radioactive waste. The selection of Yucca Mountain resulted from a nationwide search and numerous committee studies during a period of more than 40 yr. The waste, largely from commercial nuclear power reactors and the government's nuclear weapons programs, is characterized by intense penetrating radiation and high heat production, and, therefore, it must be isolated from the biosphere for tens of thousands of years. The extensive, unique, and often innovative geoscience investigations conducted at Yucca Mountain for more than 20 yr make it one of the most thoroughly studied geologic features on Earth. The results of these investigations contribute extensive knowledge to the hydrologic and geochemical aspects of radioactive waste disposal in the unsaturated zone. The science, analyses, and interpretations are important not only to Yucca Mountain, but also to the assessment of other sites or alternative processes that may be considered for waste disposal in the future. Groundwater conditions, processes, and geochemistry, especially in combination with the heat from radionuclide decay, are integral to the ability of a repository to isolate waste. Hydrology and geochemistry are discussed here in chapters on unsaturated zone hydrology, saturated zone hydrology, paleohydrology, hydrochemistry, radionuclide transport, and thermally driven coupled processes affecting long-term waste isolation. This introductory chapter reviews some of the reasons for choosing to study Yucca Mountain as a

  11. Historical and contemporary DNA indicate fisher decline and isolation occurred prior to the European settlement of California.

    Directory of Open Access Journals (Sweden)

    Jody M Tucker

    Full Text Available Establishing if species contractions were the result of natural phenomena or human induced landscape changes is essential for managing natural populations. Fishers (Martes pennanti in California occur in two geographically and genetically isolated populations in the northwestern mountains and southern Sierra Nevada. Their isolation is hypothesized to have resulted from a decline in abundance and distribution associated with European settlement in the 1800s. However, there is little evidence to establish that fisher occupied the area between the two extant populations at that time. We analyzed 10 microsatellite loci from 275 contemporary and 21 historical fisher samples (1880-1920 to evaluate the demographic history of fisher in California. We did not find any evidence of a recent (post-European bottleneck in the northwestern population. In the southern Sierra Nevada, genetic subdivision within the population strongly influenced bottleneck tests. After accounting for genetic subdivision, we found a bottleneck signal only in the northern and central portions of the southern Sierra Nevada, indicating that the southernmost tip of these mountains may have acted as a refugium for fisher during the anthropogenic changes of the late 19(th and early 20(th centuries. Using a coalescent-based Bayesian analysis, we detected a 90% decline in effective population size and dated the time of decline to over a thousand years ago. We hypothesize that fisher distribution in California contracted to the two current population areas pre-European settlement, and that portions of the southern Sierra Nevada subsequently experienced another more recent bottleneck post-European settlement.

  12. Mineral resources of the Turtle Mountains Wilderness Study Area, San Bernardino County, California

    Science.gov (United States)

    Howard, Keith A.; Nielson, Jane E.; Simpson, Robert W.; Hazlett, Richard W.; Alminas, Henry V.; Nakata, John K.; McDonnell, John R.

    1988-01-01

    At the request of the U.S. Bureau of Land Management, approximately 105,200 acres of the Turtle Mountains Wilderness Study Area (CDCA-307) were evaluated for mineral resources (known) and resource potential (undiscovered). In this report, the area studied is referred to as "the wilderness study area" or simply "the study area"; any reference to the Turtle Mountain Wilderness Study Area refers only to that part of the wilderness study area for which a mineral survey was requested by the U.S. Bureau of Land Management.The wilderness study area is in southeastern San Bernardino County, Calif. Gold, silver, copper, and lead have been mined within and adjacent to the study area. Copper-zinc-silver-gold mineral occurrences are found in the southern part and gold-silver mineral occurrences are found in the northern part of the study area; identified low- to moderate-grade gold-silver resources occur adjacent to the study area along the western boundary. Six areas in the south-central and northwestern parts of the study area have high resource potential, two broad areas have moderate resource potential, and part of the southwest corner has low resource potential for lode gold, silver, and associated copper, lead, zinc, molybdenum, and tungsten. Alluvium locally within one of these areas has moderate resource potential for placer gold and silver, and the entire area has low resource potential for placer gold and silver. There is low resource potential for perlite, ornamental stone (onyx marble and opal), manganese, uranium and thorium, pegmatite minerals, and oil and gas within the study area. Sand and gravel are abundant but are readily available outside the wilderness study area.

  13. A preliminary assessment of earthquake ground shaking hazard at Yucca Mountain, Nevada and implications to the Las Vegas region

    Energy Technology Data Exchange (ETDEWEB)

    Wong, I.G.; Green, R.K.; Sun, J.I. [Woodward-Clyde Federal Services, Oakland, CA (United States); Pezzopane, S.K. [Geological Survey, Denver, CO (United States); Abrahamson, N.A. [Abrahamson (Norm A.), Piedmont, CA (United States); Quittmeyer, R.C. [Woodward-Clyde Federal Services, Las Vegas, NV (United States)

    1996-12-31

    As part of early design studies for the potential Yucca Mountain nuclear waste repository, the authors have performed a preliminary probabilistic seismic hazard analysis of ground shaking. A total of 88 Quaternary faults within 100 km of the site were considered in the hazard analysis. They were characterized in terms of their probability o being seismogenic, and their geometry, maximum earthquake magnitude, recurrence model, and slip rate. Individual faults were characterized by maximum earthquakes that ranged from moment magnitude (M{sub w}) 5.1 to 7.6. Fault slip rates ranged from a very low 0.00001 mm/yr to as much as 4 mm/yr. An areal source zone representing background earthquakes up to M{sub w} 6 1/4 = 1/4 was also included in the analysis. Recurrence for these background events was based on the 1904--1994 historical record, which contains events up to M{sub w} 5.6. Based on this analysis, the peak horizontal rock accelerations are 0.16, 0.21, 0.28, and 0.50 g for return periods of 500, 1,000, 2,000, and 10,000 years, respectively. In general, the dominant contributor to the ground shaking hazard at Yucca Mountain are background earthquakes because of the low slip rates of the Basin and Range faults. A significant effect on the probabilistic ground motions is due to the inclusion of a new attenuation relation developed specifically for earthquakes in extensional tectonic regimes. This relation gives significantly lower peak accelerations than five other predominantly California-based relations used in the analysis, possibly due to the lower stress drops of extensional earthquakes compared to California events. Because Las Vegas is located within the same tectonic regime as Yucca Mountain, the seismic sources and path and site factors affecting the seismic hazard at Yucca Mountain also have implications to Las Vegas. These implications are discussed in this paper.

  14. Mountain goat abundance and population trends in the Olympic Mountains, Washington, 2011

    Science.gov (United States)

    Jenkins, Kurt; Happe, Patricia; Griffin, Paul C.; Beirne, Katherine; Hoffman, Roger; Baccus, William

    2011-01-01

    We conducted an aerial helicopter survey between July 18 and July 25, 2011, to estimate abundance and trends of introduced mountain goats (Oreamnos americanus) in the Olympic Mountains. The survey was the first since we developed a sightability correction model in 2008, which provided the means to estimate the number of mountain goats present in the surveyed areas and not seen during the aerial surveys, and to adjust for undercounting biases. Additionally, the count was the first since recent telemetry studies revealed that the previously defined survey zone, which was delineated at lower elevations by the 1,520-meter elevation contour, did not encompass all lands used by mountain goats during summer. We redefined the lower elevation boundary of survey units before conducting the 2011 surveys in an effort to more accurately estimate the entire mountain goat population. We surveyed 39 survey units, comprising 39 percent of the 59,615-hectare survey area. We estimated a mountain goat population of 344±44 (standard error, SE) in the expanded survey area. Based on this level of estimation uncertainty, the 95-percent confidence interval ranged from 258 to 430 mountain goats at the time of the survey. To permit comparisons of mountain goat populations between the 2004 and 2011 surveys, we recomputed population estimates derived from the 2004 survey using the newly developed bias correction methods, and we computed the 2004 and 2011 surveys based on comparable survey zone definitions (for example, using the boundaries of the 2004 survey). The recomputed estimates of mountain goat populations were 217±19 (SE) in 2004 and 303±41(SE) in 2011. The difference between the current 2011 population estimate (344±44[SE]) and the recomputed 2011 estimate (303±41[SE]) reflects the number of mountain goats counted in the expanded lower elevation portions of the survey zone added in 2011. We conclude that the population of mountain goats has increased in the Olympic Mountains at

  15. Aboveground Tree Biomass for Pinus ponderosa in Northeastern California

    Directory of Open Access Journals (Sweden)

    Todd A. Hamilton

    2013-03-01

    Full Text Available Forest managers need accurate biomass equations to plan thinning for fuel reduction or energy production. Estimates of carbon sequestration also rely upon such equations. The current allometric equations for ponderosa pine (Pinus ponderosa commonly employed for California forests were developed elsewhere, and are often applied without consideration potential for spatial or temporal variability. Individual-tree aboveground biomass allometric equations are presented from an analysis of 79 felled trees from four separate management units at Blacks Mountain Experimental Forest: one unthinned and three separate thinned units. A simultaneous set of allometric equations for foliage, branch and bole biomass were developed as well as branch-level equations for wood and foliage. Foliage biomass relationships varied substantially between units while branch and bole biomass estimates were more stable across a range of stand conditions. Trees of a given breast height diameter and crown ratio in thinned stands had more foliage biomass, but slightly less branch biomass than those in an unthinned stand. The observed variability in biomass relationships within Blacks Mountain Experimental Forest suggests that users should consider how well the data used to develop a selected model relate to the conditions in any given application.

  16. Nonmethane hydrocarbons in the rural southeast United States national parks

    Science.gov (United States)

    Kang, Daiwen; Aneja, Viney P.; Zika, Rod G.; Farmer, Charles; Ray, John D.

    2001-02-01

    Measurements of volatile organic compounds (VOCs) were made at three rural sites in the southeast U.S. national parks: Mammoth Cave National Park, Kentucky; Cove Mountain, Great Smoky Mountains National Park, Tennessee; and Big Meadows, Shenandoah National Park, Virginia. In 1995 the three locations were sampling sites for the Southern Oxidants Study (SOS) Nashville Intensive, and the measurements of VOCs for Shenandoah were also made under contract with the National Park Service. Starting in 1996, the National Park Service added the other two parks to the monitoring contract. Hydrocarbon measurements made during June through September for the years 1995, 1996, and 1997 were analyzed in this study. Source classification techniques based on correlation coefficient, chemical reactivity, and ratioing were developed and applied to these data. The results show that anthropogenic VOCs from automobile exhaust appeared to be dominant at Mammoth Cave National Park, and at Cove Mountain, Great Smoky Mountains National Park, but other sources were also important at Big Meadows, Shenandoah National Park. Correlation and ratio analysis based on chemical reactivity provides a basis for source-receptor relationship. The most abundant ambient VOCs varied both in concentration and order depending on park and year, but the following VOCs appeared on the top 10 list for all three sites: isoprene (6.3 to 18.4 ppbv), propane (2.1 to 12.9 ppbv), isopentane (1.3 to 5.7 ppbv), and toluene (1.0 to 7.2 ppbv). Isoprene is naturally emitted by vegetation, and the others are produced mainly by fossil fuel combustion and industrial processes. Propylene-equivalent concentrations were calculated to account for differences in reaction rates between the hydroxyl radical and individual hydrocarbons, and to thereby estimate their relative contributions to ozone formation.

  17. Native Americans and Yucca Mountain: A revised and updated summary report on research undertaken between 1987 and 1991

    International Nuclear Information System (INIS)

    Fowler, C.S.

    1991-01-01

    This report summarizes data collected between September 1986 and September 1988 relative to Native American concerns involving the potential siting of a high-level nuclear waste repository at Yucca Mountain, Nevada. The data were collected from Western Shoshone and Southern Paiute people upon whose aboriginal lands the repository potentially is to be located. Western Shoshone people involved in the study were those resident or affiliated with reservation communities at Yomba and Duckwater, Nevada, and Death Valley, California. Southern Paiute people were at reservation communities at Moapa and Las Vegas. Additional persons of Western Shoshone and Southern Paiute descent were interviewed at Beatty, Tonopah, Caliente, Pahrump, and Las Vegas, Nevada. The work was part of a larger project of socioeconomic studies for the State of Nevada's Nuclear Waste Projects office, conducted by Mountain West of Phoenix, Arizona

  18. Annual Copper Mountain Conferences on Multigrid and Iterative Methods, Copper Mountain, Colorado

    International Nuclear Information System (INIS)

    McCormick, Stephen F.

    2016-01-01

    This project supported the Copper Mountain Conference on Multigrid and Iterative Methods, held from 2007 to 2015, at Copper Mountain, Colorado. The subject of the Copper Mountain Conference Series alternated between Multigrid Methods in odd-numbered years and Iterative Methods in even-numbered years. Begun in 1983, the Series represents an important forum for the exchange of ideas in these two closely related fields. This report describes the Copper Mountain Conference on Multigrid and Iterative Methods, 2007-2015. Information on the conference series is available at http://grandmaster.colorado.edu/~copper/

  19. Annual Copper Mountain Conferences on Multigrid and Iterative Methods, Copper Mountain, Colorado

    Energy Technology Data Exchange (ETDEWEB)

    McCormick, Stephen F. [Front Range Scientific, Inc., Lake City, CO (United States)

    2016-03-25

    This project supported the Copper Mountain Conference on Multigrid and Iterative Methods, held from 2007 to 2015, at Copper Mountain, Colorado. The subject of the Copper Mountain Conference Series alternated between Multigrid Methods in odd-numbered years and Iterative Methods in even-numbered years. Begun in 1983, the Series represents an important forum for the exchange of ideas in these two closely related fields. This report describes the Copper Mountain Conference on Multigrid and Iterative Methods, 2007-2015. Information on the conference series is available at http://grandmaster.colorado.edu/~copper/.

  20. Reconnaissance and economic geology of Copper Mountain metamorphic complex, Owl Creek Mountains, Wyoming

    International Nuclear Information System (INIS)

    Hausel, W.D.

    1983-01-01

    The Copper Mountain metamorphic complex lies within a westerly trending belt of Precambrian exposures known as the Owl Creek Mountains uplift. The metamorphic complex at Copper Mountain is part of a larger complex known as the Owl Creek Mountains greenstone belt. Until more detailed mapping and petrographic studies can be completed, the Copper Mountain area is best referred to as a complex, even though it has some characteristics of a greestone belt. At least three episodes of Precambrian deformation have affected the supracrustals, and two have disturbed the granites. The final Precambrian deformation event was preceded by a weak thermal event expressed by retrogressive metamorphism and restricted metasomatic alteration. During this event, a second phase of pegmatization was accompanied by hydrothermal solutions. During the Laramide orogeny, Copper Mountain was again modified by deformation. Laramide deformation produced complex gravity faults and keystone grabens. Uranium deposits were formed following major Laramide deformation. The genesis of these deposits is attributable to either the leaching of granites or the leaching of overlying tuffaceous sediments during the Tertiary. Production of metals and industrial minerals has been limited, although some gold, copper, silver, tungsten, beryl, feldspar, and lithium ore have been shipped from Copper Mountain. A large amount of uranium was produced from the Copper Mountain district in the 1950s

  1. Mechanisms Controlling Annual, Interannual, and Decadal Changes in California's Carbon Budget

    Science.gov (United States)

    Goulden, M. L.; Jin, Y.; Randerson, J. T.; Trumbore, S.; Hsueh, D.; Fellows, A.; Anderson, R.; McMillan, A.; Roberts, D.; Riley, W.; Dennison, P.

    2006-12-01

    We used remote sensing-based measurements of land-surface properties, in-situ measurements of land- atmosphere exchange, mechanistic models of biogeochemistry and atmospheric transport, and previously compiled data sets of fossil fuel use, agricultural yield, land use, and biomass to better understand California's Carbon budget. Key findings include: (1) California's NPP in the early 2000s (190 x 1012 gC y-1) was roughly double its fossil fuel emission (95 x 1012 gC y-1). Since ecosystem carbon storage is typically less than half NPP, California's net C budget was dominated by fossil fuel emissions. (2) Fluctuations in ecosystem NEP caused by climate variability (18 x 1012 gC y-1) were the dominant cause of interannual carbon cycle variability. Fluctuations in fossil fuel consumption caused by the business cycle (8 x 1012 gC y-1) and fluctuations associated with wildland fire (3 x 1012 gC y-1) were smaller. (3) Approximately 50% of California's fossil fuel emissions are advected to the south or west; only 50% of California's fossil fuel emissions are transported east, creating a challenge for efforts to use longitudinal CO2 gradients to constrain North America's carbon budget. (4) Alternative spectral indices based on visible greenness (VARI or VIG) or that include information on short-wave IR absorption (NDWI, NDII7 or RSR) were more tightly correlated with LAI, live fuel moisture, and whole ecosystem CO2 flux than more commonly used near-IR-based indices (NDVI, EVI). (5) Unmanaged forests, especially in the Sierra Nevada Mountains, have lost carbon over the last 70 years as a result of the selective mortality of large trees. This mortality was likely caused by episodic insect outbreaks, which may have been exacerbated by stand thickening associated with fire suppression.

  2. Ozone, nitric acid, and ammonia air pollution is unhealthy for people and ecosystems in southern Sierra Nevada, California

    Energy Technology Data Exchange (ETDEWEB)

    Cisneros, Ricardo, E-mail: rcisneros@fs.fed.u [USDA Forest Service, Pacific Southwest Region, 1600 Tollhouse Road, Clovis, CA 93611 (United States); Bytnerowicz, Andrzej, E-mail: abytnerowicz@fs.fed.u [USDA Forest Service, Pacific Southwest Research Station, 4955 Canyon Crest Dr., Riverside, CA 92507 (United States); Schweizer, Donald, E-mail: dschweizer@fs.fed.u [USDA Forest Service, Pacific Southwest Region, 1600 Tollhouse Road, Clovis, CA 93611 (United States); Zhong, Sharon, E-mail: zhongs@msu.ed [Department of Geography, Michigan State University, 116 Geography Building East, Lansing, MI 48824-1117 (United States); Traina, Samuel, E-mail: straina@ucmerced.ed [Environmental Systems Graduate Group, University of California Merced, 5200 North Lake Road, Merced, CA 95343 (United States); Bennett, Deborah H., E-mail: dhbennett@ucdavis.ed [Department of Public Health Sciences, University of California Davis, One Shields Avenue, TB 169 Davis, CA 95616 (United States)

    2010-10-15

    Two-week average concentrations of ozone (O{sub 3}), nitric acid vapor (HNO{sub 3}) and ammonia (NH{sub 3}) were measured with passive samplers during the 2002 summer season across the central Sierra Nevada Mountains, California, along the San Joaquin River drainage. Elevated concentrations of the pollutants were determined with seasonal means for individual sites ranging between 62 and 88 ppb for O{sub 3}, 1.0-3.8 {mu}g m{sup -3} for HNO{sub 3}, and 2.6-5.2 {mu}g m{sup -3} for NH{sub 3}. Calculated O{sub 3} exposure indices were very high, reaching SUM00-191 ppm h, SUM60-151 ppm h, and W126-124 ppm h. Calculated nitrogen (N) dry deposition ranged from 1.4 to 15 kg N ha{sup -1} for maximum values, and 0.4-8 kg N ha{sup -1} for minimum values; potentially exceeding Critical Loads (CL) for nutritional N. The U.S., California, and European 8 h O{sub 3} human health standards were exceeded during 104, 108, and 114 days respectively, indicating high risk to humans from ambient O{sub 3}. - Ozone concentrations remained unchanged while those of nitric acid vapor and ammonia decreased along the river drainage crossing the Sierra Nevada Mountains.

  3. Ozone, nitric acid, and ammonia air pollution is unhealthy for people and ecosystems in southern Sierra Nevada, California

    International Nuclear Information System (INIS)

    Cisneros, Ricardo; Bytnerowicz, Andrzej; Schweizer, Donald; Zhong, Sharon; Traina, Samuel; Bennett, Deborah H.

    2010-01-01

    Two-week average concentrations of ozone (O 3 ), nitric acid vapor (HNO 3 ) and ammonia (NH 3 ) were measured with passive samplers during the 2002 summer season across the central Sierra Nevada Mountains, California, along the San Joaquin River drainage. Elevated concentrations of the pollutants were determined with seasonal means for individual sites ranging between 62 and 88 ppb for O 3 , 1.0-3.8 μg m -3 for HNO 3 , and 2.6-5.2 μg m -3 for NH 3 . Calculated O 3 exposure indices were very high, reaching SUM00-191 ppm h, SUM60-151 ppm h, and W126-124 ppm h. Calculated nitrogen (N) dry deposition ranged from 1.4 to 15 kg N ha -1 for maximum values, and 0.4-8 kg N ha -1 for minimum values; potentially exceeding Critical Loads (CL) for nutritional N. The U.S., California, and European 8 h O 3 human health standards were exceeded during 104, 108, and 114 days respectively, indicating high risk to humans from ambient O 3 . - Ozone concentrations remained unchanged while those of nitric acid vapor and ammonia decreased along the river drainage crossing the Sierra Nevada Mountains.

  4. Ecoregions of California

    Science.gov (United States)

    Griffith, Glenn E.; Omernik, James M.; Smith, David W.; Cook, Terry D.; Tallyn, Ed; Moseley, Kendra; Johnson, Colleen B.

    2016-02-23

    (2000), and Omernik and Griffith (2014).California has great ecological and biological diversity. The State contains offshore islands and coastal lowlands, large alluvial valleys, forested mountain ranges, deserts, and various aquatic habitats. There are 13 level III ecoregions and 177 level IV ecoregions in California and most continue into ecologically similar parts of adjacent States of the United States or Mexico (Bryce and others, 2003; Thorson and others, 2003; Griffith and others, 2014).The California ecoregion map was compiled at a scale of 1:250,000. It revises and subdivides an earlier national ecoregion map that was originally compiled at a smaller scale (Omernik, 1987; U.S. Environmental Protection Agency, 2013). This poster is the result of a collaborative project primarily between U.S. Environmental Protection Agency (USEPA) Region IX, USEPA National Health and Environmental Effects Research Laboratory (Corvallis, Oregon), California Department of Fish and Wildlife (DFW), U.S. Department of Agriculture (USDA)–Natural Resources Conservation Service (NRCS), U.S. Department of the Interior–Geological Survey (USGS), and other State of California agencies and universities.The project is associated with interagency efforts to develop a common framework of ecological regions (McMahon and others, 2001). Reaching that objective requires recognition of the differences in the conceptual approaches and mapping methodologies applied to develop the most common ecoregion-type frameworks, including those developed by the USDA–Forest Service (Bailey and others, 1994; Miles and Goudy, 1997; Cleland and others, 2007), the USEPA (Omernik 1987, 1995), and the NRCS (U.S. Department of Agriculture–Soil Conservation Service, 1981; U.S. Department of Agriculture–Natural Resources Conservation Service, 2006). As each of these frameworks is further refined, their differences are becoming less discernible. Regional collaborative projects such as this one in California

  5. Physiochemical characterization of insoluble residues in California Sierra Nevada snow

    Science.gov (United States)

    Creamean, Jessie; Axson, Jessica; Bondy, Amy; Craig, Rebecca; May, Nathaniel; Shen, Hongru; Weber, Michael; Warner, Katy; Pratt, Kerri; Ault, Andrew

    2015-04-01

    The effects atmospheric aerosols have on cloud particle formation are dependent on both the aerosol physical and chemical characteristics. For instance, larger, irregular-shaped mineral dusts efficiently form cloud ice crystals, enhancing precipitation, whereas small, spherical pollution aerosols have the potential to form small cloud droplets that delay the autoconversion of cloudwater to precipitation. Thus, it is important to understand the physiochemical properties and sources of aerosols that influence cloud and precipitation formation. We present an in-depth analysis of the size, chemistry, and sources of soluble and insoluble residues found in snow collected at three locations in the California Sierra Nevada Mountains during the 2012/2013 winter season. For all sites, February snow samples contained high concentrations of regional pollutants such as ammonium nitrate and biomass burning species, while March snow samples were influenced by mineral dust. The snow at the lower elevation sites in closer proximity to the Central Valley of California were heavily influenced by agricultural and industrial emissions, whereas the highest elevation site was exposed to a mixture of Central Valley pollutants in addition to long-range transported dust from Asia and Africa. Further, air masses likely containing transported dust typically traveled over cloud top heights at the low elevation sites, but were incorporated into the cold (-28°C, on average) cloud tops more often at the highest elevation site, particularly in March, which we hypothesize led to enhanced ice crystal formation and thus the observation of dust in the snow collected at the ground. Overall, understanding the spatial and temporal dependence of aerosol sources is important for remote mountainous regions such as the Sierra Nevada where snowpack provides a steady, vital supply of water.

  6. California Institute for Water Resources - California Institute for Water

    Science.gov (United States)

    Resources Skip to Content Menu California Institute for Water Resources Share Print Site Map Resources Publications Keep in Touch QUICK LINKS Our Blog: The Confluence Drought & Water Information University of California California Institute for Water Resources California Institute for Water Resources

  7. Nitrate in Polluted Mountainous Catchments with Mediterranean Climates

    Directory of Open Access Journals (Sweden)

    Thomas Meixner

    2001-01-01

    Full Text Available The mountains of southern California receive some of the highest rates of nitrogen (N deposition in the world (~40 kg ha�1 year�1. These high rates of deposition have translated into consistently high levels of nitrate (NO3� in some streams of the San Bernardino Mountains. However, not all streams are exhibiting these high levels of NO3�. Perennial streams have high NO3� concentrations (~200 [b.mu ]moles l�1 while ephemeral streams do not (~20 [b.mu ]moles l�1. This difference points to groundwater as the source of the NO3� observed in streams. Furthermore, the evidence indicates a differential impact of N deposition on terrestrial and aquatic systems in Mediterranean climates, with aquatic systems being impacted more quickly. The primary reason for this difference involves the asynchrony between the time that atmospheric deposition occurs (summer, the time period of maximum soil NO3� availability and leaching (winter, and the time of maximum plant N demand (spring. Our results indicate that semiarid Mediterranean climate systems behave differently from more humid systems in that, because of this asynchrony, aquatic systems may not be indicative of changes in terrestrial ecosystem response. These differences lead us to the conclusion that the extrapolation of impacts from humid to Mediterranean climates is problematic and the concept of N saturation may need to be revisited for semiarid and seasonally dry systems.

  8. YUCCA MOUNTAIN SITE DESCRIPTION

    International Nuclear Information System (INIS)

    Simmons, A.M.

    2004-01-01

    The ''Yucca Mountain Site Description'' summarizes, in a single document, the current state of knowledge and understanding of the natural system at Yucca Mountain. It describes the geology; geochemistry; past, present, and projected future climate; regional hydrologic system; and flow and transport within the unsaturated and saturated zones at the site. In addition, it discusses factors affecting radionuclide transport, the effect of thermal loading on the natural system, and tectonic hazards. The ''Yucca Mountain Site Description'' is broad in nature. It summarizes investigations carried out as part of the Yucca Mountain Project since 1988, but it also includes work done at the site in earlier years, as well as studies performed by others. The document has been prepared under the Office of Civilian Radioactive Waste Management quality assurance program for the Yucca Mountain Project. Yucca Mountain is located in Nye County in southern Nevada. The site lies in the north-central part of the Basin and Range physiographic province, within the northernmost subprovince commonly referred to as the Great Basin. The basin and range physiography reflects the extensional tectonic regime that has affected the region during the middle and late Cenozoic Era. Yucca Mountain was initially selected for characterization, in part, because of its thick unsaturated zone, its arid to semiarid climate, and the existence of a rock type that would support excavation of stable openings. In 1987, the United States Congress directed that Yucca Mountain be the only site characterized to evaluate its suitability for development of a geologic repository for high-level radioactive waste and spent nuclear fuel

  9. Human impacts to mountain streams

    Science.gov (United States)

    Wohl, Ellen

    2006-09-01

    Mountain streams are here defined as channel networks within mountainous regions of the world. This definition encompasses tremendous diversity of physical and biological conditions, as well as history of land use. Human effects on mountain streams may result from activities undertaken within the stream channel that directly alter channel geometry, the dynamics of water and sediment movement, contaminants in the stream, or aquatic and riparian communities. Examples include channelization, construction of grade-control structures or check dams, removal of beavers, and placer mining. Human effects can also result from activities within the watershed that indirectly affect streams by altering the movement of water, sediment, and contaminants into the channel. Deforestation, cropping, grazing, land drainage, and urbanization are among the land uses that indirectly alter stream processes. An overview of the relative intensity of human impacts to mountain streams is provided by a table summarizing human effects on each of the major mountainous regions with respect to five categories: flow regulation, biotic integrity, water pollution, channel alteration, and land use. This table indicates that very few mountains have streams not at least moderately affected by land use. The least affected mountainous regions are those at very high or very low latitudes, although our scientific ignorance of conditions in low-latitude mountains in particular means that streams in these mountains might be more altered than is widely recognized. Four case studies from northern Sweden (arctic region), Colorado Front Range (semiarid temperate region), Swiss Alps (humid temperate region), and Papua New Guinea (humid tropics) are also used to explore in detail the history and effects on rivers of human activities in mountainous regions. The overview and case studies indicate that mountain streams must be managed with particular attention to upstream/downstream connections, hillslope

  10. California Bioregions

    Data.gov (United States)

    California Natural Resource Agency — California regions developed by the Inter-agency Natural Areas Coordinating Committee (INACC) were digitized from a 1:1,200,000 California Department of Fish and...

  11. Native Americans and Yucca Mountain: A revised and updated summary report on research undertaken between 1987 and 1991; Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    Fowler, C.S. [Cultural Resources Consultants Ltd., Reno, NV (United States)

    1991-10-15

    This report summarizes data collected between September 1986 and September 1988 relative to Native American concerns involving the potential siting of a high-level nuclear waste repository at Yucca Mountain, Nevada. The data were collected from Western Shoshone and Southern Paiute people upon whose aboriginal lands the repository potentially is to be located. Western Shoshone people involved in the study were those resident or affiliated with reservation communities at Yomba and Duckwater, Nevada, and Death Valley, California. Southern Paiute people were at reservation communities at Moapa and Las Vegas. Additional persons of Western Shoshone and Southern Paiute descent were interviewed at Beatty, Tonopah, Caliente, Pahrump, and Las Vegas, Nevada. The work was part of a larger project of socioeconomic studies for the State of Nevada`s Nuclear Waste Projects office, conducted by Mountain West of Phoenix, Arizona.

  12. YUCCA MOUNTAIN SITE DESCRIPTION

    Energy Technology Data Exchange (ETDEWEB)

    A.M. Simmons

    2004-04-16

    The ''Yucca Mountain Site Description'' summarizes, in a single document, the current state of knowledge and understanding of the natural system at Yucca Mountain. It describes the geology; geochemistry; past, present, and projected future climate; regional hydrologic system; and flow and transport within the unsaturated and saturated zones at the site. In addition, it discusses factors affecting radionuclide transport, the effect of thermal loading on the natural system, and tectonic hazards. The ''Yucca Mountain Site Description'' is broad in nature. It summarizes investigations carried out as part of the Yucca Mountain Project since 1988, but it also includes work done at the site in earlier years, as well as studies performed by others. The document has been prepared under the Office of Civilian Radioactive Waste Management quality assurance program for the Yucca Mountain Project. Yucca Mountain is located in Nye County in southern Nevada. The site lies in the north-central part of the Basin and Range physiographic province, within the northernmost subprovince commonly referred to as the Great Basin. The basin and range physiography reflects the extensional tectonic regime that has affected the region during the middle and late Cenozoic Era. Yucca Mountain was initially selected for characterization, in part, because of its thick unsaturated zone, its arid to semiarid climate, and the existence of a rock type that would support excavation of stable openings. In 1987, the United States Congress directed that Yucca Mountain be the only site characterized to evaluate its suitability for development of a geologic repository for high-level radioactive waste and spent nuclear fuel.

  13. MOUNTAIN TOURISM INTERCONNECTIONS. VARIATION OF MOUNTAIN TOURIST FLOW IN SUCEAVA COUNTY

    Directory of Open Access Journals (Sweden)

    George CHEIA

    2013-12-01

    Full Text Available Mountain tourism, in addition to one of the most common types of tourism, is generated by a complex of factors and at the same time, triggers a series of processes involving tourism phenomenon, especially the environment where it is taking place. This paper aims to discuss some of these causal factors, and the relationship between this type of tourism and the tourist area itself (1. By using SPSS analytical methods , it can be practically demonstrated the impact of mountain tourist flow in spas (2 and mountain resorts (3 in Suceava county.

  14. Vibrational, X-ray absorption, and Mössbauer spectra of sulfate minerals from the weathered massive sulfide deposit at Iron Mountain, California

    Science.gov (United States)

    Majzlan, Juraj; Alpers, Charles N.; Bender Koch, Christian; McCleskey, R. Blaine; Myneni, Satish B.C.; Neil, John M.

    2014-01-01

    The Iron Mountain Mine Superfund site in California is a prime example of an acid mine drainage (AMD) system with well developed assemblages of sulfate minerals typical for such settings. Here we present and discuss the vibrational (infrared), X-ray absorption, and Mössbauer spectra of a number of these phases, augmented by spectra of a few synthetic sulfates related to the AMD phases. The minerals and related phases studied in this work are (in order of increasing Fe2O3/FeO): szomolnokite, rozenite, siderotil, halotrichite, römerite, voltaite, copiapite, monoclinic Fe2(SO4)3, Fe2(SO4)3·5H2O, kornelite, coquimbite, Fe(SO4)(OH), jarosite and rhomboclase. Fourier transform infrared spectra in the region 750–4000 cm−1 are presented for all studied phases. Position of the FTIR bands is discussed in terms of the vibrations of sulfate ions, hydroxyl groups, and water molecules. Sulfur K-edge X-ray absorption near-edge structure (XANES) spectra were collected for selected samples. The feature of greatest interest is a series of weak pre-edge peaks whose position is determined by the number of bridging oxygen atoms between Fe3+ octahedra and sulfate tetrahedra. Mössbauer spectra of selected samples were obtained at room temperature and 80 K for ferric minerals jarosite and rhomboclase and mixed ferric–ferrous minerals römerite, voltaite, and copiapite. Values of Fe2+/[Fe2+ + Fe3+] determined by Mössbauer spectroscopy agree well with those determined by wet chemical analysis. The data presented here can be used as standards in spectroscopic work where spectra of well-characterized compounds are required to identify complex mixtures of minerals and related phases.

  15. CUES - A Study Site for Measuring Snowpack Energy Balance in the Sierra Nevada

    Science.gov (United States)

    Bair, Edward; Dozier, Jeff; Davis, Robert; Colee, Michael; Claffey, Keran

    2015-09-01

    Accurate measurement and modeling of the snowpack energy balance are critical to understanding the terrestrial water cycle. Most of the water resources in the western US come from snowmelt, yet statistical runoff models that rely on the historical record are becoming less reliable because of a changing climate. For physically based snow melt models that do not depend on past conditions, ground based measurements of the energy balance components are imperative for verification. For this purpose, the US Army Corps of Engineers Cold Regions Research and Engineering Laboratory (CRREL) and the University of California, Santa Barbara (UCSB) established the “CUES” snow study site (CRREL/UCSB Energy Site, http://www.snow.ucsb.edu/) at 2940 m elevation on Mammoth Mountain, California. We describe CUES, provide an overview of research, share our experience with scientific measurements, and encourage future collaborative research. Snow measurements began near the current CUES site for ski area operations in 1969. In the 1970s, researchers began taking scientific measurements. Today, CUES benefits from year round gondola access and a fiber optic internet connection. Data loggers and computers automatically record and store over 100 measurements from more than 50 instruments each minute. CUES is one of only five high altitude mountain sites in the Western US where a full suite of energy balance components are measured. In addition to measuring snow on the ground at multiple locations, extensive radiometric and meteorological measurements are recorded. Some of the more novel measurements include scans by an automated terrestrial LiDAR, passive and active microwave imaging of snow stratigraphy, microscopic imaging of snow grains, snowflake imaging with a multi-angle camera, fluxes from upward and downward looking radiometers, snow water equivalent from different types of snow pillows, snowmelt from lysimeters, and concentration of impurities in the snowpack. We give an

  16. CUES – A Study Site for Measuring Snowpack Energy Balance in the Sierra Nevada

    Directory of Open Access Journals (Sweden)

    Edward H. Bair

    2015-09-01

    Full Text Available Accurate measurement and modeling of the snowpack energy balance are critical to understanding the terrestrial water cycle. Most of the water resources in the western US come from snowmelt, yet statistical runoff models that rely on the historical record are becoming less reliable because of a changing climate. For physically based snow melt models that do not depend on past conditions, ground based measurements of the energy balance components are imperative for verification. For this purpose, the US Army Corps of Engineers Cold Regions Research and Engineering Laboratory (CRREL and the University of California, Santa Barbara (UCSB established the CUES snow study site (CRREL/UCSB Energy Site, http://www.snow.ucsb.edu/ at 2940 m elevation on Mammoth Mountain, California. We describe CUES, provide an overview of research, share our experience with scientific measurements, and encourage future collaborative research. Snow measurements began near the current CUES site for ski area operations in 1969. In the 1970s, researchers began taking scientific measurements. Today, CUES benefits from year round gondola access and a fiber optic internet connection. Data loggers and computers automatically record and store over 100 measurements from more than 50 instruments each minute. CUES is one of only five high altitude mountain sites in the Western US where a full suite of energy balance components are measured. In addition to measuring snow on the ground at multiple locations, extensive radiometric and meteorological measurements are recorded. Some of the more novel measurements include scans by an automated terrestrial LiDAR, passive and active microwave imaging of snow stratigraphy, microscopic imaging of snow grains, snowflake imaging with a multi-angle camera, fluxes from upward and downward looking radiometers, snow water equivalent from different types of snow pillows, snowmelt from lysimeters, and concentration of impurities in the snowpack. We

  17. A Review of Human Health and Ecological Risks due to CO2 Exposure

    Science.gov (United States)

    Hepple, R. P.; Benson, S. M.

    2001-05-01

    Nyos in Cameroon, Mammoth Mountain in California, Dieng Volcanic Complex in Java, Indonesia, and industrial accidents with CO2 fire suppression systems teach that slow leakage rates and effective dilution must be proven to ensure human and environmental safety. Monitoring CO2 levels in occupational settings is done with reliable IR sensors. Remote sensing of low levels of CO2 over long distances cannot be done easily yet, although LIDAR, an airborne laser technique under development, may have good potential. The environmental impacts of elevated CO2 levels on vegetation are being investigated now in free-air CO2 enrichment studies. In general, persistent elevated CO2 levels cause a change in species composition, favoring C3 plants over C4 or CAM. The ecological effects of catastrophic releases are severe but depend upon (a) release rate and amount, (b) surface topography and rate of atmospheric mixing (c) exposure concentrations and duration, (d) the respiratory mechanism of the form of life under discussion, (e) its tolerance for oxygen deprivation, and (f) its ability to maintain homeostatic pH levels. Suppression of root respiration due to elevated soil-gas CO2 concentrations and acidifiction of the root zone are known mechanisms of tree-kill. Soil-gas CO2 in the tree-kill areas at Mammoth Mountain exceeded 20-30% at 15 cm depth. Surface masses of concentrated CO2 probably smother the canopy through oxygen deprivation, but the precise mechanism is not known. Lake Nyos and Mammoth Mountain reveal that catastrophic releases can result in complete dead zones.

  18. Downwelling Far-Infrared Emission Spectra Measured By First at Cerro Toco, Chile and Table Mountain, California

    Science.gov (United States)

    Mast, J. C.; Mlynczak, M. G.; Cageao, R.; Kratz, D. P.; Johnson, D. G.; Mlawer, E. J.; Turner, D. D.

    2014-12-01

    The Far-Infrared Spectroscopy of the Troposphere (FIRST) instrument is a Fourier transform spectrometer developed to measure the important far-infrared spectrum between 100 and 650 cm-1. Presented here are measurements made by FIRST during two successful deployments in a ground-based configuration to measure downwelling longwave radiation at Earth's surface. The initial deployment was to Cerro Toco, Chile, where FIRST operated from August to October, 2009 as part of the Radiative Heating in Underexplored Bands Campaign (RHUBC-II) campaign. After recalibration, FIRST was deployed to the Table Mountain Facility from September through October, 2012. Spectra observed at each location are substantially different, due in large part to the order of magnitude difference in integrated precipitable water vapor (0.3 cm at Table Mountain, 0.03 cm at Cerro Toco). Dry days for both campaigns are chosen for analysis - 09/24/2009 and 10/19/2012. Also available during both deployments are coincident radiosonde temperature and water vapor vertical profiles which are used as inputs a line-by-line radiative transfer program. Comparisons between measured and modeled spectra are presented over the 200 to 800 cm-1 range. An extensive error analysis of both the measured and modeled spectra is presented. In general, the differences between the measured and modeled spectra are within their combined uncertainties.

  19. Accumulation of pesticides in pacific chorus frogs (Pseudacris regilla) from California's Sierra Nevada Mountains, USA

    Science.gov (United States)

    Smalling, Kelly L.; Fellers, Gary M.; Kleeman, Patrick M.; Kuivila, Kathryn

    2013-01-01

    Pesticides are receiving increasing attention as potential causes of amphibian declines, acting singly or in combination with other stressors, but limited information is available on the accumulation of current-use pesticides in tissue. The authors examined potential exposure and accumulation of currently used pesticides in pond-breeding frogs (Pseudacris regilla) collected from 7 high elevations sites in northern California. All sites sampled are located downwind of California's highly agricultural Central Valley and receive inputs of pesticides through precipitation and/or dry deposition. Whole frog tissue, water, and sediment were analyzed for more than 90 current-use pesticides and pesticide degradates using gas chromatography–mass spectrometry. Two fungicides, pyraclostrobin and tebuconazole, and one herbicide, simazine, were the most frequently detected pesticides in tissue samples. Median pesticide concentration ranged from 13 µg/kg to 235 µg/kg wet weight. Tebuconazole and pyraclostrobin were the only 2 compounds observed frequently in frog tissue and sediment. Significant spatial differences in tissue concentration were observed, which corresponded to pesticide use in the upwind counties. Data generated indicated that amphibians residing in remote locations are exposed to and capable of accumulating current-use pesticides. A comparison of P. regilla tissue concentrations with water and sediment data indicated that the frogs are accumulating pesticides and are potentially a more reliable indicator of exposure to this group of pesticides than either water or sediment.

  20. The Story of California = La Historia de California.

    Science.gov (United States)

    Bartel, Nick

    "The Story of California" is a history and geography of the state of California, intended for classroom use by limited-English-proficient, native Spanish-speaking students in California's urban middle schools. The book is designed with the left page in English and the right page in Spanish to facilitate student transition into…

  1. Evolutionary diversification of cryophilic Grylloblatta species (Grylloblattodea: Grylloblattidae in alpine habitats of California

    Directory of Open Access Journals (Sweden)

    Roderick George K

    2010-06-01

    Full Text Available Abstract Background Climate in alpine habitats has undergone extreme variation during Pliocene and Pleistocene epochs, resulting in repeated expansion and contraction of alpine glaciers. Many cold-adapted alpine species have responded to these climatic changes with long-distance range shifts. These species typically exhibit shallow genetic differentiation over a large geographical area. In contrast, poorly dispersing organisms often form species complexes within mountain ranges, such as the California endemic ice-crawlers (Grylloblattodea: Grylloblattidae: Grylloblatta. The diversification pattern of poorly dispersing species might provide more information on the localized effects of historical climate change, the importance of particular climatic events, as well as the history of dispersal. Here we use multi-locus genetic data to examine the phylogenetic relationships and geographic pattern of diversification in California Grylloblatta. Results Our analysis reveals a pattern of deep genetic subdivision among geographically isolated populations of Grylloblatta in California. Alpine populations diverged from low elevation populations and subsequently diversified. Using a Bayesian relaxed clock model and both uncalibrated and calibrated measurements of time to most recent common ancestor, we reconstruct the temporal diversification of alpine Grylloblatta populations. Based on calibrated relaxed clock estimates, evolutionary diversification of Grylloblatta occurred during the Pliocene-Pleistocene epochs, with an initial dispersal into California during the Pliocene and species diversification in alpine clades during the middle Pleistocene epoch. Conclusions Grylloblatta species exhibit a high degree of genetic subdivision in California with well defined geographic structure. Distinct glacial refugia can be inferred within the Sierra Nevada, corresponding to major, glaciated drainage basins. Low elevation populations are sister to alpine populations

  2. Fusion of NASA Airborne Snow Observatory (ASO Lidar Time Series over Mountain Forest Landscapes

    Directory of Open Access Journals (Sweden)

    António Ferraz

    2018-01-01

    Full Text Available Mountain ecosystems are among the most fragile environments on Earth. The availability of timely updated information on forest 3D structure would improve our understanding of the dynamic and impact of recent disturbance and regeneration events including fire, insect damage, and drought. Airborne lidar is a critical tool for monitoring forest change at high resolution but it has been little used for this purpose due to the scarcity of long-term time-series of measurements over a common region. Here, we investigate the reliability of on-going, multi-year lidar observations from the NASA-JPL Airborne Snow Observatory (ASO to characterize forest 3D structure at a fine spatial scale. In this study, weekly ASO measurements collected at ~1 pt/m2, primarily acquired to quantify snow volume and dynamics, are coherently merged to produce high-resolution point clouds ( ~ 12 pt/m2 that better describe forest structure. The merging methodology addresses the spatial bias in multi-temporal data due to uncertainties in platform trajectory and motion by collecting tie objects from isolated tree crown apexes in the lidar data. The tie objects locations are assigned to the centroid of multi-temporal lidar points to fuse and optimize the location of multiple measurements without the need for ancillary data or GPS control points. We apply the methodology to ASO lidar acquisitions over the Tuolumne River Basin in the Sierra Nevada, California, during the 2014 snow monitoring campaign and provide assessment of the fidelity of the fused point clouds for forest mountain ecosystem studies. The availability of ASO measurements that currently span 2013–2017 enable annual forest monitoring of important vegetated ecosystems that currently face ecological threads of great significance such as the Sierra Nevada (California and Olympic National Forest (Washington.

  3. Serologic evidence for Borrelia hermsii infection in rodents on federally owned recreational areas in California.

    Science.gov (United States)

    Fritz, Curtis L; Payne, Jessica R; Schwan, Tom G

    2013-06-01

    Tick-borne relapsing fever (TBRF) is endemic in mountainous regions of the western United States. In California, the principal agent is the spirochete Borrelia hermsii, which is transmitted by the argasid tick Ornithodoros hermsi. Humans are at risk of TBRF when infected ticks leave an abandoned rodent nest in quest of a blood meal. Rodents are the primary vertebrate hosts for B. hermsii. Sciurid rodents were collected from 23 sites in California between August, 2006, and September, 2008, and tested for serum antibodies to B. hermsii by immunoblot using a whole-cell sonicate and a specific antigen, glycerophosphodiester phosphodiesterase (GlpQ). Antibodies were detected in 20% of rodents; seroprevalence was highest (36%) in chipmunks (Tamias spp). Seroprevalence in chipmunks was highest in the Sierra Nevada (41%) and Mono (43%) ecoregions and between 1900 and 2300 meters elevation (43%). The serological studies described here are effective in implicating the primary vertebrate hosts involved in the maintenance of the ticks and spirochetes in regions endemic for TBRF.

  4. YUCCA MOUNTAIN PROJECT - A BRIEFING -

    International Nuclear Information System (INIS)

    2003-01-01

    This report has the following articles: Nuclear waste--a long-term national problem; Spent nuclear fuel; High-level radioactive waste; Radioactivity and the environment; Current storage methods; Disposal options; U.S. policy on nuclear waste; The focus on Yucca Mountain; The purpose and scope of the Yucca Mountain Project; The approach for permanently disposing of waste; The scientific studies at Yucca Mountain; The proposed design for a repository at Yucca Mountain; Natural and engineered barriers would work together to isolate waste; Meticulous science and technology to protect people and the environment; Licensing a repository; Transporting waste to a permanent repository; The Environmental Impact Statement for a repository; Current status of the Yucca Mountain Project; and Further information available on the Internet

  5. Experimental Repatriation of Mountain Yellow-legged Frogs (Rana muscosa) in the Sierra Nevada of California

    Science.gov (United States)

    Fellers, Gary M.; Bradford, David F.; Pratt, David; Wood, Leslie

    2008-01-01

    In the late 1970s, Rana muscosa (mountain yellow-legged frog) was common in the Tableland area of Sequoia National Park, California where it was possible to find hundreds of tadpoles and adults around many of the ponds and lakes. Surveys in 1993-1995 demonstrated that R. muscosa was absent from more than half of all suitable habitat within the park, including the Tableland area. At that same time, R. muscosa was still common at Sixty Lake Basin, Kings Canyon National Park, 30 km to the northeast. To evaluate the potential causes for the extirpation, we repatriated R. muscosa eggs, tadpoles, subadults, and adult frogs from Sixty Lake Basin to four sites in the Tableland area in 1994 and 1995. We subsequently surveyed each release site and the surrounding area 2 - 3 times per week in 1994-1995, and intermittently in 1996-1997, to monitor the survival of all life history stages, and to detect dispersal of adults and subadults. We also monitored predation, water quality, weather, and water temperature. Our techniques for capturing, holding, transporting, and releasing R. muscosa were refined during the study, and during 1995 resulted in high initial survival rates of all life history stages. Adult frogs were anaesthetized, weighed, measured, tagged, and held in plastic boxes with wet paper towels. Tadpoles were collected and held in fiberglass screen cages set in the water at the edge of a pond. This resulted in relatively natural conditions with less crowding and good water circulation. Frogs, tadpoles, and eggs were placed in Ziploc bags for transport to the Tableland by helicopter. Short-term survival of tadpoles, subadults, and adults was high at all four release sites, tadpoles reached metamorphosis, and adult frogs were still present. However, we detected no evidence of reproduction at three sites (e.g., no new eggs or small tadpoles) and nearly all life history stages disappeared within 12 months. At the fourth site, there was limited reproduction, but it was

  6. Mountain Weather and Climate, Third Edition

    Science.gov (United States)

    Hastenrath, Stefan

    2009-05-01

    For colleagues with diverse interests in the atmosphere, glaciers, radiation, landforms, water resources, vegetation, human implications, and more, Mountain Weather and Climate can be a valuable source of guidance and literature references. The book is organized into seven chapters: 1, Mountains and their climatological study; 2,Geographical controls of mountain meteorological elements; 3, Circulation systems related to orography; 4, Climatic characteristics of mountains; 5, Regional case studies; 6, Mountain bioclimatology; and 7, Changes in mountain climates. These chapters are supported by l78 diagrams and photographs, 47 tables, and some 2000 literature references. The volume has an appendix of units and energy conversion factors and a subject index, but it lacks an author index.

  7. Mineral resource potential map of the Blanco Mountain and Black Canyon roadless areas, Inyo and Mono counties, California

    Science.gov (United States)

    Diggles, Michael F.; Blakely, Richard J.; Rains, Richard L.; Schmauch, Steven W.

    1983-01-01

    On the basis of geologic, geochemical, and geophysical investigations and a survey of mines and prospects, the mineral resource potential for gold, silver, lead, zinc, tungsten, and barite of the Blanco Mountain and Black Canyon Roadless Areas is judged to be low to moderate, except for one local area that has high potential for gold and tungsten resources.

  8. A Blend of Ethanol and (-)-α-Pinene were Highly Attractive to Native Siricid Woodwasps (Siricidae, Siricinae) Infesting Conifers of the Sierra Nevada and the Allegheny Mountains.

    Science.gov (United States)

    Erbilgin, Nadir; Stein, Jack D; Acciavatti, Robert E; Gillette, Nancy E; Mori, Sylvia R; Bischel, Kristi; Cale, Jonathan A; Carvalho, Carline R; Wood, David L

    2017-02-01

    Woodwasps in Sirex and related genera are well-represented in North American conifer forests, but the chemical ecology of native woodwasps is limited to a few studies demonstrating their attraction to volatile host tree compounds, primarily monoterpene hydrocarbons and monoterpene alcohols. Thus, we systematically investigated woodwasp-host chemical interactions in California's Sierra Nevada and West Virginia's Allegheny Mountains. We first tested common conifer monoterpene hydrocarbons and found that (-)-α-pinene, (+)-3-carene, and (-)-β-pinene were the three most attractive compounds. Based on these results and those of earlier studies, we further tested three monoterpene hydrocarbons and four monoterpene alcohols along with ethanol in California: monoterpene hydrocarbons caught 72.3% of all woodwasps. Among monoterpene hydrocarbons, (+)-3-carene was the most attractive followed by (-)-β-pinene and (-)-α-pinene. Among alcohols, ethanol was the most attractive, catching 41.4% of woodwasps trapped. Subsequent tests were done with fewer selected compounds, including ethanol, 3-carene, and ethanol plus (-)-α-pinene in both Sierra Nevada and Allegheny Mountains. In both locations, ethanol plus (-)-α-pinene caught more woodwasps than other treatments. We discussed the implications of these results for understanding the chemical ecology of native woodwasps and invasive Sirex noctilio in North America. In California, 749 woodwasps were caught, representing five species: Sirex areolatus Cresson, Sirex behrensii Cresson, Sirex cyaneus Fabricius, Sirex longicauda Middlekauff, and Urocerus californicus Norton. In West Virginia 411 woodwasps were caught representing four species: Sirex edwardsii Brullé, Tremex columba Linnaeus, Sirex nigricornis F., and Urocerus cressoni Norton.

  9. Insights into hydroclimatic variability of Southern California since 125 ka, from multi-proxy analyses of alpine lakes

    Science.gov (United States)

    Glover, K. C.; MacDonald, G. M.; Kirby, M.

    2016-12-01

    Hydroclimatic variability is especially important in California, a water-stressed and increasingly populous region. We assess the range of past hydroclimatic sensitivity and variability in the San Bernardino Mountains of Southern California based on 125 ka of lacustrine sediment records. Geochemistry, charcoal and pollen highlight periods of sustained moisture, aridity and sudden variability driven by orbital and oceanic variations. Marine Isotope Stage 3 (MIS 3) is one such period of greater moisture availability that lasted c. 30 kyr, with smaller-scale perturbations likely reflect North Atlantic Dansgaard-Oeschgar events. Past glacial periods, MIS 4 and MIS 2, display high-amplitude changes. These include periods of reduced forest cover that span millennia, indicating long-lasting aridity. Rapid forest expansion also occurs, marking sudden shifts towards wet conditions. Fire regimes have also changed in tandem with hydroclimate and vegetation. Higher-resolution analysis of the past 10 ka shows that Southern California hydroclimate was broadly similar to other regions of the Southwest and Great Basin, including an orbital and oceanic-driven wet Early Holocene, dry Mid-Holocene, and highly variable Late Holocene. Shorter-term pluvial conditions occur throughout the Holocene, with episodic moisture likely derived from a Pacific source.

  10. Yucca Mountain digital database

    International Nuclear Information System (INIS)

    Daudt, C.R.; Hinze, W.J.

    1992-01-01

    This paper discusses the Yucca Mountain Digital Database (DDB) which is a digital, PC-based geographical database of geoscience-related characteristics of the proposed high-level waste (HLW) repository site of Yucca Mountain, Nevada. It was created to provide the US Nuclear Regulatory Commission's (NRC) Advisory Committee on Nuclear Waste (ACNW) and its staff with a visual perspective of geological, geophysical, and hydrological features at the Yucca Mountain site as discussed in the Department of Energy's (DOE) pre-licensing reports

  11. Far-travelled permian chert of the North Fork terrane, Klamath mountains, California

    Science.gov (United States)

    Mankinen, E.A.; Irwin, W.P.; Blome, C.D.

    1996-01-01

    Permian chert in the North Fork terrane and correlative rocks of the Klamath Mountains province has a remanent magnetization that is prefolding and presumably primary. Paleomagnetic results indicate that the chert formed at a paleolatitude of 8.6?? ?? 2.5?? but in which hemisphere remains uncertain. This finding requires that these rocks have undergone at least 8.6?? ?? 4.4?? of northward transport relative to Permian North America since their deposition. Paleontological evidence suggests that the Permian limestone of the Eastern Klamath terrane originated thousands of kilometers distant from North America. The limestone of the North Fork terrane may have formed at a similar or even greater distance as suggested by its faunal affinity to the Eastern Klamath terrane and more westerly position. Available evidence indicates that convergence of the North Fork and composite Central Metamorphic-Eastern Klamath terranes occurred during Triassic or Early Jurassic time and that their joining together was a Middle Jurassic event. Primary and secondary magnetizations indicate that the new composite terrane containing these and other rocks of the Western Paleozoic and Triassic belt behaved as a single rigid block that has been latitudinally concordant with the North American craton since Middle Jurassic time.

  12. Recreational mountain biking injuries.

    Science.gov (United States)

    Aitken, S A; Biant, L C; Court-Brown, Charles M

    2011-04-01

    Mountain biking is increasing in popularity worldwide. The injury patterns associated with elite level and competitive mountain biking are known. This study analysed the incidence, spectrum and risk factors for injuries sustained during recreational mountain biking. The injury rate was 1.54 injuries per 1000 biker exposures. Men were more commonly injured than women, with those aged 30-39 years at highest risk. The commonest types of injury were wounding, skeletal fracture and musculoskeletal soft tissue injury. Joint dislocations occurred more commonly in older mountain bikers. The limbs were more commonly injured than the axial skeleton. The highest hospital admission rates were observed with head, neck and torso injuries. Protective body armour, clip-in pedals and the use of a full-suspension bicycle may confer a protective effect.

  13. Possible Northward Introgression of a Tropical Lineage of Rhipicephalus sanguineus Ticks at a Site of Emerging Rocky Mountain Spotted Fever.

    Science.gov (United States)

    Villarreal, Zachary; Stephenson, Nicole; Foley, Janet

    2018-06-01

    Increasing rates of Rocky Mountain spotted fever (RMSF) in the southwestern United States and northern Mexico underscore the importance of studying the ecology of the brown dog tick, Rhipicephalus sanguineus, the vector in that region. This species is reported to comprise distinct tropical and temperate lineages that may differ in vectorial capacity for RMSF and are hypothesized to be limited in their geographical range by climatic conditions. In this study, lineage was determined for ticks from 9 locations in California, Arizona, and Mexico by DNA sequencing of 12S, 16S, and D-loop ribosomal RNA. As expected, sites in northern California and eastern Arizona had temperate-lineage ticks, and phylogenetic analysis revealed considerable genetic variability among these temperate-lineage ticks. However, tropical-lineage ticks extended north from Oaxaca, Mexico were well established along the entire border from San Diego, California to western Arizona, and were found as far north as Lytle Creek near Los Angeles, California (a site where both lineages were detected). Far less genetic variability in the tropical lineage despite the large geographical distances is supportive of a hypothesis of rapid northward expansion. Discovery of the tropical lineage north of the identified climatic limitations suggests that more work is needed to characterize this tick's ecology, vectorial capacity, expansion, possible evolution, and response to climate change.

  14. Rocky Mountain spotted fever

    Science.gov (United States)

    ... spotted fever on the foot Rocky Mountain spotted fever, petechial rash Antibodies Deer and dog tick References McElligott SC, Kihiczak GG, Schwartz RA. Rocky Mountain spotted fever and other rickettsial infections. In: Lebwohl MG, Heymann ...

  15. Man-induced transformation of mountain meadow soils of Aragats mountain massif (Armenia)

    Science.gov (United States)

    Avetisyan, M. H.

    2018-01-01

    The article considers issues of degradation of mountain meadow soils of the Aragats mountain massif of the Republic of Armenia and provides the averaged research results obtained for 2013 and 2014. The present research was initiated in the frames of long-term complex investigations of agroecosystems of Armenia’s mountain massifs and covered sod soils of high mountain meadow pasturelands and meadow steppe grasslands lying on southern slope of Mt. Aragats. With a purpose of studying the peculiarities of migration and transformation of flows of major nutrients namely carbon, nitrogen, phosphorus in study mountain meadow and meadow steppe belts of the Aragats massif we investigated water migration of chemical elements and regularities of their leaching depending on different belts. Field measurement data have indicated that organic carbon and humus in a heavily grazed plot are almost twice as low as on a control site. Lysimetric data analysis has demonstrated that heavy grazing and illegal deforestation have brought to an increase in intrasoil water acidity. The results generated from this research support a conclusion that a man’s intervention has brought to disturbance of structure and nutrient and water regimes of soils and loss of significant amounts of soil nutrients throughout the studied region.

  16. California Political Districts

    Data.gov (United States)

    California Natural Resource Agency — This is a series of district layers pertaining to California'spolitical districts, that are derived from the California State Senateand State Assembly information....

  17. California Geothermal Forum: A Path to Increasing Geothermal Development in California

    Energy Technology Data Exchange (ETDEWEB)

    Young, Katherine R. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2017-01-01

    The genesis of this report was a 2016 forum in Sacramento, California, titled 'California Geothermal Forum: A Path to Increasing Geothermal Development in California.' The forum was held at the California Energy Commission's (CEC) headquarters in Sacramento, California with the primary goal being to advance the dialogues for the U.S. Department of Energy's Geothermal Technologies Office (GTO) and CEC technical research and development (R&D) focuses for future consideration. The forum convened a diverse group of stakeholders from government, industry, and research to lay out pathways for new geothermal development in California while remaining consistent with critical Federal and State conservation planning efforts, particularly at the Salton Sea.

  18. Rocky Mountain Spotted Fever

    Science.gov (United States)

    ... with facebook share with twitter share with linkedin Rocky Mountain Spotted Fever Credit: CDC A male cayenne tick, Amblyomma cajennense, ... and New Mexico. Why Is the Study of Rocky Mountain Spotted Fever a Priority for NIAID? Tickborne diseases are becoming ...

  19. Private Schools, California, 2009, California Department of Education

    Data.gov (United States)

    U.S. Environmental Protection Agency — California law (California Education Code Section 33190) requires private schools offering or conducting a full-time elementary or secondary level day school for...

  20. Mantle Subduction and Uplift of Intracontinental Mountains: A Case Study from the Chinese Tianshan Mountains within Eurasia.

    Science.gov (United States)

    Li, Jinyi; Zhang, Jin; Zhao, Xixi; Jiang, Mei; Li, Yaping; Zhu, Zhixin; Feng, Qianwen; Wang, Lijia; Sun, Guihua; Liu, Jianfeng; Yang, Tiannan

    2016-06-29

    The driving mechanism that is responsible for the uplift of intracontinental mountains has puzzled geologists for decades. This study addresses this issue by using receiver function images across the Chinese Tianshan Mountains and available data from both deep seismic profiles and surface structural deformation. The near-surface structural deformation shows that the Tianshan crust experienced strong shortening during the Cenozoic. The receiver function image across the Tianshan Mountains reveals that the lithosphere of the Junggar Basin to the north became uncoupled along the Moho, and the mantle below the Moho subducted southwards beneath the northern part of the Tianshan Mountains, thereby thickening the overlying crust. Similar deep structures, however, are not observed under the Tarim Basin and the adjacent southern Tianshan Mountains. This difference in the deep structures correlates with geomorphological features in the region. Thus, a new model of mantle subduction, herein termed M-type subduction, is proposed for the mountain-building processes in intracontinental compressional settings. The available geomorphological, geological and seismic data in the literatures show that this model is probably suitable for other high, linear mountains within the continent.

  1. Science and technology review: June 1996

    International Nuclear Information System (INIS)

    Failor, B.; Stull, S.

    1996-06-01

    The first feature article is a survey of four research projects showing how theory and modeling efforts by scientist in the Chemistry and Materials Science Directorate at LLNL are advancing the understanding of the property of materials with consideration of underlying structures. The second feature article discusses Livermore and DOE's Oakland Operations Office teaming up to decontaminate, decommission, and close out--on time and under budget--the Ann Arbor Inertial Confinement Fusion Facility in Michigan. Two research highlights on Mammoth Mountain CO 2 mystery and osteoporosis are also included

  2. Science and technology review: June 1996

    Energy Technology Data Exchange (ETDEWEB)

    Failor, B.; Stull, S. [eds.

    1996-06-01

    The first feature article is a survey of four research projects showing how theory and modeling efforts by scientist in the Chemistry and Materials Science Directorate at LLNL are advancing the understanding of the property of materials with consideration of underlying structures. The second feature article discusses Livermore and DOE`s Oakland Operations Office teaming up to decontaminate, decommission, and close out--on time and under budget--the Ann Arbor Inertial Confinement Fusion Facility in Michigan. Two research highlights on Mammoth Mountain CO{sub 2} mystery and osteoporosis are also included.

  3. A sightability model for mountain goats

    Science.gov (United States)

    Rice, C.G.; Jenkins, K.J.; Chang, W.-Y.

    2009-01-01

    Unbiased estimates of mountain goat (Oreamnos americanus) populations are key to meeting diverse harvest management and conservation objectives. We developed logistic regression models of factors influencing sightability of mountain goat groups during helicopter surveys throughout the Cascades and Olympic Ranges in western Washington during summers, 20042007. We conducted 205 trials of the ability of aerial survey crews to detect groups of mountain goats whose presence was known based on simultaneous direct observation from the ground (n 84), Global Positioning System (GPS) telemetry (n 115), or both (n 6). Aerial survey crews detected 77 and 79 of all groups known to be present based on ground observers and GPS collars, respectively. The best models indicated that sightability of mountain goat groups was a function of the number of mountain goats in a group, presence of terrain obstruction, and extent of overstory vegetation. Aerial counts of mountain goats within groups did not differ greatly from known group sizes, indicating that under-counting bias within detected groups of mountain goats was small. We applied HorvitzThompson-like sightability adjustments to 1,139 groups of mountain goats observed in the Cascade and Olympic ranges, Washington, USA, from 2004 to 2007. Estimated mean sightability of individual animals was 85 but ranged 0.750.91 in areas with low and high sightability, respectively. Simulations of mountain goat surveys indicated that precision of population estimates adjusted for sightability biases increased with population size and number of replicate surveys, providing general guidance for the design of future surveys. Because survey conditions, group sizes, and habitat occupied by goats vary among surveys, we recommend using sightability correction methods to decrease bias in population estimates from aerial surveys of mountain goats.

  4. Evolution of the northern santa cruz mountains by advection of crust past a san andreas fault bend.

    Science.gov (United States)

    Anderson, R S

    1990-07-27

    The late Quaternary marine terraces near Santa Cruz, California, reflect uplift associated with the nearby restraining bend on the San Andreas fault. Excellent correspondence of the coseismic vertical displacement field caused by the 17 October 1989 magnitude 7.1 Loma Prieta earthquake and the present elevations of these terraces allows calculation of maximum long-term uplift rates 1 to 2 kilometers west of the San Andreas fault of 0.8 millimeters per year. Over several million years, this uplift, in concert with the right lateral translation of the resulting topography, and with continual attack by geomorphic processes, can account for the general topography of the northern Santa Cruz Mountains.

  5. The physicochemical characterization of cave paintings of Baja California

    International Nuclear Information System (INIS)

    Valdez, B.; Cobo, J.; Schorr, M.; Cota, L.; Oviedo, F.

    2006-01-01

    The Palaeolithic paintings of Baja California constitute an important contribution to the national, historic and cultural patrimony of Mexico. The aim of this investigation was to determine the physicochemical characteristics, the microstructure and texture of these polychrome paintings, painted on rocks encountered in the mountainous, desert/arid zones of Baja California and Baja California South. The first stage of this work was devoted to the examination and recording of the cave paintings of 'El Vallecito', a narrow fluvial valley displaying large granitic rocks emerging from the sandy soil. Tiny painting samples were collected and analyzed by SEM, EDS and FTIR techniques. The painters used four main colours: red, black, yellow and white. The paint raw materials are mineral pigments: white (kaolin, calcite, and gypsum), red (hematite), yellow (ochre, limonite), black (charcoal from burnt wood or calcined bones) and water as a diluent and/or a binder, all encountered in the painters habitat. The minerals were collected, ground and sometimes heated to change their tone. By mixing with water, a spreadable paste or a thick slurry was produced, which was applied with the fingers for lines or a piece of animal skin for figures, respectively. The 100% solids, dry paint converts into a dense, hard layer, incrusted into the grainy, rough, hollow granite rock surface. This paint might be called s tone on stone , explaining its permanence for centuries enduring heat, wind and weather. A simulation of the painting technique was done at the Materials and Corrosion Laboratory, UABC by collecting mineral pigments, preparing the paint as a paste or slurry and applying it on a granitic rock. Knowing the paint composition, production and application techniques will be useful in e conservation and restoration of cave paintings and stone-built, ancient structures such as pyramids, cathedrals and monuments. (Author)

  6. The origins of mountain geoecology

    Directory of Open Access Journals (Sweden)

    Ives, Jack D.

    2012-05-01

    Full Text Available Mountain geoecology, as a sub-discipline of Geography, stems from the life and work of Carl Troll who, in turn, was inspired by the philosophy and mountain travels of Alexander von Humboldt. As founding chair of the IGU Commission on High-Altitude Geoecology (1968, Troll laid the foundations for inter-disciplinary and international mountain research. The paper traces the evolution of the Commission and its close links with the UNESCO Man and Biosphere Programme (1972- and the United Nations University’s mountain Project (1978-. This facilitated the formation of a major force for inclusion of a mountain chapter in AGENDA 21 during the 1992 Rio de Janeiro Herat Summit (UNCED and the related designation by the United Nations of 2002 as the International Year of Mountains. In this way, mountain geoecology not only contributed to worldwide mountain research but also entered the political arena in the struggle for sustainable mountain development and the well-being of mountain people.La geoecología de montaña, como sub-disciplina de la Geografía, entronca con la vida y trabajo de Carl Troll, quien, a su vez, fue inspirado por la filosofía y viajes de Alexander von Humboldt. Como presidente fundador de la comisión de la UGI sobre High Altitude Geoecology (1968, Troll colocó las bases para la investigación interdisciplinar e internacional de las montañas. Este trabajo presenta la evolución de la Comisión y sus estrechas relaciones con el Programa Hombre y Biosfera de UNESCO (1972- y con el Proyecto de montaña de la Universidad de Naciones Unidas (1978-. Esto facilitó la inclusión de un capítulo sobre la montaña en AGENDA 21 durante la Cumbre de la Tierra de Río de Janeiro (UNCED, y la consiguiente designación de 2002 como el Año Internacional de las Montañas por parte de Naciones Unidas. En este sentido, la geoecología de montaña no sólo contribuyó a la investigación de las montañas del mundo sino que también empujó a la pol

  7. Protection of the Mountain Ridgelines Utilizing GIS

    Science.gov (United States)

    Lee, S.; Lee, M.

    2013-12-01

    Korean peninsula is characterized by numerous hills and mountains. The longest mountain ridgeline starting from Mt. Baekdusan to Mt. Jirisan is called Baekdudaegan which is similar to the continental divide or topographical watershed. In this study, GIS data, such as remotesensing images, national digital map, and watershed map, are used to analyze Korean mountain ridgelines structure and one Baekdudaegan data and nine Ridgelines are extracted. When extracted Baekdudaegan and other Ridgelines are overlaid on geologic maps, granite and gneiss are main components on the mountain ridgelines. The main mountain ridgelines are considered as the spiritual heritage overlapped in the land in Korea. As the environmental state is relatively better than those of other region in Korea, so many mountain ridgelines are legally protected by national legislation. The mountain ridgelines has hierarchical system; Baekdudaegan, Jeongmaek, Gimaek and Jimaek etc. according to their scale and total lengths of ridgelines. As only part of mountain ridgelines are currently protected by law or managed in environmental impact assessment (EIA) procedure, we think that most part of them should be under protection. Considering the environmental state of the ridgelines, we think that some protective measures should be set up nearby 1 km on both sides of them. If there goes a development plan or project near the main mountain ridgelines, topographical change index (TCI) and topographical scale index (TSI) etc. are to be applied in EIA. This study intends: firstly, to analyze the topological characteristics of the Korean mountain ridgelines using GIS, secondly, to analyze the geological characteristics of nearby mountain ridgelines, and lastly, to find a way to utilize the results on EIA.

  8. A California statewide three-dimensional seismic velocity model from both absolute and differential times

    Science.gov (United States)

    Lin, G.; Thurber, C.H.; Zhang, H.; Hauksson, E.; Shearer, P.M.; Waldhauser, F.; Brocher, T.M.; Hardebeck, J.

    2010-01-01

    We obtain a seismic velocity model of the California crust and uppermost mantle using a regional-scale double-difference tomography algorithm. We begin by using absolute arrival-time picks to solve for a coarse three-dimensional (3D) P velocity (VP) model with a uniform 30 km horizontal node spacing, which we then use as the starting model for a finer-scale inversion using double-difference tomography applied to absolute and differential pick times. For computational reasons, we split the state into 5 subregions with a grid spacing of 10 to 20 km and assemble our final statewide VP model by stitching together these local models. We also solve for a statewide S-wave model using S picks from both the Southern California Seismic Network and USArray, assuming a starting model based on the VP results and a VP=VS ratio of 1.732. Our new model has improved areal coverage compared with previous models, extending 570 km in the SW-NE directionand 1320 km in the NW-SE direction. It also extends to greater depth due to the inclusion of substantial data at large epicentral distances. Our VP model generally agrees with previous separate regional models for northern and southern California, but we also observe some new features, such as high-velocity anomalies at shallow depths in the Klamath Mountains and Mount Shasta area, somewhat slow velocities in the northern Coast Ranges, and slow anomalies beneath the Sierra Nevada at midcrustal and greater depths. This model can be applied to a variety of regional-scale studies in California, such as developing a unified statewide earthquake location catalog and performing regional waveform modeling.

  9. Air pollution increases forest susceptibility to wildfires: a case study for the San Bernardino Mountains in southern California

    Science.gov (United States)

    N.E. Grulke; R.A. Minnich; T. Paine; P. Riggan

    2010-01-01

    Many factors increase susceptibility of forests to wildfire. Among them are increases in human population, changes in land use, fire suppression, and frequent droughts. These factors have been exacerbating forest susceptibility to wildfires over the last century in southern California. Here we report on the significant role that air pollution has on increasing forest...

  10. A spatial modeling approach to identify potential butternut restoration sites in Mammoth Cave National Park

    Science.gov (United States)

    Thompson, L.M.; Van Manen, F.T.; Schlarbaum, S.E.; DePoy, M.

    2006-01-01

    Incorporation of disease resistance is nearly complete for several important North American hardwood species threatened by exotic fungal diseases. The next important step toward species restoration would be to develop reliable tools to delineate ideal restoration sites on a landscape scale. We integrated spatial modeling and remote sensing techniques to delineate potential restoration sites for Butternut (Juglans cinerea L.) trees, a hardwood species being decimated by an exotic fungus, in Mammoth Cave National Park (MCNP), Kentucky. We first developed a multivariate habitat model to determine optimum Butternut habitats within MCNP. Habitat characteristics of 54 known Butternut locations were used in combination with eight topographic and land use data layers to calculate an index of habitat suitability based on Mahalanobis distance (D2). We used a bootstrapping technique to test the reliability of model predictions. Based on a threshold value for the D2 statistic, 75.9% of the Butternut locations were correctly classified, indicating that the habitat model performed well. Because Butternut seedlings require extensive amounts of sunlight to become established, we used canopy cover data to refine our delineation of favorable areas for Butternut restoration. Areas with the most favorable conditions to establish Butternut seedlings were limited to 291.6 ha. Our study provides a useful reference on the amount and location of favorable Butternut habitat in MCNP and can be used to identify priority areas for future Butternut restoration. Given the availability of relevant habitat layers and accurate location records, our approach can be applied to other tree species and areas. ?? 2006 Society for Ecological Restoration International.

  11. Phytogeography of the tropical north-east African mountains

    Directory of Open Access Journals (Sweden)

    I. Friis

    1983-11-01

    Full Text Available The tropical north-east African mountains are tentatively divided into four phytochoria, the formal rank of which is not defined. The division is based on patterns of distribution and endemism in the region. The recognition of a distinct Afromontane phytochorion is now well established (Chapman & White, 1970; Werger, 1978; White, 1978. However, there is still very little information on the phytogeography of the individual mountains or mountain systems. This study hopes to fill a little of the gap by analysing distribution patterns and patterns of endemism in the flora of the tropical north-east African mountains. The north-east African mountain system is the largest in tropical Africa (see e.g. map in White, 1978. At the core of this system is the large Ethiopian massif, around which are located various mountains and mountain chains. These include the Red Sea Hills in the Sudan, the mountain chain in northern Somalia, the south-west Arabian mountains, and the Imatong mountains of south-east Sudan. The latter are often referred to the East African mountain system (White, 1978 but. as I will point out later, they also have a close connection with the south-west highlands of Ethiopia. The paper presents some results of my study of the mountain flora of tropical north-east Africa, particularly the forest species. Where no source is indicated, the data are from my own unpublished studies.

  12. Management of Multi-Casualty Incidents in Mountain Rescue: Evidence-Based Guidelines of the International Commission for Mountain Emergency Medicine (ICAR MEDCOM).

    Science.gov (United States)

    Blancher, Marc; Albasini, François; Elsensohn, Fidel; Zafren, Ken; Hölzl, Natalie; McLaughlin, Kyle; Wheeler, Albert R; Roy, Steven; Brugger, Hermann; Greene, Mike; Paal, Peter

    2018-02-15

    Blancher, Marc, François Albasini, Fidel Elsensohn, Ken Zafren, Natalie Hölzl, Kyle McLaughlin, Albert R. Wheeler III, Steven Roy, Hermann Brugger, Mike Greene, and Peter Paal. Management of multi-casualty incidents in mountain rescue. High Alt Med Biol. 00:000-000, 2018. Multi-Casualty Incidents (MCI) occur in mountain areas. Little is known about the incidence and character of such events, and the kind of rescue response. Therefore, the International Commission for Mountain Emergency Medicine (ICAR MEDCOM) set out to provide recommendations for the management of MCI in mountain areas. Details of MCI occurring in mountain areas related to mountaineering activities and involving organized mountain rescue were collected. A literature search using (1) PubMed, (2) national mountain rescue registries, and (3) lay press articles on the internet was performed. The results were analyzed with respect to specific aspects of mountain rescue. We identified 198 MCIs that have occurred in mountain areas since 1956: 137 avalanches, 38 ski lift accidents, and 23 other events, including lightning injuries, landslides, volcanic eruptions, lost groups of people, and water-related accidents. General knowledge on MCI management is required. Due to specific aspects of triage and management, the approach to MCIs may differ between those in mountain areas and those in urban settings. Mountain rescue teams should be prepared to manage MCIs. Knowledge should be reviewed and training performed regularly. Cooperation between terrestrial rescue services, avalanche safety authorities, and helicopter crews is critical to successful management of MCIs in mountain areas.

  13. Correlations and Areal Distribution of the Table Mountain Formation, Stanislaus Group; Central Sierra Nevada, California

    Science.gov (United States)

    Torrez, G.; Carlson, C. W.; Putirka, K. D.; Pluhar, C. J.; Sharma, R. K.

    2011-12-01

    Late Cenozoic evolution of the western Cordillera is a matter of ongoing debate in geologic studies. Volcanic deposits within, and adjacent to the Sierra Nevada have played a significant role in many of these debates. With local faulting coincident with eruption of members of the Stanislaus Group at ca. 38°N, the composition and correlation of these volcanics can greatly aid our understanding of Sierra Nevada tectonics. At the crest of the central Sierra Nevada, 23 trachyandesite lava flows of the Table Mountain Formation, dated at ~10 Ma, cap Sonora Peak. These 23 flows compose the thickest and most complete known stratigraphic section of the Table Mountain Formation in the region. Located ~12 km east of Sonora Peak are 16 flows of trachyandesite at Grouse Meadow. We have collected a detailed set of geochemical and paleomagnetic data for flows of these two sections at Sonora Peak and Grouse Meadows in an attempt to correlate volcanic, paleomagnetic and structural events related to uplift and extension in the Sierra Nevada and the Walker Lane. Correlation of individual flows is possible based on: stratigraphic order, temporal gaps in deposition as determined by paleomagnetic remanence direction and nonconformities, and flow geochemistry. These correlations allow us to infer source localities, flow directions, and temporal changes in flow routes. The large number of flows present at Grouse Meadow provides an additional data set from which to correlate various localities in the region to those units not represented at Sonora Peak. Several flows which occur in the upper portions of the Sonora Peak and Grouse Meadow stratigraphic sections do not correlate between these localities. The causes of stratigraphic discontinuity potentially represent: tectonic isolation across the Sierran Crest, topographic isolation by the emplacement of younger flows, or the combination of the two. Additional to the correlation of individual flows at these localities, this study shows a

  14. Mountain Biking Injuries.

    Science.gov (United States)

    Ansari, Majid; Nourian, Ruhollah; Khodaee, Morteza

    With the increasing popularity of mountain biking, also known as off-road cycling, and the riders pushing the sport into extremes, there has been a corresponding increase in injury. Almost two thirds of acute injuries involve the upper extremities, and a similar proportion of overuse injuries affect the lower extremities. Mountain biking appears to be a high-risk sport for severe spine injuries. New trends of injury patterns are observed with popularity of mountain bike trail parks and freeride cycling. Using protective gear, improving technical proficiency, and physical fitness may somewhat decrease the risk of injuries. Simple modifications in bicycle-rider interface areas and with the bicycle (bike fit) also may decrease some overuse injuries. Bike fit provides the clinician with postural correction during the sport. In this review, we also discuss the importance of race-day management strategies and monitoring the injury trends.

  15. Mountain cedar allergens found in nonpollen tree parts.

    Science.gov (United States)

    Goetz, D W; Goetz, M A; Whisman, B A

    1995-09-01

    Mountain cedar (Juniperus ashei) pollen is the principal aeroallergen in south central Texas from late December through February. The major mountain cedar allergen is a 40-kD glycoprotein, gp40. To identify allergens in mountain cedar wood, leaves, and berries and to detect mountain cedar allergen in smoke from burning male or female trees. SDS-PAGE plus mountain cedar human sIgE and monoclonal antibody immunoblots identified mountain cedar allergens within pollen and nonpollen tree part extracts. IgE immunoblots identified a single wood allergen at 36 kD and three berry allergens at 36, 26-27, and 21 kD, in addition to known pollen allergens. Mountain cedar monoclonal antibody bound an allergen epitope present not only on 40, 33, and 28-kD pollen allergens, but also on 36 and 32-kD wood allergens, and the 26-27-kD berry allergen. Immunoblot studies detected no mountain cedar allergen in leaves and no allergen in smoke from burning male and female trees. Allergens constituted a much smaller percentage of extractable protein in wood and berries than in pollen. Mountain cedar berry allergen content is too small to give credence to the ingestion of berries as a folk medicine treatment of mountain cedar pollinosis. In addition, while smoke from burning mountain cedar trees may be irritating, it contains no allergens that could cause allergic rhinoconjunctivitis.

  16. California Workforce: California Faces a Skills Gap

    Science.gov (United States)

    Public Policy Institute of California, 2011

    2011-01-01

    California's education system is not keeping up with the changing demands of the state's economy--soon, California will face a shortage of skilled workers. Projections to 2025 suggest that the economy will continue to need more and more highly educated workers, but that the state will not be able to meet that demand. If current trends persist,…

  17. California State Waters Map Series--Offshore of Ventura, California

    Science.gov (United States)

    Johnson, Samuel Y.; Dartnell, Peter; Cochrane, Guy R.; Golden, Nadine E.; Phillips, Eleyne L.; Ritchie, Andrew C.; Kvitek, Rikk G.; Greene, H. Gary; Krigsman, Lisa M.; Endris, Charles A.; Seitz, Gordon G.; Gutierrez, Carlos I.; Sliter, Ray W.; Erdey, Mercedes D.; Wong, Florence L.; Yoklavich, Mary M.; Draut, Amy E.; Hart, Patrick E.; Johnson, Samuel Y.; Cochran, Susan A.

    2013-01-01

    In 2007, the California Ocean Protection Council initiated the California Seafloor Mapping Program (CSMP), designed to create a comprehensive seafloor map of high-resolution bathymetry, marine benthic habitats, and geology within the 3-nautical-mile limit of California’s State Waters. The CSMP approach is to create highly detailed seafloor maps through collection, integration, interpretation, and visualization of swath sonar data, acoustic backscatter, seafloor video, seafloor photography, high-resolution seismic-reflection profiles, and bottom-sediment sampling data. The map products display seafloor morphology and character, identify potential marine benthic habitats, and illustrate both the surficial seafloor geology and shallow (to about 100 m) subsurface geology. The Offshore of Ventura map area lies within the Santa Barbara Channel region of the Southern California Bight. This geologically complex region forms a major biogeographic transition zone, separating the cold-temperate Oregonian province north of Point Conception from the warm-temperate California province to the south. The map area is in the Ventura Basin, in the southern part of the Western Transverse Ranges geologic province, which is north of the California Continental Borderland. Significant clockwise rotation—at least 90°—since the early Miocene has been proposed for the Western Transverse Ranges, and the region is presently undergoing north-south shortening. The city of Ventura is the major cultural center in the map area. The Ventura River cuts through Ventura, draining the Santa Ynez Mountains and the coastal hills north of Ventura. Northwest of Ventura, the coastal zone is a narrow strip containing highway and railway transportation corridors and a few small residential clusters. Rincon Island, an island constructed for oil and gas production, lies offshore of Punta Gorda. Southeast of Ventura, the coastal zone consists of the mouth and broad, alluvial plains of the Santa Clara River

  18. California sea lions (Zalophus californianus californianus) have lower chlorinated hydrocarbon contents in northern Baja California, Mexico, than in California, USA

    International Nuclear Information System (INIS)

    Del Toro, Ligeia; Heckel, Gisela; Camacho-Ibar, Victor F.; Schramm, Yolanda

    2006-01-01

    Chlorinated hydrocarbons (CHs) were determined in blubber samples of 18 California sea lions (Zalophus californianus californianus) that stranded dead along Todos Santos Bay, Ensenada, Baja California, Mexico, January 2000-November 2001. ΣDDTs were the dominant group (geometric mean 3.8 μg/g lipid weight), followed by polychlorinated biphenyls (ΣPCBs, 2.96 μg/g), chlordanes (0.12 μg/g) and hexachlorocyclohexanes (0.06 μg/g). The ΣDDTs/ΣPCBs ratio was 1.3. We found CH levels more than one order of magnitude lower than those reported for California sea lion samples collected along the California coast, USA, during the same period as our study. This sharp north-south gradient suggests that Z. californianus stranded in Ensenada (most of them males) would probably have foraged during the summer near rookeries 500-1000 km south of Ensenada and the rest of the year migrate northwards, foraging along the Baja California peninsula, including Ensenada, and probably farther north. - Results suggest that sea lion prey must also have lower hydrocarbons in Baja California than in California in the USA

  19. California sea lions (Zalophus californianus californianus) have lower chlorinated hydrocarbon contents in northern Baja California, Mexico, than in California, USA

    Energy Technology Data Exchange (ETDEWEB)

    Del Toro, Ligeia [Universidad Autonoma de Baja California (UABC), Facultad de Ciencias Marinas, Ensenada, Baja California (Mexico); Investigacion y Conservacion de Mamiferos Marinos de Ensenada, A.C., Placido Mata 2309 Depto. D-5, Condominio Las Fincas, Ensenada, Baja California 22810 (Mexico); Heckel, Gisela [Investigacion y Conservacion de Mamiferos Marinos de Ensenada, A.C., Placido Mata 2309 Depto. D-5, Condominio Las Fincas, Ensenada, Baja California 22810 (Mexico) and Centro de Investigacion Cientifica y de Educacion Superior de Ensenada, B.C. Km 107 Carretera Tijuana-Ensenada, Ensenada, Baja California 22860 (Mexico)]. E-mail: gheckel@cicese.mx; Camacho-Ibar, Victor F. [Instituto de Investigaciones Oceanologicas, UABC, Apdo. Postal 453, Ensenada, Baja California 22860 (Mexico); Schramm, Yolanda [Universidad Autonoma de Baja California (UABC), Facultad de Ciencias Marinas, Ensenada, Baja California (Mexico); Investigacion y Conservacion de Mamiferos Marinos de Ensenada, A.C., Placido Mata 2309 Depto. D-5, Condominio Las Fincas, Ensenada, Baja California 22810 (Mexico)

    2006-07-15

    Chlorinated hydrocarbons (CHs) were determined in blubber samples of 18 California sea lions (Zalophus californianus californianus) that stranded dead along Todos Santos Bay, Ensenada, Baja California, Mexico, January 2000-November 2001. {sigma}DDTs were the dominant group (geometric mean 3.8 {mu}g/g lipid weight), followed by polychlorinated biphenyls ({sigma}PCBs, 2.96 {mu}g/g), chlordanes (0.12 {mu}g/g) and hexachlorocyclohexanes (0.06 {mu}g/g). The {sigma}DDTs/{sigma}PCBs ratio was 1.3. We found CH levels more than one order of magnitude lower than those reported for California sea lion samples collected along the California coast, USA, during the same period as our study. This sharp north-south gradient suggests that Z. californianus stranded in Ensenada (most of them males) would probably have foraged during the summer near rookeries 500-1000 km south of Ensenada and the rest of the year migrate northwards, foraging along the Baja California peninsula, including Ensenada, and probably farther north. - Results suggest that sea lion prey must also have lower hydrocarbons in Baja California than in California in the USA.

  20. Analytical results and sample locality map for rock, stream-sediment, and soil samples, Northern and Eastern Coloado Desert BLM Resource Area, Imperial, Riverside, and San Bernardino Counties, California

    Science.gov (United States)

    King, Harley D.; Chaffee, Maurice A.

    2000-01-01

    INTRODUCTION In 1996-1998 the U.S. Geological Survey (USGS) conducted a geochemical study of the Bureau of Land Management's (BLM) 5.5 million-acre Northern and Eastern Colorado Desert Resource Area (usually referred to as the NECD in this report), Imperial, Riverside, and San Bernardino Counties, southeastern California (figure 1). This study was done in support of the BLM's Coordinated Management Plan for the area. This report presents analytical data from this study. To provide comprehensive coverage of the NECD, we compiled and examined all available geochemical data, in digital form, from previous studies in the area, and made sample-site plots to aid in determining where sample-site coverage and analyses were sufficient, which samples should be re-analyzed, and where additional sampling was needed. Previous investigations conducted in parts of the current study area included the National Uranium Resource Evaluation (NURE) program studies of the Needles and Salton Sea 1? x 2? quadrangles; USGS studies of 12 BLM Wilderness Study Areas (WSAs) (Big Maria Mountains, Chemehuevi Mountains, Chuckwalla Mountains, Coxcomb Mountains, Mecca Hills, Orocopia Mountains, Palen-McCoy, Picacho Peak, Riverside Mountains, Sheephole Valley (also known as Sheep Hole/Cadiz), Turtle Mountains, and Whipple Mountains); and USGS studies in the Needles and El Centro 1? x 2? quadrangles done during the early 1990s as part of a project to identify the regional geochemistry of southern California. Areas where we did new sampling of rocks and stream sediments are mainly in the Chocolate Mountain Aerial Gunnery Range and in Joshua Tree National Park, which extends into the west-central part of the NECD, as shown in figure 1 and figure 2. This report contains analytical data for 132 rock samples and 1,245 stream-sediment samples collected by the USGS, and 362 stream-sediment samples and 189 soil samples collected during the NURE program. All samples are from the Northern and Eastern Colorado

  1. A New Estimate for Total Offset on the Southern San Andreas Fault: Implications for Cumulative Plate Boundary Shear in the Northern Gulf of California

    Science.gov (United States)

    Darin, M. H.; Dorsey, R. J.

    2012-12-01

    Development of a consistent and balanced tectonic reconstruction for the late Cenozoic San Andreas fault (SAF) in southern California has been hindered for decades by incompatible estimates of total dextral offset based on different geologic cross-fault markers. The older estimate of 240-270 km is based on offset fluvial conglomerates of the middle Miocene Mint Canyon and Caliente Formations west of the SAF from their presumed source area in the northern Chocolate Mountains NE of the SAF (Ehlig et al., 1975; Ehlert, 2003). The second widely cited offset marker is a distinctive Triassic megaporphyritic monzogranite that has been offset 160 ± 10 km between Liebre Mountain west of the SAF and the San Bernadino Mountains (Matti and Morton, 1993). In this analysis we use existing paleocurrent data and late Miocene clockwise rotation in the eastern Transverse Ranges (ETR) to re-assess the orientation of the piercing line used in the 240 km-correlation, and present a palinspastic reconstruction that satisfies all existing geologic constraints. Our reconstruction of the Mint Canyon piercing line reduces the original estimate of 240-270 km to 195 ± 15 km of cumulative right-lateral slip on the southern SAF (sensu stricto), which is consistent with other published estimates of 185 ± 20 km based on correlative basement terranes in the Salton Trough region. Our estimate of ~195 km is consistent with the lower estimate of ~160 km on the Mojave segment because transform-parallel extension along the southwestern boundary of the ETR during transrotation produces ~25-40 km of displacement that does not affect offset markers of the Liebre/San Bernadino correlation located northwest of the ETR rotating domain. Reconciliation of these disparate estimates places an important new constraint on the total plate boundary shear that is likely accommodated in the adjacent northern Gulf of California. Global plate circuit models require ~650 km of cumulative Pacific-North America (PAC

  2. Dialogs by Jerry Szymanski regarding the Yucca Mountain controversy from December, 1990 to March, 1991: Volume 2. Special report number 9, Contract number 92/94.0004

    International Nuclear Information System (INIS)

    1993-07-01

    This report is a compilation of materials used as part of the Penrose Conference of Bodega Bay, California and the NRC/NAS panel field trip (April 23--25, 1991). The document contains extensive graphs on the hydrologic and geologic systems of the Yucca Mountain region. It outlines and diagrams hydrologic issues relative to geothermal gradients, geochemical pathways, hydraulic gradients, ground water chemistry, and ground water flow models. Specific anomalies in regards to geology or hydrology are addressed as separate issues

  3. Mountain-Scale Coupled Processes (TH/THC/THM)

    International Nuclear Information System (INIS)

    Dixon, P.

    2004-01-01

    The purpose of this Model Report is to document the development of the Mountain-Scale Thermal-Hydrological (TH), Thermal-Hydrological-Chemical (THC), and Thermal-Hydrological-Mechanical (THM) Models and evaluate the effects of coupled TH/THC/THM processes on mountain-scale UZ flow at Yucca Mountain, Nevada. This Model Report was planned in ''Technical Work Plan (TWP) for: Performance Assessment Unsaturated Zone'' (BSC 2002 [160819], Section 1.12.7), and was developed in accordance with AP-SIII.10Q, Models. In this Model Report, any reference to ''repository'' means the nuclear waste repository at Yucca Mountain, and any reference to ''drifts'' means the emplacement drifts at the repository horizon. This Model Report provides the necessary framework to test conceptual hypotheses for analyzing mountain-scale hydrological/chemical/mechanical changes and predict flow behavior in response to heat release by radioactive decay from the nuclear waste repository at the Yucca Mountain site. The mountain-scale coupled TH/THC/THM processes models numerically simulate the impact of nuclear waste heat release on the natural hydrogeological system, including a representation of heat-driven processes occurring in the far field. The TH simulations provide predictions for thermally affected liquid saturation, gas- and liquid-phase fluxes, and water and rock temperature (together called the flow fields). The main focus of the TH Model is to predict the changes in water flux driven by evaporation/condensation processes, and drainage between drifts. The TH Model captures mountain-scale three dimensional (3-D) flow effects, including lateral diversion at the PTn/TSw interface and mountain-scale flow patterns. The Mountain-Scale THC Model evaluates TH effects on water and gas chemistry, mineral dissolution/precipitation, and the resulting impact to UZ hydrological properties, flow and transport. The THM Model addresses changes in permeability due to mechanical and thermal disturbances in

  4. Growth and erosion of mountain ranges at the northeastern margin of Tibet

    Science.gov (United States)

    Hetzel, Ralf; Palumbo, Luigi; Giese, Jörg; Guo, Jianming

    2010-05-01

    fault scaling law for the growth of topography: Mountain ranges in the broken foreland of NE Tibet. Terra Nova 16, 157-162. [2] Hetzel et al. (2002). Low slip rates and long-term preservation of geomorphic features in Central Asia. Nature 417, 428-432. [3] Hetzel et al. (2004). Late Pleistocene/Holocene slip rate of the Zhangye thrust (Qilian Shan, China) and implications for the active growth of the northeastern Tibetan Plateau, Tectonics 23, TC6006, doi:10.1029/2004TC001653. [4] Goethals et al. (2009). Determining the impact of faulting on the rate of erosion in a low-relief landscape: A case study using in situ produced 21Ne on active normal faults in the Bishop Tuff, California. Geomorphology 103, 401-413. [5] Palumbo et al. (2009). Deciphering the rate of mountain growth during topographic presteady state: an example from the NE margin of the Tibetan Plateau. Tectonics 28, TC4017, doi:10.1029/2009TC002455. [6] Palumbo et al. (in press). Topographic and lithologic control on catchment-wide denudation rates derived from cosmogenic 10Be in two mountain ranges at the margin of NE Tibet. Geomorphology, doi:10.1016/j.geomorph.2009.11.019. [7] Meyer et al. (in press). Determining the growth rate of topographic relief using in situ-produced 10Be: A case study in the Black Forest, Germany. Earth and Planetary Science Letters. [8] Densmore et al. (2009). Spatial variations in catchment-averaged denudation rates from normal fault footwalls. Geology 37, 1139-1142.

  5. Geology of Gable Mountain-Gable Butte Area

    International Nuclear Information System (INIS)

    Fecht, K.R.

    1978-09-01

    Gable Mountain and Gable Butte are two ridges which form the only extensive outcrops of the Columbia River Basalt Group in the central portion of the Pasco Basin. The Saddle Mountains Basalt and two interbedded sedimentary units of the Ellensburg Formation crop out on the ridges. These include, from oldest to youngest, the Asotin Member (oldest), Esquatzel Member, Selah Interbed, Pomona Member, Rattlesnake Ridge Interbed, and Elephant Mountain Member (youngest). A fluvial plain composed of sediments from the Ringold and Hanford (informal) formations surrounds these ridges. The structure of Gable Mountain and Gable Butte is dominated by an east-west-trending major fold and northwest-southeast-trending parasitic folds. Two faults associated with the uplift of these structures were mapped on Gable Mountain. The geomorphic expression of the Gable Mountain-Gable Butte area resulted from the comlex folding and subsequent scouring by post-basalt fluvial systems

  6. Filamentous hydrous ferric oxide biosignatures in a pipeline carrying acid mine drainage at Iron Mountain Mine, California

    Science.gov (United States)

    Williams, Amy J.; Alpers, Charles N.; Sumner, Dawn Y.; Campbell, Kate M.

    2017-01-01

    A pipeline carrying acidic mine effluent at Iron Mountain, CA, developed Fe(III)-rich precipitate caused by oxidation of Fe(II)aq. The native microbial community in the pipe included filamentous microbes. The pipe scale consisted of microbial filaments, and schwertmannite (ferric oxyhydroxysulfate, FOHS) mineral spheres and filaments. FOHS filaments contained central lumina with diameters similar to those of microbial filaments. FOHS filament geometry, the geochemical environment, and the presence of filamentous microbes suggest that FOHS filaments are mineralized microbial filaments. This formation of textural biosignatures provides the basis for a conceptual model for the development and preservation of biosignatures in other environments.

  7. Causal Chains Arising from Climate Change in Mountain Regions: the Core Program of the Mountain Research Initiative

    Science.gov (United States)

    Greenwood, G. B.

    2014-12-01

    Mountains are a widespread terrestrial feature, covering from 12 to 24 percent of the world's terrestrial surface, depending of the definition. Topographic relief is central to the definition of mountains, to the benefits and costs accruing to society and to the cascade of changes expected from climate change. Mountains capture and store water, particularly important in arid regions and in all areas for energy production. In temperate and boreal regions, mountains have a great range in population densities, from empty to urban, while tropical mountains are often densely settled and farmed. Mountain regions contain a wide range of habitats, important for biodiversity, and for primary, secondary and tertiary sectors of the economy. Climate change interacts with this relief and consequent diversity. Elevation itself may accentuate warming (elevationi dependent warming) in some mountain regions. Even average warming starts complex chains of causality that reverberate through the diverse social ecological mountain systems affecting both the highlands and adjacent lowlands. A single feature of climate change such as higher snow lines affect the climate through albedo, the water cycle through changes in timing of release , water quality through the weathering of newly exposed material, geomorphology through enhanced erosion, plant communities through changes in climatic water balance, and animal and human communities through changes in habitat conditions and resource availabilities. Understanding these causal changes presents a particular interdisciplinary challenge to researchers, from assessing the existence and magnitude of elevation dependent warming and monitoring the full suite of changes within the social ecological system to climate change, to understanding how social ecological systems respond through individual and institutional behavior with repercussions on the long-term sustainability of these systems.

  8. Mountains as early warning indicators of climate change

    Science.gov (United States)

    Williams, M. W.

    2015-12-01

    The panoramic splendor and complexity of mountain environments have inspired and challenged humans for centuries. These areas have been variously perceived as physical structures to be conquered, as sites of spiritual inspiration, and as some of the last untamed natural places on Earth. In our time, the perception that "mountains are forever" may provide solace to those seeking stability in a rapidly changing world. However, changes in the hydrology and in the abundance and species composition of the native flora and fauna of mountain ecosystems are potential bellwethers of global change, because these systems have a propensity to amplify environmental changes within specific portions of this landscape. Mountain areas are thus sentinels of climate change. We are seeing effects today in case histories I present from the Himalaya's, Andes, Alps, and Rocky Mountains. Furthermore, these ecosystem changes are occurring in mountain areas before they occur in downstream ecosystems. Thus, mountains are early warning indicators of perturbations such as climate change. The sensitivity of mountain ecosystems begs for enhanced protection and worldwide protection. Our understanding of the processes that control mountain ecosystems—climate interactions, snowmelt runoff, biotic diversity, nutrient cycling—is much less developed compared to downstream ecosystems where human habitation and development has resulted in large investments in scientific knowledge to sustain health and agriculture. To address these deficiencies, I propose the formation of an international mountain research consortium.

  9. Preliminary digital geologic maps of the Mariposa, Kingman, Trona, and Death Valley Sheets, California

    International Nuclear Information System (INIS)

    D'Agnese, F.A.; Faunt, C.C.; Turner, A.K.

    1995-01-01

    Parts of four 1:250,000-scale geologic maps by the California Department of Natural Resources, Division of Mines and Geology have been digitized for use in hydrogeologic characterization. These maps include the area of California between lat. 35 degree N; Long. 115 degree W and lat. 38 degree N, long. 118 degree W of the Kingman Sheet (Jennings, 1961), Trona Sheet (Jennings and others, 1962), Mariposa Sheet (Strand, 1967), and Death Valley Sheet (Streitz and Stinson, 1974). These digital maps are being released by the US Geological Survey in the ARC/INFO Version 6.1 Export format. The digitized data include geologic unit boundaries, fault traces, and identity of geologic units. The procedure outlined in US Geological Survey Circular 1054 (Soller and others, 1990) was sued during the map construction. The procedure involves transferring hard-copy data into digital format by scanning manuscript maps, manipulating the digital map data, and outputting the data. Most of the work was done using Environmental Systems Research Institute's ARC/INFO software. The digital maps are available in ARC/INFO Rev. 6.1 Export format, from the USGS, Yucca Mountain Project, in Denver, Colorado

  10. Injuries in mountain biking.

    Science.gov (United States)

    Gaulrapp, H; Weber, A; Rosemeyer, B

    2001-01-01

    Despite still growing attraction mountain biking as a matter of sports traumatology still lacks relevant data based on large cross-sectional surveys. To obtain an overview of risk factors, types, and main body sites of injuries occurring in mountain biking we assessed the results of a questionnaire answered by 3873 athletes. A total of 8133 single lesions were reported by 3474 athletes, 36% of whom regularly participated in competitions. The incidence of injuries in mountain biking is comparable to that in other outdoor sports, the majority of injuries being minor. Mountain biking athletes were found to have an overall injury risk rate of 0.6% per year and 1 injury per 1000 h of biking. The main risk factors included slippery road surface, cyclist's poor judgement of the situation, and excessive speed, representing personal factors that could be altered by preventive measures. Of all injuries 14% were due to collision with some part of the bike, especially the pedals and the handlebar. While 75% of the injuries were minor, such as skin wounds and simple contusions, 10% were so severe that hospitalization was required. A breakdown of the injuries according to body site and frequency of occurrence is presented.

  11. Extinction of Harrington's mountain goat

    International Nuclear Information System (INIS)

    Mead, J.I.; Martin, P.S.; Euler, R.C.; Long, A.; Jull, A.J.T.; Toolin, L.J.; Donahue, D.J.; Linick, T.W.

    1986-01-01

    Keratinous horn sheaths of the extinct Harrington's mountain goat, Oreamnos harringtoni, were recovered at or near the surface of dry caves of the Grand Canyon, Arizona. Twenty-three separate specimens from two caves were dated nondestructively by the tandem accelerator mass spectrometer (TAMS). Both the TAMS and the conventional dates indicate that Harrington's mountain goat occupied the Grand Canyon for at least 19,000 years prior to becoming extinct by 11,160 +/- 125 radiocarbon years before present. The youngest average radiocarbon dates on Shasta ground sloths, Nothrotheriops shastensis, from the region are not significantly younger than those on extinct mountain goats. Rather than sequential extinction with Harrington's mountain goat disappearing from the Grand Canyon before the ground sloths, as one might predict in view of evidence of climatic warming at the time, the losses were concurrent. Both extinctions coincide with the regional arrival of Clovis hunters

  12. THE MOUNTAIN REGIONS IN CONTEXT OF STRATEGY 2020

    Directory of Open Access Journals (Sweden)

    ANTONESCU Daniela

    2014-07-01

    Full Text Available The mountain regions in Romania and European Union represent a special territory of interest, with a huge economic, social, environmental and cultural potential. More, mountain area is considerate a natural-economic region and constitutes an important objective for regional development policy. The main sectors of mountain area are presented in agriculture and tourism fields that lead the key role in safeguarding the sensitive eco-system and thereby maintaining the general living and working space.Mountain areas should have a specific policy defined by the sustainable development principle, which meets the needs of the present without compromising the opportunities of future generations. The specific mountain policy aims to reduce the imbalance between favored and disadvantaged mountain regions, permanently marked by natural, economic, social, cultural and environmental constraints. In previous programming period, mountain regions among have profited from the intensive regional support, in specially, for constructing of and connecting them to fresh water and waste water networks, in particular for increasing of life quality. In context of 2020 Strategy, the Member States will concentrate investments on a small number of thematic objectives. In advanced regions, 60 % of funds will used for only two of these objectives (competitiveness of SME and research/innovation. The all less developed regions will received about 50% of Structural Funds In Romania, mountain representing 29.93% out of the total national surface and 20.14% from UAA (Utilised Agricultural Area of total national. The mountain territory has around 20% of the national population and is overlapping almost 100% with the Carpathian Mountains. Due to these conditions, Romania's regional development policy must take into account the specificities of mountain area, the problems they faced, and the requirements of 2020 Strategy.This paper presents the main aspects to be taken into account

  13. Earthquake and volcano hazard notices: An economic evaluation of changes in risk perceptions

    Science.gov (United States)

    Bernknopf, R.L.; Brookshire, D.S.; Thayer, M.A.

    1990-01-01

    Earthquake and volcano hazard notices were issued for the Mammoth Lakes, California area by the U.S. Geological Survey under the authority granted by the Disaster Relief Act of 1974. The effects on investment, recretion visitation, and risk perceptionsare explored. The hazard notices did not affect recreation visitation, although investment was affected. A perceived loss in the market value of homes was documented. Risk perceptions were altered for property owners. Communication of the probability of an event over time would enhance hazard notices as a policy instrument and would mitigate unnecessary market perturbations. ?? 1990.

  14. Sustainability and Mountain Tourism: The Millennial’s Perspective

    Directory of Open Access Journals (Sweden)

    Alessandro Bonadonna

    2017-07-01

    Full Text Available Evidence from several studies illustrates the different points of view through which sustainability and mountains have been studied over the years. Nowadays, interest in Millennials is increasing but no research has compared Millennials and sustainability in the mountain context. This study aims at defining sustainability with reference to Millennial perception of both winter and summer mountain sports. By analysing data gathered from a sample of 2292 Millennials (Piedmont area, the authors confirm their high degree of sensitivity towards sustainable issues and, above all, discover that there are differences in the sustainable perception Millennials have of both mountain winter and summer sports. More specifically, Millennial perception is deeply influenced by the place where they are used to living―mountains or cities―and by their gender. From a managerial point of view, results have direct implications on the administrators of mountain institutions who can implement appropriate initiatives in order to correctly sensitise Millennials towards mountain sports. Moreover, from a theoretical perspective, the study opens a new scenario on two important topics linked to sustainability, namely Millennials and mountain sports.

  15. AHP 35: An Abandoned Mountain Deity

    Directory of Open Access Journals (Sweden)

    Limusishiden (Li Dechun 李得春

    2015-02-01

    Full Text Available Lasizi are cairns where mountain deities dwell, and the same word also refers to the deities that dwell in these cairns. There are many lasizi in Tu areas in Huzhu Tu Autonomous County, Haidong Municipality, Qinghai Province. The most famous are: Chileb, located in the north part of both Danma Town and Donggou Township Durizang, located in the northern part of Wushi Town Lawa, located atop a mountain on the border between Danma Town and Wushi Town. The mountain is referred to as Lawa Lasizi. Lawa Village is located at the foot of Lawa Lasizi's west side, which is within Danma Town territory. Tughuan Village is located at the foot of Lawa Lasizi's east side, which belongs is within Wushi Town jurisdiction. Sughua, located atop a mountain on the border between Danma Town and Dongshan Township. The mountain is locally known as Sughua Lasizi. Qighaan Dawa Village is located at the foot of Sughua Lasizi's west side, which is part of Dongshan Township. Sughua Village is located at the foot of Sughua Lasizi's east side, which is part of belongs Danma Town. Walighuan, located atop a mountain in Hongyazigou Township and Sunduu, located on the border between Songduo and Bazha (two autonomous Tibetan townships in Huzhu County and Ledu Region. ...

  16. A new network on mountain geomorphosites

    Science.gov (United States)

    Giusti, Christian

    2013-04-01

    Since about two decades, the value of geoheritage in mountain areas has been re-discovered in various parts of the Alps (Reynard et al., 2010) and other mountain ranges, and various initiatives (protection of sites worthy of protection, inventories of geomorphosites, geotourist promotion, creation of geoparks, etc.) to conserve or promote mountain geoheritage have been developed. As mountains are recognized as natural areas with a very high geodiversity, and at the same time as areas with a great potential for the development of soft tourism, a new Network on Mountain Geomorphosites was created in October 2012 in conclusion to a workshop organized by the University of Lausanne (Switzerland). The Network is open to all researchers active in geoheritage, geoconservation and geotourism studies in mountain areas. For the first years research will focus on three main issues: - Geoheritage and natural processes: Mountains are very sensitive areas where climate change impacts are very acute and where active geomorphological processes rapidly modify landscapes. It is hypothesized that geoheritage will be highly impacted by global change in the future. Nevertheless, at the moment, very little research is carried out on the evolution of landforms recognized as geoheritage and no specific management measures have been developed. Also, the tourist activities related to geoheritage, especially the trails developed to visit geomorphosites, are sensitive to geomorphological processes in mountain areas in a context of global change, and need, therefore, to be better addressed by geomorphologists. - Geotourism: During the last two decades numerous initiatives have developed geotourism in mountain areas. Nevertheless, studies addressing issues such as the needs of the potential public(s) of geotourism, the evaluation of the quality of the geotourist products developed by scientists and/or local authorities, and the assessment of the economic benefits of geotourism for the regional

  17. Mountains: top down.

    Science.gov (United States)

    Woodwell, George M

    2004-11-01

    Mountainous regions offer not only essential habitat and resources, including water, to the earth's more than 6 billion inhabitants, but also insights into how the global human habitat works, how it is being changed at the moment as global climates are disrupted, and how the disruption may lead to global biotic and economic impoverishment. At least 600 million of the earth's more than 6 billion humans dwell in mountainous regions. Such regions feed water into all the major rivers of the world whose valleys support most of the rest of us. At least half of the valley dwellers receive part or all of their water from montane sources, many from the melt water of glaciers, others from the annual snow melt. Glaciers are retreating globally as the earth warms as a result of human-caused changes in the composition of the atmosphere. Many are disappearing, a change that threatens municipal water supplies virtually globally. The warming is greatest in the higher latitudes where the largest glaciers such as those of Greenland and the Antarctic Continent have become vulnerable. The melting of ice in the northern hemisphere raises serious concerns about the continued flow of the Gulf Stream and the possibility of massive climatic changes in Scandinavia and northern Europe. Mountains are also biotic islands in the sea life, rich in endemism at the ecotype level. The systematic warming of the earth changes the environment out from under these genetically specialized strains (ecotypes) which are then maladapted and vulnerable to diseases of all types. The process is systematic impoverishment in the pattern conspicuous on mountain slopes with increasing exposure to climatic extremes. It is seen now in the increased mortality and morbidity of plants as climatic changes accumulate. The seriousness of the global climatic disruption is especially clear in any consideration of mountains. It can and must be addressed constructively despite the adamancy of the current US administration.

  18. MOUNTAIN TOURISM-PLEASURE AND NECESSITY

    Directory of Open Access Journals (Sweden)

    Gabriela Corina SLUSARIUC

    2015-07-01

    Full Text Available Tourism has a more and more important role in the economic development of many countries. Mountain tourism is an anti-stress solutions and a type of disconnection from the citadel life style through replacing some activities of media consuming type, games and virtual socializing with therapy through movement, the physical activity being an essential dimension in assuring the high life quality. Mountaineering is searched for: practicing winter sports, its invigorating and comforting, relaxing role, medical spa treatments practicing hiking, alpinism. Mountain tourism generates increased economic benefits for the surrounding areas, improves the life quality of the local communities and can assure the prosperity of some disadvantaged areas, being able to be a remedy for unindustrialised regions. Mountain tourism contributes to the economic development of the region and also to satisfying spiritual and psychological needs of the people, representing a necessity for a touristic area and a pleasure for tourist consumers.

  19. Evolution of Topography in Glaciated Mountain Ranges

    Science.gov (United States)

    Brocklehurst, Simon H.

    2002-01-01

    This thesis examines the response of alpine landscapes to the onset of glaciation. The basic approach is to compare fluvial and glacial laudscapes, since it is the change from the former to the latter that accompanies climatic cooling. This allows a detailed evaluation of hypotheses relating climate change to tectonic processes in glaciated mountain belts. Fieldwork was carried out in the eastern Sierra Nevada, California, and the Sangre de Cristo Range, Colorado, alongside digital elevation model analyses in the western US, the Southern Alps of New Zealand, and the Himalaya of northwestern Pakistan. hypothesis is overstated in its appeal to glacial erosion as a major source of relief production and subsequent peak uplift. Glaciers in the eastern Sierra Nevada and the western Sangre de Cristos have redistributed relief, but have produced only modest relief by enlarging drainage basins at the expense of low-relief topography. Glaciers have lowered valley floors and ridgelines by similar amounts, limiting the amount of "missing mass' that can be generated, and causing a decrease in drainage basin relief. The principal response of glaciated landscapes to rapid rock uplift is the development of towering cirque headwalls. This represents considerable relief production, but is not caused by glacial erosion alone. Large valley glaciers can maintain their low gradient regardless of uplift rate, which supports the "glacial buzzsaw" hypothesis. However, the inability of glaciers to erode steep hillslopes as rapidly can cause mean elevations to rise. Cosmogenic isotope dating is used to show that (i) where plucking is active, the last major glaciation removed sufficient material to reset the cosmogenic clock; and (ii) former glacial valley floors now stranded near the crest of the Sierra Nevada are at varying stages of abandonment, suggesting a cycle of drainage reorganiszation and relief inversion due to glacial erosion similar to that observed in river networks. Glaciated

  20. Groundwater quality in the Owens Valley, California

    Science.gov (United States)

    Dawson, Barbara J. Milby; Belitz, Kenneth

    2012-01-01

    Groundwater provides more than 40 percent of California’s drinking water. To protect this vital resource, the State of California created the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The Priority Basin Project of the GAMA Program provides a comprehensive assessment of the State’s groundwater quality and increases public access to groundwater-quality information. Owens Valley is one of the study areas being evaluated. The Owens study area is approximately 1,030 square miles (2,668 square kilometers) and includes the Owens Valley groundwater basin (California Department of Water Resources, 2003). Owens Valley has a semiarid to arid climate, with average annual rainfall of about 6 inches (15 centimeters). The study area has internal drainage, with runoff primarily from the Sierra Nevada draining east to the Owens River, which flows south to Owens Lake dry lakebed at the southern end of the valley. Beginning in the early 1900s, the City of Los Angeles began diverting the flow of the Owens River to the Los Angeles Aqueduct, resulting in the evaporation of Owens Lake and the formation of the current Owens Lake dry lakebed. Land use in the study area is approximately 94 percent (%) natural, 5% agricultural, and 1% urban. The primary natural land cover is shrubland. The largest urban area is the city of Bishop (2010 population of 4,000). Groundwater in this basin is used for public and domestic water supply and for irrigation. The main water-bearing units are gravel, sand, silt, and clay derived from surrounding mountains. Recharge to the groundwater system is primarily runoff from the Sierra Nevada, and by direct infiltration of irrigation. The primary sources of discharge are pumping wells, evapotranspiration, and underflow to the Owens Lake dry lakebed. The primary aquifers in Owens Valley are defined as those parts of the aquifers corresponding to the perforated intervals of wells listed in the California Department of Public Health database

  1. 78 FR 77447 - California Wind Energy Association, First Solar, Inc. v. California Independent System Operator...

    Science.gov (United States)

    2013-12-23

    ... Energy Association, First Solar, Inc. v. California Independent System Operator Corporation, Southern...), California Wind Energy Association and First Solar, Inc. (collectively, Complainants) filed a formal complaint against the California Independent System Operator Corporation (CAISO) and Southern California...

  2. ACUTE MOUNTAIN SICKNESS

    Directory of Open Access Journals (Sweden)

    Jakub Krzeszowiak

    2012-03-01

    Full Text Available This paper presents the most likely pathophysiological causes of the development of acute mountain sickness (AMS, also known as altitude sickness, its pulmonary form i.e. high altitude pulmonary edema (HAPE, and high altitude cerebral edema (HACE. These diseases constitute extraordinary environmental hazards because they are directly connected with low atmospheric pressure, and thus low partial oxygen pressure. The above adverse atmospheric conditions start to affect humans already at an altitude of 2,500 meters above the sea level and, coupled with extreme physical exertion, can quickly lead to respiratory alkalosis, which is not present under any other conditions in the lowlands. Mountaineering above 4,500 m a.s.l. leads to hypoxia of internal organs and, primarily, reduced renal perfusion with all its consequences. The above adverse changes, combined with inadequate acclimatization, can lead to a situation of imminent danger to life and health. This paper describes in detail the consequences of acute mountain sickness, which can ultimately lead to the development of AMS and one of severe forms of HACE and/or HAPE.

  3. A Weather Analysis and Forecasting System for Baja California, Mexico

    Science.gov (United States)

    Farfan, L. M.

    2006-05-01

    The weather of the Baja California Peninsula, part of northwestern Mexico, is mild and dry most of the year. However, during the summer, humid air masses associated with tropical cyclones move northward in the eastern Pacific Ocean. Added features that create a unique meteorological situation include mountain ranges along the spine of the peninsula, warm water in the Gulf of California, and the cold California Current in the Pacific. These features interact with the environmental flow to induce conditions that play a role in the occurrence of localized, convective systems during the approach of tropical cyclones. Most of these events occur late in the summer, generating heavy precipitation, strong winds, lightning, and are associated with significant property damage to the local populations. Our goal is to provide information on the characteristics of these weather systems by performing an analysis of observations derived from a regional network. This includes imagery from radar and geostationary satellite, and data from surface stations. A set of real-time products are generated in our research center and are made available to a broad audience (researchers, students, and business employees) by using an internet site. Graphical products are updated anywhere from one to 24 hours and includes predictions from numerical models. Forecasts are derived from an operational model (GFS) and locally generated simulations based on a mesoscale model (MM5). Our analysis and forecasting system has been in operation since the summer of 2005 and was used as a reference for a set of discussions during the development of eastern Pacific tropical cyclones. This basin had 15 named storms and none of them made landfall on the west coast of Mexico; however, four systems were within 800 km from the area of interest, resulting in some convective activity. During the whole season, a group of 30 users from our institution, government offices, and local businesses received daily information

  4. Personal and professional profile of mountain medicine physicians.

    Science.gov (United States)

    Peters, Patrick

    2003-01-01

    The purpose of this study was to define and describe the personal and professional profile of mountain medicine physicians including general physical training information and to include a detailed overview of the practice of mountain sports. A group of physicians participating in a specialized mountain medicine education program filled out a standardized questionnaire. The data obtained from this questionnaire were first analyzed in a descriptive way and then by statistical methods (chi2 test, t test, and analysis of variance). Detailed results have been provided for gender, age, marital status, general training frequency and methods, professional status, additional medical qualifications, memberships in professional societies and alpine clubs, mountain sports practice, and injuries sustained during the practice of mountain sports. This study has provided a detailed overview concerning the personal and professional profile of mountain medicine physicians. Course organizers as well as official commissions regulating the education in mountain medicine will be able to use this information to adapt and optimize the courses and the recommendations/requirements as detailed by the UIAA-ICAR-ISMM (Union Internationale des Associations Alpinistes, International Commission for Alpine Rescue, International Society for Mountain Medicine).

  5. Mountains of Our Future Earth: Defining Priorities for Mountain Research—A Synthesis From the 2015 Perth III Conference

    Directory of Open Access Journals (Sweden)

    Erin H. Gleeson

    2016-11-01

    Full Text Available The Perth conferences, held every 5 years in Perth, Scotland, bring together people who identify as mountain researchers and who are interested in issues related to global change in mountain social-ecological systems. These conferences provide an opportunity to evaluate the evolution of research directions within the mountain research community, as well as to identify research priorities. The Future Earth Strategic Research Agenda provides a useful framework for evaluating the mountain research community's progress toward addressing global change and sustainability challenges. Using a process originally set up to analyze contributions to the 2010 conference, the abstracts accepted for the 2015 conference in the context of the Future Earth framework were analyzed. This revealed a continued geographic underrepresentation in mountain research of Africa, Latin America, and South and Southeast Asia but a more even treatment of biophysical and social science themes than in 2010. It also showed that the Perth conference research community strongly focused on understanding system processes (the Dynamic Planet theme of the Future Earth research agenda. Despite the continued bias of conference contributions toward traditional observation- and conservation-oriented research, survey results indicate that conference participants clearly believe that transdisciplinary, transformative research is relevant to mountains. Of the 8 Future Earth focal challenges, those related to safeguarding natural assets, promoting sustainable land use, increasing resilience and understanding the water-energy-food nexus received considerable attention. The challenges related to sustainable consumption, decarbonizing socioeconomic systems, cities, and health were considerably less well represented, despite their relevance to mountain socioeconomic systems. Based on these findings, we outline a proposal for the future directions of mountain research.

  6. Oral chytridiomycosis in the mountain yellow-legged frog (Rana muscosa)

    Science.gov (United States)

    Fellers, G.M.; Green, E.D.; Longcore, J.E.

    2001-01-01

    The chytrid fungus Batrachochytrium dendrobatidis was originally reported in wild frog populations in Panama and Australia, and from captive frogs in the U.S. National Zoological Park (Washington, DC). This recently described fungus affects the keratinized epidermis of amphibians and has been implicated as a causative factor in the declines of frog populations. We report here the presence of B. dendrobatidis in larval and recently metamorphosed mountain yellow-legged frogs (Rana muscosa) in or near the Sierra Nevada Mountains of California, an area where declines have been documented in all five species of native anurans. Forty-one percent (158 of 387) of larval R. muscosa examined in the field with a hand lens and 18% (14 of 79) of preserved larvae had abnormalities of the oral disc. Twenty-eight larvae were collected from 10 sites where tadpoles had been observed with missing or abnormally keratinized mouthparts, and 24 of these were examined for infection. Sixty-seven percent (16 of 24) of these tadpoles were infected with B. dendrobatidis. Batrachochytrium dendrobatidis was cultured from both tadpoles and recent metamorphs from one of these sites. Tadpoles with mouthpart abnormalities or confirmed chytrid fungus infections were collected at 23 sites spanning a distance of > 440 km and an elevational range from 1658-3550 m. Life-history traits of R. muscosa may make this species particularly susceptible to infection by Batrachochytrium. We recommend that biologists examine tadpoles for oral disc abnormalities as a preliminary indication of chytridiomycosis. Further, we believe that biologists should take precautions to prevent spreading this and other amphibian diseases from one site to another.

  7. Reasons for decision in the matter of Trans Mountain Pipeline Inc. (formerly Terasen Pipelines (Trans Mountain) Inc.) : tariffs

    International Nuclear Information System (INIS)

    2007-01-01

    In 2006 and 2007 Terasen Pipelines (Trans Mountain) Inc. (now Trans Mountain Pipeline Inc.) submitted a series of applications to the National Energy Board for revisions to the Trans Mountain Tariffs. They were filed in response to apportionment concerns on the Trans Mountain pipeline. Four of the applications involved pronounced and contentious changes to the capacity allocation procedures on the pipeline system. For ease of reference, the Board amalgamated its 4 decisions on these applications into a single document. A map of the Trans Mountain pipeline system as a whole was presented along with a detailed map indicating the delivery locations served by the system in the lower mainland of British Columbia and the state of Washington. The issues considered by the Board in each of these decisions included capacity allocation for Westridge Dock; capacity allocations to export destinations; common carriage requirements; and the need for creating a new barge subcategory. Relevant sections of the National Energy Board Act referred to in the decisions were highlighted. This document also listed the Trans Mountain Tariffs that have introduced notable revisions to the capacity allocation procedures on the system since September 2003. 16 refs., 2 figs., 3 appendices

  8. 78 FR 71640 - Notice of Availability of the Draft Joint Environmental Impact Statement and Environmental Impact...

    Science.gov (United States)

    2013-11-29

    ... County, California. The Project would utilize solar panels and would be built in several phases. The... and California Desert Conservation Area Plan Amendment for the Proposed Soda Mountain Solar Project... Desert Conservation Area (CDCA) Plan Amendment for the Soda Mountain Solar Project (Project), San...

  9. Separating Trends in Whitebark Pine Radial Growth Related to Climate and Mountain Pine Beetle Outbreaks in the Northern Rocky Mountains, USA

    Directory of Open Access Journals (Sweden)

    Saskia L. van de Gevel

    2017-06-01

    Full Text Available Drought and mountain pine beetle (Dendroctonus ponderosae Hopkins outbreaks have affected millions of hectares of high-elevation conifer forests in the Northern Rocky Mountains during the past century. Little research has examined the distinction between mountain pine beetle outbreaks and climatic influence on radial growth in endangered whitebark pine (Pinus albicaulis Engelm. ecosystems. We used a new method to explore divergent periods in whitebark pine radial growth after mountain pine beetle outbreaks across six sites in western Montana. We examined a 100-year history of mountain pine beetle outbreaks and climate relationships in whitebark pine radial growth to distinguish whether monthly climate variables or mountain pine outbreaks were the dominant influence on whitebark pine growth during the 20th century. High mortality of whitebark pines was caused by the overlapping effects of previous and current mountain pine beetle outbreaks and white pine blister rust infection. Wet conditions from precipitation and snowpack melt in the previous summer, current spring, and current summer benefit whitebark pine radial growth during the following growing season. Whitebark pine radial growth and climate relationships were strongest in sites less affected by the mountain pine beetle outbreaks or anthropogenic disturbances. Whitebark pine population resiliency should continue to be monitored as more common periods of drought will make whitebark pines more susceptible to mountain pine beetle attack and to white pine blister rust infection.

  10. Middle to Late Jurassic Tectonic Evolution of the Klamath Mountains, California-Oregon

    Science.gov (United States)

    Harper, Gregory D.; Wright, James E.

    1984-12-01

    The geochronology, stratigraphy, and spatial relationships of Middle and Late Jurassic terranes of the Klamath Mountains strongly suggest that they were formed in a single west-facing magmatic arc built upon older accreted terranes. A Middle Jurassic arc complex is represented by the volcanic rocks of the western Hayfork terrane and consanguineous dioritic to peridotitic plutons. New U/Pb zircon dates indicate that the Middle Jurassic plutonic belt was active from 159 to 174 Ma and is much more extensive than previously thought. This plutonic belt became inactive just as the 157 Ma Josephine ophiolite, which lies west and structurally below the Middle Jurassic arc, was generated. Late Jurassic volcanic and plutonic arc rocks (Rogue Formation and Chetco intrusive complex) lie outboard and structurally beneath the Josephine ophiolite; U/Pb and K/Ar age data indicate that this arc complex is coeval with the Josephine ophiolite. Both the Late Jurassic arc complex and the Josephine ophiolite are overlain by the "Galice Formation," a Late Jurassic flysch sequence, and are intruded by 150 Ma dikes and sills. The following tectonic model is presented that accounts for the age and distribution of these terranes: a Middle Jurassic arc built on older accreted terranes undergoes rifting at 160 Ma, resulting in formation of a remnant arc/back-arc basin/island arc triad. This system collapsed during the Late Jurassic Nevadan Orogeny (150 Ma) and was strongly deformed and stacked into a series of east-dipping thrust sheets. Arc magmatism was active both before and after the Nevadan Orogeny, but virtually ceased at 140 Ma.

  11. Two-dimensional magnetotelluric model of deep resistivity structure in the Bodie-Aurora district of California

    Science.gov (United States)

    Sampson, Jay A.

    2006-01-01

    Introduction: Magnetotelluric data were acquired during October 2001 by the U.S. Geological Survey (USGS) as part of a study to examine the structural nature of basins in the transition zone between the Sierra Nevada Mountains of California and the Basin and Range province of Nevada. Magnetotelluric (MT) geophysical studies assist the mapping of geologic structure and the inference of lithologic packages that are concealed beneath the Earth's surface. The Basin and Range province has a complicated geologic history, which includes extension and compression of the Earth's crust to form the basins and ranges that blanket much of Nevada. The basins and ranges in the vicinity of this study trend northeastward and are bounded by steeply dipping strike slip faults. Interestingly, deep east-west magnetic trends occur in the aeromagnetic data of this study area indicating that the northeast-trending basins and ranges represent only thin-skinned deformation at the surface with an underlying east-west structure. To investigate this issue, MT data were acquired at seven stations in eastern California, 20 km east of Mono Lake. The purpose of this report is to present a two-dimensional apparent resistivity model of the MT data acquired for this study.

  12. Late Neogene marine incursions and the ancestral Gulf of California

    Science.gov (United States)

    McDougall, K.

    2008-01-01

    The late Neogene section in the Salton Trough, California, and along the lower Colorado River in Arizona is composed of marine units bracketed by nonmarine units. Microfossils from the marine deposits indicate that a marine incursion inundated the Salton Trough during the late Miocene. Water depths increased rapidly in the Miocene and eventually flooded the region now occupied by the Colorado River as far north as Parker, Arizona. Marine conditions were restricted in the Pliocene as the Colorado River filled the Salton Trough with sediments and the Gulf of California assumed its present configuration. Microfossils from the early part of this incursion include a diverse assemblage of benthic foraminifers (Amphistegina gibbosa, Uvigerina peregrina, Cassidulina delicata, and Bolivina interjuncta), planktic foraminifers (Globigerinoides obliquus, G. extremus, and Globigerina nepenthes), and calcareous nannoplankton (Discoaster brouweri, Discoaster aff. Discoaster surculus, Sphenolithus abies, and S. neoabies), whereas microfossils in the final phase contain a less diverse assemblage of benthic foraminifers that are diagnostic of marginal shallow-marine conditions (Ammonia, Elphidium, Bolivina, Cibicides, and Quinqueloculina). Evidence of an earlier middle Miocene marine incursion comes from reworked microfossils found near Split Mountain Gorge in the Fish Creek Gypsum (Sphenolithus moriformis) and near San Gorgonio Pass (Cyclicargolithus floridanus and Sphenolithus heteromorphus and planktic foraminifers). The middle Miocene incursion may also be represented by the older marine sedimentary rocks encountered in the subsurface near Yuma, Arizona, where rare middle Miocene planktic foraminifers are found. ?? 2008 The Geological Society of America.

  13. Mountaineering Tourism

    Directory of Open Access Journals (Sweden)

    Patrick Maher

    2016-08-01

    Full Text Available Reviewed: Mountaineering Tourism Edited by Ghazali Musa, James Higham, and Anna Thompson-Carr. Abingdon, United Kingdom: Routledge, 2015. xxvi + 358 pp. Hardcover. US$ 145.00. ISBN 978-1-138-78237-2.

  14. Status and understanding of groundwater quality in the Klamath Mountains study unit, 2010: California GAMA Priority Basin Project

    Science.gov (United States)

    Bennett, George Luther; Fram, Miranda S.; Belitz, Kenneth

    2014-01-01

    Groundwater quality in the Klamath Mountains (KLAM) study unit was investigated as part of the Priority Basin Project of the California Groundwater Ambient Monitoring and Assessment (GAMA) Program. The study unit is located in Del Norte, Humboldt, Shasta, Siskiyou, Tehama, and Trinity Counties. The GAMA Priority Basin Project is being conducted by the California State Water Resources Control Board in collaboration with the U.S. Geological Survey (USGS) and the Lawrence Livermore National Laboratory. The GAMA Priority Basin Project was designed to provide a spatially unbiased, statistically robust assessment of the quality of untreated (raw) groundwater in the primary aquifer system. The assessment is based on water-quality data and explanatory factors for groundwater samples collected in 2010 by the USGS from 39 sites and on water-quality data from the California Department of Public Health (CDPH) water-quality database. The primary aquifer system was defined by the depth intervals of the wells listed in the CDPH water-quality database for the KLAM study unit. The quality of groundwater in the primary aquifer system may be different from that in the shallower or deeper water-bearing zones; shallow groundwater may be more vulnerable to surficial contamination. This study included two types of assessments: (1) a status assessment, which characterized the status of the current quality of the groundwater resource by using data from samples analyzed for volatile organic compounds, pesticides, and naturally occurring inorganic constituents, such as major ions and trace elements, and (2) an understanding assessment, which evaluated the natural and human factors potentially affecting the groundwater quality. The assessments were intended to characterize the quality of groundwater resources in the primary aquifer system of the KLAM study unit, not the quality of treated drinking water delivered to consumers by water purveyors. Relative-concentrations (sample concentrations

  15. Geomorphology, denudation rates, and stream channel profiles reveal patterns of mountain building adjacent to the San Andreas fault in northern California, USA

    Science.gov (United States)

    DeLong, Stephen B.; Hilley, George E.; Prentice, Carol S.; Crosby, Christopher J.; Yokelson, Intan N.

    2017-01-01

    Relative horizontal motion along strike-slip faults can build mountains when motion is oblique to the trend of the strike-slip boundary. The resulting contraction and uplift pose off-fault seismic hazards, which are often difficult to detect because of the poor vertical resolution of satellite geodesy and difficulty of locating offset datable landforms in active mountain ranges. Sparse geomorphic markers, topographic analyses, and measurement of denudation allow us to map spatiotemporal patterns of uplift along the northern San Andreas fault. Between Jenner and Mendocino, California, emergent marine terraces found southwest of the San Andreas fault record late Pleistocene uplift rates between 0.20 and 0.45 mm yr–1 along much of the coast. However, on the northeast side of the San Andreas fault, a zone of rapid uplift (0.6–1.0 mm yr–1) exists adjacent to the San Andreas fault, but rates decay northeastward as the coast becomes more distant from the San Andreas fault. A newly dated 4.5 Ma shallow-marine deposit located at ∼500 m above sea level (masl) adjacent to the San Andreas fault is warped down to just 150 masl 15 km northeast of the San Andreas fault, and it is exposed at just 60–110 masl to the west of the fault. Landscape denudation rates calculated from abundance of cosmogenic radionuclides in fluvial sediment northeast of, and adjacent to, the San Andreas fault are 0.16–0.29 mm yr–1, but they are only 0.03–0.07 mm yr–1 west of the fault. Basin-average channel steepness and the denudation rates can be used to infer the erosive properties of the underlying bedrock. Calibrated erosion rates can then be estimated across the entire landscape using the spatial distribution of channel steepness with these erosive properties. The lower-elevation areas of this landscape that show high channel steepness (and hence calibrated erosion rate) are distinct from higher-elevation areas with systematically lower channel steepness and denudation rates

  16. Teale California shoreline

    Data.gov (United States)

    California Natural Resource Agency — California Spatial Information System (CaSIL) is a project designed to improve access to geo-spatial and geo-spatial related data information throughout the state of...

  17. Quaternary tectonics and basin history of Pahrump and Stewart Valleys, Nevada and California

    International Nuclear Information System (INIS)

    Hoffard, J.L.

    1991-05-01

    The Pahrump fault system is an active fault system located in Pahrump and Stewart Valleys, Nevada and California, in the southern part of the Basin and Range Province. This system is 50 km long by 30 km wide and is comprised of three fault zones: the right-lateral East Nopah fault zone, the right-oblique Pahrump Valley fault zone, and the normal West Spring Mountains fault zone. All three zones have geomorphic evidence for late Quaternary activity. Analysis of active fault patterns and seismic reflection lines suggests that the Pahrump basin has had a two-stage genesis, an early history associated with a period of low angle detachment faulting probably active 10-15 Ma, and a more recent history related to the present dextral shear system, probably active post-4 Ma

  18. Yucca Mountain project prototype testing

    International Nuclear Information System (INIS)

    Hughes, W.T.; Girdley, W.A.

    1990-01-01

    The U.S. DOE is responsible for characterizing the Yucca Mountain site in Nevada to determine its suitability for development as a geologic repository to isolate high-level nuclear waste for at least 10,000 years. This unprecedented task relies in part on measurements made with relatively new methods or applications, such as dry coring and overcoring for studies to be conducted from the land surface and in an underground facility. The Yucca Mountain Project has, since 1988, implemented a program of equipment development and methods development for a broad spectrum of hydrologic, geologic, rock mechanics, and thermomechanical tests planned for use in an Exploratory Shaft during site characterization at the Yucca Mountain site. A second major program was fielded beginning in April 1989 to develop and test methods and equipment for surface drilling to obtain core samples from depth using only air as a circulating medium. The third major area of prototype testing has been during the ongoing development of the Instrumentation/ Data Acquisition System (IDAS), designed to collect and monitor data from down-hole instrumentation in the unsaturated zone, and store and transmit the data to a central archiving computer. Future prototype work is planned for several programs including the application of vertical seismic profiling methods and flume design to characterizing the geology at Yucca Mountain. The major objectives of this prototype testing are to assure that planned Site Characterization testing can be carried out effectively at Yucca Mountain, both in the Exploratory Shaft Facility (ESF), and from the surface, and to avoid potential major failures or delays that could result from the need to re-design testing concepts or equipment. This paper will describe the scope of the Yucca Mountain Project prototype testing programs and summarize results to date. 3 figs

  19. Mountain biking injuries: a review.

    Science.gov (United States)

    Carmont, Michael R

    2008-01-01

    Mountain biking is a fast, exciting adventure sport with increasing numbers of participants and competitions. A search of PubMed, Medline, CINAHL, DH data, and Embase databases was performed using the following keywords: mountain, biking and injuries. This revealed 2 review articles, 17 case controlled studies, 4 case series and 5 case reports. This review summarises the published literature on mountain biking injuries, discusses injury frequency and common injury mechanisms. Riders are quick to adopt safety measures. Helmet usage is now increasingly common and handlebar adaptations have been discontinued. Although the sport has a reputation for speed and risk with research and awareness, injury prevention measures are being adopted making the sport as safe as possible.

  20. Landscape genetics of the nonnative red fox of California.

    Science.gov (United States)

    Sacks, Benjamin N; Brazeal, Jennifer L; Lewis, Jeffrey C

    2016-07-01

    Invasive mammalian carnivores contribute disproportionately to declines in global biodiversity. In California, nonnative red foxes (Vulpes vulpes) have significantly impacted endangered ground-nesting birds and native canids. These foxes derive primarily from captive-reared animals associated with the fur-farming industry. Over the past five decades, the cumulative area occupied by nonnative red fox increased to cover much of central and southern California. We used a landscape-genetic approach involving mitochondrial DNA (mtDNA) sequences and 13 microsatellites of 402 nonnative red foxes removed in predator control programs to investigate source populations, contemporary connectivity, and metapopulation dynamics. Both markers indicated high population structuring consistent with origins from multiple introductions and low subsequent gene flow. Landscape-genetic modeling indicated that population connectivity was especially low among coastal sampling sites surrounded by mountainous wildlands but somewhat higher through topographically flat, urban and agricultural landscapes. The genetic composition of populations tended to be stable for multiple generations, indicating a degree of demographic resilience to predator removal programs. However, in two sites where intensive predator control reduced fox abundance, we observed increases in immigration, suggesting potential for recolonization to counter eradication attempts. These findings, along with continued genetic monitoring, can help guide localized management of foxes by identifying points of introductions and routes of spread and evaluating the relative importance of reproduction and immigration in maintaining populations. More generally, the study illustrates the utility of a landscape-genetic approach for understanding invasion dynamics and metapopulation structure of one of the world's most destructive invasive mammals, the red fox.

  1. Short-term variability of 7Be atmospheric deposition and watershed response in a Pacific coastal stream, Monterey Bay, California, USA

    International Nuclear Information System (INIS)

    Conaway, Christopher H.; Storlazzi, Curt D.; Draut, Amy E.; Swarzenski, Peter W.

    2013-01-01

    Beryllium-7 is a powerful and commonly used tracer for environmental processes such as watershed sediment provenance, soil erosion, fluvial and nearshore sediment cycling, and atmospheric fallout. However, few studies have quantified temporal or spatial variability of 7 Be accumulation from atmospheric fallout, and parameters that would better define the uses and limitations of this geochemical tracer. We investigated the abundance and variability of 7 Be in atmospheric deposition in both rain events and dry periods, and in stream surface-water samples collected over a ten-month interval at sites near northern Monterey Bay (37°N, 122°W) on the central California coast, a region characterized by a rainy winters, dry summers, and small mountainous streams with flashy hydrology. The range of 7 Be activity in rainwater samples from the main sampling site was 1.3–4.4 Bq L −1 , with a mean (±standard deviation) of 2.2 ± 0.9 Bq L −1 , and a volume-weighted average of 2.0 Bq L −1 . The range of wet atmospheric deposition was 18–188 Bq m −2 per rain event, with a mean of 72 ± 53 Bq m −2 . Dry deposition fluxes of 7 Be ranged from less than 0.01 up to 0.45 Bq m −2 d −1 , with an estimated dry season deposition of 7 Bq m −2 month −1 . Annualized 7 Be atmospheric deposition was approximately 1900 Bq m −2 yr −1 , with most deposition via rainwater (>95%) and little via dry deposition. Overall, these activities and deposition fluxes are similar to values found in other coastal locations with comparable latitude and Mediterranean-type climate. Particulate 7 Be values in the surface water of the San Lorenzo River in Santa Cruz, California, ranged from −1 to 0.6 Bq g −1 , with a median activity of 0.26 Bq g −1 . A large storm event in January 2010 characterized by prolonged flooding resulted in the entrainment of 7 Be-depleted sediment, presumably from substantial erosion in the watershed. There were too few particulate 7 Be data over the storm

  2. SNL Yucca Mountain Project data report: Density and porosity data for tuffs from the unsaturated zone at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Schwartz, B.M.

    1990-02-01

    Yucca Mountain, located on and adjacent to the Nevada Test Site in southern Nevada, is being evaluated as a potential site for underground disposal of nuclear wastes. At present, the physical, thermal, and mechanical properties of tuffaceous rocks from Yucca Mountain are being determined as part of the Yucca Mountain Project. This report documents experiment data, which have been obtained by Sandia National Laboratories or its contractors, for the density and porosity of tuffaceous rocks that lie above the water table at Yucca Mountain. 7 refs., 2 figs., 3 tabs

  3. HYDROLOGIC CHARACTERISTICS OF FAULTS AT YUCCA MOUNTAIN, NEVADA

    International Nuclear Information System (INIS)

    R.P. Dickerson

    2000-01-01

    Yucca Mountain comprises a series of north-trending ridges composed of tuffs within the southwest Nevada volcanic field, 120 km northwest of Las Vegas, Nevada. These ridges are formed of east-dipping blocks of interbedded welded and nonwelded tuff that are offset along steep, mostly west-dipping faults that have tens to hundreds of meters of vertical separation. Yucca Mountain is currently under study as a potential site for underground storage of high-level radioactive waste, with the principle goal being the safe isolation of the waste from the accessible environment. To this end, an understanding of the behavior of ground-water flow through the mountain in the unsaturated zone and beneath the mountain in the saturated zone is critical. The percolation of water through the mountain and into the ground-water flow system beneath the potential repository site is predicated on: (1) the amount of water available at the surface as a result of the climatic conditions, (2) the hydrogeologic characteristics of the volcanic strata that compose the mountain. and (3) the hydrogeologic characteristics of the structures, particularly fault zones and fracture networks, that disrupt these strata. This paper addresses the hydrogeologic characteristics of the fault zones at Yucca Mountain, focusing primarily on the central part of the mountain where the potential repository block is located

  4. Symposium 9: Rocky Mountain futures: preserving, utilizing, and sustaining Rocky Mountain ecosystems

    Science.gov (United States)

    Baron, Jill S.; Seastedt, Timothy; Fagre, Daniel B.; Hicke, Jeffrey A.; Tomback, Diana; Garcia, Elizabeth; Bowen, Zachary H.; Logan, Jesse A.

    2013-01-01

    In 2002 we published Rocky Mountain Futures, an Ecological Perspective (Island Press) to examine the cumulative ecological effects of human activity in the Rocky Mountains. We concluded that multiple local activities concerning land use, hydrologic manipulation, and resource extraction have altered ecosystems, although there were examples where the “tyranny of small decisions” worked in a positive way toward more sustainable coupled human/environment interactions. Superimposed on local change was climate change, atmospheric deposition of nitrogen and other pollutants, regional population growth, and some national management policies such as fire suppression.

  5. Improve wildlife species tracking—Implementing an enhanced global positioning system data management system for California condors

    Science.gov (United States)

    Waltermire, Robert G.; Emmerich, Christopher U.; Mendenhall, Laura C.; Bohrer, Gil; Weinzierl, Rolf P.; McGann, Andrew J.; Lineback, Pat K.; Kern, Tim J.; Douglas, David C.

    2016-05-03

    U.S. Fish and Wildlife Service (USFWS) staff in the Pacific Southwest Region and at the Hopper Mountain National Wildlife Refuge Complex requested technical assistance to improve their global positioning system (GPS) data acquisition, management, and archive in support of the California Condor Recovery Program. The USFWS deployed and maintained GPS units on individual Gymnogyps californianus (California condor) in support of long-term research and daily operational monitoring and management of California condors. The U.S. Geological Survey (USGS) obtained funding through the Science Support Program to provide coordination among project participants, provide GPS Global System for Mobile Communication (GSM) transmitters for testing, and compare GSM/GPS with existing Argos satellite GPS technology. The USFWS staff worked with private companies to design, develop, and fit condors with GSM/GPS transmitters. The Movebank organization, an online database of animal tracking data, coordinated with each of these companies to automatically stream their GPS data into Movebank servers and coordinated with USFWS to improve Movebank software for managing transmitter data, including proofing/error checking of incoming GPS data. The USGS arranged to pull raw GPS data from Movebank into the USGS California Condor Management and Analysis Portal (CCMAP) (https://my.usgs.gov/ccmap) for production and dissemination of a daily map of condor movements including various automated alerts. Further, the USGS developed an automatic archiving system for pulling raw and proofed Movebank data into USGS ScienceBase to comply with the Federal Information Security Management Act of 2002. This improved data management system requires minimal manual intervention resulting in more efficient data flow from GPS data capture to archive status. As a result of the project’s success, Pinnacles National Park and the Ventana Wildlife Society California condor programs became partners and adopted the same

  6. [Life cycles of ground beetles (Coleoptera, Carabidae) from the mountain taiga and mountain forest-steppe in the Eastern Sayan].

    Science.gov (United States)

    Khobrakova, L Ts; Sharova, I Kh

    2005-01-01

    Seasonal dynamics and demographic structure was studied in 15 dominant ground beetle species in the mountain taiga and mountain forest-steppe belts of the Eastern Sayan (Okinskoe Plateau). Life cycles of the dominant ground beetle species were classified by developmental time, seasonal dynamics, and intrapopulation groups with different reproduction timing. The strategies of carabid life cycles adapted to severe mountain conditions of the Eastern Sayan were revealed.

  7. Sacramento Metropolitan Area, California

    Science.gov (United States)

    1992-02-01

    addition, several Federal candidate species, the California Hibiscus , California tiger salamander, Sacramento Anthicid Beetle, Sacramento Valley tiger...Board, California Waste Management Board, and Department of Health Services contribute to this list. The Yolo County Health Services Agency maintains and...operation and maintenance of the completed recreational facility. Recreation development is limited to project lands unless health and safety

  8. Floristic analysis of the wanda mountain in north eastern china

    International Nuclear Information System (INIS)

    Wang, H.; Xu, L.; Zhang, Z.

    2016-01-01

    The plants of the Wanda Mountain area were investigated between 2009 to 2013. The results show that Wanda Mountain has 95 families of seed plants distributed in 334 genera and 705 species. A geographical component analysis shows that in addition to a small number of cosmopolitan species, cold, temperate and tropical species account for 14.9%, 77.3% and 4.4% of the total species, respectively, indicating that the flora of the Wanda Mountains exhibits a significant temperate nature and includes a small number of tropical components and certain cold components. In addition, the Wanda Mountains show a remarkable level of endemism and are geographically related to other regions in East Asia, particularly Japan. Furthermore, the Wanda Mountains present a complicated species composition, with a total of 14 distribution patterns and 10 variants. The coefficient of similarity between the flora of the Wanda Mountain area and the flora of the Changbai Mountain area is 43.1%, and the coefficient of similarity between the flora of the Wanda Mountain area and the flora of the Lesser Xingan Mountain area is 49.2%, indicating that the plants of the Wanda Mountain area are more common to those of the Lesser Xingan Mountain area. (author)

  9. Isolation of Bartonella henselae and Two New Bartonella Subspecies, Bartonella koehlerae Subspecies boulouisii subsp. nov. and Bartonella koehlerae Subspecies bothieri subsp. nov. from Free-Ranging Californian Mountain Lions and Bobcats

    Science.gov (United States)

    Chomel, Bruno B.; Molia, Sophie; Kasten, Rickie W.; Borgo, Gina M.; Stuckey, Matthew J.; Maruyama, Soichi; Chang, Chao-chin; Haddad, Nadia; Koehler, Jane E.

    2016-01-01

    Domestic cats are the natural reservoir of Bartonella henselae, B. clarridgeiae and B. koehlerae. To determine the role of wild felids in the epidemiology of Bartonella infections, blood was collected from 14 free-ranging California mountain lions (Puma concolor) and 19 bobcats (Lynx rufus). Bartonella spp. were isolated from four (29%) mountain lions and seven (37%) bobcats. These isolates were characterized using growth characteristics, biochemical reactions, molecular techniques, including PCR-RFLP of selected genes or interspacer region, pulsed-field gel electrophoresis (PFGE), partial sequencing of several genes, and DNA-DNA hybridization. Two isolates were identical to B. henselae genotype II. All other isolates were distinguished from B. henselae and B. koehlerae by PCR-RFLP of the gltA gene using endonucleases HhaI, TaqI and AciI, with the latter two discriminating between the mountain lion and the bobcat isolates. These two novel isolates displayed specific PFGE profiles distinct from B. henselae, B. koehlerae and B. clarridgeiae. Sequences of amplified gene fragments from the three mountain lion and six bobcat isolates were closely related to, but distinct from, B. henselae and B. koehlerae. Finally, DNA-DNA hybridization studies demonstrated that the mountain lion and bobcat strains are most closely related to B. koehlerae. We propose naming the mountain lion isolates B. koehlerae subsp. boulouisii subsp. nov. (type strain: L-42-94), and the bobcat isolates B. koehlerae subsp. bothieri subsp. nov. (type strain: L-17-96), and to emend B. koehlerae as B. koehlerae subsp. koehlerae. The mode of transmission and the zoonotic potential of these new Bartonella subspecies remain to be determined. PMID:26981874

  10. ACUTE PHASE PROTEIN INCREASE IN HIGH ALTITUDE MOUNTAINEERS

    Directory of Open Access Journals (Sweden)

    Tolga Saka

    Full Text Available ABSTRACT Introduction: Many middle-aged Turks go hiking in mountains to breathe some fresh air or to maintain fitness. Objective: This study investigated the effects of regular high altitude mountain climbing on the metabolic and hematological responses of mountaineers. Methods: Hematological and biochemical parameters were studied, as well as some hormonal values of 21 mountaineers and 16 healthy age-matched sedentary volunteers. Results: The neutrophil to lymphocyte ratio (NLR was significantly lower (p<0.04 in mountaineers compared with the sedentary group. Total protein (p<0.001 and albumin (p<0.001 were lower, while the levels of ferritin (p<0.04, creatine (p<0.03 and creatine phosphokinase (p<0.01 were higher in mountaineers. Other hematological and biochemical parameters, i.e., erythrocytes, leukocytes, hemoglobin and hematocrit, did not change significantly. Conclusion: Our results show that regular exposure to high altitude increased the serum levels of some acute phase proteins with anti-inflammatory properties.

  11. An evaluation of seven methods for controlling mountain laurel thickets in the mixed-oak forests of the central Appalachian Mountains, USA

    Science.gov (United States)

    Patrick H. Brose

    2017-01-01

    In the Appalachian Mountains of eastern North America, mountain laurel (Kalmia latifolia) thickets in mixed-oak (Quercus spp.) stands can lead to hazardous fuel situations, forest regeneration problems, and possible forest health concerns. Therefore, land managers need techniques to control mountain laurel thickets and limit...

  12. Gridded rainfall estimation for distributed modeling in western mountainous areas

    Science.gov (United States)

    Moreda, F.; Cong, S.; Schaake, J.; Smith, M.

    2006-05-01

    Estimation of precipitation in mountainous areas continues to be problematic. It is well known that radar-based methods are limited due to beam blockage. In these areas, in order to run a distributed model that accounts for spatially variable precipitation, we have generated hourly gridded rainfall estimates from gauge observations. These estimates will be used as basic data sets to support the second phase of the NWS-sponsored Distributed Hydrologic Model Intercomparison Project (DMIP 2). One of the major foci of DMIP 2 is to better understand the modeling and data issues in western mountainous areas in order to provide better water resources products and services to the Nation. We derive precipitation estimates using three data sources for the period of 1987-2002: 1) hourly cooperative observer (coop) gauges, 2) daily total coop gauges and 3) SNOw pack TELemetry (SNOTEL) daily gauges. The daily values are disaggregated using the hourly gauge values and then interpolated to approximately 4km grids using an inverse-distance method. Following this, the estimates are adjusted to match monthly mean values from the Parameter-elevation Regressions on Independent Slopes Model (PRISM). Several analyses are performed to evaluate the gridded estimates for DMIP 2 experiments. These gridded inputs are used to generate mean areal precipitation (MAPX) time series for comparison to the traditional mean areal precipitation (MAP) time series derived by the NWS' California-Nevada River Forecast Center for model calibration. We use two of the DMIP 2 basins in California and Nevada: the North Fork of the American River (catchment area 885 sq. km) and the East Fork of the Carson River (catchment area 922 sq. km) as test areas. The basins are sub-divided into elevation zones. The North Fork American basin is divided into two zones above and below an elevation threshold. Likewise, the Carson River basin is subdivided in to four zones. For each zone, the analyses include: a) overall

  13. Groundwater quality in the Colorado River basins, California

    Science.gov (United States)

    Dawson, Barbara J. Milby; Belitz, Kenneth

    2012-01-01

    Groundwater provides more than 40 percent of California’s drinking water. To protect this vital resource, the State of California created the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The Priority Basin Project of the GAMA Program provides a comprehensive assessment of the State’s groundwater quality and increases public access to groundwater-quality information. Four groundwater basins along the Colorado River make up one of the study areas being evaluated. The Colorado River study area is approximately 884 square miles (2,290 square kilometers) and includes the Needles, Palo Verde Mesa, Palo Verde Valley, and Yuma groundwater basins (California Department of Water Resources, 2003). The Colorado River study area has an arid climate and is part of the Sonoran Desert. Average annual rainfall is about 3 inches (8 centimeters). Land use in the study area is approximately 47 percent (%) natural (mostly shrubland), 47% agricultural, and 6% urban. The primary crops are pasture and hay. The largest urban area is the city of Blythe (2010 population of 21,000). Groundwater in these basins is used for public and domestic water supply and for irrigation. The main water-bearing units are gravel, sand, silt, and clay deposited by the Colorado River or derived from surrounding mountains. The primary aquifers in the Colorado River study area are defined as those parts of the aquifers corresponding to the perforated intervals of wells listed in the California Department of Public Health database. Public-supply wells in the Colorado River basins are completed to depths between 230 and 460 feet (70 to 140 meters), consist of solid casing from the land surface to a depth of 130 of 390 feet (39 to 119 meters), and are screened or perforated below the solid casing. The main source of recharge to the groundwater systems in the Needles, Palo Verde Mesa, and Palo Verde Valley basins is the Colorado River; in the Yuma basin, the main source of recharge is from

  14. MOUNTAIN-SCALE COUPLED PROCESSES (TH/THC/THM) MODELS

    International Nuclear Information System (INIS)

    Y.S. Wu

    2005-01-01

    This report documents the development and validation of the mountain-scale thermal-hydrologic (TH), thermal-hydrologic-chemical (THC), and thermal-hydrologic-mechanical (THM) models. These models provide technical support for screening of features, events, and processes (FEPs) related to the effects of coupled TH/THC/THM processes on mountain-scale unsaturated zone (UZ) and saturated zone (SZ) flow at Yucca Mountain, Nevada (BSC 2005 [DIRS 174842], Section 2.1.1.1). The purpose and validation criteria for these models are specified in ''Technical Work Plan for: Near-Field Environment and Transport: Coupled Processes (Mountain-Scale TH/THC/THM, Drift-Scale THC Seepage, and Drift-Scale Abstraction) Model Report Integration'' (BSC 2005 [DIRS 174842]). Model results are used to support exclusion of certain FEPs from the total system performance assessment for the license application (TSPA-LA) model on the basis of low consequence, consistent with the requirements of 10 CFR 63.342 [DIRS 173273]. Outputs from this report are not direct feeds to the TSPA-LA. All the FEPs related to the effects of coupled TH/THC/THM processes on mountain-scale UZ and SZ flow are discussed in Sections 6 and 7 of this report. The mountain-scale coupled TH/THC/THM processes models numerically simulate the impact of nuclear waste heat release on the natural hydrogeological system, including a representation of heat-driven processes occurring in the far field. The mountain-scale TH simulations provide predictions for thermally affected liquid saturation, gas- and liquid-phase fluxes, and water and rock temperature (together called the flow fields). The main focus of the TH model is to predict the changes in water flux driven by evaporation/condensation processes, and drainage between drifts. The TH model captures mountain-scale three-dimensional flow effects, including lateral diversion and mountain-scale flow patterns. The mountain-scale THC model evaluates TH effects on water and gas

  15. MOUNTAIN-SCALE COUPLED PROCESSES (TH/THC/THM)MODELS

    Energy Technology Data Exchange (ETDEWEB)

    Y.S. Wu

    2005-08-24

    This report documents the development and validation of the mountain-scale thermal-hydrologic (TH), thermal-hydrologic-chemical (THC), and thermal-hydrologic-mechanical (THM) models. These models provide technical support for screening of features, events, and processes (FEPs) related to the effects of coupled TH/THC/THM processes on mountain-scale unsaturated zone (UZ) and saturated zone (SZ) flow at Yucca Mountain, Nevada (BSC 2005 [DIRS 174842], Section 2.1.1.1). The purpose and validation criteria for these models are specified in ''Technical Work Plan for: Near-Field Environment and Transport: Coupled Processes (Mountain-Scale TH/THC/THM, Drift-Scale THC Seepage, and Drift-Scale Abstraction) Model Report Integration'' (BSC 2005 [DIRS 174842]). Model results are used to support exclusion of certain FEPs from the total system performance assessment for the license application (TSPA-LA) model on the basis of low consequence, consistent with the requirements of 10 CFR 63.342 [DIRS 173273]. Outputs from this report are not direct feeds to the TSPA-LA. All the FEPs related to the effects of coupled TH/THC/THM processes on mountain-scale UZ and SZ flow are discussed in Sections 6 and 7 of this report. The mountain-scale coupled TH/THC/THM processes models numerically simulate the impact of nuclear waste heat release on the natural hydrogeological system, including a representation of heat-driven processes occurring in the far field. The mountain-scale TH simulations provide predictions for thermally affected liquid saturation, gas- and liquid-phase fluxes, and water and rock temperature (together called the flow fields). The main focus of the TH model is to predict the changes in water flux driven by evaporation/condensation processes, and drainage between drifts. The TH model captures mountain-scale three-dimensional flow effects, including lateral diversion and mountain-scale flow patterns. The mountain-scale THC model evaluates TH effects on

  16. Airborne dust transport to the eastern Pacific Ocean off southern California: Evidence from San Clemente Island

    Science.gov (United States)

    Muhs, D.R.; Budahn, J.; Reheis, M.; Beann, J.; Skipp, G.; Fisher, E.

    2007-01-01

    Islands are natural dust traps, and San Clemente Island, California, is a good example. Soils on marine terraces cut into Miocene andesite on this island are clay-rich Vertisols or Alfisols with vertic properties. These soils are overlain by silt-rich mantles, 5-20 cm thick, that contrast sharply with the underlying clay-rich subsoils. The silt mantles have a mineralogy that is distinct from the island bedrock. Silt mantles are rich in quartz, which is rare in the island andesite. The clay fraction of the silt mantles is dominated by mica, also absent from local andesite, and contrasts with the subsoils, dominated by smectite. Ternary plots of immobile trace elements (Sc-Th-La and Ta-Nd-Cr) show that the island andesite has a composition intermediate between average upper continental crust and average oceanic crust. In contrast, the silt and, to a lesser extent, clay fractions of the silt mantles have compositions closer to average upper continental crust. The silt mantles have particle size distributions similar to loess and Mojave Desert dust, but are coarser than long-range-transported Asian dust. We infer from these observations that the silt mantles are derived from airborne dust from the North American mainland, probably river valleys in the coastal mountains of southern California and/or the Mojave Desert. Although average winds are from the northwest in coastal California, easterly winds occur numerous times of the year when "Santa Ana" conditions prevail, caused by a high-pressure cell centered over the Great Basin. Examination of satellite imagery shows that easterly Santa Ana winds carry abundant dust to the eastern Pacific Ocean and the California Channel Islands. Airborne dust from mainland North America may be an important component of the offshore sediment budget in the easternmost Pacific Ocean, a finding of potential biogeochemical and climatic significance.

  17. Mountain biking injuries: an update.

    Science.gov (United States)

    Kronisch, Robert L; Pfeiffer, Ronald P

    2002-01-01

    This article reviews the available literature regarding injuries in off-road bicyclists. Recent progress in injury research has allowed the description of several patterns of injury in this sport. Mountain biking remains popular, particularly among young males, although sales and participation figures have decreased in the last several years. Competition in downhill racing has increased, while cross-country racing has decreased somewhat in popularity. Recreational riders comprise the largest segment of participants, but little is known about the demographics and injury epidemiology of noncompetitive mountain cyclists. Most mountain bikers participating in surveys reported a history of previous injuries, but prospective studies conducted at mountain bike races have found injury rates of bike racing the risk of injury may be higher for women than men. Minor injuries such as abrasions and contusions occur frequently, but are usually of little consequence. Fractures usually involve the torso or upper extremities, and shoulder injuries are common. Head and face injuries are not always prevented by current helmet designs. Fatal injuries are rare but have been reported. Improvements in safety equipment, rider training and racecourse design are suggested injury prevention measures. The authors encourage continued research in this sport.

  18. The vascular flora and floristic relationships of the Sierra de La Giganta in Baja California Sur, Mexico La flora vascular y las relaciones florísticas de la sierra de La Giganta de Baja California Sur, México

    Directory of Open Access Journals (Sweden)

    José Luis León de la Luz

    2008-06-01

    Full Text Available The Sierra de La Giganta is a semi-arid region in the southern part of the Baja California peninsula of Mexico. Traditionally, this area has been excluded as a sector of the Sonoran Desert and has been more often lumped with the dry-tropical Cape Region of southern Baja California peninsula, but this classical concept of the vegetation has not previously been analyzed using formal documentation. In the middle of the last century, Annetta Carter, a botanist from the University of California, began explorations in the Sierra de La Giganta that lasted 24 years, she collected 1 550 specimens and described several new species from this area, but she never published an integrated study of the flora. Our objectives, having developed extensive collections in the same area over the past years, are to provide a comprehensive species list and description of the vegetation of this mountain range. We found a flora of 729 taxa, poorly represented in tree life-forms (3.1%, a moderate level (4.4% of endemism, and the dominance of plants in the sampling plots is composed mainly for legume trees and shrubs. Additionally, using a biogeographical approach, we compare our list with other known lists of plants from 5 areas, 3 in the Cape Region, 1 in the Sonoran Desert, and other in the thornscrub area of NW Mexico. We conclude that the La Giganta flora has a mixed composition, primarily made up of plants shared with the lowlands of the southern Cape Region, but also share an important proportion of the flora with the desert mountains of the central peninsula and some with the Sonoran desertscrub of mainland Mexico. Consequently we support that the La Giganta flora is part of a floristic continuum along the volcanic mountains of the southern peninsula that eventually could be considered a new eco-region in the same peninsular land.La sierra de La Giganta se localiza en el estado de Baja California Sur, México, en una región semi-árida. Tradicionalmente, esta

  19. Yucca Mountain Milestone

    International Nuclear Information System (INIS)

    Hunt, Rod

    1997-01-01

    The Department of Energy project to determine if the Yucca Mountain site in Nevada is suitable for geologic disposal of high-level nuclear waste reached a major milestone in late April when a 25-foot-diameter tunnel boring machine ''holed through'' completing a five-mile-long, horseshoe-shaped excavation through the mountain. When the cutting-head of the giant machine broke through to daylight at the tunnel's south portal, it ended a 2 1/2-year excavation through the mountain that was completed ahead of schedule and with an outstanding safety record. Video of the event was transmitted live by satellite to Washington, DC, where it was watched by Secretary of Energy Frederico Pena and other high-level DOE officials, signifying the importance of the project's mission to find a repository for high-level nuclear waste and spent nuclear fuel produced by nuclear power plants. This critical undertaking is being performed by DOE's Office of Civilian Radioactive Waste Management (OCRWM). The tunnel is the major feature of the Exploratory Studies Facility (ESF), which serves as an underground laboratory for engineers and scientists to help determine if Yucca Mountain is suitable to serve as a repository for the safe disposal of high-level nuclear waste. Morrison Knudsen's Environmental/Government Group is providing design and construction-management services on the project. The MK team is performing final design for the ESF and viability assessment design for the underground waste repository that will be built only if the site is found suitable for such a mission. In fact, if at anytime during the ESF phase, the site is found unsuitable, the studies will be stopped and the site restored to its natural state

  20. Mountain laurel toxicosis in a dog.

    Science.gov (United States)

    Manhart, Ingrid O; DeClementi, Camille; Guenther, Christine L

    2013-01-01

    To describe a case of mountain laurel (Kalmia latifolia) toxicosis in a dog, including case management and successful outcome. A dog presented for vomiting, hematochezia, bradycardia, weakness, and ataxia, which did not improve with supportive treatment. Mountain laurel ingestion was identified as cause of clinical signs after gastrotomy was performed to remove stomach contents. Supportive treatment was continued and the dog made a full recovery. This report details a case of mountain laurel toxicosis in a dog, including management strategies and outcome, which has not been previously published in the veterinary literature. © Veterinary Emergency and Critical Care Society 2013.

  1. Mountain Warfare: The Need for Specialist Training

    National Research Council Canada - National Science Library

    Malik, Muhammad

    2003-01-01

    This study focuses on the need for specialist training for mountain warfare. It analyzes the special characteristics of mountain and high altitude terrain which affect conduct of military operations...

  2. Yucca Mountain Project public interactions

    International Nuclear Information System (INIS)

    Reilly, B.E.

    1990-01-01

    The US Department of Energy (DOE) is committed to keeping the citizens of Nevada informed about activities that relate to the high-level nuclear waste repository program. This paper presents an overview of the Yucca Mountain Project's public interaction philosophy, objectives, activities and experiences during the two years since Congress directed the DOE to conduct site characterization activities only for the Yucca Mountain site

  3. Spain: Europe's California.

    Science.gov (United States)

    Wilvert, Calvin

    1994-01-01

    Contends that, as Spain integrates into the European Economic Community, it is considered to be Europe's California. Asserts that making regional comparisons between California and Spain can be an effective teaching method. Provides comparisons in such areas as agriculture and tourism. (CFR)

  4. ARCOS Network: A Sustainable Mountain Development Hub for Africa

    Directory of Open Access Journals (Sweden)

    Gilbert Muvunankiko

    2017-05-01

    Full Text Available The African continent is endowed with mountains of high productivity, biodiversity, endemism, and cultural diversity. African mountain ecosystems play an important role in economic development, poverty alleviation, and environmental protection. However, climate change and extreme events, as well as human activities, alter the capacity of mountains to provide such services to millions of Africans who depend on them. Since the creation in 1995 of the Albertine Rift Conservation Society (ARCOS, mountains have been at the core of its programs, and collaboration among stakeholders is a key aspect of its search for sustainable solutions to threats affecting African mountains.

  5. Extreme ground motions and Yucca Mountain

    Science.gov (United States)

    Hanks, Thomas C.; Abrahamson, Norman A.; Baker, Jack W.; Boore, David M.; Board, Mark; Brune, James N.; Cornell, C. Allin; Whitney, John W.

    2013-01-01

    Yucca Mountain is the designated site of the underground repository for the United States' high-level radioactive waste (HLW), consisting of commercial and military spent nuclear fuel, HLW derived from reprocessing of uranium and plutonium, surplus plutonium, and other nuclear-weapons materials. Yucca Mountain straddles the western boundary of the Nevada Test Site, where the United States has tested nuclear devices since the 1950s, and is situated in an arid, remote, and thinly populated region of Nevada, ~100 miles northwest of Las Vegas. Yucca Mountain was originally considered as a potential underground repository of HLW because of its thick units of unsaturated rocks, with the repository horizon being not only ~300 m above the water table but also ~300 m below the Yucca Mountain crest. The fundamental rationale for a geologic (underground) repository for HLW is to securely isolate these materials from the environment and its inhabitants to the greatest extent possible and for very long periods of time. Given the present climate conditions and what is known about the current hydrologic system and conditions around and in the mountain itself, one would anticipate that the rates of infiltration, corrosion, and transport would be very low—except for the possibility that repository integrity might be compromised by low-probability disruptive events, which include earthquakes, strong ground motion, and (or) a repository-piercing volcanic intrusion/eruption. Extreme ground motions (ExGM), as we use the phrase in this report, refer to the extremely large amplitudes of earthquake ground motion that arise at extremely low probabilities of exceedance (hazard). They first came to our attention when the 1998 probabilistic seismic hazard analysis for Yucca Mountain was extended to a hazard level of 10-8/yr (a 10-4/yr probability for a 104-year repository “lifetime”). The primary purpose of this report is to summarize the principal results of the ExGM research program

  6. 10Be concentrations and the long-term fate of particle-reactive nuclides in five soil profiles from California

    International Nuclear Information System (INIS)

    Monaghan, M.C.; Krishnaswami, S.; Thomas, J.H.

    1983-01-01

    Concentration-depth profiles of cosmic-ray-produced 10 Be(tsub(1/2)=1.5 m.y.) have been measured by accelerator-mass spectrometry in five soil profiles. These measurements were made in an effort (1) to understand the retentivity of soil surfaces for particle-reactive tracers depositing from the atmosphere on time scales of 10 4 -10 6 years, and (2) to explore the application of 10 Be as a chronometer of geomorphic surface age. The profiles sampled are from two wave-cut terraces located near Mendocino, California, a table mountain top and an alluvial fan, both located near Friant, California. The ages of the Mendocino terraces are inferred to be (1-5) x 10 5 years based on amino-stratigraphic correlations and models of terrace evolution; those of the table mountain top and alluvial fan are 9.5 x 10 6 years and 6.0 x 10 5 years, respectively, based on K-Ar analyses. All the surfaces sampled are nearly flat and exhibit few erosional features. In addition to 10 Be we measured 210 Pb, sup(239,) 240 Pu and 7 Be to ascertain the retentivity of the soils for particle-reactive nuclides and to assess the present-day delivery rate of nuclides from the atmosphere. The 7 Be inventory is 4.0 dpm/cm 2 similar to those observed at nearby locations. The inventories of 210 Pb and Pu isotopes conform to those predicted from model calculations and suggest that the soil surfaces sampled retain the entire burden of particle-reactive nuclides delivered to them over short time scales, approx.= 100 years. The 10 Be concentrations in the sample range between (0.2 and 7) x 10 8 atoms/g soil and show strong correlations with leachable Fe and/or Al. (orig./WL)

  7. Anatexis, hybridization and the modification of ancient crust: Mesozoic plutonism in the Old Woman Mountains area, California

    Science.gov (United States)

    Miller, C.F.; Wooden, J.L.

    1994-01-01

    A compositionally expanded array of granitic (s.l.) magmas intruded the > 2 Ga crust of the Old Woman Mountains area between 160 and 70 Ma. These magmas were emplaced near the eastern (inland) edge of the Jurassic/Cretaceous arcs of western North America, in an area where magma flux, especially during the Jurassic, was considerably lower than to the west. The Jurassic intrusives and over half of the Cretaceous intrusives are predominantly metaluminous and variable in composition; a major Cretaceous suite comprises only peraluminous monzogranite. Only the Jurassic intrusions show clear evidence for the presence of mafic liquids. All units, including the most mafic rocks, reveal isotopic evidence for a significant crustal component. However, none of the Mesozoic intrusives matches in isotopic composition either average pre-intrusion crust or any major unit of the exposed crust. Elemental inconsistencies also preclude closed system derivation from exposed crust. Emplacement of these magmas, which doubled the volume of the mid- to upper crust, did not dramatically change its elemental composition. It did, however, affect its Nd and especially Sr isotopic composition and modify some of the distinctive aspects of the elemental chemistry. We propose that Jurassic magmatism was open-system, with a major influx of mantle-derived mafic magma interacting strongly with the ancient crust. Mesozoic crustal thickening may have led to closed-system crustal melting by the Late Cretaceous, but the deep crust had been profoundly modified by earlier Mesozoic hybridization so that crustal melts did not simply reflect the original crustal composition. The clear evidence for a crustal component in magmas of the Old Woman Mountains area may not indicate any fundamental differences from the processes at work elsewhere in this or other magmatic arcs where the role of pre-existing crust is less certain. Rather, a compositionally distinctive, very old crust may simply have yielded a more

  8. National uranium resource evaluation, Las Vegas Quadrangle, Nevada, Arizona, and California

    International Nuclear Information System (INIS)

    Johnson, C.; Glynn, J.

    1982-03-01

    The Las Vegas 1 0 x 2 0 quadrangle, Nevada, Arizona, and California, contains rocks and structures from Precambrian through Holocene in age. It lies within the Basin and Range physiographic province adjacent to the westernmost portion of the Colorado Plateau. Miocene nonmarine sedimentary rocks of the Horse Spring Formation contain in excess of 100 tons U 3 O 8 in deposits at a grade of 0.01% or greater, and therefore meet National Uranium Resource Evaluation base criteria for uranium favorability. One favorable area lies in the South Virgin Mountains at the type locality of the Horse Spring Formation, although the favorable environment extends into the unevaluated Lake Mead National Recreation Area and Desert National Wildlife Range. Environments within the Las Vegas Quadrangle considered unfavorable for uranium include the Shinarump Conglomerate member of the Triassic Chinle Formation, Mesozoic sediments of the Glen Canyon Group, Precambrian pegmatites, Pliocene and Quaternary calcrete, Laramide thrust faults, and a late Precambrian unconformity

  9. Hydrologeologic characteristics of faults at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Dickerson, Robert P.

    2001-01-01

    Yucca Mountain is under study as a potential site for underground storage of high-level radioactive waste, with the principle goal being the safe isolation of the waste from the accessible environment. This paper addresses the hydrogeologic characteristics of the fault zones at Yucca Mountain, focusing primarily on the central part of the mountain where the potential repository block is located

  10. Barred Owl [ds8

    Data.gov (United States)

    California Natural Resource Agency — These data define the current range of Barred and hybrid Barred/Spotted Owls in California. The current range includes the coastal mountains of northern California...

  11. Transport of neptunium through Yucca Mountain tuffs

    International Nuclear Information System (INIS)

    Triay, I.R.; Robinson, B.A.; Mitchell, A.J.; Overly, C.M.; Lopez, R.M.

    1993-01-01

    Neptunium has a high solubility in groundwaters from Yucca Mountain [1]. Uranium in nuclear reactors produces 237 Np which has a half-life of 2.1 4 x 10 6 years. Consequently, the transport of 237 Np through tuffs is of major importance in assessing the performance of a high-level nuclear waste repository at Yucca Mountain. The objective of this work is to determine the amount of Np retardation that is provided by the minerals in Yucca Mountain tuffs as a function of groundwater chemistry

  12. The Correlation of Geo-Ecological Environment and Mountain Urban planning

    Science.gov (United States)

    Yang, Chun; Zeng, Wei

    2018-01-01

    As a special area with the complex geological structure, mountain city is more prone to geological disasters. Due to air pollution, ground subsidence, serious water pollution, earthquakes and floods geo-ecological environment problems have become increasingly serious, mountain urban planning is facing more severe challenges. Therefore, this article bases on the correlation research of geo-ecological environment and mountain urban planning, and re-examins mountain urban planning from the perspective of geo-ecological, coordinates the relationship between the human and nature by geo-ecological thinking, raises the questions which urban planning need to pay attention. And advocates creating an integrated system of geo-ecological and mountain urban planning, analysis the status and dynamics of present mountain urban planning.

  13. Mountain tourism development in Serbia and neighboring countries

    Directory of Open Access Journals (Sweden)

    Krunić Nikola

    2010-01-01

    Full Text Available Mountain areas with their surroundings are important parts of tourism regions with potentials for all-season tourism development and complementary activities. Development possibilities are based on size of high mountain territory, nature protection regimes, infrastructural equipment, provided conditions for leisure and recreation as well as involvement of local population in processes of development and protection. This paper analyses the key aspects of tourism development, winter tourism in high-mountain areas of Serbia and some neighboring countries (Slovakia, Romania, Bulgaria, and Greece. Common determinants of cohesion between nature protection and mountain tourism development, national development policies, applied models and concepts and importance of trans-border cooperation are indicated.

  14. California Condor Critical Habitat

    Data.gov (United States)

    California Natural Resource Agency — These Data identify (in general) the areas where critical habitat for the California Condor occur. Critical habitat for the species consists of the following 10...

  15. Numerical studies of rock-gas flow in Yucca Mountain; Yucca Mountain Site Characterization Project

    Energy Technology Data Exchange (ETDEWEB)

    Ross, B.; Amter, S.; Lu, Ning [Disposal Safety, Inc., Washington, DC (United States)

    1992-02-01

    A computer model (TGIF -- Thermal Gradient Induced Flow) of two-dimensional, steady-state rock-gas flow driven by temperature and humidity differences is described. The model solves for the ``fresh-water head,`` a concept that has been used in models of variable-density water flow but has not previously been applied to gas flow. With this approach, the model can accurately simulate the flows driven by small differences in temperature. The unsaturated tuffs of Yucca Mountain, Nevada, are being studied as a potential site for a repository for high-level nuclear waste. Using the TGIF model, preliminary calculations of rock-gas flow in Yucca Mountain are made for four east-west cross-sections through the mountain. Calculations are made for three repository temperatures and for several assumptions about a possible semi-confining layer above the repository. The gas-flow simulations are then used to calculate travel-time distributions for air and for radioactive carbon-14 dioxide from the repository to the ground surface.

  16. Mountaineering and photography. Contacts between 1880 and 1940

    Directory of Open Access Journals (Sweden)

    Maria Andorno

    2014-12-01

    Full Text Available Since the second half of the nineteenth century, the photograph produced in high altitude mountain (mountaineering photography gives rise to peculiar images that do not belong to the tradition of landscape painting. Mountaineering is similar to the art of performance, if we talk about physical and mental commitment. Therefore, photos taken during the ascent of a peak shows both conceptual and formal values.

  17. Pyritic ash-flow tuff, Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Castor, S.B.; Tingley, J.V.; Bonham, H.F. Jr.

    1994-01-01

    The Yucca Mountain site is underlain by a 1,500-m-thick Miocene volcanic sequence that comprises part of the southwestern Nevada volcanic field. Rocks of this sequence, which consists mainly of ash-flow tuff sheets with minor flows and bedded tuff, host precious metal mineralization in several areas as near as 10 km from the site. In two such areas, the Bullfrog and Bare Mountain mining districts, production and reserves total over 60 t gold and 150 t silver. Evidence of similar precious metal mineralization at the Yucca Mountain site may lead to mining or exploratory drilling in the future, compromising the security of the repository. The authors believe that most of the pyrite encountered by drilling at Yucca Mountain was introduced as pyroclastic ejecta, rather than by in situ hydrothermal activity. Pyritic ejecta in ash-flow tuff are not reported in the literature, but there is no reason to believe that the Yucca Mountain occurrence is unique. The pyritic ejecta are considered by us to be part of a preexisting hydrothermal system that was partially or wholly destroyed during eruption of the tuff units. Because it was introduced as ejecta in tuff units that occur at depths of about 1,000 m, such pyrite does not constitute evidence of shallow mineralization at the proposed repository site; however, the pyrite may be evidence for mineralization deep beneath Yucca Mountain or as much as tens of kilometers from it

  18. California's experience with alternative fuel vehicles

    International Nuclear Information System (INIS)

    Sullivan, C.

    1993-01-01

    California is often referred to as a nation-state, and in many aspects fits that description. The state represents the seventh largest economy in the world. Most of California does not have to worry about fuel to heat homes in the winter. What we do worry about is fuel for our motor vehicles, approximately 24 million of them. In fact, California accounts for ten percent of new vehicle sales in the United States each year, much of it used in the transportation sector. The state is the third largest consumer of gasoline in the world, only exceeded by the United States as a whole and the former Soviet Union. California is also a leader in air pollution. Of the nine worst ozone areas in the country cited in the 1990 Clean Air Act Amendments, two areas the Los Angeles Basin and San Diego are located in California. Five of California's cities made the top 20 smoggiest cities in the United States. In reality, all of California's major metropolitan areas have air quality problems. This paper will discuss the beginnings of California's investigations of alternative fuels use in vehicles; the results of the state's demonstration programs; and future plans to improve California's air quality and energy security in the mobile sector

  19. Approach to identification and development of mountain tourism regions and destinations in Serbia with special reference to the Stara Planina mountain

    Directory of Open Access Journals (Sweden)

    Milijić Saša

    2010-01-01

    Full Text Available This paper deals with theoretical-methodological issues of tourism offer planning and regulation of settlements in mountain destinations. The basic determinants of the development of mountain tourist regions destinations in EU countries, in which respectable development results have been achieved, first of all in terms of income, together with appropriately adjusted development and environmental management system, have been emphasized. The ongoing transition and structural processes in Serbia will have an impact on application of these experiences. At the same time, a basis for competitiveness of mountain regions will not be determined only by spatial capacity and geological location, but also by creative-innovative developing environment. Taking into account the spatial-functional criteria and criteria for the development and protection, the possible spatial definition of mountain tourist regions/destinations in Serbia are presented. The justifiability and positioning of tourism development projects are analyzed aiming at uniform regional development, where two segments of demand are of particularly importance, i.e. demand for mountain tourism services and for real estates in mountain centers. Furthermore, holders of tourism offer will be analyzed through a contemporary approach which may be defined as the development and noncommercial and market and commercial one. International criteria which are evaluated while selecting city/mountain destination for Winter Olympic Games are particularly analyzed. Considering experience of countries with higher level of development of mountain regions, the main starting point for positioning projects for sustainable development of tourist destinations are defined by specifying them according to specific local and regional conditions. A rational model for spatial organization of tourism offer is shown on the example of the Stara Planina tourist region.

  20. California State Waters Map Series: offshore of Santa Barbara, California

    Science.gov (United States)

    Johnson, Samuel Y.; Dartnell, Peter; Cochrane, Guy R.; Golden, Nadine E.; Phillips, Eleyne L.; Ritchie, Andrew C.; Greene, H. Gary; Krigsman, Lisa M.; Kvitek, Rikk G.; Dieter, Bryan E.; Endris, Charles A.; Seitz, Gordon G.; Sliter, Ray W.; Erdey, Mercedes D.; Gutierrez, Carlos I.; Wong, Florence L.; Yoklavich, Mary M.; Draut, Amy E.; Hart, Patrick E.; Conrad, James E.; Cochran, Susan A.; Johnson, Samuel Y.; Cochran, Susan A.

    2013-01-01

    In 2007, the California Ocean Protection Council initiated the California Seafloor Mapping Program (CSMP), designed to create a comprehensive seafloor map of high-resolution bathymetry, marine benthic habitats, and geology within the 3-nautical-mile limit of California’s State Waters. The CSMP approach is to create highly detailed seafloor maps through collection, integration, interpretation, and visualization of swath sonar data, acoustic backscatter, seafloor video, seafloor photography, high-resolution seismic-reflection profiles, and bottom-sediment sampling data. The map products display seafloor morphology and character, identify potential marine benthic habitats, and illustrate both the surficial seafloor geology and shallow (to about 100 m) subsurface geology. The Offshore of Santa Barbara map area lies within the central Santa Barbara Channel region of the Southern California Bight. This geologically complex region forms a major biogeographic transition zone, separating the cold-temperate Oregonian province north of Point Conception from the warm-temperate California province to the south. The map area is in the southern part of the Western Transverse Ranges geologic province, which is north of the California Continental Borderland. Significant clockwise rotation—at least 90°—since the early Miocene has been proposed for the Western Transverse Ranges province, and geodetic studies indicate that the region is presently undergoing north-south shortening. Uplift rates (as much as 2.2 mm/yr) that are based on studies of onland marine terraces provide further evidence of significant shortening. The city of Santa Barbara, the main coastal population center in the map area, is part of a contiguous urban area that extends from Carpinteria to Goleta. This urban area was developed on the coalescing alluvial surfaces, uplifted marine terraces, and low hills that lie south of the east-west-trending Santa Ynez Mountains. Several beaches line the actively

  1. Spiders in mountain habitats of the Giant Mountains

    Czech Academy of Sciences Publication Activity Database

    Růžička, Vlastimil; Vaněk, J.; Šmilauer, P.

    2012-01-01

    Roč. 43, č. 4 (2012), s. 341-347 ISSN 1067-4136 Institutional research plan: CEZ:AV0Z50070508 Keywords : Giant Mountains (Krkonoše, Karkonosze) * spider s * anemo-orographic systems Subject RIV: EH - Ecology, Behaviour Impact factor: 0.236, year: 2012 http://www.springerlink.com/content/0k5g721q1155r146/fulltext.pdf

  2. Eastern Arc Mountains and their national and global importance ...

    African Journals Online (AJOL)

    The Eastern Arc Mountains comprise a chain of separate mountain blocks running from southern Kenya through Tanzania in a crescent or arc shape. In Tanzania, the Eastern Arc consists of North and South Pare, East and West Usambaras, Nguru, Ukaguru, Rubeho, Uluguru, Udzungwa and Mahenge Mountains.

  3. Winter Tourism and mountain wetland management and restoration

    Science.gov (United States)

    Gaucherand, S.; Mauz, I.

    2012-04-01

    The degradation and loss of wetlands is more rapid than that of other ecosystems (MEA 2005). In mountains area, wetlands are small and scattered and particularly sensitive to global change. The development of ski resorts can lead to the destruction or the deterioration of mountain wetlands because of hydrologic interferences, fill in, soil compression and erosion, etc. Since 2008, we have studied a high altitude wetland complex in the ski resort of Val Thorens. The aim of our study was to identify the impacts of mountain tourism development (winter and summer tourism) on wetland functioning and to produce an action plan designed to protect, rehabilitate and value the wetlands. We chose an approach based on multi-stakeholder participatory process at every stage, from information gathering to technical choices and monitoring. In this presentation, we show how such an approach can efficiently improve the consideration of wetlands in the development of a ski resort, but also the bottlenecks that need to be overcome. We will also discuss some of the ecological engineering techniques used to rehabilitate or restore high altitude degraded wetlands. Finally, this work has contributed to the creation in 2012 of a mountain wetland observatory coordinated by the conservatory of Haute-Savoie. The objective of this observatory is to estimate ecosystem services furnished by mountain wetlands and to find restoration strategies adapted to the local socio-economical context (mountain agriculture and mountain tourism).

  4. Lithospheric Strength Beneath the Zagros Mountains of Southwestern Iran

    Science.gov (United States)

    Adams, A. N.; Nyblade, A.; Brazier, R.; Rodgers, A.; Al-Amri, A.

    2006-05-01

    The Zagros Mountain Belt of southwestern Iran is among the most seismically active mountain belts in the world. Early seismic studies of this area found that the lithosphere underlying the Zagros Mountains follows the "jelly sandwich" model, having a strong upper crust and a strong lithospheric mantle, separated by a weak lower crust. More recent studies, which analyzed earthquakes originating within the Zagros Mountains that were recorded at teleseismic distances, however, found that these earthquakes occurred only within the upper crust, thus indicating that the strength of the Zagros Mountains' lithosphere lies only within the upper crust, in accordance with the "creme brulee" lithospheric model. Preliminary analysis of regionally recorded earthquakes that originated within the Zagros Mountains is presented here. Using earthquakes recorded at regional distances will allow the analysis of a larger dataset than has been used in previous studies. Preliminary results show earthquakes occurring throughout the crust and possibly extending into the upper mantle.

  5. Rocky Mountain spotted fever in children.

    Science.gov (United States)

    Woods, Charles R

    2013-04-01

    Rocky Mountain spotted fever is typically undifferentiated from many other infections in the first few days of illness. Treatment should not be delayed pending confirmation of infection when Rocky Mountain spotted fever is suspected. Doxycycline is the drug of choice even for infants and children less than 8 years old. Copyright © 2013 Elsevier Inc. All rights reserved.

  6. MOUNTAIN NATURAL BIODIVERSITY CONSERVATION IN RUSSIA

    Directory of Open Access Journals (Sweden)

    Arkady Tishkov

    2012-01-01

    Full Text Available High biodiversity and degree of endemism of mountain biota strengthen the mountain regions’ status for the territorial nature conservation. Analysis of the protected areas’ representativeness in various mountain regions of Russia shows some discrepancy between their quantity, square and regional biodiversity originality. The biggest divergences are marked for the Northern Caucasus. The main problems: small area of the protected territories and also cluster character of their spatial distribution, mostly in the high mountains are not supposed to conform with the highest values of the regional flora’s and fauna’s uniqueness, to compensate representativeness of the protected biota and, in anyway, to correspond with the purpose of nature protection frame—the protected territories ecologic network’s forming. The situation in the Urals, Siberia and the Far East seems to be better. The large areas of the protected territories are in general agreement with the high originality of the nature ecosystems. Nevertheless each concrete case needs analysis of the regional biota’s and ecosystems’ biodiversity distribution within the protected areas, including character and (or unique elements of the regional biodiversity to be held. The development of the effectual territorial conservation of mountain regions needs differential approach. The creation of the large representative parcels of nature landscapes in the key-areas has the considerable meaning in the low-developed regions, difficult to access. And well-developed regions have the necessity of nature protected territories’ network development and the planning of the ecological frame’s forming. The territorial biodiversity conservation, including the system of federal, regional and local levels with protective conservation of the rare species has to be combined with ecosystem’s restoration, especially in the zones disturbed by erosion, recreation and military actions. Also it is

  7. Selection of geohydrologic boundaries for ground-water flow models, Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Downey, J.S.; Gutentag, E.D.; Kolm, K.E.

    1990-01-01

    The conceptual ground-water model of the southern Nevada/Death Valley, California region presented in this paper includes two aquifer systems: a shallow, intermontane, mostly unconfined aquifer composed of unconsolidated or poorly consolidated sediments and consolidated, layered volcanics, and a deep, regional multiple-layered, confined aquifer system composed of faulted and fractured carbonate and volcanic rocks. The potentiometric surfaces of both aquifer systems indicate that ground water leaks vertically from the deeper to the shallower geologic units, and that water in the shallower aquifer may not flow beyond the intermontane subbasin, whereas water in the deeper aquifer may indicate transbasinal flow to the playas in Death Valley. Most of the hydrologic boundaries of the regional aquifer systems in the Yucca Mountain region are geologically complex. Most of the existing numerical models simulating the ground-water flow system in the Yucca Mountain region are based on limited potentiometric-head data elevation and precipitation estimates, and simplified geology. These models are two-dimensional, and are not adequate. The alternative approach to estimating unknown boundary conditions for the regional ground-water flow system involves the following steps: (1) Incorporate known boundary-conditions data from the playas in Death Valley and the Ash Meadows spring line; (2) use estimated boundary data based on geological, pedological, geomorphological, botanical, and hydrological observations; (3) test these initial boundary conditions with three-dimensional models, both steady-state and transient; (4) back-calculate the boundary conditions for the northern, northwestern, northeastern and eastern flux boundaries; (5) compare these calculated values with known data during model calibration steps; and (6) adjust the model. 9 refs., 6 figs

  8. The Olympic Mountains Experiment (OLYMPEX)

    Energy Technology Data Exchange (ETDEWEB)

    Houze, Robert A. [University of Washington, Seattle, Washington; Pacific Northwest National Laboratory, Richland, Washington; McMurdie, Lynn A. [University of Washington, Seattle, Washington; Petersen, Walter A. [NASA Marshall Space Flight Center, Huntsville, Alabama; Schwaller, Mathew R. [NASA Goddard Space Flight Center, Greenbelt, Maryland; Baccus, William [Olympic National Park, Port Angeles, Washington; Lundquist, Jessica D. [University of Washington, Seattle, Washington; Mass, Clifford F. [University of Washington, Seattle, Washington; Nijssen, Bart [University of Washington, Seattle, Washington; Rutledge, Steven A. [Colorado State University, Fort Collins, Colorado; Hudak, David R. [Environment and Climate Change Canada, King City, Ontario, Canada; Tanelli, Simone [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California; Mace, Gerald G. [University of Utah, Salt Lake City, Utah; Poellot, Michael R. [University of North Dakota, Grand Forks, North Dakota; Lettenmaier, Dennis P. [University of California, Los Angeles, Los Angeles, California; Zagrodnik, Joseph P. [University of Washington, Seattle, Washington; Rowe, Angela K. [University of Washington, Seattle, Washington; DeHart, Jennifer C. [University of Washington, Seattle, Washington; Madaus, Luke E. [National Center for Atmospheric Research, Boulder, Colorado; Barnes, Hannah C. [Pacific Northwest National Laboratory, Richland, Washington

    2017-10-01

    the Olympic Mountains Experiment (OLYMPEX) took place during the 2015-2016 fall-winter season in the vicinity of the mountainous Olympic Peninsula of Washington State. The goals of OLYMPEX were to provide physical and hydrologic ground validation for the U.S./Japan Global Precipitation Measurement (GPM) satellite mission and, more specifically, to study how precipitation in Pacific frontal systems is modified by passage over coastal mountains. Four transportable scanning dual-polarization Doppler radars of various wavelengths were installed. Surface stations were placed at various altitudes to measure precipitation rates, particle size distributions, and fall velocities. Autonomous recording cameras monitored and recorded snow accumulation. Four research aircraft supplied by NASA investigated precipitation processes and snow cover, and supplemental rawinsondes and dropsondes were deployed during precipitation events. Numerous Pacific frontal systems were sampled, including several reaching "atmospheric river" status, warm and cold frontal systems, and postfrontal convection

  9. Aerosol impacts on California winter clouds and precipitation during CalWater 2011: local pollution vs. long-range transported dust

    Science.gov (United States)

    Fan, J.; Leung, L. R.; DeMott, P. J.; Comstock, J. M.; Singh, B.; Rosenfeld, D.; Tomlinson, J. M.; White, A.; Prather, K. A.; Minnis, P.; Ayers, J. K.; Min, Q.

    2013-07-01

    Mineral dust aerosols often observed over California in winter/spring, associated with long-range transport from Asia and Sahara, have been linked to enhanced precipitation based on observations. Local anthropogenic pollution, on the other hand, was shown in previous observational and modeling studies to reduce precipitation. Here we incorporate recent developments in ice nucleation parameterizations to link aerosols with ice crystal formation in a spectral-bin cloud microphysical model coupled with the Weather Research and Forecasting (WRF) model, to examine the relative and combined impacts of dust and local pollution particles on cloud properties and precipitation type and intensity. Simulations are carried out for two cloud cases with contrasting meteorology and cloud dynamics that occurred on 16 February (FEB16) and 2 March (MAR02) from the CalWater 2011 field campaign. In both cases, observations show the presence of dust or dust/biological particles in a relative pristine environment. The simulated cloud microphysical properties and precipitation show reasonable agreement with aircraft and surface measurements. Model sensitivity experiments indicate that in the pristine environment, the dust/biological aerosol layers increase the accumulated precipitation by 10-20% from the Central Valley to the Sierra Nevada Mountains for both FEB16 and MAR02 due to a 40% increase in snow formation, validating the observational hypothesis. Model results show that local pollution increases precipitation over the windward slope of the mountains by few percent due to increased snow formation when dust is present but reduces precipitation by 5-8% if dust is removed on FEB16. The effects of local pollution on cloud microphysics and precipitation strongly depend on meteorology including the strength of the Sierra Barrier Jet, and cloud dynamics. This study further underscores the importance of the interactions between local pollution, dust, and environmental conditions for

  10. Rocky Mountain Spotted Fever: Statistics and Epidemiology

    Science.gov (United States)

    ... Search Form Controls Cancel Submit Search the CDC Rocky Mountain Spotted Fever (RMSF) Note: Javascript is disabled or is not ... message, please visit this page: About CDC.gov . Rocky Mountain Spotted Fever (RMSF) Transmission Signs and Symptoms Diagnosis and Testing ...

  11. Evolution of endemism on a young tropical mountain.

    Science.gov (United States)

    Merckx, Vincent S F T; Hendriks, Kasper P; Beentjes, Kevin K; Mennes, Constantijn B; Becking, Leontine E; Peijnenburg, Katja T C A; Afendy, Aqilah; Arumugam, Nivaarani; de Boer, Hugo; Biun, Alim; Buang, Matsain M; Chen, Ping-Ping; Chung, Arthur Y C; Dow, Rory; Feijen, Frida A A; Feijen, Hans; Feijen-van Soest, Cobi; Geml, József; Geurts, René; Gravendeel, Barbara; Hovenkamp, Peter; Imbun, Paul; Ipor, Isa; Janssens, Steven B; Jocqué, Merlijn; Kappes, Heike; Khoo, Eyen; Koomen, Peter; Lens, Frederic; Majapun, Richard J; Morgado, Luis N; Neupane, Suman; Nieser, Nico; Pereira, Joan T; Rahman, Homathevi; Sabran, Suzana; Sawang, Anati; Schwallier, Rachel M; Shim, Phyau-Soon; Smit, Harry; Sol, Nicolien; Spait, Maipul; Stech, Michael; Stokvis, Frank; Sugau, John B; Suleiman, Monica; Sumail, Sukaibin; Thomas, Daniel C; van Tol, Jan; Tuh, Fred Y Y; Yahya, Bakhtiar E; Nais, Jamili; Repin, Rimi; Lakim, Maklarin; Schilthuizen, Menno

    2015-08-20

    Tropical mountains are hot spots of biodiversity and endemism, but the evolutionary origins of their unique biotas are poorly understood. In varying degrees, local and regional extinction, long-distance colonization, and local recruitment may all contribute to the exceptional character of these communities. Also, it is debated whether mountain endemics mostly originate from local lowland taxa, or from lineages that reach the mountain by long-range dispersal from cool localities elsewhere. Here we investigate the evolutionary routes to endemism by sampling an entire tropical mountain biota on the 4,095-metre-high Mount Kinabalu in Sabah, East Malaysia. We discover that most of its unique biodiversity is younger than the mountain itself (6 million years), and comprises a mix of immigrant pre-adapted lineages and descendants from local lowland ancestors, although substantial shifts from lower to higher vegetation zones in this latter group were rare. These insights could improve forecasts of the likelihood of extinction and 'evolutionary rescue' in montane biodiversity hot spots under climate change scenarios.

  12. Sustainable viticulture and winery practices in California: What is it, and do customers care?

    Directory of Open Access Journals (Sweden)

    Gary Zucca

    2009-06-01

    Full Text Available Gary Zucca1,2, David E Smith3,4, Darryl J Mitry5,61National University, Stockton, CA, USA; 2Owner and Winemaker, Zucca Mountain Vineyards, Vallecito, CA, USA; 3National University, Costa Mesa, CA, USA; 4Copenhagen Business School, Copenhagen, Denmark; 5Graduate School Faculty, Norwich University, Northfield, VT, USA; 6National University, San Diego, CA, USAAbstract: Producers in the wine industry are increasingly competing in the area of product differentiation. The focus of this article is product differentiation via sustainable viticulture and consumer perception. The authors report on their independent research, assess previous findings in the literature, and examine the industry trends. The study concludes with important observations on wine consumer perceptions of sustainable practices in the wine industry and implications for industry practices and product development.Keywords: California, biologique, organic, biodynamic, sustainable

  13. Copper Mountain, Wyoming, a uranium district--rediscovered

    International Nuclear Information System (INIS)

    Cramer, R.T.; Yellich, J.A.; Kendall, R.G.

    1979-01-01

    The Copper Mountain area is physiographically located along the Owl Creek Mountains. Economic uranium mineralization was delineated in the late 1950's with production of approximately 500,000 pounds from 1961-1970. Continued exploration and research has discovered additional resources. 20 refs

  14. Anti-Atlas Mountains, Morocco

    Science.gov (United States)

    2003-01-01

    The Anti-Atlas Mountains of Morocco formed as a result of the collision of the African and Eurasian tectonic plates about 80 million years ago. This collision destroyed the Tethys Ocean; the limestone, sandstone, claystone, and gypsum layers that formed the ocean bed were folded and crumpled to create the Atlas and Anti-Atlas Mountains. In this ASTER image, short wavelength infrared bands are combined to dramatically highlight the different rock types, and illustrate the complex folding. The yellowish, orange and green areas are limestones, sandstones and gypsum; the dark blue and green areas are underlying granitic rocks. The ability to map geology using ASTER data is enhanced by the multiple short wavelength infrared bands, that are sensitive to differences in rock mineralogy. This image was acquired on June 13, 2001 by the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) on NASA's Terra satellite. With its 14 spectral bands from the visible to the thermal infrared wavelength region, and its high spatial resolution of 15 to 90 meters (about 50 to 300 feet), ASTER images Earth to map and monitor the changing surface of our planet.ASTER is one of five Earth-observing instruments launched December 18, 1999, on NASA's Terra satellite. The instrument was built by Japan's Ministry of Economy, Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products.The broad spectral coverage and high spectral resolution of ASTER will provide scientists in numerous disciplines with critical information for surface mapping, and monitoring of dynamic conditions and temporal change. Example applications are: monitoring glacial advances and retreats; monitoring potentially active volcanoes; identifying crop stress; determining cloud morphology and physical properties; wetlands evaluation; thermal pollution monitoring; coral reef degradation; surface temperature mapping of soils and

  15. High-resolution aeromagnetic survey of the Mono Basin-Long Valley Caldera region, California

    Science.gov (United States)

    Ponce, D. A.; Mangan, M.; McPhee, D.

    2013-12-01

    A new high-resolution aeromagnetic survey of the Mono Basin-Long Valley Caldera region greatly enhances previous magnetic interpretations that were based on older, low-resolution, and regional aeromagnetic data sets and provides new insights into volcano-tectonic processes. The surveyed area covers a 8,750 km2 NNW-trending swath situated between the Sierra Nevada to the west and the Basin and Range Province to the east. The surveyed area includes the volcanic centers of Mono Lake, Mono-Inyo Craters, Mammoth Mountain, Devils Postpile, and Long Valley Caldera. The NW-trending eastern Sierra frontal fault zone crosses through the study area, including the active Mono Lake, Silver Lake, Hartley Springs, Laurel Creek, and Hilton Creek faults. Over 6,000 line-kilometers of aeromagnetic data were collected at a constant terrain clearance of 150 m, a flight-line spacing of 400 m, and a tie-line spacing of 4 km. Data were collected via helicopter with an attached stinger housing a magnetic sensor using a Scintrex CS-3 cesium magnetometer. In the northern part of the survey area, data improve the magnetic resolution of the individual domes and coulees along Mono Craters and a circular shaped magnetic anomaly that coincides with a poorly defined ring fracture mapped by Kistler (1966). Here, aeromagnetic data combined with other geophysical data suggests that Mono Craters may have preferentially followed a pre-existing plutonic basement feature that may have controlled the sickle shape of the volcanic chain. In the northeastern part of the survey, aeromagnetic data reveal a linear magnetic anomaly that correlates with and extends a mapped fault. In the southern part of the survey, in the Sierra Nevada block just south of Long Valley Caldera, aeromagnetic anomalies correlate with NNW-trending Sierran frontal faults rather than to linear NNE-trends observed in recent seismicity over the last 30 years. These data provide an important framework for the further analysis of the

  16. Yucca Mountain Biological resources monitoring program

    International Nuclear Information System (INIS)

    1991-01-01

    The US Department of Energy (US DOE) is required by the Nuclear Waste Policy Act of 1982 (as amended in 1987) to study and characterize Yucca Mountain as a possible site for a geological repository for high-level radioactive waste. To ensure site characterization activities do not adversely affect the Yucca Mountain area, an environmental program, the Yucca Mountain Biological Resources Monitoring Program, has been implemented monitor and mitigate environmental impacts and to ensure activities comply with applicable environmental laws. Potential impacts to vegetation, small mammals, and the desert tortoise (an indigenous threatened species) are addressed, as are habitat reclamation, radiological monitoring, and compilation of baseline data. This report describes the program in Fiscal Years 1989 and 1990. 12 refs., 4 figs., 17 tabs

  17. Digital Bedrock Compilation: A Geodatabase Covering Forest Service Lands in California

    Science.gov (United States)

    Elder, D.; de La Fuente, J. A.; Reichert, M.

    2010-12-01

    This digital database contains bedrock geologic mapping for Forest Service lands within California. This compilation began in 2004 and the first version was completed in 2005. Second publication of this geodatabase was completed in 2010 and filled major gaps in the southern Sierra Nevada and Modoc/Medicine Lake/Warner Mountains areas. This digital map database was compiled from previously published and unpublished geologic mapping, with source mapping and review from California Geological Survey, the U.S. Geological Survey and others. Much of the source data was itself compilation mapping. This geodatabase is huge, containing ~107,000 polygons and ~ 280,000 arcs. Mapping was compiled from more than one thousand individual sources and covers over 41,000,000 acres (~166,000 km2). It was compiled from source maps at various scales - from ~ 1:4,000 to 1:250,000 and represents the best available geologic mapping at largest scale possible. An estimated 70-80% of the source information was digitized from geologic mapping at 1:62,500 scale or better. Forest Service ACT2 Enterprise Team compiled the bedrock mapping and developed a geodatabase to store this information. This geodatabase supports feature classes for polygons (e.g, map units), lines (e.g., contacts, boundaries, faults and structural lines) and points (e.g., orientation data, structural symbology). Lookup tables provide detailed information for feature class items. Lookup/type tables contain legal values and hierarchical groupings for geologic ages and lithologies. Type tables link coded values with descriptions for line and point attributes, such as line type, line location and point type. This digital mapping is at the core of many quantitative analyses and derivative map products. Queries of the database are used to produce maps and to quantify rock types of interest. These include the following: (1) ultramafic rocks - where hazards from naturally occurring asbestos are high, (2) granitic rocks - increased

  18. Impact of Hypoxia on Man on Mountaineering

    Directory of Open Access Journals (Sweden)

    A. N. Kislitsyn

    2006-01-01

    Full Text Available External respiratory function was studied in those engaged in mountaineering. A negative correlation was found between the intensity of exercise and the changes in vital capacity under mountainous conditions. Changes occurring in the levels of glucose and cholesterol were considered in tourists.

  19. The California Hazards Institute

    Science.gov (United States)

    Rundle, J. B.; Kellogg, L. H.; Turcotte, D. L.

    2006-12-01

    California's abundant resources are linked with its natural hazards. Earthquakes, landslides, wildfires, floods, tsunamis, volcanic eruptions, severe storms, fires, and droughts afflict the state regularly. These events have the potential to become great disasters, like the San Francisco earthquake and fire of 1906, that overwhelm the capacity of society to respond. At such times, the fabric of civic life is frayed, political leadership is tested, economic losses can dwarf available resources, and full recovery can take decades. A patchwork of Federal, state and local programs are in place to address individual hazards, but California lacks effective coordination to forecast, prevent, prepare for, mitigate, respond to, and recover from, the harmful effects of natural disasters. Moreover, we do not know enough about the frequency, size, time, or locations where they may strike, nor about how the natural environment and man-made structures would respond. As California's population grows and becomes more interdependent, even moderate events have the potential to trigger catastrophes. Natural hazards need not become natural disasters if they are addressed proactively and effectively, rather than reactively. The University of California, with 10 campuses distributed across the state, has world-class faculty and students engaged in research and education in all fields of direct relevance to hazards. For that reason, the UC can become a world leader in anticipating and managing natural hazards in order to prevent loss of life and property and degradation of environmental quality. The University of California, Office of the President, has therefore established a new system-wide Multicampus Research Project, the California Hazards Institute (CHI), as a mechanism to research innovative, effective solutions for California. The CHI will build on the rich intellectual capital and expertise of the Golden State to provide the best available science, knowledge and tools for

  20. 76 FR 55413 - Proposed Safe Harbor Agreement for California Red-legged Frog, California Tiger Salamander, Smith...

    Science.gov (United States)

    2011-09-07

    ...] Proposed Safe Harbor Agreement for California Red-legged Frog, California Tiger Salamander, Smith's Blue... endangered Smith's blue butterfly (Euphilotes enoptes smithi) under the Endangered Species Act of 1973, as..., California tiger salamander, Smith's blue butterfly, and Yadon's piperia on the property subject to the...

  1. Acute mountain sickness

    Science.gov (United States)

    ... GO About MedlinePlus Site Map FAQs Customer Support Health Topics Drugs & Supplements Videos & Tools Español You Are Here: Home → Medical Encyclopedia → Acute mountain sickness URL of this page: //medlineplus.gov/ency/article/ ...

  2. DANGERS AND SAFETY MEASURES IN A MOUNTAIN

    Directory of Open Access Journals (Sweden)

    Jovica Petković

    2013-07-01

    Full Text Available Mountaineering and everything that is connected with it is a sport with con¬tro¬lled risk. Mountaineers, alpinists, climbers, cavers and all the others who visit and sojourn in mountains are faced with many risks and dangers, which are caused by na¬ture and also by their own mistakes. The dangers in the mountains, like dangers in any other environment, are mainly predictable, so it is best to deal with them with good esti¬mation, knowledge and skill. One has to be aware of his surroundings – the moun¬tain, to respect it and to know what is dangerous and how much it is dangerous at any moment. The organization of the mountaineering expeditions and leadership per¬haps re¬present the highest level of security control. To develop skills for organizing and lead¬ing a group means to ensure the safety of the entire group – to work pre¬ven¬ti¬ve¬ly at the level of the entire group, not only at the level of an individual. The success of the enti¬re group as well as safety depends on the organization and leadership.

  3. Mercury exposure associated with altered plasma thyroid hormones in the declining western pond turtle (Emys marmorata) from California mountain streams

    Science.gov (United States)

    Meyer, Erik; Eagles-Smith, Collin A.; Sparling, Donald; Blumenshine, Steve

    2014-01-01

    Mercury (Hg) is a global threat to wildlife health that can impair many physiological processes. Mercury has well-documented endocrine activity; however, little work on the effects of Hg on the thyroid hormones triiodothyronine (T3) and thyroxine (T4) in aquatic wildlife exists despite the fact that it is a sensitive endpoint of contaminant exposure. An emerging body of evidence points to the toxicological susceptibility of aquatic reptiles to Hg exposure. We examined the endocrine disrupting potential of Hg in the western pond turtle (Emys marmorata), a long-lived reptile that is in decline throughout California and the Pacific Northwest. We measured total Hg (THg) concentrations in red blood cells (RBCs) and plasma T3 and T4 of turtles from several locations in California that have been impacted by historic gold mining. Across all turtles from all sites, the geometric mean and standard error THg concentration was 0.805 ± 0.025 μg/g dry weight. Sampling region and mass were the strongest determinants of RBC THg. Relationships between RBC THg and T3 and T4 were consistent with Hg-induced disruption of T4 deiodination, a mechanism of toxicity that may cause excess T4 levels and depressed concentrations of biologically active T3.

  4. Mercury exposure associated with altered plasma thyroid hormones in the declining western pond turtle (Emys marmorata) from California mountain streams.

    Science.gov (United States)

    Meyer, Erik; Eagles-Smith, Collin A; Sparling, Donald; Blumenshine, Steve

    2014-01-01

    Mercury (Hg) is a global threat to wildlife health that can impair many physiological processes. Mercury has well-documented endocrine activity; however, little work on the effects of Hg on the thyroid hormones triiodothyronine (T3) and thyroxine (T4) in aquatic wildlife exists despite the fact that it is a sensitive endpoint of contaminant exposure. An emerging body of evidence points to the toxicological susceptibility of aquatic reptiles to Hg exposure. We examined the endocrine disrupting potential of Hg in the western pond turtle (Emys marmorata), a long-lived reptile that is in decline throughout California and the Pacific Northwest. We measured total Hg (THg) concentrations in red blood cells (RBCs) and plasma T3 and T4 of turtles from several locations in California that have been impacted by historic gold mining. Across all turtles from all sites, the geometric mean and standard error THg concentration was 0.805 ± 0.025 μg/g dry weight. Sampling region and mass were the strongest determinants of RBC THg. Relationships between RBC THg and T3 and T4 were consistent with Hg-induced disruption of T4 deiodination, a mechanism of toxicity that may cause excess T4 levels and depressed concentrations of biologically active T3.

  5. 75 FR 29656 - Amendment of Class E Airspace; Mountain View, AR

    Science.gov (United States)

    2010-05-27

    ...-1181; Airspace Docket No. 09-ASW-36] Amendment of Class E Airspace; Mountain View, AR AGENCY: Federal... Mountain View, AR. Decommissioning of the Wilcox non-directional beacon (NDB) at Mountain View Wilcox Memorial Field Airport, Mountain View, AR, has made this action necessary to enhance the safety and...

  6. 78 FR 29366 - Green Mountain Power Corporation

    Science.gov (United States)

    2013-05-20

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. TS04-277-002] Green Mountain Power Corporation Notice of Filing Take notice that on May 2, 2013, Green Mountain Power Corporation filed additional information in support of its request for continued waiver of Standards of Conduct. Any...

  7. Origin, development, and impact of mountain laurel thickets on the mixed-oak forests of the central Appalachian Mountains, USA

    Science.gov (United States)

    Patrick H. Brose

    2016-01-01

    Throughout forests of the northern hemisphere, some species of ericaceous shrubs can form persistent understories that interfere with forest regeneration processes. In the Appalachian Mountains of eastern North America, mountain laurel (Kalmia latifolia) may interfere in the regeneration of mixed-oak (Quercus spp.) forests. To...

  8. Review article: The mountain motif in the plot of Matthew

    Directory of Open Access Journals (Sweden)

    Gert J. Volschenk

    2010-09-01

    Full Text Available This article reviewed T.L. Donaldson’s book, Jesus on the mountain: A study in Matthean theology, published in 1985 by JSOT Press, Sheffield, and focused on the mountain motif in the structure and plot of the Gospel of Matthew, in addition to the work of Donaldson on the mountain motif as a literary motif and as theological symbol. The mountain is a primary theological setting for Jesus’ ministry and thus is an important setting, serving as one of the literary devices by which Matthew structured and progressed his narrative. The Zion theological and eschatological significance and Second Temple Judaism serve as the historical and theological background for the mountain motif. The last mountain setting (Mt 28:16–20 is the culmination of the three theological themes in the plot of Matthew, namely Christology, ecclesiology and salvation history.

  9. Mountain biking. Breezy ups and traumatic downs

    International Nuclear Information System (INIS)

    Schueller, G.

    2010-01-01

    For more than two decades the popularity of mountain biking as a national pastime as well as a competitive sport has been undiminished. However, its related risks are not monitored as closely as those, for example, of skiing. The injuries caused by mountain biking are specific and cannot be compared with those caused by other cycling sports. This is due not only to the characteristics of the terrain but also to the readiness to assume a higher risk compared to cycle racing. The particular value of radiology is in the acute trauma setting. Most often musculoskeletal lesions must be examined and digital radiography and MRI are the most useful techniques. Severe trauma of the cranium, face, spine, thorax and abdomen are primarily evaluated with CT, particularly in dedicated trauma centers. Therefore, radiology can play a role in the rapid diagnosis and optimal treatment of the trauma-related injuries of mountain biking. Thus, the unnecessarily high economical damage associated with mountain biking can be avoided. (orig.) [de

  10. [Mountain biking : Breezy ups and traumatic downs].

    Science.gov (United States)

    Schueller, G

    2010-05-01

    For more than two decades the popularity of mountain biking as a national pastime as well as a competitive sport has been undiminished. However, its related risks are not monitored as closely as those, for example, of skiing. The injuries caused by mountain biking are specific and cannot be compared with those caused by other cycling sports. This is due not only to the characteristics of the terrain but also to the readiness to assume a higher risk compared to cycle racing.The particular value of radiology is in the acute trauma setting. Most often musculoskeletal lesions must be examined and digital radiography and MRI are the most useful techniques. Severe trauma of the cranium, face, spine, thorax and abdomen are primarily evaluated with CT, particularly in dedicated trauma centers. Therefore, radiology can play a role in the rapid diagnosis and optimal treatment of the trauma-related injuries of mountain biking. Thus, the unnecessarily high economical damage associated with mountain biking can be avoided.

  11. An ecologic study comparing distribution of Pasteurella trehalosi and Mannheimia haemolytica between Sierra Nevada bighorn sheep, White Mountain bighorn sheep, and domestic sheep.

    Science.gov (United States)

    Tomassini, Letizia; Gonzales, Ben; Weiser, Glen C; Sischo, William

    2009-10-01

    The prevalence and phenotypic variability of Pasteurella and Mannheimia isolates from Sierra Nevada bighorn sheep (Ovis canadensis sierrae), White Mountain bighorn sheep (Ovis canadensis nelsoni), and domestic sheep (Ovis aries) from California, USA, were compared. The White Mountain bighorn sheep population had a recent history of pneumonia-associated mortality, whereas the Sierra Nevada bighorn sheep population had no recent history of pneumonia-associated mortality. The domestic sheep flocks were pastured in areas geographically near both populations but were not known to have direct contact with either bighorn sheep population. Oropharyngeal swab samples were collected from healthy domestic and bighorn sheep and cultured to characterize bacterial species, hemolysis, biogroups, and biovariants. Pasteurella trehalosi and Mannheimia haemolytica were detected in all of the study populations, but the relative proportion of each bacterial species differed among sheep populations. Pasteurella trehalosi was more common than M. haemolytica in the bighorn sheep populations, whereas the opposite was true in domestic sheep. Mannheimia haemolytica was separated into 11 biogroups, and P. trehalosi was characterized into two biogroups. Biogroup distributions for M. haemolytica and P. trehalosi differed among the three populations; however, no difference was detected for the distribution of P. trehalosi biogroups between the Sierra Nevada bighorn sheep and domestic sheep. The prevalence odds ratios (pOR) for the distribution of M. haemolytica biogroups suggested little difference between White Mountain bighorn sheep and domestic sheep compared with Sierra Nevada bighorn sheep and domestic sheep, although these comparisons had relatively large confidence intervals for the point estimates. Hemolytic activity of the isolates was not different among the sheep populations for M. haemolytica but was different for P. trehalosi. No clear evidence of association was found in the

  12. Current depression among women in California according to residence in the California-Mexico border region.

    Science.gov (United States)

    Ryan-Ibarra, Suzanne; Epstein, Joan Faith; Induni, Marta; Wright, Michael A

    2012-05-01

    To estimate the prevalence of current depression; examine the relationship between current depression and immigration, health status, health care access, and health behaviors; and assess differences by California-Mexico border region (Imperial and San Diego Counties) among women in California. Using a cross-sectional, representative sample of adult women from the California Women's Health Survey (n = 13 454), a statewide telephone survey, prevalence of current depression and predictors of depression were examined in California and according to border region residence. Depression was assessed with the eight-item Patient Health Questionnaire. The prevalence of current depression for women in California was 12.0%. It was similar in the border (13.0%) and the nonborder (11.9%) regions. Odds of current depression in women were lower among recent immigrants (depression and health status, health care access, and binge drinking were larger in the border region than outside the border region. Similar prevalences of current depression were observed among those who live in the border region of California and in those who do not, but the relationship between depression and health status, health care access, and binge drinking varied by border region residence. Ideally, future surveillance of depression and its predictors along the Mexico-California border will be conducted binationally to inform interventions and tracking such as the Healthy Border Program's objectives.

  13. California State Waters Map Series: offshore of Carpinteria, California

    Science.gov (United States)

    Johnson, Samuel Y.; Dartnell, Peter; Cochrane, Guy R.; Golden, Nadine E.; Phillips, Eleyne L.; Ritchie, Andrew C.; Kvitek, Rikk G.; Greene, H. Gary; Endris, Charles A.; Seitz, Gordon G.; Sliter, Ray W.; Erdey, Mercedes D.; Wong, Florence L.; Gutierrez, Carlos I.; Krigsman, Lisa M.; Draut, Amy E.; Hart, Patrick E.; Johnson, Samuel Y.; Cochran, Susan A.

    2013-01-01

    In 2007, the California Ocean Protection Council initiated the California Seafloor Mapping Program (CSMP), designed to create a comprehensive seafloor map of high-resolution bathymetry, marine benthic habitats, and geology within the 3-nautical-mile limit of California’s State Waters. The CSMP approach is to create highly detailed seafloor maps through collection, integration, interpretation, and visualization of swath sonar data, acoustic backscatter, seafloor video, seafloor photography, high-resolution seismic-reflection profiles, and bottom-sediment sampling data. The map products display seafloor morphology and character, identify potential marine benthic habitats, and illustrate both the surficial seafloor geology and shallow (to about 100 m) subsurface geology. The Offshore of Carpinteria map area lies within the central Santa Barbara Channel region of the Southern California Bight. This geologically complex region forms a major biogeographic transition zone, separating the cold-temperate Oregonian province north of Point Conception from the warm-temperate California province to the south. The map area is in the southern part of the Western Transverse Ranges geologic province, which is north of the California Continental Borderland. Significant clockwise rotation—at least 90°—since the early Miocene has been proposed for the Western Transverse Ranges province, and the region is presently undergoing north-south shortening. The small city of Carpinteria is the most significant onshore cultural center in the map area; the smaller town of Summerland lies west of Carpinteria. These communities rest on a relatively flat coastal piedmont that is surrounded on the north, east, and west by hilly relief on the flanks of the Santa Ynez Mountains. El Estero, a salt marsh on the coast west of Carpinteria, is an ecologically important coastal estuary. Southeast of Carpinteria, the coastal zone is narrow strip containing highway and railway transportation corridors

  14. A hydrogeologic map of the Death Valley region, Nevada, and California, developed using GIS techniques

    International Nuclear Information System (INIS)

    Faunt, C.C.; D'Agnese, F.A.; Turner, A.K.

    1997-01-01

    In support of Yucca Mountain site characterization studies, a hydrogeologic framework was developed, and a hydrogeologic map was constructed for the Death Valley region. The region, covering approximately 100,000 km 2 along the Nevada-California border near Las Vegas, is characterized by isolated mountain ranges juxtaposed against broad, alluvium-filled valleys. Geologic conditions are typical of the Basin and Range Province; a variety of sedimentary and igneous intrusive and extrusive rocks have been subjected to both compressional and extensional deformation. The regional ground-water flow system can best be described as a series of connected intermontane basins in which ground-water flow occurs in basin-fill deposits, carbonate rocks, clastic rocks, and volcanic rocks. Previous investigations have developed more site-specific hydrogeologic relationships; however, few have described all the lithologies within the Death Valley regional ground-water flow system. Information required to characterize the hydrogeologic units in the region was obtained from regional geologic maps and reports. Map data were digitized from regional geologic maps and combined into a composite map using a geographic information system. This map was simplified to show 10 laterally extensive hydrogeologic units with distinct hydrologic properties. The hydraulic conductivity values for the hydrogeologic units range over 15 orders of magnitude due to the variability in burial depth and degree of fracturing

  15. Multiscale Model Simulations of Temperature and Relative Humidity for the License Application of the Proposed Yucca Mountain Repository

    Science.gov (United States)

    Buscheck, T.; Glascoe, L.; Sun, Y.; Gansemer, J.; Lee, K.

    2003-12-01

    ; these variables are determined every 20 m for each emplacement drift in the repository. The MSTHM accounts for 3-D drift-scale and mountain-scale heat flow and captures the influence of the key engineering-design variables and natural-system factors affecting TH conditions in the emplacement drifts and adjoining host rock. Presented is a synopsis of recent MSTHM calculations conducted to support the Total System Performance Assessment for the License Application (TSPA-LA). This work was performed under the auspices of the U.S. Department of Energy by University of California Lawrence Livermore National Laboratory under contract No. W-7405-Eng-48.

  16. Turonian Radiolarians in the Section of Ak Mountain, Crimea

    Science.gov (United States)

    Bragina, L. G.

    2018-01-01

    In the sections from the western and eastern peaks of Ak Mountain, the Patellula selbukhraensis Zone (upper part of the lower Turonian), which is established for the first time in the southwestern Mountainous Crimea, is traced. The first data on the radiolarian distribution in the section of the eastern peak of Ak Mountain, which is stratotypical of the Phaseliforma turovi (middle Turonian, without the upper part) and Actinomma (?) belbekense (upper part of the middle Turonian-upper Turonian) zones, are presented. These zones are also traced in the parallel section of the western peak of Ak Mountain.

  17. Can nuclear waste be stored safely at Yucca mountain?

    International Nuclear Information System (INIS)

    Whipple, C.G.

    1996-01-01

    In 1987 the federal government narrowed to one its long-term options for disposing of nuclear waste: storing it permanently in a series of caverns excavated out of the rock deep below Yucca mountain in southern Nevada. Whether it makes sense at this time to dispose permanently of spent fuel and radioactive waste in a deep geologic repository is hotly disputed. But the Nuclear Waste Policy Act amendements of 1987 decree that waste be consolidated in Yucca Mountain if the mountain is found suitable. Meanwhile the spent fuel continues to pile up across the country, and 1998 looms, adding urgency to the question: What can science tell us about the ability of the mountain to store nuclear waste safely? This paper discusses this issue and describes how studies of the mountain's history and geology can contribute useful insights but not unequivocal conclusions

  18. Effects of fragmentation on the spatial ecology of the California Kingsnake (Lampropeltis californiae)

    Science.gov (United States)

    Anguiano, Michael P.; Diffendorfer, James E.

    2015-01-01

    We investigated the spatial ecology of the California Kingsnake (Lampropeltis californiae) in unfragmented and fragmented habitat with varying patch sizes and degrees of exposure to urban edges. We radiotracked 34 Kingsnakes for up to 3 yr across four site types: interior areas of unfragmented ecological reserves, the urbanized edge of these reserves, large habitat fragments, and small habitat fragments. There was no relationship between California Kingsnake movements and the degree of exposure to urban edges and fragmentation. Home range size and movement patterns of Kingsnakes on edges and fragments resembled those in unfragmented sites. Average home-range size on each site type was smaller than the smallest fragment in which snakes were tracked. The persistence of California Kingsnakes in fragmented landscapes may be related directly to their small spatial movement patterns, home-range overlap, and ability to use urban edge habitat.

  19. Evaluating water resources in California using a synoptic typing methodology

    Science.gov (United States)

    Schroeter, Derek W.

    Snowpack in the Sierra Nevada Mountain Range is the key component of water resources in California, and hence has been extensively investigated by many researchers. This study focuses on establishing a link between hemispheric-scale forcing mechanisms and the spring snowpack through a synoptic pathway. Daily meteorological data from Fresno, CA for the snow accumulation season from November to March over the period from 1950 to 2011 is used in a synoptic typing procedure in order to classify days with similar meteorological conditions into groups representing individual synoptic types. Twelve synoptic types are classified and subsequently related to 1 April snow water equivalent (SWE) values. One synoptic type proved to be particularly important for the magnitude of the spring snowpack explaining 50% to 70% of the variance in 1 April SWE at most snow courses. High frequencies of this synoptic type are found to be associated with the warm phase of the El Nino/Southern Oscillation and the negative phase of the Tropical Northern Hemisphere pattern. Moreover, univariate and multiple linear regression analyses show that this synoptic type is significantly related to indices of the Pacific Hadley-Walker circulation during the snow accumulation season and during the preceding fall. During the snow accumulation season the Northern Oscillation Index explains 43% of the variance while during the preceding fall the Southern Oscillation Index accounts for 23% of the variance in this synoptic type. Thus, a more complete understanding of tropical and extra-tropical interactions associated with the Pacific Hadley-Walker circulation may provide a basis for forecasting synoptic-scale conditions conducive to producing heavy snowfall and thereby California's water supply earlier in the water year.

  20. The mountains influence on Turkey Climate

    International Nuclear Information System (INIS)

    Sensoy, Serhat

    2004-01-01

    Since the Black sea mountains at the north of the country and the Taurus mountains in the south lay parallel to the seashore and rise very sharply rain clouds can not penetrate to the internal part of the country. Rain clouds drops most of their water on the slopes opposite the sea. As rain clouds pass over the mountains and reach Central Anatolia they have no significant capability of rain. For this reason, the Central Anatolia does not have very much precipitation. The difference between the rates of precipitation on the inner and outer slopes seems to be effective on the expansion of plants. For example, there is a subtropical climate prevailing on the Black sea shore between Sinop and Batum where precipitation is more than 1000-2000 mm yearly. Going from Sinop to the mouth of the Sakarya River the rate of precipitation goes down to 800-1250 mm in a year. Running from the Sakarya River to the western area covering Thrace the climate seems to be continental, and in the area dominant plant cover is of the Mediterranean type. Since the succession of the mountains in Western Anatolia lay perpendicular to the seashore, rain clouds penetrate towards the inner regions for about 400 km. The continental climate with long, dry and summer affects this area. In the Eastern region of Anatolia, since the elevation of the mountains exceeds 2500-3000 m, valleys are disorderly scattered and located at high elevations, and the northern Black sea mountains and Caucasian mountains hold the rain clouds, the area is effected by the continental climate with long and very cold winters. Consequently precipitation at the lgdir River goes down to 300 mm while it is 500-800 mm in most of areas and 1000-1500 mm in some regions towards northern Mu and Bingol provinces. As mentioned above, high mountains, which hold rain clouds, surround the Central Anatolia, which has caused drought in this region. In the central Anatolia covering Afyon, Eski hir, Ankara, Qankiri, Qorum, Amasya, Kayseri

  1. Regional Systems Development for Geothermal Energy Resources Pacific Region (California and Hawaii). Task 3: water resources evaluation. Topical report

    Energy Technology Data Exchange (ETDEWEB)

    Sakaguchi, J.L.

    1979-03-19

    The fundamental objective of the water resources analysis was to assess the availability of surface and ground water for potential use as power plant make-up water in the major geothermal areas of California. The analysis was concentrated on identifying the major sources of surface and ground water, potential limitations on the usage of this water, and the resulting constraints on potentially developable electrical power in each geothermal resource area. Analyses were completed for 11 major geothermal areas in California: four in the Imperial Valley, Coso, Mono-Long Valley, Geysers-Calistoga, Surprise Valley, Glass Mountain, Wendel Amedee, and Lassen. One area in Hawaii, the Puna district, was also included in the analysis. The water requirements for representative types of energy conversion processes were developed using a case study approach. Cooling water requirements for each type of energy conversion process were estimated based upon a specific existing or proposed type of geothermal power plant. The make-up water requirements for each type of conversion process at each resource location were then estimated as a basis for analyzing any constraints on the megawatts which potentially could be developed.

  2. Geology of the Saddle Mountains between Sentinel Gap and 119030' longitude

    International Nuclear Information System (INIS)

    Reidel, S.P.

    1978-09-01

    Members and flows of the Grande Ronde, Wanapum, and Saddle Mountains basalts of the Columbia River Basalt Group were mapped in the Saddle Mountains between Sentinel Gap and the eastern edge of Smyrna Bench. The Grande Ronde Basalt consists of the Schwana (low-MgO) and Sentinel Bluffs (high-MgO) members (informal names). The Wanapum Basalt consists of the aphyric and phyric units of the Frenchman Springs Member, the Roza-Like Member, and the Priest Rapids Member. The Saddle Mountains Basalt consists of the Wahluke, Huntzinger, Pomona, Mattawa, and Elephant Mountain basalts. The Wanapum and Saddle Mountains basalts are unevenly distributed across the Saddle Mountains. The Wanapum Basalt thins from south to north and across a northwest-southeast-trending axis at the west end of Smyrna Bench. The Priest Rapids, Roza-Like, and aphyric Frenchman Springs units are locally missing across this zone. The Saddle Mountains basalt has a more irregular distribution and, within an area between Sentinel Gap and Smyrna Bench, is devoid of the basalt. The Wahluke, Huntzinger, and Mattawa flows are locally present, but the Pomona is restricted to the southern flank west of Smyrna Bench, and the Elephant Mountain Basalt only occurs on the flanks and in three structurally controlled basins on the northwest side. The structure of the Saddle Mountains is dominated by an east-west trend and, to a lesser degree, controlled by a northwest-southeast and northeast-southwest trend. The geomorphological expression of the Saddle Mountains results from the east-west fold set and the Saddle Mountains fault along the north side. The oldest structures follow the northwest-southeast trend. The distribution of the flows, combined with the structural features, indicates a complex geologic history for the Saddel Mountains

  3. Mountains and energy transition. Status of use of renewable energies and challenges for their development in mountain areas - Renewable energies Volume 1

    International Nuclear Information System (INIS)

    Peguin, Marion; Moncorps, Sebastien; Fourcade, Michel; Denis, Helene

    2013-10-01

    After an overview of challenges related to the development of renewable energies in mountain areas (conservation of biodiversity and landscapes, main legal measures regarding biodiversity and landscapes), this report proposes an overview of the status and potentials of the different renewable energies (solar, wind, hydroelectricity, bio-energies, geothermal) in mountain areas. It proposes an assessment (strengths and weaknesses) and recommendations for solar, wind, hydroelectricity and bio energies in mountain areas

  4. Thermally driven gas flow beneath Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Amter, S.; Lu, Ning; Ross, B.

    1991-01-01

    A coupled thermopneumatic model is developed for simulating heat transfer, rock-gas flow and carbon-14 travel time beneath Yucca Mountain, NV. The aim of this work is to understand the coupling of heat transfer and gas flow. Heat transfer in and near the potential repository region depends on several factors, including the geothermal gradient, climate, and local sources of heat such as radioactive wastes. Our numerical study shows that small temperature changes at the surface can change both the temperature field and the gas flow pattern beneath Yucca Mountain. A lateral temperature difference of 1 K is sufficient to create convection cells hundreds of meters in size. Differences in relative humidities between gas inside the mountain and air outside the mountain also significantly affect the gas flow field. 6 refs., 7 figs

  5. Groundwater resources of the Devils Postpile National Monument—Current conditions and future vulnerabilities

    Science.gov (United States)

    Evans, William C.; Bergfeld, Deborah

    2017-06-15

    This study presents an extensive database on groundwater conditions in and around Devils Postpile National Monument. The database contains chemical analyses of springs and the monument water-supply well, including major-ion chemistry, trace element chemistry, and the first information on a list of organic compounds known as emerging contaminants. Diurnal, seasonal, and annual variations in groundwater discharge and chemistry are evaluated from data collected at five main monitoring sites, where streams carry the aggregate flow from entire groups of springs. These springs drain the Mammoth Mountain area and, during the fall months, contribute a significant fraction of the San Joaquin River flow within the monument. The period of this study, from fall 2012 to fall 2015, includes some of the driest years on record, though the seasonal variability observed in 2013 might have been near normal. The spring-fed streams generally flowed at rates well below those observed during a sequence of wet years in the late 1990s. However, persistence of flow and reasonably stable water chemistry through the recent dry years are indicative of a sizeable groundwater system that should provide a reliable resource during similar droughts in the future. Only a few emerging contaminants were detected at trace levels below 1 microgram per liter (μg/L), suggesting that local human visitation is not degrading groundwater quality. No indication of salt from the ski area on the north side of Mammoth Mountain could be found in any of the groundwaters. Chemical data instead show that natural mineral water, such as that discharged from local soda springs, is the main source of anomalous chloride in the monument supply well and in the San Joaquin River. The results of the study are used to develop a set of recommendations for future monitoring to enable detection of deleterious impacts to groundwater quality and quantity

  6. Solar: California, not dreaming

    Energy Technology Data Exchange (ETDEWEB)

    Jones, J.

    2006-03-15

    The California Solar Initiative (CSI) was approved by the California Public Utilities Commission (PUC) in January 2006. The CSI is the largest solar programme of this kind ever in the USA and provides for $3.2 billion in incentives for solar projects between 2007 and 2017. The PUC will oversee a $2.5 billion programme to provide funding for solar installations on commercial and existing residential buildings, while the California Energy Commission (CEC) will manage a separate $350 million fund targeted at new residential building. Existing solar programmes operated by the PUC and CEC will be consolidated into the CSI. The CEC programme will use already allocated funding, but the PUC programme will be funded through revenues collected from customers of the main gas and electric utilities in California. Funds will be distributed via rebates to householders or companies that install solar. As well as solar photovoltaics (PV), rebates will also go to solar thermal power (concentrating solar power) and solar heating and cooling. CSI funding can be used in combination with existing federal tax credits. The aim is a gradual increase from installation of 40 MW of PV in 2005 to 100 MW by 2009. The CSI is also expected to create favourable market conditions for PV manufacturers in California and to encourage investment in production of solar-grade silicon in or near California. Objections from the International Brotherhood of Electrical Workers (IBEW) appear to have been overcome but a number of other potential snags remain. CSI is expected to be replicated in other US states.

  7. Sport and Recreation Influence upon Mountain Area and Sustainable Tourism Development

    Directory of Open Access Journals (Sweden)

    Jelica J. MARKOVIĆ

    2013-10-01

    Full Text Available In contemporary tourism, sport and recreation are increasingly becoming the dominant motives for undertaking the journey, and as a result of modern living, active holidays are more frequent. Mountain areas have always been attractive to deal with the various sports activities. Winter sports were the initiators of the development of mountain resorts. Mountain resorts invest in construction of hotels, ski lifts, snowmaking equipment, for the sake of attracting a growing number of tourist clientele. On the other hand, sport and recreation also serve to promote summer mountain tourism. Tennis, golf, swimming, horseback riding are key tools to attract visitors in the summer months toward the resorts facilities. The main problems regarding the development of mountain tourism centers come in the form of the growing concern for the preservation of the environment, of the human and traffic congestion in the mountains and the intensive use of natural resources by tourists. This paper aims to highlight the positive and negative impacts of sport and recreation in the development of mountain tourism and to present possible solutions to reduce negative impacts. Methodology is based on document review of many bibliographic resources, which are related with skiing and mountain biking as examples of winter and summer sport activities on mountains.

  8. CURRENT MICROBIOLOGICAL ASPECTS IN HIGH MOUNTAIN

    OpenAIRE

    KURT HANSELMANN; MUNTI YUHANA

    2006-01-01

    Remote and normally unpolluted high mountain lakes provide habitats with no or very limited anthropogenic influences and, therefore, their hydrodynamics are mostly regulated by the natural c onditions. Researches in high mountain lakes deal with measuring and modeling the response of the habitats to environmental changes especially correlated to acid deposition, pollutants influx and climatic variability. The microbial world has also become a focus in many studies of these extreme ecosystem...

  9. Flora of the Mayacmas Mountains. [Listing of 679 species in the Geysers Geothermal Resource area

    Energy Technology Data Exchange (ETDEWEB)

    Neilson, J.A.

    1981-09-01

    This flora describes the plants that occur within the Mayacmas Mountain Range of northern California. It is the result of ten years of environmental assessment by the author in the Geysers Geothermal Resource area, located in the center of the Mayacmas Range. The flora includes notes on plant communities and ecology of the area, as well as habitat and collection data for most of the 679 species covered. Altogether 74 families, 299 genera and 679 species are included in the flora. The work is divided into eight subdivisions: trees; shrubs; ferns and fern allies; aquatic plants; tules, sedges, and rushes; lilies and related plants; dicot herbs; and grasses. Within each subdivision, family, genera and species are listed alphabetically. Keys are provided at the beginning of each subdivision. A unique combination of physical, environmental and geologic factors have resulted in a rich and diverse flora in the Mayacmas. Maps have been provided indicating known locations for species of rare or limited occurrence.

  10. Transfer and Articulation Issues between California Community Colleges and California State University

    Science.gov (United States)

    Tucker, Linda

    2013-01-01

    Purpose: The primary purpose of this study was to discover common transfer and articulation practices and to determine what practices aid in the implementation of the STAR Act between California Community Colleges and the California State University. The review of literature revealed a lack of research on the application of practices in transfer…

  11. 77 FR 50500 - California State Nonroad Engine Pollution Control Standards; California Nonroad Compression...

    Science.gov (United States)

    2012-08-21

    ... ENVIRONMENTAL PROTECTION AGENCY [AMS-FRL 9716-8] California State Nonroad Engine Pollution Control Standards; California Nonroad Compression Ignition Engines--In-Use Fleets; Authorization Request... emissions control of new engines not listed under section 209(e)(1). The section 209(e) rule and its...

  12. Room at the Mountain: Estimated Maximum Amounts of Commercial Spent Nuclear Fuel Capable of Disposal in a Yucca Mountain Repository

    International Nuclear Information System (INIS)

    Kessler, John H.; Kemeny, John; King, Fraser; Ross, Alan M.; Ross, Benjamen

    2006-01-01

    The purpose of this paper is to present an initial analysis of the maximum amount of commercial spent nuclear fuel (CSNF) that could be emplaced into a geological repository at Yucca Mountain. This analysis identifies and uses programmatic, material, and geological constraints and factors that affect this estimation of maximum amount of CSNF for disposal. The conclusion of this initial analysis is that the current legislative limit on Yucca Mountain disposal capacity, 63,000 MTHM of CSNF, is a small fraction of the available physical capacity of the Yucca Mountain system assuming the current high-temperature operating mode (HTOM) design. EPRI is confident that at least four times the legislative limit for CSNF (∼260,000 MTHM) can be emplaced in the Yucca Mountain system. It is possible that with additional site characterization, upwards of nine times the legislative limit (∼570,000 MTHM) could be emplaced. (authors)

  13. Accessing northern California earthquake data via Internet

    Science.gov (United States)

    Romanowicz, Barbara; Neuhauser, Douglas; Bogaert, Barbara; Oppenheimer, David

    The Northern California Earthquake Data Center (NCEDC) provides easy access to central and northern California digital earthquake data. It is located at the University of California, Berkeley, and is operated jointly with the U.S. Geological Survey (USGS) in Menlo Park, Calif., and funded by the University of California and the National Earthquake Hazard Reduction Program. It has been accessible to users in the scientific community through Internet since mid-1992.The data center provides an on-line archive for parametric and waveform data from two regional networks: the Northern California Seismic Network (NCSN) operated by the USGS and the Berkeley Digital Seismic Network (BDSN) operated by the Seismographic Station at the University of California, Berkeley.

  14. Proceedings of the symposium on multiple-use managementof California's hardwood resources; November 12-14, 1986; San Luis Obispo, California

    Science.gov (United States)

    Timothy R. Plumb; Norman H. Pillsbury

    1987-01-01

    The Symposium on the Ecology, Management, and Utilization of California Oaks held in June 1979 at Claremont, California, was the first to take a comprehensive look at California's native oak resource. At that time, interest in several species of California oaks was rapidly growing with particular concern about their regeneration, preservation, and wildlife...

  15. California Gnatcatcher Observations - 2004-2009 [ds457

    Data.gov (United States)

    California Natural Resource Agency — In southern California, the coastal California gnatcatcher (CAGN) has become both the flagship species and an umbrella species identified with conservation, where...

  16. Thirty-one years of debris-flow observation and monitoring near La Honda, California, USA

    Science.gov (United States)

    Wieczorek, G.F.; Wilson, R.C.; Ellen, S.D.; Reid, M.E.; Jayko, A.S.

    2007-01-01

    From 1975 until 2006,18 intense storms triggered at least 248 debris flows within 10 km2 northwest of the town of La Honda within the Santa Cruz Mountains, California. In addition to mapping debris flows and other types of landslides, studies included soil sampling and geologic mapping, piezometric and tensiometer monitoring, and rainfall measurement and recording. From 1985 until 1995, a system with radio telemetered rain gages and piezometers within the La Honda region was used for issuing six debris-flow warnings within the San Francisco Bay region through the NOAA ALERT system. Depending upon the relative intensity of rainfall during storms, debris flows were generated from deep slumps, shallow slumps, shallow slides in colluvium and shallow slides over bedrock. Analysis shows the storms with abundant antecedent rainfall followed by several days of steady heavy intense rainfall triggered the most abundant debris flows. ?? 2007 millpress.

  17. The White Mountain Recreational Enterprise: Bio-Political Foundations for White Mountain Apache Natural Resource Control, 1945–1960

    Directory of Open Access Journals (Sweden)

    David C. Tomblin

    2016-07-01

    Full Text Available Among American Indian nations, the White Mountain Apache Tribe has been at the forefront of a struggle to control natural resource management within reservation boundaries. In 1952, they developed the first comprehensive tribal natural resource management program, the White Mountain Recreational Enterprise (WMRE, which became a cornerstone for fighting legal battles over the tribe’s right to manage cultural and natural resources on the reservation for the benefit of the tribal community rather than outside interests. This article examines how White Mountain Apaches used the WMRE, while embracing both Euro-American and Apache traditions, as an institutional foundation for resistance and exchange with Euro-American society so as to reassert control over tribal eco-cultural resources in east-central Arizona.

  18. Crustal and upper mantle velocity structure of the Salton Trough, southeast California

    Science.gov (United States)

    Parsons, T.; McCarthy, J.

    1996-01-01

    This paper presents data and modelling results from a crustal and upper mantle wide-angle seismic transect across the Salton Trough region in southeast California. The Salton Trough is a unique part of the Basin and Range province where mid-ocean ridge/transform spreading in the Gulf of California has evolved northward into the continent. In 1992, the U.S. Geological Survey (USGS) conducted the final leg of the Pacific to Arizona Crustal Experiment (PACE). Two perpendicular models of the crust and upper mantle were fit to wide-angle reflection and refraction travel times, seismic amplitudes, and Bouguer gravity anomalies. The first profile crossed the Salton Trough from the southwest to the northeast, and the second was a strike line that paralleled the Salton Sea along its western edge. We found thin crust (???21-22 km thick) beneath the axis of the Salton Trough (Imperial Valley) and locally thicker crust (???27 km) beneath the Chocolate Mountains to the northeast. We modelled a slight thinning of the crust further to the northeast beneath the Colorado River (???24 km) and subsequent thickening beneath the metamorphic core complex belt northeast of the Colorado River. There is a deep, apparently young basin (???5-6 km unmetamorphosed sediments) beneath the Imperial Valley and a shallower (???2-3 km) basin beneath the Colorado River. A regional 6.9-km/s layer (between ???15-km depth and the Moho) underlies the Salton Trough as well as the Chocolate Mountains where it pinches out at the Moho. This lower crustal layer is spatially associated with a low-velocity (7.6-7.7 km/s) upper mantle. We found that our crustal model is locally compatible with the previously suggested notion that the crust of the Salton Trough has formed almost entirely from magmatism in the lower crust and sedimentation in the upper crust. However, we observe an apparently magmatically emplaced lower crust to the northeast, outside of the Salton Trough, and propose that this layer in part

  19. Mountain-Plains Curriculum.

    Science.gov (United States)

    Mountain-Plains Education and Economic Development Program, Inc., Glasgow AFB, MT.

    The document lists the Mountain-Plains curriculum by job title (where applicable), including support courses. The curriculum areas covered are mathematics skills, communication skills, office education, lodging services, food services, marketing and distribution, welding support, automotive, small engines, career guidance, World of Work, health…

  20. Conservation of biodiversity in mountain ecosystems -- At a glance

    OpenAIRE

    MacKinnon, K.

    2002-01-01

    Metadata only record Mountains are especially important for biodiversity conservation since many harbor unique assemblages of plants and animals, including high levels of endemic species. Mountain biodiversity and natural habitats bestow multiple ecosystem, soil conservation, and watershed benefits. Mountains are often centers of endemism, where species are prevalent in or peculiar to a particular region, and Pleistocene refuges, which are hypothesized to have high levels of diversity wher...

  1. Paleogene Sediment Character of Mountain Front Central Sumatra Basin

    Directory of Open Access Journals (Sweden)

    P. A. Suandhi

    2014-07-01

    Full Text Available DOI: 10.17014/ijog.v8i3.164The SE-NW trending Mountain Front of Central Sumatra Basin is located in the southern part of the basin. The Mountain Front is elongated parallel to the Bukit Barisan Mountain, extending from the Regencies of North Padang Lawas (Gunung Tua in the northwest, Rokan Hulu, Kampar, Kuantan Singingi, and Inderagiri Hulu Regency in the southeast. The Palaeogene sediments also represent potential exploration objectives in Central Sumatra Basin, especially in the mountain front area. Limited detailed Palaeogene sedimentology information cause difficulties in hydrocarbon exploration in this area. Latest age information and attractive sediment characters based on recent geological fieldwork (by chaining method infer Palaeogene sediment potential of the area. The Palaeogene sedimentary rock of the mountain front is elongated from northwest to southeast. Thickness of the sedimentary unit varies between 240 - 900 m. Palynology samples collected recently indicate that the oldest sedimentary unit is Middle Eocene and the youngest one is Late Oligocene. This latest age information will certainly cause significant changes to the existing surface geological map of the mountain front area. Generally, the Palaeogene sediments of the mountain front area are syn-rift sediments. The lower part of the Palaeogene deposit consists of fluvial facies of alluvial fan and braided river facies sediments. The middle part consists of fluvial meandering facies, lacustrine delta facies, and turbidity lacustrine facies sediments. The upper part consists of fluvial braided facies and transitional marine facies sediments. Volcanism in the area is detected from the occurrence of volcanic material as lithic material and spotted bentonite layers in the middle part of the mountain front area. Late rifting phase is indicated by the presence of transitional marine facies in the upper part of the Palaeogene sediments.

  2. Small fishes crossed a large mountain range: Quaternary stream capture events and freshwater fishes on both sides of the Taebaek Mountains.

    Science.gov (United States)

    Kim, Daemin; Hirt, M Vincent; Won, Yong-Jin; Simons, Andrew M

    2017-07-01

    The Taebaek Mountains in Korea serve as the most apparent biogeographic barrier for Korean freshwater fishes, resulting in 2 distinct ichthyofaunal assemblages on the eastern (East/Japan Sea slope) and western (Yellow Sea and Korea Strait slopes) sides of the mountain range. Of nearly 100 species of native primary freshwater fishes in Korea, only 18 species occur naturally on both sides of the mountain range. Interestingly, there are 5 rheophilic species (Phoxinus phoxinus, Coreoleuciscus splendidus, Ladislavia taczanowskii, Iksookimia koreensis and Koreocobitis rotundicaudata) found on both sides of the Taebaek Mountains that are geographically restricted to the Osip River (and several neighboring rivers, for L. taczanowskii and I. koreensis) on the eastern side of the mountain range. The Osip River and its neighboring rivers also shared a rheophilic freshwater fish, Liobagrus mediadiposalis, with the Nakdong River on the western side of the mountain range. We assessed historical biogeographic hypotheses on the presence of these rheophilic fishes, utilizing DNA sequence data from the mitochondrial cytochrome b gene. Results of our divergence time estimation indicate that ichthyofaunal transfers into the Osip River (and several neighboring rivers in East Sea slope) have occurred from the Han (Yellow Sea slope) and Nakdong (Korea Strait slope) Rivers since the Late Pleistocene. The inferred divergence times for the ichthyofaunal transfer across the Taebaek Mountains were consistent with the timing of hypothesized multiple reactivations of the Osip River Fault (Late Pleistocene), suggesting that the Osip River Fault reactivations may have caused stream capture events, followed by ichthyofaunal transfer, not only between the Osip and Nakdong Rivers, but also between the Osip and Han Rivers. © 2016 International Society of Zoological Sciences, Institute of Zoology/Chinese Academy of Sciences and John Wiley & Sons Australia, Ltd.

  3. A measure for the promotion of mountain ecological villages in South Korea: focus on the national mountain ecological village investigation of 2014

    OpenAIRE

    Choi, Soo Im; Kang, Hag Mo; Kim, Hyun; Lee, Chang Heon; Lee, Chong Kyu

    2016-01-01

    Background Although South Korean mountain villages occupy 44 and 55?% of land and forest areas, respectively, these villages account for only 3?% of the national population and they suffer from a declining workforce owing to aging, wage inflation, and low forestry productivity. As a result, the South Korean government implemented a mountain ecological village development project from 1995 to 2013 in 312 of the 4972 mountain villages and investigated project performance in 2014. The present st...

  4. The Mountains of Io: Global and Geological Perspectives from Voyager and Galileo

    Science.gov (United States)

    Schenk, Paul; Hargitai, Henrik; Wilson, Ronda; McEwen, Alfred; Thomas, Peter; Bredekamp, Joe (Technical Monitor)

    2001-01-01

    To search for local and global scale geologic associations that may be related to the internal dynamics of Io, we have completed a global catalog of all mountains and volcanic centers. We have identified 115 mountain structures (covering approx. 3% of the surface) and 541 volcanic centers, including paterae (calderas and dark spots) and shield volcanoes. The average length of an Ionian mountain is 157 km, with the longest being 570 km. The mean height of Ionian mountains is 6.3 km, and the highest known mountain is Boosaule Montes (17.5 +/- 3 km). Five basic morphologic types of mountains have been identified; mesa, plateau peak, ridge, and massif. Very few mountains bear any physical similarity. to classic volcanic landforms, but many resemble flatiron mountains on Earth and are interpreted as tilted crustal blocks. This would be consistent with the hypothesis that most mountains are thrust blocks formed as a result of compressive stresses built up in the lower crust due to the global subsidence of volcanic layers as they are buried over time. More than one mechanism may be responsible for all Ionian mountains, however. The proximity of some mountains to paterae may indicate a direct link between some mountains and volcanism, although it is not always clear which came first. In contrast to earlier studies, a pronounced bimodal pattern is observed in the global distribution of both mountains and volcanic centers. The regions of highest areal densities of volcanic centers are near the sub- and anti-Jovian regions, but are offset roughly 90deg in longitude from the two, regions of greatest concentration of mountains. This anticorrelation may indicate the overprinting of a second stress field on the global compressive stresses due to subsidence. The bimodal distribution of volcanic centers and mountains is consistent with models of asthenospheric tidal heating and internal convection developed by Tackley et al.Over regions of mantle upwelling, compressive stresses in

  5. California community water systems inventory dataset, 2010

    Data.gov (United States)

    California Environmental Health Tracking Program — This data set contains information about all Community Water Systems in California. Data are derived from California Office of Drinking Water (ODW) Water Quality...

  6. Hydrologic response and watershed sensitivity to climate warming in California's Sierra Nevada.

    Directory of Open Access Journals (Sweden)

    Sarah E Null

    Full Text Available This study focuses on the differential hydrologic response of individual watersheds to climate warming within the Sierra Nevada mountain region of California. We describe climate warming models for 15 west-slope Sierra Nevada watersheds in California under unimpaired conditions using WEAP21, a weekly one-dimensional rainfall-runoff model. Incremental climate warming alternatives increase air temperature uniformly by 2 degrees, 4 degrees, and 6 degrees C, but leave other climatic variables unchanged from observed values. Results are analyzed for changes in mean annual flow, peak runoff timing, and duration of low flow conditions to highlight which watersheds are most resilient to climate warming within a region, and how individual watersheds may be affected by changes to runoff quantity and timing. Results are compared with current water resources development and ecosystem services in each watershed to gain insight into how regional climate warming may affect water supply, hydropower generation, and montane ecosystems. Overall, watersheds in the northern Sierra Nevada are most vulnerable to decreased mean annual flow, southern-central watersheds are most susceptible to runoff timing changes, and the central portion of the range is most affected by longer periods with low flow conditions. Modeling results suggest the American and Mokelumne Rivers are most vulnerable to all three metrics, and the Kern River is the most resilient, in part from the high elevations of the watershed. Our research seeks to bridge information gaps between climate change modeling and regional management planning, helping to incorporate climate change into the development of regional adaptation strategies for Sierra Nevada watersheds.

  7. Rocky Mountain Research Station: 2011 Annual Accomplishments

    Science.gov (United States)

    Rick Fletcher

    2011-01-01

    The Rocky Mountain Research Station is one of seven regional units that make up the USDA Forest Service Research and Development organization ­ the most extensive natural resources research organization in the world. We maintain 12 field laboratories throughout a 12-state territory encompassing the Great Basin, Southwest, Rocky Mountains, and parts of the Great Plains...

  8. Rocky Mountain Research Station: 2010 Research Accomplishments

    Science.gov (United States)

    Rick Fletcher

    2010-01-01

    The Rocky Mountain Research Station is one of seven regional units that make up the USDA Forest Service Research and Development organization ­ the most extensive natural resources research organization in the world. We maintain 12 field laboratories throughout a 12-state territory encompassing the Great Basin, Southwest, Rocky Mountains, and parts of the Great Plains...

  9. Overview for geologic field-trip guides to volcanoes of the Cascades Arc in northern California

    Science.gov (United States)

    Muffler, L. J. Patrick; Donnelly-Nolan, Julie M.; Grove, Timothy L.; Clynne, Michael A.; Christiansen, Robert L.; Calvert, Andrew T.; Ryan-Davis, Juliet

    2017-08-15

    The California Cascades field trip is a loop beginning and ending in Portland, Oregon. The route of day 1 goes eastward across the Cascades just south of Mount Hood, travels south along the east side of the Cascades for an overview of the central Oregon volcanoes (including Three Sisters and Newberry Volcano), and ends at Klamath Falls, Oregon. Day 2 and much of day 3 focus on Medicine Lake Volcano. The latter part of day 3 consists of a drive south across the Pit River into the Hat Creek Valley and then clockwise around Lassen Volcanic Center to the town of Chester, California. Day 4 goes from south to north across Lassen Volcanic Center, ending at Burney, California. Day 5 and the first part of day 6 follow a clockwise route around Mount Shasta. The trip returns to Portland on the latter part of day 6, west of the Cascades through the Klamath Mountains and the Willamette Valley. Each of the three sections of this guidebook addresses one of the major volcanic regions: Lassen Volcanic Center (a volcanic field that spans the volcanic arc), Mount Shasta (a fore-arc stratocone), and Medicine Lake Volcano (a rear-arc, shield-shaped edifice). Each section of the guide provides (1) an overview of the extensive field and laboratory studies, (2) an introduction to the literature, and (3) directions to the most important and accessible field localities. The field-trip sections contain far more stops than can possibly be visited in the actual 6-day 2017 IAVCEI excursion from Portland. We have included extra stops in order to provide a field-trip guide that will have lasting utility for those who may have more time or may want to emphasize one particular volcanic area.

  10. 75 FR 29686 - Proposed Establishment of the Pine Mountain-Mayacmas Viticultural Area

    Science.gov (United States)

    2010-05-27

    ... states that local growers report that Pine Mountain vineyards are naturally free of mildew, a vineyard... often stall over Pine Mountain and the Mayacmas range, dropping more rain than in other areas. Pine..., these mountain soils include large amounts of sand and gravel. Pine Mountain soils are generally less...

  11. Estimating abundance of mountain lions from unstructured spatial sampling

    Science.gov (United States)

    Russell, Robin E.; Royle, J. Andrew; Desimone, Richard; Schwartz, Michael K.; Edwards, Victoria L.; Pilgrim, Kristy P.; Mckelvey, Kevin S.

    2012-01-01

    Mountain lions (Puma concolor) are often difficult to monitor because of their low capture probabilities, extensive movements, and large territories. Methods for estimating the abundance of this species are needed to assess population status, determine harvest levels, evaluate the impacts of management actions on populations, and derive conservation and management strategies. Traditional mark–recapture methods do not explicitly account for differences in individual capture probabilities due to the spatial distribution of individuals in relation to survey effort (or trap locations). However, recent advances in the analysis of capture–recapture data have produced methods estimating abundance and density of animals from spatially explicit capture–recapture data that account for heterogeneity in capture probabilities due to the spatial organization of individuals and traps. We adapt recently developed spatial capture–recapture models to estimate density and abundance of mountain lions in western Montana. Volunteers and state agency personnel collected mountain lion DNA samples in portions of the Blackfoot drainage (7,908 km2) in west-central Montana using 2 methods: snow back-tracking mountain lion tracks to collect hair samples and biopsy darting treed mountain lions to obtain tissue samples. Overall, we recorded 72 individual capture events, including captures both with and without tissue sample collection and hair samples resulting in the identification of 50 individual mountain lions (30 females, 19 males, and 1 unknown sex individual). We estimated lion densities from 8 models containing effects of distance, sex, and survey effort on detection probability. Our population density estimates ranged from a minimum of 3.7 mountain lions/100 km2 (95% Cl 2.3–5.7) under the distance only model (including only an effect of distance on detection probability) to 6.7 (95% Cl 3.1–11.0) under the full model (including effects of distance, sex, survey effort, and

  12. Winter severity and snowiness and their multiannual variability in the Karkonosze Mountains and Jizera Mountains

    Science.gov (United States)

    Urban, Grzegorz; Richterová, Dáša; Kliegrová, Stanislava; Zusková, Ilona; Pawliczek, Piotr

    2017-09-01

    This paper analyses winter severity and snow conditions in the Karkonosze Mountains and Jizera Mountains and examines their long-term trends. The analysis used modified comprehensive winter snowiness (WSW) and winter severity (WOW) indices as defined by Paczos (1982). An attempt was also made to determine the relationship between the WSW and WOW indices. Measurement data were obtained from eight stations operated by the Institute of Meteorology and Water Management - National Research Institute (IMGW-PIB), from eight stations operated by the Czech Hydrological and Meteorological Institute (CHMI) and also from the Meteorological Observatory of the University of Wrocław (UWr) on Mount Szrenica. Essentially, the study covered the period from 1961 to 2015. In some cases, however, the period analysed was shorter due to the limited availability of data, which was conditioned, inter alia, by the period of operation of the station in question, and its type. Viewed on a macroscale, snow conditions in the Karkonosze Mountains and Jizera Mountains (in similar altitude zones) are clearly more favourable on southern slopes than on northern ones. In the study area, negative trends have been observed with respect to both the WSW and WOW indices—winters have become less snowy and warmer. The correlation between the WOW and WSW indices is positive. At stations with northern macroexposure, WOW and WSW show greater correlation than at ones with southern macroexposure. This relationship is the weakest for stations that are situated in the upper ranges (Mount Śnieżka and Mount Szrenica).

  13. Yucca Mountain Biological Resources Monitoring Program

    International Nuclear Information System (INIS)

    1992-01-01

    The US Department of Energy (DOE) is required by the Nuclear Waste Policy Act of 1982 (as amended in 1987) to study and characterize Yucca Mountain as a possible site for a geologic repository for high-level nuclear waste. During site characterization, the DOE will conduct a variety of geotechnical, geochemical, geological, and hydrological studies to determine the suitability of Yucca Mountain as a repository. To ensure that site characterization activities (SCA) do not adversely affect the Yucca Mountain area, an environmental program has been implemented to monitor and mitigate potential impacts and to ensure that activities comply with applicable environmental regulations. This report describes the activities and accomplishments during fiscal year 1991 (FY91) for six program areas within the Terrestrial Ecosystem component of the YMP environmental program. The six program areas are Site Characterization Activities Effects, Desert Tortoises, Habitat Reclamation, Monitoring and Mitigation, Radiological Monitoring, and Biological Support

  14. Computation of spatial significance of mountain objects extracted from multiscale digital elevation models

    International Nuclear Information System (INIS)

    Sathyamoorthy, Dinesh

    2014-01-01

    The derivation of spatial significance is an important aspect of geospatial analysis and hence, various methods have been proposed to compute the spatial significance of entities based on spatial distances with other entities within the cluster. This paper is aimed at studying the spatial significance of mountain objects extracted from multiscale digital elevation models (DEMs). At each scale, the value of spatial significance index SSI of a mountain object is the minimum number of morphological dilation iterations required to occupy all the other mountain objects in the terrain. The mountain object with the lowest value of SSI is the spatially most significant mountain object, indicating that it has the shortest distance to the other mountain objects. It is observed that as the area of the mountain objects reduce with increasing scale, the distances between the mountain objects increase, resulting in increasing values of SSI. The results obtained indicate that the strategic location of a mountain object at the centre of the terrain is more important than its size in determining its reach to other mountain objects and thus, its spatial significance

  15. Multivariate patterns of biochemical responses of Pinus ponderosa trees at field plots in the San Bernardino Mountains, southern California.

    Science.gov (United States)

    Tausz, M; Bytnerowicz, A; Arbaugh, M J; Wonisch, A; Grill, D

    2001-03-01

    Most environmental stress conditions promote the production of potentially toxic active oxygen species in plant cells. Plants respond with changes in their antioxidant and photoprotective systems. Antioxidants and pigments have been widely used to measure these responses. Because trees are exposed to multiple man-made and natural stresses, their responses are not reflected by changes in single stress markers, but by complex biochemical changes. To evaluate such response patterns, explorative multivariate statistics have been used. In the present study, 12 biochemical variables (chloroplast pigments, state of the xanthophyll cycle, alpha-tocopherol, ascorbate and dehydroascorbate, glutathione and oxidized glutathione) were measured in previous-year needles of field-grown Pinus ponderosa Dougl. ex Laws. The trees were sampled in two consecutive years in the San Bernardino Mountains in southern California, where a pollution gradient is overlaid by gradients in natural stresses (drought, altitude). To explore irradiance effects, needle samples were taken directly in the field (sun exposed) and from detached, dark-adapted branches. A principal component analysis on this data set (n = 80) resulted in four components (Components 1-4) that explained 67% of the variance in the original data. Component 1 was positively loaded by concentrations of alpha-tocopherol, total ascorbate and xanthophyll cycle pools, as well as by the proportion of de-epoxides in the xanthophyll cycle. It was negatively loaded by the proportion of dehydroascorbate in the ascorbate pool. Component 2 was negatively loaded by chlorophyll concentrations, and positively loaded by the ratios of lutein and beta-carotene to chlorophyll and by the de-epoxidation state of the xanthophyll cycle. Component 3 was negatively loaded by GSH concentrations and positively loaded by the proportions of GSSG and tocopherol concentrations. Component 4 was positively loaded by neoxanthin and negatively loaded by beta

  16. Modeling fluid-rock interaction at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Viani, B.E.; Bruton, C.J.

    1992-08-01

    Volcanic rocks at Yucca Mountain, Nevada aie being assessed for their suitability as a potential repository for high-level nuclear waste. Recent progress in modeling fluid-rock interactions, in particular the mineralogical and chemical changes that may accompany waste disposal at Yucca Mountain, will be reviewed in this publication. In Part 1 of this publication, ''Geochemical Modeling of Clinoptilolite-Water Interactions,'' solid-solution and cation-exchange models for the zeolite clinoptilolite are developed and compared to experimental and field observations. At Yucca Mountain, clinoptilolite which is found lining fractures and as a major component of zeolitized tuffs, is expected to play an important role in sequestering radionuclides that may escape from a potential nuclear waste repository. The solid-solution and ion-exchange models were evaluated by comparing predicted stabilities and exchangeable cation distributions of clinoptilolites with: (1) published binary exchange data; (2) compositions of coexisting clinoptilolites and formation waters at Yucca Mountain; (3) experimental sorption isotherms of Cs and Sr on zeolitized tuff, and (4) high temperature experimental data. Good agreement was found between predictions and expertmental data, especially for binary exchange and Cs and Sr sorption on clinoptilolite. Part 2 of this publication, ''Geochemical Simulation of Fluid-Rock Interactions at Yucca Mountain,'' describes preliminary numerical simulations of fluid-rock interactions at Yucca Mountain. The solid-solution model developed in the first part of the paper is used to evaluate the stability and composition of clinciptilolite and other minerals in the host rock under ambient conditions and after waste emplacement

  17. Aspen biology, community classification, and management in the Blue Mountains

    Science.gov (United States)

    David K. Swanson; Craig L. Schmitt; Diane M. Shirley; Vicky Erickson; Kenneth J. Schuetz; Michael L. Tatum; David C. Powell

    2010-01-01

    Quaking aspen (Populus tremuloides Michx.) is a valuable species that is declining in the Blue Mountains of northeastern Oregon. This publication is a compilation of over 20 years of aspen management experience by USDA Forest Service workers in the Blue Mountains. It includes a summary of aspen biology and occurrence in the Blue Mountains, and a...

  18. Mechanical excavator performance in Yucca Mountain tuffs

    International Nuclear Information System (INIS)

    Ozdemir, L.; Hansen, F.D.

    1991-01-01

    A research effort of four phases is in progress at the Colorado School of Mines. The overall program will evaluate the cutability of welded tuff and other lithologies likely to be excavated at Yucca Mountain in the site characterization process. Several mechanical systems are considered with emphasis given to the tunnel boring machine. The research comprises laboratory testing, linear drag bit and disc cutter tests and potentially large-scale laboratory demonstrations to support potential use of a tunnel boring machine in welded tuff. Preliminary estimates of mechanical excavator performance in Yucca Mountain tuff are presented here. As phases of the research project are completed, well quantified estimates will be made of performance of mechanical excavators in the Yucca Mountain tuffs. 3 refs., 2 tabs

  19. Mechanical excavator performance in Yucca Mountain tuffs

    International Nuclear Information System (INIS)

    Ozdemir, L.; Hansen, F.D.

    1991-01-01

    A research effort of four phases is in progress at the Colorado School of Mines. The overall program will evaluate the cutability of welded tuff and other lithologies likely to be excavated at Yucca Mountain in the site characterization process. Several mechanical systems are considered with emphasis given to the tunnel boring machine. The research comprises laboratory testing, linear drag bit and disc cutter tests, and potentially large-scale lab. demonstrations to support potential use of a tunnel boring machine in welded tuff. Preliminary estimates of mechanical excavator performance in Yucca Mountain tuff are presented here. As phases of the research project are completed, well-quantified estimates will be made of performance of mechanical excavators in the Yucca Mountain tuffs

  20. A SPECIAL FOEHN CASE IN NORTH-EASTERN APUSENI MOUNTAINS

    Directory of Open Access Journals (Sweden)

    T. TUDOSE

    2016-03-01

    Full Text Available The paper presents a case study for the 9-10 January 2015 period, when foehn processes were occurred on the eastern slope of the Apuseni Mountains. With a view to establishing the synoptic context in which the phenomenon was manifested, an analysis of the atmospheric fields was used, while for determining the intensity of the process several meteorological parameters (temperature, wind and relative humidity were analyzed along three west-east profiles across the Apuseni Mountains. The analysis points out the presence of foehn processes on the eastern part of the Apuseni Mountains, the highest thermal and hygric differences being recorded on the north-eastern part of the mountains. The most important effect of this synoptic situation was the reduction of the snow cover depth.

  1. Respiratory disease, behavior, and survival of mountain goat kids

    Science.gov (United States)

    Blanchong, Julie A.; Anderson, Christopher A.; Clark, Nicholas J.; Klaver, Robert W.; Plummer, Paul J.; Cox, Mike; Mcadoo, Caleb; Wolff, Peregrine L.

    2018-01-01

    Bacterial pneumonia is a threat to bighorn sheep (Ovis canadensis) populations. Bighorn sheep in the East Humboldt Mountain Range (EHR), Nevada, USA, experienced a pneumonia epizootic in 2009–2010. Testing of mountain goats (Oreamnos americanus) that were captured or found dead on this range during and after the epizootic detected bacteria commonly associated with bighorn sheep pneumonia die‐offs. Additionally, in years subsequent to the bighorn sheep epizootic, the mountain goat population had low kid:adult ratios, a common outcome for bighorn sheep populations that have experienced a pneumonia epizootic. We hypothesized that pneumonia was present and negatively affecting mountain goat kids in the EHR. From June–August 2013–2015, we attempted to observe mountain goat kids with marked adult females in the EHR at least once per week to document signs of respiratory disease; identify associations between respiratory disease, activity levels, and subsequent disappearance (i.e., death); and estimate weekly survival. Each time we observed a kid with a marked adult female, we recorded any signs of respiratory disease and collected behavior data that we fit to a 3‐state discrete hidden Markov model (HMM) to predict a kid's state (active vs. sedentary) and its probability of disappearing. We first observed clinical signs of respiratory disease in kids in late July–early August each summer. We observed 8 of 31 kids with marked adult females with signs of respiratory disease on 13 occasions. On 11 of these occasions, the HMM predicted that kids were in the sedentary state, which was associated with increased probability of subsequent death. We estimated overall probability of kid survival from June–August to be 0.19 (95% CI = 0.08–0.38), which was lower than has been reported in other mountain goat populations. We concluded that respiratory disease was present in the mountain goat kids in the EHR and negatively affected their activity levels and survival

  2. Transit performance measures in California.

    Science.gov (United States)

    2016-04-01

    This research is the result of a California Department of Transportation (Caltrans) request to assess the most commonly : available transit performance measures in California. Caltrans wanted to understand performance measures and data used by : Metr...

  3. Peculiarities of high-altitude landscapes formation in the Small Caucasus mountains

    Science.gov (United States)

    Trifonova, Tatiana

    2014-05-01

    Various mountain systems differ in character of landscapes and soil. Basic problem of present research: conditions and parameters determining the development of various landscapes and soils in mountain areas. Our research object is the area of Armenia where Small Caucasus, a part of Armenian upland is located. The specific character of the area is defined by the whole variety of all mountain structures like fold, block folding mountain ridges, volcanic upland, individual volcanoes, and intermountain depressions. As for the climate, the area belongs to dry subtropics. We have studied the peculiarities of high-altitude landscapes formation and mountain river basins development. We have used remote sensing data and statistic database of climatic parameters in this research. Field observations and landscape pictures analysis of space images allow distinguishing three types of mountain geosystems clearly: volcanic massifs, fold mountainous structures and closed high mountain basins - area of the lakes. The distribution of precipitation according to altitude shows some peculiarities. It has been found that due to this factor the investigated mountain area may be divided into three regions: storage (fold) mountainous area; Ararat volcanic area (southern macro exposure); closed high mountainous basin-area of the lake Sevan. The mountainous nature-climatic vertical landscapes appear to be horizontally oriented and they are more or less equilibrium (stable) geosystems, where the stable functional relationship between the landscape components is formed. Within their limits, definite bioclimatic structure of soil is developed. Along the slopes of fold mountains specific landscape shapes like litho-drainage basins are formed. They are intensively developing like relatively independent vertical geosystems. Mechanism of basin formation is versatile resulting in formation of the polychronous soil mantle structure. Landscapes and soils within the basin are of a different age, since

  4. Climate Change Adaptation in the Carpathian Mountain Region

    NARCIS (Netherlands)

    Werners, Saskia Elisabeth; Szalai, Sándor; Zingstra, Henk; Kőpataki, Éva; Beckmann, Andreas; Bos, Ernst; Civic, Kristijan; Hlásny, Tomas; Hulea, Orieta; Jurek, Matthias; Koch, Hagen; Kondor, Attila Csaba; Kovbasko, Aleksandra; Lakatos, M.; Lambert, Stijn; Peters, Richard; Trombik, Jiří; De Velde, Van Ilse; Zsuffa, István

    2016-01-01

    The Carpathian mountain region is one of the most significant natural refuges on the European continent. It is home to Europe’s most extensive tracts of montane forest, the largest remaining virgin forest and natural mountain beech-fir forest ecosystems. Adding to the biodiversity are semi-natural

  5. The physiology of mountain biking.

    Science.gov (United States)

    Impellizzeri, Franco M; Marcora, Samuele M

    2007-01-01

    Mountain biking is a popular outdoor recreational activity and an Olympic sport. Cross-country circuit races have a winning time of approximately equal 120 minutes and are performed at an average heart rate close to 90% of the maximum, corresponding to 84% of maximum oxygen uptake (VO2max). More than 80% of race time is spent above the lactate threshold. This very high exercise intensity is related to the fast starting phase of the race; the several climbs, forcing off-road cyclists to expend most of their effort going against gravity; greater rolling resistance; and the isometric contractions of arm and leg muscles necessary for bike handling and stabilisation. Because of the high power output (up to 500W) required during steep climbing and at the start of the race, anaerobic energy metabolism is also likely to be a factor of off-road cycling and deserves further investigation. Mountain bikers' physiological characteristics indicate that aerobic power (VO2max >70 mL/kg/min) and the ability to sustain high work rates for prolonged periods of time are prerequisites for competing at a high level in off-road cycling events. The anthropometric characteristics of mountain bikers are similar to climbers and all-terrain road cyclists. Various parameters of aerobic fitness are correlated to cross-country performance, suggesting that these tests are valid for the physiological assessment of competitive mountain bikers, especially when normalised to body mass. Factors other than aerobic power and capacity might influence off-road cycling performance and require further investigation. These include off-road cycling economy, anaerobic power and capacity, technical ability and pre-exercise nutritional strategies.

  6. Risk management among mountain bikers in selected clubs in ...

    African Journals Online (AJOL)

    Risk management among mountain bikers in selected clubs in Malaysia. ... Journal of Fundamental and Applied Sciences. Journal Home · ABOUT ... is more risky. Keywords: mountain biking, risk management, event management, Malaysia ...

  7. Characterize Eruptive Processes at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    D. Krier

    2004-01-01

    The purpose of this scientific analysis report, ''Characterize Eruptive Processes at Yucca Mountain, Nevada'', is to present information about natural volcanic systems and the parameters that can be used to model their behavior. This information is used to develop parameter-value distributions appropriate for analysis of the consequences of volcanic eruptions through a repository at Yucca Mountain. This scientific analysis report provides information to four other reports: ''Number of Waste Packages Hit by Igneous Intrusion'', (BSC 2004 [DIRS 170001]); ''Atmospheric Dispersal and Deposition of Tephra from Potential Volcanic Eruption at Yucca Mountain, Nevada'' (BSC 2004 [DIRS 170026]); ''Dike/Drift Interactions'' (BSC 2004 [DIRS 170028]); ''Development of Earthquake Ground Motion Input for Preclosure Seismic Design and Postclosure Performance Assessment of a Geologic Repository at Yucca Mountain, NV'' (BSC 2004 [DIRS 170027], Section 6.5). This report is organized into seven major sections. This section addresses the purpose of this document. Section 2 addresses quality assurance, Section 3 the use of software, Section 4 identifies the requirements that constrain this work, and Section 5 lists assumptions and their rationale. Section 6 presents the details of the scientific analysis and Section 7 summarizes the conclusions reached

  8. The mountain Cer: Potentials for tourism development

    Directory of Open Access Journals (Sweden)

    Grčić Mirko D.

    2003-01-01

    Full Text Available In northwest of Serbia in the meridians directions an elongated mountain range of Cer with Iverak and Vlašić stretches itself. On the north it goes down to Mačva and Posavina, on the west to Podrinje, on the east to the valley of Kolubara, on the south to the basins and valleys of Jadar and upper Kolubara, which separate it from the mountains of Valjevo and Podrinje area. Cer mountain offers extremely good condition for development of eco-tourism. The variety of relief with gorgeous see-sites, natural rarities, convenient bio-climatic conditions, significant water resources, forest complexes, medieval fortresses, cultural-historic monuments, richness of flora and fauna, preserved rural environment, traditions and customs of local population, were all neglected as strategic factors in the development of tourism. This mountain’s potentials are quite satisfactory for the needs of eco-tourism, similar to the National Park of Fruška Gora, but it has lacked an adequate ecotourist strategy so far. This study aims to pointing to the potential and possibilities of ecotourist valorization of this mountain.

  9. Raising the veil: mountains from a masculine and a feminine angle

    OpenAIRE

    2012-01-01

    Context The present call for papers seeks to offer a feminine/masculine reading of mountains. Many works have already analysed the roles of human activity in mountain spaces, in agricultural production, the travel trade, the economy and the arts. But such investigation has often focused on the masculine side, revealing the practices, customs and narratives of men in the mountains. However the relations between humans and mountains do not all take a masculine form, their feminine side being eq...

  10. The status of Yucca Mountain site characterization activities

    International Nuclear Information System (INIS)

    Gertz, Carl P.; Larkin, Erin L.; Hamner, Melissa

    1992-01-01

    The U.S. Department of Energy (DOE) Office of Civilian Radioactive Waste Management (OCRWM) is continuing its studies to determine if Yucca Mountain, Nevada, can safely isolate high-level nuclear waste for the next ten thousand years. As mandated by Congress in 1987, DOE is studying the rocks, the climate, and the water table at Yucca Mountain to ensure that the site is suitable before building a repository adopt 305 meters below the surface. Yucca Mountain, located 160.9 kilometers northwest of Las Vegas, lies on the western edge of the Nevada Test Site. Nevada and DOE have been in litigation over environmental permits needed to conduct studies, but recent court decisions have allowed limited new work to begin. This paper will examine progress made on the Yucca Mountain Site Characterization Project (YMP) during 1991 and continuing into 1992, discuss the complex legal issues and describe new site drilling work. Design work on the underground exploratory studies facility (ESF) will also be discussed. (author)

  11. Throughfall and fog deposition of nitrogen and sulfur at an N-limited and N-saturated site in the San Bernardino Mountains, southern California

    Science.gov (United States)

    Mark E. Fenn; Mark A. Poth; Susan L. Schilling; David B. Grainger

    2000-01-01

    Inorganic nitrogen (N) and sulfur (S) deposition in bulk throughfall and fog were determined at two sites located at opposite ends (42 km apart) of a pollution gradient in the San Bernardino Mountains. Plot-level averages for total annual N and S deposition in throughfall in 1996 were 18.8 and 2.9 kg·ha–1, respectively, at Camp Paivika (CP) and 2...

  12. Lightning safety awareness of visitors in three California national parks.

    Science.gov (United States)

    Weichenthal, Lori; Allen, Jacoby; Davis, Kyle P; Campagne, Danielle; Snowden, Brandy; Hughes, Susan

    2011-09-01

    To assess the level of lightning safety awareness among visitors at 3 national parks in the Sierra Nevada Mountains of California. A 12-question, short answer convenience sample survey was administered to participants 18 years of age and over concerning popular trails and points of interest with known lightning activity. There were 6 identifying questions and 5 knowledge-based questions pertaining to lightning that were scored on a binary value of 0 or 1 for a total of 10 points for the survey instrument. Volunteers in Fresno, California, were used as a control group. Participants were categorized as Sequoia and Kings Canyon National Park (SEKI), frontcountry (FC), or backcountry (BC); Yosemite National Park (YNP) FC or BC; and Fresno. Analysis of variance (ANOVA) was used to test for differences between groups. 467 surveys were included for analysis: 77 in Fresno, 192 in SEKI, and 198 in YNP. National park participants demonstrated greater familiarity with lightning safety than individuals from the metropolitan community (YNP 5.84 and SEKI 5.65 vs Fresno 5.14, P = .0032). There were also differences noted between the BC and FC subgroups (YNP FC 6.07 vs YNP BC 5.62, P = .02; YNP FC 6.07 vs SEKI FC 5.58, P = .02). Overall results showed that participants had certain basic lightning knowledge but lacked familiarity with other key lightning safety recommendations. While there are statistically significant differences in lightning safety awareness between national parks and metropolitan participants, the clinical impact of these findings are debatable. This study provides a starting point for providing educational outreach to visitors in these national parks. Copyright © 2011 Wilderness Medical Society. Published by Elsevier Inc. All rights reserved.

  13. Yucca Mountain biological resources monitoring program

    International Nuclear Information System (INIS)

    1993-02-01

    The US Department of Energy (DOE) is required by the Nuclear Waste Policy Act of 1982 (as amended in 1987) to study and characterize Yucca Mountain as a potential site for a geologic repository for high-level nuclear waste. During site characterization, the DOE will conduct a variety of geotechnical, geochemical, geological, and hydrological studies to determine the suitability of Yucca Mountain as a potential repository. To ensure that site characterization activities (SCA) do not adversely affect the environment at Yucca Mountain, an environmental program has been implemented to monitor and mitigate potential impacts and ensure activities comply with applicable environmental regulations. This report describes the activities and accomplishments of EG ampersand G Energy Measurements, Inc. (EG ampersand G/EM) during fiscal year 1992 (FY92) for six program areas within the Terrestrial Ecosystem component of the YMP environmental program. The six program areas are Site Characterization Effects, Desert Tortoises, Habitat Reclamation, Monitoring and Mitigation, Radiological Monitoring, and Biological Support

  14. Rocky Mountain High.

    Science.gov (United States)

    Hill, David

    2001-01-01

    Describes Colorado's Eagle Rock School, which offers troubled teens a fresh start by transporting them to a tuition- free campus high in the mountains. The program encourages spiritual development as well as academic growth. The atmosphere is warm, loving, structured, and nonthreatening. The article profiles several students' experiences at the…

  15. Modeling the Biophysical Impacts of Global Change in Mountain Biosphere Reserves

    NARCIS (Netherlands)

    Bugmann, H.; Björnsen Gurung, A.; Ewert, F.; Haeberli, W.; Guisan, A.; Fagre, D.; Kääb, A.

    2007-01-01

    Mountains and mountain societies provide a wide range of goods and services to humanity, but they are particularly sensitive to the effects of global environmental change. Thus, the definition of appropriate management regimes that maintain the multiple functions of mountain regions in a time of

  16. California State Waters Map Series: offshore of Pacifica, California

    Science.gov (United States)

    Edwards, Brian D.; Phillips, Eleyne L.; Dartnell, Peter; Greene, H. Gary; Bretz, Carrie K.; Kvitek, Rikk G.; Hartwell, Stephen R.; Johnson, Samuel Y.; Cochrane, Guy R.; Dieter, Bryan E.; Sliter, Ray W.; Ross, Stephanie L.; Golden, Nadine E.; Watt, Janet Tilden; Chinn, John L.; Erdey, Mercedes D.; Krigsman, Lisa M.; Manson, Michael W.; Endris, Charles A.; Cochran, Susan A.; Edwards, Brian D.

    2015-01-01

    In 2007, the California Ocean Protection Council initiated the California Seafloor Mapping Program (CSMP), designed to create a comprehensive seafloor map of high-resolution bathymetry, marine benthic habitats, and geology within the 3-nautical-mile limit of California’s State Waters. The CSMP approach is to create highly detailed seafloor maps through collection, integration, interpretation, and visualization of swath sonar data, acoustic backscatter, seafloor video, seafloor photography, high-resolution seismic-reflection profiles, and bottom-sediment sampling data. The map products display seafloor morphology and character, identify potential marine benthic habitats, and illustrate both the surficial seafloor geology and shallow (to about 100 m) subsurface geology. 

  17. Yucca Mountain Site characterization project bibliography, January--June 1991

    International Nuclear Information System (INIS)

    1992-06-01

    Following a reorganization of the Office of Civilian Radioactive Waste Management in 1990, the Yucca Mountain Project was renamed Yucca Mountain Site Characterization Project. The title of this bibliography was also changed to Yucca Mountain Site Characterization Project Bibliography. Prior to August 5, 1988, this project was called the Nevada Nuclear Waste Storage Investigations. This bibliography contains information on this ongoing project that was added to the Department of Energy's Science and Technology Database from January 1, 1990, through December 31, 1991

  18. Periodic Burning In Table Mountain-Pitch Pine Stands

    Science.gov (United States)

    Russell B. Randles; David H. van Lear; Thomas A. Waldrop; Dean M. Simon

    2002-01-01

    Abstract - The effects of multiple, low intensity burns on vegetation and wildlife habitat in Table Mountain (Pinus pungens Lamb.)-pitch (Pinus rigida Mill.) pine communities were studied in the Blue Ridge Mountains of North Carolina. Treatments consisted of areas burned from one to four times at 3-4 year...

  19. Landforms of High Mountains

    Directory of Open Access Journals (Sweden)

    Derek A. McDougall

    2016-05-01

    Full Text Available Reviewed: Landforms of High Mountains. By Alexander Stahr and Ewald Langenscheidt. Heidelberg, Germany: Springer, 2015. viii + 158 pp. US$ 129.99. Also available as an e-book. ISBN 978-3-642-53714-1.

  20. Cryptic elevational zonation in trapdoor spiders (Araneae, Antrodiaetidae, Aliatypus janus complex) from the California southern Sierra Nevada.

    Science.gov (United States)

    Starrett, James; Hayashi, Cheryl Y; Derkarabetian, Shahan; Hedin, Marshal

    2018-01-01

    The relative roles of ecological niche conservatism versus niche divergence in promoting montane speciation remains an important topic in biogeography. Here, our aim was to test whether lineage diversification in a species complex of trapdoor spiders corresponds with riverine barriers or with an ecological gradient associated with elevational tiering. Aliatypus janus was sampled from throughout its range, with emphasis on populations in the southern Sierra Nevada Mountains of California. We collected multi-locus genetic data to generate a species tree for A. janus and its close relatives. Coalescent based hypothesis tests were conducted to determine if genetic breaks within A. janus conform to riverine barriers. Ecological niche models (ENM) under current and Last Glacial Maximum (LGM) conditions were generated and hypothesis tests of niche conservatism and divergence were performed. Coalescent analyses reveal deeply divergent genetic lineages within A. janus, likely corresponding to cryptic species. Two primary lineages meet along an elevational gradient on the western slopes of the southern Sierra Nevada Mountains. ENMs under both current and LGM conditions indicate that these groups occupy largely non-overlapping niches. ENM hypothesis testing rejected niche identity between the two groups, and supported a sharp ecological gradient occurring where the groups meet. However, the niche similarity test indicated that the two groups may not inhabit different background niches. The Sierra Nevada Mountains provide a natural laboratory for simultaneously testing ecological niche divergence and conservatism and their role in speciation across a diverse range of taxa. Aliatypus janus represents a species complex with cryptic lineages that may have diverged due to parapatric speciation along an ecological gradient, or been maintained by the evolution of ecological niche differences following allopatric speciation. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Preparing to Submit a License Application for Yucca Mountain

    International Nuclear Information System (INIS)

    W.J. Arthur; M.D. Voegele

    2005-01-01

    In 1982, the U.S. Congress passed the Nuclear Waste Policy Act, a Federal law that established U.S. policy for the permanent disposal of spent nuclear fuel and high-level radioactive waste. Congress amended the Act in 1987, directing the Department of Energy to study only Yucca Mountain, Nevada as the site for a permanent geologic repository. As the law mandated, the Department evaluated Yucca Mountain to determine its suitability as the site for a permanent geologic repository. Decades of scientific studies demonstrated that Yucca Mountain would protect workers, the public, and the environment during the time that a repository would be operating and for tens of thousands of years after closure of the repository. A repository at this remote site would also: preserve the quality of the environment; allow the environmental cleanup of Cold War weapons facilities; provide the nation with additional protection from acts of terrorism; and support a sound energy policy. Throughout the scientific evaluation of Yucca Mountain, there has been no evidence to disqualify Yucca Mountain as a suitable site for the permanent disposal of spent nuclear fuel and high-level radioactive waste. Upon completion of site characterization, the Secretary of Energy considered the results and concluded that a repository at Yucca Mountain would perform in a manner that protects public health and safety. The Secretary recommended the site to the President in February 2002; the President agreed and recommended to Congress that the site be approved. The Governor of Nevada submitted a notice of disapproval, and both houses of Congress acted to override the disapproval. In July 2002, the President's approval allowed the Department to begin the process of submittal of a license application for Yucca Mountain as the site for the nation's first repository for spent nuclear fuel and high-level radioactive waste. Yucca Mountain is located on federal land in Nye County in southern Nevada, an arid region

  2. Yucca Mountain Project bibliography, January--June 1989

    International Nuclear Information System (INIS)

    1990-01-01

    Following a reorganization of the Office of Civilian Radioactive Waste Management, the Yucca Mountain Project was renamed Yucca Mountain Site Characterization Project. The title of this bibliography was also changed to Yucca Mountain Site Characterization Project Bibliography. Prior to August 5, 1988, this project was called the Nevada Nuclear Waste Storage Investigations. This bibliography contains information on this ongoing project that was added to the Department of Energy's Energy Science and Technology Database from January 1990 through June 1990. The bibliography is categorized by principal project participating organization. Participant-sponsored subcontractor reports, papers, and articles are included in the sponsoring organization's list. Another section contains information about publications on the Energy Science and Technology Database that were not sponsored by the project but have some relevance to it

  3. Education and Yucca Mountain

    International Nuclear Information System (INIS)

    Lamont, M.A.

    1995-01-01

    This paper outlines a middle school social studies curriculum taught in Nevada. The curriculum was designed to educate students about issues related to the Yucca Mountain project. The paper focuses on the activities used in the curriculum

  4. Projected reformulated gasoline and AFV use in California

    International Nuclear Information System (INIS)

    Bemis, G.R.

    1995-01-01

    In the spring to summer of 1996, California will switch from conventional and oxygenated gasolines to reformulated gasoline. This gasoline will be a designer fuel, and generally not available from sources outside California, since California's fuel specifications then will be unique. Thus, it will be important for California refiners to be able to meet the California reformulated gasoline (Cal-RFG) demand. California refiners are investing over $4 billion to upgrade their facilities for Cal-RFG. This represents approximately 40% of the total cost of making Cal-RFG, and is expected to cost 5--15 cents/gallon more than conventional gasoline to produce. Starting in the year 2000, EPA will require use of a similar fuel in seven geographical areas outside of California. The discussion below focuses on the supply, demand and price projections for Cal-RFG

  5. The Story of California. Teacher's Guide = Guia del Maestro de La Historia de California.

    Science.gov (United States)

    Gray (Naomi) Associates, Inc., San Francisco, CA.

    The teacher's guide is designed to accompany "The Story of California," a Spanish-English bilingual history and geography of the state intended for classroom use by limited-English-proficient, native Spanish-speaking students in California's urban middle schools. The guide describes classroom activities coordinated with the student's…

  6. Geology of the Yucca Mountain Region, Chapter in Stuckless, J.S., ED., Yucca Mountain, Nevada - A Proposed Geologic Repository for High-Level Radioactive Waste

    International Nuclear Information System (INIS)

    J.S. Stuckless; D. O'Leary

    2006-01-01

    Yucca Mountain has been proposed as the site for the Nation's first geologic repository for high-level radioactive waste. This chapter provides the geologic framework for the Yucca Mountain region. The regional geologic units range in age from late Precambrian through Holocene, and these are described briefly. Yucca Mountain is composed dominantly of pyroclastic units that range in age from 11.4 to 15.2 Ma. The proposed repository would be constructed within the Topopah Spring Tuff, which is the lower of two major zoned and welded ash-flow tuffs within the Paintbrush Group. The two welded tuffs are separated by the partly to nonwelded Pah Canyon Tuff and Yucca Mountain Tuff, which together figure prominently in the hydrology of the unsaturated zone. The Quaternary deposits are primarily alluvial sediments with minor basaltic cinder cones and flows. Both have been studied extensively because of their importance in predicting the long-term performance of the proposed repository. Basaltic volcanism began about 10 Ma and continued as recently as about 80 ka with the eruption of cones and flows at Lathrop Wells, approximately 10 km south-southwest of Yucca Mountain. Geologic structure in the Yucca Mountain region is complex. During the latest Paleozoic and Mesozoic, strong compressional forces caused tight folding and thrust faulting. The present regional setting is one of extension, and normal faulting has been active from the Miocene through to the present. There are three major local tectonic domains: (1) Basin and Range, (2) Walker Lane, and (3) Inyo-Mono. Each domain has an effect on the stability of Yucca Mountain

  7. European mountain biodiversity

    Directory of Open Access Journals (Sweden)

    Nagy, Jennifer

    1998-12-01

    Full Text Available This paper, originally prepared as a discussion document for the ESF Exploratory Workshop «Trends in European Mountain Biodiversity - Research Planning Workshop», provides an overview of current mountain biodiversity research in Europe. It discusses (a biogeographical trends, (b the general properties of biodiversity, (c environmental factors and the regulation of biodiversity with respect to ecosystem function, (d the results of research on mountain freshwater ecosystems, and (e climate change and air pollution dominated environmental interactions.- The section on biogeographical trends highlights the importance of altitude and latitude on biodiversity. The implications of the existence of different scales over the different levels of biodiversity and across organism groups are emphasised as an inherent complex property of biodiversity. The discussion on ecosystem function and the regulation of biodiversity covers the role of environmental factors, productivity, perturbation, species migration and dispersal, and species interactions in the maintenance of biodiversity. Regional and long-term temporal patterns are also discussed. A section on the relatively overlooked topic of mountain freshwater ecosystems is presented before the final topic on the implications of recent climate change and air pollution for mountain biodiversity.

    [fr] Ce document a été préparé à l'origine comme une base de discussion pour «ESF Exploratory Workshop» intitulé «Trends in European Mountain Biodiversity - Research Planning Workshop»; il apporte une vue d'ensemble sur les recherches actuelles portant sur la biodiversité des montagnes en Europe. On y discute les (a traits biogéographiques, (b les caractéristiques générales- de la biodiversité, (c les facteurs environnementaux et la régulation de la biodiversité par rapport à la fonction des écosystèmes, (d les résultats des études sur les écosystèmes aquatiques des montagnes et (e les

  8. Public Schools, California, 2009, California Department of Education

    Data.gov (United States)

    U.S. Environmental Protection Agency — This set of data represents the most current public schools in the State of California as of June, 2009. Information about each public school includes: school name,...

  9. Rocky Mountain Research Station: 2012-2013 Annual Report

    Science.gov (United States)

    Cass Cairns

    2013-01-01

    The Rocky Mountain Research Station is one of seven regional units that make up the USDA Forest Service Research and Development organization - the most extensive natural resources research organization in the world. We maintain 12 field laboratories throughout a 12-state territory encompassing the Great Basin, Southwest, Rocky Mountains, and parts of the...

  10. Refresher Course on Mountain Hydrology and Climate Change

    Indian Academy of Sciences (India)

    IAS Admin

    2016-01-29

    Jan 29, 2016 ... The programme focuses on hydrology of mountains, which provide water around 40 % of the world population. Changes in temperature and precipitation have in recent years led to the retreat of glaciers in mountains. Climatic changes do not only affect glaciers or the nival zone; a change in climatic ...

  11. Pathways Into and Out of the 2012-2016 California-Nevada Drought—Lessons for Future Drought and Drought Termination

    Science.gov (United States)

    Dettinger, M. D.

    2017-12-01

    Droughts in California have historically been a function of prolonged deficits of precipitation from the largest storms (much more so than from medium to weak storms), and drought endings typically reflect the return of those same large storms and more. The recent 2012-2016 drought in California followed this pattern, being bracketed by the extremely wet 2011 and 2017 water years, both brought about by the arrival of multiple major atmospheric river storms, and was marked by one of the episodic multi-year periods when these storms are diverted from the State by anomalous atmospheric circulations over the northeastern Pacific Ocean. The 2012-2016 episode was also marked by conditions that have been much less "normal" for California droughts, with record warm temperatures adding significantly to the drought and its impacts. Except in the highest mountains, these temperatures contributed as much to the drought potential as did precipitation deficits. The temperatures also led to record snow droughts that focused most in the low to middle altitude snowfields. Together the persistent precipitation deficits and high temperatures of this drought are a prescient example of a major drought with precipitation deficits emphasized at higher altitudes and temperature effects at lower altitudes. This drought ended with the remarkably wet 2017 water year, due to the arrival of a record number of large atmospheric river storms and associated precipitation. But this termination of precipitation drought was marked by its own flirtation with record-breaking "warm" snow drought conditions in late 2016 as well as by an eventual springtime snowpack that was very large but nowhere near as large as in other historical years with correspondingly large precipitation totals, especially at low to middle altitudes. These patterns of temperature-accentuated drought emphasized at lower altitudes and precipitation-driven droughts and drought endings emphasized at higher altitudes, both delineated

  12. Revised potentiometric-surface map, Yucca Mountain and vicinity, Nevada

    International Nuclear Information System (INIS)

    Ervin, E.M.; Luckey, R.R.; Burkhardt, D.J.

    1994-01-01

    The revised potentiometric-surface map presented in this report updates earlier maps of the Yucca Mountain area using mainly 1988 average water levels. Because of refinements in the corrections to the water-level measurements, these water levels have increased accuracy and precision over older values. The small-gradient area to the southeast of Yucca Mountain is contoured with a 0.25-meter interval and ranges in water-level altitude from 728.5 to 73 1.0 meters. Other areas with different water levels, to the north and west of Yucca Mountain, are illustrated with shaded patterns. The potentiometric surface can be divided into three regions: (1) A small-gradient area to the southeast of Yucca Mountain, which may be explained by flow through high-transmissivity rocks or low ground-water flux through the area; (2) A moderate-gradient area, on the western side of Yucca Mountain, where the water-level altitude ranges from 775 to 780 meters, and appears to be impeded by the Solitario Canyon Fault and a splay of that fault; and (3) A large-gradient area, to the north-northeast of Yucca Mountain, where water level altitude ranges from 738 to 1,035 meters, possibly as a result of a semi-perched groundwater system. Water levels from wells at Yucca Mountain were examined for yearly trends using linear least-squares regression. Data from five wells exhibited trends which were statistically significant, but some of those may be a result of slow equilibration of the water level from drilling in less permeable rocks. Adjustments for temperature and density changes in the deep wells with long fluid columns were attempted, but some of the adjusted data did not fit the surrounding data and, thus, were not used

  13. Demographic trajectories of Baja California and California, 1900-2000. Contrasts and parallelisms

    Directory of Open Access Journals (Sweden)

    David Piñera Ramírez

    2012-07-01

    Full Text Available The purpose is to analyze migration processes that have occurred in two neighboring states, pointing out the characteristics acquired in each of them, especially regarding their origin and type of labor relations they have produced. Therefore, the migration as the thematic axis and following the guidelines of comparative history, it is shown that both in California and in Baja California, migration flows have played a fundamental role. The comparative appro­ach also leads to the search for similarities and differences represented in different moments, such as the impact of "Prohibition", the Great Depression and two World Wars, or specific phenomena as the arrival of the railroad. But above all, the common thread is migration with its two key issues mentioned above, the origin of migration flows and labor relations that they have generated in the two Californias.

  14. California State Waters Map Series: offshore of Refugio Beach, California

    Science.gov (United States)

    Johnson, Samuel Y.; Dartnell, Peter; Cochrane, Guy R.; Golden, Nadine E.; Phillips, Eleyne L.; Ritchie, Andrew C.; Krigsman, Lisa M.; Dieter, Bryan E.; Conrad, James E.; Greene, H. Gary; Seitz, Gordon G.; Endris, Charles A.; Sliter, Ray W.; Wong, Florence L.; Erdey, Mercedes D.; Gutierrez, Carlos I.; Yoklavich, Mary M.; East, Amy E.; Hart, Patrick E.; Johnson, Samuel Y.; Cochran, Susan A.

    2015-01-01

    In 2007, the California Ocean Protection Council initiated the California Seafloor Mapping Program (CSMP), designed to create a comprehensive seafloor map of high-resolution bathymetry, marine benthic habitats, and geology within California’s State Waters. The CSMP approach is to create highly detailed seafloor maps through collection, integration, interpretation, and visualization of swath sonar data, acoustic backscatter, seafloor video, seafloor photography, high-resolution seismic-reflection profiles, and bottom-sediment sampling data. The map products display seafloor morphology and character, identify potential marine benthic habitats, and illustrate both the surficial seafloor geology and shallow (to about 100 m) subsurface geology.

  15. California State Waters Map Series: offshore of San Francisco, California

    Science.gov (United States)

    Cochrane, Guy R.; Johnson, Samuel Y.; Dartnell, Peter; Greene, H. Gary; Erdey, Mercedes D.; Golden, Nadine E.; Hartwell, Stephen R.; Endris, Charles A.; Manson, Michael W.; Sliter, Ray W.; Kvitek, Rikk G.; Watt, Janet Tilden; Ross, Stephanie L.; Bruns, Terry R.; Cochrane, Guy R.; Cochran, Susan A.

    2015-01-01

    In 2007, the California Ocean Protection Council initiated the California Seafloor Mapping Program (CSMP), designed to create a comprehensive seafloor map of high-resolution bathymetry, marine benthic habitats, and geology within California’s State Waters. The CSMP approach is to create highly detailed seafloor maps through collection, integration, interpretation, and visualization of swath sonar data, acoustic backscatter, seafloor video, seafloor photography, high-resolution seismic-reflection profiles, and bottom-sediment sampling data. The map products display seafloor morphology and character, identify potential marine benthic habitats, and illustrate both the surficial seafloor geology and shallow (to about 100 m) subsurface geology.

  16. Selected trace elements in the Sacramento River, California: Occurrence and distribution

    Science.gov (United States)

    Taylor, Howard E.; Antweiler, Ronald C.; Roth, David A.; Dileanis, Peter D.; Alpers, Charles N.

    2012-01-01

    The impact of trace elements from the Iron Mountain Superfund site on the Sacramento River and selected tributaries is examined. The concentration and distribution of many trace elements—including aluminum, arsenic, boron, barium, beryllium, bismuth, cadmium, cerium, cobalt, chromium, cesium, copper, dysprosium, erbium, europium, iron, gadolinium, holmium, potassium, lanthanum, lithium, lutetium, manganese, molybdenum, neodymium, nickel, lead, praseodymium, rubidium, rhenium, antimony, selenium, samarium, strontium, terbium, thallium, thulium, uranium, vanadium, tungsten, yttrium, ytterbium, zinc, and zirconium—were measured using a combination of inductively coupled plasma-mass spectrometry and inductively coupled plasma-atomic emission spectrometry. Samples were collected using ultraclean techniques at selected sites in tributaries and the Sacramento River from below Shasta Dam to Freeport, California, at six separate time periods from mid-1996 to mid-1997. Trace-element concentrations in dissolved (ultrafiltered [0.005-μm pore size]) and colloidal material, isolated at each site from large volume samples, are reported. For example, dissolved Zn ranged from 900 μg/L at Spring Creek (Iron Mountain acid mine drainage into Keswick Reservoir) to 0.65 μg/L at the Freeport site on the Sacramento River. Zn associated with colloidal material ranged from 4.3 μg/L (colloid-equivalent concentration) in Spring Creek to 21.8 μg/L at the Colusa site on the Sacramento River. Virtually all of the trace elements exist in Spring Creek in the dissolved form. On entering Keswick Reservoir, the metals are at least partially converted by precipitation or adsorption to the particulate phase. Despite this observation, few of the elements are removed by settling; instead the majority is transported, associated with colloids, downriver, at least to the Bend Bridge site, which is 67 km from Keswick Dam. Most trace elements are strongly associated with the colloid phase going

  17. Productivity of Mountain Reedbugk Redunca Fulvorufula (Afzelius, 1815 at the Mountain Zebra National Park

    Directory of Open Access Journals (Sweden)

    J. D Skinner

    1980-12-01

    Full Text Available Eighty two adult mountain reedbuck Redunca fulvoru- fula were collected during four seasons, autumn, winter, spring and summer at the Mountain Zebra National Park mainly during 1975 and 1976. Body mass and carcass characteristics varied little with season, body mass varying from 24,0-35,5 kg for all buck shot and dressing percentage always exeeded 50. According to KFI animals were all in fair to good condition. Sixty four percent of all ewes were pregnant and 38,5 lactating. Females and males bred throughout the year but there was a peak in births during mid-summer. The species is highly productive, well adapted to the niche it occupies and lends itself to exploitation for meat production.

  18. Digital Geologic Map of the Nevada Test Site and Vicinity, Nye, Lincoln, and Clark Counties, Nevada, and Inyo County, California

    Science.gov (United States)

    Slate, Janet L.; Berry, Margaret E.; Rowley, Peter D.; Fridrich, Christopher J.; Morgan, Karen S.; Workman, Jeremiah B.; Young, Owen D.; Dixon, Gary L.; Williams, Van S.; McKee, Edwin H.; Ponce, David A.; Hildenbrand, Thomas G.; Swadley, W.C.; Lundstrom, Scott C.; Ekren, E. Bartlett; Warren, Richard G.; Cole, James C.; Fleck, Robert J.; Lanphere, Marvin A.; Sawyer, David A.; Minor, Scott A.; Grunwald, Daniel J.; Laczniak, Randell J.; Menges, Christopher M.; Yount, James C.; Jayko, Angela S.

    1999-01-01

    This digital geologic map of the Nevada Test Site (NTS) and vicinity, as well as its accompanying digital geophysical maps, are compiled at 1:100,000 scale. The map compilation presents new polygon (geologic map unit contacts), line (fault, fold axis, metamorphic isograd, dike, and caldera wall) and point (structural attitude) vector data for the NTS and vicinity, Nye, Lincoln, and Clark Counties, Nevada, and Inyo County, California. The map area covers two 30 x 60-minute quadrangles-the Pahute Mesa quadrangle to the north and the Beatty quadrangle to the south-plus a strip of 7.5-minute quadrangles on the east side-72 quadrangles in all. In addition to the NTS, the map area includes the rest of the southwest Nevada volcanic field, part of the Walker Lane, most of the Amargosa Desert, part of the Funeral and Grapevine Mountains, some of Death Valley, and the northern Spring Mountains. This geologic map improves on previous geologic mapping of the same area (Wahl and others, 1997) by providing new and updated Quaternary and bedrock geology, new geophysical interpretations of faults beneath the basins, and improved GIS coverages. Concurrent publications to this one include a new isostatic gravity map (Ponce and others, 1999) and a new aeromagnetic map (Ponce, 1999).

  19. Proceedings of the Binational Conference on Libraries in California and Baja California (1st, Tijuana, Baja California, Mexico, January 13-14, 1984) = Memorias de la Primera Conferencia Binacional de Bibliotecas de las Californias.

    Science.gov (United States)

    Ayala, Marta Stiefel, Ed.; And Others

    This document includes the text of presentations given at the First Binational Conference on Libraries in California and Baja California, as well as minutes from four roundtables held at the conference. Following a prologue and a brief background on the conference, t